H. Saint-simon, J. Hansen, R. Ruedy, M. Sato, K. Lo et al., Available: https://www.ipcc.ch/home_languages_main_french.shtml Rappots d'aluatio [Olie] Aailaale: https://www.ipcc.ch/home_languages_main_french.shtml. [Accessed 30 06 2015] A review on buildings energy consumption information Energy and Buildings Available: http://www.iiasa.ac, Chapte10.en.html. [Accès le 21 09 2015]. [7] H. Ben Ahmed, B. Multan et Y. Thiaux, Consommation d'énergie, ressources énergétiques et place de l'électricité Techniques de l'Ingénieur, pp.394-398, 1823.

F. A. Peuser, K. Remmers, and M. Schnauss, Installations solaires thermiques: Conception et mise en oeuvre, 2005.

F. Marias, P. Neveu, G. Tanguy, and P. Papillon, Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode Energy, pp.757-765, 2014.

W. Dobbin, Stratification in solar domestic hot water storage tanks Energy Developments, pp.501-506, 1984.

E. Kaçan and K. Ulgen, Energy and exergy analysis of solar combisystems, International Journal of Exergy, vol.14, issue.3, pp.364-387, 2014.
DOI : 10.1504/IJEX.2014.061034

P. Papillo, Coisol pojeet: " olaa Coissstees Pootio aad " taadaaisatio

A. Thür, J. Breidler, G. Kuhess, and D. , Updated " tate of the At Repot Of " olaa Coissstees Aalsed ithi Coi " ol Coi, ol Pojeet

D. Pineau, P. Rivière, P. Stabat, P. Hoang, and V. Archambault, Performance analysis of heating systems for low energy houses Energy and Buildings, pp.45-54, 2013.

N. Kelly and J. Cockroft, Analysis of retrofit air source heat pump performance: Results from detailed simulations and comparison to field trial data, Energy and Buildings, vol.43, issue.1, pp.239-245, 2011.
DOI : 10.1016/j.enbuild.2010.09.018

A. Tautvydas, E4EM: heat pump case study [En ligne] Available: http://e4em

J. Brenn, P. Soltic, and C. Bach, Comparison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems fo uildig heatig puposess Energy and Buildings, pp.904-908, 2010.

A. Nitkiewicz and R. Sekret, Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler Energy Conversion and Management, pp.647-652, 2014.

J. Ruschenburg, S. Herkel, and H. Henning, A statistical analysis on market-available solar thermal heat pump systems Solar Energy, pp.79-89, 2013.

F. Elimar, H. Michel, S. Herkel, and J. Ruschenburg, Systematic classification of combined solar thermal and heat pump systems EuroSun, 2010.

M. D. Atoi, R. Fedizzi, and W. , paaaee, nachhaltigwirtschaften [En ligne] Available: http://www.nachhaltigwirtschaften.at/iea_pdf

D. Carbonell, M. Y. Haller, D. Philippen, and E. Frank, Simulations of combined solar thermal and heat pump systems for domestic hot water and space heating Energy Procedia, pp.524-534, 2014.

M. Y. Haller and D. Carbonell, Solar and heat pump systems ? summary of simulation results of the IEA SHC TASK 44/HPP ANNEX 38 IEA heat pump coference, 2014.

M. Y. Haller and E. Frank, On the potential of using heat from solar thermal collectors for heat pump evaporators ISES Solar Wolrld Congress, 2011.

S. Stark, A. Loose, and H. Drück, Field test results from combined solar thermal and air-source heat pump systems with a special focus on defrosting Energy Procedia, pp.654-663

V. Trillat-berdal, B. Souyri, and G. Fraisse, Experimental study of a ground-coupled heat pump combined with thermal solar collectors Energy and Buildings, pp.1477-1484, 2006.

A. Papadopoulos, S. Oxizidis, and N. Kyriakis, Perspectives of solar cooling in view of the developments in the air-oditioig seeto Renewable and Sustainable Energy Reviews, pp.419-438, 2003.

I. Bell, A. Al-daini, H. Al-ali, R. Abdel-gayed, and L. Duckers, The design of an evaporator/absorber and thermodynamic analysis of a vapor absorption chiller driven by solar energy Pages Renewable Energy, pp.657-660, 1996.

