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Introduction

Bose–Einstein Condensate (BEC) is a special state of dilute matter in which quantum
physics manifests at a macroscopic scale. It was predicted in 1925 by Einstein [1] gener-
alizing Bose’s work [2] on photons (the massless elementary particles of light quanta).
One of the cornerstones of quantum mechanics is that a (massive) particle, which is
described classically by a trajectory, is in fact more rigorously depicted as a wave. Its
wavelength is set by the de Broglie relation [3] λ = h/p where p is the particle mo-
mentum and h the Planck constant. In a gas at thermal equilibrium (temperature T),
the coherence length in the dilute regime is characterized by the thermal wavelength
λT ∝ 1/

√
T (which is roughly the average of λ for the particles in the gas). At very low

temperature, this typical coherence length becomes larger than the mean inter-particle
distance such that the particle waves overlap and interfere (without need for them to
interact). These interferences when constructive lead to the establishment of a gigantic
wave over the cloud represented by the complex field (the wavefunction) ψ(r), which
embodies the Bose–Einstein condensate. A second cornerstone of quantum mechan-
ics lies in two points: (i) the time-evolution of a particle-wave is fully dictated by a
special operator named the Hamiltonian; (ii) the state of an assembly of independent
identical particles is entirely described by the number of particles which populate each
of the eigenstates of this single-particle Hamiltonian. The emergence of a macroscopic
quantum state along the Bose–Einstein condensation is intimately linked to the specific
statistics of the population of these single-particle states in a gas of identical particles at
thermal equilibrium. One distinguishes (in our 3D world) two kinds of particles with
respect to this statistics, the Fermions and the Bosons. For non-interacting Bosons, the
statistics causes an accumulation of the atoms in the particle state of minimal energy
(ground-state) for a sufficiently low temperature, corresponding to the occurrence of
the constructive interferences described above and to the BEC transition. Even if sev-
eral earlier phenomena are considered to realize a state equivalent to the BEC such as
the superfluidity in liquid 4He [4, 5] 1, the superconductivity of an electron gas in a
metal [7, 8] 2 or even the lasing of an optical cavity [11] 3, the cooling of atomic Bose gas

1. 4He is a liquid rather than a gas such that interactions are very strong, complicating both the mea-
surements and the theory. In particular, this system only have a minority of atom in their minimal energy
single-particle state [6].

2. Electrons are Fermions and thus are not expected to undergo a BEC transition. However at low
enough temperature the free electrons can loosely bound in pairs and superconductivity can be interpreted
as a condensation of these pairs of electrons, namely the Cooper pairs, that sort of behave as Bosons.
However these pairs of electron are massively delocalized over the system such that all electrons of the
gas participate to the pairing and this arises at the same time as the condensation itself. This results in a
significantly distinct phenomenon compared to a BEC of molecules and leads to important modifications
of the theoretical prediction in this case. A similar state as also been observed in 3He [9, 10], in atom nuclei
(between the protons and neutrons that formed it) and other aspect of nuclear physics.

3. Laser beams can be seen as BECs of photons in one mode of the cavity. However this system is
intrinsically out of thermal equilibrium and thus do not hold within Einstein’s considerations.
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enables the first 4 experimental realization in 1995 [17–19] of Einstein’s prediction in its
original formulation (see footnotes 1-3).

This experimental achievement was permitted by the invention half a century ago
of the laser source [11, 20] which set the ground for the development of techniques for
cooling and trapping of atomic assemblies. While the laser is often associated with the
idea of heat - it can melt, weld, cut ... - the purity of the light emitted by this source also
serves to cool collections of atoms at temperatures down to a few billionths of a degree
above absolute zero (nK scale) and thus enables experimental observation of BEC in
atomic Bose gases. Note that this ultra-cooling is not limited to Bosonic atoms but was
also performed on Fermionic ensembles [21–23].

Ultracold atomic physics blossoms by rising massive interest beyond the pristine
demonstration of BEC [17–19] and the consecutive study of the condensed phase prop-
erties [24–28] due to two main characteristics : (i) the accuracy of simple theoretical
modeling for these systems in which impurities are essentially absent; (ii) the versa-
tility and tunability of the energy landscapes designed for being experienced by the
atoms. It indeed results in highly controllable systems in which a wide range of physi-
cal problems can be tackled so that it opens groundbreaking perspectives in many other
domains of research in physics. I will briefly illustrate this tremendous input of ultra-
cold atomic gases.

First, the physics of cold atomic gases is not limited to the weakly interacting regime
and many-body problems can also be addressed. A flexible method to control the
strength of interactions between the atoms (and reach the strongly interacting regime)
is based on Feshbach resonances [29, 30], for the species presenting this special feature 5.
These resonances occurring in the collision scheme are controlled via the application of
a uniform magnetic field whose variations effectively lead to the tuning of the strength
and the sign of the interactions. This feature for example permitted the experimental
observation in Fermi gases of the crossover from a BEC [31–33] of the molecules that
form in the strongly repulsive case [34] to a superfluid of loosely bound pairs of atoms
[35–38] that arise at low temperature in the weakly attractive regime along Bardeen–
Cooper–Schieffer (BCS) theory (see footnote 2).

Second, the controllability of the energy landscapes – by modifying the equation of
motion dictating the evolution of the system (its Hamiltonian) – brings a wide vari-
ety of problems as potential subjects of study. In particular, due to the universality
of quantum physics, we can reproduce, on our cold atom gases, problems (Hamilto-
nians) from other domains of physics and study their properties on our copy system.
This illustrates the notion of quantum simulation put forward by Feynman in 1982 [39].
The customization of the Hamiltonian is eased in our setups by the use of laser beams.
For example, the trapping potential can be shaped by finely designing these beams in-
tensity and phase profiles or by patterning the intensity variations from interferences
between several of them. Cutting-edge developments have been achieved in the past

4. Latter realizations include exciton polariton BEC [12–14], magnon BEC [15] and photon BEC [16].
Note that the two former systems are not exactly at equilibrium and thus do not strictly realized the
Einstein’s prediction. They are said to realize quasi-equilibrium BEC.

5. The results I will present in this manuscript have been measured on a 87Rb vapor which does not
show these interesting resonances in a simply accessible range of magnetic field.
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several years:
— The use of strongly anisotropic (and tight along some directions) confinement

enables one to change the dimensionality of the gas under study by freezing the
motion of the atoms in one or two directions of space. Then the specificities of
both 1D (e.g. [40, 41]) and 2D (e.g. [42]) physics as the crossover between these
regimes become experimentally explorable.

— The possibility of generating periodic potential of tunable strength from interfer-
ence patterns enables to investigate the physics arising in lattices (e.g [43]). In this
case, the atoms arrange themselves in the periodically spaced energy wells, simi-
larly to the electrons in a solid crystal and reproduce the so-called Bose-Hubbard
Hamiltonian. In this system, a transition from a superfluid phase (at weak lattice
height) to a Mott-insulating phase with a suppression of the fluctuations of the
number of atom per lattice site and the absence of phase coherence over the sys-
tem (at strong lattice depth) was observed [44]. This setup also enables to achieve
a strongly interacting regime and opens the way to a large spectrum of investiga-
tions [45–48].

— Further control of the spatial dependencies of the trap confining a bulk (in op-
position to the lattice) systems is also of huge interest to test various physical
properties. Due to common laser beam profiles, the trapping potentials happen
to be usually non homogeneous (harmonic). It was recently achieved to change
it into a quasi-uniform box [49], closer to the textbook models. In this system,
complementary measurements and more rigorous comparison to theory can be
achieved and a novel insight in physical phenomena can be gained, opening a
new field of investigation.

— In a somehow opposite direction, one can also reproduce a disordered potential
with a tunable range and strength by using for example a laser beam transmit-
ted through a diffusive plate generating a speckle pattern. A particular point of
interest is the effect of disorder on the diffusion of the atoms in the gas and par-
ticularly of the occurrence of the transition toward a localized state predicted by
Anderson [50]. Cold gases enabled a first direct observation of the localization
[51–53] which triggered novel investigations for example toward the issue of the
interplay between the disorder and the interactions between particles.

Many other research efforts may also be quoted. For example, efforts are pointing to-
ward the implementation of two essential points for quantum simulation purpose that
are the realization of (strong) synthetic gauge fields (that reproduce in the Hamiltonian
the effect of a magnetic field on a charged particle like the electron) [54–59], and the
implementation of long-range interactions between atoms [60–62]. A complementary
very active theme of research aims toward ultra-cold chemistry [63].

With these ingredients, the thermodynamics properties of a great number of systems
become accessible with cold atom ensembles. For example, beyond the simple observa-
tion of the thermodynamics transitions whose few examples have been quoted above,
efforts have been undertaken to precisely describe the complete equilibrium behavior
of the gases. This steady behavior is embodied by an equation-of-state (EoS) which
relates the appropriate number of dimensionless quantities to fully determine the state
of the gas. Thus, from the measurement of the EoS, we can deduce all the thermody-
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namics quantities and determine at which values a thermodynamic transition occurs
by observing the discontinuities of some of these variables. Such relations have been
measured in both Bose and Fermi gases [64–71].

Another flourishing trend in atomic physics consists in the study of the dynamical
properties of the system. This study is enabled in cold atom systems due to the unique
possibility of controlling dynamically both the interaction between the atoms and the
energy landscape they feel. Then many dynamical problems can be addressed. Such
investigations bring important complementary information on the gas state. The mani-
festation of a macroscopic quantum behavior is generally linked to the establishment of
a so-called "superfluid" state that is primitively characterized by its response to a flow.
Hence, beyond the historical observation of the collective excitations [72, 73], flow [74–
82] and transport [83–87] experiments have raised great interest.

Linked to the dynamical study, another long-lasting question bears on how a BEC
forms in experiments and how coherence emerges in an initially incoherent gas. This
question can be seen as a specific case of a more general problem, which encompasses
the general question of the coherence establishment when a system is driven through
a thermodynamic transition in a short time ("critical quench"). Close to any transition
point, the microscopic details of the system are predicted to become irrelevant (critical
universality), then a general mechanism may hold for all "critically-quenched" systems.
In this way, studying cold atoms enables to access general properties for any system,
from the cosmology to the particle physics. Such an ubiquitous mechanism was put
forward by Kibble [88] and extended by Zurek [89] and is based on the universal diver-
gences that occurs when approaching a point where a transition toward a coherent state
occurs. In particular the typical equilibration time diverges at this point. Then, in the
case of a finite time evolution through this transition, a specific time emerges at which
the actual evolution can no longer follows these divergent behaviors. At this time, the
evolution reaches a non-equilibrium regime. Kibble and Zurek predicted that a mem-
ory of this non-equilibrium evolution may be kept inside the final coherent state by the
presence of specific long-lived excitations. Quench-induced excitations have been ob-
served in cold atom experiments [90, 91]. Moreover, the counting of these excitations
may bring crucial information on the phase transition that is crossed. Such a quanti-
tative analysis has also been carried out with cold atom assembly confirming thus the
Kibble-Zurek model [92–95].

The work presented in this manuscript focuses on the properties of two-dimensional
(2D) physical systems via the experimental investigation of Bose gases with their mo-
tion frozen out in one direction of space (relying to this aim on the highlighted versa-
tility of the potential shaping). These low dimensional systems are of interest as they
show properties that are dramatically altered compared to the three-dimensional (3D)
case but also vastly distinct from the one-dimensional (1D) fluid. It has been theoreti-
cally shown [96, 97] that in an infinite, homogeneous system of one or two dimensions
with short range interaction, there cannot exist a phase transition associated with the
spontaneous breaking of a continuous symmetry. For example, as noticed as early as
1934 by Peierls [98], in a 1D or 2D world crystals (salt, diamond, snow ...) would not ex-
ist. In such a world thermal and quantum fluctuations have a much more predominant

8



role than in our common 3D universe and they prohibit the emergence of a long-range
order.

However, some specificities of the 2D case rely on the fact that the thermodynamic
limit within which these conclusions hold is only reached for exponentially large sys-
tems (compare to the introduced thermal length λT) leading to the famous statement
that "the sample would need to be bigger than the state of Texas for the Mermin–
Wagner theorem to be relevant” 6. Then for a gas produced in a typical cold atom
experiment, which is of a few tens of micrometers large, the size of the system plays
a predominant role in its thermodynamic. In particular, the considerable range of co-
herence (the size over which the particles interfere and thus cohere) in dense and cold
2D gases makes it possible to recover a transition similar to Bose–Einstein condensation
even in the absence of interactions. We also emphasize that the quantum statistics of the
ideal Bose gas also plays an important role at the dimensional crossover from a 3D to a
2D system. As in Bose condensation phenomenon, it helps establishing a macroscopic
population of a single-particle state but primarily in the more tightly confined direction
of the trap. Indeed along this direction the quantized energy levels are more spaced
and so condensation regime easier to achieve. Then if the trap is anisoptropic enough,
the 3D BEC phenomenon splits in two steps of condensation, leading first to the estab-
lishment of reduced dimensionality physics (transverse condensation) and then, if it is
allowed by the thermodynamic of the lower dimensional system, to an overall conden-
sation. Due to the specific 2D marginality, such a Bose-driven crossover may lead to an
important change in the coherence properties of the remaining 2D system.

On the other hand, even at the thermodynamic limit, a 2D gas of interacting particles
undergoes a phase transition to an ordered state with an even slower decay of the co-
herence than the ideal 2D gas. This state shows a superfluid behavior. The necessarily
fundamentally different mechanism behind this transition was described by Berezinskii
[100] and Kosterlitz and Thouless [101]. In this mechanism, quasi long-range coherence
and superfluidity are microscopically enabled by the pairing of special defects in the gas
wavefunction ψ, the vortices, in vortex-antivortex bound pairs of small spatial extent
(on a scale set by the interaction strength). The vortices are points around which the
phase of the complex field ψ winds, then at the vortex center the density of the gas |ψ|2
goes to zero but this perturbation is only local. Their pairing leads to a suppression of
the windings of the phase drastically increasing the coherence range. Since this mech-
anism does not rely on the breaking of a symmetry, all the thermodynamical variables
are continuous at the transition and it is said of infinite order.

Previous experimental investigations of 2D ultra cold gases mainly focus on proper-
ties around the BKT transition point, the critical region. The occurrence of a BKT-type
transition was demonstrated by interference measurement showing the emergence of
a coherent state in which free vortex proliferation is proscribed [42].The pre-superfluid
state that is the seat for free vortices proliferation ahead of the BKT transition was stud-
ied in [102, 103]. Thermally activated vortex pairs linked to the BKT mechanism were
observed [104]. The continuity of the EoS around the critical point and its approxi-

6. This statement was published in [99] in the context of 2D magnetism but is nevertheless representa-
tive of the 2D specificity.
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mate scale-invariance in the weakly interacting regime were experimentally verified
[69]. Density and phase fluctuation scalings within the critical region were also inves-
tigated [105, 106]. All these experiments were performed in inhomogeneous gases and
their results were linked back to the homogeneous system by considering the gas as
locally equivalent to a uniform one (local density approximation). In these systems,
the spatial variations of the gas properties lead to an intricate dependency between the
location on the sample and the gas degrees of degeneracy.

In the present work, we vary the shape of our gas "container" from a common inho-
mogeneous (harmonic) one to a novel flat bottom box-like trap. We thus enrich both the
properties that can be measured and the physical effects under study. This manuscript
is then mainly divided in three parts:

1. In Chapters 1-3, we present the general principle of the investigations undertaken.
We introduce both the main theoretical results for the relevant regime of parame-
ters of our ultracold Bose gases and the experimental apparatus that we have built
along with the sequence that we have optimized for producing and analyzing our
cold atomic samples.

2. In Chapters 4-5, we show results obtained in a 2D harmonically confined gas.
In these cases we use the space-dependent degree of degeneracy to investigate a
wide range of homogenous-equivalent parameters within a unique cloud config-
uration.

3. In Chapters 6-8, we present our experimental realization of an in-plane uniform
trapping and investigate some specific key features of the 2D gas. Here we use the
space independent degree of degeneracy to explore long-range coherence and the
space-independent populations of the transverse excitations to study the Bose-
driven dimensional crossover.

The detailed outline is the following:

Detailed Outline

In chapter 1, we present a few theoretical results that we will aim to investigate in
the remaining part of this manuscript. The first part focuses on the gas in the full 2D
regime (the transverse motion is nearly perfectly frozen). We present results for both of
a non-interacting and an interacting gas in either a homogeneous or an inhomogeneous
trap. We demonstrate how to link back the inhomogeneous case to the homogeneous
one but also allude to specificities of each configuration. In the second part we consider
a gas in a highly anisotropic trap, but whose transverse motion is not frozen. Then
we introduce a more general description of our gases. We briefly discuss the possible
corrections to retrieve results for a perfectly 2D gas from the case of a weakly excited
transverse motion (which is experimentally relevant). We finally focus on the specificity
of the dimensional crossover in an anisotropic trap, considering highly excited trans-
verse motion. For the specific case of an in-plane uniform trapping, a non-conventional
transition of BEC type arises which we will characterize in detail. This partial conden-
sation will be the main focus of our investigation in our flat trap experiment.
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Chapter 2 presents the experimental apparatus used to produce ultra-cold 2D 87Rb
gases. In a first part we present the overall sequence along which we generate and
investigate our uniform 2D samples. We mainly detail the changes made during my
PhD on the experimental apparatus whose main frame was designed and constructed
by former PhD students [107–111]. These modifications are two-fold: (i) We switch
from a magnetic to a hybrid magnetic and optical trap to produce a 3D BEC (that we
will latter load in the 2D trap) in order to increase repetition rate.(ii) We switch for an all
optical 2D trap which enables in plane uniform confinement. In a second part we detail
the method used to create a tight transverse confinement and reach (quasi-)2D regime.
We specifically detail calculations of all possible side effects of this 2D confinement that
can be of importance in the scope of producing in-plane uniform traps. Finally we
present preliminary tests of an improved scheme for generating this 2D confinement
that will allow higher trapping frequencies and improved loading of the initial 3D gas.

In chapter 3 we detail the imaging procedure used to measure the gas properties at
the end of the experimental sequence. We first present the specific regime in which we
use the mainstream absorption imaging technique in order to overcome the 2D special
diffusion effects. We then present the two experimental setups implemented to acquire
images of the clouds. Finally we present an exhaustive and renewed calibration of
the analysis of the in-plane density profiles. Due to change in the 2D trapping con-
figuration, the imaging environment has been changed, demanding thus a calibration
campaign to be performed (the previous one was carried out in 2010 [110]).

In chapter 4, we present a measurement of the equation of state (EoS) of the homoge-
neous 2D Bose gas computed from the in-situ density distribution n(r) of harmonically
trapped 2D 87Rb gases. We develop a robust and flawless technique to infer the EoS
from the density profile without any fit of these experimental data. First we develop
a general formalism (inspired from the procedure introduced by Ku et al.[71] for the
unitary 3D Fermi gas) for deriving the EoS in any scale invariant system investigated
within a cold atom experiment. We then apply this formalism to our measurements of
the 2D gas. We extract a highly accurate measurement of the EoS that can be exten-
sively compared to theoretical predictions and serves as a benchmark for them. This
work was published [112], and is reproduced with minor modifications.

In chapter 5, we present a direct measurement of the superfluid behavior of the 2D
homogeneous Bose gas, by moving a local defect in an inhomogeneous 2D sample on
trajectories of equi-density (thus probing a unique homogeneous equivalent configura-
tion). We show evidence for both a normal and a superfluid response to this motion,
depending on the local degree of degeneracy of the gas at the defect position. We com-
pare the results to theoretical predictions of the homogeneous gas. This work was also
published [113], and is reproduced without modifications.

Chapter 6 presents the experimental setup for the production of our box-like poten-
tial. We first set some requirements on the trap «box-like character» from simple theo-
retical calculations on the atomic configurations of interest. The conditions bear on the
maximal fluctuations of the potential inside the trapping region and on the stiffness of
its variation at the edges of this region. We compare two possible realizations using the
same laser beam (far-blue detuned compared to the atomic resonance). One method is
based on the shaping of a beam with an optical phase plate whereas the other relies on
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the simple imaging of a dark mask. In both cases we precisely characterize the trap uni-
formity from the beam intensity profile. We also consider the achieved potential height.
The comparison of these characteristics leads to the choice of the second method which
we implement on our atomic samples in the aim of further physical investigations.

In chapter 7, we present an experimental investigation of the emergence of quantum
coherence in a 2D uniform gas. In our system a coherent behavior is said to be es-
tablished when the characteristic length of the inter-particle correlations (embodied by
the one-body correlation function g1(r)) is notably larger than the value predicted by
Boltzmann statistics, which is set by the thermal wavelength. To measure the degree of
coherence in our gas we use two complementary methods. A first one is based on the
appearance of a bimodal distribution after a free expansion of the gas. The coherence
manifests by a sharp peak in the final density spatial distribution. A second method
is based on matter wave interferences between two initially spatially separated clouds.
In both cases we identify a crossover between an incoherent regime and an extended
coherence. Using appropriate thermodynamic variables we find a universal behavior
for the variation of this crossover. We tested both the quasi-2D regime where the trans-
verse motion is nearly frozen, and the 3D-to-2D crossover (starting with an initially
high population of the transverse excitations). In the first case, we note the emergence
of a quantum coherence at a point matching quasi-condensation regime, ahead from
BKT or BEC transition. In the second case we measure the effect of a partial condensa-
tion (along transverse motion) on the in-plane coherence.

Finally, in chapter 8, we present a dynamical investigation of the establishment of
coherence via a finite-time ramp from a thermal to a deep superfluid state. This ex-
perimental investigation relates to the Kibble Zurek mechanism which encompasses
a large range of physical systems. We start by presenting a theoretical description of
this mechanism highlighting its applicability in our experimental realization. We in-
vestigate quenches through the Bose-driven dimensional crossover. We then present
two experimental measurements of the quench dynamics by detecting and counting
topological defects nucleated via the KZ mechanism. In a first experiment, we directly
observe bulk vortices by revealing their core density hole with a short time of flight. In
the second one we use an annulus geometry and reveal establishment of phase winding
via matter wave interference with a reference central disk of atoms. In both cases, we
first demonstrate that the observed defects are linked to the quench dynamics. Then
we fit an exponent for the defect number dependency as a function of the quench time
that we compare to some theoretical predictions.
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1. Elements of theory on quasi-two-dimensional Bose gases,
from harmonic to uniform trapping

In this first chapter, our aim is to introduce the theoretical concepts that establish the
relevance of our experimental setup to study an interesting and challenging physics.
We will point out the specific features of Bose gases in two dimensions (2D). We will
show in particular that conventional phase transitions do not take place and full long-
range order is not achievable in an ideal infinite 2D gas at non-zero temperature (T > 0)
. As a corollary property, thermal and quantum fluctuations have an enhanced role
in this system, leading to unusual thermodynamic regimes. Moreover, due to the
marginality of the 2D (that is intermediate between three-dimensional (3D) physics in
which long-range order (LRO) survives thermal fluctuations and the most incoherent
one dimensional (1D) physics), we will show that finite-size effects are here of great
importance to recover coherence over the gas. Interactions between particles constitute
an additional ingredient to restore such a quasi-long-range order and a superfluid be-
havior. For all these characteristics behaviors we will highlight the specificities of both
harmonic and uniform trapping as we will experimentally investigate both of these
configurations in the rest of this work. In this theoretical description, we do not aim
to exhaustivity as a more complete picture can be found in recent reviews, such as
[114, 115] or former PhD works in our group [109–111].

We will also point out the particularities of establishing 2D physics within our 3D
world for a gas of Bosonic atoms. We will show that 2D physics is achieved by the
freezing out of one motional degree of freedom in our gas. Such a freezing out can be
established by a simple but constraining condition on the temperature of the gas. In
the specific case of a gas uniformly confined in-plane, we will show that Bose stimu-
lation enables establishment of a 2D regime prior the thermal condition is achieved,
resulting in a sharp dimensional crossover. This crossover is linked but not equivalent
to usual 3D Bose–Einstein condensation (BEC) phenomenon. We will describe in detail
the occurrence of such a transition.

1.1. Specificity of two-dimensional physics

1.1.1. Absence of true long-range order in 2D systems

Usual phase transitions in the 3D space, like Bose–Einstein condensation, arise from
spontaneous breaking of a continuous symmetry and are associated with the emergence
of true long-range order. For the BEC case, spontaneous breaking of gauge invariance
occurs by the specific choice of the phase of the macroscopic wavefunction ψ that con-
stitutes the order parameter of this phase transition.

Bogoliubov [116], Hohenberg [97] and Mermin and Wagner [96] studied the appear-
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1. Elements of theory on quasi- two-dimensional Bose gases

ance of such spontaneous symmetry breaking transitions in lower dimensional spaces
(dimension d < 3). They conclude that true LRO is unachievable in the thermodynamics
limit and at non-zero temperature for systems with short range interactions and show-
ing Hamiltonian symmetry. In this case, the order is destroyed by long wavelength
thermal fluctuations, more specifically in our atomic gases, by phonons. In a general
way, the coherence is characterized by describing the one-body correlations and we
consider their matrix G1(r1, r2) ≡ 〈ψ̂†(r1)ψ̂(r2)〉 (where ψ̂(r) is the annihilation opera-
tor of a particle at position r and 〈.〉 stands for the average over the equilibrium state at
temperature T). In a uniform system G1 is simply a function of the distance r = r1 − r2

and we define the one-body correlation function

g1(r) ≡ 〈ψ̂†(r)ψ̂(0)〉. (1.1)

and the range of coherence as being the characteristic length ℓc of g1 decay with the
distance |r|. Penrose and Onsager [117] generalization of Einstein’s argument consists
in stating that condensation occurs when an eigenvalue of G1 is macroscopically popu-
lated. Then in an infinite uniform system, it is the case if g1 tends to a non-zero value
when |r| grows to infinity and the condensate density n0 identifies with this limit:

n0 ≡ lim
|r|→∞

g1(r) , (1.2)

we see that the absence of true long-range order is equivalent to the absence of Bose–

Einstein condensation as g1(r)
|r|→∞−−−→ 0.

We should note that:
— In this analysis all the phase transitions are not precluded but only the ones rely-

ing on a mechanism linked to symmetry breaking. We will see that in fact in our
2D gases and in the presence of interactions between the atoms, a transition of a
different kind is expected to occur, reestablishing a «quasi long-range order».

— The proscription of Bose–Einstein condensation is only relevant in the thermo-
dynamics limit. Considering again Penrose and Onsager argument, we see that
finite-size effect can lead to an effective condensation when the correlation length
ℓc is larger than the characteristic size L of the system itself.

In this section, we will first describe the ideal 2D Bose gas and compute the BEC tran-
sition point while varying the 2D confining potential. Then, we will present the case of
an interacting gas.

1.1.2. Realizing a 2D Bose gas in a 3D world: the deep thermal 2D regime

Before entering in the details of the physics of a 2D gas, we present here how to
realize such a gas in our 3D world. This description gives an insight on the emergence
and the treatment of the 2D wavefunction and its Hamiltonian. This will also facilitate
the introduction of interactions between particles.

Experimentally producing a gas of reduced dimension necessitates to freeze out the
motion in one of the direction of space. For our atomic gases, this translates into im-
posing a very tightly confining potential along this direction. If we impose a harmonic
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1.1. Specificity of two-dimensional physics

confinement along z such that

V(r) = U(ρ) +
1
2

mω2
z z2 (1.3)

(r = ρ + zuz stands for the 3D position vector, ρ for the 2D one), freezing out of the mo-
tion along z is achieved if the inter-level spacing h̄ωz is large enough. Deep 2D regime
(with almost full freezing of the motion along z) corresponds to h̄ωz ≫ kBT where
T is the temperature of the gas, such that z-motion excited states can not be reached
via thermal excitations. Note that the interaction energy may also be considered, we
will discuss in details how to account for the interaction potential in the following and
postpone its discussion there (see 1.1.4.1).

Assuming a freezing of the z motion, the 3D wavefunction ψ(r) of any particle can
be factorized along

ψ(r) = φ(ρ) ϕ0(z) with ϕ0(z) =
χ0(z/ℓz)√

ℓz

(1.4)

(where χ0 stands for the zeroth order Hermite function and ℓz =
√

h̄
mωz

), and the inter-

esting part of the state is restricted to the 2D wavefunction φ(ρ) (which is unspecified
here). The quantum field operator ψ̂(r) (defined in Eq. 1.1) can be consequently re-
placed by

ψ̂(r) → φ̂(ρ) ϕ0(z) (1.5)

where ϕ0(z) is the classical field given in Eq. 1.4 and φ̂(ρ) is a 2D quantum field operator
(which annihilates a particle at position ρ in plane). Then, by simply integrating the 3D
Hamiltonian Ĥ of the atomic assembly along z, we can deduce a 2D Hamiltonian Ĥ for
the 2D gas. In the following, we first present the simple case of a non-interacting gas,
for which such a description of the 3D environment behind the 2D gas is not crucial and
then turn to the description of an interacting gas for which it is essential to see the gas
as part of the 3D world (and even only being in a quasi-2D regime for the interactions).

1.1.3. The ideal two-dimensional Bose gas

In the case of non-interacting particles, the splitting between in-plane and z motions
is simplified as the ideal 3D Hamiltonian Ĥid for a gas of N particles is the sum of N

identical single-particle hamiltonian ĥ, which in turn directly decompose in:

ĥ = ĥρ + ĥz (1.6)

with ĥz = − h̄2∂2
z

2m
+

1
2

mω2
z z2 (1.7)

and ĥρ = −
h̄2∂2

ρ

2m
+ U(ρ) (1.8)

Then the ideal 2D Hamiltonian Ĥid is also the straightforward sum of N identical
single-particle hamiltonian ĥρ and the integration along z simply turns into a constant
energy contribution to Ĥid equal to Nh̄ωz/2.
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1. Elements of theory on quasi- two-dimensional Bose gases

Now let us focus on the physics of the 2D component φ(ρ) (dictated by Ĥid). We
assume that the eigenstates |φi〉i∈N and eigenvalues ǫi of the single-particle 2D Hamil-
tonian ĥρ are known. Then, within the grand canonical ensemble, the occupancy of the
state i is equal to the Bose–Einstein factor f (ǫi) with:

f (ǫ) =
1

eβ (ǫ−µ) − 1
(1.9)

where β = 1/kBT, and µ is the chemical potential. For this non-interacting case, µ is
necessarily smaller than the ground state energy ǫ0. We take this reference energy to
be zero, ǫ0 = 0. For now on, we call Z = eµ/kBT the fugacity of the gas, and in the
non-interacting case, Z varies from 0 to 1. The function f of Eq. 1.9 depends on β and Z

for the gas we consider. By definition, the number of atoms N in the gas is then given
by:

N =
∞

∑
i=0

f (ǫi) (1.10)

If we assume that the (in-plane) level spacing is small compared to the thermal energy
kBT, the summation of Eq 1.10 is well approximated by the semi-classical limit:

N =
∫ ∞

0
D(ǫ) f (ǫ)dǫ (1.11)

where D(ǫ) is the density of states at energy ǫ (i.e. the number of states whose energy
is comprised between ǫ and ǫ + dǫ, divided by dǫ).

For a gas of characteristic size L in plane, we can then deduce the mean 2D phase-
space-density (PSD) D(2D) ≡ nλ2

T as the mean surface density equals n = N/L2 and
can be computed from Eqs. 1.10–1.11, and the thermal wavelength λT is given by λT =
√

2πh̄2β/m.

More generally, we can compute the mean value of any one-particle observable Â in
our 2D Bose gases by:

〈Â〉 =
1
N

∞

∑
i=0

〈φi|Â|φi〉 f (ǫi) (1.12)

We have to specify the trapping potential U(ρ) to compute these sums or integrals.

1.1.3.1. The uniform 2D gas

In this section, we assume that the atoms are uniformly trapped in the horizontal
plane with U(ρ) = 0 within the confining region 1. Then the eigenenergies are given by
the kinetic energy term ǫk = h̄2k2/2m where k is the particle wave vector.

In the infinite case, k is not quantized and the eigen-wavefunctions are simply ψk (ρ) =

eik.ρ/2π.

1. outside this region, U(ρ) = Ubarrier with a very high energy barrier compared to the other energy
scales of the problem, for example, Ubarrier ≫ kBT.
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1.1. Specificity of two-dimensional physics

If we assume that the gas is constrained in a square region of the plane of length L

and that we apply periodic boundary conditions on this box, we find k components are
quantized by multiple integers of 2π/L:

k =
2π

L

(

jxux + jyuy

)

with jx, jy ∈ Z (1.13)

where ux and uy are the unit vectors along the axes of the trapping square. Then the
eigenfunction and the eigenenergy corresponding to the eigenstate (jx, jy) write

ψjx ,jy (ρ) =
1
L

exp
(

i
jxπx

L

)

exp
(

i
jyπy

L

)

(1.14)

ǫjx ,jy =
2h̄2π2

mL2

(

j2x + j2y

)

. (1.15)

The exact sum from Eq. 1.10 can be computed numerically for this square box but
also for more complex trapping geometries after determining the eigenenergies in these
precise cases. From this simple square box description, we can deduce in general the
semi-classical limit for any uniform trap (in this limit the trap size L tends toward in-
finity, then all details on the trap geometry become irrelevant.).

Semi-classical limit and equation of state For this square, the density of state is
uniform and equal to D(ǫ) = mL2/(2πh̄2). If L2 ≫ πλ2

T, Eq. 1.10 is well approximated
by Eq. 1.11 and the phase-space-density simply verifies 2:

D(2D) = − ln (1 − Z) (1.16)

Eq. 1.16 linkes D(2D) to µ and kBT and is the equation of state (EoS) of the homogeneous
ideal 2D Bose gas. We note that the PSD does not admit an upper bound contrarily to
the 3D case. This is a signature of the announced absence of Bose–Einstein condensation
in the ideal 2D gas at thermodynamic limit (L → ∞).

State occupancies in the semi-classic limit Using Eq. 1.16, we can easily study
the two limiting cases of the weakly (for which D(2D) ≪ 1) and strongly (for which
D(2D) ≫ 1) degenerate gases in terms of the occupancies of the various single-particle
states φk:

— In the weakly degenerate cases, we deduce that

D(2D) ≈ Z (≪ 1), (1.17)

and then |µ| ≫ kBT. The Bose distribution is then close to the Boltzmann one
f (ǫk) ∼ e−β ǫk .

— In the highly degenerate cases, the fugacity Z is close to 1 so that |µ| ≪ kBT. We

2. This condition is in general valid in experiments as for a typical T = 100 nK, λT = 0.6 µm leading to
a thermal surface πλ2

T ∼ 1 µm2 while trap surfaces realized experimentally vary typically from 100 µm2

to 1000 µm2.
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1. Elements of theory on quasi- two-dimensional Bose gases

find that
D(2D) ≈ ln (kBT/|µ|) (≫ 1). (1.18)

The population of an excited state depends on the relative importance of its en-
ergy ǫk compared to the thermal energy kBT:
— For the highly excited states with ǫk ≫ kBT (that is |k| ≫

√
4π/λT), the

population is still close to the Boltzmann prediction f (ǫk) ∼ e−β ǫk .
— Whereas for the low energy states, with ǫk ≪ kBT (that is |k| ≪

√
4π/λT),

the occupation tends to a Lorentzian dependency in |k| as f (ǫk) ∼ kBT/(ǫk +

|µ|2) (with ǫk = h̄2k2/2m). Moreover as ǫk and |µ| are both negligible com-
pared to kBT, the population of these state verifies f (ǫk) ≫ 1 such that they
have a major contribution to the total phase-space-density.

One-body correlation function and coherence properties Characterizing g1 en-
ables to investigate how the range of coherence evolves with the gas parameters. We
define the coherence length ℓc as the distance |ρ| at which g1 is equal to g1(0)/e. In the
infinite homogeneous case, g1 is simply given by

g1(r) =
1

(2π)2

∫ ∞

0

ei k.r

eβ(h̄2k2/2m)/Z − 1
d2k, (1.19)

which is the Fourier transform of the Bose population f (ǫk) of the state of momentum
k.

From the two limiting behaviors of the occupancy f (ǫk), we deduce that:
— In weakly degenerate cases, g1(r) ∝ e−πr2/λ2

T which decays rapidly to zero and
the characteristic width is

ℓ
(th)
c =

λT√
π

. (1.20)

— In strongly degenerate cases, g1(r) develops a bimodal structure as f (ǫk) varies
from a Lorentzian to Gaussian shape according to the norm of the wave vector |k|
compared to 1/ℓ(th)c . Then, the Lorentzian contribution dominates for |r| ≫ ℓ

(th)
c

in Eq. 1.19 and it translates into a long distance exponential decay of g1(r) whose
characteristic length is ℓ = h̄/

√

2m|µ|:

g1(r) ∼
|r|≫λT

e−|r|/ℓ (1.21)

and, using Eq. 1.18 we find that the characteristic width follows

ℓ =
λT√
4π

eD
(2D)/2. (1.22)

For highly enough degenerate cases, the gaussian contribution to g1 is negligible such
that ℓc = ℓ.

Naive approach to the recovery of BEC in a finite box In the previous paragraph,
we found that g1(r) decays to zero at long distances even in the strongly degenerate
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1.1. Specificity of two-dimensional physics

regime and so an ideal uniform 2D gas does not show Bose–Einstein condensation in
the thermodynamic limit. However, due to the exponential growth of ℓc with D(2D) at
D(2D) ≫ 1, a condensation can be easily induced by the finite-size of the system along
Penrose and Onsager argument. Recovery of a condensation is then roughly expected
when L ∼ ℓc which occurs at D(2D) ∼ ln(4πL2/λ2

T).

Exact calculation of the BEC critical point in a finite box In the previous para-
graph, we estimated the threshold for the emergence of a BEC using calculations for
an infinite system and in a final step reintroducing the size L as a cut to the coherence
length ℓc. The exact condensation point depends in fact on the specific shape of the
uniform potential and the induced specific quantization of the energy levels.

It must be computed using a full quantum treatment of the eigenstates summations.
For each configuration, we can numerically compute the sum over the energy states of
Eq. 1.10 and deduce at which D(2D) the saturation of the excited states occurs. We call
this value the critical PSD and denote it D(2D)

BEC .

Calculations are performed for a square-shaped and disk-shaped trap in [111] and
reveal corrections of these full quantum results compared to the semi-classical rough
approach. We describe D(2D)

BEC , by similarity to the semi-classical description, by the
empirical model

D(2D)
BEC ≈ ξ ln

(

η
L2

λ2
T

)

. (1.23)

Conclusions from the calculations are that:

— The full quantum description mainly reduces the value of the coefficient η , up to
a few percents of its semi-classical value (equal to 4π), whereas ξ stays close to 1.

— The dependance on the shape (square, disk) is very weak: results are highly simi-
lar in terms of this critical point as long as we consider traps of the same total area
A and it gives η ≈ 0.4.

We note that the prediction of Eq. 1.23 is in good agreement with the intuitive view
of the occurrence of BEC when the semi-classical integral of Eq. 1.11 do not properly
account for the population of the ground state (jx = 1, jy = 1). This is typically the case
when |µ| is chosen smaller than the gap between the ground state of the box and the
first excited state: µBEC ≈ −(2πh̄)2/(2mL2). As when BEC occurs the degeneracy must
be high 3, D(2D) follows Eq. 1.18 and at the critical chemical potential

D(2D)
BEC ≈ ln

[

L2/(πλ2
T)
]

. (1.24)

Here ξ = 1 and η = 1/π ≈ 0.31 which is close to their respective numerical values of
0.99 and 0.39.

3. as at this point, the Bose statistics has to be relevant. From the estimate of µ deduced here (|µ| ≈
(2πh̄)2/(2mL2)), we infer Z ∼ exp

(

−πλ2
T/L2) which is typically close to 1 (see footnote 2) and justifies

D(2D) ≫ 1.
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1. Elements of theory on quasi- two-dimensional Bose gases

1.1.3.2. The harmonic 2D gas

In experiments, the most widespread trap is well described by a harmonic poten-
tial. This is for example the case for the dipolar potential created by a far red-detuned
gaussian beam shined on the atoms. Such a configuration has been widely described
elsewhere [109, 110, 115, 118]. I remind here some of the specific properties of a 2D
ideal gas trapped in an harmonic trap of frequency ω/2π, that is U(ρ) = 1

2 mω2ρ2 :
— By integrating Eq. 1.11 with D(ǫ) = ǫ/(h̄ω)2, we deduce that in such a trap, con-

densation occurs even in the thermodynamic limit and the critical atom number

is Nc =
π2

6

(

kBT
h̄ω

)2
.

— If the trapping potential varies smoothly enough, we can apply the local density
approximation (LDA) and consider that around each point ρ, the gas is locally
at thermal equilibrium. At this local scale, the potential can be considered as
uniform but then the effective chemical potential in the region surrounding ρ is
reduced compared to its value at the trap center µ0 by µ(ρ) = µ0 − U (ρ). Then,
if h̄ω ≪ kBT the semi-classical approximation applies and the local PSD follows:

D(2D)(ρ) ≡ n(ρ)λ2
T = − ln (1 − exp (βµ0 − βU(ρ))) (1.25)

We note that such a trapping configuration is remarkably advantageous com-
pared to the uniform case with respect to the possibility of probing several D(2D)

using a unique experimental realization as the effective chemical potential varies
from µ0 at center to −∞ in the far wings. In this manuscript, we will show how to
take advantage from this specific property to measure the thermodynamics prop-
erties of the equivalent homogeneous gas. In particular, we measured the EoS of
the 2D uniform gas using density profiles of a harmonically trapped sample and
applying LDA.

1.1.4. The interacting quasi-two-dimensional gas

Until now, we only considered the ideal case of non-interacting atoms and described
single-particle physics. In our experiments, the gases differ from this description as
atoms are colliding with one another leading to more complex physics possibly involv-
ing many-particles phenomena. In 2D, the consideration of this contribution to the
Hamiltonian leads to a new type of phase transition. In this section, I will expose how
to describe interactions occurring in our cold 2D gases. I will then remind the important
physical properties of the gases within this description. I will not dwell on their demon-
strations as they have been extensively reviewed in previous works [109, 110, 115, 118].

1.1.4.1. The «collisionnally» quasi-2D regime and scale invariance

To describe how interactions occurs in our 2D samples, we have to go back consider-
ing it as part of a 3D environment as presented in 1.1.2. Since we consider very dilute
Bose gases at low temperature, we can only account for binary-collisions occurring in
the s-wave channel. In the 3D world, the resulting interaction is well approximated by
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1.1. Specificity of two-dimensional physics

a contact potential:

V(ri − r j) =
4πh̄2

m
asδ

(3D)(ri − r j) (1.26)

where ri (resp. r j) stands for the position of the i-th (resp. j-th) atom of the gas (i, j ∈
[[1, N]]) and the range of these interactions are characterized by the s-wave scattering
length as. For our 87Rb atoms, as = 5.1 nm. We denote g(3D) = 4πh̄2

m as the 3D interaction
strength.

In a pure 2D world, the description of such s-wave interactions would be much more
intricate. This 2D picture would be relevant when the scattering range is much smaller
than the vertical extent of our gas. To be in the «collisionnally two-dimensional»

regime, we must impose ℓz ≪ as. We note that this constraint is much more strin-
gent than the «thermally 2D» condition deduced in 1.1.2 of ℓz ≪ λT/

√
2π. For our

typical gases, the temperature is of the order of T ≈ 100 nK so that λT/
√

2π ≈ 240 nm
≫ as.

Confinement frequencies enabling the experimental study of two-dimensional physics
turn out to verify ℓz ≫ as, and the interactions are described by the simple 3D picture
of Eq. 1.26. This regime is called «collisonally quasi–two-dimensionality». As previ-
ously described, the 2D hamiltonian Ĥ is simply deduced by integrating the 3D one Ĥ

along z while replacing the quantum field ψ̂(r) along Eq. 1.5. Then the 2D interaction
potential operator is given by

V̂int =
g(3D)

2
√

2πℓz

∫

φ̂†(ρ)φ̂†(ρ)φ̂(ρ)φ̂(ρ)d2ρ. (1.27)

We note g(2D) = g(3D)/(
√

2πℓz) the coupling strength of this 2D potential 4. We point
out that the reduced coupling strength

g̃ ≡ m

h̄2 g(2D) =
√

8π
as

ℓz
(1.28)

is a dimensionless quantity in this 2D case. Hence, there is no breaking of the scale
invariance due to the interactions 5 and it results in a specific property of the 2D EoS:
the phase-space-density D(2D) (or any dimensionless thermodynamics quantity) must
only be a function of the dimensionless quantity µ/kBT formed from the temperature
and the chemical potential and of the interaction parameter g̃. We will present an ex-
perimental analysis of this property in Ch. 4.

4. A more general and rigorous deduction of the two-dimensional coupling constant g(2D) was set by
Petrov et al. [119, 120]: For our experimental parameters, this general expression is well approximated by
the naive derivation done in the main text.

5. in fact it is only an approximate scale invariance that is preserved due to corrections mentioned in
footnote 4 from [119, 120]. This approximate scale invariance is maintained for weakly interacting gases,
up to some corrective factors.
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1. Elements of theory on quasi- two-dimensional Bose gases

1.1.4.2. Reduction of the density fluctuations and quasi-condensation

The interaction energy is given by

Eint ≡ 〈V̂int〉 =
g(2D)

2

∫

〈n(ρ)2〉d2ρ, (1.29)

such that the interaction energy per particle is locally ǫint(ρ) = g(2D)〈n(ρ)2〉/〈n(ρ)〉. As
for stability reasons, the interactions in our gases are repulsive (as > 0), minimizing this
energy contribution turns out to be equivalent to minimizing the density fluctuations
∆n2 = 〈n2〉 − 〈n〉2 at constant average density n ≡ 〈n〉. In an ideal thermal gas, 〈n2〉 =
2n2 (and ǫint = 2gn) whereas when the fluctuations are completely suppressed 〈n2〉 =
n2 (and ǫint = gn). Comparing the lower bound of ǫint ≥ gn to kBT, we find that density
fluctuations induced by thermal excitations are strongly suppressed in a 2D gas when
D(2D) & 2π/g̃.

More accurately, a thorough analysis of Bogoliubov excitations [115] shows that den-
sity fluctuations at low temperature are given by:

∆n2

n2 ≈ 2
nλ2

T
ln
(

kBT

gn

)

(1.30)

and are strongly suppressed as long as D(2D) ≫ 1 for any length scale larger than the
healing length ς. We will study experimentally the reduction of those fluctuations in
F.3.

The same Bogoliubov analysis shows that phase fluctuations are the only contribu-
tion to long-wavelength phonons and are not suppressed at low temperature in 2D.
Physical description at low T, high D(2D) and at distances larger than ς can be made by
only considering these phase fluctuations.

This state where density fluctuations are suppressed at length scale larger than ς but
not phase fluctuations is called a «quasi-condensate» or «presuperfluid» [102, 103].

1.1.4.3. Equation of state of an interacting 2D gas in two limiting cases

Due to the complexity introduced by the interactions between particles, there is no
general prediction for the EoS of an interacting gas. However in some limiting cases we
can perform approximations that give access to the EoS for restricted range of parame-
ters.

Hartree-Fock approximation. The simplest way to take interactions into account is
to use a Mean Field description in which the effect of neigbourghing atoms is approxi-
mated by an average effect. The development of Hartree-Fock formalism leads to mod-
ification of the single-particle Hamiltonian of Eq. 1.8 by U(ρ) → U(ρ) + 2g(2D)n(ρ)

in the weakly degenerate regime. Then applying the LDA, the EoS is obtained as in
Eq. 1.25 by replacing µ → µ − 2gn, resulting in the implicit relation

D(2D)(r) = − ln
(

1 − eµ/kBT−g̃D(2D)/π
)

(1.31)
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1.1. Specificity of two-dimensional physics

in the case of a uniform confinement U = 0. With the relation of Eq. 1.31, we note that
µ is no more constrained to µ ≤ 0 in this interacting case. This development is valid for
gases with low enough densities, typically up to D(2D) . 4 as it assumes large density
fluctuations.

Thomas-Fermi approximation In the opposite case of strongly degenerate gases D(2D) ≫
1, the Hamiltonian of Eq. 1.8 is modified along U(ρ) → U(ρ) + g(2D)n(ρ) leading to the
so-called Gross-Pitaevskii equation 6

µφ(ρ) =

(

− h̄2

2m
∆ + U(ρ) + g(2D)n(ρ)

)

φ(ρ). (1.32)

for the macroscopic 2D wavefunction φ(ρ). Then in the highly degenerate regime, we
can apply the Thomas–Fermi approximation, neglecting the kinetic term of Eq. 1.32 and
considering a uniform confinement U = 0, we find µ = gn and:

D(2D) =
2π

g̃

µ

kBT
(1.33)

We note that in this case µ > 0.

1.1.4.4. The superfluid state at low T and Berezinskii–Kosterlitz–Thouless
mechanism:

From the Bogoliubov analysis, we also find that at low T, the dispersion relation
shows a non-zero minimal velocity dωk/dk. Then the system is expected to be super-
fluid according to the Landau criterion. We will present in Chapter 5 an experimental
study of the superfluid behavior of the 2D gas.

By neglecting the density fluctuations at distances larger than ς, we can estimate the
dependency of g1(ρ) in this superfluid regime. We find that g1(ρ) shows algebraic
decay in this case [118]:

g1(ρ) = ns

(

ς

|ρ|

)1/(nsλ2
T)

for |ρ| ≫ ς (1.34)

where ns is the density of the superfluid part of the gas. This decay is consistent with the
absence of true long-range order as it goes to zero at infinite distances. It is nevertheless
very slow compared to the ideal gas behavior and corresponds to a so-called «quasi–

long-range order».
The transition toward this low-T superfluid phase with quasi long-range order oc-

curs via a novel mechanism that is not linked to any continuous symmetry breaking as

6. This also results from a Mean Field treatment of the interactions but now considering a fully con-
densed gas. We assume that the atoms all populate the same macroscopic wavefunction φ(ρ) so that the
quantum field ˆφ(ρ) of Eq. 1.27 is approximated by a classical field. The factor 2 difference compared to
Hartree-Fock description can be understood from the suppression of density fluctuations in the degener-
ate case (see 1.1.4.2). The quantity 〈n2〉 thus evolves from 2n2 in the thermal regime to n2 in the degenerate
one.
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1. Elements of theory on quasi- two-dimensional Bose gases

stated in 1.1.1. The mechanism was first described by Berezinskii [100] and Kosterlitz
and Thouless [101]. It relies on the appearance and binding of special phase defects
in the gas, namely the vortices that will preclude or enable superfluid behavior of the
fluid.

At low enough temperature, density fluctuations are strongly suppressed and some
coherence appears in the gas (Eq. 1.34) so that we are able to define a phase over the
cloud. Vortices are points at which the density cancels and around which the phase
winds by a multiple of 2π. The density is here affected only on a small length scale
of the order of ς. Above the critical point, the vortices proliferate freely so that they
significantly modify the phase of the gas, preventing the appearance of a superfluid
state. Below the critical point, formation of vortex pairs of opposite «charges» (that is
to say of opposite winding directions) is energetically favorable. The total circulation
of the phase around such a pair cancels and thus they only perturb the gas locally, on
the scale of the pair size that is also typically of the order of ς. A superfluid behavior is
thus enabled. Pairs of vortices in the critical regions were observed in [121].

Such a transition is not described by an order parameter and is said of «infinite or-
der». Most of the thermodynamics parameters vary smoothly across the transition.
Only the superfluid density ns jumps from 0 to a universal value of 4/λ2

T at the transi-
tion [122]. This jump was measured in liquid He films [123] but a direct measurement
of the jump is difficult to implement in our cold atom gas.

BKT theory does not describe quantitatively the transition point in terms of temper-
ature and chemical potential. In a general manner, this proves to be a difficult problem.
A computation via classical field Monte-Carlo simulations gives an estimate of the tran-
sition point in the weakly interacting limit that is a good approximation for our experi-
mental realization. Such calculations have been performed by Prokof’ev, Ruebenacker
and Svistunov [124] and they found:

D(2D)
BKT

≡ 2πh̄2nBKT

m kB TBKT

= ln
(

380
g̃

)

(1.35)

µBKT = kBTBKT

g̃

π
ln
(

13.2
g̃

)

(1.36)

For a typical g̃ = 0.1 we expect D(2D)
BKT

≈ 8.2 and µBKT = 0.16kBT. We note that due to
the very slow decay of the g1 function for D(2D) ≥ D(2D)

BKT
(Eq. 1.34), the BKT transition

always induce condensation via finite-size effects in any practical situation. To deter-
mine if the condensation that occurs in a specific configuration is driven by interactions
(BKT physics) or by Bose statistics, we must compare D(2D)

BKT
to the previously deduced

critical PSD for Bose–Einstein condensation in finite traps D(2D)
BEC (Eq. 1.23 for example).

Prokof’ev and Svistunov [125] also performed Monte Carlo simulations around the
critical point and numerically computed the EoS D(2D) = f (µ/kBT, g̃) for an homo-
geneous infinite system, which enables to interpolate between the two known limits
presented in 1.1.4.3. In Ch. 4, we will compare our experimental measurement of the
EoS to these numerical predictions which thus provides an experimental validation of
the classical field approaches.
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1.2. 3D-2D crossover in a uniform trap: transverse condensation phenomenon

Finally, we point out that the correlation length for the (exponential) decay of the g1

function above the transition diverges exponentially with the temperature when ap-
proaching the transition point:

ℓc ≈ λT exp
(

√
aTBKT√

T − TBKT

)

(1.37)

where a is a dimensionless constant. This exponential law is specific to the 2D marginal
behavior.

1.2. 3D-2D crossover in a uniform trap: transverse condensation
phenomenon

From now on we denote ζ = kBT/h̄ωz. Previously, we described properties of a
Bose gas in the «deep thermal 2D regime», that is when ζ ≪ 1 (1.1.2), both for non-
interacting particles and for weakly interacting ones. In this part, we want to go further
in describing Bose gases in a strongly anisotropic confinement linked to a 2D geom-
etry 7 (oblate traps) but not in the «deep thermal 2D regime». As long as ζ 6≪ 1, we
must consider that the full 3D wavefunction correctly pictures the state of our gas. In
particular, we must not only consider the z-motion ground state but also its excitations.
We denote |ϕjz〉jz∈N∗ the eigenstates of the z-harmonic confinement, of energies 8 jzh̄ωz.

We are interested in two cases:
— We want to describe cases close to the 2D regime but for which the «deep thermal

2D regime» condition is not achieved, that is ζ & 1. In this case we cannot con-
sider that the motion is frozen along the z direction and we must take excitations
into account to precisely picture the gas. As pointed out in [126], such considera-
tions are important in particular with respect to the temperature determination.

— We want to describe the evolution of the gas in a strongly anisotropic oblate con-
finement from a 3D regime (that corresponds to a weakly populated z-motion
ground-state jz = 0) to a 2D one (that is when the z excited states jz > 0 are pop-
ulated in minority). In this case we start in a regime with ζ ≫ 1 and we are
interested in describing the evolution of the population of the z excited states jz

when varying the total phase-space-density D(2D)
tot .

1.2.1. Relevance of the uniform case

In this section, we will thoroughly describe the case of a gas that is uniformly con-
fined in-plane and harmonically confined along z, with an adjustable strength of con-
finement h̄ωz compared to the thermal energy kBT. We study the case of a strongly
anisotropic confinement with L ≫ ℓz.

— In the case ζ & 1 we will deduce corrections to the equation of state Eq. 1.16.

7. Using previous notation, in the case of a uniform confinement in-plane, anisotropic traps must verify
ℓz ≪ L, and in the case of an harmonic one ω ≪ ωz.

8. as previously, we choose the energy origin so that the ground state has a zero energy.
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1. Elements of theory on quasi- two-dimensional Bose gases

We note that using LDA we can generalize the corrected EoS to any type of con-
finement by replacing µ → µ0 − V(r) similarly as in Eq. 1.25.
We can also generalize this description to an interacting gas using a standard
simplifying assumption [127, 128] for weakly interacting cases 9. It consists in as-
serting that the different atomic assemblies corresponding to the various states
jz of z-motion are not coupled. Then starting from the results for the ideal case,
we can reintroduce interactions in each of these 2D atomic assemblies follow-
ing lines developed in 1.1.4.3. These developments consist in replacing µ →
µ − g(2D)〈n2〉/〈n〉 (in the two extreme cases of very weakly and very strongly
degenerate gases) where g(2D) is the 2D interaction parameter. Note that here
g(2D) takes a specific value for each level jz as it is obtained by performing in-
tegration over z as in Eq. 1.27. The integration must then be performed in each
specific subspace and it gives in g

(2D)
jz

= g(3D)
∫

|ϕjz(z)|2dz

— In the case ζ ≫ 1 and in this specific trapping configuration, Bose stimulation
plays a crucial role in the occurrence of the 3D to 2D crossover by the introduction
of the notion of transverse condensation (BEC⊥) that we will present in details in
the following. We note that the occurrence of a distinct transverse condensation
phenomenon does not hold in the case of an in-plane harmonic confinement. In-
deed, while LDA implies that Bose stimulation locally enhances effectively the
population of the ground state of the z-motion, such an enhancement will de-
pend on the position ρ and be negligible in the distant wings of the cloud (due
to a lower density). A distinct condensation phenomenon for the z direction is
then precluded by the occurrence of a full condensation phenomenon (at a sim-
ilar PSD). As stated in [129], two step condensation is valid only if the reduced
dimensional system does not show condensation at the thermodynamic limit (the
second step of condensation then results from finite-size effects). In the opposite
case, the two condensation phenomena can not be distinguished. In the non-
uniform case, 2D physics can only be established over the whole cloud via the
thermal condition ζ . 1.

1.2.2. General description of an non-interacting gas in an oblate confinement
uniform in-plane

As in 1.1.3.1, we consider a non-interacting gas confined in a square region of the xy

plane of length L inside which the potential is simply U(ρ) = 0 and for which we apply
the periodic boundary conditions. Then the eigenenergies and eigen-wavefunctions

9. For a more complete description of interactions in quasi-2D gases see [109]. We note that inter-level
interactions can be taken into account in first approximation by modifying intra-level value of the 2D
interaction parameter.

26



1.2. 3D-2D crossover in a uniform trap: transverse condensation phenomenon

are:

Ej =
2π2h̄2

mL2 (j2x + j2y) + jzh̄ωz, (1.38)

ψj(r) =
1

L
√
ℓz

exp(i
π jxx

L
) exp(i

π jyy

L
) χjz(

z

ℓz
), (1.39)

with jx, jy ∈ Z and jz ∈ N, (1.40)

where χj stands for the j-th Hermite function. The occupancy of state j is given by
the Bose–Einstein factor f (Ej) with f defined in Eq. 1.9 and we can compute direct
summation over these energies states in a similar way as in Eqs. 1.10-1.12 to deduced the
gas properties (see Annex A). We note that each 2D assembly of atoms corresponding to
a given jz is simply described by results of 1.1.3.1 while shifting the chemical potential
µ by the energy of state jz: µ(jz) = µ − jzh̄ωz. This enables to access any dimensionless
gas parameter A whose 2D equation of state is known A = fA(µ/kBT) (using results of
1.1) via:

A =
∞

∑
jz=0

fA(βµ − jzζ) (1.41)

If L2 ≫ πλ2
T, the semi-classical limit applies in the xy plane and we transform the

sum over jρ ≡ (jx, jy) in an integral. For example the EoS for the total 2D PSD D(2D)
tot is

given by:

D(2D)
tot =

+∞

∑
jz=0

D(2D)(jz) (1.42)

D(2D)(jz) = − ln
(

1 − Ze−jz/ζ
)

(1.43)

For a gas in the deep thermally two-dimensional regime where ζ ≪ 1, only jz = 0
contributes and we find back the previous results D(2D) ≈ − ln (1 − Z). In the opposite
case where ζ ≫ 1, we can apply the semi-classical limit in the vertical direction also,
and find:

D(2D)
tot = −

∫ +∞

0
ln
(

1 − Ze−u/ζ
)

du (1.44)

=
+∞

∑
n=1

∫ +∞

0

Zn

n
e−nu/ζ du = ζ

+∞

∑
n=1

Zn

n2 = ζ g2(Z). (1.45)

where gα(Z) = ∑
+∞
n=1 Zn/nα is the polylogarithm of α order. In the intermediate regime

ζ & 1, we must use the discrete summation of Eq. 1.42 to predict the EoS of the phase-
space-density with µ/kBT.

1.2.3. Transverse condensation phenomenon of a in-plane uniform gas in an
oblate confinement

In this section, in order to investigate the transverse condensation phenomenon (BEC⊥),
we focus on the case ζ ≫ 1 where the semi-classical approximation is valid for all
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1. Elements of theory on quasi- two-dimensional Bose gases

quantum number jx, jy and jz. Then each corresponding discrete sum in Eq. 1.12 can be
approximated by the integrals of Eqs. 1.11 and 1.44.

1.2.3.1. Saturation of z excitation populations and transverse condensation
phenomenon.

In this case of ζ ≫ 1, the 2D PSD is given by Eq. 1.45 which results in

D(2D) = ζ g2(Z). (1.46)

Since Z < 1 and g2(Z) remains finite when Z → 1 [g2(1) = π2/6], this semi-classical
approximation leads to the paradoxical result that for a given ζ, the total 2D phase-
space-density is bounded from above by ζπ2/6. The paradox is lifted by noticing that
when the fugacity Z approaches 1, the population of the lowest vibrational state |jz = 0〉
is not properly accounted for when one replaces the discrete sum in Eq. 1.42 by the in-
tegral Eq. 1.44. More precisely within this semi-classical approximation, when the total
phase-space-density approaches the value ζπ2/6, the result above must be replaced by

D(2D)
tot = D(2D)

0 +D(2D)
exc (1.47)

with, for Z ≈ 1 : D(2D)
0 = − ln(1 − Z), D(2D)

exc = ζ π2/6. (1.48)

Therefore, when the total phase-space-density D(2D)
tot is significantly larger than ζ π2/6,

the phase-space-density D(2D)
exc saturates and additional atoms accumulate essentially

in the jz = 0 state. This is the transverse condensation phenomenon (BEC⊥) [129].
In the case of an infinite box (L → ∞), only accumulation in the ground state of

the z motion jz = 0 is expected and no true 3D BEC occurs. Indeed, once BEC⊥
takes place, conclusion of 1.1.3.1 for a infinite 2D gas holds and no condensate frac-
tion can arise for the xy motion. In the case of a finite system however, the same rea-
soning leads to a two-step condensation. The gas first reaches reduced dimensionality
regime via BEC⊥ and then condenses in this reduced dimensionality system (BECfull)
to the overall 3D ground state as result of finite-size effects (as described in 1.1.3.1).
Hence BECfull occurs when 2D phase density of jz = 0 state reaches the critical value
D(2D)

0,BECfull
given by Eq. 1.23. Then the two condensation phenomena, BEC⊥ and BECfull,

can be distinguished when the values of D(2D)
0 at which they occur are (clearly) sep-

arated: D(2D)
0,BEC⊥

≪ D(2D)
0,BECfull

. We intuitively understand that this will be the case for
an anisotropic enough trap with ℓz ≪ L. We will give in following section 1.2.3.2, a
quantitative analysis of this separation of the 2 steps of condensation.

In Fig. 1.1, we show the evolution of D(2D)
exc and D(2D)

0 with D(2D)
tot in the case of a finite

square box (see Annex A for calculation principle) of size L chosen 10 at L = 200 λT

while ℓz is given by ℓz =
√

ζ/2π λT. Our calculations are made for ζ ≤ 20 which
corresponds to a minimal anisotropy factor L/ℓz ≥ 112.

10. In this case, D(2D)
0,BECfull

≈ 9.5 and we have restricted our analysis to the domain of parameters such

that D(2D)
0 . 9, in order to avoid the regime dominated by finite-size effects.
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Figure 1.1.: Top: Variations of the 2D phase-space-density in the |jz = 0〉 ground state of the
z motion with the total 2D phase space-density D2D

tot . Bottom: Variations of the

phase-space-density of the excited states of the z motion with D(2D)
tot . The calcu-

lation is made for an ideal gas confined in a square box with periodic boundary
conditions in the xy plane, with a size L = 200 λT. The values of ζ are: 0.1 (olive), 1
(magenta), 5 (cyan), 10 (black), 15 (red), 20 (blue). The dotted lines indicate the crit-

ical phase-space-density ζ π2/6 (same color code). For large D(2D)
tot , all D(2D)

0 tend

to parallel linear behavior corresponding to a slope D(2D)
tot /D(2D)

0 = 1. For ζ ≤ 1
we do not notice any significant modification from this linear behavior. For ζ > 1,

we point out that the change in curvature in D(2D)
0 coincides with the saturation of

D(2D)
exc when D(2D)

tot is close to the predicted critical value of ζ π2/6.
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1. Elements of theory on quasi- two-dimensional Bose gases

1.2.3.2. Population of z ground-state at transverse condensation point

Let us estimate the 2D phase-space-density associated to the ground state of the z-
motion when the threshold for transverse condensation

D(2D)
tot,BEC⊥

= ζ π2/6 (1.49)

is reached. Transverse condensation occurs when the population of the jz = 0 state is
significantly different from that of jz = 1, so that it cannot be accounted for properly
by the integral Eq. 1.44. At this moment the chemical potential is on the order of −h̄ωz

and then Z ∼ e−1/ζ . Then, from Eq. 1.48, we predict D(2D)
0,BEC⊥

= − ln(1 − Z) ∼ ln(ζ).
More precisely, a numerical calculation using full quantum 3D computation of Annex
A gives at the transverse condensation point

D(2D)
0,BEC⊥

≈ ln(ζ) + 0.9. (1.50)

for ζ between 5 and 20 (see Table 1).

ζ D(2D)
tot,c Z D2D

0 r1/20/λT ℓ′c/λT ℓ′c/ℓz

5 8.2 0.921 2.5 2.2 0.80 0.90
10 16.5 0.959 3.2 2.6 1.07 0.85
15 24.7 0.972 3.6 2.9 1.27 0.82
20 32.9 0.979 3.8 3.1 1.43 0.80

Table 1.1.: Values of relevant parameters at the point where BEC⊥ occurs. The parameters are
calculated numerically using a finite box of L = 200λT and following lines of Annex
A. The correlation length is calculated along lines of 1.2.3.4.

The condition for distinguishing BEC⊥ from the full condensation phenomenon BECfull

is that D(2D)
0,BEC⊥

≪ D(2D)
0,BECfull

. D(2D)
0,BEC⊥

is given in Eq. 1.50 while D(2D)
0,BECfull

is given by
Eq. 1.23 as BECfull occurs when 2D phase density of jz = 0 state reaches the critical
value obtained for the deep 2D regime in 1.1.3.1. Then owing ℓ2

z/λ2
T = ζ/2π:

D(2D)
0,BECfull

≈ ln(0.4
L2

λ2
T
) = D(2D)

0,BEC⊥
+ 2 ln(0.16

L

ℓz
). (1.51)

The 2 step condensation picture is then valid for:

2 ln(0.16L/ℓz) ≫ 1 ⇒ L ≫ 10 × ℓz (1.52)

1.2.3.3. Link to 3D Bose–Einstein condensation phenomenon

A similar calculation as Eqs 1.42-1.46 gives the value of the 3D phase-space-density
D(3D)

tot ≡ n3D
tot(0)λ

3
T in the center r = 0. Indeed using the general expression of Eq. 1.12
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Figure 1.2.: Total 3D phase-space-density in the plane z = 0, as a function of the total 2D phase-
space-density (same color code as in Fig. 1.1). These quantities are here deduced
for a full quantum treatment of ideal Bose law taking L = 200λT . The horizon-

tal line corresponds to D(3D)
tot (z = 0) = 2.612, which is the predicted threshold

for BEC⊥. We notice a change in curvature at D(3D)
tot ≈ 2.612. We note a slight

discrepancy between the crossing of D(2D)
tot (z = 0) = ζπ2/6 (dotted lines) and

D(3D)
tot (z = 0) = 2.612 for each of the curves – the latter occurring at higher D(2D)

tot .

for Â = Nψ†(r)ψ(r), we find:

n3D
tot(r) =

∞

∑
jz=0

∞

∑
jx ,jy=1

f (Ej)|ψj(r)|2 (1.53)

where Ej and ψj(r) are given in Eqs. 1.38-1.39. We deduce in the semi-classical limit:

D(3D)
tot = −

√

2π

ζ

+∞

∑
jz=0

|χjz(0)|2 ln
(

1 − Ze−jz/ζ
)

≈ g3/2(Z). (1.54)

For the last step of the calculation we used the asymptotic result for the value of the
Hermite functions in z = 0: |χj(0)|2 ≈ (π

√

j)−1, and we replaced the sum over jz by an
integral (semi-classical approximation). We reach here again a paradoxical result: since
g3/2(1) is finite, the 3D total density seems to be bounded. As above, the solution to
the paradox is that the semi-classical treatment does not properly account for the pop-
ulation of the jz = 0 state when Z approaches 1. More precisely, above the transverse
condensation threshold, one has

D(3D)
tot = D(3D)

0 +D(3D)
exc. (1.55)
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1. Elements of theory on quasi- two-dimensional Bose gases

with, for Z ≈ 1 : D(3D)
0 = −

√

2/ζ ln(1 − Z), D(3D)
exc ≈ g3/2(1) = 2.612,

(1.56)
whereas D(3D)

0 ≪ D(3D)
tot and D(3D)

exc ≈ D3D
tot ≈ g3/2(Z) below the threshold for BEC⊥ if

ζ ≫ 1. Evolution of D(3D)
tot is plotted in Fig. 1.2 versus D(2D)

tot .
In other words, transverse condensation occurs when the central 3D phase-space

density approaches the value 2.612, which corresponds to the point where full BEC
occurs in a weakly anisotropic 11 gas ℓz ∼ L. Here due to the strong anisotropy, full
condensation does not occur at this point but only a partial one that results in projecting
the gas in a lower dimensional state. Then the gas is governed by the specific physics
arising in this reduced dimension space, possibly leading to prediction of other phase
transition(s) at D(2D)

0 >D(2D)
0,BEC⊥

, following specific theory of the reduced dimensionality
(presented in 1.1 in our case).

