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FRENCH SUMMARY – RÉSUMÉ EN FRANÇAIS

CONTRIBUTIONS DE LA THÉORIE DES MARCHES ALÉATOIRES

AU TRANSPORT STOCHASTIQUE DES NEUTRONS

Au cours de mon doctorat, j’ai effectué mon activité de recherche sous la
codirection d’Alberto Rosso au LPTMS (Université Paris-Sud - CNRS) et de
Cheikh Diop et Andrea Zoia au LTSD (CEA Saclay DEN/DM2S/SERMA).
Cette double affiliation m’a permis de travailler à l’interface de la physique
statistique et de la physique des réacteurs nucléaires. Je me suis plus spé-
cifiquement intéressée aux propriétés des marches aléatoires branchantes
et de la diffusion anormale dans le contexte du transport stochastique des
neutrons au sein d’un réacteur nucléaire. En outre, quelques-uns des as-
pects originaux de la thèse sont l’étude des fluctuations statistiques – spa-
tiales et temporelles – de la population de neutrons et le travail en géome-
trie confinée ou en présence de bords (prise en compte des bords du sys-
tème). Ce travail, réalisé en collaboration avec différents chercheurs du
LTSD et du LPTMS, et rapporté dans ce manuscrit, a donné lieu à plusieurs
publications dans des revues internationales. Vous en trouverez ici un court
résumé en français.
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INTRODUCTION

L’UN des principaux objectifs de la physique des réacteurs nucléaires
est de caractériser la répartition de la population de neutrons au sein

d’un réacteur. Due à la nature stochastique des interactions entre ces neu-
trons et les noyaux fissiles composant le coeur du réacteur (combustible),
cette répartition fluctue spatialement et temporellement. Pour autant, pour
la majeur partie des applications en physique des réacteurs, la population
de neutrons considérée est très importante – on peut citer par exemple la
densité de neutrons au sein d’un réacteur de type REP à pleine puissance
en conditions stationnaires qui est de l’ordre de 108 neutrons par centimètre
cube. Dans ces conditions, les grandeurs physiques caractérisant le sys-
tème (tels que flux, taux de réaction, énergie déposée) sont, en première
approximation, bien représentées par leurs valeurs moyennes respectives,
qui obéissent à l’équation de transport linéaire de Boltzmann. Cette ap-
proche cependant présente des limites : nous nous intéressons ici à deux
aspects du transport des neutrons qui ne sont peuvent pas être décrits par
cette équation.

Chapitre 1 - Transport des neutrons et physique statistique

Ce chapitre introductif présente le contexte général du transport des neu-
trons en physique des réacteurs et explicite le lien avec la physique statis-
tique, plus précisément la théorie des marches aléatoires. Dû à la nature
stochastique et markovienne des intéractions des neutrons avec les noyaux
fissiles du milieu – diffusion, capture stérile, ou encore émission d’un ou
plusieurs neutrons lors de la fission d’un noyau – le transport des neutrons
au sein d’un matériau fissile peut etre modélisé par des marches aléatoires
exponentielles branchantes.

Sont introduits ensuite les notations utilisées dans la thése, ainsi que
les observables principales en physique des réacteurs, la densité neutron-
ique, le taux de réaction et le flux neutronique. Les équations de bases de
la neutronique sont ensuite re-dérivées : l’équation de transport linéaire
de Boltzmann sous forme intégro-différentielle et sous forme intégrale, et
l’équation de diffusion des neutrons. Ces équations décrivent le comporte-
ment des grandeurs moyennes, que sont la densité neutronique, le flux ou
le taux de réactions, c.à.d. le comportement moyen de la population de
neutrons. Bien qu’adaptée à la plupart des situations en physique des réac-
teurs, cette approche présente cependant des limites.

Tout d’abord, elle ne permet pas caractériser les fluctuations statistiques
de la population de neutrons, qui peuvent devenir importantes dans des
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systèmes où la densité de neutrons est initialement faible. Dans un réacteur
REP au démarrage par exemple, la population est initialement faible; des
simulations numériques Monte-Carlo réalisées avec le code TRIPOLI-4 au
LTSD ont mis en évidence la formation d’amas de neutrons dispersés dans
de tels systèmes. Ce comportement surprenant, que nous avons baptisé
« clustering neutronique » [Dumonteil et al. 2014], résulte de larges fluctua-
tions spatiales et temporelles de la population de neutron, et ne peut donc
pas être expliqué à partir des équations de transport usuelles.

D’autre part, l’équation de Boltzmann caractérise le transport des neu-
trons dans des milieux où les positions des centres de diffusion (noyaux
fissiles) sont non corrélés, c.à.d. dans lesquels le transport des neutrons est
de forme exponentiel. Cependant, pour quelques applications, le milieu
traversé par les neutrons est fortement hétérogène, voire désordonné (à dé-
sordre figé), de sorte que l’hypothèse de centres de diffusion non corrélés
n’est plus valide. Citons par exemple le cas des réacteurs à lit de boulets, ou
encore le transport radiatif dans des tissus (peau). Pour ce type de milieux,
il a été observé que le transport n’obéit plus à un transport simplement
exponentiel, et les équations usuelles de la neutronique ne sont alors plus
valables.

Le présent manuscrit s’intéresse à ces deux aspects du transport des
neutrons non décrit par l’équation de transport linéaire de Boltzmann. La
première partie du manuscrit traite des fluctuations statistiques de la popu-
lation de neutrons, et plus particulièrement du clustering neutronique. La
deuxième partie se concentre sur le transport non-exponentiel, et s’intéresse
plus spécifiquement à des propriétés du transport anormal dans un sys-
tème de taille fini ou en présence de bords du système.

PARTIE I - STATISTIQUES DES FLUCTUATIONS

Nous étudions, dans un premier temps, à un aspect souvent négligé des
processus de diffusion avec branchements : les fluctuations statistiques –
temporelles et spatiales – de la population de particules. Due au processus
de naissances (fissions) et de morts (absorption) de particules, appelé pro-
cessus de Galton-Watson, l’amplitude de ces fluctuations croît au cours du
temps, jusqu’à devenir comparable au quantités moyennes caractérisant
le système (telles que la densité de particules par exemple). Ainsi, même
un système critique, pour lequel le taux de naissance est égale au taux de
mort (comme c’est le cas pour le fonctionnement d’un réacteur), peut voir
sa population disparaître au bout d’un certain temps1. Ce phénomène est

1Le temps caractéristique correspondant est bien entendu d’autant plus long que la pop-
ulation initiale est importante.
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connu en neutronique sous le nom de catastrophe critique [Williams 1974].
Ces fluctuations peuvent-elles conduire à la formation d’amas de neutrons,
tels que ceux observés lors des simulations TRIPOLI-4 de réacteurs au dé-
marrage, en dépit du fait que ces particules n’interagissent pas directement
entre elles ?

Chapitre 2 – Description backward des fluctuations

Ce premier chapitre développe les outils nécessaires à l’étude des fluctua-
tions de la population de neutrons. En particulier, nous nous intéressons
à deux observables principales (celles d’intéret en physique des réacteurs)
: la longueur totale parcourue et le nombre total de collisions effectuées,
par une famille de neutrons dans un volume donné du milieu fissile. Les
moyennes respectives de ces deux observables sont directement reliées au
flux neutronique et au taux de réaction dans le volume considéré. L’étude
des moments d’ordre supérieur de ces observables permet d’accéder aux
fluctuations statistiques des grandeurs physiques d’intérêts caractérisant
la population de neutrons en physique des réacteurs.

Dans ce but, nous avons utilisé le formalisme backward de Feynman-
Kac afin de dériver l’équation backward gouvernant la fonction génératrice
des moments pour chacune de ces deux observables. Pour se faire, nous
nous sommes placés dans le cas le plus général d’un système composé d’un
milieu hétérogène, où la diffusion des neutrons peut être anisotrope et les
vitesses (énergies) des neutrons peuvent changer à chaque collision [SNA-
MC 2013].

Enfin, nous nous intéressons à la statistique d’occupation des neutrons
dans un volume donné de milieu fissile. L’observable considérée est alors
le nombre total de neutrons présents dans le volume à un instant t donné2.
Nous retrouvons alors les équations de Pàl-Bell connues en physique des
réacteurs.

Chapitre 3 – Clustering neutronique

Ce chapitre commence par un état de l’art des résultats sur le phénomène
de clustering, qui a déjà été observé dans différents domaines et étudié
pour des systèmes de "taille infinie". Nous remarquons que la formation
des clusters résulte d’une compétition entre le processus de naissance et
de mort, qui tend à créer des amas de particules appartenant à la même

2Par la suite, nous nous intéresserons de nouveau à cette observable afin de caractériser
la fonction de corrélation entre paires de particules du système, centrale pour comprendre
le phénomène de clustering.
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famille, et le processus de diffusion, qui tend à les disperser.

Pour la suite, nous nous concentrons sur les systèmes critiques, qui
correspondent aux conditions de fonctionnement des réacteurs nucléaires.
Dans ce contexte, nous étudions l’impact de la prise en compte des bords
du système (système de volume fini) sur le phénomène de clustering. Puis
nous investiguons l’impact d’un processus de contrôle de la population
globale de neutrons, tel que celui réalisé par les barres de contrôle au coeur
du réacteur. Pour cela nous nous sommes intéressés à la fonction de cor-
rélation de paire du système, pour laquelle nous obtenons les équations
d’évolution en utilisant une description "backward" du transport des neu-
trons.

Nous observons la présence de deux types de fluctuations [Zoia et al.
2014] : a) des fluctuations locales résultant d’une compétition entre le pro-
cessus de reproduction/mort qui tend à créer des amas et le processus de
diffusion qui tend à mixer les particules sur l’ensemble du système en un
temps caractéristique ⌧D ; b) des fluctuations globales qui mènent finale-
ment l’ensemble de la population à extinction sur un temps caractéristique
⌧E (clustering "trivial" et catastrophe critique). L’ajout d’un processus de con-
trôle de la population totale de neutrons (feedback) permet de bloquer ces
fluctuations globales et de prévenir ainsi l’extinction du système (et le clus-
tering trivial). On s’intéresse alors aux clusters "stabilisés" (dus aux fluc-
tuations locales uniquement), pour lesquels nous calculons la taille carac-
téristique. Celle-ci dépend du ratio ⌧E/⌧D, c.à.d. de la compétition entre le
processus de reproduction/mort qui tend à la réduire, et celui de diffusion
qui tend à l’augmenter [de Mulatier et al. 2015].

Dans ce chapitre, nous avons approximé le transport des neutrons par
un transport Brownien. En perspective, il pourrait être intéressant de con-
sidérer une modélisation plus réaliste du système, notamment l’impact des
hétérogénéités ou de la dépendance en énergie, ou encore des neutrons re-
tardés sur le clustering.

PARTIE II – TRANSPORT ANORMAL

Dans cette seconde partie, nous nous intéressons au transport non-
exponentiel des neutrons, initialement motivés par le problème du trans-
port dans des milieux fortement hétérogènes et désordonnés, tels que le
coeur d’un réacteur à lit de boulets.
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Chapitre 4 – Opacité d’un milieu

Certaines des propriétés physiques d’un milieu immergé dans un flot de
particules sont étroitement liées à la statistique des trajectories aléatoires
effectuées par les particules qui le traversent. Citons par exemple l’opacité
d’un milieu, qui peut être définie comme le rapport entre la longueur totale
moyenne3 parcourue par le flot de neutrons au sein du volume et le libre
parcourt moyen des neutrons dans le milieu. Plus le flot intéragit avec le
milieu, plus ce milieu est considéré comme opaque. La formule d’opacité,
connue en neutronique, exprime simplement la longueur totale moyenne
parcourue par les neutrons comme proportionnelle au ratio du volume V
et de la surface S du milieu.

Il s’agit là d’un résultat connu sous le nom de propriété de Cauchy, qui
est vérifiée pour toute marche aléatoire exponentielle branchante critique :
la longueur moyenne hLi parcourue par une telle marche au travers d’un
domaine de taille finie dépend uniquement des propriétés géométriques du
domaine, hLi = ⌘dV/S, où ⌘d est une constante dépendant de la dimension.
Dans ce chapitre nous montrons que la propriété de Cauchy (et donc la
formule d’opacité) reste valide dans le cas d’un transport anormal.

Propriété universelle de marches aléatoires de Pearson en géométrie confinée

En collaboration avec A. Mazzolo, nous avons caractérisé la statistique
d’occupation de marches aléatoires branchantes de Pearson en géométrie
confinée, pour une loi de sauts quelconque4 (sous la condition que la loi ad-
mette un libre parcours moyen). Nous avons montré que l’ensemble de ces
marches vérifient une même propriété, la longueur totale moyenne passée
par ces marches dans un domaine de taille fini ne dépend que du ratio du
volume sur la surface du domaine, et que cette propriété est en réalité lo-
cale [Mazzolo et al. 2014; De Mulatier et al. 2014].

Chapitre 5 – Vols de Lévy asymétriques en présence de bords absorbants
(système non confiné)

Dans ce chapitre, nous considérons un marcheur évoluant à une dimension,
effectuant des sauts successifs indépendants et identiquement distribués
suivant une loi de probabilité asymétrique avec des queues en loi de puis-
sance (vol de Lévy asymétrique). En particulier, nous nous intéressons à la
probabilité de survie et à la statistique d’occupation d’un tel marcheur en
présence de bords absorbants.

3Observables introduites au chapitre 2
4y compris en loi de puissance
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En l’absence de bords, la fonction de densité de probabilité des posi-
tions du marcheur converge, après un grand nombre de sauts, vers une loi
asymétrique stable (de Lévy) dont toutes les caractéristiques sont connues
grâce au théorème central limite généralisé.

En présence de bords absorbants, ce théorème ne s’applique plus. La
fonction de densité de probabilité des positions du marcheur est alors plus
complexe à calculer. En collaboration avec G. Schehr, et par la suite P. K. Mo-
hanty, j’ai travaillé sur la détermination des paramètres caractérisant la
queue de cette densité de probabilité (c.à.d. loin des bords du système)
[De Mulatier et al. 2013]. Nous caractérisons aussi la probabilité de survie
du marcheur, par le biais du calcul de son exposant de persistance. En-
fin quelques pistes sont explorées quant à la généralisation en dimension
supérieure.





CONTENTS

INTRODUCTION

Chapter I A STATISTICAL MECHANICS APPROACH TO REACTOR PHYSICS

1 Neutron Transport in Reactor Physics
I.1.1 Neutron as a Point Particle . . . . . . . . . . . . . . . . 7
I.1.2 From Neutron Transport in Multiplying Media to Branch-

ing Exponential Flights . . . . . . . . . . . . . . . . . 11
I.1.3 Characterisation of the neutron population: phase space

densities . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Boltzmann Equation for Neutron Transport
I.2.1 Integro-differential Transport Equation . . . . . . . . 24
I.2.2 Delayed Neutrons . . . . . . . . . . . . . . . . . . . . 29
I.2.3 Boundary and Initial Conditions . . . . . . . . . . . . 31
I.2.4 Integral Transport Equation . . . . . . . . . . . . . . . 33
I.2.5 Diffusion Equation . . . . . . . . . . . . . . . . . . . . 40

3 Limits of the Transport Equation
I.3.1 Fluctuations Problem . . . . . . . . . . . . . . . . . . . 44
I.3.2 Non Exponential Transport . . . . . . . . . . . . . . . 46

FLUCTUATION STATISTICS 50

Chapter II BACKWARD DESCRIPTION OF THE FLUCTUATIONS

1 The Fluctuation Problem
II.1.1 Useful combinatorial quantities . . . . . . . . . . . . . 54
II.1.2 The Birth and Death Process . . . . . . . . . . . . . . 55
II.1.3 Limits of the usual transport equations to describe

fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 59



xvi CONTENTS

2 Feynman-Kac Backward Equations
II.2.1 “Backward” quantities . . . . . . . . . . . . . . . . . . 63
II.2.2 Feynman-Kac formalism . . . . . . . . . . . . . . . . . 67
II.2.3 Comments on the form of the equation . . . . . . . . 74

3 Quantities of Interest in Reactor Physics
II.3.1 Numerical simulation for the travelled length statistics 76
II.3.2 Collision Statistics . . . . . . . . . . . . . . . . . . . . 78
II.3.3 Occupation Statistics: Escape, Survival and Extinc-

tion Probability . . . . . . . . . . . . . . . . . . . . . . 80
II.3.4 Conclusion and perspectives . . . . . . . . . . . . . . 84

Chapter III NEUTRON CLUSTERING

1 About the process
III.1.1 A prototype model of a nuclear reactor . . . . . . . . 90
III.1.2 Elementary clustering with zero-dimensional systems 91

2 Free population
III.2.1 General considerations - Pair Correlation Function . 93
III.2.2 System of Infinite Size . . . . . . . . . . . . . . . . . . 94
III.2.3 System of finite size - Feynman-Kac backward for-

malism and general solution . . . . . . . . . . . . . . 99
III.2.4 System of finite size - reflecting and absorbing bound-

aries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 Controlled population in a system of finite size
III.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 116
III.3.2 Genealogy - the last common ancestor . . . . . . . . . 118
III.3.3 Pair correlation function - Controlled clustering . . . 125
III.3.4 Average squared distance and typical size of a cluster 134

4 Conclusions and perspectives

ANOMALOUS TRANSPORT 138

Chapter IV OPACITY OF BOUNDED MEDIA

1 Opacity Formulae - Motivation and State of the Art

2 Cauchy Formula for a non-stochastic heterogeneous medium

3 A Universal Property of Branching Random Walks in Con-
fined Geometries
IV.3.1 General Setup and Hypothesis . . . . . . . . . . . . . 155



CONTENTS xvii

IV.3.2 Integral Equations . . . . . . . . . . . . . . . . . . . . 156
IV.3.3 A universal and local version of the Cauchy formulae 163
IV.3.4 Ensuing results . . . . . . . . . . . . . . . . . . . . . . 166

4 Geometrical Proof for Pearson Random Walk
IV.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 168
IV.4.2 Geometrical proof . . . . . . . . . . . . . . . . . . . . 169

5 General Conclusion and Perspectives

Chapter V ASYMMETRIC LÉVY FLIGHTS IN THE PRESENCE OF AB-
SORBING BOUNDARIES

1 Free walker

2 One dimensional Lévy flight with an absorbing boundary
at the origin
V.2.1 Survival Probability and Persistence Exponent . . . . 186
V.2.2 Tail of the Propagator . . . . . . . . . . . . . . . . . . 190
V.2.3 Details of the numerical simulation details . . . . . . 193

3 Two dimensional Lévy flights in the presence of absorbing
boundaries
V.3.1 General setup . . . . . . . . . . . . . . . . . . . . . . . 197
V.3.2 Domain D open along x or z . . . . . . . . . . . . . . 200
V.3.3 Domain D open in an other direction . . . . . . . . . 206

4 Conclusion

RANDOM WALKS ON QUENCHED DISORDERED MEDIA AND
OPEN PROBLEM

CONCLUSION

APPENDIX 221

INDEX 244

BIBLIOGRAPHY 245





INTRODUCTION

ONE of the key goals of nuclear reactor physics is to determine the dis-
tribution of the neutron population within a reactor core. This pop-

ulation indeed fluctuates in space and time due to the stochastic nature
of the interactions between the neutrons and the nuclei of the surround-
ing medium. For most applications in reactor physics though, the neutron
population considered is very large. For instance, in standard light-water
reactors (LWR) at operating condition, the typical neutron density within
the reactor core is about 108 neutrons per cubic centimeter. In these cases,
all physical observables related to the behaviour of the population, such as
the heat production due to fissions, are well characterised by average val-
ues, which are governed by the classical linear neutron transport equation,
called Boltzmann equation.

However there exist some situations for which a description based on
averaged observables provides a misleading characterisation of the
behaviour of the neutron population. For example, during the start-up
of a LWR, the neutron population is rather small. For such a low-density
configuration, numerical investigations, performed with the Monte Carlo
TRIPOLI-4 code at the LTSD5, have highlighted a peculiar behaviour of the
neutrons, which spontenously form clusters of highly grouped particles
with empty regions in between. This phenomenon, named “neutron clus-
tering” [Dumonteil et al. 2014], results from strong fluctuations in space
and time of the population. As a consequence, average quantities become
insufficient to characterise the system: neutron clustering can not be ex-
plained using the mean-field Boltzmann equation.

These strong fluctuations are in fact intrinsic to the process that govern
the neutron transport in the phase space, resulting from the interplay of
three fundamental mechanisms: scattering with the nuclei, emission (birth)
of several neutrons from the fission of a nucleus, and capture (death) by nu-
clear absorption. These physical mechanisms confer a random branching
structure to the neutron paths; from the point of view of statistical physics,

5Laboratoire de Transport Stochastique et Déterministe - CEA
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the stochastic process performed by neutrons is a branching random walk,
called branching Pearson random walk. Strong fluctuations are in fact typ-
ical of branching processes and their analysis will be achieved, in the the-
sis, by resorting to random walk theory. In particular, I have applied the
Feynman-Kac path-integral formalism for branching processes, first to the
treatment of fluctuations in the field of nuclear reactor physics, and, then,
more precisely, to the study of the clustering phenomenon [Zoia et al. 2014;
de Mulatier et al. 2015].

Moreover, another aspect of classical neutron transport theory, is that it
relies on the fact that neutrons evolve without memory (Markovian trans-
port process) in a landscape of uncorrelated scattering centres (nuclei). For
instance, in an homogeneous medium, the lengths travelled by neutrons
between two collisions are exponentially distributed. However, in many
important applications, the traversed medium can be highly heterogeneous
or disordered (such as in a Pebble-bed reactor, or during the partial melt-
down of a reactor core in case of accident), and the hypothesis of uncor-
related scattering centers is deemed to fail. It has been proposed that the
transport of particles in such media can be described in terms of non-expo-
nential random walks (anomalous transport).

In the thesis I will tackle this aspect of neutron transport, in the context
of another fundamental question in nuclear reactor physics: the occupa-
tion statistics of the transported particles within a domain when entering
from the outer surface, i.e. the distribution of the travelled length l and
the number of collisions n performed by the stochastic process inside the
domain. These quantities are directly related to the opacity properties of a
body with respect to an incident radiation flow of particles, which are im-
portant for a number of applications emerging in radiation shielding and
microdosimetry calibration. In this context, the Markovian nature of the
transport process leads to remarkably simple Cauchy-like formulas that
relate the surface to the volume averages of l and n. However, a key in-
gredient in such derivation is the hypothesis that the flight lengths are ex-
ponentially distributed [Mazzolo et al. 2014]. By resorting to the integral
form of the linear transport equations, I have then shown that such formu-
las strikingly carry over to the much broader class of branching processes
with arbitrary jumps, and have thus a universal character. Furthermore
this property is, remarkably, a local property of the system [De Mulatier
et al. 2014].

During my PhD I have thus been mainly interested in branching ran-
dom walks and anomalous diffusion in the context of stochastic particle
transport (neutrons) in nuclear reactor physics. Using tools from statis-
tical mechanics and transport theory, I tackled several problems of parti-
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cle transport that cannot be approached by the usual strategy of applying
mean field theory to branching Brownian motion. In particular, my work
has been structured along two main axes.

– First, the study of fluctuation statistics: a population of particles that
can reproduce or die is naturally subjected to very strong fluctuations,
which will be characterised thanks to a Feynman-Kac formalism in Chap-
ter II, and which are responsible for the neutron clustering phenomenon
discussed in Chapter III.

– The last two chapters will then focus on the anomalous transport
problem: first in the context of the issue of occupation statistics (Chap-
ter IV), finally moving on to the problem of the statistics of asymmetric
Lévy flights in the presence of absorbing boundaries [De Mulatier et al.
2013] (Chapter V).
One of the interesting aspects of this thesis is that problems are treated in
the presence of boundaries. Indeed, even though real systems are finite
(confined geometries), most of previously existing results concern infinite
systems. The results presented in this thesis have led to the publication of 6
peer-reviewed articles (cited throughout this introduction), and may apply
more broadly to physical and biological systems with diffusion, reproduc-
tion and death.

The general context of neutron transport that will be used in the thesis
will be now introduced in Chapter I.





CHAPTER I
A STATISTICAL MECHANICS APPROACH TO
REACTOR PHYSICS

One of the central aims of nuclear reactor physics is to characterise the be-
haviour of a neutron population and to predict its distribution inside a re-
actor core. This requires accounting for the motion of neutrons and their
random interactions with the nuclei of the fuel within the reactor core. We
start this chapter by analysing the stochastic behaviour of neutrons in the
fuel using tools from statistical physics. We then derive the main equations
of the neutron transport theory, which allow to assess the distribution in
space, energy and angle of neutrons inside the reactor core.
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WE will start this introductory chapter by recalling the general context
of neutron transport in the framework of nuclear reactor physics.

We will thus introduce fundamental concepts of neutron transport and sta-
tistical physics that will be useful for the understanding of the thesis. The
ideas discussed in this introduction have been treated at length in several
popular reactor physics books cited throughout the chapter. We start the
first section (Sec. I.1) by describing the physical processes that govern the
transport of neutrons in nuclear reactors, and we analyse their stochastic
behaviour in the framework of statistical physics. Then, in the second sec-
tion (Sec. I.2), we derive the main equations of neutron transport theory,
which allow to characterise the distribution of neutrons inside a reactor
core. Finally, in section I.3, we discuss some shortcomings of this transport
theory that will be illustrated on two examples taken from reactor physics.
These examples will show that, in some circumstances, an improved theo-
retical framework is needed. They will provide the key motivation for the
thesis, which will thus be directed at finding new ways of describing the
neutron behaviour when usual transport equations do not apply anymore.

1 NEUTRON TRANSPORT IN REACTOR PHYSICS

Similarly to a gas-fired station, a nuclear power plant generates electric-
ity by converting thermal energy to mechanical energy, which is then con-
verted to electricity [Reuss 2012]. In a nuclear reactor, the initial energy
(heat source) comes from the fission of heavy nuclei into lighter nuclei in-
side the reactor core. The heat is then passed (directly or not) to a work-
ing fluid (water or gas), which runs through turbines. Figure I.1 illus-
trates the functioning of a Pressurized Water Reactor (PWR). However the

Figure I.1: Conceptual scheme of a Pressurized Water Reactor (PRW).

heavy nuclei used in a nuclear reactor, typically uranium 235U or pluto-
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nium 239Pu, rarely undergo spontaneous fission (for instance the 235U has a
long half-life of 710 million years [Reuss 2012]). Fissions are in fact mainly
induced by neutrons that collide with the nuclei constituting the surround-
ing medium (fuel). Then, conveniently, the fission of these heavy nuclei
produce new neutrons that can thus also collide with other nuclei and start
a nuclear chain reaction (see Fig. I.2). This type of medium that supports the
multiplication of neutrons is called a multiplying medium or fissile material.
For instance, the induced fission of the 235U gives rise to two lighter nuclei,
called fission products, and to a certain number of new neutrons n. A typical
induced fission reaction is [Reuss 2012]:

n+235 U !92 Kr+141 Ba+ 3n , (I.1)

which liberates an energy of ⇠ 200 MeV1. The neutrons released by this
reaction are emitted with a high mean energy of approximately 2 MeV. In
a PWR, the chain reaction in fact requires neutrons to be slowed down to
a thermal energy of the order of ⇠ meV (slow neutrons) in order to induce a
fission (in heavy water, the thermal energy of neutrons is ⇠ 25 meV [Bussac
and Reuss 1978]); this is not true for a fast neutron nuclear reactor.

I.1.1 Neutron as a Point Particle

The aim of neutron transport theory is to describe the behaviour of the
neutron population inside a nuclear reactor. For this purpose, neutrons are
considered as point particles evolving within the reactor, where they interact
only with the nuclei of the medium. This representation, which could seem
too simplified, proves to be appropriate most of the time. In this section we
briefly discuss its validity; then, we will assume that this representation
holds in the rest of the thesis.

a. No relativistic effects

Neutron energy in a nuclear reactor typically goes up to 20 MeV (see Fig. I.5),
i.e. a classical speed

v =

r
2E
m

' 1.38 ⇥ 104
p

E (eV) m/s , (I.2)

of the order of ⇠ 107 m/s, where m ' 939.565378 MeV/c2 is the rest mass
of the neutron. Indeed, the mean velocity of fast neutrons (released from
fission) is more precisely 1.9 ⇥ 107 m/s. This order of magnitude of the
speed of the fastest neutrons is small enough, compared to the light speed
c ⇠ 3 ⇥ 108 m/s, to consider that relativistic effects can be reasonably ne-
glected [Schwarz and Schwarz 2004].

1This is a huge amount of energy (compare to the amount produce by a gas-fired power
station):1 g of 235U could potentially provide 2⇥ 104 kWh of power, enough to run a 100 W
lamp for about 22 years [Schwarz and Schwarz 2004]
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1

Figure I.2: Scheme of a fission chain reaction, adapted from wikipedia.

1) An first neutron, leaving from a source, is absorbed by a
nucleus of Uranium-235, causing its fission into two lighter
nuclei and 3 neutrons (second generation of neutrons) accord-
ing to reaction Eq.(I.1). This fission also releases/liberates a
binding energy of ⇠ 200 MeV.

2) Among the 3 neutrons, two are lost for the chain reaction:
one is absorbed by a 238U that does not undergo a fission, the
other for instance leave the system (absorbed by its bound-
aries). The last neutron collides with an other 235U, which
then divides/splits into two lighter nuclei and gives rise to a
third generation of neutrons, with 2 neutrons.

3) Each of these 2 neutrons undergoes a collision with a 235U
causing their fission into lighter nuclei and a fourth genera-

tion of neutrons.

The chain reaction is thus maintained until there is not
enough heavy nuclei (aging of a reactor) or no neutron any-
more (stopping of a reactor) in the system.
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b. No interference: particle description

In transport theory, neutrons are considered as particles that can be fully
described by their position and their velocity [Bell and Glasstone 1970]. In
fact, quantum effects affecting the neutron transport, such as diffraction or
interferences, can be neglected if the characteristic length of the medium
(inter-nucleus distance ⇠1Å) is significantly larger than the neutron wave
length. De Broglie’s wavelength of a neutron [De Broglie 1924], �B, is given
by the relation:

�B =
h

p
' 2.86 ⇥ 10-11

p
E (eV)

m , (I.3)

where h ' 4.1343359 ⇥ 10-15 eV·s is the Planck constant and p denotes the
momentum of the neutron considered,

p =
p

2mE , (I.4)

for a non relativistic particle. m ' 939.565378 MeV/c2 is the rest mass of
the neutron and E its energy. In a nuclear reactor, fast neutrons emitted from
a fission have an energy of several MeV, for which �B ⇠ 10-14 m, i.e. sev-
eral orders of magnitude smaller than the characteristic distance between
nuclei ⇠ 10-10 m.

Moreover, Heisenberg’s uncertainty principle [Heisenberg 1930]
states a condition on the precision that can be accessed for the position and
the momentum of a particle, formulated by [Kennard 1927]:

�x�p >
 h

2
, (I.5)

where �x and �p are respectively the standard deviation of the position
and the momentum of the particle, and  h = h/(2⇡) is the reduced Planck
constant. Inside a reactor core (in most materials), neutrons have a mean
free path (between two collisions with nuclei) of the order of a centime-
ter [Reuss 2012]. For this reason, we could considered for instance that
an uncertainty of 10-4 cm on the position of a neutron can be tolerated.
Thus, using Eq. (I.4) in the relation Eq. (I.5), we find that the minimum
uncertainty accessible on the energy �E of the particle would be [Bell and
Glasstone 1970]

�E (eV) ⇠ 10-5
p
E (eV) , (I.6)

which is negligible compare to the energy E itself. The position and the
energy (or speed) of a neutron in neutron transport theory can thus be con-
sidered with a good precision without violating Heisenberg’s uncertainty
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principle. As a consequence, it is reasonable to consider neutrons as parti-
cles (as opposed to waves) that can be characterised by their position and
velocity.

Interference effects can be relevant for a tiny fraction of neutrons with
very low energy (down to several meV). The wave length becomes in this
case very large (�B ⇠ 10-10 - 10-9 m) and neutrons can not be localized. Be-
cause of the negligible number of neutrons concerned, this effect is usually
reasonably neglected in neutron transport theory [Bell and Glasstone 1970].

Note that in reactor physics, distances are often measured in centime-
ters, as a reference to the centimeter mean free path of neutrons [Reuss
2012].

c. Neutrons interact only with the nuclei of the medium

Neutron-neutron interactions are neglected [Rozon 1998]. Indeed the prob-
ability of such an interaction is negligible compared to the probability of a
neutron-nucleus interaction, due to the huge difference in density: even in
a thermal reactor, operating at high neutron flux, the neutron density is still
less than 1011 neutrons per cm3, whereas the nuclei density is of the order
of 1022 nuclei per cm3 [Bell and Glasstone 1970].

As a consequence of paragraph b. and c., the spatial extension of neu-
trons is not relevant for the problem of their transport through matter. For
these reasons, they can be considered as point particles (i.e. 0-dimensional
particles), and the neutron population can be thought of as an ideal gas (de-
fined as a gas of particles that do not interact which each other).

d. Neutron radioactive instability is neglected

Outside a nucleus, a free neutron is unstable and can decay into a proton
(beta decay):

n �! p+ + e- + ⌫̄e ,

where p+, e- and ⌫̄e respectively denotes the proton, the electron and the
electron antineutrino. Within this decay, neutrons have a life time of about
15 min [Yue et al. 2013]2, which is very large compared to the millisecond
characteristic life time of a neutron within a nuclear reactor [Bussac and
Reuss 1978]. The probability that a free neutron actually undergoes a beta
decay in a nuclear reactor before encountering a nucleus is thus very small
and this effect is as a consequence neglected.

2more precisely, a life time of 887.7± 1.2[stat]±1.9[syst] s was recently measured by [Yue
et al. 2013]



Neutron Transport in Reactor Physics 11

e. Other hypotheses

Very frequently, two other hypotheses are made in neutron transport the-
ory: that the fluctuations of the neutron population can be neglected [Bell
and Glasstone 1970], and that the displacements performed by neutrons
inside a nuclear reactor belong to a class of processes called exponential dis-
placements (described in the next section). The discussion of these two last
hypotheses will be at the heart of this thesis.

I.1.2 From Neutron Transport in Multiplying Media to Branching Exponential
Flights

In this section, we recall the processes that govern neutron transport in (lo-
cally homogeneous) multiplying media. We will see that this transport can
be described in terms of a specific type of random walks, called branching
exponential flights.

a. Transport - Exponential Random Walks

Consider a single neutron3 flowing through and interacting with a back-
ground material. Based on the previous considerations, this neutron under-
goes a sequence of displacements, separated by collisions with the nuclei
of the surrounding medium. We also assume that, between two collisions,
no forces act upon the particle, such that its momentum is preserved along
each of its displacements (free displacements): between collisions, the neu-
tron therefore travels in a straight line and with a constant speed [Pomran-
ing 1991]. Consider now that the neutron leaves a collision at a time t0 from
a position r0 with a speed v0 in a direction !0: its path from r0 to the next
collision then follows the trajectory

8><>:
r0 = r0 + s0!0 ,

t0 = t0 +
s0

v0
.

(I.7)

The curvilinear coordinate s0 parametrises the rectilinear trajectory, varying
from 0 at the initial point r0, to s at the next collision (s thus corresponds
to the distance travelled between the two collisions). Due to the quantum
nature of the neutron-nucleus interaction and to the huge number of nu-
clei inside the reactor core, the exact position r of this collision can not be
assessed deterministically. In fact, as the neutron travels through the fissile

3 Even though our work mostly focuses on neutron transport, most of the results pre-
sented throughout the thesis also apply, with minor modifications, to other “neutral parti-
cles”, i.e. particles which do not interact with matter until they undergo a collision with the
traversed medium, such as photons in the classical limit [Kalos and Whitlock 2008].
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material it has, at anytime, a certain probability to interact with a nucleus
that depends only on the local properties of the surrounding medium. It
is thus reasonable to assume that a neutron evolves in the medium with
no memory of its past history [Pomraning 1991]. This property of the neu-
tron transport is said Markovian4. As a consequence, the probability that
a neutron interacts with the surrounding medium while travelling a small
distance ds0 about s0 is proportional to the distance travelled ds0 (and inde-
pendent on the length already travelled) and given by

Probability of interaction ⌃(r0, v0)ds0 . (I.8)

The proportionality constant ⌃ depends only on the local properties of the
medium in the phase space position5 (r0, v0). The dependence in the di-
rection of travel !0 of the particle is omitted, as the medium is generally
assumed to be isotropic. In transport theory, the quantity ⌃ is called [Pom-
raning 1991]

Total cross section (cm-1) ⌃(r, v0) ; (I.9)

it is the probability of interaction per unit length. Note that this cross sec-
tion is a macroscopic cross section6. As a result of Eq. (I.8), the distance s
travelled by a neutron between two collisions, along the trajectory Eq. (I.7),
is given by the probability density function (pdf) T(s) [Kalos and Whitlock
2008; Hughes 1996; Weiss 2005]:

T(s) = ⌃(s) exp

-

Zs
0
⌃(s0)ds0

�
for s > 0 . (I.10)

In this equation, the parameter s0 contains the information about the
local position r0(s0) of the particle, given by Eq. (I.7).

Intercollision distances for a non-homogeneous Poisson process

Here, scattering centres encountered by neutrons along their trajectory are
4In a Monte Carlo simulation for example this property implies that the neutron can

be stopped at any moment and then restarted without taking into account what happened
before it was stopped: the knowledge of the current phase-space position of the walker
(r, v) is sufficient to determine its future evolution. Note that the knowledge of the current
position only is not sufficient to ensure the Markovianity, as it would be instead the case for
a Brownian particle [Chung 2013].

5We consider that the density of nuclei (scattering centres) is high enough that the mul-
tiplying medium can be described as a continuous medium, characterised by cross-section
that is homogeneous at the scale of a volume element dr (locally homogeneous).

6Various types of collisions can happen in the medium. The macroscopic cross section
for a collision type i, ⌃i(r, v0), is given by the density of nuclei in the vicinity of r multiplied
by the microscopic cross section of the nuclei �i(v0) (cm2 or barns) for this type of collisions:
⌃i(r, v0) = n(r)�i(v0) [Reuss 2012]. The total macroscopic total cross section is then ⌃t =P

i ⌃i.
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non necessarily uniformly distributed, and the process performed by neu-
trons while travelling (jumps separated by collisions given by⌃(s)) is called
non-homogeneous Poisson process7 [Ross 2013]. In Eq. (I.10), the second fac-
tor, exp

⇥
-
Rs

0 ⌃(s
0)ds0

⇤
, is the marginal probability that the path gets as far

as s (without collisions in the meanwhile), whereas the first factor ⌃(s) cor-
responds to the conditional probability, ⌃(s)ds, that the collision occurs in
ds about s. In analogy with optics, the exponent

Rs
0 ⌃(s

0)ds0 is often called
optical path length [Bell and Glasstone 1970]. In homogeneous media, for
which the cross-section ⌃ is constant, this exponent reduces to s⌃, and the
jumps pdf becomes independent of the local position of the particle, taking
simply the exponential form:

Exponential Distribution T(s) = ⌃ exp [-⌃ s] . (I.11)

Intercollision distances for a homogeneous Poisson process

In this case, the scattering centres encountered by the neutrons are uni-
formly distributed in space (⌃ = cst), and the collision process followed by
neutrons is called homogeneous Poisson process.

Proof
To demonstrate Eq. (I.10), we refer to Kalos and Whitlock’s book
on Monte Carlo methods [2008, sec. 6.3]. By definition the pdf T
must be normalised on positive values, and can thus be associ-
ated to a

cumulative distribution
Zs

0
T(s0)ds0 = 1 -U(s) . (I.12)

Its complement U(s) =
R+1
s T(s0)ds0 is the marginal probability

that the next collision is at a distance s0 larger than s. It can be
decomposed into the sum of two probabilities:

U(s) = U(s+ ds) + P(s 6 s0 < s+ ds), for ds > 0 , (I.13)

the probability that the collision occurs after s+ds, and the prob-
ability P(s 6 s0 < s + ds) that it occurs between s and s + ds.
This latter probability can be rewritten using Bayes’ formulaa for
conditional probabilities:

P(s 6 s0 < s+ ds) = U(s)P(s 6 s0 < s+ ds | s0 > s) . (I.14)

7Along the trajectory, the number of nuclei distributed along the interval (s, s + s1) is
a random variable that follows a Poisson law ([Poisson and Schnuse 1841]) with a meanRs+s1
s ⌃(s0)ds0 [Ross 2013].
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This latter conditional probability is the probability that a colli-
sion occurs between s and s+ ds for a process starting from s;
for small ds it can thus be easily expanded using equation (I.8):
P(s 6 s0 < s+ ds | s0 > s) = ⌃(s)ds+ o(ds). Replacing these
results in equation (I.13) in the limit where ds goes to 0 leads to
a first order differential equation verified by U:

-U0(s) = U(s)⌃(s) + o(1) , (I.15)

whose solution is:

U(s) = exp

-

Zs
0
⌃(s0)ds0

�
, (I.16)

knowing that U(0) =
R+1

0 T(s)ds = 1 by normalisation of the
pdf T . The result Eq. (I.10) then stems from the definition of the
complementary cumulative: T(s) = -U0(s).

aBayes’ formula for two propositions A and B: P(A | B) =
P(A\B)

P(B)

Note that the jump pdf Eq. (I.10) commonly takes an other form, where the
current position and speed of the particle are clearly specified [Spanier and
Gelbard 1969; Lux and Koblinger 1991]:

T(s|r,!0, v0) = ⌃(r, v0) exp

-

Zs
0
⌃(r - s0!0, v0)ds0

�
, (I.17)

Intercollision Length Probability Density Function

is the pdf of the jump length s performed by a particle arriving at a collision
in r with a velocity v0 !0 (see Eq. (I.7)). This expression of the jump pdf is
widely used in reactor physics. Observe that this pdf is not a density of
the three space dimensions, but only of one, corresponding to the travelled
length s. In the same way, we can also rewrite the marginal probability
Eq. (I.16),

U(s|r,!0, v0) = exp

-

Zs
0
⌃(r - s0!0, v0)ds0

�
, (I.18)

being the probability that a particle arriving in r has travelled a distance s
with a constant velocity v0 !0 without encountering any collision.

Following this process of random jumps separated by collisions, the
path performed by a neutron is thus random, called random walk, or, more
precisely, exponential walk in the case of an homogeneous medium. For nu-
merical simulation purposes, the sampling of a random variable from an
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Figure I.3: Schematic representation of one initial neutron and its
descendants. Neutron-nucleus interactions are commonly
grouped in three main types: scattering (blue dots), fis-

sion (green circles), and sterile capture (black stars). These
events confer a branching structure to the neutron path.

exponential distribution Eq. (I.11) is illustrated in appendix 4.

b. Collision - Branching process

Neutron-nucleus interactions are very complex, in that they are governed
by quantum physics and involve the strong nuclear interaction. However,
they can be conceptually grouped in three main types [Reuss 2012]: sterile
capture, scattering or fission (see Fig. I.3). In the following, each of these
events will be briefly recalled, and their physical meaning will be related
to the corresponding statistical physics interpretation. In doing so, we will
introduce the notation commonly used in reactor physics.

Capture events occur with a probability pc(r, v) for particles arriving at
a collision about r with a speed v: the incoming particle disappears, ab-
sorbed by a nucleus, and its branch of the walk ends (see Fig. I.4). In reactor
physics, this event corresponds to a sterile capture (absorption that does not
cause fission) and is associated with the macroscopic capture cross section:

capture cross section ⌃c(r, v) = pc(r, v) ⌃(r, v) . (I.19)

where ⌃(r, v) is the total cross section defined in Eq. (I.9). According to its
definition above, ⌃c(r, v) is the rate at which absorption events occur. As
for the total cross section, this quantity is known to depend on the position r
and the speed v of the considered particle.
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Figure I.4: Neutron-nucleus interactions can be conceptually grouped
in three main types:
- Sterile capture: the incoming neutron is absorbed;
- Scattering : the speed and the direction of the neutron
change, from v0 !0 to v1 !1;
- Fission: the incoming neutron is absorbed, k new neutrons
are emitted with new speeds v1..k and directions !1..k.

Scattering events occur with a probability ps(r, v), whereupon the veloc-
ity (direction and speed) of the walker is redistributed at random, following
the probability density function Cs(v ! v0|r) (see Fig. I.4), called scattering
kernel. This scattering kernel is in general speed dependent and anisotropic
(more precisely it depends on the angle ✓ between the incoming and the
outgoing directions: ! · !0 = cos(✓)). This type of event is related to the
macroscopic

scattering cross section ⌃s(r, v) = ps(r, v) ⌃(r, v) . (I.20)

Fission events give rise to two different types of neutrons, the prompt neu-
trons, emitted instantaneously8 after the fission event, and the delayed neu-
trons, emitted from a few milliseconds to a few minutes later. As prompt
neutrons represent more than 99% of the emitted neutrons, we will first fo-
cus on them, without taking into account delayed neutrons. We will then
see in Sec. I.2.2 how the existence of delayed neutrons modifies the dy-
namics of the neutron population. At a collision, a fertile capture (fission,
see Fig. I.4) occurs with a probability pf(r, v): the incoming neutron is ab-
sorbed and k new neutrons are emitted with respective probabilities pk

in a new direction !0 with a new velocity v0 given by the probability density
Cf(v ! v0|r). Generally, new directions !0 are isotropically distributed and
the pdf Cf(v ! v0|r) depends only weakly on the incoming velocity v:

Cf(v ! v0|r) =
1

4⇡
Fp(v0) , (I.21)

where Fp(v0) is the speed spectrum of prompt fission neutrons, called average
8within 10-13 to 10-14s after the fission event
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Average Prompt Fission Neutron Spectrum
The kinetic energy of an outcoming fission neutron is distributed
over several decades, from fractions of meV to about 10 MeV.
In 1960, Terrell [1957] proposes two approaches to model the
prompt fission neutron spectrum: the Maxwellian and the Watt-
Cranberg spectrum representations. Most modern assessments
of prompt fission neutrons rely on a model developed by Mad-
land and Nix [1982] in the 80s.

 0
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 0.3

 0.35

 0  4  8  12
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Figure I.5: Maxwell (in red) and Watt (dash curve) spectrum
for Uranium. Parameters are optimally adjusted
to the experimental spectrum for each fissioning
system at a given excitation energy [Antoni and
Bourgois 2013]. For Uranium, the mean energy
of a prompt neutron is about 2 MeV.

prompt fission neutron spectrum (see Fig. I.5). The normalisation factor 4⇡ =
⌦3 is the maximum solid angle in a 3-dimensional space:

⌦3 =

ZZ
Sp3

d2! = 4⇡ , (I.22)

which corresponds to the surface of the 3-dimensional unit sphere Sp3.
d2!/(4⇡) is the probability for a neutron to be emitted in the solid angle
element d2! about the direction ! (isotropic distribution of the outgoing
directions). By definition, the probability family {pk}k>0 verifies the nor-
malisation X

k>0

pk = 1 . (I.23)

In principle the number k of emitted neutrons after a fission could vary
from 0 to +1, but in practice k only varies from 0 to 7 [Reuss 2012]. The
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mean number of neutrons produced per fission,

⌫ =
X
k>0

k pk , (I.24)

is a relevant parameter to characterise the production of neutrons. The
occurrence of fission events is defined in terms of the macroscopic

fission cross section ⌃f(r, v) = pf(r, v) ⌃(r, v) . (I.25)

The three events The probability of occurrence of each of these three
events is normalised, pc + ps + pf = 1, so that the cross sections similarly
add up to

⌃(r, v) = ⌃c(r, v) + ⌃s(r, v) + ⌃f(r, v) , (I.26)

where the three types of event composing the total cross section appear
clearly.

Therefore, submitted to these three types of collisions, each neutron of
the population can, at any moment, die by absorption or give birth to other
neutrons by fission. Each neutron has thus descendants (except for the ones
that die) and an ancestry (except for the ones emitted from a source). In this
sense, the dynamics of reproduction and death of neutrons in the popula-
tion is similar to the one of families, which was first studied by Bienaymé
(1845) [Heyde and Seneta 1977] and by Galton and Watson [Watson and
Galton 1875] on their investigation of the extinction of family names. The
process of reproduction and death is known as Galton-Watson process or
branching process [Harris 1963], in reference to the branching structure that
it confers to the family (like a family tree - see Fig. I.3). Depending on the
value of ⌫, defined in Eq. (I.24), the process is then said to be [Harris 1963]:

subcritical ⌫ < 1 ;
critical ⌫ = 1 ; (I.27)
or supercritical ⌫ > 1 .

Note that, in reactor physics, the dynamics of a neutron family can thus
be followed in time, but also in generation (see Fig. I.2): neutrons leaving
from a source are considered as the first generation of neutrons; then at
each event (scattering or fission) a neutron leaving a collision belongs to
the generation after that of the one entering the collision.
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Monte Carlo Numerical Simulations for Neutron Transport
The different processes we have seen in this section are at the
basis of Monte Carlo simulations developed for the transport of
neutrons in a multiplying medium [Spanier and Gelbard 2008].
Indeed this type of simulation involves following the trajectory
of each particle within the medium from its source to the end of
its history (by absorption or exit of the medium) [CEA monogra-
phie 2013]. Along this trajectory, one or several physical observ-
ables (random variables) are recorded, such as the total length
travelled inside a certain region of the medium, or the total num-
ber of collisions performed in this region. Simulations of the full
history of the system are performed a large number of times,
in order to obtain the mean of each observable over the various
realisations of the system. These averaged values are called es-
timators, and will be seen more in detail in Chapter 2. Monte
Carlo methods are not limited to neutron transport, and have
many applications involving stochastic processes in physics, life
sciences and finance [Gobet 2013; Krauth 2006].

c. Generalised process and unified notation for branching random walk

The mechanisms governing neutron behaviour in multiplying media confer
a random branching structure to the neutron paths, with random displace-
ments, death and reproduction events. Neutrons inside the reactor core
thus perform random walks with a branching structure, known as branch-
ing random walk in statistical physics9. Besides, since the length of the dis-
placements are exponentially distributed (if the medium is homogeneous),
such random walks are called branching exponential walks.

However, the complexity of the reactor physics formalism and notation,
with different type of collisions (various cross sections ⌃c/s/f and proba-
bility density functions Cc/s/f), may hinder the statistical analysis of some
of the key physical mechanisms of the neutron transport. For the sake of
simplicity, we consider the general branching random walk process with
only one type of collision (see Fig. I.6), upon which the incoming particle
disappears, and k new particles are emitted with a probability pk(r, v). The
velocities v0 of the new particles are then redistributed, following a single
probability density function C(v ! v0|r). Each descendant will then behave
as the mother particle, undergoing a new sequence of displacements and
collisions, giving thus rise to a branched structure. It is finally possible, for

9In particular, when pk = �k,1 (i.e. without branching), the walk described in the current
section, with random jumps separated by random reorientation of the walker, is known as
Pearson random walk [Hughes 1996; Weiss 2005].



20 A STATISTICAL MECHANICS APPROACH TO REACTOR PHYSICS

Figure I.6: Conceptual representation of the three groups of collisions
in nuclear reactor physics with its specific notation, and of
the generalised branching process with a unified notation.

practical applications, to replace the general notation by the one specific to
reactor physics, using the transformation (see Fig. I.6):

⌫⌃(r, v)C(v ! v0 | r)

# (I.28)

⌃s(r, v)Cs(v ! v0 | r) + ⌫⌃f(r, v)Cf(v ! v0 | r)

From unified notation to reactor physics notation

Results specific to nuclear reactor physics will then be identified by a yel-
low bar on the left margin of the text, as it is on Eq. (I.28).

I.1.3 Characterisation of the neutron population: phase space densities

Neutron transport in nuclear reactors is intrinsically stochastic, due to the
random nature of the different physical phenomena (random collisions and
changes of velocity) that govern the neutron behaviour. As a consequence
neutron transport problem must be handled within the framework of a sta-
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tistical description. In order to fully characterise the neutron dynamics in
the phase space, each neutron requires six variables at any time t or current
generation i of the particle:

– the three spatial coordinates r;

– the three velocity coordinates v, which contain information about the
speed v (or any related variable such as the kinetic energy E) and the
direction ! of the particle.

Although the neutron population is very diluted compared to the popu-
lation of nuclei, it is still very large ⇠ 108 neutrons/cm3 in a power reac-
tor [Duderstadt and Hamilton 1976]. As consequence, the statistical analy-
sis of all the individual positions can be, most the time, replaced by a mean
analysis using the concept of expected densities10 in the phase space [Dud-
erstadt and Hamilton 1976]. For this purpose, we replace the microscopic
description of each neutron by a description at a mesoscopic scale, assum-
ing that the neutron density is locally homogeneous: homogeneous over any
volume element d⌧ = dr dv of the phase space.

