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Abstract

The aim of the thesis is to develop fusion algorithms for data collected from a wireless
sensor network in order to locate multiple sources emitting some chemical or biological
agent in the air. These sensors detect the concentration of the emitted substance, trans-
ported by advection and diffusion, at their positions and communicate this information
to a treatment centre. The information collected in a collaborative manner is used first
to locate the randomly deployed sensors and second to locate the sources. Applications
include, amongst others, environmental monitoring and surveillance of sensitive sites as
well as security applications in the case of an accidental or intentional release of a toxic
agent. However, the application we consider in the thesis is that of land mine detection
and localisation. In this approach, the land mines are considered as sources emitting
explosive chemicals. The thesis includes a theoretical contribution where we extend the
Belief Propagation algorithm, a well-known data fusion algorithm that is widely used for
collaborative state estimation in sensor networks, to the bounded error framework. The
novel algorithm is tested on the self-localisation problem in static sensor networks as well
as the application of tracking a mobile object using a network of range sensors. Other
contributions include the use of a Bayesian probabilistic approach along with data anal-
ysis techniques to locate an unknown number of vapour emitting sources.

Titre de la thèse en français

Fusion de données et estimation collaborative d’état dans les réseaux de capteurs sans
fil.

Résumé de la thèse en français

L’objectif de la thèse est de développer des algorithmes de fusion de données recueillies
à l’aide d’un réseau de capteurs sans fil afin de localiser plusieurs sources émettant un
agent chimique ou biologique dans l’air. Ces capteurs détectent la concentration de la
substance émise, transportée par advection et diffusion, au niveau de leurs positions et
de communiquer cette information à un centre de traitement. L’information recueillie de
façon collaborative est d’abord utilisée pour localiser les capteurs déployés au hasard et
ensuite pour localiser les sources. Les applications comprennent, entre autres, la surveil-
lance environnementale et la surveillance de sites sensibles ainsi que des applications de
sécurité dans le cas d’une libération accidentelle ou intentionnelle d’un agent toxique.
Toutefois, l’application considérée dans la thèse est celle de la détection et la localisation
de mines terrestres. Dans cette approche, les mines sont considérées comme des sources
émettrices de produits chimiques explosifs. La thèse comprend une contribution théorique
où nous étendons l’algorithme de propagation de la croyance, un algorithme de fusion de
données bien connu et largement utilisé pour l’estimation collaborative d’état dans les
réseaux de capteurs, au cadre des méthodes à erreurs bornées. Le nouvel algorithme est
testé sur le problème de l’auto-localisation dans les réseaux de capteurs statiques ainsi que
l’application de suivi d’un objet mobile en utilisant un réseau de capteurs de distance.
Autres contributions comprennent l’utilisation d’une approche probabiliste Bayésienne
avec des techniques d’analyse de données pour localiser un nombre inconnu de sources
émettrices de vapeur.
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INTRODUCTION

0.1 Theme and objectives

A wireless sensor network (WSN) consists of a number of spatially distributed sensor nodes
which have capabilities of monitoring a physical condition and of cooperating by passing
data through the network. Initially motivated by military applications (e.g. surveillance
of a battlefield), the properties associated with WSNs, such as their autonomy, low cost,
small size, diversity and effectiveness in hardly accessible regions, expanded their use to
consumer and industrial applications. However, the advantages of WSNs are limited by
a number of critical issues, the most popular of which relies probably in the inherent
restrictions on bandwidth and energy consumptions. Typically, ubiquitous sensing might
result in overwhelming volumes of raw data. In order to extract the small amount of useful
information from the network without communicating large volumes of possibly irrelevant
raw data, local processing of the information at the sensor nodes is often useful, this leads
to the need of distributed algorithms when performing estimation and/or inference.

Another important difficulty associated with WSNs applications is caused by the fact
that data gathered by a sensor node is usually noise-corrupted and requires special caution
when performing tasks such as decision making or inference. In fact, many problems
have inherent uncertainties, a famous example is that of self-localisation of a mobile
robot which receives noisy measurements from its wheels encoders and gets inaccurate
views from its range finders. Uncertainties are typically modelled as statistical and thus
probabilistic methods offer an attractive framework for addressing the problem. In these
approaches, attributes of interest are represented using collections of random variables.
Often probability distributions associated to these random variables are complex and
in the presence of non-linearities, sequential Monte Carlo methods offer an attractive
solution. However, these techniques commonly require high computational complexity
due to the large number of samples (or particles) needed to represent complex probability
density functions (PDFs). On the other hand, interval estimation is another promising
methodology which allows complex PDFs to be estimated using fewer box-particles and is
also independent of non-linearities.

In this thesis, we are interested in deriving fusion algorithms for data collected from
a WSN while respecting energy and bandwidth restrictions, and taking into account
the noisy aspect of the sensed data. Bayesian inference forms the central theme of this
manuscript since it acts as the hub to which various analytical and computational proce-
dures attach in order to solve a variety of problems. Mainly, our work can be structured
into two parts.

The first part deals with the problem of inference in distributed systems, such as
sensor networks, where the probability model is stored in a distributed fashion. In these
applications, each node (e.g. sensor) receives information about its local environment and
has a local set of attributes (described in terms of random variables) for which it needs to
compute a posterior density. Thus each node only stores a relevant portion of the model
and has to collaborate with other nodes in the network in order to compute its marginal
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posterior of interest, given all the observations available to the system [82].
An attractive formalism allowing to exploit conditional independence properties of a

joint PDF associated with large scale systems is possible through the use of probabilistic
graphical models [62]. Built upon the graphical model, the message passing (or Belief
Propagation) approach relies on exchange of messages between neighbour graph nodes.
These messages (characterising local/marginal PDFs) are iteratively exchanged between
neighbour nodes until convergence is reached. Each node is then able to estimate a
specific marginal of the joint posterior density. This approach has many advantages: it is
general and can be applied to any network without necessitating knowledge of the overall
graphical structure (since each node only knows about its immediate neighbours), and is
a distributed algorithm by construction.

Belief Propagation (BP) can be implemented in a parametrised manner (e.g., based
on Gaussian PDFs) or in a non-parametric way (e.g., based on sample representation of
PDFs). Whilst in the parametric implementation, parameters of the PDF of interest are
estimated, e.g., the mean and variance of the Gaussian PDF, in the non-parametric imple-
mentation, the PDF is unknown and represented using samples. The Non-parametric BP
(NBP) [99] is a particle-based implementation of the BP algorithm [101] and is especially
useful for representing joint and marginal probability distributions that are multi-modal,
non-standard Gaussian and in the presence of non-linearities.

The second part of the thesis considers the problem of detecting and localising sev-
eral sources emitting a chemical compound in the air using exclusively concentration
measurements provided by a network of wireless sensors assumed capable of sensing the
concentration of the emitted compound at their positions. Various applications are associ-
ated with this scenario especially in environmental monitoring and security fields (e.g. in
the case of accidental or intentional release of a toxic agent) [110, 69]. Another application
of interest in this thesis is that of land mines detection and localisation [57].

The localisation problem is formulated as Bayesian inference and a Markov Chain
Monte Carlo (MCMC) sampler allows to estimate the properties of the posterior PDF
of interest. The performance of the probabilistic scheme is also compared to that of
an optimisation least squares approach for two scenarios typically associated with land
mine detection and localisation [57]: the first, considers the mines as instantaneous point
sources (it assumes that the evaporation of the explosive chemical is induced), the second
considers the mines as continuous release point sources that were buried long enough for
a steady state concentration profile to be established.

0.2 Contributions

Part I

The efficiency of the NBP depends on the number of particles, and typically the impreci-
sion on the available information requires a large number of samples (or particles) which
leads to high computational complexity. NBP’s operations turn out to be complex and
computationally demanding. To deal with the high number of particles, interval-based
estimation has arisen as a promising methodology and has been widely employed in state
estimation problems [39, 55]. The bounded error framework has proven to be robust to
non-linearities and able to estimate complex PDF using a small number of box-particles.

We propose a novel non-parametric Belief Propagation approach, which we call box
Belief Propagation (box-BP). In the box-PP, a collection of box particles [41] represents
the information exchange between nodes of the network. Adopting an approximation of
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the Bayesian solution with mixtures of uniform PDFs, having boxes as support [42], we
provide the theoretical Bayesian derivation of the box-BP and the corresponding imple-
mentation.

Furthermore, the performance of the novel box-BP is validated on localisation ap-
plications described by static and dynamic graphical models. The first version of the
box-BP [23] is focused on a sensor calibration problem, i.e., finding the coordinate of all
static sensors in the network knowing a prior position of a few of them, for this scenario
the efficiency of the box-BP is demonstrated over simulated data. The second application
considers the localisation of a single mobile target moving within a network of wireless
range sensors, it is more general and proposes a solution to the more difficult, dynamic
cases, with dynamic posterior PDFs (e.g., for sequentially estimating the state of a moving
object). Additionally, results are reported over simulated and real data.

In both cases, the novel box-BP is compared with the standard particle-based Non-
parametric Belief Propagation (NBP). As the NBP, the box-BP is aimed for cases of
non-linearities, multi-modal PDFs and, compared with the NBP, has several key advan-
tages. First, it is shown through the Bayesian derivation that it requires simpler and
faster computations: this is essentially due to the fact that, in comparison with NBP’s
representation with samples, it uses box-particles which are interpreted as an approxima-
tion of PDFs based on mixtures of uniform distributions. Secondly, it needs much less
box particles to estimate the PDFs which is doubly advantageous in terms of memory op-
timisation and reduction of energy and bandwidth requirements for the messages sent in
the network. Thirdly, the box-BP has properties inherent to bounded errors approaches,
e.g. it can deal with quantised measurements and bounded noises with unknown statis-
tics, and is able to propagate, in time, supports that are guaranteed to contain the real
solutions [39].

Hence, the contribution of part I is threefold: first, a novel box-Belief Propagation
(box-BP) approach is proposed where the BP is performed based on box representations
of the state PDFs; second, the effectiveness of the box-BP approach is demonstrated over
simulated data in the case of static graphical models; third, the advantages of the box-BP
are proven, using real dataset, for a more general case including a dynamic structure of
the graph.

Part II

All existing methods for land mine detection consider a known number of sources in a
specific region [7, 57]. However this information rarely exists for real applications. One
original contribution of this part of the thesis is to present a solution for an unknown
number of land mines or vapour-emitting sources. We propose a two-step method where
the objective is to estimate the number of sources and then localise them. In the first step,
the set of concentration measurements which have been made by the detection system
are grouped in a matrix and a PCA scheme is used in order to determine the number
of sources. Once this number is known we are then able, in the second step, to locate
explosive sources and to estimate the emission rate of each source. Thus, in difference to
most of existing methods (which solve the problem of localising a single source), we solve
the problem of localising multiple anti-personnel land mines.

Hence, the main novelty in part II consists in considering the case of multiple land
mines whose number is unknown a priori.
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0.3 Thesis outline

As mentioned earlier, the manuscript revolves around two main parts and is organised in
six chapters.

Chapter 1 provides an overview of the prior work and the concepts relevant to the the-
sis. It basically recalls the Monte Carlo sample-based methods as well as an introduction
of graphical models and message-passing algorithms.

Chapters 2, 3 and 4 constitute the core of part I and revolve around the three con-
tributions mentioned in the previous section. Chapter 2 presents the main theoretical
contribution of this part: the derivation of the box-BP where the BP is performed based
on box representations of the state PDFs. The nodes’ instantaneous measurement are
fused following a graphical model representation and it is shown that the box-BP pro-
vides an efficient solution to the Bayesian inference problem. The derivation of the box-BP
relies on the interpretation of a box as a uniform PDF defined over its support, and shows
how to implement the BP in the bounded error framework. In chapter 3, the performance
of the novel box-BP is tested on the problem of calibration in wireless sensor networks.
That is the positioning of a number of randomly deployed sensors, according to some
reference defined by a set of anchor nodes for which the positions are known a priori. The
effectiveness of the new message-passing scheme is demonstrated over simulated data on
a static graphical structure. Chapter 4 investigates the problem of continuously localising
an object moving within a wireless sensor network. A wide range sensors are to be de-
ployed in a field of interest such that, at any given time, the moving object can be detected
by only a small number of time-of-flight sensors. A cooperative and distributed solution
is needed to achieve the common localisation task using, exclusively, the available range
measurements. Based on local exchange of information, the Belief Propagation (BP) ap-
proach provides a powerful solution to sequentially fuse data collected in a distributed
fashion from the sensor nodes. Both the NBP and the box-BP schemes are compared for
this scenario over real and simulated data sets.

Part II is organised in two chapters. Chapter 5 provides a literature review on the
use of sensor networks for source characterisation in several application fields, as well as
an overview of advection-diffusion models for the cases of instantaneous and continuous
release point sources. It ends with formulating the forward problem aiming at predicting
the concentration measurements at the sensors’ positions knowing the sources parameters.
Chapter 6 then considers the problem of localising an unknown number of land mines us-
ing, exclusively, concentration measurements provided by a wireless sensor network. The
two-step approach (mentioned earlier) consisting in sequentially determining the number
of sources, then localising them is employed to solve the inverse problem, corresponding to
the forward model formulated in Chapter 5. Two technical solutions are reported, a prob-
abilistic Bayesian approach based on a Markov Chain Monte Carlo (MCMC) sampling
scheme, and an optimisation least squares technique. The effectiveness of these schemes
is tested on simulated data for two scenarios, assuming, respectively, the land mines as
instantaneous and continuous release sources.

A general conclusion recapitulating the basic concepts and contributions of the thesis,
as well as future work and perspectives, is at last given.

Much of the research in this dissertation has been published or submitted in the form of
journal and conference papers. Results reported in chapters 2 and 3 are adapted from [23]
while some of the results provided in chapter 6 have been established in [21, 22].



Part I

INFERENCE ON GRAPHICAL MODELS



1. BACKGROUND

1.1 Introduction

Message-passing algorithms built upon probabilistic graphical models have become im-
portant tools to infer in WSNs applications [82]. Furthermore, in order to increase the
decision accuracy within a stochastic environment, filtering and inference issues should
be involved.

In this chapter, we provide a short overview of concepts relevant to the subsequent
parts of the thesis, as well as an introduction of the prior work related to the methods
and algorithms derived later on. The first part of the thesis considers the problem of in-
ference on arbitrary graphical models where we derive a novel message-passing algorithm
defined in the bounded error framework. A graphical model is a statistical tool which
can be associated with a distributed system, where the probability model is stored in a
distributed fashion, such as sensor networks. A general description of sensor networks and
the common issues involved with them (typically communication and energy constraints)
is reported in section 1.2. Section 1.3 then defines the popular problem of filtering which
will be seen afterwards as a particular case of the inference problem defined on a graphical
model considered in this first part of the dissertation. Different non-parametric represen-
tations of probability quantities are employed in the probabilistic procedures we consider,
or derive, throughout this manuscript, amongst which are the Monte Carlo particle-based
representations, that are briefly explained in section 1.4. Finally, basic knowledge of
graphical models and message-passing procedures is available through sections 1.5, 1.6
and 1.7 of this introductory chapter.

1.2 Sensor networks: a general overview

Sensor networks have become a popular solution in many civilian and military applica-
tions [93, 110], they are useful whenever there is a need to monitor or to control physical
quantities, such as temperature, brightness or pressure. In typical scenarios, sensors ac-
quire data from their environment and often communicate the information collected to a
processing centre.

Due to recent advances in wireless technology, networks of wireless sensors present
several advantages over their wired counterparts [70], mainly: they are cheaper because
they require much less infrastructure, they are freed from the constraint of wiring which
considerably limited the deployment of a large number of nodes, they are able to convey
information to all nodes connected to the network and, finally, they are self-configurable
and self-organising networks with almost no need for direct human intervention.

With these features, WSNs are quickly and cheaply deployed in environments which
are dangerous for people, such as regions of conflicts [84], or areas which are difficult to
access, as in environmental monitoring applications [69]; WSNs also make it possible to
deploy a network consisting of a large number of sensors to monitor wider areas.

A WSN consists of a large number of units called sensor nodes. A node is generally
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Fig. 1.1: Main components of a sensor node.

composed of three main units [10, 51]: an acquisition unit, a processing unit and a
communication unit. The acquisition unit obtains numerical measures on environmental
parameters depending on the sensing ability of the sensor (e.g. seismic, optical, acoustic
or meteorological) and forwards the recorded information to the processing unit. The
processing unit is composed of a CPU and a specific operating system allowing the sensor
node to perform some local computations. The communication unit sends and receives
data via a radio communication medium thus enabling the sensor to exchange information
with other nodes of the network. These three units are powered by a self-contained battery
as depicted in figure 1.1. Other components may be added to a sensor node, such as a
positioning module (GPS) or a mobility component to make it mobile.

Despite the advantages of WSNs, a common concern in almost the majority of the work
on sensor networks, is that of reducing energy consumption. Indeed, since wireless sensor
networks are usually intended to raise information in hostile or inaccessible environments
without human intervention, it is hard to find a source of energy other than self-contained
batteries; therefore, the lifetime of a sensor node is equal to the lifetime of its battery.
Consequently, limitations on the available energy should be considered when performing
tasks such as estimation and inference in WSNs. Typically, communication requires many
times more the amount of power required for sensing or computation [75]. Algorithms
for routing and distributed processing [5, 64, 89], only based on information gathered by
neighbour nodes, i.e. within limited ranges, have arisen as an important key for energy
optimisation of a WSN.

1.3 Bayesian filtering

A dynamic system is a physical system that evolves over time and can be described by
a set of variables grouped into a state vector. State estimation methods aim at studying
the behaviour of a dynamic system by calculating, at each time step, an estimate of
the state vector, usually through combining information provided by different sensors.
Filtering refers to the problem of sequentially estimating the states, or hidden variables,
of a system as a set of observations become available [109] (this problem is illustrated
in figure 1.2). Consider a dynamic model described by the following system:{

xk = f(xk−1,vk), (1.1)
yk = g(xk,wk), (1.2)

where:

• xk ∈ Rnx , yk ∈ Rny are respectively the state and the observation vectors at time
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Fig. 1.2: The general problem of filtering.

step k.

• f is a transition function which allows to predict the state vector xk at time step k
in terms of the previous state xk−1 and an i.i.d. process noise sequence, vk ∈ Rnx ;
equation (1.1) is usually referred to as the prediction model.

• g is a function that defines the relation between the state and the measurement
vectors (xk and yk respectively) taking into consideration a measurement noise,
wk ∈ Rny , denoting an i.i.d. measurement noise sequence; equation (1.2) is often
called the observation model.

• Xk = {xk,xk−1, . . . ,x1} and Yk = {yk,yk−1, . . . ,y1} are vectors grouping, respec-
tively, the states and the measurements up to time step k.

Within the Bayesian framework, a description of the state given the measurements, up to
time step k, is provided by the posterior probability distribution p(Xk|Yk). Furthermore,
in Bayesian filtering it is often enough determining, at each time step k, the posterior
marginal distribution denoted as p(xk|Yk) and given by:

p(xk|Yk) = 1
αk
p(xk|Yk−1)p(yk|xk), (1.3)

where αk =
∫
p(yk|xk)p(xk|Yk−1)dxk is a normalisation factor, p(yk|xk) is the likelihood,

p(xk|Yk−1) is the prior and can be expressed as:

p(xk|Yk−1) =
∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (1.4)

In equation (1.4), the PDF p(xk|xk−1) is called the transition density (and is associated
with the prediction model) while p(xk−1|Yk−1) is the posterior at time step k. The
recursion given by expressions (1.3) and (1.4), corresponding respectively to the time
update and the measurement update steps, allows to sequentially compute the posterior
marginals p(xk|Yk), for each k; the iterative process is initialised with a prior p(x0), which
can be chosen as an uninformative uniform PDF over some region of the state space.

1.4 Monte Carlo methods

Let p(x) denote a probability density function (PDF) defined for x ∈ Rn, and xip ∼ p(x),
i = 1, . . . N , an i.i.d. sample of size N . Monte Carlo methods rely on the fact that p(x)
can be empirically represented by a set of independent samples drawn from p [58]. A
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representation of p(x), denoted as p̂(x), is given by the following expression:

p̂(x) = 1
N

N∑
i=1

δxi
p
(x), (1.5)

where δa(x) denotes the Dirac delta function located at a ∈ Rn. The expectation of any
function f of x, under the distribution p, can also be approximated as follows:

Ep(f(x)) =
∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xip). (1.6)

It can be easily demonstrated that this estimate is unbiased [58].
Since, in some cases, it is not possible to draw samples directly from p(x), such as when

this distribution is not given in a closed parametric form, Monte Carlo approximation
allows to represent p using a collection of weighted particles, or samples, using a procedure
such as importance sampling.

Let q(x) denote a proposal distribution (the next section shows how it is chosen) that
can be evaluated and sampled, and let xiq ∼ q(x), i = 1, . . . , N , be an i.i.d. sample for q.
Assuming that q(x) is absolutely continuous with respect to p(x), i.e., if q(x0) = 0, for
some x0 ∈ Rn, then p(x0) = 0 as well. The relative likelihood of having drawn xiq from
p(x) versus q(x) is given by:

ωi ∝
p(xiq)
q(xiq)

. (1.7)

The quantities ωi, i = 1, . . . , N , are called weights and are normalised as to obtain∑
i ω

i = 1; to compute these weights, only the ratio of p to q needs to be known.
The resulting weighted collection of samples {ωi,xiq} represents the distribution p(x) and
similarly to equation (1.6) an approximation of the expectation of a function f(x) is given
by ∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

ωif(xiq). (1.8)

1.4.1 Particle filtering

Different approaches for solving the filtering problem defined in section 1.3 have been pro-
posed in the literature. Amongst the most popular filtering procedures we find the stan-
dard Kalman filter (KF) and its variants such as the extended Kalman filter (EKF) [109,
111], these algorithms make an assumption of Gaussian posterior PDFs to approxi-
mate the recursive Bayesian estimation described previously. Particle filters make no
assumptions on the form of the probability densities of interest, they provide a Monte
Carlo based procedure for sequentially estimating the posterior marginal distributions
p(xk|yk,yk−1, . . . ,y1) at each time step.

The most basic form of particle filtering operates as follows: given a collection of
weighted samples {ωjk−1,x

j
k−1} representing the posterior p(xk−1|Yk−1) at time k − 1, in

the time update step, these particles are propagated through the prediction model by
sampling from the conditional distribution p(xk|xk−1):

xjk ∼ p(xk|xjk−1), (1.9)

the proposal distribution is thus chosen to be the transition probability function. The



1. Background 19

Fig. 1.3: Particle filtering.

resulting collection of particles {ωjk−1,x
j
k} represents the prior at time k; the next step,

known as the measurement update step, is to correct the weights using the likelihood at
k according to what follows

ωjk ∝ ωjk−1p(yk|xk). (1.10)

The weighted collection of samples {ωjk,x
j
k} now represents the posterior p(xk|Yk) at time

k. This iterative procedure is initialised by drawing samples xj1 ∼ p(x1) from some prior
distribution p(x1).