1.2.3.4. Influence of transverse condensation on in-plane coherence

As the BEC⊥ phenomenon leads to the establishment of 2D physics for which a ma-
jority of atoms populates the ground state of z-motion, the coherence length ℓc in the
xy plane is also affected following results of 1.1.3.1. A rough estimate for ℓc is obtained
by plugging the approximate value D(2D)

0 ∼ ln ζ into the expression for the coherence
length of a 2D gas in the degenerate regime of Eq. 1.22, which gives

ℓc ≈ λT
√

ζ/4π = ℓz/
√

2, (1.57)

A more precise estimate is given in Table 1.1 for the relevant range of values for ζ

and using a full quantum 3D treatment as explained in Annex A for L = 200λT. To
obtain these results, we computed numerically the variations of the one-body correla-
tion function g1(r) for r in the xy plane, and we looked for the wings of this function.
More precisely we considered the point r1/20 where the function g1 is divided by 20
with respect to its value in r = 0. At this point we define ℓ′c as

1
ℓ′c

= − d ln[g1(r)]

dr

∣

∣

∣

∣

r=r1/20

. (1.58)

If g1 had an exponential variation for all r, this quantity would take the same value
independently of the location r where it is calculated and ℓc = ℓ′c. For a non-strictly
exponential g1, the present definition is a good compromise between considering the
far wings of g1 in order to monitor the appearance of an extended coherence, and re-
stricting to sufficiently small values of r so that the values of g1 are still significant. The
variation of ℓ′c/λT with D(3D)

tot for various values of ζ is shown in Fig. 1.3.
For Boltzmann statistics, g1(ρ) ∝ e−πρ2/λ2

T and ℓ
′th
c = 0.16 λT. We see in table 1.1 that

at BEC⊥, the value of ℓ′c is increased by a factor 6− 9 for ζ = 10− 20 with respect to ℓth
c .

More precisely the result of Eq. 1.57 states that at the threshold for BEC⊥, the coherence

11. It is also the threshold for an infinite uniform 3D gas.
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Figure 1.3.: Variations of the coherence length ℓ′c defined in Eq. 1.58 with the total 2D phase-
space-density (same color code as in Fig. 1.1).

length in the xy plane is comparable to the size of the ground state along the z direction.
The physical meaning of Eq. 1.57 is related to the fact that the 3D phase-space-density
in the plane z = 0 reaches the value 2.612 when BEC⊥ occurs. For a uniform, infinite
3D gas with this spatial density, the coherence length ℓc would diverge, signaling the
occurrence of a true Bose–Einstein condensation. Here the z-confinement limits the
extension of the coherent part of the gas along z to ℓz, which prevents the divergence of
ℓc and limits its value also to ℓz in the xy plane. In the regime ζ ≫ 1, the appearance of
a large coherence length in the xy plane and the occurrence of transverse condensation
for the z degree of freedom are thus linked.

1.3. Conclusion

In this chapter, we presented the main theoretical ingredients of the physics of a two-
dimensional Bose gas. In the case of perfectly 2D atomic samples, we detailed the
occurrence of Bose–Einstein condensation BECfull to the 2D atomic ground state for an
ideal (i.e. non-interacting) gas, both in an harmonic trap and in a finite uniform box,
while in an infinite uniform 2D gas condensation is fundamentally absent at non zero
temperature due to the general argument of Mermin Wagner. We also pointed some
modifications of the thermodynamics properties of the gas due to the presence of inter-
actions between the particles. We quoted in particular the appearance of a transition of
a novel kind, described by the Berezinskii-Kostlerlitz-Thouless mechanism. A second
point in this chapter is to highlight the relevance of this 2D physics in our 3D world by
presenting a regime of confining configurations (the «deep thermal 2D regime») where
the 2D description applies. We then pointed out some corrections due to the non perfect
realization of this regime. Finally, we presented a specific way to reach the 2D regime,
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1. Elements of theory on quasi- two-dimensional Bose gases

linked to the BEC phenomenon in a strongly oblate uniform confinement. In this case
the BEC phenomenon does not occur fully (in one step) but divides in two steps, sepa-
rated in phase space densities, due to the strong anisotropy of the confinement. First the
condensation occurs in the tighter direction so that a reduced dimensionality physics is
established in the remaining gas. Then low dimensionality (2D in our case) applies and
leads to a full condensation along the lines precised above. We note that this two step
condensation is fundamentally linked to the assumption of a uniform trapping in the
2D plane as it necessitates that BEC does not hold in the thermodynamic limit for the
considered 2D trap.

In the following parts of this manuscript we will present experimental investigations
of the different properties highlighted here. A first part of this manuscript (Chapters
4 and 5) will be devoted to the study of harmonic 2D gases. In this geometry, we will
study the interacting 2D gases physics. We will link back the obtained results to the
uniform case using LDA. In a second part of the manuscript, we will present results
directly obtained in a uniform trapping geometry (Chapters 7 and 8). In this case, we
will investigate the specific transverse condensation phenomenon, in particular via its
consequence on the in-plane coherence of the atomic sample. Before presenting our re-
sults, we will detail the experimental setup that we have built to investigate the specific
regime of the (quasi-)two dimensional gases.
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2. Experimental methods for producing two–dimensional
Bose gases

Since the experimental apparatus used to produce the results presented in this thesis
has been running for several years, the main part of the setup has been built by previous
PhD students. A detailed description of the various setup elements and their evolution
can be found in their successive manuscripts [107–111].

In this chapter, I will present the main line of the production of two–dimensional
degenerate Bose gases, highlighting the improvements realized during the three years
I spent on the experiment. I will first quickly described the line followed for producing
a tri–dimensional Bose–Einstein Condensate (3D BEC). I will then insist on the specific
operations we developed and used during the last year of my PhD to study uniform
2D Bose gases. The specificity of the production scheme for the necessary flat bottom
potential will be addressed in a following chapter (Ch. 6).

In the second part of this chapter, I will more precisely focus on the experimental real-
ization of the 2D–trapping. I will first characterize the in–place setup whose parameters
were slightly modified since last overview [111]. I will point out the limitations of such
a realization especially in the prospect of creating uniform Bose gases. These stems
from the residual horizontal potential created by the beam which is mainly used to cre-
ate the tight trapping along the vertical direction. I will then present preliminary test
on a new and advantageous setup for producing strong confinement in one direction.
Such a new optical setup will soon be implemented on the experiment.

2.1. Experimental setup

Here I will describe our specific implementation of a cold atom experiment to study
the physics of the 2D Bose gas and produce the experimental results reported in this
manuscript.

2.1.1. Overall description of the experimental setup

As in any cold atoms experiment our setup consists of a vacuum system in which we
can trap and cool atomic sample at the nano-Kelvin scale. The specificity of our own
setup is that it is constituted of two separated chambers with two different vacuum
pressures:

— a steel «MOT chamber» with moderate vacuum in which we trap a sample of 87Rb
atoms from the background vapor and perform preliminary cooling on it.

— a glass «science cell», in which cooling is carried further to reach degeneracy and
in which the 2D gas is produced and studied.
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2. Experimental methods for producing two–dimensional Bose gases

These two chambers are linked by a differential pumping stage along which atoms are
magnetically transported. To reach the desired regime of degenerate 2D Bose gas within
this global setup, a sequence of tens of events mainly consisting in modifying either the
strength of the magnetic fields or the intensity of the optical beams is necessary. These
are controlled and synchronized at the microsecond scale. The control is realized via a
computer based program developed in MIT by Aviv Keshet [130] communicating with
nine analog or digital National Instruments cards and two GPIB devices.

These tens of unit events can be decomposed in typically ten global phases. I will
describe them, distinguishing the creation of a 3D BEC and the further study of a 2D
degenerate Bose gas.

2.1.2. Experimental sequence toward tri–dimensional Bose–Einstein
Condensation

First, I will recall the specific sequence leading to condensation of an atomic sample in
our specific scheme. Until 2012, we were using a magnetic Time Orbiting Potential (TOP)
trap that I will not describe here (for a description of this previous implementation, see
[109, 110]). We are now using an hybrid magnetic and optical trap as implemented in
[131] and [132]. The basic principle of the new procedure was presented in [111] so I
will mainly report on the experimental parameters currently in use. Such a sequence
can be divided in five phases:

1. MOT and loading of the first magnetic trap (8.5 s)

This phase is constituted of all the events occurring in the first «MOT chamber».
We load a magneto-optical trap from a background 87Rb vapor in 8 s. The loading
time constant of this trap is typically of 2s for our setup and we typically trap 1 ×
1010 atoms in this first step. We then lower the magnetic gradients while shifting
the MOT laser to higher detuning and reducing the power of the repumping beam
to further cool this set of atoms. The resulting temperature at the end of this
stage is typically of T = 200 µK. We then use a step of optical molasses in which
we switch off the magnetic gradient to reach T = 100 µK. The atoms are then
optically pumped into the internal state | F = 2, mF = 2 〉 before being transferred
to a first quadrupole trap with magnetic gradient b′z = 140 G/cm. In this trap,
we manage to collect 5 × 109 atoms, at T = 450 µK that we want to transfer to
the science cell before being limited by cloud lifetime. This short lifetime of 1.2s

results from the collisions between the trapped atoms and the background vapor.
In the current setup, the quality of the vacuum in this chamber is maintained via
two cooling Peltier setups (commonly named «cold fingers»).

2. Magnetic transport (6 s)

We transport the atoms over a 50 cm distance, from the «MOT chamber» to the
«science cell», using a series of nine pairs of coils in which we accurately control
the currents [107, 133]. The resulting smooth displacement of the trap center is
set to be nearly adiabatic. The main source of heating is the limited lifetime in
the «MOT chamber». We thus impose a fast initial acceleration to leave quickly
the collision area and reach a region with better vacuum. The first steps of the
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2.1. Experimental setup

transport constitute the limiting factor to the overall transfer efficiency. They in-
duce losses and heating as shown by round trip transport measurements 1. At the
end of this transport stage, we load a second quadrupole trap in the science cell
with b′z = 90 G/cm. In this trap we can characterize our cloud using horizontal
absorption imaging in the high intensity regime (cf. 3.2.1) and with magnification
M = 1. We measure N ∼ 109 atoms and T ∼ 150 µK after compressing the cloud
to a upper gradient of b′z = 140 G/cm in order to increase the collision rate.

3. Radio-frequency evaporation in the quadrupole trap (16 s)

To further enhance the collision rate and the phase-space-density before load-
ing the 3D hybrid trap, we then evaporatively cool the gas in this magnetic trap.
We apply a radio–frequency (RF) pulse that induces transitions between different
Zeeman sub–states at a given distance of the zero–field trap center. The frequency
of this RF is then ramped linearly from 30 MHz to 3 MHz. In a quadrupole trap
the evaporation is limited by Majorana spin-flips due to the cancelation of the
magnetic field at the trap center and thus this technique is not sufficient to reach
degeneracy. The value of the final frequency results from a compromise between
a cloud cold enough so that it is efficiently loaded into the later used dipole trap
and a not too cold one to prevent Majorana spin flips. At the end of this phase the
atom number is reduced to N ∼ 2× 108 atoms and the temperature to T ∼ 30 µK.

4. Loading the hybrid trap (2.5 s)

In order to circumvent Majorana losses and push evaporation further down to
reach degeneracy, we choose to add a red-detuned optical dipole trap to the
quadrupole gradient, as implemented in [131] and [132]. In our case, such a dipole
trap is created by a laser beam at 1064 nm wavelength with a waist wh = 50 µm
and a maximal power Pmax

h = 8.4 W. We set its propagation along the horizontal
x axis. We should note that its Rayleigh length along x is large – xR = 7.4 mm
– so the confinement along the beam propagation direction results only from the
remaining magnetic gradient b′x (In our coil configuration, b′x = b′z/2). The dipole
beam is switched on at the loading power Pload

h = 6.7 W at the beginning of the
experimental sequence. We load this optical trap from the magnetic one, by low-
ering the magnetic gradient to a small but non–zero value, so that the atoms drop
into the additional trap where they are still magnetically confined in the x direc-
tion. We choose to lower the magnetic gradient down to b′z = 12.5 G/cm which

is below the gravity-equivalent gradient b
′mag
z = mg/µ = 15.4 G/cm for atoms

in | F = 2, mF = 2 〉 state. The beam center in the yz plane is set to be vertically
below the quadrupole trap center at a distance dload

z . We optimized the position
of the zero of the magnetic field in terms of the number of atoms transferred in
the hybrid trap so that dload

z ≈ 100 µm. The loading is performed in 2 s and the

1. We cannot directly image the cloud during transport, then to image the gas we needed it to be in
either the MOT chamber or the science cell. In the round trip measurements, we image the atomic sample
coming back in the MOT Chamber after the desired number of transport steps (in total there are eleven
steps). The back transport steps are simply defined by reversing the time dependency of the currents used
in the corresponding forth step (of course time reversal is also applied for defining steps order). We should
note that such a simple definition can create additional heating especially for the first steps due to abrupt
change in center of mass velocity and acceleration at the reversing point.
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remaining atomic ensemble contains 7 × 107 atoms at a temperature T = 10.5 µK.
We can quantitatively describe the trapping potential in this hybrid trap:

Vhybrid(x, y, z) = Vmag(x, y, z) + Vdip(y, z)− mgz (2.1)

where Vmag(x, y, z) = µb′z

√

(z + dz)2 +
x2 + y2

4
(2.2)

Vdip(y, z) = UH exp
(

−2
y2 + z2

w2

)

. (2.3)

UH is the trap depth due to the dipolar force UH = α × Ph/(πw2) (Ph stands
for the dipole beam power). α is deduced from the general expression of the
dipolar force for our parameters, taking into account the beyond Rotating Wave

Approximation term and neglecting thedetuning difference to the fine structure:

α = − 3πc2

2ω3
0

(

Γ
ω0−ω + Γ

ω0−ω

)

. ω is the laser pulsation ω = 2π × 2.82 × 1014 Hz,

ω0 is the mean value of the atomic pulsation ω0 = ωD1 /3 + 2ωD2 /3 = 2π ×
3.80 × 1014 Hz (taking into account Clebsch–Gordan coefficients) and Γ the mean
natural width Γ = ΓD1 /3 + 2ΓD2 /3 = 2π × 5.97 × 106 Hz. We deduce α = −kB ×
157 mK µm2/W and so UH/Ph = −kB × 20 µK/ W. The loading trapping depth is
so U load

H = −kB × 134 µK

In Eq. 2.1, the coordinates origin is taken to be the center (in yz) and focus location
(in x) of the dipole beam. We set the zero of the magnetic field to be centered in the
horizontal directions x and y on the cloud 2. Then a polynomial approximation of
Eq. 2.1 gives the trapping frequencies:

ω
hybrid
y = ω

hybrid
z ≈

√

4UH

mw2 (2.4)

ω
hybrid
x =

√

µb′z
4mdz

(2.5)

ω
hybrid
y and ω

hybrid
z are dominated by dipolar potential effect. They vary from

several hundreds at loading to several tens of Hz after optical evaporation (see
next item). Along the beam propagation, ω

hybrid
x is dominated by the magnetic

potential and is typically of a few tens of Hz for the considered dz (also varying
during optical evaporation). At loading, the frequencies are summarized in Table
2.1.

5. Optical evaporation in the hybrid trap (13 s)

Once the hybrid trap is loaded, the collision rate is enhanced by a tighter trapping,
Majorana losses are bypassed and now evaporation can be pushed further down.
Here, we use optical evaporation in the dipole trap, simply lowering the beam
power to P

evap
h . P

evap
h may vary from the initial value of Pload

h = 6.7 W to our laser
seed power 3 Pseed ≈ 40 mW. We performed the evaporation in th

evap = 13 s and

2. this is automatically true for the x direction as it is magnetically trapped but it needs to be aligned
in y direction

3. Our laser is a fiber laser from Azur Light System with a fully integrated servo control of the power. It
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Axis i ω
hybrid
i

x 2π × 22.5 Hz
y 2π × 719 Hz
z 2π × 719 Hz

Table 2.1.: Summary of all trapping frequency at the loading of the hybrid trap (Pload = 6.7 W).

reach degeneracy for P∗
h ≈ 76 mW.

The value of dload
z reveals insufficient to fully prevent Majorana losses as the mag-

netic field at the cloud center is only b′zdload
z = 0.125G. It is thus compulsory to

displace the zero of the magnetic field to a greater distance from the dipole trap
center d

evap
z > dload

z before performing the evaporation ramp. It is also important
not to increase dz too much as it results in a decompression of ω

hybrid
x , which

unwantedly decreases the collision rate. dz is optimized on the final BEC to the
highest condensate fraction and is set to d

evap
z ≈ 300 µm. Typical trapping fre-

quencies at the end of the evaporation ramp (up to the condensation threshold
P

evap
h = P∗

h ) are given in Table 2.2. The ramping slope is set to be exponential with
time constant τ = 0.125 × th

evap. We can select P
evap
h to tune the final T and N of

the 3D cloud and thus vary the resulting 2D cloud configuration.

Axis i ω
hybrid
i

x 2π × 13 Hz
y 2π × 76 Hz
z 2π × 76 Hz

Table 2.2.: Summary of all trapping frequencies in the hybrid trap obtained from Eq. 2.5 at
the end of the optical evaporation ramp to laser power P∗

evap ≈ 76 mW at which
degeneracy is reached. There dz = d

evap
z ≈ 300 µm

2.1.3. Experimental sequence from 3D BEC to the study of two–dimensional
gases

At the end of these five first experimental stages, we reach 3D degeneracy in typically
46 s. In our experiment, we want to study 2D physics. In this aim, we need to change
the trapping configuration of our cloud for it to enter a 2D (or quasi-2D) regime (see
1.1.2). We must care about implementing such changes in an efficient way so that the
2D cloud created covers interesting physical regimes. In this section, I will describe the
experimental phases necessary to create and to study clouds confined in a uniform 2D
geometry. I will present the specific shaping of the trapping beams in other parts of the
manuscript (section 2.2 and Ch. 6).The evolution of the various beam powers of the 2D
and 3D traps as well as of the magnetic gradient are schematized in Fig. 2.1.

is based on the amplification of a seed power. For varying the power at the output of the laser, only the
amplification is mastered. When the amplification is completely switch off, the remaining output is then
the seed power that so constitutes the minimal power reachable.
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2. Experimental methods for producing two–dimensional Bose gases

1. Transfer into the Hermite–Gauss and box–traps (1 s)

We start by ramping the power of the beam that creates the 2D tight confinement
(along z); it is blue detuned compared to the atomic resonance line and shaped
with a Hermite-Gauss profile (see 2.2 for a description of the beam shaping and
the confinement induced). The beam propagates along x and its profile in the
yz plane at the atom position consists of two bright lobes aligned along y such
that the 2D cloud is trapped in between in a resulting tight vertical (z) harmonic
confinement of pulsation ωz. Due to its shape, we commonly name this beam
the «light-sheet» (LS). The first loading step consists in ramping up the LS power
to an intermediate power Pload

LS in 0.5 s, onto the BEC (we previously aligned the
beam at the position of the 3D gas). Typically at Pload

LS , ωz/2π = 300 Hz. During
this loading, the initial 3D cloud is split into one central – horizontally spread and
vertically tightly confined – component (the 2D cloud) and two possibly remain-
ing side clouds above and below. Only the central part is of interest. This loading
must not be too fast in order to circumvent important heating of the cloud and en-

Figure 2.1.: Schematic representation of the evolution of (a, violet) the magnetic gradient b′z
(note that due to coil configuration b′x = b′y = b′z/2), of the (b, red) power in
the beam used in the hybrid trap Ph, of (a,green) the beam used to create the 2D
(z) confinement PLS and of (b,blue) the beam used to create the 2D in-plane (xy)
uniform confinement Pbox. Durations of the various steps and powers are not to
scale. This scheme enable to visualize the order of the variations of these 4 variable
along the experimental sequence. At the end of th

evap, we have achieved a 3D cold
gas in the hybrid trap (2.1.2). We load this gas in the 2D trap by successive increases
of PLS and Pbox (2.1.3). A 2D gas is achieved at the end of tevap. The 2D experiment
is achieved with a compensated gravity field b′z = b′mag.
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abling a good loading efficiency in the 2D trap. This first step reveals indeed the
most sensitive one in terms of losses and heating. This is also the reason why we
choose to progressively increase the light sheet power all along the whole loading
stage (see below).
After this initial step, we quickly (in 10 ms) ramp up an additional optical dipole
trap propagating along z and that confines the atoms in a specific region of the
2D plane. It is created by a blue detuned laser beam presenting a dark region at
its center (see Ch. 6 for a description of the beam shaping and the confinement
induced). We commonly call this trapping potential the «box–trap».
In Fig. 2.2, we show the geometric arrangement of the various beams as well as
the magnetic coils around the science cell.
After switching on the box–trap, we can switch off the hybrid trap previously
used for 3D confinement. That is to say:
— we switch off the remaining power of the dipole trap. This is done thanks to a

mechanical shutter as the seed of the laser cannot be switched off (see footnote
3).

— we change the magnetic gradients. We can then set b
′
z and dz to any convenient

values b
′2D
z and d2D

z as long as it does not result in a negligible confinement 4.

We choose b′z so that it compensates the gravity field (b
′2D
z = b

′mag
z ). We also

set the magnetic zero further away from the atomic sample d2D
z = 1.5 mm. As

4. compared to the box confinement and the 2D cloud characteristic energies, namely the thermal en-
ergy kBT and the interaction energy per particle ǫint

Figure 2.2.: Schematic representation of the science cell and its surroundings. red arrows rep-
resent the two used optical access to the atomic cloud in science cell and is stated
in red the optical beams propagating on these axes. The coordinate trihedron give
the latter used coordinates names.
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2. Experimental methods for producing two–dimensional Bose gases

described in Annex C, we choose the precise position of the magnetic zero in
the xy plane so that the in–plane atomic distribution is uniform (the result-
ing magnetic gradient can compensate a residual curvature of the light sheet
potential). The choice of a higher dz enables a better control of the in-plane
uniformity.

In the same time as we switch off the hybrid trap (in 150 ms), we ramp up the LS
power to a higher intermediate power Pclean

LS . Typically at Pclean
LS , ωz/2π = 1.1 kHz

and the trap depth along z is increased. At this stage, we get rid of the remaining
atoms outside of the central 2D cloud, which are situated above it 5. For this,
we effectively reverse the gravity by applying a magnetic gradient b

′clean
z > b

′mag
z .

Then the atoms feel the effective gravity potential

mgeffz = µb
′clean
z z − mgz (2.6)

⇒ geff = g
b
′clean
z − b

′mag
z

b
′mag
z

≥ 0. (2.7)

We typically choose b
′clean
z = 27.5 G/cm, so geff = 7.7 m/s2. We apply it during

τ = 150 ms before coming back to the levitating value of the magnetic field b′z =

b
′mag
z . Then the atoms initially located above the central cloud are accelerated

upwards and they hit the upper face of the glass cell (situated at ≈ 7.5 mm≪
geffτ2/2 off the atoms). We note that increasing the energy barrier between the
2D cloud and the residual atoms by Pload

LS → Pclean
LS is essential to keep the atoms

of the 2D cloud in place during the cleaning process.

2. Final preparation of the 2D–cloud (2.15 s)

Once we have isolated our atomic plane and confined the atoms in the box–trap,
we ramp the LS power to its final value P

f
LS. We can vary this value to set the

vertical confinement frequency 6 at a value varying from ωz/2π ∼ 300 Hz to
ωz/2π ∼ 2 kHz.
Finally, we can evaporatively cool the gas in the box–trap by lowering the power
of the corresponding beam. We typically divide this power by 1.25 to 50 in tevap =

2 s by applying a linear ramp. We ultimately let the cloud equilibrate for typically
thold = 500 ms. During this whole stage, we keep the magnetic gradient at a

constant value, compensating the gravitation: b′z = b
′mag
z = mg/µB . We can

estimate the resulting trapping potential from the magnetic gradients. Due to the
coil geometry, b′x = b′y = b′⊥ = b′z/2. The potential at distance r = ρ + dzuz for the
magnetic zero is

Vmag(r) = µ
[

(b′zdz)
2 + b

′2
⊥ρ2

]1/2
(2.8)

As the cloud center matches ρ = 0 and dz = d2D
z = 1.5 mm we deduce that for all

5. Usually the atom populating the symmetric lobe, below the central plane were expelled due to grav-
ity effect. If it was not the case, we could perform a symmetric step by increasing the effective magnetic
field compared to its value in presence of b′z = 12.5 G

6. In fact for the experimental results shown in Ch. 7 and 8, we preferred to vary the distance of the
atomic sample to the focus of the LS beam (see 2.2.2 for a detailed description of this effect and 7.1.3.1 for
a detailed description of the experimental choices).
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2.1. Experimental setup

position within the cloud 7 |ρ| ≪ dz. Then any atom within the cloud (located in
ρ) feels a potential that approximates as

Vmag(ρ) ≈ µb′zd2D
z +

µb
′2
⊥

2b′zd2D
z

ρ2 = mgd2D
z +

mg

8d2D
z

ρ2, (2.9)

and the resulting trapping frequencies in xy plane are

νx = νy = νmag =
1

2π

√

g

4d2D
z

≈ 6.4 Hz. (2.10)

3. Possible Time–of–Flight (some ms)

Depending on the quantities we want to measure, we have the possibility to let
the cloud expand freely along certain directions of space for some milliseconds
before imaging it. This technique is usually named Time–of–Flight (ToF) mea-
surement. More precisely, we may switch off:
— The light-sheet confinement that tightly confines the atoms in the vertical di-

rection. This switching off can be done by fast electronic control of Acousto
Optic Modulator (AOM) on the order of the microsecond. When we only
switch off this trap, the gas expands along the vertical direction but not in
the xy plane. Such an expansion is called «one–dimensional Time–of–Flight »
which we abbreviate in 1D ToF 8.

— The box–trap confinement that keeps the atoms in a restricted region of space
in the 2D plane. This switching off can be done in ∼ 10 µs. When we only
switch this trap, the gas expands in the xy plane but not along z. Such an
expansion is called «two–dimensional Time–of–Flight » (2D ToF). To perform
such a Time–of–Flight we usually ramp down the light sheet power to reduce
the effect of possible defects and rugosities of the light-sheet potential (see
2.2.1). We typically choose a remaining confinement of ∼ 350 Hz.

— When switching off simultaneously both traps, the gas is expanding in the
three-dimensional free-space and this is conventional «three-dimensional time
of flight» (3D ToF).

We implement these Time–of–Flights without modifying the magnetic fields. Such
changes would induce strong Eddy currents (especially in the translation stage
holding the microscope objective for vertical imaging setup) and thus strong per-
turbations to the later imaging process. We choose the value of this gradient to

b
′2D
z = b

′mag
z so that it exactly compensates the effect of gravity. This is highly

convenient as it enables to keep the cloud center of mass in place for all ToF dura-
tions. Hence, we can produce long free–expansion without being limited by the
gas hitting the glass cell and the cloud stays advantageously at the imaging focus
position. The remaining gradients do not imply any important modification to
ToF dynamics as the resulting frequencies are small enough (some Hz).

7. Maximal extension of the cloud is set by the box size and varies typically from 5 µm to 15 µm
8. For this type of ToF we are concerned by the box-potential defects that arise at a small distance

(ddefect . 6 µm) of the focus of this beam (see 6). For ωz = 2π × 2kHz, this is reached after an expansion
time of ddefect ×

√
m/hωz ≈ 2 ms)
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2. Experimental methods for producing two–dimensional Bose gases

4. Absorption Imaging of the cloud (some ms)

To effectively measure the physical properties of our gas, we image its density
distribution at the end of the sequence. We implement an absorption imaging
technique. We shine on the atoms a close to resonance laser beam, collect it at
the output of the cloud thanks to lenses and finally image it on a CCD camera.
We then compare the output intensity profile to the input one. For this we im-
plement a succession of exposures of our camera to record the cloud image and
some reference images in a short time lapse. This process is described in details
in Ch. 3.

2.2. Current realization of tight transverse confinement for 2D trapping:
the Hermite-Gaussian beam

To experimentally realize quasi–two–dimensional confinement of our gas of cold
atoms, we need to generate a trap with very tight confinement in one direction. Such a
tight confinement must freeze out atomic motion in the considered direction (see 1.1.2).
The freezing is realized when the energy gap between the ground state and the first
excited state is much smaller than both the thermal energy kBT and the interaction en-
ergy per particle ǫint. If the z confinement is harmonic with pulsation ωz, we enter the
quasi-2D regime when h̄ωz & kBT, ǫint. In our typical 2D experiments, the temperature
T is of the order of T ∼ 100 nK and the chemical potential µ ∼ kB × 50 nK. Then the
quasi-2D regime necessitates ωz & 2π × 2 kHz.To implement this tight trapping, we
use an optical dipole trap generated via a specially shaped blue–detuned laser beam
(typically λ = 532 nm) showing an anisotropic geometry.

2.2.1. Producing an Hermite–Gauss beam

The shaping of this beam is realized in the current setup via the use of a phase plate
as previously implemented in [134]. This phase plate shows a step in phase along one
direction and it imprints a phase of π on the upper half of the beam (z > 0) with respect
to the other half (z ≤ 0):

φ (z) = π if z > 0 , φ (z) = 0 if z ≤ 0 (2.11)

The phase plate is placed on the path of elliptic collimated beam (see below for the
choice of the yz aspect ratio). We refocus this beam after the phase plate at the atom
position by a converging lens of focal f = 100 mm so that the phase imprinted trans-
lates into a specific Hermite–Gaussian intensity profile. To quantitatively describe the
effect of this far blue detuned (λ = 532 nm) beam on the atoms, we need to calculate the
spatial dependance of the dipolar force. Hence, we are interested in the intensity profile
IHG at the position of the atoms. The resulting dipole potential is U = αIHG where α

can be computed as previously done in 2.1.1. As ω = 2π × 5.63 × 1014 Hz, we take into
account the beyond Rotating Wave Approximation term and neglect the detuning differ-

ence to the fine structure. Thus α = − 3πc2

2ω3
0

(

Γ
ω0−ω + Γ

ω0−ω

)

and numerical application

gives α = kB × 59mK µm2/W. We then need to calculate the IHG.
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Figure 2.3.: Normalized intensity profile in the focal plane of the lens (red full line). For com-
parison, the intensity profile without a phase plate is presented in red dashed line

Detailed calculations on the beam propagation where done by previous PhD student
P. Rath [109] in paraxial approximation. In this approximation, the electric field at the
focus of the lens, is simply the Fourier transform of the electric field after the phase
plate, that is the Gaussian beam profile multiplied by the special phase distribution
imprinted.

At the center of the output beam z = 0, the dephasing of π of the incoming beam
results in destructive interferences between the two halves of the beam so that the aris-
ing intensity is zero (Fig. 2.3). Close to this dark center, as represented in Fig. 2.3, the
intensity distribution can be approximated by

I(y, z ≪ wz) ≈ I0
4

πw2
z

z2e
−2 y2

w2
y with I0 =

2P0

πwywz
(2.12)

which leads to an harmonic confinement along z of pulsation

ωz(y) =
4
π

√

αP0

mw3
zwy

e
− y2

w2
y (2.13)

where wz and wy are the beam waists on the atoms (after the focusing lens) in the z and
y directions.

Therefore, the smaller these waists are, the tighter the confinement is. Nevertheless
we can not choose wy too small as we want a uniform confinement along y. From

Eq. 2.12, we note that the potential varies with y as the gaussian intensity ∝ e−2y2/w2
y .

The cloud size along y is set by the box–trap radius Rbox (varying from Rmin
box ≈ 5 µm to

Rmax
box ≈ 15 µm). We typically require wy & 3Rbox so that the potential varies of . 20% 9.

We also note that along x, the 2D trap extent is given by the Rayleigh range of the

9. this means that the transverse trapping frequency ωz (that varies as ∝
√

I as shown in Eq. 2.13) varies
of . 10% and the interaction parameter g̃ (that is proportional to as/az and so varies as ∝

√
ωz) of . 5%
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2. Experimental methods for producing two–dimensional Bose gases

laser xR = πw2
z/λ 10. From the specific dependency of the Hermite–Gauss intensity

IHG ∝ (1 + (x/xR)
2)3/2, this size must verify xR & 2.5Rbox so that the potential varies

of . 20%. These constraints sum up as follow:
— wz must be as small as possible as long as xR & 2.5×Rmax

box . Thus wz &
√

2.5 λ Rmax
box /π ≈

2.5 µm for λ = 532 nm.
— wz is limited by the numerical aperture of the focusing lens. In our setup, this

reads wz & 5 µm.
— wy must be as small as possible (to not reduce the confinement along z) but larger

than wy & 3 × Rmax
box ≈ 45 µm.

In our setup, we choose wy = 50 µm and we have wz ≈ 5 µm at the focus. We use
cylindric lenses to give the wanted aspect ratio to the beam.

When these conditions are fulfilled, the variations of ωz = 4
π

√

αP0
mw3

z wy
over the cloud

are less than 10%. We can thus neglect the corresponding variation of the zero point
energy. The expected value is ωz = 2π × 6.08 kHz for P0 = 1 W. This corresponds to a
harmonic oscillator length ℓz =

√
h̄/mωz = 138 nm, and a 2D interaction parameter

g̃ =
√

8πas/ℓz = 0.18.

2.2.2. Focusing the beam on the atoms by frequency measurement:

Such a tight confinement is in fact realized only if we put the atoms in the focus of
the Hermite–Gauss beam. If not, then the trapping frequency varies along the beam,

mainly due to the broadening of vertical waist wz: wz(x) = w0
z

√

1 + (x − x0)
2 / (xR)

2.
We now denote w0

z the waist at focus (w0
z ≈ 5 µm). Then the frequency depends on the

position of the focus x0 compared to the atomic position xat via

ωz(xat; ω0
z , x0, xR) =

ω0
z

(

1 + ((xat − x0)/xR)
2
)3/4 . (2.14)

where ω0
z is the value of ωz at the focus given in Eq. 2.13.

2.2.2.1. Finding the focus

We first note that by experimentally varying the focusing of the beam on the atoms,
we can deduce from Eq. 2.14 both:

1. the position of the focus of the LS beam x0 compared to the atom position xat.
We should note that x0 is not readily available by direct methods. In particu-
lar, we can not directly image the beam focus with the horizontal imaging setup
due to chromatic shift in the optical elements (we measure a displacement of the
expected focus of 600µm). Varying the beam focusing on the atoms may also
manifest in various measurable signals on the atomic sample that we could study
to detect x0. For example, when we get closer to the focus the number of atoms

10. We also note from P. Rath calculations that for position out of the focus –x 6= 0 – the beam intensity
still cancel at z = 0 so the Rayleigh is the unique source of variation in the confinement along that direction,
collinear to the beam propagation.
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2.2. Tight transverse confinement for 2D trapping: the Hermite-Gaussian beam

loaded in the 2D trap decreases. However this also depends very sensitively on
the accuracy in side alignment procedures. Trapping frequency measurements
appear to be the most accurate method to find x0.

2. the waist values wz and wy of the LS beam at the atom position can be checked
using the fitted values of xR and ω0

z and assuming that the beam power P0 on the
atoms is known. I will give later in this paragraph a numerical example of such a
check. I want to emphasize here that this calibration of the beam waists serves as
a validation of the light sheet alignment procedure.

We can easily perform this inspection of the dependency ωz toward (xat − x0) by
repeating oscillation measurements while varying the position of the focusing lens x0,F

(and so varying x0 by the same quantity) as this lens is set on a translation stage directed
along x. We thus measure the dependency ωz(x0,F) at a fixed position xat of the atomic
cloud. To produce one frequency measurement, we observe the breathing mode after
performing an excitation of the vertical confinement. We excite the cloud at the end of
the evaporative ramp of the box–trap by abruptly lowering 11 the LS power from P

f
LS

to Pexc
LS ∼ P

f
LS/4. After this abrupt reduction of the confinement we hold the system

for a varying texc
hold up to a few milliseconds in which the oscillation occurs. In order to

reveal the oscillatory phenomenon, we perform a 3D ToF (typically of 5 ms) and image
the cloud in horizontal imaging. We focus on the variation of the vertical size (that
contains information on the z velocity distribution) with texc

hold as we expect oscillations
at frequency ν = 2×ωexc

z /2π where ωexc
z is the value of ωz at LS power Pexc

LS . From ν we
can deduce ωz at any beam power PLS by ωz(PLS) = ωexc

z

√

PLS/Pexc
LS . We observe such

oscillations and fit it by a damped sine of frequency ν (see Fig. 2.4(a)). The oscillations
indeed show a damping, whose time scale varies with the distance to the focus. In
Fig. 2.4(b) we show the resulting variation of ωz at LS power P

f
LS with the position x0,F,

arising from the various measurements performed.
We fit ωz(x0,F) to Eq. 2.14. We find:
— xR = 147.5 ± 9.5 µm, which gives w0

z = 5.00 ± 0.16 µm, in agreement with the
theoretical value w0

z = 5 µm.
— ω0

z(P = 190 ± 20 mW) = 2.76 ± 0.1 kHz. If we assume wy = 50 µm, we deduce
w0

z = 4.93 ± 0.33 µm, in agreement with previous value. From both xR and ω0
z ,

we can also compute wy = 48 ± 9 µm, in agreement with theoretical value wy =

50 µm.
We conclude that the optical setup is well aligned, and we also gain the knowledge of
the relative position of the focus and the atoms.

2.2.2.2. Choosing the right position for loading the trap

In practice, we cannot work with the atomic cloud in the focus of the Hermit Gaus-
sian beam for severals reasons:

11. due to servo power control problems, we are not able to switch abruptly the trap to a higher value in
a controlled way. We are so obliged to perform the frequency measurement at a lower power of the light
sheet and to rescaled it afterwards
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Figure 2.4.: (a) Example of an excited oscillation on the vertical size of the cloud distribution
after 5 ms of 3D ToF. We fit the oscillations to a damped sine. Here the frequency
fitted is ν = 2.12 kHz and the damping time constant τ = 2.58 ms. The frequency
νfor the breathing mode is twice the trapping frequency expected at the excita-
tion power of the light sheet Pexc

LS that is here of 47.5 mW. In b, we represented the
summary of the oscillation measurement (performed in a 3 day measurement cam-
paign essentially). ωz is calculated at the light sheet power P = 190 mW. We then
fit the distribution of ωz by Eq. 2.14. We find the position of the focus x0,F and the
beam characteristics xR and ω0

z .

1. The vertical extension of the 2D–trap (set by wz(x)) fixes the overlap ratio between
the 3D atomic distribution (at the end of the evaporation in the hybrid trap) and
the 2D–trap. Then, the closer we are to the focus, the less important the overlap
and the lower the loading efficiency. At focus, the atomic density loaded remains
very low and reveals insufficient to reach degeneracy along the box–trap ramp.

2. In its experimental realization, the Hermite–Gauss beam shows defects along y

and these defects are more important (with a higher amplitude and showing also
higher spatial frequency) when we get closer to the focus. The defects character-
istics also change from one side to the other of the focus (that is to say if the atoms
are loaded upstream or downstream compared to the focus position).

3. Finally when ramping up the light-sheet alone (no box–trap) on the 3D cloud and
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2.2. Tight transverse confinement for 2D trapping: the Hermite-Gaussian beam

imaging it in vertical imaging, we see that close to the focus the atomic sample is
deformed compared to the shape of the 3D cloud and is displaced from its original
position along x. The amplitude of the displacement varies with the distance
to the focus from & 100 µm at focus to nearly none at 300 µm away from the
focus. These defects can also explain the oscillation damping we observed in the
vertical frequency measurement (Fig. 2.4). Roughly speaking, the more important
the defects are, the shorter the damping time constant.

We can link these two last points to defects in the LS beam profile. These can be
directly observed by imaging the intensity distribution. They can also be characterized
by their effects on the atomic distribution. We will develop such an analysis in the next
section. For now, we want to conclude on the choice of (xat − x0) to realize a satisfying
2D confinement. From previous observations, we want to find a compromise value of
(xat − x0) due to the opposite characteristics:

— We want to get far enough from the focus so that the densities loaded are suffi-
ciently large and the rugosities of the potential have a negligible influence on the
radial trapping potential.

— We want to be close enough to the focus so that the confinement is tight enough
ωz & 2π × 2 kHz to realize a (quasi-)2D regime.

We find the optimum by trapping the atoms upstream to the focus of the Hermite–
Gauss beam ((xat − x0)< 0 if the beam propagates toward x > 0) and at |xat − x0| =

190 µm = 1.28xR. In Table 2.3, we compute the beam characteristics at this position.

Parameters Expected value at focus Exp. value at |x − x0| = 190 µm
wz 5µm 8.15µm
wy 50µm 50µm

ωz(PLS = 1W) 2π × 6.08 kHz 2π × 2.92 kHz

Table 2.3.: Summary of the beam characteristics at focus and at a distance |x − x0| = 190 µm.
ωz is obtained along Eqs. 2.13 and 2.14.

2.2.3. Characterizing the resulting potential in the radial plane

In the previous subsection, we saw how to characterize the trapping of the Hermite–
Gauss along the z direction but we have not yet considered the possible effects of this
beam in the xy plane. As we want to superimpose this trap with a flat bottom one in
xy to create a uniform 2D gas (see Ch. 6), we need to precisely characterize all effects in
the xy plane of the 2D confining beam. These can be divided in two parts:

1. An unavoidable effect of the LS beam that stems from the finite size of the beam
and the resulting spatial dependencies of the the beam profile. This results in
a variation of the zero–point energy h̄ωz/2 along the beam propagation and so
in de–confining potentials in xy directions. We can describe these easily using
Eqs. 2.13 and 2.14. I will give typical numbers corresponding to our specific setup
in the following paragraph.
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2. Unwanted irregularities of the beam profile resulting in defects in the potential.
These stem from non-perfect optics and phase plate realizations. We cannot sup-
press them completely and we thus need to characterize them.

2.2.3.1. Deconfining Potentials

As we saw previously the Hermite-Gaussian beam creates a trapping potential UHG =

αI(x, y, z) that can be considered in first approximation as harmonic along z: UHG =
1
2 mω2

z z2. As stated in 1.1.2, the 2D Hamiltonian Ĥ is obtained from integrating the 3D
one Ĥ along z after replacing the 3D quantum field operator ψ̂(r) by φ̂(ρ)ϕ0(z) with
ϕ0(z) being a 1D classical field and φ̂(ρ) a 2D quantum one (see Eq. 1.5). If the con-
finement is tight enough, ϕ0(z) is simply the ground state of the harmonic oscillator.
The integration of Ĥ introduces a term depending on the z confinement in Ĥ, it is an
additive term + h̄ωz

2 φ̂†φ̂. Then the dependency of ωz with x and y leads to small radial
trapping potentials that are not completely negligible. In particular, if we are interested
in generating a uniform in-plane trapping, we need to estimate it carefully.

If we set x0 = 0 and the beam center (y0, z0) at coordinates origin, we deduce from
Eqs. 2.13-2.14:

h̄ωz(x, y)

2
=

h̄ωz(0, 0)
2

(

wz(0)
wz(x)

)3/2

e
− y2

w2
y (2.15)

with wz(x) = wz(0)
√

1 + (x/xR)
2. (2.16)

This dependency of the zero–point energy results in a «de–confining» potential as it
can be approximated by an harmonic potential with imaginary trapping frequencies.
Trapping frequencies ωx and ωy along x and y can be estimated by a polynomial ap-
proximation of Eq. 2.15. For a cloud trapped in the focus of the LS beam we perform
the approximation around (x, y) = (0, 0) which gives

h̄ωz(x, y)

2
=

h̄ωz(0, 0)
2

×
(

1 − 3x2

4x2
R

)

×
(

1 − y2

w2
y

)

(2.17)

=
h̄ωz(0, 0)

2
− 3h̄ωz(0, 0)

8x2
R

x2 − h̄ωz(0, 0)
2w2

y

y2. (2.18)

We deduce

ωx = i

√
3

2

√

h̄ωz(0, 0)/m

xR
(2.19)

ωy = i

√

h̄ωz(0, 0)/m

wy
=

2xR√
3wy

ωx (2.20)

For our experimental parameters, we found ωx = 1.96ωy. De–confining frequencies
varies as a square-root of ωz. Typical values of |ωx| are of a few Hz. For ωz = 2π × 2
kHz, we calculate ωy = 2π × i 9.65 Hz and ωx = 2π × i 4.92 Hz

We should compare these to the residual magnetic confinement ωmag = 2π × 6.4 Hz
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(Eq. 2.10). The resulting trapping term in xy is the sum of these two contributions:

Ures(x, y) =
1
2

m
[

ω2
mag((x − xmag)

2 + (y − ymag)
2) + ω2

xx2 + ω2
yy2)

]

(2.21)

where xmag and ymag are the coordinates of the magnetic zero.
We may complete this analysis by computing ωx and ωy when the cloud center

(xc, yc) is not coinciding with the LS beam focus (x0 = 0, y0 = 0). As we saw in
2.2.2, it is experimentally the case along x: the atoms are trapped at a distance xc > xR to
the focus of the LS beam. This may also be the case along y due to a misalignment but
with smaller importance (typically |yc| . 10 µm). The detailed analysis of the effects of
this decentering is performed in Annex. C and here we remind the conclusions of these
calculations.

— For both x and y directions, the potential gradient created (potential terms ∝ x or
y) by a possible miscentering xc 6= 0 or yc 6= 0 can be easily corrected by a small
miscentering xmag 6= 0 or ymag 6= 0 in the opposite directions of the magnetic zero
of typically a few tens of µm.

— xmag and ymag stay negligible compared to the vertical miscentering of the mag-
netic zero dz. Thus the residual magnetic trapping frequencies are not affected by
such a compensating discentering.

— Realistic value of yc gives |yc| . 0.2 wy so that the change in ωy is negligible (up
to 4%): ωc

y ≈ ωy.
— The chosen defocusing xc of the LS beam at the atom position (see 2.2.2) induces

a significant change in the zero point energy dependency toward x. In particular,
it can change from an anticonfining to a confining configuration as evidenced in
Table 2.4.

— In the case xc 6= 0 and yc 6= 0, the rotation of the proper oscillation axis compared
to x can be neglected.

The trapping frequencies for the chosen distance to the focus xc = 190 µm are sum-
marized in Table 2.4.

ωz/2π ωy/2π ωx/2π ωmag/2π

2 kHz i 9.65 Hz 1.89 Hz 6.4 Hz
1.6 kHz i 8.63 Hz 1.69 Hz 6.4 Hz
1.1 kHz i 7.15 Hz 1.4 Hz 6.4 Hz
0.8 kHz i 6.10 Hz 1.19 Hz 6.4 Hz
0.3 kHz i 3.74 Hz 0.73 Hz 6.4 Hz

Table 2.4.: All trapping frequencies for the experimental configuration (i.e.. defocusing of the
LS beam of xc = 190 µm)

2.2.3.2. Defects on the beam profile

As pointed out in 2.2.1, we noticed loading shortcomings along both y and z axis.
Such deficiencies are stronger as we get closer to the focus of the LS beam.
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We can directly observe these defects by a side imaging of the light-sheet intensity
profile 12. In these profiles, we notice higher intensity regions, oriented perpendicularly
to y axis. These bright lines result in barrier potentials Vadd(y) for our 87Rb atoms. This
potential is expected to be anharmonic as the defects are not smoothly varying.

Similar rugosities in the potential along transverse directions to the light-sheet prop-
agation were also pointed out in [110]. At that time, it was easier to characterize anhar-
monicity along y, as the trapping was harmonic in the three directions of space (now
confinement along y is quasi-uniform. See 6). Defects along y were characterized by
the damping of the oscillations along this axis while exciting this movement and com-
paring it to oscillations in absence of LS beam. As shown in 4.2.1.2, the potential along
y can be reconstructed from density distribution measurements in this harmonic trap.

In our case, we can characterize these potential defects by density measurements:
— By operating a bad alignment of the light-sheet 13, we can directly see the defects

by in–situ imaging of the density distribution. In this case, the potential is the sum
of both contributions of the flat bottom box–trap and of the light-sheet and cold
atomic configuration are greatly influenced by the potential rugosities created by
the light-sheet along y directions.

— We can also characterize the light-sheet defects by comparing experimental and
simulated two–dimensional Time–of–Flight expansion of a cold gas inside the
light sheet 14. We found that the expansion along x is well described by the sim-
ulation whereas the y expansion shows deviations that can be attributed to an
additional anharmonic trapping potential.

2.3. A new setup for tight transverse confinement: the accordion setup

In this section, I will present the scheme of principle and preliminary tests of an al-
ternative setup for shaping a blue detuned laser beam into a light-sheet-like potential
showing highly anisotropic geometry and creating a tight confinement along one di-
rection (z). We wanted to develop a new scheme for this tight confinement for several
reasons:

— to reach a higher 2D interaction parameter g̃ using the same optical power.
— to improve the loading efficiency of the 2D plane from the 3D BEC and reach

higher phase-space-densities.
— to be able to study multiple planes at once
— to have a more versatile apparatus whose parameters can be changed via a com-

puter control and even varied dynamically.
— to get rid of the specific potential defects linked to the use of a phase plate.

12. Due to the presence of a dichroic plate transmitting 780 nm and reflecting 532 nm in the imaging
path, we can not directly nicely image the light sheet potential on the horizontal imaging camera (we see
interferometric perturbation on this image). Instead, we implement a side imaging setup in the path of the
dichroic plate reflection. In these side images, we do not have a sharp resolution of the central trapping
region that is of only one or two pixels.

13. We choose an alignment of the light-sheet beam by minimizing the density defects
14. description of a simulation of 2D ToF along with a comparison to experimental results can be found

in 3.3.3

52



2.3. A new setup for tight transverse confinement: the accordion setup

2.3.1. The accordion scheme of principle

This new setup is not based on a specific shaping of a single beam but on the interfer-
ence between two beams issued from the same laser source. The two beams are set to
arrive along parallel paths distant by D on a lens of focal length f . The two beams con-
verge after the lens and they overlap in the lens focal plane resulting in an interference
pattern. The atoms should be positioned in this focal plane so that they feel the poten-
tial resulting from this special intensity pattern. A scheme of this geometric principle is
given in Fig. 2.5. We set x the axis of the beam propagation upstream to the lens and z

the orthogonal axis of the plane containing both beams. Here we assume that the lens
is in the yz plane. Then after the lens the wave vectors of each beam are

k+ =
2π

λ
( cos (θ/2) ux + sin (θ/2) uz) (2.22)

k− =
2π

λ
( cos (θ/2) ux − sin (θ/2) uz) (2.23)

where ui is the unit vector along axis i (with i ∈ {x, y, z}) and λ = 532 nm is the
wavelength of the beam. θ is the angle between the two beams after the lens and is
given by

θ = 2 arctan
(

D

2 f

)

. (2.24)

We assume that both beams have a similar intensity profile, equals to I0(x, y, z)/2 with
I0(x, y, z) being the intensity profile of the (gaussian) beam that would have the unsplit
beam propagating through the lens center 15. In the focal plane x = f , the intensity is
modulated along

I(r) =
I0( f , y, z)

2

∣

∣

∣
eik+r + ei(k−r+ϕ)

∣

∣

∣

2
= 2I0( f , y, z) cos2

(

2π sin(θ/2)
λ

z +
ϕ

2

)

. (2.25)

where ϕ is the dephasing between the two beams. Mainly it is set by the path difference
δ between the two beams and ϕ = 2π δ/λ. Then a fringe pattern appears along z:

15. The intensity profile of each beam in the focal plane are in fact distinct. In this footnote, we denote
then I+(x, y, z) and I−(x, y, z) for the beams propagating along k+ and k− respectively. They can be
considered similar if

— the corresponding incident beam profiles I
(i)
+ (x, y, z) and I

(i)
− (x, y, z) are identical. This would be

the case if the path difference δ between the two beams is zero. In our case δ 6= 0 but its effect is
usually negligible due to the very large waist w′ upstream to the lens (δ is very small compared to
the Rayleigh length xR ). If we use numerical values of footnote 16 w′ = w′

z = w′
y ≈ 340 µm, we

find xR = 680 mm. And in the setup of Fig 2.6, δ . 100 mm≪ xR.
— we can neglect the effect of the difference between the wave vectors of the two beams (Eqs. 2.22-

2.23) on the intensity profiles in the focal-plane x = f . This is the case if we consider a configuration

where 4|z| f sin(θ/2) cos(θ/2) = 2Dz
f 2

D2/4+ f 2 ≪ w2
z where wz is the beam waist along z at the atom

position. z must cover all the abscissa range investigated by the atoms in the trap. Then D must be
small (d large) and z close to the beams centers (such that Dz ≪ w2

z typically).
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I(z) ∝ cos2 (πz/d + ϕ/2) with a fringe spacing d of

d =
λ

2 sin(θ/2)
=

λ
√

D2/4 + f 2

D
(2.26)

Figure 2.5.: Scheme of the interference setup. Two parallel (propagating along x) beams issued
from the same laser source (λ = 532 nm) are set incident on a converging lens
of focal f . The two beams interfere at the focal point (if the incidence is at π/2
as in the scheme. If not, they will overlap in an other point of the focal plane).
Interference pattern happens along z-direction and its spacing is d.

2.3.2. Choices for experimental implementation

The lens used to combine the two beams is an achromatic triplet ( f = 100 mm) in or-
der to reduce astigmatism or other aberrations due to the fact that the beams go through
the edges of the lens. The diameter of the lens fixes an upper bound to D, in our case
D . Dmax = 26 mm so that the minimal d that we can realize is dmin = 2 µm. A maxi-
mal value of d will be introduced by the way the two beams are split (see 2.3.4) and is
typically of dmax = 20 µm.

The extent of the fringe pattern is fixed along z and y by the waists wz, wy of the
beams at the position of the atoms and along x by the overlap region of the two beams
which is of

xext ∼
wz

tan(θ/2)
=

2 f wz

D
(2.27)

As in 2.2.1, to produce a tight 2D confinement along z we must impose that the extent
of the potential along x and y are large enough compared to the in-plane cloud extent
(& 3Rmax

box ). In order not to reduce the intensity I0 (and so the confining strength, see
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2.3.3), the waists must also be as small as possible. Then the waists are constrained
along:

— wy & 3Rmax
box ≈ 45 µm.

— wz must be large enough so that xext & 3Rmax
box for all D. The most constraining

case is for D = Dmax and wz & 3Rmax
box Dmax/(2 f ) = 6 µm.

— wz must be large enough so that the two beams intensity profiles can be con-
sidered as equal over the trapping region (see footnote 15). Typically we want
to trap the atoms in the dark fringe closest to the beam center so that the trap
center verifies |z| ≤ d/2 (see 2.3.3). If we consider the extreme case of a trap
center in z = d/2, the atoms typically investigates 0 ≤ z ≤ d. Then condition

2Dz
f 2

D2/4+ f 2 ≪ w2
z obtained in footnote 15 is maximally constraining for z = d

and implies w2
z ≫ 2λ f 2/

√

D2/4 + f 2 = 106 µm2.
— wz must be large enough to contain at least two fringes maxima and wz & 2d. The

most constraining case is for d = dmax and wz & 2dmax = 40 µm in our case. Note
that this value strongly depends on the requirement on dmax used at the loading
of the 2D trap and is mainly set by the extent σz of the 3D gas we load (see 2.3.4).
It happens to be the most constraining of the three last points in our case.

For the preliminary tests we have chosen an isotropic configuration wy = wz ≈
50 µm.

2.3.3. Characterizing the transverse confinement (toward tighter trapping)

As in the current setup described in previous section, the patterned intensity profile
I(r) would lead, if we position the atoms at x ∼ f , to a dipolar potential U(x, y, z)

tightly confining along z:

U(x, y, z) = 2αI0(x, y, z) cos2
(

π

d

(

z +
δd

λ

))

. (2.28)

where α = kB × 59 mK µm2/W (see 2.2.1). If we assume that the beams are focused in

the lens focal plane then I0(x = f , y, z) ≈ 2P0
πwzwy

exp
(

−2
(

z2

w2
z
+ y2

w2
y

))

. The atoms can be

trapped around any intensity minimum which are positioned in zp = (1/2− δ/λ+ p) d

with p ∈ Z. To maximize the confinement frequency, we will choose the minimum p

such that zp is the closest to the beam center z = 0. It is zc = d ((1/2 − δ/λ) [1]− 1/2)
where [.] denotes the modulo operator and −d/2 ≤ zc < d/2. We note that we must be
able to set zc = 0by selecting δ/λ. Near the trap center the potential of Eq. 2.28 can be
approximated to

U(x, y, z) ∼ 2π2αI0(x, y, zc)

d2 (z − zc)
2 . (2.29)

corresponding to an harmonic frequency of

ω(x, y) =
2π

d

√

αI0(x, y, zc)

m
(2.30)

55



2. Experimental methods for producing two–dimensional Bose gases

In the focal plane and assuming d ≪ wz, y ≪ wy:

ω(x, y) ≈ ωz =
2π

d

√

2αP0

πmwzwy
(2.31)

We report in Table 2.5 the expected confinement frequencies ωz and the resulting 2D
interaction parameters g̃ for our 87Rb atoms for two total beam power P0 = 1 W and
P0 = 250 mW and typical interference spacings that we will consider in our setup.
We note that at same power, the confinement frequency ωz/2π is a factor > 3 larger
compared to the phase plate shaping detailed in 2.2.1.

d ωz/2π (1 W) g̃ (1 W) ωz/2π (250 mW) g̃ (250 mW)
dmin = 2 µm 19 kHz 0.33 9.4 kHz 0.23

dmax = 20 µm 1.9 kHz 0.1 945 Hz 0.07
4 µm 9.4 kHz 0.23 4.7 kHz 0.16

Table 2.5.: Value of ωz and g̃ in the case of a trapping from an interference pattern of spacing
d varying from dmin to dmax and for two values of the maxima power P0 = 1 W and
P0 = 250 mW. In these calculations we use selected value of wz = wy = 50 µm (see
2.3.2).

2.3.4. Dynamical variation of the confinement strength (toward optimal loading
of the 2D-trap)

We tested on a bench setup an experimental design to vary dynamically the fringe
spacing d within the experimental sequence. We image the fringe patterns in the focal
plane of the achromat lens thanks to a microscope objective (magnification ×20) on a
CCD camera (WinCamD camera from DataRay inc.).

Such a dynamical variation of d is highly interesting for experimental applications
for several reasons. First due to current atoms imaging issues, we actually want to
study a unique 2D trap and then load the atoms of our 3D gas in a unique fringe of the
interference pattern (see 2.1.3 and Fig. 2.1 for a description of a typical loading scheme).
Second the loading efficiency of the atoms of the 3D cold gas in the 2D trap is roughly
proportional to the overlap of a single dark region in the fringe pattern and of the
considered 3D cloud (and thus to the ratio of the cloud-size σz along z to d). From
this two first remarks, we conclude that we want to use a large value of d at loading so
that σz ∼ d and σz . 2d. On the other hand ωz is inversely proportional to d (Eq. 2.31)
so that in the final configuration we want to use a small value of d. Then, a variation
of d from a large value dmax to the optimal trapping value dmin enables both an efficient
loading of a unique plane (if we choose d = dmax at loading) and an optimally tight
confinement at the end of the experimental sequence (if we vary d down to dmin at the
end of the 2D cloud preparation).

In our case, we choose to implement a dynamical variation of d using an experimen-
tal setup schematize in Fig. 2.6 and inspired from [135]. In this setup the two beams
are separated by the use of two polarizing beam splitters. The power in each beam is
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Figure 2.6.: Scheme of the specific setup used for a dynamical control of the fringe pattern. A
unique translation stage is used, bearing mirror M2 and fiwing the beam position
at its output compared to a set of two cubes. The cubes are two Polarizing Beam
Splitters (PBS). The λ/2 plate is set so that half of the power is transmitted by
PBS1. It is then transmitted by PBS2 to a position-piezo-controlled mirror M3. On
its return way due to the double crossing of a λ/4 plate, the beam is transmuted
via PBS2. D is varied as twice to the distance of the the beam at output of M2 to
the cube edges. dM sets the path difference between the 2 beams.

controlled by a λ/2-waveplate. The distance D between the two beams is set by the
impact point of the beam on the coated interface of the beam-splitters. This impact
point can be dynamically varied by moving the mirror M2 positioned upstream to the
λ/2-waveplate. This mirror is placed on the translation stage. This setup verified the
following crucial constraints for being used with atomic ensembles:

— to have an especially robust setup: The difference of path between the two beams,
in terms of absolute length δ but also of physical spatial separation, must be min-
imized. In our selected scheme the spatial separation of the beam is minimized
but the absolute path difference is not zero. More precisely δ is set by the distance
dM of the mirror M3 to the center of the cube PBS2 and by the length of the cubes
Lcube, δ = D + 2(dM + Lcube/2− D/2) = Lcube + 2dM. Thus we want to minimize
both Lcube and dM. Typically dM ∼ 40 mm so that δ ∼ 100 mm.

— to have an especially reliable setup: The number of moving elements that enables
to vary the beam separation D from Dmin to Dmax must also be minimized. In the
implemented setup only one mirror is set on a translation stage (Fig. 2.6).

— the motorized translation stage on which we place the moving element(s) of the
setup must be carefully selected (for a use on the atoms): The stage must be linear
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and must travel over Dmax − Dmin ∼ 25 mm in a time . 1 s. The restricting point
lies in the smoothness of this motion (a discontinuity in d may lead to heating of
the atomic sample) whereas the reproducibility and the exactness are not limiting.
We have chosen the linear stage LS110 1” from PI miCos GmbH with DC motor.
Its travel range is of 26 mm and its maximal velocity of 90 mm/s, which match
our requirements. The DC motor provides a very smooth operation.

— a fine and dynamic tuning of the position of the dark parts of the fringe pattern
must be implemented. In our case it relies on a fine control of the path difference
δ by means of a piezo-control on the position of mirror M2 (not yet tested).

— the system must be isolated from the vibrations and other perturbations such that
the fringe pattern is highly stable. For this we designed two specific elements:
(i) We draw a special mount made of brass that holds all the optical elements
on the path of the beam after its splitting (i.e. the two cubes, the mirror M3 and
the λ/4-waveplate). (ii) We designed a box that isolates the whole setup from
the outside (air movement, heating, mechanical vibrations...) by surrounding it
with plexiglass and stain. Then the unwanted changes of δ are minimized (note
that the fine control on δ presented in previous item may in addition enable to
dynamically correct for the residual ones, if they are not occurring on a too short
time scale).

The dynamical variations of d have been tested on a camera. In this setup, the mini-
mal D is imposed by the clipping of the beam at the edges of the cubes. This clipping
leads to a loss in the beam power at the atoms position and ultimately to deformations
of the fringe pattern. We measured a maximally acceptable value of dmax = 15− 20 µm.
It must depend on the specific choice 16 of f , wz and wy. For this minimal separation of
the beam, we see 2 to 3 fringes on the pattern. We measured dmin ≈ 2.2 µm. We tested
by stopping the motion at intermediate values that the fringe position and contrast are
not modified by moving the beam apart, that is that the beam images are not shifted by
a displacement over the lens. We have not yet tested the smoothness of the evolution
of the fringe pattern during the operation of the translation stage and its dependency
to the velocity used.

We have tested the stability of a fixed fringes pattern on various time scales, from the
ms to the day. We measured the stability by the evolution of the fringe contrast within
a continuous exposure of the camera. We note that both the holding mount and the
isolation box strongly enhanced the stability both over short and long times. We have
not yet performed test neither of a final version of the isolation box we designed nor
of a setup where a piezo control of the mirror M3 is implemented. In the isolated and
solidly mounted setup test we did not measure fringes fluctuations at short time scale,
we noticed blurring of the fringe position due to drift in the alignment from time scales
of ∼ 1 h (reduction of the contrast over the full exposure of ≈ 20%). Such a stability

16. We note that upstream to the lens the beam waists are given by w′
i = λ f /πwi (i = y, z). For our

choice of waists at the atom position w = wz = wy = 50 µm we found w′ = w′
z = w′

y ≈ 340 µm.
d = dmax = 20 µm gives D = Dmin = 2.66 mm so that the beams are distant from the edges of the cubes by
Dmin/2 ∼ 4w′. The quality of the coating of cube edges and their corner quality must also be taken into
account. Note that we have chosen our cubes for the importance of the certified clear aperture (≥ 85% of
the central dimension). The cubes are PBS-532-100 from Melles Griot.
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seems encouraging for an experimental use of the setup even if some complementary
tests are still needed.

2.4. Conclusion

In this chapter we detailed the experimental setup and the experimental sequence
that we implemented to produce and study 2D Bose gases. We insisted on the imple-
mentation of the 2D tight confinement potential in our experiment and pointed out its
possible drawbacks. In particular we have been recently (see Chs. 6-8) more concerned
by the incidental spatially dependent in-plane potential compared to previous study
as our aim evolves toward producing in-plane uniform gases. We also presented an
alternative way to implement the 2D trapping that must palliate some of these defects.
To deduce physical results from the produced gases, we must be able to quantitatively
determine some of their parameters. This is commonly performed thanks to density
distribution imaging. We will now discuss the validity of absorption imaging for 2D
gases and present the specific implementation of this imaging in our current setup.
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In this chapter I will present the experimental choices made for imaging our 2D cloud
density distribution n(x, y). Usually n(x, y) is deduced from investigating emitted, ab-
sorbed or scattered photons by the considered atomic sample. In our setup, we im-
plemented the common absorption imaging technique that consists in shining a quasi-
resonant laser beam onto the atoms and observing the "shadow" of the cloud with a
camera. In [136] (reproduced in Annex D) we highlighted restrictions to absorption
imaging in its traditional implementation due to multiple scattering between atoms of
a 2D cloud. To circumvent its limitations, we associate both low and high probing in-
tensities. In the first part of this chapter, I explain why such a combination enables a
quantitative analysis of the atomic density of our sample: I give an explicit model to
deduce these profiles from light intensity measurements and shed to light its validity
domains in terms of imaging parameters. Then I present our experimental setup in
which we implement this imaging technique. Finally, I present a full calibration proce-
dure of our imaging setup in this extended regime of imaging parameters.

3.1. Non-saturating and saturating absorption imaging

The traditional implementation of absorption imaging uses a low intensity probe
beam and Beer–Lambert law

d(x, y) ≡ σ0 n(x, y) = ln[Ii(x, y)/If(x, y)] (3.1)

to deduce the atomic density n(x, y) from the incoming Ii(x, y) and outgoing If(x, y)

intensity profile (σ0 is the (constant) absorption cross section). Beer Lambert law relies
on a mean-field treatment of the effect of the atoms on the electric field (via their aver-
age density). This mean-field approach is not valid for too high densities. In a 2D gas,
we show in Annex D that collective scattering effects make the absorption cross-section
dependent on n when n exceeds a few atoms per µm2 and the gas thickness is smaller
than a few wavelengths. This induces a deficit of detectivity in the traditional absorp-
tion imaging analysis when used in the high density regions of our cloud constrained
to 2D. In Annex D, we develop a theoretical description of this detectivity deficit in the
simplified case of a J = 0 → J′ = 1 transition. This gives a qualitative understanding of
the phenomenon but does not enable a quantitative description of the modified relation
between n(x, y), If(x, y) and Ii(x, y).

To circumvent this lack of quantitative understanding of the conventional absorption
imaging, we developed a new imaging procedure that I will briefly described here (as
it has been done in more details in [110]). This new imaging technique keeps using
absorption of a close to resonance laser beam. The difference is that it relies on the satu-
ration of the atomic transition at high probing beam intensity, as it was first developed
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in the 3D case by G. Reinaudi & al [137].

3.1.1. Principle of saturating absorption imaging

Using intensities of the order of several tens of atomic transition saturation intensity
Isat strongly excites the atomic ensemble: each atom is then permanently driven to its
higher energy state by incoming photons from the probe beam. As, in this saturation
regime, each atom spends half of its time in the excited state, it becomes less sensitive
to photons from the desexcitation of the neighboring particles. Thus, collective effects
due to multiple scattering of a single photon are reduced.

Quantitatively, in this regime, if Γ stands for the natural line width of the atomic tran-
sition, each atom scatters Γ/2 photons per second. If we probe a 2D cloud of atomic
density n(x, y) with a beam of incoming intensity Ii(x, y) and of frequency ωL/2π

(close to the atomic resonance) then the intensity detected on the camera is

If(x, y) = Ii(x, y)− n(x, y)× Γ

2
× h̄ωL. (3.2)

Thus we can deduce n(x, y) from the intensity profiles Ii and If:

d(x, y) ≡ n(x, y)σ0 =
Ii(x, y)− If(x, y)

Isat
(3.3)

where σ0 is the low intensity absorption cross section σ0 ≡ Γh̄ωL/2Isat. This technique
gives access to a quantity (the optical density (OD) d) proportional to the atomic density
n for all range of n by detecting the intensity profiles Ii and If.

3.1.2. Absorption imaging at arbitrary intensity, some theoretical analysis

In the previous subsection, we described the high intensity absorption imaging tech-
nique as a reliable measurement of n. Nevertheless, as it uses higher probing intensity
than the traditional non-saturating absorption imaging, it also results in higher noise
on the measured atomic density due to photon shot noise in Ii and If. The lower n

is, the higher the relative importance of this noise. In the regions of low n, both satu-
rating and non-saturating techniques reliably estimate the atomic density and then we
prefer using the non-saturating one. We thus implement an imaging procedure that is
a combination of the novel saturating technique reliable in the regions of high n with
the traditional non saturating mode which is more precise in the regions of low n (for
example in the wings of an harmonically trapped cloud). In the following, we will give
a general description of the relation between n(x, y) and Ii(x, y) and If(x, y) both in the
low and the high intensity regimes and deduce a unique relation between these quanti-
ties. The calibration of our imaging procedure will then relies on the assessment of the
unknown empirical parameters of this description.

