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Résumé

Une tendance importante dans le domaine de l’embarqué est l’intégration 

de plus en plus d’éléments de calcul dans les systèmes multiprocesseurs 

sur puce (MPSoC). Cette tendance est due en partie aux limitations des 

puissances individuelles de ces éléments causées par des considérations 

de consommation d’énergie. Dans le même temps, en raison de leur 

sophistication croissante, les applications de traitement du signal ont 

des besoins en puissance de calcul de plus en plus dynamique. Dans 

la conception et le développement d’applications de traitement de signal 

multicoeur, l’un des principaux déis consiste à répartir eficacement les 

différentes tâches sur les éléments de calcul disponibles, tout en tenant

compte des changements dynamiques des fonctionnalités de l’application 

et des ressources disponibles. Une utilisation ineficace peut conduire à une 

durée de traitement plus longue et/ou une consommation d’énergie plus 

élevée, ce qui fait de la répartition des tâches sur un système multicoeur 

une tâche dificile à résoudre.

Les modèles de calcul (MoC) lux de données sont communément utilisés 

dans la conception de systèmes de traitement du signal. Ils décomposent la 

fonctionnalité de l’application en acteurs qui communiquent exclusivement 

par l’intermédiaire de canaux. L’interconnexion des acteurs et des canaux 

de communication est modélisée et manipulée comme un graphe orienté, 

appelé un graphique de lux de données. Il existe différents MoCs de 

lux de données qui offrent différents compromis entre la prédictibilité et 

l’expressivité. Ces modèles de calculs sont communément utilisés dans 

la conception de systèmes de traitement du signal en raison de leur 

analysabilité et leur expressivité naturelle du parallélisme de l’application.

Dans cette thèse, une nouvelle méthode de répartition de tâches est 

proposée ain de répondre au déi que propose la programmation 

multicoeur. Cette méthode de répartition de tâches prend ses décisions en 

temps réel ain d’optimiser le temps d’exécution global de l’application. Les 

applications sont décrites en utilisant le modèle paramétrée et interfacé 

lux de données (PiSDF). Ce modèle permet de décrire une application 

paramétrée en autorisant des changements dans ses besoins en 

ressources de calcul lors de l’exécution. A chaque exécution, le modèle de 

lux de données paramétré est déroulé en un modèle intermédiaire faisant 

apparaitre toute les tâches de l’application ainsi que leurs dépendances. 

Ce modèle est ensuite utilisé pour répartir eficacement les tâches de 

l’application. La méthode proposé a été testée et validé sur plusieurs 

applications des domaines de la vision par ordinateur, du traitement du 

signal et du multimédia.

Abstract

An important trend in embedded processing is the integration of 

increasingly more processing elements into Multiprocessor Systems-

on-Chip (MPSoC). This trend is due in part to limitations in processing 

power of individual elements that are caused by power consumption 

considerations. At the same time, signal processing applications are 

becoming increasingly dynamic in terms of their hardware resource 

requirements due to the growing sophistication of algorithms to reach 

higher levels of performance. In design and implementation of multicore 

signal processing systems, one of the main challenges is to dispatch 

computational tasks eficiently onto the available processing elements 

while taking into account dynamic changes in application functionality and 

resource requirements. An ineficient use can lead to longer processing

times and higher energy consumption, making multicore task scheduling 

a very dificult problem to solve. 

Datalow process network Models of Computation (MoCs) are widely 

used in design of signal processing systems. It decomposes application 

functionality into actors that communicate data exclusively through 

channels. The interconnection of actors and communication channels is 

modeled and manipulated as a directed graph, called a datalow graph. 

There are different datalow MoCs which offer different trade-off between 

predictability and expressiveness. These MoCs are widely used in design 

of signal processing systems

due to their analyzability and their natural parallel expressivity. 

In this thesis, we propose a novel scheduling method to address multicore 

scheduling challenge. This scheduling method determines scheduling 

decisions strategically at runtime to optimize the overall execution time 

of applications onto heterogeneous multicore processing resources. 

Applications are described using the Parameterized and Interfaced

Synchronous DataFlow (PiSDF) MoC. The PiSDF model allows describing 

parameterized application, making possible changes in application’s 

resource requirement at runtime. At each execution, the parameterized 

datalow is then transformed into a locally static one used to eficiently 

schedule the application with an a priori knowledge of its behavior. 

The proposed scheduling method have been tested and benchmarked 

on multiple state-of-the-art applications from computer vision, signal 

processing and multimedia domains.
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CHAPTER 1

Introduction

1.1 General Context

The recent evolution of embedded systems have resulted in the most remarkable technolog-
ical advances. From the highly complex, cutting edge, engine controller of an FIA Formula
One car to a basic pedometer that counts each step of a pedestrian, embedded systems
can be found almost everywhere in the society of the early 21th century. A human heart,
the most vital organ, may now be replaced with a machine [Car]. An embedded system
is an integrated electronic and computing system designed for a specific purpose. Mobile
phones, tablets, contactless credit cards, internet-connected watches and even domestic
drones are just some of the innumerable modern devices containing one or more embedded
systems.

1.1.1 Embedded Systems Constraints

A major specificity of the embedded systems design process is that the development is
constrained by one or more precise requirements. These constraints can stem from various
sources.

Firstly, certain constraints result directly from the application. The reaction time of
an airbag in a car, the decoding rate of a music player or even the power consumption of
a space probe are examples of constraints that may apply to an embedded system.

Constraints are also introduced by the economic environment. Spending years of de-
velopment, to embed the most expensive cutting edge electronic devices which require
frequent software updates may not be necessary for a garage door opener.

Finally, the physical environment may introduce further constraints for an embedded
device. These constraints are not related to the application but must be respected in order
to execute in a sustainable and safe manner. The high pressure experienced by a deep
ocean device or the faults caused by solar radiation received by space probe are examples
of environmental constraints.

These diverse constraints are often contradictory, or at least hard to satisfy simultane-
ously. As a consequence, there are trade-offs during the embedded device design process.
For example, reducing the operating frequency of a chip may reduce its performance but
it will also lower its power consumption.
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1.1.2 Designing an Embedded Systems

The design process for an embedded device is often divided into two parts: hardware and
software design.

The primary objective of hardware design is to adapt the computing resources of the
system to the application and environment. Sensors, actuators or user interfaces are some
of the many features that may be necessary in an embedded system. The hardware por-
tion also provides services required by the computing device for system operation. Clock
generation, power supply and (large) external memory are examples of services that the
hardware provides to the software. The major objective of the hardware development is
to integrate these components and services so that they operate as a system; this is often
referred to as the hardware architecture of the system.

The computing resources of a system are designated as Processing Elements (PEs). A
PE is a programmable device that can perform a function for the system. PEs can belong
to different categories: from low-power micro-controllers to highly computational intensive
General Purpose Processors (GPPs) and/or Digital Signal Processors (DSPs). Currently,
embedded systems may integrate many PEs thus creating a Multiprocessor System-on-
Chip (MPSoC). If the PEs are of different types, the system is a heterogeneous MPSoC
(GPPs, DSPs and application specific accelerators).

The complement of hardware is the program running over the different PEs and is
referred as the software portion of the embedded system. A software program is a list
of instructions that are executed by a PE. These instructions are stored in a dedicated
memory and are processed sequentially by each PE. These instructions are written using
a machine language that may differ for each PE.

Currently, software programmers generally do not program PEs using assembly lan-
guage but use instead a higher level language. Java, Fortran, C/C++ and their derivatives
are all examples of common higher level programming languages. These higher level lan-
guages are then converted to machine language using dedicated, PE-dependent compilers.

The development of each of the hardware and software portions are tightly coupled and
a choice made in one of the two portions often imposes design choices on the other.

1.1.3 Embedded Parallel Systems

In 1965, Moore predicted that the number of transistors in an integrated circuit would
double every two years [Moo65]. Despite the fact that the present evolution is slowing down,
this prediction has held true since it was made, making computing devices increasingly more
complex with the passage of time.

For many years, computer systems have been subject of the so-called megahertz myth
[meg]. This is the idea that a faster clock rate produces faster computing task execution.
This myth was maintained by chip manufacturer for decades until the power dissipation
needs of chips increased dramatically. Thus, starting in the first decade of the 21st cen-
tury, the integration of higher numbers of PEs into MPSoC became the new solution to
continuously increase the processing power of devices.

Currently, a new research field is developing a dramatic importance: parallel program-
ming techniques. Since increasingly more PEs are integrating in systems, it has become
vital to invent methods to dispatch computation and synchronize PEs automatically. New
programming techniques have emerged to allow programmers to handle multiple PE sys-
tems more easily. One of these is dataflow programming.
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1.1.4 Dataflow Programming

Dataflow Models of Computation (MoCs) have been designed to represent the parallelism
of applications. Applications are described using computational blocks which exchange
data using directed communication channels. A major advantage of dataflow MoCs is the
possibility of using legacy code to express the behavior of computational blocks. The first
dataflow MoC in literature was introduced by Kahn [Kah74].

Since then, many dataflow MoCs have emerged in literature that extend, assure the
behavior of certain properties or add features to the original model. Some of these models
target the possibility that MoCs could include dynamic changes in the application descrip-
tion. These dynamic changes provide mechanisms to add or remove computational tasks at
runtime. Since the MoC is capable of detecting these changes, this permit better decisions
to be made for multiprocessor programming.

1.2 Contributions of the Thesis

This thesis studies programming techniques for embedded multicore devices. The starting
point is a dataflow model, used to represent applications and to efficiently dispatch them
onto embedded multicore devices. The dataflow MoC employed is called Parameterized
and Interfaced Synchronous Dataflow (SDF) (PiSDF) [DPN+13].

This dataflow MoC provides reconfigurable features allowing the adaptation of an appli-
cation to modify parameters. These parameters trigger dynamic changes in the application
execution structure that are processed at runtime.

Within this framework, a novel runtime software has been developed that performs the
efficient scheduling of PiSDF applications onto embedded multicore devices. The contri-
butions of this thesis are listed below:

• The introduction of a novel multicore scheduling method to unveil parallelism of a
PiSDF application and to dispatch different tasks onto the targeted platform. This
method is called Just-In-Time Multicore Scheduling (JIT-MS).

• Certain improvements on the previously defined JIT-MS method have been intro-
duced. These enhancements comprise a PiSDF MoC extension, optimizations of the
intermediate graph used in several multicore scheduling methods and a novel dispatch
algorithm employed for massively multicore devices.

• A novel runtime software called Synchronous Parameterized Interfaced Dataflow Em-
bedded Runtime (Spider) is introduced. Spider performs the JIT-MS method at
runtime and exploits the parallelism of PiSDF applications. Spider targets hetero-
geneous multicore platforms and can be easily adapted to several platforms.

• A case study of two state-of-the-art computer-vision and signal processing applica-
tions on a physical multicore heterogeneous device is presented. This case study uses
Spider and also discusses an application representation in PiSDF.

All contributions have been developed as part of a scientific collaboration between the
IETR, and Texas Instrument France, and within the ANR COMPA project.

1.3 Outline

This thesis is organized in two parts: Part I presents the background and concepts studied
in this thesis, and Part II introduces and evaluates the contributions of the thesis.
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In Part I, Chapter 2 details the embedded parallel platform landscape. Then Chapter 3
defines the concept of a dataflow MoC and presents the PiSDF dataflow MoC that is the
starting point of this thesis.

In Part II, the JIT-MS method is presented in Chapter 4. Chapter 5 then explores
methods to improve the JIT-MS method. In Chapter 6, a PiSDF-based runtime called
Spider is introduced; this runtime embeds the JIT-MS method. Chapter 7 proposes a
benchmark of JIT-MS and Spider, in addition to a case study of two state-of-the-art
computer-vision and signal processing applications.

Finally, Chapter 8 concludes this thesis and proposes potential future research direc-
tions.
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CHAPTER 2

Embedded Parallel Platforms

2.1 Introduction

As discussed in the previous chapter, an embedded system is a computer system with a
dedicated function within a larger mechanical or electrical system, often with real-time
computing constraints [Emb]. The first modern embedded system is often regarded as the
Apollo Guidance Computer used in the NASA Apollo missions. This system was embedded
in command and lunar modules of the Apollo program. It was used for guidance, navigation
and control of modules. This embedded computer was designed during the 1960’s by
Charles Stark Draper from the MIT Instrumentation Laboratory.

Embedded systems are now widely spread in common items used daily. And this trend
will undoubtedly increase in the coming decades. According the Gartner 2014 Hype Cycle
[RVdM14], the Internet of Things (IoT) will become an important technology in the next
decade. The predictions for the future of IoT consists of many devices per person, each
connecting to Internet. These devices will be small embedded systems included in a larger
system, which may itself be embedded in a larger system.

However, due to the physical limitations of current semiconductor technology frequency
improvements in processors are finite. For the rise of computational power of computer
systems to continue, hardware designers must integrate more Processing Elements (PEs)
into increasingly complex designs. New programming tools, compilers and frameworks are
also released to design efficiently these increasingly complex systems. These new programs
are necessary, but software developers then have the additional challenge to learn the new
programming environments.

In this chapter, the overview of embedded systems will be described in Section 2.2.
Currently available programming techniques will be subsequently in Section 2.3. The
limitations of these programming techniques will be highlighted, to illustrate the need for
new programming approaches.
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2.2 Parallel Embedded System architecture

2.2.1 What is an parallel embedded system ?

According to Steve Heath in [Hea02], an embedded system is a microprocessor-based system
designed to control one or more predefined functions. Unlike personal computers which
are designed for a wide range of applications, an embedded system is designed for a very
specific application. Embedded systems usually have several constraints to satisfy, such as
high computing performance, low power and hard real-time deadlines.

A parallel embedded platform is generally characterized by the several computing ele-
ments runnning simultaneously and also by the way in which they are connected to each
other.

SISD

SIMD

MISD

MIMD

Instruction

Data

Result

Figure 2.1 – The four categories of Flynn’s taxonomy

These elements can be tightly coupled together or not tightly coupled. Flynn described
a taxonomy to categorize computing systems in [Fly72]. He classifies systems into four
categories by their instruction and data streams; these categories are represented in Fig-
ure 2.1:

• Single Instruction, Single Data (SISD) represents conventional sequential plat-
forms. A single stream of instructions is applied to a single stream of data resulting
in one stream of results.

• Single Instruction, Multiple Data (SIMD) represents platforms that can exe-
cute the same instruction stream on multiple data streams. SIMD instructions are
used increasingly in computationally intensive and repetitive domains. The majority
of modern Digital Signal Processors (DSPs) and Graphics Processing Units (GPUs)
are defined by this feature.

• Multiple Instructions, Single Data (MISD) represents platforms that simulta-
neously execute different instruction streams on the same data stream. This com-
puter architecture is not common. Systolic arrays described by Kung et al. [KL79]
are among the few systems using this pattern. Matrix multiplication is one of the
suitable applications of these systems cited by Kung et al.
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• Multiple Instructions, Multiple Data (MIMD) represents the majority of
the multicore platforms. Multiple instruction streams are applied on distinct data
streams simultaneously. This includes superscalar cores.

By definition, the last 3 categories are classified as parallel systems. New designs
called Multiprocessor Systems-on-Chips (MPSoCs) can now include several subsystems of
different categories, thus increasing the architecture complexity. MPSoCs are by definition
MIMD. They can embed multiple processing cores, each of which may be SIMD or MIMD.
Platforms become parallel at different architecture levels making programmation of parallel
systems even more complex.

Kalb has defined Autonomous SIMD (ASIMD) as an extension of SIMD platforms[Kal91].
ASIMD platforms grant a certain form of autonomy to the PEs of a platform, allowing
them to support non-tightly synchronous operations. A different level of autonomy can be
granted to PEs: execution, addressing, connection or I/O autonomies. PEs may be entitled
to one or more of the following, depending upon which level was granted: to conditionally
execute certain instructions (execution), to freely fetch input data (addressing), to allow a
non-even communication pattern between them (connection) and to also unevenly access
I/O ports.

2.2.2 Processing Element Types and Platform Heterogeneity

As described in the previous section, parallel systems may be characterized by multiple
PEs of different types operating synchronously.

The range of possible PEs is wide: from very specialized co-processors to fully pro-
grammable processors. Programmable PEs, also called cores, are characterized by their
Instruction Set Architecture (ISA) which lists supported instructions.

Processors are usually separated into two categories, as a function of the size of their
ISA. Whereas Complex Instruction Set Computer (CISC) processors have a wider ISA
leading to a smaller generated code, the ISA of Reduced Instruction Set Computer (RISC)
processors is limited. The emergence of heterogeneous and hybrid processors has made
categorization more complicated. Hybrid processors can be designed for a specific applica-
tion, such as Application-Specific Instruction-Set Processors (ASIPs) or for an application
domain such as DSPs or GPUs.

PE

PE

PE

PE
PE

PE

PE

PE

a) Homogeneous Platform b) Heterogeneous Platform

Figure 2.2 – Heterogeneousness of Platforms

An embedded MPSoC will often contain all these different core types. For example, the
Texas Instruments Keystone II[66A13] architecture is composed of up to 8 DSP cores, 4
General Purpose Processor (GPP) ARM cores and some hardware co-processors (Network,
Fourier transform, and so on). This platform is categorized as heterogeneous it contains
embedded PEs of several types.
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2.2.3 Memory architecture of embedded systems

Parallel embedded platforms are characterized by both memory organization and hierarchy.
From these two parameters, the memory architecture can be defined.

2.2.3.1 Memory Organization: Shared or Distributed

A shared memory system is the most simple: all PEs may access all memory regions.
However, other schemes of memory architecture exist. In the literature, shared and dis-
tributed memory systems are commonly separated into three memory models, as displayed
in Figure 2.3.
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PE subsystem
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PE subsystem

PE Mem

PE subsystem

c) NORMA

Figure 2.3 – Memory Architecture

Figure 2.3-a illustrates the shared memory system of an Uniform Memory Access
(UMA) machine with multiple memory banks. Each bank can be accessed by every
PEs. Both reliability and access speed are identical for each PE. UMA systems are often
implemented using a bus (PEs share connection to each memory) or a crossbar network
(each PE has its private connection to each memory). With increasing number of PEs, the
UMA generally experiences bottlenecks (for the bus implementation) or requires complex
memory subsystems (for the crossbar implementation). UMA systems are thus not suitable
for massively parallel platforms.

A Non Uniform Memory Access (NUMA) machine provides multiple memory
banks where each bank can also be accessed by every PEs, as shown in Figure 2.3-b.
However, the access speed is dictated by the accessing PEs. This memory architecture is
used to provide a dedicated access at a memory bank to a specific PE. When the number
of PEs increases, this memory architecture restricts the memory subsystem growth.

To reduce the impact of the increasing number of PEs distributed memory systems are
used. They are called NO Remote Memory Access (NORMA) machines. As is indi-
cated in Figure 2.3-c, PEs memory access is limited to local memory banks. Communication
for data exchange with other PEs is possible through dedicated hardware. Interconnections
between cores can be implemented using Network on Chip (NoC) which improves communi-
cation performance and scalability but also increases programming complexity. NORMA
memory systems have very good scalability properties but their complexity brings new
challenges in MPSoC programming.

2.2.3.2 Memory Hierarchy

Equally as important as the memory organization is the memory system hierarchy. Despite
the fact that small memories are designed with high speed access, big memories are still
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required for applications like video or image processing. Thus, depending of the targeted
application, the required memory hierarchy may differ.

In the literature, two schemes of memory hierarchy are commonly employed. These
two schemes are represented in Figure 2.4.

PE

Mem

Mem

Mem

a) Cache

PE

Mem

Mem

Mem

b) Scratchpad

Figure 2.4 – Memory Hierarchy

Cache systems use the small, fast memory to store a replica of the data stored in a far
memory. This memory scheme allows the programmer to obtain good performance without
a complex program, as many cache hardware subsystems automatically handle this feature.
However, the data integrity in multicore systems (also )called cache coherence) may pose
problems in such a memory scheme. Hardware cache coherency subsystems are starting
to appear in recent embedded systems. However, it is not a widely spread feature in the
embedded landscape because it is resource and power consuming.

Scratchpads allow different memory banks to be accessed separately. This memory
scheme allows the programmer better control of data thus optimizing its use. Another
advantage is that scratchpad access times are predictable, whereas cache systems have
nondeterministic access times [Ste90]. It must be noted that this memory scheme requires
a greater understanding of the platform used and may introduce non-portable code over
multiple platforms.

2.3 Parallel programming methods

This section focuses on general concepts in programming parallel embedded systems. Com-
mon programming styles are firstly introduced in Section 2.3.1. Then, the concept of gran-
ularity of parallelism is described in Section 2.3.2. Next, certain sources of parallelism are
detailed in Section 2.3.3. Finally, methods to extract the parallelism from an application
are presented in Section 2.3.4.

2.3.1 Programming Styles

There are many ways to program parallel embedded platforms. Two programming styles
have been defined by Blank [BN92]: Single Program, Multiple Data (SPMD) and Multiple
Programs, Multiple Data (MPMD). In SPMD, the same program is executed on each
processing core of a parallel architecture. However, each processing core is fed with a
distinct data stream, leading to an unique context and an unique execution. As shown in
the portion of Figure 2.5, in SPMD, control units are duplicated for each processing cores
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allowing them to run the same program differently, depending on the data fetched and
branching conditions.

ALU ALU

Program
Control

Unit

ALU
Control

Unit
ALU

Control

Unit

Program

Figure 2.5 – SIMD versus SPMD

This can be contrasted with the MPMD style, which is illustrated in the lower portion
of Figure 2.5. A MPMD programming model distributes a different program on each of the
processing cores of parallel architectures. This approach allows the programmer to better
optimize code and so achieve superior performance. The drawback to this style of that
there is an increase of the programming complexity for architectures with numerous PEs.

An important trend in embedded processing is the integration of increasingly more PEs
into embedded MPSoC devices [BFFM12]. In particular, there is an emergence of massive
many-core platforms based on tiny RISC cores [MPP15, Epi15]. This trend is due, in part,
to limitations of the processing power of individual PEs, resulting from power consumption
considerations. Assuming that this direction continues, the SPMD programming model
would be the best choice for future generations of embedded platforms.

2.3.2 Granularity of Parallelism

Parallelism in a program can be performed at different levels of granularity. In the liter-
ature, three levels of granularity of parallelism are usually described: fine grained, middle
grained and coarse grained.

Fine grained parallelism is commonly defined as Instruction-Level Parallelism (ILP)
and is a well known topic in literature. Currently, multiple embedded processors propose
ILP features. Some DSPs, such as TI’s Keystone architectures [SPR14], embed SIMD
instructions that execute the same instruction on multiple data streams simultaneously.
Additionally, multiple nonidentical instructions can be executed in parallel, this is called
Very Long Instruction Word (VLIW). ILP can be extracted directly by compilers from
a sequential code to fully exploit the parallelism offered by the DSP at the instruction
level. Instruction sets focusing on ILP are becoming standard in common architectures.
For the x86 architectures of conventional computers, MultiMedia eXtensions (MMX) and
Streaming SIMD Extensions (SSE) are ones of the references. For embedded systems,
NEON is the best known SIMD extension for ARM processors. These instruction sets are
generally used with C/C++ code. ILP has now reached its limit in terms of optimization
and a new parallelism source is required for further efficiency improvements of embedded
MPSoCs.
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Middle grained parallelism occurs when the execution of small pieces of code are
tightly coupled together. In the literature, this granularity of parallelism is generally asso-
ciated with the thread programming model. Threads are commonly described as sequential
processes sharing some memory. It is common for a Symmetric Multi-Processor system
(SMP) to have a hardware implementation of the thread model. Hardware requirements
are, but are not limited to, cache coherency mechanisms and synchronization mechanism.
Threads were firstly developed to execute multiple parts of a program concurrently on
a sequential core and to thus emulate some parallelism. The thread model is the most
commonly used multicore programming model. Since middle grained parallelism is at
higher level than the ILP, the parallel portions of the program dominate the control and
synchronization portions and so provide a good balance for parallelism extraction. How-
ever, multi-threading programming models are not suitable for the growing demand of
parallel computing [Lee06]. Lee has demonstrated that the non-determinism involved in
multi-threading programming models means that these models are not suitable to use the
hardware at its maximum efficiency. A lack of suitability of threads for parallel computing
produces new challenges in middle grained parallelism.

Coarse grained parallelism exists when multiple processes are simultaneously launched
on a platform. These processes are only loosely linked to each other and do not commu-
nicate intensively. This means that this granularity of parallelism can be easily produced
by software programmers using few shared resources. The different tasks can be assigned
to the core manually or by a Real-Time Operating System (RTOS) which controls the
synchronization and load balancing.

For the majority of this thesis, middle grained parallelism will be used to express the
parallelism of an application. It is felt that this approach provides a good trade-off between
potential parallelism and synchronization overhead.

2.3.3 Parallelism sources

From any given algorithm, multiples parallelism sources can be derived with a middle
granularity level. In generally, there are three sources: Task level parallelism, Data level
parallelism and Pipeline level parallelism. Figure 2.6 illustrates these three sources of
parallelism.
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Figure 2.6 – Middle grain parallelism sources of parallelism

Task level parallelism occurs when two distinct tasks are applied on separate input data
sets. This is usually easily extracted from applications.
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Data level parallelism occurs when the same task is applied on two different input data
sets. Data level parallelism is only possible when there is no dependency between the two
data sets. In this way, the two tasks may be executed in parallel without problem.

Pipeline level parallelism occurs when two PEs of the same MPSoC simultaneously
compute tasks on data from different iterations of an algorithm. This parallelism is often
used in signal processing systems to increase the potential parallelism of the application.
This then increases the PE load and the system throughput. A known drawback of this
method is higher latency of the overall system; that is, longer computation time for a single
algorithm iteration.

2.3.4 Parallel Programming techniques

2.3.4.1 Multicore scheduling

To extract middle grained parallelism on an application, the technique used is commonly
divided into four phases: extraction, mapping, ordering and timing. These four phases of
the multicore scheduling process are represented in Figure 2.7.
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PEMapping Ordering Timing

Figure 2.7 – Middle grain parallelism multicore scheduling on a two PEs (red and green) platform

First, parallel threads or tasks are extracted from the main program. For a deeper
extraction, more threads will be created, thus unveiling more parallelism. However, when
more thread are created, more time is required to handle the threads and mutual synchro-
nization.

Next the mapping phase assigns each thread to a PE. This phase must manage various
parameters such as PE utilization and communication cost. The subsequent phase of
ordering, is sometimes grouped with the mapping phase. The ordering phase creates an
execution list of threads on each PE.

Finally, the timing phase generates the choice of a start time for each thread. This task
is commonly determined by a RTOS, and the choice is based on synchronization elements;
that is, as soon as input data is available.

Lee et al. have defined the result of executing these phases at either compile-time or
runtime by four multicore strategies[LH89], as is displayed in Table 2.1.

Table 2.1 – Multicore Scheduling Strategies

Strategy Mapping Ordering Timing
fully dynamic runtime runtime runtime
static-assignement compile-time runtime runtime
self-timed compile-time compile-time runtime
fully static compile-time compile-time compile-time

For the case where multicore scheduling processing (mapping, ordering and timing
phases) is performed at compile time, the overhead due to scheduling process at runtime is
reduced. This is the fully static case. In contrast, when the multicore scheduling process
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is completed at runtime, the process becomes more adaptable to current situation. This
situation is the fully dynamic case and will be used in this thesis.

2.3.4.2 Scheduling approaches

There are a number of methods to unveil parallelism of an application. In [POH09], Park
et al. compare many approaches of MPSoC design. These approaches are characterized by
their inputs and can be described as follows:
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Compiler Platform

Program
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Code
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Desc.

Program

Program

c) Model of Computation
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Figure 2.8 – Middle grained parallelism multicore scheduling on a two PEs (red and green) plat-
form

• The compiler based approach which uses a sequential language such as C or C++.
The compiler is designed to analyze the input program to extract its parallelism, and
is illustrated at Figure 2.8-a. A broadly equivalent method is employed for ILP for
finest grain extractions. The major advantage of this method is that no modification
are required for the use of legacy sequential code. Code analysis tools have to separate
code into multiple threads. However, this code analysis is not straightforward as
created threads must be sufficiently coarse-grained to overcome the synchronization
overhead. Conversely, threads must also to be sufficiently fine-grained to unveil the
necessary parallelism. An example of compiler based tools is MPSoC Application
Programming Studio (MAPS) [LC10] which was largely developed by RWTH Aachen
University. This tool extracts parallelism from C sequential code and can generate
code for embedded platforms [AJLA14].

• The language extension approach is similarly based on sequential code, how-
ever metadata is also used to highlight parallel regions of the code as illustrated in
Figure 2.8-b. A well known example of this approach is the OpenMP (Open Multi-
Processing [Ope15a]) Application Programming Interface (API). OpenMP supports
shared memory architecture and generally targets homogeneous platforms. Based
on C, C++ or Fortran code, this API uses compiler directives such as pragmas to
define parallel regions and to provide a multicore communication API. The software
developer must manually specify parallel regions in his code. OpenMP is now widely
supported on embedded MPSoC platforms, such as TI’s keystone architecture. Other
tools or APIs based on language extensions are available, such as OpenMPI (Open
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Message Passing library [Ope15b]), OpenCL (Open Computing Language [SGS10])
and CUDA (Compute Unified Device Architecture [cud14]).