A problem often encountered with this procedure is particle depletion: that is one or
more particles end up dominating with a relatively great weight as we walk through the
iterations. A popular solution for this problem is resampling. It consists in replacing the
collection of weighted particles by a set of equally weighted particles, before propagating
the particles through the transition probability as shown in figure 1.3. Intuitively, several
copies of a single particle would exist, their number is proportional to the initial particle’s
weight. These copies, when propagated through the transition density, result in different
new particles and thus adds variety to the samples representing the prior at time k.

1.5 Graphical models

Probabilistic graphical models [62] are special graphs that combine probability with graph
theories in order to visualise conditional independence properties of joint PDFs [82].
They are important and useful tools to reason with probability models defined in large
spaces [12]. Typically, given a set of random variables, conditional independence prop-
erties are crucial for understanding the underlying structures of a joint PDF. Graphical
models offer a framework to exploit these conditional independence properties and to
represent joint probability distributions as a product of local factors where each factor
depends only on a subset of variables. This factorisation offers many computational
advantages, mainly a more compact representation of the PDF and an accelerated infer-
ence [82].

Graphical models have important characteristics [12] that make them widely employed
in fields such as statistics, statistic physics, computer vision and machine learning, where
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the problems of uncertainty and complexity are often encountered: (a) they represent
the structure of a probability model; (b) they offer a visualisation of the conditional
independence properties of the model; (c) they translate complex computations, required
to perform tasks such as inference, into visible graphical manipulations.

Formally, if X = {x1, . . . ,xN} denotes a set of random variables, xi, i = 1, . . . , N ,
p(X) a joint PDF defined over X, a probabilistic graphical model is a tool to represent the
underlying structure of the joint PDF p; it is a special graph G = (V,E) where V is a set of
nodes or vertices, and E is a set of edges, each node i ∈ V is associated with a random
variable xi and each edge (i, j) represents a probabilistic relation between the random
variables xi and xj. The graph structure describes the independence relationships between
the variables qualitatively. The parameters Θ will be used to quantify the interdependency
between nodes i and j.

Different types of graphical models exist: directed graphical models and undirected
graphical models. Directed graphical models, also known as Bayesian Networks (BNs),
express causal relationships between random variables. Undirected graphical models,
also called Markov Random Fields (MRFs), encode constraints and correlations between
variables [97]. BNs are popular in statistics, artificial intelligence and machine learning
societies while MRFs are widely employed in computer vision and statistical physics [11].
A third class, known as factor graphs, generalises both directed and undirected types of
graphical models [63, 100].

1.5.1 Directed graphical models

Directed graphical models, i.e. Bayesian Networks, are a class of graphical models that
uses directed acyclic graphs (DAGs) to express causal relationships between random vari-
ables [11]. They characterise the way a joint PDF defined over a set of random variables,
factors into a product of conditional probabilities imposed by the structure of the graph.

Let p(X) denote a joint probability distribution defined over a set X of N random
variables, X = {x1, . . . ,xN}. Using the chain rule, p can be expressed as:

p(x1,x2, ...,xN) = p(x1)
N∏
j=2

p(xj|xj−1, . . . ,x1). (1.11)

Many graphs, such as static or dynamic sensor networks, are sparse. This implies that,
for the associated probability models, the probabilities of some of the variables xj are not
dependent of all of their predecessors (i.e. x1, x2, . . . , xj−1) but only depend on some of
them. This restricted set of variables is called the set of parents of xj and is denoted by
pa(xj). Using these independence properties, the following equality holds:

p(xj|xj−1, . . . ,x1) = p(xj|pa(xj)),

and hence, equation (1.11) can be put into the following form:

p(x1,x2, ...,xN) =
∏

j∈{1,...,N}
p(xj|pa(xj)). (1.12)

The directed graph describing this joint probability distribution is defined by two sets:
the set of nodes associated with the random variables, and the set of edges representing
a direct causal connection between the variables. Indeed, an arrow from node i, asso-
ciated with random variable xi, to node j associated with xj, encodes the fact that a
value taken by xj is dependent of the value taken by xi. The DAG structure provides
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Fig. 1.4: Example of a Bayesian network: the DAG encodes the structure of the distribution
p(X) = p(x1,x2,x3,x4,x5).

Fig. 1.5: Example of a Bayesian network: a first order Markov chain.

a qualitative description of the model, the set of quantitative parameters Θ, which spec-
ifies the forms of the relationships between the random variables, groups the quantities
θxi|pa(xi) = p(xi|pa(xi)). Figure 1.4 illustrates an example of a BN associated with a joint
PDF defined over N = 5 random variables.

Conversely, having the DAG describing the structure of a joint PDF, the conditional
independence properties, i.e. the factorised form of the model, can be inferred. In fact,
each node/variable is independent of its non-descendants 1 in the graph given the state
of its parents. The joint PDF can be factorised into a product of conditional probability
distributions where each node is only dependent of its parents. In the example of figure 1.4,
the joint PDF factors into:

p(X) = p(x1,x2,x3,x4,x5) = p(x5|x2,x3,x4)p(x4|x2)p(x3|x2)p(x2|x1)p(x1).

To ensure that this factorisation holds, an important restriction on the topology of the
graph must be maintained, that is, no path, from any node of the graph, can lead back
to the node itself along the directed edges; this property is guaranteed by the structure
of the acyclic graph.

A final remark is that, although the arrows represent a direct causal connection be-
tween the variables, information can propagate in any direction. In fact, a causal relation
from node i to node j implies that any information on xi may modify the knowledge one
has on xj. Conversely any knowledge on xj may reflect an information about xi [97].

Example 1.5.1. A Markov chain is a simple example of a directed graphical model. A
set of random variables {x1,x2, . . . ,xN} define a first order Markov chain if

p(xi+1|xi,xi−1, . . . ,x1) = p(xi+1|xi), ∀i ∈ {1, . . . , N − 1}. (1.13)

The corresponding graph is given in figure 1.5.
1 In graph theory, the set of descendants of a node comprises the set of nodes that can be reached from

this node on a direct path [11].
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1.5.2 Undirected graphical models

Markov Random Fields (MRFs) are a class of graphical models that uses an undirected
graph to encode conditional independence relationships between random variables [11].

Let G = (V,E) be an undirected graph representing a joint probability distribution,
p(X) defined over a set of N random variables X = {xi}Ni=1, A, B and D refer to three
disjoint subsets of V , XA,XB,XD the sets of random variables associated with the nodes
in sets A, B and D respectively. If every path between A and B passes through some
node in D, D is said to separate A and B [100]. This graphical criterion, known as graph
separation [82], encodes conditional independence between XA and XB given XD, thus:

p(XA,XB|XD) = p(XA|XD)p(XB|XD). (1.14)

For a node i ∈ V , let Γi ⊂ V refer to the set of neighbours of i, Γi hence consists of
the nodes of G connected to i by an edge, and designates a set of variables denoted
as XΓi

= {xj|j ∈ Γi}. The graph structure suggests that any random variable xi is
conditionally independent of all other variables of the model given XΓi

:

p(xi|XV \i) = p(xi|XΓi
), (1.15)

where V \i refers to the set of nodes of G except for node i.
To specify the forms of the relationships between random variables, a parametrisation

of MRFs is obtained by referring to the Hammersley and Clifford theorem. Recall be-
forehand that, in graph theory, a clique is a set of fully connected nodes in a graph (see
figure 1.6 for an example).

Theorem 1.5.1. Hammersley and Clifford Theorem: (adapted from [100])
Let G = (V,E) be an undirected graphical model, where each vertex i ∈ V corresponds to
a random variable xi, and C denotes a set of cliques of G; then, a probability distribution
defined as the product of normalised positive functions (symmetric in their arguments)
defined on the cliques is always Markov with respect to the graph.

p(X) ∝
∏
c∈C

ψc(Xc). (1.16)

Alternatively, any positive joint density function p(X) > 0, ∀X, which is Markov with
respect to the graph, implies that there exist positive functions ψc (symmetric in their
arguments) such that the equality in equation (1.16) holds.

According to theorem 1.5.1, the joint distribution can be expressed as a product of
factors, each of which is defined on a clique of the graph.

p(X) = 1
Z

∏
c∈C

ψc(Xc), (1.17)

where C is a set of cliques of G, Xc designates the set of random variables associated
with c ∈ C, ψc(Xc) is a factor associated with c and is referred to as a potential function,
and Z is a normalisation constant. Figure 1.7 shows an example of a MRF with N = 5
nodes/variables. One possible parametrisation of the graph is given by

p(X) = 1
Z
ψ235(x2,x3,x5)ψ245(x2,x4,x5)ψ12(x1,x2).
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Fig. 1.6: (a) this configuration does not define a clique because no edge interconnects nodes 2
and 3. (b) an example of a clique.

Fig. 1.7: Example of a Markov Random Field.

Example 1.5.2. Pairwise Markov Random Fields
Pairwise MRFs are a restricted class of the undirected graphical models family, in which,
the cliques are exclusively pairs of nodes of the graph connected by an edge. Figure 1.8
illustrates an example of a pairwise MRF. The joint PDF can be expressed as

p(X) = 1
Z
ψ12(x1,x2)ψ23(x2,x3)ψ24(x2,x4)ψ25(x2,x5).

Example 1.5.3. For the example given in figure 1.7, choosing the cliques to be exclusively
pairs of nodes connected by an edge, a different parametrisation of the MRF can be
obtained:

p(X) = 1
Z
ψ12(x1,x2)ψ23(x2,x3)ψ24(x2,x4)ψ25(x2,x5)ψ35(x3,x5)ψ45(x4,x5).

The parametrisation of a MRF is not unique.

1.5.3 The problem of inference

In a typical scenario, two sets of random variables are considered: the set X and the
set Y of respectively hidden and observable variables, and it is usually desired to obtain
an information about the hidden quantities given the observations. Consequently, the
set of nodes V , associated with the random variables describing the system, is split into
two disjoint sets, Vx and Vy, associated respectively with the set X = {x1,x2, . . . ,xN}
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Fig. 1.8: Example of a pairwise MRF.

of the hidden variables and the set Y = {y1,y2, . . . ,yM} of the observable ones. Nodes
in sets Vx and Vy are referred to as hidden (or latent) and evidence nodes respectively.
The problem of inference on a graphical model refers to finding the posterior distribution,
denoted as p(X|Y), of some, or all, hidden variables given the observations [97, 117].

Without loss of generality, let us develop further the expression of the posterior dis-
tribution p(X|Y) in the case of an undirected graphical model whose cliques are chosen
to be exclusively pairs of nodes connected by edges, e.g. the case of a pairwise MRF. Let
us also assume that the set Y of observations is actually a collection of local observations
yi of individual node variables xi, i ∈ V , corrupted by some noise [51] and that yi is
independent of all variables in the model given xi. Using the Hammersley and Clifford
theorem, the probability distribution p(X,Y) can be factorised into a product of factors,
or potential functions, which, under the previous assumptions, can be partitioned into
two groups: the first group corresponds to edges existing between the hidden variables
and their associated local observations and the second group corresponds to edges in-
terconnecting hidden variables. Hence, the posterior distribution can be expressed as a
product:

p(X|Y) = p(X,Y)
p(Y) ∝

∏
(i,j)∈E

ψij(xi,xj)
∏
i

ψi(xi,yi). (1.18)

Figure 1.9 illustrates the problem of inference on a graphical model defined in this
section. In this example, the vector of hidden variables is X = (x1,x2,x3,x4,x5,x6,x7)
and the vector grouping the observations is Y = (y1,y3,y5). Typically, nodes associated
with Y should have been added to the graph, with edges interconnecting these evidence
nodes with their corresponding hidden variables; for simplicity reasons, and since the
observations are local to their associated hidden nodes, nodes for which an observation is
available are shaded.

1.6 Belief Propagation algorithm

The Belief Propagation (BP), also known as the sum-product algorithm, is a statistical
estimation tool for solving inference problems defined on graphical models. It exploits
the conditional independence relationships encoded by the graph in order to calculate, in
an exact or an approximated way, the marginal posterior distribution at a node of the
model. In our exposition of the BP, we focus on pairwise MRF, and hence, we reason
within the assumptions made in section 1.5.3. However, the methods underlying BP as
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Fig. 1.9: The inference problem refers to determining the posterior distribution p(X|Y). Shaded
nodes are associated with variables for which an observation is available.

described in this section are also adapted to message-passing in Bayesian Networks (BNs)
and in factor graphs [108, 18, 100].

The inference goal considered here is to compute the posterior marginal distribution
associated with a node t given the set of observations Y:

p(xt|Y) =
∫

X\xt

p(X|Y)dX\xt. (1.19)

Based on the factorisation (1.18), this marginalisation task is captured by BP in an
iterative fashion: BP [112] iteratively exchanges information between nodes of a graphical
model through a message-passing procedure, the most common form of which is a parallel
update scheme where, at each iteration, each node calculates outgoing messages to all of
its neighbours simultaneously. A message, denoted by mi

ts(xs), is sent from a node t to
one of its neighbours s, at an iteration i of BP, and is given by the following expression:

mi
ts(xs) ∝

∫
ψts(xt,xs)ψt(xt)

∏
u∈Γt\s

mi−1
ut (xt)dxt, (1.20)

where ψt(xt,yt) is replaced by ψt(xt) for the simplicity of the notation. Note that the
index i is henceforth employed to denote the iteration number while t and s will refer to
two neighbouring nodes. Figure 1.11 illustrates BP’s message update step for the sample
graph given in figure 1.10.

Let us denote by Ri
ts(xt) the product of messages incoming to node t, at iteration i of

BP, from the set of its neighbours except for node s:

Ri
ts(xt) ∝

∏
u∈Γt\s

mi
ut(xt). (1.21)

The quantity
M i

ts(xt) ∝ ψt(xt)Ri
ts(xt) (1.22)

is referred to as the partial belief, it combines, at an iteration i, all the available informa-
tion about t, from t itself and t’s neighbouring nodes (except for the receiving node s).
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Fig. 1.10: A sample graph.

Fig. 1.11: Message update.

These two quantities will be helpful when we demonstrate the theoretic derivation of the
box-BP in the next chapter.

Next to message-passing, the belief at iteration i, at node t, is computed as follows:

qit(xt) ∝ ψt(xt)
∏
u∈Γt

mi
ut(xt). (1.23)

Beliefs are PDFs and hence normalised in order to integrate to unity [51].
Figure 1.12 illustrates BP’s belief computations for the example in figure 1.10. The

belief at a node t approximates the posterior marginal of interest p(xt|Y). In fact, under
some conditions the belief converges to the exact posterior marginal distribution [51].

1.6.1 Loopy Belief Propagation

If the graphical model is tree-structured (i.e. is loop free), as in the case of a pairwise
MRF, the Belief Propagation is guaranteed to converge after a finite number of iterations
(at most equal to the length of the longest path in the graph [51]). In this case, the
belief at a node t will be exactly equal to the posterior marginal of interest p(xt|Y).
Nevertheless, BP may also be applied to arbitrary graphical models. The same local
Belief Propagation equations are iterated overlooking the presence of loops in the graph.
This iterative procedure is referred to as loopy BP. In this case, the convergence of the
sequence of messages is not guaranteed. Under some conditions however, fixed points will
appear and in practice, these fixed points (beliefs) constitute reasonable approximations of
the exact posterior marginal distribution associated with the node. Loopy BP is explained
in details in [18].



1. Background 27

Fig. 1.12: Belief computation.

Fig. 1.13: Non-parametric Belief Propagation.

1.7 Non-parametric Belief Propagation

The BP algorithm is a tool for performing exact or approximate marginalisation on ar-
bitrary graphical models. This algorithm relies on two operations [79]: the first is a
product of a collection of messages, the second is a convolution operation of this message
product with a pairwise potential function as shown in equation (1.20). In many applica-
tions of graphical models, e.g. in computer vision [101], the hidden variables of interest
are described by continuous non-Gaussian distributions; furthermore, the models govern-
ing information exchange between nodes may be seriously non-linear which makes BP’s
operations intractable. Non-parametric Belief Propagation (NBP) [99] is an attractive
solution in the presence of such complex situations; it is considered, on one hand, as a
generalisation of particle filtering applied to arbitrary graphical models and on the other
hand as a stochastic approximation of BP [51, 101, 80].

The basic idea behind NBP is to use sample-based representations to approximate the
operations of BP [90]. We explain the computations required by NBP by considering each
operation of the message update step (see equation (1.20)) stated earlier. Recall that t
and s refer to the sending and the receiving nodes respectively, while xt and xs are their
associated random variables.
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1.7.1 The message product operation

The first operation in the message update procedure is a message product which makes it
possible to compute the partial belief at the sending node t according to equation (1.22).
In NBP, messages mi

ut(xt) are represented by a collection {ωjut,xjut}, j = 1, . . . , N , of
weighted samples. A representation of mi

ut(xt) is hence given by

m̂i
ut(xt) =

N∑
j=1

ωjutδ(x− xjut), (1.24)

where δ is the Dirac impulse function. The product ∏u∈Γt\s m̂
i
ut(xt) is virtually guaran-

teed to be zero everywhere since the event of drawing exactly the same samples from all
of the messages is far unlikely; it is thus necessary to have continuous estimates of the
messages. Such an estimation can be determined using non-parametric density estima-
tion methods [98]. In [51], the effect of each sample is smoothed onto a nearby region
using a Gaussian Kernel Kh(.), so the message is estimated by a mixture of N Gaussian
distributions:

mi
ut(xt) =

N∑
j=1

ωjutKh(x− xjut). (1.25)

Performing the product of d messages, each represented by a mixture of N Gaussian dis-
tributions, and noting that the product of two Gaussian distributions is Gaussian [97],
the result is a Gaussian mixture containing Nd components. To avoid complex compu-
tations, the author in [51] proposes to sample exactly N particles from this product of
Gaussian mixtures using a Markov Chain Monte Carlo (MCMC) method, namely the
Gibbs sampler. The message product, i.e. the partial belief, is thus represented by a col-
lection {Ωj

ts,xjts}Nj=1 of weighted particles. If N is chosen sufficiently large, this collection
of samples is guaranteed to accurately characterise the true product [98].

1.7.2 The convolution operation

The second operation in the message update expression is a convolution through which
the available information about the sending node t, represented by the partial belief, is
propagated through the pairwise potential function ψts(xt,xs), specifying the relationship
between xt and xs, in order to form a message providing some information about the
receiving node s’ local state.

The partial belief is represented by a collection {Ωj
ts,xjts}Nj=1 of weighted particles. In

order to approximate the integral in equation (1.20), a direct application of Monte Carlo
approximation given in equation (1.6) can be employed. However, the pairwise potential
function ψts(xt,xs) can have a marginal influence on xt [100], i.e. the integral

ζts(xt) =
∫
ψts(xt,xs)dxs, (1.26)

is not equal to unity. NBP accounts for this influence by incorporating ζts(xt) into the
message product operation, the samples are thus drawn from the product

ζts(xt)M i
ts(xt) ∝ ζts(xt)ψt(xt)

∏
u∈Γt\s

mi
ut(xt). (1.27)

To approximate the integral in equation (1.20), the resulting particles are then propa-
gated through the pairwise potential function ψts(xt,xs). Figure 1.13 summarises NBP’s
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computations.

1.8 Conclusion

This chapter aimed at familiarising the reader with the material discussed in subsequent
chapters of the thesis by providing an overview of the related prior work. It evoked general
issues involved with sensor networks applications. It also presented a short explanation
of Monte Carlo non-parametric representations of PDFs which are widely used in envi-
ronments presenting complex and unknown uncertainties. The notion of a probabilistic
graphical model as well as the problem of inference which is considered in the first part of
the thesis were also defined. The general Belief Propagation message-passing algorithm as
well as a non-parametric variant of it employing particle-based representations of prob-
ability distributions were also emphasised. This algorithm, known as Non-parametric
Belief Propagation (NBP), provides a solution to the problem of inference on arbitrary
graphical models associated with systems comprising high-dimensional random variables
and/or continuous non-Gaussian uncertainties and severe non-linearities. Each iteration
of NBP used an efficient sampling procedure to update kernel-based estimates of the true
continuous messages.

However, on one hand, the storage of a sufficiently large number of weighted particles
in order to accurately represent a PDF, and on the other hand, the overhead assigned to
computing Kernel density estimates and sampling from products of Gaussian mixtures,
increases the complexity associated with NBP’s computations. This difficulty was the
motivation behind deriving a novel scheme of message-passing in the next chapter. This
procedure, which we will call box-BP, is applicable in the presence of complex uncertainties
and non-linearities, and uses interval-based approximations of the probability quantities.



2. BELIEF PROPAGATION IN INTERVAL ANALYSIS
FRAMEWORK

2.1 Introduction

In the presence of complex statistical uncertainties and non-linearities, non-parametric
particle methods offer impressive advantages over their parametric counterparts. We saw
in the previous chapter how the NBP approximates the standard Gaussian BP algorithm
using Monte Carlo methods and how it can be efficiently employed to infer on arbitrary
graphical models in such complex situations. However, this algorithm requires intensive
computations and the use of a large number of samples to accurately approximate the
operations of the BP. In the context of temporal inference problems, i.e. filtering, the
box particle filter [42] achieved a significant efficiency compared with the generic sam-
pling importance resampling particle filter. In fact, the estimation accuracy provided by
this last, using thousands of particles, can be achieved by the box-PF using only a few
particles [41].

Inspired by the box particle filter (box-PF) which combines interval analysis with par-
ticle filtering to solve temporal inference problems, this chapter presents an algorithm that
uses bounded error methods for solving the inference problem in an arbitrary graphical
model. By using interval methods, the overhead associated with the computation of non-
parametric density estimates and the procedure of sampling from the product of messages
in the NBP is avoided. This results in simpler computations in addition to reducing the
memory storage required since only a few box-particles can be used to accurately approx-
imate a probability density function. This chapter is organised as follows. In section 2.2
we provide an overview of the fundamental concepts from the interval analysis framework.
We then present a brief depiction of the box-PF in section 2.3. Later, we show how to
implement the Belief Propagation procedure when the information is represented using
boxes. The corresponding theoretical derivation, presented in section 2.4, is based on
interpreting a box as a uniform PDF. Finally, the box-PF is seen as a special inference
problem defined on a temporal graphical model in section 2.5 and a conclusion of this
chapter is given in section 2.6.

2.2 Bounded error methods

For systems presenting complex or unknown statistical bounded uncertainties, interval
estimation is a promising methodology. Initially introduced to propagate rounding errors
in mathematical computations [76], applications of the interval analysis framework to
state estimation problems have been widely investigated [1, 40, 2, 55].

An interval is a closed and connected subset of R defined as

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x}, (2.1)

where x and x refer to the minimal and maximal bounds of [x] respectively.
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A box is a vector [x] in Rn and can be seen as a Cartesian product of n intervals:

[x] = [x1]× . . .× [xn]. (2.2)

Henceforth, IR refers to the set of intervals in R, IRn the set of boxes in Rn, and |[x]|
denotes the length of an interval [x] ⊂ R.

2.2.1 Operations on intervals and boxes

Set-theoretic operations, such as intersection and union, are applicable to intervals. The
intersection of two intervals is always an interval, whilst their union is not necessarily an
interval. The interval union, denoted by t, of two intervals [x], [y] ⊂ R is defined as:

[x] t [y] = [[x] ∪ [y]] , (2.3)

where ∪ refers to the set-theoretic union operation. The symbol [.] denotes the interval
hull operator returning, for any set S in R, the smallest interval enclosing S [56].