The interaction between a probe beam (frequency ωL/2π) and a single atom is char-
acterized by the absorption cross section σ defined by the relation γ = σI/(h̄ωL), where
γ is here the photon scattering rate and I the intensity of the beam on the atoms. In the
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case of a monochromatic resonant beam probing a two-level atom:

γ =
Γ

2
I

I + Isat
. (3.4)

In the limit where I ≪ Isat the absorption cross section is σ0 ≡ Γh̄ωL/2Isat.
In practice, this simple relation is modified as one must take into account stray mag-

netic fields, non-zero linewidth of the probe laser, optical pumping effects, etc. To
model this complex situation, we heuristically replace Isat by an effective saturation
intensity αIsat and Γ by an effective linewidth βΓ. Then the number of photons Np

scattered during an imaging pulse of duration τ writes

Np ≡ γτ =
βΓ

2
I

I + αIsat
τ, (3.5)

or equivalently

σ = σ0
β

α + I/Isat
. (3.6)

At low intensity Np is proportional to I as in the two-level case, but with a multiplica-
tive coefficient β/α due (for example) to the broadening of the resonance line. At large
intensity the number of scattered photons saturates at βΓτ/2 instead of Γτ/2, which
models a reduction of the scattering rate that can be caused (for instance) by magnetic
shift of the resonance. We note that, in our setup described in Ch. 2 1, trapping is all–
optical at the end of our sequence, thus stray magnetic field are negligible. Then, we
expect β = 1. We check this identity experimentally (see 3.3.4).

The intensity of the beam at the output of the cloud is given by

− ln
(

If(x, y)

Ii(x, y)

)

= σ n(x, y), (3.7)

where σ depends on the effective intensity I on the atoms (Eq. 3.6). If the optical thick-
ness of the cloud is large, i.e. if the intensity If just after the plane of atoms is signifi-
cantly lower than the intensity Ii just before this plane, the effective intensity I must be
determined in a self-consistent manner by imposing:

If = Ii − n σ(I) I. (3.8)

The elimination of the effective intensity I from Eqs. 3.6-3.8 yields to the generalized
OD 2

d(x, y) ≡ nσ0 β = −α ln
(

If

Ii

)

+
Ii − If

Isat
. (3.9)

as in [137]. The first member of the right-hand side of Eq. 3.9 dominates in the low in-
tensity limit (Ii ≪ Isat), and corresponds to the Beer–Lambert law. In the high intensity

1. This setup is the one used for uniform 2D-trapping (see Chs. 6-8). We develop a calibration, for this
specific setup in 3.3. For measurement in 2d harmonic trap calibrations are details in [110].

2. In Eq. 3.9, the OD is in fact multiply by β compared to the physical one. Nevertheless, we saw that
we expect β = 1 thus d must be equal to the physical OD.
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3. Imaging of our experimental gases

limit (Ii ≫ Isat), the second member of the right-hand side dominates and matches the
saturating regime of Eq. 3.3. We note that α enables coherence between data taken at
different imaging intensities and with varying exposure times. β links the measured
atomic density distribution to the physical one.

3.1.3. Constraints on the imaging parameters

In the previous subsection, we have seen that shining a resonant beam on an atom
assembly enables the determination of its density distribution n(x, y), whatever the
incident intensity Ii is. From absorption and scattering effects, the spatial distribution
of the outgoing beam intensity If(x, y) is linked to n(x, y) and Ii(x, y) along Eq. 3.9. We
will now identify some limitations to the accuracy of this measurement and point out
that the couple formed by the pulse duration τ, and the intensity of the beam I = sIsat

at the atom position must be chosen with care.
While shining a laser beam close to resonance on an atomic ensemble, the photons

are not only absorbed but also exert a force on the atoms - the radiative pressure -
which perturbs the atomic distribution we want to detect. To be reliable, the absorption
measurement must use a beam that does not affect too much n(x, y) while still enabling
its detection on a camera at the output of an imaging setup. More precisely, the action of
the beam on the atoms is due to the fact that each photon absorbed by an atom transfers
to it its momentum h̄k. Then, the resulting force is directed along the beam propagation
and is in average equal to γ × h̄k where γ is the photon scattering rate given in Eq. 7.23.
For monochromatic resonant beam, the resulting average acceleration for an two-level
atom is then

a =
h̄k

m

Γ

2
I

I + Isat
(3.10)

If τ stands for the duration of the atom exposure to the probe light, then this accel-
eration results in a non zero global velocity vτ = aτ and in a global displacement
dτ = aτ2/2.

3.1.3.1. Doppler effect

The acquisition of a non-zero vτ leads to a Doppler shift of the probing beam fre-
quency seen by the atoms. It becomes of importance in the imaging process when it
shifts the detuning of the beam δ on the order of a fraction of the atomic linewidth
broadened 3 by the beam intensity I = sIsat on the atoms Γ

√
1 + s.

As the atoms are put in motion in the direction of the beam propagation, the resulting
detuning is δDoppler = δL − kvτ, where δL = ωL − ωat is the laser detuning compared
to the atomic transition frequency ωat/2π. The Doppler shift kvτ depends thus linearly
on τ. We can define for a given saturation parameter s, the value of τ denoted τΓ for

3. If we shine a two–level atom with a beam of intensity I = sIsat and arbitrary detuning δ then the
photon scattering rate is given by:

γ =
Γ

2
s

(1 + s) + 4δ2/Γ2 . (3.11)

which corresponds to a Lorentzian function of δ with a broadened linewidth Γ
√

1 + s ≥ Γ.
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3.1. Non-saturating and saturating absorption imaging

which the Doppler shift equals the intensity–broadened linewidth:

Γ
√

1 + s = kvτ ⇒ τΓ = T0

√

s(1 + 1/s)3 (3.12)

where T0 = 2m/h̄k2 = 42.8 µs (3.13)

τΓ shows a minimum in s = 2 with τΓ (s = 2) =
√

27/2T0. Typically we put as an
upper bound τ . τΓ/4. Then, for the intermediate saturation parameters s ∼ 2, we
must restrict to τ . 25 µs. For lower saturation parameters (s ≈ 1/4), we can choose
imaging pulses of some tens of microseconds (typically up to 60 µs).

3.1.3.2. Atomic displacement

In the previous paragraph, we have seen that, because of the Doppler effect, τ is
constrained to a few tens of microseconds. The atomic displacement dτ can also become
problematic when it leads to driving the atoms out of focus. For our high resolution
vertical imaging setup 4, the depth of field (DoF) is ∼ 10 µm (see 3.2.2 for details) and
we require that the atoms move by less than this distance. We can deduced for each τ,
the maximally acceptable value of s denoted s∗(τ) for which the induced displacement
equals the DoF:

DoF = dτ = d1 (τ)
s∗(τ)

s∗(τ) + 1
(3.14)

with d1 (τ) =
vrec

Γ
×
(

Γτ

2

)2

(3.15)

where vrec = h̄k/m denotes the recoil velocity. We deduce:

s∗ =

{

(

(τ/T1)
2 − 1

)−1 if τ > T1

∞ if τ ≤ T1
(3.16)

where T1 corresponds to d1 (τ = T1) = DoF and equals to:

T1 =
2
Γ

√

DoF × Γ

vrec
= 13.4 µs (3.17)

Then for s ≫ 1, τ must not exceed T1 so that dτ ≤ DoF. For longer τ, the dis-
placement effect is also more constraining than the Doppler effect as the former de-
pends quadratically in time and not linearly. This leads for τ ∼ 50 µs to a very low
bound in s: I . 0.08Isat. This happens to be experimentally difficult to work with as
it leads to very small numbers of counts for our vertical imaging setup large magnifi-
cation (see 3.2.2). Typically, we do not want to work with intensity I ≤ Isat/4. Then
τ . T1

√
1 + 1/smin ≈ 30 µs with smin ≈ 0.25.

4. This constraint does not apply for our horizontal imaging setup (see 3.2.1 for details) where the DoF
is much larger (∼ 100 µm)
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Figure 3.1.: Reliable and unreliable domains of imaging parameters due to Doppler effect and
displacement over the pulse duration τ for varying saturation parameter s.

3.1.3.3. Summary

The constraints depicted above can be summarized by defining which couples (τ, s)

lead to accurate detection under both conditions of small Doppler detuning and small
displacements. We can plot reliable and unreliable domains in the convenient (1/s, τ)

planar representation as done in Fig. 3.1. The constraints can be summarized in this
plane by two threshold curves (1/s∗, τ∗) whose equations are deduced from above
calculations [Eqs. 3.12-3.17] to be:

Detuning: τ∗ =
T0

4

√

s∗(1 + 1/s∗)3, with
T0

4
= 10.7 µs (3.18)

Displacement: τ∗ = T1
√

1 + 1/s∗, with T1 = 13.4 µs (3.19)

The limit of acceptable domain of τ as a function of 1/s is defined by the lower value
of these two curves as plotted in Fig. 3.1. Doppler effect happens to never be the most
constraining of the two effects: We are always limited for our choice of imaging param-
eters by the small DoF. We deduce that there is no limitation on s for τ < T1 ∼ 13 µs.
From pulse time τ > 13 µs, we must restrict to I ≤ s∗ (τ) Isat where s∗ (τ) is set along
Eq. 3.19.

We conclude this analysis by choosing the relevant range of imaging parameters for
both regimes of saturating and non saturating absorption imaging:

— For our saturating imaging pulse, we choose τ = 4 µs , that lies in the "un-

constrained" τ domain. We can then choose imaging intensities up to several

hundreds of Isat. In fact, we do not want to use too high I as it leads to higher

photon shot noise on the detection of n. We typically use I = 40Isat.
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3.2. Imaging setup

— As stated in the previous paragraph, we do not want to use I < Isat/4 for detection
reasons. Then we must restrict to τ . 30 µs (as represented in the Fig. 3.1). For

our non saturating imaging pulse, we choose τ = 20 µs, which enables s as high

as 0.8.

3.2. Imaging setup

In our experimental apparatus we are able to image our gases in two orthogonal
directions of space:

— Along the x horizontal axis, with a moderately precise setup that mainly serves
during the alignment procedure.

— Along the z vertical axis, with a highly precise setup that serves for the diagnostic
of our gas configuration.

As absorption imaging is a destructive process we can not image the same cloud succes-
sively in the two directions and must repeat the production sequence to obtain images
of similar clouds in varying imaging configurations.

With this two setups we can perform absorption imaging of the 87Rb atoms close
to the resonance of their D2 line (52S1/2 → 52P3/2). We can adjust the detuning of our
probing beam of approximately ±3 Γ around the atomic transition thanks to an acousto-
optic modulator. We can also vary the intensity of the probing beam from 0.2 to 60 Isat

at the position of the atomic sample thanks to a second acousto-optic modulator and
use both high and low intensity imaging. In both cases, we use linearly polarized light
such that we do not have to worry about the magnetic field direction during imaging.
Such a polarization does not correspond to an (approximately) cycling transition and
we have to take into account corrections linked to averaging over hyperfine sublevels
(such corrections modify the value of coefficient α of Eq. 3.9 by a factor 15/7 in the
stationary regime). In this configuration, we must also ensure that the steady state of
the Bloch Optics equations is reached and be sure that population has redistributed
over the sublevels.

3.2.1. Horizontal Imaging

The horizontal imaging beam is collinear with both the hybrid trap and the light–
sheet beams (propagating along x) and perpendicular to the box–trap beam (propagat-
ing along z, see Ch. 2 and Fig. 2.2 for an overall description of the experimental setup).

The beam intensity is collected via an achromatic triplet of focal length f = 150 mm
from Melles–Griot. The in–situ distribution of the 2D atomic cloud is then appearing
as a thin stroke limited by optical resolution along this imaging axis. Typically, we fit a
gaussian of 3 µm waist, in agreement with the expected imaging triplet resolution. We
deduce the DoF of this setup to be ∼ 100 µm.

The outgoing beam intensity distribution is detected by a CCD camera (Ace, Basler)
of quantum efficiency of 24% at 780 nm 5. The camera is placed after a telescope formed
by the imaging triplet and an optical doublet so that it images the central plane of

5. Its quantum efficiency is of 54% at 545nm. We need to multiple this value by the relative response at
780nm that is of 0.45.
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f2=150	mmf=150	mm f1=750	mm
CCD	
camera

150	mm d1=750	mm
d2=150	mm

Figure 3.2.: Optical scheme for the horizontal imaging. The second lens can be chosen to
adjust the magnification: either M = 5 with f1 = d1 = 750 mm or M = 1 with
f2 = d2 = 150 mm.

the atomic cloud (see Fig. 3.2). The magnification of this imaging system can be either
M = 1 or M = 5, by exchanging the second doublet of the telescope, as indicated in
Fig. 3.2.

We can use both low intensity technique with 6 an exposure time τexp = 40 µs and
an intensity I ≈ Isat/5, and the high intensity one with τexp = 4 µs and I ≈ 40 Isat by
adding an optical density filter (OD = 1) after the telescope to not saturate the camera.
This imaging axis is primarily a diagnostic tool: it is mainly used to align the different
optical dipole traps on each other and to perform some calibration measurements (for
example frequency measurements of 2.2.2). We did not carefully calibrate the imaging
parameters on this axis and the density is only determined up to a global multiplicative
factor.

3.2.2. Vertical Imaging

Figure 3.3.: Optical scheme for the vertical imaging. A specially designed high NA (= 0.45)
is positioned just below the glass cell to image the cloud position. The total mag-
nification is M = 25. The mask for the frame transfer is placed at the intermediate
focus.

6. We remind that the constraints in 3.1.3 only hold for the vertical imaging setup. In this setup, the
DoF is ten times smaller so that the constraints due to displacement effect are stronger. The magnification
of the setup is also 5 to 25 times greater resulting in a stronger constraint on the minimal s (even though
the quantum efficiency also has to be taken into account in this last statement.).
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3.3. Calibrating absorption imaging coefficients.

The vertical imaging beam is perpendicular to the 2D atomic plane and is propagat-
ing downward along this vertical axis (see Ch. 2 and Fig. 2.2 for an overall description
of the experimental setup). This axis is used for precise measurements of the atomic
density distribution.

As described in previous works [110], [111], this precision relies on a custom made
microscope objective of high numerical aperture (NA = ′.△▽) so that it enables high
resolution on the atomic density. The tests carried out on a reference target by T. Yefsah
[110] showed a resolution ∼ 1 µm. Together with a triplet, this objective forms an in-
termediate image of the atoms with magnification M1 = 25. This intermediate image
makes a source for a telescope of magnification M2 = 1, finally projecting the image
on a CCD camera (see Fig. 3.3). The total magnification of this system is M = 25 so
that the pixels correspond to an effective size of 0.52 µm × 0.52 µm (real size of 13 µm).
From an analysis of atomic images, we deduced that the total imaging system had a
resolution better than 2 µm. We infer the DoF of this setup to be ∼ 10 µm.

The camera (Pixis 1024, Princeton Instruments) is also a fundamental element for our
precision requirement as it has a very high quantum efficiency ( > 95% at λ = 780 nm)
and a low-noise readout which leads to shot-noise limited images.

To use the previously described imaging procedure for a quantitative analysis of our
cloud, several calibrations are necessary:

— On the camera the intensities Ii and If are known only through the number of
counts on the CCD frame and the high intensity term of Eq. 3.9, (Ii − If)/Isat,
is normalized to a theoretically known value Isat. We will thus need to precisely
calibrate the number of counts on the camera corresponding to the actual intensity
I = Isat on the atoms (see 3.3.2) .

— We will need to calibrate the imaging parameters α (see 3.3.3) and β (see 3.3.4)
used in Eq. 3.9 to link the physical atomic density to measured intensities in this
specific setup.

— We will also introduce a third parameter, γ, absent from Eq. 3.9, due to the specific
mode in which we use our camera (see 3.3.1).

3.3. Calibrating absorption imaging coefficients.

3.3.1. Frame Transfer and additional intensity per frame exposure: introducing a
new coefficient γ

As described in detail in [110], for measuring precisely the 2D density distribution,
we use the high efficiency camera of 3.2.2 in the so-called Frame Transfer mode. This
mode enables to take several pictures in a very short time lapse (less than 1 ms between
two images).

Such a high repetition rate is of great importance in our absorption imaging proce-
dure. As implied by Eq. 3.9, we need to know at the same time, the outgoing If(x, y)

and the incoming Ii(x, y) intensity distributions in the atomic plane. To this aim, we ex-
perimentally take two successive images of our probing beam intensity, Iw. at. is taken
with the laser shined in the presence of the atoms and Ino at. in their absence 7. Iw. at.

7. Between the two images, the atoms are depumped to the F = 1 ground state
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3. Imaging of our experimental gases

and Ino at. cannot be measured at the exact same time but we want to minimize the time
lapse in between in order to filter out the effect of temporal fluctuations in intensity and
pointing (that would result in unwanted discrepancy between the two images). We also
take a third dark picture Idark with no imaging beam pulse during the exposure time to
distinguish ambient lighting from interesting photons coming through the atomic slab.
It must also be taken close in time to the two first images to minimize variations but it
is less sensitive than imaging beam fluctuations. In the imaging sequence we thus need
three successive (useful) exposures of the CCD camera. The first one is necessarily the
image of the atomic cloud Iw. at., then comes the most sensitive reference Ino at. and we
finish taking Idark. The imaging sequence is represented in Fig. 3.4. We then compare
the matrices of the counted number of incoming photons Ii = Ino at. − Idark with the
counted number of photons transmitted through the atomic cloud I f = Iw. at. − Idark.

Atoms
Blast

Imaging
Intensity

CCD
exposure

Texp Texp Texp

τ τ

transfer transfer

Iw. at. Ino at. Idark

time

Figure 3.4.: Imaging sequence in the Frame Transfer mode. We successively expose during a
time Texp the acquisition region of the CCD frame to acquire Iw. at., Ino at. and
Idark. During each exposure we displace the information contained by the pixels
to the storage region (transfer). Between Iw. at. and Ino at., we depump the atomic
sample to the F = 1 ground state.

A high repetition rate is traditionally difficult to achieve with a high efficiency camera
as ours without adding unwanted noise or errors. It is achieved in the Frame Transfer

mode by not reading out the different pictures between the successive exposures of
the CCD frame. The successive pictures are simply moved very rapidly from one set of
pixels to an other - not-exposed - one where they are so preserved until the final reading
out process. We name this preserved region of the CCD the storage region. Then the
initially exposed region of the CCD is blank and can be exposed again. We name this
region of the CCD which collects photons during the exposure periods the acquisition

region. The CCD frame is finally entirely (storage region and acquisition region) read
out after the number of desired exposures.

The separation of the CCD frame in the acquisition region and the storage region

must then be effective both in the computation process but also in a physical manner:
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3.3. Calibrating absorption imaging coefficients.

In order to preserve the information gathered, the storage region must be physically
hidden to not receive photons during the camera exposure periods. To implement this
acquisition mode we need to optically mask a part of the CCD chip. In our design, we
physically hide a region optically-conjugated to the storage region in the intermediate
image plane after the first triplet as shown in Fig. 3.3. The sharp cut separating both
regions is realized thanks to a razor blade. A few unwanted photons can nevertheless
reach the storage region and can be counted up to the stored data at each successive
exposure period. Then, instead of being fixed from their initial exposure in the acqui-

sition region, the pixels value of the data stored are increased for each exposure time
following there initial transfer to the storage region. We denote C the average number
of these extra counts per exposure. The exposure time Texp being fixed for all our light
pulse durations τ (Texp = 70 µs), C is a constant of our setup.

We experimentally observed an additional exposure of the stored frame in our ex-
perimental data. We calibrated C by comparing the over-exposure of the first and sec-
ond frame compared to the third one when blocking the imaging beam. We took 20
absorption images while blocking the imaging beam and compared the three frames
corresponding to the useful one for Frame Transfer (see Fig. 3.4). As the beam is blocked,
in the ideal case where C is zero, these three frames must correspond to the same mean
number of counts. If C is non zero then we must measure some discrepancy between
the three frames: The first (resp. second) frame must have in average ∆13 = 2C (resp.
∆23 = C) counts in more than the third. On the three frames, we compared the mean
numbers of counts in a region of interest of 101 × 101 pixels centered on the atomic
cloud position and away from the frame edges. We measured ∆13 = 17.6(7) and
∆23 = 8.2(4) (errorbars are standard deviations). From this, we deduce C = 8.5(4).
We can easily repeat this calibration procedure regularly simply taking a few images
with the beam blocked and check that C is not modified.

We check that C is not changed if we unblock the probing beam but take image in the
absence of atoms. In that case we compare only the two first frames in which the pulse
beam is produced (see Fig. 3.4). We found C = 11(4). In this case, we found a higher
error due to higher photon shot noise.

In our imaging analysis, we take this correction into account and correct Iw. at. by
subtracting 2C and Ino at. by subtracting C. Eq. 3.9 is then corrected along

d ≡ nσ0 β = −α ln
(

If − 2γ

Ii − γ

)

+
Ii − If + γ

Isat
. (3.20)

with γ is the intensity corresponding to the photon number C, γ = C h̄ωL/(Texp Apx)

wihere Apx the effective area of a pixel of the camera at the atom location, γ = 11.5(5) µW/cm2.
Such a correction is important for non-saturating imaging procedure and it mainly af-
fects the low–density regions of the cloud.

3.3.2. Calibrating the number of counts to the actual intensity seen by the
atoms: efficiency η

To use high intensity absorption imaging, we need to accurately determine the num-
ber of CCD counts per imaging pulse Icam

sat corresponding to I = Isat = 1.67 mW/cm2 in
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the atomic plane. The expected value for a pulse of duration τ imaged along a perfect
path and by an ideal camera is I0

sat = τ Apx Isat/h̄ωL. The correction η to this value is
due both to the transmission efficiency of our imaging setup ηpath and to the camera
quantum efficiency ηcam.

We directly estimate ηpath by power measurements along the path. We take into
account corrections due to the two uncoated diopters of (the upper face of) the glass
cell and to the irrelevant power loss due to the razor blade 8. We find ηpath = 0.43. This
low value is explained by:

— the two uncoated diopters of (the bottom face of) the glass cell ton the beam path
in between the atomic sample and the camera.

— the large number of optical diopters of the specially designed and large aperture
microscope objective used in this setup.

We also directly measure the quantum efficiency of our Princeton camera by compar-
ing the measured power just in front of the chip to the power deduced from the total
number of counts Icount on the CCD frame 9: Pcount = Icount τ h̄ωL. We find ηcam = 0.89
compatible with the theoretical value 10 of η

(th)
cam = 0.855. We choose to use this value of

ηcam = 0.855. The global efficiency is then η = ηpath ηcam = 0.365.

3.3.3. Calibration of the α coefficient

Once the conversion from the number of counts Ii and I f to the intensity Ii and If

is determined (via η and γ), we can address the calibration of the coefficients appear-
ing in Eq. 3.9, namely α and β. In this equation, α is the coefficient enabling coherence
between all sets of imaging parameters (various pulse durations τ and probe beam in-
tensities I = sIsat). Indeed, it corrects the relative amplitudes of the "high" and the "low"
intensity terms contributing to the optical density (OD). The principle of the calibration
of the coefficient α relies on this aim of consistency: When we vary the imaging pa-
rameters τ and s as we keep constant the atomic density n (the cloud configuration), it
must exist an appropriate value of α, denoted α∗, for which the OD distribution dα (x, y)
computed along

dα (x, y) = −α ln
(

If (x, y)

Ii (x, y)

)

+
Ii (x, y)− If (x, y)

Isat
, (3.21)

similar to Eq. 3.9, is a constant. α∗ is then the value of α for which the estimate of Eq. 3.21
is proportional to the physical atomic density (to the multiplicative factor βσ0).

3.3.3.1. Need for a new calibration of the α coefficient

Calibrations of the coefficient α (and of the detectivity coefficient β) for our experi-
ment were completed in 2010 as described in [110]. It needed to be redone since the

8. The purpose of the razor blade is to block a part of the imaging beam that is far from the image of
the atomic sample in this intermediate image plane. So the power loss induced by this mask is not a loss
of information on the atomic density. Only useless photons are eliminated and they must not be taken into
account in our efficiency calibration

9. We also correct for out of frame intensity by performing a Gaussian fit
10. taking into account the interferometric filter at the entrance of the camera
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3.3. Calibrating absorption imaging coefficients.

experimental setup has been deeply modified since then (see Ch. 2). In particular, the
magnetic fields applied during the imaging pulse have substantially changed. We do
not anymore trap the 2D atomic sample with a magnetic confinement as the Trap Orbit-

ing Potential (TOP) in use until 2012. Now the atoms in the 2D plane are only held by
optical potentials (the light–sheet and the box–trap). Nevertheless, we use a magnetic
gradient to levitate our atomic ensemble and compensate the gravity (b′z = 15 G/cm)
in our fully-optical trap 11.

Furthermore, the calibration procedure needed to be modified for recent experiments.
As described in [110], we previously calibrated α using in-situ images of a 3D cloud at
varying imaging parameters. At that time, both the 2D and the 3D clouds were confined
in a TOP trap and so the in–situ environment of both clouds were the same. Moreover,
in the TOP trap, our gases were harmonically confined so that we were able to probe
with a unique in–situ cloud a wide range of densities. Finally, to circumvent density
effects, we could focus on the low-density wings of this cloud.

In our new setup, all these attributes are modified. First due to the switch to a fully
optical 2D trap loaded from an hybrid magnetic and optical trap, the environment be-
tween the 3D and the 2D trap is changed (see 2.1.2) 12. To calibrate the imaging, we
prefer to directly use the final 2D configuration to be sure not to perturb our calibra-
tion by changes in the environment. Second, the uniform potential in the 2D (xy)-plane
precludes using in–situ images for the calibration. Indeed, in such a potential, we can-
not investigate a varying range of n by in–situ imaging. To overcome this, we use 2D
Time–of–Flight (see 2.1.3) to let the density distribution expands into a non-uniform
one, while remaining confined in the 2D plane. We can also use an additional 3D ToF to
lower the density of the atomic cloud but short enough so that the measurement is not
perturbed by out–of–focus effects. As the depth–of–field is DoF = 10 µm, for typical
temperature T = 100 nK, we are limited to ToF duration ≤ 3 ms. Note that we keep the
levitating magnetic gradient active (with constant b′z and dz) during these ToFs and the
imaging process so that the in–situ magnetic environment is preserved until imaging
(in particular no Eddy currents may perturb the calibration).

3.3.3.2. Principle of the calibration procedure for α coefficient

In a general manner, the experimental procedure to calibrate α consists in the follow-
ing steps:

1. We select an appropriate experimental configuration for our 2D expanding cloud.
In practice, we choose the values of the final powers of the hybrid–trap and the
box–trap beams and the ToF durations 13.

2. We take a set of N absorption images of the cloud prepared in this reference con-
figuration 14 with various couples (τ, s). We choose τ ∈ {4, 8, 10, 12, 16, 20} µs.

11. The zero of the magnetic field is above the atoms at a distance dz ≈ 1.5 mm (see 2.1.3). The resulting
magnetic field is thus B0 = b′zdz = 2.25 G.

12. Due to the reduced values dz ≈ 300 µm and b′z = 12.5 G/cm used for the hybrid trapping, the
magnetic field at the atom position is B0 ≈ 0.4 G in this case.

13. In fact we will select two of these configurations, and do the following procedure for both.
14. as the imaging process is destructive, we cannot image several times the same cloud so we repeat
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As pointed out in 3.1.3, we must care that (τ, s) corresponds to a reliable configu-
ration in terms of radiative pressure effects. For each image k ∈ [1, N], we obtain
the matrices I (k)

w. at., I (k)
no at. and I (k)

dark of the number of counts on the camera for the
various exposures of Fig. 3.4.

3. Then we compute for each image k ∈ [1, N] and for each pixel (x, y) the intensity
distributions of the input and output beams:

Ii (x, y; k) = (I (k)
no at. − I (k)

dark − C) h̄ωL/(τApx) (3.22)

If (x, y; k) = (I (k)
w. at. − I (k)

dark − 2C) h̄ωL/(τApx). (3.23)

and deduce the log part dlog (corresponding to the "low" intensity term) and the
difference part ddiff (the "high" intensity term) of Eq. 3.21:

dlog (x, y; k) ≡ − ln
(

If (x, y; k)

Ii (x, y; k)

)

(3.24)

ddiff (x, y; k) ≡ Ii (x, y; k)− If (x, y; k)

η Isat
. (3.25)

4. We want to compare the behaviors of dlog and ddiff while varying (τ, s) and de-
duce α∗ the value of α for which

dα (x, y; k) = αdlog (x, y; k) + ddiff (x, y; k) (3.26)

is a constant. We point out that in Eqs. 3.22-3.26 , we took into account the previ-
ously calibrated imaging coefficients 15 C and η.

The comparison of the N images must be carried out considering the variation of the
density n (or equivalently of d) within the cloud configuration. The most severe way
to account for these variations is to treat each pixel (x, y) independently (as they corre-
spond to independent tiny regions of the cloud of fixed density n(x, y)). To improve the
calibration quality, we perform some averaging of our data on pixels sets with the same
(expected) n. We use disk-shaped box–trap potentials. After some 2D or 3D expansion
times, the uniformity of the density distribution is lost but the azimuthal symmetry of
the initial profile is preserved. Then, we perform azimuthal averaging and examine
optical density in terms of distance to the cloud center r 16: dlog (r; k) , ddiff (r; k) and
dα (r; k).

3.3.3.3. A new calibration procedure for α coefficient

To perform this calibration, we have in fact developed two methods:

the same preparation.
15. In the previous calibrations (performed in 2010), γ was unknown and so set to zero and η was set

to 1. We infer from this that the newly calibrated value of α and β must be strongly modified from the
previously values α(2010) = 2.6 and β(2010) = 0.4 even if the physical apparatus was not changed.

16. We take the residual anisotropy of the cloud distribution into account in the definition of r. We first
perform a gaussian fit of our data and account for the fitted ellipticity. These fits also give the position of
the cloud center.
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3.3. Calibrating absorption imaging coefficients.

1. The historical analysis procedure developed by G. Reinaudi [137]. It is based on
minimizing the standard deviation of the optical density dα (x, y; k) over α for a
set of (τ, s). This was used in the previous calibration campaign in 2010 [110]. The
results of this method for our 2014 calibration campaign are detailed in Annex E. It
leads to unexpected observations inspiring us the development of a new analysis
procedure.

2. The new and more straightforward method we settled at the occasion of the
2014 campaign. It is based on a simple linear fit on the set of the N couples
(dlog (x, y; k) , ddiff (x, y; k)) from which we deduce the optical density d and the
parameter α∗. It, in particular, enables a better analysis of our experimental data
points, a discrimination of outlying points, a study of possible deviations to the
expected law for some sets of imaging parameters and an estimate of the fit con-
fidence on our calibrated coefficient.

We implemented these analysis for two cloud configurations:
— one «cold » configuration where the cloud shows high densities. The 2D traps

are directly loaded from a 3D BEC and the box–trap height is then lower to very
small final value to reach cold temperature and highly degenerate 2D regime. We
then use a 2D ToF of 6ms followed by a 3D ToF of 2 ms to reduce the possible
multiple-scattering effects.

— one «hot » configuration where the density is lower and the cloud is not degener-
ate. The 2D traps loaded from a 3D thermal gas and only moderately evaporated.
We then use a 2D ToF of 3ms but not the 3D ToF as the densities are already suffi-
ciently low to avoid 2D multiple scattering effects 17.

Both configurations were measured during two different series so we analyzed in total
data from 4 different series.

3.3.3.4. Description of the new calibration procedure: direct fit of the optical
density terms.

In this analysis we directly compare the two terms dlog (r; k) and ddiff (r; k) defined
in Eqs. 3.24-3.25 contributing to the optical density (Eqs. 3.9 and 3.26).We remind here
their definition:

dlog (x, y; k) ≡ − ln
(

If (x, y; k)

Ii (x, y; k)

)

(3.27)

ddiff (x, y; k) ≡ Ii (x, y; k)− If (x, y; k)

η Isat
. (3.28)

The log term has a dominant contribution for small probing intensity (I . Isat) and the
difference term prevails at high probing intensity (I ≫ Isat). Then the couple (dlog (r; k),
ddiff (r; k)) roughly varies from (α∗d(r), 0) to (0, d(r)) when s(= I/Isat) varies from s ∼

17. the 2D ToF is performed at a lower power of the LS beam so that the confinement along z is reduced
to ωz/2π = 300Hz. The thickness of the cloud is then enlarged to ℓz ≈ 880 nm so that multiple scattering
effect are already negligible at optical densities d . 2 as kℓz = 7.1( cf Annex D)
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3. Imaging of our experimental gases

0 to s ≫ 1 (where d (r) is the OD at radius r - d (r) = βσ0n (r) - and α∗ is the physical
value of the α coefficient.).
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3.3. Calibrating absorption imaging coefficients.
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Figure 3.5.: Six examples of sets of couples (dlog (R; k) , ddiff (R; k)) corresponding to four dis-
tinct atomic densities n(R). The set correspond to data from one of the «cold» se-
ries. They are obtained from azimuthal averaging at radius R = 10 px, R = 20 px,
R = 30 px, R = 38 px, R = 46 px, R = 54 px (in camera pixels). Each point cor-
responds to one picture and thus to one specific imaging configuration. The solid
lines is the linear fit and the two parameters resulting from this fit are indicated
below.
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3. Imaging of our experimental gases

In fact, according to Eq. 3.9, we expect that all couples (for all imaging parameters τ

and s) collapse into a line of equation

ddiff (r; k) = d (r)− α∗dlog (r; k) (3.29)

We can then directly evaluate α∗ and d(r) by a linear regression of our experimental
set of (dlog (r; k) , ddiff (r; k)) at a given radius r. This fit gives an estimate of α∗ for each
radius r denoted α∗

lin(r). We expect α∗
lin(r) to be approximately constant (equal to α∗).

In this analysis, we may visualize any possible defect of the experimental data as we
directly plot the physical contributions dlog (r; k) and ddiff (r; k). For all series of data and
all r, we do not detect any flaw in the sets of (dlog (r; k) , ddiff (r; k)) as shown in Fig. 3.5,
for an example of six sets corresponding to distinct atomic densities n(R) obtained
at different R within the same data series. One point in these graphs corresponds to
one couple (τ, s). We observe no systematic deviation of the point sets to the linear
law (distribution of the residuals of the fit is centered around zero) for all investigated
n(R). Moreover, the dispersion of the ddiff (r; k) data points stays of the same relative
order for all dlog (r; k) in each data set and does not reveal any pathologic behavior. We
conclude that we can rely on the linear fits (as long as the data points are themselves of
good enough quality that is for example for a high enough n(R)).

It is also clear from Fig. 3.5 that the slope of the linear fits α∗
lin(R) depends on n(R).

In the six sets shown, it seems that α∗
lin(R) increases with n(R) (as shown in d(R) fitted

values or from the simple fact that n(R) decreases with R).
Thus this dependency has to be interpreted as a physical phenomenon and not as a

flaw of the experimental data. We will attempt to give a physical explanation in the next
section but before we will use the results of the linear fit to conclude on α∗ value. These
direct linear fit has the advantage to give an estimation of the experimental confidence
in α∗ and thus of the uncertainty of the calibration contrarily to the historical procedure
(see Annex E). From this knowledge, we can effectively and quantitatively point out
the discrepancies of the fitted α∗ according to the atomic density n on the overall set of
data and enhance it as a physical effect. We can directly represent α∗ as a function the
estimated density n ∝ d by plotting the couples of fitted parameters (dlin (r) , α∗

lin(r)) as
done in Fig. 3.6. We notice a change in α∗(d) dependency and identify:

— A plateau α∗(d) = α∗
low at low density d ≤ 5. The fits seems reliable for d ≥

0.7 (relying on error bars amplitude). In this restricted range of d, the weighted
average of α∗(d) gives α∗

low = 3.73(13).
— A deviation toward larger α∗ at high density d > 5. We fit a linear dependency to

α∗(d) and find α∗
high(d) = 3.75(37) + [0.21(3)]× d.

3.3.3.5. Qualitatively (possible) physical explanation to the α∗ dependency on
the atomic density n:

We conclude in the previous section that α∗(d) dependency must be understood as
a physical effect. As the highlighted dependency occurs at high d (Fig. 3.6), one is
tempted to incriminate multiple scattering effects once again. In this section, I will
explained why such an effect may potentially explain the observed variation of α∗ with
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3.3. Calibrating absorption imaging coefficients.

α∗
low = 3.73 ± 0.14

α∗
high = 3.75 + 0.21 × d
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Figure 3.6.: Fitted values of d (r) and α∗ (r) for all series (1 and 3 correspond to the hot con-
figuration. 2 and 4 to the cold one). The error bars represents the 95% confidence
interval of the linear fit. In this graph, we circle the data represented in Fig. 3.5
(from series 4). We identify a plateau for d ∈ [0.7; 5]. The thick solid line represent
the weighted average on this plateau α∗low = 3.73(13). For d ≥ 5, we character-
ized the variation of α∗ by a linear dependency α∗high(d) = 3.75(37) + [0.21(3)]× d.
We do not plotted data with d ≤ 0.7 as they lead to unreliable values of the fitted
coefficients d (r) and α∗ (r). The dash-dotted black line identifies the separation
between the different regimes.

d. However, I will not give any quantitive model to this.
Multiple scattering effects occur in the very dense regions of the cloud. In the model

developed in Annex D, we saw that the effect becomes negligible for thick enough
cloud with kℓz ≫ 1 (ℓz stands for the thickness of the cloud). We calculated for example
that, for d . 4, the effect disappears for kℓz & 20 . But in our samples we deduce from
the linear fits that the OD 18 can be as large as d ∼ 25 (in the center of our «cold» clouds).
In such a regime, the thickness threshold on kℓz for neglecting multiple scattering effects
must be strongly increased. In our experiment, we restrict to cloud transverse extension
smaller than the imaging depth of field DoF = 10 µm, leading to kℓz ≤ k DoF ∼ 80.
Then, in the very dense regions of the cloud, multiple scattering effects can still be of
importance.

Intuitively, multiple scattering effects tend to decrease the number of photons scat-

18. In these fits, we, in fact, deduced the OD up to the multiplicative factor β. Nevertheless, we expect
(see 3.1.2) and will experimentally confirm (see 3.3.4) that β = 1.
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3. Imaging of our experimental gases

tered by the cloud. In consequence, the outgoing beam intensity Imes
f measured after

crossing the cloud is greater than the value I
exp
f expected from application of the law

of Eq. 3.9 with a constant α extracted from the reliables low density region (α = α∗
low):

Imes
f ≥ I

exp
f . Then, both the log part and the difference part of the measured OD are

lower than the predictions:

d
exp
log = − ln

(

I
exp
f − 2γ

Ii − γ

)

≥ dmes
log = − ln

(

Imes
f − 2γ

Ii − γ

)

(3.30)

d
exp
diff =

Ii − I
exp
f + γ

η Isat
≥ dmes

diff =
Ii − Imes

f + γ

η Isat
(3.31)

These multiple scattering effects should become of less and less importance as we
increase the probing beam intensity Ii. At the limit Ii → ∞, they must disappear. Then
the shifts d

exp
log − dmes

log and d
exp
diff − dmes

diff are decreasing functions of Ii. As demonstrated
in previous section, Ii ≪ Isat corresponds in the plane (dlog, ddiff) to high dlog ∼ αd and
low ddiff ≪ d. In the contrary, Ii ≫ Isat corresponds to low dlog ≪ d and high ddiff ∼ d.
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Figure 3.7.: Graphical representation of the possible effects of multiple scattering on (dlog, ddiff)
distribution at a high d and varying imaging parameters. We consider a fixed d(=
10), the expected distribution set along d

exp
diff = d − α∗d

exp
log and is represented by

the dotted purple line. For a given (dexp
log , d

exp
diff), we expect from multiple scattering

effect a shift of both measured quantities (dmes
log , dmes

diff ) with dmes
log ≤ d

exp
log and dmes

diff ≤
d

exp
diff . It is represented by the orange arrows. The shift is larger when s is lower that

is to say in the lower right corner of the plane (see text). The solid teal line shows
the schematic resulting behavior of (dmes

log , dmes
diff ).

Then, as represented in Fig. 3.7, multiple scattering effects induce a shift in the re-
lation ddiff = f (dlog) that can be interpreted as an increase of the absolute value of
the slope as the shift d

exp
diff − dmes

diff decreases with decreasing value of dlog. The relation
ddiff = f (dlog) may or may not stay linear while the multiple scattering effects decrease
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3.3. Calibrating absorption imaging coefficients.

with increasing I. As shown in Fig. 3.5, experimental observations are in agreement
with a new linear dependency. To fully explain this new linear law requires a more
quantitative model of the disappearance of multiple scattering effects with increasing
probing intensity. Nevertheless, the effect deduced from this analysis is in qualitative
agreement with the observed increase of α∗ with the optical density for d ≥ 5.

3.3.3.6. Conclusion on α analysis:

In conclusion, we think that multiple scattering effects explain the observed variation
of the imaging coefficient α∗ with atomic density n. We then rely on α∗ value only for
low enough densities (d ≤ 5 or equivalently n ≤ 17 µm−2) and take α∗ = 3.73(13).

To compute n in the denser regions of the cloud, we must develop a new procedure.
As we experimentally shown that the ddiff still follows a linear dependency in dlog,
we deduce that Eq. 3.9 remains an (empirically) valid relation to compute the physical
density. Nevertheless, we then need to compute a specific value of α for each n with
α(n) ≥ α∗. We implement an empirical model for α(n) deduced from a new fit of the
set of the experimental couples (d, α∗) of Fig. 3.6. We fit the total set (d, α∗) to a «slope–
breaking» function given by

α(d) = α∗
break + cbreak × ((d − dcut) + |d − dcut|) /2 (3.32)

We chose to set dcut to 2.5. We then fitted α∗
break = 3.75(14) which is in agreement with

the value of α∗, and cbreak = 0.26(2). We will then use the empirical model:

α(n) = α∗ + 0.13 × ((n − ncut) + |n − ncut|) (3.33)

where ncut = dcut/σ0 = 8.6 µm−2 and α∗ = 3.73.
Then the procedure to compute α(n) and n for each pixel (x, y) of an absorption

image will be iterative and proceed as follow:

1. We compute dlog (x, y) and ddiff (x, y) according to Eqs. 3.24–3.25.

2. We compute a first estimate of the OD by d0 (x, y) = α∗ dlog (x, y) + ddiff (x, y).

3. Then there are two possibilities. If d0(x, y) ≤ 2.5 then n(x, y) = d0(x, y)/σ0 and
α(x, y) = α∗. Otherwise, we compute n(x, y) and α(x, y) by an iterative process:

a) We compute an approximate value of α by α0(x, y) = α(d0(x, y)/σ0) from
Eq. 3.33 and using the first estimate of the OD, d0(x, y).

b) We deduce a new guess of the OD by d1 (x, y) = α0(x, y) dlog (x, y)+ ddiff (x, y).

c) We appraise the accuracy of this new estimate by comparing the two suc-
cessive evaluations d0 (x, y) and d1 (x, y). We consider that the process has
converged when these two quantities are different by less than a few per-
cent (typically 5%) from their mean value. If it is the case, then we set
n(x, y) = d1(x, y)/σ0, α(x, y) = α0(x, y) and we exit the looping process 19.

19. We note that to treat burnt pixels we also impose α ≤ αmax. We choose αmax = 30 so that it corre-
sponds to a maximal OD dmax ≈ 100

81



3. Imaging of our experimental gases

d) If the process has not converged yet, we calculate a new guess of the co-
efficient α, α1(x, y) = α(d1(x, y)/σ0) from Eq. 3.33 taking into account the
modification of the OD.

e) We deduce a third assessment of the OD d2 (x, y) = α1(x, y) dlog (x, y) +

ddiff (x, y) and compare it to d1 (x, y). As previously, if the discrepancy is
small enough to consider that the process has converged we set n(x, y) =

d2(x, y)/σ0, α(x, y) = α1(x, y) and we exit the looping process.

f) As long as the process has not converged, we recompute an kth estimate
αk−1(x, y) = α(dk−1(x, y)/σ0) and dk (x, y) = αk−1(x, y) dlog (x, y)+ ddiff (x, y).
The discrepancy between dk−1(x, y) and dk(x, y) decreases with k and reach
the «process–convergence» condition at a given k. We then set n(x, y) =

dk(x, y)/σ0, α(x, y) = αk−1(x, y) and we exit the looping process.

Such an iterative computation must converge fast if the imaging parameters have been
correctly chosen. Usually, less than five iterations are needed. We note that if there
are some very dense regions in the cloud, then the higher the probing intensity is, the
more efficient this procedure. It also turns more accurate as it lower the influence of
bad calibration of the empirical model α(n).

3.3.4. Calibrating the global detectivity factor β

In Eq. 3.9, β is the coefficient that links the model to the physical reality: it ensures the
correspondence between the measured density distribution to the physical one. To find
its experimental value, we must rely on other physical properties that depend on the
gas density distribution. For our setup we choose to use two–dimensional expansion

of a highly degenerated uniform 2D cloud.

In a 2D ToF, the interactions play an substantial role (if they are already important
in-situ) in the expansion dynamics as the 2D confinement remains active and the gas
does not expand along z. If we assume the gas is highly degenerate, we can model
its expansion using (2D) Gross–Pitaevskii (GP) equation (see Annex B) in which the
interacting terms has an «amplitude» ∝ g̃N (where N is the total atoms number and
g̃ is the 2D interaction parameter for the expanding cloud). The evolution of the in–
plane density distribution depends on this interaction term and so on N. Hence, we
can estimate N by comparing the experimental evolution n(x, y, tToF) (∝ dα∗(x, y, tToF))
to distribution resulting from GP simulations for various N and varying the time–of–
flight duration tToF. By comparing this dynamical estimate of N denoted N2D ToF to a
simple sum over the optical density matrix dα∗ (x, y) (Eq. 3.26), we deduce the physical
value of β, denoted β∗.

This technique is experimentally robust as it is based:
— on one hand, on the overall description of a dynamical evolution (with tToF),

which filters out defects appearing for a specific tToF.
— on the other hand, on the integration of the density distribution over the cloud,

which is a robust operation, reducing sensitivity to noise.
To characterize the 2D ToF evolution of both the experimental and the simulated

density distributions (and then compare them), we simply use two fitted parameters
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3.3. Calibrating absorption imaging coefficients.

that are the widths σx(tToF) and σy(tToF) of a gaussian fit of these distributions. We
keep differentiating both x and y axis sizes as they are not similar in terms of residual
trapping potentials 20. The evolution is recorded over a set of tToF typically varying
from 0 to 26 ms with 14 different values.

We took experimental data for these 2D-ToF, in a unique and highly degenerated ex-
perimental configuration. To experimentally characterize the evolution of nmes(x, y),
we combine both high (HI) and low (LI) intensity imaging techniques (see 3.2.2). For
short tToF, we expect the LI imaging to be unreliable due to high densities. We indeed
measure an effective broadening of the LI values of σx(tToF) and σy(tToF) for tToF < 12 ms
compared to the HI ones. For these times, we must rely on the HI measurements. Nev-
ertheless, the longer tToF, the more the density drops so that for tToF > 14 ms we find
that the HI technique leads to greater noise in σx(tToF) and σy(tToF) than the LI mea-
surements. We then set the experimental values of the sizes σ

exp
x (tToF) and σ

exp
y (tToF)

to the LI values for tToF ≥ 14 ms and otherwise to the HI values. We average over
three repetitions. Finally, we note that the evolution of both sizes becomes different for
tToF & 16 ms. This time must be the characteristic time for the potential defects along y

(see 2.2.3.2 for details) to manifest. Thus we will not consider the evolution of σ
exp
y for

tToF > 16 ms.
To simulate the evolution of the gas, we use the 3D version of Gross-Pitaevskii simu-

lations as detailed in Annex B. The specific parameters for this simulation are
— The z confinement is reduced for the 2D ToF and equals ωz/2π = 360 Hz .
— The box–trap is a disk of radius RµT. It is on for t ≤ 0 and abruptly switch off at

t = 0. We adjust RµT so that the gaussian widths fitted at tToF = 0 ms matches
the experimental ones. It gives RµT = 12.25 µm for a theoretical expectation of
RµT = 12 µm.

— The residual confinement described in 2.2.3.1 leads to frequencies νx = 0.3 Hz
and νy = i × 4.1 Hz.

— The magnetic confinement leads to ν
(mag)
x = ν

(mag)
y = 6.5 Hz (see 2.1.3).

In this simulation, we do not account for the potential defects described in 2.2.3.2 but
we eliminated data that can be perturbed by their effects.

We repeat this simulation for N varying from 40000 to 150000. We fit the result-
ing column density distribution ncol (x, y, tToF|N) =

∫

dz|ψ (x, y, z, tToF|N) |2 (where ψ

is the computed 3D wavefunction) by a gaussian that gives the characteristics sizes
σsim

x (N, tToF) and σsim
y (N, tToF).

To compute the experimental value of N2D ToF, we want to find the best matching N

comparing (σ
exp
x (tToF), σ

exp
y (tToF)) to (σsim

x (N, tToF), σsim
y (N, tToF)) for all time–of–flight

tToF ∈ [0, 26]ms. We in fact notice that we could not find a perfectly matching N for all
tToF as shown in Fig. 3.8. In particular, we notice that for tToF < 6 ms , the experimentally
fitted values (σ

exp
x (tToF), σ

exp
y (tToF)) seem to expand more quickly than expected from

their longer time evolution. Such a fast evolution at short times must be an imaging
artifact due again to multiple scattering effects in this highly degenerate configuration.
We will thus not consider tToF < 6 ms. We also notice discrepancies in the fitted and

20. As characterized in 2.2.3, the light–sheet beam induced in–plane de–confining potentials and uncon-
trolled rugosities that are different for x and y axis.
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Figure 3.8.: Gaussian sizes along the 2D ToF expansion (tToF) for the experimental data (dots)
and the simulations (solid lines): (left) σx and (right) σy. We lighten the considered
tToF for the analysis and darken the unused ones.

simulated sizes at tToF ≥ 20 ms. This can both be due to loss in experimental signal
quality (as indicated by the increase in error bars) or some flaw in the modeling of
residual trapping effects. For our calibration, we will then rely on tToF ∈ [6; 18]ms for
σx and for tToF ∈ [6; 14]ms for σy.

From these data, we compute χ2 between simulated and experimental size over all
considered tToF, for each axis and for each N. We deduce N by fitting the set of χ2(N)

according to:
χ2(N) = a2 + c2 × (N − N0)

2 (3.34)

N0 is the best matching atom number. We found for σx, N0 = 76.5 × 103 ± 1.5 × 103

and for σy, N0 = 74.7 × 103 ± 2.6 × 103. As both directions x and y do not exactly
give the same results, we consider the mean value of these fits. We deduce: N2D ToF =

75.6 × 103 ± 2.1 × 103.
We will then compare this estimation to a simple integration of dα∗ (x, y) /σ0 from

Eq. 3.26 and taking into account the the imaging coefficient C = 8.5, η = 0.365 and
α∗ = 3.73. We also take into account the correction of α at high density by Eq. 3.33 and
compute the optical density d (x, y) as described in conclusion of of the subsection 3.3.3.
Then:

Ncount =
∫

Cloud

d (x, y)

σ0
(3.35)

=
∫

Cloud
n (x, y)× β = βN (3.36)

We directly perform this integration on the 2D ToF images previously fitted. As we
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pointed out, for the shortest time–of–flight tToF < 6 ms, multiple scattering effects are
not negligible and so we will not take these data into account. We found Ncount =

71.8× 103 ± 5.3× 103. Then the physical value of β is given by β∗ = Ncount/N2D ToF and
β∗ = 0.95(10). Such a value of β∗ is compatible with the expected value β∗ = 1 (from
the fact that magnetic fields are negligible during the imaging process). We will then
use β∗ = 1.

3.4. Conclusion

In this chapter, we presented an imaging technique which is reliable for a two–
dimensional gas whatever its density is. This technique is based on absorption imaging
used in the saturating together with the non–saturating regimes. We inferred that the
relation between the incoming intensity distribution Ii, the outgoing one If and the
atomic density n is given by:

n(x, y)σ0 β = −α ln
(

If(x, y)− 2γ

Ii(x, y)− γ

)

+
Ii(x, y)− If(x, y) + γ

η Isat
. (3.37)

taken into account the specificity of our acquisition process.
This relation is valid for all sets of imaging intensities and pulse durations as long as

we are not perturbed by:
— Multiple scattering effects occurring in the dense regions of the cloud when using

low probing intensity and when the cloud is thin, as presented in Annex D. In
this chapter, we pointed out that multiple scattering effects are still visible in the
high intensity images of our densest uniform 2D clouds. We can empirically take
into account these effects by introducing a dependency of α with n as carried out
in 3.3.3.6. The introduced dependency α(n) is simply fitted on a set of calibration
data and does not rely on a theoretical model, it could then bring up flaws in the
density measurement. The lower the probing intensity is, the higher the impor-
tance of multiple scattering effects and the larger the resulting defects. We then
only allow to use this dependency α(n) for the high intensity images and discard
the low intensity images in these dense regions.

— Modifications of the imaged atomic distribution due to radiative pressure effects
that Doppler shifted the probing beam compared to the atomic transition and
displace the atoms out of focus, as pointed out in 3.1.3.

When these conditions are fulfilled, the optical density is given by Eq. 3.37. In this
chapter, we presented a calibration of all free coefficients necessary for a quantitative
analysis of absorption images along this line:

1. We precisely calibrated the acquisition error by estimating the photons over–
counts C (and corresponding intensity γ) due to dark–exposures before the reading–
out process in the Frame Transfer mode.

2. We quantitatively estimated the global efficiency of our imaging setup η so that
we precisely know the number of counts Icam

sat = ηI0
sat corresponding to the sat-

uration intensity of our 87Rb atoms, I0
sat = I0

sath̄ωL/τ. Then the highly saturat-
ing regime of absorption imaging is calibrated (up to the factor β that we expect
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3. Imaging of our experimental gases

equals to 1).

3. To fully estimate the detectivity for all range of imaging parameters, we calibrate
the coefficient α linking the high to the low intensity regime. We found the ex-
pected constant value α∗, valid for low densities (n . 17.2 µm−2). We noticed a
dependency of α on n for higher n. We calibrate the dependency law α(n).

4. After performing these three calibrations, we coherently checked that β = 1.

We summarize these calibrations in Table 3.1:

Coefficient Calibrated Value
η 0.365
C 8.5(4)
α∗ 3.7(1)

α(n) 3.73 + 0.13 × ((n − ncut) + |n − ncut|)
β∗ 1

Table 3.1.: Summary of all the calibration of imaging coefficients.

We estimate that the density profile obtained from this method may show 10% to
20% systematic errors.
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4. Fit-free determination of the equation of state of the 2D
Bose gas and scale invariance

In this chapter we are interested in an experimental investigation of the equation of
state EoS of a (homogeneous) 2D Bose gas which is the relation between its 2D phase
space density (PSD) D ≡ nλ2

T, its temperature T and its chemical potential µ as intro-
duced in Ch. 1. To experimentally investigate this relation over a wide range of µ and
T we use an inhomogeneous (harmonically trapped) gas. We finally use the local den-
sity approximation (LDA) to relate this measurements to the homogeneous system as
introduced in 1.1.3.2.

We performed a first measurement of this EoS in 2011 [70] whose results are repro-
duced in Annex F. It relies on the determination of T and µ0 the chemical potential at
the center of the cloud by a fit of the wings of the in-situ density distribution (based
on the dependency of the in-plane confinement U(ρ)) for each cloud realization to the
known theoretical results in the dilute regime (see 1.1.4.3). The local density approxi-
mation (LDA) then enables to deduce the chemical potential µ(ρ) = µ0 − U(ρ) in each
point of the trap [65] and relates it to the local value of the PSD D(ρ) = n(ρ)λ2

T (where
the density is determined along lines of Ch. 3). From this measurement we checked the
(approximate) scale invariance of the EoS of a 2D Bose gas (see 1.1.4.1). It states that
for all cloud configurations D only depends the ratio µ/kBT (and of the 2D interaction
parameter g̃ but it is not varied in our measurements). In general, the scale invariance
occurs in any fluid where no explicit energy/length scale is associated to the (binary)
interaction potential.

The (approximate) scale invariance of the EoS makes possible to measure it using a
more robust procedure which do not use any fitting parameter. This method is inspired
from the procedure introduced by Ku et al.[71] for the unitary 3D Fermi gas (which also
shows scale invariance). In this chapter, we formally generalize this "fit free" method
of determination to any scale invariant EoS measured in any quantum gas in a known
trapping potential. Then we apply this formalism to the set of data used in our former
measurement of the EoS [70]. The main lines of this work has been developed by a
former PhD student in our group, Rémi Desbuquois. This procedure leads to a much
more accurate determination of the relation with no systematic errors. Then it enables
a comparison to theoretical predictions for an interacting gas (see 1.1.4) that are of par-
ticular interest in the critical region (beyond the approximation of 1.1.4.3). In particular
it provides an important experimental test for classical field approaches (such as the
ones developed by Prokof’ev and Svistunov [125], see 1.1.4.4) which are believed to
accurately describe quantum systems in the weakly interacting but non-perturbative
regime.

The following chapter has been initially published in [112], and is reproduced here. Important

modifications are announced by brackets.
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4. Fit-free determination of the equation of state and scale invariance

4.1. General "fit free" formalism for determination of a scale-invariant
EoS

Homogeneous matter at thermal equilibrium is described by an equation of state, i.e.,

a functional relation between thermodynamic variables of the system. While the EoS
is analytically known for ideal gases, one must resort to approximations or numerical
calculations to determine the EoS of interacting fluids, which must then be compared
to experiments. Thanks to a precise control of temperature, confining potential and in-
teraction strength, cold atomic gases constitute a system of choice for the experimental
determination of quantum matter EoS [65]. While performed on atomic systems, such
measurements often provide crucial insight on generic physical problems, well beyond
the atomic physics perspective. Prominent examples are the recent measurements of
the EoS of atomic Fermi gases [66, 68, 71, 138], which provided a precious quantitative
support for our understanding of strongly interacting fermions at low temperature.
[Here we are interested in another important paradigm accessible to atomic gases that
is the 2D systems and their specific Berezinskii-Kosterlitz-Thouless (BKT) transition
briefly introduced in 1.1.4.4.

In this section, we want to generalize the method put forward in [71] which overcome
systematic errors of the usual methods for determining the EoS of a cold atomic (see
Annex F and [69, 70] in which an imperfect calibration of imaging system will lead to
misestimate of n(ρ) thus of D and through the fitting process in µ and T. The method
of [71] is based on the use of two specific thermodynamic variables, the pressure and
the compressibility; in addition, absolute energy scales T and µ are replaced by a single
relative scale dµ, which was itself determined by the LDA through dµ = −dU. Our
method does not rely on specific thermodynamic variables but rather provides a generic
formalism that can readily be applied to other quantum systems.]

4.1.1. A set of new dimensionless variables Xν

We start our analysis by considering an atomic gas in thermodynamic equilibrium
confined in a known potential U(ρ). The only hypothesis for the method is the LDA,
which entails that n(ρ) depends on position only through the local value of the trapping
potential: n(ρ) = n[U(ρ)]. Although this method is applicable to any dimension, we
focus here on the particular case of the two-dimensional gas for the sake of clarity. Let
us introduce the energy E[U(ρ))] with ρ = (x, y), defined by 1

E =
h̄2

m
n, (4.1)

which we want to combine with other relevant energies in order to form useful dimen-
sionless variables. Though no absolute energy scales are readily available, a relative
energy scale is provided by the variation of the trapping potential dU. Furthermore,
quantities formed in this manner are directly connected by the LDA to the properties
of the uniform gas using the relation dµ = −dU. Thus, we define the dimensionless

1. In dimension d, this equation takes the general form E = h̄2 n2/d/m
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4.1. General "fit free" formalism for determination of a scale-invariant EoS

quantities

Xν ≡ Eν−1 ∂νE

∂µν
= (−1)ν Eν−1 dνE

dUν
, (4.2)

where ν is an integer. By convention, X0 = 1 and a negative ν will instead correspond
to |ν| successive integrations of E with respect to U, with for example

X−1 =
1

E2

∫ ∞

U
E(U′) dU′ . (4.3)

From a given image of the gas n(ρ), one can thus construct all functions Xν(V) (assum-
ing that U(ρ) is well known.

4.1.2. Determination of the EoS by mean of the Xν

In the case of a scale invariant system, the knowledge of a single thermodynamic
variable Xν is sufficient to determine the state of the fluid, hence the values of all other
variables Xν′ . In other words, all individual measurements must collapse on a single
line in each plane {Xν, Xν′}, irrespective of their temperature and chemical potential.
Such a line is a valid EoS of the fluid under consideration.

Once the Xν are known, all other thermodynamic quantities can be determined, up to
an integration constant. In particular, one can derive the phase-space density D and the
ratio α = µ/kBT. Let us suppose that a point (X

(0)
ν , X

(0)
ν′ ) can be identified in a known

portion the EoS, and that it corresponds to the values α0 and D0. The link between the
set {Xν} and (α,D) is provided by

D(X
(1)
ν ) = D0 exp

(

∫ X
(1)
ν

X
(0)
ν

X1

(ν − 1)X1Xν + Xν+1
dXν

)

, (4.4)

α(X
(1)
ν ) = α0 +

1
2π

∫ X
(1)
ν

X
(0)
ν

D(Xν)

(ν − 1)X1Xν + Xν+1
dXν . (4.5)

The determination of (α,D) thus requires the knowledge of a triplet {X1, Xν, Xν+1}.
This requirement can be weakened by choosing ν = 1 or ν = −1, in which case only
the pairs {X1, X−1} or {X1, X2} are needed.

4.1.3. Some examples

[We illustrate here in larger details this general formalism with the examples of the
EoS established in Ch. 1.

4.1.3.1. The non interacting 2D gas

In 1.1.3, we established the EoS of the ideal 2D gas confined in a potential U in terms
of the PSD along Eq. 1.25. As E = DkBT/2π, we deduce the general relation

E[U] = − kBT

2π
ln (1 − Z[U]) with Z[U] = e(µ0−U)/kBT (4.6)
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Figure 4.1.: Determination of the EoS with variables X−1 and X1, along with known limits.
The simple cases of the ideal Bose gas (Boltzmann gas) is shown in blue dashed (
dotted) line. The known limits of the EoS of the weakly interacting 2D Bose gas are
indicated by a black point for the Thomas–Fermi limit and by a black full line for
the Hartree–Fock mean field theory. The red line results from the averaging over
all the separate intensity profiles, with the error bars corresponding to the standard
error introduced by the averaging procedure. The data shown here contains ∼ 100
different values of X−1. Inset: distribution of measured values of X−1 and X1. The
gray level indicates the number of individual data points falling in each pixel.

(where µ0 ≤ 0 is the chemical potential at the trap center). From this relation we can
deduce the dependencies of the Xν’s in the local fugacity Z ≡ Z[U], which lead to
implicit relations between any couple of Xν’s. For example in the three simplifying
cases that we shed to light in previous section :

X1[Z] =
1

2π

1
1/Z − 1

(4.7)

X−1[Z] = 2π
g2(Z)

[ln (1 − Z)]2
(4.8)

X2[Z] =
1

(2π)2
−Z ln (1 − Z)

(1 − Z)2 . (4.9)

where g2 is the second polylogarithm function. The corresponding EoS can be simply
plotted by varying the fugacity Z from 0 to 1.
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4.1. General "fit free" formalism for determination of a scale-invariant EoS

Maxwell-Boltzmann approximation If we consider now a gas in the very weakly
degenerate regime (with |µ0| ≫ kBT) then the EoS linking D to Z can be simplify along
Eq. 1.17 and we recover the classical Boltzmann prediction D = Z. We deduce from
Z[U] dependency (Eq. 4.6) the simple dependencies of the Xν’s (in the three cases of
interest):

X1[Z] = Z/2π (4.10)

X−1[Z] = 2π/Z (4.11)

X2[Z] = (Z/2π)2 (4.12)

and the EoS are simply X−1 = 1/X1 (as shown in Fig. 4.1) and X2 = X2
1 . In a gen-

eral manner, the EoS in terms of the Xν’s can be obtained analytically in this classical
description.

4.1.3.2. The interacting 2D gases

For an interacting 2D gas, the EoS is not known analytically; however for the Bosonic
case, it can be approximated in two limiting cases (see 1.1.4.3).

Hartree Fock Approximation In the weakly degenerate regime, Hartree–Fock ap-
proximation applies and leads to the EoS of Eq. 1.31. It rewrites as an implicit equation
of E[U]

E[U] = − kBT

2π
ln
(

1 − e(µ0−U−2g̃E[U])/kBT
)

, (4.13)

from which we extracted numerically the values of X−1 and X1 and plotted the corre-
sponding EoS in Fig. 4.1.

Thomas Fermi Approximation In the opposite case of a strongly degenerate gas
(µ > kBT), the gas is described by the Thomas–Fermi equation (Eq. 1.33) and

E[U] = −µ0 − U

2πg̃
. (4.14)

Then, all Xν are constant, with

X−1 = g̃/2 (4.15)

X1 = 1/g̃ (4.16)

X2 = 0 (4.17)

The Thomas Fermi approximation then leads to a single point EoS in any (Xν, Xν′)

representation as shown in Fig. 4.1 ]
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4. Fit-free determination of the equation of state and scale invariance

4.2. Application to the 2D Bose gas across BKT transition

[We now turn to the practical implementation of this method for processing data
obtained with a quasi-2D rubidium weakly interacting gas. First we will present the
experimental procedure to acquire the density profiles n[U] in terms of the in-plane
trapping potential. We note that in our 2D geometry (contrarily to [71]), the spatial
density n(ρ) is directly accessible from an image of the cloud. Then we will follow
the procedure described in the first part of this chapter to our experimental profile and
deduce a measurement of EoS (µ/kBT,D) around the critical BKT point with unprece-
dented accuracy.]

4.2.1. Acquiring Experimental profile n(U)

4.2.1.1. Experimental sequence

Our experimental preparation follows the lines detailed in [70, 110, 139]. We start
with a 3D gas of 87Rb atoms, confined in their F = mF = 2 state in a magnetic trap.
To create a 2D system, we shine an off-resonant blue-detuned laser beam on the atoms,
with an intensity node in the plane z = 0. The resulting potential provides a strong con-
finement perpendicular to this plane, with oscillation frequency ωz/2π = 1.9 (2) kHz,
which decreases at most by 5% over typical distribution radii. This corresponds to the
interaction strength g̃ =

√
8π as/ℓz ≈ 0.1, where as is the 3D scattering length and

ℓz =
√

h̄/mωz (see 1.1.4.1). The energy h̄ωz is comparable to the thermal energy kBT,
which ensures that most of the atoms occupy the ground state of the potential along
z (see 4.2.2.3 and Annex F). For the analysis presented below, we used a data set of
80 samples, with temperatures ranging from 30 nK to 150 nK and atom numbers from
25 000 to 120 000.

4.2.1.2. Characterization of the in-plane trapping potential

[Though the method presented above relies neither on a thermometry of individ-
ual images nor on a precise determination of the detectivity of the imaging system, a
precise knowledge of the trapping potential along xy is required. In this data set, the
in-plane trapping is mainly provided by the TOP trap which results in an harmonic
confinement. The mean oscillation frequency is measured via excitation of the center of
mass oscillation and ωr/2π = 20.6 (1)Hz. However as outlined in 2.2.3 the intensity
profile of the beam that freezes the z degree of freedom may also affects this U(ρ) and
leads to some anharmonicity.]

The following section was initially published as part of the supplemental material of [70], and

is reproduced without modifications

These imperfections are revealed by looking at the center of mass oscillations xcm(t)

and ycm(t), shown in Fig. 4.2a,b. Whereas the oscillation along the direction of propa-
gation of the “freezing laser" (x) shows no deviation with respect to harmonic motion,
the oscillation along y is damped. This is likely caused by irregularities of the trans-
verse intensity profile of the freezing laser. In order to cope with these defects we have
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4.2. Application to the 2D Bose gas across BKT transition

abandoned the standard technique consisting in making angular average of the images
to produce radial density profiles. Instead we take advantage of the separability of the
potential in the xy plane: U(x, y) = mω2

xx2/2 + δU(y), where δU(y) accounts for the
magnetic trapping potential and the irregularities of the freezing laser. We consider
cuts of the measured density profile along the x direction, measured for various yi’s
with i = 1, . . . , q. In practice, we consider the q = 31 central lines of our images. We
expect that two cuts corresponding to y1 and y2 coincide, provided we shift the second
one by making the substitution mω2

xx2 → mω2
xx2 + δU(y2) − δU(y1). In practice we

perform a least-square fit to optimize the superposition of the various cuts, taking the
numbers δU(yi) as parameters. We use a single set of δU(yj) to fit a whole series of
images taken at a given temperature. The robustness of the procedure is excellent, as
shown in Fig. 4.2c, where we give the reconstructed potential δU(y), with bars corre-
sponding to the statistical errors of the δU(yj)’s for various series of images acquired at
different temperatures.

4.2.1.3. Imaging procedure

After letting the cloud equilibrate for 3 s in this combined magnetic and dipole trap,
we measure the density distribution n(r) by performing in-situ absorption imaging
with a probe beam perpendicular to the plane of the atoms. [Following lines presented
in Ch. 3, we use a combination of saturating (typically, the intensity shined on the atoms
is I ≈ 40Isat) and non-saturating (typically I/Isat ≈ 0.7) absorption imaging technique.
The first one is reliable for all n but suffers from bad signal-to-noise ratio at low n. The
second is less noisy but suffers systematic errors at high n (see Annex D). Since both
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Figure 4.2.: (a) and (b) Center of mass oscillations (hollow circles ◦) along x (a) and y (b). The
red lines correspond to a fit with a sine (a) and a damped sine (b). (c) Reconstructed
potential along the y axis (filled circles •) and a harmonic fit (red line).
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4. Fit-free determination of the equation of state and scale invariance

imaging processes destroy the atomic distribution, each sample is prepared twice and
imaged successively in the low and high intensity regime.]