We are thus interested in densities in the phase space: spatial and angu-
lar densities with respect to the six variables, r, v. The dependence on time
or generation will be denoted with a small index, or a seventh variable, t
or i, which will stand for distinguishing out of equilibrium cases from sta-
tionary cases.

Speed and Kinetic Energy
In transport theory it is convenient to use the kinetic energy E
and the direction ! of the particle, rather than the three momen-
tum or velocity variables v = v!, for easier reference and com-
parison with experimental data [Pomraning 1991]. In the follow-
ing, however, we will keep the notation with the velocity for the
sake of simplicity. Note that these two notations are perfectly
equivalent, as E and v are related by the classical mechanics re-
lation E = mv2/2. Thus, any density function p can be written
in term of the variable v or E, using the identity:

p(v)dv = p(E)dE , (I.29)

where the relation between dv and dE is then given by

dE = mv dv or dv = dE/
p

2mE . (I.30)

10This idea and its limits will be discuss at the end of this chapter, section I.3.1.
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a. Particle Density (⇠ 108 n.cm-3 in a power reactor) [Duderstadt and Hamilton
1976]

For instance, let us first start with a central quantity, the

Particle angular density (n.cm-3.sr-1.MeV-1) n(r, v, t) . (I.31)

As a density in the phase space, n(r, v,!, t)d3r dv d2! corresponds, at a
certain time t, to the mean number of particles

– located in a small volume d3r about r,

– whose speed is between v and v + dv,

– and which travel in a direction given by the solid angle d2! about
! [Bell and Glasstone 1970].

The integration of this particle angular density over all possible directions,
leads to the particle density (n.cm-3.MeV-1):

particle density n(r, v, t) =

ZZ
⌦3

d2! n(r,!, v, t) . (I.32)

This quantity gives the distribution in space and energy (speed) of neutrons
in the system at any time. The ensemble of the possible directions is given
by the solid angle ⌦3 = 4⇡ defined in Eq. (I.22). The neutron density cap-
tures most of the information needed to describe the statistical behaviour of
the neutron population inside nuclear reactors. In fact, this quantity lies at
the heart of two other physical observables that are more commonly used
in reactor physics: the neutron flux and the reaction rate [Bell and Glasstone
1970].

b. Collision Rate Density, or Reaction Rate Density

The neutron density allows us to compute the rate at which neutron-matter
interactions occur at any position in the reactor [Reuss 2012; Bell and Glas-
stone 1970]. Between two collisions, a neutron keeps a constant velocity
v!. During a time interval dt, it thus travels a straight path of length v dt,
and therefore has the probability ⌃(r, v)v dt to interact with the surround-
ing medium about r. Multiplying this probability by n(r, v, t)d3r d3v (the
mean number of neutrons in the vicinity of r with a velocity v) leads to
the mean number of collisions that occur during dt in the volume element
d3r d3v of the phase space, and thus to define the

Collision rate angular density  (r,!, v, t) .
= n(r,!, v, t)⌃(r, v)v , (I.33)

(collisions cm-3.MeV-1.sr-1.s-1). In other terms,  (r, v,!, t)d3r d3v is the
rate at which collisions happened in the vicinity of the phase space position
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(r, v) at time t. Integrating the angular density over all possible directions
for !, gives the collision rate density (collisions cm-3.MeV-1.s-1):

Collision rate density  (r, v, t) .
=

ZZ
⌦3

d2!  (r,!, v, t)

= n(r, v, t)⌃(r, v, t)v . (I.34)

In practice it can be useful to distinguish the different types of reaction
(collision) by decomposing ⌃ into the different partial macroscopic cross-
sections ⌃r (the index r standing for c, s or f), so that we get a reaction rate
density for each type of reaction: absorption, scattering and fission.

c. Neutron Flux (⇠ 1013 n.cm-2.s-1 in a PWR)

The product nv appearing in Eq. (I.33) and (I.34) occurs very often in reac-
tor theory, such that it is given a special name, the “neutron flux”. Then, as
for the neutron density, it is possible to define a density in the phase space,
the neutron angular flux (n.cm-2.MeV-1.sr-1.s-1):

Angular flux '(r,!, v, t) .
= vn(r,!, v, t) , (I.35)

and a density in the simple space, called the scalar flux (n.cm-2.MeV-1.s-1)
[Bell and Glasstone 1970]:

Scalar flux �(r, v, t) .
= vn(r, v, t) =

ZZ
⌦3

d2!'(r,!, v, t) . (I.36)

The expression “Neutron Flux” is very specific to the field of reactor physics.
Indeed this quantity does not match the usual definition of a particle flux
in physics, but correspond to the magnitude of the particle current density
nv.

d. Current Density

The neutron angular current density, also called vector flux (as it is the vector
version of the neutron flux), is the particle current density:

Angular current density j(r,!, v) .
= vn(r,!, v, t) = '(r,!, v, t)! . (I.37)

In the case of a monokinetic theory, j(r, v,!, t) = j(r,!, t) �(v), it is very
common to introduce the current density J(r, t) (a space density only)

Current density J(r, t) .
=

ZZ
⌦3

d2! j(r,!, t) , (I.38)

whose direction gives the mean direction of the neutrons within the vol-
ume element d3r about r (unit: n.cm-2.s-1).
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To proceed further, we will now derive the evolution equation for the
phase space neutron density n(r, v, t), which takes the name of linear trans-
port equation, or linear Boltzmann equation. The different problems that will
be tackled in the thesis will then emerge from a discussion of the limits of
this equation.

2 BOLTZMANN EQUATION FOR NEUTRON TRANSPORT

The behaviour of a nuclear reactor is governed by the distribution in the
phase space of the neutron population, n(r, v, t). In theory this distribu-
tion can be predicted by solving the associated transport equation, which
describes the equilibrium or out of equilibrium behaviour of the neutron
population inside the nuclear reactor. In this part, we recall the two possi-
ble forms of this transport equation. The first form is an integro-differential
equation, which expresses the balance between neutrons loss and gain in
a volume element of a multiplying medium [Reuss 2012]. Then, integrat-
ing this equation (using the method of characteristics [Bell and Glasstone
1970]) leads to a purely integral form of the transport equation. Finally, the
respective properties of these two forms will be briefly discussed.

I.2.1 Integro-differential Transport Equation

From the definition of the particle density in section I.1.3, the number of
neutrons within an elementary six dimensional box d3r d2! dv about the
phase space position (r,!, v) at time t is:

number of particles at t n(r,!, v, t)d3r d2! dv . (I.39)

The first form of the transport equation is then obtained by enforcing neu-
tron balance in this elementary volume, d⌧ = d3r d2! dv, during a time
interval dt [Reuss 2012]. The variation of the total number of neutrons
within d⌧ between times t and t+ dt is due to particles that leave (loss) or
enter (gain) the box during this time interval:

n(r,!, v, t+ dt)d3r d2! dv = n(r,!, v, t)d3r d2! dv
- loss during dt
+ gain during dt (I.40)

During dt, particles can leave or enter the phase space volume d⌧ by chang-
ing their position (by transport) or their velocity (by collision).

a. Loss by collision

A neutron of the phase space volume d⌧ can undergo a collision during
the time interval dt and thus leave d⌧ by changing velocity. Moving with a
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speed v, this neutron covers a distance v dt during dt, so that its probability
of colliding with a nucleus of the surrounding medium along its path is
⌃(r, v)v dt11. The mean number of neutrons thus lost during dt is

total loss by collision ⌃(r, v)v dt n(r, v, t)d⌧ . (I.41)

b. Gain by collision and from an external source

After encountering a collision (scattering or fission) in the vicinity of r, a
neutron may enter the phase space volume d⌧ by changing its (initial) ve-
locity to v. Let us denote by �(r, v, t)dt the density of particles thus pro-
duced in d⌧ during dt. To this first source of particles for the volume d⌧,
we must add, if there is one, an external source of particles of rate density
Q(r, v, t). The resulting density of neutrons produced in d⌧ during dt is
therefore:

q(r, v, t)dt = �(r, v, t)dt+Q(r, v, t)dt . (I.42)

From Eq. (I.41), we know that the mean number of neutrons of velocity
v0 = v0!0 undergoing a collision in the volume d3r during dt is

⌃(r, v0)v0 n(r, v0, t)d⌧0 dt . (I.43)

Each of these collisions then gives rise to a random number k of neutrons
of velocity v with the probability: pk(r, v0)C(v0 ! v). Integrating over the
possible incoming velocity v0, and summing over the number of descen-
dants k produced per fission, we finally obtain the total number of neu-
trons gained by collisions during dt:

�(r, v, t)dtd3r =
X
k

ZZZ
kpk ⌃(r, v0)v0C(v0 ! v | r)n(r, v0, t)d⌧dt

=

ZZ
⌦3

d2!0
Z+1

0
dv0⌫⌃(r, v0)v0C(v0 ! v | r)n(r, v0, t)d3r dt

(I.44)

In reactor physics, it is customary to introduce the collision operator C[·]
[Reuss 2012], which relates the density of neutrons leaving a collision about
r with a velocity v to the density of neutrons entering the collision with a
velocity v0. In terms of the quantities already introduced, the collision opera-
tor can thus express the outgoing collision rate density �(r, v, t) as a function of

11Total cross sections are assumed to be continuous functions of the position in the vicin-
ity of r.
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the incoming collision rate density  (r, v0, t) = v0 ⌃(r, v0)n(r, v0, t) (defined
in Eq. (I.33)):

�(r, v, t) = C
⇥
 (r, v0, t)

⇤
. (I.45)

The expression of the operator can be obtained from Eq. (I.44):

C [ ] =

ZZZ
d3v0⌫C(v0 ! v | r) (r, v0, t) . (I.46)

Collision Operator

Eq. (I.44) then takes a simpler form:

�(r, v, t) = C
⇥
⌃(r, v0)v0 n(r, v0, t)

⇤
. (I.47)

In practice there is a distinction between the physical processes of scat-
tering and fission [Reuss 2012] (see Sec. I.1.2), such that, using Eq.(I.28),

C[⌃'] = Cs[⌃s'] + Cf[⌃f'] , (I.48)

where the scattering and the fission operator are respectively:

Cs[·] =
ZZZ

d3v0Cs(v0 ! v | r)
⇥
·
⇤

. (I.49)

and Cf[·] =
ZZZ

d3v0 ⌫(r, v0)Cf(v0 ! v | r)
⇥
·
⇤

(I.50)

=
1

4⇡
Fp(v)

Z
dv0⌫(r, v0)

⇥
·
⇤

, (I.51)

using Eq. (I.21) for Cf(v0 ! v | r).

c. Flux of particles entering and leaving the volume element d3r

During dt, the net number of neutrons leaving the volume V through its
boundary S is12: ZZ

S

�
j · d2S

�
dt =

ZZZ
V

r · j d3r dt . (I.52)

where d2S is the outward surface elementary vector of the surface S and
j = nv the angular current defined in Eq. (I.37). The right hand side of
(I.52) comes from the use of the divergence theorem.

12Note that
RR

S j · d2S is an actual flux of particles (by opposition to the neutron flux de-
fined in Eq. (I.35) ).
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d. Total balance

Finally, the balance on the phase space volume element,

n(r, v, t+ dt) = n(r, v, t)

+
⇥
q(r, v, t)- v⌃(r, v)n(r, v, t)-r·[n(r, v, t)v]

⇤
dt , (I.53)

leads to the equation for the angular density:

@

@t
n(r,!, v, t) + v ·rn+ ⌃(r, v)nv = q(r,!, v, t) , (I.54)

where we have used r · [n(r, v, t)v] = v ·rn(r, v, t), as the nabla only con-
tains derivatives with respect to the three space variables r. The total source
of neutrons q is given by Eq. (I.42) and (I.44), from which we can see that
Eq.(I.54) is a linear equation.

1
v
@

@t
'(r,!, v, t) +! ·r'+ ⌃(r, v)' = q(r,!, v, t) , (I.55)

where q is the total rate at which neutrons appear about r at time t,
with a velocity v!, as a result of both collisions (scattering and fission)
and an independent source Q:

q(r,!, v, t) = �(r,!, v, t) +Q(r,!, v, t) . (I.56)

The phase space density � is called the outgoing collision rate density. It
is the rate density of particle leaving a collision about r at time t with
a velocity v!:

�(r,!, v, t) =
Z
⌦3

d!0
Z+1

0
dv0 ⌫⌃(r, v0)C(v0 ! v|r)'(r,!0, v0, t) .

(I.57)

Boltzmann Integro-differential Transport Equation

In the framework of neutron transport, Eq. (I.55) is still valid as it is: only
the expression of the outgoing collision rate density (I.57) is modified. Using
Eq.(I.48) to change to the notation of reactor physics (see Sec. I.1.2) yields:

�(r,!, v, t) =
Z
⌦3

d!0
Z+1

0
dv0 ⌃s(r, v0)Cs(v0 ! v|r)'(r,!0, v0, t)

+ Fp(v)
Z+1

0
dv0 ⌫⌃f(r, v0)

Z
⌦3

d!0

4⇡
'(r,!0, v0, t) , (I.58)

= Cs[⌃s'] + Cf[⌃f'] , (I.59)

in terms of collision operators.
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Boltzmann equation
This equation can also be obtain from the Boltzmann equation de-
veloped by Ludwig Boltzmann in 1872 to study the kinetic the-
ory of gasesa, and, has thus inherited its name in the field of re-
actor physics. Indeed, the neutron population can be seen as an
ideal gas of particles (see Sec. I.1.1) that evolves on an immobile
gas of nuclei that it interacts with [CEA collectif et al. 2013], with
a chemical reaction-like terms to take into account absorption
and “multiplication” of neutrons by fission [Cercignani 1988].
The resulting transport equation (I.54) is then linear as a conse-
quence of the neglect of the neutron-neutron interactions. In the
kinetic theory of gases, collisions among the particles are impor-
tant, which leads to the presence of nonlinear collision terms in
the Boltzmann equation [Bell and Glasstone 1970].

ahalf a century before the discovery of the neutron [Chadwick 1932]

In transport theory, it is common to introduce the linear operator refer-
ring to the transport of the particle (displacement, absorption and scatter-
ing) called [Bell and Glasstone 1970; Spanier and Gelbard 1969]

transport operator L · = ! ·r · + ⌃(r, v) · - Cs[⌃s · ] , (I.60)

such that the integro-differential transport equation becomes:


1
v
@

@t
+L

�
'(r, v, t) = Q(r, v, t) + Cf[⌃f' ] , (I.61)

with on the left-hand-side, the transport, and on the right-hand side, the
sources (external source and source from fission).

Deterministic numerical simulation in reactor physics
In the field of reactor physics, deterministic numerical simula-
tions consist in solving numerically the neutron transport equa-
tion (the Boltzmann equation or one of its variants) on a mesh
in phase space [CEA collectif et al. 2013]. The mesh in energy
is, most of the time, realised by considering coupled groups of
neutrons with the same energy (multi-group description). The va-
riety of situations that need to be studied in reactor physics give
rise to various numerical strategies (different modelisations and
discretisations) for simulating a system [Duderstadt and Martin
1979; Dulla et al. 2008, 2011].
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I.2.2 Delayed Neutrons

The Boltzmann equation (I.55) gives the evolution of the flux in space and
time (for non stationary problems). In reactor physics, time-dependent
problems arise in the start-up and the shutdown of a reactor. They are
also of fundamental practical importance in investigating the stability and
controllability of a reactor, both under normal operating conditions and as a
result of an accident [Bell and Glasstone 1970]. However, delayed neutrons,
briefly introduced in Sec. b., play a key role in the out-of-equilibrium be-
haviour of the neutron population inside a reactor, so that time-dependent
problems require taking into account the presence of delayed neutrons in
Eq. (I.55) to obtain physically meaningful results. In this section we briefly
recall what are the delayed neutrons and why they change the dynamics of
the neutron population. Finally we derive the time-dependent transport
equation that accounts for delayed neutrons.

a. Delayed Fission Neutrons

Controlled by the nuclear force, the emission of a prompt neutron is almost
instantaneous (within 10-13s to 10-14s after the fission event), whereas a
delayed neutron decay, associated with the beta decay of one of the fis-
sion products (controlled by the weak interaction), can occur anytime from
a few milliseconds to a few minutes later [Reuss 2003]: the beta decay of
a fission product (called precursors) can produce, with a certain delay, an
excited-state radioisotope (delayed-neutron emitter) that immediately under-
goes a neutron emission. For instance:

87Br �!87 Kr⇤ �!86 Kr+1 n , (I.62)

where the Bromine 87Br has a beta half-life of 54.5 s [Reuss 2012]. This delay
is of several order of magnitude larger than the microsecond characteristic
lifetime of a neutron in a reactor core. For this reason, even though delayed
neutrons represent less than 1% of the emitted neutrons, they play a key
role in the dynamics of the neutron population (their decay constant will
often determine the time behaviour of the neutron population). They are
in fact of major importance in nuclear reactor kinetic control and safety
analysis [Reuss 2003].

b. Transport Equation

Several fission products are precursors of the delayed-neutron emitters,
with various decay rate and energy of emission. However, for practical
reasons, it is possible to divide them into six or eight groups, indexed by
`, of similar characteristic half-life [Bell and Glasstone 1970]. A precur-
sor of group ` thus decays exponentially with a rate13 �`, and then gives

13mean decay rate, averaged over the different precursors of the group
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rise to one (delayed) neutron. Therefore, provided that the precursors de-
cay where they were formed by fission14, delayed neutrons spontaneously
emitted about r at time t by the decay of precursors `, constitute a new
source term of emission rate �` c`(r, t) in the transport equation (I.55):

�(r,!, v, t) =
Z
⌦3

d!0
Z+1

0
dv0 ⌃s(r, v0)Cs(v0 ! v|r)'(r,!0, v0, t)

+ Fp(v)
Z+1

0
dv0 (1 -�)⌫⌃f(r, v0)

Z
⌦3

d!0

4⇡
'(r,!0, v0, t)

+
X
`

F`(v) �` c`(r, t) , (I.63)

where c` is the atom density of precursors `, and the distribution F`(v)
is the average spectrum of delayed neutrons produced by precursors of
type ` [Bell and Glasstone 1970]. Modifications to Eq. (I.58) due to delayed
neutrons were underlined in red in the latter equation. Here ⌫(r, v0) is the
mean number of neutrons emitted at a fission about r due to a neutron of
speed v0, including both prompt and delayed neutrons, and �`(r, v) is the
fraction of this number that comes from precursors of type `, so that

�(r, v) =
X
`

�`(r, v) (I.64)

is the total fraction of delayed neutrons. Moreover, the transport equa-
tion (I.55) should now be coupled to a kinetic equation for the atom density
c`(r, t) of precursor `:

@c`
@t

(r, t) = -�` c` +

Z+1
0

dv0 �` ⌫⌃f(r, v0)

Z
⌦3

d!0

4⇡
'(r,!0, v0, t)| {z }

rate of precursor produced by fission

, (I.65)

The first term on the right-hand-side (rhs) corresponds to the exponential
spontaneous decay of precursors, whereas the second is a source term of
precursors resulting from fission: �`(r, v0)⌫(r, v0) is the mean number of
precursors produced by fissions about r caused by incoming neutron of
speed v0.

14It is the case most of the time. However, in a reactor with circulating fuel (fluid), pre-
cursors may move after being emitted from a fission [Bell and Glasstone 1970]. We can cite
for instance the molten-salt reactors [Dulla et al. 2006]. This case is ignored here.
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I.2.3 Boundary and Initial Conditions

The transport equation (I.55) is a first order differential equation in space
and time, admitting an infinite number of possible solutions. In order to
determine which of these solutions correspond to the physical problem,
appropriate boundary and initial conditions on the neutron phase space
density are required to complete the transport equation.

a. Boundary conditions

Consider a spatial region of a physical system where we would like to solve
the neutron transport equation (I.55). This region can have an arbitrary
shape, but we will make the assumption that it is surrounded by a non-
reentrant surface: a neutron leaving the system by its surface can not reenter
it [Pomraning 1991; Bell and Glasstone 1970]. Under this hypothesis, neu-
trons entering the region of interest from its surface are considered as com-
ing from an external source. Then, in order to solve the transport equation,
this incoming flux of neutrons through the surface needs to be specified
(boundary condition) at any point rS of the surface S and for any inward
direction !:

'(rS,!, v, t) = ⇤S(rS,!, v, t) , for n ·! < 0 , (I.66)

where ⇤S is a specified function, and n the unit outward normal vector
at the point rS. In the particular case of absorbing boundary condition, no
neutron enter from outside and neutrons that leave the body never come
back:

'(rS,!, v, t) = 0 , n ·! < 0 . (I.67)

This case is also called vacuum or free surface boundary condition. It is an
interesting case, because any boundary condition, with the hypothesis of
a non reentrant surface, can be directly replaced by a free surface, coupled
with a (surface) source term QS, of the form:

QS(r,!, v, t) = ⇤S(r,!, v, t) 1S(r)H(t) , (I.68)

which contributes to Q in equation (I.56). The function 1S is the marker
function of the surface S: it is equal to 1 for positions r located on the surface
and 0 elsewhere; and H is the Heaviside function, which ensures that time
is positive (considering that the process was started at t = 0).
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Non-reentrant surface hypothesis
Let us focus on the non-reentrant hypothesis in greater detail.

• If the boundaries are closed (such as absorbing or reflecting
boundaries), the system of interest does not exchange par-
ticles with the external world, and of course no hypothesis
is needed. This hypothesis is in fact relevant only when ex-
changes of particles between the region of interest and the
outside are possible.

• Moreover, the hypothesis becomes useless when the region
of interest is at thermodynamic equilibrium with the exter-
nal world. Indeed, in that case the surrounding system
plays the role of a “particle thermal bath”, and a reenter-
ing neutron can not be distinguished from a new neutron
actually coming from outside.

Therefore this hypothesis is necessary only in the case where the
system of interest exchanges particles with an external world
with which it is not in equilibrium.

b. Initial condition

The initial condition specifies the shape of the neutron phase space density
at time t = 0:

'(r,!, v, t = 0) = ⇤0(r,!, v) , (I.69)

where ⇤0 is a specified function. Of course one can also start the system
at any positive time t0, and in that case, the temporal part in the surface
source term Eq. (I.68) would be replaced by H(t- t0). As for the boundary
conditions, the initial condition can be also placed in a volume source term
that will impact the transport equation only at initial time t = 0:

Q0(r,!, v, t) = ⇤0(r,!, v) �(t) 1V(r) . (I.70)

The function 1V is the marker function of the region of interest V , equal to 1
for positions r located within the region V and to 0 elsewhere. The distri-
bution � is the Dirac delta function, defined [Weisstein 2010], for a function
f, as15 Z

dt �(t) f(t) = f(0) . (I.71)

15this convenient notation is generally used in physics. However it is an abused notation:
not a standard (Riemann or Lebesgue) integral.
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c. Boundary and initial conditions in the source term

To summarise, the initial and boundary conditions can be both placed
in the source term Q of equation (I.56), which takes the form:

Q(r,!, v, t) = Q0 + QS + QV (I.72)
= ⇤0(r, v,!) �(t) 1V(r)+ ⇤S(r,!, v, t) 1S(r)H(t)+ QV ,

where QV is a specified volume source:

QV(r,!, v, t) = ⇤V(r,!, v, t) 1V(r)H(t) . (I.73)

Boundary and Initial Conditions - Source Term

I.2.4 Integral Transport Equation

Thus far, we have focused on the integro-differential form of the transport
equation (I.55). Since this equation is a linear first-order partial differen-
tial equation, it can be integrated thanks to a general technique known as
method of characteristics [Courant and Hilbert], which yields the integral
form of the transport equation. In this section, we will first derive the in-
tegral transport equation following the arguments of Bell and Glasstone in
their book Nuclear Transport Theory [1970, Sec. 1.2 p.21]. We will then dis-
cuss the physical implications of this equation. Finally, we will analyse the
impact of initial and boundary conditions, in the spirit of Pomraning in
Linear Kinetic theory and particle transport in stochastic mixtures [1991, Sec. 1.4
p.21 Eq. (1.112)]. Results of this section are useful for the understanding of
Chapter 3.

a. Integrating the Integro-differential Equation

Let us recall the integro-differential form of the transport equation (I.55):

1
v
@

@t
'(r,!, v, t) +! ·r'+ ⌃(r, v)' = q(r,!, v, t) . (I.74)

The aim of the method of characteristics is to find the curves, called the
characteristic curves or characteristics, along which a partial differential
equation (PDE) becomes an ordinary differential equation that can be for-
mally integrated [Courant and Hilbert]. In the previous equation, the par-
tial derivatives are taken with respect to the time coordinate, @t, and the
three space coordinates, r. Therefore one can find the characteristics by
introducing a new variable s and choosing the following form for the total
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derivative of ' with respect to it:

-
d'
ds

(r,!, v, t) =
1
v
@

@t
'(r,!, v, t) +! ·r'(r,!, v, t) . (I.75)

Moreover, as we know that

d'
ds

(r,!, v, t) =
dt
ds

@'

@t
+

dr
ds

·r' , (I.76)

and upon identifying terms in these two expressions, we find that:8>><>>:
dr
ds

= -! ,

dt
ds

= -
1
v

.
=)

8><>:
r = r0 - s! ,

t = t0 -
s

v
,

(I.77)

where r0 and t0 are arbitrary constants. The curves r(s) and t(s) are the
characteristics of the differential equation (I.74), and for a fixed direction !
and speed v, the curve passing through the point r0 at time t0 is precisely
the straight path followed by a particle arriving in r0 at t0 with velocity
v! since its last collision (see fig. I.7 Left). As a consequence, along the

t,
(a) Characteristic curve

t,

(b) in the presence of boundaries

Figure I.7: Characteristic curve

characteristics, the partial differential equation (I.74) for neutron transport
becomes the ordinary equation16:

d'
ds

(s)- ⌃(s)'(s) = -q(s) , (I.78)

where

8<: '(s) = '
⇣

r0 - s!,!, v, t0 -
s

v

⌘
,

⌃(s) = ⌃(r0 - s!, v)
(I.79)

To integrate this equation and take care of the presence of boundaries, we
assume that there exists a positive value s0 of s (s0 can be +1) such that

'(s0) = 0 . (I.80)

16One can also check that d'
ds (r0 - s!,!, v, t0 -

s
v ) = - 1

v
@
@t '(r,!, v, t)-! ·r'
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At this point s0, the characteristic curve crosses a boundary of the system
(see Fig. I.7 Right): it can be a spatial boundary or the initial time. Equa-
tion (I.80) then makes the assumption that outside this boundary the flux is
null, corresponding to the free surface case (see Sec. I.2.3), and absence of
particles in the system at initial time. Other types of boundary conditions,
as well as the initial condition, can thereafter be included via the source
term, using Eq. (I.72). We now integrate equation (I.78) along the charac-
teristics from s = 0 to s0:

-'(0) e-
R0

⌃(s0)ds0 = -

Zs0

0
q(s) e-

Rs
⌃(s0)ds0ds ,

and obtain the solution of the ordinary equation (I.78)

'(0) =
Zs0

0
q(s) e-

Rs
0 ⌃(s0)ds0ds . (I.81)

This solution can be transformed into the solution of the original PDE, us-
ing Eq. (I.79), and finally leads to the so-called integral transport equation for
the neutron flux [Bell and Glasstone 1970; Pomraning 1991]:

'(r,!, v, t) =
Zs0

0
exp

-

Zs
0
⌃(r - s0!, v)ds0

�
q
⇣

r - s!,!, v, t-
s

v

⌘
ds ,

(I.82)

where q(r - s!,!, v, t- s
v), defined in equation (I.56), corresponds to

the density rate of neutrons leaving a collision or emitted by an exter-
nal source at r - s!, with velocity v!.

Figure I.8

Integral Transport Equation For the Neutron Flux

b. Physical Interpretation

For the neutron flux Equation (I.82) can be rewritten in terms of the outgo-
ing collision rate density � and the external source Q [Duderstadt and Martin
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1979; Case and Zweifel 1967]:

'(r,!, v, t) =
Zs0

0
U(s|r,!, v)| {z }

probability to have

no collision between

r-s! and r

h
(�+Q)

⇣
r - s!,!, v, t-

s

v

⌘i
ds| {z }

flux of particles emitted

about r-s!

in the direction !

,

(I.83)

where U(s|r,!, v) = exp
⇥
-
Rs

0 ⌃(r - s0!, v)ds0
⇤

is the complementary cu-
mulative distribution of the jump length pdf17, which represents the
marginal probability that no collision occurs between r - s! and r. The
physical meaning of the transport equation (I.83) is apparent in the form of
the equation: the flux of particles about r in a direction ! at time t results
from the transport of the (density of) particles that are leaving a collision
or are emitted from a source about r - s! in the direction ! at time t- s/v
and that did not undergo any collision in between (see Fig.I.8).

For the collision density Multiplying both sides of equation (I.82) by the
total cross-section ⌃(r, v), we obtain a similar transport equation for the
incident collision rate density  (r,!, v, t) [Duderstadt and Martin 1979; Case
and Zweifel 1967]:

 (r,!, v, t) =
Zs0

0
ds T(s|r,!, v)| {z }

probability to encounter

a collision about r

(after travelling a distance s)

h
(�+Q)

⇣
r - s!,!, v, t-

s

v

⌘i

| {z }
rate density of particles

emitted about r-s!

in the direction !

,

(I.84)

where T(s|r,!, v) = ⌃(r, v) exp
⇥
-
Rs

0 ⌃(r - s0!, v)ds0
⇤

is the exponential
inter-collision pdf, introduced in section I.1.2. Here as well the integral
equation can be given a physical interpretation: the collision rate density
for particles entering a collision about r with the direction ! at time t results
from the density rate of particles, emitted about r - s! in the direction !
at the earlier time t- s/v, undergoing a collision about r at a time s/v later
(see Fig.I.8).

In reactor physics, it is very common to introduce the displacement op-
erator T [Reuss 2012], which “transports” particles leaving a collision, or

17Reminder U is the complementary cumulative distribution of the exponential jumps
pdf: U(s) =

R+1
s T(s0)ds0 (see Sec. I.1.2)
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emitted by a source, to their next collision:

T[�] =

Zs0

0
ds T(s|r,!, v)�

⇣
r - s!,!, v, t-

s

v

⌘
. (I.85)

The integral transport equation for the collision rate density  (r,!, v, t)
then takes the concise form:

 = TC[ ] + 1 , (I.86)

by recalling that the outgoing collision rate density � is related to the inci-
dent density by � = C[ ] (see Eq. (I.46)). The quantity

 1 = T[Q] , (I.87)

called the first-collision rate density or uncollided density [Reuss 2012; Bell and
Glasstone 1970; Case and Zweifel 1967], represents the contribution to  
due to particles coming straight from the source. It is also common to de-
fine the uncollided flux,

'1(r,!, t) =
Zs0

0
U(s|r,!, v)

h
Q
⇣

r - s!,!, v, t-
s

v

⌘i
ds , (I.88)

which represents the contribution to the angular flux due to particles that
have not undergone collisions since they were emitted from the source.

Note that from these physical considerations, we can see that the two in-
tegral transport equations Eq. (I.83) and (I.84) could have been established
directly from a neutron balance in the phase space.

Method of Characteristics for Numerical Simulations
Like the Boltzmann equation (I.55), the integral form of the
transport equation can also lead to the derivation of some nu-
merical methods [Barbarino et al. 2013]. In particular, the
method of characteristics is especially well adapted to the nu-
merical deterministic resolution of transport equations [CEA
monographie 2013]: the transport equation is integrated along a
characteristics. This method allows resolving the transport equa-
tion with a good compromise between precision and speed, on
system of complex geometries with irregular shape (thanks to
the possibility to use a non structured grid), with general bound-
ary condition and less approximations on the anisotropy of the
scattering. For these reason, this method is more and more em-
ployed for industrial codes.
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c. Initial and boundary conditions and general integral transport equation

Let us recall the integral transport equation (I.82) for the neutron flux:

'(r,!, v, t) =
Zs0

0
exp

-

Zs
0
⌃(r - s0!, v)ds0

�
q
⇣

r - s!,!, v, t-
s

v

⌘
ds ,

(I.89)

where q is the total rate, defined in Eq. (I.56), at which neutrons appear
as a result of both collisions and an independent source Q. In Sec. I.2.4.a.,
Eq. (I.89) was established for a free surface case, with no particle at ini-
tial time. As seen in Sec. I.2.3, initial and boundary conditions can be
then added as external source terms of the transport equation (I.89) – see
Eq. (I.72): the initial condition is equivalent to a volume source Q0 at the
initial time, and the boundary conditions to a surface source of particles
QS. In this section, we derive explicitly the contribution to '(r,!, v, t) in
Eq. (I.89) due to these two sources.

Initial conditions – Let us call ' 0
1 the contribution to ' due to the transport

of initial source Q0(r,!, v, t) = ⇤0(r,!, v) �(t) 1V(r) (Eq. (I.70)):

' 0
1 (r,!, v, t) =

Zs0

0
U(s)⇤0(r - s!,!, v) �

⇣
t-

s

v

⌘
1V(r - s!)ds , (I.90)

=

8<: U(v t)⇤0(r - v t!,!, v) if (r - v t!) 2 V

0 elsewhere.
(I.91)

We define rS the intersection of the characteristic curve r - v t! and the
surface S (see Fig. I.9). The condition r - v t! 2 V is then equivalent to
v t 6 krS - rk = (r - rS) · !, so that the contribution due to the initial
source is finally:

' 0
1 (r,!, v, t) = U(v t)⇤0(r - v t!,!, v)H

�
(r - rS) ·! - v t

�
, (I.92)

 0
1 (r,!, v, t) = T(v t)⇤0(r - v t!,!, v)H

�
(r - rS) ·! - v t

�
. (I.93)

Contribution due to the initial source (initial condition)

Boundary conditions – Let us now call 'S
1 the contribution to ' due to the

surface source equivalent to the boundary conditions, given in Eq. (I.68):

'S
1 (r,!, v, t) =

Zs0

0
U(s)⇤S

⇣
r - s!,!, v, t-

s

v

⌘
1S(r - s!)H

�
t-

s

v
�
ds .

(I.94)
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Figure I.9: The position rS is at the intersection of the characteristic
curve, straight line defined by the point r and the direction
! (dash line), and the surrounding surface S of the system.

By definition of the intersection point rS, the vectors r- rS and ! are aligned
(see Fig. I.9), and 1S(r - s!) can be written as a one dimension delta distri-
bution in the direction of !:

1S(r - s!) = �((r - rS) ·! - s) = �(kr - rSk- s) . (I.95)

As a consequence, performing the integration over s in Eq. (I.94) leads to
the final contribution due to the surface source.

'S
1 (r, v, t) = U

�
(r - rS)·!

�
⇤S

⇣
rS, v, t-

(r - rS)·!
v

⌘
H
⇣
t-

(r - rS)·!
v

⌘

(I.96)

It represents the contribution to the neutron flux about r due to the rate
of particles emitted from the surface S at a positive time t- kr- rSk/v
and transported until r.

 S
1 (r, v, t) = T((r - rS)·!)⇤S

⇣
rS, v, t-

(r - rS)·!
v

⌘
H
⇣
t-

(r - rS)·!
v

⌘

(I.97)

Contribution due to the surface source (boundary condition)

Replacing these two contributions in the integral transport equation (I.89),
we recover the general integral transport equation obtained in [Pomran-
ing 1991, Sec. 1.4 p.18] where boundary and initial conditions Eq. (I.66) and
(I.69) were directly used to integrate the integro-differential transport equa-
tion.

Note that in the case of a volume source, the integration over s can not
be directly calculated, and the general integral can not be simplified:

'V
1 (r,!, v, t) =

Zs0

0
U(s|r,!)QV

�
r - s!,!, v, t-

s

v
�

ds . (I.98)
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I.2.5 Diffusion Equation

An important aspect of transport theory involves the development of ap-
proximate descriptions that can be solved analytically. One very common
approximate description consists in removing the velocity dependence of
the transport equation, replacing it by a set of approximate equations in
the real space r. To start with, it is customary to consider neutrons with
constant speed v18. These neutrons obey to the one speed transport equation,
(one speed version of the neutron transport equation (I.61) ):

1
v
@

@t
'(r,!, t) +! ·r'+ ⌃(r)' (I.99)

= ⌃s(r)
Z

d!0Cs(!
0 ! !)'(r,!0, t) + q0(r,!, t) ,

where q0(r,!, t) = Qf(r,!, t) +Q(r,!, t) contains the sources from fission
Qf = Cf[⌃f' ], plus an external source Q.

a. Conservation equation

Integrating the one speed transport equation (I.99) over the angular depen-
dence and using the definitions Eq. (I.36) and (I.38), we obtain the conser-
vation equation:

1
v
@

@t
�(r, t) +r · J + ⌃a(r)� = q0(r, t) , (I.100)

Conservation equation

where

J(r, t) =
Z

d!j(r,!, t) �(r, t) =
Z

d!'(r,!, t) q0(r, t) =
Z

d!q0(r,!, t)

and ⌃a = ⌃c + ⌃f is the absorption cross-section that corresponds to the
occurrence of neutron absorption by nuclei for sterile capture or fission
events. Note that the number of neutrons is conserved during a scattering
event, such that the flux of neutron leaving a scattering (in any direction)
about r is equal to the flux of neutrons entering it:Z

d!
Z

d!0⌃s(r)Cs(!
0 ! !)'(r,!0, t) =

Z
d!⌃s(r)'(r,!, t) . (I.101)

Equation (I.100) is the conservation equation of the system. It can also be
obtained directly from a neutron balance (see Sec. I.2.1) in the real space.

18This is coherent with the multi-group description used for deterministic numerical sim-
ulations, which considers coupled groups of neutrons with the same energy.
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b. P1 equations and diffusion approximation

Multiplying Eq. (I.99) by ! and integrating again over !, we obtain

1
v
@

@t
J(r, t) +

Z
d2!! [! ·r'] + ⌃t(r) J = µ0 ⌃sJ(r, t) +Q1(r, t) , (I.102)

where Q1(r, t) =
R

d2!!Q(r,!, t) and µ0 is the mean value of the cosine of
the scattering angle [Duderstadt and Martin 1979]:

µ0 = h! ·!0i =
Z

d2! (! ·!0)Cs(! ·!0 | r) . (I.103)

Indeed, considering that the medium is isotropic19, the scattering kernel
Cs(! ! !0 | r) does not depend on the direction of the incoming particle !,
but only on the angle between the two directions ! and !0:

Cs(! ! !0 | r) = Cs(! ·!0 | r) .

The mean value of the cosine of this scattering angle can then be defined
as in Eq. (I.103)20. Note that, if the scattering is isotropic, Cs(! ! !0 | r) =
1/(4⇡) and µ0 = 0, and the scattering term vanishes in Eq. (I.102). Fur-
thermore, to establish Eq. (I.102), we have also used the fact that the fis-
sion source Qf(r,!, t) is isotropic (see Eq. (I.21)), such that, Qf(r,!, t) =
⌫⌃f�(r, t)/(4⇡), and

R
d2!!Qf(r,!, t) = 0.

To go further, we assume that the angular flux is only weakly dependent
on the angle, and expand it at first order [Duderstadt and Martin 1979]:

'(r,!, t) =
1

4⇡

Z
d2!'

�
+

3
4⇡

Z
d2! j

�
·! , (I.104)

=
1

4⇡
�(r, t) +

3
4⇡

J(r, t) ·! . (I.105)

This approximation is known as the P1 approximation, as it corresponds to
the expansion in the first order of the angular flux in Legendre Polynomials
in µ = ! ·!0 [Duderstadt and Martin 1979; Pomraning 1991; Bell and Glas-
stone 1970]. Using this approximation in Eq. (I.102), we obtain the system
of equations [Duderstadt and Martin 1979]:

1
v
@

@t
�(r, t) +r · J + ⌃a(r)� = Q(r, t) , (I.106)

1
v
@

@t
J(r, t) +

1
3
r�+ (⌃t - µ0⌃s)(r) J = Q1(r, t) , (I.107)

19which is the case all along the thesis
20µ0 can be rewritten, in the spherical coordinate system (r, ✓,'), setting !0 along ez:

µ0 = h! ·!0i =
R2⇡

0 d'
R⇡

0 d✓ sin(✓) cos(✓)Cs(cos(✓) | r)
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known as the P1 equations.

The first order equation (I.107) can be further simplified by introducing
two other reasonable approximations [Duderstadt and Martin 1979]:

– we consider that the external source Q(r,!, t) is isotropic: the source
term Q1 then vanishes in Eq.(I.107);

– we assume that the variations in time of the current density J(r, t) are
slow compared to the collision process, so that we can neglect the
time derivative v-1@J/@t in comparison with ⌃tJ:

1
| J |
@| J |
@t

⌧ v⌃t ; (I.108)

the rate of variation of the current density in time must be small com-
pared to the collision frequency v⌃t, which is typically v⌃t & 105 s-1.

Under these approximations, Eq. (I.107) becomes

J(r, t) = -
1

3(⌃t - µ0 ⌃s(r))
r�(r, t) ; (I.109)

the current density is proportional to the spatial gradient of the flux. Note
that, recalling the relation between the flux and the density,�(r, t) = vn(r, t),
the same type of relation arise for the neutron density:

J(r, t) = -D(r)rn(r, t) , (I.110)

where we introduced the diffusion coefficient

D(r) =
v

3(⌃t - µ0 ⌃s(r))
. (I.111)

Taken together, the assumptions done in this section are known as the
diffusion approximation, and Eq. (I.110) is known as Fick’s first law of dif-
fusion [Diu et al. 2007]. Finally, substituting this relation into Eq. (I.106)
yields

1
v
@

@t
�(r, t)-

1
v
r ·D(r)r�+ ⌃a(r)� = q0(r, t) , (I.112)

One-speed diffusion equation

know as the one-speed diffusion equation. This equation is one of the simplest
description of a transport process [Duderstadt and Martin 1979].
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In case of an homogeneous medium, the cross-sections ⌃t/a and the
diffusion coefficient D do not depend on r; the one-speed diffusion equa-
tion (I.112) simplifies to

1
v
@

@t
�(r, t)-

1
v
D��+ ⌃a� = q0(r, t) . (I.113)

Moreover, if the scattering is isotropic, Cs(! · !0) = 1/(4⇡), then µ0 = 0
and the diffusion coefficient, Eq.(I.111), reads

D =
v

3⌃t
. (I.114)

Along the thesis, we will resort to the diffusion approximation described
above at several occasions. Generally, we will further consider that the
medium is homogeneous and the scattering isotropic, for which we can
use the equations:

For the flux,
1
v
@

@t
�(r, t)-

1
v
D��+ ⌃a� = q0(r, t) ; (I.115)

For the density,
@

@t
n(r, t)- D�n+ v⌃a n = q0(r, t) , (I.116)

where the constant ⌃a = ⌃c + ⌃f and the

diffusion coefficient is D =
v

3⌃t
. (I.117)

The source term q0 = Qf +Q contains an external isotropic source Q

and the fission source Qf(r,!, t) =
1

4⇡
⌫⌃f�(r, t) . (I.118)

Diffusion equations

3 LIMITS OF THE TRANSPORT EQUATION

In this last section we will discuss two phenomena, observed in the field
of reactor physics, that highlight several limits of the transport theory pre-
sented in this chapter. First, the observation of neutron clustering in some
Monte Carlo simulations of nuclear reactors [Dumonteil et al. 2014] will
lead us to question the approximation made by neglecting the fluctuation
of the neutron population in a multiplying medium. Then, the observation
of non-exponential transport of neutrons (or photons) in strongly hetero-
geneous media, such as pebble-bed reactors [Larsen and Vasques 2011],
motivates the need for a new transport theory in this type of medium. The
key motivations for the thesis will follow from here.
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I.3.1 Fluctuations Problem

A neutron clustering effect, has been recently observed in Monte Carlo (crit-
icality) simulations of nuclear reactors. This effect was brought to light
in the article [Dumonteil et al. 2014], illustrated on a “small” example: a
Monte Carlo criticality simulation of a PWR pin-cell performed with the
Tripoli-4® code developed at the CEA Saclay [Brun et al. 2011, 2013]. In
this work, the pin-cell system is composed of a single UO2 fuel rod, en-
closed in a Zircaloy cladding (see Fig. I.10). A water moderator surrounds
the cladding, which is modelled, in the Monte Carlo simulations, by reflect-
ing boundary conditions for the pin-cell. Simulations start with a uniform
source of neutrons along the axis of the pin-cell, which corresponds to the
equilibrium state of a system with reflecting boundaries. The neutron flux
is then recorded over a regular spatial grid composed of 40 bins along the
axial direction, indexed by i (see Fig. I.10). Three sets of simulations were
run for different values of the pin-cell length L: L = 10 cm, L = 100 cm
and L = 400 cm, with the same number of simulated particles N = 104.
Resulting time evolutions of the flux after convergence of the simulations
are displayed on Fig. I.11.

Figure I.10: Representation of a pin-cell.

We first observe that, for a small system (L = 10 cm, Fig. I.11 Left), the
flux stays more or less uniform in the pin-cell over time, and fluctuations
around the “average flux” are small. The second simulation (L = 100 cm,
Fig. I.11 Left) exhibits much stronger fluctuations in space and time of the
neutron flux. This behaviour is further enhanced when taking L = 400 cm
(Fig. I.11 Right): fluctuations of the population are so strong that neutrons
tend to gather into clusters separated by empty space, while the total neu-
tron population is preserved (as the system is critical, ⌫ = 1). Clusters then
seem to wander around indefinitely. This effect is amplified by decreasing
the initial density of neutrons in the system.

This distribution of the flux is far from the one expected in such a sys-
tem, i.e. a uniform flux in a pin-cell with reflecting boundaries. Even more
surprisingly, the Monte Carlo simulation has actually converged (in that
the parameter used for measuring convergence of these simulations has
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Figure I.11: Figure reproduced from [Dumonteil et al. 2014]. Monte
Carlo criticality simulations for a PWR pin-cell with varying
axial length L, at fixed number of particles per cycle, N =
104. The neutron flux �(xi,n) over an axially-distributed
spatial mesh is displayed as a function of the mesh index i
and the cycle number n. Left: L = 10 cm. Center: L = 100
cm. Right: L = 400 cm.

reached a stationary value). One of the first conclusions of this observa-
tions would be to consider that the criteria of convergence of the simula-
tion could be misleading in large systems with a relatively small number of
simulated particles. However, one is led to wonder whether this problem
could be even more fundamental [Dumonteil et al. 2014].

In fact, branching random walks have been studied since a long time
in connection with mathematical modelling of biological populations, such
as bacteria, plankton or amoebae [Athreya and Ney 2012b; Young et al.
2001; Houchmandzadeh 2008]. In these systems, several experiments have
shown the tendency of neutral clustering: even in absence of particle-particle
interactions, a population of individuals that are initially uniformly dis-
tributed tends to form clusters [Houchmandzadeh 2002, 2009]. Moreover,
several other situations have already been reported in the context of nuclear
physics in which the neutron population undergoes large fluctuations, such
that the population state in the system is quite unpredictable [Prinja 2012]
(in that the mean is not representative of the instantaneous distribution of
the population).

The first part of the thesis will focus on the fluctuations of the neutron
population around its mean value. More generally the part will deal with
the fluctuations of a population of individuals that can diffuse, reproduce
or die. It will be divided into two chapters: the first one will establish equa-
tions for the various moments of quantities that characterise the neutron
population (such as the instantaneous density, the number of collisions,
the ), whereas the second one will aim to explain and characterise the clus-
tering phenomenon.
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I.3.2 Non Exponential Transport

In this chapter we have seen that neutron transport in multiplying me-
dia can be modeled by Pearson random walks coupled to a birth-death
mechanism (see Sec. I.1.2). More generally, linear transport21 is modeled
in terms of Pearson random walks: particles, such as photons or neutrons,
move at constant speed along straight paths of random length, interrupted
by collisions with the medium, whereupon directions are randomly redis-
tributed [Duderstadt and Martin 1979; Case and Zweifel 1967]. By na-
ture, the process followed by the transported particles is Markovian, and
therefore the distances travelled by the particles between two collisions de-
pend only on the properties of the medium. Assuming that this medium
is homogeneous and that scattering centres are uncorrelated, these inter-
collision distances are exponentially distributed (see Sec. I.1.2). In this case,
the (mean22) behaviour of the transported particles is well described by
the Boltzmann equation (with or without the branching term) derived in
Sec. I.1.2, and, in the diffusion limit, the transport of the particles is charac-
terised by a mean square displacement which grows linearly with time

h(�r(t))2i ⇠ Dt , (I.119)

where D is the diffusion parameter (see Sec. I.2.5).

However, in many applications of linear transport theory, the hypoth-
esis of homogeneous and uncorrelated scattering centres is deemed to fail.
We can cite for instance light propagation through turbid media [Davis and
Marshak 2004; Davis 2006; Kostinski and Shaw 2001] or engineered opti-
cal materials [Barthelemy et al. 2008; Svensson et al. 2013, 2014], neutron
diffusion in pebble-bed reactors [Larsen and Vasques 2011], and radiation
trapping in hot atomic vapours [Mercadier et al. 2009]. In these systems,
the presence of spatially extended non-scattering regions induces longer
inter-collision distances (compared to typical jumps in the medium), which
increase the diffusivity of the particles; the resulting jump distribution is no
longer exponential. On the other hand, quenched heterogeneities, i.e. het-
erogeneities that do not change in time, such as those linked to quenched
disorder, lead to correlations between jumps that tend to counteract the
increase of diffusivity [Svensson et al. 2014]. These two effects can be ob-
served in Fig. I.12, illustrating the example of photon transport in a Lévy
glass [Barthelemy et al. 2008].

21where particles are fairly diluted, i.e., interact with the surrounding medium but not
with each other

22 In this section, we do not consider the issue of fluctuations raised in the previous
section.
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In reactor physics, the issue of particle transport in quenched disor-
dered media is, for example, central for neutron transport in pebble bed
reactors [Larsen and Vasques 2011; Vasques and Larsen 2014a,b], whose
core is filled with about 105 randomly placed spherical fuel elements, called
pebbles23 [Grimod 2010]. These pebbles have all the same radius of 3 cm,
which is comparable to the neutron mean free path. Correspondingly it
has been observed that neutron transport in these systems is strongly af-
fected by the empty spaces24 between pebbles: jump distributions appear
broader than exponential, and mean free paths are increased [Behrens 1949;
Lieberoth and Stojadinović 1980].

For these systems, the Boltzmann equation derived in Sec. I.1.2 does
not hold [Larsen and Vasques 2011], and, in the diffusion limit, the dif-
fusion relation (I.119) breaks down [Svensson et al. 2014], being replaced
by [Barthelemy et al. 2008]

h(�r(t))2i ⇠ Dt� , (I.120)

where � 6= 1, which deviates from the linear dependence on time found
for the diffusive case. We say then that the transport is anomalous [Metzler
and Klafter 2000], and it is characterised by the parameter �: the process is
called super-diffusive if � > 1, and sub-diffusive if 0 < � < 1. More precisely,
anomalous transport through strong heterogeneous media is characterised
by a super-diffusive behaviour (� > 1).

In the context of heterogeneous media, important insights have been
provided by the development of generalised transport equation (general-
ised Boltzmann equation) and homogeneisation theory [Larsen and Vasques
2011; Frank and Goudon 2010; Davis and Marshak 2004; Scholl et al. 2006].
In the case of quenched disorder, most works were carried out within the
framework of anomalous diffusion [Fogedby 1994; Barthelemy et al. 2010;
Buonsante et al. 2011; Groth et al. 2012; Bernabó et al. 2014]. The reference
model for this class of phenomena is the so-called Lévy walk [Zaburdaev
et al. 2015]: particles evolve with a constant finite speed, performing ran-
dom steps distributed according to a power-law distribution, i.e. with an
algebraic tail of the form:

T(`) ⇠
`1 1

`↵+1 , with 0 < ↵ < 2 . (I.121)

The parameter ↵ characterising the jump distribution is called stability in-
dex: for 0 < ↵ < 2 the distribution has no variance, and for 0 < ↵ 6 1

23Each pebble is made of graphite (the moderator) containing microscopic fuel particles.
24These empty spaces are random in placement and geometry and of size comparable to

the neutron mean free path within the fuel.
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Figure I.12: Figure reproduced from [Barthelemy et al. 2008]. Monte
Carlo simulation of a photon walk through a two-
dimensional version of a Lévy glass. Lévy glasses are ob-
tained by modifying the local density of scattering particles
within an initially homogeneous medium, by inserting glass
microspheres that do not scatter with a power-law diameter
(The inset shows the scale invariance of the glass). The
photon transport within this system is dominated by long
jumps performed by photon through the glass spheres. Ex-
perimental evidence from [Barthelemy et al. 2008] shows
that the transmission of light through a Lévy glass corrobo-
rates the hypothesis of photons performing Lévy walks inside
a Lévy glass [Davis and Marshak 1997].

it has no mean. However, the description of neutron and photon prop-
agation in such systems remains particularly challenging, and a compre-
hensive theoretical framework is still missing, especially in the presence of
boundaries [Larsen and Vasques 2011; Svensson et al. 2013, 2014; Bernabó
et al. 2014].