Binary operations {+,−,×, /} can be extended to intervals [56]. Let � refer to any
binary operation and [x] and [y] denote any two intervals in R, the resulting interval
[z] = [x] � [y] is defined by the following:

[z] = [x] � [y] = [{x � y | x ∈ [x], y ∈ [y]}] . (2.4)

If the binary operation � is continuous, e.g. in the case of the usual arithmetic operations,
the set {x � y ∈ R|x ∈ [x], y ∈ [y]} is an interval. Thus,

[x] � [y] = {x � y ∈ R|x ∈ [x], y ∈ [y]}.

Example 2.2.1. The extension to intervals of the usual arithmetic operations {+,−,×, /}
is given by the following expressions where [x] = [x, x] and [y] = [y, y] are two intervals
in R.

[x] + [y] = [x+ y, x+ y],
[x]− [y] = [x− y, x− y],
[x]× [y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)],

[x]
[y] = [x]× [1/y, 1/y], 0 /∈ [y].

(2.5)

Elementary functions, such as exp, ln, cos and sin, can be also easily extended to
intervals. Let f : R 7−→ R be a function, its interval counterpart will be denoted by [f ]
and is defined as

[f ]([x]) = [{f(x)|x ∈ [x]}]. (2.6)

If f denotes a continuous and monotonic function, [f ]([x]) is simply equal to f([x]).
Example 2.2.2. ln is a continuous and strictly increasing function over R+∗.

∀[x] ⊂ R+∗, [ln]([x]) = [ln(x), ln(x)].

All operations on intervals can be extended to boxes.
Example 2.2.3. Let S ⊂ Rn, [x] and [y] two boxes in Rn.
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Fig. 2.1: The resulting image of a box [x] by a function f, an inclusion function [f ] for f and the
minimal inclusion function [f ]∗.

a. The interval hull of S, denoted by [S], is the smallest box of Rn enclosing S.

b. The interval union of [x] and [y] is defined as:

[x] t [y] = ([x1] t [y1])× . . .× ([xn] t [yn]).

c. Binary operations on real vectors and functions of real vectors may be extended to
interval vectors. For instance, [x] + [y] = ([x1] + [y1])× . . .× ([xn] + [yn]).

2.2.2 Inclusion functions

Let f be a function f : Rn 7−→ Rm, [x] a box in Rn. The image f([x]) of [x] by f is
usually not a box (see figure 2.1), and its expression may be quite difficult to obtain. An
inclusion function approximates f([x]) [41]. If [f] denotes an interval function from IRn

to IRm then, by definition, [f] is said to be an inclusion function for f if

f([x]) ⊆ [f ]([x]), ∀[x] ∈ IRn. (2.7)

Inclusion functions can be very pessimistic, an inclusion function [f] is minimal if, for any
x, [f]([x]) is the interval hull of f([x]). The minimal inclusion function for f is unique and
will be denoted by [f]∗.

Two main purposes of interval analysis [56] are, first, finding an inclusion function [f]
such that, for most x, [f]([x]) is close to [f ]∗([x]), and second, finding it with a convenient
computational time. Several algorithms have been proposed to reduce the size of the box
enclosing f([x]). The next section presents one such method.

2.2.3 Constraints satisfaction and contraction methods

2.2.3.1 Constraints satisfaction problems (CSPs)

Let x = (x1, x2, · · · , xn)T denote a vector of n variables, xi ∈ R, i ∈ {1, . . . , n}, f =
(f1, f2, · · · , fm)T a multivalued function which satisfies

f(x) = 0, (2.8)
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Fig. 2.2: An example of a CSP with two variables and a single constraint.

such that the components fj, j ∈ {1, . . . ,m}, of f represent constraints linking the
variables {xi}ni=1. The vector x belongs to a known prior domain [x] ∈ IRn. A constraint
satisfaction problem (CSP) aims at finding the smallest box enclosing the set of all x ∈ [x]
which satisfy the constraints f. A CSP is commonly denoted as H and can be formulated
as:

H : (f(x) = 0,x ∈ [x]). (2.9)

The solution set of the CSP H is given by

S = {x ∈ [x] | f(x) = 0} (2.10)

and is not necessarily a box. Solving a CSP refers to finding the smallest box [x′] ⊂ [x]
such that S ⊆ [x′] ⊆ [x] [56]. Figure 2.2 illustrates an example of a CSP with two variables
x1, x2, and a single constraint f . The initial box is [x1x1] × [x2x2]. The solution of the
CSP is given by the box [x′1x1] × [x′2x2] and is highlighted in red, it is included in the
initial box and it satisfies the constraint f .

2.2.3.2 Contractors

Contracting H refers to replacing [x] by a smaller domain [x]′ such that S ⊆ [x]′ ⊆ [x].
Several contracting methods are described in [56] (chapter 4), each of which is suitable
for different types of CSPs. We will present a general contraction method known as
Constraints Propagation (CP), this technique is simple, efficient and most importantly
independent of non-linearities [41].

The CP method is based on the use of primitive constraints. A constraint is said
to be primitive if it involves a single binary operation (such as +,−,×, /) or a single
elementary function (such as sin, cos, ln, exp). Constraint Propagation technique proceeds
by contracting H with respect to each primitive constraint until convergence to a minimal
domain. This method can be implemented using a forward/backward propagation (FBP)
procedure [39] which consists of two steps: the forward propagation and the backward
propagation. The first step considers the direct forms of the equations. The second uses
the inverse of the functions that appear in the equations.

Example 2.2.4. We consider the problem illustrated in figure 2.2 and contract the initial
domain [x1]× [x2] = [x1x1]× [x2x2] using the CP technique.

a. Forward propagation: Consider the direct form of the constraint x2 = f(x1),
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(a) Initial domain. (b) Forward propagation. (c) Backward propagation.

Fig. 2.3: An example of CP contraction technique.

[x2]← [x2x2] ∩ [f ]([x1x1]).

b. Backward propagation: Consider the inverse form of the constraint x1 = f−1(x2),
[x1]← [x1x1] ∩ [f−1]([x2]).

Figure 2.3 shows the operations of CP for this example.

Example 2.2.5. This example is adapted from [41].
Consider a three dimensional CSP with a single constraint z = x exp(y). The initial

domains are given by [x] = [1, 7], [y] = [0, 1] and [z] = [0, 3]. The constraint involves one
arithmetic operation (×) and one elementary function (exp), it is not primitive. Introduc-
ing an auxiliary variable a, the constraint is decomposed into two primitive constraints:

a = exp(y),
z = a · x. (2.11)

An initial domain of a is merely [a] = [0,+∞]. The forward propagation step is achieved
via the following two steps, denoted by F1 and F2:

• F1: [a]← [a] ∩ [exp]([y]) = [0,+∞] ∩ [1, e] = [1, e]

• F2: [z]← [z] ∩ [x] · [a] = [0, 3] ∩ [1, 7] · [1, e] = [1, 3].

The backward propagation step is achieved via three steps, B3, B4 and B5:

• B3: [x]← [x] ∩ ([z]/[a]) = [1, 7] ∩ [1, 3]/[1, e] = [1, 3]

• B4: [a]← [a] ∩ ([z]/[x]) = [1, e] ∩ [1, 3]/[1, 3] = [1, e]

• B5: [y]← [y] ∩ [ln]([a]) = [0, 1] ∩ [0, 1] = [0, 1].

The domains of the variables are reduced to [x] = [1, 3], [y] = [0, 1] and [z] = [1, 3].
The FBP alternates between forward and backward propagation; in this example, it can
be checked that the previous domains, obtained after one forward-backward propagation
cycle, will no longer change after another iteration of FBP.

2.3 The box Particle Filter

Sequential Bayesian filtering (see section 1.3) consists in estimating the states of a system
as a set of observations become available [109]. Unlike the standard Bayesian solutions
such as the Kalman Filter (KF) [111] and its variants [59], sequential Monte Carlo [58]
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Fig. 2.4: The different steps of the box-PF (adapted from [41]).

techniques, also known as Particle Filtering (PF), make no assumptions on the form
of the probability densities of interest. We have seen in section 1.4.1 that PFs [6] use
sample-based representations in order to construct Monte Carlo approximations of the
required integrals (e.g. in equation (1.4)) in the case of seriously non-linear and complex
posterior distributions. However, the efficiency of particle filters (PFs) depends on the
number of samples and on the proposal functions used for importance sampling. In
fact, the imprecision on the available information requires potentially a large number
of particles and thus a high computational complexity. The aim of the box-PF is to
generalise particle filtering into the bounded error context; instead of propagating a large
number of weighted point particles representing the posterior distribution, the Box-PF
propagates a small number of weighted box particles through bounded error models and
within the interval analysis framework.

The box-PF operates in four steps, for which the Bayesian justification was estab-
lished by interpreting each box as a uniform PDF in [41]. These steps are: box particle
initialisation, time update, measurement update and resampling.

a) Box particle initialisation: A prior bounded state space region is split into N ,
equally weighted and mutually disjoint, boxes {[x(`)

0 ]}N`=1. This initialisation using
boxes allows to explore a large prior uncertainty region using only a few box particles.

b) Time update step: Knowing the cloud of box particles {[x(`)
k−1]}N`=1 representing the

state at time step k − 1, and assuming that the system noise is enclosed in [vk], the
boxes at step k− 1 are propagated using interval analysis tools through the transition
function f (refer to equation (1.1))

[x(`)
k ] = [f]([x(`)

k−1], [vk]) for ` = 1, . . . , N,



2. Belief Propagation in interval analysis framework 36

where [f] is an inclusion function for f (refer to section 2.2.2 to recall the definition of
an inclusion function).

c) Measurement update step: Similarly to particle filtering, the weights of the pre-
dicted box particles are updated using the new measurement at time step k. For
the box-PF, likelihood factors are calculated using innovation quantities [42]: the in-
novation for the `-th box particle reflects the proximity between the measured box
and the predicted box measurement. Hence, the innovation can be represented using
the intersection between these two boxes. For each box particle, the predicted box
measurement has the following expression (see equation (1.2)):

[y(`)
k ] = [g]([x(`)

k ], [wk]), for ` = 1, . . . , N,

where [g] is an inclusion function for g and [wk] is a bounded measurement noise. The
innovation is given by:

[r(`)
k ] = [y(`)

k ] ∩ [yk].

In the bounded error context, the likelihood is calculated based on the following idea:
if the predicted box measurement does not intersect with the corresponding measured
box, this box particle has a likelihood factor equal to zero. In contrast, if the predicted
box measurement is included in the corresponding measured box, this box particle has
a likelihood close to one [42].
Furthermore, a contraction step (see section 2.2.3) is performed in order to eliminate
the inconsistent part of the box particles with respect to the measured boxes, and to
preserve an appropriate size of the boxes. The box likelihood is thus given by:

L
(`)
k =

nx∏
j=1

L
(`),j
k ,

where nx represents the dimension of the state and the likelihood factor according to
a dimension j of x is given by

L
(`),j
k = |[x̃

(`)
k+1(j)]|

|[x(`)
k+1(j)]|

.

The term [x̃(`)
k+1(j)] represents the new `-th box particle after the contraction step.

d) Resampling step: Similarly to the PF algorithm, a resampling step is also added
in order to introduce variety into the box particles. Different resampling algorithms
exist; in [41] for instance, the multinomial resampling combined with a new subdivision
step is employed, in this scheme, after the resampling step, each box is divided by its
corresponding number of realisations in order to obtain smaller boxes around regions
with high likelihoods.

The computations of the box-PF are recapitulated in figure 2.4.

2.4 Theoretic derivation of the box-Belief Propagation

This section presents the main theoretical contribution of part I of the thesis: the deriva-
tion of the box-Belief Propagation (box-BP), which is a message-passing algorithm used
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to infer on graphical models when probability quantities are represented using boxes. The
box-BP is indeed an extension of the BP algorithm into the bounded error framework.

Inspired by the theoretic derivation of the box-PF presented in [41, 42], we show
the theoretic derivation of BP in interval analysis framework by interpreting a box as a
uniform PDF. Note, beforehand, that an advantage offered by this interpretation is that,
while strictly speaking, a set of samples constitute a ”representation” of a PDF, a set of
boxes constitute a direct approximation of the PDF.

Going back to equation (1.20) representing BP’s message update (for a message sent
from a node t to its neighbour s, at iteration i of BP), recall that this iteration can be
divided into two operations: the message product, or the computation of the partial belief
given in equation (1.22), and the convolution operation. We demonstrate the extension to
intervals of each operation in the following two subsections. A summary of the operations
of the novel box-BP is illustrated in figure 2.5.

2.4.1 The message product operation

Let Γt denote the set of neighbours of the sending node t, ul ∈ Γt\s a node connected
to t by an edge, except for the receiving node s, and d = card(Γt\s); then the message
product can be expressed as:

Ri−1
ts (xt) ∝

∏
u∈Γt\s

mi−1
ut (xt) =

d∏
l=1

mi−1
ult

(xt). (2.12)

In interval analysis framework, the messages are represented usingN weighted boxes, thus,
a message mult(xt) received by node t from its neighbour ul, l = 1, . . . , d, is represented by
a cloud of boxes {ωpl

ult, [x
pl
ult]}Npl=1. Note that, for simplicity reasons, in this representation

we skip the index i referring to the message passing iteration number on the particles
and their weights. We are also assuming that all messages are represented using the same
number of boxes, N . This reasoning may however be easily extended to a more general
case with varying number of box particles per node/message.

Since each box is interpreted as a uniform probability distribution, we have:

mi−1
ult

(xt) =
N∑
pl=1

ωpl
ultU[xpl

ult]
(xt), for l = 1, . . . , d, (2.13)

where U[x] denotes the uniform PDF over the box [x].
Let P denote the vector of indexes (p0, p1, . . . , pd) and I = {1, 2, . . . , N}. Replacing

expression (2.13) in equation (2.12), we obtain

Ri−1
ts (xt) ∝

∏
l

(
N∑
pl=1

ωpl
ultU[xpl

ult]
(xt))

∝
∑
P∈Id

ωp1
u1t . . . ω

pd
udtU[xp1

u1t]
. . . U[xpd

udt]
(xt).

(2.14)

A uniform PDF U[x] is constant over its support (and equal to 1/|[x]|) and equal to zero
everywhere else. Note that, by abuse of notation, |[x]|, where x ∈ IRnx and nx is the
state space dimension, denotes the product ∏nx

`=1 |[x(`)]|, e.g. |[x]| denotes the area of the
rectangle defined by x in 2D, the volume of the rectangular cuboid in 3D, etc.
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The product U[xp1
u1t]

. . . U[xpd
udt]

(xt) is then different to zero if xt belongs to the intersec-
tion of the supports of its terms. This product may hence be modelled using a uniform
PDF given by

U[xp1
u1t]

. . .U[xpd
udt]

(xt) = U[xp1
u1t]∩...∩[xpd

udt]

×
|[xp1

u1t] ∩ . . . ∩ [xpd
udt]|

|[xp1
u1t]| . . . |[x

pd
udt]|

.
(2.15)

Then

Ri−1
ts (xt) ∝

∑
P∈Id

ωp1
u1t . . . ω

pd
udtU[xp1

u1t]∩...∩[xpd
udt]

×
|[xp1

u1t] ∩ . . . ∩ [xpd
udt]|

|[xp1
u1t]| . . . |[x

pd
udt]|

.
(2.16)

The number of possible assignments of P is Nd. Thus, the sum above contains at
most Nd terms. In practice, this number is much less since some assignments result in
empty intersections while others result in coincident boxes.

Let us denote by Q the set of assignments of P , for which [xp1
u1t] ∩ . . . ∩ [xpd

udt] 6= ∅.
We will also adopt the following notations for an assignment P k ∈ Q, where k =
1, . . . , card(Q):

ωp1
u1t . . . ω

pd
udt ×

|[xp1
u1t] ∩ . . . ∩ [xpd

udt]|
|[xp1

u1t]| . . . |[x
pd
udt]|

= ωkts, (2.17)

[xp1
u1t] ∩ . . . ∩ [xpd

udt] = [xkts]. (2.18)

The message product given in equation (1.21) is now represented by the cloud of boxes
{ωkts,xkts}. Based on equation (2.16), we can define an algorithm to perform the message
product operation.

Example 2.4.1. Algorithm 1 describes the method for combining two messages according
to equation (2.16); note that both operations, (×) and (∩) are associative operations. In
this algorithm, each message is represented using a certain number of weighted boxes, e.g.,
{ωi1, [xi1]}N1

i=1, {ωj2, [xj2]}N2
j=1 denote the collection of weighted boxes representing message 1

and message 2 respectively. The cloud {ωkres, [xkres]}Nres
k=1 denotes the resulting set of boxes

and the corresponding weights according to equations (2.17) and (2.18), iscoincident() is
a function that takes as arguments two boxes and returns 1 if the boxes are coincident
according a threshold and 0 if not.

2.4.1.1 Computation of the partial belief

The partial belief is now given by the following expression:

M i−1
ts (xt) ∝ ψt(xt)

card(Q)∑
k=1

ωktsU[xk
ts](xt). (2.19)

where, for simplicity and without loss of generality, ψt(xt) replaces ψt(xt,yt) under the
assumption of an observation yt of the same nature as the state xt as stated in section 1.7.
Within the bounded error framework, we assume that yt is known within a bounded box
[yt] and the potential ψt(xt) is approximated equal to the uniform PDF U[yt](xt).
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Algorithm 1 Message product
Input: {ωi1, [xi1]}N1

i=1, {ωj2, [xj2]}N2
j=1

Output: {ωkres, [xkres]}Nres
k=1

k ← 0
for i = 1, . . . , N1 do

for j = 1, . . . , N2 do
if [xi1] ∩ [xj2] 6= ∅ then
k = k + 1
[xkres] = [xi1] ∩ [xj2]
ωkres = ωi1 × ω

j
2 ×

|[xi
1]∩[xj

2]|
|[xi

1]|.|[xj
2]|

end if
end for

end for
loop
k1, k2 ∈ {1, . . . , k}
if iscoincident([xk1

res, [xk2
res]) then

keep only one occurrence
sum up the corresponding weights

end if
end loop
Weights normalisation: ωkres ←− ωkres/sum(wres)
Nres = length(ωres)

In the general case, the potential function ψt(xt,yt) can be represented with the uni-
form PDF U[yt](g(xt)), where g is a function linking the local observation yt at node t to
the local state xt (observation model), yt = g(xt). Using contraction techniques [56], the
resulting weighted boxes {ωkts, [xkts]}

card(Q)
k=1 can be contracted and re-weighted. Under the

assumption of an observation of the same nature as the state, the contraction reduces into
an intersection between the resulting boxes and the observation. Algorithm 2 summarises
the procedure of contracting the boxes {ωkts, [xkts]}

card(Q)
k=1 using the measurement [yt], the

resulting weighted boxes are denoted by {ωkts,c, [xkts,c]}Nc
k=1 where subscript c stands for

contracted. In this procedure [g] denotes an inclusion function for g.
As a final remark, note that the belief at node t as given in equation (1.23) can be

computed using the same procedure derived in this section.
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Algorithm 2 Contraction using the local observation

Input: {wkts, [xkts]}
card(Q)
k=1 , [yt]

Output: {wkts,c, [xkts,c]}Nc
k=1

for k = 1, . . . card(Q) do
Predicted measurement: [yk] = [g]([xkts]
Innovation: [rk] = [yk] ∩ [yt]
Box particle contraction:
if [rk] 6= ∅ then

contract [xkts] using CP algorithm
the resulting box is denoted [xkts,c]

else
[xkts,c] = ∅

end if
Re-weighting: wkts,c ←− wkts ×

|[xk
ts,c]|
|[xk

ts]|
Weights normalisation: wkts,c ←− wkts,c/sum(wts,c).

end for
Nc = length(wts,c 6= 0)

2.4.2 The convolution operation

The next step in the message update iteration is the convolution of the partial belief with
the pairwise potential function:

mi
ts(xs) =

∫
ψts(xt,xs)M i−1

ts (xt)dxt

=
∫
ψts(xt,xs)

Nc∑
k=1

ωkts,cU[xk
ts,c](xt)

=
Nc∑
k=1

ωkts,c

∫
[xk

ts,c]
ψts(xt,xs)U[xk

ts,c]dxt

=
Nc∑
k=1

ωkts,c
1

|[xkts,c]|

∫
[xk

ts,c]
ψts(xt,xs)dxt.

(2.20)

To evaluate the integral in equation (2.20), consider the general case where the potential
ψts(xt,xs) can be represented as a transition function by which we can pass from xt to
xs, i.e. xs = f(xt,v; e) where v denotes a noise and e refers to a vector of constants (e.g.
some known parameters of the model), and let [f ] be an inclusion function for f . We
assume that the noise v is bounded in the box [v].

Then, by definition of an inclusion function, we have

∀xt ∈ [xkts,c], xs ∈ [f]([xkts,c], [v]; [e]) for k ∈ {1, . . . , Nc},

i.e.
ψts(xt,xs)U[xk

ts,c](xt) = 0, ∀xs /∈ [f]([xkts,c], [v]; [e]). (2.21)

Equation (2.21) shows that for any transition function f, using interval analysis tech-
niques, the support for the PDF terms

∫
[xk

ts,c] ψts(xt,xs)U[xk
ts,c]dxt can be approximated by
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[f]([xkts,c], [v]; [e]) and thus:∫
[xk

ts,c]
ψts(xt,xs)U[xk

ts,c]dxt ≈ U[f]([xk
ts,c],[v],[e]). (2.22)

Note that, it is shown in [41] that the approximation (2.22) can be done more precisely
at a computation cost using a mixture of uniform boxes, e.g., a cloud of box particles.
For simplicity and without loss of generality only one box is used in this chapter.

Based on equations (2.20) and (2.22), we can perform the message update procedure,
for a message sent from node t to its neighbour s, according to Algorithm 3: once the
incoming messages to the sending node t are combined as depicted in Algorithm 1 and
contracted using Algorithm 2, the collection of weighted boxes {ωkts,c, [xkts,c]}Nc

k=1, combining
all information about xt, are propagated through the model xs = f(xt,v, e) to obtain an
information about xs. The resulting set {ω`ts,r, [x`ts,r]}N`=1, where the subscript r stands
for ”resulting”, represent the message sent from t to s. Note that for the first iteration
of message-passing between neighbouring nodes, messages are initialised using the local
marginal PDF since, obviously, no previous messages exist. If no observation is available
for the sending node t, no message can be sent, at the first iteration, from t to any of its
neighbours. If, however, an observation is available for t, we use it to generate uniformly
N boxes mutually disjoint and equally weighted with 1

N
.

Algorithm 3 Message update
MsgCounter ← 0
for u ∈ Γt and u 6= s do

if a message is incoming from u to t then
MsgCounter ←MsgCounter + 1

end if
end for
Message product
if MsgCounter == 0 then

if an observation is available for t then
use the measurement to generate uniformlyN boxes mutually disjoint and weighted
equally with 1

N

else
no message can be forwarded from t to s

end if
else

use Algorithm 1 and the associativity of (∩) to combine the messages
contract the resulting boxes using the observation according to Algorithm 2
the resulting cloud of boxes is {ωkts,c, [xkts,c]}Nc

k=1
end if
propagate the boxes through the model xs = f(xt,v; e), get the resulting boxes
{ω`ts,r, [x`ts,r]}N`=1
Weights normalisation: ω`ts,r ← ω`ts,r/sum(ωts,r).
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Fig. 2.5: The box-BP algorithm.