In Fig. 4.3 we show typical density distributions of 2D atomic clouds, together with
the corresponding function n[U(ρ)]. The cloud (a) exhibits a significant thermal frac-
tion, contrarily to cloud (b), which is essentially in the Thomas-Fermi regime. The latter
illustrates the power of this fit-free method, since it can be incorporated as such in our
determination of the EoS. On the opposite, it would be discarded in a conventional
approach, owing to the impossibility to assign it a temperature.
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Figure 4.3.: (a) and (b) Density distributions of 2D atomic samples of 87Rb corresponding to
a partially degenerate (a) and a strongly degenerate cloud (b). (c) Correspond-
ing function n[U(ρ)]resulting from azimuthal averaging. The distributions are ob-
tained with high intensity imaging.
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4.2. Application to the 2D Bose gas across BKT transition

4.2.2. Implementation of the "fit-free" method

4.2.2.1. EoS in terms of the new variables Xν

Though both choices of variables (X−1, X1) and (X1, X2) are in principle possible, the
latter requires the experimental evaluation of a second-order derivative, which often
suffers from a poor signal-to-noise ratio. By contrast the choice (X−1, X1), also adopted
in [71] when writing the EoS in terms of pressure and compressibility, appears particu-
larly robust 2. For each image, we perform an azimuthal average and compute a set of
≈ 70 data points (X−1, X1), where the low (high) values of X−1 correspond to the high
(low) density regions of the image.

In a first step, we combine all sets obtained from images acquired at various temper-
atures and various atom numbers to test the scale invariance. As explained above, each
individual measurement should sit on the same universal curve in the (X−1, X1) plane,
provided the interaction strength g̃ is constant. We show in the inset of Fig. 4.1 the
repartition of data points in the (X−1, X1) plane, which fall as expected around a single
curve. In the main panel we plot the corresponding average curve, which provides the
EoS of our gas 3.

4.2.2.2. EoS for the conventional variables µ/kBT and D

In order to re-express this EoS in terms of the more traditional variables α and D,
we now need to apply the transformations of Eqs. 4.4 and 4.5. However, this trans-
formation must be adapted to account for possible imperfections in the calibration of
the detectivity of our imaging setup. Indeed, as in most cold atoms experiments, we
only measure the density up to a global multiplicative factor β 4, which is defined as
the ratio between the unknown actual absorption cross-section and the ideal one ex-
pected for monochromatic probe light in the absence of stray magnetic fields. Taking
this calibration factor into account amounts to replacing Eqs. 4.4 and 4.5 by

D(X
(1)
ν ) = D0 exp

(

∫ X
(1)
ν /βν

X
(0)
ν /βν

X1

(ν − 1)X1Xν + Xν+1
dXν

)

(4.18)

α(X
(1)
ν ) = α0 +

β

2π

∫ X
(1)
ν /βν

X
(0)
ν /βν

D(Xν)

(ν − 1)X1Xν + Xν+1
dXν (4.19)

where the bounds of the integrals now depend on β and where X
(0)
ν /βν corresponds to

the reference values α0 and D0. The value of β is a priori unknown; however, it can be
determined by fitting the measured EoS to the Hartree–Fock mean-field (HFMF) theory,
which is a good approximation in the region α < 0. This procedure applies to any other
quantum gas, provided one has a good knowledge of the EoS in a given segment of the
parameters space.

2. In our case, the compressibility is given by κ = X1/(n2 h2/m) and the pressure by P = X−1 n2 h2/m
3. We extract data points with X−1 < 2.5 (X−1 > 2.5) from high (low) intensity imaging.
4. This factor is taken into account in Eq. 4.1 by E = β(h̄2/m)n. The definition of Xν is unchanged.
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Figure 4.4.: (a) Equation of state of the 2D Bose gas, determined with Eqs. 4.4 and 4.5 (red
points), with a detailed view of the critical region around the BKT transition (blue
dash-dotted line) in (b). Statistical error bars are too small to be shown on these
plots. We show for comparison the classical field Monte Carlo prediction Dth [125]
in black squares, the Thomas–Fermi limit in black dash-dotted line and the HFMF
theory in black full line. We provide a quantitative estimate of the difference be-
tween measurement and prediction in (c). There, we plot D/Dth − 1, where zero
indicates perfect agreement. The error bars result from a boostrap analysis of the
experimental data.

We choose the bound of Eqs. 4.18 and 4.19 at X0
−1 = 3, which corresponds to a phase-

space density D0 = 1.45 and α0 = −0.22, well within the HFMF regime, and find
a detectivity factor β = 0.456 (1) 5 after taking into account the contribution of the
transverse excitations as we will describe in next paragraph.

4.2.2.3. Removing the contribution for thermally populated transverse states

The method presented in the main text assumes the EoS to be strictly scale invari-
ant. However, when the temperature T of an individual realization is on the order of

5. The error bar on this value is calculated through a bootstrap analysis. The result is consistent with
our (less precise) previous estimate for the same setup, β = 0.40(2), which was based on a different
method [70].
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4.2. Application to the 2D Bose gas across BKT transition

the harmonic oscillator level spacing h̄ωz/kB ∼ 100 nK, a fraction of the atoms occupy
transverse excited states of the confinement potential. Their contribution can be evalu-
ated and self-consistently removed in the following manner.

1. We calculate the EoS in variables (X−1, X1) with the method described above.
This process yields a preliminary determination of the EoS, as well as a value for
the detectivity β(0) = 0.481(4). Both these measurements contain a systematic
error introduced by the thermally populated transverse levels.

2. We measure the temperature and the chemical potential of the atomic distribu-
tion of each individual image by fixing the detectivity β to the value determined
above, and by fitting with the EoS measured previously. Since the EoS contains
excited levels in its determination, we expect that the measured temperature will
also be affected. Note that the population of the excited states is only 10% of the
total population at most: we therefore expect a similarly small shift of the tem-
perature and chemical potential.

3. We self-consistently evaluate the contribution of the excited levels to the total den-
sity, assuming the atoms in the excited states of the z motion to be in the HFMF
regime [70, 103, 109] (see also Annex F) and subtract them to obtain an estimate
of the population of the ground state. We find that the phase-space density asso-
ciated with the excited states is at most 0.5, which justifies to describe these states
with the HFMF approximation.

4. With the new estimate of the population of the ground state for each image, we
generate a new EoS with the method outlined above. We also determine a more
accurate value of the detectivity, and find β =0.456(1).

5. In principle, this process can be iterated to obtain an even more accurate deter-
mination of the temperature for each image. However, this does not lead to an
improved measurement.

As shown in Fig. 4.5, the subtraction of the excited states does not significantly affect
the EoS, though the detectivity is significantly modified.

4.2.2.4. Comparison to theory predictions

The EoS in terms of the variables (α,D) – obtained after a small correction due to
excited states of the z motion – is shown in Fig. 4.4a, along with the numerical predic-
tion Dth [125]. The reconstructed EoS is remarkably smooth and doesn’t display any
particular feature at the transition point. This observation is also made on the EoS for
pressure, entropy and heat capacity(see 4.2.2.5). This illustrates the “infinite order" na-
ture of the BKT transition, which is not associated to any singularity of thermodynamic
quantities 6, as opposed to phase transitions driven by the breaking of a continuous
symmetry, such as the second order lambda transition observed at MIT [71]. To com-
pare quantitatively the reconstructed EoS with the numerical prediction, we plot the
quantity D/Dth − 1 in Fig. 4.4c, and find it to lie consistently below 15 %, and even

6. A singularity however appears in the superfluid density, which has to be distinguished from the
total density, as the former enters only in the response of the system to an external drag or rotation.
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4. Fit-free determination of the equation of state and scale invariance
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Figure 4.5.: EoS of the 2D Bose gas, determined with Eqs. 4.4 and 4.5. The measurement with-
out (with) subtraction of the population of the excited levels is shown in blue (red)
line.

below 5 % around the phase transition, which occurs at µC/kBT ≈ 0.17 [125]. The de-
viation observed in the fluctuation region below the critical chemical potential might
signal deviations to the classical field picture which is expected to be accurate for g̃ ≪ 1
[124, 125]. Theoretically this deviation could be addressed using Quantum Monte Carlo
methods [127, 140].

4.2.2.5. EoS in other variables

Owing to the scale invariance of the two dimensional Bose gas, the EoS with any pair
of variables can in principle be deduced from the one for D and α. We show in Fig. 4.6
three measurements of such EoS. For example, the pressure is deduced from the density
by n = (∂P/∂µ)T and is expressed in dimensionless units:

P =
P λ2

T
kB

=
1

2π
D2 X−1. (4.20)

Once the pressure is known, extensive variables such as the entropy and the heat capac-
ity can be deduced. The former is derived from the entropy per unit area s = (∂P/∂T)µ,
and the latter from the internal energy C = (∂U/∂T)µ. Expressed in terms of previously
determined thermodynamic quantities, we have

S

N kB
= 2

P
D − α and

C

N kB
=

P
D − α + α X−1 X1 (4.21)
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4.3. Conclusion

In conclusion, we have presented a method to determine the EoS of a scale-invariant
fluid. This method does not rely on thermometry of individual images, nor on the pre-
cise calibration of the detectivity, and leads to a strong reduction of the noise level in
the measurement. We have applied it to the case of a weakly interacting Bose gas and
obtained its EoS with a precision of few percents, in excellent agreement with a theoret-
ical prediction obtained from a classical Monte Carlo simulation. Using the response of
the gas to a gauge field, originating for example from a rotation, this method could be
extended to access the superfluid fraction of the gas along the lines proposed in [65]. In
principle, this method is not limited to scale invariant systems, and could be extended
to any situation described by two independent dimensionless parameters, such as the
zero temperature limit of the Fermi gas, either for a spin-balanced gas with varying
interactions [138], or for a unitary spin-imbalanced Fermi gas [64].
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5. Superfluidity in two dimensions

In this chapter we are interested in a direct experimental proof of the superfluid be-
havior of the 2D Bose gas. Following theoretical description of the beginning of 1.1.4.4,
this is characterizing the absence of heating (up to a critical velocity vc) of the 2D fluid
when excited by a moving obstacle (at velocity v). In this work, we perform "heating"
measurements of our cloud after rotating a potential defect for a time τ. We use har-
monically trap 2D gases and move the defect along an equi-potential such that, by ap-
plying local density approximation (LDA), we investigate a fixed phase space density
D ≡ nλ2

T. We vary the velocity v of the defect and the value of D investigated in order
to map the emergence of the superfluid behavior in the corresponding homogeneous
system.

The following chapter was initially published in [113], and is reproduced without modifications

‘Flow without friction’ is a hallmark of superfluidity [141]. It corresponds to a me-
tastable state in which the fluid has a non-zero relative velocity v with respect to an
external body such as the wall of the container or an impurity. This metastable state is
separated from the equilibrium state of the system (v = 0) by a large energy barrier, so
that the flow can persist for a macroscopic time. The height of the barrier decreases as
v increases, and eventually passes below a threshold (proportional to the thermal en-
ergy) for a critical velocity vc. The microscopic mechanism limiting the barrier height
depends on the nature of the defect and is associated to the creation of phonons and/or
vortices [141]. While the quantitative comparison between experiments and theory is
complicated for liquid 4He, cold atomic gases in the weakly interacting regime are well
suited for precise tests of many-body physics. In particular, superfluidity was observed
in 3D atomic gases by stirring a laser beam or an optical lattice through bosonic [74–
77, 142] or fermionic [78] fluids and by observing the resulting heating or excitations.
Here we transpose this search for dissipation-less motion to a disc-shaped, non ho-
mogeneous 2D Bose gas. We use a small obstacle to locally perturb the system. The
obstacle moves at constant velocity on a circle centered on the cloud, allowing us to
probe the gas at a fixed density. We repeat the experiment for various atom numbers,
temperatures and stirring radii and identify a critical point for superfluid behavior.

5.1. Data acquisition

5.1.1. Experimental scheme

Our experiments are performed with 2D Bose gases of N = 35000 to 95000 87Rb
atoms confined in a cylindrically symmetric harmonic potential V(r) +W(z) (see [70]).
The trap frequencies are ωr/2π = 25.0(5)Hz in the horizontal plane and ωz/2π =
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5. Superfluidity in two dimensions
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Figure 5.1.: Stirring a 2D Bose gas. a, A trapped 2D gas of 87Rb atoms is perturbed by a
focussed laser beam, which moves at constant velocity on a circle centred on the
cloud. The stirring beam has a frequency larger than the 87Rb resonance frequency
(‘blue detuning’ of ≈ 2 nm) and thus creates a repulsive potential which causes a
dip in the density profile. b, The stirring beam is focussed onto the 2D cloud via
a microscope objective of numerical aperture 0.45, which is also used for imaging.
We overlap the two beam paths with a polarizing beam splitter cube (PBS). The
position of the stirring beam is controlled by a two-axis piezo-driven mirror. c, in
situ false-color image of the 2D cloud in the presence of the laser beam (average
over six images). From the dip in the density we deduce the waist of the laser
beam as w0 = 2.0(5) µm. In this image, the intensity of the beam is chosen three
times higher than in the stirring experiment to make the hole well visible even in
the center of the cloud. We use similar images, but with the stirring beam switched
off, to determine the temperature T and the chemical potential µ from a fit of the
Hartree-Fock prediction to the wings of the cloud [70].

1.4 (1) kHz in the vertical direction. We use gases with temperature T and central chem-
ical potential µ in the range 65-120 nK and kB × (35-60) nK, respectively. The interac-
tion energy per particle is given by Uint = (h̄2 g̃/m)n, where n is the 2D spatial density
(typically 100 atoms/µm2 in the center), m the atomic mass and g̃ the dimensionless
interaction strength. Here g̃ =

√
8πa/lz = 0.093, where a = 5.3 nm is the 3D scattering

length and lz =
√

h̄/mωz. The energy h̄ωz (kB × 70 nK) is comparable to kBT and Uint

(∼ kB × 40 nK at the trap center). Thanks to Bose statistics, which limits to typically
10% the fractional atomic density in the axially excited states at the obstacle position,
our gas is well described by the quasi-2D fluid model (see Supplemental Material of
[70]).
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5.2. Observation of a critical velocity

We stir the cloud with a laser beam which creates a repulsive potential with height
Vstir ≈ kB × 80 nK. This is at least twice the local chemical potential µloc(r) = µ − V(r).
The beam has a Gaussian profile with a waist of w0 = 2.0 (5) µm, which is larger than
the local healing length ξ = 1/

√
g̃n (≈ 0.3 µm at the trap center), but small compared

to the size of the cloud (full width at half maximum ≈ 25 µm) (see Fig. 5.1). We stir
for typically tstir = 0.2 s at constant velocity v in a circle of radius r centered on the
cloud. The intensity of the stirring beam is ramped on and off in ≈ 5 ms without any
significant additional heating. Once the stirring beam is switched off, we let the cloud
relax for 0.1 s and measure the temperature Tf.

5.1.2. Heating response and fit

For each configuration (N, T, r), we repeat this experiment for various v from 0 to
2 mm/s and a fixed stirring time tstir. We find two different regimes for the response
and we show an example of each in Fig. 5.2. In Fig. 5.2a, there is a clear threshold be-
havior with no discernable dissipation below a critical velocity. In contrast, in Fig. 5.2b,
the temperature increases without a threshold. We identify these behaviors as the su-
perfluid and normal response, respectively. To model these data we choose for a given
configuration the fit function

Tf(v) = Tf,0 + κ · tstir · max[(v2 − v2
c), 0], (5.1)

which describes the heating of a 2D superfluid in the presence of a moving point-like
defect [143]. In equation (5.1) the three fit parameters are the temperature at zero veloc-
ity Tf,0, the heating coefficient κ, and the critical velocity vc. In the normal state, the fit
finds vc ∼ 0 and the according quadratic heating stems from the linear scaling of the
drag force. In the absence of the stirring beam, there is no significant heating and we
measure the temperature Ti. The presence of the stirring beam at zero velocity leads to
a ‘background heating’ Tf,0 − Ti ∼ 10 nK, which we attribute to photon scattering. In
the following, we use the mean temperature T̄ = (Ti + Tf,0)/2 to characterize the cloud.

5.2. Observation of a critical velocity

In Fig. 5.3, we summarize our data obtained for different configurations (N, T̄, r). We
show in Fig. 5.3a the fitted critical velocities versus the single parameter µloc(r) /kBT̄.
The relevance of this parameter results from (i) the local character of the excitation, so
that the response of the fluid to the moving perturbation is expected to be similar to
that of a uniform gas with the same temperature and the chemical potential µloc, (ii)
the scale invariance of the weakly-interacting 2D Bose gas, whose thermodynamical
properties do not depend separately on µ and T, but only on the ratio µ/kBT (see [69,
70, 125]). In particular, this ratio is univocally related to the phase space density, and
thus characterizes the degree of degeneracy of the cloud.

Quite remarkably, the ensemble of our data for vc when plotted as a function of
µloc/kBT̄ shows a threshold between values compatible with zero and clearly non-zero
values. This threshold is located at µloc/kBT̄ ≈ 0.24, somewhat above the prediction
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Figure 5.2.: Evidence for a critical velocity. Two typical curves of the temperature after stir-
ring the laser beam at varying velocities. a, In the superfluid regime, we observe
a critical velocity (here vc = 0.87(9)mm/s), below which there is no dissipation.
b, In the normal regime, the heating is quadratic in the velocity. The fitted heating
coefficients are κ = 18(3) nK · s/mm2 and κ = 26(3) nK · s/mm2 in a and b, re-
spectively. The experimental parameters are (N, T̄, µ, r)=(87000, 89 nK, kB × 59 nK,
14.4 ¯m) and (38000, 67 nK, kB × 39 nK, 16.6 ¯m) for a and b, respectively, yielding
µloc/kBT̄ = 0.36 and µloc/kBT̄ = 0.04. The data points are the average of typ-
ically ten shots. The y error bars show the standard deviation. The x error bar
denotes the spread of velocities along the size of the stirring beam (1/

√
e radius).

The solid line is a fit to the data according to equation (5.1). The stirring time is
0.2 s for all data points. Note that the three low-lying data points in a correspond
to the completion of an odd number of half turns. For these data points, where
we see a downshift of the temperature by approximately 1.5 nK, we also observe a
displacement of the center of mass of the cloud by a few µm. c and d, Calculated
radial density distribution for the clouds in a and b, respectively. The dashed blue
curve shows the superfluid density, the solid red curve shows the normal den-
sity. The stirring beam potential is indicated by the grey shaded area (in arbitrary
units). The densities are calculated via the local density approximation from the
prediction for an infinite uniform system [125]. The jump of the superfluid density
from zero to a universal value of 4/λ2

dB (where λdB is the thermal de Broglie wave-
length) is a prominent feature of the BKT transition. The normal density makes a
corresponding jump to keep the total density continuous.

(µ/kBT)c = 0.15 for the superfluid phase transition in a uniform system [125] with
g̃ = 0.093. If we assume that the stirrer must stand entirely in the superfluid core in
order to yield a non-zero critical velocity, then the deviation can be attributed to the
non-zero width of the stirring beam. The range of µloc/kBT̄ corresponding to the extent
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5.3. Comparison with theory and previous measurements

of this beam is indicated by the horizontal error bars in Fig. 5.3a. Note that the finite
size of our trapped atomic clouds might also shift the BKT transition, but the effect is
expected to be small (a few percent) and in the opposite direction [125].

We limit the presented stirring radii to r ≥ 10 µm such that the stirring frequencies
ω = v/r for the relevant velocities v ∼ vc are well below ωr. Indeed, smaller radii
correspond to a larger centripetal acceleration. This could lead to additional heating
via the phonon analog of synchrotron radiation, as observed in the formally similar
context of capillary waves generated by a rotating object [144].

5.3. Comparison with theory and previous measurements

For a homogeneous system, the value of the critical velocity is limited by two dis-
sipation mechanisms, the excitation of phonons or vortices. For a point-like obstacle
[143], phonon excitation dominates and vc is equal to the speed of sound, given in the
zero temperature limit by cs = h̄

√
g̃n/m (≈ 1.6 mm/s for n = 50 atoms/µm2) (this

situation is described by the celebrated Landau criterion [141]). When the obstacle size
w0 increases and becomes comparable to ξ, dissipation via the nucleation of vortex-
antivortex pairs (vortex rings in 3D) becomes significant [145–147]. The correspond-
ing vc is then notably reduced with respect to cs. In the limit of very large obstacles
(w0 ≫ ξ), an analytical analysis of the superfluid flow stability yields vc ∼ h̄/mw0 ≪ cs

(see [148, 149]). With an obstacle size w0 & ξ, our experimental situation is intermediate
between these two asymptotic regimes. For a non-homogeneous system like ours with
the stirring obstacle close to the border of the expected superfluid regime, one can also
excite surface modes [132, 150], which constitute an additional dissipation mechanism.

Our measured critical velocities are in the range 0.5–1.0 mm/s, i.e., vc/cs = 0.3 −
0.6. By contrast, previous experiments in 3D clouds found lower fractions vc/cs ∼
0.1 (see [75]). The difference may be due to the larger size of the obstacles that were
used, and to the average along the axis of the stirring beam of the density distribution
in the 3D gas [151]. The dominant dissipation mechanism could be revealed by e.g.
directly observing the created vortex pairs as in [142] or interferometrically detecting
the Cerenkov-like wave pattern for v > cs as in experiments with a non-equilibrium 2D
superfluid of exciton-polariton quasi-particles [152].

5.4. Heating coeficient

Fig. 5.3b shows the fitted heating coefficients κ for the normal (red circles) and super-
fluid data (blue circles). In the normal region, we expect the heating to scale linearly
with the normal density nno (see [76]). Using the prediction of [125] for n̄no (averaged
over the size of the stirring beam) we fit κ = a1 · n̄no and obtain a1 ≈ 3 · 10−6 nK · s.
This value is in reasonable agreement with the prediction of a model [76] of a single
particle with a thermal velocity distribution of mean v̄ =

√
πkBT/2m colliding with a

moving hard wall of width L = w0 yielding a1 = 16mLv̄/πNkB ∼ 6 · 10−6 nK · s (for
N = 65000 and T = 90 nK). In particular our data nicely reproduce the maximum of
n̄no around the expected superfluid transition point. In the superfluid case and v > vc,
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5. Superfluidity in two dimensions

a)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

µloc/kBT̄

v
c

(m
m

/
s)

b)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

20

40

µloc/kBT̄

κ
(n

K
s

/
m

m
2 )

10 20
0

1

r (µm)

v
c

(m
m

/
s)

Figure 5.3.: Superfluid behaviour across the BKT transition. a, The critical velocities vc ob-
tained from the curves as in Fig.(5.2) plotted versus the single parameter µloc/kBT̄,
which is the relevant quantity due to the scale invariance of the weakly-interacting
2D Bose gas. Our data show a threshold between critical velocities compatible with
zero and clearly non-zero critical velocities. It is located at µloc/kBT̄ ≈ 0.24 (dashed
line), somewhat above the prediction (µloc/kBT)c = 0.15 for the BKT transition in
an infinite uniform system [125] (the grey shaded area indicates the normal state
by this prediction). The x error bars indicate the region of µloc/kBT̄ that is traced
by the stirring beam due to its size (using the 1/

√
e width of the beam) and due to

the ‘background heating’. The y error bar is the fitting error. The inset to a shows
the critical velocity plotted versus the stirring radius r. Due to the different atom
numbers and temperatures of the clouds, we can find superfluid or normal be-
haviour for the same radius. b, The heating coefficient κ as a function of µloc/kBT̄
for the normal data (red circles) and the superfluid data (blue circles). The red solid
line shows a fit of κ linear in the normal density, as expected from a single-particle
model. The blue dashed line shows an empirical fit quadratic in the superfluid
density. The calculation for the densities assumes T̄ = 90 nK and the densities are
averaged over the size of the stirring beam.

we empirically fit a quadratic scaling of the heating with density κ = a2 · n2
SF and find

a2 = 8 · 10−9 nK · s · ¯m2. In principle, one could develop a more refined model to de-
scribe the superfluid region, by taking into account the coexistence of the normal and
superfluid states via the sum of two heating terms. However, within the accuracy of
our data, we did not find any evidence for the need of such a more refined description.
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5.5. conclusion

5.5. conclusion

We have presented a direct proof of the superfluid character of a trapped 2D Bose
gas. An interesting extension of our work would be the study of superfluidity from the
complementary point of view of persistent currents, by adapting to 2D the pioneering
experiments performed in 3D toroidal traps [79–81].
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6. The uniform two-dimensional Bose gas

In this chapter, I will present our experimental development toward the production
of a two–dimensional uniform atomic gas. For creating such an unusual atomic sample,
we need to shape the confining potential into a box-like one in the radial directions
whereas along the vertical axis the confinement is still set by the light–sheet beam (see
2.2). The resulting radial potential must show:

— a central uniform region where the potential is constant (equals to Ubottom) and
where the atoms can be trapped. We characterized this central region by its typical
radial extension Rbox.

— a high energy barrier of height Ubarrier delimiting this central trapping region from
the outer anti-confining one. This edge domain where the potential varies from
Ubottom to Ubarrier must ideally be of zero spatial extent (that is to say of infinite
sharpness).

Of course, every possible experimental implementation of such a trapping configu-
ration would present some defects compared to these ideal characteristics, which are
non–uniformities of the central trapping region and a finite stiffness of the edges. The
relative importance of these defects for the various implementation options dictates an
experimental choice between them.

In a first part, I will introduce specifications on the potential properties emanating
from the particular gas configurations we want to study. Then, I will detail two schemes
for creating uniform trapping using a single laser beam, far blue-detuned compared to
the atomic resonance. These two schemes consist in two ways of shaping the beam
to display a dark center at the position of the atoms. In both cases, I will present a
quantitative and detailed characterization of the potential created, both theoretically
and experimentally to justify our choice.

6.1. Experimental specifications for our 2D Uniform trap

In this section, I deduce specific constraints on the uniform trapping potential stem-
ming from a theoretical analysis of the range of cloud parameters we want to study.
These constraints will give rise to specifications for our experimental realization of uni-
form trapping, that I will present later on. It will lead to a choice between the different
possibilities. I start by presenting the physical regime we are interested in for our gas
and deduce the atomic configurations we want to achieve in terms of atom number N,
temperature T and interaction energy per particle ǫint. I then define the resulting con-
straints on the trap height, on the uniformity of its central region and on the steepness
of its edges. Finally, I present various possibilities for experimentally realizing such a
trapping configuration and select two of them for further experimental tests.
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6. The uniform two-dimensional Bose gas

6.1.1. Physical properties of the gas under study

The physical configuration of the 2D gas we want to create, which is characterized
by N, T and ǫint, is constrained by the combination of the range of physical properties
of interest in our studies and of the characteristics of our 2D trapping configuration.

In our experiments, we want to vary these cloud parameters to test the thermody-
namic transitions described in Chapter 1 – namely the partial condensation along trans-
verse condensation (BEC⊥), the condensation to the full ground state induced in 2D by
finite-size effects and the Berezinskii–Kosterlitz–Thouless (BKT) transition. In our con-
figuration, BEC⊥ arises at total 2D phase–space density (PSD) D(2D)

tot ≡ n(2D)λ2
T equals

to D(2D)
tot, BEC⊥

∼ π2/6 × kBT/h̄ωz (where n(2D) stands for the total 2D atomic density,
λT for the thermal wavelength and ωz stands for the oscillation frequency of the trans-
verse motion). Due to the requirement on the trap anisotropy for the relevance of the
two step condensation picture (see 1.2.3.2), we restrain ourselves to kBT . 15h̄ωz so
that typically 1 D(2D)

tot, BEC⊥
. 25. The two latter transitions (BEC and BKT) occur at a

larger 2D phase–space density (PSD) verifying D(2D)
0 ≈ D(2D)

0, BEC,D(2D)
0, BKT ∼ 8. For study-

ing gas properties around these transitions, we thus want to cover a typical range of
phase–space density D(2D)

tot varying from 1 to 100.
As the typical atom number achievable in our 2D gases varies from N = 103 to

N = 105 and the box surface ranges 2 in Abox = 300–900 µm2, the typical atomic density
varies from n(2D) = 1 to 150 µm−2. For realizing the desired PSDs, we then roughly
study T around 100 nK, typically varied from a few tens up to a few hundreds nK. In
these cases, we can estimate the interaction energy of our gas, by:

— using predictions from classical Monte Carlo simulations [124, 125] or solving
Gross Pitaevskii equation (see Annex B). These predictions are valid for our cold-
est cloud (compared to temperature associated with transverse trapping energy
gap h̄ωz/kB which varies from 20 nK to 100 nK) and for high enough value of
D(2D) (see Ch. 1). Note that in Thomas–Fermi approximation it simplifies in ǫint ∼
µ/2 ∼ kBT g̃D(2D)/4π (for the most degenerate cases).

— performing a first order approximation from ideal Bose law calculations (see An-
nex A for details). We perform such an estimate for the hottest clouds and lowest
trapping frequency ωz/2π = 350 Hz for which previous prediction does not ap-
ply. In this approximation, we find ǫint . kBT for the considered atomic numbers
N and temperatures T.

6.1.2. Deduced constraints on the trapping potential

The techniques that I will present in this chapter to create a box–like potential are
based on the use of a single far–blue–detuned (λ = 532 nm) laser beam of intensity
I. This beam gives rise to a dipolar potential U = αI on the atoms with α = kB ×

1. Note that in this case the 2D PSD corresponding to the ground state of the z-motion D(2D)
0 ≡ n

(2D)
0 λ2

T

(n(2D)
0 is the 2D density of atoms populating the ground-state of the z-motion) is logarithmically smaller

than D(2D)
tot, BEC⊥

(see Eq. 1.51) , which gives D(2D)
0, BEC⊥

. 4
2. This is set by the radial extent of the LS beam that provides transverse confinement (see 2.2.1).

110



6.1. Experimental specifications for our 2D Uniform trap

59 mK µm2/W (as for the 2D light–sheet potential. see 2.2.1 for details). We thus want
to shape its intensity profile at the position of our sample to create a «hollow beam»,
that presents:

— a central dark region of constant (and small) intensity Ibottom, that constitutes an
«intensity hole».

— a sharp intensity variation at the edges of this «hole» to a high maximal value
Ibarrier.

— a smoothly varying outer region from this intensity maximum toward the outer
and dark region of the beam.

I will present in next sections how to create such a profile, I now focus on the con-
straints on this intensity profile due to the specific cloud configurations under study, as
introduced above.

The constraints bear on three main characteristics:

6.1.2.1. The maximal energy barrier Ubarrier confining the atoms in the central
region

To be able to load a 3D gas of temperature T in the box–trap potential without evap-
oratively cutting its thermal excitations distribution, the necessary energy barrier must
verifies Ubarrier & 10 to 20× kBT. As we want to load gases of T & 250 nK, the resulting
condition reads

Uload
barrier = αIload

barrier & kB × 5 µK. (6.1)

From this inequality, we infer the total power Pload
box needed in the beam depending on

the specific setup used for creating this trap geometry.

6.1.2.2. The uniformity of the trap center:

In order to avoid perturbing the atomic distribution, the variations of the confining
potential in the central uniform region must be small compared to the largest energy
scale between the gas temperature kBT and its interaction energy ǫint. We call δU the
typical variation of the potential height in the central region 3.

We want to characterize the maximally acceptable variation δUmax compared to the
energy barrier Ubarrier

4. We impose 5 δUmax = kBT/2. As, due to evaporation con-
dition, the ratio of the potential barrier and the temperature is typically bounded to
Ubarrier/kBT . 10, then, in the intensity profile at the position of the atoms, the maxi-

mal variation of intensity in the central region must be less than 5% of the maximal

3. We will see at the end of the paragraph how to self-consistently define such a central region: It will be
delimited by an upper potential bound Umin = Ubottom + δUmax where δUmax is the maximally acceptable
value for δU

4. We compare the variation δU and the barrier Ubarrier realized at the same laser power Pbox. As they
are both proportional to this power, the final condition on ratio δUmax/Ubarrier will be independent on
Pbox

5. Note that, for the most degenerate gases (D(2D) & 4π/g̃), the condition given in Eq. 6.2 on the trap
bottom flatness is relaxed due to the prevailing interaction energy ǫint & kBT that introduces a higher
energy scale tending to uniformize cloud density.
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6. The uniform two-dimensional Bose gas

intensity:

δU . δUmax =
Ubarrier

20
. (6.2)

We coherently define the central trapping region to be the domain in which the potential
varies by less than δUmax = Ubarrier/20. It is then defined by the value of the potential
at its edges Umin = Ubottom + Ubarrier/20.

6.1.2.3. The steepness of the walls:

Due to the relation between the temperature and the total energy barrier of the po-
tential, Ubarrier & 5–10 × kBT, Ubarrier happens not to be the relevant reference for defin-
ing the edges felt by the atoms: The potential barriers seen by the atomic ensemble
is more accurately described by a fraction of the total height, typically we take it to
Umax = Umin + Ubarrier/5 where Umin is the previously introduced potential limit to
the inner trapping region. To describe quantitatively the steepness of this part of the
potential, we will measure two quantities:

1. First, we define the characteristic length on which the potential varies from Umin

to Umax. This length scale will be called the «stiffness» of the uniform trap and it
will be denoted by η in the rest of this chapter. If r stands for the abscissa along
straight paths going from the center of the beam to its edges:

η = 〈Rbarrier − rmin〉paths /
{

U(Rbarrier) = Umax ≡ Ubottom + Ubarrier/4
U(rmin) = Umin ≡ Ubottom + Ubarrier/20

(6.3)

To be sharp, the edges must correspond to an η that is short compared to the
other characteristic macroscopic lengths of the problem. This is commonly the
trap extension 6 Rbox and we impose η . Rbox/3. Typically, Rbox ranges in 5–15
µm resulting in η . 1.7–5 µm. η must also be smaller than or comparable to the
microscopic length of the problem, that is commonly the healing length ξ defined
by ξ = 1/

√
g̃n. For our configuration, we typically have ξ = 0.5–1.5 µm. and we

impose η / ξ. In conclusion, η characterizes the relevant edges of the potential

and we require it to be of a few micrometers or less.

2. To consider our trap as a box-like one, we also want to differentiate it from the
commonly used harmonic-trap. To do so, we need to characterize the way the
potential varies from its center to the edges. We thus perform a power–law fit of
the potential from r = 0 to r = Rbarrier that is the abscissa 7 for which the potential
is equal to Umax defined in Eq. 6.3. The fitting function used is:

ffit(r) = Ibottom + B (r/Rbarrier)
β (6.4)

6. For anisotropic trap, we would in fact define several stiffness, one for each symmetry axis . To do so,
we perform averages in Eq. 6.3 over paths along each symmetry axis. We would compare each of them to
the corresponding axis characteristic size.

7. Before performing such a fit, we in fact usually realize some averaging of the potential profile to con-
vert dependency U(x, y) → V(r). For box-trap presenting rotation symmetry, we perform usual azimuthal
averaging. For trap presenting no rotation symmetry, we will use averaged cut along each symmetry axis.
This will usually result in several power law fits characterization, one for each axis.
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6.1. Experimental specifications for our 2D Uniform trap

We will impose 8 a power–law coefficient β & 5.

Those two quantities are related as, for a given radius Rbox, the lower β is, the larger
η. But the precise relation between them depends on the radius Rbox of the trapping
region. Both quantities give, in their respective way, an interesting insight on the con-
finement of our cloud. We are thus interested in computing both quantities for each of
our experimental implementation.

6.1.3. Choice on experimental technique to realize the uniform trap

Several techniques have been developed over years to realize a box–like or at least
non–harmonic potential. In most of these previous experimental realizations, we note
that the potential needed to be three–dimensional. In this section, I will briefly intro-
duced selected examples. I will point out two realizations we have tested experimen-
tally in our setup and that I will detail in the rest of the chapter.

A first technique have been developed to create dark non–harmonic potentials using
phase plates [153]. This strategy is very similar to the solution we have implemented
for creating the 2D light–sheet potential (see 2.2). A specific phase is imprinted on an
initially Gaussian beam that is then focused with a lens. The phase profile is then con-
verted into an intensity profile. Various choices have been made concerning the specific
phase imprint used in these setups. The first proposals were only using one plate gener-
ating, after conjugation, either a Laguerre–Gaussian beam [153] or a Hermite–Gaussian
one [154]. Due to typical 3D geometry used in experiments, it was profitable to com-
bine several of them as in [155, 156]. In our advantageous 2D geometry, we can keep
using a unique plate. We choose to test this technique experimentally on our atoms.

Axicon lenses have been used to create collimated beam exhibiting an hollow center
as in [157] and [158]. The hollow center is robust along the beam propagation. It never-
theless needs to be cleaned to be of a sufficient quality to uniformly trap atoms. Such a
cleaning is done using a dark spot in combination with this special lenses (see [157]).

In our specific configuration, due to the huge advantage of 2D geometry, we in fact
develop a much simpler method, only using the cleaning mask to create the hollow
beam at the specific image position. This technique only manipulates intensity profiles
using diffraction on the mask. Then the cancelation of the beam profile is not extended
along the beam propagation and has a short «depth of field», that is that the central
hollow region is deformed and blurred when getting away from the precise focus po-
sition. Nevertheless, due to our planar geometry, we were comforted in trying this
simple method prior to any complication using special optics devices.

One can use a rapidly rotating laser beam that creates the desired barrier by time-
averaging (if the rotation frequency is high enough compared to the evolution time of
the atomic cloud). Such a method has been implemented using a Acousto–Optic Mod-
ulator in [159]. It is a very versatile procedure but it has only been implemented for
creating large traps (typical radius of 100 µm) confining hotter clouds (typically of sev-

8. This choice is arbitrary and simply sets to be significantly different from an harmonic behavior.
Previous PhD student Rémi Desbuquois [111] in fact imposes a more severe constraint (β & 10) in order
to inverse BKT and BEC transitions apparition order.
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6. The uniform two-dimensional Bose gas

eral tens of µK). We did not consider this technique in our setup. We were in particular
concerned by heating issues.

In Hadzibabic group [49], 3D uniform potential are created via the use of a Spatial

Light Modulator (SLM). This technique also use a phase imprint but here the phase
imprinted can be controlled dynamically to correct for optical defects. This technique
was first implemented in [160]. The specific refreshing frequency of such a device made
them unusable for our specific experimental setup. For this reason, we discard this
possible implementation.

In the rest of the chapter, I will present the experimental implementation of the two
methods pointed out as relevant for our specific configuration. For each of them, I will
characterize the uniform potential and compare the results to the specifications defined
in this section. This will lead to an experimental choice between them:

1. We first developed a holographic method using a phase plate to generate a La-
guerre Gaussian beam of high order. Even though seemingly robust (as the can-
celation of the intensity profile is topologically ensured), such a technique reveals
experimentally limited in terms of both barrier height and trap bottom quality.
As not complying with the experimental requirements for our gases, we decided
to discard it.

2. We then developed a simple geometrical imaging method using a blocking mask
that we image at the position of the atoms. Even though the cancelation of the
beam profile only occurs at the exact image position of the mask, we experimen-
tally select this second method as the most relevant to simulate uniform trapping
in our specific 2D geometry (Note that such a conclusion would not hold for the
3D case).

6.2. Uniform trap via holographic shaping

6.2.1. Principle

The first method we implemented to create a box-like potential is an holographic
method using an optical phase plate. The experimental setup is described in Fig. 6.1(b)

and follows the same principle as the 2D shaping (see 2.2). The phase plate imprints a
specific phase on a collimated Gaussian beam. This beam is then focused on the atoms
with a lens so that the phase imprint translates into a special amplitude profile at this
position. The phase imprint chosen for creating the desired «hollow beam» at the lens
focus is a linear function of the angle while a constant with the radius so that it results
in a phase winding when completing a revolution around the plate 9 (see Fig. 6.1(a).
The overall phase winding must be a multiple n of 2π. Such a phase is thus similar to
the one found in a n-fold vortex.

As for the 2D shaping (see 2.2.1), the resulting trapping potential U is deduced from
the intensity profile IHG at the focus of the lens by U = αIHG. Detailed calculations
of the intensity profile IHG in the paraxial approximation were performed by previous

9. We should note that in practice the phase is not continuously varying with the angle but use discrete
steps defining tiny phase sectors (typically our phase plates are made of 96 sectors)
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Figure 6.1.: (a) Six-fold phase vortex imprinted by the phase plate. Though only four phase
sectors per 2π step are represented, our phase plates have 16 sectors per 2π step.
(b) Experimental setup required to create a stadium with a phase plate.

PhD student P. Rath [109]. I will summarize them here. For a phase winding of n × 2π,
the electric field in the focal plane (parameterized by the polar coordinates (ρ, φ)) of the
lens of focal length f is given by

E(ρ, φ) =
∫

r dr dθE0(r, θ) ei nθe
i k

f r ρ cos(θ−φ) (6.5)

where E0 is the electric field distribution in the plane of the phase plate (parameterized
by the polar coordinates (r, θ)) and k = 2π/λ. For a Gaussian profile E0 of waist w0 (at
the phase plate location), this integral can be fully evaluated. Around the origin, the
electric field can be approximated at the lowest order by

E(ρ → 0, φ) ∝

√

2 Pbox

πw′2
0

ei nφ

(

ρ

w′
0

)n

(6.6)

where Pbox is the total power of the beam, and w′
0 is the waist at the focus of the lens

and writes w′
0 = λ f /π w0. We note that the intensity distribution IHG (∝ |E|2) and so

the trapping potential U is proportional to (ρ/w′
0)

2n for ρ → 0. Then the higher n is,
the flatter the central confining region. In practice, we choose to use a phase plate with
n = 6.

6.2.2. Theoretical expectations

Using the general formula obtained by exact integration of Eq. 6.5 for all radius ρ and
for a Gaussian beam (see [109] for details), we compute the whole intensity profile at
the focus of the lens and show it in Fig. 6.2. From this theoretical profile, we deduce the
expected properties for the trapping potential.

First, we note that, in the center, the intensity cancels perfectly I(ρ = 0) = 0. The
intensity shows thus a maximum (denoted Ibarrier) at an intermediate radius Rbarrier

and we find Rbarrier ≈ 3.2 w′
0. For ρ > Rbarrier, the intensity is decreasing slowly and the
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6. The uniform two-dimensional Bose gas

initial beam power is redistributed all along this important outer region. In particular,
for ρ > 5 w′

0, we fit a decay behavior I ∝ ρ−3. We now characterize the inner trapping
region and its edges.

6.2.2.1. Radius of the box-trap

We define the extent of the central dark region by giving the radius inside which the
intensity do not exceed 5% of the intensity peak Imin = Ibarrier/20. This radius denoted
Rbox corresponds to the radius of the resulting uniform-trap on the atoms and we find

I(Rbox) = Ibarrier/20 ⇒ Rbox ≈ 1.5 w′
0. (6.7)

For the range of Rbox of interest, w′
0 must vary from 3 µm to 10 µm. To create such a

small size, we need a specially designed optical setup to strongly focus our beam onto
the atoms. The minimally achievable value of the trap radius will be limited by the
resolution σ of our imaging setup (Rbox & 1.5 σ).

6.2.2.2. Barrier height of the box-trap

Due to the slow decay in the wings of the profile, Ibarrier is only a small fraction of the
intensity maximum I0 = 2P/(πw,2

0 ) of the same Gaussian beam in the absence of the
phase plate. We find

Ibarrier ≈ 0.014 I0 ⇒ Ubarrier = 0.014
2Pbox α

π(Rbox/1.5)2 = 0.02
α Pbox

R2
box

. (6.8)

For a typical box-trap of radius Rbox = 10 µm, we expect Ubarrier = 11.8 µK for Pbox =

1 W. From the constraint of Eq. 6.1, we deduce that for the same Rbox = 10 µm, we need
a total power of Pbox = 850 mW. We note that the power needed depends strongly on
the box-trap radius as Pbox ∝ R2

box. Since only Pbox ∼ 500 mW are available in our
experimental setup, we then have to restrict to Rbox . 8 µm.

6.2.2.3. Steepness of the edges of the box-trap

First, we note that the intensity varies from Imin to Ibarrier in a characteristic length
that is Rbarrier − Rbox = 1.7w′

0 ∼ Rbox (seeFig. 6.2). As we pointed out previously, only
the sharp variation of the potential at small values is relevant to define the steepness of
the resulting potential barrier seen by the atomic ensemble. We then characterize this
steepness as introduced in 6.1.2 and compute:

— The stiffness η = Rbarrier − rmin = 0.41w′
0 = 0.27Rbox.

— The power–law coefficient β = 6.55 ± 0.07.
For such an implementation, the theoretical steepness is limited, but still marginally
satisfies the requirements η ≤ Rbox/3 and β ≥ 5 defined in 6.1.2. Then, if it is realized
experimentally, it must be sufficient to realize a box potential with sharp edges.
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Figure 6.2.: In red solid line, intensity distribution for a phase plate with a 12π phase winding
in paraxial approximation. This beam profile is extracted from exact integration of
Eq. 6.5 for a Gaussian beam. I0 is the intensity in the center of a Gaussian beam
with the same total power P. In orange is presented the power low fit of the trap
edges using Eq. 6.4. The fit gives β = 6.55 ± 0.07.

6.2.3. Experimental results and reasons for abandon

Such a scheme of principle have been tested in a previous campaign on a simplified
optical setup by former PhD students P. Rath [109] and D. Jacob. While still noticing
some defects, the results were supporting for an experimental test on the atoms. I recall
here briefly the deviations compared to the theoretical expectations they pointed out:

— They observed steeper walls than expected.
— The resulting hollow shape is slightly hexagonal, certainly due to the discrete

sectors on the plate. We must take this into account for our detailed cloud analysis
but it does not constitute a stringent limitation.

— An intensity bump occurs at the center of the profile when looking exactly at the
focus of the lens. They manage to get rid of this non–uniformity by moving away
from the focus 10.

Following these conclusions, we decided to implement such a trapping potential on
our main experimental setup.

In this first experimental implementation on the atoms, the box-trap was propagating
upward and so counter–propagating compared to the vertical imaging beam (see 3.2.2
and Fig. 3.3 for a description of the imaging setup). It was superimposed with the
imaging beam just before the microscope objective and imaged on the atoms by this
same microscope objective 11.

10. Note that we perform the same trick for aligning the light-sheet beam which is also generated from
a phase-plate (see 2.2.2)

11. We should note that the microscope objective was design for use with 780 nm wavelength light.
Then some chromatic effects may occur.
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6. The uniform two-dimensional Bose gas

In this setup, we can image the intensity profile of the beam on a side imaging setup
with a camera set at a conjugated position to the location of the atomic plane. This
imaging setup enable to estimate the potential that is effectively felt by the atoms. An
example of the measured intensity distribution is presented in Fig. 6.3(a), and an az-
imuthal averaging is performed in Fig. 6.3(b). For our implementation on the main
experimental setup, we obtain similar results than in the preliminary tests described
above but with stronger defects of the potential center. We perform a quantitative anal-
ysis of the trap characteristics as described in the following.
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Figure 6.3.: (a) Intensity distribution created by a phase plate with a 12π winding. (b) Radial
average of the intensity distribution (red line), along with a fit of the central region
with the fitting function from Eq. 6.4 (orange line). The fit is performed for r ≤ Rbox
(see Eq. 6.7), and the fitted power is β = 7.98 instead of 6.55 as expected from
previous theoretical analysis. The black dotted line correspond to the theoretical
profile with a waist given by Rbox/1.5 = 10 µm. This plot enhance the increased
steepness of the potential barrier in the experiment.

6.2.3.1. Radius of the box-trap and trap bottom

The mean intensity in the trapping center in this distribution is Ibottom = 0.015Ibarrier.
We characterize as previously the radius of the uniform trap to be the distance at which
the intensity is equals to Imin = Ibottom +(Imax − Ibottom)/20. We find here Rbox = 15 µm
and deduce w′

0 = 10 µm. We should note that, in this precise experimental realization,
we displaced the atomic plane away from the focus of the box-trap beam in order to
lower the effect of the central bump already observed in preliminary tests. The radius
value results then from a compromise between the unwanted increase in the beam waist
size due to this defocusing and the gain in uniformity of the central trapping domain.
Rbox = 15 µm corresponds to the maximally acceptable extent of the box-trap in terms
of light sheet radial waist (see 2.2). We highlight that:

1. This configuration gives rise to a limited energy barrier of Ubarrier ∼ 2.6 µK for
the available power Pbox ≈ 500 mW bounding then the temperature of the loaded
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6.2. Uniform trap via holographic shaping

gas.

2. Due to the use of the maximally acceptable Rbox and thus the maximal defocusing
of the box-trap beam, this configuration corresponds to the most favorable one in
terms of the trap bottom fluctuations and edges steepness. Configurations with
smaller radii will necessary lead to more important defects.

6.2.3.2. Steepness of the edges of the box-trap

The intensity maximum Ibarrier is found at Rbarrier = 24 µm which is smaller than
expected. Such an observation agrees with the preliminary-test conclusion that the
walls are steeper than expected. Then the intensity varies from approximately Ibottom to
Ibarrier in a characteristic extent of Rbarrier − Rbox = 0.9 w′

0. The walls steepness is quan-
titatively characterized by the variation at small values of the potential as introduced
in 6.1.2 and we find:

— A stiffness η = 0.34 w′
0 = 0.23 Rbox that is 20% shorter than expected stiffness

and satisfies the required η . Rbox/3.
— A power–law coefficient β = 7.98 ± 0.01 that is also steeper than expected and

satisfies the requirements.

6.2.3.3. Uniformity of the trap bottom
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Figure 6.4.: (a) Intensity distribution created by a phase plate. The intensity has been rescaled
to reveal the features in the center of the beam. (b) Two cuts of the intensity distri-
bution shown in (a).

The uniformity of the central part of the intensity distribution is our major concern.
Contrarily to what was observed in the preliminary tests, we could not get rid of the
bump at the center of the trap. This is due to the fact that we had to limit the dis-
placement from the focus to keep Rbox . 15 µm. The intensity profile is presented in
Fig. 6.4(a) with a rescaled intensity that reveals several defects:
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6. The uniform two-dimensional Bose gas

— We clearly distinguish six intensity minima. This can be understood if we con-
sider the phase plate as an imprint of six individual phase vortices, instead of a
single six-fold vortex. For an ideal phase plate, the centers of the vortices coin-
cide so that they are equivalent to the expected six-fold vortex. If the phase plate
presents some defects, the vortex centers can be shifted so that the resulting to-
tal phase distribution is only equivalent to a six-fold vortex in the wings of the
intensity distribution and not in its inner region.

— These six minima result in intensity bumps, at the center as well as along six radial
lines, which remain important even when moving away from the focus.

— The edges are not perfectly symmetric and also show some defects. Thus the en-
ergy of barrier Ubarrier is not a constant along all path that goes from the center to
the wings of the intensity profile. We must then compare the variation of intensity
in the center δU to the minimum barrier height over the straight paths, denoted
by their angle θ , Utot

barrier ≡ min(Ubarrier(θ)).

Then for the intensity profile shown in Fig. 6.4(b), the maximal intensity defect is as
large as 40% of the barrier height (and its mean value is 〈δU〉 ∼ 0.07 Utot

barrier) which is
too important for our applications (see Eq. 6.2).

In short, this implementation of an uniform trap does not fulfill the prerequisite de-
fined at the beginning of the chapter. For this reason, we present in the following section
an alternative method for producing a uniform confinement.

Figure 6.5.: Optical setup for the creation of a stadium potential in the experiment. In this
setup we use to lenses of focal lengths f1 = 500mm and f2 = 150mm respectively.
We place them such that either the glass plate holding the masks imprint or the
atoms are located at their focus. In between the two lenses, the beam profile is
cut by either the intrinsic setup aperture that is limited by a slit placed just after
the second lens or a deliberate diaphragm placed inside the telescope to control at
with order we do cut the diffraction pattern.
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6.3. The dark spot method

6.3. The dark spot method

6.3.1. Principle and theoretical expectations.

A straightforward way for creating a hollow-core beam consists in simply putting
a mask at a given position on its path and forming the image of the mask plane at
the wanted location. The mask can be of any shape. As the mask does not transmit
light, just after the mask position, the intensity profile is simply the Gaussian profile
truncated to zero by the mask shape. Mathematically, if we call t(x, y) the transmission
in the plane of the mask, t(x, y) is defined by t(x, y) = 0 if (x, y) is inside the mask
shape and t(x, y) = 1 elsewhere. Then the intensity profile just after the mask plate is
defined by

Ii(x, y) =
2Pbox

π w2
0

e−2r2/w2
t(x, y) (6.9)

where w0 is the waist of the laser at the position of the mask and Pbox is the available
laser power.

This intensity will be reformed, up to a magnification factor M, onto the atoms by
the imaging setup as presented schematically in Fig. 6.5. In the limit of infinite and
perfect optical elements and paraxial beam propagation, the intensity profile If(x′, y′)
is equal to Ii(x, y) with (x′, y′) = M (x, y):

I f (x′, y′) = Ii(x′/M, y′/M) =
2Pbox

π w2 e−2r′2/w2
t(x′/M, y′/M) (6.10)

where we defined w = Mw0, the waist if the beam at the position of the atoms.

For now on, to compare to the previous implementation using a phase plate imprint,
we will consider a disk–shaped mask of radius Rmask and note r (resp. r′) the radial
coordinate in the mask (resp. atom) plane. Then

I f (r
′) =

2Pbox

π w2 e−2r′2/w2
, if r′ > Rbox and I f (r

′) = 0 , if r′ ≤ Rbox (6.11)

where Rbox = MRmask is the hollow-core size at the position of the atoms.

6.3.1.1. Barrier height and optimal waist

For a fixed laser power Pbox and a fixed mask radius Rbox, the intensity barrier (i.e.

the intensity at the edges of the mask) is maximal for w =
√

2 Rbox. Then, the energy
barrier is given by

Ubarrier =
α

eπ

Pbox

R2
box

. (6.12)

For a given power Pbox, the energy barrier corresponding to this setup is then 5.8 times
greater than the one expected in the holographic method (see Eq. 6.8) for the same trap
radius Rbox. We then only need Pbox = 325mW for Rbox = 15 µm to satisfy Eq. 6.1,
which is available in our setup.
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6.3.1.2. Steepness of the edges and flatness of the bottom of the trap:

In the previously used limit of infinite and perfect optical elements and paraxial beam
propagation, both the steepness of the barrier and the flatness of the bottom of the
potential are expected to be infinite (or set by the mask quality). In practice, these will
be limited by the numerical aperture of the imaging system.

6.3.1.3. Aperture Effects on the trap quality

I present a detailed simulation of the effect of a finite aperture on the beam propa-
gation and resulting trap quality in Annex G. The aperture is a disk of radius Rdiaphr

centered on the beam and placed inside the telescope that image the mask onto the
atomic sample (as it is experimentally relevant to simulate the actual effect of the clip-
ping objects in our setup, see Fig. 6.5 and comments in Annex G). I summarize here the
conclusions of this analysis.

For our setup characteristics, the aperture affects the trap quality at the level of the
experimental requirements defined in 6.1.2 if Rdiaphr . 15 mm. This is thus in practice
a relevant effect. Both the edge steepness and the trap bottom uniformity are affected
by the finite aperture. The overall tendency is the larger the aperture, the shorter the
stiffness length η, the higher the power law coefficient β, the flatter the trap bottom.
For aperture sizes Rdiaphr. & 3mm the limiting feature is the variation of the potential
in the central region compared to the barrier height, while both the stiffness η and the
power law coefficient β comply with their required values. However this tendency
is only true in average. In fact, every parameter shows oscillatory behavior with the
aperture size. We explain this oscillation by the position of the cut realized by the
diaphragm compared to the intensity extrema of the beam pattern inside the telescope
(which depend on the specific mask size and shape used). For aperture smaller than
Rdiaphr . 15mm, we can still reach a satisfying regime of uniform trapping by finely
tuning the effective aperture of our optical system (and in particular by reducing it).
For this reason we place a diaphragm of adjustable aperture inside the telescope as
shown in Fig. 6.5.

6.3.2. Experimental setup

In our experimental setup, the box-trap is propagating downward onto the atoms.
It is thus collinear to the vertical imaging beam with which it is superimposed using
a dichroic plate. Both beams are focused onto the atoms via an achromatic doublet of
focal length f2 = 150 mm and radius R = 15 mm. Ahead of this imaging lens, the beam
is focused on the atomic plane. We place a first spherical lens of focal f1 = 500 mm so
that the glass plate holding the mask imprint is at the focus of this lens. The two lenses
are separated by d = f1 + f2 so that the resulting magnification of the global setup is
M = 0.3.

Just after the imaging doublet, the beam profile is cut by a geometrically unavoidable
slit of radius 12 R = 9 mm. We also deliberately insert a diaphragm inside the telescope

12. This limiting element for the aperture of the system is in fact an asymmetric slit made in the bread-
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to advantageously control the cut performed in the diffraction pattern as explained in
previous section (see Annex G for more details). We manually choose the aperture of
this diaphragm for each of the used dark masks to optimize the bottom flatness of the
resulting box-trap. This setup is schematized in Fig. 6.5.

As we aim to create a stadium of radius Rbox varying from 5 to 15 µm, we use physical
dark masks whose sizes Rmask vary from 15 µm to 50 µm. We choose 13 a beam waist at
the position of the mask w0 = 160 µm.

The masks are realized by a clean–room deposit on a wedged AR coated glass plate
of good surface quality 14. We deposit a 80 nm gold film on the non-wedged face by
electro–lithography. The resolution of deposit is then of the order of a few tens of nm.
Rare parasite drops of the metal are also deposited outside the mask regions during
the process but the probability of such an error is low. In our experimental realization
of the dark spot–plate no error spot are found at less than 300 µm of any of our masks
and so are not seen by the laser beam. Our deposit were realized by the engineer José
Palomo. On a single glass plate we imprint several patterns. In the actual setup, we
imprint at the center of the plate a grid of 6 × 6 patterns distant of 2.5mm. Along this
grid:

1. the typical half–size (half–length or radius according to the shape) of the masks
varies from Rmask = 15 µm to Rmask = 50 µm in real space.

2. the shape of the mask itself changes between a disk, a square, a rectangle, an
annulus, a target or a set of two-parallel rectangles.

The glass plate is set on a three-axis translation stage so that we can change easily from
one pattern to the other and adjust the conjugation of its plane to the atom position.

Even though the box-trap beam is superimposed with the vertical imaging one, due
to the presence of a dichroic plate and of an interferometric filter, it is not easy to directly
image the mask using the atomic imaging path. We thus implemented a side imaging
setup using the reflection of the dichroic plate just after the microscope objective. In
this setup, we image the box-trap beam at a conjugate position of the atoms. This side
imaging gives a good insight of the potential seen by the atoms. We indeed noticed a
good match between the defects seen in this side imaging and the one observed in a

board to transmit the beams toward the glass cell. Its minimal half width corresponds to the indicated
value R = 9 .

13. We are not varying this waist with the radius of the mask selected for a given experiment. Hence,
we cannot be in an optimized configuration where w0 =

√
2Rmask for all our trap configurations. We

decided to get away from this optimal configuration and choose a much larger beam than our masks. In
this configuration, the barrier height at a given power is reduced but it results less sensitive to any change
in the trap properties (size or shape) and then on the mask considered. For our experimental values, we

found a maximal potential barrier at the center of the beam of U
(0)
barrier = 8 µK at the full available power

Pbox = 500 mW. When we vary the trap extent Rbox, the effective barrier is only a fraction of U
(0)
barrier. For

the considered boxes in this manuscript, this fraction varies from 0.98 for a disk of radius Rbox = 5 µm to
0.83 for a disk of radius Rbox = 15 µm and 0.69 for a square of same half width Lbox/2 = 15 µm. Then,
Ubarrier is varying with the trapping configuration but less drastically than if we choose a smaller beam.
We also note that the maximal barrier height is in good agreement with the experimental specification

14. Thorlabs WW11050-C10 glass plate. The reflection is specified to be of 0.2% for λ = 532 nm, the
wedge define the small angle between both faces and it is of 30 arc minute, and the surface flatness is
specified to be of λ/20 at λ = 633 nm.
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6. The uniform two-dimensional Bose gas

very cold atomic sample trapped in the box potential that we reset to its full power at
the end of the experimental sequence (i.e. at the end the evaporation ramp).

6.3.3. Experimental results and reason for the choice

We show in Fig. 6.6(a) the intensity distribution measured on the side imaging setup
for a disk–shaped mask of radius Rmask = 40 µm 15. A thorough analysis of this type of
images leads to the conclusions described in the following.
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Figure 6.6.: (a) Intensity distribution created by a disk shaped dark spot of radius Rmask =
40 µm in the atomic plane. The magnification of the side imaging setup is cali-
brated along lines detailed in footnote 15 (b) Radial average of the intensity distri-
bution (red points), along with a fit of the central region using the fitting function
from Eq. 6.4 (orange line). The fit is performed for r ≤ Rbarrier (see Eq. 6.7), and the
fitted power is β = 15.

6.3.3.1. Potential Barrier and Radius of the box-trap

The maximum in the intensity profile of Fig. 6.6(a) is denoted IMax. As the trap is not
perfectly symmetric 16, there exist paths from the center to the edges along which the
intensity always remains below IMax. Then, the trap barrier Ibarrier corresponds to the

15. In this scheme, we do not know precisely the magnification of our side imaging setup. Nevertheless,
we precisely know the expected size of the box–trap created from the size of the mask imaged and the
magnification of main setup Rbox = MRmask. We thus calibrate the side magnification Mside by an
analysis of the imaged intensity profile similar to Fig. 6.6(a). More precisely, we compute the transmitted
fraction of the initial beam T = Ptrunc/Pinc that is the ratio of the power in the imaged truncated profile
Ptrunc to the incident power Pinc. We estimate T from a Gaussian fit on the wing of the beam (outside of the

dark spot). By matching T to the expected value of the transmission Texp = exp(− 2R2
box

w2 ) (for a disk-shaped
mask), we deduce an effective pixel size of 0.38 µm on the side imaging camera and a magnification factor
Mside = 16.

16. We note that such a dissymmetry of the barrier could come from a misalignment of the center of the
mask compared to the center of the beam. We indeed fitted a displacement of the center of the Gaussian
beam compared to the center of the trapping region of ∼ 2 µm along both horizontal axis in Fig. 6.6
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6.3. The dark spot method

smallest intensity barrier encountered along these paths. For shown intensity profile,
we find Ibarrier ∼ 0.6 IMax and the barrier potential is located at Rbarrier = 14.9 µm of
the trap center. The mean intensity in the central dark region of this distribution is
Ibottom = 0.056 Ibarrier. We then define the trapping region as the central domain whose
edges are characterized by an intensity equals to Imin = Ibottom + (Ibarrier − Ibottom)/20,
its radius is typically of 9.7 µm.

6.3.3.2. Uniformity of the trap bottom

We are here interested in the potential variations in the central trapping region de-
fined in the intensity profile by the edge intensity Imin. In this experimental image
obtained with a disk–shaped mask of radius Rmask = 40 µm, we notice the appearance
of three bumps in the intensity profile with a ∼ 120 ◦ rotation symmetry that are also re-
vealed in the radial average of the beam. We show in Fig. 6.7(a), a zoom of the intensity
profile on the center with a rescaling of the intensity to enhance the defects of the dis-
tribution. In this central region, we measure a maximal defect of 12% of Ibarrier whereas
the standard deviation of the potential in this central region is only 3% of Ibarrier. This is
a drastic improvement compared to the phase plate realization (see 6.2.3) since Eq. 6.2 is
now fulfilled in terms of standard deviation and and the maximal defects are strongly
reduced.
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Figure 6.7.: (a) Intensity distribution created by the dark spot. The intensity has been rescaled
to reveal the features in the center of the beam. (b) Two cuts of the intensity distri-
bution shown in (a).

6.3.3.3. Steepness of the edges of the box-trap:

We are now interested in the variations of the intensity up to the intermediate value
Imax. We compute:

— The stiffness η = 1.18 ± 0.28 µm.
— The power–law fit exponent (Eq. 6.4) β = 15 ± 1.6.
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6. The uniform two-dimensional Bose gas

We note that this steepness is greatly improved compared to the phase plate realization
(see 6.2.3) and complies with the given specifications.

6.3.3.4. Various shapes of the potential

Figure 6.8.: Example of the possible changes in shape or in size of the box-trap. We show the
intensity profile for: a disk (upper left) of larger radius than previously (Rbox =
15 µm instead of Rbox = 12 µm), a square (upper right), two rectangles (we can
also produce a unique rectangle of the same size – lower left), a target that is made
of a central disk circled by an annulus (lower right).

We can versatilely change the shape of our box-trap potential by changing the mask
placed on the path of the beam. Examples of the different intensity profiles realized are
given in Fig. 6.8. As the characteristic lengths and symmetries of the diffraction pattern
generated vary with this shape, the resulting trap attributes are also modified. Such
modifications are particularly stringent for mask shapes like the set of two rectangles or
the target where both the trapping region and the separation between the disconnected
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6.4. Conclusion

traps show shorter characteristic length scales. This results in:
— A smother variation of the trap edges with r. For both the target (central disk and

annulus) and the two rectangles (small axis) presented in Fig. 6.8, we fit power
law of β ∼ 4. We note that this decrease of the power law coefficient only oc-
curs along direction presenting small characteristic lengths. For the rectangles for
example, we fit β ∼ 10 along their long axis.

— A lower intensity barrier at the edge of these traps (i.e. the minimum of the in-
tensity barrier over the straight paths going from the center to the outer regions
of the traps) compared to a disk geometry of similar area. According to the pat-
tern, this can be due either to the non–respect of the initial beam symmetry (for
the square and the rectangles for example) or to the small characteristic length
of traps separation (for the twin–rectangles and the target). In this latter case,
the intensity separation between the trap is affected by the finite steepness of the
intensity variations when imaging the traps separation.

— An increasing importance in the trap bottom bumps due to both the relative low-
ering of the energy barrier to which we have to compare the defects and the short-
ening of the characteristic lengths of the mask. This shortened length translates
into an increase of the characteristic length in the diffraction pattern appearing
within the imaging telescope. Thus, the effect of the finite aperture of the imaging
system is strengthened as described in Annex G.

In these potentials, we manage to trap two–dimensional atomic samples and to in-
vestigate their parameters space by evaporatively cool them in the box-trap (see 2.1.3
for details on the experimental procedure). We will present in the remaining part of this
manuscript the results we obtain with this setup. I show in Fig. 6.9 examples of in-situ
atomic density distributions obtained at the end of the experimental sequence and for
various shapes of the box-trap mask.

6.4. Conclusion

In this chapter, I presented the experimental techniques we use to produce radial
trapping potentials that can be considered as uniform over the whole atomic sample.
They are created by shaping a far–blue–detuned laser beam showing a hollow center at
the position of the atoms. I quantitatively described the specifications on the intensity
profile characteristics imposed by the atomic configurations we want to study. These
specifications bear on:

— The absolute value of the intensity maximum found at the edges of the hollow
center that should be used for the loading of the trap.

— The smallness (. 5%) of the variations of the intensity inside the hollow center
compared to the edge barrier intensity.

— The spatial extent (. few µm) and the intensity spatial dependency (power law
coefficient & 5) at the edges of the hollow center.

We selected a shaping technique based on a simple dark mask imaging at the atoms
position, which complies with these specifications. The most restrictive point is the
rugosity of the trap center. We achieved a rms value of ∼ 3% of Ubarrier. One way to
improve further the setup is to increase the aperture of the mask imaging setup. We
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6. The uniform two-dimensional Bose gas

Figure 6.9.: Examples of atomic density distributions measured after evaporation toward the
degenerate regime in the box-trap. In these four examples, we vary the shape of
the mask. We used respectively a disk of radius Rmask = 40 µm; a square of size
Lmask = 80 µm; two rectangle of widths Lmask = 80 µm and lmask = 40 µm spaced
by dmask = 15 µm along their small axis; a target of inner, intermediate and outer
radii Rmask = 15, 30, 50 µm respectively.

can think of using optical elements with a larger numerical aperture like for example
replacing the imaging doublet by a microscope objective. An other source of improve-
ment relies on the possibility of a dynamical control of the shape of the mask. Such an
improvement can be made using a set of computer–controlled movable micro–mirrors
instead of a static deposit on a glass plate. Preliminary tests of this type of devices have
been performed by Master student David Perconte.
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7. Coherence of the Uniform 2D Bose gas

In this chapter, we present our experimental investigation of the apparition of a co-
herent behavior in 2D uniform gases while varying the cloud atom number N and tem-
perature T. In a first part, we describe how we measure these cloud parameters and
in particular how we perform thermometry. In this challenging 2D uniform geometry,
temperature is determined by an original method based on an empirical description of
the loading of the 2D traps and of the final evaporative cooling realized via ramping the
box-potential height. Then, we demonstrate emergence of coherence in this gas along
with changes in the loading conditions or the evaporation ramp end point. First we
measure the appearance of bimodality in the velocity distribution by a Time-of-Flight
(ToF) technique. Second, we develop a matter-wave interference technique between
two quasi-identical and coplanar clouds from which we characterize coherence via a
description of the fringe patterns observed after an in-plane expansion.

7.1. Thermometry of 2D uniform Bose gases

Determining the temperature T and the chemical potential µ of a degenerate uniform
2D Bose gas reveals being highly challenging tasks. For example, compared to previ-
ous measurements performed in 2D harmonic traps (see Chapters 4 and 5), we cannot
benefit here from any specific spatial dependency of in-situ density distribution as the
density is uniform over the sample for any cloud parameters (see Fig. 6.9 for examples
of in-situ distributions).

It is then necessary to use Time-of-Flight (ToF) measurements of the atomic density
distribution (see 2.1.3 for technical details). In such a measurement, we let the cloud
expands freely by releasing all the trapping potentials, then the initial momentum dis-
tribution is converted into the density distribution and can be characterized. However,
performing a fit of this ToF density distribution enabling determination of T and µ or
even the condensed fraction Π0 happens to be excessively involved. Usual methods
for such a characterization used, for example, for 3D harmonically-trapped gases rely
on a two-independent-components description of the gas. The thermal part is then
commonly described by ideal Bose law [161, 162], assuming fugactity z = 1 when gas
reaches condensed behavior, so that it is possible to determine the temperature T by a
(single-parameter) fit of the outer part ("wings") of the ToF density distribution. The
condensed fraction Π0 is then deduced from the ratio of atom numbers integrated from
each fitted component of the bimodal density distribution and the chemical potential
µ is deduced from description of condensed distribution for example using Thomas
Fermi approximation.Specificity of 2D uniform gases leads to divergence of Bose law
prediction at limit z → 1 (see Chapter 1) making the assumption z = 1 irrelevant.
Moreover, fitting simultaneously z and T from wings shape of the density distribution
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7. Coherence of the Uniform 2D Bose gas

reveals very unstable. We notice such a fit instability even for simulated ideal distribu-
tion. Both dependencies occurs to be too entangled by the fitting law to be effectively
determined without any further inputs.