• The Model of Computation (MoC) approach is based on a high-level description
of the application abstracting out low-level details as illustrated in Figure 2.8-c. A
MoC describes an application as several tasks with organized communications be-
tween them. This approach is labour-intensive for the software developer, as the top
application that uses the MoC must be described, to allow the integration of the
legacy code. However, the MoC approach has multiple advantages. First, the paral-
lelism extraction phase of the multicore scheduling process is less complex and so is
suitable for runtime scheduling. Moreover, certain MoCs may ensure by construction
deadlock freeness of the application. Finally, the MoC based approach can per-
mits easy hardware and software co-design. SystemC language [Sys15] is now widely
spread as it is an extension of the C language. Many other tools also exist, either
from academic or industrial sources, such as Ptolemy[BHLM94], Preesm[PDH+14],
OpenEM [Moe14], Orcc[YLJ+13], StreamIt[TKA02] or Simulink[Sim15].

The next section presents an embedded parallel runtime available for the TI’s Keystone
II platform targeted in this thesis.

2.3.4.3 An embedded programing runtime: the Open Event Machine

Open Event Machine (OpenEm) is a multicore RTOS [Moe14]. This embedded parallel
runtime is focused on performance, scalability and flexibility, and is event based. Events
are dispatched and consumed over the different cores of the platform.

An OpenEM application may be handled by multiple processes. A core set is associ-
ated with each process, but processes cannot share several cores. A process is composed
of many runtime objects that are shared among all cores and are multicore safe. These
objects can be one of the three following types:

• Events: each event belongs to an event pool. An event pool possesses a free queue
which stores all unused events. Buffers can be attached to an event as payload.

• Execution objects: object that contains the algorithm to execute once an event
is received. A receive function, that executes the algorithm, is registered for each
execution object.

• Event queues: which connect events and execution objects. Each event queue is
associated with one execution object and all queued events are processed by this exe-
cution object. Each event queue contains a context allowing persistent data storage;
that is, data can remains alive before and after the event processing.

Each event needs to be scheduled and dispatched to be executed by an execution object.
Where there is a unique dispatcher per core, there is one scheduler shared by all dispatchers.

The dispatcher life cycle is the following:

1. Request a new event from the scheduler.

2. The scheduler selects a non-empty event queue and sends the oldest event to the
dispatcher.

3. The dispatcher fetches the execution object and executes the corresponding receive
function.
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4. The receive function consumes the input event.

5. The receive function can create one or more events and send them to another queues
(even to those of another process).

6. The dispatcher returns to state 1.

It can be seen that each process requires one scheduler. The scheduling process dy-
namically maps events from different queues to each requesting dispatcher. The scheduler
can take decisions based on four criteria:

• Priority: Each event queue has a priority. However there is no preempting mechanism
if an event arrives in a high priority queue.

• Atomicity: A queue can be specified atomic, meaning that two events from this queue
cannot be handled simultaneously.

• Locality: One or multiple queues can be only assigned to a subset of the core list.

• Order: If many events are available for scheduling, the oldest event will be scheduled.

This runtime is developed and deployed in Texas Instruments multicore DSPs. These
platforms can use hardware coprocessors such as Fast Fourier Transform (FFT) co-processors,
and network co-processors to transparently handle events. Furthermore, the scheduler of
the OpenEm runtime is deployed on the Packet RISC engine of the Multicore Navigator
meaning that the scheduling operations are executing in the background. Each scheduling
operation is triggered by a scheduling request submitted by a dispatcher running on each
core.

2.4 Conclusion

The major contribution of this thesis is the creation of a new programming technique
called Just-In-Time Multicore Scheduling (JIT-MS) based on a dataflow MoC. Employing
the MoC approach enables better decisions on the multicore scheduling method since the
parallelism extraction is already defined by the MoC. It may also provide features such as
deadlock freeness.

The JIT-MS method targets heterogeneous architectures with shared memory systems
(NUMA). These architectures are increasingly more present in the MPSoCs market. They
represent a good trade-off between multicore system performance and programming com-
plexity. Distributed memory systems allow systems to have numerous PEs. Since increas-
ingly more PEs are integrated into MPSoCs, this architecture may become very common
in the future. The JIT-MS method has been designed to be easily extended to distributed
memory systems.

JIT-MS is a fully-dynamic multicore scheduling process, focused on middle-grained
parallelism. At this parallelism granularity, the program is separated into several pieces
of computation that are dependent of each other. The proposed method allows extract-
ing data, task and pipeline parallelism. This multicore programming method has been
implemented in a runtime called Spider, which will be detailed in later chapters.
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CHAPTER 3

Dataflow Models of Computation

3.1 Introduction

Diagrams have always been a convenient method to express an idea or specify a system.
The majority of software architectures are based on diagrams such as the Unified Modeling
Language (UML) diagrams [MBFBJ02].

In certain cases, graphical diagrams may also be used to specify a functional system.
The implementation may then be inferred automatically from the graphical description.
For example, Petri nets, Grafcet and ladder programming models are all based on drawn
specifications [DA92, ZT98].

As seen in the previous chapter, MoCs can be used to parallelize applications using
a middle granularity over multiples PEs on a platform. The MoCs allow the software
programmer to express the application using a representation. Dataflow MoCs can be
represented using graphical diagrams. These dataflow graphs are composed of tasks called
“actors” exchanging data using links called “channels”. This representation of the appli-
cation allows the extraction of natural parallelism, which can enhance the application
performance on parallel systems.

In this chapter, we will see that multiple dataflow MoCs are published in the literature.
An overview of dataflow MoCs is provided in Section 3.2 and the most commonly used
dataflow MoCs are then described in Section 3.3. We will see in this chapter that MoCs
can be classified as dynamic or static dataflow. The primary advantage of a static dataflow
MoC is predictability, allowing better scheduling decisions. Covertly, dynamic dataflow
MoC providing reconfigurability to the application description.

The Parameterized and Interfaced Synchronous Dataflow (SDF) (PiSDF) MoC is the
choice employed in this thesis. The PiSDF semantics is then introduced in details and
compared with other dataflow MoCs. The PiSDF MoC is based on static dataflow MoCs
and is enhanced by adding efficient management of parameters and hierarchy. It will be
shown that PiSDF allows the reconfiguration of the application using locally static regions
of the graph.
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3.2 Dataflow Models of Computation (MoC): an Overview

3.2.1 What is a Model of Computation (MoC) ?

In general terms, a MoC is defined as a group of operational elements that when connected,
describe the behavior of an application. A MoC description is composed of rules which
specify the intended execution of the described application. The purpose of a MoC can
vary: it may be used for specification, simulation or programming purposes.

Classical examples of MoCs are the Turing machine [Tur36] and the Lambda calculus
[Bar84] models. During the last twenty years, numerous MoCs have been studied, due to the
emergence of dataflow programming. The MoCs studied in this thesis are particularly useful
for modeling signal processing applications; that is, applications which process ordered
streams of data.

3.2.2 Dataflow MoC Definition

A dataflow MoC focuses on the representation of the flow of data that exists between a
group of tasks collaborating within a single application. The application description is rep-
resented as a graph with vertices (tasks) connected to each other through edges (data com-
munications). This representation explicitly specifies the dependencies that exist between
tasks and, for certain models, also specifies the amount of required data communication
between them.

The first dataflow MoC was defined by Kahn in 1974 and was called Kahn Process
Network (KPN) [Kah74]. Kahn defined a KPN as a network of concurrent tasks connected
by directed unbounded First-In First-Out queue (Fifo) channels transmitting data tokens.
In his definition, data tokens are indivisible, produced only once and consumed only once,
and they cannot be shared by tasks.

A B

C D

I

J

L

K M

Figure 3.1 – Kahn Process Network (KPN) example

An example of a KPN network is proposed in Figure 3.1. In this example, the network
is composed of 4 tasks (A, B, C and D) and 5 channels (I, J, K, L and M) which connect
the tasks. In this network, tasks B and C can be executed in parallel since there is no
dependency between them.

In 1995, Lee and Parks have specified how such tasks can behave in a dataflow network
by defining the semantics of the Dataflow Process Network (DPN) MoC [LP95]. A Dataflow
Process Network (DPN) is defined as follows:

Definition 3.2.2.1 (DPN Definition)
A DPN is a directed graph G noted as G = (A,F ) where:
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• A is the set of vertices called actors of G representing computational tasks. Each
actor embeds:

– IN : A set of nin input ports represented as IN 0..nin−1,

– OUT : A set of nout output ports represented as OUT 0..nout−1,

– F : A set of firing rules represented as F0..nf−1. A firing rule is a condition
which, when satisfied, enables the execution (also called firing) of this actor,

– R: A set of rates. A rate is the number of tokens consumed at an input port
or produced at an output port corresponding to a specific firing rule. Each given
firing rule has nin + nout corresponding rates: one for each port.

• F is the set of edges representing Fifo data queues. These F ifos are the only
channels allowed to perform data token communications between actors. Each F ifo

is connected to a source port (which provides tokens to the F ifo) and a sink port
(which consumes tokens from the F ifo). A F ifo can also possess delays. A delay is
the initial number of data tokens stored in the F ifo at the beginning of the application.

B

IN0

IN1 OUT1

OUT0

C

IN0

A

OUT0

1

Figure 3.2 – Dataflow Process Network (DPN) example

The semantics of the DPN MoC only specifies the connections between actors. The
graph network does not include details about firing rules or consumption and production
rates. This information is usually stored in the actor definition. Actors can be described
using any language, providing that the firing rules and Fifo accesses are supported. For
instance, imperative languages such as C, Java or VHDL are commonly used. Specific
actor description languages also exist, such as CAL Actor Language (CAL) [EJ03], CAPH
[SBA13], SigmaC [dD13] or Cx [WSC+13]. These languages comprise both the coordina-
tion language (the language composing the graph definition) and the host language (the
language that describes the actors).

3.2.3 Dataflow MoC Properties

Numerous dataflow MoCs exist in literature, with sometimes only slight differences between
them. The majority are extensions of previously defined models, with either new features or
new restrictions for improved analyzability. When comparing these models, it is necessary
to identify key criteria.

In this section, the important properties for comparing MoCs employed by this thesis
will be defined. These properties are not the only possibilities to characterize a dataflow
MoC; however they have been chosen as they elucidate the differences in compile-time
analyses.

Firstly, the two terms of schedulable and consistent need to be defined. These two
properties are used to categorize applications described in dataflow. These properties do
not categorize the MoC itself but rather the application description that uses the MoC.
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Definition 3.2.3.1 (Dataflow Graph Schedulability)
A dataflow graph is Schedulable if and only if it is possible to find a schedule, that is, a
finite sequence of actor firing, for which it can fire without a deadlock and if the final graph
state is equivalent to the initial graph state.

BA
1 1

11

a) Not Schedulable

BA

1

1 1
11

b) Schedulable

Figure 3.3 – Schedulability example

In Figure 3.3, an example of a non schedulable graph is shown using an SDF graph.
An SDF graph specifies the number of tokens produced and consumed on each Fifo for
each firing of the connected actors. There is only one firing rule per actor in an SDF
graph and the rates are displayed directly in the graph. The SDF MoC will be more fully
explained in Section 3.3.1.1. The graph of the Figure 3.3-a is not schedulable since to
start, both actors A and B need the token produced when the other is fired, but neither
has sufficient data tokens to start first. The graph of Figure 3.3-b is schedulable since the
initial token stored in the delay enables actor A to be fired thus launching computation.
The schedule obtained is (1xA,1xB): one execution of A followed by one execution of B
which then returns the graph to its initial state. The schedulability of an application can
also be subject to external factors such as the time constraints or memory limitations of a
specific hardware platform.

Definition 3.2.3.2 (Dataflow Graph Consistency)
A dataflow graph is Consistent if and only if its execution does not accumulate data tokens
on any F ifo.
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Figure 3.4 – Consistency example

Figure 3.4-a shows an example of a non-consistent graph using an SDF graph. A
schedule which repeats (1xA,1xB,1xC,1xD) will result in indefinitely adding tokens to the
CD Fifo and so will eventually lead to a memory leak of the application. Conversely, a
schedule repeating (1xA,1xB,1xC,2xD) is not possible since it will starve the BD Fifo

and lead to a deadlock. This may be contrasted with the second example in Figure 3.4-b,
where the graph is consistent and the obtained schedule is (1xA, 1xB, 1xC, 1xD).
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The identification of schedulability and consistency properties of dataflow application
graph, allows the definition of key criteria of dataflow MoCs: Expressiveness, Decidability,
Determinism, Reconfigurability, Predictability and Compositionality.

Definition 3.2.3.3 (Dataflow MoC Expressiveness)
As defined by [Far07], the theoretical expressivity of logic is defined as the measure of the
ideas expressed in the logic without reference to the method of expression. For a dataflow
MoC, expressiveness measures the ability of the MoC to describe a wide range of applications
and constructs such as conditions, loops, parallelism and so on.

A particular case of dataflow MoC, that DPN MoC has maximal expressivity as has
been proven to be Turing complete[BLo93], that is, it can describe all applications that
may be represented with a Turing machine. The expressiveness of a MoC is almost always
limited by model restrictions that are included to significantly simplify its analysis.

Definition 3.2.3.4 (Dataflow MoC Decidability)
As defined in [BL06], a dataflow MoC is decidable if and only if the schedulability and
consistency of the representations derived from this MoC can be determined at compile
time.

A decidable dataflow MoC is vital to ensure that each application will not result in
deadlocks or constantly growing memory. However, decidable dataflow MoCs have lim-
ited expressivity because these MoC have additional rules and so restrict the designable
application landscape [BL06].

Definition 3.2.3.5 (Dataflow MoC Determinism)
As defined in [LP95], a dataflow MoC is deterministic if and only if the graph behavior
and execution depend solely on data values passing through it and not on external dataflow
factors.

MoC determinism is usually a desirable feature since typical programming languages
are determinate. However, non-determinism can extend expressiveness and allow a MoC
to describe more types of applications.

Definition 3.2.3.6 (Dataflow MoC Reconfigurability)
According to [NL04], the reconfigurability of a dataflow MoC is defined as its ability to
change the firing rule rate over time, as a function of certain parameters.

Reconfigurable dataflow MoCs are distinct from static MoCs, where rates are fixed to a
specific value at compile time. Reconfigurable dataflow MoCs naturally have better expres-
siveness than static MoCs. Parameterized and dynamic dataflow MoCs are reconfigurable,
and will be discussed in the following sections.

Definition 3.2.3.7 (Dataflow MoC Predictability)
The predictability of a dataflow MoC is defined as the ability of MoC to have Non-data-
dependent behavior.

The static dataflow MoCs are the most predictable models, as their firing rules are
known at compile-time and do not depend on data. Conversely, dynamic dataflow MoCs
are the least predictable models as the actor firing rules for the majority of models depend
on the value of the received data. The predictability of parameterized dataflow MoCs is
between that of the dynamic and static MoCs; in these models, the firing rules of actors
depend on parameters values but not on data. Parameters differ from data as they have
their own communication channels and they can modify firing rules, but cannot serve as
data.
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Definition 3.2.3.8 (Dataflow MoC Compositionality)
As described in [TBG+13], the compositionality of a dataflow MoC is defined as the behav-
ioral independence of the internal specification of the actors of a dataflow graph.

Non-compositionality of dataflow MoCs can be a problem for certain graphs since it
can cause unexpected deadlocks when large applications are created from the description
of their subparts. In [PBL95], a theorem to ensure compositionality of SDF specifications
is presented.

3.3 The Landscape of Dataflow MoCs

Dataflow MoCs may be categorized into two classes: static and dynamic. The scheduling
of applications described with dynamic MoCs is dependent on the incoming data of the
actors. These models are generally derived from the previously defined DPN. Conversely,
static dataflow models have predictable behavior making them schedulable at compile
time. The major advantage of statically schedulable dataflow MoCs is their analyzability
resulting in predictability and easier optimization. However, their static properties result
in reduced expressiveness and lower flexibility for software programmers, when compared
with dynamic dataflow MoCs.

In order to incorporate some of the designer friendly features into the static dataflow
MoC, MoC extensions have been developed, allowing integration of hierarchical features.
The extensions included in these hierarchical dataflow MoCs subdivide the application into
subsystems.

The parameterized dataflow MoC is another extension. By giving the developer param-
eters that depend on incoming data, parameterized dataflow MoC offers better expressivity
than the static dataflow MoC. Moreover, since parameters are explicitly defined in param-
eterized dataflow MoCs, they can be analyzed and so offer a similar predictability and
analyzability to static MoCs.

The remainder of this section will detail static and parameterized dataflow MoCs.

3.3.1 Static Dataflow MoCs

Static dataflow MoCs are deterministic and, by definition, not reconfigurable. The sequence
of firing rules and the rates of each actor port both are known at compile time, and so
are independent of the data values passing through each Fifo. Thus, the static dataflow
MoCs can be checked for schedulability at compile time, resulting in high predictability
but also reduced expressiveness. A major restriction resulting from fixed firing rules is that
the if-then-else statements based on data are not representable with static dataflow MoCs.

3.3.1.1 The Synchronous Dataflow (SDF) MoC

One of the most commonly used static dataflow MoCs is the Synchronous Dataflow (SDF).
This model was firstly introduced in [LM87]. Formally, the SDF model is defined as follows:

Definition 3.3.1.1 (SDF MoC definition)
An SDF graph is a directed graph G noted as G = (A,F ) that conforms to the DPN
definition (3.2.2.1). However, there is only one firing rule per actor and rates are fixed
scalars.

An example of an SDF graph is given in Figure 3.5. In this figure, actor A produces 2
tokens at each firing which are passed to actor B which consumes one token per firing. A
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B CA

1

2 1 1 1

11

Figure 3.5 – SDF graph example

delay is present on the feedback edge of actor B and contains 1 token, which is required in
the initial state of the graph.

Analyzability and compile time scheduling are the key features which have made SDF
such a well known dataflow model. Low complexity algorithms from the literature can
be used to check the consistency and schedulability of SDF graphs and to determine an
efficient schedule.

3.3.1.1.1 Consistency and Schedulability of SDF

The schedulability and consistency properties of an SDF model are vital; they are necessary
for the creation of a valid mono-core or multicore schedule. A valid schedule fires with no
deadlocks and its final state is equal to its initial state, making it indefinitely runnable.

To allow an analytic study of an SDF graph, and to check the schedulability and
consistency properties, a topology matrix is derived from the SDF graph. This matrix
is defined as follows:

Definition 3.3.1.2 (SDF Topology Matrix)
The topology matrix Π is a matrix of size ‖A‖×‖F‖ where each row is associated with one
F ifo and each column is associated with one actor. Elements of the matrix are computed
as:

Π(a, f) = n

where n is the amount of tokens produced (if positive) or consumed (if negative) by Actor
a into the F ifo f . If the actor does not produce or consume tokens on f , the value n is
set to 0.

The topology matrix of the SDF graph of Figure 3.5 is as follows:

Π =

(

A B C

AB 2 −1 0
BC 0 1 −1

)

The feedback Fifo connected to actor B is not displayed in the topology matrix as it does
not influence interactions between actors of the graph. Its sole role is to sequentialize the
firings of actor B.

Theorem 3.3.1.3 (SDF graph consistency)
An SDF graph is consistent if and only if:

rank(Π) = ‖A‖ − 1

where ‖A‖ is the number of actor in the graph G.
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By checking the rank of the topology matrix, Theorem 3.3.1.3 implies that there is a
unique vector, herein called Basic Repetition Vector (BRV) of size ‖A‖ which is the base
of solution q of equation Π.q = 0.

The computation of the BRV can be performed by the Gauss-Jordan algorithm as
described in [LM87]. The result must be the smallest solution for which all vector values
are positive integers and the BRV is not null.

Theorem 3.3.1.4 (SDF graph schedulability)
An SDF graph G is schedulable if and only if:

• G is consistent,

• G is deadlock-free: a schedule can be found, compliant with the BRV, that respects
all actor firing rules.

An example that fails the requirement of deadlock freeness can be found in Figure 3.3-a.
It can been seen that there are insufficient initial tokens, and this causes the requirement
failure. The procedure to construct a single-core schedule to demonstrate schedulability is
detailed in [BELP96].

3.3.1.1.2 A pre-scheduling transformation of SDF graphs

To create a multicore schedule of an SDF graph, an intermediate representation with the
maximum possible parallelism can be created. This intermediate representation is called
Single-Rate Directed Acyclic Graph (DAG) (SRDAG). This graph is a dataflow
model that is defined as followed:

Definition 3.3.1.5 (Single-Rate DAG (SRDAG) definition)
The SRDAG MoC is a restriction of SDF MoC; these restrictions are:

• Acyclic: an SRDAG does not comprise cycles.

• Single-Rate: the production rate on each F ifo is equal to the corresponding con-
sumption rate of this same F ifo.

The conversion from SDF graph to SRDAG consists of multiple steps. First, the pre-
viously defined BRV must be computed:

Π =

(

A B C

AB 2 −1 0
BC 0 1 −1

)

Gives:

BRV =





A 1
B 2
C 2





Then, accordingly to its repetition value, each actor of the SDF graph is instantiated
multiple times in the created SRDAG. Unfortunately, the graph expansion due to this step
may lead to exponential growth of the SRDAG.

Finally, each instantiated actor must be linked to other instances. It may be necessary
in this link step to create some new actors called special actors to handle the token flow
over the newly created single-rate actors. This method was introduced in [Pia10].
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Delay tokens also require special care. When initial tokens are present in a Fifo as a
delay, these tokens must also be generated for the SRDAG. These tokens are created using
a special actor called Init. An additional actor called End is required to discard the last
token unused by the rest of the graph.

Figure 3.6 presents the SRDAG generated from the example graph of Figure 3.5.
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Figure 3.6 – SRDAG resulting from SDF example

This single-rate transformation allows the multicore scheduling to make use of task
parallelism as well as data parallelism. The SRDAG can be used as a precedence graph to
map, order and time all the actors present in it.

3.3.1.2 The Cyclo-Static Dataflow (CSDF) and Affine Dataflow (ADF) MoCs

The Cyclo-Static Dataflow (CSDF) MoC is an extension of the SDF MoC and is described
as follows:

Definition 3.3.1.6 (CSDF MoC definition)
An CSDF representation is a graph G noted as G = (A,F ) where each port is associated
with a sequence s of n fixed scalar rates.
Considering an actor a ∈ A and a port p of a, the consumption or production rate of p for
the i-th firing of actor a is given by s[i mod n].
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3 {2,1} 1 1

11

Figure 3.7 – CSDF graph example

An example of CSDF graph is given in Figure 3.7. In this example, the first input port
of actor B has a sequence of 2 token rates.

This MoC extension may be interpreted as an increase of expressiveness when compared
to SDF, however this is not the case. An application that can be described in CSDF can be
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described in SDF; generally, the CSDF description requires fewer actors than in SDF (the
model is said to be more compact). Moreover, CSDF can make an application schedulable
with less delay tokens. A transformation has even been proposed in [PPL+95] to transform
a CSDF graph into an SDF graph with same properties. All techniques used to analyze
a SDF graph can be applied to CSDF after transformation. The resulting SRDAG of the
example in Figure 3.7 is given in Figure 3.8.
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Figure 3.8 – SRDAG resulting from CSDF example of Figure 3.7

The Affine DataFlow (ADF) MoC is another extension of SDF MoC with the same ob-
jective: improving model compactness. The ADF model has been introduced in [BTV12].
While CSDF has an infinite sequence of rates, the ADF replaces the unique rate of SDF
with an initial sequence of firing rates followed by an infinitely repeated sequence of firing
rates. These two concatenated sequences are called the ultimately periodic sequence. As
with CSDF, ADF does not extend expressiveness. A transformation also exists to convert
an ADF graph into an equivalent SDF graph.

3.3.2 Hierarchical Dataflow MoCs

Hierarchy is an important feature of dataflow MoCs. It can be used to enhance two
properties of a model: Compositionality and Reusability.

Reusability is useful for an incremental approach of system design. Reusability is the
ability to define a component that can be instanciated multiple times in the design process.
Certain primitive blocks such as basic signal processing algorithms (fft, dct, fir, iir) or basic
image processing algorithm (Sobel filter, median filter, and so on) are reference designs that
can be reused in many applications.

Hierarchy is of interest in a dataflow MoC since the internal behavior of a dataflow
actor is usually hidden in the top level graph. However, hierarchy is included in DPN and
SDF semantics.

Several generalizations of the SDF MoC have been proposed [PBR09, LM87, TBG+13]
to include hierarchy as an explicit part of the SDF MoC.

3.3.2.1 Non Compositional Hierarchy Mechanism for SDF

A method to add hierarchy into the SDF MoC has been introduced by Lee in [LM87]. This
implementation consists of associating an SDF graph with a hierarchical actor to define its
internal behavior.
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This is performed by flattening the graph to a single-level before executing an analysis or
scheduling tools to the upper SDF graph (also called top graph). This flattening operation
consists of the sole step of replacing the hierarchical graph by its inner graph.

An example of this operation is shown in Figure 3.9, where the hierarchical actor H is
composed of two subactors H1 and H2.

H CA
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H1

1 1

H2
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Figure 3.9 – Hierarchical SDF graph example

However, as seen in [Pia10, TBG+13], there is a compositionality problem due to this
hierarchical implementation. When only the top graph is taken into account, the actors A
and C will be fired once and the actor H will be fired three times.

It may be noted that, depending on the value of rate n, the flattened graph leads
to different but equivalent SRDAGs, as presented in Figure 3.10. The upper graph in
Figure 3.10 corresponds to n = 1, and in this case the analysis of the top graph is respected.
It may be seen that a fork actor F has been introduced to distribute the tokens to different
Fifos and that a join actor J has been inserted to interleave result tokens into a single Fifo.
When n = 2, the repetition values of actors in the top graph are changed, as displayed in
the lower graph of the Figure 3.10. This graph contains two firings of actor A, which does
differs from the analysis of the upper graph.

This example highlights the non-compositionability of SDF graphs. It is necessary
to use a top-down approach with a compositional model to ensure that the result is a
schedulable graph. The non-compositionability of SDF requires the analysis process to
flatten the whole graph before commencing the schedulability analysis. Thus analysis
complexity can be very high and the graph may suffer from an exponential growth due to
flattening.

3.3.2.2 The Interface-Based SDF (IBSDF) MoC: a Compositional Dataflow
MoC

The Interface-Based SDF (IBSDF) MoC [PBR09] is an extension of the SDF MoC that
ensures compositionability. IBSDF is defined as follows:

Definition 3.3.2.1 (IBSDF MoC definition)
An IBSDF graph is a graph G = (A,F, I) where:

• The external behavior of an actor conforms to the SDF MoC and its internal behavior
can be specified with an IBSDF graph, called a subgraph.

• I is a set of interfaces. Interfaces enable the transmission of information between
levels of hierarchy. Each interface i ∈ I corresponds to a data port of the hierarchical
actor.
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Figure 3.10 – Resulting SRDAG from Hierarchical SDF graph example

• If more data tokens are consumed on a data input interface than specified by its rate,
the data input interface then behaves as a round buffer, producing the same tokens
several times.

• If a data output interface receives more tokens than specified by its rate, only the last
received tokens will be forwarded to the upper level of hierarchy.

The interfaces of the IBSDF ensure compositionality of the dataflow MoC. The example
of the first SDF approach (Figure 3.9) is represented with the IBSDF MoC in Figure 3.11.

However, the SRDAG hat results from Figure 3.11 is different to Figure 3.6 due to
interface rules. This SRDAG is displayed in Figure 3.12. The BRV of the top graph is
respected in both generated SRDAGs. The single-rate transformation now leads to the
creation of a new special actor called RoundBuffer . This actor has the role of duplicating
tokens (for input interfaces) and of discarding all but the last tokens (for output interfaces).

3.3.3 Parameterized Dataflow MoCs

As discussed previously, parameterized dataflow MoC has an advantage over a static
dataflow MoC: it has more expressiveness. By allowing the reconfigurability of rates, pa-
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rameterized dataflow MoCs can describe more applications. However, this feature generally
reduces the predictability of these MoCs.

In [NL04], Neuendorffer and Lee show that the predictability of a MoC can be enhanced
by allowing reconfiguration only at certain instants. These instants are called quiescent
points and exist multiple times during the execution of an application.

There are several parameterized dataflow MoCs that extend SDF with reconfigura-
bility features such as Scenario-Aware Dataflow (SADF) [TGB+06] or Integer-controlled
DataFlow (IDF) [Buc94]. Four parameterized models will be detailed in this section to
cover the key aspects of parameterization: Boolean DataFlow (BDF), Schedulable Para-
metric Dataflow (SPDF), Parameterized SDF (PSDF) and PiSDF.

3.3.3.1 The Boolean DataFlow (BDF) MoC

The BDF MoC is an SDF graph with additional special actors called switch and select as
displayed in Figure 3.13. The BDF MoC has been defined in [BLo93].



34 Dataflow Models of Computation

B

DA
2 1

S
w
i
t
c
h

S
e
l
e
c
t

C

E b1 b2

1-p0

p0

1

1 1

1
1-p0

p0

1 1
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Switch and select actors are equivalent to demultiplexers and multiplexers respectively,
and are used in this model to implement if-then-else patterns by forwarding information to
different Fifos. As a result of a boolean value, the switch actor either forwards its input
tokens to its first output port or its second output port, thus acting like a demultiplexer
logic cell. The select actor behaves as a multiplexer: the boolean value selects the input
port whose tokens are then sent to the unique output port.

The BDF model adds control flow to the SDF dataflow and makes the model Turing-
complete [BLo93].

3.3.3.2 Schedulable Parametric Dataflow (SPDF) MoC

The Schedulable Parametric Dataflow (SPDF) MoC [FGP12] is an extension of the SDF
MoC with expressivity equivalent to that of the DPN, but with a better predictability. The
Schedulable Parametric Dataflow (SPDF) is defined as follows:

Definition 3.3.3.1 (SPDF MoC definition)
A SPDF graph G = (A,F, P ) is a graph where:

• P is a set of parameters. Parameters can change dynamically and are set by an
actor called modifier. A period is set for each parameter, displayed within square
brackets, that specifies the smallest number of modifier firings between two parameters
modifications.