M. Helm, K. Hagel, W. Pfeffer, S. Hiebler, and C. Schweigler, Solar Heating and Cooling System with Absorption Chiller and Latent Heat Storage ??? A Research Project Summary, Energy Procedia, vol.48, pp.837-849, 2014.
DOI : 10.1016/j.egypro.2014.02.097

M. Helm, C. Keil, S. Hiebler, H. Mehling, and C. Schweigler, Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience, International Journal of Refrigeration, vol.32, issue.4, pp.596-606, 2009.
DOI : 10.1016/j.ijrefrig.2009.02.010

R. Lizarte, M. Izquierdo, J. Marcos, and E. Palacios, An innovative solar-driven directly air-cooled LiBr?H2O absorption chille pototpe fo esideetial usee Energy and Buildings, pp.1-11, 2012.

R. Gomri, Simulation study on the performance of solar/natural gas aasoptio oolig hilleess Energy Conversion and Management, pp.675-681, 2013.

H. Henning and J. Döll, Solar Systems for Heatig aad Coolig of Buildigss Energy Procedia, pp.633-653, 2012.

V. Boopathi-raja and V. Shanmugam, A review and new approach to minimize the cost of solar assisted aasoptio oolig ssstee Renewable and Sustainable Energy Reviews, pp.6725-6731, 2012.

. Solair-project, Here you can find a list of current and past projects in the field of solar cooling [En ligne, 2015.

. Eur-'observ-'er, Solar Thermal and Coneetated " olaa Poe Baaoeteee Systèmes Solaires, 2013.

D. Mugnier, Work plan for Task 53: New Generation solar cooling & heating systems (PV and solar theeeall diee sssteesss [En ligne] Available: http://task53.iea- shc.org/data/sites

M. Y. Haller, R. Haberl, I. Mojic, and E. Frank, Hydraulic Integration and Control of Heat Pump and Combistorage: Same Components, Big Differences Energy Procedia, pp.571-580, 2014.

R. Haberl, M. Y. Haller, A. Reber, and E. Frank, Combining Heat Pumps with Combistores: Detailed Measurements Reveal Demand for Optimization, Energy Procedia, vol.48, pp.361-369, 2014.
DOI : 10.1016/j.egypro.2014.02.042

I. Maleekoi?, Definition of performance figures fo solaa aad heat pup sssteess 2012. [En ligne] Available: http://www.estif.org/fileadmin

C. Wehöee and T. Afjei, Seasonal performance calculation for residential heat pumps with combined space heating and hot atee podutio FHBB Method, 2003.

J. Facão and M. J. Carvalho, New test methodologies to analyse direct expansion solar assisted heat pumps for domestic hot water Solar Energy, pp.66-75, 2014.

V. Partenay, Développement d'une méthodologie d'évaluation des performances de systèmes de pompes à chaleur géothermique (Thèse), 2010.

G. Panaras, E. Mathioulakis, and V. Belessiotis, A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems Applied Energy, pp.124-134, 2014.

P. Almeidaa, M. J. Carvalho, R. Amorim, J. F. Mendes, and V. Lopes, Dynamic testing of systems?use of TRNSYS as an Approah fo Paaaaetee Ideetifiatio Solar Energy, pp.60-70, 2014.

M. Haller, R. Haberl, T. Persson, C. Bales, P. Kovacs et al., Dynamic whole system testing of combined renewable heating systems ??? The current state of the art, Energy and Buildings, vol.66, pp.667-677, 2013.
DOI : 10.1016/j.enbuild.2013.07.052

M. Maa-"-heep, heep -New Materials and Control for a next generation of compact combined Solar and heat pup ssstees ith oosted eeeegeti aad eeeegeti peefoaaee -2015, 2014.

A. Leconte, G. Achard, and P. Papillon, Global approach test improvement using a neural network model identification to characterise solaa oissstee peefoaaess Solar Energy, 2001.

M. Albaric, J. Nowag, and P. Papillon, Thermal performance evaluation of solar combisystems using a Références -215 global appoaah Eurosun conference, 2008.

M. Albaric, B. Mette, J. Ullman, H. Drück, and P. Papillon, Comparison of two different methods for solar combisystems performance testing Eurosun conference, 2010.

R. Heimrath and M. Haller, Project Report A2 of Subtack A: The reference heating system, the template solar system. A report of IEA SHC -Task 32, 2007.

U. Jordan and K. Vajen, Realistic domestic hot water profiles in different time scales Available: http://sel.me.wisc.edu/trnsys/trnlib/library15, 2001.

D. Triche, Deloppeeeet d'ue thode d'essais daaiues seei-virtuelle pour caractériser les systèmes de climatisation/chauffage solaire, 2012.

O. Pajonk, Overview of System Identification with Focus on Inverse Modeling Literature review Institute of Scientific Computing, 2009.