2.5 The box-BP: a generalisation of the box-PF

Same as the NBP generalises the PF to general inference problems on arbitrary graphical
models, wed can demonstrate that the box-BP is also a generalisation of the box-PF.

Consider the special case of a temporal Markov chain. At each time step k an obser-
vation yk is available (refer to figure 1.2). A convenient parametrisation of the graph is
as follows:

ψk−1,k(xk−1,xk) = p(xk|xk−1), (2.23)
ψk(xk,yk) = p(yk|xk). (2.24)

In the first equation, we recognise the transition probability density while in the second
the likelihood at time instant k.

In the first iteration, a message m01(x1) will be sent from node x0 to node x1, it
is initialised using a prior domain [x0] for x0: [x0] is split into N , equally weighted and
mutually disjoint, boxes {[x`0]}N`=1. This corresponds to the box-particle initialisation step.

To form the message m01(x1), the resulting boxes are propagated through the transi-
tion function describing the pairwise potential function ψ01(x0,x1) = p(x1|x0) according
to Algorithm 3. Thus the message m01(x1) corresponds to the prior for x1. This corre-
sponds to the time update step.

The belief at node x1 is computed by the product of the only message received by
x1 from x0, that is the prior at time instant 1, with ψ1(x1,y1) = p(y1|x1) which is the
likelihood, the result is the posterior at time instant 1. In this step, innovation quantities
are calculated, boxes are contracted and re-weighted according to Algorithm 2. This
corresponds to the measurement update step. In order to introduce variety into the box
particles, a resampling step can be added. Note that the partial belief at time instant 1
is equal to the belief at this node.
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In general, the interpretation of the messages and (partial) beliefs at time step k is
given by

Mk−1,k(xk−1) = p(xk−1|yk−1, . . . ,y1), the posterior at k − 1,
mk−1,k(xk) = p(xk|yk−1, . . . ,y1), the prior at k.

In terms of messages and beliefs, the box particle filter can be described as follows: Given a
collection of weighted samples {ω`k−1,x`k−1}N`=1 representing the partial beliefMk−1,k(xk−1),
which is the posterior at time step k−1, the messagemk−1,k(xk) is obtained by propagating
{x`k}N`=1 through the transition density, given by the process model and representing the
pairwise potential function. The resulting cloud of boxes represents the prior at time step
k. Next, the belief at node xk is computed by multiplying the only message received by
xk with the local likelihood ψk(xk,yk) = p(yk|xk). The result is the posterior at k.

Consequently, the box-particle filter is seen as a special case of the box-Belief Propa-
gation, applicable to temporal inference problems. Equivalently, the box-BP generalises
the box-PF techniques to arbitrary structured graphical models.

2.6 Conclusion

This chapter presented the main theoretical contribution of part I of this dissertation. It
introduced a novel scheme of message-passing using interval representation of probability
quantities. The purpose was to derive a BP applicable for graphical models associated
with general statistical probability densities while avoiding the overhead of storing thou-
sands of particles and the use of Kernel density estimates and the Gibbs sampler at each
iteration of the NBP introduced in section 1.7. The efficiency of this novel box-BP will
be tested in the following two chapters, on two different applications: the problem of self
localisation in static WSNs and that of continuously localising a mobile target moving
within a network of wireless range sensors.



3. SELF LOCALISATION IN WIRELESS SENSOR NETWORKS

3.1 Introduction

Many industrial, scientific and domestic applications employ sensor networks whenever
there is a need to monitor, and possibly control, physical quantities. Sensors acquire
information from their environment (e.g. temperature or pressure, depending on their
sensing ability) and usually communicate the data collected to a processing centre. How-
ever, a vast majority of applications in sensor networks deploys a large number of sensors
randomly, usually due to the hostility of the area to be monitored, or its immensity. The
sensors are thus randomly dropped, from a flying agent for instance, and fall into the
region of interest with practically no information about their positions. The localisation
of the sensors is often necessary to make the data collected informative.

In this chapter, we consider the problem of self localisation in wireless sensor networks.
Since all sensors cannot be equipped with a positioning unit, e.g. GPS module, due to
cost and energy constraints, each sensor is alternatively equipped with a transmitter-
receiver module and communicates with neighbouring sensors. Hence, each sensor is
within the vicinity of only a few nodes of the network, and its position can be estimated
by exchanging information with several nearby sensor nodes, with which a communication
can be established. An attractive formalism to represent this system while visualising the
local independence conditional relationships and the underlying structure of the associated
joint PDF is possible through the use of graphical models. A literature review on self
localisation in sensor networks is provided in section 3.2 then the focus is oriented towards
MDS (multidimensional scaling) based localisation algorithms in section 3.3. Since the
problem of auto-localisation in wireless sensor networks is pre-eminently a distributed
inference problem, we formulate it as inference on a graphical model [52] and use the BP
algorithm to perform the task of inference in section 3.4, the effectiveness of the novel
box-BP approach is then tested on simulated data. Section 3.5 at last concludes this
chapter.

3.2 Literature review

The problem of auto-localisation in WSNs have been widely investigated and a great deal
of methods were proposed in the literature, most of which rely on the premise that a sensor
node is able to communicate with its nearby counterparts in the network. Several clas-
sifications of localisation methods have been proposed. We cite for instance range-based
versus range-free approaches. Range-based methods assume that sensors have capabilities
to estimate distances with their neighbours, using technologies such as RSSI (Received
Signal Strength Indicator), TOA (Time of Arrival) and TDoA (Time Difference of Ar-
rival) [52], or angles, using AoA (angle of Arrival) [89]. These techniques vary in their
accuracy and complexity and can be divided into radio frequency (RF) ranging and acous-
tic ranging. The RF ranging relies on the premise that, by measuring the received signal
strength, a receiver can determine its distance to a transmitter. The second class of rang-
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ing schemes measures the time difference of arrival of emitted and received signals [44].
In contrast to range-based algorithms, range-free [47] schemes do not need point-to-point
distance or angle estimation for positioning. Approaches in [37, 94] for instance do not
involve any range or angle measurement but rather rely on measures of connectivity.

Another classification subdivides the approaches for self localisation in wireless sen-
sor networks to anchor-based and anchor-free. In both schemes, nodes must themselves
determine their respective positions through cooperation techniques. In fact, the goal of
a self localisation algorithm is to calculate the coordinates of each sensor based on prox-
imity measures. The computed coordinates can be global, which requires the position
of a number of anchors to be known a priori, these approaches are known as anchor-
based [9]. Other methods create a relative map without the use of anchors and are called
anchor-free [5]. In range-based techniques, the placement of the anchors can often have
a significant impact on the solution: it was found that the location accuracy improves if
the anchors form a convex polygon around the network [64]. Additional anchors placed
at the centre of the network are nonetheless useful. Note that, other algorithms, related
to auto-localisation in WSNs, were proposed to allow each node to locate its neighbours
qualitatively; work in [48] offers one such example of a localised algorithm whose purpose
is, for each node, to classify its neighbours into one of three categories: very close, near
and far, rather than estimating distances separating them.

Each sensor has limited resources (e.g. bandwidth, battery energy, memory capacity,
emission power), it can detect and communicate with other nodes in the network only
within some maximum span. Early approaches to solving the problem of localisation
in wireless sensor networks were proposed in a centralised environment. However, this
strategy does not comply the principal energy constraint and is not appropriate for large-
scale networks. Indeed, local data processing has low energy cost, (see [26] for details
about energetic cost of RF communication in function of distance). In addition, the
reliability of the centralised approach is low because a failure in the main processing unit
causes the entire system to fail. Therefore, distributed approaches [52, 37] were proposed.
A third approach is to assist the nodes of the network by a mobile anchor enabling them
to locate themselves. This approach [9] has many advantages in terms of energy and
location accuracy but its implementation can be expensive and is not always feasible as
some areas can be hostile to moving robots.

We can also distinguish optimisation methods [37, 94] and probabilistic schemes [88].
While optimisation approaches provide a single optimal solution that minimises or max-
imises some criterion, the solution in probabilistic methods takes the form of a probabil-
ity distribution therefore allowing to quantify the uncertainty on the estimated positions.
Work in [88] presents a probabilistic method for locating sensors based on AoA technol-
ogy, in this article the error on the measured angles is modelled using a Gaussian PDF.
However, for some environments, uncertainties which are usually modelled as probabilistic
can be complex; non-parametric methods offer an attractive framework to address these
kind of problems [49]. In [52] for instance, the auto-localisation problem is formulated
as inference on a graphical model. The Non-parametric Belief Propagation (NBP) algo-
rithm described in section 1.7 is used to combine the information obtained from a global
positioning system, with measures of relative distances between neighbouring sensors.
Recall that the NBP algorithm is itself a variant of BP, where a set of particles is used to
represent probability quantities in a non-parametric way.

Furthermore, in some problems, uncertainties or noise characteristics are unknown
or complex; instead, only minimum and maximum values of the noise are available, e.g.
quantised measurements. The interval analysis framework offers promising methodologies
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for reasoning in the presence of unknown or complex statistical but bounded noises [41].
In this chapter, we propose a Bayesian probabilistic scheme for self localisation in

WSNs based on a variant of BP algorithm where information is represented using a
collection of boxes (intervals in the case of real variables). The use of this approach
involves simplicity in modelling the information and memory optimisation. In fact, we
will demonstrate that the use of interval representations in our approach offers many
advantages, basically:

a. a reduction of the memory space required to store a PDF (thousands of particles are
needed to efficiently represent a PDF using Monte Carlo methods while only a few
box-particles are required to approximate a probability distribution).

b. energy saving since less information is exchanged between communicating sensors, this
also implies a reduction of the required bandwidth.

c. using interval techniques results in simpler and faster computations and thus more
time saving.

d. a set of boxes constitute a direct approximation of the PDF while a set of samples
constitute a representation of a PDF. This fact allows to save the energy and time
needed to estimate the PDF using Kernel Density Estimation (KDE) techniques in
the case of the standard sample-based NBP. This also introduces less approximations
since the kernel is artificially added to the particles.

3.3 Multidimensional scaling for self localisation in WSNs

Multidimensional scaling (MDS) is a data analysis technique that transforms proximity
information into a geometric embedding [29]. Formally, given n points in a p-dimensional
space E and a measure of dissimilarity reflecting, for a pair (i, j), i, j ∈ {1, . . . , n}, the
remoteness between points i and j, the purpose of the classical Multidimensional scaling
is to re-place these n points in a new subspace (which is often Euclidean) of a size q ≤ p
in such a manner that the inter-point distances in this subspace approximate at best the
dissimilarities.

MDS is at the heart of several approaches for self localisation in WSNs, the most
basic form of which is the MDS-MAP(C) algorithm introduced in [94] in a centralised
context. In a typical scenario for auto-localisation of wireless sensors, each sensor has a
limited communication range allowing it to only compute the distances separating it from
its neighbours. In [94], MDS is used to solve the localisation problem after a preliminary
treatment which makes it possible to determine a dissimilarity matrix. The dissimilarity
matrix is in fact a distance matrix constructed by calculating the shortest path between
each pair of nodes in the network; for instance, the algorithm of Dijkstra can be employed
to determine optimal paths between pairs of nodes along the arcs of the network within
a time complexity O(N3). MDS-MAP(C) operates in three steps:

a. Compute the dissimilarity, i.e. distance, matrix given the network connectivity infor-
mation.

b. Use classical MDS to derive relative node coordinates that fit those distances. The
network is reconstructed by only considering the q eigenvectors having the highest
energy (q = 2 or 3 depending on whether the localisation procedure operates in 2D or
3D). Note that MDS offers the best approximation by a lower rank matrix in terms of
least squares [37].
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c. Reset the absolute positions of the nodes using the known coordinates of a number m
of anchors within O(m) +O(n) time complexity.

MDS-MAP(C) offers a good performance on networks with relatively uniform node
density. On irregular networks, its performance degrades since the shortest path does not
correspond well to the Euclidean distance. To tackle this difficulty, the same reference [94]
proposes a variant of the MDS-MAP(C) employing a distributed implementation of it.
The resulting algorithm is referred to as MDS-MAP(P) and operates by building, for each
node, a local map of the small sub-network within the vicinity of it, and then merging all
local maps together to form a global one.

Other approaches employing MDS for auto-localisation in WSNs can be found in [27,
31, 106]. In [27] for instance, a scalable and distributed weighted-multidimensional scal-
ing (dwMDS) algorithm is proposed to adaptively emphasise the most accurate range
measurements and thus account for communication constraints within the network. The
sensors localisation task is formulated in [31] as a non-linear least squares (NLS) problem
and is robustly initialised using MDS. A different type of MDS (called ordinal MDS) is
used in[106] for self localisation in WSNs, the ordinal MDS differs from its classical coun-
terpart by that it only requires, for each pair of nodes, a monotonicity constraint between
the actual Euclidean distance and the shortest path distance.

3.4 Self localisation in WSNs as inference on a graphical model

In this section, the problem of self localisation in a WSN is formulated as inference on a
graphical model whose nodes are associated with randomly deployed sensors. Only few
nodes of the network, called anchors, have a prior information about their positions; these
sensors are placed manually at well known locations or equipped with a GPS module
and randomly dropped, along with other sensors, if manual placement is impractical.
Each sensor is able to communicate with nearby nodes and to estimate the distance
separating them. The purpose is to form a global map of the nodes by combining the
information available at the anchors, e.g. obtained from a global positioning system, with
measures of relative distances, by exchanging local messages between neighbouring sensors
using the box-BP scheme introduced in chapter 2. After convergence of this iterative
procedure, each sensor is left with an estimation of its 2D position. This formulation
(using a graphical model) is compliant with the distributed aspect of the problem we
are considering since it allows to exploit the local independence conditional relationships
between the sensor nodes. The use of a message-passing BP scheme is also advantageous
since BP is a distributed algorithm which can be employed to infer on a graphical model
even when the whole structure of the graph is not known a priori. In the following, the
performance of the box-BP will be also compared to that of the standard particle-based
NBP and the MDS-MAP(C) algorithm reported in the previous section.

3.4.1 Problem formulation

A number n of sensors is randomly deployed in a planar region. Each sensor computes
noisy measurements of its distances from its neighbouring counterparts, the estimated
distance is supposed symmetric for both communicating nodes. Two sensors are able to
communicate if the distance separating them is less than some maximum range denoted
as R, in this case they are said to be neighbours. The position of a sensor t is denoted
as xt, t = 1, ..., n, and only a small number of anchor nodes have significant a priori
information, pt(xt), about their positions.
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Let dts denote the noisy measurement of the distance between sensors s and t, then:

dts = ||xt − xs||+ vts, vts ∼ pv(xt,xs), (3.1)

where vts refers to a noise, pv(xt,xs) denotes a noise probability distribution and || . ||
is the Euclidean distance between t and s. Note that both sensors t and s are assumed
to have the same estimation dts of the distance separating them. The initialisation of the
sensor network for the self localisation procedure is recapitulated hereafter, mainly, each
sensor node t has to:

a. obtain local information pt(xt), if available.

b. broadcast its ID and listen for other sensors’ broadcasts.

c. estimate the distance dts separating it from any sensor s amongst the set of received
broadcasts/IDs.

d. communicate with neighbouring nodes to symmetrise the estimated distances.

Consider a binary random variable ots indicating whether the distance dts is observed
or not, i.e. whether a communication between sensors t and s was established or not,
thus, according to the assumption above:

P (ots = 1) = 1||xt−xs||≤R. (3.2)

The goal is, for each sensor node t of the network, to compute its marginal distribution
of interest p(xt|X\xt, {dts}(t,s):ots=1), where X = {x1, . . . ,xn} is a vector grouping the
positions of all the sensors in the network.

Looking back at equation (3.1), for the joint probability distribution p(X, {dts}(t,s):ots=1),
the quantities dts only depend on the random variables xt and xs, and thus, using the
chain rule, this joint PDF can be factorised as follows:

p(x1, . . . ,xn, {dts}(t,s):ots=1) =
∏

(t,s):ots=1
p(dts|xt,xs)

∏
t

pt(xt). (3.3)

The undirected graph describing this joint probability distribution is defined by the fol-
lowing two sets: the set V of nodes associated with each sensor and the set E of edges
defined as E = {(t, s), ots = 1}. Each edge thus models an established neighbourhood
between two sensors. This factorisation indeed justifies the intuitive representation of this
system by a graph wherein each edge represents an actual physical link established be-
tween neighbouring sensors/nodes allowing them to communicate and to mutually detect
each other.

3.4.2 Implemented solutions

Based on equation (3.3), the set of potential functions associated with the sensor network,
i.e. the corresponding graphical model, can be divided into two subsets: the set of pairwise
potential functions ψts(xt,xs) defined over two neighbouring/communicating nodes and
associated with the set E of edges of the graph, and the set ψt(xt) of local likelihoods at
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each sensor, where:

ψts(xt,xs) = p(dts|xt,xs)
= pv(dts − ||xt − xs||), (t, s) ∈ E,

ψt(xt) = pt(xt), t ∈ V,
(3.4)

then, equation (3.3) can be rewritten as:

p(x1, . . . ,xn, {dts}(t,s):ots=1) =
∏
t

ψt(xt)
∏
t,s

ψts(xt,xs). (3.5)

Both algorithms, the novel box-BP with interval-based representations of probability
quantities and the standard particle-based NBP, are tested for the scenario described here
above. For the novel box-BP algorithm, message passing between two neighbouring nodes,
namely t and s, is conducted as follows: for the first iteration, messages are initialised
using the local observations, only anchor nodes are thus able to send informative messages
to their neighbours, since they are the only nodes with significant a priori information,
pt(xt), about their positions. The prior information being represented by a box, N boxes
[xjt ]0, j = 1, . . . , N, mutually disjoint and weighted equally with 1

N
are uniformly generated

from the available observations at the anchors.

Algorithm 4 BP’s message update for each node t in the sensor network
Γt ← {u ∈ V, otu = 1}
s ∈ Γt
MsgCounter ← 0
for u ∈ Γt and u 6= s do

if a message is incoming from u to t then
MsgCounter ←MsgCounter + 1

end if
end for
Message product
if MsgCounter == 0 then

if t is an anchor node then
use the available measurement at t to generate uniformly N boxes mutually disjoint
and weighted equally with 1

N

else
no message can be forwarded from t to s

end if
else

for i = 1, . . . ,MsgCounter do
combine the messages sequentially using the series of intersections in Algorithm 1
contract the resulting boxes by intersecting them with the available observation at
t (if any)

end for
end if
propagate the boxes through the model (3.6)
normalise the weights

At an iteration i, the message product at node t is represented by a collection {ω(i)
t , [xt](i)}
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Fig. 3.1: The propagation model: the small box [xt] represents the position of sensor t, the red
box an inclusion function for the model (3.6) which is merely a disk equation.

of N weighted box-particles, obtained using Algorithm 1 (see section 2.4.1). These boxes
are contracted and re-weighted using the local evidence at t as described in Algorithm 2
in the same section. Note that in this application, we are in the special case of an obser-
vation yt of the same nature as the state xt, the contraction reduces into an intersection
between [yt] and [xt]i. The forwarded message from t to s, separated by noisy distance
dts, is then computed by propagating these boxes {[xt](i)} through the following model,
as shown in the approximation (2.22):

x(i)
ts = x(i)

t + dts

(
cos(θ)
sin(θ)

)
, (3.6)

where θ ∈ [0, 2π]. Algorithm 4 recapitulates BP’s message update operation for each
sensor t ∈ V .

Figure 3.1 illustrates the result of propagating a box through the model (3.6). Let
[xt] = [xt xt]× [y

t
yt] and [dts] = [d d]. Then:

[dts]× cos[θ] = [d d]× [−1 1]
= [−d d],

[xt] + [dts]× cos[θ] = [xt xt] + [−d d]
= [xt − d xt + d].

Similarly,
[yt] + [dts]× sin[θ] = [y

t
− d yt + d].

The implementation of NBP for self localisation in sensor networks is described next:
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for the first iteration, N particles {ω0
t ,x0

t} are sampled from pt(xt); at an iteration i of
NBP, the message product at node t is represented by a collection {ωit,xit} of weighted
particles. The weights are corrected using the local evidence at t. The forwarded message
from t to s, separated by noisy distance dts, is then computed by propagating the samples
{xit} through the model (3.6) where θ ∼ U([0, 2π]). In our implementation of the NBP,
we used the NBP toolbox available from the work of Leonid Sigal [97].

3.4.3 Simulation results

In this section, we present some simulation results. Both box-BP and NBP algorithms are
tested on simulated scenarios and compared to the MDS-MAP(C) described in section 3.3.
In our simulations, 100 sensors are randomly deployed in a planar region L×L. We study
the performance of the auto localisation algorithms with two different configurations of
the anchors: a grid-like and a random placement, we also study the effect of the number
of the anchors on the resulting estimation accuracy.

3.4.3.1 Grid-like placement of the anchors

Basically, two parameters can have impact on the solution provided by a self localisation
algorithm: the range within which the sensors can communicate and the number of an-
chor nodes. Varying the communication range R leads to a variation of the number of
neighbourhoods established. Thus, by increasing R, more links between nearby nodes are
established and a more complex and dense graph is obtained. In [52], only three anchor
nodes are used for calibration (since three is the minimal required number of anchors to
be able to determine the global coordinates of the sensors in a two dimensional space),
in order to obtain accurate results for NBP, the authors chose to increase the number
of neighbourhoods/links established between the sensors. This resulted in a very dense
graphical model and thus complex computations and more energy and time consumption.
Drawing on scenarios presented in [37, 64], we choose to place nine anchors in a grid-like
position, eight of them are located on the contour of the region, these can be placed
manually, and one anchor is at the centre of the network. In fact, positioning algorithms
perform better when anchors surround the nodes with unknown positions [64]; intuitively,
nodes at the edges of the graph are less likely to be connected making their localisation
more difficult. The range of communication is set to R = L/4, the noise standard de-
viation is set to 0.005L. Figure 3.2 shows the distribution of the sensors where anchor
nodes are marked by circles, while figure 3.3 shows the corresponding graphical model for
R = L/4.

Table 3.1 summarises the results obtained for both NBP and box-BP algorithms. The
simulations were carried out using Matlab on Intel Core i7-3520M processor (2.90GHz-
4MB Cache, Dual-core) for L = 100m. The error refers to the root mean squared error
(RMSE), it shows the mean distance between the true and the estimated position of a
sensor and is given as a percentage of L. For the box-BP algorithm, the error is calculated
using the distance between the centre of the boxes and the true position of the sensors.
Note that all three algorithms achieve comparable accuracy (see table 3.1). However,
in order to represent the posterior PDF, NBP stores 200 weighted particles, which cor-
responds, in our 2D application to a total of 600 floating points values. The box-BP
algorithm uses only 9 box particles, that is equivalently 45 floating points values. This
reduced storage capability is a great enhancement in terms of energy saving and band-
width needed for the information exchanged in the network. Furthermore, the box-PF is
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Fig. 3.2: A scenario with 100 sensors/nodes and 9 grid-like placed anchors.