In the second part of the thesis, we will thus explore different aspects of
anomalous transport. First, we will focus on the issue of occupation statis-
tics of non-exponential random walks, including Lévy walks, in a finite
domain (Chapter IV). Finally, in Chapter V, we will move on to the prob-
lem of the statistics of asymmetric Lévy flights in the presence of absorbing
boundaries.
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FLUCTUATION STATISTICS





CHAPTER II
BACKWARD DESCRIPTION OF THE FLUCTUA-
TIONS

In this chapter, we are interested in the fluctuation statistics of the neutron
population (in a reactor core). For that purpose, we develop backward
equations for each moment of quantities of interest in reactor physics, in the
general case of systems composed of an inhomogeneous medium, where
the speed of neutrons can change at each collision and their scattering can
be anisotropic.
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1 THE FLUCTUATION PROBLEM

II.1.1 Useful combinatorial quantities

Before dealing with the core of the fluctuation problem, let us first have a
closer look at the discrete probability law {pk}k>0 defined in Sec. I.1.2. As
seen in the previous chapter, the mean behaviour of a branching process
does not depend explicitly on the different values taken by the probabilities
pk, but only on the corresponding first factorial moment1

⌫ = h k i =
X
k>0

kpk = p1 + 2p2 + 3p3 + ... . (II.1)

This quantity physically represents the mean number of particles created
at a collision. In the same way, we will see in this chapter that the first or-
der of the fluctuations of a branching process will depend only on the two
first factorial moments ⌫ .

= ⌫1 and ⌫2 = h k(k- 1) i. Given the importance
that these factorial moments take in branching processes, in this paragraph
we will focus on understanding the physical meaning of the higher mo-
ments:

⌫i = h k(k- 1)(...)(k- i+ 1) i =
X
k>0

k(k- 1)(...)(k- i+ 1)pk . (II.2)

Falling factorial moment of the number of descendants at a collision

Let us consider first the second factorial moment ⌫2. Using factorial and
combinatorial notations, ⌫2 can be rewritten as:

⌫2 =
X
k>0

k(k- 1)pk =
X
k>0

k!
(k- 2)!

pk

⌫2 = 2
X
k>0

✓
k

2

◆
pk , where

✓
k

2

◆
=

k!
2! (k- 2)!

. (II.3)

This binomial coefficient represents the number of particle pairs that can be
formed from a set of k particles. Therefore,

⌫2

2
=

X
k>0

✓
k

2

◆
pk =

⌦✓k
2

◆↵
, (II.4)

corresponds to the mean number of particle pairs that are created at a col-
lision, and thus ⌫2 represents the mean number of ordered particle pairs

1 see for instance the Boltzmann equation (I.55) and (I.57), where the first factorial mo-
ment were denoted ⌫ without any index.
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that are emitted per collision [Bell 1965] (here “ordered” means that par-
ticles have been given a label). For the same reasons, the third factorial
moment

⌫3 = 3!
X
k>0

✓
k

3

◆
pk , where

✓
k

3

◆
=

k!
3! (k- 3)!

(II.5)

represents the mean number of ordered particle triplets that are emitted at
a collision, as 3! is the number of permutations that can be done between
3 labelled particles. More generally, for all i > 1, the factorial moment
⌫i corresponds to the mean number of ordered sets of i particles that are
emitted at a collision.

Example for a binary branching process - 8k > 3, pk = 08><>:
⌫1 = p1 + 2p2

⌫2 = 2p2

⌫i = 0, 8i > 2
(II.6)

At a collision, 1 pair is emitted with a probability p2, and so, 2 ordered pairs
are emitted with a probability p2. As a consequence, the mean number of
ordered pairs emitted at a collision is 2p2, which is exactly the value of ⌫2.

II.1.2 The Birth and Death Process

The Galton-Watson process introduced in Chapter 1 has been already
pointed out as being responsible for very strong fluctuations of the size of
a population of individuals that can reproduce or die [Harris 1963; Athreya
and Ney 2012a; Pázsit and Pál 2007]. In this section we work on a zero di-
mensional system, where we neglect the spatial displacements of the parti-
cles and consider the population as a whole. This simpler system is a good
starting point to understand the origin of strong fluctuations in branching
processes. We will then highlight a phenomenon called critical catastrophe
by Williams [1974].

Consider a system in which we initially deposit N0 particles that are
then allowed to randomly reproduce or die with a rate �, following the
Galton-Watson process described in the first chapter (Sec. I.1.2): events oc-
cur with a rate �; at each event, a random particle is absorbed and k new
neutrons are emitted with a probability pk. We neglect the spatial displace-
ments of the particles and consider the population as a whole2 (zero dimen-
sional model). The total number N(t) of particles in the system at time t is

2 Either particles are not allowed to diffuse in the system, either we consider the whole
system as a single point system (cf point reactor)
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a random variable. We thus denote by P(N, t) the probability of observing
exactly N individuals in the system at time t. In order to characterise the
fluctuations of the population size N(t), we must compare the

mean size of the population hN(t) i =
X
N>0

N(t)P(N, t) , (II.7)

to the fluctuations of the population around this mean, i.e. to the

variance �2(t) = hN2(t)i- hN(t)i2 , (II.8)

where hN2(t)i =
P

N>0 N
2 P(N, t). For the zero dimensional model, we

can show, thanks to the detailed balance, that the probability P(N, t), obeys
the master equation (A.13) (see Ann. 2) [Harris 1963]:

dP
dt

(N, t) = -�NP(N, t) +
NX
i=0

�i (N+ 1 - i)P(N+ 1 - i, t) , (II.9)

where �i = �pi is the rate at which an event that gives rise to i new neu-
trons occurs in the system. We can then derive the equation for each mo-
ment of N(t) using the definition hNki =

P
N>0 N

k P(N, t). In particular,
we get the equation verified respectively by the mean and the variance:
Eq. (A.15) and (A.17) in the annex 2. Solving these equations yields the
evolution in time of the mean number of particles in the system:

hN(t)i = N0 e� (⌫1-1) t , (II.10)

and of the variance

�2(t) =


⌫2

(⌫1 - 1)
- 1
� 

hN(t)i2

N0
- hN(t)i

�
, (II.11)

with the initial conditions hNi(0) = N0 and �2(0) = 0. To characterise the
behaviour of the total number of particles in the system, we can compare
these two quantities in different ways:

• the variance-to-mean ratio (VMR) [Cox and Lewis 1966], also called dis-
persion index or Fano factor [Fano 1947],

VMR(t) =
�2

hNi(t) , (II.12)

gives an estimation of the dispersion of the random variable N, by
comparison with a Poisson variable with the same mean3 (for which

3The use of this comparison is easier to understand in the context of a spatially extended
problem: starting from a uniform distribution of walkers in the system and dividing the
space into small identical squares (quadrats), the random number Ni of particles in each
quadrat will initially follow a Poisson law [Poisson and Schnuse 1841] (for which VMR = 1).
It will then stay Poissonian in the case of Brownian walker/purely diffusing walker, i.e. the
VMR will stay at 1. A VMR becoming significantly higher than 1 will denote a clustered
distribution of particles in space [Houchmandzadeh 2009].
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VMR = 1). In particular, the variable is said “over dispersed” if
VMR > 1, and “under dispersed” if VMR < 1;

• the ratio between the standard deviation �(t) and the mean hN(t)i,
called relative standard deviation (RSD) or coefficient of variation [Everitt
and Skrondal 2002]. Here we will use its square:

RSD2(t) =
�2

hNi2 (t) =
hN(t)2i- hN(t)i2

hN(t)i2 . (II.13)

If this ratio is larger then 1, the fluctuations of N around its mean are
larger than the mean itself. In other words, the population size fluctu-
ates between twice its mean and 0. Obviously, the death of the whole
population is then very likely to happen. This is due to a fundamental
asymmetry of the system: birth events can not happen anymore if the
population size becomes 0, whereas a population that has doubled its
size can still die later on.

Let us now see how these quantities behave in the different regimes defined
in Eq. (I.27): subcritical, supercritical and critical.

Subcritical ⌫1 < 1 In this case,

RSD2(t) =
1
N0

✓
1 +

⌫2

(1 - ⌫1)

◆⇣
e�(1-⌫1) t - 1

⌘
, (II.14)

grows exponentially with a characteristic time ⌧sub = [�(1 - ⌫1)]-1. This
observation is coherent with the evolution of the mean number of particles
in the system that decreases with the same characteristic time, hNi(t) =
N0 exp(-�(1 - ⌫1) t). The RSD2 becomes thus larger than 1 for a time /
ln(N0/⌫2)[�(1 - ⌫1)]-1, after which strong fluctuations of the system kill
the whole population. The VMR, starting from 0, only increases in time
with the characteristic time ⌧sub,

VMR(t) =
✓

1 +
⌫2

1 - ⌫1

◆⇣
1 - e-�(1-⌫1) t

⌘
, (II.15)

to saturate to a constant larger then 14.

4Note that in a spatially extended case, with an initial uniform distribution of particles,
dividing the space into small identical squares, the random number Ni of particles in each
quadrat is initially Poisson distributed, such that its VMR(0) = 1 , �0 =

p
N0. Then, start-

ing the branching process, VMR(t) increases monotonically, so that the random variable Ni

is always over-dispersed for any positive time t > 0.
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Supercritical ⌫1 > 1 In this case, the variance to mean square ratio ini-
tially increases in time, to eventually saturate at large time to a constant

RSD2(t) =
⌫2 - (⌫1 - 1)
N0(⌫1 - 1)

⇣
1 - e-�(⌫1-1) t

⌘
�!

t!+1 1
N0


⌫2

(⌫1 - 1)
- 1

�
.

(II.16)

Therefore fluctuations of the population size N(t) can stay smaller than its
mean or become larger than it5, depending on this ratio. These fluctuations
thus

- increase with the relative fluctuations of the number of particles emit-
ted by collision, i.e., with the ratio of the mean number of pairs to the
mean number of new particles created at a collision: ⌫2/(⌫1 - 1). The
fluctuations thus increase with the process of pair production at a colli-
sion (parametrised by ⌫2), but also when the system get closer to criticality
(⌫1 ! 1).

- decrease when the initial size N0 of the population is increased.
The reproduction process tends to increase the fluctuations, whereas a
larger initial population naturally decreases them. However, as the size of
the whole population, given in Eq. (II.10), grows exponentially with time
(which can compensate increasing fluctuations), this it not sufficient to fully
characterise the dispersion of the population size. In fact, the variance-to-
mean ratio also grows exponentially in time6,

VMR(t) =
✓

⌫2

⌫1 - 1
- 1
◆⇣

e�(⌫1-1) t - 1
⌘

, (II.17)

so that the random variable N becomes significantly over-dispersed for
large time.

Critical ⌫1 = 1, the mean number of particles in the system is constant,
equal to

hNi(t) = N0 , for all t. (II.18)

However, the VMR ⇠ �⌫2 t grows linearly: the number of particles in
the system becomes highly dispersed with time. Furthermore, the relative
standard deviation squared also grows linearly in time,

RSD2(t) =
�2

hNi2 (t) ⇠
�⌫2

N0
t . (II.19)

5These fluctuations can explain why, in the case ⌫1 > 1, the probability that such a
system "survives", i.e. N(t) > 0, at large time t can be strictly smaller than 1, even though
hN(t) i grows [Harris 1963; Zoia et al. 2012a]. This probability is called survival probability.
This argument will be seen more in details in Sec. II.3.3.b

6Note that ⌫2
⌫1-1 > 2
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such that the RSD can become larger than 1. We thus expect an extinction
of the whole population in a characteristic extinction time

⌧E =
N0

�⌫2
, (II.20)

Characteristic extinction time

after which the variance � becomes larger than the mean hNi (RSD > 1).
This phenomenon was named “critical catastrophe” by Williams [1974]. Note
that this time is longer for a larger initial population N0, and is shorter for
a faster reproduction process (�⌫2 is the rate at which pairs of particles are
created in the system).

The existence of this finite extinction time may seem to contradict
Eq. (II.18), which states that the mean number of particles is a constant.
However, the average h·i is taken over all realisations of the system (ensem-
ble average): while most realisations will be empty at a time t > ⌧E, few oth-
ers will have exploded, compensating for the empty ones, and thus result-
ing in a constant population size on average. This is the reason why repre-
senting the size of the population by its ensemble average seems to be par-
ticularly misleading here. In fact, a system where the ensemble average is
representative of a single realisation is said self-averaging. In our system, the
contradiction highlighted above indicates a failure of self-averaging [Young
et al. 2001]: as a direct consequence, the knowledge of the mean becomes
useless to characterise a single realisation of the system. We can thus ques-
tion the appropriateness of the transport equations introduced in the first
chapter in characterising the fluctuations of the system.

II.1.3 Limits of the usual transport equations to describe fluctuations

Let us keep on working with the zero-dimensional problem, and compare
two quantities:

. the probability P1(t) to find one particle in the cell at time t, starting
with a single particle in the cell at initial time, P1(0) = 1;

. the mean number of particles in the cell at time t: hN(t) i.
We then focus on two different systems: a first one (case a.), where particles
can only be absorbed (without birth), and a second one (case b.), where
particles can reproduce or die, like in the previous system.
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a. Without particle birth

Following the lines of Annex 2, the master equation for a system where
particles can only die, with a rate �0, is

dPN
dt

(t) = -�0NPN(t) + �0(N+ 1)PN+1(t) . (II.21)

On one hand, starting the system with a single particle, we have that PN(t) =
0 for all N > 1, and obtain for P1(t):

dP1

dt
(t) = -�0P1(t) . (II.22)

The variation of the probability P1(t) is due to the death of the initial single
particle of the system, which happens with a rate �0. On the other hand, the
equation for the mean number of particles can be extracted directly from
the master equation (II.21), using the definition hN(t) i =

P
N>0 NPN(t):

dhN i
dt

(t) = -�0hN i(t) . (II.23)

In this simple system, we observe that the mean number of particles hN i
and the probability P1 (of finding one particle in the system, starting with
a single particle) obey the same time evolution equation.

Adding diffusion in the problem – we consider an homogeneous sys-
tem where particles can die and diffuse (with constant speed and isotropic
scattering), as described at the end of Sec. (I.2.5) – we know already that the
density of particles in the system is given by the diffusion equation (I.116)
without the fission source term:

@

@t
n(r, t)-D�n(r, t) + �cn(r, t) = 0 , (II.24)

where �c is the rate at which particles are captured (�c = v⌃c for particles
with finite speed v). Consider now the probability density p(r, t) of finding
a particle in the vicinity of r at time t in the system. This probability density
is known to obey the Fokker-Planck equation for Brownian motion with no
drift and with absorption [Kadanoff 2000], which is exactly the same equa-
tion than Eq. (II.24). The density n(r, t) and the probability density p(r, t)
thus follow exactly the same equation. The same correspondence exists in
the case of particles performing exponential flight (described in the first
chapter): in absence of branching, the evolution equation for the proba-
bility density p(r, v, t) to find a particle in the vicinity of the phase-space
position (r, v) can be obtained using exactly the same detailed balance re-
alised in Sec. I.2.1 to obtain the equation for the density in the phase space
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n(r, v, t). As a consequence, the two equations (for p and for n) are identi-
cal, both given by the transport Eq. (I.54) without the fission term.

In these three examples (zero dimensional problem, diffusion and expo-
nential walks), the density n and the probability density p (mean hN i and
probability P1 for the first example) follow the same equation. In fact, this is
always the case for a process with particles that can diffuse and die, with-
out branching. Moreover, the initial density of particles can be related to
the initial probability density of particles in the system: hN(0) i = N0 P1(0)
for the zero-dimension case, n(r, 0) = N0 p(r, 0) for the Brownian motion,
and n(r, v, 0) = N0 p(r, v, 0) for the exponential flight. Solving, in each case,
for the time course of n and p with the above respective initial conditions,
we obtain for all t,8>><>>:

hN i(t) = N0 P1(t) , for the zero-dimensional case;

n(r, t) = N0 p(r, t) , for Brownian motion;

n(r, v, t) = N0 p(r, v, t) , for exponential flights,

(II.25)

i.e. that mean and probability are simply proportional. For this reason,
in the three cases mentioned above, the mean quantities (hN i, n(r, t) and
n(r, v, t)) can be given a probabilistic interpretation, and the particle be-
haviour in the system is, as a consequence, well represented by them.

b. With birth of particles

Let us now consider the simplest branching process, called binary branching
process, where particles can die, with a rate �0 = �p0, or replicate, with
a rate �2 = �p2 (the initial particle is absorbed, giving birth to two new
particles, resulting in a net increase of one particle in the system). For this
binary branching process, for all i > 2, �i = �pi = 0, and the master
equation (II.9) gives for P1(t),

dP1

dt
(t) = -(�0 + �2)P1(t) + 2�0P2(t) , (II.26)

whereas the equation for the mean number of particles in the system
Eq. (A.15) becomes

dhN i
dt

(t) = (�2 - �0)hN i(t) . (II.27)

The time evolution equation for the probability P1 is thus very different
from the equation for the mean number of particles hN i. Furthermore the
equation for P1 is in fact coupled to the equation for P2(t):

dP2

dt
(t) = -2(�0 + �2)P2(t) + 3�0P3(t) + �2P1(t) , (II.28)
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which is coupled to the equation for P3(t), etc. The equation for P1 is thus
associated to a hierarchy of coupled equations, all given by Eq. (II.9).

c. Conclusion

In a system where particles can only move or die, the particle density is a
relevant tool to understand the behaviour of the whole population, in that
it is directly proportional to the probability density of particles. However,
adding branching to the system significantly alters its behaviour, breaking
the link between density and probability density that exists in the absence
of branching. In particular, the critical catastrophe highlighted by Williams
and the "non self-averaging property" of the system are some of the conse-
quences of this peculiarity of branching systems.

The "non self-averaging" property of the system is enhanced when the
number of particles gets smaller. For most applications in reactor physics,
the neutron population in a nuclear reactor is sufficiently large (108 n/cm3

in a PWR at operating condition [Duderstadt and Hamilton 1976]) for the
neutron density to give a good characterisation of the neutron population
and of its dynamics within the reactor core. Thanks to the large number of
neutrons, fluctuations around the mean remain relatively small. In theses
cases, it is meaningful to use the classical transport equations (such as the
Boltzmann equation (I.55)) to predict the behaviour of the neutron popula-
tion in the reactor core, even though they are equations for the density of
particles, and not for the probability density.

However, as we have just seen, the branching process that is inherent
to the fission chain is at the origin of strong fluctuations, which increase
when the system is closer to criticality (see Eq. (II.16)). In fact it is known
that there exist some situations for which the knowledge of the mean or
the variance provides an incomplete description of the state of the neu-
tron population [Prinja 2012], as illustrated by the example of the clustering
phenomenon in Sec. I.3.1. For these cases, we need a better description of
the system, which, for instance, can be provided by the probability density
function of finding a particle at a given position in the system.

In the following we will attempt to give a deterministic description of
the fluctuations in the system. For this purpose, a forward or a backward
approach can be adopted. Whereas a forward description of a branching
process would provide an infinite family of coupled equations (see for in-
stance Eq. (II.21) in the previous section), a backward description would
give a single equation containing a non linear term [Prinja 2012]. In this
chapter, will focus on establishing the backward equations for every mo-
ments of interesting quantities in the field of reactor physics, using a for-
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malism known as Feynman-Kac formalism [Kac 1949; Zoia et al. 2012b].

2 FEYNMAN-KAC BACKWARD EQUATIONS

A central question for reactor physics, and for random walks in general, is
to determine the occupation statistics of the stochastic paths in a given re-
gion V of the space [Condamin et al. 2007; Grebenkov 2007; Berezhkovskii
et al. 1998; Agmon 2011; Bénichou et al. 2005]. In this context, the two
natural observables of the system are the total length7 lV travelled by neu-
trons in V and the number nV of collisions occurred in V during a cer-
tain time [Spanier and Gelbard 1969; Lux and Koblinger 1991; Blanco and
Fournier 2006; Mazzolo 2004; Zoia et al. 2011]. In reactor physics, for in-
stance, the knowledge of the mean length h lV i allows assessing the neu-
tron flux due to the chain reaction, and thus the deposited power, whereas
the mean number of collision hnV i allows assessing the reaction rate, and
thus to the number of radiation-induced structural defects [Pázsit and Pál
2007; Bell and Glasstone 1970]. In this section, we will see how to establish
backward evolution equations for every moment of lV ; other quantities of
interest will then be studied in the next section. For this purpose, we will
closely follow the derivation of [Zoia et al. 2012b] valid for systems with
homogeneous medium, with constant particle speed and isotropic scatter-
ing, and extend their result by relaxing these constraints.

II.2.1 “Backward” quantities

a. Definitions

Consider one neutron starting from (r0, v0) at time t = 0. The total length
that this neutron and all its descendants travel up to a time t in a sub-
volume V of the system is the length lV(t | r0, v0) introduced above. This
quantity is a stochastic variable that depends on the realisation of the walk
of each neutron. By definition it can be computed, for one realisation of the
branching random walk, as the sum of the length travelled in V by each
paths of the branching trajectory:

lV(t | r0, v0) =
X

every path

Zt
0

1V

⇥
r(t0)

⇤
v(t0)dt0 , (II.29)

where t is the observation time and 1V [r] is the marker function of the region V

1V [r] =

�
1 for r 2 V ,
0 elsewhere .

(II.30)

7Here we are essentially focusing on walks with finite velocities. In the case of walks
with infinite velocity (Brownian motion, Lévy flight), the residence time is a better observ-
able than the total length lV .
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The length lV(t | r0, v0), resulting from a single neutron emitted in (r0, v0)
at t = 0, contributes to the total length lV(t |S0) resulting from an initial
source S0 of neutrons in the system:

lV(t|S0) =

Z
S0

d3r0 d3v0 lV(t|r0, v0)S0(r0, v0) , (II.31)

where S0(r0, v0) denotes the distribution of the initial source of neutrons.
Clearly, lV(t |S0) is also a random variable. Its mean over the different real-
isations of the system, denoted h lV i (t|S0), is commonly used in the field of
Monte Carlo simulations of nuclear reactors, where it is called track-length
estimator [Lux and Koblinger 1991]. By definition, h lV i (t|S0) is related to
neutron angular flux 'S0(r, v, t) resulting from an initial source S0 of neu-
trons, through8 the integrals [Zoia et al. 2012b]:

h lV i(t|S0) =

Zt
0

dt
Z
V

d3r
Z

4⇡
d2!

Z+1
0

dv'S0(r,!, v, t) . (II.32)

The symbol h·i denotes the ensemble average, which is an average over all
the possible realisations of the system. For instance, h lV(t|r0, v0) i is the
average of lV(t|r0, v0) over all the possible paths that the initial neutron
and its descendants can take.

b. Forward vs Backward quantities

In Eq. (II.32), taking a point source S0 ⌘ (r0, v0), the quantity h lV i(t | r0, v0)
is expressed as the integral of a forward quantity: the flux 'S0(r, v, t) re-
sulting from a point source in (r0, v0). h lV i can thus be given a “forward”
interpretation: it is the mean total length travelled in V up to time t, with,
for initial condition, a point source in (r0, v0) at time t = 0. However, a
“backward” interpretation can be more natural for h lV i, as it can be seen as
the mean total length travelled in V as a function of the initial position and
direction of the first neutron:

h lV i(t|r0, v0)
.
= h lV i(r0, v0, t)| {z }

backward notation

, (II.33)

This is in fact true for the stochastic variable lV(r0, v0, t) and for each of its
moments h lmV i(r0, v0, t), that we will denote:

Moment of order m Lm(r0, v0, t) .
= h lmV (r0, v0, t) i , (II.34)

Each moment9 h lmV i(r0, v0, t) will thus satisfy a backward equation, with, for
final condition, the region V (“detector”) where the length lV is estimated
(see Fig. II.1b).

8 'S0(r, v, t)d3r d3v dt is the total length travelled by neutrons of the system in the vol-
ume element d3r d3v during the time interval dt, and v = v!.

9The probability density function of the total length lV also satisfy a backward equation.
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(a) Forward (b) Backward

Figure II.1: Forward vs backward quantities

h lV i(r0, v0, t) can be seen as a backward quantity, in contrast with the
forward quantity 'S0(r, v, t).

Forward quantity 'S0(r, v, t)
Solution of a forward differential equation,
�! integrated on a source S0 (initial conditions);
�! which gives the quantity 'S0 at time t as a function of the arrival
positions (r, v) in the phase-space.

Backward quantity h lV i(r0, v0, t)
Solution of a backward differential equation,
�! integrated on a detector V (final conditions);
�! which gives the quantity h lV i at time t as a function of the starting
positions (r0, v0) in the phase-space.

Forward vs Backward quantities

In the context of nuclear reactor physics, the track-length estimator h lV i
is computed with a Monte Carlo simulation (for instance with the Tripoli-4®

code developed at the CEA Saclay [Brun et al. 2011, 2013]). On the other
hand, thanks to Eq. (II.32), h lV i is directly related to the neutron flux 'S0 ,
which can also be assessed by solving numerically the Boltzmann equa-
tion (I.55), with a deterministic simulation. However, as pointed out in the
last section, due to the branching process, the Boltzmann equation does not
contain any further information about the higher moments of lV (as it is in-
trinsically an equation for averaged observables). Thus, whereas higher
moments of lV can be obtained by Monte Carlo simulation, we have not
introduced yet any corresponding equations for them, which could be in-
deed useful for characterising the behaviour of the fluctuations in the sys-
tem through deterministic numerical simulation.
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To go beyond the average description, we need another formalism that
will allow us to compute all the moments of lV . This can be achieved with
the Feynman-Kac formalism [Zoia et al. 2012b], which allows us to derive
a backward equation for each moment of lV , called backward Feynman-Kac
equation.

Numerical Simulation in Reactor Physics
Deterministic simulations solve the transport equation for the
whole neutron population [CEA collectif et al. 2013].
�! advantages: fast; can simulate the behaviour of the whole
population of neutrons in a reactor core.
�! disadvantages: approximation due to the discretisation and
to the modelisation chosen for the simulation.
Monte Carlo Simulations simulate the physics of the system at
a microscopic scale by following the history of each neutron in
the system [CEA collectif et al. 2013].
�! advantages: - no need for discretisation, they simulate di-
rectly the physics of the system. Thus, neutrons can be followed
continuously in energy, and the simulations can take into ac-
count 3-dimensional systems with any type of geometry, such
as, in particular, stochastic media. Representative of the physics
of the system, they are considered as reference codes.
�! disadvantages: - Time consuming, indeed the statistical con-
vergence of Monte Carlo simulations is very slow compared to
the convergence of deterministic simulations.
- Memory intensive, as the history of each individual neutron is
followed. To give an idea, a PWR at operating condition gener-
ates 1019 neutrons per second [CEA collectif et al. 2013], which
can not be simulated with the power of current computers.
- Not ready yet for simulations of neutron transport out of equi-
librium, nor for the computation of the adjoint flux [CEA collectif
et al. 2013].
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These two types of simulations should be seen as complemen-
tary rather than competing. Indeed, for instance, deterministic
simulations can provide tools to accelerate Monte Carlo simula-
tions (for example with a method of importance sampling [Krauth
2006]). Inversely, Monte Carlo simulations are already used as
reference codes to validate deterministic simulations [CEA col-
lectif et al. 2013]. They can also be used to adapt real nuclear
data for the purpose of discretisation in deterministic simula-
tions [CEA collectif et al. 2013].

II.2.2 Feynman-Kac formalism

The total length lV(r0, v0, t) travelled in V up to a time t is a stochastic
variable. Ideally, one would like to derive an equation for the probability
density function of lV(t, r0, v0). However, this equation is particularly hard
to obtain directly. A solution is to establish an equation for the moment
generating function [Grimmett and Stirzaker 2001]

moment generating function Qt(s|r0, v0) =
⌦

e-s lV(r0,v0,t) ↵ , (II.35)

from which each moment can be directly obtained by derivation10:

Lm(r0, v0, t) = (-1)m
@mQt(s | r0, v0)

@ sm

���
s=0

. (II.36)

In this section, we will derive the backward equation for Qt(s | r0, v0) by
closely following the lines of [Zoia et al. 2012b]. The approach that they
take was originally proposed by Kac for Brownian motion [Kac 1949] and
is based on the Feynman path integral formalism [Zoia et al. 2012b], such
that it is commonly called Feynman-Kac formalism. This method applies
more generally to continuous-time Markov processes [Kac 1951; Majum-
dar 2005] and has been recently extended to non-Markovian walks [Turge-
man et al. 2009]. The derivation of [Zoia et al. 2012b] was done for systems
that are homogeneous, with isotropic scattering and where particles evolve
with a constant speed only. However, in realistic situations, the physi-
cal parameters characterising the neutron transport process, such as the
cross-sections and the moments ⌫k, depend on the position and the energy
of the neutrons, and the scattering angular distribution is often strongly
anisotropic [Bell and Glasstone 1970]. Here we will relax the constraint on
the isotropy of the scattering kernel, introduce speed and space dependent
cross-sections, and consider particles with non-constant speed.

10In the following, we will keep the notation L
.
= L1 for the first moment (mean of lV ).
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a. The system

In this section we will first use the general notation of branching exponen-
tial walks introduced in Sec. I.1.2.c. to derive the backward equation for
the moment generating function. As moment equations can be useful for
the purpose of numerical simulations in reactor physics, we will work on
systems as realistic as possible, considering (see Fig. II.2)

. that particle speeds are non constant and can change at each collision;

. an inhomogeneous background material: ⌃(r, v), pk(r, v), ⌫(r, v);

. anisotropic scattering: C(v ! v0).
Finally, we will adapt more specifically the final equations to the field of
reactor physics, using the change of notation Eq. (I.28).

Figure II.2: The system of interest can be inhomogeneous, with
anisotropic scattering, and neutron speed is not necessar-
ily constant.

b. How to establish a backward equation?

In general, we are used to work with forward equations, that we establish
by building the forward quantity at time t+ dt from the one at time t fol-
lowing the evolution of the process between t and t + dt (see Fig. II.3a).
Backward equations are not as commonly used. In the previous section,
the differences between forward and backward quantities were stressed.
Let us see now how to build a backward equation; this is illustrated in Fig-
ure II.3b.

Qt(s|r00, v0
0) denotes the moment generating function observed at time

t0 + t for one neutron emitted from (r00, v0
0) at an arbitrary time t0. Setting

t0 = dt, this quantity can be related to the moment generating function
Qt+dt(s|r0, v0) observed at time t+dt for one neutron emitted from (r0, v0)
at time 0. For this purpose, we need to understand how one neutron can
be emitted in r00, v0

0 at time dt as a result of one neutron emitted in r0, v0
at time t = 0 (see Fig. II.3b). Note that all of this is possible thanks to
the Markovian property of the process we are interested in: the branching
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random walk performed by neutrons, described in Sec. I.1.2. Thanks to this
property, Qt(s|r00, v0

0) is independent on the history of the particle before the
“start” at the position (r00, v0

0) [Pázsit and Pál 2007].

(a) Forward (b) Backward

Figure II.3: Conceptual scheme of the differences in construction of forward (a)
and backward (b) equations.

c. Backward equation for the moment generating function

In order to relate Qt(s|r00, v0
0) to Qt+dt(s|r0, v0) for a small dt, we need to

understand exactly what happened between t = 0 and dt. Let us detail the
different possible histories for a single neutron emitted in r0, v0 to arrive in
r00, v0

0 at a time dt later:

(a) with probability 1 - ⌃(r0, v0)v0 dt, the neutron does not interact
with the medium and goes straight with a constant speed v0, from
r0 to r0 + dr0 = r0 + v0 dt (see Fig. II.4a);

(b) with probability ⌃(r0, v0)v0 dt, the neutron undergoes a collision
in r0 giving then rise to k neutrons with probability pk (see Fig. II.4b).

Case (a) - the particle does not interact with the medium (see Fig. II.4a)
The total length travelled in V from the start to t+ dt can be decomposed
in two terms,
�! the length travelled until dt by the first neutron (in yellow on the
figure), performing a straight line with a constant speed v0, i.e. a length
1V(r0)v0 dt;
�! the length travelled from dt to t+ dt by the first neutron and its de-
scendants, starting from (r00, v0

0) = (r0 + dr0, v0) at time dt (in green on the
figure), i.e. the length lV(r0 + dr0, v0, t);
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(a) Straight line (b) Branching

Figure II.4: Different possible histories for a neutron during dt.

Thus the total length reads:

lV(r0, v0, t+ dt) = 1V(r0)v0 dt| {z }
travelled in V by the 1rst neutron

+ lV(r0 + dr0, v0, t) . (II.37)

Using the definition Eq. (II.35), the contribution to Qt+dt(s|r0, v0) due to
case (a) is therefore

Qa
t+dt(s|r0, v0) =

�
1 - v0 ⌃(r0, v0)dt

�
e-sv0 1V(r0)dt ⌦ e-s lV(r0+dr0,v0,t) ↵

=
�
1 - v0 ⌃(r0, v0)dt

�
e-sv0 1V(r0)dt Qt(s|r0 + dr0, v0)

(II.38)

Case (b) - the particle interacts with the medium In this case, the initial
particle is absorbed in r0, the length thus travelled in V between 0 and dt is
zero. Then, with a probability pk(r0, v0), k particles are emitted with veloc-
ities {vi}06i6k, such that lV is equal to the sum of the total length travelled
by each of these new particles and their descendants (see Fig. II.4b). There-
fore,
with probability p0, lV(r0, v0, t+ dt) = 0
with probability p1, lV(r0, v0, t+ dt) = lV(r0, v1, t)
with probability p2, lV(r0, v0, t+ dt) = lV(r0, v1, t) + lV(r0, v2, t)
with probability pk, lV(r0, v0, t+dt) = lV(r0, v1, t)+ · · ·+ lV(r0, vk, t)
where the velocities {vi}06i6k are given by the pdf C(v0 ! vi).

Thus, for example, the contribution to Qt+dt(s|r0, v0) due to the creation
of 1 new particle in r0 during dt is

Qb,k=1
t+dt (s|r0, v0) =

�
v0 ⌃(r0, v0)dt

�
p1 hQt(s|r0, v1) iv1 , (II.39)
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using the definition Qt(s|r0, v1) =
⌦

e-s lV(r0,v1,t) ↵. The expectation h · iv1

denotes an average over all possible velocities v1 of the particle leaving the
collision. Similarly, the contribution due to the creation of k new particles
in r0 involves a term of the form:
⌦

e-s lV(r0,v1,t) · · · e-s lV(r0,vk,t) ↵ =
⌦

e-s lV(r0,v1,t) ↵ ⌦ · · ·
↵ ⌦

e-s lV(r0,vk,t) ↵

= Qt(s|r0, v1) · · · Qt(s|r0, vk) (II.40)

where the expectation of the product becomes the product of the expecta-
tions, as it is assumed that descendant particles are independent. Further-
more the velocities of the descendants are independent, all given by the
same pdf C(v0 ! v1), such that we can successively write:

Qb,k
t+dt(s|r0, v0) =

�
v0 ⌃(r0, v0)dt

�
pk hQt(s|r0, v1) · · · Qt(s|r0, v1) iv1···vk

,

=
�
v0 ⌃(r0, v0)dt

�
pk hQt(s|r0, v1) iv1 · · · hQt(s|r0, v1) ivk

,

=
�
v0 ⌃(r0, v0)dt

�
pk

�
hQt(s|r0, v1) iv1

�k . (II.41)

The expectation hQt iv1 over the random velocity v1 of the leaving par-
ticle is given by the integral over v1 weighted by the adjoint probabil-
ity density C⇤(v1 ! v0 | r0), conjugate of the collision probability density
C(v0 ! v1 | r0) [Dynkin 1965]:

hQt iv1(s|r0, v0) =

ZZZ
d3v1C

⇤(v1 ! v0|r0)Qt(s|r0, v1) , (II.42)

= C⇤⇥Qt

⇤
(s|r0, v0) . (II.43)

where we defined the adjoint collision operator C⇤[·] associated to C⇤11. There-
fore, the contribution due to the creation of k new particles in r0 is:

Qb,k
t+dt(s|r0, v0) =

�
v0 ⌃(r0, v0)dt

�
pk

⇣
C⇤⇥Qt

⇤⌘k
(s|r0, v0) . (II.44)

Differential equation The final expression for Qt+dt(s|r0, v0) resulting
from all these contributions is

Qt+dt(s|r0, v0) =
�
1 - v0 ⌃(r0, v0)dt

�
e-sv0 1V(r0)dt Qt(s|r0 + dr0, v0)| {z }

transport r0 ! r0+dr0

+
�
v0 ⌃(r0, v0)dt

�
G
⇣
C⇤⇥Qt(s|r0, v0

0)
⇤⌘| {z }

collision in r0

, (II.45)

11Note that the backward collision operator defined here, is not a proper backward ver-
sion of the forward collision operator defined in Eq. (I.46), as the parameter ⌫1 appearing
in Eq. (I.46) is not taken into account here.
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where G is the generating function of the descendant number k:

G[z] =
X
k>0

pk z
k . (II.46)

An expansion in the leading order in dt of the transport term, with dr0 =
v0dt,8<:e-sv0 1V(r0)dt = 1 - sv0 1V(r0)dt+O(dt2)

Qt(s|r0 + dr0, v0) = Qt(s|r0, v0) + v0 !0 ·rr0Qt(s|r0, v0)dt+O(dt2) ,

finally leads to the backward differential equation for the moment generat-
ing function Qt(s|r0, v0), known as [Zoia et al. 2012b]

1
v0

@Qt

@t
= !0 ·rr0Qt| {z }

Transport

-s 1V(r0)Qt| {z }
Counts

-⌃(r0, v0)Qt| {z }
Capture

+ ⌃(r0, v0)G
�
C⇤[Qt]

�| {z }
Descendant contribution

.

(II.47)

Backward Feynman-Kac equation for Qt(s|r0, v0)

This equation should be considered together with the initial condition
Q0(s|r0, v0) = 1 and appropriate boundary conditions. Here we recognise
the form of several terms already introduced in the first chapter:

. the first term !0 ·rr0Qt is a transport term, whose form is specific
to exponential random walks (it is the differential form of the exponential
transport kernel, see Chap 1);

. the term -⌃(r0, v0)Qt corresponds to the absorption of the incoming
particle at each collision.
Regarding the two other terms, we can say that:

. The term -s 1V(r0)Qt is a counting term, appearing here because lV
is a quantity that is summed along the trajectory.

. The last term finally is the contribution of the descendants, including
a branching term: it corresponds to the increase of Qt due the creation of
particles at a collision. In particular, note that given the form of G[z] in
Eq. (II.46), this branching term is non linear. Observe also that the adjoint
collision operator C⇤ contains an integral (see Eq. (II.42)), such that Eq. (II.47)
is in fact a non linear integro-differential equation.

d. Backward equation for each moment of the total length travelled in a region V

The moment generating function of a random variable is an alternative
specification of its probability density function12, and thus it also contains

12From a inverse Laplace Transform of the latter equation, it is possible to obtain the
equation for the pdf of lV [Appel 2013]. However, the resulting equation will be also a non
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all the information about the random variable. However, the equation (II.47)
verified by Qt(s|r0, v0) is a non linear integro-differential equation, which
is, in general, difficult to solve. Nevertheless, in practice, we can reduce
the problem to the study of the first moments of lV , and, from the defini-
tion of the moment generating function Eq. (II.35), we can directly derive
the equation for the moment of order m by taking the m-th derivative of
Eq. (II.47). Using the Faà di Bruno formula13 [Faà di Bruno 1855; Craik
2005] for computing multiple derivatives of the composition of functions
G
�
C⇤⇥Qt

⇤�
(see Eq. (A.7) in Annexe 1), the equation for Lm(r0, v0, t) reads

1
v0

@Lm
@t

= !0 ·rr0Lm| {z }
Transport

+m 1V(r0)Lm-1| {z }
Counting term

-⌃(r0, v0)Lm| {z }
Loss at collisions

+ ⌃(r0, v0)
h
⌫1 C

⇤⇥Lm
⇤
+

mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤⌘i

| {z }
Contribution of the descendants at each collision

, (II.48)

Equation for Lm(r0, v0, t)

with the initial condition Lm(r0, v0, 0) = 0 for all m. The functions
Bm,j[x1, · · · , xm-j+1], whose notation was simplified in Bm,j[xi],
are the Bell polynomials (see Annexe 1). They commonly appear when
dealing with the combinatorics of branched structures [Pitman 2006]. The
constants ⌫j are the falling factorial moments (of order j) for the number
of descendants per collision, given by the j-th derivative of the generating
function G:

⌫j
.
= h k(k- 1)(...)(k- j+ 1) i

=
X
k>0

k(k- 1)(...)(k- j+ 1)pk (II.49)

⌫j = G(j)[1] . (II.50)

Observe that, as announced in Sec. (II.1.1), the first moment L1 depends
only on ⌫1, the second moment L2 only on ⌫1 and ⌫2, and so on.

Interestingly, it turns out that equation (II.48) has exactly the same form
as the one derived by Zoia et al. [2012b] for branching random walks evolv-
ing in a simpler system (an homogeneous medium, with isotropic scatter-
ing and constant speed along the paths), except that

. ⌃ and ⌫j depend on the position r0 (inhomogeneous medium);

. the speed v0 is now a variable of the problem instead of a constant

linear integro-differential equation.
13also known in french as Arbogast’s formula [Arbogast 1800]
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parameter, such that ⌃ and ⌫j also depend on v0 (particle speed changes at
any collision);

. the collision kernel C(v0 ! v0) is not necessarily isotropic.
In this section we have thus showed that the equation of [Zoia et al. 2012b]
carries over to our more general case with the different interpretation and
minor changes mentioned above. For applications in reactor physics, this
generalisation is of course very useful, and in the next section we illustrate
this result on a simple example in reactor physics (see Sec. II.3.1).

II.2.3 Comments on the form of the equation

a. Reactor physics notation

To transpose Eq. (II.48) from the general branching random walk notation
to the one used in reactor physics (see Sec. I.1.2), we have to replace:

⌫1 ⌃(r0, v0)C
⇤(v0 ! v1 | r0)

# by (II.51)

⌃s(r0, v0)C
⇤
s(v0 ! v1 | r0) + ⌫1 ⌃f(r0, v0)C

⇤
f(v0 ! v1 | r0) ,

and, for the branching terms:8<: ⌫i>2 ⌃(r0, v0)
by�! ⌫i>2 ⌃f(r0, v0)

C⇤(v0 ! v1 | r0)
by�! C⇤

f(v0 ! v1 | r0)
(II.52)

where ⌃s and ⌃f are respectively the scattering and the fission cross-section
and C⇤

s and C⇤
f are the adjoint of the probability densities respectively asso-

ciated with the scattering and the fission kernel defined in Sec. I.1.2. Note
that this transformation extends the one of Eq. (I.28) to the study of the
fluctuations, by taking into account higher order properties of the process
(⌫i>2). The backward equation (II.48) finally becomes

1
v0

@Lm
@t

= L⇤Lm +m 1V(r0)Lm-1 + ⌃f

mX
j=1

⌫jBm,j
�
C⇤
f

⇥
Li
⇤�

L⇤· = ! ·rr0 · -⌃(r0, v0) · +⌃s(r0, v0)C
⇤
s

⇥
·
⇤

, (II.53)

where we introduced the backward transport operator L⇤ [Zoia et al. 2012a;
Pázsit and Pál 2007]. Observing that the operator

⌃s(r0, v0)C
⇤
s

⇥
·
⇤
=

ZZZ
d3v1 ⌃s(r0, v0)C

⇤
s(v1 ! v0|r0) [·] , (II.54)
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is actually the adjoint of the forward operator

Cs

⇥
⌃s ·

⇤
=

ZZZ
d3v0 ⌃s(r0, v0)Cs(v0 ! v1|r0) [·] , (II.55)

appearing in the definition Eq. (I.60) of the transport operator L, we can
check that the backward transport operator L⇤ is the adjoint operator of
L [Bell and Glasstone 1970].

b. Equation for the mean, link with the forward equation

Eq. (II.53) becomes for the average total length L(r0, v0, t) travelled in V
(m = 1):


1
v0

@

@t
- L⇤

�
L(r0, v0, t) = ⌃f ⌫1 C

⇤
f

⇥
L
⇤
+ 1V(r0) (II.56)

where L⇤ is the backward transport operator introduced above. Here, we can
observe that the backward equation for the first moment is the adjoint of
the forward transport equation (I.61) (Boltzmann equation), with a supple-
mentary source term 1V(r0) (in this chapter we have not considered any
external source). Indeed, the backward operator

⌫1(r0, v0)⌃f(r0, v0)C
⇤
f

⇥
·
⇤
=

ZZZ
d3v1 ⌫1 ⌃f(r0, v0)C

⇤
f(v1 ! v0|r0) [·] ,

(II.57)

is the adjoint of the operator

Cf

⇥
⌃f ·

⇤
=

ZZZ
d3v0 ⌫1 ⌃f(r0, v0)Cf(v0 ! v1|r0) [·] , (II.58)

where Cf

⇥
·
⇤

is given by Eq. (I.50). As seen earlier, the supplementary
source term 1V(r0) is here because we are computing a quantity that is ac-
cumulated along the time14.

c. Second and other moments - non linear term responsible for large fluctuations

For higher moments, Eq. (II.53) can be rewritten


1
v0

@

@t
-L⇤

�
Lm = ⌃f ⌫1 C

⇤
f

⇥
Lm
⇤
+m 1V(r0)Lm-1 + ⌃f

mX
j=2

⌫jBm,j
�
C⇤
f

⇥
Li
⇤�

(II.59)

14For instance, we will see in the next section, that this term disappears in the equation
for the mean number of particles in a region V at a time t, NV (t) (which is a quantity related
to the density of particle and that is not integrated along the trajectory).



76 BACKWARD DESCRIPTION OF THE FLUCTUATIONS

Due to the presence of the Bell polynomials, we could expect this equation
to inherit the non linearity from the equation of the moment generating
function Eq. (II.47). However, for each moment, the non-linear terms de-
pend only on the moments of lower order. For example, the equation for
the variance L2 exhibits a term in {L1}

2,

1
v0

@L2

@t
= L⇤L2 + ⌫1 ⌃f C

⇤
f

⇥
L2
⇤
+ 2 1V(r0)L1 + ⌃f ⌫2

⇣
C⇤
f

⇥
L1
⇤⌘2

| {z }
additional source terms

, (II.60)

that corresponds to an extra source term for the equation. The resulting
equation is therefore linear, and this is true for all the moments of order
m > 2. Furthermore, the importance of moments of lower order in this
supplementary source term is amplified by the presence of the powers in
the Bell polynomials. This suggests that fluctuations in branching systems
are enhanced by positive feedback. This could provide a first justification
of the strong fluctuations and the clustering behaviour observed in chapter
1; a finer analysis will be given in chapter 3.

3 QUANTITIES OF INTEREST IN REACTOR PHYSICS

Thanks to the Feynman-Kac approach, in the last section, we were able to
derive backward equations for the various moments of the travelled length
lV , allowing us to fully characterise the statistics of lV for branching ran-
dom walks. Several other physical observables of the branching process
can be assessed with the same formalism. In the following, we will discuss
some of them that are interesting in the field of reactor physics.

II.3.1 Numerical simulation for the travelled length statistics

In order to illustrate the generalisation appearing in Eq. (II.48) to systems
with inhomogeneous media and where the speed of neutrons can change
at each collision, we revisit here a relevant example of a one-dimensional
transport inspired by reactor physics. Consider a one-dimensional bounded
system of size [0,B] where neutrons can move only in two directions: ! =
±ex (see Fig. II.5). Neutrons evolve in the system, performing branching
exponential walks: at a collision, the incoming neutron is captured with the
probability p0, scattered with the probability p1 and gives rise to a fission
with probability pk>2. This simple one-dimensional model is known in the
field of reactor physics as the rod model. Despite the simplifications, the
model captures the key features of neutron transport and has been already
widely adopted [Harris 1963; Wing 1962].
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Figure II.5: Simple one-dimensional model of a reactor.

For the simulations, we start the system with one single particle in x0
located inside the detector (within the domain [0,B], see Fig. II.5), so that
1V(r0) = 1. We also assume the boundaries in 0 and B to be absorbing. In
this model, !0 can take only two values, !0 = ±ex, such that we can de-
fine, for each order m, the two quantities L+m(x0, t) = Lm(x0,+ex, t) and
L-m(x0, t) = Lm(x0,-ex, t) that do not depend on the variable !0. For
the purpose of deterministic numerical simulations, we can then rewrite
Eq. (II.48) as a system of two coupled differential equations:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1
v0

@L+m
@t

=
@L+m
@x0

(x0, t) +mL+m-1 - ⌃L+m + ⌃⌫1 C
⇤⇥Lm

⇤+

+⌃
mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤+⌘ ,

1
v0

@L-m
@t

=
@L-m
@x0

(x0, t) +mL-m-1 - ⌃L-m + ⌃⌫1 C
⇤⇥Lm

⇤-

+⌃
mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤-⌘ .

Introducing the vector:

~Lm =

✓
L+m
L-m

◆
, (II.61)

the scattering collision operator can be then written as a 2 ⇥ 2 matrix:

C =

✓
c(+ ! +) c(- ! +)
c(+ ! -) c(- ! -)

◆
, (II.62)

where c(+ ! -), for instance, is the probability that a particle, arriving at
the collision with a direction ! = +ex, leaves along the direction ! = -ex;
and similarly for the other entries of the matrix. We can finally compute
the terms containing the adjoint collision operator C⇤⇥Lm

⇤± in Eq. (II.61),
using:

✓
C⇤[Lm]+

C⇤[Lm]-

◆
=

✓
c(+ ! +)L+m + c(+ ! -)L-m
c(- ! +)L+m + c(- ! -)L-m

◆
(II.63)

= C⇤ ~Lm , (II.64)
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where C⇤ is the adjoint matrix of C. Concerning the Monte Carlo simula-
tions, the details of the algorithm used here are provided in Appendix 5.

Fig. II.6 displays a plot of the first moment L(t) of the total length trav-
elled by a single particle starting from x0 in a direction !0 and all its descen-
dants within [0,B], as a function of the time t. This length grows in time,
saturating at a maximum value when, on average, there are no particles
in the system anymore. Simulations were performed for a critical system
(⌫1 = 1), in the case of a piecewise inhomogeneous medium composed
of two homogeneous sub-domains of respective cross-section ⌃1 and ⌃2, as
illustrated on Fig. II.5. We consider dimensionless variables: we set the par-
ticle speed v = 1 and take B = 2; the frontier between the two sub-domains
is in the centre of the box, in x = 1; and the initial particle is started from
x0 = 1.75 with a direction !0 = +ex. For Fig. II.6 two types of simulations
were performed:

- first, a deterministic numerical solution of Eq. (II.48) for m = 1 (red
circles, and blue crosses), using a spatial mesh of 2.103 points, and a time
resolution of dt = 1.10-3;

- then, a Monte-Carlo simulation of the system (red and blue curves),
realised with a time step of dt = 2.10-4. Averages are taken over 105 reali-
sations of the system, so that the statistical uncertainties are of the order of
10-3 (as the variance of the total length is ⇠ 0.5 – see Fig. II.7).

The plots show a good agreement between the results of the Monte Carlo
simulations and the numerical solutions of Eq. (II.48) with m = 1, for the
inhomogeneous cases, (⌃1,⌃2) = (1, 0.5) and (0.5, 1). The black curves cor-
respond to the deterministic simulations for the uniform cases, ⌃1 = ⌃2 = 1
and ⌃1 = ⌃2 = 0.5.

Fig. II.7 compares two critical systems (⌫1 = 1): one is purely diffusive
(p1 = 1 and 8i 6= 1,pi = 0) corresponding to the dark and the blue curves;
the other has branching with p0 = p2 = 0.5 and 8i 6= {0, 2},pi = 0. The data
are obtained by deterministic simulations (numerical solutions of Eq. (II.48)
for m = 1 and for m = 2). As expected, the first moment L is identical in
these two cases (black curve and red crosses). Indeed, the behaviour of L
depends only on the value of ⌫1. Note that the second moment L2 increases
much faster in the branching case.