• Rates may be either scalars or functions of parameters.

B CA
2p 1 q pq 12

p[1] q[p]

1

Figure 3.14 – Hierarchical SDF graph example

Theorem 3.3.3.2 (SPDF safety criterion)
As defined in [FGP12], the modifier actor must not change the value of a parameter during
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the iteration of the part of a graph where this parameter is used. This criterion ensures
that the consistency and the schedulability of SPDF graphs can be checked at compile time.

An example of a SPDF graph is shown in Figure 3.14. In this example, there are
two parameters, p and q. Both parameters influence consumption and production rates of
actors in the graphs.

The safety criterion is respected in this example. The parameter q is used by actor C
and since its modifier is actor B, the graph description must ensure that the parameter q
will not change until actor C is fired. This condition is respected, as the parameter q is
defined as constant for p firings of actor B thus satisfying the p ∗ q consumption of actor
C.

This parameter extension allows a modifier actor to change its output rates at each
firing using a parameter. This feature, added to SDF, is sufficient to ensure the Turing-
equivalent property of a SPDF MoC as expressed in [BLo93].

3.3.3.3 Parameterized SDF (PSDF) MoC

Parameterized dataflow is a meta-modeling framework introduced by Bhattacharya and
Bhattacharyya in [BB01]. When this meta-model is applied, it extends the targeted MoC
semantics by adding reconfigurable hierarchical actors. Notably, it can be applied to SDF
[BB01] or to CSDF [KSB+12]. This section will focus on its application to PSDF.

Definition 3.3.3.3 (PSDF MoC definition)
A PSDF graph G = (A,F, P ) is a graph where:

• P is a set of parameters. A parameter p ∈ P is an integer value that can be used
as a production or consumption rate for an actor A and/or influence its internal
behavior. The value of parameters is not defined at compile time but rather at run
time by another actor.

• One hierarchy level is specified with 3 subgraphs, namely the init φi, the subinit φs,
and the body φb subgraphs.

– the init φi subgraph sets parameter values that can influence the rate of the
hierarchical actor itself as well as φs and φb subgraphs. The φi subgraph is
executed only once per iteration of the graph to which this hierarchical actor
belongs.

– the subinit φs subgraph sets values of all remaining parameters of the body φb

subgraph. The φs subgraph is executed prior to each firing of the hierarchical
actor. It can consume data tokens on input ports of the hierarchical actor but
cannot output data tokens.

– the body φb subgraph is executed when its configuration is complete, immediately
after the completion of φs. The body subgraph behaves as a graph implemented
with the MoC to which the parameterized dataflow meta-model was applied.

In the execution of a PSDF graph, reconfiguration occurs when values are given to the
parameters of a hierarchical actor. Actor computation and actor production and consump-
tion rates depend on these parameter values. An example of a PSDF graph is given in
Figure 3.15.

This graph contains two parameters, L and N . These two parameters influence the
rate of body actors. Parameter L is set in the init subgraph. The subinit graph is executed
and then the parameter N is set. This allows the body actor to be executed; its execution
and the BRV depend on the values of the parameters of L and N .
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Figure 3.15 – Hierarchical SDF graph example

3.3.3.3.1 PSDF Runtime Operational Semantics

The runtime operational semantics of a dataflow MoC defines the successive steps of the
graph execution. The operational semantics of PSDF is presented in [BB01]. The top
graph is considered as a top hierarchical actor. Its execution requires the following steps:

1. Instantiate all actors in the init subgraph φi.

2. Fire all actors in the init subgraph φi.

3. Compute the BRV of the subinit subgraph φs and pre-compute BRV body subgraph
φb. Parameter values used at this point are those values set in step 2 and default
values required for parameters whose values will be set in step 6. The pre-computed
body BRV is needed to obtain the interface rates of the current actor for the top
graph.

4. Wait for the next firing of the current actor.

5. Instantiate all actors in the subinit subgraph φs.

6. Fire all actors in the subinit subgraph φs.

7. Compute the body BRV with the parameter values set in steps 2 and 6.

8. Instantiate all actors in the body subgraph φb.

9. Fire all actors in φb.

10. Return to step 4.

This loop restarts from step 1 only if a new iteration of the graph containing the current
actor is fired again.

As presented in [SGTB11], the operational semantics make the PSDF MoC more pre-
dictable than the DPN but less predictable than the SDF MoC. Indeed, for all parame-
terized dataflow MoCs, the topology of a PSDF graph is undefined at compile time, as it
depends on dynamically set parameter values.

However, this topology is defined when actors of the subinit subgraph are executed,
which corresponds to a quiescent point. Consequently, this means that firing rates of
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actors are known further in advance than with the DPN MoC where the firing rates can
non-deterministically change at each actor firing.

3.3.3.3.2 PSDF Analyzability

When using the PSDF MoC, the schedulability of a graph may be proven at compile time,
by checking its local synchrony for certain application descriptions [BB01].

A PSDF graph is locally synchronous if it is schedulable for all possible configurations.
Furthermore, all its hierarchical children must be locally synchronous. To obtain this
property, the three following conditions must be satisfied:

1. The init, subinit and body graphs must be schedulable for all possible configurations.

2. Each invocation of the init and the subinit graphs must give a unique value to each
parameter set by the subgraph.

3. Consumption rates of subinit and body graphs on interfaces must depend only on
parameters set by the init graph.

The first condition may lead to a very large number of configurations to check, resulting
in an exponential number of reachable configurations. These checks can be moved to run-
time execution if needed, that is, at the steps 3 and 7 of the operational semantic.

3.3.3.4 Parameterized and Interfaced SDF (PiSDF)

The Parameterized and Interfaced dataflow Meta-Model (PiMM) has been introduced by
Desnos et al. in [DPN+13]. It can be used in an equivalent way to the parameterized
dataflow to add parameterization to a dataflow MoC. However, the PiMM also adds an
interfaced hierarchy feature which is similar to IBSDF.

In this section, the PiMM is presented as it is applied to the SDF MoC resulting in a
MoC called PiSDF. However PiMM can be applied to other dataflow MoCs to introduce
hierarchy with compositionality and parameterization.

3.3.3.4.1 PiSDF Semantics

The PiSDF semantics is formally defined as follows:

Definition 3.3.3.4 (PiSDF MoC definition)
A PiSDF graph G = (A, F , I, P , D) extends an SDF graph G = (A, F ) with the following
additions:

• I is a set of hierarchical interfaces. An interface is a vertex of the graph that passes
data tokens or parameter values between levels of hierarchy.

• P is a set of parameters. A parameter is a vertex of the graph and is used to configure
the application and to modify its behavior.

• D is a set of parameter dependencies. A parameter dependency is a directed edge of
the graph that propagates parameter configurations to other elements of the graph.

An example of a hierarchical PiSDF graph is given in Figure 3.16.
A parameter such as N or L is a vertex of the graph associated with a parameter value

and is used to configure elements of the graph, usually integer values.
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In a PiSDF graph, an actor can embed 4 different types of ports. The commonly used
input and output data ports are present but since parameters are explicitly described in
the graph, an actor can also embed input and output configuration ports that connect to
parameter dependencies. This is achieved by using a dependency is to connect parameters
to actor configuration ports (represented by dashed blue arrows in graph of Figure 3.16).

An output configuration port can be only connected to a parameter. This parameter
will then be dispatched to other graph elements, creating a parameter dependency tree.
A parameter can depend on other parameters, combining them in an expression to obtain
a new value. A parameter can influence one or more of the following properties: the
computation of an actor, the production/consumption rates on the ports of an actor, the
value of another parameter, and the delay of a Fifo.

The hierarchy semantics used in PiSDF is inherited from the IBSDF model introduced
in [PBR09]. In a PiSDF graph, a hierarchical actor is associated with a unique PiSDF
subgraph. PiMM adds two additional interface types: the input and output configuration
interfaces. From a subgraph perspective, an input configuration interface is equivalent to
a locally static parameter since it does not change for this graph iteration.

There are two types of parameters in PiSDF: configurable parameters and locally static
parameters. However, both these values must be fixed when scheduling the current graph.

A configurable parameter is one whose value is dynamically set once at the beginning
of each graph iteration. Configurable parameters cannot influence the rates of input and
output data interfaces, and are represented with a white circle in Figure 3.16.

Configurable parameters can be set either by the result of a dependency upon another
configurable parameter or from an output configuration port of an actor. In the example
of Figure 3.16, N is a configurable parameter set by an actor; this actor is thus called a
configuration actor.

The firing of a configuration actor produces a parameter value. A parameter depen-
dency uses this value to dynamically set the value of the configurable parameter. The
configuration actor in Figure 3.16 is the GenN actor, and is represented with a white
circle.
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Since the execution of a configuration actor results in a reconfiguration of the graph,
it is only permitted at quiescent points during a graph execution. This restriction leads to
the following rules:

• A configuration actor must be fired only once per iteration of its parent graph. This
unique firing must happen before the firing of a non-configuration actor, called body
actor.

• A configuration actor can only be connected to input data interfaces of its parent
graph and must have the same rate as the interfaces.

• The rate of a configuration actor can depend only on locally static parameters.

• Output data ports of a configuration actor are seen as an input data interface by
other actors of the same graph.

3.3.3.4.2 Runtime Operational Semantics

Based on PiSDF semantics, the execution of a graph G contains the following steps:

1. Wait for all configuration input interfaces to receive a parameter value.

2. Compute the rates on the input and output data interfaces using the partial config-
uration.

3. Wait until the hierarchical actor is fired by its parent graph.

4. Fire the configuration actors of the current graph which will set the configurable
parameters. The graph is now fully configured.

5. Compute the BRV of the graph to ensure its schedulability and find a schedule.

6. Fire the body actors following the computed schedule.

7. Produce, the data tokens and parameter values computed by the actors on the data
ports and output configuration ports.

8. If necessary, return to step 3 and initiate a new firing of the graph.

The operational semantics of the PiSDF MoC is quite similar to that of the PSDF MoC.
Steps 1 and 2 correspond to the init subgraph, steps 3 to 5 correspond to the execution of
the subinit subgraph, and steps 6 to 8 correspond to the execution of the body subgraph.
When compared to PSDF, the advantages of the PiSDF over the PSDF are the definition
of parameter dependencies and the simplification of the operational semantics.

3.3.4 PREESM: a Framework supporting the PiSDF MoC

The Parallel and Real-time Embedded Executives Scheduling Method (Preesm) is an
Eclipse-based framework that provides dataflow-based methods to study and program em-
bedded multicore platforms [PDH+14]. This framework is open-source and many tutorials
can be found on the website [PRE15] for the easy initiation of C/C++ programmers to
multicore programming.

The Preesm framework focuses on providing high level rapid prototyping information
on algorithm parallelism and latency. It also proposes detailed analyses on system memory
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requirements. Moreover, a platform adaptable C/C++ code generation is provided to
transform the dataflow representation into a runnable code.

This framework is based on the PiSDF MoC. This dataflow model describes the input
algorithm and actor code is not required by the framework for simulation purpose. The
executable program resulting from jointly compiling the generated and the manual code
and constitutes a multicore system prototype that is guaranteed to be deadlock-free and
can be retargeted to a different number of cores within minutes.

However, since this framework is a compile-time analysis tool, all code generation of
this framework is restricted to static PiSDF graphs. A static PiSDF graph only embeds
parameter values that are fixed and known at compile time.

The Preesm framework is detailed in Figure 3.17. It can be seen that the Preesm

framework requires three inputs:

• An Architecture model: this model is a System-Level Architecture Model (S-LAM)
graph that represents the architecture [PNP+09]. It lists the available cores of the
platform as well as the logical communication media between them.

• A PiSDF representation of the application

• A Scenario: a database providing all necessary information to link an algorithm and
an architecture.
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C Code
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Optim.
C Code

Generation

Simulation

Multicore
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Figure 3.17 – Preesm Framework

Firstly, the Preesm framework performs dataflow transformations on the PiSDF al-
gorithm to expose the parallelism. The single-rate transformation is part of this process.
The intermediate transformed representation is then used to schedule the application for
the target platform.

Next, the static scheduling transformation generates a periodic self-timed multicore
schedule to process the input data stream that will be repeated indefinitely. The embedded
multicore scheduler implements the List and Fast scheduling methods described by Kwok
[Kwo97] The current Preesm plug-ins are only oriented towards latency minimization.

A memory optimization task computes optimizations to reduce execution memory re-
quirements. As described in [DPNA15b], a memory exclusion graph is created in order to
authorize memory reuse between Fifos.
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Finally, the simulation task provides a rapid feedback to the designer and certain metrics
for system design. Notably, a simulated Gantt chart of the code execution on the parallel
architecture is generated. The code generation tasks generate a self-timed code for each
core that handles actor firing, and data fetching in addition to synchronizing the cores.

3.4 Conclusion

PiSDF is one of numerous existing dataflow MoCs.
Its has advantages over models that includes actor states, such as Dynamic DataFlow

(DDF). The DDF forbids multiple simultaneous executions of an actor. This constraint is
due to internal states within each actor that must be progressively updated after they have
been sequentially executed. In contrast, the SDF stateless MoC allows multiple repetitions
of the same actor immediately after the self-feedback contribution from a Fifo (that is, no
data dependency) ceases between executions. Self-feedback Fifos can be used to model
the state of an actor visible to the dataflow model. However, the range of constructs
representable with DDF is bigger than that representable with SDF.

A distinguishing feature of PiSDF is the integration of a tree of parameters to asyn-
chronously transmit control values to actors [DPN+13]. The PiSDF model has been pro-
posed to exploit the parallelism offered by locally static periods of execution, when all
parameters that influence scheduling remain stable.

This model combines properties of expressivity, compositionality and predictability in
such a way that a wide range of applications may be represented and exploited efficiently.
Reconfiguration using parameters allows good predictability of the application execution
that immediately follows, permitting informed scheduling decisions.

The execution of the PiSDF dataflow MoC on a multicore heterogeneous platform is the
focus of this thesis. The current work uses some of the features of the Preesm framework
and explores reconfigurable applications by defining a dataflow-based embedded runtime.
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CHAPTER 4

JIT-MS: a PiSDF-based Multicore Scheduling Method

4.1 Introduction

One of the major challenges of designing and implementing multicore signal processing
systems is to dispatch computational tasks efficiently onto the available PEs. It is possible
additionally to require the dispatch task to include dynamic modifications in the application
functionalities or in the resource requirements. This process of assigning, ordering and
timing actors on PEs in this context is called multicore scheduling, and was presented in
Section 2.3.4.1.

Inefficient use of the PEs leads to longer processing times. The consequent idle periods
of the processors result in unnecessary static power consumption, requiring higher energy.
Data dependencies and dynamic signal processing algorithms make multicore scheduling a
complex problem as stated in [MTK+11].

A major contribution of this thesis is the elaboration of a novel multicore scheduling
method to address these design challenges. This method is based on the PiSDF MoC,
and is called Just-In-Time Multicore Scheduling (JIT-MS). JIT-MS is a flexible scheduling
method that takes strategic scheduling decisions at runtime. It focuses on optimizing the
mapping of application functionalities onto multicore processing resources. In relation to
the scheduling taxonomy defined by Lee and Ha [LH89], JIT-MS is a fully dynamic schedul-
ing strategy. It handles heterogeneous platforms and focuses on middle grained parallelism.
JIT-MS can exploit data, task and pipeline parallelism as presented in Section 2.3.3. This
method is embedded into a runtime system called Synchronous Parameterized Interfaced
Dataflow Embedded Runtime (Spider) that is described in Chapter 6.

With the range of MoCs available in the literature, the choice of input MoC impacts
the scheduling method in terms of performance and implementation. Selecting an adequate
MoC in terms of predictability may potentially provide more parallelism to the scheduler.
Conversely, lack of expressiveness is a typical limitation of a MoC with good predictability.
Lower expressiveness limits the range of constructs that can be modeled.

In this thesis, the PiSDF model has been selected to exploit the parallelism offered by
locally static periods of execution, when all parameters that influence scheduling remain
stable. The fundamental idea is that the runtime detection and exploitation of local SDF
properties can produce scheduling solutions that are more efficient and more predictable.
The PiSDF model allows the designer to model conditions through parametric dataflow
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graphs with variable parameter values. JIT-MS is proposed to exploit the features of the
PiSDF model. JIT-MS efficiently extracts the potential parallelism of the application and
reduces the overall latency of the dataflow graph execution.

An iterative method is used by JIT-MS to handle runtime reconfiguration and hier-
archical execution. The multicore scheduling method is then divided into multiple steps
and is focused on progressively building an intermediate representation called a single-rate
graph. This intermediate representation is used to unveil parallelism of the application and
acts as a task dependency graph, which is then used for the Mapping/Ordering task.

This chapter is organized as follows: Section 4.2 gives an overview of the JIT-MS
method. Then, the PiSDF-specific BRV and the single-rate transformation are described
in Sections 4.3 and 4.4 respectively. Finally, the global iterative scheduling method is given
in Section 4.5.

4.2 Overview of the JIT-MS method

An overview of the JIT-MS is presented at Figure 4.1. The JIT-MS method is based on
an intermediate graph called Single-Rate DAG (SRDAG).

An SRDAG is a dataflow graph where each actor is instantiated the number of times
that it must be fired. The SRDAG corresponds to the current schedule of a PiSDF graph,
and it is reset at the end of each graph iteration. The graph transformation from PiSDF
to SRDAG is highly dependent on the values of PiSDF parameters. The SRDAG can
be updated after each parameter resolution, immediately after a reconfiguration point is
reached.
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/Ordering
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BRV
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Actors ?

Mapping

/OrderingSRDAG
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Jobs Parameters
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Configure 
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Figure 4.1 – JIT-MS Transformation Flow

The JIT-MS method is composed of multiple tasks (represented as boxes in Figure 4.1).
The JIT-MS method is iterative. The iterations occur over all hierarchical levels of

a PiSDF graph to allow entire graph scheduling. At initialization, the SRDAG is popu-
lated with a unique top actor containing the top PiSDF graph. Then, each hierarchical
actor present in the SRDAG is refined using its PiSDF description. The refinement of a
hierarchical actor (that is, the execution of its internal graph) is called a step. A step is
represented as the large dashed box in the Figure 4.1.

The Mapping/Ordering task boxes of Figure 4.1 correspond to the multicore Map-
ping/Ordering tasks from the SRDAG onto all PEs present in the platform. Multiple
methods can be applied: numerous SDF scheduling heuristics exist that are relevant for
multicore architectures [SB12]. A new Mapping/Ordering method focusing on many-core
systems is introduced in Section 5.4. The Mapping/Ordering approach does not impact
the JIT-MS method.

Next, the BRV computation and the Single-Rate Transformation are computed to reveal
application parallelism. At the end of each step, the single-rate graph is populated with
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new actors requiring execution. These two tasks are described in Sections 4.3 and 4.4
respectively.

4.3 PiSDF BRV Computation and Round Buffers FIFO be-
havior

On each step and for a given hierarchical actor, parameters can take different values. Once
the parameter value have been determined by then configuration actors, the transformation
of the PiSDF actor internal graph into an SRDAG subgraph is triggered. This subgraph
is then merged into the global graph in which actors are then mapped and ordered.

This transformation has been explored in the literature for SDF graphs as described in
Section 3.3.1.1.2. The first necessary operation is the BRV computation.

The BRV, also known as the SDF repetitions vector, represents the number of firings
of each actor in a minimal periodic scheduling iteration for the graph. The BRV is a
non-negative-integer vector that is indexed by the actors in the associated SDF graph.

However, some specificities of PiSDF require adaptations to the conventional repetitions
vector computation process (from [LM87]).

In a PiSDF graph, certain data Fifos behave as Round Buffers (RBs) [DPN+13] to
ensure hierarchical composability. Special RBs actors must be inserted in the SRDAG to
implement this behavior. A RB is an actor with one input port and one output port.
It transfers the input tokens to its output port when its production and consumption
rates are equal. If its consumption rate is greater than its production rate, only the last
tokens are transferred to the output. Conversely, if the production rate is greater than
the consumption rate, input tokens are transferred several times to the output port until
sufficient tokens are produced.

Such round buffer behavior is needed in the PiSDF model to enforce specific firing rules
of the configuration actors and to provide hierarchical composability [DPN+13].

Fifos connected to the input or output interfaces of a hierarchical actor require RBs
that ensure composability in the hierarchical specification. Fifos connecting configuration
actors to other actors also require RBs to ensure that configuration actors fire only once
per subgraph. Application designers using the PiSDF model of computation need to take
such RB behavior into account during the development process.

This RB behavior and the special semantics of configuration actors require modifica-
tions to the conventional BRV computation process inherited from SDF graphs. RBs have
no effect on repetition vectors, as they are instantiated based on the behavior of their
parent graph , and not on the number of tokens they exchange. The BRV computation
procedure for our JIT-MS scheduling method is specified in Algorithm 4.1.

To compute the BRV, the PiSDF graph is separated into two subgraphs. The first
subgraph is composed of configuration actors only and is named CA. The second is the
complement of the first, is composed of solely body actors, and is named BO . The BRV
computation procedure is used at each JIT-MS step, and is thus executed several times
within one iteration of the PiSDF top graph.

The BRV computation process specified in Algorithm 4.1 begins by computing rates
(associated with the dataflow graphs Fifos) using previously computed parameter values.
Then, the conventional BRV computation is applied across the subgraph BO .

The initial BRV is obtained by only considering this hierarchy level and this configura-
tion flow. This BRV corresponds to the minimal execution scheme of this hierarchy level,
thus ensuring that internal Fifos are neither starve nor accumulate tokens.
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Algorithm 4.1: BRV computation procedure for PiSDF.

1 Procedure computeBRV()

2 Resolve rates of all Fifos using parameter values;
3 Compute BRV of BO ;
4 k ← 1;
5 for each {f ∈ F, f.src ∈ CA ∪ I, f.snk ∈ BO } do
6 k ← max (k, ceil (f.prod÷ (f.cons ∗BRV [f.snk])));
7 endfor
8 for each {f ∈ F, e.src ∈ BO, f.snk ∈ I } do
9 k ← max (k, ceil (f.cons/(f.prod ∗ BRV [f.src]));

10 endfor
11 BRV ← k ∗ BRV ;

However, the PiSDF MoC adds certain restrictions to ensure configuration flow and
hierarchical consistency. Thus, this initial vector is multiplied by a scalar k to obtain an
updated BRV. The factor k ensures that all tokens produced by configuration actors and
input interfaces are consumed. To obtain this factor k, the algorithm iterates over all
Fifos f that are connected to an interface or a configuration actor. Moreover, the factor
k ensures that all tokens needed by output interfaces are produced. The resulting updated
BRV is then compliant with the PiSDF MoC.

4.4 Single-Rate Transformation

Once the updated BRV has been computed, the single-rate graph of the current execution
can be updated. This is performed by multiple instantiations of each actor in the PiSDF
graph. The number of repetitions of each actor has already been determined in the previous
BRV computation task.

Then, the actors of the single-rate graph need to be linked together using Fifos. Linking
actors is equivalent to distributing the token output from each PiSDF Fifo to all targeted
SRDAG actors.

However, each actor corresponds to a task and has a fixed number of inputs and outputs.
So, the number of actor ports must remain stable for each single-rate actor.

In order to link the actors, new special actors that handle operations on tokens are
instantiated in the graph. These actors are able to split a single Fifo into several Fifos,
to group Fifos, duplicate tokens, create tokens or even delete tokens.

These special actors are described in Subsection 4.4.1, and the linking process is de-
scribed in Subsection 4.4.2.

4.4.1 Special actors

In literature, special actors are generally employed for single-rate transformations [Pel10].
Their major task is to express non-direct token flows between actors. Examples of their
usage include dividing one Fifo into several which are then connected to different sink
actors and inversely, grouping a number of Fifos for a single actor. In certain cases,
special actors are used to reduce the memory footprint of the overall Fifo bank. Special
actors can also be used for efficient memory allocation of Fifos [DPNA15b, DPNA15a].

Numerous definitions of special actors can be found in literature. To avoid ambiguity,
the five special actors used in this thesis are defined as follows:
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• Fork: The Fork actor dispatches the tokens of a Fifo to several actors. The Fork

special actor may have multiple output Fifos. However, it always has a unique input
Fifo. This actor does not create or ignore tokens, so the number of incoming tokens
must match the sum of outputted tokens. The order of output Fifos is important;
it determines the destination of each token. As the behavior of a Fork actor does not
modify token values, its execution may be implemented by a memory management
mechanism, making tokens available to its output Fifos.

• Join: The Join actor performs the reverse operation to the Fork special actor. It
redirects tokens from multiple Fifos to a unique Fifo. The Join actor may have
multiple input Fifos but only one output Fifo. Like the Fork actor, the Join actor
does not create or discard tokens. The total number of tokens received from its
input port must match the number of outputted tokens. The input Fifo order is
important. It determines the order in which the tokens will appear on the output
Fifo. As the behavior of a Fork actor does not modify token values, its execution
may also be implemented by a memory management mechanism, forwarding input
tokens in the right order to the output port.

• Broadcast: The Broadcast special actor is used to duplicate tokens from a single
Fifo to several Fifos. The token rate of the input Fifo and the sum of the token
rates of all output Fifos are equal. For this actor, the order of output Fifos is
unimportant. The behavior does not modify token values and as input tokens of an
actor are considered read-only. The execution of this actor is also memory managed,
forwarding the same data to several Fifos.

• Init: The Init special actor is used to create default tokens corresponding to delays
on the dataflow graph. The value of these tokens is set to zero. The Init special
actor is used to initialize delay tokens during the single-rate transformation. SRDAG
optimizations are possible when this special actor is present as the actor can be
removed without consequence when its output tokens (that is, the delay tokens) are
discarded.

• End: The End special actor is used to discard unused tokens. In certain cases, this
special actor is mandatory to eliminate the situation where Fifos contain tokens at
the end of the execution.
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Figure 4.2 – Example of Special Actors

Figure 4.2 describes the behavior of the special actors. The token order into Fifos is
represented by the numbers in brackets; this allows the changes in token order in Fifos to
rapidly noted. These five special actors are sufficient to implement all single-rate transfor-
mation patterns of a PiSDF Fifo.
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4.4.2 Single-Rate Transformation Patterns

Given the final computed BRV, the single-rate transformation of each subgraph can be
processed. For this task, each Fifo in the PiSDF graph is managed separately.

The first step is to integrate each actor as many times as it may fire. This is a straight-
forward processing step. The next step is to link these actors together though the use of
special actors and single rate Fifos.

This subsection will introduce different patterns that can be applied to this single-rate
transformation of a Fifo. The problem has already been widely explored in literature
[PPW+09, ZPBF12, LHGQ11]. The processing method presented in this thesis is derived
from [PBL95], which was based on the SDF MoC.

This new method handles the different cases introduced by the PiSDF MoC. It also
focuses on conserving the number of ports for each single-rate actor. The method then
uses special actors to handle token management.

The PiSDF MoC requires four different patterns of single-rate transformations: the
default pattern, the delayed pattern, the round buffered input and the round buffered
output. These four patterns are detailed in the following subsections.

4.4.2.1 Generic Pattern and Single-Rate Transformation Algorithm

In literature, the single-rate transformation is generally considered straightforward. The
entire single-rate transformation is based on the SDF Fifo transformation. Each SDF
Fifo is split and then connected to several inputs (called sources) and output ports (called
sinks). The pattern used for this transformation is illustrated in Figure 4.3. This pattern
is defined to elucidate the single-rate transformation problem, and to allow the derivation
of a generic algorithm for the single-rate transformation of a single Fifo.
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Figure 4.3 – Fork/Join general pattern

In Figure 4.3, N and M are defined as the number of source and sink actors respectively
which require connection. N and M are closely related to R and K respectively, which are
the corresponding BRV values of actors.

The pi and ci values correspond to the amount of tokens produced by the source actors
and consumed by the sink actors, respectively for one firing. These values may not be
equal.
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Fi and Ji actors are Fork and Join actors respectively. These actors have the role of
distributing data among the appropriate sink actors.

The problem posed by single-rate transformation is the determination o the amount of
tokens outputted by Fork actors and received by Join actors. The production of the k-th
output port of the i-th Fork actor is named Fi ,k . Respectively, the consumption k-th input
port of the j-th Join actor is named Jj ,k .

Theorem 4.4.2.1 (Fork/Join Value)

∀i ∈ [0, N − 1], ∀j ∈ [0,M − 1],Fi ,j := Jj ,i := FJ i ,j

Proof. Since the graph is a single-rate graph, the production and consumption rates for a
given Fifo must be equal. This leads to the previous proposition where FJ i ,j is a notation
reflecting this equality.

Given theorem 4.4.2.1, the problem can be reduced to the resolution of FJ i ,j for i ∈
[0, N − 1] and j ∈ [0,M − 1]. This corresponds to the determination of the following
Fork/Join matrix:

Definition 4.4.2.2 (Fork/Join Matrix)
Fork production rates and Join consumption rates can be represented as a 2D matrix called
Fork/Join matrix:

FJN,M =





















J0 J1 · · · Jj · · · JM−1

F0 FJ 0,0 FJ 0,1 · · · FJ 0,j · · · FJ 0,M−1

F1 FJ 1,0 FJ 1,1 · · · FJ 1,j · · · FJ 1,M−1
...

...
...

. . .
...

. . .
...

Fi FJ i,0 FJ i,1 · · · FJ i,j · · · FJ i,M−1
...

...
...

. . .
...

. . .
...

FN−1 FJN−1,0 FJN−1,1 · · · FJN−1,j · · · FJN−1,M−1





















The single-rate transformation is then equivalent to the Fork/Join matrix resolution.
Algorithm 4.2 then describes the computation of this matrix. The algorithm input is
derived from the source and sink count as well as the production and consumption rates
associated with each actor.