Fig. 3.3: The corresponding graph for R = L/4. The sensors form the nodes and an edge
indicates an established communication between two sensor nodes.
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algorithm error (%) No of particles time (sec)
box-BP 2.11 9 14.54

NBP 2.08 200 159.4
MDS-MAP(C) 2.95 N/A 0.28

Tab. 3.1: Simulation results for a grid-like placement of the anchors.

Fig. 3.4: Results for the NBP algorithm in the case of a grid-like placement of the anchors.

about 10 times faster than NBP (see table 3.1). Regrading the centralised MDS-MAP(C)
algorithm, the computational time is naturally less than that of the iterative BP pro-
cedures, however the centralised aspect of the MDS-MAP(C) does not comply with the
network energy constraint. It also requires the knowledge of the whole network struc-
ture (estimating the distance between each pair of nodes) without offering an improved
accuracy. Figures 3.4, 3.5 and 3.6 illustrate the results obtained for the NBP, box-BP
and MDS-MAP(C) algorithms respectively. The dots denote the true sensors positions
whereas the lines indicate the error on these positions (the distance between the true and
the estimated positions).

3.4.3.2 Random placement of the anchors

We now test both message-passing algorithms on different anchor layouts and compare
their performance to the MDS-MAP(C) procedure. Rather than placing the anchors in
a grid-like position so as to enclose the randomly spread sensors, the anchors are placed
randomly as shown in figure 3.7. We also study the performance of the localisation
algorithms while varying the number of anchors within the range 6 to 9. The results are
grouped in table 3.2 and table 3.3 for the box-BP and the NBP respectively.

Table 3.2 shows that the novel box-BP algorithm presents comparable results in term
of the root mean squared error for different number of anchors. However, this error rate
is achieved within less time, i.e. less iterations, if the number of anchors is increased. The
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Fig. 3.5: Results for the box-BP algorithm in the case of a grid-like placement of the anchors.

Fig. 3.6: Results for the MDS-MAP(C) algorithm in the case of a grid-like placement of the
anchors.

No of anchors 6 7 8 9
No of particles 9 9 9 9

error (%) 2.53 2.08 2.08 2.06
time (sec) 22.80 22.87 15.72 14.27

Tab. 3.2: Results for the box-BP algorithm in the case of randomly spread anchors.
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Fig. 3.7: A scenario with 100 sensors and 9 randomly spread anchors. The anchors are marked
as circles.

No of anchors 6 7 8 9
No of particles 200 200 200 200

error (%) 6.89 11.05 12.23 10.72
time (sec) 244.33 299.96 220.41 220.87

Tab. 3.3: Results for the NBP algorithm in the case of randomly spread anchors.

only condition is for the anchors to be uniformly deployed across the region. Figure 3.8
shows the results obtained using the box-BP algorithm in the case of a layout with 6
anchor nodes.

By examining table 3.3, the NBP turns out to be more sensitive to the anchors layout.
Figure 3.9 shows the results obtained using the NBP algorithm for a 6-anchor layout.
It can be seen that the sensors on the edge of the region could not be well positioned,
the error on the position of some of these reached around L/3 (which justifies the large
value of the root mean squared error noticed in table 3.3), this is observed for all layouts
(defined by different numbers of anchor nodes).

Finally, by examining table 3.4 the MDS-MAP(C) centralised scheme offers an accu-
racy that is comparable to that provided by the distributed box-BP algorithm, again with
practically no difference between different anchor layouts. To sum up, the novel box-BP
algorithm offers an accuracy that is comparable to that of the centralised MDS-MAP(C)
without requiring the whole structure of the network and using local information exchange

No of anchors 6 7 8 9
error (%) 1.73 1.70 1.71 1.71
time (sec) 0.30 0.29 0.30 0.30

Tab. 3.4: Results for the MDS-MAP(C) algorithm in the case of randomly spread anchors.
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Fig. 3.8: Results for the box-BP algorithm in the case of 6 randomly spread anchors.

Fig. 3.9: Results for the NBP algorithm in the case of 6 randomly spread anchors.
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Fig. 3.10: Results for the MDS-MAP(C) algorithm in the case of 6 randomly spread anchors.

in a distributed scheme, which is compliant with the energy constraint in a WSN. The
box-BP also offers a better performance than that of the standard NBP while requiring
less memory storage, bandwidth and computational time as was discussed previously.

3.5 Conclusion

In this chapter, we tested the box-BP algorithm, that uses interval representations of
probability quantities, on the problem of self localisation in wireless sensor networks. The
simulation results showed that for a grid-like placement of the anchors the estimation
accuracy provided by NBP algorithm is achieved by the novel box-BP using much less
particles and within less computational time. For a random placement of the anchors, the
NBP algorithm failed to accurately locate sensors on the edge of the network. The box-BP
provided in this case more accurate results. The advantages offered by the new algorithm
are reducing the required storage memory, bandwidth and energy needed to exchange
information between nodes of a network. Another advantage of the box-BP over the stan-
dard NBP is decreasing the complexity of the computations and the mean computational
time. Both BP schemes were also compared to the standard centralised MDS-MAP(C)
localisation algorithm. The accuracy offered by the novel box-BP is comparable to that
of the centralised approach without the necessity to knowing the whole structure of the
network and within a distributed context which complies the energy constraint in a WSN.

Nevertheless, in this chapter, the performance of the box-BP was tested on a static
wireless sensor network and over simulated data. In the next chapter, we consider a
different application involving a dynamic network and test the novel message-passing
algorithm on the application of continuously localising a mobile object over simulated
and real datasets.



4. LOCALISATION OF A MOBILE OBJECT IN A WIRELESS
SENSOR NETWORK

4.1 Introduction

Wireless sensor networks (WSNs) built up with cheap and simple sensor nodes have be-
come a popular solution in a range of areas involving monitoring and decision making [66].
From environmental monitoring [69] to surveillance [110], WSNs applications also include
target detection, localisation and tracking [66, 92, 71, 77].

Many applications need to locate people or objects, e.g., location aware end-users,
intrusion detection and emergency services for finding persons in need, especially in rescue
operations based on mobile phones [91]. Localisation algorithms can be classified into
different categories as was discussed in the previous chapter. In this chapter, we consider
a range-based algorithm for mobility tracking of a single target using information collected
from a network of range sensors. At each time step, the target can be detected only by a
small number of time-of-flight (or range) sensors, and estimates of the distances separating
them from the target are calculated. Thus, at each time instant, the position of the target
can be evaluated knowing only the positions of the sensors within the vicinity of it. Since
usually even the sensors are not perfectly localised, i.e. their positions are known up
to some error, the sensors’ coordinates are described using random variables, and it is
desired to improve the accuracy on these positions while performing the common task of
mobility tracking. In order to exploit the local independence conditional relationships,
we will formulate the localisation problem as inference on a dynamic graphical model and
use a BP scheme to continuously localise the mobile object. Using the BP, we will also
be able to reduce the error on the sensors’ positions.

In the following, we provide an overview of the prior related work in section 4.2 and
then formulate our problem as inference on a graphical model in section 4.3. The box-
BP will be employed to perform the mobility tracking task and its performance will
be compared to that of the standard NBP. The effectiveness of the novel interval-based
message-passing procedure will be demonstrated on simulated and real datasets. Similarly
to what was observed in the previous chapter (over the static network), the box-BP will
offer an impressive reduction of the memory, bandwidth and computational time required
to achieve the localisation goal. Conclusions about this chapter are drawn at last in
section 4.4.

4.2 Literature review

Location awareness is fundamental in many applications of WSNs. Localisation and ob-
ject tracking in sensor networks have become important research problems and have been
widely studied. For instance the purpose of the work of Ermis et al [34, 35, 36] is to
detect localised distributed events or sources in a WSN while minimising inter-network
communications cost. The problem of detecting and localising a source emitting a signal
with unknown power is considered in [34], whilst [35] develops a multi-target detection al-
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gorithm and [66, 71, 96] present multiple target tracking results. In [66], multiple objects
moving in a sensor field are tracked by fulfilling several tasks in a collaborative signal
processing framework. Decision making requires target detection, classification, locali-
sation and future position prediction. The localisation process employs commonly data
provided by a number of sensors such as acoustic, seismic or thermal sensing modalities
and is based on the time-varying space-time signature an object generates when moving
in a geographical region. In [71] light sensors (along with light sources) are used to track
multiple moving objects. A distributed particle filter (DPF) is proposed in [96] to track
multiple targets in a WSN. In this approach, the sensors are first clustered into disjoint
and uncorrelated cliques. Next, unlike a centralised particle filter (CPF), a DPF updates
the weights of the particles, resulting from the prediction step of a particle filter [58], se-
quentially or in parallel, using only local measurements (i.e. observations within a clique
of sensors).

In [8, 33] sequential Monte Carlo (SMC) localisation is presented that improves the
approach introduced in [50]. The SMC algorithm described in [50] considers a scenario
with mobile nodes and anchors, in an environment where no range measurements can
be obtained and under the only assumption that all nodes and anchors have a known
maximum speed and the same radio range. In [33], range measurements are included
into the recursive SMC computations. Other SMC algorithms are developed in [73, 74].
In contrast to [6], the algorithm introduced in [8] remains range-free and works on con-
stricting the area from which the SMC procedure draws samples. In [77], an algorithm
is proposed in the bounded error framework for self-localisation of a mobile node in
an ad-hoc sensor network, while in [92] the purpose is to solve the problem of track-
ing multiple robots by formulating it as inference on a graphical model and by using a
variant of Belief Propagation (BP) algorithm, called Non-parametric Belief Propagation
(NBP) [101]. While providing more accurate location estimations, the NBP requires more
computations. This observation was the motivation behind using the box-BP approach
we introduced in chapter 2 to localise an object moving within a WSN. The objectives
are to achieve the accuracy provided by the NBP within less computational time. A
similar approach is given in [119] where a message-passing algorithm is used to solve the
problem of tracking multiple targets. This algorithm propagates information from future
data about past hypotheses using particle representations of the messages.

The scenario we consider is similar to what was proposed in [91, 105]. The purpose is
to locate an object using exclusively its distance measurements to other known points or
anchors with no assumptions or limitations on the object movement. We assume that a
set of range sensors are deployed in the field of interest and are able to detect and estimate
the distance separating them from an object that falls into their sensing range, i.e., their
maximal detectable distance. At each time step, the moving object will be in the range
of a limited set of sensors in the network. The sensors provide noisy measurements of the
distance separating them from the target. Since the dynamics of the moving object is not
known, the localisation at each step is based exclusively on exchanging information with
the sensors that are able to detect the target. We formulate the problem as inference on a
graphical model and employ a variant of Belief Propagation (BP) algorithm, the box-BP
which uses box representations for probability quantities, to localise the target over time.
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Fig. 4.1: Simulated scenario.

4.3 Localisation of a mobile target as inference on a graphical model

4.3.1 Simulated Scenario

In this section, we consider the problem of localisation of a mobile target, moving within
a region of interest, in the presence of randomly distributed sensors and data arriving
sequentially in time. A number n of range sensors are deployed in the considered region
and are assumed to be able to detect and estimate the distance separating them from
an object that falls into their sensing range. This range denotes the maximal detectable
distance and will be referred to as R. At each time step (whose value will be denoted as
τ), the mobile object will be in the range of a limited set of sensors. Thus, estimates of the
positions of the moving object will computed each τ sec using only available measurements
of the distances separating it from the limited number of sensor nodes that were able to
detect it.

The position of the target at time kτ , k ∈ N, is denoted as xt,k while that of the jth
sensor is referred to as xsj

, j = 1, . . . , n. The sensors are static, their positions are fixed
in time and are assumed to be known a priori (up to some error).

Figure 4.1 shows a simulated scenario with n = 200 sensors deployed in a planar L×L
region with L = 100 m. The trajectory of the mobile target is also shown.

The inference purpose in this application is to determine the posterior distributions
p(xt,k|{xsj

}nj=1), k = 1, . . . , T where T refers to the number of time steps.

4.3.1.1 Implemented Solutions

Let cj,k denote a boolean variable which indicates whether or not the target t is in the
range of sensor j at time kτ . Thus,

cj,k =

1 if ||xt,k − xsj
|| ≤ R,

0 otherwise.

In the following, Γk designates the set of sensors that are able to detect the target at
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Fig. 4.2: The directed acyclic graphs representing the joint probability distribution at two con-
secutive time steps k − 1 and k.

time kτ , i.e. Γk = {s`, c`,k = 1}. The noisy measurement of the distance between the
target at kτ and a sensor s` ∈ Γk is denoted as dt`,k and is given by

dt`,k = ||xt,k − xs`
||+ vt`,k, vt`,k ∼ pv(xt,k,xs`

), (4.1)

where vt`,k denotes a statistical measurement noise of a probability distribution pv(xt,k,xs`
),

and || . || denotes the Euclidean distance between the target t at kτ and s` ∈ Γk.
Given the position xs`

of sensor s`, the target will be at position

xt,k = xs`
+ ||xt,k − xs`

|| ×
(

cos(θt`,k)
sin(θt`,k)

)
,

where θt`,k is the angle between xs`
and xt,k. Thus, the joint probability distribution

p(xt,k,xs1 . . . ,xsn) can be factorised as follows:

p(xt,k, {xsj
}nj=1) = p(xt,k|{xsj

}nj=1)
∏
j

p(xsj
)

= p(xt,k|{xs`
}s`∈Γk

)
∏
j

p(xsj
),

(4.2)

where p(xsj
) refers to the prior probability distribution of sensor j’s position.

According to (4.2), the directed graph describing this joint probability distribution is
a graph whose nodes represent the target at time kτ and the set Γk of its neighbouring
sensors, and whose edges are directed from nodes {s` ∈ Γk} to the node associated with
the target.

Figure 4.2 shows the directed graphs representing the joint PDF in (4.2) at two con-
secutive time steps, k − 1 and k. Note that if the dynamics of the target is known, thus
a function linking xt,k−1 to xt,k is available, information would also propagate between
time steps which translates graphically into an edge directed from node tk−1 towards tk.
Another point is that although the arcs of the graph are directed, information circulates
in either direction and the operations of BP as described in the previous sections can be
used.

In our simulations, we fixed the time period to τ = 1 sec; hence, each second, new
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links are established between the target and the sensors that, at the considered time
instant, have the moving object within their sensing range, while links that were made
at the previous time step would be broken when the moving object steps out of their
range: the resulting graphical model is dynamic as can be seen in Figure 4.2. In order
to solve the inference problem for the simulated scenario described here (which consists
in estimating the posteriors p(xt,k|{xsj

}nj=1)), two algorithms, the novel NBP with box
representations – referred to as box-BP– and NBP with sample representation – referred
to simply as NBP – are compared. During a time period τ , three iterations of message-
passing are run, messages are exchanged along the edges of the graph and the target node
computes an estimation of its current position. Recall that the BP is a tool to perform
marginalisation of joint PDFs represented by graphical structures, and that it allows to
estimate the sensors’ positions wile performing the mobility tracking task. However, in
our simulations, the purpose is to continuously localise the mobile object and thus the
marginal PDFs of interest are given by p(xt,k|{xsj

}nj=1). An example of message-passing
computations is given in the following.

Algorithm 5 BP’s message update for mobility tracking at time instant kτ
Γk = {s`, c`,k = 1}
Message passing from the sensors to the mobile target
for s` ∈ Γk do

use the available observation at sensor s` to generate uniformly N boxes mutually
disjoint and weighted equally with 1

N

propagate the boxes through the model x(i)
s`,tk = x(i)

s`
+ dtl,k[cos(θ) sin(θ)]T

end for
combine the messages sequentially using the series of intersections in Algorithm 1
normalise the weights
the resulting boxes referred to as {[xt,k](i), ωt,k}Ni=1 represent the belief at the target at
time kτ
Message passing from the target to the sensors
for s` ∈ Γk do

propagate the resulting boxes through the model x(i)
tk,s`

= x(i)
t,k + dtl,k[cos(θ) sin(θ)]T

combine the messages sequentially using the series of intersections in Algorithm 1
contract the resulting boxes using the observation at sensor s`
normalise the weights
the resulting boxes {[xs`

](i), ωs`
}Ni=1 now represent the position of sensor s`

end for

In this example, message-passing between two neighbouring nodes (which will be de-
noted as 1 and 2 for the simplicity of the notation) is explained. For the novel box-BP
algorithm, the prior information at each sensor is represented by a box, N boxes mu-
tually disjoint and weighted equally with 1

N
are uniformly generated from the available

information about sensors positions. For NBP, N particles are sampled from the prior
p(xs`

). At an iteration i, in the bounded error context, the message product at node 1
is represented by a collection {ω(i)

1 , [x1](i)} of N weighted box-particles obtained using
Algorithm 1. The forwarded message from 1 to 2, separated by noisy distance d12,
is denoted as m(i)

12 and is represented by the cloud of boxes {ω(i)
12 ,x

(i)
12} obtained, as

shown in (2.22), by propagating the collection {[x1](i)} through the following model
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Fig. 4.3: The result of propagating a box through the disk equation given by (4.3). An inclusion
function for this propagation model is also given.

(which is merely a disk equation):

x(i)
12 = x(i)

1 + d12[cos(θ) sin(θ)]T , (4.3)

where θ ∈ [0, 2π].

Figure 4.3 illustrates the result of propagating a box through the model (4.3). In this
example, the position of the sending node is [x1], the receiving node 2 is at a distance
d12 = [d d] from the sending node 1.

Algorithm 5 describes the message passing procedure to perform the mobility tracking
task.

For NBP algorithm, the message product at the sending node 1 being represented by a
collection {ωi1,xi1} of weighted particles, the forwarded message from 1 to 2, separated by
noisy distance d12, is computed by propagating the samples {xi1} through the model (4.3)
where θ ∼ U([0, 2π]).

Furthermore, both probabilistic algorithms are also compared to the optimisation
approach introduced by Sayed et al. in [91] and to which we will be referring as Sayed05.
A brief review of the Sayed05 algorithm is given in the next subsection.

4.3.1.2 The Sayed05 Localisation Algorithm

Sayed05 is an algorithm for 2D landmark-based localisation that was proposed in [91] in
response to a mandate issued by the Federal Communications Commission (FCC) that
aimed to solve a public safety problem: the need to determine the geographic coordinates
of a mobile subscriber in a cellular network knowing that an important proportion of
emergency calls originates from cell phones. This algorithm is based on the knowledge
of distances separating the target, i.e. the non-localised object, from three known points
or stations also called landmarks. This problem is commonly known as trilateration and
is illustrated in Figure 4.4. The Sayed05 algorithm works as follows. Let rt = [xt, yt]T
denote the position of the target and ri = [xi, yi]T , i = 1, 2, 3 the coordinates of three
landmarks. The squared distance between rt and ri is given by

d2
i = (xi − xt)2 + (yi − yt)2, i = 1, 2, 3. (4.4)
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Fig. 4.4: Trilateration.

Subtracting the first equation (i =1) from the i-th equation (i=2, 3) in (4.4), we obtain

d2
i − d2

1 = x̃2
i − 2x̃ix̃t + ỹ2

i − 2ỹiỹt, i = 2, 3, (4.5)

where r̃ = [x̃, ỹ]T = r− r1. The constraints in (4.5) can be expressed in matrix notation
as (

x̃2 ỹ2
x̃3 ỹ3

)(
x̃t
ỹt

)
= 1

2

(
x̃2

2 + ỹ2
2 + d2

1 − d2
2

x̃2
3 + ỹ2

3 + d2
1 − d2

3

)
, (4.6)

or, in a compact form,
Hr̃t = b. (4.7)

The algorithm then uses a least squares approach to determine r̃t = bH−1.

4.3.1.3 Simulation Results

The simulations are run under Matlab on Intel Core i7-3520M processor (2.90 GHzâĂŞ4
MB Cache, Dual-core). The sensing range is set to R = 15 m. We run two series of
simulations: the first series considers a white Gaussian noise, of standard deviation σ,
on the measured distances; the second considers a bounded measurement noise modelled
as a uniform PDF defined over [−a a], (σ, a ∈ R+∗). The performance of both box-BP
and NBP are compared to that of the Sayed05 localisation algorithm that was briefly
recapitulated in the previous subsection. We also study the effect of the measurement
noise by varying σ and a defined earlier. Tables 4.1 and 4.2 summarize the results obtained
for all three algorithms in the case of a Gaussian measurement noise and a bounded noise
respectively. The error refers to the root mean squared error, that is the mean distance
between the true and the estimated positions. The time refers to the mean computational
time per time step.

These tables show that the novel box-BP algorithm provides a better accuracy (or a
similar accuracy in the case of a Gaussian measurement noise for large σ) than the NBP,
the optimisation Sayed05 algorithm while offering similar performance to the probabilistic
NBP and box-BP algorithms for low measurement noise, provides less accurate estimates
as the noise magnitude increases. An interpretation of these results is based on the fact
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σ = 0.5 m σ = 1 m σ = 1.5 m
Algorithm N o of particles error [m] time [ms] error [m] time [ms] error [m] time [ms]

box-BP 9 0.3284 2 0.8287 2.8 1.6878 3.3
NBP 200 0.8317 59.1 1.0704 57.1 1.5069 58.4

Sayed05 N/A 0.1923 0.18 0.8567 0.17 1.9835 0.16

Tab. 4.1: Simulation results in the case of a Gaussian measurement noise.

a = 0.5 m a = 2 m a = 4 m
Algorithm N o of particles error [m] time [ms] error [m] time [ms] error [m] time [ms]

box-BP 9 0.3808 1.8 0.6964 2.3 1.3885 3
NBP 200 0.9325 59.2 2.2367 57.7 1.5032 57.3

Sayed05 N/A 0.2339 0.18 0.9488 0.16 2.0321 0.24

Tab. 4.2: Simulation results in the case of a bounded measurement noise.

(a) σ = 0.5 m. (b) σ = 1 m. (c) σ = 1.5 m.

Fig. 4.5: Cumulative distribution function of the error: case of a Gaussian measurement noise.

that the box-BP provides a direct approximation of the posterior distribution using a
mixture of uniform PDFs, and not a representation of it using particles as in the case of
NBP. To calculate the messages and beliefs, there is no need to introduce kernels, which
is not necessarily optimal for the NBP. Also, compared with the NBP, the box-BP and
the Sayed05 algorithms are simpler and introduce less approximations. Furthermore, the
novel box-BP uses only 9 box particles to calculate the probability quantities, that is
equivalently 45 floating points values, versus 200 weighted particles for NBP, which corre-
sponds, in our 2D application to a total of 600 floating points values. This reduced storage
requirement is a great enhancement in terms of energy saving and bandwidth needed for
the information exchanged in the network. The box-PF is about 30 times faster than
the NBP. While the mean computational time for the Sayed05 optimisation algorithm is
about 10 times less than that of the box-BP, the performance of this optimisation tech-
nique degrades in noisy environments since it does not take into account a measurement
error. These results can be seen by examining Figures 4.5 and 4.6 illustrating the em-
pirical cumulative distribution function of the error for all three algorithms and for both
Gaussian and bounded measurement error environments respectively.

Figure 4.7 illustrates the real trajectory and the estimated trajectories obtained for
box-BP, NBP and Sayed05 algorithms, respectively. The presented results correspond to
a bounded error environment with a = 2 m.
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(a) a = 0.5 m. (b) a = 2 m. (c) a = 4 m.