II.3.2 Collision Statistics

An other fondamental quantity in Monte Carlo simulation of nuclear reac-
tor is the total number of collisions nV undergone by neutrons in a region
V of the system. Its stochastic definition, for a single neutron starting from
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Figure II.6: Mean length L travelled, in the inhomogeneous one-
dimensional box [0, 2] displayed in Fig. II.5, by a single parti-
cle starting from x0 = 1.75 in a direction !0 = +ex and all
its descendants; obtained by Monte Carlo simulations (blue
and red curves) and by deterministic simulations (circles and
crosses). The two black curves correspond to a uniform sys-
tem of constant cross-section ⌃1 = ⌃2.
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Figure II.7: First and second moment of the length travelled, in the inho-
mogeneous one-dimensional box [0, 2] displayed in Fig. II.5,
by a single particle starting from x0 = 1.75 in a direction
!0 = +ex and all its descendants. Simulations are per-
formed with branching (red curve and crosses), or without
branching (blue and dark curves).
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(r0, v0) at time t = 0 is

nV(r0, v0, t) =
Zt

0
dt0

X
every path

1V(r(t0)) , (II.65)

where t is the observation time and 1V

⇥
r
⇤

is the marker function of the region
V . In the context of Monte Carlo simulations for neutron transport, the
mean of this stochastic variable is referred to as the collision estimator [Lux
and Koblinger 1991]. This estimator is associated with the total reaction
rate density (or collision rate density), defined in Eq. (I.33):

hnV i(S0, t) =
Zt

0
dt0

Z
V

d3r
Z

d3v  (r, v, t0) , (II.66)

where  (r, v, t) = ⌃(r, v)n(r, v, t). The equation for the various moments
of nV are derived in [Zoia et al. 2012b] for the case of an homogeneous
medium, with isotropic scattering and neutrons with constant speed. Re-
laxing these constraints in their equations remains as a possible line of fur-
ther research.

II.3.3 Occupation Statistics: Escape, Survival and Extinction Probability

In this section, we will see that other interesting observables can be as-
sessed thanks to the same formalism (backward Feynman-Kac formalism),
with minor changes [Zoia et al. 2012b]. We are first interested in the in-
stantaneous number of particles in a domain V at time t, denoted NV(S0, t)
for a source S0 of initial neutrons. Indeed, we will see in the next chapter
that this quantity is at the heart of the clustering problem. Unlike the two
quantities lV and nV , this new NV is not integrated over time [Pázsit and
Pál 2007].

As for the travelled length lV (see Eq. (II.35)), we define the moment
generating function15 of the discrete random variable NV [Grimmett and
Stirzaker 2001]

Wt(r0, v0, s) = h sNV(r0,v0,t) i , (II.67)

from which every moment of NV can be directly derived:

h Nm
V i(r0, v0, t) =

@mWt(r0, v0|s)

@ sm

���
s=0

. (II.68)

To obtain the backward equation for the moment generating function Wt

we can follow exactly the lines of the derivation proposed in Sec. II.2.2 for
15Note that NV is a discrete random variable, whereas lV was a continuous one, and as

a consequence the moment generating functions are defined in a slightly different way.
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the stochastic variable lV [Pázsit and Pál 2007]. We decompose the pro-
cess into two parts, from time 0 to dt and from dt to t+ dt. Thanks to the
Markovian property of the process performed by neutrons (branching ex-
ponential walks - see Sec. I.1.2), these two parts are independent. Just as in
Sec. II.2.2, two types of events can happen during dt:

(a) with a probability (1 - ⌃v0dt) the initial particle travelled in straight
line from r0 to r0 + v0dt. In this case, regarding the final state of the
system (number of particles in V at time t+dt), there is no distinction
between starting the process from r0 at time t = 0 or starting it from
r0 + dr0 at time dt later. As a consequence, the contribution of this
case (a) to the total number of particles is

Na
V(r0, v0, t+ dt) = NV(r0 + dr0, v0, t) , (II.69)

and the moment generating function reads

Wa
t+dt(s|r0, v0) =

�
1 - v0 ⌃(r0, v0)dt

� ⌦
sNV(r0+dr0,v0,t) ↵

=
�
1 - v0 ⌃(r0, v0)dt

�
Wt(s|r0 + dr0, v0) (II.70)

(b) with probability ⌃v0dt the first particle encounters a collision dur-
ing dt, giving birth to k descendants. The number of particles in V
at time t+ dt then results from the history of each of the k families
directly descending from this initial particle. As a consequence, the
contribution of this case (b) to the total number of particles is

Nb
V(r0, v0, t+ dt) = NV(r0, v1, t) + · · ·+NV(r0, vk, t) , (II.71)

where the velocities {vi}16i6k are given by the pdf C(v0 ! vi). Ex-
actly as for the moment generating function of lV (see Eq. (II.44)) we
obtain:

Wb
t+dt(s|r0, v0) =

�
v0 ⌃(r0, v0)dt

�
G
⇣
C⇤⇥Wt(s|r0, v0

0)
⇤⌘

, (II.72)

where G is the generating function of the descendant number k de-
fined in Eq. (II.46).

Combining these two terms, Wt+dt(s|r0, v0) = Wa
t+dt +Wb

t+dt, and ex-
panding Eq. (II.70) in the first order in dt, finally yields the differential
equation for Wt(s|r0, v0):

1
v0

@Wt

@t
= !0 ·rr0Wt| {z }

Transport

-⌃(r0, v0)Wt| {z }
Capture at each collision

+ ⌃(r0, v0)G
⇣
C⇤⇥Wt

⇤⌘| {z }
descendant contribution

.

(II.73)

Pál-Bell equation for Wt(s | r0, v0)
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This equation is known in reactor physics as the Pál-Bell equation and is
widely used for analysing the statistics of particle counting at a given de-
tector [Bell 1965; Pal 1958; Pázsit and Pál 2007]. We recognise the different
terms also appearing in Eq. (II.47): a transport term (corresponding to the
markovian exponential transport), an absorption term corresponding to the
absorption of the incoming particle at each collision and finally a non lin-
ear branching term. Note that the counting term found in Eq. (II.47) does
not appear here. Indeed, NV is an instantaneous quantity, whereas lV is a
quantity that is accumulated along the trajectory. The Pál-Bell equation can
also be written in the framework of the diffusion approximation introduced
in the first chapter (see Sec. I.2.5):

@Wt

@t
(s | r0) = Dr2

r0
Wt| {z }

Diffusion

- �Wt| {z }
Capture

+ �G
⇥
Wt

⇤| {z }
descendant contribution

, (II.74)

Pál-Bell equation for Wt(s | r0) in the diffusion approximation

where
Wt(s|r0) =

Z
⌦3

Wt(s|r0,!0)d3!0 , (II.75)

and for which we have considered that, �! the system is homogeneous,
⌃ = cst;
�! particles evolve with a constant speed, v0 = cst, and we thus define the
rate (in time) at which particles encounter an event: � = v0⌃ = cst;
�! the scattering is isotropic: C(v ! v0) = 1/⌦3.
The derivation of this equation can be found in [Pázsit and Pál 2007; Bell
1965].

a. Occupation statistics

We can now directly get the equation for each moment of the instantaneous
number of particles NV in any sub-domain V of the system by taking the
successive derivatives of Eq. (II.73). The m-th derivative thus yields for the
moment of order m, h Nm

V i = Nm, the equation:

1
v0

@Nm

@t
= !0 ·rr0Nm| {z }

Transport

-⌃(r0, v0)Lm| {z }
Loss at collisions/Capture

+ ⌃(r0, v0)
h
⌫1 C

⇤⇥Nm

⇤
+

mX
j=2

⌫jBm,j

⇣
C⇤⇥Ni

⇤⌘i

| {z }
Contribution of the descendants at each collision

. (II.76)

Equation for Nm(r0, v0, t)
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Using, as in the previous section, the Faà di Bruno formula [Faà di Bruno
1855; Craik 2005] for computing the m-th derivative of the composition of
functions G

⇣
C⇤⇥Wt

⇤⌘
(see Eq. (A.8) in Annexe 1).

b. Survival probability and extinction probability

Let us consider now a system of volume V surrounded by an absorbing
boundary. Any particle that leaves the system from its boundaries is ab-
sorbed and thus can not reenter it. In this system, a particle and its family
can survive or die, depending on the interplay between the branching pro-
cess and the leakages through the boundaries. We can thus define the prob-
ability that the family descending a single particle emitted from (r0, v0) at
time 0 will survive in the system until a time t [Redner 2001], namely the

survival probability qS(t | r0, v0) . (II.77)

In other terms, considering that we start the system with a single particle in
(r0, v0) at time t = 0, S(t | r0, v0) is the probability that there is still a particle
in the system at time t > 0. In the same way, we can define the

extinction probability E(t) = 1 - qS(t) , (II.78)

which is the probability that the system is extinct at a time t, i.e. that there
are no particles left in the system at time t: NV(t) = 0. Note that if a system
is extinct at time t, then the system will stay extinct for any time t0 > t.
Furthermore we can notice that [Pázsit and Pál 2007]:8<: if NV(t) = 0 (extinct system), then sNV

��
s=0 = 1 ,

whereas if NV(t) > 0, then Wt(s)|s=0 = sNV
��
s=0 = 0 ;

(II.79)

such that the probability that a system is extinct at time t is given by:

E(t) = h sNV
��
s=0 i = Wt(s)|s=0 . (II.80)

As a consequence, the extinction probability E(t, r0, v0) obeys to the same
equation than Wt(s|r0, v0), Eq. (II.73), and the survival probability qS(t, r0, v0)
satisfies the equation:

1
v0

@qS

@t
(t, r0, v0) = !0 ·rr0qS| {z }

Transport

-⌃(r0, v0)qS| {z }
Capture at each collision

+ ⌃(r0, v0) F
⇣
C⇤⇥qS

⇤⌘| {z }
descendant contribution

.

(II.81)

where F[z] =
P

k>1 ↵k z
k, with ↵k = (-1)k ⌫k/k! [Bell 1965; Zoia et al.

2012b].
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In the case of ⌫1 6 1, we have seen that the process of birth and death
will lead to the death of the whole population in the long time regime16,
independently of the volume V of the medium [Harris 1963]. For ⌫1 > 1,
it exists a critical volume Vc of the system below which the particle losses
due to absorptions and leakages through the boundaries are larger than the
gain due to population growth [Pázsit and Pál 2007], and for large time t
the system goes to extinction: qS(r0, v0, t) �!

t!1 0. However, when ⌫1 > 1
and V > Vc a branching system has a finite probability to survive indefi-
nitely, and the survival probability admits a non-trivial limit when t goes to
infinity: qS(r0, v0, t) �!

t!1 q1
S (r0, v0) > 0. Finding this asymptotic survival

probability constitutes a long standing issue [Brunet and Derrida 2009; Der-
rida and Simon 2007].

II.3.4 Conclusion and perspectives

In this chapter we have seen that a population of N0 individuals that can re-
produce or die intrinsically undergoes very strong fluctuations of its com-
munity size in time. These fluctuations become even stronger when the
system gets closer to criticality (⌫1 = 1), which is the regime in which nu-
clear reactor are normally operating [Dumonteil et al. 2014]. In particular,
in a critical system, these strong fluctuations result in an unexpected be-
haviour: whereas the mean number of individuals in the system stays con-
stant in time hNi(t) = N0, the entire population is destined for death in a
characteristic time ⌧E = N0/(�⌫2). This phenomenon, for which the stan-
dard deviation of the system size becomes larger than its mean, was named
critical catastrophe by Williams [1974]. The mean number of particles hNi(t)
is in fact an average over all realisations of the system (ensemble average),
and the contradiction highlighted here only indicates that the system is not
self-averaging [Young et al. 2001].

For most applications in reactor physics, the neutron population consid-
ered is sufficiently large (108 n/cm3 in a PWR at operating condition [Dud-
erstadt and Hamilton 1976]) for the neutron density to give a good char-
acterisation of the behaviour of the neutron population. In these cases, it
is meaningful to use the classical transport equations (such as the Boltz-
mann equation (I.55)). However there exist some situations for which a
description based on averaged observables provides a misleading charac-
terisation of the behaviour of the neutron population [Prinja 2012], such as
for the clustering phenomenon [Dumonteil et al. 2014] introduced in the
first chapter. Thanks to the Feynman-Kac formalism, we have established
the backward equations for each moment of the main quantities of interest
in reactor physics, generalising the results of [Zoia et al. 2012b]. Moments

16decreasing population for ⌫1 < 1 and critical catastrophe for ⌫1 = 1 (see Sec. II.1.2)
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of order higher than one allow us to study the fluctuations of the neutron
population:

While commenting these moment equations, we saw that the form of the
branching term (corresponding to the reproduction process) could explain
the presence of strong fluctuations in a system with branching (see
Sec. II.2.3). This observation could provides a first explanation for the clus-
tering phenomenon presented in chapter 1. Moreover, using the Feynman-
Kac formalism, it is now possible to derive a backward equation for the pair
correlation function between particles of the system. In the next chapter, a
large part will be dedicated to this quantity, at the heart of the understand-
ing of the neutron clustering behaviour.





CHAPTER III
NEUTRON CLUSTERING

In this chapter, we bring an exhaustive review on the clustering phenom-
enon introduced in chapter 1, which has been studied across different fields.
In particular we focus on systems evolving at criticality, which corresponds
to the operating condition of a nuclear reactor. In this context, we inves-
tigate the impact of the finite size of the system (confined geometry and
finite number of neutrons) and of a population control on the clustering
phenomenon.

Contents

1 About the process
III.1.1 A prototype model of a nuclear reactor . . . . . . 90
III.1.2 Elementary clustering with zero-dimensional sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2 Free population
III.2.1 General considerations - Pair Correlation Function 93
III.2.2 System of Infinite Size . . . . . . . . . . . . . . . . 94
III.2.3 System of finite size - Feynman-Kac backward for-

malism and general solution . . . . . . . . . . . . 99
III.2.4 System of finite size - reflecting and absorbing

boundaries . . . . . . . . . . . . . . . . . . . . . . . 107

3 Controlled population in a system of finite size
III.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . 116
III.3.2 Genealogy - the last common ancestor . . . . . . . 118
III.3.3 Pair correlation function - Controlled clustering . 125
III.3.4 Average squared distance and typical size of a

cluster . . . . . . . . . . . . . . . . . . . . . . . . . 134

4 Conclusions and perspectives



88 NEUTRON CLUSTERING

THE neutron population in a prototype model of nuclear reactor can be
described in terms of a collection of particles undergoing three key

random mechanisms: diffusion, reproduction due to fissions, and death
due to absorption events. When the reactor is operated at the critical point
(i.e., fissions are exactly compensated by absorptions), the whole neutron
population might in principle go to extinction because of the wild fluctua-
tions induced by births and deaths (see Chapter II). This critical catastrophe,
is nonetheless never observed in practice: feedback mechanisms acting on
the total population, such as human intervention, have a stabilising effect.
However, these fluctuations can also give rise to local extinctions of the
population, at the origin of the clustering phenomenon observed in [Du-
monteil et al. 2014] (see Sec. I.3.1), and a non-uniform neutron density in
the reactor fuel elements might lead to local peaks in the deposited energy
(hot spots) and represent thus a most unwanted event with respect to the
safe operation of nuclear power plants [Dumonteil et al. 2014]. In prac-
tice, several parameters can affect this phenomenon. In this chapter, we
revisit the clustering phenomenon (the critical catastrophe at a local scale),
by investigating the effects of the finite extension of the system (presence
of boundaries and finite number of individuals) and of a population con-
trol on the spatial behaviour of the fluctuations. The work presented here
results from a collaboration with Eric Dumonteil, Alain Mazzolo, Alberto
Rosso and Andrea Zoia, and has been published in [Dumonteil et al. 2014;
Zoia et al. 2014; de Mulatier et al. 2015].
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Figure III.1: Monte Carlo simulation of the evolution of a collection of
particles in a two-dimensional box. Particles are initially
prepared with a uniform spatial distribution. Case a). Par-
ticles follow regular Brownian motions: as time increases,
positions are shuffled by diffusion, but the spatial distri-
bution of the particles stays uniform. Case b). Particles
perform branching Brownian motions with equal birth and
death rates: as time increases, the population undergoes
large fluctuations, and the particle density displays a wild
patchiness.
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Branching processes and clustering issue
Many physical and biological systems can be represented in
terms of a collection of individuals governed by the competi-
tion of the two basic random mechanisms of birth and death.
Examples are widespread and encompass neutron multiplica-
tion [Pázsit and Pál 2007; Williams 1974], nuclear collision cas-
cades [Harris 1963; Athreya and Ney 2012a; Bharucha-Reid
1968], epidemics and ecology [Bailey 1968; Jagers et al. 1975;
Murray 1989; Zhang et al. 1990; Meyer et al. 1996; Tilman and
Kareiva 1997], bacterial growth [Golding et al. 1998; Houch-
mandzadeh 2008], and genetics [Sawyer and Fleischman 1979;
Lawson and Jensen 2007]. Neglecting particle–particle correla-
tions and non-linear effects, the evolution of such systems can
be effectively explained by the Galton–Watson model [Harris
1963]. In most of these examples, individuals also interact with
the surrounding environment and are typically subject to ran-
dom displacements [Williams 1974; Zhang et al. 1990; Meyer
et al. 1996; Tilman and Kareiva 1997]. The interplay between the
fluctuations stemming from birth-death events and those stem-
ming from diffusion will thus subtly affect the spatial distribu-
tion of the particles in such systems [Le Gall 2012; Brunet and
Derrida 2009; Ramola et al. 2014, 2015]. In particular, at and
close to the critical point a collection of such individuals (spa-
tially uniform at the initial time) may eventually display a wild
patchiness (see Fig. III.1) [Zhang et al. 1990; Meyer et al. 1996;
Young et al. 2001; Houchmandzadeh 2008]. Spatial clustering
phenomena have been first identified in connection with math-
ematical models of ecological communities [Dawson 1977; Cox
and Griffeath 1985], and since then have been thoroughly inves-
tigated for both infinite and finite collections of individuals in
unbounded domains [Zhang et al. 1990; Meyer et al. 1996; Young
et al. 2001; Houchmandzadeh 2008, 2009]. In this chapter, we
will revisit the critical catastrophe of neutron chains in a proto-
type model of a nuclear reactor, with special emphasis on the
spatial distribution of neutrons in confined geometries.
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1 ABOUT THE PROCESS

III.1.1 A prototype model of a nuclear reactor

A nuclear reactor is a device conceived to extract energy from the fission
chains induced by neutrons [Bell and Glasstone 1970]. To fix the ideas, here
we will focus on the widely used light-water reactors. The nuclear fuel is
made of uranium, arranged in a regular lattice and plunged in light water.
A fission chain begins with a neutron emitted at high energy from a fis-
sion event (see Fig. III.2). The neutron enters the surrounding water, slows
down towards thermal equilibrium, and then starts diffusing. If the neu-
tron eventually re-enters the fuel, it may i) be absorbed on the 238U isotope
of uranium, in which case the chain is terminated; or ii) give rise to a new
fission event by colliding with the 235U fissile isotope, whereupon a random
number of high-energy neutrons are emitted. The water surrounding the
fuel lattice acts as a reflector and prevents the neutrons from escaping from
the core. A number of control rods are inserted into the core, with the aim
of absorbing the excess neutrons and keep the population constant (this en-
sures a constant power output). When the neutron population grows, the
control rods are inserted more deeply into the core, slowing down the chain
reaction. On the contrary, when the population decreases, the control rods
are raised, accelerating the chain reaction.

The energy- and spatial-dependent behaviour of a nuclear reactor can
be fully assessed only by resorting to large-scale numerical simulations in-
cluding a realistic description of the heterogeneous geometry [Dumonteil
et al. 2014; Brun et al. 2013; CEA collectif et al. 2013]. However, for the
purposes of this work we will use the simplified prototype model of a nu-
clear reactor introduced in Chapter I, which retains all the key ingredients
of a real system. We assume that the reactor can be represented as a col-
lection of N neutrons evolving in an homogeneous multiplying medium of
finite volume V , surrounded by reflecting or absorbing boundaries: neu-
trons undergo scattering, reproduction and absorption in a confined sys-
tem. The medium is thus characterised by a constant cross-section ⌃, and
the stochastic paths of neutrons are known to follow position- and velocity-
dependent exponential flights (see Sec. 2). For our model, we approximate
these paths by regular Brownian motions with a constant diffusion coef-
ficient D. This corresponds to developing our study in the framework of
the one-speed diffusion approximation introduced in Sec. I.2.5, considering
furthermore that scattering events are isotropic. In particular:

• particles are moving with a constant velocity v, which defines a con-
stant collision rate � = ⌃ ⇤ v = cst;

• directions of new particles, created at each collision, are isotropically
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Figure III.2: Simplified scheme of neutron propagation within a nuclear
reactor. A fission chain begins with a source neutron S born
from a fission event in the fuel. The neutron diffuses in
the water and may eventually come back to a fuel element,
where it can either be absorbed (magenta dots) and the tra-
jectory terminates; or give rise to a new fission, upon which
additional neutrons are set free (green dots). The system is
operated at the critical point, where the average number of
neutrons produced by fission is exactly compensated by the
losses by absorptions. To adjust the total population and
enforce the critical regime, a control rod can be inserted to
absorb the excess neutrons.

distributed: C(v ! v0) = cst = 1/⌦d;

• the diffusion coefficient is then given by D =
v

3⌃
(see Eq. (I.117)).

A diffusing walker then undergoes collisions at rate �: the incoming neu-
tron “disappears” (captured by a nucleus) and is replaced, with probability
pk, by k of descendants. With probability p0, the incoming neutron has
no descendants (sterile capture), which corresponds to a “death event”. For
k > 2, the incoming neutron “gives birth” to new neutrons. In order for the
reactor to be exactly critical, the mean number of descendants per collision,
⌫1 =

P
k kpk, must be equal to ⌫1 = 1 (see Eq. (I.27)).

III.1.2 Elementary clustering with zero-dimensional systems

In Chapter II, we saw that the birth/death process is by itself responsible
for very strong fluctuations of the whole population. This observation puts
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this process at the heart of the clustering problem. In this section we tackle
the clustering problem, starting from the zero dimensional system intro-
duced in Sec. II.1.2.

Let us consider a collection of many copies of a zero-dimensional cell
placed side by side. Each cell starts with the same number N0 of non-
diffusing particles, and then evolves independently. Despite the spatial
extension of this new system, the problem is still the zero dimensional one
studied in Sec. II.1.2; we now observe simultaneously different realisations
of the same single-cell system. For a critical system, the mean number of
particles in each cell is N0 at any time (see Eq. (II.18)):

hNi(i, t) = N0 at any time and for every cell i, (III.1)

from which we may expect a uniform and constant distribution of parti-
cles among the cells. However, as a consequence of the fluctuations dis-
cussed in Sec. II.1.2, most of the cells will be empty in a characteristic time
⌧E = N0/(�⌫2), whereas few others will become highly populated, result-
ing in a clustered system: the conflict between Eq. (III.1) and one realisation
of the system illustrates the failure of self-averaging [Young et al. 2001]. The
clustering appearing here is a local effect of the critical catastrophe: before
decimating the whole population, strong fluctuations are responsible for
local community death, creating holes in the population and thus giving
rise to a “trivial clustering” of particles. This phenomenon is then enhanced
by the asymmetry between birth and death events: particles can die any-
where, whereas new particles can be created only where there are already
other particles (parents), such that, if a cell is empty, it will stay empty.

Therefore, in the spatially extended system, the temporal fluctuations
caused by birth/death process in each cell lead to spatial fluctuations of the
population across cells. These spatial and temporal fluctuations give rise
to a trivial clustering of the population appearing in the characteristic time
⌧E. Up to now, particles were not allowed to diffuse over the system. As
diffusion has a mixing property, we may expect it to prevent the formation
of clusters (by repopulating the empty spaces).

2 FREE POPULATION

Let us consider now the interplay between spatial displacements and birth-
and-death events. For the sake of simplicity, the whole chapter we will be
placed in the context of the diffusion approximation introduced in Sec. I.2.5.
For applications to nuclear reactors, we start the system from a state which
corresponds to the equilibrium state of the corresponding critical system
with the same boundary conditions. We then let the particles evolve freely:
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they can diffuse, reproduce or die in the system. Three different cases will
be tackled here, with different initial and boundary conditions:

• the case of an infinite system (that has no boundary) with an infinite
number of particle; the system starts with a uniform distribution of
particles;

• the case of a finite medium with reflecting boundaries, with a finite
number of initial particles starting with a uniform distribution over
the system;

• the case of a finite medium with absorbing boundaries, with a finite
number of initial particles starting with a “cosine distribution” over
the system;

III.2.1 General considerations - Pair Correlation Function

Particles evolve now in a continuous space. In order to characterise the
physical properties of the system, we introduce a (local) instantaneous den-
sity, which is defined for each realisation of the system as

instantaneous density ⇢(x, t) = lim
dx!0

N(x, t)
dx

, (III.2)

where N(x, t) is the number of particles in a volume element dx about x in
the realisation considered. The density n(x, t) of particles in the vicinity of
x at time t is then defined by the ensemble average of ⇢(x, t),

density n(x, t) = h⇢(x, t)i . (III.3)

Here, we start the system from a state which corresponds to the equilibrium
state of the corresponding critical system with the same boundary condi-
tions, i.e. n(x, t = 0) .

= n0(x) is solution of the diffusion equation (I.116) in
the stationary case at criticality,

�n0(x) = 0 , (III.4)

and with the appropriate boundary conditions (absorbing or reflecting). If
the system is critical, n(x, t) will then remain unchanged in time. How-
ever, as seen previously, this mean density is not necessarily representative
of one realisation of the system (which is the property of a self-averaging
system). In section II.1.2, to characterise the fluctuations in time of the pop-
ulation and emphasise the non self-averaging character of the system, we
introduced the variance of the population size. As the system is now spa-
tially extended, we need a new tool to characterise also the fluctuations in
space of the population. This is the role of the covariance

Cov(x, y, t) = h⇢(x, t)⇢(y, t)i- h⇢(x, t)ih⇢(y, t)i . (III.5)

Note that Cov(x, x, t) = �2(x, t), is the variance of the density ⇢.
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Pair correlation function The correlation function can be defined in many
different ways, and among the various definitions, we should choose the
one that is the most appropriate for our problem. A common mathematical
definition is the correlation coefficient introduced by Pearson, known as
Pearson’s correlation coefficient,

g(x, y, t) = Cov(x, y, t)/(s(x, t) s(y, t)) , (III.6)

s(x, t) =
p

h⇢(x, t)2i- h⇢(x, t)i2 is the standard deviation of the instanta-
neous density ⇢(x, t). This coefficient is equal to 1 when x = y. However
the idea would be to choose a function that also allow us to verify the crite-
ria Eq. (II.13), that push us to rather adopt the slightly different definition:

g(x, y, t) =
Cov(x, y, t)

h⇢(x, t)i h⇢(y, t)i =
h⇢(x, t)⇢(y, t)i-n(x, t)n(y, t)

n(x, t)n(y, t)
, (III.7)

so that g(x, x, t) = RSD2
⇢ corresponds to the square of the relative standard

deviation of ⇢(x, t). Indeed the RSD, defined in Eq. (II.13), has appear in
Sec. II.1.2 to be the interesting quantity to characterise global fluctuations
of the population. On the other hand, note that the definition h⇢(x, t)⇢(y, t)i
includes the particle self-contributions when x = y, i.e., the contributions due
to correlation between each particle with itself. These self-contributions
will make g(x, y, t) diverging when in the limit x = y, as particles are in-
finitely correlated with themselves. Subtracting the self-contributions, we
obtain the pair correlation:

h(x, y, t) = h⇢(x, t)⇢(y, t)i- �(x - y)n(x, t)| {z }
self-contributions

. (III.8)

Formally, h(x, y, t) is the density of pairs of distinct particles formed by one
particles about x and one about y at time t. We finally define the centered
and normalised pair correlation function as [Houchmandzadeh 2009]:

g(x, y, t) =
h(x, y, t)- hind(x, y, t)

n(x, t)n(y, t)
, (III.9)

where hind(x, y, t) corresponds to the pair correlation function h(x, y, t) as-
suming that particles in the system at time t are all independent. In the limit
of a large number of particles in the system, hind(x, y, t) ! n(x, t)n(y, t).

III.2.2 System of Infinite Size

The case of a system of infinite size has been discussed by Houchmandzadeh
[2008, 2002, 2009] for a binary birth/death process (particles can have up
to 2 descendants at a collision). Consider a collection of Brownian particles
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starting with a uniform distribution in space (n(x, 0) = n0
1); they can move

randomly with a diffusion constant D, duplicate with a rate �2 = �p2 and
die with a rate �0 = �p0. Note that the total number of particles in this
system is infinite, such that the extinction time ⌧E = N0/(�⌫2) is infinite:
this system will never be extinct.

Writing the master equation for the probability P(Nx, t) that a volume
element of size dx about x contains Nx individuals at time t, and taking
the continuous limit when dx goes to zero, we can extract the equation for
any moment of ⇢(x, t) [Houchmandzadeh 2009]. In particular, thanks to
the invariance of the problem under spatial translations, the mean density
n(x, t) = h⇢(x, t)i does not depend on the position x and thus verifies the
equation [Houchmandzadeh 2009]:

dn
dt

(t) = (�2 - �0)n(t) . (III.10)

Therefore, starting the system with a uniform distribution of particles n0,

n(t) = n0 e(�2 - �0) t . (III.11)

For the same reason, the centered and normalised pair correlation function,
denoted g1(x, y, t) here, depends only on the distance r = kx- yk between
the two positions x and y, which allows to extract its equation from the
master equation [Houchmandzadeh 2009]:

@g1
@t

(r, t) = 2D�g1(r, t) +
2�2

n0
�(r) , (III.12)

where �(r) is the Dirac delta function. Solving this equation for a system of
infinite size (boundary conditions), yields:

g1(r, t) = 2�2

Zt
0

dt0
G2D1 (r, t- t0)

n(t0)
, (III.13)

where G2D1 (r, t- t0) is the Green function solution of the homogeneous heat
equation with a diffusion coefficient 2D2 for a system with no boundaries
(infinite system) in dimension d:

G2D1 (r, t) =
1

(8⇡Dt)d/2 e
-

r2

8Dt . (III.14)

1 The uniform density n(x, 0) = n0 corresponds to the solution of Eq. (III.4) in the case
of a system with an infinite size. Note that the total number N0 of particles in the system is
thus infinite.

2the homogeneous diffusion equation @g1
@t (r, t) = 2D�g1(r, t) .
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Rearranging the terms in the integral (translation in time), the pair correla-
tion function finally reads:

g1(r, t) =
2�2

n0

Zt
0

dt0
1

(8⇡Dt0)d/2 e
-

r2

8Dt0
- (�2 - �0) (t- t0)

. (III.15)

The coefficient 2�2, appearing in the numerator, corresponds to the rate
at which pairs of particles are created in the system3. Thus increasing the
reproduction process, i.e. increasing 2 �2, increases the correlation between
particles. Whereas increasing the diffusion coefficient D or the initial den-
sity of particles n0 (both appearing in the denominator of g) will tend to
decrease correlations between particles. This observations confirm the ten-
dency expected in Sec. III.1.2. Moreover, the limit (in the sense of distri-
butions) of the sequence of zero-centered normal distributions, 1

a
p
⇡

e-r2/a2

when a ! 0, is the Dirac delta function �(r). Thus, in the limit when the dif-
fusion coefficient D goes to zero, we can expect the pair correlation function
to converges to the Dirac distribution: as particles do not move, clusters
are “point located”, just like in the model of Sec. III.1.2 (after ⌧E few zero-
dimensional cells are over-populated, surrounded by empty cells). Thus,
in case of clustering, diffusion seems to increase the spatial extension of the
clusters (increasing the correlation length).

Let us consider the critical case �2 = �0 (equivalent to ⌫1 = 1 for a
binary branching process). In dimension d = 1, the pair-correlation function
Eq. (III.15) reads

g1(r, t) =
2�2

n0

Zt
0

dt0
1p

8⇡Dt0
e
-

r2

8Dt0 . (III.16)

Figure III.3 Left shows a good correspondence between this theoretical so-
lution and a Monte-Carlo simulation of the pair correlation function. The
figure also shows the plots of g1(r, t) for different times: the pair corre-
lation function displays a peak when r goes to zero, which characterises
a system in which particles tend to cluster [Zhang et al. 1990; Meyer et al.
1996; Young et al. 2001; Houchmandzadeh 2008, 2009]. Indeed, this peak re-
flects the increased probability of finding particles lying at short distances.
The amplitude of the peak increases with time, but also its width. Rewrit-
ing g1(x, t) with the change of variables, u = r/

p
8Dt0 in the integral, we

3� is the rate at which collisions happened in the system, and, for a binary branching
process, ⌫2 = 2p2 is the number of pairs created per collision (see Sec. II.1.1), so that �⌫2 =
2�2 represents the rate at which pairs of particles are created in the system.
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Figure III.3: Left. Pair correlation function g1(r, t) for a one-
dimensional system of infinite size, with D = 1, �2 = 1
and n0 = 0.5, at time t = 1. (red), t = 10 (green) and
t = 30 (purple). Comparison with the pair correlation func-
tion obtained by Monte Carlo simulation (blue) for time
t = 10. Right. Self-similarity – exact overlapping of the
curves g1(r

p
8Dt)/

p
t for different time, t = 1, 10 and

30.

obtain

g1(r, t) =
2�2

n04D
p
⇡
r

Z+1
rp

8Dt

e-u2

u2 du . (III.17)

Then, integrating by parts leads to

g1(r, t) =
2�2

n0
p

2D

p
t F

✓
rp
8Dt

◆
, (III.18)

where F(X) =

2

4e-X2

p
⇡

-X erfc(X)

3

5 . (III.19)

The function erfc(X) is the complementary error function defined for X 2 R as

erfc(X) =
2p
⇡

Z1
X

e-u2
du . (III.20)

Note that F(0) = 1/
p
⇡ is finite, so that

g1(0, t) =
2�2

n0
p

2D

p
t =

p
⌧D
⌧P

p
tp
⇡

. (III.21)

The amplitude of g1(0, t) is governed by the ratio
p
⌧D/⌧P, and thus re-

sults from a competition between a diffusion process, of a characteristic
time ⌧D = (2Dn2

0)
-1, and a process of production of particle pairs, of char-

acteristic time ⌧P = (2�2)-1. Increasing diffusion (smaller ⌧D) will reduce
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the correlation between particles, whereas increasing the reproduction pro-
cess (smaller ⌧P) will tend to increase the correlations. Observe that both
the amplitude and the width of the peak grow with

p
t (more precisely the

width increases with
p

8Dt, see Eq. (III.18)). In fact, Eq. (III.18) exhibits a
self-similarity property of the system (see Fig. III.3 Right.), which is a con-
sequence of the infinite spatial extension of the system, and of the infinite
source of particles.

In dimension d > 2, the pair-correlation function Eq. (III.15) can be re-
written using the change of variable u = r2/(8Dt0) in the integral:

g1(r, t) =
2�2

n0(8⇡D)d/2
1

t
d
2 -1

✓
8Dt

r2

◆d
2 -1 Z+1

r2

8Dt

u
d
2 -2 e-u du . (III.22)

The coefficient in front of this equation has the dimension of a time to the
power (d/2 - 1): we recognise the pair production time ⌧P = (�⌫2)-1 and
the diffusion characteristic time ⌧D = (2Dn2

0)
-1, such that

2�2

n0(2D)d/2 =
⌧D

d/2

⌧P
, (III.23)

as a signature of the competition between mixing from diffusion and clus-
tering from birth and death events. Here also the system exhibits a self-
similarity property:

g1(r, t) =
⌧D

d/2

⌧P

1
t
d
2 -1

Fd

✓
r2

8Dt

◆
, (III.24)

where Fd(X) =
1

(4⇡)d/2
1

X
d
2 -1

�

✓
d

2
- 1,X

◆
. (III.25)

The function �(a,X) is the upper incomplete gamma function defined for X 2
R+ and a > 0 as

�(a,X) =
Z1
X

ua-1 e-u du . (III.26)

However a series expansion4 of Fd(X) about X = 0 (r = 0),8>><>>:
Fd(X) =

1
4⇡

[-�- log(X) +O(X)] , for d = 2

Fd(X) =
1

(4⇡)d/2


1

X
d
2 -1

�

✓
d

2
- 1
◆
-

2
d- 2

+O(X)

�
, for d > 2 ,

4where �(a) = �(a, 0) and � = -
R1

0 e-u log(u)du is the Euler-Mascheroni constant
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shows that the pair correlation function, in dimension higher than 1, is al-
ways diverging when r goes to 0 at any time t > 0.

To summarise, the pair correlation function between particles separated
by a distance r displays a pic when r goes to zero, which characterises
the tendency of particle clustering. The phenomenon then results from a
competition between diffusion that tend to mix the system (decreases short
range correlation and increase the correlation length) and the creation of
particle pairs that correlate particles of the same family (increases short
range correlations). However, the size of the system and the source of par-
ticles being infinite here, none of these two processes can actually “win”,
which results in a self-similar pair correlation function. In higher dimen-
sion, we notice that the mixing effect of diffusion is weaker.

III.2.3 System of finite size - Feynman-Kac backward formalism and general
solution

In a nuclear reactor, the medium where neutrons evolve has of course a fi-
nite size, and the number of initial particles is also finite (although large).
This is more generally the case for any physical systems. For instance, a
nuclear fuel rod in a PWR can be modeled by a thin cylinder (⇠ 3 mm of
radius and ⇠ 4 m high - see Fig. I.10), with absorbing boundaries at its top
and bottom, and surrounding by water in which neutrons are driven back
to the fuel (reflecting boundaries). It then seems natural to wonder how
the finite size of the medium affects the clustering phenomenon. (In the
following we will consider finite size system, with reflecting boundaries or
absorbing boundaries).

So far, we have used a forward description of the problem, establishing
the equations for n(x, t) and g(x, y, t) from a master equation of the sys-
tem [Houchmandzadeh 2009]. Because of the branching nature of the pro-
cess, this approach requires to use combinatorial tools (see the derivation
of the master equation in Ann. 2), and becomes particularly cumbersome in
presence of boundaries, where the translational symmetry of the system is
broken. For these systems, it is more convenient to resort to the backward
formalism introduced in Chapter II. Fig. III.4 illustrates this idea: whereas
one particle taken at time 0 can have zero, one, or several descendants at
any positive time t0 > 0 (see Fig. III.4 Left), a particle, randomly chosen at
time t, has a single ancestor at any earlier time t0 (0 < t0 < t), as illustrated
on Fig. III.4 Right. Therefore, instead of following several branches, which
requires combinatorial analysis in the forward method, we simply follow
a single (generalised) trajectory defined by the trajectories of each ancestor
(red path on Fig. III.4 Right) in the backward method.
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Figure III.4: Schematic representation of the evolution of a particle fam-
ily descending from a single particle at time 0. Branching
and death events are represented by yellow or green dots.
This figure illustrates why, with a forward method (on the
left hand side), we need to perform a combinatorial analysis
at each branching point of the family, whereas, with a back-
ward method (on the right hand side), the analysis consists
in tracing back a particle trajectory up to the ancestor at
time t = 0.

In the following, we will establish the general equation for the density
n(x, t) and the pair correlation function g(x, y, t) for a system surrounded
by boundaries. We will then derive explicit solutions for reflecting or ab-
sorbing boundaries.

a. Backward equation and general solution for the mean density

Backward equations Consider a system of finite volume V starting with
a single particle in r0 2 V at time t = 0. We denote by NX(t|r0) the in-
stantaneous number of particles that are located within a sub-domain X at
time t (for a system initially starting with one single particle in r0). This
random variable was already introduced in Chapter II. It is associated with
the moment generating function

Wt(s | r0) = h sNX(t | r0) i , (III.27)

whose equation of evolution of can be formulated using the Feynman-Kac
backward formalism (see Sec. II.3.3) in the context of the diffusion approx-
imation [Pázsit and Pál 2007; Bell 1965]:

@Wt

@t
(s | r0) = Dr2

r0
Wt| {z }

Diffusion

- �Wt| {z }
Capture

+ �G
⇥
Wt

⇤| {z }
descendant contribution

, (III.28)
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where G[z] =
P

k pkz
k is the moment generating function of the number

of particles emitted at a collision. This equation if known as the Pál-Bell
equation (see Eq. II.74).

Every moment of NX(t|r0) can be obtained by derivation of the moment
generating function Wt(s | r0). In particular the mean number of particles
in X is given by:

hNX(t | r0) i = @sWt(s|r0)
���
s=0

. (III.29)

Using this definition and recalling that G0[1] = ⌫1, we obtain, from Eq. (III.28)
the evolution equation for hNX(t | r0) i, associated with the initial condi-
tion: 8<: @thNX(t | r0) i = D�r0hNX i+ �(⌫1 - 1)hNX i ,

hNX(0 | r0) i = 1X(r0) ,
(III.30)

where 1X(r) is the marker function of the domain X, equal to 1 if r 2 X and 0
otherwise. Let us set now the sub-domain X to the volume element dx lo-
cated in x. The number of particles within the volume element d3x about x
at time t then corresponds to N(x, t | r0) = NX(t | r0), and the instantaneous
density (III.2) is given by

⇢(x, t | r0) = lim
dx!0

N(x, t | r0)

dx
= lim

dx!0

NX(t | r0)

dx
. (III.31)

Dividing Eq. (III.30) by dx and taking its limit when dx goes to 0, we finally
obtain the backward evolution equation of the density of particles at time t
in the vicinity of x, n(x, t | r0) = h⇢(x, t | r0)i:

8>><>>:
@t n (x, t | r0) = Dr2

x0
n (x, t | r0) + �(⌫1 - 1)n (x, t | r0) ,

n (x, 0 | r0) = �(x - r0) ,

+ Boundary Conditions

(III.32)

Backward equation for the particle concentration n (x, t | r0)

More generally, the system is started with a finite number N0 of particles
distributed over the volume V with a pdf p(r0). These N0 initial particles
are emitted independently, and each of them gives rise to a family which
evolves independently of the others. The density resulting from this N0
independent particle sources then reads

n (x, t) = N0

Z
V

p(r0)n (x, t | r0)dr0 . (III.33)
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Note that we can also arrive at this result starting from the moment gener-
ating function. At time t = 0, each particle is independently emitted from
a position r0 of the system with a probability density p(r0). It thus results a
source S whose distribution in space is given by:

n0(r0) = N0 p(r0) . (III.34)

Let us denote by NX(t | S) the number of particles in the domain X at time t
resulting from the source S of particles in the system at t = 0. This random
variable can be associated with a moment generating function Wt(u | S),
such that:

hNX(t | S) i = @uWt(s | S)
���
s=0

. (III.35)

By definition, since the initial positions of the N0 particles are independent,

Wt(s | S) =

Z
V

p(r1) · · · p(rN0)Wt(s | r1) · · · Wt(s | rN0)dr1 · · ·drN0 ,

=
h Z

V

p(r0) Wt(s | r0)dr0

iN0
. (III.36)

which, using the property Eq. (III.35) and the definition Eq. (III.34), leads
to

hNX(t | S) i =
Z
V

n0(r0) hNX(t | r0) idr0 , (III.37)

and finally to the result of equation (III.41).

General Solution The general solution of Eq. (III.32) reads

n (x, t | r0) = e�(⌫1-1)t
Z
V

dr00 �(x - r00)GD(r0, t ; r00, t 0 = 0) , (III.38)

hence, by definition of the Dirac delta function,

n (x, t | r0) = e�(⌫1-1)tGD(x, t; r0) , (III.39)

where GD(x, t; r0) is the Green function solution of the diffusion equation� �
@t -Dr2

r0

�
GD(r, t; r0, t0) = �(r - r0) �(t- t0) ,

+ Boundary Conditions.
(III.40)

The general from of density for an extended source of particles is then

n (x, t) = e�(⌫1-1)t
Z
V

n0(r0)GD(x, t; r0)dr0 . (III.41)

Particle concentration

To go further now, we need to add boundary conditions, and the expression
of the initial source of particles n0(r0).
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b. Backward equation and general expression for the pair correlation function

Backward equation Consider a system of finite volume V starting with a
single particle in r0 2 V at time t = 0. To characterise correlations between
particles, we focus on the mean number of particle pairs formed by one
particle in a sub-domain X ⇢ V and one in a sub-domain Y ⇢ V at time t:

hNX(t | r0)NY(t | r0) i . (III.42)

Observe that this definition includes the self-contributions of particles when
X = Y, i.e., the contributions due to the NX pairs formed by each particle
with itself. We then define the correlation function

G(x, y, t | r0) = h ⇢(x, t | r0) ⇢(y, t | r0) i , (III.43)

= lim
dx!0

lim
dy!0

⌧
NX(t | r0)

dx
NY(t | r0)

dy

�
, (III.44)

by taking the subdomain X as the volume element dx about x, and the sub-
domain Y as the volume element dy about y. The various moments of the
random variable NX(t|r0)NY(t|r0) can be obtained by derivation of the mo-
ment generating function:

WX,Y
t (u,w | r0) =

D
uNX(t | r0)wNY(t | r0)

E
. (III.45)

For simplicity, we will discard the superscript X, Y in the following5. In
particular,

hNX(t | r0)NY(t | r0) i = @u@wWt(u,w|r0)
���w=0
u=0

. (III.46)

Using the Feynman-Kac method to formulate the evolution equation of
Wt(u,w | r0), it can be shown that Wt(u,w | r0) satisfies the same backward
equation as the moment generating function Wt(u | r0) [Pázsit and Pál 2007;
Bell 1965], namely,

@tWt(u,w | r0) = Dr2
r0
Wt - �Wt + �G[Wt] . (III.47)

Then by taking the mixed derivative of Eq. (III.46), we get

@t hNXNY(t | r0) i = Dr2
r0
hNXNY i+ �(⌫1 - 1)hNXNY i+ �⌫2hNX i hNY i ,

recalling that G0[1] = ⌫1 and G(2)[1] = ⌫2. With the definitions Eq. (III.44)
and Eq. (III.31) we finally obtain the

5The distinction with the moment generating function Wt(s) in Eq. (III.27) is already
explicit thanks to the variables u, v instead of s.
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8>><>>:
@t G(x, y, t | r0) = Dr2

r0
G+ �(⌫1 - 1)G+ �⌫2 n(x, t | r0)n(y, t | r0)

G(x, y, 0 | r0) = �(x - r0) �(y - r0)

+ Boundary Conditions.

(III.48)

Backward equation for the correlation function G

To express the correlation function GS(x, y, t) resulting from a source S of
N0 independent particles at t = 0, let us restart from the definition

GS(x, y, t) = h ⇢(x, t) ⇢(y, t) i , (III.49)

= lim
dx!0

lim
dy!0

⌧
NX(t | S)

dx
NY(t | S)

dy

�
, (III.50)

generalising Eq. (III.44) to any source S of particles. This correlation func-
tion can be associated with the generating function Wt(u,w | S), such that

hNX(t|S)NY(t|S) i = @u@vWt(u,w | S)
���u=0
w=0

. (III.51)

The N0 particles emitted from the source are independent and their initial
positions are identically distributed according to the pdf p(r0). Thus, by
definition,

Wt(u,w | S) =

Z
V

p(r1) · · · p(rN0)Wt(u,w | r1) · · · Wt(u,w | rN0)dr1 · · ·drN0 ,

=
h Z

V

p(r0) Wt(u,w | r0)dr0

iN0
. (III.52)

Applying the definition (III.51) and using Eq. (III.35) then leads to

hNXNY(t | S) i = N0(N0 - 1)
Z
V

p(r0) hNX(t|r0) idr0

Z
V

p(r0) hNY(t|r0) idr0

+N0

Z
V

p(r0) hNXNY(t|r0) idr0 ,

and we finally obtain the correlation function

GS(x, y, t) = N0(N0 - 1)n(x, t|S1)n(y, t|S1) +N0

Z
V

dr0 p(r0)G(x, y, t|r0)

(III.53)
The density n(x, t|S1) is the density of particles about x at time t resulting
from a source of a single particle distributed over V according to p(r0):

n(x, t|S1) =

Z
V

p(r0)n(x, t|r0)dr0 . (III.54)
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As the N0 particles of the source are independent, n(x, t|S) = N0 n(x, t|S1),
and we recover Eq. (III.41). In Eq. (III.53), observe that

N0(N0 - 1)n(x, t|S1)n(y, t|S1)
.
= hind(x, y, t) , (III.55)

corresponds to the pair correlation function in the system at time t in ab-
sence of correlation (as if particles in the system at time t were all indepen-
dent).

Pair correlation function – Just like hNX(t | r0)NY(t | r0) i, the correlation
function GS(x, y, t), defined in Eq. (III.50), includes self-contributions of
particles when X = Y. Subtracting these contributions to G(x, y, t | S), we
obtain the pair correlation defined in Sec. III.2.1 [Houchmandzadeh 2009],

h(x, y, t) = G(x, y, t | S)- �(x - y)n(x, t | S)| {z }
self-contributions

. (III.56)

Indeed, when X = Y the mean number of particle pairs in X = Y is
⌦
NX(t | S)

�
NX(t | S)- 1

� ↵
= hNX(t | S)

2 i- hNX(t | S) i , (III.57)

whereas, it is hNX(t | S)NY(t | S) i when X 6= Y. h(x, y, t) is the density of
pairs of distinct particles formed by one particles about x and one about y,
that results at time t from a source S of particles at time t = 0.

General Solution The general solution of Eq. (III.48) reads

G (x, y, t | r0) = e�(⌫1-1)t
Z
V

dr00 �(x - r00) �(y - r00)GD(r0, t ; r00, 0)

+

Zt
0

dt0
Z
V

dr00 �⌫2 n(x, t0|r00)n(y, t0|r00) e�(⌫1-1)(t-t0)GD(r0, r00, t- t0) .

Using Eq. (III.38), the first term of this solution, is equal to �(x-y)n(x, t|r0).
Replacing then Eq. (III.39), e�(⌫1-1)(t-t0)GD(r0, r00, t- t0) = n(r00, t- t0|r0),
in the second term, we can rewrite the correlation function G:

G (x, y, t | r0) = �(x - y)n(x, t|r0)

+ �⌫2

Zt
0

dt0
Z
V

dr00 n(x, t0|r00)n(y, t0|r00)n(r
0
0, t- t0|r0) . (III.58)

Therefore, for an extended source S of particles, the correlation function
GS(x, y, t) given by Eq. (III.53) becomes

GS(x, y, t) = hind(x, y, t)| {z }
independent pairs

+N0 �(x - y)n(x, t | S1)| {z }
self-contributions

(III.59)

+N0 �⌫2

Zt
0

dt0
Z
V

dr 00 n(x, t0|r00)n(y, t0|r00)n(r
0
0, t- t0 | S1)| {z }

correlated pairs from the same family

,
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where hind(x, y, t) is given by Eq. (III.55). Here we can identify different
contributions to the correlation function GS:

• the first term corresponds to the pair correlation function of the sys-
tem at time t computed as if particles were all independent;

• then, we recognise the term of self-contributions, N0 �(x-y)n(x, t|S1) =
�(x - y)n(x, t|S) (see Eq. (III.56));

• the last term corresponds to the correlations between particles of the
same family, i.e. particles that share a common ancestor. It thus
represents the non-trivial contribution to the correlations due to the
branching mechanism, and therefore is the key quantity for under-
standing the clustering phenomenon.

Using Eq. (III.56), we can reformulate Eq. (III.59) and focus on this last term:

h(x, y, t)- hind(x, y, t) = (III.60)

+N0�⌫2

Zt
0

dt0 e2�(⌫1-1) t0
Z
V

dr 00 GD(x, t0|r00)GD(y, t0|r00)n(r
0
0, t- t0|S1)

where we used n(x, t | r0) = exp(�(⌫1 - 1) t)GD(x, t; r0) from Eq. (III.39).
Finally, the centered and normalised pair correlation function defined in
Eq. (IV.90) becomes, with n(y, t|S) = N0 n(y, t|S1),

g(x, y, t) =
�⌫2

N0

Zt
0

dt0 e2�(⌫1-1) t0
Z
V

dr 00 GD(x, t0; r00)GD(y, t0; r00)n(r
0
0, t- t0|S1)

n(x, t|S1)n(y, t|S1)

(III.61)

Particular cases – In the case of a uniform initial distribution of particles,
p(r0) = cst = 1/V , the expression (III.41) for the density n(x, t|S1) can be
simplified:

n(x, t|S1) =
1
V

e�(⌫1-1) t
Z
V

GD(x, t; r0)dr0 =
1
V

e�(⌫1-1) t , (III.62)

thanks to the normalisation property of the propagator GD(x, t; r0). In this
case, the density then reads

n(x, t) = n0 e�(⌫1-1) t , (III.63)

where n0 = N0/V is the initial density of particles, and Eq. (III.61) simplifies

g(x,y, t) =
�⌫2

n0

Zt
0

e�(⌫1-1) (t0-t)G2D(x, y, t0)dt0 , (III.64)
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where we used the property of convolution of two identical Green func-
tions6. In the limit case of N0 and V taken to infinity with keeping the
ratio n0 = N0/V constant, the Green function GD(x, t0; y) = G1

D(x - y, t0)
is given by Eq. (III.14) and we recover the centered and normalised pair
correlation function g1(x,y, t) of the system of infinite size (see previous
section), with, in addition, a generalisation to any number of descendants
per collision7.