L. Ljung, System Identification: Theory for the User, 1999.

G. Horvath, Neural Networks in System Identification, Chapter 3, Neural networks in measurement Systems NATO ASI NIMIA Crema, 2001.

R. Pearsona and Ü. Kottab, Nonlinear discrete-time models: state-space vs. I/O representations, Journal of Process Control, vol.14, issue.5, pp.533-538, 2004.
DOI : 10.1016/j.jprocont.2003.09.007

M. Norgaard, O. Ravn, N. Poulsen, and L. Hansen, Neural networks for modelling and control of dynamic systems, 2000.
DOI : 10.1007/978-1-4471-0453-7

F. Giri and E. Bai, Block-oriented nonlinear system identification, 2010.
DOI : 10.1007/978-1-84996-513-2

URL : https://hal.archives-ouvertes.fr/hal-01059742

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-314, 1989.
DOI : 10.1007/BF02551274

S. Rastko, R. Et, L. Frank, and L. , Neural Network Approximation of piecewise continuous functions: Application to friction compensation, IEEE Transactions on Neural Networks, vol.13, issue.13, 2002.

S. A. Kalogirou, Artificial neural networks in renewable in renewable energy systems application: a review Renewable and Sustainable Energy Reviews, pp.373-401, 2001.

S. Kalogirou, E. Mathioulakis, and V. Belessiotis, Artificial neural networks for the performance prediction of large solar systems Renewable Energy, pp.90-97, 2014.

C. Burattia, M. Baaaaaeeaa, and D. Palladioa, An original tool for checking energy performance and certification of buildings by means of, Artificial Neural Networks Applied Energy, vol.120, pp.125-132, 2014.

W. Yaïci and E. Entchev, Performance prediction of a solar thermal energy system using artificial neural networks, Applied Thermal Engineering, vol.73, issue.1, pp.1348-1359, 2014.
DOI : 10.1016/j.applthermaleng.2014.07.040

S. Rosiek and F. Batlles, Modelling a solar-assisted air-conditioning system installed in CIESOL building usig aa aatifiial euual etookk Renewable Energy, pp.2894-2901, 2010.

S. Rosiek and F. Batlles, Performance study of solar-assisted air-conditioning system provided with storage tanks using artificial neural networks, International Journal of Refrigeration, vol.34, issue.6, pp.1446-1454, 2011.
DOI : 10.1016/j.ijrefrig.2011.05.003

M. B. Ammar, M. Chaabene, and Z. Chtourou, Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power Energy conversion and management, pp.372-380, 2013.

M. Kljajic, D. Gvozdenac, and S. Vukmirovic, Using neural networks for modeling and predicting boiler's operationg performance Energy, pp.304-311, 2012.

P. Vig and I. Farkas, Neural network Modeling of thermal stratification in a solar DHW storage Solar Energy, pp.801-806, 2010.

Y. O. Ozgoren, S. Cetinkaya, S. Saridemir, C. Adem, and F. Kara, Predictive modeling of performance of a helium charged Stinrling engine using and artificial neural network Energy conversion and Management, pp.357-368, 2013.

P. Wira, Approche neuromimétique pour l'identification et la commande (mémoire HDR), 2009.

G. Zhang, B. E. Patuwo, and M. Y. Hu, Forecasting with artificial neural networks:, International Journal of Forecasting, vol.14, issue.1, pp.35-62, 1998.
DOI : 10.1016/S0169-2070(97)00044-7

K. S. Narendra and K. Parthasarathy, Learning automata approach to hierarchical multiobjective analysis, IEEE Transactions on Systems, Man, and Cybernetics, vol.21, issue.1, pp.263-273, 1991.
DOI : 10.1109/21.101158

R. May, G. Dandy, and H. Maier, Review of Input Variable Selection Methods for Artificial Neural Networks, Artificial Neural Networks, Methodological Advances and Biomedical Applications, Prof. Kenji Références -217
DOI : 10.5772/16004

B. Tlili, Identification et commande des systèmes non linéaires : utilisation des modèles de type NARMA (thèse), 2008.

X. He and H. Asada, A new method for identifying orders of input-output models for nonlinear dynamic systems, Proceedings of the 1993 American Control Conference, pp.2520-2523, 1993.

S. Fischer, P. Frey, and H. Druck, A comparison between state-of-the-art and neural network modeling of solar collectors Solar energy, pp.3268-3277, 2012.