Fig. 4.6: Cumulative distribution function of the error: case of a bounded measurement noise.

(a) box-BP. (b) NBP. (c) Sayed05.

Fig. 4.7: Real and estimated trajectories for box-BP, NBP and Sayed05 (case of a bounded
measurement noise with a = 2m).

4.3.2 Results Obtained on Real Data

In this section, the box-BP algorithm is tested on real data available from the UTIAS
multi-robot cooperative localisation and mapping dataset [65]. This data set is produced
using 5 robots moving in an indoor workspace with an area of 15 × 8 m2 and where
15 landmarks were placed as illustrated in Figure 4.11. The landmarks consisted of
cylindrical tubes of 30 cm in height. Figure 4.8 shows the cylindrical landmarks and the
robots.

The robots are identical in construction, equipped with a monocular camera serving
as a primary sensing module and interfacing with a netbook. The camera is mounted in
a way that the robot’s body frame and the measurement coordinate frame are coincident
in two dimensions, as shown in Figure 4.9.

During the experiments the robots were driving to randomly generated waypoints in
the workspace. When a robot or landmark falls in a robot’s field of view, a range and
bearing measurements are taken. Throughout the data collection process, the groundtruth
data for the robots and the landmarks were made available through the use of a 10-camera
Vicon motion capture. Figure 4.10 illustrates a scene of the experiments conducted while
producing the UTIAS dataset.

The original dataset is transformed as in [25] in order to adapt to the scenario we
consider in this paper: the localisation of a single moving target using exclusively range
measurements from landmarks. We thus extract from the original dataset, data associated
with poses, of any of the five robots, for which range measurements to landmarks are
available. A table of real groundtruth data for a single target is obtained, along with a
table indicating for each pose/step identifiers of the landmarks within the vicinity of the
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Fig. 4.8: The cylindrical landmarks and robots used for the generation of the UTIAS dataset.

Fig. 4.9: The workspace for the real data set.
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Fig. 4.10: The workspace for the real dataset.

Algorithm N o of particles error [m] time [ms]
box-BP 9 0.6599 2.1

NBP 200 1.1139 54.1
Sayed05 N/A 3.9447 0.28

Tab. 4.3: Results obtained on a real data set.

non localised object and a real noisy measurement of the distance separating them. The
performance of the box-BP is again compared to that of the NBP and Sayed05 algorithms.
The results are grouped in Table 4.3.

The cumulative distribution function of the error is given in Figure 4.12.
The novel box-BP algorithm outperforms both NBP and Sayed05 algorithms. The per-

formance of the Sayed05 algorithm turns out to degrade in noisy environments; though
this optimisation algorithm requires less computations than the remaining two probabilis-
tic algorithms. The advantages of storage, memory and bandwidth reduction offered by
the box-BP over the NBP remain outstanding as with the simulated scenarios.

4.4 Conclusion

In this chapter, we apply the novel box-BP to perform the localisation of a moving target,
at each time step, using only range measurements from landmarks. The effectiveness of
the new box-BP algorithm is shown on simulated and on real data. Its performance is
also compared to that of a probabilistic and an optimisation algorithms, the NBP and
the Sayed05 algorithms, respectively. The simulation results shows that the estimation
accuracy provided by the novel box-BP algorithm is better (or similar) to that of the
NBP, and is achieved using much less particles and within less computational time. The
performance of the novel algorithm also remains outstanding even in noisy environments
unlike the fast optimisation Sayed05 algorithm. The accuracy of the box-BP turns out to
be better on the real data set. In summary, the advantages offered by the new algorithm
are a reduction of the required storage memory, bandwidth and energy needed to exchange
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Fig. 4.11: Positions of the landmarks in the real workspace.

Fig. 4.12: Cumulative distribution function of the error for the real data set.
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information between the nodes as compared to the NBP and a better accuracy in noisy
scenarios when compared to the Sayed05 algorithm. The box-BP in fact introduces less
approximations than the NBP (which uses kernels to approximate the PDFs) and thus
offer a better accuracy, it is also applicable in the presence of quantised measurements,
this would require less bandwidth for information exchange since float type measurements
are often replaced by integers.



Part II

SOURCE CHARACTERISATION PROBLEM



5. LITERATURE REVIEW ON SOURCE CHARACTERISATION
AND ADVECTION-DIFFUSION MODELS

5.1 Introduction

Recently, wireless sensor networks (WSNs) are being successfully used in source identi-
fication applications, which are approaches for automatic detection and characterisation
of sources of dispersion (i.e. sources releasing a chemical or biological agents into their
environment) based on data collected from a WSN. In this thesis, we are interested in
the application of land mine detection and localisation given the humanitarian aspect of
this topic, and we refer, throughout the following chapters, to the task of determining the
land mines/ sources unknown parameters, including their positions and emission rates,
as the problem of source characterisation.

An anti-personnel mine is a device designed to injure or to kill whomever comes
into contact with it through direct pressure or a trip-wire [46]. Land mine detection,
localisation and clearance is of great importance due to the danger that buried land
mines still represent to people all over the world. It is pointed out in [87] that about
50–100 million anti-personnel mines exist in more than 80 countries and that more than
20,000 people are killed or injured every year due to the explosion of buried land mines.
Though the Ottawa treaty prohibited in 1997 the use of this weapon, some countries have
not signed the treaty, and nearly two million land mines are laid per year. The dangers are
particularly acute for those responsible for localising and decommissioning land mines. To
limit the number of victims, land mine detection and clearance actions have taken place
since the end of the Second World War [16, 54].

Historically, the most common method for land mine detection is metal detection.
Although this technique has proved to be effective with primary land mines, it fails with
many modern land mines, which are fabricated from sophisticated non-metallic materials,
such as plastic and wood [46], making them invisible to the metal detector. Therefore,
many other methods have been developed. These include the use of trained dogs and
several physical detection techniques based on ground penetrating radar (GPR), X-ray,
infrared (IR) imaging [67, 81], neutron activation (TNA) and nuclear quadrupole reso-
nance (NQR) [15, 87]. However, a common problem with all these techniques is that the
probability of false positives is high [38]. Other approaches employ unmanned vehicles
for landmine detection [43]. This technique requires sophisticated and rather expensive
equipment and control.

In this second part of the thesis, we address the problem of localising an unknown
number of land mines using data collected from a network of wireless sensors capable of
detecting the concentration of the explosive chemicals in the air. The motivation behind
the proposed framework is that buried land mines can be considered as vapour-emitting
sources, based on the observation that some explosive chemicals, such as trinitrotoluene
(TNT) or dinitrotoluene (DNT), leak out from buried land mines into the surrounding
environment and are transported through the air by mechanisms such as advection and
diffusion; the idea of using a WSN for land mine localisation then seems intuitively feasible.
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the idea is to deploy a network of wireless sensors, capable of sensing the concentration
of the explosive chemical at their positions, in the contaminated region. Sensors for these
types of chemical explosive materials exist [118], thus, having a vector of concentration
measurements provided by a WSN, by expressing the concentration of the explosive as a
function of the land mines’ locations and by solving the inverse problem, we will show in
the following chapters that the proposed framework is able to detect, locate and find the
emission rates of several land mines.

One primary advantage of the proposed technique consists in the fact that existing land
mine detection and localisation techniques (e.g. those reported here above) involve either
human (or animals) intervention or the use of bulky and expensive equipments. This
translates into threatening risks on the operators lives and/or high operational costs.
Using a network of low-cost small-sized wireless sensors allows an automatic and less
expensive detection of buried land mines. Furthermore, it was suggested in [32] that
using this technique reduces false positives since the sensors respond to the key element
of a landmine, the explosive chemical.

In this chapter, we first provide a literature review on the use of sensor networks for
source characterisation in section 5.2. Then, an overview of advection-diffusion models in
the cases of instantaneous and continuous release point sources is available in section 5.3.
The forward model, aiming at predicting the concentration measurements at the sensors’
positions given the sources parameters, is formulated in section 5.4. Section 5.5 then
concludes the chapter.

5.2 Related works

The advances in sensing technologies [38] increase the use of sensor networks in a vast
range of applications [7, 93, 68]. Recently, wireless sensor networks (WSNs) have become
popular in source identification applications. In fact, risk management applications in
the fields of environment [13, 61, 69] and security [93, 110] rely on data collected from a
WSN in order to characterise a source of dispersion, e.g., in the case of an accidental or
intentional release of a chemical or biological substance in the air. In [110], an algorithm
is derived to detect CO2 leaks at several potential locations at a carbon sequestration
site. The aim in [69] is to study the emissions of a number of contaminant sources,
located at well-known positions, at a large lead-zinc smelter. In [13, 61, 93], probabilistic
Bayesian approaches are used to determine the unknown position and possibly other
model parameters, such as the emission rate and the diffusion coefficient, of a single
dispersion source using data collected from a WSN. In [83], a recursive algorithm based on
a state space representation of the system is developed to estimate a single diffusion source
position and to track its intensity in time using concentration measurements provided by
a sensor network. In [85] theoretical results are derived characterising the accuracy of the
location estimate of a single gas emitting source using a network of binary sensors. The
measurements are quantised and a single bit of information is generated depending on
whether the sensed value is lower or higher than some threshold. In [86] a computation
method is proposed to overcome the difficulties associated with the choice of an adequate
dispersion model and the calculation of the likelihood function in a Bayesian framework
in order to solve the problem of localisation of a source of toxic release.

For landmine detection, the idea is to spread wireless sensors over the contaminated
field, e.g. using a flying robot, these sensors measure the concentration of the explo-
sive material at their positions and communicate with a processing unit. The measured
concentrations depend on the land mines and sensors positions and on the perturbation
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caused by multiple environmental effects, e.g. the wind. The complexity of the problem
is seen through the following reasons:

a. the sensors positions are unknown since they are randomly dropped. This problem
was however dealt with in chapter 3,

b. the mines are buried and diffusion constants are different in the ground and in the air,

c. diffusion constants are not known accurately,

d. environmental disturbance is hardly modelled,

e. an error exists between the real and the measured concentrations.

The idea of using a sensor network for land mine localisation is addressed in [32, 57],
but both consider the case of a single land mine. In [32], the problem of localisation
of a single land mine is considered using an analytical solution of the inverse problem,
not taking into account a model or measurement noise. In [57], a maximum likelihood
estimation algorithm is derived in order to locate a single land mine and find its emission
rate. The performance of the estimator is evaluated by computing the Cramer–Rao bound.

The case of parameter estimation for multiple sources is briefly addressed in [113]
and [95] in a Bayesian probabilistic and an optimisation least squares frameworks and
for a known number of sources. However, in the context of land mine detection, this
information rarely exists for real applications. A more difficult case when the number of
sources is unknown is addressed in [114, 115, 116]. In [114, 116], the problem is formulated
as a generalised parameter estimation problem, where the number of sources is included in
the vector of unknown parameters. This approach implements a reversible-jump MCMC
algorithm and requires intensive computations since the dimensionality of the unknown
parameters’ vector is variable. In [115], Yee formulates the problem of characterising an
unknown number of sources as a model selection problem. While this approach is less
complex than the previous one, it is also computationally demanding.

The application of interest in this chapter is the localisation of multiple anti-personnel
land mines using a WSN, where we consider the case of an unknown number of sources. In
our method, the objective is to estimate the number of sources and then characterise them.
Briefly speaking, the set of concentration measurements which have been made by the de-
tection system are grouped in a matrix and a PCA scheme is used in order to determine the
number of sources. The use of this strategy makes the problem of localisation less complex
and more efficient. The localisation problem is addressed after in a probabilistic Bayesian
framework and a Markov chain Monte Carlo (MCMC) algorithm, namely, that of slice
sampling, is used in order to sample from the posterior density of interest. This probabilis-
tic approach is tested and compared to an optimisation technique, i.e., the popular least
squares approach [104]. The advantages and limitations of both techniques are discussed
in detail. There are two main advantages of using a probabilistic approach. First, the solu-
tion provided takes on the form of a probability distribution, so the uncertainty on the es-
timated position can be quantified [61], rather than approximated, e.g., by computing the
Cramer–Rao bound, as in [57]. Another important advantage of the proposed Bayesian
technique is that it overcomes the convergence problems (to local minima) that the least
squares approach could face.
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5.3 Advection-diffusion models

Processes that move a compound from the location at which it is generated through the
air (or water) are called mass transport processes and can be divided into two categories:
diffusion and advection. Diffusion works to eliminate discontinuities in concentration
profiles by transporting a compound from a region where its concentration is high to a
region of a lower concentration through the action of random motions. A simple example
is that of a cigarette smoke which diffuses into the air and spreads throughout the room
or a drop of ink which, once dropped in a glass of water, diffuses into the whole glass.
Advection on the other hand refers to the transport of a compound due to the mean fluid
velocity or flow. For instance, a wind blowing to the north carries a compound present in
the atmosphere towards the north by advection.

In the following, we start by considering the case of a single emitting source located
at (xs, ys, zs)T in an unbounded domain (x, y, z). We deal first with the case of an in-
stantaneous point release source: we derive the expression of the concentration C(r, t)
at position r = (x, y, z)T at time t with an assumption that the emitted compound is
exclusively transported by diffusion (i.e. the advection time scale is slow compared to
the diffusive time scale); then using the previous result we generalise to the case of a
transport by advection and diffusion. Second, we derive a concentration profile by solv-
ing the advection-diffusion equation in the case of a continuous release source emitting a
substance at a constant rate.

5.3.1 Instantaneous release source

5.3.1.1 Transport by diffusion

Consider that an instantaneous release of a total mass m [Kg] occurs at time t0 at point
rs = (xs, ys, zs)T . The emitted compound molecules are diffused in the atmosphere, the
variation in time and space of the compound concentration C(r, t) [Kg/m3] is governed
by the equation of mass conservation [60]:

∂C

∂t
= −∇q, (5.1)

where
q = −K.∇C [Kg/s/m2] (5.2)

is the mass flux per unit area and K is a tensor grouping the diffusivities (m2/s) in the
x, y and z directions and is assumed to be diagonal, i.e. K = diag(Kx, Ky, Kz). Under
the assumption Kx = Ky = Kz = K, equation (5.1) becomes

∂C

∂t
= K

(
∂2C

∂x2 + ∂2C

∂y2 + ∂2C

∂z2

)
, (5.3)

and is called the diffusion equation.
Let us begin with a one-dimensional system in x, e.g. the total amount of substance

m is diffusing in a cylinder of an infinite length and a cross-sectional area Ayz [m2]. The
diffusion equation reduces to

∂C

∂t
= K

(
∂2C

∂x2

)
. (5.4)
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The boundary conditions for an unbounded domain are

C(x, t), ∂C

∂x
−→ 0 if x −→ ±∞,

while the initial conditions are

C(r, t0) = C(x, t0) = m

Ayz
δ(x− xs).

The solution of equation (5.4) has the form [30]:

C(x, t) = B

(t− t0)(1/2) exp
(
− (x− xs)2

4K(t− t0)

)
, (5.5)

where B is a constant to be determined using the following mass conservation condition:∫ +∞

−∞
C(x, t)dx = m.

Setting λ2 = x2/4K(t− t0) and integrating with respect to λ we can find:

C(x, t) = m/Ayz
(4πK(t− t0))(1/2) exp

(
− (x− xs)2

4K(t− t0)

)
. (5.6)

In the case of a three-dimensional system, the initial and the boundary conditions for
an unbounded domain become, respectively:

C(r, t0) = C(x, y, z, t0) = mδ(x− xs, y − ys, z − zs),

C(r, t), ∂C

∂x
,
∂C

∂y
,
∂C

∂z
−→ 0 if x, y, z −→ ±∞.

The solution to equation (5.3) can be found using the variable separation technique,
thus, we try to determine a solution having the form

C(x, y, z, t) = C1(x, t)C2(y, t)C3(z, t)

which satisfies the condition of mass conservation∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
C(x, y, z, t)dxdydz = m.

This expression can be easily deduced from expression (5.6) and is given by [30, 60]:

C(x, y, z, t) = m

(4πK(t− t0))(3/2) exp
(
−(x− xs)2 + (y − ys)2 + (z − zs)2

4K(t− t0)

)
. (5.7)

Note that the concentration is in fact expressed in terms of the distance ||r− rs|| between
location r and the source.

Figure 5.1 illustrates the variation in space and in time of the concentration of the
emitted chemical in function of the distance ||r − rs||, separating the point where the
concentration is estimated from the source, according to equation (5.7). In this example,
the parameters are fixed to t0 = 0, K = 25 m2/s and m = 1 mg.
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Fig. 5.1: Concentration profile: case of an instantaneous source and assuming the transport of
the emitted material occurs exclusively by diffusion.

5.3.1.2 Transport by advection-diffusion

In this section, we consider the combined transport of the emitted substance by advection
and diffusion for a single instantaneous point release. Considering a mean wind velocity
v = (Vx, Vy, Vz), the mass flux per unit area is now given by:

q = Cv−K.∇C. (5.8)

Under the same assumptions made in the previous section, the advection-diffusion equa-
tion is deduced from condition (5.1) and is written as:

∂C

∂t
+ Vx

∂C

∂x
+ Vy

∂C

∂y
+ Vz

∂C

∂z
= K

(
∂2C

∂x2 + ∂2C

∂y2 + ∂2C

∂z2

)
. (5.9)

Again, we begin with a one-dimensional system as described in the previous section,
a total mass release m occurs at time t0 at location xs. The advection-diffusion equation
reduces to

∂C

∂t
+ Vx

∂C

∂x
= K

(
∂2C

∂x2

)
, (5.10)

with the same initial and boundary conditions for an unbounded domain.
To solve equation (5.10), let us change the frame of reference from the stationary

coordinate system (x, t) to the moving frame (θ, t) where θ = x − xs − Vx(t − t0) which
moves with a velocity equal to that of the mean wind flow Vx (see figure 5.2). Using the
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(a) A one-dimensional system with an instantaneous release at t0 at position xs.

(b) The new frame of reference indicated in blue is moving
with a velocity Vx.

Fig. 5.2: The stationary and the new moving coordinate systems.

chain rule of differentiation, we have
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Replacing expressions (5.11) in the differential equation (5.10), we have

∂C

∂t
= K

∂2C

∂θ2 , (5.12)

with the initial conditions C(θ, t0) = m
Ayz

δ(θ − θs), θs = 0, and the same boundary
conditions in θ. The solution is merely given by equation (5.6):

C(θ, t) = m/Ayz
(4πK(t− t0))(1/2) exp

(
− θ2

4K(t− t0)

)
, (5.13)

and thus, in function of x,

C(x, t) = m/Ayz
(4πK(t− t0))(1/2) exp

(
−(x− xs − Vx(t− t0))2

4K(t− t0)

)
. (5.14)

In the case of a three-dimensional system, the solution to equation (5.9) can be deduced
from the previous expression as shown previously (using variable separation technique)
and is given by [60]:

C(x, y, z, t) = m

(4πK(t− t0))(3/2) exp
(
−(x− xs − Vxt)2 + (y − ys − Vyt)2 + (z − zs − Vzt)2

4K(t− t0)

)
.

(5.15)
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Fig. 5.3: Variation of the concentration in space and time in the case of a 1D instantaneous source
and assuming the transport of the emitted material occurs by advection-diffusion.

Figure 5.3 shows the variation of the concentration profile in a one-dimensional system
caused by an instantaneous point source located at xs = 0 and emitting a total mass
m = 1mg at t0 = 0, the wind flow is directed along the x-axis and its mean velocity is set
to Vx = 15m/s.

5.3.1.3 Diffusion in a semi-infinite medium: method of reflection and superposition

Consider the one-dimensional system in x described here above. In the case of an un-
bounded domain we have yet considered, half of the emitted material moves in the direc-
tion of x > xs and the other half along x < xs.

Assuming an instantaneous point source located at xs of a semi-infinite cylinder ex-
tending over x > xs, e.g. imagine having an impermeable boundary at x = xs, all of
the emitted substance diffuses along the direction x > xs. We can consider [30] that the
solution for x < xs is reflected on the boundary x = xs and superposed on the original
distribution for x > xs. Note that the solution in the case of an infinite medium given in
equation (5.6) is symmetrical about xs, thus the concentration in a semi-infinite medium
is given by:

C(x, t) = 2× m/Ayz
(4πK(t− t0))(1/2) exp

(
− (x− xs)2

4K(t− t0)

)
. (5.16)

The principle of reflection and superposition also allows us to deduce the solution to
the advection-diffusion equation given in (5.9) for the case of a semi-infinite medium as
illustrated through the following example.

Example 5.3.1. Consider a Cartesian coordinate system (x, y, z) where the x-axis is
chosen to be oriented in the direction of the mean wind velocity, the y-axis represents the
horizontal cross-wind direction and the z-axis is oriented in the upward vertical direction.
The mean wind velocity will be denoted as v = (V, 0, 0) [m/s] where V is constant. Sup-
pose that an instantaneous point source is located at (xs, ys, zs) on an impermeable surface
z = zs = 0. The solution in the case of an infinite medium is given in expression (5.15)
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Fig. 5.4: Concentration profile in the case of an instantaneous source placed in a semi-infinite
medium and assuming the transport of the emitted material occurs by advection-
diffusion.

and can be written for this example as

C(x, y, z, t) = m

(4πK(t− t0))(3/2) exp
(
−(x− xs − V t)2 + (y − ys)2 + z2

4K(t− t0)

)
. (5.17)

Using the principle of reflection and superposition, the solution for z < 0 is reflected on
the impermeable boundary z = zs = 0 and superposed on the concentration for z > 0,
since the original solution is symmetric about zs = 0, the resultant concentration in a
semi-infinite medium is given by

C(x, y, z, t) = 2× m

(4πK(t− t0))(3/2) exp
(
−(x− xs − V t)2 + (y − ys)2 + z2

4K(t− t0)

)
. (5.18)

Figure 5.4 shows the concentration profile at level z = 0 in the case of an instantaneous
point source placed at (0, 0) on the impermeable surface z = 0. The wind velocity is
chosen to be V = 20m/s and the other parameters K = 25m2/s, t0 = 0 and m = 1mg.

5.3.2 Continuous release source

Let us first consider the case of a single source placed at position rs = (xs, ys, zs)T on
the impermeable plane boundary z = 0. The source emits a chemical with a constant
rate Q (g/s) starting at time t0. The mean wind velocity is modelled as a constant



5. Literature review on source characterisation and advection-diffusion models 81

vector directed along the x-axis and of a constant magnitude V (m/s). The differential
equation [7, 72] governing the variation of the concentration C(r, t) of the emitted com-
pound at time t ≥ t0 and at position r = (x, y, z)T in the semi-infinite medium z ≥ 0 is
given by:

∂C

∂t
−K

(
∂2C

∂x2 + ∂2C

∂y2 + ∂2C

∂z2

)
+ V

∂C

∂x

= 2Q.u(t− t0).δ(x− xs).δ(y − ys).δ(z − zs)
(5.19)

where K (m2/s) is the isotropic air diffusion coefficient; δ(.) denotes the Dirac delta
function and u(t − t0) refers to the step function vanishing for t < t0 and equal to unity
for t ≥ t0. With an initial condition C(r, t) = 0, for t < t0, the solution [17] for t ≥ t0
at position r is given by:

C(Q, rs,r, t, t0) = Q

π
3
2Kd

exp

(
V (x− xs)

2K

)

×
∫ ∞

d

2
√

K(t−t0)

exp

(
−u2 − V 2d2

16K2u2

)
du

(5.20)

where d = d(rs, r) = ||rs−r|| is the Euclidean distance between positions r = (x, y, z)T
and rs = (xs, ys, zs)T .