III.2.4 System of finite size - reflecting and absorbing boundaries

Figure III.5: One dimensional systems considered with respective initial
and boundary conditions: reflecting boundary condition on
the Left and absorbing on the Right.

a. Reflecting boundaries

Consider a one-dimensional system of size V = 2L with reflecting bound-
aries (Neumann boundary conditions) in x = -L and x = L:

@n

@x
(x, t | x0) = 0 at x = ±L . (III.65)

For instance, this system could model a one-dimensional fuel rod surrounded
by water in a nuclear reactor (see Sec. III.1.1). We then start the system with
N0 branching Brownian particles prepared at equilibrium (see Eq. (III.4)),
which corresponds, for reflecting boundaries, to a uniform distribution of
the N0 particles: n0 = N0/2L (see Fig. III.5 Left). The mean density of par-
ticles in the system is then given by Eq. (III.63):

n(x, t) = n0 e�(⌫1-1) t . (III.66)

Neutron density, for reflecting boundary conditions

The system is thus exactly critical for ⌫1 = 1. For this system, the Green
6R

V dr 00 GD(x, t0; r00)GD(y, t0; r00) = G2D(x, t0; y)
7In the previous section, g1(x,y, t) was only derived for the binary branching case.
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function solution of the nonhomogeneous heat equation (III.40) reads
[Polyanin 2001; Polyanin; Grebenkov and Nguyen 2013]

GD(x,y, t) =
1

2L
+

1
L

1X
n=1

an(x,y) exp
✓
-
Dn2 ⇡2 t

4L2

◆
, (III.67)

where an(x,y) = cos
⇣n⇡ x

2L
+

n⇡

2

⌘
cos
⇣n⇡y

2L
+

n⇡

2

⌘
, (III.68)

and the pair correlation function Eq. (III.64) then reads

g(x,y, t) =
�⌫2

N0

Zt
0

e�(⌫1-1) (t0-t)


1 + 2

1X
n=1

an(x,y) e
-

2Dn2 ⇡2 t0

4L2
�

dt0 .

(III.69)

Let us focus in particular on the critical case, which is of utmost importance
for nuclear reactors. In this case, after integrating over t, we get

g(x,y, t) =
�⌫2

N0


t+

4L2

D⇡2

1X
n=1

an(x,y)
1 - e

-
2Dn2 ⇡2 t

4L2

n2

�
. (III.70)

Figure III.6 shows a very good agreement between this theoretical solution
and the pair correlation obtained by Monte-Carlo simulation for different
positions in the box [-L,L]. We observe here that the behaviour of the cor-
relations between particles is governed by to different characteristic times.
First we recognise the extinction characteristic time ⌧E = N0

�⌫2
, introduced

in Eq. (II.20). Then, as the quantity in the exponential is dimensionless, it
appears an other characteristic time related to diffusion:

⌧D =
(2L)2

D⇡2 . (III.71)

Diffusion characteristic time

Note that the same time characterise the decay of the survival probability
of a purely diffusive particle in a system of size 2L with absorbing bound-
aries [Redner 2001]:

S(t) / e-t/⌧D . (III.72)

In this case, the time ⌧D characterises the decay of particles in the system.
More generally, 1/⌧D can thus be seen as the rate at which particles reach
the system boundaries. With these two characteristic times, the pair corre-
lation function finally reads
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Figure III.6: Theoretical (black) and numerical (red) pair correlation
function g(x,y, t) at time t = 5 generations and positions
x = 0, 50.1, 93.9 and 98.4, for a system of size L = 100
with reflecting boundaries starting with N0 = 10 particles.
Theoretical curves are given by Eq. (III.73). Monte Carlo
simulation were realised for a critical binary branching case
(�2 = �0 and �i>3 = 0), and the pair correlation function
was computed on 105 realisations of the system. This figure
shows a very good agreement between the theoretical pair
correlation function and the one obtained by Monte Carlo
simulations.

g(x,y, t) =
t

⌧E
+
⌧D
⌧E

1X
n=1

an(x,y)
1 - e

-
2n2 t

⌧D

n2 . (III.73)

Pair correlation function, for reflecting boundary conditions

For t > ⌧E, g(x, x, t) becomes larger than 1, such that the fluctuations of the
neutron density in the system becomes larger than the density itself, and
the whole population goes to extinction (critical catastrophe). If ⌧D > ⌧E,
global effects of the boundaries of the system on the clustering will not be
visible before the extinction of the population.

In a nuclear reactor however, the neutron population is very large, and
generally ⌧E � ⌧D. Here, we performed Monte Carlo simulations of a crit-
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ical one-dimensional fuel rod with reflecting boundaries; parameters are
given in Fig. III.7. For these simulations, the diffusion time ⌧D ' 40.5 and
the extinction time ⌧E ' 100, such that ⌧D < ⌧E. Fig. III.7 then shows
the evolution in time of g(x = 0,y, t) obtained by Monte Carlo simulations
(and compared with the exact solution (III.73)). See Appendix 5 for details
concerning the Monte Carlo simulations. We observe that the pair correla-
tion function g(x = 0,y, t) displays different regimes (see also Fig. III.7):

• Immediately after the initial time, g(x = 0,y, t) displays a peak at
short distances, x = y, which mirrors the effects of local fluctua-
tions responsible for spatial clustering. The amplitude of the peak
is proportional to the ratio ⌧D/⌧E (see Eq. (III.73)), which reflects
the competition between reproduction and diffusion: increasing re-
production (smaller ⌧E) enhances the correlations, whereas increas-
ing diffusion (smaller ⌧D) reduces the correlations. The width of the
peak, which is related to the correlation length of the system, grows
with time and is enhanced by diffusion (see the exponential term in
Eq. (III.73)).

• When t > ⌧D, the particles have explored the entire volume, and the
tent-like shape of g(xi,y, t) freezes into its asymptotic behaviour: the
exponential vanishes in Eq. (III.73).

• The total number of neutrons in the reactor also undergoes global
fluctuations due to the absence of population control and to N being
finite. These global fluctuations progressively lift upwards the shape
of g(x,y, t) by a spatially flat term that diverges linearly in time as
t/⌧E in Eq. (III.73). Finally, for t > ⌧E, g(x, x, t) > 1. This phys-
ically means that, no matter how dense the system is at time t = 0,
global spatial fluctuations affect the whole volume with uniform (and
increasing) intensity, and the neutrons are eventually doomed to ex-
tinction within a time ⌧E in the absence of population control.

b. Absorbing boundaries

Absorbing boundary conditions for the one-dimensional fuel rod can be
also dealt with by resorting to the same approach. Consider a one dimen-
sional system of size V = 2L with absorbing boundaries (Dirichlet bound-
ary conditions) in x = -L and x = L:

n(x, t | x0) = 0 at x = ±L , (III.74)

illustrated on Fig. III.5 Right. We then start the system from an equilibrium
configuration of the N0 initial particles (i.e. the solution of Eq. (III.4) with
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Figure III.7: The normalized and centered pair correlation function
g(x = 0,y, t) for a collection of N0 = 100 branching Brow-
nian motions at criticality (⌫1 = 1) with diffusion coefficient
D = 0.01 and birth-death rate � = 1 with ⌫2 = 1 in a
one-dimensional box of half-size L = 1. We took x = 0
and plotted g(x,y, t) with respect to y at successive times
t = 1 (blue squares), t = 10 (red circles) and t = 40
(green stars). Symbols correspond to Monte Carlo simu-
lations with 105 ensembles, solid lines to exact solutions
Eq. (III.73). Statistical uncertainties are of the order of
10-2. For the case of a free system, g(x,y, t) initially de-
velops a peak at x = y = 0, which is the signature of parti-
cles undergoing spatial clustering. At later times, g(x,y, t)
takes an asymptotic spatial shape, and is translated upwards
by a spatially uniform term growing linearly in time.
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absorbing boundary conditions), corresponding to a cosine distribution of
particles n0(x0) = N0p(x0):

p(x0) =
⇡

2
1

2L
cos
⇣⇡ x0

2L

⌘
, (III.75)

the probability density p(x0) begin normalised. For this system, the Green
function solution of the nonhomogeneous heat equation (III.40) reads
[Polyanin 2001; Polyanin; Grebenkov and Nguyen 2013]:

GD(x,y, t) =
1
L

1X
n=1

bn(x,y) exp
✓
-
Dn2 ⇡2 t

4L2

◆
, (III.76)

where bn(x,y) = sin
⇣n⇡ x

2L
+

n⇡

2

⌘
sin
⇣n⇡y

2L
+

n⇡

2

⌘
. (III.77)

The mean density of particles is given by Eq. (III.41), with n(x0) = N0p(x0),

n (x, t) = n0 e�(⌫1 - 1)t
Z+L

-L

cos
⇣⇡ x0

2L

⌘
GD(t, x0, x)dx0 (III.78)

where we set n0 = ⇡N0/(4L) as the initial concentration of particles in the
center of the box. Note that,Z+L

-L

cos
⇣⇡ x0

2L

⌘
sin
⇣n⇡ x0

2L
+

n⇡

2

⌘
dx0 =

�
L for n = 1

0 for n 6= 1
, (III.79)

so that, after integration the mean density of particles in the system reads

n (x, t) = n0 cos
⇣⇡ x

2L

⌘
exp

h⇣
� (⌫1 - 1)-

⇡2 D

4L2

⌘
t
i

. (III.80)

The system is critical if this solution is time independent, i.e. if

� (⌫1 - 1) =
⇡2 D

4L2 () � (⌫1 - 1) =
1
⌧D

. (III.81)

Here, we recognise the diffusion characteristic time ⌧D = (2L)2

D⇡2 , introduced
in Eq. (III.71). Note that, for a binary branching case (�(⌫1 - 1) = �2 - �0),
for instance, we can rewrite this condition of criticality:

�2 = �0 +
1
⌧D

. (III.82)

The rate of particle birth (on the lhs) is equal to the rate of particle death
(on the rhs). Particle absorption can happen within the volume with a rate
�0 and on the boundaries with a rate 1/⌧D. Here we recover the physical
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meaning of 1/⌧D that was expected in the previous section (rate at which
particles reach the boundaries).

In the critical case, for a system with absorbing boundaries, the pair
correlation function Eq. (III.61) becomes,

g(x,y, t) =
1
⌧E

4
⇡L

Zt
0

dt0
1X

n=1

1X
m=1

fn,m(x,y) e
-(n2 +m2 - 2)

t0

⌧D

cos
⇣⇡x

2L

⌘
cos
⇣⇡y

2L

⌘ , (III.83)

where we have recognised the characteristic extinction times ⌧E introduced
in Eq. (II.20), and where the function fn,m(x,y) is defined for any x and y
in the interval ]- L,L[ by

fn,m(x,y) =
ZL
-L

cos
⇣⇡x0

2L

⌘
bn(x0, x)bm(x0,y)dx0 . (III.84)

Using the expression of bn(x,y) in Eq. (III.77), we obtain

fn,m(x,y) =

8>>><>>>:
0 if n and m have different parity,

8L
⇡

sin
⇣n⇡x

2L
+

n⇡

2

⌘
sin
⇣m⇡y

2L
+

m⇡

2

⌘

⇥
1 - (n-m)2 ⇤ ⇥ (n+m)2 - 1

⇤ otherwise.

(III.85)

In Eq. (III.83) the term in the exponential vanishes for n = m = 1, conse-
quently the first term in the sum, for n = m = 1, is independent of time.
Besides,

f1,1(x,y) =
8L
3⇡

cos
⇣⇡x

2L

⌘
cos
⇣⇡y

2L

⌘
. (III.86)

After integrating over the time, this first term gives rise to a term of “trivial
clustering”

g1,1(x,y, t) =
32

3⇡2
t

⌧E
. (III.87)

growing linearly with time (as for the case of reflecting boundaries) and
characterising the death of the whole population in an extinction time ⌧E
(critical catastrophe). The function fm,n behaves as nm/(m2 +n2) if m and n
are equal, and as nm/(m4 + n4) otherwise, so that the double sum over m
and n in Eq. (III.83) converges. However, its value is not easy to compute,
and as we are interested in the behaviour of g(x,y, t) in time, it could be
more interesting to invert the time integral with the sums8:

8This is possible if the sum of the integral of the absolute value of the function of interest
still converges, which is the case here.
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g(x,y, t) =
32

3⇡2
t

⌧E
+

32
⇡2
⌧D
⌧E

X
n,m>1

same parity
\{n=m=1}

cn,m(x,y)


1 - e
-(n2 +m2 - 2)

t

⌧D

�

(III.88)

Pair correlation function – for absorbing boundaries

where

cn,m(x,y) =
nm sin

⇣n⇡x
2L

+
n⇡

2

⌘
sin
⇣m⇡y

2L
+

m⇡

2

⌘

⇥
2(m2 +n2)- (n-m)2 - 1

⇤
(n2 +m2 - 2) cos

⇣⇡x
2L

⌘
cos
⇣⇡y

2L

⌘ ,

In the sum, the factor (n2 +m2 - 2) is always larger than 6, so that for
t > ⌧D, the exponential rapidly vanishes:

X
n,m>1

same parity
\{n=m=1}

cn,m(x,y)


1 - e
-(n2 +m2 - 2)

t

⌧D

�
�!
t�⌧D

X
n,m>1

same parity
\{n=m=1}

cn,m(x,y) .

(III.89)

This sum is convergent for all x and y in the interval ]- L,L[ (see fig. III.8).
The sum in Eq. (III.90) then converges to an asymptotic value for large t, so
that the shape of g(x,y, t) becomes frozen:

for t > ⌧D, g(x,y, t) =
32

3⇡2
t

⌧E| {z }
Critical catastrophe for t>⌧E

+
32
⇡2
⌧D
⌧E

X
n,m>1

same parity
\{n=m=1}

cn,m(x,y)

| {z }
shape of the peak frozen

.

(III.90)

Finally, as for the previous case, for time t > ⌧E the whole population will
go to extinction do to global fluctuation of the system (critical catastrophe).

c. Conclusion and perspectives

In the two cases we have observe the same three different regimes of g(x,y, t)
in the system (for 0 < ⌧D < ⌧E):

• Immediately after the initial time, g displays a peak at short distances
x = y: the particles tend to cluster. The amplitude of the peak (corre-
lations) is enhanced by the reproduction process whereas it is reduced
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Figure III.8: Convergence of the sum in Eq. (III.89): plot of the function
resulting from the sum for L = 1 and different values of
nmax = mmax = 7 (blue), 40 (orange) and 100 (green).

by diffusion. Its width (⇠ correlation length) increase in time, due to
diffusion. Note that the same observations were done for the system
of infinite size (see Sec. III.2.2);

• Then, for t > ⌧D, the shape of the peak is frozen, such that we may
expect the cluster to exhibit a characteristic size.

• and, for t > ⌧E, the system finally goes to extinction, due to global
fluctuations (critical catastrophe).

The first regime was already observed in the case of an unbounded sys-
tem (infinity size, see Sec. III.2.2), and the critical catastrophe finally hap-
pened due to the finite number of initial particle (see Sec. III.1.2). The effects
of the boundaries appears in the second regime: after ⌧D particles have ex-
plored the entire volume (the finite size of the system is “seen” by the par-
ticles). In this regime, we may expect cluster to exhibit a characteristic size
(the shape of the peak of g is frozen), which would result from the compe-
tition between correlation by birth/death mechanism and mixing over V
by diffusion. However, this regime could be visible only for t ⌧ ⌧E, and
at the end, global spatial fluctuations will affect the whole population that
will undergo “a trivial clustering” due to the critical catastrophe, and even-
tually go to extinction in a time ⌧E.



116 NEUTRON CLUSTERING

3 CONTROLLED POPULATION IN A SYSTEM OF FINITE SIZE

So far, the population of neutrons was allowed to fluctuate freely in our
model, which leads to strong global fluctuations of the population. How-
ever, in a nuclear reactor, different physical phenomena actually contribute
to the control of the neutron population, such as the Doppler effect that
tend to counteract local fluctuations of the population. An external oper-
ator also acts on the whole population to control the power delivered by
the reactor, preventing it from large increase or death by inserting or re-
moving control rods that absorb neutron excess. These actions control the
whole population, introducing a feedback effect on the population fluctu-
ations and forcing it to stay constant on average. In this section, we will
focus on the effects of a global population control by imposing that the to-
tal number of neutrons in the system is preserved. We will then investigate
the consequences of such constraint on spatial fluctuations.

III.3.1 The model

We consider again the simplified prototype model of a nuclear reactor de-
scribed in Sec. III.1.1, introducing now a population control. We start the
system with an equilibrium configuration of N0 independent neutrons (see
Sec. III.2) and let them free to evolve with a diffusion constant D; collisions
then occur with a rate �. The simplest way to enforce a constant number
N0 of neutrons in the population is to correlate reproduction and absorp-
tion events [Zhang et al. 1990; Meyer et al. 1996]: at each fission, the in-
coming neutron disappears and is replaced by a random number m > 1
of descendants, with a probability pm; simultaneously, m - 1 other neu-
trons are removed from the population (absorptions). This procedure en-
sures the conservation of the total number of neutrons (see the example in
Fig. III.9). This mechanism has been first introduced in theoretical ecology
(with binary branching pm = �m,2) [Zhang et al. 1990; Meyer et al. 1996],
where similar large-scale constraints such as limited food resources have
been shown to quench the wild fluctuations in the number of individuals
that are expected for an unconstrained community. Similar effects have
been also considered in the context of cellular growth under the effects of
chemotaxis [Gelimson and Golestanian 2015].

The procedure – Start with N0 particles, and let them diffuse. For all k > 2:
with a rate �k = �pk, choose 1 particle and duplicate it k- 1 times. Kill
k- 1 other randomly chosen particles9.

Based on the model above, the total number of particle remains con-
stant, being equal to N0 at any time, as illustrated on Fig. III.9. Moreover,

9Note that, necessarily, for all k > N0, we must have pk = 0.
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Figure III.9: Evolution of a collection of branching random walks with
binary fission and ⌫1 = 1. At time t = 0, the population is
composed of N = 3 particles; the system is then observed
at successive times t1 < t2 < t3 < t4. Top. without

population control – Birth or death events can occur at
any moment, the total number of neutrons in the system
undergoes important fluctuations in time. Bottom. with

population control – at each fission event a new neutron
appears in the system; an other neutron is simultaneous
removed from the system: the total number N of neutrons
in the population is preserved at any time (N = 3 here, for
instance).

as k- 1 deaths occur with a rate �k, the rate of particle death �0 = �p0 thus
becomes:

�0 =
X
k>2

(k- 1) �k , (III.91)

such that we recover ⌫1 = 1:

⌫1 =
X
k

kpk = 1 - p0 +
X
k>2

(k- 1)pk , (III.92)

using p1 = 1- p0 -
P

k>2 pk. For this controlled system, the Feynman-Kac
method that we have used in the previous section would be cumbersome
to derive. However, it is still possible to derive the pair correlation function
of the system by using a simpler method introduced by [Meyer et al. 1996],
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which is based on the knowledge of the common ancestor of two randomly
chosen particles at any time.

III.3.2 Genealogy - the last common ancestor

The model described above can be extended to a more general process,
where particles are killed with a probability pdeath that can be, in general,
smaller than 1 [Meyer et al. 1996]. This extended control also prevents the
population from becoming extinct, and for pdeath = 1 we recover the critical
process described above. For pdeath < 1, p0 = pdeath

P
k62(k- 1)pk, and

the process is super-critical (⌫1 > 1 according to Eq. (III.92)). Concerning
reactor physics, this generalised model could be interesting for a next step,
as reactors are operated by perturbations close to the exact critical point.

One very interesting feature of this controlled model is the possibility to
calculate, at any time t > 0, the probability that two randomly chosen par-
ticles among the N(t) of the system have shared their last common ancestor
at a time ta = t- ⌧ (⌧ > 0). In this section we will be compute this proba-
bility for the generalised control model. Following the lines of [Meyer et al.
1996], we will then be able to compute the pair correlation function of the
system.

a. Starting with N0 particles

Let us denote by At(ta)dta the probability that a pair of particles arbitrar-
ily chosen at a time t was generated from its last common ancestor in the
time interval [ta-dta, ta] (see Fig. III.10 Left). The system is started at time
t = 0 with N0 particles, and then follows the generalised process described
above. At a positive time t, an arbitrarily chosen pair of particles may have
no common ancestor (see Fig. III.10 Right), so that the marginal probabil-
ity that they actually share a common ancestor is necessarily smaller than
one:

Rt
0 At(ta)dta < 1, and as the time t goes to infinity, this probability

necessarily converges to 1, which gives the normalisation for At:

lim
t!+1

Zt
0
At(ta)dta = 1 . (III.93)

Let us denote by UA(t) the complementary probability:

UA(t) = 1 -

Zt
0
At(ta)dta < 1 , (III.94)

corresponding to the marginal probability that two particles chosen at time
t do not share any common ancestor.
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Figure III.10: Left: We are interested in the probability that two parti-
cles arbitrarily chosen at a time t share their last common
ancestor in the time interval [ta - dta, ta].
Right: At time t > 0, two arbitrarily chosen particles may
have no common ancestor, descending respectively from
two different particles at time t = 0.

To derive At(ta) we must consider the process of pair reproduction. At
a time t, the exact number of ordered pairs in the system is

N(t) (N(t)- 1) , (III.95)

where N(t) represents the total number of particles in the system at time t.
Furthermore, during the time interval [t, t+ dt], the number of new pairs
of particles that are created in the system is (see Eq. (II.3) and Sec. II.1.1)

N(t) � dt| {z }
number of collisions during dt

⇥ ⌫2|{z}
mean number of pairs emitted at a collision

. (III.96)

The ratio of these two quantities gives the fraction of new pairs created in
the time interval [t, t+dt] over the total number of pairs [Meyer et al. 1996]:

�p(t)dt =
�⌫2

N(t)- 1
dt , (III.97)

which allows us to define the rate �p(t) of renewal of particle pairs. Let
us now consider the conditional probability that two arbitrarily chosen
particles at time t were generated from a common ancestor at t0 in the
time interval [ta, ta + dta], given that t0 6 ta + dta, namely
Pt (t0 2 [ta, ta + dta] | t0 6 ta + dta). This probability is exactly the frac-
tion of new pairs created during the time interval, obtained in Eq. (III.97),

Pt

⇥
t0 2 [ta - dta, ta] | t0 6 ta

⇤
= �p(ta)dta . (III.98)
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Moreover, by definition10, this conditional probability reads

Pt

⇥
t0 2 [ta - dta, ta] | t0 6 ta

⇤
=

Pt [ t0 2 [ta - dta, ta] and t0 6 ta ]

Pt [ t0 6 ta ]
,

where, from the definition of At, Pt [ t0 2 [ta - dta, ta] and t0 6 ta ] =
At(ta)dta and Pt [ t0 6 ta ] =

Rta
0 At(t0)dt0. At therefore verifies the ho-

mogeneous Volterra integral equation of the second kind:

At(ta) = �p(ta)

Zta
0

At(t
0)dt0 . (III.99)

As the kernel of this equation �p(ta)At(t0) is separable, this equation can
be solved directly. Then, using the normalisation Eq. (III.93) finally yields

for 0 < ta < t, At(ta) = �p(ta) exp

-

Zt
ta

�p(s)ds
�

. (III.100)

Probability density At(ta)

It follows the probability that two arbitrarily chosen particles at time t do
not share any common ancestor:

UA(t) = exp

-

Zt
0
�p(s)ds

�
. (III.101)

Probability UA(t)

Other quantities – Note that the probability density At allows defining other
important physical quantities. For instance, we can define the probability
Vt(tm) that two particles randomly chosen at time t come from the same
initial particle and that their last common ancestor is located in time before
tm (see Fig. III.12 Left):

Vt(tm) =

Ztm
0

At(ta)dta < 1 ; (III.102)

or its complementary probability Ut(tm) that two particles chosen at time t
does not share any “last common ancestor” before tm (either their last com-
mon ancestor is at t0 > tm, either they do not share any common ancestor

10The conditional probability of an event A assuming that B has occurred is given by

P(A | B) =
P(A\B)

P(B)
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– see Fig. III.11)

Ut(tm) = 1 -

Ztm
0

At(ta)dta = 1 - Vt(tm) < 1 ,

= 1 - exp

-

Zt
tm

�p(s)ds
�

| {z }
pba that last common ancestor between tm and t

+ exp

-

Zt
0
�p(s)ds

�

| {z }
no common ancestor

;

(III.103)

For the critical case, due to particle number conservation, N(t) = N0 for
all t, the rate �p at which pairs are renewed in the system remains exactly
constant over time. We denote by �c this constant:

for all t, �p(t)
.
= �c =

�⌫2

N0 - 1
. (III.104)

Then, from Eq. (III.100) and (III.101), the function At(ta) and the probabil-
ity UA(t) read:

8<: Ac
t (ta) = �c e-�c (t- ta) ,

Uc
A (t) = e-�c t .

(III.105)

At(ta) and UA(t) at criticality

For a super-critical case (⌫1 > 1), we assume that, thanks to the popu-
lation control, fluctuations are significantly reduced, so that N(t) is well
represented by its mean [Meyer et al. 1996], which is given in Eq. (II.10).
The reproduction rate of particle pairs then decreases exponentially with
time:

�p(t) =
�⌫2

N0 e�(⌫1-1) t - 1
' �c e-�(⌫1-1) t . (III.106)

Eq. (III.100) for the function At(ta) and Eq. (III.101) for the probability
UA(t) then become, for large N0:8>>><>>>:

As
t (ta) ' �p(ta) exp


-
�p(ta)- �p(t)

� (⌫1 - 1)

�
,

Us
A (t) ' exp


-
�c - �p(t)

� (⌫1 - 1)

�
,

(III.107)

where we used that �p(0) = �c.
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Figure III.11: Ut(ta) represents the probability that the last common
ancestor of two particles randomly chosen at time t is not
located before the time ta: either the particles actually
share a common ancestor, but after ta (see green family
on the left), either the particles come from two distinct
families (see yellow and blue families on the right), and
thus do not share any common ancestor.

A Markovian process of pair renewal – A simpler way to obtain At(ta) is to
observe that the pair reproduction process is a non-homogenous Poisson
process of rate �p(t) (Poissonian if �p is constant, i.e. if the system is crit-
ical). Then, following the lines of section I.1.2 (see in particular Eq. (I.10)),
we can write directly the marginal probability that two particles randomly
chosen at time t do not share any common ancestor11:

UA(t) = exp

-

Zt
0
�p(s) ds

�
. (III.108)

Indeed, this probability can be seen as the probability that a pair of parti-
cles generated at time t = 0 is still “alive” at time t (i.e. that the renewal
process that kills one of the two initial branches has not happened yet). We
can then obtain directly UA(ta) or VA(ta) using the heuristic probabilistic
argument illustrated on Eq. (III.103) and Fig. III.11. To determine Vt(ta)
we decompose each path from t = 0 to t into two parts, one from t = 0 to
ta, and the other one from ta to t (see Fig. III.12). As the pair reproduction
process is Markovian, these two parts are completely independent, and

Vt(ta) =
UA(t)

UA(ta)
[1 -UA(ta)] . (III.109)

By definition (see Eq. (III.102)), the probability density At(ta) can then be
obtained by derivation of Vt(ta): At(ta) = Vt

0(ta). Using from Eq. (III.108)

11 UA(t+ dt) = UA(t)- Pt [ ta 2 [t, t+ dt] ]
where Pt [ ta 2 [t, t+ dt] ] = UA(t+ dt) Pt [ ta 2 [t, t+ dt] | ta 6 t+ dt ]
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Figure III.12: Left: Vt(ta) represents the probability that the last com-
mon ancestor of two particles randomly chosen at time t
is actually located before the time ta, which corresponds
to the situation illustrated here. Note that necessarily the
two particles can not share any other common ancestor
between ta and t.
Left to right: As the process of pair renewal is Markovian,
trajectories from time 0 to time t can be decomposed into
two independent parts, from 0 to ta and from ta to t.
For this reason, the probability Vt(ta) that two particles
chosen at time t shared a last common ancestor before
ta, results from the product of the probability p2 that the
particles at time t come from two different families (yellow
and blue) at time ta, i.e. with no common ancestor from
ta to t, and the probability p1 that two particles taken at
time ta actually share a common ancestor.
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that UA
0(t) = �p(t)UA(t) finally yields

At(ta) = �p(ta)
UA(t)

UA(ta)
. (III.110)

Thanks to the same arguments, the probabilityAt(ta)dta could have been
also directly obtained. Indeed it is the probability that two particles chosen
at t have no common ancestor between ta and t, namely UA(t)/UA(ta),
and that their common ancestor were "generated" in the time interval [ta -
dta, ta], namely �p(ta)dta. Finally, replacing the expression of UA(t) from
Eq. (III.108) in this latter equation leads to the final result Eq. (III.100).

b. N0 particles starting from the same position

Other types of initial conditions may also be worked out within the same
approach. For instance, one might want to consider the case where all par-
ticles start from a point-source located at r0, which has been considered
in [Meyer et al. 1996]. Assigning the initial positions of the particles does
not change the results previously obtained for At(ta). However, for this
particular example, if two randomly chosen particles at time t have no com-
mon ancestor, we know, for sure, that their respective first ancestors have
at least started from the same position r0 at time t = 0. We thus define, for
every particle, a unique common ancestor that is in r0 at t = 0. We then
introduce the pdf of the last generalised common ancestor of two particles
at time t12 [Meyer et al. 1996]:

At(ta) = At(ta)| {z }
normal ancestors

+ UA(t) �(ta)| {z }
unique ancestor at t=0

, (III.111)

which takes into account the unique ancestor at t = 0. At any time t, every
chosen pair of particles thus always shares a generalised common ancestor,
and, by definition

Zt
0
At(ta)dta = 1 . (III.112)

In particular, for the critical case, using Eq. (III.105), the pdf of the last gen-
eralised common ancestor reads

Ac
t (ta) = �c e-�c (t- ta) + e-�c t �(ta) . (III.113)

12This new pdf allows characterising the spatial relation between particles, more than the
family relationship (genealogy) itself.
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III.3.3 Pair correlation function - Controlled clustering

a. General Case

We start with a finite collection of N0 particles distributed with the prob-
ability density p0(r) over a d-dimensional system of volume V (finite or
not) and let them evolve according to the controlled process described in
Sec. III.3.1. For any particle chosen in the system at time t, it is possible to
trace the ancestry of its family until its unique first ancestor at time 0 (one
of the N0 starting particles). This defines a generalised trajectory for the
particle from the initial time up to the observation time t (see Fig. III.13).
Since births do not affect the diffusing process, the statistical properties of
this trajectory are the same as for a single diffusing particle [Meyer et al.
1996]. Thanks to this observation, we can write the probability density to
find a particle about r at time t as:

p(r, t) =
Z
V

GD(r, t; r0, t0)p(r0, t0)dr0 , (III.114)

where p(r0, t0) is the probability density that the first particle starts from
r0 at time 0. GD(r, t; r0, t0)

.
= GD(r, r0, t, t0) is the propagator of a purely

diffusing particle in the considered system, i.e. GD(r, t; r0, t0)dr gives the
probability to find a regular Brownian particle about r at time t, knowing
that the particle was at r0 at time t0. This propagator satisfies the diffu-
sion equation Eq. (III.40)13. Starting the system with a particle probability
density p(r0, t0 = 0) .

= p0(r0), the density of particles at time t then reads14

n(r, t) = hN(t)ip(r, t) , (III.115)

= hN(t)i
Z
V

GD(r, t; r0, t0)p0(r0)dr0 , (III.116)

where hN(t)i is the mean number of particles in the system at time t, given
by Eq. (II.10), hN(t)i = N0 exp[�(⌫1 - 1)]. Equation (III.116) is thus identical

to the density obtained without population control, Eq. (III.41):

n (r, t) = N0 e�(⌫1-1)t
Z
V

p0(r0)GD(r, t; r0)dr0 . (III.117)

Particle density

At criticality, N(t) = N0 for all t and the neutron density also becomes
indistinguishable from that of N0 regular Brownian particles. The fact that
the particle density n(r, t) does not provide any information about spatial

13GD(r, t; r0, t0) is given by Eq. (III.14) for an infinite system, Eq. (III.67) for a system with
reflecting boundaries and Eq. (III.76) with absorbing boundaries.

14n(r, t) results from hN(t)i regular Brownian walkers, see Eq.(II.25).
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correlations in the system is apparent here in the way n(r, t) was built by
considering purely diffusive (generalised) trajectories.

Figure III.13: Left: Schematic representation: real trajectory of a par-
ticle (blue) since its birth (blue point) until time t, com-
pared with its generalised trajectory (red) that trace its
ancestry since time 0. This generalised trajectory has the
same statistical properties than trajectories travelled by a
purely diffusing particle from r0 at time t = 0 to r at time
t.
Right: Schematic representation: two distinct parti-
cles at time t sharing their last common ancestor at time
ta. At any time smaller than ta, the generalised trajecto-
ries of the two particles are identical corresponding to the
same Brownian trajectory, whereas, for time larger than
ta, their respective generalised trajectories correspond to
two Brownian motions that have both started at time ta
from a common position ra.

Let us now consider the pair correlation function hc defined in sec-
tion III.2.1. The index c, for “control”, will be used in this section to distin-
guish each quantity from its counterpart in the free case (see Sec. III.2). To
derive hc(x, y, t), we first consider the probability density P2(x, y, t) to find,
at time t, a pair of distinct particles, with one about x and the other about y.
Note that this definition does not include self-contributions. The pair cor-
relation function hc is then given by the pair probability density function
P2(x, y, t) multiplied by the mean number of ordered particle pairs in the
system at time t:

hc(x, y, t) = hN(t)i (hN(t)i- 1)P2(x, y, t) . (III.118)

As seen in section III.3.2, the control process allows tracking the ancestry
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of any pair of particles back to their last common ancestor. Thanks to this
property, we can use the genealogy of each particle pair to compute the
correlation function of the system [Meyer et al. 1996]. Let us choose two
distinct particles at time t, and first assume that their last common ancestor
is located at time ta < t (see Fig. III.13 Right). At any time smaller than ta,
the generalised trajectories of the two particles are identical, whereas for
time larger than ta their respective trajectories correspond to two Brow-
nian motions that have both started from a common position ra at time
ta. The part of shared trajectory is responsible for correlations between the
two particles, and therefore gives rise to a correlated part in the pair corre-
lation function of the system. Thanks to this description, we can write the
correlated part of the probability density P2(x, y, t):

Pcorr
2 (x, y, t) =

Zt
0

dtaAt(ta)

Z
V

GD(x, ra, t, ta)GD(y, ra, t, ta)p(ra, ta)dra ,

(III.119)
where – At(ta)dta is the probability to find the last common ancestor

in the time interval (ta, ta + dta);
– p(ra, ta)dra is the probability that this ancestor is about ra,

where ra is the position at time ta of a Brownian walker that
has started from r0 at time 0 (see Eq. (III.114)):

p(ra, ta) =
Z
V

GD(ra, ta; r0, 0)p0(r0)dr0 ; (III.120)

– GD(x, ra, t, ta)GD(y, ra, t, ta)dxdy is the probability to find a
pair of regular Brownian particles at time t, one about x and the
other one about y, knowing that the pair was about ra at time ta.

On the other hand, the two particles may have no common ancestor, which
happens with probability UA(t): they come from two independent families
starting from independent positions x0 and y0 at time 0, and thus contribute
to the uncorrelated part of the probability density P2(x, y, t):

Punc
2 (x, y, t) = UA(t)

ZZ
V

G(x, x0, t, 0)G(y, y0, t, 0)p0(x0)p0(y0)dx0 dy0 ,

= UA(t)p(x, t)p(y, t) . (III.121)

The resulting probability density is the sum of these two contributions,

P2(x, y, t) = Pcorr
2 (x, y, t) + Punc

2 (x, y, t) , (III.122)

and, the pair correlation function hc in Eq. (III.118) then reads

hc(x, y, t) = Nt(Nt - 1)UA(t)p(x, t)p(y, t) (III.123)

+ �⌫2Nt

Zt
0
dta

Nt - 1
Nta - 1

UA(t)

UA(ta)

Z
V

GD(x, ra, t, ta)GD(y, ra, t, ta)p(ra, ta)dra ,
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where At(ta) was replaced by its expression in Eq. (III.110). For the sake of
clarity, we adopted the lighter notation Nt instead of hN(t)i.

Forward interpretation of the correlated part of P2
UA(t) is the probability that a pair of particles chosen at time t
has no common ancestor. It can also be seen as the probability
that a pair of particles generated at time 0 is still “alive” at time t
(i.e., the process of pair renewal that kills one of the two initial
branches has not occurred, yet). The correlated part of P2 can
thus also be interpreted in a slightly different way. Let us rewrite
Eq. (III.119):

Pcorr
2 (x, y, t) =

Zt
0

dta�p(ta)
UA(t)

UA(ta)

Z
V

G(x, ra, t, ta)G(y, ra, t, ta)p(ra, ta)dra ,

1 ⇥ �p(ta)dta gives the probability to generate one pair of par-
ticles during [ta, ta + dta], and UA(t)/UA(ta) is the probability
that this pair stays “alive” from ta to t.

Finally, to obtain the centered and normalised pair correlation function
gc(x, y, t), we must subtract from hc its uncorrelated part: the pair correla-
tion function hind

c (x, y, t) of Nt independent diffusing particles (see Eq. (IV.90)):

hind
c (x, y, t) = Nt(Nt - 1)p(x, t)p(y, t) . (III.124)

This corresponds to considering that all the particles present in the system
at time t have performed fully independent trajectories. Note that for N
large enough hind

c (x, y, t) '
Nt�1

n(x, t)n(y, t). The centered and normalise

pair correlation function Eq. (IV.90) finally reads:

gc(x, y, t) =
Nt - 1
Nt

[UA(t)- 1] (III.125)

+
�⌫2

Nt

Zt
0
dta

Nt - 1
Nta - 1

UA(t)

UA(ta)

Z
V

GD(x, ra, t, ta)GD(y, ra, t, ta)p(ra, ta)dra

p(x, t)p(y, t)

At criticality – for any time t, N(t) = N0 and �p(t)
.
= �c = �⌫2/(N0 - 1);

the particle density is n(x, t) = N0 p(x, t), and the pair correlation function
reads

hc(x, y, t) = N0(N0 - 1) e-�ct p(x, t)p(y, t) (III.126)

+ �⌫2N0

Zt
0
dta e-�c(t- ta)

Z
V

GD(x, ra, t, ta)GD(y, ra, t, ta)p(ra, ta)dra
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where UA(t) is given by Eq. (III.105). Finally, Eq. (III.125) becomes

gc(x, y, t) =
N0 - 1
N0

[e-�ct - 1] (III.127)

+
�⌫2

N0

Zt
0
dta e-�c(t- ta)

Z
V

GD(x, ra, t, ta)GD(y, ra, t, ta)p(ra, ta)dra

p(x, t)p(y, t)

Normalised and centered pair correlation function

In front of the first integral, we recognise the extinction time ⌧E = N0/(�⌫2)
introduced in Sec. II.1.2 and also appearing in the pair correlation function
g(x, y, t) for the free case – see Eq. (IV.90). However, thanks to the control,
the population can not be extinct here. For N0 large, N0/(�⌫2) ' 1/�c in-
deed represents the characteristic time of pair renewal, i.e. the time after
which most of the particle pairs of the system have been renewed, such
that we expect that most of the particles come from the same ancestor (and
thus belong to the same family).
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Comments on the different correlation functions
• P2(x, y, t) is the probability density of pairs of distinct par-

ticles, one about x and the other about y.

• h(x, y, t) = Nt [Nt - 1]P2(x, y, t) is the density of pairs of
distinct particles in the system, with one particle about
x and the other one about y. This quantity is called pair
correlation function in this chapter.

h(x, y, t) is a bias estimator for h⇢(x, t) ⇢(y, t)i,
which accounts for self-correlationsa. Note that
h(x, y, t)/(h⇢(x, t)i h⇢(y, t)i) = h(x, y, t)/(n(x, t)n(y, t)) is
the probability to find two distinct particles, one in x and
one in y, among the population.

• h(x, y, t)- hind(x, y, t) is the centered version of h(x,y, t),
equivalent to the covariance Cov(x,y, t) without the self-
contributions.

• The centered and normalised pair correlation function,

g(x, y, t) =
h(x, y, t)- hind(x, y, t)

n(x, t)n(y, t)
,

is a central quantity in the clustering problem. The
common corresponding definition in mathematics is
Cov(x, y, t)/(n(x, t)n(y, t)) that doesn’t take out self-
correlations. These two definitions coincide for a large
population.

aContributions to correlations due “pairs” formed by particles with them-
selves.

b. System of finite size surrounded by reflecting boundaries

Let us consider again the one-dimensional fuel rod model introduced in
Sec. III.1.1, surrounded by reflecting boundaries15, and start the system
with a uniform distribution of particles p(x0) = 1/(2L) (see Sec. III.2). The

15 Note that if the system is infinite (unbounded system), starting with a finite number of
particles uniformly distributed over the system (equilibrium configuration) is impossible.
For the infinite system, two main cases can be in fact consider: either, an infinite number
of particles starting with a uniform distribution, studied by [Houchmandzadeh 2009] (see
Sec. III.2.2); or, a finite number N0 of particles starting all from the same point, considered
by [Meyer et al. 1996].
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pair correlation function hc in Eq. (III.126) then simplifies

hc(x,y, t) =
N0(N0 - 1)

(2L)2 e-�ct (III.128)

+
�⌫2N0

2L

Zt
0
dta e-�c(t- ta)

Z
V

GD(x, ra, t- ta)GD(y, ra, t- ta)dra ,

hc(x,y, t) =
N0(N0 - 1)

(2L)2 e-�ct +
�⌫2N0

2L

Zt
0
dta e-�c(t- ta)GD(x,y, 2(t- ta)) .

Then, replacing the propagator GD(x,y, t) by its expression for the case of
reflecting boundaries, see Eq. (III.67),

GD(x,y, t) =
1

2L
+

1
L

1X
n=1

an(x,y) exp
✓
-
n2 t

⌧D

◆
, (III.129)

we obtain, after integration of the constant term:

hc(x,y, t) =
N0(N0 - 1)

(2L)2 +
�cN0(N0 - 1)

2L2

Zt
0
dt0

1X
n=1

an(x,y)e
-(�c + 2

n2

⌧D
) t0

.

We used �c = �⌫2/(N0 - 1), and the change of variable t0 = t- ta in the
second integral. An integration over time yields:

hc(x,y, t) =
N0(N0 - 1)

(2L)2

2

6664 1 + 2
⌧D
⌧C

1X
n=1

an(x,y)
1 - e

-

⇣ 1
⌧C

+ 2
n2

⌧D

⌘
t

⌧D
⌧C

+ 2n2

3

7775 ,

where ⌧C = 1/�C is the characteristic time of pair renewal, i.e. the time af-
ter which most of the particles in the system are descended from the same
ancestor. As for large N0, ⌧C ' ⌧E, in the following we will keep the no-
tation ⌧E instead of ⌧C, even though we noted that the interpretation is
different. Finally, as hind

c (x,y, t) = N0(N0 - 1)/(2L)2, the centered and
normalised pair correlation function Eq. (III.123) reads

gc(x,y, t) = 2
⌧D
⌧E

1X
n=1

an(x,y)
1 - e

-

⇣ 1
⌧E

+ 2
n2

⌧D

⌘
t

⌧D
⌧E

+ 2n2
. (III.130)

Pair correlation function; reflecting boundaries with control
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Figure III.14 compares this result with the pair correlation function ob-
tained by Monte Carlo simulations at different times t (see Appendix 5 for
details concerning the simulations). It shows a good agreement between
Monte Carlo simulation and theoretical curves. We observe that gc(x,y, t)
initially develops a peak at x = y, as for the case without control, which is a
signature of spatial clustering. The pair correlation function gc(x = 0,y, t)
also displays negative correlations close to the boundaries16 x = ±L. These
anti-correlations can be explained by the population control mechanism
applied on the total number of particles in the system: positive correlations
for x = y (short distances) are compensated by negative correlations at
long distances. However, to check if the system actually develop clusters,
we must consider the amplitude of gc: if this amplitude stays close to zero
(⇠ flat gc) the fluctuations will remains Poissonian, whereas if it becomes
larger than 1 the system will display clusters.

Contrary to the free case (see Eq. III.73), the pair correlation function
here does not diverge. Indeed for all time t > 0, Eq. (III.130) is bounded:

|gc(x,y, t)| 6 2
⌧D
⌧E

1X
n=1

1
2n2 =

⇡2

6
⌧D
⌧E

. (III.131)

As expected, the control applied to the neutron population prevents drastic
global fluctuations in the system (associated to the diverging term t/⌧E in
Eq. (III.73) for the free case). In particular, for times larger than min(⌧D, ⌧E),
gc(x,y, t) converges to an asymptotic spatial shape (black dashed curve in
Fig. III.14):

g1c (x,y) = 2
⌧D
⌧E

1X
n=1

an(x,y)
⌧D
⌧E

+ 2n2
, (III.132)

where the coefficients an(x,y) are given in Eq. (III.68). Its amplitude,
g1c (0, 0)-g1c (0,L), is a growing function of the ratio ⌧D/⌧E (see Fig. III.14).
As the pair correlation function is now converging to an asymptotic func-
tion, we intuitively expect a characteristic asymptotic correlation length to
emerge from the pair correlation function.

16Note that it does not necessarily mean that particles tend to cluster far from the borders,
in the center of the box (we have plotted gc for x = 0), but only that if we take one particle
in x = 0, it is more probable that the other particles around are close to 0 than to ±L. In
other words, it only shows that particles tend to get closer to each other (clustering).
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Figure III.14: The normalized and centered pair correlation function
gc(x = 0,y, t) for a collection of N0 = 100 branching
Brownian motions at criticality (⌫1 = 1) with diffusion
coefficient D = 0.01 and birth-death rate � = 1 with
⌫2 = 1 in a one-dimensional box of half-size L = 1. We
took x = 0 and plotted g(x,y, t) with respect to y at
successive times t = 1 (blue squares), t = 10 (red circles)
and t = 40 (green stars). Symbols correspond to Monte
Carlo simulations with 105 ensembles, solid lines to ex-
act solutions Eq. (III.130). Statistical uncertainties are of
the order of 10-2. For the case of a system with popu-
lation control, gc(x,y, t) initially develops again a peak
at x = y. Because of particle number conservation, an
increased correlation about x = 0 implies negative corre-
lations close to the boundaries y = ±L. For times larger
than ⌧D, gc(x,y, t) converges to an asymptotic spatial
shape g1c (x,y, t) (see Eq. (III.132)), displayed as a black
dashed curve, and whose amplitude is proportional to the
ratio ⌧D/⌧E.
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III.3.4 Average squared distance and typical size of a cluster

Complementary information can be extracted from the pair correlation func-
tion by considering the average squared distance, defined by:

h r2 i(t) =
Z
V

Z
V

dxdy |x - y|2P2(x, y, t) . (III.133)

Note that h r2 i can also be defined in the free case, where we can obtain P2
by renormalising h:

P2(x, y, t) =
h(x, y, t)R

V

R
V dxdyh(x, y, t)

. (III.134)

For an uncorrelated population of neutrons uniformly distributed in a sys-
tem in dimension d, the ideal average square distance is [Young et al. 2001]:

h r2 iid =
1
V2

Z
V

Z
V

dxdy |x - y|2 =
d

6
V

2
d . (III.135)

Deviations of the average squared distance from this reference value allow
detecting spatial effects due to clustering [Zhang et al. 1990; Meyer et al.
1996]. In the case of a critical one-dimensional system of finite size [-L,L]
with reflecting boundaries starting with N0 uniformly distributed particles,
the initial average square distance is equal to the ideal one:

h r2 i(t = 0) = h r2 iid =
2
3
L2, for d = 1 and V = 2L . (III.136)

Then P2(x,y, t) = h(x,y, t)/N0/(N0 - 1), where h is given by Eq. (III.130),
and the time evolution of the average square distance can be obtained from
Eq. (III.133). The average square distance between particles for the system
with population control is displayed in Fig. III.15. At time t = 0, the popu-
lation is uniformly distributed and h r2 ic(0) = h r2 iid = 2

3L
2. Immediately

afterward, h r2 ic(t) starts to decrease due to the competition between dif-
fusion and birth-death. For times t � min(⌧E, ⌧D), h r2 ic(t) converges to
the asymptotic value

h r2 i1c = lim
t!1h r2 ic(t) = r2

0

"

1 -
2
⇡

r
2 ⌧P
⌧D

tanh
✓
⇡

2

r
⌧D
2 ⌧P

◆#

. (III.137)

where r0 =
p

4D⌧E is the average square distance obtained in [Meyer et al.
1996] for a system of infinite size. The result (III.137) thus generalises to
confined geometries the results for unbounded domains derived in [Meyer
et al. 1996]. Note that, in the limit of extremely large populations,

lim N ! 1h r2 ic =
2
3
L2 . (III.138)

and we recover the ideal case.
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Figure III.15: Time evolution of the average square distance between
particles h r2 ic(t) for the one-dimensional model with
N = 100 initial neutrons, � = 1, D = 10-2 and L = 1.
The red solid line corresponds to the case of population
control: at long times, h r2 ic(t) asymptotically converges
to the value h r2 i1c given in Eq. (III.137) and displayed as
a red dashed line.

4 CONCLUSIONS AND PERSPECTIVES

So far, clustering phenomena have been mostly analysed in unbounded
system of infinite size: either in the thermodynamic limit (V ! 1 and
N ! 1, with finite n0 = N/V) [Cox and Griffeath 1985; Houchmandzadeh
2009] or in unbounded domains with a finite number of particles N [Zhang
et al. 1990; Meyer et al. 1996]. A realistic description of actual physical sys-
tems demands however that the effects due to the finiteness of the viable
volume V be explicitly taken into account. In sections III.2.3 and III.2.4, we
studied the correlation within a neutron population in a finite size reactor
at critical regime. Then in section 3, we included the effects of a popula-
tion control by imposing that the total number N of neutrons in V is pre-
served, and investigate the consequences of such constraint on spatial fluc-
tuations. The results presented along this chapter were published in [Du-
monteil et al. 2014; Zoia et al. 2014; de Mulatier et al. 2015].

A population of N0 individuals that can reproduce or die intrinsically
undergoes very strong fluctuations of its community size in time. In the
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critical case, these fluctuations are responsible for the extinction of the pop-
ulation in the characteristic time ⌧E = N0/(�⌫2) (critical catastrophe). In the
first part of this chapter, coupling diffusion and reproduction processes, we
have first observed the presence of two types of fluctuations:

• first, local fluctuations, that result from a competition between dif-
fusion and birth/death processes. These fluctuations are responsi-
ble for a local particle clustering, as attests the pointed shaped pair-
correlation function: whereas reproduction/birth process tends to
correlate particles on one point, diffusion tends to enlarge the cor-
related zone, and thus the size of the cluster.

• then, here as well, strong global fluctuations due to the reproduction
process. These fluctuations leads to a trivial clustering and, finally to
the extinction of the whole population in the characteristic time ⌧E.

We then have showed that applying a control on the whole popula-
tion prevents the trivial death of the population by drastically reducing the
global fluctuations. However, clustering due to local fluctuations of the
population can still happen, depending on the ratio of two time scale: a
diffusion characteristic time ⌧D = L2/D, that characterise the time taken
by particles to explore the whole system, and a reproduction characteris-
tic time, ⌧ = 1/�p, that is the time taken by the system to renewal all its
particle pairs (after which the distance between two particles is not due to
diffusion from their common father anymore).

As a perspective, it was highlighted in the free case a different behaviour,
depending on the dimension of the system, showing that, in higher di-
mension, diffusion is struggling more to compensate the clustering effect
caused by birth and death. It could be then very interesting to understand
the dependence in dimension of this phenomenon, in a finite system, and
in the presence of population control. Finally, it would be very interesting
to understand the effect of delay neutrons on the clustering. Indeed, this
neutrons should severely modify the various time scales, and thus lead to
different conclusions.
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ANOMALOUS TRANSPORT





CHAPTER IV
OPACITY OF BOUNDED MEDIA

In this chapter we are interested in the occupation statistics of a radiation
flow within a region of a medium completely immersed in the flow. In this
context, we are focusing on the Cauchy formula, which originally estab-
lished the mean length travelled by random straight paths crossing a finite
domain. Over the last years, this formula has been extended to the class of
exponential branching random walks. In this chapter, we first generalise
this formula to heterogeneous media with anisotropic scattering. Then we
show that this formula holds for non-exponential branching random walks
(provided that the walk has a finite mean free path), which presents an
interest in the study of transport on disordered media.
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1 OPACITY FORMULAE - MOTIVATION AND STATE OF THE ART

PRECISELY quantifying the flow of radiation, such as neutrons or pho-
tons, through a structural material or a living body represents a long-

standing problem in physics [Chandrasekhar 1943; Duderstadt and Martin
1979; Case and Zweifel 1967]. It is key to mastering technological issues en-
compassing the design of nuclear reactors [Bell and Glasstone 1970], light
distribution in tissues for medical diagnosis [Tuchin 2007], and radiative
heat transfer [Modest 2013]. In transport theory, a fundamental question
concerns the occupation statistics of the transported particles within the
medium or the body that they flow through (see Chapter II Sec. 2):

- the distribution of the total length lV travelled through the medium
is, for instance, directly proportional to the radiation flux;

- the distribution of the number nV of collisions performed inside the
medium is related to the power density deposited in the traversed region
[Duderstadt and Martin 1979; Case and Zweifel 1967].