W. Gang and J. Wang, Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems Applied Energy, 2013.

B. Roberto, C. Ubaldo, S. Mariotti, R. Innamorati, S. Elisa et al., Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition Solar Energy, pp.1027-1046, 2010.

N. Li, L. Xia, D. Shiming, X. Xu, and M. Chan, Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network Applied Energy, pp.290-300, 2012.

A. Kusiak and G. Xu, Modeling and optimization of HVAC systems using a dynamic neural network Energy, pp.241-250, 2012.

K. , G. Sheela, and D. N. , Review on Methods to Fix Number of Hidden Neurons in, Neural Networks Mathematical Problems in Engineering, vol.2013, 2013.

D. Stathakis, How many hidden layers and nodes?, International Journal of Remote Sensing, vol.4, issue.8, pp.2133-2147, 2009.
DOI : 10.1080/01431160802549278

S. Lawrence, C. L. Giles, and A. C. Tsoi, What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Institute for Advanced Computer Studies, 1996.

Q. Ning, On the momentum term in gradient descent learning algorithms, Neural Networks, vol.12, issue.11, pp.145-151, 1999.

M. Z. Rehman and N. M. Nawi, Improving the Accuracy of Gradient Descent Back Propagation Algorithm (GDAM) on Classification Problems, International Journal on New Computer Architectures and Their Applications, vol.1, issue.14, pp.838-847, 2011.

M. F. Moller, A scaled conjugate gradient algorith fo fast supeeeised leaaaig neural networks, pp.525-533, 1993.

M. Powell, Restart procedures for the conjugate gradient method Mathematical Programming, pp.241-254, 1977.

D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.
DOI : 10.1137/0111030

M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning, The RPROP algorithm Proceedings of the IEEE International Conference on Neural Networks, 1993.

A. Lazrak, A. Leconte, G. Fraisse, P. Papillon, and B. Souyri, A solar combisystem input-output modelling: exploration of several algorithms and learning procedures, COFMER, p.10

D. Mackay, Bayesian Interpolation, Neural Computation, vol.49, issue.3, pp.415-447, 1992.
DOI : 10.1093/comjnl/11.2.185

J. Sola and J. Sevilla, Importance of input data normalization for the application of neural networks to complex industrial problems, IEEE Transactions on Nuclear Science, vol.44, issue.3, pp.1464-1468, 1997.
DOI : 10.1109/23.589532

M. Qia and G. P. Zhangb, An investigation of model selection criteria for neural network time series forecasting, European Journal of Operational Research, vol.132, issue.3, pp.666-680, 2001.
DOI : 10.1016/S0377-2217(00)00171-5

R. Heimrath and M. Haller, Project Report A2 of Subtack A: The reference heating system, the template solar system. A report of IEA SHC -Task 32, 2007.

M. Alaai, P. Boddaeet, and P. Ealuatio, C : Mthode d'aluatio de, stes Solaires Combinés, Rapport final n°2

T. Fiedlee and A. Kkissh, Add-on to the hitherto existing gas fuelled boiler-model for a wood-fired boiler ith aloifi alue usagee Tanssolar, 1998.

A. Heiz and M. Hallee, Models of " u-Components and Validation for the IEA SHC Task 44/HPP Annex 38 -Part C: Heat Pump Models -DRAFT -A teehial epot of suutask C Delieeaale C Appeedi A - Description of TRNSYS Type 877 by IWT and SPF, 2012.

M. Wetter and A. Huber, TRNSYS Type 451 -Vertical Borehole Heat Exchange Model, 1997.

H. Dûk, Multipot stoe -Model for TRNSYS -Type 340, Veesio .FF Institut fûr Thermodinamik und Wârmetachnik (ITW), 2006.

M. Hallee and . Trn-"-y-"-tpe, Daai Colleeto Model Beegt Peeeess Updated Iput-Output Refeeeeee Istitut fü " olaateehik, Rappeessil, p.2012

F. Ziegler, H. Hellaa-aad, and C. , heiglee, A appoiatie ethod fo odelig the opeeatig haaaateeistis of adaaed aasoptio hilleess i 20th Int. congress Refrigeration, 1999.

A. Khosravi, S. Nahavandi, D. Creighton, and A. Atiya, Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances, IEEE Transactions on Neural Networks, vol.22, issue.9, pp.1341-1356, 2011.
DOI : 10.1109/TNN.2011.2162110

I. Maleekoi?, Defiitio of Main System Boundaries and performance Figures for Reporting on SHP Systems IEA SHC Task 44, A technical report of Subtask B, vol.38, 2012.