Finally, in our experimental setup, transverse excitations play a major role in the es-
tablishment of the physics under interest (see following and Chapter 1), complicating
further the description of our experimental gases. Then the definition of a fitting func-
tion valid for every cloud configurations under study is extremely complicated as, in
this case, neither purely 2D nor semi-classical 3D description are accurately depicting
the relevant energy states and their populations.

To address these difficulties, we developed an original approach of the temperature
establishment in our gases leading to the deduction of a general empirical model. Using
fits of a partial data set along with this empirical model, we deduce temperature for all
cloud configurations.

7.1.1. Measuring Velocity Distribution Variance

As introduced, to determine the temperature T of our 2D uniform gases, it is neces-
sary to perform Time-of-Flight (ToF) expansion and image the resulting density distri-
bution after a given duration τ. The imaged distribution gives access to characteristics
of the initial velocity distribution. For example, the variance of initial velocity distribu-
tion ∆v2 can be deduced from the variance of the expanded spatial distribution ∆x2 by
the simple relation

∆x2 = ∆x2
0 + ∆v2τ2 (7.1)

where ∆x0 is the in-situ width of spatial distribution 1.
We perform ToF of duration ranging from 8 to 16 ms. We choose the specific duration

for each mask shape considered so that the fitted size ∆x after expansion is several times
larger than the extent of initial spatial distribution ∆x0 for all non-purely-condensed
situations 2. Then we can deduce ∆v from the knowledge of ∆x and ∆x0 with small
error.

We image the in-plane density distribution of the cloud using low intensity absorp-
tion imaging technique along vertical axis (see Chapter 3). We image all considered
atomic configurations after the same Time-of-Flight duration τ. The upper limit for τ

comes from reduction of signal to noise ratio in density measurements while imaging
the hottest and sparsest cloud configurations with increasing Time-of-Flight duration.
Examples of ToF density distributions are given in Fig. 7.1.

1. The relation of Eq. 7.1 neglect influence of interaction between particles during the expansion.This is
valid in our geometry due to the very fast expansion along the tightly confined direction of space (z). Then
atomic density drops within very short time scale and the interaction term immediately becomes negligible
compared to the kinetic one. We quantitatively checked the negligible effect of the interactions on the time-
of-flight expansion for our experimental parameters by performing 3D Gross-Pitaevskii simulations (see
B) which enables to simulate the evolution of either an interacting or a non-interacting gas at T = 0 after
releasing all traps.

2. Rigorous choice of this duration is explained in details in next section. It is based on the expected
thermal width from Boltzmann prediction of any of the considered distributions. The width expected from
thermal expansion is given by ∆xBoltz =

√
kBT/m τ. We impose that, for all considered T, ∆xBoltz to be at

least twice ∆x0: ∆xBoltz ≥ 2∆x0
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7.1. Thermometry of 2D uniform Bose gases

Figure 7.1.: Examples of density distribution after 12 ms of ToF from a cloud initially confined
in a square of size L = 24µm after azimuthal average (blue dots) and correspond-
ing average for the 2D double Gaussian fit performed (red solid line) and Gaus-
sian of largest width of this fit (green dashed line). The four plots correspond to
four different cloud configurations with varying end of 3D and 2D evaporation
ramps. The respective couples of parameters (N, T) are (a): (19 × 103, 27 nK), (b):
(38 × 103, 145 nK), (c): (27 × 103, 91 nK) and (d) : (27 × 103, 145 nK). Insets: corre-
sponding 2D density distribution.

We fit the ToF in-plane density distribution by a sum of two 2D Gaussian functions
of same 2D center of coordinates (x0, y0), ellipticity 3 ǫ and orientation θ but different
amplitudes A1 and A2 and sizes σ1 and σ2:

f (x, y) = A1 exp(−X2 + ǫ2Y2

2σ2
1

) + A2 exp(−X2 + ǫ2Y2

2σ2
2

) + B (7.2)

X = (x − x0) cos θ + (y − y0) sin θ (7.3)

Y = (y − y0) cos θ − (x − x0) sin θ (7.4)

As illustrated in Fig. 7.1, this double-Gaussian-fit nicely takes into account the bi-
modality of the density distribution measured and so enables determination of both
the atom number N and standard deviation of density distribution ∆x with good accu-

3. such an ellipticity enables to take into account effects of remaining anisotropy in the levitating fields
and effects of initial trapping configuration and enables a better fit to experimental data. We checked that
for a given configuration the orientation is not strongly varying and that ellipticity remains close to 1.
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racy via

N = 2π (A1σ2
1 + A2σ2

2 )/ǫ (7.5)

∆x2 = (A1σ4
1 + A2σ4

2 )/ǫ(A1σ2
1 + A2σ2

2 ) (7.6)

We then deduce ∆v from the precise Time-of-Flight duration τ and the initial distribu-
tion width ∆x0. ∆x0 is estimated from a preliminary fit, performed once for each of the
box-potential, as it is, in very good approximation, fixed by the shape of this box and
independent of the atomic cloud configuration, in this uniform setup.

7.1.2. Estimate of temperature T for the less interacting clouds

From the measurement of ∆v and N, we can infer values for the temperature T and
the fugacity z of the gas by neglecting effects of interactions between atoms in the in-
situ configuration and applying ideal Bose prediction (details on these calculations can
be found in Annex A).

7.1.2.1. Self-consistent validation of the estimate

Such an estimate will be relevant only for gas configurations in which the inter-
action energy is negligible. We auto-coherently distinguish the "suited" configura-
tions by computing a first order contribution of the interaction potential to the (single-
particle) Hamiltonian by gn(0), following lines developed in A.3 (g is the 3D interac-
tion parameter and n(0) the ideal estimate of the central 3D density of the cloud). We
will consider as relevant the ideal law estimate for gases that self-consistently verify
gn(0) ≤ kB × 4.5nK as it corresponds in practice to gn(0) . h̄ωz/4, kBT/10 for all the
considered situations (then within this condition the interaction energy contribution is
negligible compared to the kinetic and potential energies). In this case, we assume that
the eigenstates wavefunction spatial dependencies, energies and populations are neg-
ligibly modified compared to the ideal predictions and so the temperature T and the
fugacity z are accurately assessed from an ideal interpolation from the known values of
∆v and N.

7.1.2.2. Fit via Bose law computation

To perform ideal Bose law prediction for our gas configuration, we consider a full
quantum 3D treatment of Bose statistics as described in Annex A. In this description,
the eigenstates of the single-particle Hamiltonian are labelled by three integers j =

(jx, jy, jz) corresponding to the eigenenergy Ej (Eq. A.1). Their populations at thermal
equilibrium in a gas of chemical potential µ (Grand canonical description) are given by
Bose Einstein factor fj ≡ f (Ej, T, eβµ) = (exp

[

(Ej − µ)/kBT
]

− 1)−1. Then, we obtain
numerical estimates of N and ∆v from the knowledge of the fugacity z = eβµ and the
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temperature T via the formulae

N = ∑
j

f (Ej, T, z) (7.7)

∆v2 =

(

πh̄

Lm

)2

∑
j

j2x + j2y

2
f (Ej, T, z) (7.8)

We numerically inverted this relation using grid values of N, ∆v and T. Evaluation
points are spaced by "logarithmic" 4 steps of 0.2 and typically vary from 103 to 105 for N,
from 0.5mm/s to 8mm/s for ∆v and from 10 nK to 1µK for T. We deduce an estimate
of (z, T) for each experimental point (N, ∆v) using this pre-computed abacus.

7.1.3. Empirical model for temperature dependency

Figure 7.2.: Example of data sets (and fits) T(Ubox) for a disk of radius R = 12 µm at ωz/2π =
365 Hz. For each density distribution imaged, we compute T from a ideal 3D full
quantum Bose law treatment (black points). We only consider data point with
gn(0) . kB × 4.5 nK (blue circled points). We fit the empirical model of Eq. 7.10 on
these selected data points (red line).

We then look at the dependency of the estimated temperature T for a range of very

4. For a quantity Q within N, ∆v and T, the (n + 1)th value is defined from nth value used by Q(n +
1) = (1 + f )Q(n) where f is called the "logarithmic step".
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weakly interacting cloud configurations with the energy barrier height of the box-
potential Ubox as shown in Fig. 7.2. As T is set by the final ramp of Ubox via evaporative
cooling of the 2D uniform gas (see 2.1 for details), we expect an "evaporative" scaling
between these two quantities. From the measured weakly-interacting configurations,
we indeed notice an approximately constant T for a fixed value of Ubox and for a given
trapping configuration, that is a given transverse frequency ωz/2π and given box size
and shape. Standard deviations of T are typically of the order of 10% (see Fig. 7.2 and
Fig. 7.4 (a)).

7.1.3.1. Justification of the temperature dependency at loading

We observe that this scaling relation extends for all the considered barrier height Ubox

even at the loading condition Uload
box . We do not see any effect of the 3D gas temperature

that we load in the 2D traps on the resulting 2D gas temperature Tload. Tload is a constant
for a given trapping configuration.

This independency on the 3D gas temperature is actually justified by the fact that the
loaded gas is first evaporatively cooled in its volume by the 2D confining beam as we
will evidence here. In this case, the loaded 2D configuration is only influenced by the
initial 3D configuration in its atom number Nload and not in its temperature Tload. Such
a primary cooling is explained by the limited 2D light-sheet potential height VLS,0 at the
moment we load the 3D gas in it, that is when switching off the hybrid trap (see 2.1.3).
In the following, we estimate VLS,0 at trap center using paraxial approximation calcu-
lations (see 2.2.1 and Fig. 2.3) and estimating the beam power PLS at the corresponding
moment of the experimental sequence.

In this chapter we present results for two different transverse confinement configu-
rations of frequencies ωz/2π = 365 Hz and ωz/2π = 1460 Hz. These two confinement
configurations correspond to two different experimental sequences in terms of loading
of the 2D traps. The value of VLS,0 is then estimated differently in both cases:

— Configuration ωz/2π = 1460 Hz matches to the optimal situation whose experi-
mental sequence is detailed in Chapter 2. In this case, the hybrid trap is switched
off while ramping the 2D power between Pload

LS (corresponding to transverse fre-
quency ωload

z /2π = 330 Hz and Vload
LS,0 = kB × 430 nK) and Pclean

LS (corresponding
to transverse frequency ωclean

z /2π = 1100 Hz and Vclean
LS,0 = kB × 5.1 µK). It is then

complex to precisely estimate the relevant height for 3D gas evaporation due to
the time dependency introduced. As the ramp lasts 150 ms, the hybrid trap is
switched off after 10ms and the relevant thermalization time is ∼ 10 ms, the rele-
vant height must be VLS,0 ∼ 1–2 µK.

— Configuration ωz/2π = 365 Hz is linked to a simpler situation and a thorough
analysis can be performed. Indeed, to lower the trapping frequency, the maximal
power P

f
LS is actually not changed but the atoms are simply put further away –

at distance x0 – from the focus of the Hermite-Gaussian beam. From this proce-
dure, the loading of the gas is eased while the trapping frequency is decreased
(as detailed in 2.2.2). The chosen distance is x0 = 840 µm instead of 190 µm in the
optimal configuration. In this case, the loading of the 3D gas is directly performed
at full power P

f
LS and the relevant barrier height is VLS,0 = kB × 1.9µK.
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7.1. Thermometry of 2D uniform Bose gases

As the maximal temperatures observed are Tload ∼ 250 nK, these values of VLS,0 are
compatible with a typical evaporation factor of order ηLS ≡ VLS,0/Tload ∼ 8.

We can push this investigation further by estimating the effective potential height
VLS,µT taking into account the radial waist of the 2D beam wy = 50 µm and extent of the
box-potential in-plane. We denote dmax the maximal in-plane distance from both the
box and the light-sheet centers (that are assumed to be the same) explored by the atoms
confined in this given box. For the different uniform trap shapes, we roughly observe
that Tload scales inversely with dmax. We estimate the effective potential height seen by
the atoms via

VLS,µT = VLS,0 exp(−2d2
max/w2

y) (7.9)

We find an approximately constant evaporation factor ηLS,µT ≡ VLS,µT/Tload = 7.65
for all trap configurations with fluctuation of 3.5% over the four investigated configu-
rations at ωz/2π = 365 Hz that are disk-shaped boxes of radius R = 9 µm, R = 12 µm
and R = 15 µm and a square-shaped box of size L = 24 µm (see Fig. 7.3).

7.1.3.2. Choice of the empirical model

Starting from this "general" loading condition, we assume that the scaling of the tem-
perature with the barrier height of the box-potential Ubox observed for weakly interact-
ing gases is in fact verified for all atomic configurations. Such an ubiquitous scaling is
validated by the universality of evaporation mechanism involved while ramping the
box-potential height Ubox = U(t) at the end of the experimental sequence.

We want to characterize this dependency of T over Ubox by a simple empirical model
T = fbox,ωz

(Ubox) representing the variation of the temperature along the evaporation
ramp Ubox = U(t) and simply depending on the shape and size of the uniform box
and transverse trapping frequency ωz/2π (via the loading condition), i.e. the overall
2D trapping configuration.

Due to the loading effect of the 2D-confining beam, evaporation factor η = Ubox/kBT

decreases along evaporation ramp. As the temperature evidently decreases to zero
when Ubox → 0, we find that the temperature can be empirically fitted by the simple
dependency

T(Ubox) = T0

(

1 − e−Ubox/U0

)

(7.10)

where T0 and U0 are the two fitting parameters, T0 is the characteristic loading tem-
perature, U0 is a characteristic energy scale of the evaporation in the box. For T → 0, the
evaporation factor is simply given by η0 = U0/kBT0. η(Ubox) typically varies from 11 to
4 for transverse frequency ωz/2π = 365 Hz and from 14 to 4 for transverse frequency
ωz/2π = 1460 Hz.

In Fig. 7.2, we give examples of an experimental data set (Ubox, T) measured for a
given trapping configuration and the related fit by Eq. 7.10. We summarize in Fig. 7.3,
the various computed relations for a set of investigated uniform trap shapes and trans-
verse confinements.
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Figure 7.3.: Fitted relations (solid lines and points) T(Ubox) for various trap shapes and con-
finement: disks of radius R = 9 µm (orange right triangles), R = 12 µm (red
squares) at frequency ωz/2π = 365 Hz, square of size L = 24 µm (blue left trian-
gles) at same frequency and disk of radius R = 12 µm at ωz/2π = 1460 Hz (green
circles). The dash line and corresponding points represent the approximated rela-
tion for square of size L = 24 µm (purple circles) at ωz/2π = 1460 Hz assuming a
decoupling of the dependancies. The shown points correspond to the predicted T
for the usual experimentally used values of the trap potential. The highest of them
matches the loading configuration.

7.1.3.3. Generalization of the temperature relation

We may also deduce the relation T = fbox,ωz
(Ubox) for any given trapping configura-

tion bypassing the necessity of a direct measurement campaign of a data set (Ubox, T)

in this configuration.
To perform such a deduction, we assume that:
— T dependency in box shape can be fully embodied in a simple function of the

previously introduced maximal extent dmax (see 7.1.3.1).
— T dependencies in dmax and ωz are decoupled such that T(Ubox; dmax, ωz) =

g(Ubox, ωz)× h(Ubox, dmax).
Such assumptions are verified experimentally at the loading point as we studied that

T ∝ ω2
z exp(−2d2

max/w2
y). For further evaporatively cooled points, we note that evapo-

ration dynamics only depends on this initial condition and on the box potential height
Ubox. In our setup where we use a box-potential beam of constant waist wbox (see 6.3.2),
this height depends on the box shape and is clearly independent on ωz, justifying the
decoupling assumption for all Ubox.

With these assumptions, we can compute the relation T = fbox,ωz
(Ubox) for a couple
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(dmax, ωz) via a simple cross-multiplication of measured complementary relations 5. We
perform such a cross-multiplication to compute relation for a square box of size L =

24 µm at ωz/2π = 1460 Hz as represented in Fig. 7.3.
More precisely, we note that Ubox is simply deduced from the central height of the

box-potential beam Ubox,0 and from the maximal spatial extent of the box trapping re-
gion dmax via

Ubox = Ubox,0 e−2d2
max/w2

box (7.11)

Figure 7.4.: Renormalized temperature T0 defined in Eq. 7.12. (a) Mean data points T(Ubox)
at ωz/2π = 365 Hz and for various trap shapes and confinement: disk of radius
R = 9 µm (orange right triangles), R = 12 µm (red left triangles), square of size L =
24 µm (blue squares). Gray line shows global fit of these data points by Eq. 7.10.
We find agreement with independency toward box shape. (b) Mean data points
T(Ubox) at ωz/2π = 1460 Hz for a disk of radius R = 12 µm (blue squares).Gray
line shows global fit of these data points by Eq. 7.10. As we have less data at our
disposal for this trapping configuration we impose η0 ≡ U0/T0 at the value found
for data at ωz/2π = 365 Hz: η0 = 3.5 as it dictates the temperature evolution at
very low box potential and must so be independent from the loading condition.

In our specific experimental setup, we can in fact produce a more in-depth analysis
by noticing that both the box-potential-beam and the 2D-beam have very similar radial
waists wbox = 48 µm and wy = 50 µm. As the previously enhanced dependencies of T

on dmax manifest via factors e−2d2
max/w2

box and e−2d2
max/w2

y , we can approach T dependency
at all points of the evaporation ramp by a unique multiplicative factor e−2d2

max/w2
with

w ∼ 50 µm. To check this dependency, we compute the estimated temperatures T at
trap center by renormalizing the measured temperatures T by:

T (Ubox,0, dmax, ωz) = T(Ubox,0, dmax, ωz) e2d2
max/w2

. (7.12)

5. for example from 3 complementary measurments performed at (d′max, ωz), (dmax, ω′
z) and

(d′max, ω′
z)
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We observe that the renormalized temperature T only depends on Ubox,0 and ωz (Fig. 7.4).
Then the temperature dependency can be simply expressed as:

T(Ubox) = T (Ubox,0, ωz) e−2d2
max/w2

, w = 50µm (7.13)

T (Ubox,0, ωz) = T0(ωz)
(

1 − e−Ubox,0/U0(ωz)
)

. (7.14)

With these last relations, we can compute T(Ubox) for any box shape at these two fre-
quencies. We fit the renormalized experimental data of Ubox,0 (Eq. 7.11) and T (Eq. 7.12)
by Eq. 7.14. As we have less data at our disposal at ωz/2π = 1460 Hz, we impose a
fixed value for η0 ≡ U0/kBT0 that is the factor that governs the temperature evolution
at very low Ubox. Indeed, as only the loading condition is changed between the various
confinement configurations, η0 must be independent from ωz. We then impose η0 at
the value resulting from the fit of the data at ωz/2π = 365 Hz, η0 = 3.50(25). Then
the fit of the data at ωz/2π = 1460 Hz, only has one free parameter. We note that the
result from this constrained fit lies within the error bar of a free fit for which we found
η0 = 4.3± 1.3 and T0 = 216(31) nK. The fitted coefficients are summarized in Table 7.1.

ωz/2π T0 U0/kB η0

365 Hz 275(8) nK 969(75) nK 3.49(25)
1460 Hz 203(18) nK 712[115] nK 3.50[25]

Table 7.1.: Summary of fitted parameters T0, U0, η0 = U0/kBT0 for fit of function T (Ubox,0, ωz)
defined in Eq. 7.13. Fitted function is given in Eq. 7.14. For ωz/2π = 1460 Hz, we
impose value of η0 to 3.5 that is the fitted value for ωz/2π = 365 Hz. The error bars
in square brace on U0 and η0 are obtained by taking the same error bar on η0 than
for ωz/2π = 365 Hz.

7.2. Emergence of Coherence seen in the momentum distribution

From the density distribution measured in ToF, whose examples are given in Fig. 7.1,
we may further characterize the velocity distribution. Beyond the simple assessment
of its variance ∆v studied in the previous section, we will now describe in more details
its shape. As we are interested in featuring the emergence of a phase coherence in 2D
uniform gases, we are willing to describe a deviation of the population of low-energy
states compared to Boltzmann prediction. These states are associated to the central part
of the density distribution observed after a long Time-of-Flight expansion.

We quantitatively observed that, whereas for the hottest and least dense atomic con-
figurations (Fig. 7.1 (d)) the distribution has a quasi-pure Gaussian-like shape, the dis-
tribution shows some bimodal features when performing further evaporative cooling
(i.e. lowering the temperature: Fig. 7.1(a) and (c)) or loading a denser 3D cloud in
our 2D traps (i.e. increasing the atom number: Fig. 7.1(b)). A sharp peak emerges at
center of the ToF density distribution. This peak translates an "abnormal" (i.e. non-
Boltzmanian) occupation of the low-momentum states. Such a feature in the ToF den-
sity distribution also features the occurrence of a conjugated bimodality in the g1 cor-
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relation function as it is simply the Fourier transform of the momentum distribution of
our uniform gas (see Eq. 1.19). This bimodality matches an increase of the g1 charac-
teristic decay length ℓc as the sharp peak observed in ToF is associated by conjugation
to a broad component in the g1 spatial distribution. It is then effectively a signature of
an increasing phase coherence within the gas. In this section our aim is to characterize
quantitatively the apparition of this coherent peak with a varying cloud configuration
(N, T).

7.2.1. Estimating the population of the low excited states

To characterize the population of the low-energy states and quantitatively report for
the observed bimodal momentum distribution, we use the same measurements of the
density distribution of a single uniform cloud after a 3D ToF but now consider all acces-
sible cloud configurations, whatever their interaction energy is. We use ToF of duration
τ = 8–16 ms according to the initial size of the cloud and use the same duration τ

for all evaporation parameters considered. More quantitatively now, the value of τ is
chosen for each trap shape considered so that it is long enough for the size expected
from a thermal expansion ∆xBoltz = τ

√
kBT/m (Note that temperature used are T & 10

nK) to be at least twice the initial standard deviation of the spatial distribution ∆x0:
∆xBoltz ≥ 2∆x0.

We use the same double Gaussian fit as given in Eq. 7.3 but we now impose σ2 to
at least 1.75 time larger 6 than σ1 to clearly associate the first Gaussian with a central
peak of small extension compared to thermal wings fitted in the second Gaussian. We
also impose that σ1 varies in a limited range so that it is neither too small compared to
the initial size of the cloud nor too large compared to the expected width ∆xBoltz from
Boltzmann predictions. Typically we admit variations of ±50% around a mean value
obtained from a first run of the fit over the whole set of data taken in a given trapping
configuration.

We denote N1 (resp. N2) the number of atoms fitted in the sharpest (resp. broadest)
Gaussian:

N1,2 = 2πA1,2 σ2
1,2/ǫ (7.15)

and N, the total atom number given in Eq. 7.6, is simply N = N1 + N2. We characterize
the importance of the central peak compared to the thermal wings by the ratio ∆ =

N1/N. This ratio gives an empirical characterization of the peakiness of the velocity
distribution and so the deviation from the Boltzmann predictions of the population of
the low-energy states. We note that this characterization does not enable to deduce
the population of the overall ground-state N(0,0,0) which would be deduced from N

by subtracting the population of all excited states N′. Due to Bose statistics, density
distribution of all the excited states cannot be described by a Gaussian behavior and
N2 6= N′. No further physical interpretation of the measured atoms numbers N1 and
N2 is then permitted and ∆ is not an estimation of the condensed fraction Π0.

6. we checked that the results are not strongly modified if we impose σ2 ≥ 2.25σ1
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7.2.2. Phase Diagram for ∆

7.2.2.1. Measurements

Figure 7.5.: Contour plot representation of the evolution of ∆ with the cloud parameters (N, T)
for an initial gas confined in (a) a disk of radius R = 12µm transversely confined
in an harmonic trap of frequency ωz/2π = 365 Hz (colors are interpolated from a
set of 517 images); (b) a disk of radius R = 12µm with ωz/2π = 1460 Hz (colors
are interpolated from a set of 195 images); (c) a square of size L = 24µm with
ωz/2π = 365 Hz (colors are interpolated from a set of 154 images); and (d) a disk
of radius R = 9µm with ωz/2π = 365 Hz (colors are interpolated from a set of 123
images). The expected evolution of coherence is highlighted by predicted critical
lines of BEC⊥ (solid orange line), BECfull (dash-dotted red line) phenomena and
higher and lower bounds for BKT transition (dashed blue line).

We record ∆ while varying the cloud parameters (N,T) by displacing the end points
of the two evaporation ramps used in our experiment, that are (see 2.1 for details):

— the 3D (hybrid-trap) evaporation that changes the loaded 3D gas configuration,
— the 2D (box-trap) evaporation ramp that sets the final temperature.

For a given trapping configuration, we measure a large number of experimental density
distributions corresponding to an also large number of cloud configurations. For each
of them we compute the triplet of parameters (N, T, ∆). Typically T varies from 10 to
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250 nK and N varies 7 from 103 to 105.
We repeat these measurements for different shapes and areas of the box potential

and for different transverse confinement frequencies. Varying the shape and size of the
box potential enables to test universality and robustness of the coherent behavior in a
finite-size uniform 2D trap. Changing the transverse confinement frequency enables to
test the emergence of 2D physics via transverse condensation (BEC⊥) phenomenon (see
1.2.3 and following) and the resulting effect on the appearance of n extended coherence
in-plane. Indeed, the two ranges spanned by ωz and T allow us to explore both the
frozen (ζ ≪ 1) and unfrozen (ζ ≫ 1) regimes for the z-motion, where ζ ≡ kBT/h̄ωz.
We show the resulting phase diagram of variation of ∆ in false colors in Fig. 7.5 for a set
of four trapping configurations with:

— two distinct trapping frequencies ωz/2π = 365 Hz and ωz/2π = 1460 Hz, differ-
ing by a factor 4.

— two different mask shapes: disk and square.
— a varied area of box-potential between 254µm2 and 576µm2 changing thus by a

factor 2.3.

7.2.2.2. Comparing to theoretical predictions

We compare the evolution of ∆ with N and T to theoretical expectations. Intuitively,
we expect coherence to emerge close to the crossing of the thermodynamics transitions
predicted to occur in the gas. In our case they are the Bose–Einstein Condensation
(BEC) or Beresinskii–Kosterlitz–Thouless (BKT) transitions (see 1.1.3.1 and 1.1.4.4). We
also note that due to the use of a small trapping frequency ωz/2π = 365 Hz, trans-
verse excitations are not frozen for all considered cloud parameters. Then freezing
of z-motion is reached through transverse condensation (BEC⊥) and transverse excita-
tions play a major role in establishment of a coherent behavior (see 1.2.3 and in partic-
ular 1.2.3.4). Thanks to BEC⊥ mechanism, freezing of the z-motion is reached even if
kBT > h̄ωz (ζ > 1). In a finite system, it leads to a two-step condensation by first reach-
ing reduced dimensionality regime via transverse condensation and then condensing
in this reduced dimensionality system (BECfull) to the overall 3D ground-state. In this
section we describe the specific computations we performed to picture the expected
transition lines for our specific experimental configuration.

Theoretical prediction for BEC transitions We compute the critical atom number
for BEC phenomena using the full quantum 3D treatment of the ideal Bose law pre-
sented in Annex A (as in 7.1.2). In short, we consider a vertical harmonic confinement
of frequency ωz/2π and a perfectly uniform in-plane trap of square shape with size
L =

√
A where A is the area of the experimental uniform trap. The eigenstates of the

single-particle Hamiltonian are labelled by j = (jx, jy, jz).
For each trapping configurations of interest, we consider a set of temperatures T and

atom numbers N and compute the populations of the transverse |jz = 0〉 and overall

7. More precisely, N ranges from 104 to 105 for the weak z-confinement configuration ωz/2π = 365 Hz
and from 103 to 3 × 104 for the strong z-confinement configuration ωz/2π = 1460 Hz
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Figure 7.6.: (a) (resp. (b)). Fit performed on simulated populations of the (a) transverse (resp.
(b) overall) ground-state for T =10 nK (dark green), 50nK, 100nK, 150 nK, 200nK.
transverse trapping confinement is set to ωz/2π = 365 Hz and in-plane uniform
trap is of square shape with the same area than a disk of R = 12 µm. We compute
N(0) (resp. N(0,0,0)) for N ranging from 100 to 1.5 × 105 (circles). We fit (solid lines)
the atom number in the respective ground-state to N by a linear increase from a
threshold value that we identify with the critical atom numbers Nc for BEC⊥ (resp.
BECfull). Insets: Same data and fits but representing the condensed fraction that
is the ratio of the atom number in the ground-state to the overall atom number
N(0)/N (resp. N(0,0,0)/N). We note deviation of the transverse condensed fraction
to the hyperbolic function with a smoother dependency observed.

ground-state |0, 0, 0〉 8 of the system that we respectively denote N(0) and N(0,0,0) (see

8. In Annex A (and in our calculations) we in fact consider Dirichlet boundary conditions such that
jx , jy ≥ 1, jz ≥ 0, then the overall ground-state |0, 0, 0〉 corresponds to |jx = 1, jy = 1, jz = 0〉. We however
decided to keep the more "comprehensive" notation |0, 0, 0〉 for the ground-state.
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A.2.1). For a given temperature, we fit the differences between Bose and Boltzmann
predictions for these populations by a linear threshold function toward the total atom
number N as shown in Fig. 7.6. We identify the critical atom number for the transverse
condensation NBEC

(0) (respectively the overall condensation NBEC
(0,0,0)) to the value of the fit

threshold parameter obtained when fitting the difference in N(0) (resp. N(0,0,0)). Note
that for ζ . 1, the notion of transverse condition becomes insignificant as Boltzmann
law directly predicts that a majority of atoms populates |jz = 0〉.

Theoretical predictions for BKT transition To infer a prediction on the critical point
of the BKT transition, we rely on the classical Monte Carlo calculation performed by
Prokof’ev, Ruebenacker and Svistunov [125] in the weakly interacting limit and in the
absence of transverse excitations (tight transverse confinement regime of ζ ≪ 1). In
this regime, the authors infer a numerical prediction for critical 2D phase-space-density
(PSD, denoted for the rest of this chapter D):

Dc = ln
(

380(3)
g̃

)

(7.16)

where g̃ is the 2D reduced interaction parameter and the 2D PSD is defined by D ≡
n(2D)λ2

T with n(2D) being the atomic surface density n(2D) =
∫

dz n(3D)(z). In the
weakly interacting and tight transverse confinement limit, the interaction parameter
is simply given by g̃(0) =

√
8πas/ℓz (where as is the 3D scattering length, as = 5.1 nm

for 87Rb , and ℓz is the vertical oscillator length ℓz =
√

h̄/mωz) and the atomic surface
density by n(2D) = N/A = N(0)/A for our uniform setup.

As these calculations are only strictly valid for a pure 2D gas whereas in our experi-
mental configuration transverse excitations play an important role, we cannot directly
rely on their result. However, we can use it to deduce upper and lower bounds for the
transition point implementing two different views on the values of the 2D PSD and of
the reduced interaction parameter g̃ contributing to BKT physics in these transversely
excited gases.

To obtain an upper bound to the critical atom number for BKT transition, we consider
that only atoms in the transverse ground-state |jz = 0〉 contribute to the 2D transition
and so 2D PSD is obtained by taking n(2D) = N(0)/A. In this case, we use a more
refined estimate g̃eff of the reduced interaction parameter, taking into account the non-
zero contribution of the interaction between the z ground-state and the z excited states
populations to mean interaction energy for the particles in |jz = 0〉

g̃eff =
m

h̄2

A
∫

d3r 〈jz = 0|V̂int(r)|jz = 0〉
N2
(0)

≥ g̃(0) (7.17)

where V̂int is the interaction potential operator given in Eq. A.10. We compute g̃eff from
the estimate of the density distribution in each transverse excited state obtained by
solving the full quantum 3D treatment of the ideal Bose law (Annex A). This procedure
gives a first order correction to g̃, depending on N and T, denoted g̃eff(N, T). We then
deduce the upper critical number for the BKT transition NBKT

up by recursively solving
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the implicit relation

N(0)(N, T)
λ2

T

A = ln
(

380
g̃eff(N, T)

)

(7.18)

To estimate a lower bound for the critical atom number for BKT transition, we con-
sider the opposite approximation where all atoms contribute equally to the 2D transi-
tion so that the 2D PSD is given by taking n(2D) = N/A. In this case, the reduced inter-
action parameter is given by integrating the overall interaction term along z (Eq. A.12
) and we denote it g̃′. It is then reduced compared to g̃(0) due to broadening of this
density distribution compared to the ground-state width ℓz:

g̃′ = 4πas

∫

dz n2
(1D)(z) ≤ g̃(0) (7.19)

where n(1D)(z) is the axial density distribution (n(1D)(z) =
∫

dρ n(3D)(ρ, z) ∼ An(3D)(z)).
We compute g̃′ from the estimation of this axial density distribution by solving the same
full quantum 3D treatment of the ideal Bose law. This procedure also gives a first order
correction to g̃, depending on N and T, denoted g̃′(N, T). We then deduce the lower
critical number for BKT transition NBKT

low by recursively solving the second implicit re-
lation

N

Aλ2
T = ln

(

380
g̃′(N, T)

)

(7.20)

In Fig. 7.5, we show the four resulting theoretical lines N(T) that represent the ex-
pected evolution of coherence with cloud parameters. We note that variation of ∆

quantitiavely follows the curvature of these lines.

7.2.3. Critical Atom Numbers for ∆

From the contour plot of Fig. 7.5, that summarizes the ensemble of our data, we note
a typical variation of a sharp cross-over (or a phase transition), with essentially no bi-
modality (∆ ≪ 1) below a critical atom number Nc(T) and a fast increase of ∆ for
N > Nc(T). We fit the critical atom number Nc for the appearance of bimodality in ve-
locity distributions by considering sets of data at fixed T (i.e. at fixed Ubox).

We fit each resulting collection of ∆(N) by a threshold function of type:

f (N) = (1 − Nc/N)Θ(N ≥ Nc) (7.21)

where Θ stands for the Heaviside function. This is the expected relation for the true
condensed fraction Π0 = N(0,0,0)/N. As we do not rigorously measure Π0, the fit by
Eq. 7.21 reveals a practical yet empirical way to determine the point where ∆ rises above
zero. As we do not developed a rigorous insight on the behavior of ∆, we decided not to
rely on the Nc(T) fitted on data collections where no ∆ ≈ 0 "plateau" were observed (i.e.

all measured data shown some bimodal features). The limit was set to 4 experimental
raw points with ∆ < 0.1. Examples of reliable fits are shown in Fig. 7.7 after binning of
the raw data. We summarize the variations of Nc with T in Fig. 7.8. Reliable Nc are rep-
resented with plain dark green circles whereas the fitted Nc in absence of an observed
zero plateau are represented by light green stars. In this case, we must considered that
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Figure 7.7.: Example of data sets (N, ∆) at fixed T and associated fits along Eq. 7.21 for (a) a
disk of radius R = 12µm transversely confined in an harmonic trap of frequency
ωz/2π = 365 Hz for 4 different T = 170 nK, 190 nK,222 nK and 228 nK; (b) a disk
of radius R = 12µm with ωz/2π = 1460 Hz for 5 different T = 33 nK, 60 nK,
100 nK, 157 nK and 178 nK. (c) a square of size L = 24µm with ωz/2π = 365 Hz for
3 temperatures T = 172 nK, 185 nK and 209 nK (d) a disk of radius R = 9µm with
ωz/2π = 365 Hz for 5 temperatures T = 85 nK, 104 nK, 164 nK, 183 nK and 173 nK.
The represented data are binned in N and error bars represents standard deviation
on the binned ranges (ranges width is 1000 atoms for data at ωz/2π = 1460 Hz
and 4000 for ωz/2π = 365 Hz. Colors match the different temperatures; with
increasing T, the color order is red, orange, yellow, green, cyan, light blue, dark
blue, purple, magenta, salmon.

the critical atom number is comprised between 0 and the lowest measured number as
indicated by the corresponding errors bars.

Clearly the bimodal behavior that we observe in our gases appears for atom numbers
Nc lower than the critical values for both BECfull and BKT transitions at fixed T. This re-
veals that Bose law significantly affects the population of the low-excited states and the
resulting extent of the phase coherence prior to these transitions. In other world, this
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Figure 7.8.: Evolution of fitted critical number Nc for ∆ with the temperature T for an initial
gas confined in (a) a disk of radius R = 12µm transversely confined in an har-
monic trap of frequency ωz/2π = 365 Hz. (b) a disk of radius R = 12µm with
ωz/2π = 1460 Hz. (c) a square of size L = 24µm with ωz/2π = 365 Hz. (d) a disk
of radius R = 9µm with ωz/2π = 365 Hz. The expected evolution of coherence is
highlighted by the predicted critical lines of BEC⊥ (solid light green line), BECfull
(dash-dotted dark green line) phenomena and higher and lower bounds for BKT
transition (dashed blue line). Dark green circles show reliable fits of Nc(T) as ex-
emplified in Fig. 7.7. Light green stars represent unreliable fitted values of Nc from
data set presenting no zero plateau of ∆. In this latter case, error-bars represent the
observation uncertainty from zero to the first atom number observed correspond-
ing to non zero ∆.

modification implies an increase of the characteristic length ℓc for the decay of the g1

such that it results significantly different from its thermal value λT/
√

π (see Eq. 1.20).
Moreover, we highlight that the coherence revealed from these ToF measurements al-
ways appears at similar (or higher) critical numbers than the ones needed for BEC⊥ to
occur. Thus, the measured coherence must be understood as a signature of 2D–ness of
the gas. We will describe in more details the deviation and the matches of this experi-
mental lines to theories in 7.4.
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7.3. Matter-wave interferences

Matter-wave interference between independent atomic or molecular clouds is a pow-
erful tool to monitor the emergence of extended coherence [24, 42, 49, 163, 164]. In
our experimental setup, thanks to the versatility of the box-trapping configuration, we
were able to implement and detect the fringes patterns resulting from interferences of
two coplanar similar clouds. In this section I will present our procedure to make inter-
fere two independent gases and characterize the coherence from the resulting fringes
patterns. Such measurements nicely complement the one described in previous sec-
tion and we will see in a last part that they both eventually fall in a common curve
describing the evolution of coherence in our gas in terms of dimensionless parameters.

7.3.1. Detecting matter-wave interference

Figure 7.9.: a, Example of density distribution after a 16 ms in-plane expansion of two coplanar
clouds. Insets: frame of the selected region for Fourier transform. b, 1D Fourier
transform of each line y of the density distribution.

Using a mask shape showing a double site structure, we create two coplanar (i.e.

positioned in the same vertical plane) rectangular 2D gases of same size (see Fig. 6.9 for
example of in-situ density distribution) and initially spatially separated. In our setup
the two rectangles are set parallel along their long axis y of extent L = 24 µm. Along
their short axis x, they extend over l = L/2 and are spaced by d = 4.5 µm. Our setup
is designed so that the long rectangle axis y is aligned with the vertical axis of our CCD
camera frame.

To study matter-wave interference between the two clouds, we perform a 2D ToF (see
2.1.3 for details). It consists in abruptly switching off the box-potential while keeping
the confinement along the z-direction. In this way, both gases expand in-plane. This
point ensures that the atoms stay in focus with our imaging system, which allows us to
observe interference fringes with a good resolution in the region where the two clouds
overlap 9. We observe that the two gases start to overlap for expansion times τ & 4 ms

9. We note that in such a type of expansion the interactions between atoms may play a role. Indeed,
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7. Coherence of the Uniform 2D Bose gas

and then, in some configurations, we note the appearance of fringe patterns as shown
in Fig. 7.9(a).

We record the fringes patterns for longer expansion times τ ≥ 10 ms so that they are
observed over the whole cloud and that the atomic density drops sufficiently to be able
to use low intensity absorption imaging technique to observe these fringes in the den-
sity distribution [136]. This imaging technique is only partially quantitative in our 2D
geometry. Nevertheless, we choose to use this incomplete imaging technique as it offers
a larger signal to noise ratio compared to a fully-quantitative high intensity technique
[137] and so ultimately a better diagnosis of the fringe patterns. Note that multiple
scattering saturation effects may result in underestimating the fringe contrast for the
densest clouds 10 and shortest expansion times used as the optical densities measured
are as high as 2.

7.3.2. Characterizing fringes pattern

The observed fringe patterns are approximately rectilinear and parallel to the long
rectangle axis (and so to the camera CCD frame vertical axis y) but commonly present
some distortions. We analyze the fringes pattern line by line on a selected central region
of the camera image (see Fig 7.9(a)). This line by line analysis enables a characterization
of the fringe contrast that is not influenced by the importance of the distortions. The
size of the region for performing the analysis is fixed for all cloud configurations at a
given Time-of-Flight duration τ and is typically of 48 to 76 lines per 62 to 100 columns
for τ varying from 10 to 20 ms.

We perform a fit of the density n(x, yl) on each line l of pixels by

n(x) = n0

(

e−x2/(2σ2
0 ) + ce−x2/(2σ2) cos(k0x + φ)

)

(7.22)

where σ0 is the Gaussian width of the overall cloud, σ is the Gaussian width of the
interference domain, k0 is the momentum component associated with the fringe spacing
λ = 2π/k0, φ is the fringe phase and c is the fringe contrast. We impose the interference
region to be large enough σ ≥ 7λ but not necessarily equals to the total cloud size σ0.
We let k0 fluctuate around its expected value by ±25% to 30% depending on τ to take
into account distortion effects and other fluctuations in fringe patterns.

By Fourier transforming the density dependency n(x) resulting from the fit to Eq. 7.22,
we compute for each line l an estimate of the one dimensional Fourier transform ñ[kx, yl ]

of n(x, yl). An example of |ñ[kx, yl ]| obtained by a direct Fourier transform from exper-
imental distribution is given in Fig. 7.9(b). Each line shows typically 3 characteristic

compared to the previous 3D expansion where the fast dynamics along z axis leads to a sudden drop
of the atomic 3D density, here the density remains of the order its initial value and the same conclusion
holds for the interaction energy. However, we note that for all points where we observe emergence of an
extended phase coherence, interaction are in practice negligible in the in-situ configuration and hence play
no role in the 2D expansion (see 7.4. A Bose law treatment described in Annex A self-consistentlypredicts
gn(3D)(0) . kB × 10 nK . h̄ωz , kBT). Interactions may play a role at higher densities, thus when full
coherence is already established. This may lead to a reduction in the fringe contrast in this case.

10. We however expect that for the configurations where we measure emergence of an extended phase
coherence, these multiple scattering effects to be negligible (similarly to the negligible effects of the inter-
actions between particles).

148



7.3. Matter-wave interferences

peaks, one at zero momentum corresponding to the total cloud and two at opposite
kx of approximately constant value over the whole distribution. These auxiliary peaks
correspond to the fringes pattern and arise at momentum kx = ±k0. The phase of the
complex value ñ(k0, yl) is then equal to the phase of the fringes φ. The use of the result
of the fit to Eq. 7.22 enables a more accurate estimate of the peak position k0, phase φ

and amplitude.
We consider the complex value of this hybrid density ñ[kx, yl ] at the momentum kx =

k0(yl) and compute an equivalent of the one body correlation function:

γ(d) =
∣

∣〈ñ[k0(y), y]ñ∗[k0(y + d), y + d]〉y

∣

∣ (7.23)

where ∗ denotes the complex conjugation. For two infinite rectangles of zero thick-
ness and of identical initial one body correlation function g1(y) ≡ 〈ψ̂(y)ψ̂†(0)〉 (where
ψ̂(y) is the annihilation operator for a particle at position y), a simple integration gives
γ(d) = |g1(d)|2 [165]. Here the non-zero extension of the rectangles along x and their
finite initial size along y make it more difficult to provide an analytic relation between
γ and the initial g1(r) of the gases. However γ(d) remains a useful and quantitative
tool to characterize the fringe pattern.

In an incoherent gas, g1(r) is expected to be a Gaussian of width λT/
√

2π. To study
the coherence of the initial gas on a spatial scale larger than this thermal width, we
study γ(d) for d & λmin where λmin is the thermal length λT for the lowest tempera-
ture observed (and is thus approximately four times larger than the largest width of
|g1(r)|2). We also restrict ourselves to relatively small values of d due to distortions of
the fringes over long distances (d must be short compared to L but still long compared
to λmin). Typically λmin ≈ 2 µm (as minimal temperature investigated are as low as
∼ 10nK) and we consider the averaged value of γ(d) for d varying between ∼ 2 µm
and ∼ 6 µm. As a camera pixel corresponds to 0.52 µm on the atomic sample, we effec-
tively consider the discrete average of γ(d) for d varying from 4 to 10 pixels 11:

Γ ≡ 〈γ(d)〉d∈[1,3]λmin
=

10px

∑
d=4px

γ(d) (7.24)

For the parameter Γ to take a value significantly different from 0, one needs a rela-
tively large contrast on each line, and relatively straight fringes over the relevant dis-
tances d, so that the phases of the different complex contrasts ñ[k0(y), y] do not average
out.

We note that the challenging point in this characterization lies in the quality perfor-
mances of the fit to Eq. 7.22 for each line l. In this fit function six free parameters have to
be determined whereas the single density lines may show important shot noise (from
photonics noise inherent to absorption imaging technique) making each fit very sensi-
tive to initial condition. We describe our effort for performing a good initialization of
this fit in Annex H.

11. We note that the results depend very weakly on the precise choice of this averaging range. In prac-
tice, we note that γ(d) shows very similar behavior with (N, T) for d ∈ [1, 40]. Restricting the averaging
range to [4, 10] enables to increase signal to noise ratio.

149



7. Coherence of the Uniform 2D Bose gas

7.3.3. Phase Diagram and critical atom number for Γ

7.3.3.1. Phase Diagram

As for the velocity distribution phase diagrams, we measure a large number of ex-
perimental fringe patterns corresponding to an also large number of cloud configura-
tions (N, T). We deduce (N, T) for these fringes pattern configurations from Time-of-
Flight measurements performed on a single square box of same total area that is with
L = 24µm (as in Fig. 7.5) as similar densities 12 are observed in both cases after identical
preparation sequence (i.e. same evaporation ramps) 13.

We compute the value of Γ from the measured interference patterns so that for each
image we get a triplet (N, T, Γ). In Fig. 7.10, we plot Γ while varying the cloud param-
eters (N, T). We show results obtained for two trapping frequencies, ωz/2π = 365 Hz
and ωz/2π = 1460 Hz. As for the equivalent plot for the bimodality parameter ∆

shown in Fig. 7.5, no indication of coherence appears in the lower right corner (Γ ∼ 0
for large T and small N), and Γ increases for larger N/lower T. For a given T, the
variation of Γ with N shows the same threshold-type behavior as ∆.

7.3.3.2. Critical atom number for Γ

We then also estimate the critical atom numbers Nc for observing fringe patterns with
a significant contrast by fitting the variation of Γ with N at fixed T by fitting:

f (N) = A0(1 − Nc/N)Θ(N ≥ Nc) (7.25)

where Θ stands for the Heaviside function. Note that here we do not assume a rise to
unity of the fitting function contrarily to Eq. 7.21 as Γ may take arbitrary values. This
implies the use of a second fitting parameter A0 that might increase the error on the de-
termination of the critical atom number in this case. The fitting parameter Nc reliably
estimates the atom number N for which Γ rises above zero for all data collections where
a significant Γ ≈ 0 "plateau" is observed (i.e. clouds without fringes were observed).
We summarize the variations of Nc with T in Fig. 7.11. Reliable Nc are represented with
plain dark green circles whereas the fitted Nc in absence of an observed zero plateau
are represented by light green stars. In this case, as for ∆, we must considered that the
critical atom number is comprised between 0 and the lowest measured number as indi-
cated by the errors bars. We note an overall very similar evolution of the fringes signal
compared to the one extracted from the bimodality of the velocity distribution. We
conclude that both Time-of-Flight characterization of velocity distributions and matter-
wave interferences give a similar insight on the emergence of phase coherence in 2D
uniform Bose gases.

12. Each rectangle in this setup presents half the area of the square cloud studied but also half number
of atoms so that the spatial density is equivalent to this square case.

13. We then assume that the separation d has negligible influence on the setting of the cloud configura-
tion (N, T) via evaporation ramps and that in particular the same law T(Ubox) as the one deduced in 7.1
for the square of size L = 24 µm applies. For each preparation sequence we deduce N from averaging ∼ 5
ToF measurements
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7.4. Scaling Laws for emergence of Coherence

Figure 7.10.: Contour plot representation of the evolution of Γ with the clouds parameters
(N, T), for two initially rectangular gases of sizes L = 24 µm and l = 12 µm,
spaced by d = 4.5µm and transversely confined in an harmonic trap of frequency
(a) ωz/2π = 365 Hz (b) ωz/2π = 1460 Hz. N is the total atom number of the two
clouds and we checked by complementary in situ measurement that each cloud
contains approximately N/2 atoms. T is obtained from empirical law T(Ubox)
deduced in 7.1 for the square of size L = 24 µm. To observed the fringes pat-
terns, we performed 2D ToF of 16 ms (resp. 10 ms) for (a) (resp. (b)) Colors are
interpolated from a set of 100 (resp. 140) images over which we consider in av-
erage 61 (resp. 48) lines. As in 7.5, we represent theoretical critical lines of BEC⊥
phenomenon (solid orange line), BECfull phenomenon (dash-dotted red line) and
higher and lower bounds for BKT transition (dashed blue line). The theoretical
lines are computed for a square of L = 24 µm

7.4. Scaling Laws for emergence of Coherence

From the two experimental characterizations described above, we are now interested
in highlighting universal features in the appearance of coherence in 2D uniform gases
and, more precisely, while looking at various ζ ≡ kBT/h̄ωz. We have summarized
in Fig. 7.12 the ensemble of our results for Nc(T) obtained in the two regimes ζ ≫ 1
(achieved for ωz/2π = 365 Hz) and ζ . 1 (ωz/2π = 1460 Hz). It gives the variations of
the critical phase-space-density Dc = Ncλ2

T/A for the emergence of both bimodality as
described in 7.2 (full symbols) and fringe patterns as described in 7.3 (open symbols) as
a function of ζ. The results lie on a universal curve, independent of the shape and size
of the gas: Dc is approximately constant for ζ . 1, whereas it increases linearly with
ζ when ζ ≫ 1. This is in line with our understanding of the transverse condensation
BEC⊥ phenomenon.

In the regime of a strong confinement in the z-direction, ζ . 1, Bose and Boltzmann
statistics do not lead to dramatically different descriptions of the z degree of freedom.
Both indicate that a majority of atoms occupy the ground-state |jz = 0〉, independently
of the surface density. Then, from the theoretical description of ideal 2D gases (see
1.1.3), one expects that the coherence length in the xy-plane increase sufficiently to
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Figure 7.11.: Fitted critical atoms numbers Nc from Eq. 7.25, for the fringes contrast parame-
ter Γ shown in 7.10. Transverse confinement is varied: (a) ωz/2π = 365 Hz (b)
ωz/2π = 1460 Hz. N is the total atom number of the two clouds. T is obtained
from empirical law T(Ubox) deduced in 7.1 for the square of size L = 24 µm
We represent theoretical critical lines of BEC⊥ phenomenon (solid orange line),
BECfull phenomenon (dash-dotted red line) and higher and lower bounds for BKT
transition (dashed blue line).The theoretical lines are computed for a square of
L = 24 µm

lead to a bimodal velocity distribution and to interference patterns when the 2D phase-
space-density D ≡ nλ2

T (where n stands here for the surface density n(2D)) significantly
exceeds 1. More precisely, as detailed in 1.1.3.1 (Eqs. 1.17–1.22) in the case D & 1, g1(r)

acquires a bimodal structure: in addition to its incoherent Gaussian structure of 1/e–
width λT/

√
π, a broader feature ∝ exp(−r/ℓ) develops, with the characteristic length

given in Eq. 1.22 and reminded here:

ℓ =
λT√
4π

exp(D/2). (7.26)

The fast (exponential) increase of ℓ with D, which is specific to 2D physics, entails
that the phase coherence is strongly enhanced, with a factor larger than 4 between the
widths at 1/e of the Gaussian and the Lorentzian components, as soon as D ≥ 4. Then
we expect coherence to arise at a constant value of D:

D = Dc,2D & 1 (7.27)

In the weaker confinement regime in the z-direction, ζ & 1, BEC⊥ phenomenon be-
comes relevant and leads to discrepancies between Bose and Boltzmann descriptions.
As thoroughly described in 1.2, Bose statistics implies that the 2D phase-space-density
that can be accumulated in the excited states of the z-motion D′ = D −D0 is bounded
D′ ≤ D′

max (see 1.2.3.1). When D′ reaches this bound, every additional atom must accu-
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Figure 7.12.: Scaling law for the emergence of coherence in a quasi2D Bose gas. Variation of
the critical phase-space-density Dtot,c for observing a bimodal distribution (full
symbols) and distinct matter-wave interferences (open symbols), as a function of
the dimensionless parameter ζ = kBT/(hνz). This plot summarizes data obtained
for various confinement shapes and sizes, as well as two different trapping fre-
quencies, νz = 365 Hz: disk R = 12 µm (red left triangles), disk R = 9 µm (light
green up triangle), square L = 24 µm (blue square), νz = 1460 Hz: disk R = 12 µm
(yellow right triangles), disk R = 9 µm (green down triangles). Interferences are
also observed at the same two frequencies : νz = 365 Hz (dark blue open circles)
and νz = 1460 Hz (violet open diamonds). Black dash-dotted line shows a fit to
the overall data set of a linear increase of Dtot,c with a threshold at low ζ. We
obtain a plateau at Dtot,c = 3.8(7) for ζ ≤ 2.1(8), which gives from Eq. 7.26 a cor-
relation length ℓ = 1.9(7)λT . The linear increase show a ramp of 1.39(9) close to
the semi-classical expectation of π2/6. We note for ideal Bose law computations
(see methods), that ℓ/λT is approximately constant over the transition line and
equals to 1.6(2).
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7. Coherence of the Uniform 2D Bose gas

mulate in the ground-state |jz = 0〉 of the z-motion, which is associated to the PSD D0

and then the total PSD is D = D′
max +D0. In the case ζ ≫ 1, a semi-classical treatment

leads to:

D′
max =

π2

6
ζ. (7.28)

In this case, BEC⊥ occurs when D0 is not properly accounted by the semi-classical ap-
proximation which leads to Dc ∼ D′

max and D0 [∼ ln (ζ)] & 1 (see 1.2.3.2, Eq. 1.50).
Then, it appears from Eq. 7.26 that a bimodal structure arises in g1 and the coherence
length in the xy-plane becomes large compared to its thermal value ℓ

(th)
c = λT/

√
π

(see 1.2.3.4 for more details). In the regime ζ ≫ 1, the appearance of a large coherence
length in the xy-plane and the occurrence of transverse condensation for the z degree of
freedom are thus linked. Then, the expected threshold line for emergence of coherence
on D must show some increase with ζ. From Eq. 7.28, in the regime where ζ ≫ 1, we
expect an approximately linear 14 increase of the critical PSD with a slope of π2

6 :

D ≈ π2

6
ζ +Dc,3D (7.29)

We fit the overall data set of Dc by a linear increase with a threshold at low ζ:

Dc = Dc,0 + α(ζ − ζ0)Θ(ζ ≥ ζ0) (7.30)

We obtain a plateau at Dc,0 = 3.8 (7) for ζ ≤ ζ0 = 2.1 (8). We note that the Dc for emer-
gence of coherence is much lower (approximately half of it) than the expected value for
the BEC/BKT transitions. This is due to the fast growth of the correlation length with
D of Eq. 7.26 and it thus matches the above theoretical description of the tight confining
regime. The linear increase for ζ ≥ ζ0 presents a slope of 1.4 (1) compatible with the
semi-classical expectation of π2/6. Note that the error bars given here do not take into
account uncertainties on N and T determinations.

Using ideal Bose law computations described in Annex A, we can compute the spatial
dependency of the one-body correlation function g1(r) for all couples (Nc, T) appearing
in Fig. 7.12. We estimate the width ℓc at 1/e of g1 in the xy-plane and we found it that it
is approximately constant over the transition line ℓc = 1.6(7)ℓ(th)c .

From this ideal description, we have also calculated for all couples (Nc, T) the max-
imal interaction energy per particle Emax

int = (4πh̄2as/m)n(3D)(0). For all points we
find that Emax

int . kB × 10 nK is smaller than both h̄ωz and kBT, justifying a posteri-

ori the ideal gas approximation. The emergence of bimodality is therefore driven by
single-particle physics and not by interactions, contrarily to the superfluid transition
expected for larger phase-space densities (BKT physics). The regime corresponding to
the transition threshold in Fig. 7.12 is similar to the quasi-condensate/pre-superfluid
state observed in [102, 103] for 87Rb atoms in a 2D harmonic potential. In that case, the
analysis is complicated by the fact that the BEC⊥ phenomenon is position-dependent,

14. More precisely, from our theoretical development in 1.2.3, we expect BEC⊥ to occur at Dc = D′
max +

D0,c with D′
max = π2

6 ζ and D0,c ≈ ln(ζ) + 0.9 (Eqs. 1.47–1.50), leading to a logarithmic correction to the
linear dependency.
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as evidenced by Quantum Monte Carlo calculations [166]. The advantage of our ho-
mogeneous setup is that extended coherence emerges simultaneously over the whole
sample, and is thus easier to discriminate from interaction effects expected for larger
spatial densities.

7.5. Conclusion

In this chapter, we presented our results on the steady state behavior of 2D uniform
Bose gases.

Firstly, we presented an original thermometry of our 2D uniform gases based on an
empirical description of the trap loading and evaporative cooling phenomena. From an
experimental investigation of temperature from Bose law calculations performed on a
partial data set (considering only cloud with negligible interaction energy contribution)
we deduced a general relation between the temperature T and the box-potential height
Ubox. This relation depends on the transverse trapping configuration – more precisely
on the potential height VLS when we load the 3D gas into the 2D traps – and on the
box-potential shape – more precisely on the maximally explored distance from the trap
center dmax. The final relation reads

T(Ubox; VLS, dmax) = T (Ubox e
2d2

max
w2 ; VLS) e

− 2d2
max
w2 (7.31)

T (U; VLS) = T0(VLS)

(

1 − e
− U

ηkBT0(VLS)

)

, w = 50µm. (7.32)

We computed the characteristic loading temperature T0 for our two reference trapping
configurations and the global factor η as summarized in Table 7.1.

Secondly, we presented two sets of measurements characterizing the emergence of a
coherent behavior in our 2D uniform gases while varying the cloud atom number N

and temperature T. We characterize this phase coherence in two complementary ways:

1. We highlighted an abnormal population of the in-plane low-momentum states by
characterizing the bimodality of the density distribution measured after a Time-
of-Flight expansion.

2. We outlined the wave-like behavior of 2D uniform gases by characterizing the
interference generated when making two identical but initially separated gases
overlap.

Finally, we highlighted a universal variation of the critical phase-space-density for
the emergence of an extended coherence as a function of ζ ≡ kBT/h̄ωz, which charac-
terize the strength of the transverse confinement compared to the temperature. For the
tight confining regime, ζ . 1, we show that coherence appears in a 2D uniform gas at a
constant phase-space-density Dc,0 ∼ 4 that is smaller that the expected critical PSD for
BEC and BKT transitions Dc,BKT ∼ Dc,BEC ∼ 8. Such a deviation reveals the rapid in-
crease of the correlation length ℓc as soon as D & 1 in the 2D geometry and corresponds
to the quasi-condensation or pre-superfluid regime [102, 103, 125]. For weaker trans-
verse confinements ζ ≫ 1, we highlight a linear variation of Dc with ζ which matches
the description of the transverse condensation phenomenon BEC⊥ [129].
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7. Coherence of the Uniform 2D Bose gas

In these measurements, the coherence is considered as an equilibrium property of the
gas. In our experiment, it is in fact established via a forced evaporative cooling over a
finite ramp time. The finite duration of the evaporation ramp also implies interesting
dynamical features of the coherence establishment that we will study in next chapter.
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8. Kibble–Zurek mechanism at the dimensional crossover

Dynamics at the crossing of a thermodynamic transition is a widespread topic of
investigation in physics, from the study of the early universe to nanoscopic laboratory
experiments.

Generally speaking, when approaching a transition point, both the thermalization
time τ and the correlation length ξ diverge. First the divergence of ξ leads to the emer-
gence of a universal behavior close to the transition point: as ξ grows to infinity, micro-
scopic details of the system under interest become irrelevant. Behavior of the system
is then dictated by the universality class 1 of the transition that is crossed. The univer-
sality of this behavior is embodied in thermodynamic critical exponents characterizing
the steady–state power-law dependencies of interesting physical quantities close to the
transition point with respect to the distance to this point (in terms of a given control
parameter). If the transition is crossed via a finite ramp of a control parameter, how-
ever, ξ would never reach its predicted infinite value. Indeed, as the thermalization
time τ also diverges, there will be a time t̂ before the transition occurs for which ther-
malization is no longer possible and ξ will be frozen out at t̂ before the transition. Such
a freezing out leads to the formation of independent domains of characteristic size ξ̂

in each of which a choice of the order parameter value is made. These domains will
merge after the transition is crossed 2 leading to the formation of robust topological de-
fects at their boundaries that subsist within the globally coherent system. The size of
the independent domains and the density of defects are intimately linked to the equi-
librium description of the considered transition and may serve to identify the class of
universality at which it belongs.

This ubiquitous mechanism was first put forward by Kibble [88] concerning cosmo-
logical systems and extended by Zurek [89] to condensed matter field. Kibble and
Zurek description enable a quantitative prediction of the scaling of both the size of
the independent domains and the consequent density of defects. Signatures of Kibble–
Zurek physics and quantitative scaling properties have been studied in a variety of ex-
perimental systems such as liquid crystals [167], helium [168, 169], ion chains [170, 171],
superconducting loops [172] and cold atom gases [91, 93–95].

In this chapter, I present a quantitative analysis of KZ mechanism for our specific
uniform quasi-2D setup. Thanks to the uniformity of our gas, we get closer to the
original prediction from Kibble and Zurek than previous experiments realized on cold

1. Universality classes constitutes a categorization of phase transitions coming from the application of
the Renormalization Group (RG). Phase transitions belonging to the same universality class are equivalent
under the renormalization transformations around the critical point. They have the same relevant observ-
ables (i.e. the ones that grow under the renormalization transformations) and only differ by irrelevant
observables (the ones that decay under the renormalization transformations). Then they have the same
values of their critical exponents.

2. in fact, the merging should occur also at a time t̂ after the transition point. By symmetry, the freezing-
out holds for a duration t̂ in each side of the transition.

157



8. Kibble–Zurek mechanism at the dimensional crossover

gases [91, 93]. In these cases, inherent non-homogeneities imply a dominant role of the
causality principle [173], which in particular leads to a strong reduction of the number
of topological defects and a major change in the scaling properties. Indeed, whereas, in
presence of inhomogeneities, the transition occurs successively in the different regions
of the gas, in the uniform case, coherence is established simultaneously over the whole
cloud matching the previously described independent choice of order parameter per
frozen out domains. Then a different and interesting regime can be achieved with our
uniform configuration.

In a first part, I will present an overview of Kibble–Zurek predictions emphasizing
on the specificity of uniform systems versus inhomogeneous ones and presenting some
particularities of the applicability of KZ predictions to our experiments. Then I will
present two experimental configurations in which we observed topological defects for-
mation when quenching a gas successively through BEC⊥ and BECfull/BKT transitions
(see Chs. 1 and 7). We studied the lifetime, the probability of occurrences and the mean
numbers of these defects and the scalings of the latter properties as a function of the
quench time for both configurations, which we compare to KZ predictions:

— We observe nucleation of vortices in 2D uniform, simply connected gases. In this
case, the vortices are revealed by expanding cores density holes after short 3D
Time–of–Flight. In this case, we can in particular study the spatial distribution
and the correlations of the vortices.

— We observe nucleation of persistent currents in an annular gas. In this case, the
vortex phase windings are revealed by matter-wave interference with a central
disk of atoms that serves as a phase reference. We are in this case able to charac-
terize the sign and the charge of the corresponding vortices.

8.1. Kibble–Zurek Mechanism

8.1.1. General description of the mechanism

As introduced, Kibble–Zurek mechanism states than when approaching a transition
point via a finite ramp of duration τQ of a control parameter T, independent coherent
patches are formed prior to the transition crossing. Topological defects are nucleated
when these patches merge into a unique coherent system, after the transition has oc-
curred. Both scaling of the size of the independent patches ξ̂ and of the number of the
topological defects Nv or Nw as a function of the quench duration τQ are dictated by
the divergences of both the correlation length ξ and the thermalization time τ at the
transition. These divergences are typically 3 featured at equilibrium – or by extension
in the adiabatic regime– by universal critical exponents ν and νz respectively:

3. Note that for transitions of infinite order (as BKT), a quench would not lead to a power-law scaling
of ξ and τ. It was nevertheless shown that Kibble–Zurek mechanism keeps applying then, leading to more
a complicated scaling that was the object of recent theoretical analysis [174, 175].
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ξ(ǫ) =
ξ0

|ǫ|ν (8.1)

τ(ǫ) =
τ0

|ǫ|νz
(8.2)

where ǫ is the distance to the transition point in terms of the control parameter T (Tc

standing for its value at the transition):

ǫ =
Tc − T

Tc
. (8.3)

Values of critical exponents ν and z depend on the universality class of the transition
considered.

If we perform a ramp of ǫ in a time τQ from ǫ(t = 0)> 0 to ǫ(t = τQ) ≤ 0, then
as we approach the transition time t∗ such as ǫ(t = t∗) = 0, the thermalization time
τ(t)[≡ τ(ǫ(t))] diverges. As long as τ(t) stays small compared to the time before the
transition crossing |t∗ − t| ≫ τ(t), then the adiabaticity of the evolution holds. Out
of equilibrium dynamics arises when this adiabaticity condition is no longer verified:
|t∗ − t| . τ(t). We denote t̂ the time distance to transition for which

τ(t∗ − t̂) ≈ t̂ (8.4)

t̂ is called the freezing out time as it matches the time distance to the transition point at
which adiabaticity fails. At this moment physical parameters can no longer follow the
dynamics imposed by the forced ramp of the control parameter.

In particular, at this time t̂, the correlation length is frozen to the value ξ(t∗ − t̂). The
system can not equilibrate on length scales larger than ξ(t∗ − t̂) and no coherence can
then be established on larger scales. From this observation, Kibble and Zurek suggest
that this frozen out correlation length ξ(t∗ − t̂) matches the size of the independent co-
herent domains that are formed due to this freezing out of the dynamics:

ξ̂ = ξ(t∗ − t̂) (8.5)

Then the mean number (over a large number of realizations) of independent domains
Nd formed and observed at the end is given by

Nd ∼ V
f ξ̂D

(8.6)

where f & 1 is a numerical factor correcting for non–independent choice of the order
parameter value between the "initial" patches 4, for example due to diffusion during the
freezing out period [176]; D is the dimension of the patches we consider and V is the

4. The term "initial" patches here refers to the patches formed at time t∗ − t̂, whose mean number
is V/ξ̂D. Then, with this correction, Nd corresponds to the mean number of domains observed at time
∼ t∗ + t̂, that is at the end of the freezing out period, just before the merging of the domains. This value of
Nd is the relevant one to deduce the mean number of topological defects that are formed.
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8. Kibble–Zurek mechanism at the dimensional crossover

fluid volume in this space. For example:
— For a uniform 2D gas as considered in 8.2, patches are bi–dimensional (D = 2)

and the volume is equal to the area of the box V = A.
— For an annular geometry as considered in 8.3, we will see that we can look at the

patches as effectively 5 one-dimensional D = 1 and the volume is equal to the
annulus circumference V = C.

On each coherent domain formed at the freezing out time, the phase ϕ of the wave-
function (that is the order parameter for BEC transition) is approximately constant and
its value is chosen randomly and independently. Hence, there is a chance to find an
accumulation of the phase around a closed loop that crosses some boundaries between
several of theses patches. During the coarsening dynamics at the transition crossing,
the patches merge together and the point around which the phase winds up forms a
topological phase defect, namely a vortex. From Kibble–Zurek formalism described
above, we can deduce the mean number of topological defects that are nucleated in the
quench. We distinguish two specific geometries that we will later experimentally study,
an annular and a bulk geometry:

— In an annular geometry, the domains numbered by i ∈ J 1; Nd K form a one di-
mensional chain around the annulus. The choice of the independent phases ϕi on
each domain i may lead to a persistent current if the phase accumulated around
the annulus ∆ϕ = ∑

Nd−1
i=1 (ϕi+1 − ϕi)[2π] (where [ . ] stands for the modulo oper-

ation) is a non–zero multiple nw of 2π. Then the mean over a large number of
realizations (noted 〈 . 〉) of flux quanta nw (≡ ∆ϕ/2π) that are created is directly
deduced from the number of domains Nd as, if Nd > 1, the variation of the phase
over the circumference can be seen as a random walk of Nd steps. The precise
scaling law of ∆ϕ to Nd depends on the range of Nd. If the number of patches is
large (Nd ≫ 1), ∆ϕ follows the law of large numbers and the winding number nw

verifies
〈|nw|〉 ∼

√

〈n2
w〉 ∝

√

Nd. (8.7)

Such a scaling law has been checked by numerical simulations using Stochastic
Gross–Pitaevskii Equation (SGPE) for instance in [177] 6. If Nd ≪ 1, then scaling
law is modified [178, 179] in

√

〈n2
w〉 ∼ Nd (8.8)

〈|nw|〉 ∼ N2
d (8.9)

In experimental investigations of 8.3, we will consider Nw ≡ 〈|nw|〉. If the number
of patches is intermediate between these two regimes, the scaling law must transit
between Eq. 8.7 and Eqs. 8.8– 8.9. Our experimental realization of 8.3 holds in this
situation. We have implemented simple simulations to estimate the correction to
the scaling law by performing random walks on relevant number Nd of patches
and fitting the resulting averaged winding number toward Nd (see 8.3.3.2) .