The algorithm begins with the initialization of the variables. The resulting Fork/Join
matrix is filled with zeros and indexes i and j are set to zero. Then, tokenSrc and tokenSnk
are set with the initial production and consumption rates. tokenSrc and tokenSnk vari-
ables are used to keep track of the remaining tokens at each step.

Next, the while loop iterates until the whole Fork/Join matrix is completed. The loop
fills each element of the matrix with the token rates to which it corresponds by the use
of the rest variable. At each step, the current Fork or Join actor or both will starve of
tokens, leading to the creation of a new Fork or Join actor. The rest variable then stores
the amount of tokens transmitted for use in the current index couple (i, j).

If necessary, the tokenSrc and tokenSnk are subsequently updated with the rates
corresponding to the next source or sink actor. The i and j are then also updated depending
on whether the Fork or Join actors are starved. Finally, the whole Fork/Join matrix is
completed. Any unchanged elements will be still equal to zero.

This algorithm is applied on the generic pattern described in Figure 4.3. The remainder
of this subsection will review the four possible cases in PiSDF MoC and their expression
using this generic pattern.
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4.4.2.2 Default Pattern

A default pattern is composed of a non-delayed Fifo with no connections, which is sub-
ject to a round buffer effect. Such a Fifo is neither connected to an interface nor to a
configuration actor. The default pattern of the transformation can be found at Figure 4.4.
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Figure 4.4 – Fork/Join default pattern for single-rate transformation

Property 4.4.2.3 (Default Pattern Properties)
By definition of the default pattern, we have:

N = R

M = K

∀i ∈ [0, N − 1], pi = p

∀j ∈ [0,M − 1], cj = c

With Property 4.4.2.3, the generic algorithm 4.2 can be applied. The indexes N and M
are directly derived from the BRV computation, and both the production and consumption
rates are equal to the production and consumption respectively of the corresponding PiSDF
Fifo.

4.4.2.3 Delayed FIFO Pattern

When a Fifo has a non-zero delay, this delay must be taken into account for the single-rate
transformation. This is an important pattern for the single-rate transformation.

In PiSDF, delays can be used for different purposes, such as feedback loops. If Fifos
of a graph make a loop of actors, the SDF MoC schedulability is only respected when the
tokens necessary to launch one execution loop are set into the delay of one of the Fifos.
Since there is no flattening between hierarchical levels of a full PiSDF graph, data remaining
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Algorithm 4.2: Fill the Fork/Join Matrix

Input: N Number of sources actors
Input: M Number of sinks actors
Input: p[N ] Production of sources actors
Input: c[M ] Consumption of sinks actors
Output: FJ [N ][M ] The computed Fork/Join Matrix

1 Variable: integer tokenSrc, integer tokenSnk;
2 Variable: integer i, integer j, integer rest;
3 /* Initialization */

4 FJ [N ][M ] = 0;
5 tokenSrc = p[0];
6 tokenSnk = c[0];
7 i = j = 0;
8 /* Fill the Fork/Join Matrix */

9 while i = N && j = M do
10 rest = min (tokenSrc, tokenSnk);
11 FJ [i][j] = rest;
12 tokenSrc = tokenSrc− rest;
13 tokenSnk = tokenSnk − rest;
14 if tokenSrc = 0 then
15 i = i+ 1;
16 tokenSrc = p[i];
17 end
18 if tokenSnk = 0 then
19 j = j + 1;
20 tokenSnk = c[j];
21 end

22 end

at the end of the PiSDF graph execution in a delayed Fifo is discarded at the end of the
graph hierarchy level execution. To retain tokens of a Fifo for the next iteration, these
data token must be outputted through an interface. These tokens must then be re-injected
into an input interface in the upper hierarchy. These actions consequently move the delay
to the upper hierarchy level.

For the single-rate transformation, a delay on a Fifo will then be initialized using an
Init actor. At the end, remaining tokens will be discarded using an End actor. Figure 4.5
illustrates the pattern of this transformation.

Since there are two new single-rate actors, the Fork/Join matrix size is different from
that of the default case:
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Property 4.4.2.4 (Delayed Pattern Properties)
From the definition of the delayed pattern, we have:

N = R+ 1

M = K + 1

∀i ∈ [0, N − 1], pi =

{

d if i = 0

p otherwise

∀j ∈ [0,M − 1], cj =

{

d if j = M − 1

c otherwise

Then, though use of the Algorithm 4.2, the Fork/Join Matrix can be computed.

4.4.2.4 Round Buffered Source Pattern

Another distinct pattern occurs when the Fifo source is a round buffered source. A round
buffered source exists when a Fifo is connected to an input interface or a configuration
actor. The round buffered source pattern is illustrated in Figure 4.6

In this case, the amount of tokens may or may not be increased depending on the token
consumption of the sink actor. In case of token duplication, a Broadcast actor is used as
shown in Figure 4.6. However, the number of output Fifos of the Broadcast actor need to
be determined. From the definition of the Broadcast actor, each output Fifo has a token
rate of p.

Theorem 4.4.2.5 (Broadcast output in Round buffered source pattern)
In the round buffered source pattern, the Broadcast actor generated possesses b output
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F ifos with:

b =

⌈

K ∗ c

p

⌉

Proof. Since the sink actor will consume K ∗ c tokens, where K is the repetition number of
the sink, the minimum number of tokens needed to satisfy this consumption is the smallest
b integer that respects:

b ∗ p ≥ K ∗ c

b ≥
K ∗ c

p

b =

⌈

K ∗ c

p

⌉

The following properties can then be defined:

Property 4.4.2.6 (Round Buffered Source Pattern Properties)
Though the definition of the delayed pattern, we have:

N = b

M = K + 1

∀i ∈ [0, N − 1], pi = p

∀j ∈ [0,M − 1], cj =

{

p ∗ b−K ∗ c if j = M − 1

c otherwise

Finally, the Fork/Join Matrix can be computed using generic Algorithm 4.2, enabling
the single rate transformation of this Fifo.



56 JIT-MS: a PiSDF-based Multicore Scheduling Method

4.4.2.5 Round Buffered Sink Pattern

The last pattern occurs when the Fifo sink is a round buffered sink. A round buffered
sink is only induced by an output interface in PiSDF MoC. The transformation pattern is
illustrated in Figure 4.7.
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Figure 4.7 – Round buffered Sink Pattern for Single-Rate Transformation

In this particular case, the PiSDF MoC specifies that the final tokens are transmitted
to the upper hierarchy. In this case, only two Join actors are created regardless of the
BRV values. One Join actor retrieves the useful tokens and inversely, the other Join actor
collects tokens to discard. Tokens produced are then either passed to an End actor or the
output interface.

The resolution of the pattern may then fit the generic pattern when:

Property 4.4.2.7 (Round Buffered Sink Pattern Properties)
Through the definition of the delayed pattern, we have:

N = R

M = 2

∀i ∈ [0, N − 1], pi = p

cj =

{

R ∗ p− c if j = 0

c otherwise

Finally, the Fork/Join Matrix can be computed with the generic Algorithm 4.2 and the
single rate transformation of this Fifo can be performed.

In conclusion, all single-rate transformation patterns used by the PiSDF can be com-
puted using the given algorithm. This iterative method allows any possible PiSDF MoC
case to be managed and the Fork/Join matrix of the given Fifo to be derived. After the
generation of this matrix, the source and sink single-rate actors may be easily connected.
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4.5 Multi-Step scheduling of a PiSDF graph

As presented in Figure 4.1, the transformation flow of a single PiSDF graph is iterative.
The transformation iterates as required to resolve all hierarchy levels.

The JIT-MS method is based on the operational semantics of PiSDF that is described
in [DPN+13]. Each hierarchical actor firing must be processed in two steps. The first stage
fires the configuration actors of the subgraph for each hierarchical actor. These configu-
ration actors produce the necessary parameters to resolve the remainder of the subgraph.
When all parameters are solved at a hierarchical level, a schedule can be computed for
the rest of the current hierarchy level. This operational semantic can be implemented in
single-core systems.

In a multicore system, the scheduling method has to extract the parallelism of the
application and then send jobs to multiple PEs. With a static MoC such as SDF, the
full single-rate graph can be entirely derived at compile-time. The difficulty of the PiSDF
scheduling process lies in efficient actor scheduling without knowledge of the entire resolved
graph. The complete SRDAG is known only when all configuration actors have been
executed.

The top element of the hierarchical graph is a unique actor named top actor with
an infinite lifespan, and is never connected to either input Fifo or output Fifo. In the
remainder of this thesis, we distinguish between hierarchical actors that contain a subgraph
and atomic actors that contain a code executable on a single PE.

The JIT-MS scheduling method proceeds in multiple steps, with each using scheduling
step thus unveiling a new portion of SRDAG. Every hierarchical actor firing can result in
up to two scheduling steps: one to schedule configuration actors and another to schedule
the body actors of the graph.

Once an SRDAG has been generated, it is then analyzed to extract the maximum
parallelism while still respecting actor granularity. The JIT-MS scheduling can then map
and order both actors and communications before firing them onto the platform. Newly
instantiated hierarchical actors are added to the SRDAG. This process can be repeated
until all hierarchy levels have been explored.

Multi-step scheduling leads to an SRDAG containing a mix of actors which have already
been fired and those that have not yet been fired. To keep track of actors already executed
in the SRDAG, each actor is tagged with a flag representing its execution state. This flag
can take three values:

• Run (R): the actor has already been fired in a previous step.

• Not Executable (N): the actor cannot be executed because its parameters are not yet
solved.

• Executable (E): the actor can be executed in the next firing step, as all actor param-
eters are resolved and its predecessors are tagged as executable or run.

A flag update procedure is processed before each static scheduling step. It updates
all flags as a function of SRDAG topology and actor types. The flag update procedure is
described in Algorithm 4.3.

The algorithm assumes that if a configuration actor is present in the SRDAG and is
not already in the Run state, this actor has been newly added in the current scheduling
step, so it must be executable (line 4). The SRDAG body actors are constrained to be
flagged as executable if and only if all predecessor actors are run or executable (line 6).
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Algorithm 4.3: updateSrDAG

1 Procedure updateSrDAG(inputDag)

2 for each {a1 ∈ inputDag , a1 .flag 6= R} do
3 if a1 ∈ CA then
4 a1 .flag ← E;
5 else if ∃a2 ∈ a1 .predecessors , a2 .flag = N then
6 a1 .flag ← N ;
7 else
8 a1 .flag ← E;
9 end

10 endfor

The complete procedure of JIT-MS scheduling is shown in Algorithm 4.4. The global
SRDAG used as an intermediate representation is called the execution graph. This graph
describes the entire execution of one application iteration. First, the unique top actor
of the PiSDF algorithm is placed in the empty execution graph (line 2). This top actor
represents one application iteration.

A PiSDF graph software Fifo is used to asynchronously transfer the subgraphs that
are ready for the parameter resolution to the next scheduling phase. This Fifo is named
pisdfStack in the algorithm and must be cleared at the beginning of the graph iteration
(line 3).

After initialization, the algorithm enters a primary while loop (line 4) which computes
scheduling steps until there are no longer hierarchical actors in the execution graph. A
single scheduling step is divided in 3 parts: graph configuration, actor execution and graph
resolution.

The first part (line 5 to 18) replaces each executable hierarchical actor of the execution
graph by its configuration actors. For the case of a hierarchical actor which does not
contain a configuration actor the whole subgraph can be fired and the result replaces the
hierarchical actor.

The second part (lines 19 to 20) maps, orders and fires executable configuration actors.
Parameter value are subsequently received from the configuration actor executions. The
following scheduling stages can have different policies:

1. map, order and fire all executable actors with or without a priority on configuration
actors.

2. map, order and fire only actors which lead to configuration actors.

3. map, order and fire actors which lead to configuration actors in priority and add the
result of the map, order and fire of executable actors to any remaining space. Non
executed actors are retained for the next scheduling step.

The focus of this thesis is the map, order and firing of actors exclusively which lead
to configuration actors . Exploration of the first and third options is envisaged for future
work.

The third part (lines 21 to 26) corresponds to graph resolution. It is here that, the
parameters resolved in the previous stage are used to resolve the graph parameters of
each hierarchical step. The BRV of each subgraph is computed and the execution can be
completed for these new actors.
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Algorithm 4.4: Multi-Step Algorithm

1 Procedure MultiStep()

2 Add topActor in execGraph;
3 Clear pisdfStack ;
4 while {∃h ∈ execGraph, h.subgraph 6= ∅} do
5 while {∃h ∈ execGraph, h.subgraph 6= ∅} do
6 curPisdf ← h.subgraph;
7 if CA 6= {∅} then
8 Replace h with RBs in execGraph;
9 Put CA in execGraph;

10 Add RBs between CA and BA;
11 push curPisdf → pisdfStack ;
12 end
13 else
14 computeBRV(curPisdf );
15 Add single rate BA in execGraph;
16 end
17 updateSrDAG(execGraph);
18 end
19 Schedule & fire {a ∈ execGraph, a.flag = E};
20 Wait All parameter values;
21 while pisdfStack is not empty do
22 pop pisdfStack → curPisdf ;
23 computeBRV(curPisdf );
24 Add single rate BA in execGraph;
25 end
26 updateSrDAG(execGraph);
27 end
28 Schedule & fire {a ∈ execGraph, a.flag = E};

At the end of the algorithm (line 28), no more hierarchical actors are present in the
graph. It is at this point that a final phase of mapping, ordering and firing of executable
actors must be performed to execute all remaining actors.

These steps describe the entire JIT-MS scheduling method employed in this thesis.
This method will be benchmarked and applied to real applications in Chapter 7.

4.6 Conclusion

The JIT-MS scheduling method allows multicore scheduling of PiSDF graphs to be per-
formed. This scheduling method is processed at runtime and permit full exploitation of
the locally static regions of the PiSDF MoC to improve scheduling efficiency.

For efficient scheduling based on the PiSDF MoC, the JIT-MS method employs an
intermediate graph called SRDAG. This graph can be considered as an precedence which
reveals interactions between actor firings of the entire execution. By the use of this SRDAG,
the JIT-MS method can exploit maximal parallelism between actors through the use of a
Mapping/Ordering heuristic.
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One of the most crucial scheduling tasks in the JIT-MS is the single-rate transformation.
This task is processed immediately after parameters of a hierarchy level are evaluated. It
generates the SRDAG from the PiSDF graph. It is the same task used in SDF multicore
scheduling but it has been extended in this thesis to handle PiSDF graphs. In fact, the
configuration actor firing rules and the interface hierarchy require special attention, leading
the single-rate transformation to create new actors in the graph called “special actors” that
handle token distribution.



CHAPTER 5

Improving the PiSDF Multicore Scheduling

5.1 Introduction

Chapter 4 introduced the fundamentals of the PiSDF multicore scheduling technique.
There are a number of possibilities for optimizing this technique for better performance at
runtime. Each optimization targets a different subpart of the JIT-MS method, and several
enhancements will be detailed in this chapter.

First, an extension of the PiSDF MoC is proposed to ameliorate scheduling performance
and to add a new feature for PiSDF developers. This extension is defined in Section 5.2

Post-single-rate transformation optimizations on the SRDAG are also proposed to re-
duce the graph complexity. This lower complexity is achieved by reducing either the
memory footprint or the Mapping/Ordering processing time or the potential parallelism of
the application. These optimizations are detailed in Section 5.3.

The final optimization is the use of a new Mapping/Ordering algorithm. As dis-
cussed previously, the JIT-MS method is independent of the algorithm used for the Map-
ping/Ordering task. Any one of the algorithms proposed in [SSKH13] may be employed.
One of the most famous Mapping/Ordering algorithm is the list scheduling algorithm. The
list scheduling algorithm has a number of variants: for experiments presented in this thesis,
the Modified Critical Path (MCP) version is used [WG87]. However, for an architecture
with large PE count list scheduling is time consuming. For the situation of a many-core
platform with hundreds of PEs, exploration of a new Mapping/Ordering algorithm is pro-
posed as future work in Section 5.4.

5.2 Proposed PiSDF extension

This section presents an extension of the original PiSDF MoC which focuses on initial
delay values on Fifos. In Figure 5.1, the feedback loop delay around actor B allows the
transmission of data tokens generated by the previous firing of actor B to the current firing.
Clearly, this behavior is not possible for the first firing.

As described in Section 4.4, the usual practice is to add a new actor to the SRDAG. This
new actor is a special actor called Init (as defined in Section 4.4.1). This actor generates
d tokens as specified in the initial token value of the delay. However, the initial value of
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Figure 5.1 – PiSDF delay question

the token is not specified in the PiSDF MoC definition [DPN+13], meaning that a token
may be zero, one or even an uninitialized value.

It is thus important to understand whether the values of the initial tokens are used
for the first firing of actor B. If this is the case, this may mean that resulting execution
depends on these randomly generated tokens. Moreover, if the actor B is hierarchical and
the values generated from the initial token then influence a parameter, the consequence
may be a non-schedulable graph. Thus, it is to control the initial value of the delays that
the PiSDF extension is proposed.

5.2.1 Problem encountered with original PiSDF MoC

The extension proposed with PiSDF MoC is introduced using an example. This example is
a common pattern in application design. It contains a for loop where an action is repeated
a parameterized number of times on the same data.

This example is presented using a C sample code in Listing 5.1. The use of a ping pong
buffer to reduce memory footprint may be noted.
1 int main ( ){
2 char s t a r t , end ;
3 s t a r t = A( ) ;
4 for ( int i =0; i<N; i++){
5 end = B( s t a r t ) ;
6 s t a r t = end ;
7 }
8 C( s t a r t ) ;
9 }

Listing 5.1 – example C code of parameterized iteration

The single-rate dataflow graph corresponding to this example is shown in Figure 5.2.
From the dataflow graph, the actor B is repeated N times. That is, B applies the compu-
tation N times on the data.
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Figure 5.2 – Single-rate dataflow graph of the application
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There are multiple ways to represent this pattern in PiSDF MoC. The first is displayed
in Figure 5.3.
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Figure 5.3 – Flattened PiSDF representation of the example

This representation uses multiple special actors to describe the application. The actor
B is repeated N times, as implied by the N

1 ratio Fifo from the sel (select) actor to the
Sw (Switch) actor. The Sw actor selects the input data to feed the actor B. This actor
simply uses the input token value from its sel port to determine which token to copy to its
output. In this PiSDF graph, tokens are chosen from actor A or from the feedback loop.

To ensure that actors A and C are executed only once, two RoundBuffer actors have
been inserted: one will duplicate the token outputted by A and the other will select only
the last token and send it to C. A Broadcast actor has also been added with the role
of duplicating each token, and then forward it to either the feedback loop or the second
RoundBuffer .

The sel actor determines which data token is sent to actor B. For our application, the
sel actor should initially output a 0 so that the Sw actor accepts data first from actor A.
Then the sel actor sends N − 1 tokens with value equal to 1 so that the Sw actor will
select tokens from the feedback loop, thus recreating the chain of Figure 5.2.

It can be seen from this case study, that there are many actors in the PiSDF graph in
addition to the initial actors A, B and C. Some of these actors are special actors which can
be handled by the runtime itself but there is consequently a cost in terms of computation
at runtime.

With the PiSDF MoC, it is possible to describe the application from Figure 5.2 using
two hierarchy levels. Figure 5.4 represents the corresponding two level PiSDF graph.
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Figure 5.4 – Hierarchical PiSDF representation of the example of Figure 5.2
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In this representation, the hierarchy has been used to remove the two RoundBuffers

employed in Figure 5.3. As interfaces behave like RoundBuffers , the behavior of the whole
graph is equivalent to the previous PiSDF graph. The top graph ensures that actors A
and C are fired only once and that the sel actor ensures that actor B is fired N times.

However, the Sw actor is still present and this increase the number of single-rate actors
for scheduling by N .

The proposed PiSDF extension allows the sources of initial tokens of delays to be defined
within the graph. This results in two advantages. Firstly, it allows the PiSDF programmer
to make concise graphs for the application. Secondly, it reduces the scheduling complexity
by :

• Lowering the single-rate transformation complexity.

• Reducing the Mapping/Ordering complexity by decreasing the number of single-rate
actors.

5.2.2 Proposed Extension

This work has chosen to explore the solution of allowing in-graph definition of initial delay
tokens. These tokens are not permitted to remain undefined or to be set to zero as is
the case with usual implementations. The introduction of the extension allows the delay
tokens to be set by another actor. This extension is possible only through the addition of
an input data port to the delay representation.

However, there are multiple restrictions to retain the schedulability properties of the
PiSDF graph:

• The actor that set the delay, called the setter, must not be present in the same
scheduling step as the delayed Fifo. Consequently, the setter can be either an in-
terface or a configuration actor. This guarantees that interdependencies between the
setter and the delayed Fifo will not lead to deadlocks.

• Token production of the setter must match the delay value.

In the example of Figure 5.2, the PiSDF graph becomes that of the representation in
Figure 5.5.
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Figure 5.5 – PiSDF extension representation of the example of Figure 5.2
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For Figure 5.5, the Sw actor of Figure 5.4 has been removed by using the proposed
extension. This has been performed by directly feeding the tokens from the input data
interface into the feedback delay. These tokens are then used for the first firing of actor B.

However, the sel actor has been added to ensure that actor B is fired N times. A
unused input port has been added to actor B to connect with this sel actor and to force
the repetition of actor B to be equal to N .

Finally, by removing the Sw actor, the proposed extension reduces the resulting com-
plexity of the PiSDF graph. Furthermore, this method also lowers the complexity of the
scheduling, as shown in the following section.

5.2.3 Impact of extension on the scheduling

In the classic PiSDF single-rate transformation, two new special actors called Init and End

are used to transform delays. The Init actor is used to produce the initial tokens of the
delay.

The purpose of the proposed PiSDF extension is to allow an actor of the PiSDF graph
to set the initial value of the graph. When the limitations described in Section 5.2.2 are
satisfied, the setter actor can simply replace the Init actor in the SRDAG. It is then
not necessary to introduce additional actors in the SRDAG. In this case, only a simple
connection between the setter and the first firing of the actor is required, as represented in
Figure 5.6.
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Figure 5.6 – Impact of the proposed PiSDF extension on the single-rate transformation

Finally, the extension reduces the number of actors in the final SRDAG (in our ex-
ample, N Sw actors and 1 Init actor). Thus, the extension limits the Mapping/Ordering
complexity, which is proven to be NP-complete in [PBL95].

5.3 Graph optimizations

5.3.1 Motivations

This section introduces six possible optimization patterns that can be applied at runtime
to reduce the SRDAG complexity. The majority of these optimizations are fairly trivial
to perform but still improve the scheduling performance. Since there are fewer actors to
execute, the Mapping/Ordering task requires less computation time.

It can also be noted that reducing the number of Fifo leads to less interdependencies
between actors of the SRDAG. This can unveil new task parallelism and improve the
scheduling method performance.

Despite their small size, execute actors produce an overhead. This is due to actor
communications and synchronizations.

Finally, fewer Fifos in a scheduled SRDAG, lead to a lower memory footprint (in shared
memory platforms) or fewer communications (for distributed memory).
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Hence, for the above reasons, reducing the SRDAG complexity is an excellent way to
improve the scheduling performance. In the following sections, the causes of unoptimized
graphs are explored and optimization patterns to circumvent these problems are then
introduced.

5.3.2 Sources of sub-optimized graphs

If the single-rate transformation method of the Section 4.4 is used, special actors are
created as many times as needed. This leads to an optimized SRDAG for each original
PiSDF Fifo. However, when the graph is regarded as a whole, it is clear that certain
simple optimizations can be performed to improve the overall graph performance.

A sub-optimized graph results from either : hierarchy or special actors in the PiSDF
graph. These two areas will now be explored.

5.3.2.1 Hierarchy

Hierarchy flattening can result in sub-optimized graphs in SRDAG. An example is given
in Figure 5.7. In this example, actors A and B are not at the same level of hierarchy, and
so the Fifo between them is handled separately for the top and the lower hierarchy.
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Figure 5.7 – Sub-optimal SRDAG induced by the presence of hierarchy actors

The first subgraph scheduled is that of the upper level which is connected to actor B.
Two tokens are outputted from the hierarchical actor (fired twice for this example), so, a
Join actor (J2) is created, as expected.

On lower hierarchy level, as the hierarchical actor is executed twice, two join actors (J0
and J1) are then created according to the single-rate transformation of each subgraph.

Once connected, the result is a sub-optimized SRDAG with cascaded Join actors. To
ameliorate this situation, these three Join actors may be condensed into a single Join actor
with four inputs.

5.3.2.2 Special Actors

The same behavior may occur on a single level PiSDF graph which contains embedded
special actors. An example of a sub-optimized graph is given in Figure 5.8.

A

i

J0

i0

i1

o

J2

oi0

i1

1

1

4

2

J1

i0

i1

o
1

1

2

42
J

i0

i1

o
1

1

A

i

Figure 5.8 – Sub-optimal SRDAG induced by special actors in PiSDF graph
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As shown in the figure, the Join actor has a basic repetition of two. Following the
single-rate transformation, two Join actors are created in the SRDAG. Since the actor A
is fired only once, a new Join actor is then required.

As with the above example containing hierarchy actors, this produce a sub-optimized
graph with cascaded Join actors. Once again, the optimization condenses these three Join

actors into a single Join actor with four inputs.

5.3.3 Optimization Patterns

In this section, six post-single-rate transformation optimizations are described. All these
transformations are designed to reduce the number of actors in the SRDAG and/or to
unveil parallelism on the graph.

5.3.3.1 Join/Join Optimization

The first pattern introduced is the Join/Join pattern and it has already been explored in
the previous section. The SRDAG optimization is shown in Figure 5.9.
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Figure 5.9 – a) Chained Join/Join actors - b) Join/Join optimization in SRDAG

This optimization is implemented by checking whether two Join actors are chained,
as is the case with Figure 5.9-a. If so, the first one is merged into the second, carefully
respecting the order of the inputs, as shown in Figure 5.9-b.

This optimization limits the number of actors in the SRDAG leading to faster Map-
ping/Ordering tasks. However, it also leads to a reduction in the number of synchronization
points in the graph during execution of tasks.

5.3.3.2 Fork/Fork Optimization

The second pattern introduced is the Fork/Fork pattern. This pattern is equivalent to the
Join/Join and is shown in Figure 5.10.
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Figure 5.10 – a) Chained Fork/Fork actors - b) Fork/Fork optimization in SRDAG

This optimization is implemented by checking whether two Fork actors are chained, as
per Figure 5.10-a. If so, the second is merged into the first, while carefully respecting the
order of the outputs, as is the case of Figure 5.10-b.

As with Join/Join, this optimization leads to faster Mapping/Ordering tasks and re-
duces the number of synchronization points during the graph execution.
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5.3.3.3 Fork/Join Optimization

The third optimization pattern is the Fork/Join pattern. This optimization pattern is
shown in Figure 5.11.
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Figure 5.11 – a) Chained Fork/Join actors - b) Fork/Join optimization in SRDAG

This optimization is implemented by checking whether a Fork actor is chained with a
Join actor, as is the case in Figure 5.11-a. If so, the Join actor can be merged into the
Fork , while carefully respecting the order of outputs, as is shown in Figure 5.11-b.

As with the previous two optimizations, this method leads to faster Mapping/Order-
ing of tasks and a reduction of the number of synchronization points during the graph
execution.

5.3.3.4 Join/Fork Optimization

The fourth pattern introduced is the Join/Fork pattern. The optimization is shown in
Figure 5.12.
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Figure 5.12 – a) Chained Join/Fork actors - b) Join/Fork optimization in SRDAG

This optimization is implemented by checking if a Join actor is chained with a Fork

actor, as is the case in Figure 5.12-a. If this is the case, this whole connection can be
restructured, as can be seen in Figure 5.12-b. In the graph of Figure 5.12, there are 3 input
Fifos (from actors A, B, anb C) with token rates of (2,1,2) and 2 output Fifos (from
actors D and E) with token rates (3,2). A new instance of the single-rate transformation
must then be run on this “connection”.

The Join/Fork optimization is likely to result in unveiling parallelism on the SRDAG.
In Figure 5.12-b, the actor precedence that existed in Figure 5.12-a between actors A
and E is broken allowing them to be executed in parallel. This optimization allows the
Mapping/Ordering tasks to compute a better scheduling. But it also produces improved
scheduling performance as the execution of the application has a higher parallelism.
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5.3.3.5 Broadcast/End Optimization

The fifth optimization pattern defined is the Broadcast/End pattern. The optimization is
shown in Figure 5.13.
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Figure 5.13 – a) Chained Broadcast/End actors - b) Broadcast/End optimization in SRDAG

This optimization is implemented by checking if one Broadcast actor is chained with
one End actor, as is the case with Figure 5.13-a. Since End actor are used only to discard
tokens, they are unneeded after Broadcast actors since there are duplicated ones. At this
point, the End actors and their corresponding output ports on the Broadcast actor itself
can be removed without consequence. Moreover, if only one output Fifo remains on the
Broadcast actor, the Broadcast actor can be safely removed, as shown in Figure 5.13-b.

As is the case with the previously introduced optimizations, this pattern leads to faster
Mapping/Ordering of tasks and a reduced number of synchronization points during the
graph execution.

5.3.3.6 Init/End Optimization

The last pattern introduced is the Init/End pattern. The optimization is shown in Fig-
ure 5.14.
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Figure 5.14 – Chained Init/End actors

This optimization is implemented by checking if one Init actor is chained with one End

actor. Init actors are used to generate dummy tokens and End actors are used only to
discard tokens. There is then no need of these actors if they are chained together, the pair
can be removed without consequence.

This optimization, leads to faster Mapping/Ordering of tasks since there are fewer
actors in the SRDAG.