In this context, one is often called to relate the physical properties of a
medium immersed in a radiation flow to the statistics of the random tra-
jectories of the particles flowing through it. Thus, one of the basis formu-
lae in reactor physics, known as the opacity formula, gives the opacity of a
medium as an estimate of the “size” hLi of the traversed region compared
to the mean free path � of the particles flowing through it [Reuss 2012;
Duderstadt and Martin 1979; Case and Zweifel 1967]:

Opacity O =
hLi
�

. (IV.1)

If this opacity is large the structure of the medium, and in particular its
heterogeneities, will affect the distribution of the flux of particles [Reuss
2012], and conversely, the flow of particles may affect the medium (creating
damages for instance). On the other hand, a small opacity means that the
medium appears almost transparent to the particles: the flow traverses the
medium without interacting with it. In this opacity formula, the size hLi of
the medium is evaluated from the Cauchy formula [Reuss 2012], established
by Augustin Cauchy (1789–1857), which relates the mean length of a chord1

crossing the medium to the geometrical properties of the medium itself – its
volume V , its surface S and its dimensionality d [Santaló 2004] (see Fig. IV.1
Left):

Cauchy formula hLiS = ⌘d
V

S
, (IV.2)

1It is considered that the mean length of a chord of the medium, i.e. the average distance
separating the entrance point from the exit point of a neutron crossing it, is representative
of the size of the medium.
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Figure IV.1: Left. Several random chords traversing a two-dimensional
domain. Right. Purely diffusive random walker crossing
the domain, from one point to another point of its surface
S.

where ⌘d is a geometrical constant, depending on the dimension d of the
system (for instance ⌘2 = ⇡ and ⌘3 = 4)2. The notation h·iS denotes the
average over all possible directions and points of entry of the chords on the
surface S of the medium.

Within the framework of random walks, the mean chord length hLiS
corresponds to the mean length travelled by random straight paths cross-
ing a domain of finite size. In a different context, motivated by the study
of animal trajectories in various conditions, Blanco and Fournier [2003]
and then Bénichou et al. [2005] have shown that the Cauchy formula (IV.2)
holds for walkers starting uniformly from the surface S of the domain and
performing exponential Pearson random walks, as illustrated on Fig. IV.1
Right (see also [Bardsley and Dubi 1981; Mazzolo 2004]). Surprisingly
enough, the mean total length hLiS travelled by such a walker within a
finite domain depends only on the geometrical properties of the traversed
domain, and not on the specific details of the walk. Note that here the
length L is the ensemble average3 of the total length lV travelled by one
walker through the domain (see Fig. IV.4):

L = hlVi , (IV.3)

as defined in Chapter II (Eq. (II.34) for m = 1). More recently, resorting
to the Feynman-Kac formalism (see Chapter II), Zoia et al. [2012a] have
generalised the Cauchy formula (IV.2) to branching exponential random

2Note that, if the domain considered is non-convex, a straight line crossing the medium
may generate several chords. In this case each of them is considered independently and
thus contributes independently to hLiS [Mazzolo et al. 2003].

3Average over the different realisations of the walk starting from the same point of the
surface, with the same direction (see Chapter II).
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walks,

hLi
S
= ⌘d

V

S


1 +

(⌫- 1)
�

hLi
V

�
, (IV.4)

relating the surface average hLiS to the volume averages hLiV , which is the
mean total length travelled by a walker (and all its descendants) starting
uniformly within the volume V , with a random direction (see Fig. IV.2).
The constant � is the mean free path of the walkers, and ⌫ is the mean
number of descendants at each collision (see Eq. (I.24)). In particular, when
⌫ = 1, we recover the Cauchy formula (IV.2), such that, even in the presence
of branching, the mean length travelled by a walker and its family within
a domain depends only on the geometrical properties of the domain. A
similar property has been also established for the mean number N = hnVi
of collisions performed by a branching exponential random walk within a
bounded domain [Zoia et al. 2012a]:

hNi
S
= ⌘d

V

�S


1 + (⌫- 1)hNi

V

�
, (IV.5)

relating the surface average to the volume averages of N. At criticality
(⌫ = 1), the mean number of collisions then becomes:

hNi
S
= ⌘d

V

�S
= O , (IV.6)

where we recognise here the opacity O defined in Eq. (IV.1) and Eq. (IV.2).
Thus, in case of branching exponential walks at criticality, the opacity O in-
troduced above exactly corresponds to the mean total number of collisions
occurred within the considered domain. In this sense, this latter formula
is commonly used in microdosimetry [Zaider and Rossi 1996; Brahme and
Kempe 2014; Northum and Guetersloh 2014].

Beyond the application to neutron transport, the use of this invariance
property (IV.2) is reported in various fields, such as biology [Blanco and
Fournier 2003; Bénichou et al. 2005; Challet et al. 2005; Jeanson et al. 2003,
2005], or radiative transfer [Levitz 2005]. It is intimately connected to the
problem of the mean residence time htiS/V of a random walk within the
volume V , given, for walkers with finite velocity v, by [Blanco and Fournier
2003; Bénichou et al. 2005; Zoia et al. 2012a]:

htiS/V =
hLiS/V

v
. (IV.7)

The mean residence time of the walk inside the medium is the mean of
the sum of the times spent by the first walker and each of its descendants
within the domain, from the entrance of the first walker to the exit of each
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Figure IV.2: Branching random walk, starting from the surface S of the
domain (red) or within the volume V of the domain (blue).

Figure IV.3: Total length travelled (or time spent) by a walk in a subdo-
main V 0 (computed on the blue paths) for a purely diffusive
walker (Left) and for a branching random walk (Right).

Figure IV.4: Several realisations of a purely diffusive random walk start-
ing from the same phase space position. The ensemble
average, appearing for instance in Eq. (IV.3), corresponds
to an average over all possible realisations of this walk.
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of them [Redner 2001; Weiss 2005]4. A generalisation of the formulae (IV.2),
(IV.4) and (IV.6), has also been carried out concerning the mean total length
hL0iS travelled in a subdomain V 0 of the domain V [Zoia et al. 2012a] (see
Fig. IV.3) and the corresponding mean sojourn time5 of a walk in V 0: ht0iS =
hL0iS/v [Bénichou et al. 2005].

Up to now, we have considered only the case of exponential trans-
port of particles. However, exponential transport stems from assuming
that the medium is homogeneous and that scattering centres are uncorre-
lated (see Chapter I). One may wonder if the invariant property (IV.2) and
the Cauchy-like formulae (IV.4) and (IV.6) hold in the case of an heteroge-
neous medium, or in the case of a disordered and strongly heterogeneous
medium (containing holes of size comparable to the mean free path of the
transported particles, such as within Pebble-bed reactors or Lévy glasses).
In this chapter, we will first be interested in a generalisation of the Cauchy-
like formulae (IV.4) and (IV.6) to heterogeneous media with anisotropic
scattering (sec. 2). Then we will move on to the case of non-exponential
branching random walks (sec. 3 and 4), including Lévy branching random
walks, which may contribute to the study of transport in strongly hetero-
geneous and disordered media.

2 CAUCHY FORMULA FOR A NON-STOCHASTIC HETEROGENEOUS MEDIUM

Let us consider a flow of neutrons moving at constant speed v within an
inhomogeneous multiplying medium with anisotropic scattering. We as-
sume that the heterogeneities of the medium are fully determined (the
medium is not disordered), and that the characteristic length separating
scattering centres is small compared to the mean free path of the trans-
ported particles (no holes in the medium). The medium can be thus char-
acterised by a total cross section ⌃(r) at any position r. Note that, for an ho-
mogeneous medium, the cross section ⌃ is constant and corresponds to the
inverse of the mean free path: ⌃ = 1/�. The scattering is characterised by
a scattering kernel C(! ! !0 | r)6, and the branching process by the mean
number of descendants per collision ⌫1(r). Let us now consider a domain
D of volume V and surface S of this medium. We are interested in the mean
total length hLiS travelled by a walker starting from the surface S, and all its
descendants, within the domain D until they all exit or have been absorbed.

For this type of system, we have already established in Chapter II the

4For a random walk without branching, the mean residence time is equivalent to the
first return time (or first exit time), i.e. the time interval between the entry of the particle
from the surface S and its first exit through S.

5Cumulative time spent in the subdomain V 0.
6We assume that the scattering kernel C is reversible, and admits an adjoint denoted C⇤.
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backward equation verified by any moment Lm = hlmV i (including L = L1)
of the total length lV(r0,!0, t) travelled up to a time t by a neutron emitted
from a point r0 with a direction !0, and all its descendants, within a volume
V of the medium (see Eq. II.48):

1
v
@Lm
@t

(r0,!0, t) = !0 ·rr0Lm| {z }
Transport

+m 1V(r0)Lm-1| {z }
Counting term

-⌃(r0)Lm| {z }
Loss at collisions

+ ⌃(r0)
h
⌫1 C

⇤⇥Lm
⇤
+

mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤⌘i

| {z }
Contribution of the descendants at each collision

, (IV.8)

considering here that particles have a constant speed v. We recall that the
average h·i corresponds to the ensemble average, i.e. the average over
different realisations7 of the walk starting from (r0,!0), as illustrated on
Fig. IV.4. On one realisation, the total length lV(r0,!0) travelled within the
volume V until the exit or the absorption of all the particles corresponds to
the limit of lV(r0,!0, t) when the observation time t goes to infinity:

lV(r0,!0) = lim
t!1 lV(r0,!0, t) . (IV.9)

The mean total length L(r0,!0) = hlVi, and all the other moments Lm(r0,!0),
then correspond to the stationary solutions of Eq. (IV.8):

-!0 ·rr0Lm| {z }
Transport

= m 1V(r0)Lm-1| {z }
Counting term

-⌃(r0)Lm| {z }
Loss at collisions

+ ⌃(r0)
h
⌫1 C

⇤⇥Lm
⇤
+

mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤⌘i

| {z }
Contribution of the descendants at each collision

, (IV.10)

Note that the limit in Eq. (IV.9) is not necessarily finite (the population may
keep growing within the domain D in case of a super-diffusive branching
process), such that Eq. (IV.8) may not admit any stationary solution. In-
tuitively, this condition is satisfied when the particle losses due to absorp-
tions and leakages from the boundaries (exit from the surface S) are larger
than the gain due to population growth. This is always the case if ⌫1 6 1
(see Chapter II). When ⌫1 > 1, this typically amounts to further requiring
that the volume V is below some critical size Vc [Pázsit and Pál 2007] (see
Sec. II.3.3.b). In the following we will assume that V < Vc.

7lV (r0,!0, t) is to the total length travelled during one realisation. It is a stochastic vari-
able (see Sec. II.2.1).
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To derive now an equivalent of equation (IV.4), we have to consider two
cases.

�! First, the walker starts from a random position r0 uniformly dis-
tributed over the volume V , with an isotropic direction !0 2 ⌦d. This
leads us to define the volume average h·iV , appearing in Eq. (IV.4) [Béni-
chou et al. 2005; Santaló 2004; Mazzolo 2004]:

h f(r0,!0) iV =

Z
V

d3r0

V

Z
⌦d

d2!0

⌦d
f(r0,!0) . (IV.11)

The normalisation constant ⌦d is the maximum solid angle in a d-dimen-
sional space (corresponding to the area of the surface of a unit d-ball [Maz-
zolo 2009]):

⌦d =

Z
Spd

dd! =
2⇡d/2

�

✓
d

2

◆ (IV.12)

where �(x) is the gamma function; for instance ⌦2 = 2⇡, ⌦3 = 4⇡.

�! Second, the walker enters the domain D from its surface S: the entry
point r0 of the walker is uniformly distributed over the surface S, and its
direction !0 is isotropically distributed and directed inward. This allows
precisely defining the surface average appearing in Eq. (IV.4) [Bénichou
et al. 2005; Santaló 2004]:

h f(r0,!0) iS =

I
S

dS(r0)

S

Z
!02⌦d
!0·nr0>0

d2!0

↵d
!0 · nr0 f(r0,!0) , (IV.13)

where nr0 is a unit vector, orthogonal to the surface S in r0 and directed
toward the inside of the domain D8, and dS(r0) is the area of the surface
element in the vicinity of r0 2 S:

H
S dS = S. The integral over !0 is such

that !0 is directed inward, i.e. !0 · nr0 > 0. The normalisation constant ↵d

is the mean inward flux of an isotropically distributed unit vector through
a unit surface (see Fig. IV.5):

↵d =

Z
!02⌦d
!0·nr0>0

!0 · nr0 d2!0 =
2⇡(d-1)/2

(d- 1) �
✓
d- 1

2

◆ . (IV.14)

↵d can also be seen as the volume of a unit (d - 1)-ball [Mazzolo 2009],
and, for instance, ↵2 = 2 and ↵3 = ⇡.

8Customarily, in reactor physics the vector normal to a surface is chosen directed out-
ward (as we did for the surface elementary vector d2S in Sec. I.2.1). Here, for convenience,
we adopt a different convention.
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Following the lines of [Bénichou et al. 2005] and [Zoia et al. 2012a], we
apply the volume average (IV.11) to Eq. (IV.10), which yieds:

⌦
Lm
↵
S
= ⌘d

V

S


m
⌦
Lm-1

↵
V
+
⌦
⌃(r0) (⌫1(r0)C

⇤{·}- 1)Lm
↵
V

+
D
⌃(r0)

mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤⌘E

V

�
, (IV.15)

where the constant ⌘d = ⌦d/↵d. We have computed the volume average
of the transport term by applying the Gauss divergence theorem:

-h!0 ·rr0Lm iV = -
1

⌦d V

Z
⌦d

d2!0

Z
V

d3r0 rr0 · [Lm(r0,!0) !0 ] ,

=
1

⌦d V

Z
⌦d

d2!0

I
S

dS (!0 · nr0) Lm(r0,!0) . (IV.16)

As Lm(r0,!0) = 0 for any (r0,!0) such that !0 is directed outward, we can
reduce the integral over⌦d in Eq. (IV.16) to the inward direction ! ·nr0 > 0
(see Fig. IV.5), and we recognise the surface average (IV.13):

-h!0 ·rr0Lm iV =
↵d S

⌦d V
hLm iS . (IV.17)

Let us write each integral of the volume average of the scattering term:
⌦
⌃(r0)⌫1(r0)C

⇤{Lm}
↵
V

(IV.18)

=

Z
V

d3r0

V
⌃(r0)⌫1(r0)

Z
⌦d

d2!0

⌦d

Z
⌦d

d2!0
0C

⇤(!0
0 ! !0 | r0)Lm(r0,!0

0)

By definition, the adjoint scattering operator C⇤{·} is related to the scatter-
ing C{·} by the relation [Reuss 2012]:

hC{f},gi = hf,C⇤{g}i , (IV.19)

where f and g are two square-integrable functions over ⌦d, and hf,gi de-
notes the inner product of f and g9. We thus have for f and g real, thatZ

⌦d

d2!0 f(!0)

Z
⌦d

d2!0
0 C⇤(!0

0 ! !0 | r0)g(r0,!0
0)

=

Z
⌦d

d2!0

Z
⌦d

d2!0
0 C(!0 ! !0

0 | r0)f(r0,!0
0)g(r0,!0) (IV.20)

9Let f and g be two real square-integrable functions over ⌦d; the inner product of f and
g is given by h f,g i =

R
⌦

d

d! f(!)g(!).
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Figure IV.5: Consider a particle emitted from r0, located on the surface
of D, with an isotropic direction !0 (over ⌦d). Of these
particles, those that are directed toward the inside of D are
the ones considered in the surface average (IV.13) and for
the computation of ↵d: for a convex domain with a smooth
surface, they are such that the angle between !0 and nr0

is ✓ 6 ⇡/2, i.e. !0 · nr0 > 0.

for all position r0. Taking f(r0,!0) = 1 and g(r0,!0) = Lm(r0,!0), we finally
get the relation:Z

⌦d

d2!0

Z
⌦d

d2!0
0 C⇤(!0

0 ! !0 | r0)Lm(r0,!0
0)

=

Z
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Z
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0 | r0)Lm(r0,!0) , (IV.21)

so that the volume average of the scattering term reads:

⌦
⌃(r0)⌫1(r0)C

⇤{Lm}
↵
V
=

Z
V

d3r0

V

Z
⌦d

d2!0

⌦d
⌃(r0)⌫1(r0)Lm(r0,!0)

=
⌦
⌃(r0)⌫1(r0)Lm(r0,!0)

↵
V

(IV.22)

We finally obtain the recursive formula,

⌦
Lm
↵
S
= ⌘d

V

S


m
⌦
Lm-1

↵
V
+
⌦
⌃(r0) (⌫1(r0)- 1)Lm

↵
V

+
D
⌃(r0)

mX
j=2

⌫jBm,j

⇣
C⇤⇥Li

⇤⌘E

V

�
, (IV.23)

Inhomogeneous media with anisotropic scattering

that relates the m-th moment of lV for walks starting from the surface S to
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the lower moments (of lV , up to m) for walks starting within the volume V .
This relation generalises to inhomogeneous media, with anisotropic scat-
tering, the recursive formula of [Zoia et al. 2012a] (see also [Mazzolo 2004;
Bénichou et al. 2005]). In particular, for m = 1, we generalise Eq. (IV.4):

⌦
L
↵
S
= ⌘d

V

S

⇥
1 +

⌦
⌃(r0) (⌫1(r0)- 1)L

↵
V

⇤
. (IV.24)

Inhomogeneous media with anisotropic scattering

We recall that, for an homogeneous medium, jumps are exponentially dis-
tributed, with a mean free path � = 1/⌃, which gives back Eq. (IV.4).

The latter result has been carefully checked with numerical simulations
for a piecewise inhomogeneous medium (see Fig. IV.6), for a medium with
a continuous variation of the parameter ⌫1(r0) (see Fig. IV.7), and for an
homogeneous medium with anisotropic scattering. Moreover, for a critical
system, such that ⌫1(r0) = 1 8r0 2 D, Eq. (IV.24) yields back the Cauchy for-
mula (IV.2), which then holds for inhomogeneous media with anisotropic
scattering [Bardsley and Dubi 1981]. To illustrate this point, we have per-
formed a Monte Carlo simulation of a critical branching process in three
different cases (see Fig IV.8):

�! black – an homogeneous medium (⌃ = 1) with isotropic scattering;
�! red– the piecewise heterogeneous medium illustrated on Fig. IV.6

with ⌃1 = 1 and ⌃2 = 0.5 and with isotropic scattering;
�! blue – an homogeneous medium (⌃ = 1) with anisotropic scattering:

at a collision, the direction !0 of the outgoing particle is given by

!0 =

�
isotropic with probability 0.5
! else

(IV.25)

where ! is the direction of the incoming particle.
See Appendix 5 for details concerning the Monte Carlo simulations.

Using the same strategy for the mean number of collision N, thanks
to the Feynman-Kac formalism, it is possible to extend Eq. (IV.6) to non-
homogeneous systems with anisotropic scattering, and to find a recursive
relation for the moments Nm = hnm

V i equivalent to Eq. (IV.23) [Zoia et al.
2012a]; this generalisation has not been done yet.
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Figure IV.6: Monte Carlo simulations of the time evolution of the mean
total length travelled by a branching exponential random
walk in a disk of unit radius. The considered medium is il-
lustrated in the inset: a piecewise inhomogeneous medium,
composed of a homogeneous disk of radius 0.2 and cross
section ⌃1 = 1 included in a unit and uniform disk of cross
section ⌃2 = 0.5. The parameter ⌫1 is constant. The
figure compares the lhs to the rhs of Eq. (IV.24), with
⌘2 V/S = ⇡/2 for a unit disk. Averages are obtained over
107 realisations of the system (107 particles starting uni-
formly from the surface S, or within the volume V), so that
the statistical uncertainties are of the order of 10-3.
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Figure IV.7: Monte Carlo simulations of the time evolution of the mean
total length travelled by a branching exponential random
walk in a disk of unit radius (d = 2 and ⌘2 V/S = ⇡/2)
and of constant cross section ⌃ = 1. The branching param-
eter ⌫1 is chosen such that the process is surcritical in the
center of the disk and subcritical close to the borders (see
the profile of ⌫1(r)- 1 in inset). The figure compares the
lhs to the rhs of Eq. (IV.24), with ⌘2 V/S = ⇡/2 for a unit
disk: when the stationary state is reached, the two curves
collapse, which is in agreement with Eq. (IV.24). Averages
are obtained over 107 realisations of the system (107 par-
ticles starting uniformly from the surface S, or within the
volume V), so that the statistical uncertainties are of the
order of 10-3.
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Figure IV.8: Monte Carlo simulations of the time evolution of the mean
total length travelled by a branching exponential random
walk, at criticality, in a disk of unit radius (d = 2 and
⌘2 V/S = ⇡/2). Three cases are considered: an homo-
geneous medium with isotropic scattering (black curve),
a piecewise heterogeneous medium with isotropic scat-
tering (red curve), and an homogeneous medium with
the anisotropic scattering (blue curve). At the station-
ary states, the three curves converge to the constant ⇡/2,
which is in agreement with the Cauchy property Eq. (IV.2).
The Monte Carlo simulations have been performed using
107 particles starting uniformly from the surface S with
uniform directions (directed inward the domain V), and the
statistical uncertainties are in the order of 10-3.
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3 A UNIVERSAL PROPERTY OF BRANCHING RANDOM WALKS IN CON-
FINED GEOMETRIES

The results derived in this section have been published in collaboration
with Alain Mazzolo and Andrea Zoia in [De Mulatier et al. 2014].

IV.3.1 General Setup and Hypothesis

Consider particles moving at constant speed and performing jumps of ran-
dom length s distributed according to the probability density function T(s)
that is independent on the position and the direction of the walker. Upon
collisions, each walker gives rise to k descendants with probability pk,
where the mean number of descendants ⌫ =

P
k kpk is a parameter of

the system (see Sec. I.1.2). The directions ! then taken by the descendants
are assumed to be isotropically distributed over ⌦d, where

⌦d =
2⇡d/2

�
⇣ d

2

⌘ , (IV.26)

is the surface of the unit (d - 1)-sphere. Each descendant then behaves
independently as the progenitor particle, thus resulting in a ramified struc-
ture for the stochastic paths. Moreover we will assume the pdf of the jump
lengths T(s) to have a finite mean �:

� =

Z+1
0

s T(s)ds , (IV.27)

which corresponds to the mean free path of the walkers. This definition
encompasses a large class of random walks10. As a particular case, when
T is exponential, we recover the class of branching exponential walks, for
which the mean free path is inversely proportional to the cross-section, � =
1/⌃ (see Sec. I.1.2). If T is a Levy-stable law instead, its asymptotic behaviour
is of the form [Nolan 2012]

T(s) ⇠
1

|s|↵+1 , when s ! 1 , (IV.28)

where ↵ 2 (0, 2) is a parameter characterising the law, such that the mean
of T(s) is finite for ↵ > 1.

Consider now a domain of finite volume V and regular surface S im-
mersed in the radiation flow described above at stationary state (station-
ary flow). Trajectories are observed from the entrance of a single particle
through S until the disappearance of the particle and all its descendants by

10In the absence of branching, this type of walk is called Pearson random walk.
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either absorption inside V or escape through S (see fig. IV.10). Supposing
that the flow of particles is stationary, we assume that the walker will enter
the domain with a uniform distribution of entry point r0 on the surface S
and an isotropic distribution of incident directions !0 [Blanco and Fournier
2003, 2006]. Thus, Eq. (IV.13) is still relevant to average over all entry posi-
tions and directions of the walkers coming, now, from outside the domain
(previously, the walkers were considered to start directly on the surface S).

IV.3.2 Integral Equations

a. Integral transport equations

We are interested in characterising the mean total number of collisions N
performed and the mean total length L travelled by a particle and all its de-
scendants within V , and our aim is to establish an equation that the relates
hL/NiS to hL/NiV in case of non-exponential branching random walks.
The idea is to use one of the equations that govern neutron transport (see
Chapter 1 and 2), as we did in the previous section. However, the Boltz-
mann equation (I.55) and the Feynman-Kac backward equation (II.48) are
both established for transport, with a transport kernel of the form (I.10) (see
Sec. I.1.2)

T(s) = ⌃(s) exp

-

Zs
0
⌃(s0)ds0

�
for s > 0 , (IV.29)

which yields the transport operator ! ·r{·} for these two differential trans-
port equations. As the purpose is to work with any type of transport pdf
T(s), these equations can not be used here. The integral equations (I.83)
and (I.84) can instead be obtained directly from a neutron balance, using
the physical arguments given in Sec. I.2.4.b:

'(r,!, v, t) =
Zs0

0
U(s|r,!, v)| {z }

probability to have

no collision between

r-s! and r

�
⇣

r - s!,!, v, t-
s

v

⌘
ds| {z }

flux of particles emitted

about r-s!

in the direction !

+'1 , (IV.30)

and

 (r,!, v, t) =
Zs0

0
ds T(s|r,!, v)| {z }

probability to encounter

a collision about r

(after travelling a distance s)

�
⇣

r - s!,!, v, t-
s

v

⌘

| {z }
rate density of particles

emitted about r-s!

in the direction !

+ 1 ,

(IV.31)



A Universal Property of Branching Random Walks in Confined
Geometries 157

where'1(r,!, v, t) is the uncollided flux11 defined in Eq. (I.88) and 1(r,!, v, t)
the uncollided collision rate density defined in Eq. (I.87). The only condition is
that the process has to be Markovian at each collision, which is the case for
the walks considered here (branching Pearson random walks) whatever the
form of T(s). These two integral transport equations for the collision rate
density and the flux thus hold true in the case of non-exponential walks.

To work with these equations in the stationary state, we introduce two
quantities. We define the collision density  (r,!|r0,!0) so that

N(r0,!0) =

Z
V

dr
Z
⌦d

d! (r,!|r0,!0) (IV.32)

is the average number of particles having a collision within V , for a sin-
gle walker starting from r0 in direction !0 [Case and Zweifel 1967]. The
collision density thus corresponds to the time integral of the collision rate
density  (r,!, t|r0,!0)12:

 (r,!|r0,!0) =

Z+1
0

 (r,!, t|r0,!0)dt . (IV.33)

We then define the length density '(r,!|r0,!0) so that

L(r0,!0) =

Z
V

dr
Z
⌦d

d!'(r,!|r0,!0) (IV.34)

is the average length travelled in V , for a single walker starting from r0 in
direction !0 [Case and Zweifel 1967]. The length density corresponds to
the integral of the neutron flux over time13:

'(r,!|r0,!0) =

Z+1
0

'(r,!, t|r0,!0)dt . (IV.35)

For a stationary flow14, with constant speed, the collision density  is
thus related to the outgoing collision density � through the integral equation:

 (r,!) =

Zu(r,!)

0
ds T(s)| {z }

probability to undergo

a collision about r

(after travelling a distance s)

� (r - s!,!)| {z }
density of particles

leaving a collision about r-s!

in the direction !

+  1 , (IV.36)

11The uncollided flux represents the contribution to the angular flux due to particles that
have not undergone collisions since they were emitted (from the surface S or within the
volume V).

12Such that Eq. (IV.32) and (II.66) are consistent, N being the mean number of collisions
hnV i defined in Sec. II.3.2.

13Such that Eq. (IV.34) and (II.32) are consistent, L being the mean length travelled in V ,
h lV i, defined in Sec. II.2.1.

14Eq. (I.86) is integrated over time to give Eq. (IV.36), where the outgoing collision density
corresponds to the time integral of the outgoing collision rate density.
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Figure IV.9: A two-dimensional illustration of the coordinate s and the
distance u = u(r,!) from the point r to the surface S in
the direction given by -!.

where  1(r,!) =
R

0 1(r,!, t)dt is the first-collision density, and T(s|r,!, v)
has been replaced by T(s) assuming that the background medium is ho-
mogeneous and isotropic, and that particles evolve at constant speed. The
upper limit u(r,!) of the integral accounts for the boundaries of the finite
medium (see Sec. I.2.4): it is the distance between the position r inside the
domain and the surface S in the direction of (-!) (see Fig. IV.9). The cor-
responding equation for the length density ' (integration of Eq. (I.83) over
time), is then:

'(r,!) =

Zu(r,!)

0
U(s)| {z }

probability to undergo

a collision about r

(after travelling a distance s)

� (r - s!,!)| {z }
density of particles

leaving a collision about r-s!

in the direction !

ds + '1 , (IV.37)

where U is the marginal probability that no collision occurs between r- s!
and r, and '1(r,!) =

R1
0 '1(r,!, t) is the first-length density.

For a markovian process (such as the neutron transport described in
Chapter I) we have seen that the collision density is proportional to the
length density:  (r,!) = ⌃'(r,!) (see Sec. I.1.2). In the case of expo-
nential flight (for which ⌃ = 1/�), this relation leads to the natural result:
 (r,!) = '(r,!)/�; the mean number of collisions in an volume element
about (r,!) is equal to the mean length travelled in this volume, divided by
the mean inter-collision distance (mean free path). This relation is counter-
intuitively not valid in the general case of non-exponential jumps. This
relation is indeed a consequence of the Markovian property of exponential
walks, and will be discussed more in detail in section IV.3.4. For this reason,
equations (IV.37) and (IV.36) for ' and  must be established separately.
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b. Stationary state and first jump within the domain

To go further, we need to characterise  1 and '1. Up to now, we have
discussed only the case of walkers starting from the surface S of the domain
D. In this case, or if the source Q(r,!) is located within the domain D, the
densities  1 and '1 are given by Eq. (I.87) and Eq. (I.88):8>>><>>>:

'1(r,!) =

Zu(r,!)

0
U(s)Q(r - s!,!)ds

 1(r,!) =

Zu(r,!)

0
T(s)Q(r - s!,!)ds ,

(IV.38)

which respectively corresponds to the length and the collision density re-
sulting from the transport of the source Q(r,!) until the first collision.
However, implementing this expressions in Eq.(IV.36) and (IV.37), and tak-
ing the surface average Eq.(IV.13) do not lead to the Cauchy-like formulae.
Recently, Mazzolo [2009] has shown, in the context of exponential random
walks, that Cauchy’s property (IV.2) stays valid for a domain immersed in
a stationary flow of radiation, such that particles enter the domain from
outside, and does not necessarily start from the surface. This was assumed
to be the general conditions for the Cauchy formula to hold [Blanco and
Fournier 2003; Mazzolo 2009]. However, the length of the first jump per-
formed within the domain, by an exponential walker entering through the
surface (from outside) is also exponentially distributed, such as the other
jumps of the walk [Mazzolo 2009]. Thus, the two cases – walker starting
from the surface and walker coming from outside in case of a stationary
flow – can not be distinguished for exponential Pearson random walks.
Naturally, this result also extend to branching exponential walks (that also
have exponentially distributed jump lengths).

Regarding the case of non-exponential random walk; we consider now
that the domain D is immersed in a stationary flow of walkers: particles
entering from outside can cross the surface without undergoing a collision
on it (the surface is transparent). Therefore the distance r travelled by the
walker from the surface to its first collision inside D is not necessarily given
by the jumps pdf T(r) (see Fig. IV.10). We denote by H(r) the pdf of this
distance r (length of a first jump within D from the surface). Then, by
definition,  1 will be related to the surface source by

 1(r,!) =

Z+1
0

H(s)QS(r - s!,!)ds , (IV.39)

and the density '1 is similarly given by

'1(r,!) =

Z+1
0

UH(s)QS(r - s!,!)ds , (IV.40)
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Figure IV.10: Trajectories entering the body through the surface S (red)
and trajectories born inside the body (blue) for a branching
Pearson random walk with jumps of constant size. Source
points are marked as black dots. The inset displays the
distinct behaviour of the first jump across S for particles
coming from outside in the case of walks with constant
jumps: the first jump is distributed according to H(r) =
uni(0,a), whereas the distance between two collisions is
constant, T(l) = �(l- a).

where UH(s) =

Z+1
s

H(`)d` = 1 -

Zs
0
H(`)d` , (IV.41)

is the marginal probability that a particle entering D has not yet encounter
any collisions after travelling a distance s from the surface (see Sec. I.1.2).

The final ingredient needed to fully characterise the particle inflow
through the surface S is the probability density H(r) of the first jump length
(see Fig. IV.10). Since walkers enter D from outside, they have performed a
jump (from outside) of total length ` > r. As a consequence, H(r) must be
proportional to the probability that the jump from outside V is larger than
r, namely, H(r) /

R1
r T(l)dl. By imposing normalisation

R+1
0 H(r)dr = 1

and using � =
R1

0 dr
R1
r T(l)dl, we recover the first jump length density,

initially introduced by Mazzolo [2004, 2009]

H(r) =
1
�

Z+1
r

T(l)dl . (IV.42)

Observe that we require � to be finite in order for h(r) to be properly de-
fined. For exponential flights, we have in particular

H(r) = T(r) =
1
�

exp
⇣
-
r

�

⌘
, (IV.43)

which is the signature of the Markovian nature of this process: trajectories
crossing S have no memory of their past history, so that the first jump dis-
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tribution does not differ from the others. One can stop an exponential flight
an restart it without worrying about what happened before the stop.

c. Surface and volume averages

Surface Source – The contribution to 1 and'1 due to particles generated
outside the domain V and entering through its surface are given by equa-
tions (IV.36) and (IV.37). Let us focus first on the first collision density  1.
We have seen in Eq. (I.97) that the contribution due to a surface source can
be rewritten, in the stationary case,

 1(r,!) = H((r - rS) ·!)⇤S(rS,!) . (IV.44)

using the definition QS(r,!) = ⇤S(r,!) 1S(r) for the surface source in
Eq. (IV.39). Applying now the surface average (IV.13) to this expression
of  1, with ⇤S(r,!) = �3(r - rS) �2(! -!S), we obtain:

h 1(r,!)iS =

Z
S

dS(rS)
S

Z
⌦d

d!S

↵d
!S · nrS H((r - rS) ·!) �(! -!S) ,

=
1

S↵d

Z
S

dS(rS) nrS ·! H((r - rS) ·!) , (IV.45)

= -
1

S↵d

Z
V

d3rV rrV ·
h
H((r - rV) ·!)!

i
(IV.46)

where we used the Gauss divergence theorem, recalling that nrS is directed
inward. This last integral can be explicitly computed by observing that rrV
can be replaced by a single derivation along the line defined by the fixed
position r and the fixed direction ! (see Fig. IV.10), which yields -H(u)
A similar derivation can be done for the first length density '1, replacing
H(r) by UH(s). We finally obtain:

h 1(r,!)iS =
1

S↵d
H
⇥
u(r,!)

⇤
(IV.47)

and h'1(r,!)iS =
1

S↵d
UH

⇥
u(r,!)

⇤
=

1
S↵d


1 -

Zu(r,!)

0
H(s)ds

�

(IV.48)

by definition of the complementary cumulative UH of H.

Volume source – We consider now the trajectories of particles born within
the D. In this case, particles are transported from the source to their first
collision with the usual jump pdf T , so that '1 and  1 are given by equa-
tion (IV.38). Applying the volume average (IV.11) to  1 and to '1, with the
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volume source Q(r,!) = 1V(r) �3(r - rV) �2(! -!V), directly yields:

h 1(r,!)iV =
1

V⌦d

Zu(r,!)

0
T(s)ds , (IV.49)

h�1(r,!)iV =
1

V⌦d

Zu(r,!)

0
UT (s)ds =

�

V⌦d

Zu(r,!)

0
H(s)ds , (IV.50)

using UT (s) =
R+1
s T(`)d` = �H(s) (see Eq. (IV.42)).

Integral equations with a volume source or a surface source – Finally applying
respectively the surface average and the source average to the transport
equation (IV.37), we obtain local integral equations for the length and the
collision density:

for the Collision Density8>>>><>>>>:
h i

S
(r,!)-

1
�↵dS

=

Zu
0

h
h� i

S
(r - s!)-

1
�↵dS

i
T(s)ds,

h i
V
(r,!) =

Zu
0

h
h� i

V
(r - s!) +

1
V⌦d

i
T(s)ds.

(IV.51)

(IV.52)

for the Length Density8>>>><>>>>:
h' i

S
(r,!)-

1
↵dS

=

Zu
0

h
� h� i

S
(r - s!)-

1
↵dS

i
H(s)ds,

h' i
V
(r,!) =

Zu
0

h
h� i

V
(r - s!) +

1
V⌦d

i
�H(s)ds.

(IV.53)

(IV.54)

� is the outgoing collision density

�(r|r0,!0) = ⌫

Z
⌦d

d!0

⌦d
 (r,!0|r0,!0)

Integral Equations
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IV.3.3 A universal and local version of the Cauchy formulae

a. Results

Collision density – Let us start first with Eq. (IV.51) and rewrite it, replac-
ing the expression of �:

�↵dS h i
S
(r,!)- 1 =

Zu
0

h
⌫

Z
⌦d

d!0

⌦d
�↵dSh i

S
(r - s!)- 1

i
T(s)ds .

(IV.55)

From inspection, this equation can be recast as a system of two integral
equations: 8>>><>>>:

FS(r,!) =

Zu
0

h
⌫- 1 +GS(r - s!)

i
T(s)ds ,

GS(r,!) = ⌫

Z
⌦d

d!0

⌦d
FS(r,!0) ,

(IV.56)

where FS(r,!) = �↵dS h i
S
(r,!) - 1. Similarly, we rewrite Eq. (IV.52),

multiplying both side by (⌫- 1)V⌦d,

(⌫- 1)V⌦d h i
V
(r,!) =

Zu
0

h
⌫

Z
⌦d

d!0

⌦d
(⌫- 1)V⌦dh i

V
(r - s!)

+ (⌫- 1)
i
T(s)ds, (IV.57)

and reformulate the equation in the same system of two integral equations
Eq. (IV.56), where FS is now replaced by FV(r,!) = (⌫-1)V⌦d h i

V
(r,!).

A general form for the analytical solution of this system cannot be ob-
tained, however it can be shown that its solution is unique [Feller 2008]:
FV(r,!) = FS(r,!) for all (r,!) in the domain D. It follows a local version
of a Cauchy-like formula for the collision density:

�↵dS h i
S
(r,!) = 1 + (⌫- 1)V⌦d h i

V
(r,!) . (IV.58)

Collision density

Finally, setting ⌘d = ⌦d/↵d and integrating uniformly over the volume V
and all the directions in the solid angle ⌦d, leads to the usual Cauchy-like
formula for the mean number of collisions in V

hN i
S
= ⌘d

V

�S

h
1 + (⌫- 1) hN i

V

i
, (IV.59)

Total number of collisions

that we have shown now as being valid for general branching Pearson ran-
dom walk.
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Travelled length – The integrals involving the outgoing collision densities
h� i

S/V
appearing on the right-hand side of Eq. (IV.53) and (IV.54) can be

simplified by resorting to Eq. (IV.51) and (IV.52), respectively. Then, com-
bining these two equations, the surface average h' i

S
can be directly writ-

ten in terms of the volume average h' i
V

, from which stems the identity

�↵dS h' i
S
(r,!) = �+ (⌫- 1)V⌦dh' i

V
(r,!) . (IV.60)

Length density

Finally, an integration over the volume V and the directions given by ⌦d

yields a Cauchy-like formula for the mean total length travelled in the do-
main V :

hL i
S
= ⌘d

V

S

h
1 +

(⌫- 1)
�

hL i
V

i
. (IV.61)

Total travelled length

Comment – The results obtained in Eq. (IV.58) and (IV.60) are local proper-
ties of branching Pearson random walks which are valid at any point (r,!)
of the phase space, and thus represent stronger results than Eq. (IV.59) and
(IV.61). In particular, when ⌫ = 1, the surface averages of length angu-
lar density and of the collision angular density become constant over the
domain D,

h i
S
(r,!) =

1
�↵dS

and h' i
S
(r,!) =

1
↵dS

. (IV.62)

For the average angular flux the constant is a purely geometrical quantity,
independent of the specific details of the underlying random walk.

b. Comparison with numerical simulation

To illustrate the Cauchy-like formula for the mean travelled length,
Eq. (IV.61), Fig. IV.11 compares several examples based on Monte Carlo
simulation: the solid lines correspond to the surface average on the lhs of
the formula and the dashed lines to its rhs. The simulations follow the evo-
lution in time of the mean total length travelled in a disk of unit radius by a
walker and all its descendants, evolving at constant speed v = 1 with jump
lengths of different type:

Constant jumps T(`) = �(`- 1) , (IV.63)

Exponential jumps T(`) = exp(-`) , (IV.64)
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Power-law distributed jumps T(`) =

8<:0 for ` 6
⇣a
↵

⌘1/↵

a

`↵+1 else
(IV.65)

where we took the stability parameter ↵ = 1.1 and the amplitude parameter is
such that a = ↵1-↵(↵- 1)↵�↵. See Appendix 5 for details concerning the
Monte Carlo simulations, and Appendix A.4.3 for information about the
sampling of exponential and power-law distributed random variables. For
long observation times, each pair of solid and dash lines converge to the
same value, which is in agreement with equation (IV.61). In particular, for
⌫ = 1 this value is independent of the jump distribution and is given by
⌘2V/S = ⇡/2.

0

0.4

0.8

1.2

π/2

0 2 4 6 8

Figure IV.11: Monte Carlo simulations of the time evolution of the to-
tal length travelled in a disk of unit radius (d = 2 and
⌘2V/S = ⇡/2) by a branching Pearson random walk
with constant jumps (blue), exponential jumps (red) and
power-law distributed jumps (green). Averages are ob-
tained over 107 realisations of the system (107 particles
starting uniformly from the surface S, or within the vol-
ume V), so that the statistical uncertainties are of the
order of 10-3.
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IV.3.4 Ensuing results

a. Relation between collision density and length density

Previously, we mentioned the non-generality of the relation

 (r,!) = '(r,!)/� , (IV.66)

valid for exponential (branching) random walks. This relation is in fact a
property of Markovian transport, and is therefore commonly used in trans-
port theory of neutrons and photons. However, modelling the transport of
particles by an other type of random walk does not necessarily keep the
markovianity of the process, and in the general case of non-exponential
walks, the relation (IV.66) does not hold.

Volume and surface terms can be separately singled out by algebraic
manipulations of Eq. (IV.53), (IV.51), (IV.54) and (IV.52). For the volume
terms, we have

⌦dV
⇥
h'i

V
(r,!)- �h i

V
(r,!)

⇤
= (IV.67)

�

Zu
0

⇥
⌦dV h�i

V
(r - s!) + 1

⇤ ⇥
H(s)- T(s)

⇤
ds.

The quantity 1 + V⌦dh�iV is positive, so that h'iV - �h iV vanishes only
if H(s) = T(s) for any s (i.e. for exponential jumps T(s) = exp(-s/�)/�).
It thus follows that the local relation h'i

V
(r,!) = �h i

V
(r,!), whence

also hLi
V

= �hNi
V

, demands the Markov property of exponential random
walks. For the surface terms, we have

↵dS
⇥
h'i

S
(r,!)- �h i

S
(r,!)

⇤
= (IV.68)Zu

0

⇥
�↵dS h�iS(r - s!)- 1

⇤ ⇥
H(s)- T(s)

⇤
ds.

The right hand side of this equation vanishes when H(s) = T(s) for any
s (i.e., for exponential random walks), or more generally for any class of
branching Pearson walks when ⌫ = 1, thanks to the local Cauchy property
h�iS(r) = 1/(�↵dS) (see Eq. (IV.62), and h�iS(r) =

R
⌦d

h iS(r,!)d!). In
either case, we obtain the simple local relation h'i

S
(r,!) = �h i

S
(r,!),

from which stems also hLi
S
= �hNi

S
.

b. Excursion in a sub-domain

It is interesting to consider the occupation statistics – mean travelled length
or mean sojourn time – of the walk in a sub-domain V 0 included in V (see
Fig. IV.12). In this context, several investigations have been already carried
out for Brownian motion (with or without branching), Pearson random
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walks or branching exponential walks in various fields [Grebenkov 2007;
Agmon 2010; Berezhkovskii et al. 1998; Sawyer and Fleischman 1979; Cox
and Griffeath 1985; Bénichou et al. 2005; Zoia et al. 2012a]. Let us consider
a walker emitted within the domain V or entering through its surface: this
walker and its descendants can enter the sub-domain V 0, reproduce or die
inside, or escape and possibly re-enter it, and so on. The mean total length
thus travelled in V 0 by the first particles and all its descendants, until the
disappearance of all of them by absorption or escape through S, is given
by:

L0(r0,!0) =

Z
V 0

d3r
Z
⌦d

d2!'(r,!|r0,!0) (IV.69)

The relation between the volume and the surface average of this quantity is
straightforward from the local Cauchy-like equation (IV.60). An integration
over the volume V 0 and the directions given by ⌦d yields:

hL0 i
S
= ⌘d

V

S

hV 0

V
+

(⌫- 1)
�

hL0 i
V

i
. (IV.70)

Previously established for branching exponential walks [Zoia et al. 2012a],
this relation remains thus valid for any type of branching Pearson random
walks with finite mean free path and constant speed. This is a consequence
of the local Cauchy-like equation.

Figure IV.12: Figure adapted from [Zoia et al. 2012a]. The figure dis-
plays trajectories starting within the volume V or from its
surface. In this section we are interested in the occupa-
tion statistics, i.e., in the statistics of length travelled or
of the time spent by these walkers within a region V 0 of
the domain V (portion of the paths in blue dashed lines).

In particular, for a critical system (⌫ = 1), it follows that the ratio of the
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mean length travelled in V 0 and the one travelled in V is simply

hL0 i
S

hL i
S

=
V 0

V
, (IV.71)

just as the ratio of the mean number of collisions in V 0 and the one in V ,
obtained from Eq. (IV.62):

hN0 i
S

hN i
S

=
V 0

V
. (IV.72)

This property has been previously shown for branching exponential walks
[Zoia et al. 2012a], and can be seen as an ergodic property of the system
[Bénichou et al. 2005].

c. General boundary conditions

So far, we have assumed that the surface of the body is transparent to the
incoming radiation. Each re-entry from the surface (if any) is taken into ac-
count as a new trajectory, which formally corresponds to imposing absorb-
ing boundary conditions on S. This is coherent with the definition given
for chords traversing non-convex bodies [Mazzolo et al. 2003] and ensures
the validity of the previous results for convex as well as non-convex do-
mains. More generally, we might consider mixed boundary conditions, the
surface S being composed of an arbitrary combination of reflecting por-
tions Sr and absorbing portions Sa. Trajectories can enter the body (and
escape) only through Sa. Collisions on Sr can be indifferently modelled
by assuming that the inward direction angle equals the outward direction
angle (perfect reflection), or that the surface acts an isotropic diffuser [Béni-
chou et al. 2005]. In either case, by following the same strategy as above,
it can be shown that any of these boundary conditions can be straightfor-
wardly taken into account in formulae (IV.4) and (IV.6) by replacing the
term S by Sa [Bénichou et al. 2005],

hL i
S
= ⌘d

V

Sa

h
1 +

(⌫- 1)
�

hL i
V

i
. (IV.73)

which further extends the applicability of our results to mixed boundary
conditions.

4 GEOMETRICAL PROOF FOR PEARSON RANDOM WALK

IV.4.1 Introduction

The main development proposed in this section has been published in col-
laboration with Alain Mazzolo and Andrea Zoia in [Mazzolo et al. 2014],
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where we have restricted our attention to diffusive Pearson random walks
without branching. In particular, starting from the Cauchy formula for the
mean number of collisions performed by a Pearson random walk in the
domain V (see the previous section):

hN iS =
⌘dV

�S
, (IV.74)

we have proposed an original proof, based on geometrical arguments alone,
of the Cauchy formula for the length travelled by a purely diffusive particle
in the domain V , namely

hL iS =
⌘dV

S
. (IV.75)

In this section, we are interested in analysing the geometrical origin of the
non trivial relation between hL iS and hN iS:

hL iS = �hN iS . (IV.76)

Indeed, we have just seen (Sec. 3.a.), that this property, known for expo-
nential walks as a consequence of their markovianity [Mazzolo 2009; Zoia
et al. 2012a], can be surprisingly extended to any type of Pearson ran-
dom walk, provided that they have a finite mean free path �. For non-
exponential walks the geometrical origin of this relation is not trivial due
to the fact that the first and last jumps in the domain are not following
the same law than the others. In fact, from a purely geometrical point of
view, even for exponential jumps relation (IV.76) is not obvious at all, as
naively counting the number of collisions would lead to a relation of the
form hL iS = � (hN iS + 1).

In the previous section, results Eq. (IV.74) and (IV.75) were demonstrated
separately. Here, assuming that the Cauchy formula Eq. (IV.75) holds true
for any type of Pearson random walk (which was shown in the last section),
we would like to show how the identity Eq. (IV.76) then arises from purely
geometrical considerations.

IV.4.2 Geometrical proof

Consider a purely diffusive Pearson random walker, whose jump lengths
are distributed according to an arbitrary pdf t(s), provided that it admits
a finite mean �. We assume that the hypotheses stated in section IV.3.1,
concerning the equilibrium state, the constant speed and the finite mean
free path �, still hold here, such that the pdf

h(r) =
1
�

Z+1
r

t(s)ds . (IV.77)



170 OPACITY OF BOUNDED MEDIA

yields the first jump length r performed inside V by a walker entering the
domain through its surface (see Fig. IV.10).

To go further, we have to introduce new notations. Let Pn be the proba-
bility that a trajectory entering the domain V performs exactly n collisions
inside it. Then, by definition,

hN iS =
1X

n=1

nPn . (IV.78)

In particular P0 is the probability that the trajectory through the domain V is
a straight line, i.e. a chord: the stochastic path undergoes zero collisions in V
as illustrated in Fig. IV.13. Since trajectories performing exactly n collisions
within the domain form a complete set of disjoint events, their mean length
hL iS can be decomposed in the following sum

hL iS =
1X

n=0

Pn hLn iS, (IV.79)

where hLn iS is the mean length travelled by the paths constrained to have
performed exactly n collisions inside V . As shown in Fig. IV.13, each stochas-
tic trajectory consists of a series of segments that can be of three different
types:

– the ones that are crossing the domain from one point of the surface
to the other (random chords, in blue), whose length c̃ is a random
variable associated with the pdf F̃(c̃);

– the ones (in green) that are entering or leaving the domain from its
surface, whose lengths r̃ are random, following the pdf H̃(r̃);

– the ones (in orange) that are entirely contained within the volume V ,
whose random lengths s̃ are distributed according to T̃(s̃).

At a first sight, the pdf T̃ , H̃ and F̃ may look very similar to the pdf t, h
and f. However, the subtle difference between these quantities is one of
the key aspects of the problem. As defined above, the length of a jump
starting from the inside of the domain is given by t(s), independently on
whether the jump stays inside or gets outside of the domain. On the other
hand, the pdf T̃ gives the length of a jump starting within the domain and
actually staying inside it until it finishes (see Fig. IV.14). In other words T̃
defines the length of jumps constrained to stay inside the domain. In the
same way, h(r) gives the length of jumps starting from the surface (coming
from outside) without considering whether or not they finish within the
domain, whereas H̃(r) gives the length of jumps starting from the surface
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Figure IV.13: A schematic representation of trajectories having 0, 1, 2
collisions inside V and their associated lengths. Each of
these trajectories happens respectively with probability P0,
P1 and P2.

and constrained to finish inside the domain. Thus the new pdfs (with the
tilde sign) take additionally into account the finite size of the domain, i.e.
the presence of boundaries.

Using the notations introduced above, we can develop the mean length
hLn iS of a path within the domain V ,

– knowing that it has undergone 0 collision:

hL0 iS = h c̃ i ; (IV.80)

– knowing that it has undergone exactly n > 1 collisions:

hLn iS = 2 h r̃ i+ (n- 1)h s̃ i . (IV.81)

Replacing these expressions in Eq. (IV.79) then leads to

hL iS = h c̃ iP0 + 2 h r̃ i
1X

n=1

Pn + h s̃ i
1X

n=1

(n- 1)Pn , (IV.82)

and, using the normalisation
P1

n=0 Pn = 1 and the definition Eq. (IV.78), it
follows

hL iS = h c̃ iP0 + 2 h r̃ i (1 - P0) + h s̃ i
⇥
hN iS - (1 - P0)

⇤
. (IV.83)

We now have to explicitly compute each term appearing in this equation,
namely, P0, h c̃ i, h r̃ i and h s̃ i.
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The probability P0 is the probability that a path does not undergo any
collision while going through the domain V . In other words, it is the prob-
ability that the length r of the first jump inside V is actually larger than the
length c of the supported chord (see Fig. IV.15):

P0 = Prob[r > c] (IV.84)

P0 =

Z1
0

dc f(c)

Z1
c

drh(r) =

Z1
0

drh(r)

Zr
0
dc f(c) . (IV.85)

Mean length of the constrained chord h c̃ i Shown in Fig. IV.15, the con-
ditional pdf F̃(c̃) of sampling directly a chord at the first jump from the
surface is proportional to the probability density of chords f(c) (uncon-
strained chords of length c), multiplied by the probability that this first
jump is longer than the chord, i.e.