5. For considering so the characteristic patches size ξ̂ must be larger than the width of the annulus.
6. In this paper the smallest C/ξ̂ considered is 30. The critical exponent found is 0.126 very closed from

MF prediction 0.125

160



8.1. Kibble–Zurek Mechanism

— For the nucleation of topological defects in the volume of the fluids in our uni-
form 2D gas of 8.2, scaling law of the mean defect number Nv is more complex
to infer. It has been shown experimentally and theoretically that when merging
independent condensates of random phases, vortices are formed and their mean
number Nv depends on the merging rate [180, 181]. If the merging is slow enough,
the vortices can only formed at the intersection of several (≥ 3) domains, then the
number of vortices observed in one configuration is set by the simple geomet-
rical organizations of the phases ϕi around the various intersection points (via
the geodesic argument [182]). However if the merging is too fast, vortices can
be nucleated from interference at the boundary between two domains. These in-
terferences create instabilities that may decay in vortex anti–vortex pairs. Some
of the generated vortices or anti-vortices may then survives (and not annihilate)
within the resulting cloud. It was shown [180, 181] that the nucleation efficiency
can be embodied by a constant fv that does not depend on the critical exponents
so that

Nv =
Nd

fv
(8.10)

8.1.2. Specific description of the mechanism in our experiment.

In our experiment, the quench through a transition to a coherent state is realized
by performing the final evaporation ramp of the micro–trap potential height Ubox (see
2.1.3). During this ramp, we vary the temperature T (see 7.1) but also the 2D charac-
ter of the gas. In this sense, nor defining the order parameter that is ramped neither
pointing out the critical phenomenon that leads to the formation of a coherent state
(and if crossed via a finite ramp to topological defects) are straightforward tasks. In
this section, our aim is to clarify the way KZ mechanism applies in our case.

The measurements detailed in this chapter have been taken at ωz = 2π × 365 Hz
≈ kB/h̄ × 17 nK. The loading temperature is typically of the order of Tload ∼ 200 nK
such that the starting value of ζ = kBT/h̄ωz is ζload ≈ 12 ≫ 1 and we are in the 3D
regime. More precisely, we compute an initial occupation of the ground state of the
z-motion of 23%. In contrary, the final temperature is Tf ∼ 10 nK and ζf ≈ 0.6 ≤ 1: we
reach a 2D regime with a final occupation of the ground state of the z-motion of nearly
100%. As highlighted in Chapters 1 and 7, in this case two transitions occur successively
(two-step condensation). First, at temperature T⊥, the transverse condensation (BEC⊥)
occurs, leading to emergence of a 2D behavior of the gas, with a dominant population
of the ground state of the z–motion. Second, at temperature Tfull < T⊥, in–plane conden-
sation (BECfull) or BKT transition are crossed leading to a "true" superfluid state. BEC⊥
occurs at a 3D phase-space-density D(3D) ≈ 2.612 as the gas is weakly interacting there
(see 1.2.3.3), and we show that at this point, the 2D phase-space-density associated to
the population of the ground state of the z-motion is of the order of D(2D)

0 ≈ ln (ζ)

that is of the order of 2 in our case (see 1.2.3.2). BECfull and BKT happens at a similar
phase-space-density D(2D)

0 ≈ 8 in our configuration.
In 1.2.3.4 we theoretically demonstrated and in Ch. 7 we experimentally verified that

the occurrence of the BEC⊥ phenomenon leads to a state of increased coherence length
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8. Kibble–Zurek mechanism at the dimensional crossover

compared to the thermal length λT both in the z-direction but also (more subtly) in-
plane. Then the establishment of such an extended coherence at crossing of BEC⊥ phe-
nomenon makes it relevant for the KZ formalism: In our ramp, the topological defects
that may be nucleated via a KZ-like mechanism must be formed when approaching the
BEC⊥ point, which corresponds to a sharp dimensional crossover. The temperature can
be seen as the order parameter varied and Tc = T⊥.

To understand the details of the application of KZ-like mechanism in this case, we
must analyze how the coherence length ξ evolves close to the transition point. We
will start from the case of a 3D condensation considering a similar geometry 7. In this
case the previously developed KZ formalism simply applies using BEC universality
class exponents and leads to the formation of coherent domains of size ξ̂ (Eq. 8.5)
isotropic for the 3 directions of space. For a condensation arising in two steps (that
is for traps with a higher anisotropy L/ℓz ≫ 10), the same description than for this 3D
case applies up to the first step of the condensation. As the isotropy of the evolution
keeps being relevant up to this first step, the size of the coherent domains must then
be limited by the smallest dimension if the gas, that is to say its typical thickness. It
thus sets a validity bound to the 3D description of the KZ mechanism for this two-step
condensation. More insight (see 1.2.3.4 for more details and rigorous derivation) in
such a bounding effect can be obtained by injecting the order of magnitude D(2D)

0 ≈
ln (ζ) in the 2D coherence length formula ℓc = λTeD0/2/

√
4π (Eq. 1.22), we found an

in-plane correlation length ℓc ∼ ℓz/
√

2 with ℓz =
√

h̄/mωz such that ℓc matches (in
order of magnitude) the thickness of the ground-state of the z-motion: At the transverse
condensation point, the in–plane coherence length is equal to the correlation length in
the z-direction and is set by the characteristic thickness of the gas.

Then, for the fastest cooling ramps, KZ description for a BEC-type transition predicts
domain sizes for a 3D fluid that are smaller than ∼ ℓz/

√
2, and it can thus provide a

good description of our system. For a slower cooling, large coherent domains would
be expected in 3D, but in this case, the 2D nature of our gas cuts the critical divergence
of the correlation length (at the value ξ̂ & ℓz) 8 and slows down the emergence of the
coherent patches. In this slow cooling regime, we thus expect to find an excess of topo-
logical defects with respect to the 3D KZ prediction and a reduced variation 9 of the
numbers of domains toward the quench time above the corresponding threshold in τQ.

For the fast cooling regime, the number of patches scales according to the BEC uni-

7. we consider a uniform in-plane confinement and a transverse harmonic one but with different nu-
meric parameters: 3D condensation is relevant when the two described steps for the condensation are not
distinguishable anymore. Quantitatively, it is the case when the characteristic size of the box potential L is
of the order of the size of the harmonic oscillator ℓz =

√
h̄/mωz (see Eq. 1.51). In our case we have a ratio

of 1 : 53 between the two rms size of the traps.
8. such an effect can be seen as finite size effect in the transverse direction, see the corresponding

subsection 8.1.5.
9. Following literally our analysis, we deduced that this reduced variation should be a constant one.

In reality this variation may be more sophisticatedly affected by the further evolution of the coherence,
beyond the unique BEC⊥ phenomenon. Then we can not rigorously conclude on the occurrence of a
plateau. In our experimental investigation however, we do not reach a sufficient precision to distinguish
a constant from a slow decay. For conveniency, we will use the plateau terminology rather a reduced
dependency in the rest of this chapter for describing this divergence cut effect
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8.1. Kibble–Zurek Mechanism

versality class prediction. It can be described using a Mean–Field (MF) formulation 10

(i.e. Ginzburg-Landau theory) that gives ν = 1/2 and z = 2 (see e.g. [? ]). Beyond
Mean–Field predictions have also been developed. In our case 11, we will considered the
so–called Model F [185]. We summarize in Table 8.1, the different values of the expo-
nents that could describe our gas.

Exponent BEC, MF BEC, Model F

ν 1/2 2/3
z 2 3/2

Table 8.1.: Prediction for critical exponents ν and z for BEC universality class described in a
Mean–Field (BEC MF) approximation (Ginzburg–Landau theory) or beyond Mean–
Field Model F [185].

Note that in our case, we are not studying the BKT transition. BKT transition would
also lead to highly interesting physics as it is of infinite order and do not lead to a
power-law scaling of ξ and τ. It was shown that Kibble–Zurek mechanism neverthe-
less keeps applying then, leading to a more complicated scaling that was the object of
recent theoretical analysis [174, 175]. To reach such an interesting physics it is neces-
sary to use higher transverse trapping frequencies and larger in-plane boxes to be able
to make irrelevant the BEC⊥ phenomenon and to separate the scales of BECfull and BKT
transitions compared to our current implementation.

In our case, pushing further the evaporation to reach the deep 2D regime is a simple
mean to facilitate the visualization of the topological defects.

8.1.3. Homogeneous Kibble–Zurek mechanism

8.1.3.1. Linear ramp model

The historical argument by Kibble and Zurek bears on homogeneous systems. They
consider a uniform quench of the temperature T (or more generally any control param-
eter) and they assume this ramp to be linear in time 12:

T(t) = Tc

(

1 − t

τQ

)

(8.11)

10. We note that such values of critical exponents are correct for space dimension larger or equal to 4.
Then corrections must be taken into account in our 3D case for a more accurate description taking into
account the enhanced role of fluctuations.

11. Other predictions based on Monte Carlo calculations to compute z value can also be used [183, 184].
We note that the value of z coefficient depends on the dynamics considered and is not well characterized.

12. Until now we considered τQ as the ramp time until the crossing of the transition. As we consider
here a symmetric ramp around the transition, the value of τQ is only half the total duration of the ramp. In
fact the rigorous definition of τQ for all ramp types is linked to the notion of quench rate that is the slope

of the ramp in temperature divided by the temperature at the transition. Inversely, τQ = Tc

∣

∣

∣

dT
dt (t∗)

∣

∣

∣

−1
.

Then it simply extend to the non-linear case, see 8.1.3.2.

163



8. Kibble–Zurek mechanism at the dimensional crossover

with t varying from −τQ to τQ so that ǫ(t) = t/τQ and the transition time t∗ = 0. Then,
the freezing out time defined in Eq. 8.4 is given by

τ(t̂) =
τ0

|t̂/τQ|νz
= t̂ ⇒ t̂ =

(

τ0τνz
Q

)
1

1+νz
(8.12)

and we deduce the scaling of the characteristic size of the domains:

ξ̂ = ξ0

(

τQ

τ0

)
ν

1+νz

(8.13)

We denote d the critical exponent for the domain size:

d =
ν

1 + νz
(8.14)

For the considered description of the BEC class of universality summarized in Table 8.1,
the possible values of the critical exponents for either looking at vortex nucleation in a
2D gas or at winding numbers around an annulus, are detailed in Table 8.2.

Quantity power-law exponent MF Model F

ξ̂ d 1/4 1/3
Nv −dv = −2d −1/2 −2/3

〈|nw|〉 if ξ̂ ≪ C −dw = −d/2 −1/8 −1/6
〈|nw|〉 if ξ̂ ≫ C −dw = −2d −1/2 −2/3

Table 8.2.: Critical exponents for the characteristic size of domains ξ̂, the mean number of vor-
tices in a 2D gas Nv or the winding number Nw around an annulus in their depen-
dency toward the quench time τQ. C denotes the circumference of the annulus so
that the mean number of domains in the annulus is Nd = C/ξ̂.

8.1.3.2. Some insights on non–linear ramps and application to our experimental
ramp:

Experimentally, it may be complex to implement a linear ramp of the temperature
T as it is not monitored directly but via an evaporative cooling control parameter. In
our case this control parameter is the box–potential height Ubox. We studied in detail
the relation between T and Ubox in 7.1 and showed an exponential dependency fol-
lowing Eq. 7.10 (due to loading condition influence). In the experiments described in
this chapter, we will consider a linear ramp of the box–potential height Ubox so that in
the approximation of an adiabatic following of the temperature, the ramp on T results
non–linear.

In this case, we have to reconsider the starting argument of Kibble and Zurek on the
freezing out determination of the size of the domains (see Eqs. 8.4 and 8.5) and find new
scaling laws of t̂ and ξ̂ with τQ. In a general way, this is a complex issue as the implicit
relation defining the freezing out time in Eq. 8.4 cannot be generally solved. Neverthe-
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8.1. Kibble–Zurek Mechanism

less, as KZ scaling is fully determined by the physics happening between two times: the
transition time t∗ and the self–consistently defined freezing out time t = t∗ − t̂, conclu-
sions can be drawn if the description of the evolution between these two times can be
simplified. In particular, if the evolution of the control parameter can be approximated
by a linear ramp in this range , then the KZ scaling law is unchanged. The quench time
τQ will however take a local value characterizing this local evolution that may depend
on the transition time t∗:

1
τ∗

Q

≡ 1
Tc

∣

∣

∣

∣

dT

dt
(t∗)

∣

∣

∣

∣

(8.15)

Such an approximation is valid if the slope of T does not vary too much between t∗ − t̂

and t∗, for instance:
∣

∣

∣

∣

∣

1 − dT/dt (t∗)
dT/dt

(

t∗ − t̂
)

∣

∣

∣

∣

∣

. 1 (8.16)

In our case, the ramp of Ubox is set linear between a loading value U(t = 0) = Uload
box

and a final value U(t = τQ) = U
f
box very small compared to the initial one U(τQ) ≪

U(0):

U(t) ≈ Uload
box

(

1 − t

τQ

)

(8.17)

Assuming adiabatic following of the temperature along relation of Eq. 7.10 deduced
in previous chapter, we find

dT

dt
(t) = −Uload

box

U0

T0

τQ
exp

(

−U(t)

U0

)

= −Uload
box

U0

T0 − T(t)

τQ
(8.18)

and deduce a local effective quench duration at time t

τ
(loc)
Q (t) ≡ Tc

∣

∣

∣

∣

dT

dt
(t)

∣

∣

∣

∣

−1

(8.19)

=
U0

Uload
box

Tc

T0 − T(t)
τQ (8.20)

= τQ
Tc

T0

U0

Uload
box

exp

(

Uload
box

U0

(

1 − t

τQ

)

)

. (8.21)

By applying condition of Eq. 8.16 and using latter expression of Eq. 8.21, the linear
approximation is valid if the freezing out time separation is small compared to some
fraction of the actual quench duration τQ:

t̂ .
U0

Uload
box

τQ (8.22)

In Eq. 7.10, U0 divides between the high and low potential–height values compared to
the loading condition effect and is typically a fraction of Uload

box , U0 ∼ Uload
box /3.

If Eq. 8.22 is verified, then, using Eq. 8.20, the local quench time of interest defined in
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8. Kibble–Zurek mechanism at the dimensional crossover

Figure 8.1.: (a) Evolution of cloud parameters N (green disks, left axis) and T (blue diamonds,
right axis) along the evaporation ramp. t is the time along the ramp and τQ the
ramp duration. (b) Deduced predictions using ideal Bose law calculations of the

2D phase-space-density associated to |jz = 0〉 state D(2D)
0 (green disks, left label)

and the 3D PSD at trap center D(3D) (blue diamond, right axis). Grey dash-dotted
line highlight the time where D(3D) = 2.612, matching the time at which BECp
occurs(see 1.2.3.3). We find that the relevant transition occurs at t∗ = 0.41τQ.

Eq. 8.15 is simply

τ∗
Q ≈ τQ

U0

Uload
box

Tc

T0 − Tc
(8.23)

that is directly proportional to τQ. Then the scaling law predicted for the size of the
domains – and thus for the resulting one for the topological defects observed – is un-
changed compared to Eq. 8.13.

To study further applicability of linear approximation, we must study the value of t̂.
Assuming linear approximation and considering νz = 1 (see Table 8.1), Eq. 8.12 writes

t̂ =
√

τ0τ∗
Q (8.24)

where τ0 is the thermalization time of the normal gas and is typically identified with
the collision time τ0 ≡ τcoll ≈ 4 ms (see Annex I). τ∗

Q is given by Eq. 8.23 such that the
condition of Eq. 8.22 reads

τQ &
Uload

box

U0

Tc

T0 − Tc
τ0 (8.25)

It depends on the value of the critical temperature Tc for the considered ramp. When
performing a ramp on the box–potential height, the couple (N, T) of cloud parameters
evolves when varying Ubox. We show in Ch. 7, measurements of this couple for various
trapping configurations and loading conditions. We consider here the evolution mea-
sured for the specific geometry presented in the following section 8.2 13 and plot their
time dependency in Fig. 8.1(a).

13. We can perform similar calculations for the geometry presented in 8.3 . Due to similarities in trans-
verse trapping and in the size of the in-plane box (similar dmax, A), it is then not drastically different. The
former situation is nevertheless easier to describe due to a simpler geometry.
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To study the BEC⊥ transition point on this ramp, we use ideal Bose law calculations
as presented in Annex A for a square box of size L = 30 µm and a transverse con-
finement frequency ωz/2π = 365 Hz. We deduce both the populations of the single-
particle states and the extent of the gas in the transverse direction so that we can com-
pute the 2D and 3D phase space densities D(2D) and D(3D). We plot their time evolution
along the ramp in Fig. 8.1(b). From these calculations, we found that D(3D) raises above
2.612 at t∗ = 0.41τQ, defining the time at which BEC⊥ occurs. We deduce Tc = 142
nK while we measure T0 = 194nK and Uload

box /U0 = 2.2. In this case, Eq. 8.25 reads
τQ & 6τ0 ∼ 24 ms.

If we consider evaporation ramps longer than few tens of milliseconds, the linear
approximation is valid in our configuration and KZ scalings summarized in Table 8.2
apply. We will only consider these cases in practice as the adiabatic following of the
temperature along the ramp also requires quench times longer than a few collision
times and τQ & 25 ms.

8.1.4. Specificity of transition crossing in homogeneous systems: some
insights on the inhomogeneous KZ phenomenon

In most of the previous experiments testing KZ mechanism ([91, 93, 94, 170, 171],
see [186] for a review), the systems under study is intrinsic non-homogeneous. In this
section, we want to briefly highlight how inhomogeneities constitute a limitation in
testing KZ mechanism along its original formulation and demonstrate – by contrast
– the original input of our uniform setup. We point out the specificity of transition
dynamics in uniform setups in which causality [173] is avoided by simultaneity of the
transition over the whole cloud, recovering the original argument of KZ mechanism.
Hence, dynamical features of transition crossing are expected to be strongly enhanced
in uniform systems.

In this section, we will only present the main lines of the understanding of KZ mech-
anism in an inhomogeneous system without entering in the details of the calculations
as it is not the main point of our experimental investigation presented further. In-depth
proofs of the presented arguments can be found in [187].

In an inhomogeneous system, the critical temperature at which transition occurs de-
pends on the location r via Tc(r). Then as the temperature is commonly the same over
the whole cloud, the crossing of the transition can be seen as the propagation of a coher-
ent front. Regions with higher Tc are crossing the transition first and choose an initial
arbitrary value of the order parameter. Neighboring regions will successively reach the
transition point and then, if the transition is slow enough, the choice of the order pa-
rameter in these regions is dictated by proximity from the original choice of the most
coherent regions. KZ mechanism is relevant in such traps only for regions where the
transition front is too rapid so that the coherent parts have no time to impose their
choice to the neighboring incoherent ones. We will called these regions, the Kibble–

Zurek (KZ) domain. KZ domain limits are set by the condition of a local non–adiabatic
propagation of the transition front.

For a finite quench time, such regions always exist as the gas always shows regions
that locally look like an homogeneous system. In an harmonic trap, this would be
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8. Kibble–Zurek mechanism at the dimensional crossover

the case in the central region where the density reaches its maximal value and so its
gradient is zero and in the far outer region where the density asymptotically decays to
zero. The size of the KZ domain then depends on the quench rate.

KZ prediction applies for each of the KZ domain components in which τQ, t̂ and ξ̂

take local values due to the spatial dependency of Tc(r). Using Local Density Approx-
imation (LDA), we can deduce a local density of topological defects nv ≡ Nv/V by
applying the uniform prediction obtained in previous section 8.1.1. Then the average
total number of defects is computed by integrating nv(r) over the KZ domain:

Nv =
∫

KZ domain
nv(r)dr (8.26)

For fast enough quenches (compared to some characteristics time deduced from the
trap shape), KZ domain can match the entire cloud. In this case, the KZ scaling deduced
for uniform clouds is not modified. For slower quenches however, some regions of the
cloud will be excluded from KZ domain. In a typical harmonic trap, this excluded region
forms a ring. Due to the ring radii dependency on the quench duration τQ, scaling of the
number of vortices detected toward τQ is modified by the inhomogeneity. In the limit
of very slow quench, we can approximately compute Eq. 8.26 (by considering only a
very small central KZ domain). In an harmonic trap, we find for example a modified
scaling

Nv ∝

(

τ0

τQ

)2(ν(1+D/2)+1)/(1+νz)

(8.27)

This limit corresponds to a power-law of greater exponent d′ = 2(ν(1+ D/2)+ 1)/(1+
νz) than the homogeneous scaling described in Eqs. 8.10-8.13 whose exponent is Dd =

νD/(1 + νz). In between these two limiting cases of extremely fast quenches and slow
ones, the scaling of Nv to τQ must evolve from power-law scaling of exponent dD to
exponent d′. We also point out in these calculations that the total number of vortices
is strongly reduced compared to the homogeneous case as they can only be found in
restricted parts of the gas.

We note that the KZ prediction has been extended to inhomogeneous systems by
performing some approximations that enable one to deduce them from the original
case of a uniform system. The KZ mechanism is then no longer universal but needs a
non–adiabatic condition to be verified. The inhomogeneities lead to an ease of the adi-
abaticity thanks to the causality principle. Indeed, if the evolution is slow then the KZ
domain is very limited and only a very small part of the gas evolves out of equilibrium
at the transition crossing. The characteristics evolution rate for defining this slowness
is here set by the comparison of the freezing-out correlation length ξ̂ (at this rate) to the
typical scale of the trap spatial variations. In a uniform gas adiabaticity of the evolution
can be recovered only in case of a finite system (non-adiabaticity is always induced by
the crossing of a transition in an infinite uniform gas, see 8.1.5 for an insight on finite
size effects). Here out-of-equilibrium dynamics is prevented if ξ̂ becomes larger than
the cloud size itself. Thus considering gases of similar sizes, the characteristic slow evo-
lution corresponds to a smaller rate (longer time scale) in the homogeneous case than
in the non-homogeneous one. We conclude that homogeneous systems appear very
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8.2. Nucleation of vortices in a 2D uniform gas

promising in terms of studying out-of-equilibrium and dynamical phenomena.
Finally, we note that the KZ predictions for inhomogeneous systems are deduced

from the original prediction by applying LDA. Such an approximation must be consid-
ered with care as we analyze physical phenomena close to a transition point where the
characteristic length ξ diverges. In particular we deduce the scaling of the number of
defects from a local value of the size of the coherent domains ξ̂(r) that may be larger
than the characteristic length of the inhomogeneities of the potential. Such issues may
be addressed by taking into account by the effect of finite size on scaling properties that
we will not address in next paragraph but we will not further investigate this question
latter on in this work.

8.1.5. Some insights on finite size effects on scaling properties

The scaling laws described above have been established considering an infinite sys-
tem. However, experimental systems are always of finite size. We denote L the char-
acteristic size of the system. We immediately grasp that when the characteristic size of
the domains ξ̂ deduced from the infinite system prediction becomes larger than L, the
scaling law must be strongly modified. When ξ̂ > L, the influence of L must reduce the
influence of ξ̂ over the number of defects nucleated as then a vanishingly small num-
ber of topological defects are expected to be formed whatever the quench rate is. It has
been more rigorously demonstrated that critical behavior of both homogeneous [188]
and inhomogeneous [189, 190] gases is modified from the finite size of the system. A
more in–depth study of the modification of the critical exponent can be performed us-
ing the Renormalization Group Theory (similarly to the works presented in the three
last references) but goes beyond the scope of this manuscript.

8.2. Nucleation of vortices in a 2D uniform gas via Kibble–Zurek
mechanism

We will now describe a first experiment in which we tested KZ mechanism on a
2D uniform gas. We use a similar geometry as the ones used to test establishment of
coherence as a steady state property of our gases in Ch. 7. In that chapter, we studied
the coherence as a function of the final equilibrium configuration (N, T) of the gas.
Nevertheless, the finite duration of the evaporation ramp used to establish the coherent
behavior also implies interesting dynamical features of the coherence establishment
due to the crossing of the relevant transitions in a uniform 2D geometry, BEC⊥, BECfull

and BKT.
In this section I present our test of KZ mechanism at crossing of BEC⊥ (see 8.1.2) by

observing topological defects that survive in the coherent gas, namely vortices.

8.2.1. Characterizing vortices via Time–of–Flight measurements

8.2.1.1. Experimental sequence

For these measurements, we use a box potential of square shape and of length L =

30 µm transversely confined in a harmonic trap of frequency ωz/2π = 365 Hz. After

169



8. Kibble–Zurek mechanism at the dimensional crossover

Figure 8.2.: Examples of density distribution after 4.5ms of ToF showing (left) 1 and (right) 3
hole(s) of high contrast, corresponding to topologically protected expanding vor-
tex core(s).

loading these 2D traps from a 3D cold gas (see 2.1.3 and Fig. 2.1), we ramp down the
box height Ubox to its final value in a time tevap and finally wait for a time thold. In this
chapter, we consider fixed final end points for both the ramps performed within the
hybrid trap (see 2.1.2) and within the 2D box-potential (see 2.1.3). Then, the final cloud
configuration is fixed, the temperature is T ≈ 11 nK (see 7.1) and the atomic density
n(2D) ≈ 50 at/ µm2.

In this configuration, topological defects expected from KZ mechanism are vortices
(see last point of 8.1.1 and [91, 180? ]). The predicted size of the vortex in–situ is deter-

mined by the healing length ς = 1/
√

g̃n(2D). By performing 3D Gross–Pitaevskii calcu-
lations in imaginary time (see Annex B) , we deduce the 3D ground–state wave function
in our trapping configuration taking into account interactions. As the final configura-
tion of our gas is highly degenerate with Td/T ∼ 150 where Td = 2πh̄2n/(kBm) is
the degeneracy temperature, the deduced ground–state gives a good approximation of
the actual macroscopic wavefunction of the coherent part of our sample. We estimate ς

along Eqs.B.23-B.25 and we assess ς ∼ 0.7 µm for the considered atomic density. As our
imaging resolution is of the order of 1–2 µm, we expected the vortices not to be visible
in situ and indeed we detect no density holes in the corresponding absorption images.

We then perform a short Time–of–Flight expansion and image our gas along the verti-
cal axis with high intensity absorption imaging (see Ch. 3) to let the vortex cores widen.
In the resulting density distribution, we observe deep density holes in arbitrary num-
ber per realization (up to 5) and located at random positions as shown in Fig. 8.2. We
observed similar density holes for different cloud shapes (disk and square of smaller
sizes) and confinement frequencies (as at frequency of ωz/2π = 1460 Hz) but we only
performed a systematic analysis on the above described configuration.
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8.2. Nucleation of vortices in a 2D uniform gas

Figure 8.3.: (a). Evolution of the fitted contrast c (green square, right axis) and of the average
size ς (red circle, left axis) of the density holes with the expansion duration τ.
We fit each density hole by an hyperbolic tangent deep (of contrast c and size ς)
convoluted by of gaussian of waist w = 1 µm corresponding to effect of imaging
resolution and depth of field (Eq. 8.28). We fit w from a preliminary analysis of the
holes as detailed in the text. For each τ, we fit in average 20 density holes. We
note that ς increases with τ. The dashed red line is a linear fit of the variation of
ς and serves as a guide to the eye. (b). Evolution of c and of ς (same code as (a))
with the position on the cloud for a fixed τ = 4.5ms. We fit 1430 vortices. The
position on the cloud is denoted by the distance to the closest edge of the initial
square-box and we binned the data around the abscissa of the shown dots. We note
that vortices are distorted when close to the edges. For holes located at a distance
larger than 4 µm from the edges (represented by the blue dashed-dotted line), the
characteristics are independent from its position on the cloud (the dashed red line
shows the mean value of ς in this case). In both cases, c is compatible with c = 1
(dashed green lines).

8.2.1.2. Identifying density holes to vortex cores.

We identify all relevant holes in the in–plane density distribution n(x, y) by an au-
tomatized procedure. We first compute the average density over a large number of
pictures for each Time–of–Flight duration τ, nm(x, y; τ), and consider the difference 14

δ(x, y) = nm(x, y; τ)/〈nm〉(τ) − n(x, y)/〈n〉 where 〈.〉 stands for the spatial average.
We then analyze peaks of δ of high enough amplitude, more precisely we look at the
sets of pixels (x, y) for which δ(x, y) ≥ b × 〈δ(x, y)〉 and typically b = 10. We will iden-
tify a set 15 of pixels to a physical defect if it is of large enough size (typically it must
contain between 15 and 100 pixels for τ = 4.5 ms) and of circular enough shape (the
solidity 16 of the set of pixels considered must be greater than 0.5).

To identify the nature of these density holes, we perform a statistical analysis of the

14. Considering here the difference and not the division enables a more reliable investigation of the
wings of the cloud (where nm(x, y) ≈ 0) in these Time–of-Flight measurements.

15. a set of pixel is defined as a connected component of the true regions in the boolean matrix δ(x, y) ≥
b × 〈δ(x, y)〉, after having performed some morphological operation to get rid of the noise of this boolean
matrix.

16. The solidity of a set of pixels is the proportion of pixels of the convex hull of the set that belong to
the considered set, the convex hull being the smallest convex polygon that contains all the considered set.
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8. Kibble–Zurek mechanism at the dimensional crossover

hole properties. We perform a fit of the density distribution around each detected hole.
The fitting function is:

ρ(x, y) = (ρ0 ∗ g)(x, y) (8.28)

with g(x, y) =
1√
2πσ

exp(− x2 + y2

2σ2 ) (8.29)

ρ0(x, y) = ρ0 ((1 − c) + c tanh(r(x, y)/ς)) (8.30)

r(x, y) =
√

(x cos θ + y sin θ)2 + ǫ2(y sin θ − x sin θ)2 (8.31)

where ∗ denotes the convolution operator. g(x, y) is a Gaussian representing the effect
of imaging imperfections (finite imaging resolution, finite depth of field) and ρ0(x, y) is
the physical expectation of density dependency around a vortex core (for c = 1).

We first estimate the size ςi of the vortices for each τ by a manual method. We
then consider the ratio ρmes(x, y) = n(x, y)/nm(x, y; τ), on a square region of 1.5 ×
ςi(τ) around each density hole (these domains are located inside the cloud so that
nm(x, y; τ) 6= 0).

We perform a preliminary fit of ρmes(x, y) to the simpler function ρ0(x, y) given in
Eq. 8.30, neglecting imaging effects. From fitting the overall set of experimental vor-
tices, we compute an expected relation between the fitted contrast c and the fitted size
ς valid for the observed vortices.

To deduce the imaging imperfection function g(x, y) (Eq. 8.29), and the physical con-
trast of the vortices cv, we simulate a set of density distributions perturbed by a vortex
(along Eq. 8.30) while varying the size ςs and the contrast cs of the vortices and con-
voluting it by a Gaussian g(x, y) of varying width σs. We fit the resulting density dis-
tribution by the same procedure as the experimental vortices and deduce a theoretical
relation between fitted parameters c and ς for a given contrast cs and imaging width
σs while varying the size ςs of the simulated vortex (as it reproduces variations of τ

for physical vortices). By computing the minimal distance between the simulated and
experimental sets of (c, ς), we found the contrast of the vortices cv = 1 and the width
of the imaging gaussian σ = 1 µm.

We then perform a final fit of ρmes(x, y) to the function given in Eq. 8.28 with fixed
imaging width σ = 1 µm and fixed or varying contrast c. We analyze the variations of
the resulting fit parameters ς and c for different Time–of–Flight durations and different
locations in the cloud. We analyze the variations of c and ς at a fixed τ over the whole
set of experimental realizations studied latter on in this chapter (corresponding to 1430
vortices at τ = 4.5 ms). We note that all the observed holes show similar ς and c for
all cloud realizations and all hole positions 17 on the cloud (Fig. 8.3 (b)). We analyze the
variations of c and ς when varying τ. We use 10 values of τ between 0.5 ms and 16 ms,
and record a set of 38 images for each τ corresponding to a number of fitted vortices
varying from 15 to 25 (with an average vortex number per realization Nv = 0.52). The

17. We however note a distortion of the vortices when they get to close to the edges. More specifically we
observe elliptic vortices with long axis perpendicular to the edge and with larger area than bulk vortices
(see Fig. 8.2). Such distortions must be due to effect of the short Time–of–Flight on density distribution.
For holes located at a distance larger than 4 µm from the edges, we note that the influence of the edges is
not perceptible anymore.
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8.2. Nucleation of vortices in a 2D uniform gas

average ς shows a typical increase with τ and the measured contrast is compatible with
c = 1 (Fig. 8.3 (a)).

All these observations are the signature that the density holes correspond to topolog-
ically protected expanding single vortex cores:

— They are not close vortex–antivortex pairs for which predicted evolution from
Gross–Pitaevskii real time evolution simulations lead to an annihilation of the
two defects in Time–of–Flight 18. This process results in a decreasing c with τ that
we do not observe here.

— They are not phonons as these phase defects would also create density hole of
strongly varying sizes for different realizations due to the range of their possible
momenta. They would also result in a lower average contrast (see for example
[191–193]).

We now fix the Time–of–Flight duration to τ = 4.5 ms for which the density holes are
well visible and study in more details the statistics of the observed vortices.

8.2.2. Justifying dynamical origin of the vortices

Figure 8.4.: Histogram of vortex number realization over the 2460 analyzed images. We note
that most of the images (59%) show no vortices while the mean number of vortices
over this set of image is 0.58 vortex per realization. Most of the images present-
ing some vortices only show one, with probability of 71%. We observe multiple
vortices in 12% of all the cases.

In our measurement campaign, we studied vortex nucleation for varying experimen-
tal parameters and, in total, we analyze 2460 images corresponding to a total of 1430
vortices detected. On this set of images, we observe a number of vortices varying from

18. simulations were performed for distances between the vortex and the anti-vortex up to a few healing
lengths (typically 5)
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shot-to-shot such that it indicates a stochastic nucleation mechanism. We measure up
to 5 vortices per image and histograms of occurrences are given in Fig. 8.4.

To predict the mean vortex number expected from a steady–state thermal activation
in the final configuration of our gas we use the semi–classical field predictions from [194].
Our final configuration corresponds to a temperature T = 11 nK and an interaction en-
ergy per particle ǫint ≈ kB × 5.5nK (which we deduce from 3D Gross–Pitaevskii calcu-
lations in imaginary time along Eq. B.24, see 8.2.1 for validity).Such a highly degenerate
configuration (2kBT/ǫint ∼ 1) lies outside the range of parameters considered in [194]
and the predictions obtained for a 1.5 times higher temperature leads to a vanishingly
small mean number of vortices nucleated Nv . 5 × 10−12. Then it is highly unlikely
that vortices are nucleated from thermal activation in our final experimental configura-
tion. Moreover, [194] also predicts that vortices must arrange in close pairs of vortices
of opposite charge in this configuration as the correlation between pairs is predicted
to be high at short distances and nearly zero at long range. The high occurrence of
vortices detected as well as the non pairing of the observed vortices is in clear disagree-
ment with this steady–state prediction. Such a high discrepancy fully excludes thermal
excitations from the possible mechanisms that the vortices may originate from. The
observed topological defects must then have a dynamical origin.

In the following, we study this dynamical origin by varying the two times that char-
acterize the evolution of the gas, the duration of evaporation in the uniform trap tevap

and the hold duration after evaporation thold (see Fig. 2.1 for a summary of the experi-
mental sequence and a schematic definition of these times).

8.2.3. Studying the quench dynamics

For the results presented in this section, we fixed thold = 500 ms and studied the
evolution of the average vortex number Nv as a function of tevap. The correspond-
ing data, given in Fig. 8.5, show a decrease of Nv with tevap, passing from Nv ≈ 1 for
tevap = 50 ms to Nv ≈ 0.4 for tevap = 250 ms. For longer evaporation times, Nv remains
approximately constant within the error-bars 19, and we fit Nv = 0.40 (3) (see legend of
Fig. 8.5 for details). The decrease of Nv with tevap suggests that the observed vortices are
nucleated via a Kibble–Zurek (KZ) type mechanism, occurring when the transition to
the phase coherent regime is crossed. Note that we observe a similar behavior for data
taken at thold = 0 ms. Such a behavior is in qualitative agreement with the expectations
of 8.1.2.

8.2.3.1. Fit of critical exponent for the quench dynamics

For a quantitative analysis of KZ mechanism in our configuration, we fitted the ex-
pected power-law decay, Nv ∝ t−dv

evap, to the measured variations of Nv for tevap ≤ 250 ms
(see Fig. 8.5). We performed a linear fit to the logarithmic quantities and took into ac-
count the errobars on Nv in the weights of the fit. The fitted exponent dv = 0.69 (17)

19. Error-bars are obtained from a bootstrap method [196]. For this we use 10 000 bootstrap data samples
and compute the confidence interval at 1/e of the mean from the set of vortex numbers extracted for all
realizations at given thold and tevap. The same bootstrapping method will be applied for the data in the
rest of this chapter.
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Figure 8.5.: Evolution of the mean number of vortices Nv with quench time tevap for a fixed
thold = 500ms (green circle). The number of images per point ranges from 37 to 233
(mean number of images being 90 and median number 46). Error-bars are obtained
from a bootstrapping approach (see footnote 19). We restrict to tevap ≥ 50 ms to
ensure that local thermal equilibrium is reached at any time during the evaporation
ramp ([195] and see Annex I for an estimation of the collision time in the weakly
degenerate configurations). We fit of a power-law decay Nv ∝ t−dv

evap to the short
time data (tevap ≤ tcut ∼ 250 ms) and a plateau to the longer time data (tevap > tcut).
The fit of the power-law decay restricted to tevap ≤ 250 ms gives an exponent
dv = 0.69 (17). The simultaneous fit of the two behavior (red line) gives the same
exponent dv = 0.69 (19), and a plateau at long time at Nv = 0.40 (3). The threshold
time between these two behaviors is fitted to tcut = 189(56)ms.

is in good agreement with the prediction dv = 2/3 for the beyond Mean–Field predic-
tion of model F given in 8.2 whereas the MF prediction for a pure mean-field transition,
dv = 1/2, is notably lower than our result.

8.2.3.2. Description of the plateau at longer quench times

The non-zero plateau found for long tevap may be the signature of the breakdown of
the KZ model due to the restricted size of the gas in the transverse direction and the
emergence of 2D physics as explained in 8.1.2. This emergence of 2D leads to a "cut"
(or "smoothening") in the divergence of the coherence length ℓc at the characteristic gas
thickness, of the order of the size of the transverse harmonic oscillator ground state ℓz.
By proportionality, a similar "cut" is performed for the domain size ξ̂ to some multiple
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of ℓz. We note ξ̂ = qℓz and q set the proportionality factor at the plateau appearance 20.
As ℓz = 0.6 µm ≪ L, then, the gas still holds an important number of domains in-plane,
leading to a non-zero mean number of vortices nucleated. Due to the fixed size of the
cut, this number remains constant with varying τQ, leading to a plateau.

From the value of the plateau Nv ∼ 0.4, the deduced relation from laws of Eqs. 8.6
and 8.10,

√

f fv ξ̂ ∼ L/
√

Nv = 47 µm is compatible with usual range f = 1–5 , fv = 5–
10 [176, 177, 186, 197] and choosing q within 12 − 40 (see footnote 20 for validity of this
range). We note that fv must also take into account here some dissipation effects with
the non-zero thold and may be greater than the range usually found in the literature,
(typically by a factor 2 − 3, see 8.2.4), this simply leads to a smaller range of q = 4 − 20.
From these ranges, the whole picture appears to be consistent. It however seems diffi-
cult to conclude more assertively on the validity of the BEC⊥ scenario by a quantitative
analysis of the plateau value; such a limitation is in fact inherent to Kibble–Zurek for-
malism which sets proportionality relations more than accurate equalities.

8.2.4. Analyzing dissipation dynamics of the vortices

The variation of the number of vortices Nv with the hold time thold allows us to study
the fate of vortices that have been nucleated during the evaporation. We quantitatively
analyze this evolution (Fig. 8.6) after a short quench of tevap = 50 ms. We observe a
decay of Nv with the hold time, from Nv = 2.3 initially to 0.3 at long hold time (2 s).

8.2.4.1. Principle of vortices dissipative dynamics simulations

To interpret this decay, we modeled the dynamics of the vortices in the gas. These
simulations have been developed by a permanent member from our team, Sylvain
Nascimbène. The modeled is based on two ingredients:

1. The conservative motion of a vortex in the velocity field created by the other vor-
tices, including the vortex images from the boundaries of the box potential. Such
image vortices, which are positioned outside the fluid are necessary to compen-
sate for the velocity field created by a physical vortex (inside the fluid) at the
edge of the gas and thus satisfy the boundary condition on the flow [198, 199].
Simulations are performed in a disk shape uniform trap of radius R =

√
πL for

conveniency of this geometry in terms of image determination. The velocity field
generated by a vortex at distance r from the vortex core is [199]

u(r) = ± h̄

m
uz ×

r

r2 (8.32)

20. First we want to emphasis that as pointed out in 8.1.2 due to the further evolution of the 2D gas,
this reasoning performed here to describe the plateau is a simplification. ξ̂ may keep increasing after the
crossing of the BEC⊥ transition point but more slowly that what is expected for standard BEC. This must
lead to correction and in particular q must be larger than our simple picture. In our simplified picture
that matches well the observed variations of Nv, q has two origin: ξ̂ must be a few correlation rms size ℓc,
which itself must be of the order of magnitude of ℓz, typically 1 − 10 × ℓz (for ℓc a more precise estimate
can be obtained using numerical computations as in 1.2.3.4, Table 1.1 and Fig. 1.3. However we cannot get
a better insight on the dependency of ξ̂ on ℓc from such simulations). Then q must roughly varies between
5 and 50.
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Figure 8.6.: Evolution of the mean vortex number Nv with the hold duration at the end of
the evaporation ramp thold, for tevap = 50 ms (green circles), tevap = 200 ms (red
diamonds), tevap = 2000 ms (blue triangle). For the shortest quench time tevap =
50 ms, we note a decay of Nv decelerating with thold. Note that for this set of data,
the number of images per point ranges from 24 to 181 (mean number of images
being 59). We match this time evolution with simulations of vortices dynamics
(see description in the text) and found damping coefficient α = 0.06(2) and initial
vortex number N0 = 2.5(3). The green solid line shows the simulated evolution
of Nv from the vortex dynamics dictated by the previously fitted coefficients and
obtained from 100 initial cast. For tevap = 200 ms (resp tevap = 2000 ms), the
number of realizations is constant and equals to 36 (resp. ranges from 31 to 563).
For longer quench times tevap & 200 ms, we note absence of evolution of the mean
vortex number within the error-bars (dashed line represent the weighted average
value for each thold (same colors)). Error-bars are obtained from a bootstrapping
approach (see footnote 19).

where uz stands for the unitary vector along the vertical axis and the sign depends
on the direction of the vortex phase winding. Then, in the presence of N vortices
numbered by i ∈ J 1; N K, the velocity of the vortex j (in absence of dissipation) is
given by

vj = ∑
i 6=j

ui(r j − ri) (8.33)

where ri is the position of the vortex i and ui(r) its velocity field given by Eq. 8.32.

2. The dissipation induced by the scattering of thermal excitations by the vortices,
which results in a friction force [199]. Following calculations from [200], the effect
of a vortex on the velocity of a second vortex distant from r can be grasped by a
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modification of its velocity field u(r) given in Eq. 8.32 by adding

δu =
nn

ns

(

−u(r) +

√

gn0

kBT
u(r)× uz

)

(8.34)

where ns, nn and n0 stands respectively for the superfluid, the non superfluid and
the condensed density so that n = ns + nn. g = h̄2 g̃/m is the 2D interaction pa-
rameter. Then in the presence of N vortices, the velocity of the vortex j is modified
along

vj = ∑
i 6=j

(

ui(r j − ri) + δui(r j − ri)
)

(8.35)

= ∑
i 6=j

|ui(r j − ri)|
[(

1 − nn

ns

)

uz ×
r j − ri

|r j − ri|
+

nn

ns

√

gn0

kBT

r j − ri

|r j − ri|

]

(8.36)

Here, we will neglect the effect of the slowing down of the motion and only consider
the arising of a transverse component to the velocity such that the velocity of the vortex
j approximates to

vj ≈ ∑
i 6=j

(

ui(r j − ri) +
nn

ns

√

gn0

kBT
|ui(r j − ri)|

r j − ri

|r j − ri|

)

(8.37)

Then the friction is characterized phenomenologically by a unique damping coefficient

α = nn
ns

√

gn0
kBT .

To compare the predictions of this model to our data, we perform simulations of the
evolution of an initial set of several vortices along the system of equations bearing on
the vortex positions and velocities deduced from Eq. 8.37 (along with the straightfor-
ward relation vj = dr j/dt). The initial distribution of vortices is randomly cast with
the following characteristics:

— the number of vortices per realization is a random number drawn from a Pois-
sonian distribution of parameter N0 that represent the mean vortex number at
thold = 0 ms.

— the positions of the vortices on the cloud are randomly chosen with an initial
uniform probability for distributing the vortices on the cloud.

— the charges of the vortices are also randomly chosen without any correlation be-
tween them.

While varying thold along this simulated evolution, vortices move within the cloud and
we "manually" annihilate them (i.e. erase from longer time evolution simulation) in two
cases:

— when they get too close to the edges of the trap, that is their distance from the
center is larger than 0.999R. We then physically expect the vortex to be absorbed
by the edges of the trap.

— when they get too close to an other vortex of opposite sign, that is when their
distance become smaller than 0.001R. We then physically expect that the two
vortices merge together and annihilate.
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8.2.4.2. Results of vortex dissipative dynamics simulations

We record a from numerical resolution of this model, the mean vortex number Nv,
the occurrence of a given vortex number and the vortex positions from which we ana-
lyze individual locations and correlations (see following sections). In particular, it leads
to a non-exponential, slowing down decay of Nv, with details that depend on the initial
number of vortices N0 and the cloud superfluid fraction ns/n. We match this evolution
to our experimental data by varying both N0 and α and by minimizing the χ2 distance
of the simulated evolution to the experimental data (their confidence intervals are de-
duced by the analysis of the curvature of this χ2). We take into account the effective
initial value of thold induced in the end of the evaporation ramp of 32.5 ms as tevap = 50
ms (see 8.1.3.2). From this match, we find α = 0.06(2) and N0 = 2.5(2). In the follow-
ing, we assume that α is a constant for all considered tevap (due to local thermalization
condition) so that we can predict the evolution for all initial value of the vortex num-
ber N0. From the fitted value of α, we can then perform simulations and record vortex
numbers, positions and correlations evolutions with thold for various tevap.

For the estimating thermal fraction nn/n in the final cloud configuration, we use
an estimate of the 2D interaction parameter g from the 3D Gross–Pitaevskii imaginary
time simulations (as in 8.2.1, see Annex B for details). For the considered atomic density
n = 50 µm2 and assuming n0 ∼ n we found gn0 ≈ kB × 11nK. The resulting thermal
fraction is nn/n ≈ 0.06(2).

8.2.4.3. Further observations on the evolution with thold

For longer quenches tevap & 200ms, we note an absence of evolution of Nv with
thold, within error-bars (see footnote 19). This is due to the fact that the fast start of
the dissipative evolution is in reality hidden within the end of the evaporation ramp.
Indeed, as computed in 8.1.3.2, we found that the transition occurs at t∗ = 0.35tevap so
that for tevap of a fews hundreds of ms, the fast decay that is observed at thold . 100 ms
is fully hidden within the end of the evaporation ramp and the predicted slow decay is
negligible.

We note that for tevap = 50 ms at short thold, the images of the clouds are quite fuzzy,
probably because of the presence of important non thermal phononic excitations pro-
duced (in addition to vortices) by the evaporation ramp. This is the origin of the fluc-
tuations of Nv at short thold visible in Fig. 8.6, as it is then difficult to make a precise
counting of vortices. The choice thold = 500 ms for studying the quench dynamics in
Fig. 8.5 was made according to the two latter observations.

The finite lifetime of the vortices in our sample points to a general issue that one
faces in the experimental studies on the KZ mechanism. In principle the KZ formalism
gives a prediction on the state of the system within the freezing out period around the
transition (i.e. t ∈ [t∗ − t̂, t∗ + t̂]). Experimentally we observe the system at a later stage,
at a moment when the various domains have merged, and we detect the topological
defects formed from this merging. In spite of their robustness, the number of vortices
is not strictly conserved after the crossing of the transition, and its decrease depends on
their initial positions. A precise comparison between our results and KZ theory should
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8. Kibble–Zurek mechanism at the dimensional crossover

take this evolution into account, for example using stochastic mean-field methods [201,
202].

8.2.5. Complementary analysis

8.2.5.1. Evolution in occurrence of vortex numbers

Figure 8.7.: Proportion of occurrence of vortex numbers for three ranges of couples(thold,tevap):
(left) dark–green histogram for tevap ≤ 100ms, thold ≤ 100ms (205 images) , (mid-
dle) middle–green histogram tevap ≤ 100ms, thold > 100ms (656 images), (right)
yellow histogram for tevap > 100ms, all thold (1499 images). Results of dissipative
dynamics simulations for N0 = 2.5 and α = 0.06 (corresponding to the fit per-
formed in Fig. 8.6 and so to tevap ∼ 50 ms) are plotted in red lines on the relevant
histogram (that is tevap ≤ 100ms, see footnote 21). We perform evolution from 5000
initial casts. To obtained the simulated curves, we simulated various thold and we
averaged the same proportion of evolutions at a given thold as in the experimental
histograms.

We previously highlighted that the number of vortices detected per atomic realiza-
tion varies from shot to shot, revealing their stochastic origin. We note that as Nv varies
with both thold and tevap, the probability of occurrence of a given number of vortices
evolves similarly. In Fig. 8.7, we compare histograms of occurrence for long and short
characteristics times. We note a strong evolution of the histogram for both short thold

and tevap compared to long thold or long tevap.
The evolution with thold after a short quench time (tevap ≤ 100 ms) is embedding the
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8.2. Nucleation of vortices in a 2D uniform gas

fast decay analyzed in the previous subsection in terms of Nv and can be nicely repro-
duced by the previously presented dissipative dynamics simulations of 8.2.4.1 21. For
long quench times, there is no visible effect of holding the gas on the number occur-
rence. In this case, the initial fast decay of the vortex number is hidden within the end
of the evaporation ramp. Then, we represented a unique histogram for all the value of
thold.

The evolution of the size of the patches with the quench time is also embedded in
the occurrence of a given vortex number for one cloud realization while varying tevap.
For short quench times (tevap ≤ 100ms), multiple vortices probability is non negligible
whereas for long quench times (tevap > 100ms), we usually excite only a single vortex or
none.

8.2.5.2. Vortices location

Figure 8.8.: (a) Positions of the detected density holes (red points) after a ToF expansion of
4.5 ms for tevap = 50ms and all values of thold. We represent their position on a
schematic representation of the initial square uniform trap (dark region) that we
position by centering it on the center of mass of the detected atomic distribution.
The mean region of non negligible density after the ToF expansion is represented
in gray. (b) Histogram of the distances to the edges of the initial box for the same
data set as in (a) (green histogram). Error-bar are obtained from a bootstrapping
approach. The red line correspond to the histogram for random positions of the
vortices over the square. The blue solid line is the result of dissipative dynamics
simulation computed with N0 = 2.5 and α = 0.06 that are the fitted values for an
evolution after a quench of tevap ∼ 50 ms. The histogram is obtained from 5000
initial draws. We simulated various thold and we averaged the results of these
simulations by considering the same proportion of evolutions at a given thold as in
the experimental histogram.

We characterize the position of the vortices in the cloud by their distance to the edges
of the initial square box of length L = 30 µm. We thus assume that:

21. The fitted parameters N0 = 2.5 and α = 0.06 corresponding to the fit of experimental data taken with
tevap = 50 ms are only relevant for the short tevap ≤ 100 ms. For longer tevap, a lower value of N0 must
be used to perform similar simulation. Such a value can not be deduced from our dissipative simulations.
We must either perform a fit at longer tevap or rely on the KZ scaling analyzed in 8.2.2.
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8. Kibble–Zurek mechanism at the dimensional crossover

— the center of mass of the ToF density distribution is the same as the original one.
— their displacement during the 4.5ms of ToF is negligible so that the detected posi-

tion is a good estimation of their initial position.
In Fig. 8.8 we show the histogram of the distances to the edges of the box for all

configurations of thold and for fixed tevap = 50 ms. We note a distortion compared to
a perfectly randomly distributed set of vortices by both a depletion of the edges and
of the center. From the dissipative dynamics simulation (see 8.2.4.1), we can predict
the effect of the hold time on the vortex distribution. We perform such a statistical
analysis of a high number (typically 5000) of simulated configurations initially drawn
with N0 = 2.5 and evolved with α = 0.06. We average on the same thold spreading than
experimental data (see Fig. 8.6 for more information on this data set). Such a simulation
explains well the depletion from the edges but not the observed depletion of the center.

Such a depletion of central region may be linked to KZ mechanism itself. Indeed, as
KZ mechanism is linked to a geometrical argument of phase patches spatial organiza-
tion (see 8.1.1), it is easier to organize phase patches to create a vortex configuration
(that is an organization where a phase winding around several patches is created) at
the edges, as the absence of atoms intuitively reduces the constraint on the spatial or-
ganization of the patches (that are thus in lower number at the edges).

8.2.5.3. Correlation between the vortices

On the whole set of data (all tevap and all thold), we also compute the mean distance
to the closest vortex for all multiple vortices realizations while varying both tevap and
thold (Fig. 8.9). Such an analysis enables studying the dynamics of correlations between
the vortices. We first note that the longer thold is, the further away the vortices are
located. Such a moving apart of the vortices is well reproduced by dissipative dynamics
simulation results performed as in previous paragraph. At this point of the analysis, it
is not easy to comment on the specific shape of the distances distribution as statistic is
not high enough and simulations are too naive.

8.2.6. Conclusion

In this section, we have presented measurements on the detection of free vortices in
a strongly degenerate 2D gas. We showed that these vortices have a stochastic and dy-
namical origin that we identified as being due to the KZ mechanism. We performed a
quantitative analysis of the scaling of the mean vortex number Nv as a function of the
quench duration tevap for both the short tevap values at which we expect a power-law
scaling and at long tevap values at which we expect a significantly slower decay Nv. In
our case the long time evolution is compatible with a plateau at Nv ∼ 0.4. The short-
tevap power-law fit reveals the universal behavior at BEC⊥ transition or crossover and is
equals to dv = 0.69(17), corresponding to a scaling for the domain size ξ̂ of d = 0.35(9),
compatible with beyond MF predictions d = 1/3 (see 8.2). We noted that the dissipative
dynamics of the vortices may constitute a limitation to our analysis and we performed
a physical analysis of this process. We developed a modeling for this dissipative dy-
namics which account for the observed slowing-down decay of Nv and estimate the
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8.2. Nucleation of vortices in a 2D uniform gas

Figure 8.9.: Histograms of distances to the first neighboring vortex per atomic sample for all
possible evaporation time and (left) thold ≤ 100 ms (right) thold > 100ms. His-
tograms are made from 188 (resp. 158) distances for the different times domains.
The blue solid lines are the result of dissipative dynamics simulation computed
with N0 = 2.5 and α = 0.06 that are the fitted values for an evolution after a quench
of tevap ∼ 50 ms. The histogram is obtained from 5000 initial casts. We simulated
various thold and we averaged the results of these simulations by considering the
same proportion of evolutions at a given thold as in the respective experimental
histograms they described.

superfluid fraction of our gas ns/n ≈ 0.94(2). This model is however too limited to
perform a quantitative correction of the scaling law exponent d. We noted that the fi-
nite size of the system may also induce some limitations to this scaling. Finally we
performed some complementary but preliminary analysis on the vortex spatial distri-
butions that would be interesting to push further in order to shed a new light on the
nucleation process and the dissipation dynamics. In the next section, we will present
another experimental study of the KZ physics based on the detection of supercurrents
in an annular geometry. This second geometry allows us to complement the present
analysis, leading to a second estimate of the scaling exponent d via the measurement
of dw. It will also give access to other properties such as the sign and the charge of the
topological defects.
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8. Kibble–Zurek mechanism at the dimensional crossover

8.3. Nucleation of supercurrents in an annular Bose gas via Kibble–Zurek
mechanism

In this section, we describe a second experimental procedure to study Kibble–Zurek
mechanism. In this study we use a geometry reproducing the original argument con-
sidered by Zurek [89] by studying the phase winding of a (super-)fluid in an annular ge-
ometry. In this geometry, the phase winding of the macroscopic wavefunction around
the annulus must be a multiple of 2π, ensuring the quantization of the circulation of
the fluid velocity. Supercurrents in annular BECs are usually created in a determinis-
tic way by using laser beams to impart angular momentum on the atoms [79, 81, 203]
or by rotating a weak link along the annulus [204]. Here we study supercurrents that
have a stochastic origin, justify it, describe their nucleation rate and compare it to KZ
predictions. For each realization of the experiment, we use a novel method, based on
matter-wave interferences between this annulus and a central disk acting as a phase
reference, to measure the charge as well as the sign of the random supercurrent 22.

8.3.1. Characterizing vortices current by matter-wave interference in a target

8.3.1.1. Experimental sequence

For these measurements, we use a target-like box potential, consisting of a disk of
radius R0 = 4.5 µm surrounded by a ring of inner (resp. outer) radius of Rin = 9 µm
(resp. Rout = 15 µm) (see Fig. 6.9 for an example of in-situ density distribution). Trans-
verse confinement is ωz/2π = 365 Hz. As in the previous section, once the 2D traps
are loaded we perform evaporative cooling by ramping down the box potential barrier
height Ubox in a time tevap to its final value and hold it at this constant value for a time
thold. The final temperature is ∼ 10 nK and the surface densities are similar in the ring
and the disk and equal to n(2D) ≈ 80 µm−2. From 3D imaginary time Gross Pitaevskii
calculations (see Annex B), we deduce that typical interaction energy per atom is ǫint ≈
kB × 8 nK (Eq. B.24), and the gas is marginally quasi-2D with kBT, ǫint . h̄ωz. These
parameters correspond to a large 2D phase-space-density, D = ρλ2 > 100, so that the
gas is deeply in the superfluid regime at the end of the evaporation ramp.

We use matter-wave interference to probe the relative phase distribution between the
cloud in the central disk and the one in the ring by performing a 2D ToF, similar to the
detection of the fringes in 7.3 except that in the present case the interaction energy of
the gas is non negligible: We abruptly switch off the box-potential while keeping the
confinement along the z-direction. The clouds experience a hydrodynamical expansion
during which the initial interaction energy is converted into kinetic energy. After 7 ms
of expansion, we record the interference pattern by imaging the atomic gas along the
vertical direction.

22. A similar method has recently been developed to investigate the supercurrent generated by a rotat-
ing weak link [205]
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8.3. Nucleation of supercurrents in an annular Bose gas

8.3.1.2. Identifying supercurrent from fringe patterns

Typical interference patterns are shown in Fig. 8.10. Most of them consist in con-
centric rings, as expected for a quasi-uniform phase distribution in the disk and the
annulus. However we also observe a significant fraction of spiral patterns, revealing
the presence of a phase winding in the wavefunction of one of the two clouds.
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Figure 8.10.: Experimental interference patterns. Examples of interference patterns after ex-
pansion in the 2D plane, along with contrast-amplified pictures. (a) without
phase winding, (b) with phase winding −2π, (c) with phase winding +2π, (d)
with phase winding +4π.

We developed an automatized procedure to analyze these patterns, which recon-
structs the phase φ(θ) of the fringes along a line of azimuthal angle θ. This method
has been implemented by a PhD student of our team, Laura Corman. For each picture,
the center is determined manually. Then we proceed in two steps to reconstruct the
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8. Kibble–Zurek mechanism at the dimensional crossover

phase profile: contrast amplification and fit.
To amplify the contrast, the pictures are first convoluted by a 2 × 2 matrix with con-

stant coefficients. This filters out high frequency noise but does not blur the interference
pattern. Then radial cuts with angle θ ∈ {0, 2π/n, · · · , 2π(1 − 1/n)} are performed
(typically n = 150), and the positions of local maxima are recorded, giving the contrast
amplified picture.

To retrieve the phase, we perform a convolution of the contrast amplified picture
with a gaussian of width 3 pixels and we fit the radial cuts of the convoluted, contrast-
amplified pictures with the function:

f (r, k, φ, A, c) = A sin (kr + φ) + c (8.38)

for points with distance to the center r ∈ [rmin, rmax]. First, the parameter k is left as
a free parameter to fit the radial cuts. Then the averaged kmean over all fits is taken as
a fixed parameter and all the radial cuts are fitted again. The phase φ is recorded as a
function of the angle θ of the radial cut 23. From the accumulated phase ∆φ as the angle
θ varies from 0 to 2π, we associate to each pattern a winding number nw = ∆φ/2π,
which is a positive, null or negative integer.

8.3.2. Studying the supercurrent origin

8.3.2.1. Stochastic Origin

We record nw for many realizations of the same experimental sequence. It takes a
random value varying from −2 to 2 (with a probability varying when varying tevap).
The average mean winding number over all the runs is compatible with a zero mean
value. We show in Fig. 8.11 an example of measured probability distribution of nw for
the ensemble of data shown in Fig. 8.13. It corresponds to 〈nw〉 = 0.001 ± 0.012. This
confirms the stochastic nature of the mechanism at the origin of this phase winding.

8.3.2.2. Location of the phase winding

The phase winding at the origin of spiral-like interferences patterns can be due either
to a vortex in the central disk or to a quantized persistent current in the outer ring. We
can experimentally eliminate the first possibility by noticing that we never observe any
vortex signature in the small disk of radius R0 = 4.5µm by the method presented in 8.2,
performing short 3D ToF. Hence we conclude that the spiral interference patterns reveal
the presence of a supercurrent in the annulus, whose charge and orientation correspond
to the modulus and sign of the winding number nw.

By varying the hold duration thold at the end of the experimental sequence with a
constant value of the evaporation duration tevap, we measure the lifetime of this super-
current. We perform this measurement for tevap = 2 s and measure a lifetime of 7 s,

23. φ is define up to a multiple of 2π. As we are interested in the difference φ(θ = 2π(1− 1/n))− φ(θ =
0), we are not sensitive to the absolute value of φ but we take care of making this function continuous for
θ varying from 0 to 2π by applying unwrapping procedure. This is that no jump of φ larger than 2π is
tolerated for two successive θ, θj = 2π × j/n and θj+1 = 2π × (j + 1)/n.
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Figure 8.11.: Histogram showing the distribution of the winding numbers nw for all data
shown in 8.13, with thold = 0.5 s and tevap varying from 25 ms to 2 s. In total,
this graph includes 237 realizations and 6 different tevap. It corresponds to an
average of 〈nw〉 = 0.001 ± 0.012.

similar to the cloud lifetime (see Fig. 8.12).

8.3.2.3. Dynamical origin

As for the vortices observed in 8.2, the supercurrents can either be due to thermal
excitations or result from the quench cooling. Similar to what was performed in 8.2.2,
we show here that due to the high degeneracy of the final configuration, a thermal
explanation of the observed probability of nw is precluded. Indeed, if these currents
had a thermal origin, their probability of occurrence would be given by the Boltzmann
law p(nw) ∝ exp [−E(nw) / kBT], where the energy of the supercurrent is

E(nw) = n2
w

πh̄2n

m
ln (Rout/Rin) . (8.39)

taking into account only the kinetic term 24. This leads to

p(nw) ∝ (Rin/Rout)
n2

wD/2 , (8.40)

24. We neglect modification of the surface density n due to the presence of the vortices. This is a good
approximation, especially in this geometry, as the effect of the vortex on the density extends over a size of
the order of the healing length ς ∼ 0.5 µm around the vortex core. Eq. 8.39 corresponds to a vortex core
with the central region r ≤ Rin, then the modification of the density is negligible.
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Figure 8.12.: Mean absolute winding number as a function of hold time (tevap = 2 s). Average
number of realizations per point is 22.6. The data is fitted with an exponential
with a time constant of 7 s.

which is vanishing small for nw 6= 0 for our large final phase space densities D ≥ 100,
in clear disagreement with the typical 20-50% of pictures showing phase winding. Note
that the probability for a vortex to appear in the central disk as a thermal excitation is
even smaller than (8.40) because Rin and Rout should be replaced respectively by the
healing length ς and R0.

This simple calculation confirms the dynamical origin of the supercurrents observed
within the ring. Both the dynamical and the stochastic natures of the nucleation mech-
anism strongly promote an explanation through KZ mechanism.

8.3.3. Studying the quench dynamics

8.3.3.1. Fit of the power-law exponent for quench dynamics.

To check that the quench cooling is indeed responsible for the formation of these
supercurrents, we study the variation of Nw = 〈|nw|〉 for evaporation times spanning
two orders of magnitude. We summarize in Fig. 8.13 the experimental variation of Nw

with tevap. We note an overall decrease of Nw from 0.6 (tevap = 0.025 s) to 0.2 (tevap =

2 s). A power-law fit to the data, inspired by the prediction for the KZ mechanism,
leads to Nw ∝ t−dw

evap with dw = 0.19(6). Such an exponent is in good agreement with
beyond Mean-Field prediction of dw ≈ 0.17 and slightly disagreed from MF predictions
of dw = 0.125 obtained for a large number of domains Nd ≫ 1. We note that the
average windings measured 0.2 ≤ Nw ≤ 0.6, must in fact correspond to moderately
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Figure 8.13.: Mean absolute winding number as a function of evaporation time. (thold = 0.5 s)
in log-log scale. Average number of realizations per point is 39.5. A power-law
fit to the data, 〈|nw|〉 ∝ t−dw

evap, gives dw = 0.19(6).

large values of Nd. Using the random-walk 25 relation Nd ∼ 12N2
w (expected to be

valid for Nd ≫ 1), we estimate that Nd . 10. Then the power-law scaling must be
modified and the exponent dw predicted must then take an intermediate value between
predictions of Eqs.8.8 and 8.7.

8.3.3.2. Estimation of domain numbers and corrections of the power-law scaling

To interpret our results we have developed a simple one-dimensional (1D) model
following the KZ scenario presented in [89, 177]. This study has been carried out by a
permanent member from our team, Jérôme Beugnon. We consider a 1D ring of perime-
ter L and we assume that, when BEC⊥ is crossed, Nd domains of uniform phase ϕj,
j ∈ J 1; Nd K are created. As we are interested in ∆ϕ = ∑

Nd−1
j=1 (ϕj+1 − ϕj)[2π] (see 8.1.1),

we consider the phase steps φj = (ϕj+1 − ϕj)[2π] for j ∈ J 1; Nd − 1 K. Each run of the
experiment is modeled by a set of {φj} where the phases φj are independent random
variables uniformly drawn in (−π, π]. For each set of {φj} we calculate the total phase
variation along the ring ∆ϕ = ∑j φj and define nw as the nearest integer to ∆ϕ/2π. We
then average over many draws of the set {φj} and compute an average winding num-

25. To obtain this relation we consider a one-dimensional random walk on the phase steps φi between
neighboring patches (numbered i and i + 1) as detailed in 8.3.3.2. Then all φi are random variables uni-
formly drawn in (−π, π]. Then ∆ϕ = |∑i φj| ∼Nd≫1

√
Nd ∆φ where ∆φ = π/

√
3 is the standard devia-

tion of the variables φi. Then nw = ∆ϕ/2π ∼Nd≫1
√

Nd/12
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ber Nw. We report on Fig. 8.14 the computed variations of Nw as a function of Nd. For
large values of Nd we find that Nw scales like

√
Nd as expected from Eq. 8.7.
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Figure 8.14.: Average absolute winding number as the number of phase domains is increased
in log-log scale. The points are the results of the simulation and the line the
power-law fit to points for the relevant regime for the experiments described here.

Our experimental range 0.2 ≤ Nw ≤ 0.6 is obtained for 3 ≤ Nd ≤ 10 in this model.
In this domains, we do not expect to recover an exact power-law behavior but in first
approximation a power-law fit to the predicted variations of Nw to Nd gives

Nw ∝ N0.8
d . (8.41)

with an increase of the exponent from 0.5 to 0.8 compared to the large Nd case. Then
the expected power-law scaling as a function of the quench time tevap is dw = 0.2 for
MF prediction and dw = 0.27 for beyond MF prediction. Such corrections make unclear
with which model our data best agree with. In addition, other effects may also be
considered such as the role of the predicted long time plateau (see 8.1.2 for a description
of this effect) or other finite size effects.

We note from this model that the expected size ξ̂ of the domains varies from 7 to
25 µm. Then ξ̂ is larger than the transverse size of the annulus, which justifies the use
of a 1D model. ξ̂ is also larger than the size R0 of the central disk, which confirms the
fact that we do not observe any vortex in this small disk. The two main assumptions
in these calculations are then auto-coherently verified. This model remains a simple
insight on the phase winding establishment in the superfluid assuming independent
choice of the phases on a given number of predefined domains. To better predict the
phase winding scaling with the quench time more sophisticated calculations must be
performed such as using Stochastic Gross–Pitaevskii Equation (SGPE) [177].
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8.3.3.3. Corrections due to predicted long time plateau for quench through BEC⊥

As described in 8.1.2, the transition that leads to freezing out of coherent domains is
the transverse condensation. In this crossing, the in-plane correlation length is limited
by the transverse extension of the cloud and for long enough quench times, the number
of domains created must be fixed only by ℓz and not by the quench rate. This would
then result in a non-zero plateau for Nw. From the quality of our data we cannot distin-
guish such a plateau. However, the physical configuration studied in this section is not
drastically different from the one studied in previous section 8.2 for which a plateau
was clearly 26 observed for tevap longer than several hundreds of ms. Assuming a sim-
ilar threshold time appears compatible with the data of Fig. 8.13. If it is true that we
expect a reduced variation of Nw at tevap & 250 ms, the power-law fit for tevap up to 2 s
must underestimate the actual exponent dw (for tevap . 250 ms) as it approximate the
"kinky" variation in a straight one, slower than the actual start. Such an underestimate
may conclude to a better agreement with beyond MF expectations of Model F while still
considering corrections due to small Nd, compared to previous conclusions.