All of these post-single-rate transformation optimizations leads to a reduction in the
SRDAG complexity. However, these optimizations have an impact on computation com-
plexity. The impact on computing of these optimizations is studied in Section 7.2.

5.4 Many-core oriented Mapping/Ordering algorithm

As discussed in Chapter 2, the current trend in embedded systems is to integrate increas-
ingly more cores into processors. Many-core DSP processors which include a small number
of GPP cores and numerous powerful DSP cores are made possible by higher integration
density and may dominate other DSP processors over the next few years.
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Figure 5.15 – Three stage pipelines with a) one PE per stage, b) one or more PEs per stage.

In this section, a new Mapping/Ordering algorithm is presented. This algorithm focuses
on many-core devices where the PE count is dramatically more than hundreds.

The two major issues in the Mapping/Ordering algorithm are the nature of the intercon-
nect topology [KAG+09] and the synchronization of computations. Pipelined interconnects
and their scheduling are of high relevance in DSP and multimedia applications [SB12]. An
example of pipelined interconnects can be seen in Figure 5.15. Figure 5.15 a) depicts a
classical pipeline with three stages, each consisting of one PE. Figure 5.15 b) depicts a
slightly more complex pipeline where the second stage has two PEs (#2 and #3) that can
process data concurrently.

The classical flow-shop algorithm is based on the pipelined architecture proposed in Fig-
ure 5.15 a). This algorithm has been previously studied in [BBS07, Bou09]. The Hybrid
Flow-Shop (HFS) algorithm [RVR10], is based on pipelined architectures as in Figure 5.15
b). For multicore architectures that allow bidirectional (isotropic) inter-processor commu-
nication, the HFS algorithm restricts communication to fixed, unidirectional links. This
dramatically reduces the complexity of the Mapping/Ordering task and keeps its overhead
low even for a large number of PEs.

In this section, the HFS Mapping/Ordering algorithm is described in Section 5.4.1.
This is followed by, a comparison with a well-known Mapping/Ordering algorithm with
experimental results in Section 5.4.2

5.4.1 HFS Mapping/Ordering Algorithm

The origin of the flow-shop scheduling problem formulation is in factory production lines.
Multiple production machines work in parallel and products move from one machine to
another as they are assembled. The flow-shop scheduling problem involves the processing
of N jobs on M machines. In the classical flow-shop formulation each job consists of a set
of operations, so that each operation must be processed on exactly one machine. In the
context of the PiSDF Mapping/Ordering task, machines are named PEs and operations
are named actors.

In the classical flow-shop formulation it is assumed that actors have deterministic ex-
ecution timings. This constraint is respected in the PiSDF Mapping/Ordering context as
each actor is assumed to have a Deterministic Actor Execution Time (DAET). One DAET
is assigned to each PiSDF actor and may depend on the parameters of the actor.

The optimization objective of the HFS problem is the makespan minimization. Makespan
is the latency between the start of the first actor firing and the end of the last actor firing.

The HFS algorithm extends the classical flow-shop methodology by allowing several
PEs to process one type of task [RVR10]. Figure 5.16 a) shows an application that consists
of three tasks, t1, t2 and t3. This tiny task graph represents a flow-shop job. The job
exists in three instances: Ja, Jb and Jc. Figure 5.16 b) shows the Gantt chart (schedule)
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Figure 5.16 – a) 3 instances of one job J consisting of three tasks. b) Instances of J scheduled
on architecture shown in Figure 5.15 a). c) Instances of J scheduled on architecture shown in
Figure 5.15 b).

when the job instances Ja, Jb and Jc have been scheduled onto the pipelined multiprocessor
architecture shown in Figure 5.15 a). Figure 5.16 c) shows the same jobs scheduled on the
pipelined architecture of Figure 5.15 b), where PE2 and PE3 are both capable of executing
task t2.

Figure 5.16 highlights the common situation where one kind of task (t2, in this case)
is computationally more demanding than other tasks in the application and thus forms a
bottleneck in the processing pipeline. The classical flow-shop formulation can not represent
cases where a long latency task is distributed to more than one PE, whereas in HFS
algorithm this poses no problem.

In this algorithm, some common flow-shop assumptions are used:

• jobs are processed in every stage in the same order;

• each actor is processed by at most one PE at each pipeline stage;

• all jobs are available simultaneously before the methodology starts;

• actor preemption is not allowed.

The Mapping/Ordering algorithm is introduced with an example displayed in Fig-
ure 5.17. The Figure 5.17 a) shows the inputted SRDAG which is composed of 22 actors.
This example corresponds to a signal processing algorithm which forms a part of the 3rd
Generation Partnership Project (3GPP) Long Term Evolution (LTE) uplink processing
[HBP+13].

The HFS Mapping/Ordering algorithm is composed of three steps: actor and PE as-
signment, job extraction and actor Mapping/Ordering.

5.4.1.1 Actor and PE Assignment

The HFS algorithm requires that each job contains only one kind of actor for each pipeline
stage. Each actor of the SRDAG is assigned to a pipeline stage, as a function of its
connection with other actors.

In the Figure 5.17, actors of the same pipeline stage are marked with the same letter.
To assign actors to the same stage necessities firstly classifying actors with their level.
Actor level is the maximal number of preceding actors that lead to a source actor.
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Figure 5.17 – a) SRDAG with flow-shop jobs b) Mapping to 8 PEs.

Next, PEs are assigned to each pipeline stage depending on the sum of the DAET of
actors assigned to this stage. The goal of this step is to balance the load between stages.
In the example, Figure 5.17 b) displays an example pipeline configuration with eight PEs.
Actors C and E are the most computing intensive actors of the graph. Two PEs have then
been assign to their stages.

5.4.1.2 Job Extraction

After the assignment of actors to pipeline stages, jobs can be extracted from the SRDAG.
Figure 5.17-a shows the jobs resulting from considering the 6-stage pipeline with eight PEs
in shown in Figure 5.17-b.

In Figure 5.17 a), individual job instances are delimited by dashed borders. The algo-
rithm employed to create jobs from the SRDAG is shown in Algorithm 5.1.

It is important to note that the HFS jobs generated from the SRDAG are not indepen-
dent; that is, data dependency may exist between them. When considering Figure 5.17,
it must be noted that the causality relationships between the SRDAG actors still hold for
HFS jobs. Consequently, the scheduling order of jobs is somewhat restricted.

Job ordering is a task that has been extensively studied [RVR10, Fre82]. In general,
ordering strategies are very time-consuming and are not appropriate for runtime compu-
tation. The choice must then be made to keep jobs in their creation order that ensures no
broken actor dependencies.

5.4.1.3 Actor Mapping/Ordering

After the set of jobs, Ji, i ∈ [1, N ], has been defined and has been mapped to pipeline
stages Pj , j ∈ [1,M ], the actual HFS Mapping/Ordering can be conducted.

After job ordering has been completed, the assignment phase selects the processing
element Pj,k from the set of PEs in stage Pj,k, k ∈ [1,Mj ] to which task tm has been
assigned. In this work, the earliest possible start assignment was used: at each step, the
PE chosen grants the earliest start of the current task.
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Algorithm 5.1: Constructing Jobs from Actors
Input: A SRDAG G
Output: A queue of jobs L

1 begin
2 static currentJob = new empty job;
3 static jobList = new empty job list;
4 call jobMaker(first actor of G);
5 return jobList ;
6 end
7 function jobMaker Input: currentActor
8 begin
9 if currentActor was visited then

10 return;
11 end
12 if one of currentActor predecessors was not visited then
13 push currentJob to L;
14 currentJob = new empty job;
15 return;
16 end
17 add currentActor to currentJob;
18 currentActor.isVisited = true;
19 if currentActor has no successor then
20 push currentJob to L;
21 currentJob = new empty job;
22 end
23 else
24 for each vertex in curVertex successors do
25 jobMaker(vertex);
26 end

27 end
28 return;
29 end

Figure 5.18 shows the multicore HFS schedule of the example of Figure 5.17. The
pipeline shape of the schedule is already visible for this small number of actors.

By restricting the actor Mapping/Ordering to a only a portion of the architecture, the
processing time of this Mapping/Ordering algorithm is reduced. Experiments have been
performed on this Mapping/Ordering algorithm and the results are compared with those of
a well-know list algorithm. The experimental results are detailed in the following section.

5.4.2 Experimental Results

In the future, the progression of computationally efficient DSPs is likely to consist of
combinations of GPP cores for control and scheduling and many DSP cores for signal
processing. Results have been generated by Mapping/Ordering a dataflow description of
LTE Physical Uplink Shared Channel (PUSCH) decoding for a many-core DSP on an
ARM Cortex-A9 GPP processor. The experiments study the evolution of the simulated
makespan and the Mapping/Ordering time for increased PE count.
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Figure 5.18 – Multicore HFS schedule of the example in Figure 5.17.

In this context, the experimental results highlight the differences between the list Map-
ping/Ordering algorithm and the HFS algorithm.

The Mapping/Ordering algorithm used for the comparison is a list scheduling algorithm
called Modified Critical Path (MCP) [WG87]. This Mapping/Ordering algorithm is based
path length computation where the critical path is the longest path of the whole graph.
Path lengths are determined by the sum of the execution time for actors of the given path.
MCP then computes the last possible start time of actors using the longest path of the
current task to any exit task and the critical path of the graph. An ordered list of actors
is derived from these computations, which gives the Mapping/Ordering order. Actors are
then mapped and serially ordered to the most efficient PE according to this list.

The hardware platform contains a dual-core ARM Cortex-A9 processor with a clock
frequency of up to 1 GHz. The experimental adaptive scheduler is written in C++ and
runs as a Linux mono-threaded task on the ARM processor. The embedded Cycle Counter
(CCNT) provides accurate cycle measurements.

In order to compare schedules, tasks need to have known durations. Timing measure-
ments used for these experiments are based on a Texas Instrument c64x+ DSP. Commu-
nication times between PEs are assumed to be part of the task timings. The simulated
platform is thus a homogeneous many-core platform with cores equivalent to c64x+ DSPs.

Two metrics are used to compare Mapping/Ordering algorithms:

• Makespan: The time difference between the start and the end of a given application
graph execution.

• Scheduling Overhead: The time necessary to compute the Mapping/Ordering
algorithm on the target platform. As this time is not dedicated to signal processing,
it is an important parameter to minimize.

The results on makespan (Figure 5.19) are shown for both list and HFS Mapping/Order-
ing algorithms to Greedy Scheduling Theorem (GST) algorithm [Lei05]. The GST curve
provides a benchmark for the speedup that can be obtained with greedy scheduling, no
actor timing knowledge and a fully-connected isotropic architecture with infinite commu-
nication rates [PAPN12].

In the test case, the critical path of the algorithm limits the potential speedup improve-
ment to about 50 times. It may be noted from Figure 5.19 that the list algorithm produces
better speedup than the HFS algorithm. The list algorithm reaches its critical path length
limitation at the point when fifty PEs are available. On average, the makespan generated
by the HFS algorithm is 31% longer than that produced by the list algorithm. The limita-
tion of HFS algorithm in terms of makespan is due to its reduced mapping choices, as all
PEs must communicate to a restricted list of PEs in a single direction.



Conclusion 75

0

10

20

30

40

50

0 32 64 96 128 160 192 224 256

Sp
ee

du
p

PE count

max theorical speedup
List
HFS
GST

Figure 5.19 – Makespan vs. # of PEs

The major advantage of the HFS algorithm is that its computing overhead (Figure 5.20)
increases very slowly with the number of PEs. It is for this reason that the HFS algorithm
is a good solution as many-core Mapping/Ordering algorithm. This is not the case for a
list scheduler algorithm whose computing overhead increases significantly with the number
of PEs. In Figure 5.20, it may be seen that the HFS scheduler has a lower computing time
once 17 PEs (or more) are available on the architecture. For fewer than 17 PEs, the time
needed to construct HFS jobs makes the HFS algorithm requires computing time than list
algorithm.

The conclusion of the experiments is that the HFS algorithm has a very low comput-
ing time compared to optimized list algorithm for higher PE count. The HFS algorithm
presupposes pipelined PEs and orientates inter-PE communications. This simplifies PE
assignment when compared to the general isotropic and fully-connected architecture case.
It also groups computing tasks into linear jobs, simplifying actor assignment while main-
taining task precedence.

For the case of 256 PEs and for all LTE PUSCH configurations, the HFS algorithm has
a computing overhead under 1 Mcycles. This barrier corresponds to the period between
two reconfigurations of this algorithm. This makes HFS algorithm suitable as a real-time
Mapping/Ordering algorithm for the worst case (comprising 501 actor instances) for the
LTE application onto a 256-core architecture.

5.5 Conclusion

This chapter presents three different improvements that can be applied to the JIT-MS
scheduling algorithm.

The first is an extension of the PiSDF MoC which has been proposed to enhance
scheduling performance. This extension focuses on delay initialization. In general, for
the unenhanced scheduling method, these token are uninitialized or set to zeros. In the
proposed extension, these tokens may be initialized by an interface or a configuration actor.
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Figure 5.20 – Computing overhead vs. # of PEs

This extension simplifies the bulk of PiSDF graph and allows improved performance of the
scheduling method.

Optimizations on post-single-rate SRDAG transformations have also been explored.
These optimizations allow the reduction of the SRDAG complexity by merging or deleting
actors, by employing known special actor behavior to simplify the SRDAG. Thus, syn-
chronization within the whole graph is reduced and the Mapping/Ordering task has fewer
actors to treat.

Finally, a new Mapping/Ordering algorithm has been proposed for many-core devices.
This devices possess hundreds of PEs and the common Mapping/Ordering heuristics require
a very long computation time. This Mapping/Ordering algorithm is demonstrated to
be faster than the list scheduling algorithm with 17 or more PEs. Since none of the
experimental platforms used in this thesis have a PE count greater than 17, the HFS
Mapping/Ordering algorithm has not been employed for experiments. However, it can be
used in the JIT-MS scheduling method if the targeted platform integrates a large number
of PEs.

The purpose of this chapter was to introduce the optimizations of the JIT-MS schedul-
ing method. The following chapter will describe the runtime called Spider that embeds
this method.



CHAPTER 6

Spider: a dataflow multicore runtime

6.1 Introduction

In this chapter, the structure of the Synchronous Parameterized Interfaced Dataflow Em-
bedded Runtime (Spider), designed during this thesis, is detailed. Spider is a dataflow
based multicore runtime that targets heterogeneous embedded platforms. Spider is de-
signed to be a low-level runtime that allows efficient and dynamic reconfiguration of ap-
plications on multicore platforms taking advantage of the dataflow model properties. This
runtime takes a PiSDF graph as input and embeds the JIT-MS method described in Chap-
ter 4.

The overall PiSDF framework is composed of two steps. First, the application is defined
using the Eclipse-based Preesm tool which provides a graphical interface to describe and
develop the application. Preesmcan also be used as a fast prototyping tool providing
scheduling simulations with fixed parameters as described in Section 3.3.4. The Spider

runtime is then employed as a low-level multicore operating system that drives the adaptive
execution of the designed PiSDF graph.

In Spider, the PiSDF graph is stored in the local memory of a centralized manager
called Global RunTime (GRT). The PiSDF graph is statically set at runtime initialization.
The PiSDF graph is described using C/C++ code. Since Preesm already provides a
graphical interface to design PiSDF graphs, only a Spider compatible code generator
needed to be added to the Preesm tool. The code generation flow is described in Figure 6.1.

As with the case of the static scheduling flow of Preesm, the code generation destined
for Spider requires three inputs. The first input is the PiSDF graph: one or multiple
pi files, designed using the graphical interface within Preesm. Each actor of the PiSDF
graph is associated with a C function or C++ method instantiated in the actor code.
The second input is the architecture model described using the System-Level Architecture
Model (S-LAM). This architecture model was introduced in [PNP+09]. The architecture
model describes the targeted platform and is referenced by the third input, the scenario.
The scenario provides information on actor firing for each PE of the platform such as
constraints and timings. The scenario information is integrated into the PiSDF graph in
Spider; it is needed by the Preesm integrated code generator for Spider.

Finally, the generated C++ code which represents the PiSDF graph, the architecture
model and the scenario is compiled referencing the Spider library that embeds the runtime
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Figure 6.1 – PiSDF based Programming Framework overview

system. This allows the Spider runtime to load the PiSDF graph in local memory at
initialization. The executable file generated is then able to execute the given application
and to use the features of the Spider runtime.

In this chapter, implementation details of the Spider runtime are given. First, the
design choices of the Spider runtime are explored. In Section 6.2, an abstract description
of the runtime that ensures its portability on several platforms is then derived.

The implementation on different hardware platforms is discussed in Section 6.3. The
Spider runtime is implemented on a desktop Linux, a Zynq (ARM+FPGA) platform and a
Keystone platform (ARM+DSPs). The use of different hardware components to implement
the Spider runtime description is detailed in this section.

Finally, Section 6.4 details certain optimizations of Spider which enhance runtime
efficiency. In particular, the reduction of the runtime overhead due to synchronization
mechanisms and the resulting improvement of data token management leads to the adop-
tion of these solutions to increase the performance of the Spider runtime.

6.2 General runtime structure

In this section, the general structure of Spider is described. Features embedded in the
Spider runtime are designed to be both platform and application independent. Depending
on the target platform, each component may be software or hardware implemented.

Figure 6.2 shows an example of the Spider runtime with three elements grouped into a
global structure. The platform is composed of two Local RunTime (LRT) and one Global
RunTime (GRT). Each LRT must run concurrently on each PE driven by Spider. There
is only one GRT; it drives the LRTs.
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Figure 6.2 – Spider runtime structure

The Spider GRT is the master of the system. It is responsible for the multicore schedul-
ing of the application. The LRTs are lightweight execution runtimes used for executing
actor code.

Spider embeds multiple queues, which may be separated into two categories:

• Data queues are used to exchange the data tokens manipulated by LRTs.

• Control queues, consisting of parameter, timing and job queues, are used for the
internal communication between the LRTs and the GRT all of which comprise the
runtime.

In the following sections, the master/slave scheme for the runtime is explored. The role
of data queues and control queues are then discussed. Finally the LRT and GRT elements
and their function within the different layers of the runtime are presented.

6.2.1 Master/Slave structure

A very important feature of the Spider runtime is its compatibility with heterogeneous
platforms. Performing Mapping/Ordering tasks on a heterogeneous platform is more com-
plex than on a homogeneous platform. Indeed, a decision to start an actor firing based
on local optimization criteria in a heterogeneous system may be globally inefficient. An
example is given in Section 7.2.3: OpenMP which makes scheduling decisions locally is
compared with the Spider runtime.

In [SSKH13], Singh et al. classify mapping methodologies by diverse criteria. They
define a platform manager that has the responsibility of mapping tasks and handling both
resources and configuration. One of their criteria to classify mapping methodologies is
the control management behavior which can be either centralized (global), or distributed
(local).

In global management, one core of the platform handles the entire task mapping process.
This concept corresponds to a Master/Slave scheme. Alternatively, local management
divides the platform into clusters which have their own local management. Each cluster
handles the task mapping on its own PEs and communicates with other clusters. Typically
local management is composed of a shared job queue which receives the output jobs from
each cluster concurrently for immediate execution.
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The Spider runtime implements a global approach. The primary advantage of the
global approach is illustrated in Figure 6.3.
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Figure 6.3 – Local vs Global decision for scheduling

In this example, a single-rate graph with four actors (A, B1, B2, D) is mapped onto a
two-PE heterogeneous architecture. The first PE (ID 0) is a general purpose PE that can
execute all actors. The second PE is a specialized co-processor that efficiently executes a
single actor type (actor B for this example).

For the case where the runtime of each core takes local decisions using a shared pool
of actors, the upper execution Gantt chart of Figure 6.3 is the probable outcome, as PE 0
is ready to start the B actor before PE 1. Immediately after A is fired, both PEs launch
one instance of the actor B.

However, global mapping decisions translate into a knowledge of the graph topology
and the execution time of actors on each PE. This results in a better decision, as illustrated
in the lower execution Gantt chart of Figure 6.3. The global scheduling technique means
that the two firings of the actor B are both mapped on the specialized PE 1, thus achieving
an earlier completion time.

This example demonstrates that better multicore scheduling decisions can be taken
from a global perspective. For this end, a Master/Slave scheme is adopted in Spider for
runtime mapping and scheduling decisions. In this scheme, a single PE, the master, takes
all mapping decisions and sends execution actors to the other PEs which function as slaves.

6.2.2 Data Queues

In the PiSDF MoC, actors exchange data through Fifo channels. When the graph is
converted into a single-rate graph, Fifos are present in the transformed graph. How-
ever, a single-rate Fifo represents a one-time communication between two specific actor
firings. Consequently, there is no need of a full Fifo implementation with simultaneous
multi-read/multi-write capabilities within the single-rate graph. Nevertheless, the imple-
mentation of the single-rate Fifos must be adapted to the memory organization of the
targeted hardware platform. The following cases must be considered:

6.2.2.1 Shared Memory Without Cache

In a shared memory system, a single-rate Fifo can be implemented using the two elements,
that comprise a Spider data queue:

• A shared memory segment, in which to store data tokens.

• A semaphore which permits the synchronization of the token writer and the token
reader. This semaphore guarantees the precedence between actor firings. In Spider,
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this semaphore is the only Inter-Process Communication (IPC) mechanism used for
data transmission between actors.
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Figure 6.4 – Data queue synchronization mechanism on shared memory without cache

The simple synchronization mechanism is detailed in Figure 6.4. The synchronization
mechanism is defined for the sender and the receiver. Firstly, the sender executes the
source actor of the given single-rate graph Fifo. As the sender directly manipulates data
in the shared memory, there is no need for data transmission when the execution is com-
plete. When the data tokens are ready in memory, the sender posts a token into a shared
semaphore to signal to the receiver that data tokens are ready. Once the receiver has
successfully popped the semaphore, its actor code is executed with valid input data.

6.2.2.2 Shared Memory With Cache
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Figure 6.5 – Data queue synchronization mechanism with shared memory with cache

The synchronization mechanism for a platform with cache memory is detailed in Fig-
ure 6.5. In such a platform, data written in a shared memory by an actor executed on a PE
may be temporarily stored in the private cache associated with this PE. To ensure that this
data is transferred to the shared memory accessible to all PEs, the sender of a Fifo must
execute a write-back operation thus forcing the transfer of the newly written data from
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its local cache to the shared memory. After the cache subsystem finishes the write-back
operation, the sender can post the token into the shared semaphore. Then, the receiver
can pop the semaphore, and invalidate its cache to gather valid data. This invalidate op-
eration guarantees that all data corresponding to the accessed segment of shared memory
is flushed out from the local cache of the PE. This means that the next read operation on
this shared segment will read the data from the shared memory, and not from the local
cache. Once this has been completed, the receiver can launch the execution of the actor.

6.2.3 Parameters

In the PiSDF MoC, all parameters may influence the token rates and the execution timing
of PiSDF actors. The values of the parameters are computed by specific actors called
configuration actors.

When a configuration actor is fired, the newly computed parameter value is communi-
cated to the runtime master. If a configuration actor is executed by a slave PE, a parameter
queue is needed to send the parameter values back to the master, as shown in Figure 6.2.
The master then resolves all token rates and timings that are influenced by this parameter.

Once all parameters are resolved for a given subgraph, the graph may be scheduled
using the JIT-MS scheduling method as presented in Chapter 4.

6.2.4 Timings

To obtain feedback on an executed graph and to provide RTOS capabilities in Spider,
timing information from previous executions is sent back to the master.

A dataflow system contains useful timing information, which is called trace, and in-
cludes the start and end instants of each actor firing. This information is gathered with
a single reference and a single scale, and can be used to provide a Gantt chart of the real
execution on the targeted platform.

Traces are useful on two levels:

• The master PE can monitor a set of real-time deadlines and identify those that
have been missed. This information can be used to take better scheduling decisions
during the subsequent graph iterations. Using traces, the master can also refine its
time predictions for actor executions. Moreover, it can set PEs into idle or powered
off modes in a power-aware system.

• In a rapid prototyping context, traces can be used to provide feedback to application
programmers on the current platform usage. Traces are also helpful to profile ap-
plications, assisting programmers in updating their application description for more
efficient platform use. For example, a computation-hungry monolithic actor can be
decomposed (or refined) into a subgraph to unveil more parallelism resulting in a
faster application computation.

6.2.5 Jobs

A job is an IPC data structure that embeds all information required to fire a single instance
of an actor. A job is sent from the master PE to a slave PE each time that the master PE
maps an actor firing onto the slave.

A job is composed of the following:

• Information about the actor which will fire. This information can be transmitted,
for example, as a function id, or as a location of source code in shared memory.
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• A reference to input and output data queues. In shared memory subsystems, this
reference is comprised of both a semaphore id and a pointer to the shared memory
segment where the single-rate Fifo is stored.

• Parameter values for this execution.

6.2.6 Local RunTime (LRT)

Slave runtime elements in Spider are called LRTs. The goal of a LRT is to execute all
actors corresponding to the jobs assigned by the master to its slave. Each LRT contains
a unique job queue, from which the jobs are sent. The jobs within the queue are ordered
and specifically mapped to the PE which runs the given LRT. Similarly, each LRT has its
own parameter and timing queues, which return configuration parameters and execution
traces to the master. The LRT indefinitely executes the following steps:

1. Output one job from the Job queue.

2. Wait until the input data queue tokens are available.

3. Execute the actor code.

4. Send output tokens to the output data queues.

5. Eventually, send parameter values in the parameter queue if the fired actor is a
configuration actor.

6. Push trace data in the timing queue.

6.2.7 Global RunTime (GRT)

The master of the Spider runtime is called GRT. The GRT is the core of Spider. Its
primary objective is to compute and apply the JIT-MS scheduling algorithm to the in-
put PiSDF graph. For this end, the GRT sends jobs to the job queues of the LRTs and
outputs parameters values from the parameter queues. Once all pending scheduling activ-
ities are fulfilled, one LRT is integrated within the GRT in order to execute actors. As a
consequence, the PE executing the GRT also processes actors.

The GRT and all the LRTs are each assigned to an execution thread. The GRT and
the LRTs are software components and can be deployed on platforms over existing single
or multicore operating systems, or as a bare-metal program on a PE. It is important to
note that Spider considers that each LRT owns its specific computational resource at all
times. When a Spider implementation does not respect this assumption, the result is
altered performance but unchanged data integrity.

6.2.8 A multi-layered Runtime

The Spider runtime structure is designed to execute different applications on multiple plat-
forms. The Spider runtime is a C/C++ multi-layered runtime composed of an application
layer, a runtime layer and a hardware specific layer. The overall Spider implementation
is described in Figure 6.6.
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Figure 6.6 – Spider Runtime layers

6.2.8.1 Hardware specific layer

The hardware specific layer allows Spider to operate on different platforms. This layer
is presented as a platform library which implements a communication API. A specific
platform library is needed for each platform targeted by the runtime. This library is used
to implement the following features in platform hardware:

• Data queue management

• Control queue management: each control queue is comprised of timing, parameter
and job queues

• Global Time management

Three commonly used platform libraries are outlined in Section 6.3.

6.2.8.2 Runtime layer

The runtime layer embeds platform independent features of Spider. In the master PE,
both a GRT and a LRT are integrated to enable the execution of actors in addition to
scheduling activities. For each slave PE, a single instance of LRT is embedded.

6.2.8.3 Application layer

On the master PE, the application layer consists of the PiSDF graph and the code of the
actors. On each slave PE, the application layer only consists of the code of all actors that
can be fired in this PE. Specific, optimized actor code is often provided for each type of
PE in a targeted heterogeneous platform. The PiSDF graph is loaded in the local memory
of the GRT during the initialization phase of Spider. The PiSDF graph is described using
C/C++ code.

6.3 Runtime implementation on Shared memory Platforms

In this section, specific implementations of Spider platform library are discussed. Three
distinct target platforms are explored in this section: x86 with Linux, ARM+Field-Programmable
Gate Array (FPGA) and ARM+DSPs. For all platforms, the design choices of data queues,
control queues and time management are detailed.
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6.3.1 x86 implementation

The x86 implementation of Spider was developed and maintained during the entire de-
velopment process of the runtime. This implementation constitutes a prototyping and
debugging platform for the embedded systems. It may be noted that desktop systems
based on x86 processors usually provides better and faster debugging capabilities than
their embedded counterparts.

This is due to the fact that desktop implementation is primarily used for prototyping
and debugging features of the runtime manager. When compared to embedded implemen-
tations, its performance has not been greatly optimized. A more performance oriented
version using more efficient Linux mechanism synchronization and communication services
is planned as future work. This platform can also be used by application developers to val-
idate a PiSDF description. Furthermore, functional testing is possible with x86 platforms
as the runtime implementation employs all the Spider features specified in Section 6.2.

The x86 implementation was developed over an SMP Linux Desktop operating system.
Spider is embedded into a shared library and relies on the Linux system IPC. Embedding
Spider in a library permits the separation of application-specific code from the Spider

implementation code.
When Spider is launched, its initialization process consists of forking itself to create as

many LRTs as needed. Each LRT is associated with a unique LRT index. On completion
of this initialization phase, the parent process becomes the GRT and launches the PiSDF
application.

In the following subsections, the Spider components implemented are described. These
components include data queues, control queues and global time management.

6.3.1.1 Data Queues

Spider handles each data Fifo of the single-rate graph by creating a corresponding data
queue. These data queues are implemented using a Linux shared memory region, which is
used by all the processes. This shared memory is separated into two sections.

The first section stores a dedicated flag for each data Fifo instantiated by the runtime.
These flags serve as a synchronization mechanism, and indicate the runtime of data avail-
ability in queues. The index for each data queue is chosen by the GRT at runtime and is
then embedded into the job description.