F̃(c̃) / f(c̃)|{z}
chord length pdf

Z+1
c̃

dr h(r)| {z }
prob. first jump longer than c̃

. (IV.86)

from which follows the mean length of a constrained chord

h c̃ i = 1
P0

Z1
0

dc c f(c)
Z1
c

dr h(r) =
1
P0

Z1
0

dr h(r)
Zr

0
dc c f(c) , (IV.87)

observing that the normalisation factor of F̃ in Eq. (IV.86) is actually 1/P0
(which can be expected from the definition of P0).

Mean length of the first/last constrained jump h r̃ i As illustrated in
Fig. IV.16a, the pdf of the first jump starting from the surface and arriving
inside V corresponds to the first jump probability density h(r), conditioned
to jumps of length r̃ shorter than the supporting chord, r̃ 6 c:

H̃(r̃) =
h(r̃)

Z+1
r̃

dc f(c)Z1
0

dr̃ h(r̃)
Z1
r̃

dc f(c)
. (IV.88)

Using Eq. (IV.85), the denominator of H̃ can be written in term of P0:Z1
0

dr̃ h(r̃)
Z1
r̃

dc f(c) =
Z1

0
dr̃ h(r̃)


1 -

Z r̃
0

dc f(c)
�

= 1 - P0 . (IV.89)
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Moreover, to simplify the notations, we introduce the ray15 pdf, related to
the chord length pdf by [Dixmier 1978]

w(r) =
1

h c i

Z1
r

dc f(c) . (IV.90)

where h c i =
R1
r c f(c)dc is the mean chord length: h c i = ⌘d V/S. The pdf

of the first/last jump then takes the compact form

H̃(r̃) =
h c ih(r̃)w(r̃)

1 - P0
, (IV.91)

and the mean length of the first or the last constrained jump is finally:

h r̃ i = h c i
1 - P0

Z1
0

dr r h(r)w(r) . (IV.92)

Remark
In principle, we should distinguish the segments entering the
domain (first jump inside V), from those leaving the domain (last
jump), with distinct random length r̃in and r̃out, associated to
the respective pdf H̃in and H̃out. However it is possible to show
that these pdf are in fact identical [Mazzolo 2004; Mazzolo et al.
2014].

Mean length of a jump constrained within the domain h s̃ i Illustrated
in Fig. IV.16b, the conditional probability density of performing a jump of
length s entirely included within the domain V is proportional to the den-
sity t(s) (of performing a jump of length s starting inside V), times the prob-
ability that the length of this jump is smaller than the supported ray. The
latter probability being equal to

R1
s drw(r), we obtain, after normalisation:

T̃(s) =
t(s)

Z1
x

drw(r)Z1
0

ds t(s)
Z1
s

drw(r)
. (IV.93)

The denominator can be expended using successively the definition of the
pdf h(r) in Eq. (IV.77) and the definition of the pdf w(r) in Eq. (IV.90):Z1

0
ds t(s)

Z1
s

drw(r) =

Z1
0

drw(r)

Zr
0

ds t(s) = 1 - �

Z1
0

drw(r)h(r) ,

= 1 -
�

h c i

Z1
0

dr h(r)
Z1
r

dc f(c) ,

= 1 -
�

h c i(1 - P0) , (IV.94)

15 A ray of length r is defined by the distance of a point inside V to the frontier @V of V
(see Fig. IV.16b).
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Figure IV.14: H̃ samples jumps inside V starting from the surface and
arriving within V , as the one illustrated on the left panel,
whereas h(r) samples jumps entering the domain from the
surface no matter where the jump while end up (jumps on
the left and on the right panel).

Figure IV.15: A path from the surface performs a chord of V , under the
condition that its first jump since the surface (sampled
with h(r)) is longer than the chord itself.

(a) (b)

Figure IV.16: (a) First jumps inside V (green) are smaller than the sup-
ported chords.
(b) Jumps entirely contained in V (orange) must be
shorter than the supported ray, whose length is given by
w(r).
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recalling Eq. (IV.89), which makes use of the definition of P0. Therefore, the
mean length of a jump constrained to stay within the domain V is

h s̃ i =
h c i

Z1
0

ds s t(s)
Z1
s

drw(r)

h c i- � (1 - P0)
. (IV.95)

The numerator on the right hand side (rhs) of this equation can be rear-
ranged as: Z1

0
ds t(s) s

Z1
s

drw(r) = �-A , (IV.96)

where A =

Z1
0

ds t(s) s
Zs

0
drw(r) . (IV.97)

In Appendix 3, we show that

A = �


1

h c i

Z1
0

dr h(r)
Zr

0
dc c f(c) + 2

Z1
0

dr r h(r)w(r)

�
. (IV.98)

where it is possible to recognise h r̃ i and h c̃ i from Eq. (IV.92) and Eq. (IV.87),
which consequently yields

h s̃ i = �

h c i- � (1 - P0)
[h c i- P0 h c̃ i- 2 (1 - P0) h r̃ i] . (IV.99)

Final result Finally, replacing this last expression of h s̃ i in Eq. (IV.83) and
using the Cauchy formula hL iS = h c i, it follows:

h s̃ i [hN iS - (1 - P0)] = hL iS - P0 h c̃ i- 2 (1 - P0) h r̃ i , (IV.100)
� [hN iS - (1 - P0)] = hL iS - � (1 - P0) , (IV.101)

which yields the final result

hN iS =
hL iS
�

=
h c i
�

. (IV.102)

5 GENERAL CONCLUSION AND PERSPECTIVES

Universal property In this chapter, we have shown that the Cauchy prop-
erty IV.2

hLiS = ⌘d
V

S
, (IV.103)

surprisingly generalises to a very broad class of stochastic processes, and
thus exhibits a universal character. The property holds for any type of Pear-
son random walk, or branching Pearson random walk at criticality (pro-
vided that walkers have a finite mean free path). We have also seen that
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the property is still valid for an inhomogeneous medium (provided that
the heterogeneities are not strong) with anisotropic scattering. For each of
these cases, the mean total length hLiS travelled by a walk within a finite
domain, if entering through its surface S, thus depends only on the geo-
metrical properties of the traversed domain, and not on the specific details
of the walk.

Local Formulae More generally, we have shown that Cauchy-like for-
mula Eq. (IV.4) and (IV.6) carry over to any type of branching Pearson ran-
dom walk with a finite mean free path and a constant speed. These formu-
lae result in fact from a stronger property, valid at any point (r,!) within
the domain D:

For the collision density  (r,!)

�↵dS h i
S
(r,!) = 1 + (⌫- 1)V⌦d h i

V
(r,!) . (IV.104)

For the length density '(r,!)

�↵dS h' i
S
(r,!) = �+ (⌫- 1)V⌦dh' i

V
(r,!) . (IV.105)

Results

Another direct consequence of these equations is the ergodic-type property

hL0 i
S

hL i
S

=
hN0 i

S

hN i
S

=
V 0

V
. (IV.106)

valid for any sub-domain V 0 2 V .

Steady State Furthermore, we have shown that the Cauchy-like formu-
lae in fact hold for systems immersed in a radiation flow at stationary state
(and not for systems where all particles start from the surface of the do-
main).

To conclude, formulae (IV.104) and (IV.105) are valid for non-exponential
branching random walks, and may thus contribute to the investigation
of non-exponential radiation transport and, in particular, to transport in
strongly heterogeneous and disordered media [Pierrat et al. 2014]. More-
over, the proposed formalism may also apply to animal search strategies
[Blanco and Fournier 2003; Bénichou et al. 2005] in the presence of non-
exponential displacements [Bénichou et al. 2011; Zaburdaev et al. 2015;
Viswanathan et al. 1996].
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CHAPTER V
ASYMMETRIC LÉVY FLIGHTS IN THE PRESENCE
OF ABSORBING BOUNDARIES

In this chapter we are interested in semi-confined asymmetric Lévy flights
in the presence of absorbing boundaries. We will study the exponent ✓ of
the survival probability of these flights in presence of boundaries. We will
also discuss the asymptotic behaviour of the flight propagator (pdf of the
walker positions) after a long time, i.e. the probability density to find a
walker far from the boundaries after a large number of steps.
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ASYMMETRIC LÉVY FLIGHTS IN THE PRESENCE OF ABSORBING

BOUNDARIES

CONSIDER a one-dimensional asymmetric random walk whose
jumps are identical, independent and drawn from a distribution dis-

playing asymmetric power-law tails. In the absence of boundaries and af-
ter a large number of steps, the probability density function of the walker
positions converges to an asymmetric Lévy stable law whose full charac-
terisation is known from the generalised central limit theorem. Much less
is known when the walker is confined, or partially confined, in a region
of the space. In this chapter we will be interested to semi-confined walk-
ers in the presence of absorbing boundaries. We will first focus on their
survival probability (Sec. V.2.1) and then attempt to characterise the prob-
ability density function of the walker positions (Sec. V.2.2). Finally, we will
try to generalise our results for the pdf of the walker positions in higher
dimension (Sec. 3).

At the beginning of the anomalous transport part, we have argued that
anomalous diffusion is not easy to study, especially in confined geometry,
and in general in the presence of any boundary, where very few results
are already known. To illustrate this point, in this chapter we will focus
on semi-confined asymmetric Lévy flights (the domain where the flight
evolves is still open) in presence of absorbing boundaries. The work dis-
cussed here was done in collaboration with Grégory Schehr and Alberto
Rosso, and has been published in [De Mulatier et al. 2013].

1 FREE WALKER

Let us consider a one-dimensional random walker, in discrete time, mov-
ing on a continuous line. Its position xn after n steps evolves, for n > 1
according to

xn = xn-1 + ⌘n , (V.1)

starting from x0 = 0. The random jumps variables ⌘i are independent and
identically distributed (i.i.d.) according to a probability density function
(pdf) ⇠(⌘) displaying power law tails, asymmetric for � 6= 1:

⇠(⌘) ⇠

8>><>>:
c

⌘1+↵
, ⌘! +1 ,

c/�

|⌘|1+↵
, ⌘! -1 ,

(V.2)

where c is a positive amplitude parameter and ↵ is a positive number in
the interval (0, 2) (see also Appendix A.4.3). In this case, the random walk
exhibits a super-diffusive behaviour. Furthermore it is Markovian between
each step, and in the large n limit the process converge to the so-called
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Lévy flight. The pdf of the walker position xn then exhibits a strong uni-
versal behaviour, depending on very few characteristics of the initial jump
distribution ⇠(⌘):

– its location µ (corresponding to the mean µ = h⌘i if 1 < ↵ < 2);
– and the characteristics of its tail: the index ↵, the constant c and the

parameter �.

Remark Note that for ↵ > 2, we know from the central limit theorem
that only the bulk of the jump distribution ⇠(⌘) matters through its mean
µ = h⌘i and its variance �2 = h⌘2i - h⌘i2. However, for 1 < ↵ < 2, the
variance is not defined and the pdf depends on µ, but also on the tails of
the jump distribution. For 0 < ↵ < 1, the mean is not defined, however
we can still define µ as the location of the distribution, and the previous
statements remain valid.
One striking feature of Lévy flights (and of process governed by Power-
law distribution in general) is that their statistical behaviour is dominated
by few rare very large events (jumps), whose occurrence is thus governed
by the tail of the distribution.

Power-law distributions and Lévy flights
Power-law distributions, satisfying Eq. (V.2), were initially stud-
ied in the early 1960s in economics [Pareto 1964] and finan-
cial theory [Mandelbrot 1963]. Later, these processes became
very common in physics [Shlesinger et al. 1995], where they
have found many applications, encompassing random matri-
ces [Biroli et al. 2007; Majumdar et al. 2013], disordered sys-
tems [Bouchaud and Georges 1990], photons in hot atomic va-
pors [Mercadier et al. 2009], gene regulation [Lomholt et al. 2005]
and many others. Often the applications of Lévy flights are re-
stricted to the symmetric case when � = 1. However, recently
the asymmetric Lévy flights have found applications in search
problems [Koren et al. 2007a] and finance [Podobnik et al. 2011].
Diffusion in asymmetric disordered potential was recently con-
sidered in connection with the ratchet effect [Gradenigo et al.
2010].

To study the large n behaviour it is useful to write the walker position after
n steps in the scaling form [Feller 1968; Hughes 1996; Metzler and Klafter
2000]:

xn = µn+ yn1/↵ . (V.3)

Then when n ! 1, the fluctuations of the variable y are described by a pdf
which is independent of n and of the details of ⇠(⌘), except for the index ↵,
the constant c and the parameter �, as mentioned above. More precisely, in



182
ASYMMETRIC LÉVY FLIGHTS IN THE PRESENCE OF ABSORBING

BOUNDARIES

absence of any boundary and for a large number of steps, the Generalised
Central Limit Theorem (GTCL) ensures that the pdf of y converges to the
skewed ↵-stable distribution, R(y), which is defined through its characteris-
tic function [Samoradnitsky and Taqqu 1994; Weron 1996]:

characteristic function  (t) =

Z+1
-1 dyR(y)eiyt (V.4)

 (t) =

8>><>>:
exp

⇥
- |at|↵ (1 - i� sgn(t) tan(⇡↵/2))

⇤
if ↵ 6= 1 ,

exp

-|at|

⇣
1 +

2i
⇡
� sgn(t) ln |t|

⌘�
if ↵ = 1 .

(V.5)

The parameter ↵ 2 (0, 2) is called the stability index, � 2 [-1,+1] is the
skewness parameter describing the asymmetry of R(y) (i.e. the property that
� 6= 1), a > 0 is the describing the width of the distribution, and sgn(t)
denotes the sign of t.

Examples
Three particular cases can be expressed in terms of elementary
functions, as can be seen by inspection of the characteristic
function: the Gaussian distribution for ↵ = 2 (fast-decaying
distribution), the Cauchy distribution for ↵ = 1 and � = 0
(fat-tailed but still symmetric distribution), and the Lévy distri-
bution for ↵ = 1/2 and � = 1 (fat-tailed and totally asymmetric
distribution) (see Appendix A.4.3 for their analytical expres-
sions). Figure V.1 shows the three distributions (left panel) and
a comparison of their tails in log-log scale (right panel).
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Figure V.1: Gaussian distribution (red), Cauchy distribution
(pink) and Lévy distribution (blue).

For general values of↵ and�, the Fourier transform of Eq. (V.5) is no easy to
compute and R(y) can not be expressed in terms of elementary functions.
However, the asymptotic exact expansion of R(y), valid for any value of
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↵ < 2, is known [Hughes 1996]:

R(y) ⇠
|y|!1

1
⇡ |y|

1X
k=1

a↵k (1 +� sgn(y))k sin
�
↵k⇡

2
�
�(↵k+ 1) (-1)k+1

k! |y|↵k
,

(V.6)

which gives in the first order

R(y) ⇠
|y|1

a↵ sin
�
↵⇡

2
�
�(↵+ 1) (1 +� sgn(y))
⇡|y|↵+1 . (V.7)

We observe that R(y) inherits the power law tails / |y|-↵-1 of the jump
distribution ⇠(⌘) define in Eq. (V.2). Furthermore, as a consequence of the
GTCL, the amplitude of the right and the left tails of R(y) are both equal
to the corresponding amplitudes of ⇠(⌘), namely c and c/� [Hughes 1996].
Thus,

R(y) ⇠
|y|1 ⇠(y) ; R(y) ⇠

8>><>>:
c

y1+↵
, y ! +1 ,

c/�

|y|1+↵
, y ! -1 .

(V.8)

and the parameters c and � can be related to a and � via

c =
a↵ sin

�
↵⇡

2
�
�(↵+ 1)

⇡
(1 +�) and � =

1 +�

1 -�
. (V.9)

An illustration of this property of the tails is shown on Fig. V.2, using data
from numerical simulations. Much less is known in the presence of bound-
aries, which is the focus of the present chapter, first for a one dimension
random walker, then for a walker in higher dimensionality. As a process
for which µ 6= 0 can be reformulated as a “standard” process (µ = 0) by a
translation of the x-coordinate (see Eq. (V.3)), we will directly focus on the
latter case, for which the rescaled variable describing the walker position
after a large number of steps n, Eq. (V.3), becomes:

y =
xn
n1/↵ . (V.10)

Propagator of a free Lévy particle – Consider a particle starting at x(0) = 0
and performing a free Lévy flight up to n steps. Using the previous rescal-
ing, we can rewrite the propagator P(x,n) of this walker, i.e. the probability
density to find the particle in x after n steps 1:

P(x,n) =
1

n1/↵R
⇣
y =

x

n1/↵

⌘
. (V.11)

1P(x,n)dx = R(y)dy in the large n regime.
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Figure V.2: Histograms are computed from numerical simulations, using
a sample of 108 walkers. Sec. V.2.3 and Appendix A.4.3 give
more details about the simulations. Left: The jump pdf
chosen for the simulation: an asymmetric Pareto distribution
for which ↵ = 3/2, � = 2 and c = 3. Right: We simulate
Lévy flights, using the jump distribution shown in the left
panel. This figure compares the respective left and right tails
in log-scale of the original jump distribution (blue) and the
resulting pdf R(y) for the Lévy flight (red) after n = 1000
steps. The tails of the jump distribution coincides with the
tails of R(y), so that the two pdf exhibit exactly the same
asymptotic behaviour.

2 ONE DIMENSIONAL LÉVY FLIGHT WITH AN ABSORBING BOUNDARY AT
THE ORIGIN

We consider the same walker, starting from x0 = 0 and moving as defined
in Eq. (V.1), adding now an absorbing wall on the negative half-line: if at a
certain time n the walker position becomes negative (xn < 0) the walker is
absorbed and its walk finishes, as illustrated on Fig. (V.3).

An important property characterising this type of random walk is the
survival probability of the walker, also named persistence [Majumdar 1999;
Bray et al. 2013], defined as the probability that the walker, starting from
x0 = 0, is still “alive” after n steps (see also Sec. II.3.3.b):

q(n) = Prob.[ xn > 0, · · · , x1 > 0 | x0 = 0 ] . (V.12)

Necessarily, for all n > 0, q(n) < 1 must be smaller than 1. Furthermore, it
is known that if the domain where the walker evolved is closed (which is
not the case here), q(n) decreases exponentially, whereas if the domain is
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Figure V.3: Numerical simulation with ↵ = 3/2 and � = 1: evolution in
time n (number of steps) of the rescaled position y of two
one-dimensional Lévy walkers in the presence of an absorbing
boundary on the negative half-line (grey area). The blue
walker has been absorbed, whereas the red one is still alive
after n = 200 steps.

open (like here), q(n) decays algebraically:

q(n) /
n!1 n-✓ . (V.13)

The persistence exponent ✓ appearing here is expected to depend explicitly
on ↵ and �: ✓(↵,�). However deriving the analytical expression of ✓ is
not simple, even in the symmetric case (� = 0), in particular because the
method of image fails for Lévy flights, due to the presence of non-local
jumps [Chechkin et al. 2003]. The first subsection of this part concerns
the exact computation of this exponent, using a generalised version of the
Sparre Andersen theorem [Andersen 1954].

Next we focus on the pdf of the rescaled variable y, defined in Eq. (V.10),
in the case where the walker is confined on the semi-axis [0,+1) (Fig. V.3),
namely R+(y). Just like R(y), far from the boundary R+(y) displays the
same algebraic decay as the original jump distribution ⇠(⌘) (i.e. / y-1-↵)
[Zumofen and Klafter 1995], but with a different amplitude c+ instead of
c. In section V.2.2, we compute the exact value of the amplitude c+ and
show that it is related to the corresponding persistence exponent ✓ defined
in Eq. (V.13):

R+(y) ⇠
+1 c+

y1+↵
, where c+ =

c

1 - ✓
. (V.14)
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V.2.1 Survival Probability and Persistence Exponent

Given the asymmetry of the jump distribution, it is in fact interesting to
introduce two distinct survival probabilities q+(n) and q-(n) defined as

q+(n) = q(n) = Prob.[ xn > 0, · · · , x1 > 0 | x0 = 0 ] , (V.15)

q-(n) = Prob.[ xn 6 0, · · · , x1 6 0 | x0 = 0 ] . (V.16)

Of course if the jump distribution is symmetric, ⇠(⌘) = ⇠(-⌘) and then
q+(n) = q-(n). However, these two persistences must be distinct in the
more general case of an asymmetric distribution. For large n, q+(n) and
q-(n) decay algebraically with two distinct persistence exponents ✓+ 6= ✓-,

q+(n) /
n!1 n-✓+ and q-(n) /

n!1 n-✓- , (V.17)

Asymptotic behaviour of the survival probabilities

where the exponents ✓± are expected to depend explicitly on ↵ and �,
✓± ⌘ ✓±(↵,�). The exponents ✓+ and ✓- for the asymmetric case have
been already study in the physics literature in [Koren et al. 2007a,b; Dybiec
et al. 2007]. In particular, their expressions were obtained in [Baldassarri
et al. 1999] in the different context of generalised persistence for spin mod-
els. In this section we give the details of a derivation specific to random
walks on a half-line.

The survival probabilities q+(n) and q-(n) can be computed using the
(generalised) Sparre-Andersen theorem [Andersen 1954] which yields ex-
plicit expressions for their generating functions, q̃±(s) =

P1
n=0 q±(n) sn:

q̃+(s) = exp

" 1X
n=1

p+
n

n
sn

#

, where p+
n = Prob. [xn > 0] , (V.18)

q̃-(s) = exp

" 1X
n=1

p-
n

n
sn

#

, where p-
n = Prob. [xn 6 0] .

In particular, in the symmetric case (� = 0), p+
n = p-

n = 1/2 and, usingP
n>1 s

n/n = - ln (1 - s) yields

q̃+(s) = q̃-(s) =
1p

1 - s
. (V.19)

Hence q+(n) = q-(n) =

✓
2n
n

◆
1

22n ⇠
n!1 1p

⇡n
, (V.20)

such that, in the symmetric case, ✓± = 1/2, independently of the jump
distribution. In the asymmetric case, � 6= 0, the situation is slightly more
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complicated and we focus now on q+(n). Its large n behaviour can be
obtained by analysing the behaviour of its generating function when s !
1. In the right hand side of Eq. (V.18), the series in the argument of the
exponential is dominated, when s ! 1, by the large n terms. In this regime,
the scaling form in Eq. (V.10) is valid, and the probability p+

n to find the
particle on the positive half-line after a large number of steps converges to

p+
n =

Z1
0

P(x,n)dx �!
n1

Z1
0

R(y)dy , (V.21)

which implies that

1X
n=1

p+
n

n
sn ⇠

s!1
-⇢ ln (1 - s) , where we set ⇢ =

Z1
0

R(y)dy . (V.22)

Therefore, from the Sparre Andersen theorem (V.18) and the above asymp-
totic result (V.22), we get q̃+(s) ⇠ (1 - s)-⇢, and, from standard Tauberian
theorem,

q+(n) ⇠
n1 1

�(⇢)
n-✓+ , where ✓+ = 1 - ⇢ . (V.23)

Similarly, we can show that q-(n) ⇠ n-✓-/�(1 - ⇢) where ✓- = ⇢. Finally,
using the expression of the characteristic function of R(y) given in Eq. (V.5)
it is possible to compute explicitly ⇢ (which is sometimes known under the
name of the Zolotarev integrand) [Zolotarev 1986]

⇢ =

Z1
0

R(y)dy =
1
2
+

1
⇡↵

arctan
h
� tan

⇣⇡↵
2

⌘i
, for ↵ 6= 1 . (V.24)

Thus, using from Eq. (V.23),

✓+ = 1 - ⇢ =

Z 0

-1 R(y)dy , (V.25)

and ✓- = ⇢, we obtain the exact results for the persistence exponents in the
case ↵ 6= 1:

✓+ =
1
2
-

1
⇡↵

arctan
⇣
� tan

⇣⇡↵
2

⌘⌘
, (V.26)

✓- = 1 - ✓+ =
1
2
+

1
⇡↵

arctan
⇣
� tan

⇣⇡↵
2

⌘⌘
. (V.27)

Persistence exponents for ↵ 6= 1

Of course, for ⇢ = 1/2, one recovers the standard result of Sparre Andersen
Eq. (V.20) [Anderson 1953]. For ↵ = 1, the exponent ✓+ can be evaluated
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Figure V.4: Left: Survival probability of an asymmetric Lévy flight (with
↵ = 3/2, � = 4, c = 3 and n = 5000) constrained on the
positive half axis (log-log plot). The survival probability
was computed performing 107 walks. A linear fit of its tail
(black line) gives us ✓+ = 0.62 ± 0.01. Right: Plot of the
persistence exponent ✓+ as a function of � = (�- 1)/(�+
1), from the data given in Table V.1 (here ↵ = 3/2). The
red marks are the numerical estimates of ✓+ extracted from
the algebraic decay of q+(n) while the solid curve is our
exact analytical result Eq. (V.26). The blue dots correspond
to numerical estimates of 1 - ⇢.
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� � numerical ✓+ exact ✓+ numerical 1 - ⇢

1/19 -0.9 0.33 ± 0.02 0.344 . . . 0.3445
1/9 -0.8 0.35 ± 0.02 0.357 . . . 0.3566
1/4 -0.6 0.38 ± 0.01 0.385 . . . 0.3851
1/3 -0.5 0.40 ± 0.01 0.402 . . . 0.4018
1/2 -1/3 0.430 ± 0.005 0.4317 . . .
2/3 -0.2 0.458 ± 0.005 0.4581 . . . 0.4584

1 0 0.5 0.5 0.500
3/2 0.2 0.543 ± 0.005 0.5419 . . . 0.5412

2 1/3 0.568 ± 0.005 0.5683 . . .
4 0.6 0.62 ± 0.01 0.615 . . . 0.6143
9 0.8 0.64 ± 0.02 0.643 . . . 0.6428
19 0.9 0.65 ± 0.02 0.656 . . . 0.6558

Table V.1: Summary of our numerical estimates for ✓+ extracted from
the algebraic decay of the persistence probability, compared
to the exact values calculated from Eq. (V.26) and displayed
up to the third or fourth digit. We also added the numer-
ical estimates of 1 - ⇢. The uncertainty on the numerical
values of ✓+ given in the table have been estimated by vary-
ing the fitting parameters (mainly the fitting range), and by
evaluating the corresponding variations in the slope of the
fit.
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Figure V.5: Left: Plot of ✓+(↵,� = 1/2) given in Eq. (V.26). Right:
Plot of ✓+(↵,� = -1/2) given in Eq. (V.26). For ↵ = 1,
the values have been evaluated numerically from Eq. (V.25)
and (V.5).

numerically thanks to the integral of Eq. (V.25) and the definition Eq. (V.5).
Fig. V.5 shows a plot of the exact formula of ✓+(↵,�) for � = 1/2 (left) and
� = -1/2 (right), given in Eq. (V.26) for ↵ 6= 1. In both cases, we observe
that ✓+ exhibits a discontinuity at ↵ = 1. This discontinuity can be traced
back to the discontinuous behaviour of the Lévy stable distribution itself
in Eq. (V.5), for � 6= 0 as ↵ crosses the value ↵ = 1. Note that a similar
discontinuous behaviour, for ↵ = 1, was also observed in the numerical
estimate of the mean first passage time of skewed Lévy flights in bounded
domains [Dybiec et al. 2006].

Note that if the jump distribution ⇠(⌘) is itself a stable law, then ⇠(⌘) =
R(⌘) and p+

n = ⇢ for all n (not only in the asymptotic large n limit), such
that q̃+(s) = (1 - s)-⇢ and in this case q+(n) can be computed exactly for
all n (see also [Aurzada and Simon 2012]):

q+(n) =
�(n+ ⇢)

n! �(⇢)
, for ⇠(⌘) = R(⌘) . (V.28)

V.2.2 Tail of the Propagator

We are now interested in the asymptotic behaviour of the distribution of
the rescaled position y = xn/n

1/↵ of the walker given that it has survived
up to time n, namely R+(y). For this purpose it is useful to introduce the
probability to find a free particle in x > M after n steps

F(M,n) =
ZM

0
P(x,n)dx , (V.29)
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and the probability to find the constrained particle in x > M after n steps

F+(M,n) =
ZM

0
P+(x,n)dx , (V.30)

where M is a positive number, and P+(x,n) is the propagator of the con-
strained walkers (the pdf to find a constrained walker in x after n steps).
The probability function F and F+ are the cumulative functions of the pdf
P and P+. Thanks to the scaling y = xn/n

1/↵, these probabilities can be
expressed using R and R+ as

F (M,n) =
Z1
M

dx
n1/↵ R

⇣ x

n1/↵

⌘
=

Z1
M/n1/↵

dyR(y) , (V.31)

F+(M,n) =
Z1
M

dx
n1/↵ R+

⇣ x

n1/↵

⌘
=

Z1
M/n1/↵

dyR+(y) .

We are interested in the behaviour of F(M,n) and F+(M,n) when
M/n1/↵ � 1, so that we can use the asymptotic behaviours of R(y) and
R+(y) to evaluate the integrals in Eq. (V.31):

R(y) ⇠
+1 c

y↵+1 and R+(y) ⇠
+1 c+

y↵+1 . (V.32)

We obtain the asymptotic behaviour of F(M,n) and F+(M,n) in the limit
of large M/n1/↵ (M � n1/↵ � 1),

F(M,n) ⇠
M�n1/↵�1

n

↵

c

M↵
and F+(M,n) ⇠

M�n1/↵�1

n

↵

c+
M↵

.(V.33)

Therefore we get

lim
n!1 lim

M!1 F+(M,n)
F (M,n)

=
c+
c

. (V.34)

To compute the right hand side of this equation, we write can formally
write

F(M,n) = Prob.
⇥
x(n) > M

⇤
, (V.35)

and F+(M,n) = Prob.
⇥
x(n) > M | 8n 0 2 [0,n], x(n 0) > 0

⇤
, (V.36)

where we denote by Prob.(A|B) the condition probability of A given B. Us-
ing then Bayes’ formula 2 for Eq. (V.36) yields

F+(M,n) =
Prob.

⇥
x(n) > M

⇤

Prob.
⇥
8n 0 2 [0,n], x(n 0) > 0

⇤Prob.
⇥
8n 0 2 [0,n], x(n 0) > 0 | x(n) > M

⇤
.

(V.37)

2 Prob.(A|B) = Prob.(B|A)Prob.(A)/Prob.(B)
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Here we recognise in the numerator the probability F(M,n) given in
Eq. (V.35), and, in the denominator, the survival probability

q+(n) = Prob.
⇥
8n 0 2 [0,n], x(n 0) > 0

⇤
. (V.38)

Working hypothesis – To evaluate then, in the limit of large M, the probabil-
ity Prob.[8n 0 2 [0,n], x(n 0) > 0 | x(n) > M], we assume that the trajectories
such that x(n) > M are characterised by a single jump larger than M which
happens at a step n1 which may occur at any time in the interval [0,n],
hence ⌘(n1) > M. Thus, after this big jump the particle stays above 0 with
a probability 1 as it is already far away from the origin. This argument,
namely that trajectories are dominated by a single large jump, holds only
for jump distributions with heavy tails (↵ < 2), and thus does not apply to
standard random walks, which converge to Brownian motion.
Within this hypothesis we obtain, using the definition of a conditional prob-
ability, Prob.(A|B) = Prob.(A\B)/Prob.(B),

Prob.[8n 0 2 [0,n], x(n 0) > 0 | x(n) > M] ⇠
M1

nX
n1=0

q+(n1) Prob.[⌘(n1) > M]

nX
n1=0

Prob.[⌘(n1) > M ]

.

(V.39)

As the jump variables are i.i.d., Prob.[⌘(n1) > M ] is independent of n1,
and we obtain in the large M limit:

lim
n!1 lim

M!1 F+(M,n)
F (M,n)

= lim
n!1

nX
n1=0

q+(n1)

nq+(n)
. (V.40)

For sufficiently large values of n1, we can replace q+(n1) by its expression
Eq. (V.17) in the sum we obtain the Riemann series:

nX
n1=0

q+(n1) ⇠
n1

nX
n1=1

n-✓+
1 . (V.41)

For constrained one dimensional Lévy flights, the persistence exponent
given by Eq. (V.25) is always strictly smaller than 1: ✓+ < 1. As a con-
sequence the Riemann series (V.41) is diverging for large n, behaving as:

for ✓+ < 1,
nX

n1=1

n-✓+
1 ⇠

n1 n(1-✓+)

1 - ✓+
. (V.42)
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We thus get,

lim
n!1 lim

M!1 F+(M,n)
F(M,n)

=
1

1 - ✓+
, (V.43)

which finally leads, with Eq. (V.34), to the general result in one dimension
Eq. (V.14):

R+(y) ⇠
+1 c+

y1+↵
, where c+ =

c

1 - ✓
. (V.44)

Asymptotic behaviour of R+(y)

This result is in agreement with the previous prediction c+ = 2 c valid only
for symmetric Lévy flights (where � = 0 and ✓ = 1/2). In this case, this
result was first obtained in [García-García et al. 2012] using a perturbative
expansion around ↵ = 2 [Zoia et al. 2007], and confirmed by an exact cal-
culation valid for any ↵ in [Wergen et al. 2012].

V.2.3 Details of the numerical simulation details

The purpose of this section is to clarify the methods used to handle the
numerical simulations.

Jump distribution To verify the predictions for the persistence exponent
(Sec. V.2.1) and the tail of the constrained propagator (Sec. V.2.2), we have
simulated numerically the random walk defined in Eq. (V.1), whose jumps
are given by a power-law distribution (i.e. verifying Eq. (V.2) ) with location
µ = 0. For this purpose we have chosen a Pareto distribution (see the left
panel of Fig. V.2) to sample the jump length ⌘. This distribution is defined
for a positive parameter ↵ by (see also Appendix A.4.3)

⇠(⌘) =

8>>>><>>>>:

c

⌘↵+1 for ⌘ > b+ ,

c/�

|⌘|↵+1 for ⌘ < -b- ,

0 otherwise .

(V.45)

The distribution must be normalised and we choose to set its location µ = 0.
These two conditions thus fix the parameters b- and b+:

(b-)
↵ =

c (1 + �
1

1-↵ )

↵�
and (b+)

↵ =
c (1 + �1-↵)

↵
. (V.46)

The Pareto distribution is a fat-tailed distribution, and for ↵ in (0, 2) the
process converges to a skewed Lévy stable process with stability index ↵,
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Figure V.6: Pdf of the rescaled variable y for Lévy flights with ↵ = 3/2,
� = 2, c = 3 and n = 1000 steps (sample of 108 walkers),
in presence and in absence of an absorbing boundary on the
negative half-axis, respectively R+(y) (red) and R(y) (blue).
R+(y) is compared to its expected asymptotic behaviour
R

exp
+ (y) (black line) given in Eq. (V.51).

� � numerical c+/c exact c+/c
1/19 -0.9 1.52 ± 0.05 1.526 . . .
1/9 -0.8 1.53 ± 0.03 1.555 . . .
1/4 -0.6 1.61 ± 0.03 1.627 . . .
1/2 -1/3 1.75 ± 0.03 1.760 . . .

1 0 2 2
2 1/3 2.34 ± 0.05 2.316 . . .
4 0.6 2.6 ± 0.1 2.595 . . .
9 0.8 3.0 ± 0.5 2.803 . . .

19 0.9 3.3 ± 0.5 2.903 . . .

Table V.2: Summary of our numerical estimates for c+/c, extracted
from the algebraic tail of the constrained propagator R+(y)
and compared to the value expected from the theory:
c+
c

=
1

1 - ✓+
.

We took the exact value of ✓+ in Eq. (V.26); the values in
the fourth column are exact and are provided up to the fourth
digit.
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skewness parameter � and a scale parameter a, related to the parameter �
and c of the Pareto jump distribution by Eq. (V.9) (see Fig. V.2).

To sample random variables ⌘ according to a Pareto distribution we
can use a direct sampling method [Krauth 2006]. The Pareto distribution
presents in fact the advantage to be easier and faster to sample than a stable
law (see Appendix A.4.3). In practice, at each step, the walker makes a
positive jump with a probability ⇡+

⇡+ =

Z+1
b+

d⌘�(⌘) , (V.47)

and a negative jump with a probability 1- ⇡+. The amplitude of this jump
is then given by [Krauth 2006]

⌘ =

8><>:
⇥
rand ( 0, b+

-↵ )
⇤- 1

↵ with probability ⇡+ ,

-
⇥
rand ( 0, b-

-↵ )
⇤- 1

↵ with probability 1 - ⇡+ ,
(V.48)

where rand (x,y) is a random number drawn randomly from a uniform
distribution in the interval (x,y).

Survival probability In order to compute the survival probability q+(n)
defined in Eq. (V.15), we generated a large number of independent Lévy
walkers, evolving via Eq. (V.1) with the Pareto jump distribution of Eq. (V.45).
We then computed the fraction of walkers which remained on the positive
axis until step n, which, for a large number of samples (walkers), converges
to the probability that a walker survives until step n, q+(n). Fig. V.4 Left
shows a plot of q+ as function of n in log-log scale for ↵ = 3/2 and � = 4
(corresponding to � = 3/5): we can observe that q+(n) exhibits an alge-
braic decay, which is in agreement with Eq. (V.17), q+ / n-✓+ . A linear
fit of the asymptote of q+(n) in log-log scale thus provides the numerical
estimate of the exponent ✓+.

Using this procedure, we have measured the persistence exponent ✓+
for different values of asymmetry � of the jump distribution3 in the case
↵ = 3/2. These measurements are reported in Table V.1, where they are
compared to the theoretical values of ✓+ coming from Eq. (V.26). Each
curve q+(n) has been realised from a sample of 107 walkers. Fig. V.4 Right
then shows a very good agreement between the numerical estimates of ✓+
(red marks with error bars on the value of ✓+) and its predicted values
from Eq. (V.26) (solid line). Finally, a linear fit of the numerical results of
✓+ for small �, ✓+(�) = C� +D + o(�2), gives C = 0.200 ± 0.006 and

3We recall that � = (�- 1)/(�+ 1).
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D = 0.497 ± 0.005, which matches perfectly the asymptotic expansion for
small � of the function ✓+(�) in Eq. (V.26).

Finally we also computed numerically ⇢: from its definition in Eq. (V.22),
⇢ is the probability that a Lévy walker is on the right half-axis after a large
number of steps. In other words it is the probability that a jump sampled
directly from the stable distribution R(y) is positive. This probability can be
easily computed from a Monte Carlo simulation: we sample directly jumps
from the stable distribution R(y) with identical parameter↵, �, c and µ than
the initial jump distributions ⇠(⌘) (see Appendix A.4.3); we then count the
ratio of jumps that are positive. Numerical estimates of ⇢ for ↵ = 3/2,
c = 1 and µ = 0 are shown as blue dots on Fig. V.4 Right. These values are
consistent with the results Eq. (V.25) and (V.26):

✓+ = 1 - ⇢ =
1
2
-

1
⇡↵

arctan
⇣
� tan

⇣⇡↵
2

⌘⌘
, for ↵ 6= 1 . (V.49)

Tail of the propagator We first check that our numerical procedure (V.1)
and (V.45) yields back the correct free propagator R(y) before we compute
the constrained one, R+(y).

Free Lévy walkers – We construct a large number of independent Lévy walks
evolving via Eqs. (V.1) and (V.45). For each random walk we record the fi-
nal position xn after n steps, and compute the normalised histogram of
the corresponding rescaled variable y = xn/n

1/↵. With a sufficiently large
number of walkers, this histogram converges to probability density func-
tion of y. According to the Generalised Central Limit Theorem, for a large
number of steps n, the probability density of y converges to the stable dis-
tribution R(y) whose asymptotic expansion is:

R(y) !

8>>><>>>:
c

y1+↵
+O

✓
1

y1+2↵

◆
, if y > 0 ,

c/�

|y|1+↵
+O

✓
1

|y|1+2↵

◆
, if y < 0 .

(V.50)

Our numerical simulations are consistent with this result: in Fig. V.2 Right,
the right and left tails of R(y) coincide with the tails of the jump pdf ⇠(⌘)
for large values of y and ⌘ (see Eq. V.8).

Constrained Lévy walkers – We now consider a one-dimensional random
walk constrained to stay positive (Fig. V.3). If the particle has survived
on the positive semi-axis up to step n, we record its final position xn.
Then we construct the normalised histogram of the rescaled final positions
(y = xn/n

1/↵), which converges to the pdf R+(y) from a large number of
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such constrained walks. In Fig. V.6 Right, a plot of R(y) and R+(y) (which is
defined only for positive y) in log-log scale shows that these two functions
have the same asymptotic behaviour, even though R+(y) is shifted with re-
spect to R(y). This confirms that R and R+ both decay as / y-↵-1 for large
y [Zumofen and Klafter 1995], but with different amplitudes, c+ 6= c.

Fig. V.6 compares, in log-log scale, the tail of R+ (red curve) to the
asymptotic behaviour Rexp

+ expected from the theory and given by Eq. (V.14),
in the case ↵ = 3/2 and � = 2:

R+(y) ⇠
y!+1 c+

y5/2 R
exp
+ (y) ⇠

y!+1 c

1 - ✓+

1
y5/2 . (V.51)

This expected tail fit very well R+(y) when y becomes large, which is con-
sistent with the relation (V.14) for asymmetric cases in one dimension. A
more precise comparison can be made from the evaluation of c+ by fit-
ting the algebraic tail of R+(y), which yields c+/c = 2.34 ± 0.05 while
our exact result predicts 1/(1 - ✓+) ' 2.316 . . . (taking the exact value of
✓+ = 0.5683 . . . ). We have carried out simulations for different values of �
and extracted the amplitude c+ of the tail. In Table V.2 we compare these
estimates of c+ with the values of 1/(1 - ✓+). This comparison gives a
good support to our heuristic argument (that the process is governed by
one large jump (rare and large event)) leading to the relation in Eq. (V.14).

3 TWO DIMENSIONAL LÉVY FLIGHTS IN THE PRESENCE OF ABSORBING
BOUNDARIES

V.3.1 General setup

There exists two common ways to build Lévy flights in a two dimensional
space. One is the Pearson random walk that was introduced in Chapter 1:
at each time step the walker is given a new direction !n and a new jump
length ⌘n. Its position rn+1 after n+ 1 steps is thus given by:

rn+1 = rn + ⌘n!n , (V.52)

where the directions !n are independent and isotropically distributed over
all possible directions in the plane and the random jump variables ⌘n are
independent and identically distributed according to a power-law proba-
bility density function ⇠(⌘), i.e. verifying Eq. (V.2). An interesting property
of this definition is that the statistical properties of the walk are invariant
under rotation. Fig. V.7 displays one realisation of a Pearson Lévy flight.
Observe that the few very large jumps can occur in any direction. The sec-
ond way is a direct generalisation of the 1-dimensional walker (1d-walker)
defined in Eq. (V.1), resulting from two 1d-walkers evolving respectively
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Figure V.7: Free 2d-Lévy flight of 104 steps, using the Pearson random
walks with power-law distributed jumps (↵ = 3/2, � = 1,
c = 1 and µ = 0). The coordinates u and v have been
rescaled using Eq. (V.56).
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Figure V.8: Free 2d-Lévy flight of 106 steps, evolving according to (V.56)
with power-law distributed jumps (↵ = 3/2, � = 1, c = 1
and µ = 0).
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along the axis x and the axis y. The position of the 2d-walker after n steps,
~rn = xn ~ex + zn ~ez, then evolves according to

for n > 1,

8<: xn = xn-1 + ⌘xn ,

zn = zn-1 + ⌘zn ,
(V.53)

starting from ~r0 = ~0 at initial time. The jumps ⌘x,z
1 ,⌘x,z

2 , . . . ,⌘x,z
n are inde-

pendent and identical random variables, distributed according to a power-
law distribution, i.e. verifying Eq. (V.2). Note that for a Brownian walker
these two definitions are equivalent. Fig. V.8 displays one realisation of
such a Lévy flight, where we can observe that the few very large jumps
occur only in two directions, along x or along z. Due to the definition of
the walk Eq. (V.53), a long jump in another direction would imply that two
very long jumps (one along x and one along z) have occurred exactly at the
same time step, which is very unlikely.

Thanks to the “long jump anisotropy”, with two preferred directions for
the long jumps, it is possible to generalise the previous result, Eq. (V.14), to
this second type of 2-dimensional Lévy walkers when the domain D is open
in one of these two directions. Note however that in dimension higher than
one, the persistence exponent ✓ of the walk can be larger than 1. In this case,
the Riemann series in Eq. (V.42) would be convergent and would converge
to the Riemann Zeta function (analytic for ✓ > 1):

for ✓ > 1,
nX

n1=1

n-✓
1 ⇠

n1 ⇣(✓) , (V.54)

such that the ratio Eq. (V.43) depends on n

F+(M,n)
F(M,n)

⇠
n1
M1

⇣(✓)
⇣ n

M↵

⌘✓-1
, for ✓ > 1, (V.55)

assuming that the scaling Eq. (V.10) still holds. This suggests that the alge-
braic decay of the pdf of the constraint walker could be different from the
one of the free walker. Therefore, a generalisation of the result Eq. (V.44) in
higher dimension has to be done carefully.

Consider a two-dimensional Lévy random walker defined by (V.53); the
jumps along x or z are independent and distributed according to the same
power law-distribution (V.2), of parameters ↵, � and c (we choose µ = 0).
We denote by u and w the rescaled variables:

u =
xn
n1/↵ , w =

zn
n1/↵ , with ~y = (u,w) . (V.56)
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In absence of boundaries, the pdf of the rescaled variable ~y is easily ob-
tained as the two components xn and zn are two independent one-dimen-
sional Lévy walkers:

R2(~y) = R(u)R(w) , (V.57)

where R(u) is the ↵-stable distribution (V.4) of parameter ↵, � and c. In
the following, we will consider two cases for the constraint Lévy flight: the
domain D is open in the direction of the long jumps, i.e. along x or z – see
Fig. V.9 (a) and (b); the domain D is open in an other direction – see Fig. V.9
(c) and (d). We denote by qD(n) the survival probability of a walker in
the domain D after n steps, i.e. the fraction of walkers which stay inside
the domain D up to step n, and by ✓D its exponent. Analogously to the
one-dimensional case Eq. (V.17), when the number of jumps n ! 1,

qD(n) /
n!1 n-✓D (V.58)

(while there exists no exact result for ✓D).

V.3.2 Domain D open along x or z

Let us start with the first case, where D is open in the direction of the axis
x (Fig. V.9a and V.9b). Just like for the one dimensional case, we can as-
sume that walkers that are far from the boundaries after a large number of
steps n have performed one long jump in the direction of the axis x. By
closely following the lines of Sec. V.2.2, we can then predict that, far from
the boundaries, the pdf R2,D(~y) behaves like the pdf R2(~y) in absence of
boundaries with the universal ratio:

R2,D(~y)

R2(~y)
�!

d(~y,@D)!1
1

1 - ✓D
, (V.59)

where d(~y,@D) denotes the distance between the point located at ~y and the
boundary of D.

a. Simple case

In the limit case (a) depicted on Fig. V.9a, for instance, u and w are not
correlated, such that we recover exactly the one-dimensional case:

8u > 0, 8w, R2,D(u,w) = R+(u)R(w) , (V.60)

and 8n, qD(n) = q+(n), such that ✓D = ✓+ , (V.61)

where R+(u) and q+(n) are respectively the pdf and the persistence of the
constrained Lévy walker (see sec. 2). Here, the condition “far from the
boundaries” can be realised by taking the limit u ! +1 for any values of
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Far from the
boundary
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boundary
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Figure V.9: Schematic representation of the different geometries consid-
ered for the boundaries.
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w. Using the results for the one-dimensional case Eq. (V.8) and (V.44), we
have

R2,D(u,w) ⇠
u1 c R(y)

(1 - ✓+)u↵+1 and R2(u,w) ⇠
u1 c R(y)

u↵+1 , (V.62)

which finally leads to the result (V.59), as ✓+ = ✓D here.

b. General case

In the general case, the open domain D is defined as (see Fig. V.9b)

-'1 6 arctan(u/w) 6 '1 .

In this case, the positions xn and zn of a walker after n steps are correlated
by the presence of the boundaries. For the following, we will use the polar
coordinate for the walker position:8<:⇢ =

p
u2 +w2

' = arctan
⇣ u
w

⌘
.

(V.63)

The condition “far from the boundaries” can be realised by considering
walkers that are in a small wedge -✏ 6 ' 6 ✏ with ✏ ⌧ 1 (see dash lines
on Fig. V.9b), and far from the origin, ⇢ > M̃ with M̃ = M/n1/↵ � 1.
We call D✏,M̃ the domain thus defined. In this case, we can first define
the cumulative F✏(M̃), as the probability to find a free walker in the small
domain defined above4:

F✏(M̃) =

Z+1
M̃

d⇢
Z+✏

-✏

d'⇢R2(⇢,') . (V.64)

In the presence of boundaries, the probability to find a walker in this small
domain is denoted F✏,D(M̃). It corresponds to the probability to find a
walker “far from the boundaries”. Let us first compute F✏(M̃). For ✏ ⌧ 1,
for all ' < ✏, �

u = ⇢ cos(') = ⇢+ o(')

w = ⇢ sin(') = ⇢'+ o(')
(V.65)

and using that R2(⇢,')⇢d⇢d' = R(u)R(w)dudw, we obtain for ✏⌧ 1,

F✏(M̃) =

Z+1
M̃

d⇢ ⇢R(⇢)
Z+✏

-✏

R(⇢')d' =

Z+1
M̃

d⇢R(⇢)
Z+⇢✏

-⇢✏

R('0)d'0 .

4Numerically, F✏(M̃) = N
✏

(⇢>M̃)
N

tot

, where N✏(⇢ > M̃) is the number of walkers in the
small wedge -✏ 6 ' 6 ✏ verifying ⇢ > M̃, and Ntot the total number of walkers.
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Furthermore, for all ✏⌧ 1, ✏ fixed,

lim
⇢!1

Z+⇢✏

-⇢✏

R('0)d'0 = 1 , (V.66)

as R('0) is normalised. Hence, for M̃ such that M̃ � 1/✏� 1,

F✏(M̃) ⇠
M̃1

Z+1
M̃

c

⇢↵+1 d⇢ =) F✏(M̃) ⇠
M̃1

c

↵ M̃↵
. (V.67)

For M̃ � 1/✏, the cumulative F✏(M̃) does not depend on ✏. Note that,
assuming that a free walker, found in the domain D✏,M̃ with M̃ � 1 after a
large number of steps n, has performed one large jump in the direction of
+x at a time step n1 6 n, we can write

F✏(M,n) = Prob.[xn > M] ⇠
n,M1

nX
n1=1

Prob.[⌘x(n1) > M] ⇠ nProb.[⌘x > M] ,

as jumps are independent and identically distributed. Computing the prob-
ability

Prob.[⌘x > M] =

Z+1
M

⇠(⌘x)d⌘x ⇠
M1 c

↵M↵
, (V.68)

we finally recover the result (V.67): the behaviour of the tail of F is domi-
nated by large events. We now use this large jump hypothesis for the con-
straint walker, and assume that after performing a large jump along x at
a time step n1 the walker will stay alive with probability 1 (same working
hypothesis than for the one-dimensional walker). By definition,

F✏,D(M,n) = Prob.
⇥
(xn, zn) 2 D✏,M | 8n0 2 [0,n], (xn, zn) 2 D

⇤
.

Within the above working hypothesis, and using the definition of a condi-
tional probability, Prob.(A|B) = Prob.(A\B)/Prob.(B), we obtain

F✏,D(M,n) ⇠
n,M1

Pn
n1=1 qD(n1)Prob.[⌘x(n1) > M]

qD(n)
,

where qD(n) = Prob.
⇥
8n0 2 [0,n], (xn, zn) 2 D

⇤
. As the jump variables

are i.i.d., Prob.[⌘x(n1) > M] is independent of n1, and is given by Eq. (V.68).
For n large, we can replace qD(n) by its expression (V.58) in the sum, and
we obtain again the Riemann series (V.41) found for the one-dimensional
case. For ✓D < 1 this series is diverging as (V.42), such that,

For ✓D < 1 , F✏,D(M̃) ⇠
M̃1

c

(1 - ✓D)↵ M̃↵
, (V.69)



204
ASYMMETRIC LÉVY FLIGHTS IN THE PRESENCE OF ABSORBING

BOUNDARIES

which finally yields, with Eq. (V.67), the result (V.59) in the case ✓D < 1.