Under the assumptions of constant V and Q, and after a sufficiently long time (t →
∞), a stationary concentration profile [7, 72], given by the following concentration, is
established:

C∞(Q, rs, r) = Q

2πKdexp
−V.

(
d− (x− xs)

)
2K

 (5.21)

Fig. 5.5: An illustrative example with a single continuous point source.
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Fig. 5.6: Concentration profiles are given in solid line at positions 1, 2 and 3 for the example
given in figure 5.5. Dotted lines show the stationary concentrations.

Figures 5.5 and 5.6 show respectively an illustrative example with one continuous
point source placed at position (xs = 5, ys = 5) in the plane z = 0, and the variation of
the concentration at three different positions in a 20 m × 20 m planar region, i.e. at level
z = 0, as given in equation (5.20). The parameters are set to Q = 5mg/s, K = 25m2/s
and V = 5cm/s. The stationary concentrations determined using expression (5.21) are
also shown in dotted lines. The graph shows that the concentration change within 5
minutes reaches 97.50, 95.96 and 91.40 percent of the stationary concentration that would
be established at the positions 1, 2 and 3, respectively. Figure 5.7 illustrates the stationary
concentration profile for this example.

Fig. 5.7: The stationary concentration profile for the example in figure 5.5.

5.3.3 Case of multiple point sources

Let us consider now the case of N point sources where the i − th source, denoted as
Si, i = 1, . . . , N , is at position rsi

= (xsi
, ysi

, zsi
)T . Let us further assume that all
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sources are on the same impermeable plane boundary z = 0 and that the wind velocity
is directed along the x-axis.

Using the principle of superposition, and noting that the general advection-diffusion
equation and its boundary conditions are linear, the resultant concentration [69] for N
instantaneous point sources each emitting a mass mi, i = 1, . . . , N at time t0 evaluated at
position r = (x, y, z)T is deduced from equation (5.18) by adding together (superposing)
individual solutions and is hence given by:

C(x, y, z, t) =
N∑
i=1

mi

4(πK(t− t0))(3/2) exp
(
−(x− xsi

− V (t− t0))2 + (y − ysi
)2 + z2

4K(t− t0)

)
.

(5.22)
Similarly, for the case of N continuous point sources each emitting the compound

at a constant rate Qi, i = 1, . . . , N , the resultant stationary concentration evaluated at
position r = (x, y, z)T can be written as:

Cr
(
{Qi, rsi

}Ni=1, r
)

=
N∑
i=1

C∞(Qi, rsi
, r) (5.23)

where C∞(Qi, rsi
, r) is given in equation (5.21).

5.4 The forward problem for land mine localisation

Recall that the purpose of part II of the thesis is to develop algorithms to locate vapour-
emitting land mines exclusively using concentration measurements provided by a network
of vapour detectors/sensors. The forward model is used to compute an estimated con-
centration of the explosive chemical at a certain location given a vector of parameters
consisting of land mine locations, emission rates and environmental conditions, such as
the diffusivity of the air and the wind velocity. It describes the transport of the explo-
sive chemical emitted by the land mines due to the advection and diffusion processes.
Note that numerical solutions for modelling the transport of TNT emanating from land
mines [53] were proposed. In our approach, we model a land mine as a point source placed
on an impermeable planar surface z = 0 and diffusing an explosive chemical, such as the
TNT, and an analytical model for the transport of the explosive vapours is used. We keep
the notations and assumptions of section 5.3.3.

Two possible scenarios are associated with the land mine localisation problem [57]:

a. the first scenario considers that after a long period of time, buried land mines no longer
emit important amounts of explosive vapours and consequently the corresponding con-
centrations are not detectable. To overcome this problem, it was proposed to induce
the evaporation of the explosive chemical (i.e. using microwaves). In this case, the
land mines are considered as instantaneous point sources. This scenario is appropriate
to model long-buried land mines.

b. the second scenario assumes that the land mines have been buried since a sufficiently
long time for a stationary profile to be established. Here, the land mines are considered
as continuous point sources and this scenario is more adapted to recently buried land
mines.

Both scenarios will be considered in what follows. Furthermore, in the remaining sections,
the sources/mines and the sensors are considered to be in the same plane z = 0, and we
omit thus the third coordinate z in all position vectors.
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Consider M sensors which are placed at known positions rj = (xj, yj)T , j = 1, . . . ,M .
For scenario (a), let us set t0 = 0, the instant when the evaporation of the explosive

chemical is induced and consider that the measurements are taken at time t1. Referring
to equation (5.22), the estimated concentration at position rj can be written as:

Cj
(
{mi, rsi

}Ni=1, rj
)

=
N∑
i=1

mi × hji(rsi
, rj) (5.24)

where

hji(rsi
, rj) = 1

4(πKt1)(3/2) exp
(
− 1

4Kt1

(
(xj − xsi

− V t1)2 + (yj − ysi
)2
))

. (5.25)

For scenario (b), we refer to equations (5.21) and (5.23), the estimated concentration
at position rj of sensor j can be expressed as:

Cj
(
{Qi, rsi

}Ni=1, rj
)

=
N∑
i=1

Qi × gji(rsi
, rj) (5.26)

where

gji(rsi
, rj) = 1

2πKdij
exp

−V.
(
dij − (xj − xsi

)
)

2K

 (5.27)

and dij = ||rsi
− rj||.

5.4.1 Formulation of the forward problem

Let P denote the vector of parameters of the sources, i.e., sources’ positions and emission
rates. For N land mines,

P = [{xsi
, ysi

,mi}Ni=1]T , (scenario (a))
P = [{xsi

, ysi
, Qi}Ni=1]T , (scenario (b))

The concentration measurements provided by the sensor network are grouped in an
array denoted by Ym = [Cm

1 , . . . , C
m
M ]T .

Let Yt = [Ct
1, . . . , C

t
M ]T denote the vector of true concentrations at positions rj, and

Em = [em1 , . . . , emM ]T a vector of measurements error, thus:

Cm
j = Ct

j + emj , j = 1, . . . ,M (5.28)

Furthermore, if Ye = [Ce
1 , . . . , C

e
M ]T refers to the vector of estimated concentrations at

rj, i.e., the concentrations obtained by resolving the forward problem according to equa-
tions (5.24) or (5.26), and Ee = [ee1, . . . , eeM ]T a vector of model error, then:

Ce
j = Ct

j + eej , j = 1, . . . ,M (5.29)

Based on equations (5.28) and (5.29), we can write:

Cm
j = Ce

j + ej, j = 1, . . . ,M (5.30)

where ej denotes the quantity characterising the difference between measured and mod-
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(a) Concentration profile at t1 = 2s for a
scenario with N = 4 instantaneous point
sources and M = 30 sensors. (b) The corresponding perspective view.

Fig. 5.8: Illustration of the forward model for scenario (a).

elled/estimated concentrations. Equivalently, in vector notation:

Ym = Yt + Em

Ye = Yt + Ee

(5.31)

and:

Ym = Ye + E (5.32)

where E refers to an error. Based on (5.31) and (5.24) for scenario (a), (5.26) for
scenario (b), we can define an operator F, such that:

Ym = F(P,A) (5.33)

where A is a constant vector grouping information about the environment, sensors char-
acteristics and model applicability, e.g., wind velocity, air diffusion coefficient and noise
variances.

Figure 5.8 shows the concentration profile at t1 = 2s of the emitted chemical deter-
mined using equation (5.22) for a scenario with N = 4 instantaneous point sources and
M = 30 sensors, which are randomly deployed in a 50× 50 m2 planar region. Emissions
are randomly fixed to m1 = 9.78 µg, m2 = 8.43 µg, m3 = 7.58 µg, and m4 = 9.94 µg.

Figure 5.9 on the other hand shows the stationary concentration profile of the diffused
explosive chemical determined using equation (5.23) for a scenario with N = 4 continuous
point sources and M = 40 sensors, which are randomly deployed in a 20× 20 m2 planar
region. Emission rates are randomly fixed to Q1 = 8.01 µg/s, Q2 = 5.38 µg/s, Q3 =
5.87 µg/s and Q4 = 9.39 µg/s. For both examples, the environmental parameters are set
to V = 5cm/s and K = 25m2/s.
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(a) Stationary concentration profile for a sce-
nario with N = 4 continuous point sources
and M = 40 sensors. (b) The corresponding perspective view.

Fig. 5.9: Illustration of the forward model for scenario (b).

5.5 Conclusion

This chapter formulates the forward problem for land mines localisation. This model de-
scribes the transport of the explosive chemical emitted by the source into the surrounding
area due to advection and diffusion. It allows to predict the concentration at the sensors’
positions if the sources parameters (coordinates and emissions) are known. A literature
review on the solution of differential advection-diffusion equations was provided and two
scenarios, applicable to long-buried and recent-buried land mines, were considered.



6. THE INVERSE PROBLEM FOR SOURCE CHARACTERISATION

6.1 Introduction

In this chapter, we consider the problem of localising an unknown number of land mines
exclusively using concentration measurements provided by a wireless sensor network. We
adopt a two-step approach consisting in sequentially determining the number of sources,
and then characterising them (i.e. computing their coordinates and emissions) by solving
the inverse problem associated with the forward model formulated in the previous chapter.
We start in section 6.2 with a general overview of inverse problems and their common
solution techniques. The first step consisting in determining the unknown number of
sources is dealt with in section 6.3 where we use the principal component analysis (PCA),
a well known dimension reduction technique, on a matrix of concentration measurements.
Once the number of sources is determined, the inverse problem describing the source char-
acterisation problem is formulated in section 6.4. Two solution techniques are reported,
a probabilistic Bayesian approach based on a Markov Chain Monte Carlo (MCMC) sam-
pling scheme, and an optimisation least squares technique. The effectiveness of these
schemes is tested on simulated data for two scenarios, considering respectively instanta-
neous and continuous release sources, in section 6.5. Section 6.6 at last recapitulates the
conclusions drawn about this chapter.

6.2 Generalities on inverse problems

6.2.1 General formulation

The inverse problem can be defined as the process of inferring causes, conditioned on
knowledge of the effects, as opposed to the forward or direct problem, allowing to deter-
mine the effects knowing the causes. Typically, the forward and corresponding inverse
problems are linked via a possibly non-linear operator H which represents the relation
between a system’s input and output.

An example of an inverse problem, which will be of main concern in this chapter, is
the one of parameter identification [104]. The corresponding forward problem consists
of determining the output of a system knowing the system’s parameters. If P denotes a
vector of parameters which is linked by an operator H to vector Z grouping the system’s
outputs (possibly noise-corrupted), then the forward model can be written as Z = H(P),
and the inverse problem refers to solving P = H−1(Z).

A practical difficulty in the study of an inverse problem is that it is often ill-posed [61],
meaning that an inverse transformation of the direct model may not exist, may not be
unique, and might be unstable.

6.2.2 Common solution techniques

The solution of an inverse problem can be approached in several distinct ways. Amongst
the most general and popular techniques are least squares and regularisation approaches.
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The key idea for both schemes is to reformulate the inverse problem as an optimisation
problem, usually consisting of minimising a functional error between actual measurements
and predicted ones obtained by resolving the direct problem. However, for regularisation,
the objective function is better-conditioned through the use of regularisation parameters
which allows a stable approximation of the inverse operator.

Probabilistic approaches can also be used to address the problem of parameter iden-
tification. A primary advantage of probabilistic methods is that the solution takes on
the form of a probability distribution rather than a point solution, optimal in terms of
a given criterion [61]. In this chapter, we compare the optimisation least squares and
the probabilistic Bayesian approaches while citing the advantages and limitations of each
scheme.

6.3 Determining the unknown number of sources

The purpose of this chapter is to determine unknown land mines/sources’ parameters
including their positions and emissions. We also consider the case where the number
of buried land mines is unknown a priori. In this section, we use the principal com-
ponent analysis (PCA) in order to determine the number of sources based on a set of
measurements. PCA [3] is a popular statistical method that has been widely applied in
the analysis of multidimensional data sets, which are usually represented by tables of ob-
servations of many possibly inter-correlated variables. Since the information provided by
these variables is often redundant, PCA attempts to replace the original set of variables by
a smaller number of new variables, called principal components, without losing too much
information. This technique considers that the new variables are linear combinations of
the original ones and that they are linearly uncorrelated.

Mathematically, PCA transforms the data to a new coordinate system, such that the
original set of observations is expressed in terms of the principal components. A technique
for performing PCA is to compute the covariance matrix calculated from the available
measurements and then to determine its eigenvalues. The corresponding normalised eigen-
vectors, ordered according to decreasing eigenvalues, define the new coordinate system.
A smaller dimensional coordinate system, which is supposed to conserve most of the in-
formation, can be obtained by only retaining the eigenvectors associated with the largest
eigenvalues.

In our application, M sensors are randomly deployed in a region of interest where
the unknown number of vapour-emitting sources is denoted by N . Each sensor provides
measurements of the concentration of the explosive material emitted by the sources and
transported to the sensor’s position due to advection and diffusion processes. Supposing
that concentration measurements are taken on each sensor at T time instants, the mea-
surements are grouped in an M × T matrix C = (Cjt), j = 1, . . . ,M, t = 1, . . . , T , where
the j − th row groups the concentration measurements recorded by the j − th sensor at
different time instants and the t − th column groups measurements recorded by all M
sensors at time instant t. We explain in the following how the matrix C is obtained for
both scenarios (a) and (b).

Scenario (a)
In this case, the emissions of the sources are considered to be induced and thus the

land mines are considered as instantaneous sources. We assume that the evaporation of
the chemical is induced T times and that, each time, the concentration measurements are
taken on the sensors after a constant period of time t1. In the following, let

– mit denote the emission [kg] of source i, i = 1, . . . , N, induced at time t, t = 1, . . . , T ;
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– M = (mit) an N × T matrix grouping the emissions of the sources, where each row
i is associated with source i and each column t groups the emissions of the sources
at time t.

– H = (hji) an M ×N matrix grouping the factors hji(rsi
, rj) associated with instan-

taneous source i and sensor j, as given in equation (5.25)

If Ct denotes the t−th column of matrix C, i.e., the vector of concentration measurements
provided by the sensors at time t and Mt denotes the t − th column of matrix M, i.e.,
the vector of sources emission rates at time t, referring to Equation (5.24), we have in
matrix notation:

Ct = H×Mt, t = 1, . . . , T. (6.1)

Taking into account an additive noise, as in Equation (5.30), we obtain:

C = H×M+ ε, (6.2)

where ε = (ejt), 1 ≤ j ≤M, 1 ≤ t ≤ T is an additive noise matrix.
Scenario (b)
For the case of continuous release point sources, since the land mines emissions are

likely to change slowly over time, we model these emissions using piecewise constant
functions. Referring to figure 5.6, the stationary concentration profile is established within
only a few minutes; thus, the recorded concentration measurements can be considered
as stationary concentrations established for the constant emission rates between time
instants t− 1 and t similarly to what was suggested in [13]. Figure 6.1 recapitulates the
assumptions we make for scenario (b). It illustrates the variation of the emissions of three
sources and indicates, using red boxes, the regions where stationary concentration profiles
are established. The measurements grouped in matrix C are, for instance, taken at time
instants t1, t2, etc. Note that these measurements can be chosen by simply examining
the signals provided by the sensors and detecting stationary points, i.e. the steady-state
concentration values.

Fig. 6.1: The emission rates are piecewise constant, and a series of stationary concentration
profiles are established.

For scenario (b),

– Qit denotes the emission rate [kg/s] of continuous source i considered as constant
between time instants t− 1 and t;

– Q = (Qit) is an N × T matrix grouping the emission rates of the sources, where
each row i is associated with source i and each column t groups the emissions of the
sources at time t, t = 1, . . . , T ;
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– G = (gji) refers to an an M ×N matrix grouping the factors gji(rsi
, rj) associated

with continuous source i and sensor j, as in equation (5.27).

Similarly, if Ct (respectively Qt) denotes the vector of measurements taken at the sensors
(the sources’ emission rates) at time t, looking back at equation (5.26), we can write

Ct = G×Qt, t = 1, . . . , T (6.3)

and again
C = G×Q + ε, (6.4)

where ε is an additive noise matrix.
Equations (6.2) and (6.4) shows that the concentrations measured on the sensors are

linear combinations of the sources emissions/emission rates. In our application, the only
available information is the matrix of concentrations C. Performing the PCA technique
on matrix C and retaining only the eigenvalues, which are larger than some threshold λth,
allows to transform the data to a new coordinate system whose dimension is d ≤M . An
ideal choice of the threshold would recover precisely the number of sources (d = N). The
condition d ≤ M implies that the number of sensors cannot be less than the number of
mines.

In our simulations, the number of concentration records is fixed to T = 10, and at
each time instant, the emissions (emission rates) of the sources are drawn uniformly from
the interval [5 10]µg (µg/s); and a white Gaussian noise of standard deviation σ is added
to the estimated concentrations. The sources and the sensors are randomly placed in an
L × L planar region.

In order to develop the relationship when N ≤ M , we studied what is the minimal
number of sensors that can detect the number N of the true hidden sources using the
PCA technique for the simulation conditions described above. In our study, we fixed first
the number N of sources and initiated M = N . A hundred source-sensor configurations,
obtained by randomly deploying N sources and M sensors in an L × L region, are gen-
erated. The PCA technique is tested on the different configurations, and the number of
sensors is iteratively increased until the true number of sources is obtained for at least η%
of the configurations. For the simulation conditions recapitulated in tables 6.1 and 6.3,
an adequate threshold λth = 10−7 is empirically determined.

T L [m] K [m2/s] V [cm/s] t1 [s] η%
10 50 25 5 2 80

Tab. 6.1: Simulation parameters for scenario (a).

The results for scenario (a) are given in table 6.2.

N 2 3 4 5 6 7
M 6 11 22 45 100 206

Tab. 6.2: The minimal number of sensors required in order to detect the true number of instan-
taneous sources for the simulation conditions considered in table 6.1.
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T L [m] K [m2/s] V [cm/s] η%
10 20 25 5 90

Tab. 6.3: Simulation parameters for scenario (b).

The results for scenario (b) are given below in table 6.4. Note that for T = 10 and for
the simulation conditions we fixed, the maximal detectable number is N = 8 sources.

N 2 3 4 5 6 7 8
M 5 10 16 26 35 48 71

Tab. 6.4: The minimal number of sensors required in order to detect the true number of contin-
uous release sources for the simulation conditions fixed in table 6.3.

This technique is tested on the examples given in figures 5.8 and 5.9. First, a matrix
of concentration measurements is obtained as described above and a principal component
analysis is conducted.

The largest eigenvalues for scenario (a) illustrated in figure 5.8 are λ1 = 0.1428×10−4,
λ2 = 0.0348×10−4, λ3 = 0.0299×10−4, λ4 = 0.0135×10−4; their number is equal to four,
which is the number of the sources. The sum of the remaining eigenvalues is 2.1818×10−8.

For scenario (b), we obtain λ1 = 0.1116×10−3, λ2 = 0.0751×10−3, λ3 = 0.0345×10−3,
λ4 = 0.0159× 10−3; the sum of the remaining eigenvalues is 4.1672× 10−8.

Thus, we were able at this first step to successfully determine the number of sources
in the considered region. The next step is to localise the sources given concentration
measurements.

6.4 Formulation of the inverse problem for source characterisation

Referring to Equation (5.33) where A is a constant vector, we can define an operator H,
such that:

Ym = H(P) (6.5)

and introduce the inverse source characterisation problem as finding:

P u H−1(Ym) (6.6)

The exact solution for Equation (6.6) is usually not tractable. This is primarily due to
the existence of model and measurement noises. In other words, the forward model is
not perfectly known. Furthermore, due to the commutative property of the addition in
Equations (5.24) and (5.26), the solution is not unique; for instance, in the case of two land
mines, i.e., N = 2, if P1 = [x̃s1 , ỹs1 , Q̃1, x̃s2 , ỹs2 , Q̃2]T is a solution to the inverse problem,
then P2 = [x̃s2 , ỹs2 , Q̃2, x̃s1 , ỹs1 , Q̃1]T is also a solution. In general, any parameter vector
obtained by only permuting the labels of the sources in a solution vector is also a solution.
The estimation problem is thus over a set of land mines.

6.4.1 Bayesian Inference for Solving the Inverse Problem

In this section, the inverse problem is solved within a probabilistic Bayesian framework.
Based on Equation (5.33), the problem consists in determining P having the vector of con-
centration measurements Ym and some prior knowledge gathered in the constant vector
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A. In a Bayesian framework, this refers to finding the posterior distribution p(P|Ym,A).
According to Bayes theorem:

p(P|Ym,A) = p(Ym|P,A)p(P|A)
p(Ym|A) (6.7)

where p(Ym|P,A) is the measurement likelihood, p(P|A) is the prior distribution and
p(Ym|A) is the evidence. The evidence measures the suitability of the model (depending
on the number of sources) to the available data [61]. The evidence values are calculated
and compared for different models in order to determine the most probable number of
sources. The higher the evidence, the better the model can predict the data. Since in
our method, the number of sources is determined a priori as described in section 6.3, the
evidence is considered as a normalisation factor.

Let us consider a bounded domain denoted as Ω for the land mine locations, i.e., the
sources lie within a bounded region [xmin xmax]× [ymin ymax], and the emissions/emission
rates are also bounded within lower and upper bounds, mi ∈ [mmin mmax], Qi ∈
[Qmin Qmax] i = 1, . . . N . Choosing a non informative distribution for the prior, i.e., a
uniform PDF, we can write:

p(P|Ym,A) ∝ 1P∈Ω p(Ym|P,A) (6.8)

where 1P∈Ω denotes the indicator function taking on a value 1 if P ∈ Ω and 0 if not.
Additionally, if the measurement and model noises are assumed to be white and Gaussian,
i.e.:

emj ∼ N(0, σ2
m,j),

eej ∼ N(0, σ2
e,j), j = 1, . . . ,M

then, it can be shown that:

p(Ym|P,A) ∝ exp

−1
2

M∑
j=1

(Cj − Ce
j (P))2

σ2
m,j + σ2

e,j

 (6.9)

Sampling directly from this distribution is difficult, and approximate numerical tech-
niques must be used. A widely used approach for estimating the properties of the posterior
distribution given in (6.8) is to perform Markov chain Monte Carlo (MCMC) sampling [4].
In MCMC algorithms, samples are drawn from the target distribution in the form of a
Markov chain where each sample depends on the previous one in the chain. The earliest
MCMC algorithm is the random walk Metropolis (RWM) [24]. Its basic principle is to
sample a candidate value from a proposal distribution depending on the current position
of the chain. The candidate is then accepted or rejected according to the Metropolis
acceptance probability as will be defined using the following example. Consider sampling
from a PDF π(.). If xi−1 denotes the current state of the Markov chain, a trial state z is
sampled according to z = xi−1 + u, where u ∼ N(0,Σ), for instance, and Σ denotes a
covariance matrix. The candidate z is accepted or rejected according to the Metropolis
acceptance probability a given by:

a(xi−1, z) =
{

min
[

π(z)
π(xi−1) , 1

]
if π(xi−1) > 0

1 if π(xi−1) = 0.
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If the candidate is accepted, the chain moves to xi = z; otherwise, the chain remains
at xi = xi−1. The procedure only requires the choice of a proposal function f(.).