The second memory section stores data token values. Single-rate Fifos are allocated
into memory segments by Spider. The resulting memory allocation of each single-rate
Fifo is also incorporated into the job description.

Finally, a unique semaphore is used to protect the entire flag section. This semaphore
acts to protect simultaneous writes into a single flag. This semaphore creates a bottleneck
in the Spider implementation. The effect is particularly significant with a large number
of LRTs running simultaneously. However, since the x86 platform does not solely prioritize
computational performance, the issue of this bottleneck is not overly important.

6.3.1.2 Control Queues

To implement control queues employed for timings, jobs, and parameters, Linux pipes have
been used. A Linux pipe is a unidirectional data channel that can be used for interprocess
communication.
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Since all control queues are unidirectional in the Spider implementation, implement-
ing Linux pipes are a natural choice. Three Linux pipes are created in Spider for each
instantiated LRT.

The first Linux pipe is created to transmit jobs. Jobs are identified by the single-rate
actor index which acts like a job index.

The second Linux pipe is created to transmit timing data. The timing data and the
single-rate actor index to which they refer are both transmitted as a trace packet.

The last Linux pipe is created to transmit parameter data. As with the case of timing
data, the index of the configuration actor which generated this parameter value is also
transmitted through this pipe with the parameter data.

Consequently, there are three slave pipes for each slave LRT in the system. This is a
reasonable number for the current multicore desktop systems.

6.3.1.3 Time management

In order to capture coherent timing measurements and to build a valid execution Gantt
chart, a global time reference is needed.

For this end, Linux operating systems provide access to a monotonic clock. As described
in the Linux manual, the monotonic clock is a one that can never be set and represents
monotonic time with an unspecified starting point. This clock is used as a time reference
in the Spider x86 implementation.

At the beginning of the graph execution, the GRT retrieves the reference time which is
subsequently communicated to all LRTs. Thus, when a LRT needs a time value, it simply
reads the monotonic clock and subtracts the reference.

6.3.2 An ARM+FPGA Platform: Xilinx Zynq Zedboard

The previous system is now contrasted with an embedded platform: an ARM+FPGA
platform, the Xilinx Zynq Zedboard [Zed15]. This platform embeds a dual core Cortex-A9
ARM processor in addition to a FPGA.

This combination offers advanced rapid prototyping due to its fully customizable, pro-
grammable logic region, which is in located in close proximity to its efficient hardwired
processors. It is straightforward to implement the Spider data and control queue subsys-
tems and a shared timer in the FPGA portion of the platform. The heterogeneous platform
is composed of 2 ARM processors and multiple softcores called microblazes implemented
into the FPGA. Actors may then be run by an ARM processor or a microblaze.

The ARM+FPGA implementation of Spider was tested in [HOP+13] on a simple
application which allows easy parallelization: a Sobel filter. The memory required to
run this image processing application was larger than the entire memory capacity of the
platform. Consequently, communications between the ARM processors and the FPGA were
supported through an external memory, which considerably decreased the performance.
Another limitation of this implementation was the unbalanced computational behavior
between 866MHz ARM processors and 100MHz softcores. As a result of the communication
overhead and the poor performance of the softcore, offloading actor firings on the FPGA
produced only a very small increase in speedup (only a few percent).

It is for these reasons that this platform is not selected for the experiments of Chapter 7.
It is the hardwired heterogeneous platform of the next section which was chosen for all
experiments, as the speedups produced are greater and so the results are more exploitable.
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6.3.3 An embedded platform: the Keystone architecture

The third platform to implement the Spider runtime is the Texas Instruments Keystone
architecture. This platform is an embedded heterogeneous MPSoC that contains many
processing elements. The powerful DSP cores are designed to handle intensive signal and
video processing of State-of-the-Art applications. Another advantage of this MPSoCs is
the enhanced IPC capabilities.

6.3.3.1 Description of the two Keystone platforms

The first platform explored was the Keystone I architecture, part number: C6678 [Texc].
This MPSoC is composed of eight DSP cores running at speeds up to 1.25 GHz. This
MPSoC is described in Figure 6.7.
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Figure 6.7 – Keystone I Architecture

Each of the eight processing cores is embedded in a corepack containing 512 KB of
L2 cache. DSP cores are linked by an interconnect called TeraNet which enables efficient
access to several shared components:

• A Shared internal memory called Multicore Shared Memory Controller (MSMC). In
the Keystone I architecture, this memory is 4MB wide.

• Multiple Shared Timers.

• An External DDR3 memory. This memory is 512MB wide in the platform used.

• An IPC-related device called Multicore Navigator [Texa].

The Multicore Navigator is a hardware property which makes the Keystone platform
particularly suitable for the Spider runtime. Its primary purpose is to provide many
multicore-oriented features to the system thus enabling efficient multicore programming.
The Multicore Navigator contributes a set of hardware queues embedded in the Queue
Manager Sub-System (QMSS) and many Direct Memory Accesses (DMAs) called “Packet
DMAs”. These queues ensure atomic push and pop that enable efficient synchronization
between cores. The Packet DMA subsystem is coupled with these queues and provides
efficient memory transfers operating in background mode. All data going through the
queues is incorporated into a descriptor, allowing the DMAs to conduct operations. The
QMSS manages 8192 hardware queues and several Packet DMAs to facilitate background
memory transfers.
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This Keystone I architecture was notably used for generating early results of Spider

in [HPD+14].
The evolution of this platform containing additional ARM cores is the Keystone II

architecture, developed by Texas Instruments. The improved heterogeneity of the Keystone
II make it a better platform for a Spider implementation. Subsequent developments were
made on the 66AK2H14 [Texb] MPSoC that employs the Keystone II architecture.

The Keystone II architecture is described in Figure 6.8.
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Figure 6.8 – Keystone II Architecture

Keystone II embeds 4 Cortex-A15 ARM processors running at speeds up to 1.4GHz.
These cores are connected to the TeraNet interconnect, and access the same L2 shared
memory as the DSP cores: the MSMC. The 66AK2H14 MPSoC also contains the following
enhancements, as compared to the C6678:

• Bigger shared memory, upgraded from 4MB to 6MB.

• Doubled Multicore Navigator capabilities with 2 queue managers for a total of 16384
queues.

• Doubled capacity of the accessible DDR3 memory (4GB).

The Keystone II architecture was used for all experiments described in this thesis. In
the following sections, the Spider implementation on this platform is detailed.

6.3.3.2 Data Queues

To implement data queues, the hardware components employed are: the Multicore Nav-
igator for synchronization, the MSMC shared memory, and optionally the DDR shared
memory.

The Multicore Navigator allows DSP and ARM cores to exchange messages through
specific queues using atomic push and pop operations. There are three types of messages,
called descriptors, that can be sent with these queues: monolithic, host packet and host
buffer.

Monolithic descriptors refer to a non fragmented data message. Host packets and host
buffers are used to link a portion of data to a descriptor even if it is in a memory location
that is not accessible by the descriptor creator. This enables packet DMAs to make data
transfers of this data portion in the background.
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For the purpose of simplicity, data tokens in Spider are stored in a memory shared
between all the cores (internal MSMC or external DDR). This was also the case with the x86
implementation. From the data embedded in the job structure, the sender and the receiver
cores know where data tokens are stored within the shared memory. Furthermore, since
data tokens are stored in shared memory, there is no need for the packet DMA to transfer
data: all tokens are accessible by every cores. Consequently, only monolithic descriptors
are used to handle the synchronization between cores in the Spider implementation.

For core synchronization, a hardware queue is arbitrary chosen by the GRT at runtime
and embedded into the job description. The LRT inputs a descriptor from an input queue
before running the actor and outputting the descriptor to its output queue when the
execution finished. The memory allocation of data tokens is chosen by the Spider GRT
and is also incorporated into the job description.

Synchronization with the Multicore Navigator makes access to shared memory pre-
dictable and suitable for enabling caches. Each LRT can write-back and invalidate the
memory cache in order to retrieve uncorrupted data.

6.3.3.3 Control Queues

Control queues are responsible for transmitting parameters, jobs, and timings; the Mul-
ticore Navigator is used for their implementation. As the amount of data exchanged is
limited, data is stored directly into the descriptor thus requiring no additional memory
space.

As with the x86 implementation, three queues are used for each LRT instantiated at
runtime. Hence, on the Keystone II platform, 36 of the 16384 available queues are used as
control queues.

6.3.3.4 Time Management

The Keystone II architecture provides 16 shared timers. One of these shared timers ded-
icated to be the global time reference. This ensures relevant (global) timing information
on current and previous executions.

To ensure that accesses to the global timer do not become a bottleneck of the Spider

implementation, each DSP core uses a private local timer to get timestamped information.
To create the timing information, a core accesses the shared timed once and then uses
the captured value as a reference to correct timings provided by its local timer. This
optimization reduces the impact of the timing retrieval, so lowering the Spider runtime
overhead.

At the beginning of each graph execution, the GRT resets the shared timer and sends
a signal to all LRTs to force each to refresh their global reference value from the shared
timer.

6.3.3.5 Co-processor management

Keystone MPSoCs embed a co-processor, which is employed for a significant use case. The
use case will be described in Chapter 7. This co-processor is the FFT co-processor called
Fast Fourier Transform Co-processor (FFTC).

This co-processor is used to perform the FFT signal transform on a 1D array of complex
fixed point values. The FFTC provides many useful features such as dynamic scaling,
pipelining, and so on.
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FFTC computation is triggered by posting a descriptor in a dedicated queue of the
Multicore Navigator. This descriptor is a host packet and the data transfer is handled
directly by packet DMAs. After the execution, the descriptor is pushed into a dedicated
output queue.

Even if this behavior seems appropriate for a Spider implementation, one FFTC cannot
be directly supported as a regular LRT. This is due to multiple reasons:

• Timing information will not be generated. This is because the FFTC is not a pro-
grammable core, and so this behavior cannot be specified

• The FFTC configuration cannot be popped from another descriptor as the case for
regular LRT.

• The FFTC output location in memory is not configurable. The FFTC may only
pop a descriptor from input queue and write its results directly into the data buffer
attached to it.

Hence, in order to configure the FFTC, an additional core of the MPSoC must be used
to feed the FFTC with the desired computation. In the Keystone II architecture, the use
of the ARM processors to compute FFT actors is not less efficient than when employing to
DSP cores. Since DSPs can also be suitable PEs for FFT actors, two FFTCs can be driven
by two ARM processors. In this way, ARM processors are responsible for configuring,
launching and retrieving results from FFTCs, and behave as interfaces between Spider

and the co-processors.
It is this embedded platform that is used for all the experiments of Chapter 7. In the

following section, three optimizations to enhance the performance of Spider are presented.

6.4 Runtime Optimizations

The three optimizations discussed in this section improve the IPC and shared memory
usage. They target actor precedence, special actor memory allocation and special actor
precedence.

6.4.1 Actor Precedence

In the Spider runtime, synchronization between cores is a key concern. Reducing the
frequency of synchronization points between cores leads to a better performance. The
following optimization is based on an analysis of actor precedence information to improve
IPC. An example is used to illustrate this optimization.

Figure 6.9-a displays an example of a single-rate graph. After applying Mapping/Order-
ing tasks, the simulated Gantt chart is displayed in Figure 6.9-b.
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Figure 6.9 – IPC optimization example

In the single-rate graph, it can be that at the completion of actor A, a data token is
sent to actor B and another to actor C. In the keystone implementation in Spider, where
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each core embeds a private cache memory, this requires two descriptors to be sent and then
corresponding memory regions must be written-back (see Section 6.2.2).

Then, actors B and C each pop a descriptor from their input Fifo and invalidate the
corresponding data memory. These operations are required for actor C as this actor is
mapped to a different PE.

However, for actor B, the precedence between firings of actors A and B is already
established since they are mapped and ordered on the same core. Consequently, the write-
back and invalidate operations are not necessary. Removing write-back and invalidate
operations when not needed can have a major improvement on performance. This is
especially significant when many data tokens are exchanged between actors.

To implement this optimization, each queue is associated with a flag. This flag indicates
to the LRT whether either a synchronization or a cache operation is required for the single-
rate Fifo. The flag is set to true only if source and end actors of a single-rate Fifo are
mapped to different cores.

This method is a simple way to enhance the performance of the IPC process, with
improvements of 51%, as will be Section 7.2.2.2. Moreover, a more detailed examination
of graph precedence can further minimize the number of inter-core synchronization points.
An equivalent approach can be found in the literature and is appropriate for application
to this specific platform. In [BSL+95], the creation of a synchronization graph permits a
better understanding. This additional step constitutes a potential improvement of Spider,
which has not been explored in this thesis However, this method is limited by the scheduling
overhead produced from these optimizations which may dominate performance gains.

6.4.2 Memory allocation of special actors

As explained in Section 4.4.1, special actors are actors that have specific behavior. This
allows queue memory allocation to be automatically optimized. Since the behavior of
special actors can be reduced to token transfer operations, the majority can be executed
without requiring a data copy. For example, all outputs of a Broadcast actor can point to
the same memory space.

This approach can make certain special actors transparent in terms of real data move-
ment. In particular, this applies to Fork , Join and Broadcast actors. As a result, it is only
the synchronizations which are then needed.

This optimization is implemented in the memory allocation phase of Spider. When
allocating single-rate graph Fifos in memory, the Fifos connected to special actors are
the first to be allocated. When possible, the same memory is used to allocate both input
and output data queues of these special actors. This optimization has two effects: the
execution time of special actors becomes zero, and the memory requirement of the overall
graph is lowered.

As shown in Figure 6.10, the queue memory allocation of the Fork actor is reduced to
only one memory section. The dummy allocation used in this example allocates queues in
contiguous memory spaces. When memory allocation is based on special actor behavior,
queue memory spaces can be merged to reduce the overall allocation space as detailed in
[DPNA15a].

Similarly, all queues connected to an End actor of the single-rate graph are merged in
the same memory space, since data tokens sent to the End actors should be discarded.

However, this proposed optimization has some limitations and cannot be applied to
every special actor in the single-rate graph. An example of these limitations is presented
in Figure 6.11.
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Figure 6.11 – Special Actor Memory Allocation Limitations

In this case, the allocation of the Join actor output queues cannot be merged with their
input since they are not contiguous in memory. These Join actors then have to copy data
memory to create macro-tokens.

This optimization handles the case when optimizations are not possible. Memory opti-
mization of Join actors must be checked to verify whether input Fifos are already allocated.

Better memory allocation methods can also be applied, as presented in [DPNA15a],
through the use of memory exclusion graphs and actor behavior with scripts. However,
since the memory allocation phase is executed at runtime, the computational resources re-
quired for memory allocation must be carefully analyzed as the resulting choice constraints
may result in a deterioration of the overall performance.

The optimization of the special actor memory allocation is most efficient when combined
with the optimization presented in the next section.

6.4.3 Special Actors Precedence

In the previous section, certain special actors are optimized so that they become simple
synchronization points. Further optimization can be applied so that these special actors
are handled directly by the Spider runtime. This concept is introduced with an example
of a single-rate graph, which is presented in Figure 6.12.
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Figure 6.12 – Special Actor Precedence Single-rate Graph Example

Using the original precedence synchronization mechanism presented in Section 6.2.2,
the resulting petri net is shown in Figure 6.13. Since mapping is disregarded, the petri net
is composed of 4 execution threads (one for each single-rate actor) which are mapped onto
a unique core. Actor A triggers the execution of actor F using semaphore S1, then actor
F triggers the execution of actors B1 and B2 using semaphores S2 and S3 respectively.
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Figure 6.13 – Example synchronization mechanism without optimizations

If the Fork actor is allocated statically in memory, the fork execution does not modify
data tokens since their location is already correct. Hence, firing the Fork actor is not
necessary, but the precedence between actor A, B1 and B2 must still be enforced.

To allow this multiple end synchronization pattern, the semaphore which synchronizes
a queue is modified to be capable of storing multiple tokens. In this way, it is possible for
the input queue of this Fork actor to add n tokens into the semaphore. Then each of the
n output queues of this Fork simply pops one token from this semaphore.
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Figure 6.14 – Example of synchronization mechanism with optimizations
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In our case, n = 2 and the resulting petri net of this synchronization is given in
Figure 6.14. This results in a sole semaphore S1 fed by 2 tokens from the thread A after
the execution of actor A. Then, actors B1 and B2 will pop one token each, assuming that
their input data is available.

This optimization can be extended to Broadcast and Join actors. This allows the Fork ,
Join and Broadcast actors to be handled directly by the runtime and are thus removed
from the Mapping/Ordering task. So the overall Mapping/Ordering multicore scheduling
task has fewer actors to handle which reduces its computation time.

Thus, it can be seen that this optimization reduces the need for synchronization re-
sources but also lowers IPC cost of the overall graph. Resulting performance gain is
discussed in Section 7.2.2.3.

6.5 Conclusion

In this chapter, an embedded multicore runtime called Spider is introduced. This runtime
embeds the JIT-MS multicore scheduling method allowing the efficient dispatch of a given
PiSDF application at runtime.

This runtime has a master/slave configuration where a master called GRT performs
the multicore scheduling. It then sends jobs to all slaves called LRTs which contain the
required information for firing the corresponding actor. Once the actor is fired, each LRT
sends back execution traces to the GRT. The GRT then has a global view on the recently
completed graph execution, allowing it to produce an execution Gantt chart.

The runtime is designed to be portable to multiple platforms. Spider is a layered
runtime that may be efficiently ported to another platform, with only a small amount of
additional code. Currently, Linux desktop and TI’s Keystone II platform are supported by
Spider but future work may involve more platforms.

At the runtime level, multiples optimizations are possible. These optimizations can
either reduce synchronization between actor firings or reduce the shared memory footprint.
With all optimizations activated, some special actor firings can be unneeded, allowing a
reduction in the Mapping/Ordering complexity and execution time.



CHAPTER 7

Experimental Results and Use Cases

7.1 Introduction

In the previous chapters, the JIT-MS method was introduced. This is a multicore schedul-
ing procedure based on the PiSDF dataflow MoC. Certain optimizations on different sub-
parts of the JIT-MS method were then proposed in Chapter 5. Finally, an embedded
runtime called Spider was detailed in Chapter 6. Spider is an implementation of the
JIT-MS method.

In this chapter, the performance of Spider is evaluated on three applications. Exper-
iments were conducted on the Texas Instruments Keystone II platform detailed in Sec-
tion 6.3.3.

The first application, called HCLM-Sched, is a benchmark composed of multiple chains
of Finite Impulse Response (FIR) filters of different lengths. FIR filters are used in many
signal processing embedded systems in both audio and telecommunication applications
to pass a predefined range of frequencies. FIR filters can be efficiently described using
PiSDF and the descriptions can be managed by Spider at runtime. The HCLM-Sched
benchmark evaluates the performance of the optimizations proposed in Chapter 5 in terms
of the PiSDF descriptions. OpenMP is the reference framework for parallel programming
on multicore embedded systems in industry. The primary advantage of OpenMP is its easy
parallelization process offered to the developer starting from sequential code. OpenMP is
known to be efficient for signal processing applications like FIR filters. A comparison
between Spider and the OpenMP runtime in terms of performance on the Keystone II
platform is thus very challenging. PiSDF descriptions are platform independent unlike the
OpenMP approach.

Next, a canonical signal processing application FFT is benchmarked with Spider. The
algorithm representation with the PiSDF MoC is discussed in Section 7.3. Moreover, this
algorithm is also used to demonstrate the capacity of Spider to drive an heterogeneous
platform. The FFT is a more complex algorithm than the FIR and showcases the perfor-
mance of Spider.

The final case is an embedded vision algorithm, namely a stereo matching application,
which computes a disparity map from two stereoscopic images. This algorithm is described
in PiSDF and is implemented with Spider.

95
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Figure 7.1 – HCLMP-sched description.

These three applications are used to benchmark the scheduling method on applications
of different shapes and are composed of actors with varied needs for computational in-
tensity (termed different granularities). The stereo matching application is composed of
computational intensive actors while the FFT application is composed of smaller and more
highly optimized actors.

All three applications yield information on PiSDF, JIT-MS and Spider because good
execution performance results only from efficient modeling, scheduling method and run-
time. These applications use general algorithm structures such as the nested for loop of
HCLM-Sched and the butterfly structure of the FFT. The methodology of representing
these structures in the PiSDF MoC is also a contribution of this thesis.

The HCLM-Sched is presented in Section 7.2, and the parallel FFT follows in Sec-
tion 7.3. Finally, the stereo matching algorithm is presented in Section 7.4.

7.2 HCLM-Sched Benchmark Algorithm

This benchmark is an extension of the MP-sched benchmark used in [ZPB+13]. The MP-
sched benchmark can be viewed as a two-dimensional grid involving N branches (“chan-
nels”), where each branch consists of M cascaded FIR filters. Here, the MP-sched bench-
mark is extended by allowing the parameter M to vary across different branches, as il-
lustrated in Figure 7.1. The parameter M is used to change the order of the FIR filters.
A better filter sharpness is obtained by increasing the order of the filter at the price of
more computations. The best tradeoff between quality and complexity is found for an
application by optimizing the value of the parameter M . This extended “or generalized”
version of the MP-sched benchmark is referred to as the heterogeneous-chain-length MP-
sched (HCLM-sched).

7.2.1 PiSDF representation

A PiSDF representation of the HCLM-sched benchmark is a graph with two hierarchy
levels.

The top graph is shown in Figure 7.2. To represent the channels in the HCLM-sched
benchmark, a hierarchical actor called FIR_Chan is introduced. The input data is inserted
in the graph by the src actor and the sample results are processed and outputted by the
snk actor. A configuration actor named cfg is instantiated in this graph. Its purpose is to
configure the graph depending on external parameters, typically extracted from a file or
from a previously received data packet header. This configuration actor sets the parameter
N and outputs the value of the parameter M which will be different for each channel.

The values of the parameter M are stored in an array of size Nmax since configuration
actors cannot have dynamic data output rates. So, only M values are kept at the output
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Figure 7.2 – Top graph of the HCLM-sched benchmark

of the actor F , which is an instance of the special Fork actor. The first N tokens are sent
to the FIR_Chan hierarchical actor and the remainder of the tokens are sent to a sink
actor called end whose sole purpose is to discard this unneeded data. The top level graph
is designed to repeat this FIR_Chan actor N times; each instance receives both one token
which contains the parameter M value and NbS tokens as input data samples.

The subgraph describing the behavior of the FIR_Chan actor is shown in Figure 7.3.
The FIR filter is repeated M times due to a feedback loop and specific control actors
(initSw , Switch and Br).
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Figure 7.3 – Subgraph of the HCLM-sched benchmark representing the FIR_Chan hierarchical
actor

The Switch actor is vital, as its purpose is to select the input data of the FIR actor
from either the input interface or the feedback edge. It thus behaves as a multiplexer. The
choice of the Switch actor is controlled by the sel input port value which is connected to
the initSw actor.

For this use case, the initSw actor is implemented as follows. The initSw actor token
value is first set to 0 which results in the Switch actor selecting the input interface as
input data for the first firing of the FIR actor. The remaining value of the M − 1 tokens
outputted by the sel actor are set to 1, which results in the selection of data from the
feedback loop for FIR actor input. The initSw also has another purpose. By generating
M values, the BRV computation will be forced to fire the FIR actor M times.
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In the final stage, the sole function of actor Br is to generate two identical data streams:
one for the feedback loop and the other for the output port. This operation can be per-
formed without any data movement; the actors are configured so that the subsequent actor
points to the same data memory space. Since the output interface of the subgraph behaves
as a RB, only the final output data computed by the FIR actor is passed to the upper
graph as expected.

When the PiSDF delay extension described in Section 5.2 is employed, the subgraph
of the FIR_Chan actor can alternatively be described as shown in Figure 7.4.
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Figure 7.4 – Subgraph of the HCLM-sched benchmark representing the FIR_Chan hierarchical
actor using the delay extension

In this graph, the initial delay tokens are set by the input interface. This removes
the need for the Switch actor. Eliminating the Switch actor simplifies the graph and as a
consequence its scheduling time.

However, the initSw actor (transformed here in genIx ) is still required, it forces the
BRV to fire the FIR actor M times. It is for this reason that a data input port called
ix has been added to the FIR actor which will ensure the 1:M ratio but does not carry
information data. The genIx is a basic actor that produces M tokens with the following
values: [0 . . .M − 1]. This then provides each FIR actor with the knowledge of the current
iteration of the FIR filter. All FIR filters are equivalent, in the case of the HCLM-sched
benchmark, so this information is unused. In a more general case, or where the actor is
modified for each instance, this iteration information may be used.

This PiSDF description enables an algorithm description without a control path. The
algorithm control is provided by the hierarchy description combined with the parameter
tree.

7.2.2 Benchmarks of the Optimizations

In this section, the experimental result of the optimizations explored in previous chapters
is presented. All experiments have been conducted on the Texas Instruments Keystone II
platform that embeds 8 c66x DSP cores and 4 general-purpose ARM Cortex A-15 cores.
The PiSDF description and Spider runtime are platform independent so that the same
application can be run efficiently despite the number of cores. This example illustrates the
efficiency of the approach on this last generation multicore embedded platform.

The GRT of Spider runs over a Linux environment on one of the Cortex A-15 cores.
The FIR filters are fired only in the DSPs and are implemented using the corresponding
function from the Texas Instruments DSPLib signal processing library.

In all experiment in this section, 512-taps FIR filters are executed on 4000 integer data.
For all experiments, the parameter N is fixed to 6. The parameter M is identical for all
FIR channels, and is swept from 1 to 6.
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First, the post single-rate transformations are benchmarked in Section 7.2.2.1, then
runtime optimizations are benchmarked in Section 7.2.2.2 and 7.2.2.3. Finally, the impact
of the PiSDF MoC extension is discussed in Section 7.2.2.4.

7.2.2.1 Post Single-Rate Tranformation Optimizations

As described in Section 5.3, certain optimizations can be applied to the SRDAG to reduce
its complexity. In this section, the consequences of these operations on the following
Mapping/Ordering task are evaluated.

For this experiment, no other optimization is employed. Special actors are treated
in the same way as the other actors and the classical PiSDF MoC is used (without the
proposed extension).
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Figure 7.5 – Post Single-Rate Transformation Optimizations Benchmark

The SRDAG actor count is plotted in Figure 7.5a. It can be seen that the SRDAG
actor count is dramatically reduced, by up to 53% in this benchmark.

Since there are fewer actors in the SRDAG, there are also fewer Fifos. As no optimiza-
tion is performed on special actors, the resulting large number of Fifos has an impact on
the overall memory allocated in shared memory. This is evident in Figure 7.5b where the
shared memory use is displayed. The optimized version saves up to 48% of shared memory
in this benchmark.
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Figure 7.5c shows the difference between the sub-optimized SRDAG and the optimized,
in terms of Mapping/Ordering times. The displayed numbers include the time necessary
to send jobs to the different LRTs. It can be seen for the case of the optimization that
the global Mapping/Ordering time is then reduced by up to 56% in this benchmark. This
benchmark illustrates that the optimization of the post single-rate transformation is an
effective path for global scheduling performance improvement.

7.2.2.2 Actor Precedence

Actor precedence optimization is described in Section 6.4.1.
To benchmark the performance gain with this method, a timing measurement is made

between two FIR actors exchanging data in the HCLM-Sched benchmark. Without the
actor precedence operation, the time between two FIR actors exchanging 4000 samples is
about 8.5 µs. This time includes output cache write-back, job fetching and input cache
invalidate. With the actor precedence optimization, this time is reduced to 4.2 µs which
is an improvement of 51%.

7.2.2.3 Special Actor Optimizations

In this section, the two special actor optimizations described in Section 6.4.2 and Sec-
tion 6.4.3 are benchmarked together. Two metrics are used to benchmark the impact
of these optimizations : the number of mapped/ordrerd actors and the shared memory
footprint.

Special actors are handled directly by the runtime, and since the optimization removes
the need to process these special actors, a smaller number of mapped/ordered actors are
expected after the optimization. In Figure 7.6a, the fired SRDAG actor count is displayed
with and without optimization. As expected, the fired actors count decreases by up to 29%
after optimization. Consequently, it may be concluded that the Mapping/Ordering task
will be faster, as is demonstrated in Section 7.2.2.1.

The shared memory footprint is correspondingly reduced since special actors no longer
require memory allocations. Figure 7.6b shows an improvement of up to 38% resulting
from the optimization.
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Figure 7.6 – Special Actor Optimizations Benchmark
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7.2.2.4 PiSDF MoC Extension

In Section 5.2, a PiSDF extension was proposed to handle the initial values of delays. In
this section, this extension will be added to the PiSDF MoC, as described in Section 7.2.1.
The enhanced model will then be contrasted with the classical PiSDF MoC of the HCLM-
Sched benchmark.
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Figure 7.7 – PiSDF Extension Benchmark

The first metric examined is the SRDAG actor count. Figure 7.7a highlights the dif-
ference between actor counts without and with the extension. A reduction by up to 46%
of SRDAG actor count is observed in this figure. This is due to the fact that the extension
eliminates the need for Switch actors in the graph. For N = M = 6, the SRDAG actor
count in Figure 7.5a is reduced from 189 (with no optimization) to 63 (for the optimizations
of post-single rate transformation and PiSDF extensions). This is an overall reduction of
67%.

The PiSDF extension shows an improvement in terms of shared memory footprint.
Figure 7.7b illustrates the shared memory footprint for the cases with and without opti-
mization extensions. A reduction of up to 54% is observed. The shared memory footprint
with N = M = 6 (Figure 7.5a) is reduced from 3.56 MB (with no optimization) to 732 kB
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(for the optimizations of post-single rate transformation and PiSDF extensions). This is
an overall reduction of 80%.