Concerning the condition ✓D < 1 – There is currently no theoretical result
for ✓D in the two-dimensional case, so that we can not be sure that ✓D is al-
ways smaller than 1. As the survival probability of walkers decreases when
the opening angle 2'1 is reduced, we must have ✓D > ✓+ (persistence ex-
ponent for '1 = ⇡/2 – case (a)), which is all the information we have con-
cerning ✓D. As done for the one-dimensional case, we obtained numerical
estimates for ✓D from the algebraic decay of qD for different values of the
parameter ↵, � and '. We then observed that ✓D may be always smaller
than 1 in this case, which were also consistent with the measurements of
the amplitude of the tail of F✏,D(M̃). This observation would need to be
confirmed by a theoretical result.

c. Numerical simulation for a two-dimensional system

Fig. V.10 shows one realisation of a Lévy flight in absence (Left) and in
presence (Right) of boundaries. Jumps are sampled from the Pareto distri-
bution (V.45) with the parameter ↵ = 3/2, � = 1, and c = 1. We consider as
open domain D the wedge depicted in the right panel of Fig. V.10 and de-
fined by -⇡/3 6 atan(z/x) 6 ⇡/3. The fraction of walks which stay inside
D after n steps defines the survival probability qD(n) which we compute
numerically (see the left panel of Fig. V.11). The persistence exponent ex-
tracted from our data is ✓D = 0.73 ± 0.01.

In this geometry, our result (V.59) implies in particular that

R2,D(u,w)

R2(u,w)
�!
u!1 1

1 - ✓D
, (V.70)

(we could also consider a small wedge of opening angle ✏). In practice,
we compute the quantities R2(u,w = 0) and R2,D(u,w = 0) via N✏(u), i.e.
the number of points inside the rectangle [u,u+�u]⇥ [-✏/n1/↵, ✏/n1/↵],
with ✏ and �u small (see the right panel of Fig. V.10). In the absence of
boundaries, we have that

R2(u, 0) = lim
✏,�u!0

N✏(u)

2✏�u
= R(0)R(u) , (V.71)

which behaves, for large u, as

R2(u, 0) ⇠1 cR(0)
u1+↵

, R(0) =
�(1 +↵-1)

a⇡
, (V.72)



Two dimensional Lévy flights in the presence of absorbing boundaries 205

-2⋅104

-1⋅104

 0⋅100

 1⋅104

 0⋅100  2⋅104  4⋅104

z n

xn

-1⋅104

-5⋅103

0

5⋅103

1⋅104

0 4⋅103 8⋅103 1⋅104

z n
xn

Figure V.10: ↵ = 3/2, � = 1 and c = 1. Left: Free Lévy walker of
106 steps in a two-dimensional space, evolving according
to (V.53). Right: A two-dimensional walk in the presence
of the absorbing wedge (black). The blue lines delimit the
stripe of width 2✏ used to compute R2(u, 0) and R2,D(u, 0)
(V.71).
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Figure V.11: Two-dimensional Lévy flights (V.56) with ↵ = 3/2, � = 1
and c = 1 and n = 5000 steps (107 samples). Left: Sur-
vival probability in the wedged domain qD(n) (red). A fit
of the tail yields qD(n) ⇠ n-✓D with ✓D = 0.73 ± 0.01.
Right: Comparison of the PDF of the rescaled variable in
the presence, R2,D(u, 0) (red), and in the absence, R2(u, 0)
(blue), of the absorbing wedge. The tails are in good agree-
ment with our conjecture (V.70).
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where a and c are related via Eq. (V.9). In particular, in our simulations
with ↵ = 3/2 and c = 1 we have

R2(u, 0) ⇠
c⇤

u5/2 , c⇤ =

 
4
p

2⇡
3

!2/3

. (V.73)

This relation has been checked numerically, as shown in the right panel of
Fig. V.11. Repeating the same numerical procedure in presence of the edge,
we obtain R2,D(u, 0) as shown in the right panel of Fig. V.11. The tail is
in good agreement with our prediction R2,D(u, 0) ⇠ [c⇤/(1 - ✓D)]u-1-↵,
which confirms the validity of the result (V.59).

d. Generalisation to higher dimensions

More generally, for a system of any dimension d, open in one of the direc-
tions where walkers are more likely to perform long jumps (see Fig. V.9a
and V.9b), we can generalise the “one long jump” argument used for the
1d- and the 2d-cases. We thus predict that far from the boundaries, the
pdf R2,D(~y) behaves like the pdf R2(~y) in absence of boundaries with the
universal ratio:

Rd,D(~y)

Rd(~y)
�!

d(~y,@D)!1
1

1 - ✓D
, assuming that ✓D < 1 , (V.74)

Asymptotic behaviour of Rd,D

where d(~y,@D) denotes the distance between the point located at ~y and the
boundary of D.

V.3.3 Domain D open in an other direction

Let us consider now the case where D is open in an other direction than the
two axes x or z (see Fig. V.9c and V.9d). Here we can no more assume that
a walker that is found far from the boundary after a large number of steps
has performed one long jump along x or z that would have brought him
far from the boundaries. Indeed, to arrive in this situation a walker would
have, at least, performed two long jumps, one along x and one along z,
simultaneously or not.

a. Simple case

In the limit case (c) depicted on Fig. V.9c, the rescaled positions of the
walker, u and w, are not correlated, such that u and w corresponds to two
one-dimensional constraint walkers:

8u > 0, 8w > 0, R2,D(u,w) = R+(u)R+(w) , (V.75)



Conclusion 207

and 8n, qD(n) = [q+(n)]
2, such that ✓D = 2✓+ , (V.76)

where R+(u) and q+(n) are respectively the pdf and the persistence of the
corresponding constrained one-dimensional Lévy walker (see sec. 2). Here,
the condition “far from the boundaries” can be realised by resorting to the
polar coordinate (V.63) and taking the limit ⇢ ! +1 in the direction of
' = ⇡/4, as illustrated in Fig. V.9c. In this direction, we have, using the
results for the one-dimensional case Eq. (V.8) and (V.44),

R2

⇣
⇢,' =

⇡

4

⌘
= R(⇢ cos')R(⇢ sin') ⇠

⇢1 2↵+1 c2

⇢2(↵+1) ,

R2,D

⇣
⇢,' =

⇡

4

⌘
= R+(⇢ cos')R+(⇢ sin') ⇠

⇢1 2↵+1 c2

(1 - ✓+)2 ⇢2(↵+1) .

We finally obtain in this case the ratio:

R2,D(⇢,⇡/4)
R2(⇢,⇡/4)

�!
⇢!1 1

(1 - ✓+)2 =
1

✓
1 -

✓D
2

◆2 , (V.77)

which is different from the result (V.74).

b. General case

In the general case (d) (see Fig. V.9d), a generalisation of the long jump ar-
gument would be more complex. For large opening angle of D ('1 small),
we can expect walkers to perform two large jumps (one along x and one
along z) to go far from the boundaries (as for the limit case '1 = 0). For a
small opening angle ('1 closer to ⇡/4), we can expect walkers to perform
one long jump in the direction ' = ⇡/4, i.e. two simultaneous jumps re-
spectively along x and z, to go far from the boundaries. For intermediate
opening angles, we then may expect an overlap between these two limit
cases.

This last part of the work, is still in progress, in collaboration with P.K.
Mohanty, G. Schehr and A. Rosso. Beyond the theory, one of the main diffi-
culties for this problem concerns the numerical simulations: due to the two
preferred directions for the large jumps (see Fig. V.8), walkers surviving af-
ter a large number of steps in the case illustrated on Fig. V.9d are rare, and
it is difficult to generate numerically enough statistics.

4 CONCLUSION

To conclude, we have studied, in this chapter, the problem of asymmetric
Lévy flights in presence of absorbing boundaries. In the one dimensional
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case we have computed the persistence exponents ✓+ and ✓- for walkers
constrained to stay in the semi-positive or semi-negative axis. These expo-
nents are useful to characterise the statistical behaviour of various observ-
ables including, for instance, the sequence of records for the walker posi-
tion [Majumdar et al. 2012]. In particular, the exponent ✓+ for asymmetric
Lévy flight was shown to be related to the exponent of the survival proba-
bility of the random walk performed by the random variable a = m1 -m2,
where m1 and m2 are the current maximum of two independent Brownian
particles (with two different diffusion coefficients) [Randon-Furling 2014].
Our main results concern the statistics of the walker positions in a semi-
bounded domain. Far from the boundaries the pdf of the walker positions
has the same algebraic decay as the original jump distribution: here we
have computed with heuristic arguments and numerical simulations the
amplitude of this decay. This last result strongly relies on the property that
the statistics of this random walk is dominated by rare and large events and
thus does not hold for the more familiar Brownian walkers.
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RANDOM WALKS ON QUENCHED DISORDERED
MEDIA AND OPEN PROBLEM

Let us conclude our discussion on anomalous transport by going back to
the initial motivation (see Sec. I.3.2): the study of the neutron or photon
transport in strongly heterogeneous and disordered media, such as pebble-
bed reactors or Lévy glasses. Up to now, we have considered that this trans-
port can be modelled by (branching) Lévy walks. Experimentally the stable
parameter ↵ of the jump distribution can be estimated from measurements
of mean square displacement or mean first-passage time (transmission), as
proposed in [Davis and Marshak 1997; Barthelemy et al. 2008] for photon
transport. Concerning neutron transport, these methods should be gener-
alised to random walks in the presence of branching.

However, an important aspect of this type of transport is the role of
quenched disorder: the strong heterogeneities of the medium are fixed, and
thus induce correlations between lengths and directions of subsequent
jumps. These correlations, completely neglected in the Lévy walk approach,
have been shown to counteract the increase of diffusivity due to the long
jumps [Svensson et al. 2014]. In particular, several works have shown that
correlations dominate transport in one-dimensional systems [Beenakker
et al. 2009; Burioni et al. 2010; Vezzani et al. 2011], while their effects be-
comes less significant for Lévy glasses in higher dimensionality5 [Barthelemy
et al. 2010].

The general study of the anomalous transport in disordered medium
goes beyond the scope of this thesis. In particular, a first problem that
remains open concerns random walks in one-dimensional quenched dis-
ordered systems. Following the lines of [Beenakker et al. 2009; Bernabó
et al. 2014], we consider a ballistic random walker, with constant speed v,
evolving on a one-dimensional chain of barriers with power-law spacing

5This does not hold for perfectly self-similar systems [Buonsante et al. 2011; Groth et al.
2012].
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distribution (see Fig. V.12):

⌘(`) ⇠
c

`↵+1 when `! +1 (V.78)

where c is an amplitude parameter, and the power-law exponent ↵ 2 (0, 2)
characterises the stability of the distribution. The locations of the barriers
are fixed in time. At each barrier the walker can change its direction with

Figure V.12: Ballistic random walker on a one-dimensional quenched dis-
ordered system.

probability R = 1/2, or continue in the same direction with the transfer
probability T = 1/2. Between barriers, the walker cannot change its direc-
tion, and is thus forced to go straight. Consider now a walker starting at
time t = 0 from a position x = 0 located on a barrier; what is the probability
density function to find the walker at a position x at time t > 0, namely the
propagator of the walk, P(x, t)?

First, we expect the propagator to inherit the power-law property of the
inter-barrier distances `, such that the walk will exhibit a super-diffusive
behaviour, as observed in Lévy glasses, and could be described in terms
of Lévy walks. On the other hand, the jumps of the walker are highly cor-
related: when the walker is reflected on a barrier, it is forced to go back
to the previous barrier, and thus sees exactly the same landscape. By con-
trast, a “classical” random walk, such as an exponential random walk or
a Lévy walk, evolves in a background material where the locations of the
scattering centres (analogous to the barriers in the model above) constantly
change, as each new jump is sampled independently from the others.

This space and time dependent problem has not been solved yet: while
the pdf ⌘ describes the disorder, the propagator P(x, t) would be the quan-
tity needed to fully characterise the transport phenomenon.
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CONCLUSION

The thesis was oriented along two main axes: the study of the fluctuations
of the neutron population within a nuclear reactor, and in particular, the
clustering phenomenon [Dumonteil et al. 2014], and the understanding of
anomalous transport of neutrons that can be observed in disordered and
strongly heterogeneous media, such as pebble-bed reactors.

In the first part of the thesis, we have seen that the process of neutron
reproduction (fission) and death (sterile capture) can lead to strong fluctu-
ations of the neutron population. To study these fluctuations in the context
of reactor physics, we have derived, thanks to the Feynman-Kac formal-
ism, backward equations for each moment of two key observables: the total
length travelled and the total number of collisions performed by walkers in
a considered region of the system. The first moment of these two quantities
indeed corresponds to the track-length estimator and the collision estima-
tor, central to Monte Carlo simulations of nuclear reactors, and which are
respectively related to the neutron flux and reaction rate within the system.
For these equations the contribution of the thesis concerns the extension to
heterogeneous media with anisotropic scattering [SNA-MC 2013]. The de-
pendence of these equations on energy may be studied more in detail. For
applications in reactor physics, an important effort should be now done in
the direction of taking into account delayed neutrons, which would require
to develop coupled backward equations, for the neutrons and for the pre-
cursors.

More generally, the Feynman-Kac formalism allows to go beyond the
Boltzmann equation (that describes only the mean behaviour of the sys-
tem), to study the fluctuations of any observable of the system. In partic-
ular, we derived the backward evolution equation for the pair-correlation
function between neutrons, that is a key quantity for the understanding
of the clustering phenomenon. Solving this equation in a finite medium,
surrounded by absorbing or reflecting boundaries, we studied the impact
of confined geometries on the clustering phenomenon. We thus observed
that the impact of the confined geometry is characterised by a competition
between two physical phenomena: the pair-reproduction process that cor-
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relates particles of the same family, tends to create clusters, and that will
also leads the whole population to extinction in a characteristic time ⌧E,
and the diffusion process that mix particles over the system and thus tend
to counteract the clustering effect on characteristic time ⌧D. For ⌧D < ⌧E,
the system will initially develop a clustering govern by the competition
between this two phenomena, but will finally goes to extinction in ⌧E (Crit-
ical catastrophe). We thus highlighted two types of fluctuations: local fluc-
tuations resulting from the competition between birth/death process and
diffusion leading to a clustering that can be characterised by a the ratio
⌧D/⌧E, and global fluctuations that lead to a trivial clustering and to the
extinction of the population [Zoia et al. 2014]. Then adding a control on
the whole population (feedback that keep the total population constant) al-
lowed us to prevent the extinction of the system (global fluctuations), and
thus focus on the local fluctuations and the clustering thus “stabilised”. The
characteristic time ⌧E can be seen now as the characteristic time of the pair-
reproduction process. We then observed that the stabilised size of the clus-
ters depend on the ratio ⌧E/⌧D, i.e. on the competition between reproduc-
tion that reduces it and diffusion that increases it, and explicitly computed
this size [de Mulatier et al. 2015]. So far, we have considered Brownian
branching particles. In the context of neutron transport, it would be inter-
esting to consider now a more realistic approach, including in particular
exponential displacements, heterogeneities and the energy dependencies.
More particularly, in the context of nuclear reactor physics, it could be in-
teresting to study the impact of delayed neutrons that will introduce a new
time scale in the system. On another aspect, as the system was started from
an equilibrium configuration of particles, and naturally move to this clus-
tered state, we may now wonder how these clusters behave in the system:
could we observe an equilibrium configuration of clusters?

In the second part of the thesis, we were interested in non-exponential
transport of particles, initially motivated by the problem of transport in
strongly heterogeneous and disordered media. We first focused on a prop-
erty, known as Cauchy formula, that characterises branching exponential
random walks at criticality: the mean length travelled by such a walk
through a finite domain depends only on the geometrical properties of the
domain, its finite volume V , its surface S and a dimensionality-dependent
constant ⌘d

hLiS = ⌘dV/S . (V.79)

In Chapter IV, we first showed that this property holds for transport in me-
dia with mild heterogeneities, and with anisotropic scattering [SNA-MC
2013]. We then proved that the property surprisingly generalises to any
type of Pearson random walk and branching random walk at criticality,
provided that walkers have a finite mean free path [Mazzolo et al. 2014;
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De Mulatier et al. 2014]. The Cauchy property (V.79) thus displays a uni-
versal character: the mean total length travelled by a walk within a finite
domain, if entering through its surface S, depends only on the geometrical
properties of the traversed domain, and not on the specific details of the
walk. Under the same conditions, we showed that the generalised Cauchy-
like formulae (IV.4) and (IV.6) for branching random walks also remain
valid for non-exponential transport. In fact the result is much stronger:
these properties admit a local formulation (Eq. (IV.105) and (IV.104)) valid
at any point of the considered domain [De Mulatier et al. 2014].

In the last chapter, we were interested in the issue of (asymmetric) Lévy
flights in a semi-open domain, in presence of absorbing boundaries. In
particular, we computed the persistence exponents ✓+ and ✓- for walk-
ers constrained to stay in the semi-positive or semi-negative axis, in the
one dimensional case. This exponent is not know yet in higher dimension.
Our main results concern the statistics of the walker positions in a semi-
bounded domain, i.e. the propagator of the walk. Far from the boundaries
this propagator has the same algebraic decay as the original jump distri-
bution: here we have computed with heuristic arguments and numerical
simulations the amplitude of this decay. This work was carried out for
one-dimensional cases, and in higher dimension when the domain is open
in the direction of the large jumps. The generalisation to other cases is still
in progress. This last result strongly relies on the property that the statistics
of Lévy flights are dominated by rare and large jumps [De Mulatier et al.
2013].

In general, concerning non-exponential transport, we propose two per-
spectives for future developments. First, assuming that neutron transport
in strongly heterogeneous and disordered media, such as pebble-bed re-
actors, can be modeled effectively by branching Lévy walks, how do we
estimate the stable exponent ↵ of the jumps distribution from experimental
data? Second, as one important aspect of this type of transport is the role
of quenched heterogeneities: are Lévy walks really a good model for these
systems? What is the propagator of the walk?

One of the interesting aspect of the work presented here is that prob-
lems are treated in the presence of boundaries. Indeed, even though real
systems are finite (confined geometries), most of previously existing results
concern infinite systems. The results derived along the thesis have led to
the publication of 6 peer-reviewed articles, and may apply more broadly to
physical and biological systems with diffusion, reproduction and death.
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1 ARBOGAST’S FORMULA [ARBOGAST 1800]
FAÀ DI BRUNO FORMULA [FAÀ DI BRUNO 1855]

Derivatives of compositions involving differentiable functions can be found
using the chain rule, (f � g(x))0 = (f0 � g)(x)g0(x). Higher derivatives of
such functions are given by Faà di Bruno’s formula [Pitman 2006].

The most well-known form of Faà di Bruno formula gives [Craik 2005]

@m

@sm
⇥
f � g(x)

⇤
=

mX
k=1

f(k) � g(x)Bm,k

h
g0(x), · · · ,g(m-k+1)(x)

i
, (A.1)

where Bm,k[x1, · · · , xm-k+1] are the Bell polynomials, defined as [Bell 1927;
Comtet 1974; Pitman 2006]:

Bm,k[x1, · · · , xm-k+1] =
X

i1+i2+···=k
i1+2 i2+···=m

m!
i1! i2! · · ·

⇣x1

1!

⌘i1
⇣x2

2!

⌘i2
· · · (A.2)

In particular, for all m > 1,8<: Bm,1[x1, · · · , xm-k+1] = xm

Bm,m[x1, · · · , xm-k+1] = xm
1

(A.3)

For the sake of simplicity of the notation, in the thesis, Bm,k[x1, · · · , xm-k+1]
is denoted by Bm,k[xi], where the index i implicitly include the all family
{xi}i, 16i6m-k+1.

Let us apply this formula to the calculation of the m-th derivative of the
composite functions needed in Sec. II.2.2.d. G � C⇤[Qt](s|r0, v0), evaluated
at s = 0:

@m

@sm


G � C⇤[Qt](s)

�

s=0
=

mX
k=1

G(k) � C⇤[Qt](0) (A.4)

⇥Bm,k

h
C⇤⇥Q0

t(0)
⇤
, · · · ,C⇤⇥Q(m-k+1)

t (0)
⇤i

,

C⇤ being a linear form (see Eq. (II.43)). By definition of the moment gen-
erating function Qt(s|r0, v0), the values of Qt(s|r0, v0) and its derivatives
evaluated at s = 0 for all point r0, v0 of the phase space are:

Lm(r0, v0, t) = (-1)m
@mQt(s|r0, v0)

@ sm

���
s=0

. (A.5)
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Furthermore, the multiple derivatives of generating function of the number
of descendants G(z) =

P
k pk z

k, evaluated at C⇤[Qt](0) = 1 are:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

G[1] =
X
i

pi = 1

G0[1] =
X
i

i pi = ⌫1

G(2)[1] =
X
i

i(i- 1)pi = ⌫2

· · ·

G(k)[1] =
X
i

i(i- 1) · · · (i- k+ 1)pi = ⌫k

(A.6)

where ⌫k are the falling factorial moment of the number of particles emitted
at a collision. Thus, Eq. (A.4) successively becomes

@m

@sm


G � C⇤[Qt](s)

�

s=0
=

mX
k=1

⌫kBm,k

h
- C⇤⇥L

⇤
, · · · , (-1)(m-k+1)C⇤⇥L(m-k+1)

⇤i
,

= (-1)m
mX
k=1

⌫kBm,k

h
C⇤⇥L

⇤
, · · · ,C⇤⇥L(m-k+1)

⇤i
,

where we used the property of the Bell polynomials, which can be seen on
Eq. (A.2), that, for any constant ↵:

Bm,k
⇥
↵ x1, · · · ,↵m-k+1 xm-k+1

⇤
= ↵mBm,k

⇥
x1, · · · , xm-k+1

⇤
.

Finally, using the simplified notation introduce above, we obtain

@m

@sm


G � C⇤[Qt](s)

�

s=0
= (-1)m

mX
k=1

⌫kBm,k

h
C⇤⇥Li

⇤i
. (A.7)

The same way, we can show that

@m

@sm


G � C⇤[Wt](s)

�

s=0
=

mX
k=1

⌫kBm,k

h
C⇤⇥h Ni

V i
⇤i

, (A.8)

where h Ni
V i is given by Eq. (II.68):

h Ni
V i(r0, v0, t) =

@iWt(r0, v0|s)

@ si

���
s=0

. (A.9)
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2 FLUCTUATIONS – ZERO DIMENSIONAL MODEL

c. without control

The calculations performed in this annex gives more details on the deriva-
tion of Sec. II.1.2. Consider a system of one single cell in which we initially
deposit N0 particles. At time t = 0 we let them start to randomly reproduce
and die following the Galton-Watson process described in Sec. I.1.2. Note
that in this problem, we are not interested in the diffusion process: either
particles are not allowed to diffuse, either we consider the whole cell as a
unique point. The number N of individuals in the cell is thus a random
variable, and we denote by P(N, t) the probability of observing exactly N
individuals at time t in the cell. Following the lines of [Houchmandzadeh
2009], we can show that this probability, for this zero dimensional model,
follows the master equation:

dP
dt

(N, t) = -P(N, t)

W-(N, t) +

X
k>1

W+
k (N, t)

�

| {z }
Losses

+ P(N+ 1, t)W-(N+ 1, t)| {z }
gain by death

+
N-1X
k=1

P(N- k, t)W+
k (N- k, t)| {z }

gain by birth

,

(A.10)

where, W-(N, t)dt is the probability that the population of N particles un-
dergoes one death during dt:

8N > 1, W-(N, t)dt = �0N(t)dt , (A.11)

and W+
k (N, t)dt is the probability that it earns k new particles during dt:

8N > 1, W+
k (N, t)dt = �k+1N(t)dt . (A.12)

Note that for this latter case, the population actually observes k+ 1 birth,
but earns only k new particles, as the incident particles is absorbed. For
instance, the probability that a population of size N > 1 earns one new
particle during dt is W+

1 (N, t)dt = �2N(t)dt. Replacing these expressions,
the master equation (A.10) for P(N, t) then becomes

dP
dt

(N, t) = -�NP(N, t) +
NX
i=0

�i (N+ 1 - i)P(N+ 1 - i, t) , (A.13)
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where we have used that �0 +
P

k>1 �k+1 = �- �1 and that

P(N+ 1, t)W-(N+ 1, t) +
N-1X
k=1

P(N- k, t)W+
k (N- k, t)

= �0(N+ 1)P(N+ 1, t) +
N-1X
k=1

�k+1(N- k)P(N- k, t)

=
NX
i=0

�i(N+ 1 - i)P(N+ 1 - i, t)- �1NP(N, t) ,

with the change of variable i = k+ 1 in the sum. Then, equations for the
various moments of N, can be extracted directly from the master equation,
using the definition hNki =

P
N>0 N

kP(N, t):

dhNki
dt

= -�hNk+1i+
X
i>0

�ih(N- 1 + i)kNi . (A.14)

Here as well we used a computational trick:

X
N>0

NX
i=0

�iN
k(N+ 1 - i)P(N+ 1 - i, t) =

X
i>0

�i
X
N>i

Nk(N+ 1 - i)P(N+ 1 - i, t)

=
X
i>0

�i
X
N0>1

(N0 - 1 + i)kN0 P(N0, t) ,

with a change of variable N0 = N+ 1 - i in the second sum.

In particular, for k = 1,

dhNi
dt

= �(⌫1 - 1)hNi , (A.15)

and for k = 2,

dhN2i
dt

= �
⇥
⌫2 - (⌫1 - 1)

⇤
hNi+ 2�(⌫1 - 1)hN2i . (A.16)

The variance of N, �2(t) = hN2i - hNi2 then verifies/follows the same
equation

d�2

dt
= �
⇥
⌫2 - (⌫1 - 1)

⇤
hNi+ 2�(⌫1 - 1)�2 , (A.17)
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and with the initial conditions hNi(0) = N0 and �2(0) = 0 (initially particles
are not correlated) we get8><>:

hNi(t) = N0 e�(⌫1-1) t

�2(t) =


�⌫2

�(⌫1 - 1)
- 1
� 

hNi2

N0
- hNi(t)

�
.

(A.18)
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3 APPENDIX FOR THE CAUCHY FORMULA

The numerator in Eq. (IV.96) can be rearrange as follows,

A =

Z1
0

ds t(s) s
Zs

0
drw(r)

=

Z1
0

ds t(s)
Zs

0
dx

Zs
0

drw(r)

=

Z1
0

dx
Z1
x

ds t(s)
Z1

0
drw(r)-

Z1
s

drw(r)

�

A = �

Z1
0

dxh(x)
Z1

0
drw(r)- �

Z1
0

dx
Z1
x

drw(r)

Zr
x

ds t(s) , (A.19)

where we used the definition of h(x) given in Eq. (IV.77). The same defini-
tion leads for the last integral

Rr
x ds t(s) = � [h(x)- h(r)], and for A:

A = �

Z1
0

dxh(x)
Zx

0
drw(r) + �

Z1
0

dx
Z1
x

drw(r)h(r) , (A.20)

= �

Z1
0

dxh(x)
Zx

0
drw(r) + �

Z1
0

dr rw(r)h(r) . (A.21)

Then, from the definition of w(r) in Eq. (IV.90), we getZx
0

drw(r) = 1 -

Z+1
x

dr
1

h c i

Z+1
r

f(c)dc ,

= 1 -
1

h c i

Z+1
x

dc f(c)
Zc
x

dr ,

= 1 -
1

h c i

Z+1
x

dc c f(c) + xw(x) ,Zx
0

drw(r) =
1

h c i

Zx
0
dc c f(c) + xw(x) . (A.22)

Finally using this last identity in Eq. (A.21) yields for the constant A of
Eq. (IV.96),

A = �


1

h c i

Z1
0

dr h(r)
Zr

0
dc c f(c) + 2

Z1
0

dr rw(r)h(r)

�
. (A.23)
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4 COMPUTATIONAL SAMPLING METHODS FOR RANDOM VARIABLES

In this short document, we give an insight into how to sample certain
types of random variables that can be useful from a computational point
of view. This document was originally written to go along with a small
C/C++ library, whose functions are now commented throughout this ap-
pendix. There are many ways of sampling random variables [Gobet 2013];
only direct sampling methods, using the cumulative distribution function
or Box-Muller like methods, will be presented here.

A.4.1 Random number generator in C/C++

In C/C++, the simplest generators are

- rand, with a period of 232 ⇠ 4.3e9:
rand() return a random integer uniformly distributed between 0 and

RAND_MAX

- drand48, with a period of 248 ⇠ 2.8e14:
drand48() return a random number, uniformly distributed over [0, 1].

The Mersenne Twister pseudorandom number generator is one of the most
widely used generator for Monte Carlo simulations in many fields. In C++,
its most commonly-used version (mt19937, of period (219937 - 1) ⇠ 1e6000)
is implemented in the library random since the C++11 standard.
These generators can be initialised using:

std::mt19937 gen; //only for mt19937

void initialise_generator()

{

int seed = (unsigned)time(NULL);

srand(seed); //for rand

srand48(seed); //for drand48

gen.seed(seed_val); //for mt19937

}

A.4.2 Few well-known pdf

a. Uniform distribution

We can define the function double rand_uni(double a=0, double b=1)

that return a random variable uniformly distributed over [a,b], thanks to
one of the generators above (for instance, with drand48):

double rand_uni(double a=0, double b=1)

{ return a + (b-a)*drand48(); }
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//For mt19937:

std::uniform_real_distribution<double> uni(0.,1.);

double rand_uni(double a=0, double b=1)

{ return a + (b-a)*uni(gen); }

b. Exponential distribution

Let x be an exponentially distributed random variable, its pdf is of the form:

p(x) =

�
⌃ e-⌃x , x > 0
0 , x < 0

(A.24)

where ⌃ = 1
E(x) is the parameter of the distribution (rate parameter). The

exponential distribution is supported on the interval [0,+1), and its cu-
mulative distribution function is

F(X) =

�
1 - e-⌃X , X > 0
0 , X < 0

(A.25)

This cumulative can be inverted easily, such that the sampling of an expo-
nentially distributed random variable E⌃, of parameter ⌃, is given by

E⌃ = F-1(U) = -
1
⌃

ln[U] . (A.26)

The following function double rand_exp(double) thus return an exponen-
tially distributed variable, whose parameter ⌃ is passed as argument (⌃ = 1
by default).

double rand_exp (double sigma = 1.)

{ return -log(rand_uni())/sigma; }

c. Normal or Gaussian distribution

The normal distribution is a continuous probability distribution of two pa-
rameters: its mean (or expectation), denoted µ, and its variance, noted �2.
The probability density of the normal distribution reads:

p(x) =
1p

2⇡�2
e
-
(x- µ)2

2�2 . (A.27)

A random variable x with a normal distribution is said to be normally dis-
tributed, and is noted: x ⇠ N(µ,�2). Let x be a normally distributed random
variable, and let us set z = (x- µ)/�. The random variable z is distributed
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with a standard normal distribution (µ = 0 and � = 1) (z is a standard normal
deviate):

p(z) =
1p
2⇡

e
-
z2

2 . (A.28)

Thus, a random variable X ⇠ N(µ,�2) can be given by X = µ+ �Z where
Z ⇠ N(0, 1). To sample Z from a standard normal distribution, a first idea
would be to use the cumulative distribution function (as for the exponential
distribution):

F(Z) =
1p
2⇡

Zy
-1 e-

y2
2 dy =

1p
⇡

Zy/p2

-1 e-z2
dz

F(Z) =
1
2


1 - erf

✓
Z

2

◆�
, where erf(x) =

2p
⇡

Zx
0

e-t2
dt (A.29)

is the error function. However, the inverse of this latter function is defined
in terms of a series expansion (Maclaurin series), which is not convenient
numerically. Several methods exist then to sample Z. A well-know one is
the Box-Muller method - Let X and Y be two independent standard normal
deviates. We have

p(X)dX p(Y)dY =
1

2⇡
e
-
X2 + Y2

2 dXdY

With the changes of variable X = r cos(✓) and Y = r sin(✓), and then s = r2

2 ,

p(X)dX p(Y)dY =

✓
1

2⇡
d✓
◆ ✓

r e
-
r2

2 dr
◆

=

✓
1

2⇡
d✓
◆ ✓

e-s ds
◆

, (A.30)

where s and ✓ are two independent random variables: ✓ is uniformly dis-
tributed over [0, 2⇡] and s is exponentially distributed, with a rate param-
eter ⌃ = 1. Thus, X and Y can be obtained thanks to:�

X =
p

2E1 cos(2⇡U1) =
p
-2 ln(U2) cos(2⇡U1)

Y =
p

2E1 sin(2⇡U1) =
p
-2 ln(U2) sin(2⇡U1)

(A.31)

The sampling of a standard deviate can be thus given by the function

double rand_Gauss (double mu=0., double sigma=1.)

{

return mu + sigma * sqrt(2*rand_exp())*cos(rand_uni(0,2*M_PI));

}

that takes in argument the mean µ and the standard deviation �. By default
µ = 0 and � = 1.
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A.4.3 Stable distributions

Stable distributions (or↵-stable distributions) were first introduced by Lévy
[1925]. They are fully described by four parameters: an index of stability
↵ 2 (0, 2], a skewness parameter � 2 [-1, 1], a scale parameter c > 0 and
location parameter µ 2 R [Borak et al. 2005].

A symmetric distribution has a parameter � = 0; the asymmetry of a
distribution increases with |�|. A stability index ↵ = 2, corresponds to the
Gaussian distribution with a variance �2 = 2 c2. For ↵ < 2, the variance
of the distribution is undefined. The tail exhibit a power-law behaviour,
becoming asymptotically equivalent to a Pareto law (see Sec. A.4.4):

p(x) ⇠

8>>><>>>:
C (1 +�)

x↵+1 , for x ! +1
C (1 -�)

|x|↵+1 , for x ! -1 (A.32)

where C is an amplitude parameter that can be express in terms of ↵ and c:

C =
c↵ sin(↵⇡/2) �(↵+ 1)

⇡
(A.33)

This can be shown from the generalised central limit theorem. For ↵ 2
(1, 2], the parameter µ corresponds to the mean of the distribution, whereas
the mean is undefined for ↵ 6 1.

Let X be a ↵-stable random variable of parameter ↵, c, � and µ, it is
denoted X ⇠ S↵(c,�,µ). The most popular parameterisation of the char-
acteristic function of X is given by [Samoradnitsky and Taqqu 1994; Weron
1996]:

 (t) = exp [itµ- |ct|↵(1 - i� sgn(t) �)] (A.34)

with � =

�
tan(⇡↵2 ) , if↵ 6= 1

- 2
⇡ ln |t| , if↵ = 1

The complexity of the sampling of an ↵ stable random variable is due
to the absence of direct analytical expression for stable distributions. In
most cases, there exist no analytical expression for F-1. In some particular
cases, however, it is possible to write the cumulative F and obtain a simple
analytical expression for F-1, such as for the Cauchy Law S1(c, 0,µ), or the
Lévy law S1/2(c, 1,µ).
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a. Cauchy distribution, X ⇠ S1(c,� = 0,µ)

The Cauchy distribution, also known as Lorentz distribution in physics, is
fully characterised by two parameters, a location parameter µ and a scale
parameter c > 0, and is given by:

p(x;µ, c) =
1

⇡c
⇣

1 + (x-µ)2

c2

⌘ (A.35)

This distribution is symmetric (� = 0) centered around µ, and as ↵ = 1,
it admits neither a variance nor a mean. Note that a random variable that
is the ratio of two independent standard deviates follows a Cauchy dis-
tribution. The cumulative distribution function of the standard Cauchy
distribution is:

F(X) =
1
⇡

arctan(X) +
1
2

. (A.36)

The sampling of X ⇠ S↵=1(c,� = 0,µ) can thus be obtained thanks to the
inverse function F-1:

X = µ+ c F-1(U) = µ+ c tan

⇡

✓
U-

1
2

◆�
. (A.37)

The sampling of a random variable distributed according to a Cauchy dis-
tribution is given by:

double rand_Cauchy(double mu=0., double c=1.)

{ return mu+c*tan(M_PI*(rand_uni()-0.5)); }

By default the function return a standard random variable (µ = 0, c = 1).

b. The Lévy distribution X ⇠ S1/2(c,� = 1,µ) (or Levy(µ, c))

The lévy distribution was named after the mathematicien Paul Lévy. It is
an asymmetric stable distribution of parameters ↵ = 1/2 and � = 1. The
distribution is thus fully described with 2 parameters: the location param-
eter µ 2 R and the scale parameter c > 0:

p(x;µ, c) =

8><>:
r

c

2⇡
1

(x- µ)3/2 exp
✓
-

c

2(x- µ)

◆
si x > µ

0 else
(A.38)
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The cumulative distribution function of the standard Lévy distribution is

F(X) =

ZX
0

1p
2⇡ x3/2

e
-

1
2 x dx

= -2
ZY
+1

1p
2⇡

e-y2/2dy o y =
1p
x

= erfc
✓

1p
2X

◆
avec erfc(X) = 1 - erf(X) (A.39)

As for the Gaussian distribution, we can not use the inverse function F-1 to
sample X. However, comparing the two cumulative distribution in Eq. (A.39)
and in Eq. (A.29) (Gaussian distribution), we can see that, if Y is a standard
deviate Y ⇠ N(0, 1), then the random variable Y-2 is distributed according
to a standard Lévy distribution, Y-2 ⇠ Levy(0, 1) . We thus finally obtain a
simple method to sample Levy(µ, c) :

Y=rand_Gauss(); return mu+c/(Y*Y);

which we will rather write

double rand_Levy(double mu=0., double c=1.)

{

double co=1./cos(2*M_PI*rand_uni());

return mu+0.5*c*co*co/rand_exp();

}

to not lose in efficiency by taking the square (Y*Y) of the square root that
inside the rand_Gauss function.

c. Lois stables, X ⇠ S↵(c,�,µ)

Note that any random variable distributed according to a stable distribu-
tion can be written in term of a random variable distributed according to a
standard stable distribution, S↵(1,�, 0), noted S↵(�) :

S↵(c,�,µ) ⇠

8<:µ+ c S↵(�), if ↵ 6= 1

µ+ c S↵(�) +
2
⇡
� c ln(c), if ↵ = 1

(A.40)

The algorithm to sample a standard random variable X ⇠ S↵(�) is based
on the method of Chambers, Mallows, and Stuck [Chambers et al. 1976] and
is proposed in [Weron 1996]:

1. Generate two independent random variable: one V uniformly distributed
on
h
-
⇡

2
,
⇡

2

i
, and an exponential random random variable E with mean 1.
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2. For ↵ 6= 1, compute

X = S
sin[↵(V +B)]

cos(V)1/↵


cos[V -↵(V +B)]

E

�(1-↵)/↵

(A.41)

where 8><>:
B =

arctan(� tan ⇡↵
2 )

↵

S =
h
1 +�2 tan2

⇣⇡↵
2

⌘i1/(2↵)
(A.42)

For ↵ = 1, compute

X =
2
⇡

⇣⇡
2
+�V

⌘
tanV -� ln

✓ ⇡
2 E cosV
⇡
2 +�V

◆�
(A.43)

This algorithm gives, on a C code, for ↵ = 1:

double rand_alpha1(double c=1, double beta=0, double mu=0)

//Cauchy law by default

{

double V=M_PI*(rand_uni()-0.5);

double E=rand_exp();

const double Pi_2=M_PI/2.;

double X = ((Pi_2+beta*V)*tan(V)

- beta*log((Pi_2*E*cos(V))/(Pi_2+beta*V)) )/Pi_2;

return mu + c*X + beta*c*log(c)/Pi_2;

}

and for the case ↵ 6= 1 :

double rand_alpha(double alpha=0.5, double c=1., double beta=1.,

double mu=0.)

//loi de Levy par defaut

{

double V=M_PI*(rand_uni()-0.5);

double E=rand_exp();

double alpha_=1./alpha;

double tana=tan(M_PI*alpha/2.);

double B = alpha_*atan(beta*tana);

double S = pow(1+beta*beta*tana*tana, alpha_/2.);

double X = S * sin(alpha*(V+B))/pow(cos(V), alpha_)
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* pow(cos(V-alpha*(V+B))/E , alpha_ -1 );

return mu + c*X;

}

In the cases (↵ = 1, � = 0) and (↵ = 1/2, � = 1), we recover respectively
the algorithm for the Cauchy law and the Lévy law.

A.4.4 Other fat-tailed distributions, Pareto distribution

The Pareto distribution is an asymmetric distribution with a power-law tail:
(for µ = 0)

p(x) =

8><>:
C

x↵+1 , if x > b

0 , elsewhere .
(A.44)

where the parameter b is given by normalisation of p(x). As for ↵-stable
laws, the Pareto law admits a mean value for ↵ > 1 and a variance for
↵ > 2. ↵ is the stability index, and C an amplitude parameter.

double rand_Pareto_b1(double alpha = 1.5, double c = 1.)

{ return pow(c/(alpha*rand_uni()), 1./alpha); }

This law can be generalised for different values of asymmetry:

p(x) =

8>>>>>><>>>>>>:

C (1 +�)

x↵+1 , if x > b+

C (1 -�)

x↵+1 , if x 6 b-

0 , elsewhere ,

(A.45)

where the parameter b+ and b- are given by normalisation of p(x), and by
setting a location parameter µ. The parameter � is a skewness parameter
and C is an amplitude parameter. The sampling of random variable dis-
tributed according to a Pareto law with parameters ↵, C, �, and µ can be
computed with the function:

double rand_Pareto(double alpha=1.5, double c=1., double beta=0.,

double mu=0.)

// valid only for alpha > 1

{

double g = (1.+beta)/(1.-beta); //skewness

//double beta = (g-1.)/(1+g);
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double b_alpha = c1 * (1+pow(g, (1./(1.-alpha))) ) / alpha;

double a_alpha = (b_alpha*g*c1) /(alpha*b_alpha - c1);

double A = c / (alpha * a_alpha);

double B = c1/g / (alpha * b_alpha);

double U = rand_uniform(-B, A);

if (U < 0){

double xi_ = 1./rand_uniform(0.,1./b_alpha);

return mu - pow(xi_, 1./alpha);

}

else {

double xi_ = 1./rand_uniform(0.,1./a_alpha);

return mu + pow(xi_, 1./alpha);

}

}

A.4.5 Example and numerical simulations

Landau distribution, S↵=1(c,� = 1,µ) of characteristic function

'(x;µ, c) = exp
h
itµ- |c t|(1 + 2i

⇡ log(|t|)
i

(A.46)

is the stable law with parameters ↵ = 1 and � = 1.

double rand_Landau(double c=1, double mu=0)

{

const double Pi_2=M_PI/2.;

double V=rand_uni(-Pi_2,Pi_2);

double E=rand_exp();

double X = ((Pi_2+V)*tan(V) - log((Pi_2*E*cos(V))/(Pi_2+V)) )/Pi_2;

return c*X+c*log(c)/Pi_2 + mu;

}

In Fig. A.1, we compare the right tail of a Landau distribution (in red) of
parameters c = 1 and µ = 0:

rand_Landau();

to the tail of a Pareto distribution (in green) of parameters ↵ = 1, C =
2 ⇤ c/⇡, � = 1 and µ = 0:

double c=1.;

rand_Pareto_b1(1., 2*c/pi);
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The figure also exhibit the theoretical curve for the Pareto distribution (in
blue):

p(x) =

8><>:
2 c/⇡
x2 , if x > b = 2 c

0 , otherwise .
(A.47)

The log-log scale curves on the right panel show that the two distributions
have the same asymptotic behaviour on +1.
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Figure A.1: Numerical simulation of a Landau distribution (blue) vs a
Pareto distribution (green). The blue curve corresponds to
the theoretical Pareto distribution Eq. (A.47). Log-log scale
on the right panel.
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5 COMPUTATIONAL METHOD FOR SIMULATING BRANCHING RANDOM
WALKS

A.5.1 General algorithm

Branching random walks can be followed in generation n or in time t. Start-
ing with one particle in the system, we still may have to follow more than
one particle at a time. The main difficulty in simulating this type of walks is
to find a way to deal with the fluctuating number of particles in the system.
To tackle this problem with a simple program, the easiest way is to use a list
containing the current particles and to follow particles in generation. For
the sake of simplicity, I will discuss here an example in one dimension. The
generalisation of the full code in higher dimension can be then obtained by
generalising each jump in higher dimension.

Let us first define a structure for each particle,

struct particle_

{

int n; //generation n>=0

double t; //time of the last collision

double x; //coordinate x of the last collision in V

int w; //direction = +1 or -1

double v; //current speed (may change at each collision)

};

typedef struct particle_ particle;

and then a function that will transport a particle exiting a collision to its
next collision point (taking as argument a pointer to particle):

void diffuse(particle *M)

{

(*M).n ++; //generation +1

(*M).w = direction1D((*M).w); //change direction

double l=jump();

(*M).x += (*M).w*l; //position of the next collision

(*M).t += l/(*M).v; //time at the next collision

//change the speed if needed

}

where doublejump() is a function that gives the random length of a jump
for the considered random walk (see Appendix 4 concerning the generation
of random variables), and int direction1D(int) returns the new direction
of the particle after the collision (isotropically distributed or not).
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To take into account the fluctuations of the number of particles in the
system and follow simultaneously several particles, the simplest way is to
store every particles at each generation in a list, using for instance the list

class provided by the C++ STL.

Let us write the main transport:
Initialisation – we start with one particle M0 in the list

particle M0={0, 0, x0, w0, v0}; //1st particle at n=0

list<particle> li; //contains particles of the current generation

For the need of the loop, we introduce a list buffer, where we store the
particles that stay alive from one generation to the next:

list<particle> li_buffer; //buffer

li_buffer.push_back(M0); //starts with the initial particle

Loop – the loop is taken over the generations and runs while there are
still particles in the buffer. To be sure that the loop will stop, we impose a
maximum generation nmax (or a maximum time tmax). The algorithm for
the loop is the following:

�! empty the buffer li_buffer in the list li of current particles;
�! for each particle of li:

– with probability p1: //transport
– transport the particle until the next collision
– if the new position is still in V and the generation n<nmax,
add the particle to the buffer

– with probability pk: //branching
– create k copies of the particle
– for each copy:

– transport the particle until the next collision
– if the new position is still in V and the generation n<nmax,
add the particle to the buffer

– with probability p0, do nothing //absorption

For transport in a finite domain V , after transporting each particle, we
check if the particle is still in the considered volume. To follow the particle
in time, we keep particles in the loop as long as their current time t < tmax.

Example for a binary branching (p0, p1, p2):

//variables

particle M;

bool V;

double dummy;

list<particle>::const_iterator l_head;

//loops
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while (!li_buffer.empty()) {

li_buffer.swap(li);//exchange li_buffer and li

for(l_head=li.begin(); l_head!=li.end(); ++l_head)

//for each element of li

{

M=*l_head;

dummy=drand48();

if (dummy < p_1) { //transport

V=transport(&M);

if (V && M_act.t < tmax )

{ li_buffer.push_back(M_act); }

}

else if (dummy < p_1+p_2){ //branching

M2 = M;

V=transport(&M);

if (V && M_act.t < tmax )

{ li_buffer.push_back(M); }

V=transport(&M2);

if (V && M_act2.t < tmax )

{ li_buffer.push_back(M2); }

}

}

li.clear();

}

where the functions bool transport(particle* M) transports the particle
M to its next collision (calling the function void diffuse(particle *M)),
records the interesting quantity (see the following section), and returns a
Boolean variable, true if the particle is still within the finite domain V ,
false otherwise.

A.5.2 Details for each simulation

a. Travelled length and number of collisions

Any quantity of interest is then recorded during this loop. For instance, in
Sec. II.3.1 and Chapter IV, we compute the total length travelled by M0 and
all its descendants until a certain time (or generation), or the total number
of collisions encountered by these particles. For Sec. II.3.1, a first average
of these quantities is obtained by averaging over the different realisations
of the system (starting with the same initial particle M0). In Chapter IV, the
average is also taken over the possible positions and directions taken by
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the initial particles. Using this algorithm it is then possible to compute any
moment of the total length travelled by particles, or the total number of
collisions undergone in a finite domain V .

b. Clustering and pair correlation function

Free systems – Concerning the clustering of neutrons discussed in Chap-
ter III, the pair correlation function corresponds exactly to the histogram of
the distances between each pair of particles in the system at a given time
t. Thus, to simulate numerically the pair correlation functions appearing
in the different figures of Chapter III, we start with an initial number N0
of particles in the list of particles li_buffer, and, using the previous algo-
rithm, we let the system evolve up to a time t (loop); we finally compute
the inter-particle distance histogram, which gives the pair correlation func-
tion g(x, y, t) at time t.

Controlled systems – Adding the control, we further need to implement the
control procedure described in Sec. III.3.1. In the previous algorithm, every
time we copy one particle in the system we must now kill another particle
of the system. As the number of particles in the system is now constant
(always equal to N0), an array will be now more convenient than a list to
store the N0 particles. Furthermore there is now a faster way to simulate
this system up to a time t. Indeed, one particle gives rise to k- 1 new par-
ticles (and k- 1 other particles are killed) with a rate �k, so that we obtain
the following algorithm: with a rate N0�k one of the N0 particles is ran-
domly chosen; k- 1 other randomly chosen particles are then replaced by
a copy of this particle. Between two events of this type, particles evolve
as Brownian particles. We then let the system evolve up to a time t, and
compute the pair correlation function (inter-particle distance histogram).
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Résumé : L’un des principaux objectifs de la

physique des réacteurs nucléaires est de

caractériser la répartition aléatoire de la

population de neutrons au sein d’un réacteur.

Les fluctuations de cette population sont liées à

la nature stochastique des intéractions des

neutrons avec les noyaux fissiles du milieu :

diffusion, capture stérile, ou encore émission de

plusieurs neutrons lors de la fission d’un noyau.

L’ensemble de ces mécanismes physiques

confère une structure aléatoire branchante à la

trajectoire des neutrons, alors modélisée par des

marches aléatoires. Avec environs 108 neutrons

par centimètre cube dans un réacteur de type

REP à pleine puissance en conditions

stationnaires, les grandeurs physiques du

système (flux, taux de réaction, énergie déposée)

sont, en première approximation, bien

représentées par leurs valeurs moyennes

respectives. Ces observables physiques

moyennes obéissent alors à l’équation de

transport linéaire de Boltzmann.

          

Au cours de ma thèse, je me suis penchée sur deux

aspects du transport qui ne sont pas décrits par cette

équation, et pour lesquels je me suis appuyée sur des

outils issus de la théorie des marches aléatoires. Tout

d’abord, grâce au formalisme de Feynman-Kac, j’ai

étudié les fluctuations statistiques de la population

de neutrons, et plus particulièrement le phénomène

de « clustering neutronique », qui a été mis en

évidence numériquement pour de faibles densités de

neutrons (typiquement un réacteur au démarrage). Je

me suis ensuite intéressée à différentes propriétés de

la statistique d’occupation des neutrons effectuant

un transport anormal (càd non-exponentiel). Ce type

de transport permet de modéliser le transport dans

des matér iaux for tement hé té rogènes e t

désordonnés, tel que les réacteurs à lit de boulets.

L’un des aspects novateurs de ce travail est la prise

en compte de la présence de bords. En effet, bien

que les systèmes réels soient de taille finie, la

plupart des résultats théoriques pré-existants sur ces

thématiques ont été obtenus sur des systèmes de

taille infinie.
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Title : A random walk approach to stochastic neutron transport
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Abstract : One of the key goals of nuclear reactor

physics is to determine the distribution of the

neutron population within a reactor core. This

population indeed fluctuates due to the stochastic

nature of the interactions of the neutrons with the

nuclei of the surrounding medium: scattering,

emission of neutrons from fission events and

capture by nuclear absorption. Due to these

physical mechanisms, the stochastic process

performed by neutrons is a branching random

walk. For most applications, the neutron

population considered

is very large, and all physical observables related

to its behaviour, such as the heat production due to

fissions, are well characterised by their average

values. Generally, these mean quantities are

governed by the classical neutron transport

equation, called linear Boltzmann equation.

During my PhD, using tools from branching

random walks and anomalous diffusion, I have

tackled two aspects of neutron transport that cannot

be approached by the linear Boltzmann equation.

First, thanks to the Feynman-Kac backward

formalism, I have characterised the phenomenon of

“neutron clustering” that has been highlighted for

low-density configuration of neutrons and results

from strong fluctuations

in space and time of the neutron population. Then, I

focused on several properties of anomalous (non-

exponential) transport, that can model neutron

transport in strongly heterogeneous and disordered

media, such as pebble-bed reactors. One of the

novel aspects of this work is that problems are

treated in the presence of boundaries. Indeed, even

though real systems are finite (confined

geometries), most of previously existing results

were obtained for infinite systems.
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