While the early RWM algorithm requires the proposal distribution f to be symmetric,
i.e., f(xi−1, z) = f(z,xi−1), the Metropolis–Hastings (MH) algorithm [24] generalises the
approach to non-symmetric proposals. Obviously, the choice of the proposal distribution is
crucial to the algorithm convergence. Thus, several procedures were proposed in order to
improve the algorithm’s convergence. These include, for instance, the adaptive Metropolis
algorithm [45], the differential evolution Markov chain Monte Carlo (DE-MC) [14] and
the differential evolution adaptive Metropolis (DREAM) algorithm [107]. Another class
of MCMC sampling techniques is the slice sampling technique [78] and will be used in this
paper in order to draw samples from the posterior distribution given in Equation (6.8).

The slice sampling algorithm relies on the observation that sampling from a probability
distribution, e.g., π(.) in the case of a univariate distribution, can be done by drawing
samples uniformly from the region under the plot of π(.) [78]. It has an advantage over
other MCMC methods, such as the Gibbs sampler and the RWM, in that the magnitude of
the changes made to move from one element to the next in the chain is chosen adaptively.

Fig. 6.2: Slice sampling (adapted from [78]).

Figure 6.2 illustrates the operations of the slice sampling algorithm in the case of
a univariate target distribution π(.). The procedure requires only the knowledge of a
function f(.) that is proportional to π(.). It operates iteratively in three steps:

(a) Starting from the current position of the chain, denoted as x0, and such that f(x0) > 0,
draw a value y uniformly from the interval [0, f(x0)]. The horizontal slice defined by
y consists of the values of x for which f(x) > y (see Figure 6.2a).

(b) Find an interval around x0 comprising the majority, or the totality, of the slice defined
in (a). Several methods can be used at this step. The approach adopted here (and



6. The inverse problem for source characterisation 94

illustrated in Figure 6.2b) is called “stepping-out”. It requires fixing, a priori, an
interval width W and operates as follows: first, set an interval of width W randomly
around x0. Then iteratively expand this interval in steps of size W and stop when
both interval ends become outside the slice {x, f(x) > y}.

(c) Draw a value x1 from the part of the slice that is within the interval determined in
(b). The technique used here is referred to as “shrinkage” (see Figure 6.2c) because
it picks points uniformly from the determined interval, shrinks this last using points
that are outside the slice, and stops whenever finding a point inside it.

Slice sampling can also be used to sample from multivariate distributions. This can
be done by updating each variable in turn. It is useful though to note that slice sampling
methods, which update all variables of a multivariate distribution simultaneously, do
exist [78].

6.4.2 The Least Squares Technique for Source Characterisation

In this section, we formulate the source characterisation problem as an optimisation prob-
lem and propose to solve it using the least squares (LS) approach. LS is a popular method
for solving the inverse problems [104]; it seeks an optimal point solution usually by min-
imising a quadratic error or cost function between actual measurements and synthetic
ones estimated using the forward model.

Referring to Equation (5.32), we propose to solve the inverse source characterisation
problem by minimising over P, the vector of unknown parameters, the functional:

J = (Ym −Ye(P))T (Ym −Ye(P)) (6.10)

The solution is thus given by:
Popt = argmin

P
J (6.11)

Despite the wide applicability, the ease of use and ease of understanding associated
with the least squares technique, this method presents a well-known problem: it is sensitive
to the convexity of the cost function [72] and can converge to local optima, thus diverging
from the true solution.

Fig. 6.3: Functional to be minimised in the logarithmic scale, case of instantaneous release
sources.
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Figure 6.3 illustrates the variation of the criterion J in terms of Source 2 coordinates
for the scenario shown in figure 5.8. The values of J are calculated as a function of
(xs2 , ys2) after fixing the remaining unknown parameters, i.e., [{xsi

, ysi
, Qi}i=1,3,4, Q2]T , to

their true values. Note that the functional J is convex and presents one global maximum
near Source 2’s true position. The least squares search algorithm is expected to provide
accurate position estimates in this case.

Fig. 6.4: Functional to be minimised in the logarithmic scale, case of continuous point sources.

Figure 6.4 illustrates the variation of the criterion J in terms of Source 3 coordinates
for the scenario shown in Figure 5.9. Again, the values of J are calculated as a function of
(xs3 , ys3) after fixing the remaining unknown parameters to their true values. Note that
the functional J is not convex and presents local maxima at the sensors’ positions. This
will cause the convergence of the least squares search algorithm to a local minimum, as
we show in the next section, where we test the least squares technique on a simulated
scenario and compare its performance to the probabilistic Bayesian approach introduced
earlier.

6.5 Case studies

6.5.1 Case of an instantaneous release

In this section, we consider the problem of localising N = 4 land mines by randomly
deploying M = 30 sensors in a 50 × 50 m2 planar region according to the scenario
shown in figure 5.8. Model and measurement noises are considered to be white Gaussian
with an identical standard deviation equal to 0.001µg/m3. We fixed the wind velocity to
V = 5cm/s and the air diffusion coefficient to K = 25m2/s, as in [57].

Table 6.5 shows the true values of the unknown parameters to be determined; these
are the sources positions and emissions.
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i (xsi
, ysi

) mi [µg]
1 (0.53, 5.69) 9.78
2 (44.61, 30.61) 8.43
3 (5.11, 26.88 7.58
4 (44.23, 12.96) 9.94

Tab. 6.5: True parameters for scenario (a).

6.5.1.1 Probabilistic Bayesian Approach

The probabilistic Bayesian approach as described in Section 6.4.1 is tested first. The
slice sampling scheme was used in order to draw Np = 4, 000 particles/samples from the
posterior distribution defined in Equation 6.7.

Figures 6.5 and 6.6 show, respectively, the variation of the log-likelihood of the samples
and the evolution of the Markov chain through the iterations. The dimension of the
parameter vector is 12.

Fig. 6.5: Variation of the log-likelihood in the Markov chain for scenario (a).

Note on the graphs of figure 6.6 that there is a transition phase (where the samples
likelihood is low) before the chain converges to the posterior distribution of interest. This
phase is referred to as the burn-in.

In theory, the effect of the initial values tends to zero if the Markov chain is run for
an infinite amount of time. In practice, however, an infinite number of samples cannot be
drawn, so it is generally assumed that only after a certain number of iterations, the chain
reaches the target distribution. Thus, in order to minimise the effect of initial values on the
posterior inference, an initial portion, Nburn, of a Markov chain samples is discarded and
the remaining samples are used to estimate the properties of the posterior distribution.
The number Nburn of the iterations that will be discarded is called the burn-in number.

Figure 6.7 shows the normalised histograms of the samples corresponding to the differ-
ent parameters. The empirical distributions of the parameters are also estimated (using
kernel density estimation KDE) and shown in red on the same graphs. Note that the
empirical PDFs are centred near the true values of the parameters.

Figure 6.8 illustrates the true and the estimated positions, which were determined
using MCMC slice sampling algorithm in order to solve the Bayesian inference problem.
The positions are estimated by computing the mean value. The simulations were carried
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Fig. 6.6: Evolution of the Markov chain
for scenario (a).

Fig. 6.7: Samples empirical distributions for
scenario (a).
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out using MATLAB on an Intel Core i7-3520M processor (2.90 GHz, 4-MB Cache, Dual-
core). The computational time for this approach is 244.60 s. Table 6.6 shows the estimated
parameters using the slice sampling technique.

i (xsi
, ysi

) mi [µg]
1 (0.53, 3.65) 10.08
2 (44.90, 30.82) 8.33
3 (4.95, 26.30) 8.20
4 (44.49, 13.29) 10.22

Tab. 6.6: Estimated parameters using the slice sampling for scenario (a).

Fig. 6.8: Estimated positions using Bayesian inference and MCMC sampling in the case of in-
stantaneous point sources.

6.5.1.2 Convergence Diagnostic

Two common critical issues when using an MCMC sampler in order to estimate the
properties of a PDF are, first, how to decide when to stop sampling and use the available
samples in order to estimate the characteristics of the posterior distribution of interest,
and second, how to determine the number of iterations that correspond to the burn-in
and should be discarded [28].

While it is difficult to predict the number of iterations Niter after which it is safe to
stop sampling and the number Nburn of initial samples to be discarded, diagnostic tools
can be applied to the output of the MCMC samplers in order to address the convergence
problem.

In order to decide if the resulting samples accurately estimate the posterior distribution
of interest, we apply in this section a convergence diagnostic to the chain outputted by
our sampler. We use the StatLib implementation of the Raftery and Lewis diagnostic
(1992) [28]. This test requires as inputs a posterior quantile of interest q, an acceptable
tolerance r for q and a probability s of being within this tolerance. It outputs, amongst
other parameters, the number of iterations Niter and burn-ins Nburn necessary to satisfy
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the specified conditions. The diagnostic was run on the resultant Markov chain for q = 0.5,
r = 0.01 and s = 0.95, which means we want to measure the 0.5 quantile with an accuracy
of 0.01. The output was a total number of iterations Niter = 3672 to be run, of which the
first Nburn = 14 samples correspond to the burn-in and should be discarded. Thus, we are
95% sure that the true quantile is within ±0.01 from the corresponding estimated value.

6.5.1.3 Least Squares Technique

Next, the probabilistic Bayesian approach is compared to the generic least squares opti-
misation approach.

Looking back at Figure 6.3, the cost function to be minimised is convex and has
one global minimum. Recall that this figure illustrates the variation of the functional J
given by equation (6.10) as a function of Source 3 coordinates after fixing the remaining
parameters to their exact values.

Figure 6.9 illustrates the optimal land mine positions, resulting in minimising the
functional J given in equation (6.10). The least squares technique provides in this example
an accurate estimation of the unknown parameters.

Fig. 6.9: Optimal solution provided by the least squares approach (scenario (a)).

Table 6.7 groups the optimal results obtained using the least squares technique. The
computational time is 1.99 s.

i (xsi
, ysi

) mi [µg]
1 (0.95, 5.94) 9.59
2 (44.78, 30.50) 8.29
3 (5.04, 27.03) 7.45
4 (44.35, 13.14) 10.04

Tab. 6.7: Estimated parameters using the Least Squares search algorithm for scenario (a).

Table 6.8 groups the mean squared errors on sources positions and emission rates for
both probabilistic Bayesian and optimisation least squares approaches.
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Approach Error on
Position Emission Rate

Slice sampling 1.207 0.140
Least Squares 0.088 0.020

Tab. 6.8: Mean squared errors on positions and emission rates in the case of instantaneous
release sources.

Both the least squares technique and the Bayesian probabilistic approach manage to
provide accurate estimates of the sources’ parameters. The least squares approach however
offers a better performance and requires less computational time. This was predicted since
the cost function to be minimised was convex with one global minimum. Nevertheless,
we will see in the next section that the performance of the least squares degrades when
the cost function is no longer convex.

6.5.2 Case of a continuous release

In this section, we consider the problem of localising N = 4 land mines, considered as
continuous release point sources, by randomly deploying M = 40 sensors in a 20 × 20
m2 planar region according to the scenario shown in Figure 5.9. Model and measurement
noises are considered to be white Gaussian with an identical standard deviation equal to
0.001µg/m3. The wind velocity was set to V = 5cm/s and the air diffusion coefficient to
K = 25m2/s, as in the previous scenario.

In this section, the aim is to localise the continuous release sources given concentration
measurements.

Table 6.9 shows the true values of the unknown parameters to be determined; these
are the sources positions and emission rates.

i (xsi
, ysi

) Qi [µg/s]
1 (6.99, 2.18) 8.01
2 (1.73, 12.27) 5.38
3 (16.52, 6.45) 5.87
4 (14.11, 13.01) 9.39

Tab. 6.9: True parameters.

6.5.2.1 Probabilistic Bayesian Approach

The probabilistic Bayesian approach explained in Section 6.4.1 is tested now. The slice
sampling scheme is used in order to draw Np = 4, 000 particles/samples from the posterior
distribution defined in the same section.

Figures 6.10 and 6.11 show, respectively, the variation of the log-likelihood of the
samples and the evolution of the Markov chain through the iterations. In this example,
the dimension of the parameter vector is 12.
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Fig. 6.10: Variation of the log-likelihood in the Markov chain for scenario (b).

Note again on the graphs of figures 6.10 and 6.11 the burn-in phase before the chain
converges to the posterior distribution of interest, the initial samples likelihood is low.

Figure 6.12 shows the normalised histograms of the samples corresponding to the
different parameters. The empirical PDFs of the parameters are also estimated and shown
on the same graphs, they are centred near the true values of the parameters.

Figure 6.13 illustrates the true and the estimated positions, which were determined
using the slice sampling scheme. The computational time for this approach is 20.35 s.
Table 6.10 shows the estimated parameters for the Bayesian probabilistic technique.

i (xsi
, ysi

) Qi [µg/s]
1 (7.06, 2.15) 8.02
2 (1.68, 12.03) 5.44
3 (16.27, 6.27) 5.11
4 (14.10, 13.04) 9.95

Tab. 6.10: Estimated parameters using the slice sampling for scenario (b).
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Fig. 6.11: Evolution of the Markov chain for
scenario (b).

Fig. 6.12: Samples empirical distributions for
scenario (b).
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Fig. 6.13: Estimated positions of the continuous release sources using Bayesian inference and
MCMC sampling.

6.5.2.2 Convergence Diagnostic

In order to decide if the resulting samples accurately estimate the posterior distribution
of interest, we apply a convergence diagnostic to the chain outputted by the slice sampler.
Again, we use the Raftery and Lewis diagnostic.

The test was run on the resultant Markov chain for q = 0.5, r = 0.01 and s = 0.95,
which means we want to measure the 0.5 quantile with an accuracy of 0.01. The output
was a total number of iterations Niter = 2, 655 to be run, of which the first Nburn = 10
samples correspond to the burn-in and should be discarded. Thus, we are 95% sure that
the true quantile is within ±0.01 from the corresponding estimated value.

6.5.2.3 Least Squares Technique

Next, the probabilistic Bayesian approach is compared to the generic least squares opti-
misation approach.

Looking back at Figure 6.4, the cost function to be minimised is not convex and has
multiple local minima. This figure illustrates the variation of the functional J given by
Equation (6.10) as a function of Source 3 coordinates after fixing the remaining parameters
to their exact values. A least squares search algorithm might fall into some local minimum
and, thus, diverge from the true global minimum located near Source 3’s true position.
Figure 6.14 shows the solution provided by the least squares technique when the vector
of parameters is randomly initialised. The algorithm stopped at a local minimum, so the
solution provided diverges from the true parameters.

The choice of the initial point for the search algorithm is crucial. If this start point is
situated in the restrained convex region around the global minimum (see Figure 6.4), the
least squares approach is likely to converge to the true solution. In order to overcome this
problem, we choose the start position parameters to be the positions of the three sensors
indicating the greatest concentration measurements. These sensors are likely to be the
closest to the sources.
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Figure 6.15 illustrates the optimal land mine positions, resulting in minimising the
functional J given in Equation (6.10). The start position parameters for the search
algorithm are chosen to be the positions of the four sensors, indicating the maximal
concentration measurements. The least squares technique provides in this case an accurate
estimation of the unknown parameters.

Fig. 6.14: Solution provided by the least squares approach for randomly chosen start parameters.

Fig. 6.15: Optimal solution provided by the least squares approach in the case of continuous
release sources.

Table 6.11 groups the optimal results obtained using the least squares technique. The
computational time is 6.34 s.
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i (xsi
, ysi

) Qi [µg/s]
1 (6.99, 2.22) 8.53
2 (1.78, 12.49) 5.06
3 (16.54, 6.54) 5.77
4 (14.26, 13.01) 8.98

Tab. 6.11: Estimated parameters using the Least Squares search algorithm, case of continuous
sources.

Table 6.12 groups the mean squared errors on sources positions and emission rates for
both approaches.

Approach Error on
Position Emission Rate

Slice sampling 0.040 0.223
Least Squares 0.021 0.137

Tab. 6.12: Mean squared errors on positions and emission rates for scenario (b).

Both the least squares technique and the Bayesian probabilistic approach offer a similar
performance provided an adequate choice of the start point for the optimisation search
algorithm. The least squares approach also requires less computational time. However, it
is important to note that, as the sensors are randomly deployed, even the ones with the
greatest concentration measurements might not always be close enough to the sources,
so as to find the global minimum. This optimisation technique is very sensitive to the
choice of the initial point. On the other side, the probabilistic Bayesian approach together
with an efficient sampling algorithm turns out to be more robust and less sensitive to the
choice of the initial sample of the Markov chain.

6.6 Conclusion

While previous work on land mine localisation using sensor networks solves the problem
of locating a single source, this chapter considers the problem of locating several land
mines. It also deals with the more difficult scenario of an unknown number of sources
to be characterised. First, the PCA technique is used in order to determine the number
of land mines. Second, the inverse problem consisting of locating and estimating the
emission rates of the land mines is solved in a probabilistic Bayesian framework. In our
simulations, we compare the results obtained using this approach with those provided by
the least squares optimisation technique. Both methods localise successfully the sources
and provide an accurate estimate of the emission rates of multiple land mines. The opti-
misation least squares offers a good performance when the functional to be minimised is
convex as in the case of the instantaneous release point sources. For the scenario consid-
ering continuously emitting sources, the cost function presents several local minima. The
main advantage of the probabilistic technique is that, using an efficient sampling scheme,
it turned out to be less sensitive to the choice of the initial point of the chain, in contrast
with the optimisation technique for which the choice of the start point of the search algo-
rithm is crucial. The probabilistic method also makes it possible to quantify uncertainty
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on the estimated positions, since a PDF of the unknown parameters is obtained, rather
than a single optimal point solution.



CONCLUSIONS AND PERSPECTIVES

In this thesis, we derived fusion algorithms for data collected from a WSN. A variety of
problems were solved mainly in a Bayesian inference framework. Our work was structured
in two parts.

In the first part, we dealt with the problem of inference on graphical models (de-
scribing distributed systems). We provided an overview of different classes of graphical
models and introduced a message-passing algorithm which provides a distributed scheme
for solving the inference problem in a Bayesian framework. This algorithm known as Be-
lief Propagation (BP), also the sum of product algorithm, is a tool for performing exact
or approximate marginalisation of joint PDFs represented by graphical structures.

However, for some applications, the problem is not always described by linear models
and the uncertainty on the available information is statistically complex. These condi-
tions make the computations of BP in its closed parametric form intractable. A first
non-parametric approach known as the Non-parametric Belief Propagation (NBP) was
introduced in [99] and utilised sample-based representations for probability quantities (as
in particle filtering) in order to approximate BP’s operations using Monte Carlo tech-
niques. A novel BP scheme, inspired by the box-PF, was developed in this part of the
dissertation. It is based on interval representations of the PDFs. This algorithm, which
we called box Belief Propagation (box-BP) showed several advantages over the standard
Monte Carlo based NBP when tested on both static and dynamic distributed systems.
Mainly, it used a smaller number of box-particles to approximate the PDFs which leaded
to simpler and faster computations, and to a more compact representation of the informa-
tion to be exchanged wich in turn implies a reduction of the memory storage, bandwidth
an energy consumption necessary to perform inference.

However, for all BP approaches stated earlier, we adopted a parallel update scheme
in which, at each iteration, each node sends information to all of its neighbours simulta-
neously. As future work we can find an optimal message-passing scheme, or an optimal
path for information circulation, that results in a reasonable approximation of the poste-
rior PDF of interest with minimal communication requirements.

Perspectives to part I of the thesis also include the application of the box-BP on the
localisation of multiple mobile targets, with communications between the mobile targets
themselves and between the targets and stationary landmarks. In this case, the system is
represented using a dynamic graphical model whose nodes are associated with the targets
and the landmarks. At each time step, links are established between each target and
the nodes that are within the vicinity of it and thus information can exchanged between
a mobile target and its other counterparts in addition to the landmarks. This scenario
extends the case we treated in chapter 4 to the problem of mobility tracking of several
mobile targets using range measurements. Similarly to what was proposed in chapter 4,
messages are exchanged exclusively between nodes representing the local states at one
time instant k (even though the graphical model associated with this system is dynamic).

Another perspective is to consider the dynamics of the robots known, thus at each
time step a prediction of the future pose can be made and information will circulate
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between time steps. For this scenario, the nodes of the graphical model describing the
system include, in addition to the landmarks and the pose of the mobile targets at time
instant k, the positions of the targets at time instants k−1 and/or k+1; i.e. the dynamic
graphical model consists of nodes describing the system’s states at consecutive time steps.
Thus, range information is exchanged between nodes representing the local states at one
time instant k, and message passing is also possible between nodes representing the local
state of one mobile target at consecutive time steps since a model for the evolution of the
targets is available.

The second part of the thesis considered the problem of characterising (i.e. deter-
mining the unknown parameters including the positions and emissions of) an unknown
number of sources emitting a chemical/biological agent in their environment. The ap-
proach is based on deploying a number of sensors capable of estimating (up to an error
level) the concentration of the emitted compound transported to its position due to ad-
vection and diffusion. Given a matrix of concentration measurements, we managed to
determine the number of sources to be localised using a popular dimension reduction
technique. Then the localisation problem was formulated as Bayesian inference and a
MCMC sampler was used in order to estimate the properties of the PDF of interest. In
this part, the application of interest is that of localisation of anti-personnel land mines.
Since two scenarios can be typically associated with this application [57], the effectiveness
of the proposed two-step technique was demonstrated on two distinct scenarios: the first
considering instantaneous release sources, the second continuously emitting point sources.
However, in our context, sources and sensors were assumed to be in the same plan.

For future work, a model considering a three-dimensional position for the sources
and sensors can be employed since the land mines are buried and a third coordinate
indicating the depth of the sources is necessary for a more realistic scenario. In this case,
the emitted compound is transported by advection-diffusion via a two-layered medium
(ground and air). The forward model that predicts the concentration of the emitted
chemical at the sensors positions should thus take into consideration the existence of two
different transport media with distinct diffusion coefficients.

The validation of the proposed scheme on real data sets is also important especially
that using analytical models to describe the transport of the emitted chemical always
necessitates fixing simplifying hypothesis (such as homogeneous and/or isotropic media,
horizontal separating surface between the layers, constant wind velocity) which is not
necessary compliant with the real scenario. Having a real dataset, a neural network could,
for instance, be employed in order to predict concentration estimates at any position.

Furthermore, a recent article [102] presents a hierarchical model to find the ground-
truth source bases using Non-negative Matrix Factorisation (NMF) [103]. Since in our
approach, PCA was only used to determine the number of sources, the use of source
separation techniques (amongst which are PCA and NMF) for source localisation forms
an interesting subject of research. Looking back at equations (6.2) and (6.4), if we are
able to reconstruct matrices H (G) and M (Q), having the concentration measurement
at a sensor’s position (due to all of the sources) it would be possible to determine the
contribution of each source to the resultant measured concentration. Thus, the complex
problem of localising multiple sources is reduced to several simpler tasks consisting of
localising a single source.
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