Next, the overall scheduling time is benchmarked. This timing includes the Map-
ping/Ordering task, and in the case of optimization, the time necessary to perform the
single-rate optimization. An improvement of up to 46% is observed in the optimized case,
as is seen in Figure 7.7c.

Finally, the execution time of the transfers though the FIR channels is displayed in
Figure 7.7d. This time corresponds to the global application time less the scheduling time.
Since the version with the extension has removed all the Switch actors in the SRDAG, this
case has a lower execution time, as shown in the figure. An improvement of up to 17% is
observed for this benchmark.

As is demonstrated in this section, the combined optimizations of post-single-rate trans-
formation, Actor Precedence, Special Actor Optimization and PiSDF MoC extension allow
the JIT-MS methodology and Spider to perform more efficiently at runtime. The pro-
posed PiSDF extension significantly reduces both scheduling and execution times of an
application that uses feedback loop delays.

7.2.3 Comparison of Spider with OpenMP

OpenMP (Open Multi-Processing) is an API that supports parallel multi-platform pro-
gramming in C, C++ and Fortran [Ope15a]. The OpenMP API provides a model for
parallel programming that is portable across shared memory architectures from different
vendors.

The basic parallelization pattern of OpenMP, which uses thread forking, is illustrated
in Figure 7.8. OpenMP programs are comprised of sequential and parallel regions. These
regions are delimited by synchronization points. The HCLM-Sched benchmark is a good
application for OpenMP because its global structure is a single parallel loop.

Figure 7.8 – OpenMP Thread Representation

The OpenMP framework can not implement the HCLM-sched as a double nested loop
because the FIR filters are pipelined on each channel. There is thus a data dependency
between two FIR filters of the same channel resulting in sequential computation. These
data dependencies can not be implemented by an OpenMP “parallel for” compiler directive.
However, the OpenMP framework is used to parallelize channels converting them into
monolithic tasks. The OpenMP code is given in Listing 7.9. As a consequence of the
internal loop sequentiality, there is no OpenMP #pragma involving the j variable.

Both the OpenMP and Spider on the HCLM-Sched algorithm were employed to bench-
mark the performance of three execution patterns: homogeneous, decreasing and increasing
patterns.
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stat ic f loat pingpong [2∗NBSAMPLES] ;
#pragma omp p a r a l l e l for private ( j , pingpong ) schedu le ( dynamic )
for ( i =0; i<n ; i++){

f loat ∗ int_in , ∗ int_out ;

/∗ Fetch ing input data ∗/
int_in = input + i ∗NbS ;
int_out = pingpong ;

for ( j =0; j<M[ i ] ; j++){
/∗ I f l a s t , save data in t o output array ∗/
i f ( j == M[ i ]−1)

int_out = output + i ∗NbS ;

FIR(NbS , 0 , int_in , int_out ) ;

int_in = pingpong + ( j %2)∗NbS ;
int_out = pingpong + ( ( j +1)%2)∗NbS ;

}
}

Figure 7.9 – OpenMP Code of the HCLM-Sched Benchmark

7.2.3.1 Homogeneous Pattern

For the homogeneous pattern, the value of parameter M is identical for each channel. In
these experiments, M is fixed to 12. The number of channels N is increased from 1 to 17.
The resulting execution time (including scheduling time) is plotted in Figure 7.10 for both
OpenMP and Spider.
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Figure 7.10 – Overall Execution Time vs N value in homogeneous pattern

As can be seen from Figure 7.10, the OpenMP execution time is constant at 6ms until
M = 8. This is due to the fact that the number of PEs in the system is equal or greater
than the number of channels in the graph. So all channels are executed in parallel, and
there is no additional cost. The same phenomenon appears from M ∈ [9, 15] since the
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maximum computation time occurs with PEs executing two channels as it can be seen in
Figure 7.11a. For the Spider implementation, the scheduling method computation creates
a small overhead. This cost grows at an increasing rate with a higher number of channels
because a bigger SRDAG has to be processed.

The Gantt chart of the execution for N equal to 9 can be seen in Figure 7.11a. In
both Gantt charts, FIR of the same level have the same color independent of channel.
Since channels are implemented as monolithic task, OpenMP cannot efficiently perform
the computation. The OpenMP implementation thus executes two channels on the same
core. With the use of Spider, a more efficient scheduling is applied since the FIR actors
are considered as independent tasks. The result is displayed in Figure 7.11b. In the
HCLM-sched benchmark with 9 channels, the overall latency is then reduced to up to 33%.
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Figure 7.11 – Gantt Chart of Homogeneous pattern with N = 9 and M = 12

Decreasing and Increasing Patterns

The next two pattern types used are the decreasing and increasing patterns. The
decreasing pattern is obtained by allowing the value of M to range from N to 1 for each
channel. The increasing pattern has the opposite behavior: allowing the value of M to
range from 1 to N for each channel. Overall execution time is then computed with N
swept from 1 to 17.

In Figure 7.12a, the decreasing pattern execution timings are compared for the two
algorithm implementation. The OpenMP implementation is seen to be faster for all N ,
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Figure 7.12 – Overall Execution Time vs N value

since the scheduling time is lower. This is due to the fact that the OpenMP runtime
always dispatches task in order. For this particular pattern, where M decreases, the longer
tasks (with greater M) will be scheduled first, resulting in efficient scheduling decisions.
As is shown in Figures 7.13a and 7.13b, the Gantt charts obtained from the decreasing
pattern type for both multicore scheduling methods are equivalent in computation time.
The difference is due to a later scheduling time for the Spider implementation. This has
the overall result that Spider is slower by about 17%, on average.
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Figure 7.13 – Gantt Chart of Decreasing pattern with N = 13 and M = 13..1

In Figure 7.12b, the increasing pattern execution timings for both implementations are
plotted. In this case, Spider is faster than OpenMP for N values greater than 10. This
is the result of OpenMP dispatching tasks in order, meaning that smaller channels are
scheduled first. Thus, the outcome is not efficient in scheduling decisions. As shown in
the Gantt charts of Figures 7.14a and 7.14b, Spider has better scheduling of tasks than
OpenMP for the increasing pattern. These better scheduling capabilities of Spider are
obtained by the SRDAG computation giving an overall view of the application execution.
It can be seen that for the increasing pattern, the overall latency is reduced by up to 21%
(when N = 15).

As demonstrated in this benchmark comparison with the OpenMP scheduling method,
Spider has a non-negligible scheduling overhead. However, the scheduling decisions taken
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Figure 7.14 – Gantt Chart of Increasing pattern with N = 13 and M = 1..13

by Spider at runtime result in superior performance than a Texas Instruments OpenMP
implementation on Keystone II for certain cases.

7.3 Parallel Discrete Fourier Transform Algorithm

7.3.1 Context

The Discrete Fourier Transform (DFT) is a common digital signal processing tool used in
several domains in science and engineering. It is used in all fields of signal processing, from
communications to radar applications. In our context, the computation of a DFT is used
for large numbers of input samples. Moreover, the DFT computation is usually only a part
of a larger application that could be globally managed by Spider. A DFT on complex
samples is considered here.

7.3.2 DFT Theory

Considering X = (X0, X1, · · · , XN−1)
T the input vector of N samples and F = (F0, F1, · · · , FN−1)

T

the vector of DFT output samples, the general DFT equation is :

Fk =

N−1
∑

n=0

Xk.e
−2jπkn

N

=
N−1
∑

n=0

Xk.W
kn
N

where WN = e
−2jπ
N

Another way to represent the DFT equation using a matrix vector multiplication:
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With the matrix representation, it is easy to see that the DFT algorithm requires N2

complex multiplications and N(N − 1) complex additions.
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The fundamental approach of all DFT fast algorithms is that of ’divide and conquer’.
Dividing the problem into several subproblems that are simpler to solve results in :

∑

cost(problem) > cost(subproblems) + cost(merging)

In order to divide the problem into simpler subproblems, Cooley and Tukey [CT65]
decimated the DFT by considering k = n2N1 + n1 with N = N1N2. In this way, the
periodicity of the input sequence is conserved:

Fk =

N1−1
∑

n1=0

N2−1
∑

n2=0

Xn2N1+n1
W

k(n2N1+n1)
N

⇔ Fk =

N1−1
∑

n1=0

N2−1
∑

n2=0

Xn2N1+n1
W kn2N1

N W kn1

N

⇔ Fk =

N1−1
∑

n1=0

N2−1
∑

n2=0

Xn2N1+n1
W kn2

N2
W kn1

N

⇔ Fk =

N1−1
∑

n1=0

W kn1

N

N2−1
∑

n2=0

Xn2N1+n1
W kn2

N2

Then they express k as k = k1N2 + k2 where k1 ∈ [0, N1[ and k2 ∈ [0, N2[.

Fk1N2+k2 =

N1−1
∑

n1=0

W
(k1N2+k2)n1

N

N2−1
∑

n2=0

Xn2N1+n1
W

(k1N2+k2)n2

N2

⇔ Fk1N2+k2 =

N1−1
∑

n1=0

W k1N2n1

N W k2n1

N

N2−1
∑

n2=0

Xn2N1+n1
W k1N2n2

N2
W k2n2

N2

⇔ Fk1N2+k2 =

N1−1
∑

n1=0

W k1n1

N1
W k2n1

N

N2−1
∑

n2=0

Xn2N1+n1
W k1n2

1 W k2n2

N2

Since WK
N = e

−2jπK
N , {k/N ∈ R} ⇒WK

N = 1. So W k1n2

1 = 1

⇔ Fk1N2+k2 =

N1−1
∑

n1=0

W k1n1

N1
W k2n1

N

N2−1
∑

n2=0

Xn2N1+n1
W k2n2

N2

If the following parameters are defined:

Fr,c = FrN2+c

Xr,c = XrN2+c

XT
r,c = XrN1+c

The following steps can be obtained with two intermediate expression Y and Y ′:
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Yn1,k2 =

N2−1
∑

n2=0

XT
n1,n2

W k2n2

N2

Y ′

n1,k2
= Yn1,k2W

k2n1

N

Fk1,k2 =

N1−1
∑

n1=0

Y ′

n1,k2
W k1n1

N1

So to execute the complete “divide and conquer” DFT algorithm, three steps are:

1. N1 DFTs of size N2 on the input vectors.

2. Multiply the output of the first step with twiddle factors.

3. N2 DFTs of size N1 on the row vectors of the second step output.

7.3.3 Test algorithms and PiSDF representation

In this "divide and conquer" method, the choice of N1 and N2 is important. We consider
only DFTs of lengths equal to the power of two’s: N = 2n. These transforms are frequent
in signal processing because they ideally use the addressing capabilities of DSPs. We can
derive 4 algorithms from this choice, which will all be described in the following subsections.

7.3.3.1 The Six-Step FFT

This method chooses N1 and N2 to be as close as possible to each other. The fundamental
idea is to evenly distribute the required computation into both sets of DFTs.

In [Bai89], Bailey proposes an algorithm that provides fast computing on external and
hierarchical memories. This algorithm is known as the 6-Steps FFTs.

This algorithm is composed of the following steps:

1. Transpose input samples considered as a N1 ×N2 matrix,

2. Perform N1 unrelated N2-points FFTs on the transposed matrix,

3. Multiply the resulting matrix with twiddle factors,

4. Transpose this matrix as a N2 ×N1 matrix,

5. Perform N2 unrelated N1-points FFTs on the transposed matrix,

6. Transpose this matrix as a N1 ×N2 matrix.

The major advantage of this method is that the memory accesses are consecutive when
performing the FFTs as the algorithm operates on rows of matrices. The computation will
then need less cache transfers and will perform better on embedded platforms.

In the SDF Model of Computation, interleaved access on different tokens of a Fifo is not
permitted. This is also the case for the PiSDF MoC. This is why the matrix transposition
implantation is required.

A PiSDF representation of the 6-Step algorithm can be found in Figure 7.15. Each
step is represented by a single actor.

In this representation, the choice is made to permit the possibility of grouping multiple
FFT operations into one actor. This is manageable via 2 parameters: one for each FFT
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Figure 7.15 – PiSDF Representation of the 6-Step FFT algorithm

step. In this way, the number of single-rate actors can be maintained to a reasonably low
level, reducing the runtime overhead and lowering the number of synchronization points
needed in the system. The precomputed BRV can be found in Table 7.1.

Actor Repetition
cfg 1
src 1
genIx 1
T_1 1
FFT_2 N1/n2

T_3 1
Twi_4 N2/n1

FFT_5 N2/n1

T_6 1
snk 1

Table 7.1 – BRV Table of the 6-Step Algorithm

In the PiSDF graph, the actor called genIx is used to apply the necessary twiddle
factors to the incoming data of the twiddle actor. These factors are precomputed and
stored in local memory. It is this index that allows the twiddle actor to apply the correct
multiplication factor.

An example of a derived SRDAG for this PiSDF algorithm is shown in Figure 7.16. As
can be seen, the PiSDF representation generates multiple iterations of the FFT and Twiddle
actors, which are then executed in parallel. However, the transpose is a monolithic task
that must be done sequentially. This is the only possible representation in PiSDF MoC.

7.3.3.2 Radix-2 FFT

Another approach which has been explored in literature is the Radix-2 approach. In the
this approach, either N1 or N2 is fixed to 2, and the other is then set to 2n−1. If N1

is set to 2, the input samples are separated into 2 vectors; the first one containing the
even samples and the second containing the odd samples. In this situation, this method
is called Decimation in Time (DIT). However, if we choose N2 = 2, the algorithm is
called Decimation in Frequency (DIF). Representations of both DIT and DIF are shown
in Figure 7.17.
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The advantage of the Radix-2 method is that a DFT of size 2 does not require twiddle
multiplications but only one addition and one subtraction for each sample.

For the PiSDF representation, the 6-Step representation can be reused. However, as
the second FFT step is fixed with size 2, these inputs can be shown explicitly in the
graph. In this way, the PiSDF MoC performs the second and third transpose. The PiSDF
representation of the DIT FFT is shown in Figure 7.18.
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Figure 7.18 – PiSDF Representation of the DIT Radix-2 FFT

However, this graph simplification cannot be applied to the 6-Step algorithm. If this
simplification was applied, it would lead to the creation of a FFT actor with a variable
number of input and output Fifos. This cannot be represented within the PiSDF MoC
specification. The BRV of this graph is displayed in Table 7.2.
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Actor Repetition
cfg 1
src 1
genIx 1
T 1
FFT 2
DFT_2 N2/n1

snk 1

Table 7.2 – BRV Table of the DIT Radix-2 FFT algorithm

Exploring the DIF is outside the scope of this work. Only the DIT variant has been
included. The DIT variant is preferred as the first data reordering computation can be
considered as a pre-processing step [BYB08].

Currently, as shown in the BRV table, the PiSDF representation only provides an actor
parallelism of 2 on the first FFT step of the graph. To improve the potential parallelism,
the same decomposition of the FFT is applied on the FFTs of first step. A PiSDF repre-
sentation that decomposes P times is shown in Figure 7.19. To handle the final bit reverse
of the DIT algorithm, a preprocessing bit reordering is performed at the beginning of the
dataflow graph, which is then merged with the transpose actor into a single actor.
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Figure 7.19 – PiSDF Representation of the P Times Decomposition

The first hierarchical actor used has the same pattern as that of the HCLM-Sched
benchmark. The feedback loops provide a pipeline with dynamic length of Radix2S tage ac-
tor. Then, the Fork/Join pattern in the Radix2S tage subgraph permit the PiSDF dataflow
MoC to recreate the classical butterfly shape of FFT. The precomputed BRV tables of the
different hierarchy levels are displayed in Figure 7.20.
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Figure 7.20 – Precomputed BRV Tables of graph from Figure 7.19

Both the 6-Step and Radix-2 implementations of the FFT application are benchmarked
in the following section.

7.3.4 Experimental results

A complex FFT has been assumed for these experiments. The results have been bench-
marked on the Keystone II platform. The large majority of the computation employs the
DSP cores, however, the GRT which applies the scheduling method is run on one of the
ARM processors. An FFT of 128k 16 bits fixed point complex samples is used in this
benchmark.

In this section, the scheduling time is not included. This is because the scheduling
operates on a separate core which is never used for computation, and so the scheduling
is pipelined with the computation. The consequence is that the next graph iteration is
scheduled during the current graph iteration. This supposition is valid since scheduling
takes around 700 µs for all algorithms. This is less than the graph execution time. Multiple
schedules can even be processed simultaneously using the other ARM cores embedded in
the platform.

As shown in Figure 7.21a, the Gantt chart of the 6 step algorithm is particularly costly
in the transpose operation (yellow, orange and pink tasks). This implementation uses the
embedded EDMA for these operations. However, the parallel execution of the FFT and
the twiddle actors are very efficient.

The corresponding Gantt chart of the Radix-2 algorithm execution is displayed in Fig-
ure 7.21b. In this algorithm, the initial bit reordering actor is lengthy despite the help
of the EDMA. However, when finished, the rest of the computation can be executed in
parallel on each DSP.

Since the first reordering is a sequential task executed by hardware components, it may
be considered as preprocessing [BYB08]. Even if the computation time is comparable,
this makes the Radix-2 algorithm more suitable for FFT execution than 6-Step algorithm
algorithm in this context.

Finally, it may be noted that the FFTCs embedded in the platform are used to en-
hance the algorithmic performance. The FFTC is a hardware accelerator for computing
FFTs on the Keystone II. To take full advantage of the high capability of the FFTCs, pa-
rameters have been optimized to include more tasks in the second FFT step (pink). This
configuration fires certain second step actors on the idle DSPs immediately after the end of
the FFTC computation. Even with the synchronization overhead from more actors in the
second step, the use of FFTCs provides a gain of 2.5% in terms of execution performance.
These experiments demonstrate the capabilities of Spider to manage heterogeneous plat-
forms.
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Figure 7.21 – Gantt Charts of Parallel FFT Algorithms

7.4 Stereo Matching Algorithm

A Stereo matching algorithm generates a disparity map from a pair of images by matching
pixels from the left and right images. This disparity map is also called a depth map of the
scene. For the current work, a dense local stereo matching algorithm [MSZ11] has been
chosen.

This stereo matching algorithm is based on the computation of an error. This error is
computed for all matching possibilities and is used to identify the most likely pixel in the
other image that matches the current one. The difference between these pixels is called
disparity.

The matching error is computed from the correlation of the two pixels (and their neigh-
borhood) and is computed using a census algorithm. This error is then iteratively refined
with a bilateral filter. This refinement step has the highest computing cost. It may be
noted that since these errors are computed independently, this stereo matching algorithm
can be easily parallelized.

As the errors are computed for each matching possibility (each disparity), the total
execution time is linear with respect to the disparity range; hence reducing the disparity
range will significantly decrease the total execution time. In order to optimize the algorithm
and reduce its complexity without decreasing performance, the disparity range can be
adjusted in real time using an algorithm like SIFT. The SIFT algorithm detects points
of interest on an object or a scene. The disparity of these points of interest can be very
quickly computed. An estimation of the disparity range is not within the scope of this
work, but it illustrates another use for a fast configuration at runtime, such as Spider.
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7.4.1 PiSDF Model

As described in [MSZ11], the stereo matching computation consists of four steps: cost ini-
tialization, cost aggregation, disparity computation and refinement. These same steps are
used to describe the PiSDF graph of the application. As DSPs are targeted by Spider, the
optimized implementation from [MPMN14] is used. The total graph for the stereo match-
ing application is composed of a top graph (Figure 7.22 ) and two subgraphs (Figure 7.23
and Figure 7.24).

The cost initialization step, or cost construction, is comprised of two separate parts:
census cost and truncated absolute difference cost.

The census cost in pixels of each images is computed by census actors: Census_L,
Census_R. These actors take the gray scale in the right and left images. This computation
is performed with the RGB2Gray_L RGB2Gray_R actors. The census operation produces
an 8-bit signature for each pixel of an input image which is obtained by comparing each
pixel to its 8 neighbors. If the value of any neighbor is greater than the value of the pixel,
one signature bit is set to 1. If not, it is set to 0. This weight is correlated to local textures
to ensure a good homogeneity of the results.

The truncated absolute difference cost simply computes the difference between the left
and right gray scale images. This value is then truncated to remove some noise. This
computation is performed in the CostConstruction actor of the CostParallel subgraph.
This actor also sums the truncated difference cost with result of the census cost.

The second step of cost aggregation step is iterative. Since the cost construction step
provides noisy matching cost maps, the cost aggregation step performs several passes on
areas with the same color in the original image. The cost aggregation step is performed
independently of each cost map and bilaterally, ie horizontally and then vertically. The
weights of each pixel are precomputed by the VWeight and WWeight respectively for
vertical and horizontal weights. Finally the costs are refined in the AggregateCost actor.

Actor Repet.
Config 1
Camera 1
RGB2Gray_R 1
RGB2Gray_L 1
Census_R 1
Census_L 1
CostParallel 1
Split 1
MedianFilter nSlice
Display 1

(a) Top Graph

Actor Repet.
GenDisp 1
GenIx 1
CostConstruction nDisp
HWeight nIter
VWeight nIter
DispComp 1

(b) CostParallel Subgraph

Actor Repet.
AggregateCost nDisp
DisparitySelect nDisp

(c) DispComp Subgraph

Table 7.3 – Precomputed BRV Tables of Stereo PiSDF Graph

The disparity computation and refinement steps are made by the DisparitySelect and
MedianFilter actors respectively. The DisparitySelect actor produces the disparity map
by comparing the cost of each disparity and selecting that with the lowest value. This
DisparitySelect actor is then fired nDisp times to perform the nDisp comparisons. The
MedianFilter is then used to reduce some of the residual noise of the disparity levels. In
the implementation of this thesis, the MedianFilter is parallelized by slicing the input
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images nSlice times. To perform the parallelization, the image is separated over the nSlice

iterations, and then the border pixels of the slices are duplicated by the Split actor.

The BRV of all graphs from the stereo applications can be found in Table 7.3.
In this example, both hierarchical actors (DispComp and CostParallel) are fired only

once. Hierarchy has been employed to use the RB behavior implicit on the input and
output data interfaces. For the CostParallel subgraph, incoming tokens from the grayL,
grayR, cenL, cenR interfaces are duplicated nDisp times. The same implicit RB behavior
occurs with the weight interfaces in the DispComp subgraph. In DispComp subgraph, the
output data interface of the rawDisparity actor filters output tokens, so that only the last
tokens are retained, which give the disparity levels after the completion of the comparison
of all levels.

7.4.2 Experimental results

The purpose of these experimental results is to demonstrate that Spider is suitable for
the computer vision domain.

The experimental setup was as follows:

• TI’s Keystone II platform was used

• All actors are run on DSPs

• External DDR was used, since the memory requirements were greater than the MSMC
shared memory (approximately 30MB was needed in total).

The number of DSP cores employed varies: the experiment swept this variable from 1 to 8
producing the plots of Figure 7.25.

In Figure 7.25a and Figure 7.25b, the parallelization of the stereo application per-
formance is benchmarked. In Figure 7.25d, the Gantt chart shows that the sequential
disparity selection actors (in orange) are the cause of the low parallelization potential of
the algorithm. Consequently, other actors are distributed to minimize the impact of the
sequential disparity selection actors on the platform performance.

As shown in the Figure 7.25c, the scheduling time for this case study is negligible. The
scheduling time represents up to 0.06% of the global execution time in this benchmark.
This demonstrates that Spider has a negligible impact on performance when used for
applications with actors which have long computation time. It can be then concluded that
Spider is suitable for computer vision applications. The advantages of reconfiguration and
good scheduling performance are balanced against by a negligible scheduling cost.

7.5 Conclusion

In this chapter, three applications are described using the PiSDF MoC. Each application
uses the features provided by the PiSDF MoC including the interfaced hierarchy and the
in-graph reconfiguration.

The three applications are used to benchmark the optimizations described in Chapter
5 which are all demonstrated to be real improvements in the scheduling method. A com-
parison with the OpenMP framework indicates that in certain cases, Spider has better
performance than OpenMP even with an application that is a good match for the OpenMP
parallelization process.
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Figure 7.25 – Stereo Application Benchmark

The three applications described in this chapter may also be seen to be suitable for use
in benchmarking applications. They may be employed to benchmark any modifications to
the MoC or to the scheduling method used in the Preesm/Spider framework.

Future work could include applying this description methodology to more complex
applications such as the High Efficiency Video Coding (HEVC) decoder [SOHW12]. This
application embeds a great number of data dependencies between tasks within a dynamic
reconfiguration domain. Benchmarking this application with an efficient scheduling method
such as JIT-MS may lead an improvement in speedup on similar applications.

Additionally, analyzing the impact of hierarchy on scheduling overheads is a motivating
objective for application studies. Since smaller graphs are scheduled more quickly, it would
be interesting to investigate the trade-off between complexity introduced by many hierarchy
levels compared with the complexity resulting from scheduling bigger graphs.
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CHAPTER 8

Conclusion

8.1 Summary

The recent evolution of embedded systems has resulted in the integration of an increasing
number of processing elements into Multi-Processor Systems-on-Chip. Thus, new program-
ming models and languages must be found to exploit the parallel processing capabilities
of these new devices. For this purpose, the dataflow MoC has emerged as a popular pro-
gramming technique to unveil the parallelism of applications.

This thesis studies programming techniques for embedded multicore devices and pro-
poses a novel multicore scheduling method. This new multicore scheduling method is called
JIT-MS and is based on a parameterized dataflow MoC called PiSDF [DPN+13]. It targets
the efficient dispatch of applications at runtime on MPSoCs.

The new scheduling method of JIT-MS was introduced in Chapter 4. This scheduling
method uses the PiSDF model to schedule actors when reconfiguration points are reached.
This allows the exploitation of the parallelism of the application that are present at these
reconfiguration points. The scheduling method is based on an intermediate graph called
SRDAG that is employed to unveil all the task precedences of the application. The schedul-
ing method iterates over multiple steps that correspond to the different hierarchy levels of
the PiSDF description of the application.

Optimizations that can be applied to the JIT-MS method were presented in Chapter 5.
These optimizations target on overall performance improvement, and are applied at dif-
ferent points in the multicore scheduling flow. Notably, a PiSDF MoC extension focusing
on Fifo delay provides scheduling performance improvements in terms of shared memory
footprint, scheduling overhead and application execution performance.

An embedded runtime system called Spider was then detailed in Chapter 6. This
runtime embeds the JIT-MS method and is used to schedule PiSDF applications. Runtime
and synchronization mechanisms are studied as well as certain runtime optimizations which
reduce the number of synchronizations between cores. This runtime is designed to be
portable and is implemented on a cutting edge embedded MPSoC: the TI Keystone II
platform.

Finally, a case study of PiSDF programming was presented in Chapter 7. Benchmarks
of the JIT-MS method and of the Spider runtime were presented. A study on the PiSDF
programming of two signal processing applications and one vision application were pro-
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vided, allowing the assessment of the performance of PiSDF programming. The Spider

runtime is compared to the OpenMP implementation by Texas Instruments and the re-
sults demonstrate that better schedules can be obtained with a manageable overhead with
Spider.

8.2 Future Work

The results of this thesis open new opportunities for future research on parameterized
dataflow MoCs. Parameterized dataflow provides new possibilities to a software designer
to describe the dynamic behavior of the application while retaining some predictability
when compared to dynamic dataflow models. The scheduling overhead introduced by the
runtime scheduling of PiSDF applications is shown to be manageable for signal and vision
applications. As a consequence, many applications scheduled at runtime can benefit from
parameterized dataflow programming. Potential future work can be divided into three
directions, which are described below.

8.2.1 A Larger Range of Platforms

Future MPSoCs will integrate more PEs, making multicore scheduling even more complex.
The current heuristics may not suit these platforms. A potential solution for scheduling
applications on a large number of cores is the HFS Mapping/Ordering method.

A further consideration for MPSoCs with hundreds of PEs such as the Kalray MPPA
[MPP15], is that a shared memory architecture would necessarily become the bottleneck
of the system. Thus, distributed memory systems are likely to become the new trend in
embedded MPSoCs. Since dataflow MoCs are not specific to either shared or distributed
memory architectures, the use of dataflow MoCs will continue with this paradigm shift
towards distributed memory MPSoCs. Hence, studying these new larger platforms with
the JIT-MS method and the Spider runtime is a promising perspective.

8.2.2 A Larger Range of Applications

Currently, signal and video applications are becoming increasingly more complex and re-
quire significant computing power. Since the scheduling performance of Spider is demon-
strated to be efficient when the scheduled actors are computationally intensive, the future
use of Spider with these applications is a natural step. For example, the HEVC [SOHW12]
video encoders and decoders are complex to parallelize and are composed of computation-
ally intensive tasks. Studying these new applications with the JIT-MS method would make
an interesting benchmark for this method.

8.2.3 Quasi-Static Scheduling Techniques

Spider is an embedded runtime that provides dynamic execution to dataflow applications.
The content of this thesis could be used to evaluate the scheduling impact of any appli-
cation. With this information, the programmer can decide if the overhead introduced by
this adaptive management is acceptable for the considered application.

Quasi-static scheduling provides adaptive management to a system at a low cost when
only a finite number of predefined cases can occur. This scheduling method is restricted to
dynamic behaviors but has a very low scheduling overhead. Now that a dynamic scheduling
method of PiSDF MoC has been designed, quasi-static scheduling should become straight-
forward making it an interesting perspective for applications with limited variations.
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Finally, Preesm may be enhanced to become a complete Static/Quasi-Static/Dynamic
framework that can provide valuable rapid prototyping metrics to the software designer
for a very large set of applications. This allows the software designer to take informed
decisions on the scheduling method of a given system, within the design constraints.
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APPENDIX A

French Summary

A.1 Contexte

A.1.1 Les Systèmes Embarqués

L’évolution récente des systèmes embarqués a donné lieu à un grand nombre de progrès re-
marquables. Du contrôleur très complexe d’un moteur d’une Formule 1 FIA à un podomètre
comptant chaque pas d’un piéton, les systèmes embarqués peuvent être trouvés un peu
partout dans la société du début du 21ème siècle. Même un cœur humain, l’organe le
plus vital, peut maintenant être remplacé par une machine [Car]. Un système embarqué
est un système électronique et informatique intégré conçu dans un but précis. Les télé-
phones mobiles, tablettes, cartes de crédit sans contact, montres connectées et même les
drones domestiques sont quelques-uns des innombrables appareils modernes contenant un
ou plusieurs systèmes embarqués.