8.3.4. Other limitations

As for the vortex nucleation described in 8.2, limitations to the predicted scaling laws
may come from:

— the modification of the power-law scaling due to the finite size of the box.
— the variation of the effective hold time with tevap even though we note that in

this case it must have less influence due to the long lifetime of the supercurrents
observed

— the effects of inhomogeneities of the trap potential along the annulus (see 6 for a
description of these non-homogeneities).

There is another assumption specific to this geometry that could limit the validity of
the theoretical description of the annulus as a 1D chain of domains. Domains are in
fact 3D patches of fluids and vortices can be generated in the volume of the fluid as
described in the previous section 8.2. Such an event remains very seldom due to the
size of the system: the transverse size along the annulus is 6 µm while the minimum
average size of the domains deduced from simple modeling of 8.3.3.2 is 7 µm, justifying
the 1D description in first approximation.

8.3.5. Characterizing phonons from fringes patterns

In this last paragraph, we show that one can extract more information from the inter-
ference patterns, which goes beyond the determination of the topological number nw.
In particular the ripples of the fringes are related to the phase distribution of the flu-
ids in the central disk and the ring, which is characterized by the one-body correlation
function g1. This function plays a specially important role for low-dimensional systems,

26. Note that in this case the expected exponent dv ∼ 4dw. This faster decay at short tevap makes it easier
to distinguish a change toward a slower decay at long tevap and explains why a plateau is observable or
not depending on the case.
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Figure 8.15.: (a) Typical phase distribution reconstructed from the phase profile φ(θ) of the in-
terference pattern of Fig. 8.10(b) showing a winding number of -1. (b) Real value
of the angular correlation function reconstructed from the phase of the interfer-
ence patterns with 18 realizations of tevap = 2 s and thold = 4 s. When Nd 6= 0 the
linear phase winding is subtracted before computing g1.

since it indicates how long-range order is destroyed by thermal phonons. To give an es-
timate of g1, we study the angular dependance of the phase of the fringes φ(θ) as shown
on Fig. 8.15a. In particular we consider the periodic function δφ(θ) = φ(θ) − nw θ,
which describes the deviation of the reconstructed phase from a perfect linear winding.
We construct the angular correlation function:

g
(exp)
1 (θ) = 〈ei[δφ(θ′)−δφ(θ′+θ)]〉θ′ , realizations (8.42)

where the average is taken over all images irrespective of the value of nw, and which
is expected to be real in the limit of a large number of realizations. A typical example

for Re[g(exp)
1 ] is given in Fig. 8.15b, where the minimum for θ = π gives an indication

of the phase coherence between diametrically opposite points. To relate quantitatively

g
(exp)
1 (θ) to the coherence properties of the gas in the ring, two hypotheses are needed:

— We suppose that the fluid in the central disk acts as a phase reference, so that the
ripples of the fringes come essentially from the phase fluctuations in the ring. In-
deed the small size of this disk guarantees that phonon modes are only weakly
populated. Using Bogoliubov description of the excitations and a minimal phonon
wavevector of k ∼ 1/R0, we fund a maximal population of the order of one atom
per mode.

— We assume that the fluctuations of the phase of the fringe pattern directly reflect
the phase of the atomic wave function along the ring. We check this hypothesis by
simulating numerically the hydrodynamical expansion using 2D Gross Pitaevskii
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8.4. Conclusion

simulations (see Annex B). These precise simulations have been performed by co-
worker Sylvain Nascimbène. We first compute the ground state of N = 5 × 104

atoms in the target potential using 2D imaginary time Gross-Pitaevskii calcula-
tions. A phase fluctuation δφ̃(θ) is then added by hand to the wave function in
the ring. We then simulate the hydrodynamical expansion by evolving the Gross-
Pitaevskii equation in real time during 7 ms. The phase δφ(θ) of the fringe pat-
tern is finally obtained using the same procedure as for experimental pictures. A
comparison between two typical phase distributions δφ̃(θ) and δφ(θ) is given in
Fig. 8.16. Both phase profiles are similar, confirming that the phase reconstructed
from the interference pattern corresponds in good approximation to the in-situ
phase of the gas.

The measured angular correlation function g
(exp)
1 (θ) can thus be used to reconstruct

the first-order correlation function of the gas in the annulus. This correlation function
could allow one to extract the evolution of the phonon distribution during the thermal-
ization of the fluid.
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Figure 8.16.: Comparison between the phase fluctuations of an initial state in the annulus (δφ̃,
solid line) and the phase profile deduced with the interference method used in
the experiment (δφ, red points).

8.4. Conclusion

In this chapter, we presented two measurements testing Kibble–Zurek mechanism at
the dimensional cross-over between 2D and 3D in a uniform 2D gas. We shown that
topological defects can be nucleated at the transition crossing even for long evapora-
tion ramps, highlighting the specificity of the specificity of the emergence of coherence
in uniform gases. We have presented a quantitative analysis of the KZ scaling of the
number of domains Nd with the quench time tevap through the measurements of the
mean number of topological defects Nv (number of vortex cores in a bulk geometry)
or Nw (number of phase windings in an annular geometry). The measured exponent
for the related power-law scaling of the number of coherent domains Nd ∝ td

evap gives
respectively d = 0.35(9) and d = 0.38(12), in agreement with beyond MF prediction of
d = 1/3.
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8. Kibble–Zurek mechanism at the dimensional crossover

In the presented studies we were able to test KZ scaling law only over a limited range
of tevap precluding a clear discrimination between MF from beyond MF predictions.
This limitation is in fact intrinsic to the system under study. First, the range of study is
limited for tevap by two extreme effects:

— tevap should be chosen long enough so that at any given time a local thermal equi-
librium is achieved in the cloud (see Annex I). As the collision time at the crossing
of the transition is τcoll ≈ 4 ms, we impose tevap ≥ 25 ms 27

— The largest tevap is set by the cloud lifetime that is of 6 s in our case. Then we
impose tevap ≤ 3 s.

In our case, we can then test 2 orders of magnitude of tevap (and this relative range
cannot be significantly modified). Moreover due to the expectation of a plateau of Nd

for long quench times through the dimensional crossover, the range of study of the
power-law scaling is actually more limited. In 8.2, we found a characteristic time for
this plateau at tevap ≈ 250 ms, restricting the range for power-law study to one order
of magnitude in tevap. Finally, as we work with a uniform system, the expected power-
law exponent is smaller than 1, resulting in an even smaller accessible range for Nd (and
the relative range that can be investigated in Nd is then fixed). It could be interesting
to study situations with larger absolute values of Nd. For a given density the local
equilibrium requirement limits the lower value of ξ̂ and one can only increase the size
of the system L in order to increase Nd. Within current experimental techniques, it
should be possible to load one order of magnitude more atoms, leading to an increase
of Nd by the same factor, assuming fixed transverse sizes.

In this study, we considered only the weakly interacting regime for which we showed
that an extended quantum coherence emerges essentially due to ideal Bose statistics
(see Ch. 7). Our work also motivates future research in the direction of strongly in-
teracting 2D gases [206], for which the order of the various transitions could be inter-
changed. In particular the critical D for the BKT transition should decrease, and reach
ultimately the universal value of the "superfluid jump", D = 4 [122]. In this case, the
emergence of extended coherence in the 2D gas would be essentially driven by the in-
teractions. Indeed once the superfluid transition is crossed, the one-body correlation
function is expected to decay very slowly, g1(r) ∝ r−α, with α < 1/4. It would be inter-
esting to revisit the statistics of formation of quench-induced topological defects in this
case, for which significant deviations to the KZ power-law scaling have been predicted
[174, 175].

27. Note that a similar condition is imposed by the applicability of linear approximation in the quench
in temperature, see 8.1.3.2
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Concluding remarks

Summary

In this thesis, we studied experimentally the two-dimensional Bose gas starting from
a local investigation of conventional harmonically confined samples to the develop-
ment of a direct exploration of homogeneous gases. In the harmonic trapping case, we
used the induced spatial dependency of the degree of degeneracy of the gas D to probe
several homogeneous-equivalent configurations within a unique experimental realiza-
tion. In the uniform configuration, we used the spatial independency of D to probe
long distance effects. In the first case, we measured the equation of state around the
BKT critical point and explored the transition from a thermal to a superfluid behav-
ior. In the second case, we characterized the (extended) coherence range at equilibrium
varying the degree of degeneracy of a 2D gas and the strength of the confinement along
the third direction of space. We also tested the dynamics of the establishment of the
in-plane coherence along the dimensional crossover.

The measurements on the uniform 2D traps that we presented in this manuscript
constitute our first studies in this specific trapping configuration. Comparing to state-
of-the-art achievements in our research community they are rather innovative. We want
to push these investigations further and study in-depth the specially accessible prop-
erties in a homogeneous configuration. We are also eager to investigate other range
of parameters for our cloud configuration (other transverse confinements, other inter-
action regimes, other in-plane sizes...). Finally, we also wish to implement new box
geometries that will enable us to explore original physical phenomena. I detail here
some of these further developments and directions of research.

Beyond coherence measurement, toward a characterization of the
correlations and the fluctuations in a 2D uniform gas

In chapter 7, we were interested in a simple characterization of the g1(r) decay, ex-
tracting a single number that characterizes the coherence range from two much more
complex sources of information, the 2D density spatial distribution of an expanding
gas and the 2D fringes pattern resulting from the overlap of two initially independent
gases. A more complete description of the correlations can be extracted from a more
in-depth analysis of similar measurements. This is of particular interest in the uniform
configuration since long range correlation analysis is relevant (i.e. it is not limited by
the inhomogeneity range, only by the size of the cloud). Then a measure of the full g1(r)

dependency may be achievable in our experiment. In this case if a high enough pre-
cision is achieved, we may expect (see 1.1.3.1 and 1.1.4.4) to observe a transition from
a Gaussian behavior (predicted for the thermal gas) to a exponential decay (predicted
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8. Kibble–Zurek mechanism at the dimensional crossover

from ideal Bose law) and/or to an algebraic decrease (as expected in the superfluid
phase) with the increase of the degree of degeneracy of the gas. Moreover the BKT
theory predicts an intimate link between the algebraic decay exponent η and the su-
perfluid density ns : η = 1/(ns λ2

T). Then ns can potentially be extracted from the
measure of g1 spatial dependency. We note that as the system size here limits the range
of investigation and may perturb it we are willing to produce larger 2D traps.

From density distribution measurements higher-order correlation functions may also
be measured [111, 207]. The second order correlation function, also called density-
density correlation function g2, is of special interest as it enables a description of both
density and phase fluctuations (by performing either in situ or Time-of-Flight measure-
ments) [192, 208]. A similar technique has been developed earlier for 1D gases [191].
In a (homogeneous) 2D gas, the specific behavior of the g2 function in Time-of-Flight
may also prove the algebraic decay of the g1 correlations and gives access to the ex-
ponent η [192]. Some developments have also been carried out for 2D harmonically
confined gases [105, 106, 111] but gave limited results due to the restrictions introduced
by the spatial dependency of the gas properties. Here again, the specificity of the uni-
form configuration is to give access to a close to the text-book configuration along with
permitting to carry out this study over large distances. By varying the degree of de-
generacy, we may revisit the previously described evolution from a thermal to a quasi-
condensate to a superfluid state by describing here the thermal excitations of the gas: It
must evolve from a fully fluctuating gas to a regime where the density fluctuation are
strongly suppressed over large scales while the phase remains fluctuating with a prolif-
eration of phase windings defects, to a final state where the free vortices are precluded
but the phase keeps fluctuating over long range (see 1.1.4.2). In the latter regime, a
large scale analysis of the power spectrum of the resulting density fluctuations after a
Time-of-Flight expansion may as announced give access to η and thus to ns.

The observations of density and phase fluctuations are not limited to the equilib-
rium characterization of the 2D gas but is also of interest for describing the dynamical
establishment of the coherence as alluded in 8.3.5. We may thus perform a precise cor-
relation analysis in a quench through a transition toward a coherent state to investigate
not only the robust topological defects that survives long after the quench as in chapter
8 but also the short lived excitations such as phonons [95]. Here we would need to look
at the gas at times closer to the transition point. Their scaling properties would provide
valuable insights on the thermodynamics transitions occurring in 2D [209, 210] and a
more in-depth comprehension of the dynamics occurring from their quenched crossing.

We finally note that the recent development of single atom imaging techniques [211–
214] enables a more in-depth investigation of the (high-order) correlations and may be
implemented in our setup [111]. From this we may drastically gain information on the
statistics of excitations.

Toward tighter confinement and strongly interacting gases

In our experimental study of the uniform gas performed up to this date, we have
mainly focused on statistical effects. Indeed, we considered only loose transverse con-
finement with ωz/2π . 1.5 kHz such that the 2D interaction parameters are restricted
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8.4. Conclusion

to weakly interacting values g̃ . 0.1. This has several consequences on the physical
properties that can potentially be investigated.

First, due to the limited energy spacing between the excited and the ground states for
the z-motion, 2D is only marginally achieved, leading to a crucial role of the transverse
excitations in the way 2D physics is established. Using this loosely confined configura-
tion we pioneered investigations of the Bose-driven partial condensation phenomenon
BEC⊥ in 2D. However it would also be interesting to study the opposite configura-
tion of a deep 2D regime with kBT ≪ h̄ωz over a large range of temperature. In this
configuration we may also expect to achieve a better exploitation of the Time-of-Flight
measurements, for example extracting a reliable value of the condensed fraction of the
gas, due to the simplification of the theoretical model (where no sum over the z excited
states is needed).

Second, in the weakly interacting regime, the superfluid BKT transition is expected
at a relatively large value of the 2D phase-space-density (Eq. 1.35) D(2D) ∼ 8 whereas
in the strongly interacting case, this quantity tends toward its «superfluid jump» value
of D(2D) = 4 [122]. In 2D, due to the ideal prediction of an exponential growth of the
correlation length with D(2D), extended coherence (compared to the thermally set range
λT, with in our gas λT . 1 µm) is expected for D(2D) ∼ 4 (see Eq. 1.22 and 7.4). Then in
the weakly interacting case, emergence of quantum coherence is essentially driven by a
statistical effect; when the superfluid transition is crossed, the coherence length set by
Bose statistics is comparable to our box size. In the strongly interacting case however,
the emergence of an extended coherence in the 2D gas would be essentially driven by
the interactions : close to the BKT point the characteristic length of the exponential
decay diverges (see Eq. 1.37) and at the onset of the superfluid regime an algebraic
decay of g1(r) establishes.

It would be interesting to revisit our study of the emergence of coherence in these
deep 2D and/or strongly interacting regimes 28 both as a function of the equilibrium
properties of the gas and following a quench evolution throughout a coherent state. The
scaling of the number of topological defects nucleated along a quench in the strongly
interacting regime is of particular interest. It is indeed extremely different from the
configuration described in this manuscript as the relevant transition (that is the one
that establishes an extended coherence) for this quench is the interaction-induced BKT
transition. For such a transition of infinite order, the KZ mechanism keeps applying
but the theoretical expectations happen to be vastly modified. In particular, the scaling
of the defect number toward the quench rate is not expected to follow a power law
variation [174, 175]. The observation of such an altered dependency would constitute
an original investigation of the refined applicability of the KZ mechanism, beyond finite
order transitions.

We highlight that such a tight confinement and strongly interacting regime can be
achieved by the implementation of the new confinement setup presented in 2.3.

28. Note that in our case, as we cannot vary the scattering length as (no Feshbach resonances) these two
regimes are intimately linked
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8. Kibble–Zurek mechanism at the dimensional crossover

Toward other uniform geometries and transport measurements

A third direction for further study would be to vary the shape of our box potential. A
first point is to vary the size of this trap. As noticed theoretically, due to the exponential
growth of the coherence length, the finite size of the samples has a predominant role on
the thermodynamical properties of the gas (see Eq. 1.23 for example). Changing this
size may enable to study its effects. If we vary simultaneously the interaction strength,
we can look at the order of the occurrence of either a (finite-size) statistic-driven or an
interaction-driven condensation in 2D (see 1.1.4.4 and [111, 115]). Moreover, as high-
lighted in 8.4 to study further the quench scaling of the density of defects via KZ mech-
anism, as we can not change the relative range of the defect number, it is necessary to
vary the size of the sample which modify the absolute defect number. We can then ex-
tend our KZ exponent determination by simultaneously fitting its scaling on data taken
with different box sizes.

A more subtle change of geometry can be realized to study new physical phenom-
ena. A particularly interesting idea is for example to use the two spatially-separated
rectangular boxes geometry (see 7.3 and Fig. 6.9) and modify it by creating a small
potential channel between the two gases. We can think of dynamically closing and
opening this channel by tightly focusing a blue detuned laser beam on it. This beam
would be similar in its experimental implementation to the stirring beam used to probe
the superfluid behavior of our gas (see 5.1.1) for which we achieved a waist of 2 µm on
the atoms. Compared to the distance between the two parallel rectangular clouds (of
4.5 µm), this beam provides the desired «gate» effect on the trapping potential. Open-
ing and closing the channel enable to make the two linked clouds coherent or not. The
statistical distribution of their relative phase can be tested by a repetitive measurement
of the fringes patterns.

In this configuration, we can also study transport properties along the channel and
their evolution for various degrees of degeneracy of the clouds. Such a measurement
complements our probing of the superfluid behavior via the response to a moving de-
fect detailed in chapter 5 but can also address a wider scope of problems. Recent exper-
iments have initiated the exploration of transport properties with ultracold atom gases
[80, 82–87]. They are of interest for example for quantum simulations purpose or atom-
tronics [215] as they provide an equivalent for the conduction phenomenon. By varying
the intensity of the «gate beam» we can vary the importance of the leak between the two
reservoirs and then reach the regime of a weak leak in which the transport occurs at the
single quantum level. Then in the superfluid regime a Josephson like effect reveals
[216]. We may investigate the transition from this Josephson transport to a hydrody-
namical one according to the energy height of the channel by exploring for example
the oscillations in the atom numbers of each box (see [84, 217, 218] for examples of ex-
perimental realizations). Following lines of [219], we may be interested in controlling
the regime of transportation for the normal and the superfluid components indepen-
dently. By adding a disorder potential in the channel, we can for example realized a
specific regime of transport that is named the superleak : In this case, the transport of
the normal part is prohibited and only the superfluid may be transported. The disorder
potential can be created by using the speckle pattern of a laser beam. Further interesting
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8.4. Conclusion

properties from transport measurements may be accessed by controlling the population
and/or the temperature of each of the boxes independently.
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A. Ideal Bose description of the uniform 2D gases.

By neglecting the effects of the interactions between atoms and applying the ideal
Bose predictions for the non-interacting single-particle Hamiltonian, we can deduce
predictions for many of the gas properties at thermal equilibrium. In our uniform trap
configurations, this approximation happens to be relevant in a large number of con-
figurations around the critical points of interest (see Ch. 7-8). We can self-consistently
check its validity by estimating the interaction energy per particle in a first order ap-
proximation.

A.1. Ideal description of the gas at thermal equilibrium

To apply the ideal Bose law predictions to our gas configuration, we consider a full
quantum 3D treatment of the Hamiltonian eigenstates (as introduced in 1.2.2). The
Hamiltonian has no interaction contribution and the confinement potentials are mod-
eled as follow:

— The vertical confinement is purely harmonic of pulsation ωz (We use two config-
urations ωz/2π = 365 Hz and ωz/2π = 1460 Hz).

— We consider an in–plane confinement perfectly uniform and of square shape of
size L. To reproduce the experimental configurations for which the box shape
varies, we choose L =

√
A where A is the area of the considered box. This sim-

plification is justified by the more thorough simulations performed by previous
PhD student Rémi Desbuquois [111] taking into account exact levels description
of a disk–shape uniform box. These simulations conclude in a dominant depen-
dency on the area of the box potential and only small corrections coming from the
exact geometry.

Here we consider the Dirichlet boundaries conditions. The eigenstates of the corre-
sponding single-particle Hamiltonian are labelled by three integers jx, jy ≥ 1, jz ≥ 0
and its energy and eigenfunction are (taking the energy of the ground-state to be zero):

Ej =
π2h̄2

2mL2 (j2x + j2y − 2) + jzh̄ωz, (A.1)

ψj(r) =
1

L
√
ℓz

sin(π jxx/L) sin(π jyy/L) χjz(z/ℓz), (A.2)

where ℓz =
√

h̄/mωz and χj is the j-th Hermite function. If we consider a gas of N

non-interacting particles at temperature T, the occupation factor of level j ≡ (jx, jy, jz)

is given by Bose statistics:

fj =
1

exp
[

(Ej − µ)/kBT
]

− 1
, (A.3)
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where µ ≤ 0 is the chemical potential of the gas and N = ∑j fj.

A.2. Computing predictions

We perform numerical computations by considering all levels within j = (jx ≤
jmax
r , jy ≤ jmax

r , jz ≤ jmax
z ). Each quantum number jx, jy and jz are upper bounded

by a value that takes into account energies as high as 20 × kBT :

jmax
r ≡ 5 L

λT
, jmax

z ≡ 20kBT

h̄ωz
(A.4)

From Eqs.A.1-A.3, we can estimate a wide range of parameters along the lines ex-
plained below.

A.2.1. Occupation of the single-particle states

Following Eq. A.3, we can characterize the state |ψ〉 of a gas of N particles at ther-
mal equilibrium by its average over a large number of realizations. In average, it is
populated along

|〈j|ψ〉|2 = fj (A.5)

Note: To relate this results to A.2.2 we note that |〈j|ψ〉|2 = 〈N̂j〉 where N̂j is the operator
number of particles in state j and is given by N̂j = â†

j âj (âj annihilates one particle in
state |j〉). Such a knowledge of the population of the single-particle states enables to
calculate all the averages considered in the following sections.

In this manuscript, we are particularly interested in:
— the population of the overall ground-state N(0,0,0) = NΠ(0,0,0) = f(1,1,0)
— the population of the ground-state of the z-motion |jz = 0〉 that is N(0) = Π(0)N =

∑jx ,jy f(jx ,jy ,0).

A.2.2. Mean value of one-body observables

Using the second quantification formalism, the general expression of any one-body
observable Â = ∑j1 ,j2

Aj1 ,j2
â†

j1
âj2

(where âj stands for the annihilation operator in the |j〉
state). Its average for a gas of N particles at thermal equilibrium can then be calculated
along

〈Â〉 = ∑
j

fj Aj,j (with Aj1 ,j2
= 〈j1|Â|j2〉). (A.6)

For example, the variance of the in-plane velocity v2 = v2
x + v2

y is given by:

∆v2 ≡ 〈v2〉 =
(

πh̄

Lm

)2

∑
j

j2x + j2y

2
fj (A.7)
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The first order correlation function g1 between the points r and r′ writes

g1(r, r′) ≡ 〈ψ̂(r)†ψ̂(r′)〉 = ∑
j

fjψ
∗
j (r)ψj(r

′) (A.8)

as the field operator is given by ψ̂(r) = ∑j ψj(r)âj (with ψj(r) given in Eq. A.2 ).

A.2.3. Mean value of two-body observables

In the same way, we can estimate the average value of a two-body observable whose
general expression is B̂ = ∑j1,j2,j3,j4

Bj1,j2,j3 ,j4
â†

j1
â†

j2
âj3

âj4
. It is then calculated along

〈B̂〉 = ∑
j1 ,j2

fj1
fj2

Bj2,j1,j1,j2
(with Bj1,j2,j3 ,j4

= 〈j1|〈j2|B̂|j4〉|j3〉). (A.9)

For example, the interaction potential operator (assuming the binary contact approx-
imation with s-wave channel collisions) is defined as

V̂int(r) = g(3D)ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (A.10)

where g(3D) is the 3D interaction parameter introduced in 1.1.4.1, g(3D) = 4πh̄2

m as. Then
the first order approximation of this total interaction energy (in this non-interacting
treatment) averages to

Eint ≡ 1
2

∫

d3r〈V̂int(r)〉 (A.11)

= ∑
j,j′

fj fj′
1
2

g(3D)
∫

d3r|ψj(r)|2|ψj′(r)|2. (A.12)

A.3. self-consistent validity of the non-interacting treatment

The estimate deduced from such a Bose law treatment is relevant only for gas config-
urations in which the interaction energy is negligible. We self-consistently verified this
assumption, by estimating the first order contribution of an interaction energy value
in the ideal approximation. Rather than calculating its average value by integrating
Eq. A.12 we will consider its maximal (local) contribution to the Hamiltonian 1. As
highlighted in 1.1.4, a first order contribution of the interaction energy to the single-
particle Hamiltonian can be estimated by the spatial dependent factor

hint = g(3D)

〈

n(3D)(r)2
〉

〈n(3D)(r)〉 (A.13)

1. This choice is made for two reasons. First the integration of Eq. A.12 is a complex numerical task.
Second we are interested in the perturbation that can induced the interaction energy in the population of
the single-particle state. Then it is sensible to consider the importance of the contribution in the (single-
particle) Hamiltonian to then estimate a first order correction to the eigenenergies and eigenstates by
applying the perturbation theory for example.
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while 〈n(3D)(r)2〉 varies from 2〈n(3D)(r)〉2 in a thermal gas to 〈n(3D)(r)〉2 in a highly de-
generate regime (suppression of density fluctuations). We must then compare the value
of g(3D)〈n(3D)(r)〉, which gives the range of hint, to the other characteristic energies of
the gas. As the negligibility must be verified in all parts of the cloud, we estimate the
maximal value of g(3D)〈n(3D)(r)〉 over the cloud, which is obtained in r = 0 . We es-
timate n(3D)(0) from the ideal Bose law calculations. We will consider as relevant the
ideal estimations for gases that self-consistently verify that gn(3D)(0) is smaller than a
certain limit. This limit is usually set to a fraction of the thermal energy kBT and of the
level spacing for the transverse confinement h̄ωz.
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B. Gross-Pitaevskii simulations to estimate the gas
parameters in the highly degenerate regime.

Along this work we use Gross-Pitaevskii simulations to compute the gas proper-
ties in the highly degenerated configurations. Gross-Pitaevskii simulations enable to
take into account the interaction contribution using Mean-Field approximation. In these
simulations we assume that all particles populate the ground state of the macroscopic
Hamiltonian Ĥ, then contributing to a macroscopic wavefunction (equivalently, we as-
sume that the temperature of the gas is zero, T = 0). It thus provides a first order
approximation to the treatment of interactions between atoms in the highly degenerate
case.

B.1. Principle of GrossPitaevskii simulations

B.1.1. Time dependent Gross-Pitaevskii equations

To perform such a simulation we use the time-dependent Gross-Pitaevskii equation
(GPE), also called non-linear Schrodinger equation (NLSE) in 3D:

ih̄
∂ψ(r)

∂t
=

(

D̂ + K̂
)

ψ(r) (B.1)

with D̂ ψ(r) ≡
(

V(r) + g(3D)N|ψ(r)|2
)

ψ(r) (B.2)

K̂ ψ(r) ≡ − h̄2

2m

∂2

∂r2 ψ(r) (B.3)

where r is the 3D position vector, ψ(r) is the 3D macroscopic wavefunction with the
normalization condition

∫

|ψ(r)|2d3r = 1, N is the total number of atoms, V(r) is the

3D-trapping potential; finally g(3D) = 4πh̄2as
m is the 3D interaction parameter. Then the

macroscopic Hamiltonian is Ĥ = D̂ + K̂.

B.1.1.1. Defining the confining potential V

In our case the 3D potential has a dominant harmonic contribution of pulsation ωz

along z and a dominant uniform contribution in the xy-plane. We denote ρ the 2D
position vector such that r = ρ + zuz (uz stands for the unit vector along z). Then we
can write

V(r) = U(ρ) +
m

2
ω2

z z2 + δV(r) (B.4)

with U(ρ) = Ubarrier Θ(ρ 6∈ Box) (B.5)

|δV(r)| ≪ |V(r)|. (B.6)
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where Θ is the Heaviside function. U(ρ) is thus a 2D perfectly uniform potential with
infinitely sharp edges. In our simulations we commonly use disk-shape boxes for sim-
plicity reasons, assuming then that the specific shape has a negligible influence. To
reproduce the experimental configuration, we use a disk of same area as the box used
in the experiment and populate it with the experimentally measured atom number N.

δV(r) stands for all the corrections that can be made to the simple description de-
tailed above. Several corrections may be included:

— As shown in 2.1.1, the use of a magnetic gradient for compensating gravity field
along z simultaneously induces a shallow harmonic confinement in-plane. We
take this correction into account by calculating the approximate harmonic trap-
ping frequencies (Eq. 2.10) created by a magnetic gradient that perfectly compen-
sates the gravity field along z (b′z = 15 G/cm) and whose zero is perfectly at the
vertical of the trap center, at a distance dmag = 1.45 mm from this center. In the
simulations used in this manuscript we took this correction into account.

— As shown in 2.2.3.1, the light-sheet beam creating the confinement along z also
leads to a shallow harmonic trapping (or anti-trapping) in-plane. We take this
correction into account, also considering for the actual distance d of the atoms
compared to the focus of this beam (see Annex C).This distance is d = 190 µm for
configuration at ωz/2π = 1460 Hz and d = 840 µm for configuration at ωz/2π =

365 Hz. In our simulations, we took this correction into account.
— Due to the finite waist of the light-sheet beam in-plane wr = 50 µm, the z-trapping

frequency varies within the box. At the position ρ, ωz is proportional to the square
root of the intensity of the beam at this position and then varies as exp(−ρ2/w2

r )

(see Eq. 2.13). In the 3D simulations performed in this work, we take this correc-
tion into account by using a local definition of the z-trapping frequency ωz(r) =

ωz exp(−ρ2/w2
r ).

— Non uniformity of the box-trap bottom (see 6.3.3.2) as well as non-harmonicities
of the light-sheet confinement (see 2.2.3.2 for example) could also be added. We
do not model such an effect in our simulations.

B.1.1.2. 2D approximation for the Gross-Pitaevskii equation

In our case as, the confinement along z is rather strong, we can assume that the chem-
ical potential µ is negligible compare to h̄ωz. With this assumption, we state that inter-
actions have a negligible effect along z and we can then assume that only the single-
particle ground-state of the z-motion is populated. In this approximation, we can then
project this 3D equation in a 2D one using the decomposition:

ψ(r) = φ(ρ)
χ0(z/ℓz)√

ℓz

(B.7)

where χ0 stands for the zeroth Hermite function and ℓz =
√

h̄/mωz for the size of z-
harmonic oscillator 1. φ(ρ) is the 2D macroscopic wavefunction and the 3D normaliza-

1. Here, we neglect the contribution of δV(r) depending on z. It is possible to take into account this
modification of V(r) in Eq. B.8 by correcting according the integration performed. It translates quantita-
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tion condition translates in the 2D condition
∫

|φ(ρ)|2d2ρ = 1. Then Eq. B.1 integrates
in :

ih̄
∂φ(ρ)

∂t
=

(

D̂ + K̂
)

φ(ρ) (B.8)

with D̂ φ(ρ) ≡
(

U(ρ) + δU(ρ) + g(2D)N|φ(ρ)|2
)

φ(ρ) (B.9)

K̂ φ(ρ) ≡ − h̄2

2m

∂2

∂ρ2 φ(ρ) (B.10)

where δU(ρ) is the component of δV correcting the in-plane confinement; g(2D) =√
8π h̄2as
mℓz

is the 2D interaction parameter, linked to the reduced one by g(2D) = h̄2 g̃/m.
As the 2D equation is an approximation of the 3D one, the resolution of Eq. B.1 is

more rigorous than of Eq. B.8 (but necessitate more computations). In particular, it takes
into account the modifications of the z macroscopic ground-state due to interactions
between atoms. These can be important in our highly degenerate gases (D(2D) > 100)
and relatively loose trapping of ωz/2π = 365 Hz. In most of the cases, we performed
3D calculations, except in 8.3.5 (for the qualitative justification of g1 analysis).

B.1.2. Method for solving the time-dependent GPE

We solve Eq. B.1 (resp. Eq. B.8) by using a split-step method. In this method we
perform an evolution by small time steps dt by successively solving over each small
step the two partial evolutions:

1. in the direct spatial domain, we evolve ψ along :

ih̄
∂ψ(r)

∂t
= D̂ψ(r) (resp. ih̄

∂φ(ρ)

∂t
= D̂φ(ρ)) (B.11)

2. in the frequency one, we evolve ψ along :

ih̄
∂ψ(r)

∂t
= K̂ψ(r) (resp. ih̄

∂φ(ρ)

∂t
= K̂φ(ρ)) (B.12)

The two evolutions of Eqs. B.11 and B.12 are independently easily solvable in the spec-
ified spaces. In first approximation, they can be treated separately along the small
time steps as then the commutator of dtD̂ (resp. dtD̂) and dtK̂ (resp. dtK̂) can be
neglected: it contributes to terms of an order smaller in dt. More rigorously, using
Baker-Hausdorff formula in Eq. B.1, we find :

ψ(r, t + dt) = eidt(K̂+D̂)/h̄ψ(r, t) = eidtK̂/h̄eidtD̂/h̄ψ(r, t) + o(dt2) (B.13)

Then, if we choose a small enough value of dt so that |dt
h̄ K̂ψ|, |dt

h̄ D̂ψ| ≪ 1. The
solution of Eq. B.1 (resp. Eq. B.8) evolved between t and t + dt is well approximated by

tively in a modification of the 2D interaction parameter g(2D)
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:

ψ(r, t + dt) = TF−1[exp

(

− idth̄k2

2m

)

TF[eidtD̂ψ(r, t)]] (B.14)

(resp. φ(ρ, t + dt) = TF−1[exp
(

− idth̄κ2

2m

)

TF[eidtD̂φ(ρ, t)]] ). (B.15)

where TF is the Fourier transform operator and k (resp. κ) is the variable conjugated to
r (resp. ρ) by Fourier transform. The evolution from t = 0 to t = t̂ is performed using
t̂/dt successive steps.

B.2. Numerical computations

B.2.1. Computing the macroscopic ground state wavefunction for the trap
sample

We compute the ground state wavefunction ϕ0(r) of the macroscopic Hamiltonian
Ĥ = D̂ + K̂ of Eq. B.1 (resp. Ĥ = D̂ + K̂ of Eq. B.8) by evolving the state along Eq. B.14
(resp. B.15) in imaginary time, that is replacing the time t of this equation along (so
called Wick rotation):

t → τ = −it (B.16)

We start the evolution from an arbitrary wavefunction ψ(r, t = 0) = ψ0(r) that can
be in a general way decomposed over the eigenstates |ϕk〉 of Ĥ (resp. Ĥ) along |ψ0〉 =
∑

∞
k=0 ck|ϕk〉. We number the eigenstates in the increasing order of their energies ǫk and

we set the origin of the energies to ǫ0 = 0. We also assume that the ground-state
|ϕ0〉 is not degenerate so that ǫk > 0, ∀k > 0. Then, applying the propagation operator
exp(− iĤt

h̄ ) after the transformation of Eq. B.16, we find :

ψ(r, t = iτ) =
∞

∑
k=0

ck exp(−ǫkτ

h̄
)|ϕk〉 −→

τ→∞
c0|ϕ0〉 (B.17)

If we perform the evolution for a long enough time τ compared to the first excitation
energy gap ǫ1 (i.e. τ ≫ h̄/ǫ1), then the evolved wavefunction is directly proportional to
the ground state wavefunction ϕ0(r). As the evolution is performed in imaginary time,
then the normalization is not implicitly conserved along the evolution. Then in our
numerical procedure, we reestablished the normalization condition

∫

|ψ(r, iτ)|2d3r = 1
(resp.

∫

|φ(ρ, iτ)|2d2ρ = 1) after each time step of duration dt by dividing ψ(r, iτ) (resp.

φ(ρ, iτ)) by its norm
√

∫

|ψ(r, iτ)|2d3r (resp.
√

∫

|φ(ρ, iτ)|2d2ρ).

In the numerical calculation, we typically use time steps of 10−4 ms and compute the
evolution for 10 ms. The 3D grid contains 152× 152× 32 voxels, with a voxel size 0.52×
0.52 × 0.26 µm3. The 2D grid contains 70 × 70 pixels, with a pixel size 0.52 × 0.52 µm2.
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B.2.2. Deducing the gas parameters

From the determination of the ground state of the macroscopic Hamiltonian, we are
in particular interested in estimating the various contributions to the total energy. These
are the potential energy Epot, the kinetic energy Ekin and interaction energy Eint and they
are given by the following integrals over the cloud:

Epot = N
∫

V(r)|ψ(r)|2d3r, (B.18)

Ekin =
h̄2N

2m

∫

|∇ψ(r)|2 d3r, (B.19)

Eint =
2πh̄2as

m
N2
∫

|ψ(r)|4 d3r. (B.20)

We can obtain the value of the chemical potential µ by taking the derivative of the
total energy with respect to N and subtracting the single-particle ground state energy:

µ =
1
N

(

Epot + Ekin + 2Eint
)

− h2

4mL2 − 1
2

h̄ωz. (B.21)

We can also be interested in calculating the modification of characteristic parameters
due to the interactions. For instance, the extent ∆z of the atomic sample along z is
modified compared to its ideal value ℓz/

√
2 and is given by:

∆z2 =
∫

|ψ(r)|2 z2d3r (B.22)

The 2D interaction parameters is similarly modified and calculated along:

g̃ = 4πasA
∫

|ψ(r)|4 d3r. (B.23)

so that the interaction energy per particle ǫint = Eint/N (Eq. B.20) writes

ǫint =
h̄2 g̃

2m
N/A = g(2D)n(2D)/2. (B.24)

Where g(2D) = h̄2 g̃/m is the 2D interaction parameter and n(2D) = N/A is the mean
2D density. Then we note that the contribution of Eint to µ is g(2D)n(2D). From g̃ value
we can deduced the modified healing length:

ς = 1/
√

g̃n(2D). (B.25)

Finally, we note also the in-plane extent of the cloud is slightly modified due to the
effects of the healing length, which is the characteristic length scale for the variations
of ϕ0 at the edges of the trap, and due to the corrections to uniformity in δV(r). These
extents are given by similar integrations as in Eq. B.22, replacing z → x, y or ρ.

For example, we performed a 3D Gross-Pitaevskii computation for a gas with a sur-

209



face density of n(2D) = 50 µm−2 and trapped in disk of R = 16.9 µm (corresponding to
the same area than a square of L = 30 µm). We found :

:textbfEnergies Values (/kB) Parameters Ideal values Modified values
Ekin/N 3.4 nK ∆z 397 nm 479 nm
Epot/N 6.66 nK g̃ 0.0455 0.0388
Eint/N 5.35 nK ς 663 nm 718 nm

µ 12.0 nK ∆ρ 11.968 µm 11.948 µm

Table B.1.: Results of a GP simulation for an atomic sample confined in a harmonic trap along
z of ωz/2π = 365 Hz and a uniform disk in-plane of R = 16.9 µm. The surface
density for the simulation is n(2D) = 50 µm−2. We compute the various energy
contributions and the resulting chemical potential. We also highlight the various
corrections to the characteristic cloud parameters.

B.2.3. Computing 2D and 3D Time-of-Flight evolutions of the wavefunction.

Using a real time evolution we can also compute the evolution of the macroscopic
wavefunction after some brutal changes in the trapping configuration. For example,
we can simulate an abrupt switching off of the box-trap potential U – this corresponds
to evolution of a highly degenerate gas in a 2D ToF – or an abrupt switching off of the
full potential V – this depicts evolution of T = 0 coherent gas in 3D ToF (see 2.1.3).

For these evolutions, we start from the previously computed ϕ0(r) ground-state wave-
function and perform further evolution in real time, taking into account the modified
potential in B.14 (or B.15). In this case, the normalization of the wavefunction is con-
served during the evolution and the size of the grid is imposed from the choice of the
ϕ0(r) computation. We use the same time steps as for the imaginary-time evolution
which is of 10−4 ms while typical ToF evolutions are from a few to a few tens of ms.

The evolution is performed for a given time t̂ in order to reproduced the wanted ex-
perimental measurements. In this evolution, the temperature T of the gas does not play
any role and the expansion is due to the conversion of the total energy of the ground
state into kinetic energy. Usually we are interested in the in-plane spatial density dis-
tribution n(x, y) after such a ToF evolution:

n(x, y) =
∫

|ψ(r)|2 dz. (B.26)
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C. Residual radial confinements for a decentered cloud
compared to the light-sheet beam focus

This appendix details the calculations of the shift in the residual anti–confinement
created by the light-sheet beam in the case where the cloud is not positioned at the
focus center of this beam. We remind that the light-sheet (LS) beam is designed to
create a tight confinement along the z-direction (see 2.2). A residual radial effect occurs
from the radial dependency of the zero-point energy of the z-motion. Calculations have
been carried out for a cloud confined in the center focus (x, y) = (0, 0) of the beam in
2.2.3.1. In this annex we will detail a further analysis of the resulting trapping around
the atomic sample center (xc, yc) differing from the beam center (0, 0).

C.1. Decentering along the LS-beam propagation direction x

We pointed out in 2.2.2 that positioning the atom sample out of the LS beam focus (at
xc 6= 0) is compulsory to achieve satisfying experimental conditions. There, we stated
that the focus of the beam must be displaced compared to the atom position by more
than a Rayleigh length xR. We will describe such a case by xc = αxR and in our optimal
experimental configuration, we have α = 1.28.

We can develop the radial potential h̄ωz(x, y)/2 (engendered by the freezing out of
the z motion) around x = xc instead of x = 0 (see 2.2.3.1) to deduce the shift in ωx

and ωy. We first keep y = 0 so that only ωx is modified and we set ωc
z = ωz(xc, 0) =

ωz(0, 0) (1 + α2)−3/4. Then the trapping potential along x is

h̄ωz

2
(x, 0) =

h̄ωc
z

2

(

1 − 3α

2(1 + α2)xR
(x − xc) +

3(5α2 − 2)
8(1 + α2)2x2

R

(x − xc)
2
)

. (C.1)

We see that :
— The main effect of Eq. C.1 is a potential gradient U = −U′

x (x − xc). We will
compensate it on the experiment in our alignment procedure (based on making
the 2D atomic density profile as much uniform as possible) by decentering the
position of the magnetic zero xmag from xc. We will estimate latter in this section
the displacement needed to exactly compensate this effect.

— The second order approximation leads to an important modification of the longi-
tudinal deconfining frequency along:

ωx∼xc =

√

3(5α2 − 2)
8(1 + α2)2

√

h̄ωc
z/m

xR
. (C.2)

The deconfinement effect is lowered when we go away from the focus. If we
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displace the atoms by |xc| ≥
√

2/5xR = 0.6xR, the resulting potential is in fact
confining.

In our case, we found :

ωx∼xc = 0.578

√

h̄ωz(x0, 0)/m

xR
= −i 0.196 ωy. (C.3)

Now we estimate the displacement xmag 6= 0 we need to impose to the magnetic zero
position for compensating the linear dependency of the potential in the atom position
x − xc. The magnetic potential of Eq. 2.8 centered on (xmag 6= xc, ymag) is:

Vmag(x, y) = µb′z

[

d2
z +

(x − xmag)2

4
+

(y − ymag)2

4

]1/2

. (C.4)

We want to approximate this potential around x = xc (we set ∆x = xmag − xc and
suppose yc = ymag = 0) :

Vmag(x, 0) = mgDz −
mg∆x

4Dz
(x − xc) +

mg

8Dz
(x − xc)

2 (C.5)

where Dz =
√

d2
z + ∆2

x/4. (C.6)

Then if we want that Vmag(x, 0) and h̄ωz(x, 0)/2 linear contributions cancel, we must
impose:

3h̄ωc
z

8x2
R

2αxR

(1 + α2)
= − mg

8Dz
2∆x (C.7)

∆x = −
(

ωx∼0(ωc
z)

ωmag

)2 α

1 + α2 xR (C.8)

where ωx∼0(ωc
z) is the deconfining angular frequency calculated according to Eq. 2.19

(as if the atoms where at the LS focus) but with a reduced frequency ωc
z calculated

along Eq. C.2 in x = xc (which is its value at the actual position of the atoms xc). As
this frequency is typically lower than the magnetic confinement frequency (see 2.4),
we find that we must move the zero of the magnetic field away from the cloud center
by 4% to 30% of the Rayleigh length xR for the highest frequencies used, and in the
opposite direction compared to the displacement of the cloud center from the LS focus.
We quantitatively find |∆x| ∈ [10, 40] µm. Then, we can still consider Dz ≈ dz and the
magnetic trapping frequency ωmag is not modified.

In conclusion, the defocusing of the light-sheet beam on the atoms creates:

— a potential gradient that can easily be compensated by a small decentering (com-
pared to the cloud center) of the magnetic zero in the direction of the beam prop-
agation and on a distance of some tens of micrometers.

— a deep change in the x-confinement due to the variation of the zero-point energy
in x but no change in the magnetic confinement along x as the displacement are
too small compared to the important vertical decentering of the magnetic zero in
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our configuration.

C.2. Decentering along the transverse and weakly direction, y

In general we do not want a decentering along x to occur but it can happen that
yc 6= 0 because of:

— a misalignment due to some flaws in the alignment procedure,
— a deliberate misalignment chosen to avoid the deep rugosities of the light-sheet

potential at some position y in the beam (see 2.2.3.2).
In both cases, such a decentering is definitely smaller than the one studied along x

axis, it is typically restricted to some percents (up to 20%) of the beam waist : yc = βwy

with β . 0.2.
As previously we approximate the radial potential h̄ωz(x, y)/2 around y = yc, first

keeping x = 0. We set ω
′c
z = ωz(0, yc) = ωz(0, 0)e−β2

. Then the potential along y writes

h̄ωz(0, y)

2
=

h̄ω
′c
z

2

(

1 − 2β

wy
(y − yc) +

2β2 − 1
w2

y

(y − yc)
2

)

. (C.9)

We see that :
— The first order effect is again a potential gradient U = −U′

y (y − yc). As pre-
viously, we will compensate it experimentally by decentering the position of the
zero of the magnetic field ymag from yc. Once again, we deduce it value by equal-
izing the magnetic slope mg

8Dz
2∆y with the one β h̄ω

′c
z /wy resulting from the LS

potential. This gives

∆y = −
(

ωy∼0(ω
′c
z )

ωmag

)2

βwy (C.10)

where ωy∼0(ω
′c
z ) is the deconfining angular frequency calculated according to

Eq. 2.19 (as if the atoms where at the LS focus) but with a reduced frequency ω
′c
z

corresponding to the one at the actual position of the atoms yc (see next item). ∆y

varies from 3 to 30 µm typically so that its amplitude is also negligible compared
to dz; hence the magnetic confinement is not affected.

— The second order effect leads to a modification of the y-deconfining frequency
along :

ωy∼yc =
√

2β2 − 1

√

h̄ω′c
z /m

wy
(C.11)

The multiplicative correction factor
√

2β2 − 1 changes the anti–confinement into
a confinement at β = 1/

√
2. As β . 0.2, the modification of ωy stays small and

the maximal absolute value of the correction factor is 0.96. We will then suppose
that this modification is negligible.

In conclusion, the miscentering of the light-sheet beam in the y-direction leads to
— a potential gradient that can easily be compensated as previously by a small de-

centering (compared to the cloud center) of the magnetic zero ymag on a distance
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of some µm.
— a negligible modification of both the trapping frequencies associated with the

zero-point energy and with magnetic gradient.

C.3. Decentering along both x and y directions

We should note that if the cloud is decentered in both x and y directions (xc =

αxR 6= 0, yc = βwy 6= 0), a coupling term proportional to (x − xc)(y − yc) appears.
We can define a corresponding coupling frequency by equalizing the coupling term to
1
2 mω2

xy(x − xc)(y − yc)

If we combine both development of the potential given in Eq. C.2 and Eq. C.11, we
find :

h̄ωz(x, y)

2
=

h̄ω
′′c
z

2

(

1 − 2β

wy
(y − yc) +

2β2 − 1
w2

y

(y − yc)
2

)

(C.12)

(

1 − 3α

2(1 + α2)xR
(x − xc) +

3(5α2 − 2)
8(1 + α2)2x2

R

(x − xc)
2
)

(C.13)

where ω
′′c
z = ωz(0, 0) (1 + α2)−3/4 e−β2

. Then the coupling frequency is

ωxy∼(xc ,yc) =

√

3αβ

1 + α2

√

h̄ω′′c
z /m√

xRwy
(C.14)

=

√

3αβ

1 + α2

√

wy

xR
ωy∼0(ω

′′c
z ) (C.15)

where ωy∼0(ω
′′c
z ) is the deconfining angular frequency calculated according to Eq. 2.19

(as if the atoms where at the LS focus) but with a reduced frequency ω
′′c
z correspond-

ing to the one at the actual position of the atoms (xc, yc). For now on, we suppose
that the cloud is always decentered along x with a typical α = 1.28. The coupling fre-
quency then depends on the square root of decentering along y direction

√

β (that can
be wanted or unwanted but remains small β . 0.2). Then,

|ωxy∼(xc ,yc)| . 0.31 ωy∼0(ω
′′c
z ) (C.16)

Such an oscillation remains small compared to the anti–confinement in y-direction ωy∼yc ≈
ωy∼0(ω

′′c
z ) but is of the same order than the confinement along x. From this coupling

term, we can infer a new oscillation axis for which the oscillations are decoupled. Such
axes X and Y are defined by the angle θ they make with the original axis from the
experiment x and y:

X = (x − xc) cos θ + (y − yc) sin θ (C.17)

Y = −(x − xc) sin θ + (y − yc) cos θ (C.18)

and
h̄ωz(x, y)

2
=

h̄ω
′′c
z

2
+ U′

XX + U′
YY +

m

2

(

Ω2
XX2 + Ω2

YY2) (C.19)
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By developing the quadratic term we find :

tan 2θ =
ω2

xy

ω2
y − ω2

x

(C.20)

=
−αβ

[

(1−2β2)(1+α2)
3

xR
wy

+ (5α2−2)
8(1+α2)

wy

xR

] (C.21)

As both the collinear and coupling frequencies are small compared to the transverse
one : ω2

x, ω2
xy ≪ ω2

y, the axis of decoupling is nearly the same than the experimental
one. We found θ = −0.05. The resulting frequencies are also approximately equal to
the x, y ones:

ΩX = i0.201ωy∼0(ω
′′c
z ) = 1.027ωx∼xc (C.22)

ΩY = 0.955ωy∼0(ω
′′c
z ) = 0.996ωy∼yc (C.23)

In conclusion, the coupling between the collinear (x) and transverse (y) axes to the
propagation of the light-sheet beam can always be neglected.
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D. Conventional imaging of an atomic ensemble, limitations
due to bi–dimensionality

The following annex was initially published in [136], and is reproduced without modifications

except for introducing remarks and words within brackets

In this annex we present a theoretical analysis of the absorption imaging technique
used to determine the atomic density n(r) of a 2D cloud. Previous experimental works
of our group [139] shown that the absorption imaging in the low intensity regime (I ≪
Isat) interpreted along Beer Lambert law (Eq. D.1) leads to underestimating n in the
dense regions of a 2D gases (i.e. n ≫ σ−1 where σ stands for the photon scattering
cross-section). In order to understand this phenomenon and be able to use absorption
imaging to investigate the physical properties of our gases, we developed a theoretical
model for this effect. In this annex, we first present our modeling of the atom-light
interaction, using both the two-level (with a J = 0 ground state and a J = 1 excited
state) and the rotating wave approximations. Then we explain the principle of the
calculation for the absorption of a weak probe beam crossing the atom slab, we only
consider a single-photon interacting with a (dense) atom assembly (thus neglecting any
collective effects between photons and/or multiplication of excited atoms). Finally we
present our numerical results in which we observed an effective reduction of the optical
density (OD) compared to Beer Lambert prediction in the case of high densities.

D.1. Theoretical analysis of the multiple scattering effect

To access the atomic density n(r), one usually relies on the interaction of the atoms
with quasi-resonant laser light. The most common method is absorption imaging,
in which the shadow imprinted by the cloud on a low intensity probe beam is im-
aged on a camera. The simplest modelling of absorption imaging is based on a mean-
field approach, in which one assumes that the local value of the electric field driving
an atomic dipole at a given location depends only on the average density of scatter-
ers. One can then relate the attenuation of the laser beam to the column atomic den-
sity n(col)(x, y) =

∫

n(r) dz along the line-of-sight z. The optical density of the cloud
D(x, y) ≡ ln[Iin(x, y)/Iout(x, y)] is given by the Beer–Lambert law

DBL(x, y) = σ n(col)(x, y), (D.1)

where σ is the photon scattering cross-section, and Iin (resp. Iout) are the incoming (resp.
outgoing) intensity of the probe laser in the plane xy perpendicular to the propagation
axis. For a closed two-level atomic transition of frequency ω0 = ck0, σ depends on the
wavelength λ0 = 2π/k0 associated to this transition and on the detuning ∆ = ω − ω0
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between the probe light frequency ω and the atomic frequency:

σ =
σ0

1 + δ2 , σ0 =
3λ2

0

2π
, δ =

2∆

Γ
. (D.2)

Here Γ represents the natural line width of the transition (i.e., Γ−1 is the natural life
time of the excited state of the transition). Eq. D.2 assumes that the intensity of the
probe beam is much lower than the saturation intensity of the atomic transition. Quasi-
resonant absorption imaging is widely used to measure the spatial distribution of atomic
gases after a long time-of-flight, when the density has dropped sufficiently so that the
mean-field approximation leading to Eq. D.1 is valid.

One can also use absorption imaging to probe in situ samples, at least in the case
where σ n(col) is not very large so that the output intensity is not vanishingly small.
This is in particular the case for low dimensional gases. Consider for example a 2D
gas, such that the translational degree of freedom along z has been frozen. For a probe
beam propagating along this axis, one can transpose the Beer–Lambert law of Eq. D.1
by simply replacing the column density by the surface density n(2D) of the gas. This 2D
Beer–Lambert law can be heuristically justified by treating each atom as a disk of area σ

that blocks every photon incident on it. In an area A ≫ σ containing N = An(2D) ≫ 1
randomly placed atoms, the probability that a photon is not blocked by any of the disks
is (1 − σ/A)N ≈ exp(−σn(2D)).

In a quasi-2D gas there is however an important limitation on the optical densities
to which one may apply the Beer-Lambert prediction of Eq.D.1. Already for σ0n(2D) =

1 the mean interparticle distance is only 0.7 λ0 and one may expect that the optical
response of an atom strongly depends on the precise location of its neighbours. More
precisely the exchange of photons between closely spaced atoms induces a resonant
van der Waals interaction that significantly shifts the atomic resonance frequency with
respect to its bare value ω0. The optical density of the gas at resonance may then be
reduced with respect to Eq. D.1, and this was indeed observed in a series of experiments
performed with a degenerate 87Rb gas [70, 139].

The general subject of the propagation of a light wave in a dense atomic sample,
where multiple scattering plays an essential role, has been the subject of numerous ex-
perimental and theoretical works (see e.g. [220, 221] in the context of cold atoms, and
[222] for a review). Here we present a quantitative treatment of the collective effects that
appear when a weak probe beam interacts with a quasi-2D atomic gas. We consider an
ensemble of N atoms at rest with random positions and we investigate the transmission
of quasi-resonant light by the atom sheet. We model the resonance transition between
the atomic ground (g) and excited (e) states by a Jg = 0 ↔ Je = 1 transition. We present
two equivalent approaches; the first one is based on the calculation of the field radiated
by an assembly of N dipoles, where each dipole is driven by an external field plus the
field radiated by the N − 1 other dipoles; the second one uses the standard T matrix
formalism of scattering theory. We show that in both cases the optical density of the
medium can be determined by solving the same 3N × 3N linear system. A similar for-
malism has been previously used for the study of light propagation in small 3D atomic
samples, in the presence of multiple scattering (see e.g. [223–230]). However its appli-
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cation to quasi-2D samples has (to our knowledge) not yet been investigated, except
in the context of Anderson localisation of light [224]. Our numerical calculations are
performed for N = 2048 atoms, which is sufficient to reach the ‘thermodynamic limit’
for the range of parameters that is relevant for experiments. We show in particular
that even for moderate values of σ0n(col), the optical density is notably reduced com-
pared to what is expected from the Beer-Lambert law (e.g., more than 20 % reduction for
σ0n(col) = 1). We investigate how the absorption line shape is modified by the resonant
van der Waals interactions and we also show how the result Eq. D.1 is recovered when
one increases the thickness of the gas, for a given column density n(col). Note that our
simulations are performed with a much smaller atom number than in real experiments
(N is up to 105 in [70, 139]). However we expect our results to be relevant for addressing
experimental realisations, since the light attenuation can be treated in the local density
approximation. Indeed in the ‘thermodynamic limit’ mentioned above, the optical den-
sity D at a point (x, y) depends only on the spatial density n(x, y, z) along the line of
sight, and not on the overall density distribution n(x′, y′, z′) in the sample.

D.2. Modelling the atom-light interaction

D.2.1. The electromagnetic field

We use the standard description of the quantised electromagnetic field in the Coulomb
gauge [231], and choose periodic boundary conditions in the cubic-shaped quantisation
volume V = LxLyLz. We denote aq,s the destruction operator of a photon with wave
vector q and polarisation s (s⊥q). The Hamiltonian of the quantised field is

HF = ∑
q,s

h̄cq a†
q,saq,s , (D.3)

and the transverse electric field operator reads E(r) = E(+)(r) + E(−)(r) with

E(+)(r) = i ∑
q,s

√

h̄cq

2ε0V
aq,s eiq·r s , (D.4)

and E(−)(r) =
(

E(+)(r)
)†

. The wave vectors q are quantised in the volume V as qi =

2πni/Li, i = x, y, z, where ni is a positive or negative integer.

D.2.2. The atomic medium

We consider a collection of N identical atoms at rest in positions r j, j = 1, . . . N. We
model the atomic resonance transition by a two-level system with a ground state |g〉
with angular momentum Jg = 0 and an excited level of angular momentum Je = 1. We
choose as a basis set for the excited manifold the three Zeeman sublevels |eα〉, α = x, y, z,
where |eα〉 is the eigenstate with eigenvalue 0 of the component Jα of the atomic angular
momentum operator. We denote h̄ω0 the energy difference between e and g. The atomic
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Hamiltonian is thus (up to a constant)

HA =
N

∑
j=1

∑
α=x,y,z

h̄ω0 |j : eα〉〈j : eα|. (D.5)

The restriction to a two-level approximation is legitimate if the detuning ∆ between
the probe and the atomic frequencies is much smaller than ω0. The modelling of this
transition by a Jg = 0 ↔ Je = 1 transition leads to a relatively simple algebra. The
transitions that are used for absorption imaging in real experiments often involve more
Zeeman states (Jg = 2 ↔ Je = 3 for Rb atoms in [70, 139]), but are more complex
to handle [232, 233] and they are thus out of the scope of this [work]. However we
believe that the most salient features of multiple scattering and resonant van der Waals
interactions are captured by our simple level scheme.

D.2.3. The atom-light coupling

We treat the atom-light interaction using the electric dipole approximation (length
gauge), which is legitimate since the resonance wavelength of the atoms λ0 is much
larger than the atomic size. We write the atom-light coupling as:

V = −∑
j

Dj · E(r j), (D.6)

where Dj is the dipole operator for the atom j. We will use the rotating wave approxi-
mation (RWA), which consists in keeping only the resonant terms in the coupling:

V ≈ −∑
j

D
(+)
j · E(+)(r j) + h.c. , (D.7)

where h.c. stands for Hermitian conjugate. Here D
(+)
j represents the raising part of the

dipole operator for atom j:

D
(+)
j = d ∑

α=x,y,z
|j : eα〉〈j : g| ûα , (D.8)

where d is the electric dipole associated to the g − e transition and ûα is a unit vector in
the direction α.

When a single atom is coupled to the electromagnetic field, this coupling results in
the modification of the resonance frequency (Lamb shift) and in the fact that the excited
state e acquires a non-zero width Γ

Γ =
d2ω3

0

3πε0h̄c3 . (D.9)

For simplicity we will incorporate the Lamb shift in the definition of ω0. Note that the
proper calculation for this shift requires that one goes beyond the two-level and the
rotating wave approximations. The linewidth Γ on the other hand can be calculated
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from the above expressions for V using the Fermi golden rule.
The RWA provides a very significant simplification of the treatment of the atom-light

coupling, in the sense that the total number of excitations is a conserved quantity. The
annihilation (resp. creation) of a photon is always associated with the transition of
one of the N atoms from g to e (resp. from e to g). This would not be the case if the
non-resonant terms of the electric dipole coupling D

(+)
i · E(−) and D

(−)
i · E(+) were also

taken into account. For a single atom, the small parameter associated to the RWA is
∆/ω0, which is in practice in the range 10−6 − 10−9. For a collection of atoms, the RWA
is still an excellent approximation if the shifts introduced by resonant van der Waals
interactions are small compared to atomic frequencies. In practice this requires that the
interatomic distances remain very large compared to the atom size (Bohr radius).

Formally the use of the electric dipole interaction implies to add to the Hamiltonian
an additional contact term between the dipoles (see e.g. [223, 234]). This term will play
no role in our numerical simulations because we will surround the position of each
atom by a small excluded volume, which mimics the short range repulsive interaction
between atoms. We checked that the results of our numerical calculations (see Sec.
D.4) do not depend on the size of the excluded volume, and we can safely omit the
additional contact term in the present work.

D.3. Interaction of a probe laser beam with a dense quasi-2D atomic
sample

We present in this section the general formalism that allows one to calculate the ab-
sorption of a quasi-resonant laser beam by a slab of N atoms. We address this question
using two different approaches. The first one maps the problem onto the collective be-
haviour of an assembly of N oscillating dipoles [223]. The equation of motion for each
dipole is obtained using the Heisenberg picture for the Hamiltonian presented in sec-
tion D.2. It contains two driving terms, one from the incident probe field and one from
the field radiated by all the other dipoles at the location of the dipole under study. The
steady-state of this assembly of dipoles is obtained by solving a set of 3N linear equa-
tions. The second approach uses the standard quantum scattering theory [235], which
is well suited for perturbative calculations and partial resummations of diagrams. We
suppose that one photon is incident on the atomic medium and we use resummation
techniques to take into account the multiple scattering events that can occur before
the photon emerges from the medium. The relevant quantity in this approach is the
probability amplitude Tii that the outgoing photon is detected in the same mode as the
incident one [225, 228], and we show that Tii is obtained from the same set of equations
as the values of the dipoles in the first approach.

D.3.1. Wave propagation in an assembly of driven dipoles.

In this section we assume that the incident field is prepared in a coherent state cor-
responding to a monochromatic plane wave EL ǫ ei(kz−ωt). We choose the polarization
ǫ to be linear and parallel to the x axis (ǫ = ûx). Since we consider a Jg = 0 ↔ Je = 1
transition, this choice does not play a significant role and we checked that we recover
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essentially the same results with a circular polarisation. Note that the situation would
be different for an atomic transition with larger Jg and Je since optical pumping pro-
cesses would then depend crucially on the polarisation of the probe laser.

The amplitude EL is supposed to be small enough that the steady-state populations
of the excited states ej,α are small compared to unity. This ensures that the response of
each atomic dipole is linear in EL; this approximation is valid when the Rabi frequency
dEL/h̄ is small compared to the natural width Γ or the detuning ∆.

Using the atom-light coupling of Eq. D.6, the equations of motion for the annihilation
operators aq,s in the Heisenberg picture read:

ȧq,s(t) = −i cq aq,s(t) +

√

cq

2h̄ε0V ∑
j′

s∗ · Dj′(t) e−iq·r j′ . (D.10)

This equation can be integrated between the initial time t0 and the time t, and the result
can be injected in the expression for the transverse field to provide its value at any point
r:

Eα(r, t) = Efree,α(r, t) + ∑
j′ ,α′

∑
q,s

∫ t−t0

0
dτ

cq

2ε0V
[

iDj′ ,α′(t − τ) eiq·(r−r j′ )−icqτ sαs∗α′ + h.c.
]

, (D.11)

where Efree stands for the value obtained in the absence of atoms. We now take the
quantum average of this set of equations. In the steady-state regime the expectation
value of the dipole operator Dj(t) can be written dje

−iωt + c.c., and the average of
Efree(r, t) is the incident field EL ǫ ei(kz−ωt) + c.c. . We denote the average value of the
transverse field operator in r as 〈E(r, t)〉 = Ē(r) e−iωt + c.c., and we obtain after some
algebra (see e.g. [223, 236])

Ēα(r) = EL ǫα eikz +
k3

6πε0
∑
j′ ,α′

gα,α′(uj′) dj′ ,α′ , (D.12)

where we set uj = k(r − r j) (with k ≈ k0),

gα,α′(u) = δα,α′h1(u) +
uαuα′

u2 h2(u), (D.13)

and

h1(u) =
3
2

eiu

u3 (u
2 + iu − 1), h2(u) =

3
2

eiu

u3 (−u2 − 3iu + 3). (D.14)

The function gα,α′(kr) is identical to the one appearing in classical electrodynamics
[237], when calculating the field radiated in r by a dipole located at the origin.

We proceed similarly for the equations of motion for the dipole operators D
(−)
j and

take their average value in steady-state. The result can be put in the form [223]

(δ + i)dj,α + ∑
j′ 6=j, α′

gα,α′(ujj′)dj′ ,α′ = −6πε0

k3 EL ǫα eikzj , (D.15)
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where the reduced detunig δ = 2∆/Γ has been defined in Eq. D.2 and uj,j′ = k(r j′ − r j).
This can be written with matrix notation

[M]|X〉 = |Y〉 (D.16)

where the 3N vectors |X〉 and |Y〉 are defined by

Xj,α = − k3

6πǫ0EL
dj,α, Yj,α = ǫαeikzj , (D.17)

and where the complex symmetric matrix [M] has its diagonal coefficients equal to δ+ i

and its off-diagonal coefficients (for j 6= j′) given by gα,α′(ujj′). This matrix belongs to
the general class of Euclidean matrices [238], for which the (i, j) element can be written
as a function F(ri, r j) of points ri in the Euclidean space. The spectral properties of these
matrices for a random distribution of the ri’s (as it will be the case in this work, see Sec.
D.4) have been studied in [238–241].

Eq. D.15 has a simple physical interpretation: in steady-state each dipole dj is driven
by the sum of the incident field EL and the field radiated by all the other dipoles. This
set of 3N equations was first introduced by L. L. Foldy in [242] who named it, together
with Eq. D.12, “the fundamental equations of multiple scattering". Indeed for a given
incident field, the solution of Eq. D.16 provides the value of each dipole dj, which can
then be injected in Eq. D.12 to obtain the value of the total field at any point in space.

D.3.2. Absorption signal

From the expression of the average value of the dipoles we now extract the absorp-
tion coefficient of the probe beam and the optical density of the gas. We suppose that
the N atoms are uniformly spread in a cylinder of radius R along the z axis and located
between z = −ℓz/2 and z = ℓz/2. We can consider two experimental setups to ad-
dress this problem. The first one, represented in Fig. D.1a, consists in measuring after
the atomic sample the total light intensity with the same momentum k = kûz as the
incident probe beam. This can be achieved by placing a lens with the same size as the
atomic sample, in the plane z = ℓ′ > ℓz/2 just after the sample. The light field at the fo-
cal point of the lens F gives the desired attenuation coefficient. We refer to this method
as ‘global’, since the field E(F) provides information over the whole atomic cloud. One
can also use the setup sketched in Fig. D.1b, which forms an image of the atom slab on a
camera and provides a ‘local’ measurement of the absorption coefficient. In real exper-
iments local measurements are often favored because trapped atomic sample are non
homogeneous and it is desirable to access the spatial distribution of the particles. How-
ever for our geometry with a uniform density of scatterers, spatial information on the
absorption of the probe beam is not relevant. Therefore we only present the formalism
for global measurements, which is simpler to derive and leads to slightly more general
expressions. We checked numerically that we obtained very similar results when we
modelled the local procedure.

We assume that the lens in Fig. D.1a operates in the paraxial regime, i.e., its focal
length f is much larger than its radius R. We relate the field at the image focal point of
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Figure D.1.: Two possible setups for measuring the absorption of an incident probe beam by a
slab of atoms using a lens of focal f . a) Global probe. b) Local probe.

the lens to the field in the plane z = ℓ′ just before the lens:

E(F) = − ieik f

λ0 f

∫

L
E(x, y, ℓ′) dx dy, (D.18)

where the integral runs over the lens area. Since the incident probe beam is supposed to
be linearly polarised along x, we calculate the x component of the field in F. Plugging
the value of the field given in Eqs. D.12-D.17 we obtain the transmission coefficient

T ≡ Ex(F)|with atoms

Ex(F)|no atom
= 1 − e−ikℓ′

πR2 ∑
j,α

Xj,α

∫

L
gx,α[k(r − r j)] dx dy . (D.19)

This result can be simplified in the limit of a large lens by using an approximated value
for the integral appearing in Eq. D.19. We suppose that kℓ′ ≫ 1 so that the dominant
part in gx,α is the eiu/u contribution to h1. More precisely the domain in the lens plane

contributing to the integral for the dipole j is essentially a disk of radius
√

λ(ℓ′ − zj) ∼√
λℓ′ centered on (xj, yj). When this small disk is entirely included in the lens aperture,

i.e., the larger disk of radius R centered on x = y = 0, we obtain

∫

L
gx,α[k(r − r j)] dx dy ≈ 3iπ

k2 δx,αeik(ℓ′−zj) . (D.20)

We use the result Eq. D.20 for all atoms, which amounts to neglect edge effects for the
dipoles located at the border of the lens, and we obtain:

T = 1 − i

2
σ0n(col)Π, (D.21)

with n(col) = N/πR2 and where the coefficient Π is defined by

Π =
1
N ∑

j

Xj,xe−ikzj . (D.22)

This coefficient captures the whole physics of multiple scattering and resonant van der
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Waals interactions among the N atoms. Indeed one takes into account all possible cou-
plings between the dipoles when solving the 3N × 3N system [M]|X〉 = |Y〉. Once T
is known the optical density is obtained from

D ≡ ln |T |−2 . (D.23)

As an example, consider the limit of a very sparse sample where multiple scattering
does not play a significant role (σ0n(col) ≪ 1). All non-diagonal matrix elements in [M]

are then negligible and [M] is simply the identity matrix, times i + δ. Each Xj,x solution
of the system of Eq. D.16 is equal to eikzj /(i + δ), and we obtain as expected:

σ0n(col) ≪ 1 : T ≈ 1 − 1
2(1 − iδ)

σ0n(col) , D ≈ σ0n(col)

1 + δ2 . (D.24)

D.3.3. Light absorption as a quantum scattering process

In order to study the attenuation of a weak probe beam propagating along the z axis
when it crosses the atomic medium, we can also use quantum scattering theory. The
Hamiltonian of the problem is

H = H0 + V , H0 = HA + HF, (D.25)

and we consider the initial state where all atoms are in their ground state and where a
single photon of wave vector k = kûz and polarisation ǫ = ûx is incident on the atomic
medium

|Ψi〉 = |G〉 ⊗ |k, ǫ〉, (D.26)

with |G〉 ≡ |1 : g, 2 : g, . . . , N : g〉. The state |Ψi〉 is an eigenstate of H0 with energy
h̄ω. The interaction of the photon with the atomic medium, described by the coupling
V, can be viewed as a collision process during which an arbitrary number of elemen-
tary scattering events can take place. Each event starts from a state |G〉 ⊗ |q, s〉 and
corresponds to:

(i) The absorption of the photon in mode q, s by atom j, which jumps from its ground
state |j : g〉 to one of its excited states |j : eα〉. The state of the system is then

|Ej,α〉 = |1 : g, . . . , j : eα, . . . , N : g〉 ⊗ |vac〉, (D.27)

where |vac〉 stands for the vacuum state of the electromagnetic field. The sub-
space spanned by the states |Ej,α〉 has dimension 3N.