A.1.2 Les Contraintes des Systèmes Embarqués

Une spécificité majeure du processus de conception des systèmes embarqués est le fait que
le développement soit contraint par un ou plusieurs critères précis. Ces contraintes peuvent
provenir de diverses sources.

Tout d’abord, certaines contraintes résultent directement de l’application visée. Le
temps de réaction d’un airbag dans un véhicule, la vitesse de décodage d’un lecteur musical
ou encore la consommation d’énergie d’une sonde spatiale sont des exemples de contraintes
que doit respecter un système embarqué.

Ces contraintes peuvent aussi être introduites par des considérations économiques.
Passer des années de développement ou intégrer des appareils électroniques plus coûteux
nécessitant des mises à jour logicielles fréquentes ne sont sans doute pas nécessaires à un
beeper de garage.

Enfin, l’environnement physique peut introduire de nouvelles contraintes pour un sys-
tème embarqué. Ces contraintes ne sont pas liées aux besoins, mais doivent être respectées
pour assurer un fonctionnement sûr et durable. La haute pression subie par un système im-
mergé profondément dans l’océan ou les perturbations causées par le rayonnement solaire
reçu par une sonde spatiale sont des exemples de contraintes environnementales.
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Ces diverses contraintes peuvent souvent être contradictoires, ou du moins difficiles
à satisfaire simultanément. Par conséquent, des arbitrages sont établis lors du proces-
sus de conception du système embarqué. Par exemple, la réduction de la fréquence de
fonctionnement d’une puce peut réduire ses performances, mais va également réduire sa
consommation d’énergie.

A.1.3 Conception d’un Système Embarqué

Le processus de conception d’un système embarqué est souvent séparé en deux parties : la
conception matérielle et logicielle.

L’objectif principal de la conception matérielle est d’adapter les ressources informa-
tiques du système à l’application et à l’environnement. Capteurs, actionneurs et interfaces
utilisateurs sont quelques-unes des nombreuses fonctionnalités qui peuvent être nécessaires
dans un système embarqué. La conception matérielle fournit également les services néces-
saires par le dispositif de calcul principal pour le fonctionnement du système. La génération
de l’horloge, l’alimentation et l’accès à une mémoire externe sont des exemples de services
matériels utilisés par la partie logicielle. L’objectif principal de la conception matérielle
est d’intégrer tous ces composants et services ainsi qu’adapter leurs inter-connections, en
décrivant l’architecture matérielle du système.

Les éléments de calcul d’un système sont désignés comme processeurs. Un processeur
est un élément programmable qui peut exécuter une fonctionnalité de l’application. Les
processeurs peuvent appartenir à différentes catégories: depuis les micro-contrôleurs de
faible puissance aux GPPs et/ou DSPs avec une forte capacité de calcul. Actuellement,
les systèmes embarqués peuvent intégrer plusieurs processeurs, créant ainsi un système
multiprocesseur. Si les processeurs sont de types différents, le système est défini comme un
système multiprocesseur hétérogène.

Pour piloter et exécuter la majeure partie de l’application, un logiciel est déployé sur
les différents processeurs du système. Ces logiciels sont développés lors de la conception
logicielle du système embarqué. Un logiciel, ou programme, est une liste d’instructions qui
sont exécutées par un processeur. Ces instructions sont stockées dans une mémoire dédiée
et sont traitées de façon séquentielle. Ces instructions sont écrites à l’aide d’un langage
machine qui peut être différent pour chaque type de processeur.

Actuellement, les programmeurs ne programment généralement pas les processeurs en
utilisant le langage machine, mais avec un langage de plus haut niveau. Java, Fortran,
C/C++ et leurs dérivés sont tous des exemples de langages de programmation de haut
niveau. Ces langages de haut niveau sont ensuite convertis en langage machine en utilisant
des compilateurs dédiés, qui sont dépendant du processeur visé.

La conception des parties matérielles et logicielles sont étroitement liées et un choix
effectué dans l’une des deux parties impose souvent des choix dans l’autre.

A.1.4 Systèmes embarqués parallèles

En 1965, Moore a prédit que le nombre de transistors dans un circuit intégré doublerait
tous les deux ans [Moo65]. Malgré le fait que cette tendance ralentit actuellement, cette
prédiction a été respectée pendant des années, rendant les systèmes de calcul de plus en
plus complexes au cours du temps.

Pendant de nombreuses années, les systèmes informatiques ont fait l’objet du mythe
dit du “mégahertz” [meg]. Il promeut l’idée qu’une fréquence d’horloge plus élevée produit
une exécution plus rapide des tâches. Ce mythe a été maintenu par les fondeurs de puces
pendant des décennies jusqu’à ce que les besoins en dissipation de chaleur des puces aient
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augmenté de façon spectaculaire. Ainsi, à partir de la première décennie du 21e siècle,
l’intégration d’un nombre grandissant de processeurs dans les systèmes multiprocesseurs
est devenue la nouvelle solution pour augmenter continuellement la puissance des systèmes
informatiques.

Actuellement, un domaine de recherche occupe une importance grandissante : les tech-
niques de programmation parallèle. Puisque de plus en plus de processeurs sont intégrés
dans les systèmes, il est devenu essentiel de concevoir des méthodes automatiques pour
gérer la répartition des calculs et la synchronisation des différents processeurs. De nou-
velles techniques de programmation ont vu le jour pour permettre aux programmeurs de
gérer les systèmes à plusieurs processeurs plus facilement. L’une de ces techniques est
appelée programmation flux de données.

A.1.5 Programmation Flux de Données

Les modèles de calcul flux de données ont été conçus pour représenter le parallélisme
des applications. Les applications sont décrites en utilisant des blocs de calcul, appelés
acteurs, qui échangent des données à l’aide de communications dirigées appelées canaux.
Un avantage majeur de modèles flux de données est la possibilité de réutiliser le code
existant pour exprimer le comportement des blocs de calcul. Le premier modèle flux de
données utilisé dans la littérature a été introduit par Kahn [Kah74].

Dès lors, de nombreux modèles flux de données ont émergé dans la littérature. Ces
modèles sont souvent basés sur un modèle pré-existant en ajoutant de nouvelles fonction-
nalités ou en assurant certaines propriétés. Certains de ces modèles apportent la possibilité
d’inclure des changements dynamiques dans la description de l’application. Ces change-
ments dynamiques permettent d’ajouter ou de supprimer des tâches de calcul à l’exécution.
Puisque le modèle est capable de détecter ces changements, de meilleures décisions peuvent
être prises quant à la répartition de l’application sur les systèmes multiprocesseurs.

Le modèle utilisé comme point d’entrée de cette thèse est le modèle PiSDF. Ce modèle
de calcul étend un modèle connu dans la littérature appelé SDF.

Le modèle PiSDF est défini formellement ci-dessous:

Definition A.1.5.1 (Définition du modèle PiSDF)
Un graphe PiSDF G = (A, F , P , I, D) est composé de :

• A, un set d’acteurs. Un acteur est un élément du graphe qui représente des calculs à
effectuer.

• F , un set de F ifos, i.e. canaux de communications unidirectionnels. Les acteurs
échangent des données appelés jetons via ces F ifos.

• P , un set de paramètres. Un paramètre est un élément du graphe qui est utilisé pour
configurer l’application et modifier son comportement.

• I, un set d’interfaces hiérarchiques. Une interface est un élément du graphe qui
permet la transmission de jetons ou de paramètres entre deux niveaux de hiérarchie.

• D, un set de dépendances. Une dépendance permet de propager les paramètres entre
les différents éléments du graphe.

Un exemple de graphe PiSDF est représenté sur la Figure A.1. Y sont représentés 5
acteurs: GenN , Src, H , Snk et Filter , et 2 paramètres: N et L.
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L’acteur H est un acteur hiérarchique. Son comportement est ainsi modélisé par un
autre graphe représenté sous celui-ci. Afin de connecter le graphe supérieur au graphe
inférieur, des interfaces sont utilisées et représentées par des carrés de couleurs verte et
rouge pour les ports de données entrants et sortants ainsi que par un triangle bleu pour les
paramètres.

L’acteur GenN est un acteur de configuration. En effet, il permet de déterminer la
valeur du paramètre N dynamiquement durant l’exécution du graphe. Les acteurs de
configurations ne peuvent être exécutés qu’une seule fois par niveau de hiérarchie.

Src Snk

L N N L

Filter

N N N N

H

LN

L N L

GenN

N

N

N

Figure A.1 – Un graphe d’exemple PiSDF

A.1.6 Contributions de la thèse

Lors de cette thèse, les techniques de programmation pour les systèmes embarqués multi-
processeurs ont été étudiées. Le point de départ est le modèle de flux de données PiSDF,
utilisé pour représenter l’application et pour répartir efficacement les calculs sur des sys-
tèmes embarqués multiprocesseurs.

Ce modèle de calcul flux de données fournit des fonctionnalités permettant l’adaptation
d’une application en modifiant des paramètres prédéfinis. Ces paramètres déclenchent des
changements dynamiques dans la structure d’exécution de l’application qui sont traités à
l’exécution.

Dans ce cadre, une nouvelle structure d’exécution en ligne a été développée pour ef-
fectuer une planification efficace d’applications PiSDF sur des systèmes embarqués multi-
processeurs. Les contributions de cette thèse sont énumérées ci-dessous:

• L’introduction d’une nouvelle méthodologie de programmation multiprocesseur. Cette
méthode permet de révéler le parallélisme d’une application PiSDF et d’envoyer dif-
férentes tâches sur le système ciblé. Cette méthode est nommée JIT-MS.

• Diverses améliorations sur cette méthode ont été introduites. Ces améliorations com-
prennent une extension au modèle de calcul PiSDF ainsi que des optimisations sur
la représentation intermédiaire utilisée lors de la méthode.
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• Une nouvelle structure d’exécution appelée Spider est introduite. Spider effectue
la méthode JIT-MS à l’exécution et exploite le parallélisme des applications PiSDF.
Spider vise les systèmes embarqués multiprocesseurs hétérogènes et peut facilement
être adaptée à plusieurs plateformes.

• Une étude de deux applications de traitement du signal et de vision par ordinateur sur
un système embarqué multiprocesseur hétérogène. Ces applications utilisent Spider

et une discussion sur leur représentation en PiSDF est aussi apportée.

Toutes les contributions ont été développées dans le cadre d’une collaboration scien-
tifique entre le laboratoire IETR et Texas Instrument France, et dans le cadre du projet
ANR COMPA.

A.2 JIT-MS: une Méthode d’Ordonnancement Multiprocesseur
basée sur le Modèle de Calcul PiSDF

L’un des principaux défis de la conception et la réalisation de systèmes multiprocesseurs
est de répartir efficacement les tâches de calcul sur les processeurs disponibles. La ré-
partition peut inclure dans ses décisions les modifications dynamiques des fonctionnalités
de l’application ou de ses besoins en ressources. Ce processus d’attribution, de classifi-
cation et de synchronisation des acteurs sur les processeurs dans ce contexte est appelé
ordonnancement multiprocesseur et est représenté sur la Figure A.2.

Algo

Extraction

1

21

2

1 2

1 2

time

PEMapping Ordering Timing

Figure A.2 – Ordonnancement Multiprocesseur d’une application sur une plateforme composée
de deux processeurs

Tout d’abord, des tâches parallèles sont extraites à partir du programme initial (Extrac-
tion). Ensuite, la phase de répartition attribue un processeur à chaque tâche (Mapping).
Cette phase doit gérer divers paramètres tels que l’utilisation processeur et le coût de la
communication. La phase suivante de classification (Ordering) est parfois regroupée avec
la phase de répartition. Elle crée une liste d’exécution ordonnée des tâches sur chaque pro-
cesseur. Enfin, la phase de synchronisation (Timing) attribue les instants de début pour
chaque tâche.

L’utilisation inefficace des processeurs peut conduire à un temps d’exécution global plus
long. De plus, les périodes d’inactivités des processeurs qui en résultent entraînent une con-
sommation électrique inutile. Ces considérations font de l’ordonnancement multiprocesseur
un élément important pour avoir un système embarqué efficace. Cependant, la dynamicité
des tâches de calculs et de leur dépendances de données font de l’ordonnancement multi-
processeur un problème complexe à résoudre [MTK+11].

Les sources de parallélisme d’une application peuvent être multiples. En général, il
existe trois sources de parallélisme: le parallélisme de tâches, le parallélisme de données et
le parallélisme de pipeline. La figure A.3 illustre ces trois sources de parallélismes.

Le parallélisme de tâche se produit lorsque deux tâches distinctes sont appliquées sur
des ensembles de données d’entrée séparées. Cette source de parallélisme est habituellement
facilement extraite de l’application.
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Figure A.3 – Les sources de parallélisme

Le parallélisme de données se produit lorsque la même tâche doit être exécutée sur
deux ensembles de données différents. Le parallélisme de données est seulement possible
quand il n’y a pas de dépendance entre les deux ensembles de données. De cette manière,
les deux tâches peuvent être exécutées en parallèle sans problèmes.

Le parallélisme pipeline se produit lorsque deux processeurs du même système multipro-
cesseur calculent simultanément les tâches sur les données provenant d’itérations différentes
du même algorithme.

La contribution majeure de cette thèse est l’élaboration d’une nouvelle méthode d’ordonnancement
multiprocesseur pour répondre à ces défis de conception. Cette méthode est basée sur le
modèle de calcul PiSDF, et est appelée Ordonnancement Multiprocesseur Juste-à-Temps
(JIT-MS). JIT-MS est une méthode d’ordonnancement flexible qui prend les décisions
d’ordonnancement durant l’exécution. Cette méthode se concentre sur l’optimisation de
la répartition des tâches de l’application sur les ressources disponibles du système. En ce
qui concerne la taxonomie de programmation définie par Lee et Ha [LH89], JIT-MS utilise
une stratégie d’ordonnancement fully dynamic. De plus, JIT-MS permet d’exploiter les
parallélismes de données, de tâches et de pipeline. Cette méthode est intégrée dans un
système d’exécution appelé Spider.

Le choix du modèle de calcul impacte la méthode d’ordonnancement en termes de per-
formance et de mise en œuvre. La sélection du modèle de calcul adéquat en terme de
prédictibilité peut potentiellement fournir plus de parallélisme sur l’application. Inverse-
ment, le manque d’expressivité est une limite typique à la bonne prédictibilité d’un modèle.
Une expressivité basse limite la gamme des applications qui peuvent être modélisées.

Dans cette thèse, le modèle de calcul PiSDF a été choisi pour exploiter le parallélisme
par les périodes localement statiques qu’il propose lorsque tous les paramètres qui in-
fluencent l’algorithme ont été déterminés. L’idée fondamentale est que la détection et
l’exploitation des propriétés localement statiques permettent de produire des solutions
d’ordonnancement plus efficaces. Le modèle de calcul PiSDF permet au développeur de
modéliser son application avec des paramètres variables. JIT-MS exploite les caractéris-
tiques du modèle PiSDF pour extraire efficacement le parallélisme potentiel de l’application
pour réduire la latence globale de l’application.

Une méthode itérative est utilisée par JIT-MS pour gérer la reconfiguration de l’application
à travers les différents niveaux hiérarchiques. Le procédé d’ordonnancement multipro-
cesseur est ensuite divisé en plusieurs étapes et se concentre sur la construction progressive
d’un graphe intermédiaire appelé SRDAG. Ce graphe intermédiaire est utilisé pour dévoiler
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le parallélisme de l’application et agit comme un graphe de dépendance de tâches, qui est
ensuite utilisé pour la répartition des tâches sur les différents processeurs.

Par l’utilisation de ce SRDAG, la méthode JIT-MS permet d’exploiter le parallélisme
maximal entre les acteurs grâce à l’utilisation d’une heuristique d’ordonnancement. L’une
des tâches d’ordonnancement la plus cruciale dans la méthode JIT-MS est la transformation
Single Rate. Cette tâche est traitée immédiatement après que tous les paramètres d’un
niveau de hiérarchie aient été déterminés. Cela permet de générer le SRDAG depuis le
graphe PiSDF d’origine en entraînant la création d’acteurs supplémentaires appelés acteurs
spéciaux. Ces acteurs sont utilisés pour gérer la distribution non-directe des jetons entre
les différents acteurs.

A.3 Amélioration de la Méthode d’Ordonnancement Multi-
processeur

Il y a plusieurs possibilités pour optimiser la méthode JIT-MS afin d’obtenir de meilleures
performances à l’exécution. Chaque optimisation vise une sous-partie de la méthode JIT-
MS, et plusieurs améliorations seront détaillées.

Tout d’abord, une extension au modèle PiSDF est proposée pour améliorer les per-
formances de l’ordonnancement mais aussi afin d’ajouter une nouvelle fonctionnalité aux
développeurs PiSDF. Cette extension se concentre sur les valeurs initiales des délais dans le
modèle PiSDF. Ces délais sont des jetons présents dans le graphe PiSDF à l’initialisation.
En général, dans le modèle de calcul PiSDF, ces jetons sont non-initialisés ou mis à zéro.
Dans l’extension proposée, ces jetons peuvent être initialisés par une interface ou un acteur
de configuration. Cette extension simplifie les graphes PiSDF et permet une amélioration
des performances de la méthode d’ordonnancement.

La deuxième optimisation possible agit sur le SRDAG, le but étant de réduire la com-
plexité de ce graphe. En réduisant la complexité de ce graphe, l’empreinte mémoire sur
la mémoire partagée ainsi que le temps de traitement de l’algorithme d’ordonnancement
ont été réduits. Cette optimisation peut aussi permettre de révéler plus de parallélisme
de tâches dans l’application et ainsi réduire le nombre de synchronisations au sein de
l’ensemble du graphe. Cette optimisation est basée sur les acteurs spéciaux précédemment
définis.

La dernière optimisation présentée est un nouvel algorithme de répartition des tâches
sur les différents processeurs. Comme indiqué précédemment, la méthode JIT-MS est
indépendante de l’algorithme utilisé pour la répartition des tâches. Tous les algorithmes
proposés dans [SSKH13] peuvent donc être utilisés ici. Un des plus célèbre algorithme de
répartition des tâches est appelé list scheduler. Cet algorithme possède un certain nombre
de variantes : pour les résultats présentés dans cette thèse, la version avec chemin critique
modifié (MCP) est utilisée [WG87]. Cependant, pour une architecture avec un grand
nombre de processeurs l’algorithme list scheduler possède un temps d’exécution long. Pour
les plateformes possédant des centaines de processeurs, un nouvel algorithme de répartition
des tâches est proposé.

A.4 Spider: une Structure d’Exécution Multiprocesseur Flux
de Données

Spider est une structure d’exécution multiprocesseur qui cible les systèmes embarqués
hétérogènes. Il a été conçu pour être une structure d’exécution de bas niveau qui permet la
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reconfiguration dynamique et efficace d’applications sur les plateformes multiprocesseurs.
Il utilise pour cela les propriétés du modèle de calcul flux de données. Cette exécution
prend un graphe PiSDF comme entrée et intègre la méthode d’ordonnancement JIT-MS.

Le développement d’une application PiSDF se décompose en deux étapes. Première-
ment, l’application est modélisée en utilisant l’outil Preesm basé sur le logiciel Eclipse.
Cet outil fournit une interface graphique permettant de décrire et développer l’application.
Preesm peut également être utilisé comme un outil de prototypage rapide fournissant des
simulations d’ordonnancement avec des paramètres fixés. La structure d’exécution Spider

est alors utilisée pour l’exécution adaptative de ce graphe PiSDF.
Dans Spider, le graphe PiSDF est chargé dans la mémoire locale d’un gestionnaire

centralisé appelé GRT. Le graphe PiSDF est chargé statiquement lors de l’initialisation de
l’exécution. Le graphe PiSDF est ainsi décrit en utilisant du code C/C++. L’outil Preesm

fournit déjà une interface graphique pour développer des graphes PiSDF, un générateur de
code compatible à Spider a donc été ajouté à l’outil Preesm.

La structure d’exécution Spider possède une structure maître/esclave, où un maître ap-
pelé GRT effectue l’ordonnancement multiprocesseur. Il envoie ensuite des ordres d’exécutions
de tâches à tous les esclaves appelés LRTs. Ces ordres contiennent les informations requises
pour l’exécution des acteurs correspondants. Une fois que l’acteur est exécuté, chaque LRT
renvoie des traces d’exécution au GRT. Le GRT a alors une vue globale sur l’exécution du
graphe PiSDF récemment exécuté, lui permettant de produire un diagramme de Gantt de
l’exécution passée.

La structure d’exécution Spider est conçue pour être portable sur plusieurs plate-
formes. Spider est une structure d’exécution séparée en plusieurs couches, lui permettant
d’être efficacement portée sur un autre système avec peu de code supplémentaire. Actuelle-
ment, les systèmes Linux et Keystone II de Texas Instruments sont pris en charge par
Spider, mais des travaux futurs peuvent impliquer plusieurs nouveaux systèmes.

A.5 Résultats Expérimentaux

Les performances de la structure d’exécution Spider ainsi que la méthode d’ordonnancement
JIT-MS ont été évaluées sur trois applications. Des expérimentations ont été menées sur
la plateforme Texas Instruments Keystone II.

La première application, appelée HCLM-Sched, est utilisée comme application de test.
Elle est composée de plusieurs chaînes de filtres à réponse impulsionnelle finie (FIR).
Chaque chaîne possède un nombre différent de filtres et le nombre de chaînes et de filtres
peuvent varier à l’exécution. Les filtres FIR sont utilisés dans de nombreux algorithmes
de traitement du signal des systèmes embarqués, notamment dans domaines des télécom-
munications et du traitement audio. Cette application HCLM-Sched a permis d’évaluer la
performance des optimisations proposées dans cette thèse.

De plus, cette application a permis de comparer la structure d’exécution Spider et
OpenMP. OpenMP est la structure d’exécution de référence dans l’industrie pour la pro-
grammation parallèle sur les systèmes embarqués multiprocesseurs. Le principal avantage
d’OpenMP est de développer une application parallèle rapidement à partir de code séquen-
tiel. OpenMP est connu pour être efficace pour les applications de traitement du signal.
Une comparaison en performance entre Spider et OpenMP sur la plate-forme Keystone II
est donc un défi. Il a été montré sur cet exemple que Spider prends de meilleures décisions
qu’OpenMP mais il possède un surplus en temps d’ordonnancement.

Ensuite, un algorithme de traitement du signal de transformée de Fourier (FFT) a été
implémenté avec Spider. La représentation de cet algorithme avec le modèle de calcul
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PiSDF est proposée. En outre, cet algorithme est également utilisé pour démontrer la
capacité de Spider à utiliser des plateformes hétérogènes.

La dernière application est un algorithme de vision par ordinateur, un algorithme de
correspondance stéréo. Cette application calcule une carte de disparités à partir de deux
images stéréoscopiques. Cet algorithme est décrit en PiSDF et est exécuté par Spider.

Ces trois applications sont utilisées pour étalonner la méthode d’ordonnancement sur
des applications de différentes formes et ayant des besoins variés en termes de puissance de
calcul. La représentation en graphe PiSDF de chacun de ces algorithmes est intéressante
car elle implique différents types de graphe. La méthodologie de la représentation de ces
différents algorithmes dans le modèle PiSDF est aussi une contribution de cette thèse.

A.6 Conclusion

L’évolution récente des systèmes embarqués a abouti à l’intégration d’un nombre croissant
d’éléments de traitement dans les systèmes multiprocesseurs. Ainsi, de nouveaux modèles
de programmation et langages sont étudiés pour exploiter les capacités de traitement par-
allèle de ces nouveaux systèmes. À cet effet, les modèles de calculs flux de données ont
émergé comme une technique de programmation populaire pour exploiter le parallélisme
des applications.

Cette thèse étudie les techniques de programmation pour les appareils embarqués mul-
tiprocesseurs et propose une nouvelle méthode d’ordonnancement multiprocesseur. Cette
nouvelle méthode de programmation multiprocesseur est appelé JIT-MS et est basée sur
un modèle de calcul flux de données paramétré appelé PiSDF [DPN+13]. Le but étant la
répartition rapide et efficace des tâches d’une application sur un système multiprocesseur
durant l’exécution.

Cette méthode de programmation utilise le modèle de calcul PiSDF afin de planifier
l’exécution des tâches dès que certains points de reconfiguration ont été atteints. Cette
méthode d’ordonnancement est basée sur un graphe intermédiaire appelé SRDAG qui est
utilisé pour dévoiler les interactions entre toutes les tâches de l’application.

Des optimisations sur cette méthode ont aussi été introduites. Elles visent à l’amélioration
de la performance globale de la méthode, et sont appliquées à différents niveaux dans la
méthodologie proposée. Notamment, une extension au modèle de calcul PiSDF permet
des améliorations de performance de la méthode d’ordonnancement en termes d’empreinte
mémoire et de temps d’exécution de l’ordonnanceur.

Une structure d’exécution appelée Spider a aussi été développée. Cette exécution in-
tègre la méthodologie JIT-MS et est utilisée pour exécuter des applications PiSDF. Les
mécanismes d’exécution et de synchronisation utilisés sont étudiés ainsi que certaines op-
timisations permettant de réduire le nombre de synchronisations entre les différents pro-
cesseurs. Cette structure d’exécution est conçue pour être portable sur différents systèmes
multiprocesseurs hétérogènes.

Enfin, une étude de différentes applications modélisées en PiSDF a été présentée. Une
étude sur la représentation en PiSDF de deux applications de traitement du signal et
de l’image a été fournie, permettant l’évaluation de la performance de la programmation
d’application en PiSDF. La structure d’exécution proposée et appelée Spider a été com-
parée à OpenMP et les résultats montrent que de meilleures décisions peuvent être obtenues
par Spider avec un faible surcoût en temps d’exécution de la méthode.
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A.7 Ouvertures

Les résultats de cette thèse ouvrent de nouvelles possibilités sur les modèles flux de données
paramétrées. Ces modèles flux de données paramétrées offrent de nouvelles possibilités aux
concepteurs d’applications pour décrire le comportement dynamique de celles-ci tout en
conservant une certaine prédictibilité par rapport à des modèles flux de données purement
dynamiques. Les travaux futurs peuvent être dirigés vers trois directions qui sont décrites
ci-dessous.

A.7.1 Un Plus Grand Nombre de Plateformes

Les systèmes multiprocesseurs intégreront de plus en plus de processeurs, faisant de la
programmation multiprocesseur de plus en plus complexe. Les heuristiques actuelles ne
peuvent pas convenir à ces nouvelles plateformes. Une solution potentielle pour les ap-
plications d’ordonnancement sur un grand nombre de processeurs est l’heuristique HFS
proposée dans cette thèse.

De plus, les systèmes multiprocesseurs avec des centaines de processeurs telle que la
plateforme Kalray MPPA [MPP15] regroupant 256 processeurs, ne peuvent plus supporter
une architecture avec mémoire partagée. En effet, celle-ci deviendrait nécessairement le
goulot d’étranglement du système. Ainsi, les systèmes à mémoire distribuée sont suscep-
tibles de devenir la nouvelle tendance dans les systèmes multiprocesseurs. Puisque les
modèles de calcul flux de données ne sont pas réduits aux architectures avec mémoire
partagée, l’utilisation de ces modèles devrait être possible. Ainsi, l’étude de ces nouvelles
plateformes avec un nombre grandissant de processeurs est une perspective prometteuse
pour la méthode d’ordonnancement JIT-MS et la structure d’exécution Spider.

A.7.2 Un Plus Grand Nombre d’Applications

Actuellement, les applications de traitement du signal et de l’image sont de plus en plus
complexes et nécessitent une puissance de calcul importante. Puisque les performances
d’ordonnancement Spider ont été démontrées comme étant efficaces lorsque les tâches
composantes de l’application sont intensives, l’utilisation de Spider avec ces applications
devrait être efficace.

Par exemple, les encodeurs et décodeurs vidéo HEVC [SOHW12] sont des algorithmes
complexes à paralléliser et sont composés de tâches de calcul intensif. L’étude de ces
nouvelles applications avec la méthode JIT-MS devient donc intéressante.

A.7.3 Une Méthode d’Ordonnancement Quasi-Satique

Spider est une structure d’exécution qui permet une exécution dynamique d’applications
représentées avec un modèle flux de données. L’impact de l’ordonnanceur sur l’exécution
peut maintenant être caractérisé en utilisant les travaux de cette thèse. Avec ces infor-
mations, le programmeur peut décider si la surcharge introduite par cette méthodologie
adaptative est acceptable pour l’application considérée.

Un ordonnancement quasi-statique permet un ordonnancement adaptatif à faible coût
si les valeurs possibles des paramètres sont restreint à des cas prédéfinis. Maintenant qu’une
méthode d’ordonnancement dynamique a été conçue, un ordonnancement quasi-statique
devrait être simple à mettre en œuvre et utile pour les applications nécessitant une faible
latence.
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Enfin, l’outil Preesm peut être étendu afin de devenir un ensemble permettant l’ordonnancement
statique, quasi-statique et dynamique d’applications flux de données. Il peut ainsi fournir
de précieux indicateurs de prototypage rapide aux concepteurs d’applications en respect
avec leurs contraintes de conception du système.
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