(ii) The emission of a photon in the mode (q′, s′) by atom j, which falls back into its
ground state.

Finally a photon emerges from the atomic sample, and we want to determine the prob-
ability amplitude to find this photon in the same mode |k, ǫ〉 as the initial one.

The T matrix defined as

T(E) = V + V
1

E − H + i0+
V , (D.28)
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where 0+ is a small positive number that tends to zero at the end of the calculation,
provides a convenient tool to calculate this probability amplitude. Generally

Ti f = 〈Ψ f |T(Ei)|Ψi〉 (D.29)

gives the probability amplitude to find the system in the final state |Ψ f 〉 after the scatter-
ing process. The states |Ψi〉 and |Ψ f 〉 are eigenstates of the unperturbed Hamiltonian
H0, with energy Ei. Here we are interested in the element Tii of the T matrix, corre-
sponding to the choice |Ψ f 〉 = |Ψi〉. Using the definition of Eq.D.28 we find

Tii =
h̄ωLd2

2ε0V ∑
j,j′

eik(zj−z′j) 〈Ej′ ,x|
1

h̄ωL − H + i0+
|Ej,x〉. (D.30)

We now have to calculate the (3N)× (3N) matrix elements of the operator 1/(z− H),
with z = h̄ωL + i0+, entering into Eq. D.30. We introduce the two orthogonal projectors
P and Q, where P projects on the subspace with zero photon, and Q projects on the
orthogonal subspace. We thus have

P|Ej,α〉 = |Ej,α〉 P|G〉 ⊗ |k, ǫ〉 = 0, (D.31)

Q|Ej,α〉 = 0 Q|G〉 ⊗ |k, ǫ〉 = |G〉 ⊗ |k, ǫ〉. (D.32)

We define the displacement operator

R(z) = V + V
Q

z − QH0Q − QVQ
V (D.33)

and use the general result [231]

P
1

z − H
P =

P

z − Heff
, (D.34)

where the effective Hamiltonian Heff is

Heff = P (H0 + R(z)) P. (D.35)

For the following calculations, it is convenient to introduce the dimensionless matrix
[M] proportional to the denominator of the right hand side of Eq. D.34:

[M](j′ ,α′),(j,α) =
2

h̄Γ
〈Ej′ ,α′ |z − Heff|Ej,α〉. (D.36)

226



It is straightforward to check 1 that for z → h̄ω this matrix coincides with the symmetric
matrix appearing in Eq. D.16. Indeed the matrix elements of R(z) are

〈Ej′ ,α′ |R(z)|Ej,α〉 =
h̄d2

2ε0V ∑
q,s

cq s∗αsα′
eiq·(r j′−r j)

z − h̄ω
, (D.37)

which can be calculated explicitly. For j = j′, the real part of this expression is the Lamb
shift that we reincorporate in the definition of ω0, and its imaginary part reads:

〈Ej,α′ |R(z)|Ej,α〉 = −i
h̄Γ

2
δα,α′ . (D.38)

For j 6= j′, the sum over (q, s) appearing in Eq.D.37 is the propagator of a photon
from an atom in r j in internal state |eα〉, to another atom in r j′ in internal state |eα′〉.
This is nothing but (up to a multiplicative coefficient) the expression that we already
introduced for the field radiated in r j′ by a dipole located in r j:

〈Ej′ ,α′ |R(z)|Ej,α〉 = − h̄Γ

2
gα,α′(uj,j′), (D.39)

where the tensor gα,α′ is defined in Eqs. D.13-D.14.
Suppose now that the atoms are uniformly distributed over the transverse area LxLy

of the quantisation volume. We set n(col) = N/(LxLy) and we rewrite the expression of
Eq.D.30 of the desired matrix element Tii as

TiiLz

h̄c
=

1
2N

σ0n(col) ∑
j,j′

eik(zj−zj′ ) [M−1](j,x),(j′ ,x) =
1
2

σ0n(col)Π , (D.40)

where the coefficient Π has been defined in Eq.D.22. The result Eq.D.40 combined with
Eq. D.21 leads to

T = 1 − i
TiiLz

h̄c
, (D.41)

which constitutes the ‘optical theorem’ for our slab geometry, since it relates the atten-
uation of the probe beam T to the forward scattering amplitude Tii.

The emergence of resonant van der Waals interactions is straightforward in this ap-
proach. Let us consider for simplicity the case where only N = 2 atoms are present.
The effective Hamiltonian Heff is a 6 × 6 matrix that can be easily diagonalized and its
eigenvectors, with one atom in |e〉 and one in |g〉, form in this particular case an orthog-
onal basis, although Heff is non-Hermitian [243, 244]. For a short distance r between the
atoms (kr ≪ 1), the leading term in h1(u) and h2(u) is u−3 and the energies (real parts
of the eigenvalues) of the six eigenstates vary as ∼ ±h̄Γ/(kr)3 (resonant dipole-dipole
interaction). The imaginary parts of the eigenvalues, which give the inverse of the ra-
diative lifetime of the states, tend either to Γ or 0 when r → 0, which correspond to the
superradiant and subradiant states for a pair of atoms, respectively [245].

1. As for the derivation leading from Eq. D.10 to Eq. D.12, one must take into account the non-resonant
terms that are usually dropped in the RWA, in order to ensure the proper convergence of the sum of
Eq.D.37 and obtain the tensor gαα′ .

227



For N > 2 the eigenvectors of the non-Hermitian Euclidean matrix Heff are in general
non orthogonal, which complicates the use of standard techniques of spectral theory in
this context [240, 241]. More precisely, one could think of solving the linear system
of Eq.D.16, or equivalently calculating Tii in Eq. D.30, by using the expansion of the
column vector |Y〉 defined in Eq. D.17 on the left (|αj〉) and right (〈β j|) eigenvectors
of Heff. Then one could inject this expansion in the general expression of the matrix
element Tii, to express it as a sum of the contributions of the various eigenvalues of
Heff. However the physical discussion based on this approach is made difficult by the
fact that since Heff is non-Hermitian, the {|αj〉} and the {|β j〉} bases do not coincide.
Hence the weight 〈β j|Y〉〈Y|αj〉 of a given eigenvalue in the sum providing the value of
Tii is not a positive number, and this complicates the interpretation of the result.

As a final comment we note that our approach does not make use of the quite com-
mon concept of self-energy. In the context of the propagation of waves in a random
medium [222], the self-energy Σ appears by averaging the relation G = G0 + G0VG

over disorder , where G = 1/(z − H) and G0 = 1/(z − H0). The average G̃ of G then
satisfies G̃ = G0 + G0ΣG̃, where Σ is an infinite sum of irreducible diagrams. Here we
choose a different but equivalent route, which consists in solving exactly the scattering
problem for N atoms and 1 photon for a given realisation of the disorder, i.e., a given
draw {r j} of the positions of the atoms, obtain the attenuation T of the sample, and
subsequently average this result over several realisations of the disorder (see § D.4).

D.3.4. Beyond the sparse sample case: 3D vs. 2D

For a sparse sample, we already calculated the optical density at first order in den-
sity (Eq. D.24) and the result is identical for a strictly 2D gas and a thick one. The
approach based on quantum scattering theory is well suited to go beyond this first or-
der approximation and look for differences between the 2D and 3D cases. The basis of
the calculation is the series expansion of Eq. D.34, which gives

P
1

z − H
P =

P

z − H0
+

∞

∑
n=1

P

z − H0

(

PR(z)P
1

z − H0

)n

. (D.42)

Consider the case of a resonant probe δ = 0 for simplicity. The result T ≈ 1− σ0n(col)/2
obtained for a sparse sample in Eq. D.24 corresponds to the first term [P/(z − H0)] of
this expansion. Here we investigate the next order term and explain why one can still
recover the Beer-Lambert law for a thick (3D) gas, but not for a 2D sample.

Double scattering diagrams for a thick sample (kℓz ≫ 1). We start our study by
adding the first term (n = 1) in the expansion of Eq.D.42 to the zero-th order term
already taken into account in Eq. D.24. This amounts to take into account the diagrams
where the incident photon is scattered on a single atom, and those where the photon
‘bounces’ on two atoms before leaving the atomic sample. Injecting the first two terms
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of the expansion of Eq.D.42 into Eq. D.40, we obtain

TiiLz

h̄c
=

1
2

σ0n(col)

[

−i +
1
N ∑

j
∑
j′ 6=j

eik(zj−zj′ )gxx(ujj′)

]

. (D.43)

We now have to average this result on the positions of the atoms j and j′. There are
N(N − 1) ≈ N2 couples (j, j′). Assuming that the gas is dilute so that the average
distance between two atoms (in particular |zj − zj′ |) is much larger than k−1, the leading
term in gxx is the eiu/u contribution of h1(u) in Eqs. (D.13)-(D.14). We thus arrive at

TiiLz

h̄c
=

1
2

σ0n(col)

[

−i +
3N

2k
〈eik(z−z′) eik|r−r′|

|r − r′| 〉
]

, (D.44)

where the average is taken over the positions r and r′ of two atoms. We first calculate
the average over the xy coordinates and we get (cf. Eq. (D.20))

TiiLz

h̄c
=

1
2

σ0n(col)
[

−i +
i

2
σ0n(col)〈eik(z−z′)eik|z−z′|〉

]

. (D.45)

For a thick gas (kℓz ≫ 1) the bracket in this expression has an average value of ≈ 1/2.
Indeed the function to be averaged is equal to 1 if z < z′, which occurs in half of the
cases, and it oscillates and averages to zero in the other half of the cases, where z > z′.
We thus obtain the approximate value of the transmission coefficient:

kℓz ≫ 1 : T = 1 − i
TiiLz

h̄c
≈ 1 − 1

2
σ0n(col) +

1
8

(

σ0n(col)
)2

, (D.46)

where we recognize the first three terms of the power series expansion of T = exp(−σ0n(col)/2),
corresponding to the optical density D = σ0n(col).

Double scattering diagrams for a 2D gas (ℓz = 0). When all atoms are sitting in the
same plane, the evaluation of the second order term (and the subsequent ones) in the
expansion of Tii in powers of the density is modified with respect to the 3D case. The
calculation starts as above and the second term in the bracket of Eq. (D.43) can now be
written

1
N ∑

j
∑
j′ 6=j

gxx(ujj′) = n(2D)
∫

gxx(u) d2u . (D.47)

If we keep only the terms varying as eiu/u in h1 and h2 (Eq. (D.14)), we can calculate
analytically the integral in (D.47) and find the same result as in 3D, i.e., iσ0n(2D)/4. If
this was the only contribution to (D.47), it would lead to the Beer–Lambert law also in
2D, at least at second order in density. However one can check that a significant con-
tribution to the integral in (D.47) comes from the region u = kr < 1. In this region, it
is not legitimate to keep only the term in eikr/kr in h1, h2, since the terms in eikr/(kr)3,
corresponding to the short range resonant van der Waals interaction, are actually dom-
inant. Therefore the expansion of the transmission coefficient T in powers of the den-
sity differs from (D.46), and one cannot recover the Beer–Lambert law at second order

229



in density. Calculating analytically corrections to this law could be done following the
procedure of [223]. Here we will use a numerical method to determine the deviation
with respect to the Beer–Lambert law (see section D.4.2).

Remark. For a 3D gas there are also corrections to the second term in Eq. (D.45) due
the 1/r3 contributions to h1 and h2. However these corrections have a different scaling
with the density and can be made negligible. More precisely their order of magnitude is
∼ n(3D)k−3, to be compared with the value ∼ n(col)k−2 of the second term in Eq. (D.45).
Therefore one can have simultaneously n(3D)k−3 ≪ 1 and n(col)k−2 & 1, if the thickness
ℓz of the gas along z is ≫ 1/k.

D.4. Absorption of light by a slab of atoms

In order to study quantitatively the optical response of a quasi-2D gas, we have per-
formed a Monte Carlo calculation of the transmission factor T given in Eq. (D.21), and
of the related optical density D = ln |T |−2. We start our calculation by randomly draw-
ing the positions of the N atoms, we then solve numerically the 3N × 3N linear system
(D.16), and finally inject the result for the N dipoles in the expression of T .

The atoms are uniformly distributed in a cylinder of axis z, with a radius R and a
thickness ℓz. The largest spatial densities considered in this work correspond to a mean
inter-particle distance ≈ k−1. Around each atom we choose a small excluded volume
with a linear size a = 0.01 k−1. We varied a by a factor 10 around this value and checked
that our results were essentially unchanged. Apart from this excluded volume we do
not include any correlation between the positions of the atoms. This choice is justified
physically by the fact that, in the case of large phase space densities which motivates
our study, the density fluctuations in a 2D Bose gas are strongly reduced and the two-
body correlation function g2(r, r′) is such that g2(r, r) ≈ 1 [124].

In this section we first determine the value of N that is needed to reach the ‘thermody-
namic limit’ for our problem: for a given thickness ℓz, D should not be an independent
function of the number of atoms N and the disk radius R, but should depend only of
the ratio N/πR2 = n(col). We will see that this imposes to use relatively large number of
atoms, typically N > 1000, for the largest spatial densities considered here. All subse-
quent calculations are performed with N = 2048. We then study the dependence of D
with the various parameters of the problem: the column density n(col), the thickness of
the gas ℓz, and the detuning ∆. In particular we show that for a given n(col) we recover
the 3D result of Eq. D.1 when the thickness ℓz is chosen sufficiently large.

D.4.1. Reaching the ‘thermodynamic limit’

We start our study by testing the minimal atom number that is necessary to obtain a
faithful estimate of the optical density. We choose a given value of n(col) = N/πR2 and
we investigate how D depends on N either for a strictly 2D gas (ℓz = 0) or for a gas
extending significantly along the third direction (ℓz = 20 k−1). We consider a resonant
probe for this study (∆ = 0). We vary N by multiplicative steps of 2, from N = 8 up to
N = 2048 and we determine how large N must be so that D is a function of n(col) only.

230



0

1

2

3

10 100 1000

D

N

a)

k ℓ = 0

0

2

4

6

8

10 100 1000
D

N

b)

k ℓ = 20

Figure D.2.: Variation of the optical density D = ln |T |−2 calculated from (D.21) as function
of the number of atoms N, for ℓz = 0 (a) and ℓz = 20 k−1 (b), and for 4 values of
the density: σ0n(2D) = 0.5 (black empty squares), 1 (red empty circles), 2 (green
diamonds) and 4 (blue filled circles). The bars indicate the standard deviations.
The dotted lines give the value obtained for our largest value of N (N = 2048).
The results have been obtained at resonance (∆ = 0).

The results are shown in Fig. D.2a and Fig. D.2b, where we plot D as a function
of N. We perform this study for four values of the density n(col), corresponding to
σ0n(col) = 0.5, 1, 2 and 4. Let us consider first the smallest value σ0n(col) = 0.5. For
each value of N we perform a number of draws that is sufficient to bring the standard
error below 2 × 10−3 and we find that the calculated optical density is independent of
N (within standard error) already for N & 100, for both values of ℓz. Consider now our
largest value σ0n(col) = 4; for a strictly 2D gas (ℓz = 0), D reaches an approximately
constant value independent of N for N & 1000. For σ0n(col) = 4 and a relatively thick
gas (ℓz = 20 k−1, blue squares in Fig. D.2b), reaching the thermodynamic limit is more
problematic since there is still a clear difference between the results obtained with 1024
and 2048 atoms. This situation thus corresponds to the limit of validity of our numer-
ical results. In the remaining part of the [annex] we will show only results obtained
with N = 2048 atoms for column densities not exceeding σ0n(col) = 4. The number of
independent draws of the atomic positions (at least 8) is chosen such that the standard
error for each data point is below 2%.

D.4.2. Measured optical density vs. Beer–Lambert prediction

We now investigate the variation of the optical density D = ln |T |−2 as function of
the column density of the sample n(col), or equivalently of the Beer–Lambert prediction
DBL = n(col)σ. We suppose in this section that the probe beam is resonant (∆ = 0), and
we address the cases of a strictly 2D gas (ℓz = 0) and a thick slab (ℓz = 20 k−1).

Consider first the case of a strictly 2D case, ℓz = 0, leading to the results shown in
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Figure D.3.: Variations of the optical density D as function of the Beer–Lambert prediction
DBL for ℓz = 0 (a) and ℓz = 20 k−1 (b). The black dotted line is the straight line of
slope 1. In (a) the continuous red line is a quadratic fit D = DBL (1 − µDBL) with
µ = 0.22 to the data points with DBL ≤ 1. The calculations are done for N = 2048,
∆ = 0 and the bars indicate standard deviations.

Fig. D.3a. We see that D differs significantly (∼ 25%) from DBL already for DBL around
1. A quadratic fit to the calculated variation of D for σ0n(2D) < 1 (continuous red line)
gives

D ≈ DBL (1 − 0.22DBL) . (D.48)

The discrepancy between D and DBL increases when the density increases: for DBL = 4,
the calculated D is only ≈ 1.4. For such a large density the average distance between
nearest neighbours is ≈ k−1 and the energy shifts due to the dipole-dipole interactions
are comparable to or larger than the linewidth Γ. The atomic medium is then much less
opaque to a resonant probe beam than in the absence of dipole-dipole coupling.

Consider now the case of a thick sample, ℓz = 20 k−1 (Fig. D.3b). The calculated
optical density is then very close to the Beer–Lambert prediction over the whole range
that we studied. This means that in our chosen range of optical densities, the mean-field
approximation leading to DBL is satisfactory as soon as the sample thickness exceeds a
few optical wavelengths λ = 2π/k.

It is interesting to characterize how the optical density evolves from the value for a
strictly 2D gas to the expected value from the Beer–Lambert law DBL when the thickness
of the gas increases. We show in Fig. D.4 the variation of D as function of ℓz for three
values of the column density corresponding to DBL = 1, 2 and 4. An exponential fit
D = α + β exp(−ℓz/ℓc) to these data for 2 k−1 ≤ ℓz ≤ 20 k−1 gives a good account
of the observed variation over this range, and it provides the characteristic thickness
ℓc needed to recover the Beer–Lambert law. We find that ℓc ≈ 3.0 k−1 for DBL = 1,
ℓc ≈ 3.5 k−1 for DBL = 2, and ℓc ≈ 4.4 k−1 for DBL = 4.
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Figure D.4.: Variation of D with the thickness ℓz of the gas for various column densities cor-
responding to DBL = 1 (red squares), 2 (green circles), 4 (blue diamonds). The
continuous lines are exponential fits to the data. The dotted lines give the Beer–
Lambert result. The calculations are done for N = 2048, ∆ = 0 and the bars
indicate standard deviations.

Remark. For the largest value of the column density considered here (n(col)σ0 = 4) we
find that D increases slightly above the value DBL when ℓz is chosen larger than 20 k−1

(upper value considered in Fig. D.4). We believe that this is a consequence of the edge
terms that we neglected when approximating Eq. (D.19) by Eq. (D.21). These terms
become significant for DBL = 4 because for our atom number N = 2048, the sample
radius R ≈ 55 k−1 is then not very large compared to its thickness for ℓz & 20 k−1. In
order to check this assumption, we also calculated numerically the result of Eq. (D.19)
(instead of Eq. (D.21)) for practical values of the parameters (position and radius) of
the lens represented in Fig. D.1a. The results give again D ≈ DBL, but now with D
remaining below DBL. Since our emphasis in this [annex] is rather put on the 2D case,
we will not explore this aspect further here.
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Figure D.5.: (a) Variation of D with the reduced detuning δ = 2∆/Γ of the probe laser in the
case of a 2D gas (ℓz = 0), for three values of the column density σ0n(col) = 1 (red
squares), 2 (green circles), and 4 (blue diamonds). (b) Blue full squares: same data
as in (a), now plotted for D/DBL as function of δ. Blue open squares: D/DBL
for a thick gas (ℓz = 20 k−1). Black stars: D/DBL for a 2D gas (ℓz = 0) and a
large exclusion region around each atom (a = k−1). All data in (b) correspond to
σ0n(2D) = 4. The calculations are done with N = 2048 atoms and the bars indicate
standard deviations.

D.4.3. Absorption line shape

Resonant van der Waals interactions manifest themselves not only in the reduction
of the optical density at resonance but also in the overall line shape of the absorption
profile. To investigate this problem we have studied the variations of D with the de-
tuning of the probe laser. We show in Fig. D.5a the results for a strictly 2D gas (ℓz = 0)
for n(col)σ0 = 1, 2 and 4. Several features show up in this series of plots. First we
note a blue shift of the resonance, which increases with n(2D) and reaches ∆ ≈ Γ/4 for
σ0n(2D) = 4. We also note a slight broadening of the central part of the absorption line,
since the full-width at half maximum, which is equal to Γ for an isolated atom, is ≃ 1.3Γ

for n(col)σ0 = 4. Finally we note the emergence of large, non-symmetric wings in the
absorption profile. This asymmetry is made more visible in Fig. D.5b, where we show
with full blue squares the same data as in Fig. D.5a for n(col)σ0 = 4, but now plotting
D/DBL as function of δ. For a detuning δ = ±15, the calculated optical density exceeds
the Beer–Lambert prediction by a factor 4.1 (resp. 2.8) on the red (resp. blue) side.

In order to get a better understanding of these various features, we give in Fig. D.5b
two additional results. On the one hand we plot with empty blue squares the variations
of D/DBL for a thick gas (ℓz = 20 k−1) with the same column density n(col)σ0 = 4.
There are still some differences between D and DBL in this case, as already pointed
out in [228], but they are much smaller than in the ℓz = 0 case. This indicates that the
strong deviations with respect to the Beer–Lambert law that we observe in Fig. D.5a are
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specific 2D features. On the other hand we plot with black stars the variations of D/DBL

for a 2D gas (ℓz = 0) in which we artificially increased the exclusion radius around each
atom up to a = k−1 instead of a = 0.01 k−1 (blue full squares) for the other results in
this [annex]. This procedure, which was suggested to us by Robin Kaiser, allows one to
discriminate between effects due to isolated pairs of closely spaced atoms, and many-
body features resulting from multiple scattering of photons among larger clusters of
atoms. The comparison of the results obtained for a = 0.01 k−1 and a = k−1 suggests
that the blue shift of the resonance line, which is present in both cases, is a many-body
phenomenon, whereas the large amplitude wings with a blue-red asymmetry, which
occurs only for a = 0.01 k−1, is rather an effect of close pairs.

This asymmetry in the wings of the absorption line in a 2D gas can actually be un-
derstood in a semi-quantitative manner by a simple reasoning. We recall that for two
atoms at a distance r ≪ k−1, the levels involving one ground and one excited atom
have an energy (real part of the eigenvalues of Heff) that is displaced by ∼ ±h̄Γ/(kr)3.
A given detuning δ can thus be associated to a distance r between the two mem-
bers of a pair that will resonantly absorb the light. To be more specific let us con-
sider a pair of atoms with kr ≪ 1, and suppose for simplicity that it is aligned ei-
ther along the polarization axis of the light (x) or perpendicularly to the axis (y). In
both cases the excited state of the pair that is coupled to the laser is the symmetric
combination (|1 : g; 2 : ex〉 + |1 : ex; 2 : g〉)/

√
2. If the pair is aligned along the x

axis, this state has an energy h̄ω0 − 3h̄Γ/2(kr)3, hence it is resonant with red detuned
light such that δ = −3/(kr)3. If the pair axis is perpendicular to x, the state written
above has an energy h̄ω0 + 3h̄Γ/4(kr)3, hence it is resonant with blue detuned light
such that δ = 3/2(kr)3. This clearly leads to an asymmetry between red and blue de-
tuning; indeed the pair distance r needed for ensuring resonance for a given δ > 0,
rblue = (3/2|δ|)1/3 k−1, is smaller than the value rred = (3/|δ|)1/3 k−1 for the opposite
value −δ. Since the probability density for the pair distance at small r is P(r) ∝ r in 2D
for randomly drawn positions, we expect the absorption signal to be stronger for −δ

than for +δ. In a 3D geometry the variation of the probability density at small r is even
stronger (P(r) ∝ r2), but it is compensated by the fact that the probability of occurrence
of pairs that are resonant with blue detuned light is dimensionally increased. For exam-
ple in our simplified modelling where the pair axis is aligned with the references axes,
a given pair will be resonant with blue detuned light in 2/3 of the cases (axis along y

or z) and resonant with red detuned light only in 1/3 of the cases (axis along x). This
explains why the asymmetry of the absorption profile is much reduced for a 3D gas in
comparison to the 2D case.

D.5. Conclusion

We have presented in this [annex] a detailed analysis of the scattering of light by a
disordered distribution of atoms in a quasi-two dimensional geometry. The particles
were treated as fixed scatterers and their internal structure was modeled as a two-level
system, with a J = 0 ground state and a J = 1 excited state. In spite of these simplifying
assumptions the general trend of our results is in good agreement with the experimen-
tal finding of [139], where a variation of the measured optical density similar to that of
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Fig. D.3 was measured.
Several improvements in our modeling can be considered in order to reach a quanti-

tative agreement with theory and experiment. The first one is to include the relatively
complex atomic structure of the alkali-metal species used in practice, with a multiply
degenerate ground state; this could be done following the lines of [232, 233]. A second
improvement consists in taking into account the atomic motion. This is in principle a
formidable task, because it leads to a spectacular increase in the dimension of the rel-
evant Hilbert space. This addition can however be performed in practice in some lim-
iting cases, for example if one assumes that the particles are tightly bound in a lattice
[246, 247]. When the atom-light interaction is used only to probe the spatial atomic dis-
tribution of the gas, neglecting the particle motion should not be a major problem. In-
deed the duration of the light pulse is quite short (∼ 10 microseconds only). Each atom
scatters only a few photons in this time interval and its displacement is then smaller
than the mean interatomic spacing for the spatial densities encountered in practice.
The acceleration of the atoms under the effect of resonant van der Waals interaction
should also have a minor effect under relevant experimental conditions.

Finally another aspect that could be valuably studied is the interaction of the gas with
an intense laser beam [137]. One could thus validate the intuitive idea that saturation
phenomena reduce the effects of resonant van der Waals interactions [69, 70], and are
thus helpful to provide a faithful estimate of the atomic density from the light absorp-
tion signal. A first step in this direction consists in implementing the tools developed
in [248, 249], which allow one to study the modification of the coherent propagation
of light in an dilute medium, due to the non-linear optical response of the scatterers.
In particular it would be interesting to investigate if the instabilities found in [249] can
play a significant role in absorption imaging of dense atomic clouds.
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E. Historical procedure and results for the calibration of the
α imaging coefficient

In this annex, I will present the "historical" procedure to calibrate the value of the
imaging coefficient α, which has been introduced in chapter 3 (see for example Eq. 3.9).
This procedure was initially developed by G. Reinaudi [137] and used for the previous
calibration on our experiment, which has been performed by T. Yefsah [110] in 2010. I
will present such an analysis for the data taken during our new calibration campaign
whose reasons and details have been presented in 3.3.3.1 and 3.3.3.2. As stated in this
latter section, we actually started by implementing this "historical" analysis on our set
of data but the surprising results obtained led us to build up a new and more straight-
forward procedure for computing α. The results of this new analysis are presented in
3.3.3 and complete the overall imaging calibration procedure. The development pre-
sented in this annex are thus unnecessary for the completeness of the calibration but
it reveals profitable to analyze them thoroughly: First, we note that its conclusions are
in agreement with the new analysis (see e.g Fig. 3.6 and Fig. E.2) and so the calibration
performed with this new campaign is not intrinsically different from its previous real-
izations. Second, it is interesting to highlight the lack of understanding we get from
using this method and how this is fixed by the new procedure developed in the main
text (see 3.3.3.4).

E.1. Principle

As introduced in 3.3.3, the principle of any analysis for the calibration of α∗ (which
denotes the physical value of the parameter α of Eq. 3.9) is to find the value of this
coefficient for which the optical density distribution dα (x, y; s, τ) over one cloud con-
figuration (whose spatial dependency is embodied by the variables (x, y)) is a constant
toward the variations of the imaging parameters, namely the intensity of the probe
beam I = sIsat and its pulse duration τ. We remind that dα is given by:

dα = αdlog + ddiff (E.1)

where dlog = − ln
(

If − 2γ

Ii − γ

)

(E.2)

and ddiff =
Ii − If + γ

η Isat
. (E.3)

where Ii and If denote the distributions of the light intensity arriving or going out of
the cloud, γ and η are constants of our imaging setup introduced in 3.3.1 and 3.3.2
respectively.

In the "historical" procedure presented here, one deduces α∗ by minimizing the de-
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viation of the optical densities dα (toward α) over a set of N images taken in the same
cloud configuration but with varying s and τ. For this minimization, an intermediate
quantity is computed on which a fit is ultimately performed. Such an indirect method
somehow hides the defects of the experimental data and makes the analysis of the ex-
perimental errors more complex.

In practice, the procedure is the following :

1. As explained in the main text in the case of the new method, we have at our
disposal a set of N absorption images of a cloud always prepared in the same
configuration. The images are taken successively, repeating the same prepara-
tion sequence several times and varying at the end of each production stage the
imaging parameters s and τ used to take an absorption picture of the gas.

2. For each image k of this set, we compute the azimuthal average 1 of the optical
density dα (r; k) for a given range of α (manually introduced along Eq. E.1).

3. We compute the standard deviation, noted σ(r, α), of this optical density dα (r; k)
over the whole set of N images: σ(r, α) = stdk∈[1,N] [dα(r; k)]. σ(r, α) thus estimates
the variations of the optical density computed with a given α on a given radius
r over the range of the considered couples (s, τ) and taking into account their
numerous repetitions.

4. For each radius r, σ(r, α) typically shows a minimum at a given value of α called
α∗(r). We fit σ(r, α) variations to

σ(r, α) =
√

σmin(r)2 + C(r)2(α − α∗(r))2 (E.4)

The fitted parameter α∗(r) is an estimate of the physical value α∗ we want to
calibrate at the radius r.
Note: This fit generally gives a perfect match to the computed standard deviation
in terms of α. Indeed, σ is representing the fluctuations according to a smoothly
varying parameter α that we artificially introduced (see step 2 of the procedure).
Hence, from this artifact, σ(r, α) shows a noiseless variation versus α perfectly
described by the hyperbolic model of Eq. E.4. Nevertheless, such a perfect match
does not give any indication on the quality of the experimental data themselves.
No errorbars can be extracted directly from this fit and a more sophisticate anal-
ysis of the data set must be carried out to evaluate the experimental deviations
within this method.

5. For the radii r where this analysis is valid, we expect α∗(r) to be equal to the phys-
ical value of the coefficient α. It must then be a constant with r and its averaged
value must not depend on the set of data considered. We thus complete this anal-
ysis, by selecting a set of relevant r for which our previous analysis is accurate.
These radii should correspond to a specified range of atomic densities n(r):
— n(r) must not be too low so that the determination of α∗ is not too sensitive to

the intensity shot noise of the probe beam;

1. For an explanation of the use of the azimuthal average,see 3.3.3.2. The aim is to lower the noise
compared to a pixel-wise comparison of the optical density by performing an averaging on comparable
cloud regions.
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— n(r) must not be too high so that we are not sensitive to the collective effects
(see Annex D) and thus Eq. E.1 demonstrated in 3.1.2 remains valid for all the
probing intensities (I = sIsat) considered.

The cloud configuration we considered for the recent calibration campaign (see
3.3.3.1 and 3.3.3.3) used a free expansion of the atomic distribution (2D and if
necessary 3D) which is uniform in-situ. Then framing the value of n(r) simply
translates into selecting a continuous range of radii : r ∈ [rmin, rmax] for each of
the calibration set taken. We then deduce the global value of α∗ by averaging
α∗(r) on this range of radii.

E.2. Results

As detailed in the main text (see 3.3.3.3), the ensemble of data for the new calibration
campaign is composed of four different sets of images. Roughly, two were taken in a
"hot" cloud configuration and the other two in a "cold" one, enabling thus to investigate
an enlarged range of optical densities.

In Fig. E.1, we show, for one of these four data sets (the set numbered 2 in Table
E.1), the extracted values of α∗(r) and σmin(r) from fitting of the set of σ(r, α) to Eq. E.4
(see E.1). In this figure, we also show an estimate of the optical density dα=3.7 (r) that
is computed along Eq. E.1 with a fixed 2 α = 3.7 and averaged over all the images:
dα=3.7(r) = 〈dα=3.7(r; k)〉n∈[1,N].

We then want to average the values of the first fitting parameter α∗(r) on a given
range of radii r ∈ [rmin, rmax] to estimate α∗ (see E.1), independently for each of our
four data sets. In order to set [rmin, rmax] we compare for each r, the value of the second
fitting parameter σmin(r) to the estimated optical density dα=3.7(r). σmin(r) assesses the
deviation of the optical density dα of Eq. E.1 computed with α = α∗(r) at the radius r.
We thus consider the relative deviation of the density σ̄(r) = σmin(r)/dα=3.7(r) at a fixed
r. As the absolute value of σ̄(r) depends on the set of images considered, we compare
it to the minimal value it takes σ̄0 over this given set. Then to distinguish the relevant r

from the irrelevant ones for the calibration, we arbitrarily fix a maximal value f to the
ratio σ̄(r)/σ̄0. Relevant r’s are those for which σ̄(r) ≤ f σ̄0 (not too high variations of
the density). Typically, we choose f = 1.4 and this corresponds to a range [rmin, rmax]

spanning typically 2 gaussian widths of the atomic cloud.
As shown in Fig. E.1 where relevant data are represented in blue (and irrelevant ones

in red), we note that the value of α∗(r) is well approximated by a constant in the ex-
tracted range of r (as expected theoretically). In Fig. E.1, we show the average value
of this blue points and its error. We denote α∗

fit the estimate of the physical value of α

assessed through this average.
In Table E.1, we summarize all the fitted values α∗

fit for the four data sets available.
We found different values of α∗

fit according to the set considered. At this point of the
analysis, we could not distinguish if such an intriguing result was due to the overall

2. We choose such a value as we expect it to be close to the physical value α∗. We could also define an
expected optical density per radius directly from the fits, by dstd (r) = α∗(r)dlog (r) + ddiff (r) where α∗(r)
is the value of α deduced from the fit for each radius r. The following results are not drastically changed
by this choice.
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data quality, to few outlier data points or to a physical effect. This uncertainty led us to
develop a new analysis.
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Figure E.1.: Fitted values of σmin (a) and α∗ (b) for the set 2 as function of the distance to the
cloud center r. In (a) we also show an estimate of the optical density given by
choosing an ab-initio value of α, α = 3.7 (see text). To be on a comparable scale, we
multiply the minimum of the standard deviation σmin by 10 on this representation.
In both graphs, we represented in red the discarded data. As described in the text,
These are point showing a too high σmin value compared to their optical density
dα=3.7 (r). In (b), we also show the result of fitting α∗(r) by a constant on the
relevant domain α∗ = 7.1 (1).

series

Number

Cloud
Conf.

Fitted α∗

1 "hot" 3.0 (1)
2 "cold" 7.1 (1)
3 "hot" 4.8 (1)
4 "cold" 6.4 (1)

Table E.1.: Summary of all the fitted values of α∗ on the 4 data sets.

To conclude this "historical" analysis and further highlight the need for a new anal-
ysis, we also represent here our data in the same way it is commonly done in the new
calibration procedure developed in the main text ( see 3.3.3 and Fig. 3.6). In this repre-
sentation, we compare the results of these four data sets by representing all the fitted
α∗(r) as a function of the estimated optical density d. Here (i.e. in the "historical" anal-
ysis case, we use the previously described estimate of the optical density dα=3.7 (r; k).
Such a representation is shown in Fig. E.2.

With this representation, we find that for a given d, all the data of the four sets are
approximately compatible with each other whereas all the average values α∗

fit computed
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above are not. In this representation, we roughly identify two separated plateaus, as
shown in Fig. E.2, one at high d with a higher value of α∗ that we denote α∗

high, and
a second one at low d corresponding to a lower value of α∗ that we name α∗

low. A
weighted average of α∗(d) for d ∈ [0.5; 5] gives α∗

low = 3.60 (14) and for d ≥ 5 gives
α∗

high = 6.84 (13) .

α∗ = 3.6 ± 0.14

α∗ = 6.84 ± 0.13

100 101
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fitted α∗ on serie 1
fitted α∗ on serie 2
fitted α∗ on serie 3
fitted α∗ on serie 4

Figure E.2.: Fitted values of α∗ for all data sets plotted as function of an estimate of the optical
density given, as stated previously by choosing an ab-initio value of α, α = 3.7.
We saw two separated plateaus according to the density values. The dotted black
lines identify the separation between the plateaus. The thick solid lines shows
the averaged constant values for each plateaus. We found α∗low = 3.60 (14) for
d ∈ [0.5; 5] and α∗high = 6.84 (13) for d ≥ 5

In fact, we came up with the new analysis idea as this last representation gives the in-
tuition that α∗ depends on the atomic density. As this historical sophisticated procedure
does not easily enable an inspection of the experimental data quality or the detection
of outliers in our data, we were in need for a better understanding of this unusual and
unexpected behavior of our coefficient α, varying with d. The new procedure which
results in a more straightforward manipulation of the experimental data enables this
inspection. In particular it gives an insight into all the experimental points leading to a
given α∗(d) as shown in Fig. 3.5.
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F. A conventional analysis of equation of state of the
two-dimensional Bose gas

As introduced in Ch. 4, a first measurement of the equation of state (EoS) of a 2D
uniform Bose gas was performed in 2011 following a conventional analysis method
based on a thermometry of individual images [70]. The main parts of this article are
reproduced here, while a novel and more accurate determination of this same EoS is
presented in the main text (along with the description of the experimental preparation
of the gases).

F.1. Analysis of the images

The following experimental investigation of the EoS of a 2D Bose gas has been per-
formed on a similar set of data as in the investigation of 4.2. The sequence for the
preparation of the 2D samples as the experimental parameters are detailed in 4.2.1 and
are thus not reproduced here. At the end of the data acquisition process we have for
each atomic configuration two images successively taken in the high and in the low
intensity regime (see Ch. 3) as illustrated in Fig. F.1. Here we will extract from each pair
of images the temperature T, the chemical potential at center µ and the density n(ρ) in
any pixel of the image.

The following section was initially published as part of the supplemental material of [70], and

is reproduced without modifications

From the density profile of the low-intensity image, we determine the temperature
T and the chemical potential µ by fitting the low density region with the prediction
of the Hartree–Fock mean field theory (HFMF). Our fitting function takes into account
the residual excitation of the z degree of freedom. Actually, this fit of the whole set
of images also provides the value of the detection efficiency β = 0.40 (2). The high-
intensity image provides us with the density profile n(ρ).

Once T and µ are known, we self-consistently determine the population of the excited
states using the method described in [103, 118], assuming the atoms in the excited states
j ≥ 1 of the z motion to be in the HFMF regime. In practice we restrict the analysis to the
first ten levels. In order to give an estimation of the contribution of the various levels j ≥
1 to the total density, we show in Fig. F.2a numerical results obtained by applying this
procedure to a numerically generated profile, produced using the prediction [125] with
T = 100 nK and µ/kBT = 0.45. This temperature is on the high side of our experimental
range, where the influence of the atoms in the excited states along z is expected to be the
most important. We plot in Fig. F.2a the phase space density of the excited states D(exc),
distinguishing the contribution of the state(s) j = 1, j = (1, 2), j = (1, 2, 3), etc. For

243



a)

20µm

b)

0

20

40

60

80

0 25 50

D
en

si
ty

in
a
to

m
s/
µ
m

2

r in µm

c)

1

10

0 1000 2000

D
en

si
ty

in
a
to

m
s/
µ
m

2

r2 in µm2

d)

Figure F.1.: Absorption imaging of quasi-2D clouds of 87Rb atoms. (a) Image obtained with a
short pulse (∼ 2µs) of an intense probe beam (I/Isat = 40) . (b) Image obtained
with a longer pulse (50 µs) of a weak probe beam (I/Isat = 0.5). The processing of
images (a) and (b) is detailed in [Ch. 3]. (c) and (d) Radial density profiles for image
(a) (hollow circles ◦) and image (b) (filled circles •) in linear (c) and logarithmic (d)
scales. The solid line combines the predictions of the HFMF theory, of [125] in the
intermediate regime and of the Thomas–Fermi approximation µ = h̄2 g̃n/m in the
central region (T = 133 nK, µ/kB = 47 nK).

comparison we also plot the profile D(0) obtained from [125], associated to the atoms in
the ground state. Note that the contribution of the states j > 4 is already negligible. The
phase space density associated to each excited state is lower than 0.5, which justifies to
treat the atoms in these states within the HFMF approximation. The flattened shape of
the density distributions in the central region is due to the repulsive interaction with the
atoms in the ground state of the z motion. This procedure also allows us to calculate the
effective potential felt by the atoms in j = 0, when the repulsive potential W(ρ) created
by the atoms in j ≥ 1 is taken into account. Plotting together W(ρ) and the trapping
potential V(ρ) (Fig. F.2b) we see that W(ρ) is essentially negligible (. 1 nK) and one
can thus consider the density n0(ρ) to be insensitive to the presence of the atoms in
j ≥ 1

F.2. Thermodynamic analysis

The following section was initially published in [70], and is reproduced without modifications
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Figure F.2.: (a) Phase space density of the ground (solid red line) and excited state(s) of the z-
motion. The n-th line from the bottom corresponds to the contributions of excited
levels 1 to n. (b) Comparison of the trapping potential (red solid line) and the
repulsive potential created by the excited atoms on the population in the ground
state (blue dotted line).
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Figure F.3.: Equations of state for (a) the reduced pressure P , (b) the phase space density D
and (c) the entropy per particle S . The HFMF prediction is plotted in black full line
and extended in dotted line beyond the expected superfluid transition. The dashed
red line is the Thomas-Fermi prediction. In (a) the grey area indicates the region
of parameter space accessible to an ideal gas. In (b) the thick grey line indicates
the prediction from [125]. For µ/kBT > 0.2, data obtained for the same control
parameters (trap loading time and evaporative cooling ramp) have been grouped
and error bars indicate standard deviation of the measurement. For µ/kBT < 0.2,
data are displayed for individual images, thus with no error bar. The vertical dash-
dotted line (blue) indicates the prediction [124] for the superfluid transition.

F.2.1. EoS for the pressure

We start our thermodynamic analysis by inferring the pressure P(µ, T) of the ho-
mogeneous gas from our measurements. Here we adapt to the 2D case the technique
presented in [65], which has been used successfully in 3D for Fermi gases [66]. We
show that P(µ, T) is directly related to the atom number N0 =

∫

n0(ρ) d2r in our
harmonic trap. Indeed, the LDA relates n0(ρ) to the density of the homogenous gas
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n
(2D)
hom [µ − V(ρ), T] 1. For an isotropic harmonic potential V(ρ) = mω2r2/2 the total

atom number is
N0 =

2π

mω2

∫ µ

−∞
n
(2D)
hom (µ′, T) dµ′, (F.1)

and using the thermodynamic relation n
(2D)
hom = (∂P/∂µ)T, we find N0 = (2π/mω2)

P(µ, T). Introducing the dimensionless quantity P = Pλ2
T/kBT, which we refer to as

the reduced pressure, we then obtain

P(µ, T) =

(

h̄ω

kBT

)2

N0, (F.2)

where ω is to be replaced by the geometrical mean of ωx and ωy for an non-isotropic
potential. Our results are summarized in Fig. F.3a, where we plot P deduced from Eq.
(F.2) as function of µ/kBT. The temperatures of the data entering in this plot range
from 40 nK to 150 nK. The fact that all data points collapse on the same line show that
P is a function of the ratio µ/kBT only, as expected from the scale invariance of the
system. The HFMF theory is represented by a continuous line in the normal region
and by a dotted line in the superfluid region. The dashed line is the Thomas–Fermi
prediction at zero temperature P = π(µ/kBT)2/g̃. The grey area is the parameter
subspace accessible to an ideal Bose gas. Interestingly, although the phase space density
D can take arbitrarily large values, one can show in the ideal gas case that the reduced
pressure P = g2(z) ≤ π2/6, where g2 is the dilogarithm function and z = exp(µ/kBT)

(z ≤ 1 for an ideal Bose gas).

F.2.2. EoS for the phase space density

We show in Fig. F.3b our measurements for the phase space density D, obtained from
the central density of each cloud. In wide gray line we plot the prediction of [125],
which is in good agreement with our results. A further confirmation of this agreement
is shown in Fig. F.1c, where we plot in full line the numerically generated profile using
[125] for the fitted T and µ. A measurement of D(µ/kBT, g̃) was also reported in [69]
for a quasi-2D Cesium gas, for g̃ ranging from 0.05 to 0.26. Our results agree well with
those measurements over the covered range (D < 20 in [69] for g̃ similar to ours).

F.2.3. EoS for the entropy

From our measurements of P and D we also obtain the equation of state for the
entropy per particle S(µ, T):

S
kB

= 2
P
D − µ

kBT
, (F.3)

which can be derived starting from the entropy per unit area s = (∂P/∂T) |µ, assuming
the EoS for P to be scale invariant 2. The corresponding result is shown in Fig. F.3c.

1. The LDA holds for short range interactions when the spatial density is nearly constant over the
microscopic length scales set by λT and by the healing length ξ = (g̃n)−1/2.

2. A similar method has been used for a 3D Fermi gas at unitarity, Martin Zwierlein, private commu-
nication, February 2011.
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As expected, S is large in the non-degenerate regime and rapidly decreases around
µ/kBT ≈ 0.17, where the superfluid transition is expected for our value of g̃ [124].
Finally S tends to zero in the Thomas–Fermi regime. Our data points with the largest
phase-space density (µ/kBT > 0.5) correspond to S = 0.06 (1) kB only. For comparison
the entropy per particle reported in [250] for a 2D Mott insulator is ∼ 0.3 kB. Note
that since the BKT transition is of infinite order, one does not expect any discontinuous
change for P , D or S at the superfluid transition for an infinite homogeneous fluid,
although the superfluid density jumps suddenly from 0 to 4/λ2

T [122].

F.3. Measuring the interaction energy

The following section was initially published in [70], and is reproduced without modifications

We now turn to the last part of our study, where we illustrate how to measure the
various contributions to the energy of our trapped 2D gases: potential energy Ep in the
external trapping potential, kinetic energy of the particles Ek, and interaction energy
between atoms Ei. We first point out the simple relation Ep = Ek + Ei, obtained from
virial theorem assuming 2D contact interaction. We measure Ep =

∫

n0(ρ)V(ρ) d2r

from an in situ image, but we still need to disentangle the contributions of Ek and Ei

to the total energy. This can be done by abruptly switching off interactions at time
t = 0, either via a Feshbach resonance or effectively by using a “one dimensional" (1D)
ToF described below. Each particle then undergoes a free harmonic motion ρ(t) =

cos(ωt) ρ(0)+ sin(ωt) v(0)/ω. The potential energy after a time t following the switch-
ing off of the interactions is

Ep(t) = Ep(0) cos2(ωt) + Ek(0) sin2(ωt), (F.4)

where we used the fact that the correlation 〈ρ(0) · v(0)〉 is zero at thermal equilibrium.
Thus we can extract Ek(0) from the time evolution of Ep, which we obtain from the
density profiles at different times t.

In order to implement this procedure, we perform the 1D ToF mentioned above by
switching off abruptly the laser providing the confinement along z while keeping the
magnetic confinement in the xy plane. The gas then expands very fast along the initially
strongly confined direction z, as shown in figures F.4a to F.4d, and interactions between
particles drop to a negligible value after a time of a few ω−1

z , where ω−1
z ∼ 100 µs. The

subsequent evolution in the xy plane occurs on a longer time scale given by ω−1 ∼ 8 ms.
From Eq. (F.4) and Ek(0) < Ep(0), we expect the size of the gas to decrease for t . ω−1,
which can be understood in simple physical terms. The equilibrium state of the 2D
gas results from a balance between the trapping potential, which tends to compress the
gas, and the kinetic and interaction energies, which tend to increase its area. When
interaction energy drops to zero the equilibrium is broken and the gas implodes in the
xy plane. A similar 1D ToF technique was used recently in Boulder with the value of
t fixed at π/2ω [103]. For this particular choice the initial momentum distribution is
converted into position distribution and can thus be measured accurately [251].
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Figure F.4.: (a) to (d) Side view of a cloud initially in the 2D regime and expanding along z
once the laser providing the confinement in this direction has been switched off. (a)
t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms. (e) Time evolution of the potential
energy Ep. The different lines represent a fit to the data of a parabola (solid black
line), the time evolution assuming flattened density fluctuations (dashed red line)
and the one expected for a dilute non-condensed gas (dash-dotted green line).

We show in figure F.4e an example of measurement of Ep(t) for a gas with N0 =

6.1 104, T = 72 nK, and µ/kBT = 0.59. From the contraction of the gas, we infer
Ek/Ep = 0.56 (3), from which we deduce Ei/Ep = 0.44 (3) using virial theorem. This
configuration is thus neither completely in the very dilute regime (Ei ≪ Ek ∼ Ep) nor
in the Thomas–Fermi regime (Ek ≪ Ei ∼ Ep) and contains comparable thermal and
quasi-coherent fractions.

The measurement of Ei is of particular interest in this case since it gives access to the
density fluctuations in the gas. Indeed, by definition Ei = (h̄2 g̃/2m)

∫

〈n2
0(ρ)〉 d2r =

(h̄2 g̃/2m)F
∫

〈n0(ρ)〉2 d2r [252], where we have introduced the parameter F that char-
acterizes the degree to which density fluctuation are reduced. In the limiting case
of a dilute, non-condensed gas, one expects F = 2, since 〈n2

0〉 = 2〈n0〉2, while in
the opposite limit of a ‘flattened’ density profile F=1. Since our measurement pro-
vides us with Ei, we can infer the value of F , from the comparison with the quantity
(h̄2 g̃/2m)

∫

〈n0(ρ)〉2 d2r, calculated using the in situ density profile n0. For the condi-
tions of figure F.4e, we find F = 1.1 (1), very close to the value 1 for flattened density
fluctuations. Note that this is obtained for a gas still far from the Thomas–Fermi limit
since Ek ∼ Ei. This “early" reduction of density fluctuations is an important ingredient
for the proper operation of the BKT mechanism. This presuperfluid phase, whose ex-
istence was also inferred by different methods in [69, 102, 103], constitutes a medium
that can support vortices, which pair at the superfluid threshold.
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F.4. Conclusion

The following section was initially published in [70], and is reproduced without modifications

In conclusion we presented in this Letter various aspects of the thermodynamics of a
2D Bose gas, investigating first the EoS’s for the pressure, the phase space density and
the entropy. Our results confirm the scale invariance that was discussed theoretically
in [125] and observed in [69] for D. We point out that the entropy per particle drops
notably below 0.1 kB beyond the transition point. With such a low entropy a 2D Bose
gas can constitue excellent coolants for other quantum fluids such as a 2D Fermi gas
[253]. We also presented a method that allows one to extract the various contributions
to the total energy of the system. By applying it to a degenerate but not fully coherent
2D cloud, we find that density fluctuation are nearly frozen, marking the presuperfluid
phase.
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G. Aperture effect on the uniform trap implementation via
dark mask imaging.

In this annex, we give some insights about the effect of a finite aperture in the dark
mask imaging setup used to create the uniform potential as described in Chapter 6.
Such a finite aperture can be due to the finite size of the lens (or other blocking ele-
ments on the path of the beam). In our setup it results in fact from a diaphragm set
on the path of the beam, just after the second lens of the telescope 1, as described in
6.3.2. In this annex, we simulate the effect of a similar diaphragm placed in between
the two lenses of the telescope (for simplicity of the simulation and of the modeling)
on the resulting potential by modeling the beam propagation along the imaging setup.
We analyze the intensity profile imaged at the position where the atoms are trapped as
it is proportional to the generated trapping potential. We are particularly interested in
the resulting modifications on the uniform trap properties, namely the trap bottom uni-
formity and its edges steepness. We will characterize them quantitatively and compare
the results to the specifications required experimentally, as described in 6.1.2.

G.1. Principle of the simulation

G.1.1. Simulating the beam propagation

In the goal introduced above, we simulate the beam propagation after its transmis-
sion across the glass plate holding the dark spot imprints and over a modeled imaging
setup until a location equivalent to the one of the atomic cloud. For this simulation,
we model the experimental imaging setup that is described in 6.3.2 with the scheme
represented in Fig. G.1. Then, the simulation procedure is as follow:

1. The light beam just before the glass plate holding the dark spots is assumed to be
gaussian and non-elliptic. We set its waist to w0 = 50 µm (we also checked that
this value does not affect the conclusions on the trap uniformity by few comple-
mentary analysis at w0 = 150 µm).

2. The dark spot is assumed to be perfectly opaque and presenting infinitely sharp
edges. Then the electric field just after the plate writes.

Ei(x, y) ∝ e−r2/w2
0 t(x, y) (G.1)

where t(x, y) = 0 if (x, y) is inside the mask shape and t(x, y) = 1 elsewhere.
We set the mask to be centered on the beam and we choose a characteristic half–

1. The diaphragm is considered close enough from the second lens so that it is equivalent to position it
inside the telescope, as modeled here
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length of the mask to be Rmask = 40 µm so that it matches to the usual values in
our experimental setup.

3. In the whole simulation, we will assume that the propagation is well described
within paraxial approximation.

4. The imaging setup is composed of a two–lenses telescope. We suppose that the
lenses are well described within the thin lens approximation. We assume in this
simulation that they both have the same focal length f = 500 mm. We perform
such a simplification in order to facilitate the grid definitions for the Fourier trans-
form and not affect the final resolution of the simulation at a given grid size. Then,
the resulting telescope has a magnification of Msim = 1 instead of Mexp = 0.3 in
the experimental setup. In the resulting intensity profile, it simply translates by a
rescaling of an overall factor of Msim/Mexp = 10/3 compared to the experimen-
tal one but no shape modification are expected from this substitution.

5. The mask is set at the focus of the first lens so that the electric field just after this
lens is

E1(x, y) ∝ e
− ik

2 f r2
Ẽi(kx =

kx

f
, ky =

ky

f
) (G.2)

where k = 2π/λ is the wave number of the beam (λ = 532 nm), Ẽi(kx, ky) is the
Fourier transform of the electric field just after the mask given in Eq. G.1.

6. Both lenses are separated by a distance d along which the beam propagates freely
according to :

Ẽd(kx, ky) ∝ e−
i(k2

x+k2
y)

2k dẼ1(kx, ky) (G.3)

where Ẽ1(kx, ky) (resp. Ẽd(kx, ky)) is the Fourier transform of the electric field just
after the first lens given in Eq. G.2 (resp. after the propagation over the distance
d). In the presented simulation results, we took d = 100 cm. We also checked that
the results are not drastically modified if we choose d = 500 cm or d = 50 cm.

7. After this propagation, we model a circular diaphragm aperture of radius Rdiaphr

that cuts the electric field outside its range:

Edd(x, y) = Ed(x, y) D(x, y) (G.4)

where D(x, y) = 1 if (x, y) is inside the diaphragm aperture and D(x, y) = 0
elsewhere. We set this diaphragm to be centered on the beam and on the mask so
that

D(r) =

{

1 if r ≤ Rdiaphr

0 if r > Rdiaphr
(G.5)

8. Finally, we image the beam at the focus of the second lens as it must match the
position of the atoms. The final electric beam is then:

E2(x, y) ∝ e
− ik

2 f r2
Ẽdd

(

kx =
kx

f
, ky =

ky

f

)

(G.6)

where Ẽdd(kx, ky) is the Fourier transform of the electric field just after diaphragm.
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Figure G.1.: Schematic representation of the optical setup simulated. We describe this setup
in paraxial approximation and using thin lenses model. In this setup we use to
lenses of focal lengths f = 500 mm. The mask imprinted on a initially gaussian
beam is at focus of the first lens. We compute the resulting intensity profile at the
focus of the second lens. Just before this lens, we cut the electric field distribution
but a circular aperture of radius Rdiaphr which account for both the effect of the
slit and of the diaphragm of the experimental setup of Fig.6.5.

For this simulation we use a 4096 × 4096 grid. We represent the input beam in a
grid varying from −10w0 to 10w0 (it results being the same for the output beam as the
magnification of the simulated setup is Msim = 1).

G.1.2. Analyzing the simulated intensity profile

At the end of this process we analyze the output intensity profile Isim(x, y) = |E2(x, y)|2
in terms of its resulting uniform trapping quality as introduced in chapter 6 and sum-
marized here:

1. We characterize the trap bottom variations by computing :
— The difference δI between the value of the potential inside the inner trapping

region and its average value Ibottom. This inner region is defined by the simply
connected domain where the potential is less than Imin = Ibottom + (Ibarrier −
Ibottom)/20 where Ibarrier is the intensity maximum on the edges of this region.
We characterize δI in percentage of (Ibarrier − Ibottom). We may consider the
maximum of δI over the the inner trapping region, we denote this quantity
δImax .

— We can also describe the trap bottom quality in terms of the standard deviation
of δI over the whole central trapping region. We denote this quantity δIstd.

2. We characterize the edges steepness by computing:
— The characteristic length η within which the intensity varies from Imin to Imax =

Ibottom + (Ibarrier − Ibottom)/4 as for the experimental characterization.
— The power law fitted exponent using fitting function of Eq. 6.4 of these edges

from r = 0 to r = rmax, the position where I = Imax.
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G.2. Results on a disk

G.2.1. Intensity Profiles

Figure G.2.: Examples of simulated intensity profiles with various diaphragm apertures
Rdiaphr = 3, 4, 5, 6, 8 and 10 mm. We use a initially disk shaped mask of ra-
dius Rmask = 40 µm. It is imaged via a 1 to 1 telescope made up with two lenses
of focal f = 500 mm.
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We first select a unique mask configuration and look at the effects of a variation of
the diaphragm aperture Rdiaphr on the simulated intensity profile at the position of the
atoms. We choose a disk shape mask as it is the easiest to analyze: it indeed preserves
the beam symmetry and offers the possibility of using radial averaging. The mask is
then defined by:

t(r) = 1 , if r > Rmask = 40 µm or t(r) = 0 , if r ≤ Rmask = 40 µm (G.7)

Typically we vary the radius of the diaphragm from Rdiaphr = 3 mm to Rdiaphr =

30 mm (which are relevant for our experimental configuration in which Rdiaphr = 9 mm).
For apertures Rdiaphr ≤ 2.8 mm, we note that the intensity profile does not show any
trapping region. In Fig. G.2, we show six examples of intensity distributions obtained
via this simulation procedure using six different value of Rdiaphr. In these six images, we
see that the intensity structures appearing in the trap center change with the diaphragm
aperture. For the largest Rdiaphr, they tend to disappear. For the short Rdiaphr, a central
bump appears but its intensity does not vary monotonically with Rdiaphr. More pre-
cisely, we note by varying both the mask radius Rmask and the diaphragm one Rdiaphr

that this peak appears and disappears according to the relative position of the aper-
ture cut compared to the various order peaks in the diffraction pattern imposed by the
mask in the intensity profile at the position of the diaphragm. It appears that being able
to select the precise radius at which we cut the distribution is a fundamental feature
for optimizing the uniformity of the resulting trapping potential, similar to a (rough)-
apodization.

G.2.2. Characterizing trap properties

To confirm these preliminary observations, we characterize the trapping properties
quantitatively. We plotted the resulting values in Fig. G.3 for the uniformity of the trap
bottom and the steepness of the edges. There, we renormalize the length scales by the
experimental magnification Mexp = 0.3. In these plots, we note an overall tendency to
recover the uniformity and the sharpness of the edges with an increasing Rdiaphr.

1. We note that a sufficiently high stiffness is reached even at very short aperture
Rdiaphr & 3 mm. For example, the power law coefficient β is larger than 5 for
Rdiaphr ≥ 3.2 mm. Indeed, the sharpness is expected to be affected if we cut spa-
tial frequencies of the order of k ≈ M/η where η is the required stiffness at the
position of the atoms. In 6.1 we impose η . Rbox/3 = MRmask/3 = 4 µm for
Rmask = 40 µm and M = Mexp = 0.3. We deduce that the corresponding aper-

ture is Rdiaphr =
3 f λ

2πRmask
= 3.2 mm.

2. The limiting aspect is then the variations of the potential inside the trapping
region. For Rdiaphr & 15 mm, the maximal defect in the trap bottom verified
δUmax ≤ 5% as specified. For smaller apertures, we note that the trap-bottom
defect oscillates with Rdiaphr and can reach values, as high as δUmax ≈ 40% for
Rdiaphr ≈ 4.5 mm with this specific mask. Nevertheless we note that whatever the
radius is we can always reduce the aperture size to find a configuration where the
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trap-bottom defect complies with the specifications (apodization). In our experi-
mental setup, the aperture set by the rough optical setup (in the absence of the ad-
justable diaphragm) is Rdiaphr ≈ 9 mm (see 6.3.2). It then lies in this "apodization"
range and we complement our optical setup by adding a diaphragm of adjustable
aperture inside the telescope to perform the desired optimization on the trap qual-
ity. We note that for the mask considered in this simulation, Rdiaphr ≈ 9 mm is
close to an optimum.

In fact we notice that all features show oscillations with the aperture and we precisely
describe the extrema positions in terms of the diaphragm aperture Rdiaphr. We first note
that the maximal (resp. minimal) values of the trap bottom variations (as represented
by δUstd, δUmax or Ubottom) match the position of the minimal (resp. maximal) values
of the stiffness of the potential η. We can then only consider one of these variables to
represent the global variations of the trap characteristics. From now on, we describe
the oscillations of the trapping properties by the variation of δUstd with the diaphragm
aperture Rdiaphr.

Following the qualitative conclusions of G.2.1, we can compare these oscillations to
the azimuthal average of the intensity profile juste before the diaphragm. From this,
we infer the cut realized by our circular diaphragm. For getting an insight on this
intensity profile, we note the similarity of the optical setup considered to the Fraunhofer
diffraction by a disk–shaped aperture that results in an Airy pattern:

IAiry(r) ∝

(

J1(x)

x

)2

where x =
2πrRmask

λ f
(G.8)

We can also numerically estimate this intensity profile using our previous model for the
light propagation and by considering the profile:

Id(r) = |Ed(r)|2 (G.9)

where Ed(r) is the azimuthal average of the field calculated in Eq. G.3 just before the
diaphragm cutting.

First, we notice that the oscillation of the trapping properties occurs at a length scale
corresponding to the diffraction pattern modulation obtained from Airy function or
from the more accurately simulated intensity profile Id(r). For Rdiaphr varying from
3 mm to 30 mm, the average spacing of the extrema is ∼ 3.3 mm for all these oscillations.
We also note an "inversion" between the largest spacing 2 from maxima in intensity to
minima in the trap bottom variations.

For a quantitative comparison, we plot in Fig. G.4 the variations of the trap char-
acteristics for an aperture Rdiaphr along with the intensity value at the cutting radius
r = Rdiaphr as function of this radius. We note that the maxima in δUstd are located at
radii close to, but greater than, the intensity minima. On the selected range of Rdiaphr,
the distance between these two successive extrema is, in average, δmax = 180 µm. We
note in the same way, that the minima in δUstd are located at radii close to, but greater

2. Indeed the spacing of the maxima is not rigorously equal th the spacing of the minima for each of
the considered oscillations.
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Figure G.3.: (a)-(b) :Evolution of the uniformity of the trap bottom withRdiaphr.: (a) mean value
of the potential in the trapping region, (b) maximal (blue) and rms (green) varia-
tions of the potential in this region. The red area is the forbidden domain where
the variation of the trap bottom is more than 5% of the trap barrier (Note that by
definition of the trapping region, δUmax ≥ 0.05). (c)-(d): Evolution of the steep-
ness of the edges with Rdiaphr: (c) fitted stiffness on the simulated intensity profile,
(d) power law coefficient obtained from the fit of its elliptic average. The red area
corresponds to the forbidden domain where β ≤ 5. The gray area corresponds to
the domain where no trapping region is found in the resulting intensity distribu-
tion.

than, the intensity maxima. On the selected range of radii, the distance between these
two successive extrema is, in average, δmin = 700 µm.If the diaphragm cuts the elec-
tric field distribution close to a minimum of the diffraction pattern then the resulting

257



4 6 8 10 12 14 16 18 20

10−5

10−4

10−3

10−2

10−1

100

Rdiaphr(mm)

%
IAiry/IAiry(r = 3mm)
Id/Id(r = 3mm)
δUstd

Figure G.4.: Comparison of the evolution of the trap properties and of the diffracted intensity
at the edge of the diaphragm in terms of the diaphragm radius Rdiaphr itself. For
visibility we renormalize the intensity profile by their value at the minimally used
radius for the cut Rdiaphr = 3 mm

trap shows the highest discrepancies to a box–like one; whereas it results very close to
the expected quality of a uniform trap when the cut is made near a maximum of the
distribution.

G.2.3. auxiliary effects: varying the size and the shape of the mask

By performing similar simulations while varying the mask functions t(x, y), we note
that these conclusions hold for various mask shapes and sizes. More precisely, the
conclusions are qualitatively the same but the quantitative results are modified.

First, we note that if we perform a simple rescaling of the mask then the quantitative
description of the trapping quality is the same up to a basic rescaling of the diaphragm
aperture. Indeed, from previous analysis, we pointed out the intimate link between
the position of the cut in the diffraction pattern and the resulting trap quality. As un-
derstood from the previous simplified description using Airy pattern, the cutting effect
can be expressed in terms of the dimensionless quantity x = 2πRdiaphrRmask/λ f . Then,
when changing Rmask by a multiplicative factor γ, the conclusions hold for the rescaled
aperture Rdiaphr/γ.

We performed simulations for various mask types – square, rectangle and annulus.
In each case, we note the appearance and disappearance of intensity bumps inside the
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inner trapping region though not always simply located at the center. Their position
and their number change according to the precise intensity pattern in the plane of the
diaphragm and on the order of the cut maxima in this pattern. However, we computed
that they similarly result in an oscillatory behavior in the characteristics of the trap
uniformity. The positions of the extrema are shifted compared to the simple case of the
disk shape mask for which the beam symmetry is preserved by the mask cut and thus
a unique length scale Rmask is introduced by this cut.

We show in Fig. G.5 an example of the intensity defects appearing when cutting the
diffraction pattern resulting from the use of a square-shaped mask of half side length
of 40 µm. We rescale the intensity to 15% of the barrier in order to enhance the trap bot-
tom variations. We point out the evolution of the number of the intensity peaks in the
trapping domain with the diaphragm aperture. Apart from these geometry changes,
we also notice a variation in the maximum and standard deviation of the intensity of
these defects with the radius. This translates in oscillations in the uniform trap quality
as previously observed with the disk-shaped mask. We note from unshown simula-
tions that for Rdiaphr . 5 mm the resulting beam profile presents smooth corners and
is intermediate between a square and a disk shape. It also shows an important bump
at the center of the distribution. For Rdiaphr = 3 mm, the potential is equivalent to the
diffraction by a disk–shaped mask.

G.3. Conclusion

In conclusion, we showed that a diaphragm placed just in front of the second lens of
the telescope used for imaging our dark mask has a drastic effect on the uniform trap
quality. For the characteristic sizes of our setup, these modifications are non-negligible
in terms of atomic sensitivity for radii Rdiaphr . 15 mm which is the case in our setup.
In this case, the limiting feature for identifying our trap to a box-like one is the trap
bottom uniformity, that is to say the importance of the variations of the intensity in the
central region (where the atoms are confined) compared to the height of the barrier that
bounds this region. For an aperture smaller than Rdiaphr . 15 mm, we note that we can
still reach a satisfying regime by fine-tuning the effective aperture of our optical sys-
tem, for example by setting it to a smaller value by adding a diaphragm of adjustable
aperture on the path of the beam. This technique is similar to an rough apodization
process. Indeed, the trap quality shows an oscillatory behavior with the aperture size
due to the specific position of the cut performed by the diaphragm within the diffrac-
tion pattern (position compared to the local intensity minima or maxima.) shown by
the beam inside the telescope.
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Figure G.5.: Examples of simulated intensity profiles for a square–shaped mask when vary-
ing Rdiaphr. We simulate the intensity profile using the procedure described in
G.1.1. We use Rdiaphr = 7, 8.8, 10.3, 12, 13.4 and 15 mm which correspond to
the detected extrema (alternatively maxima and minima) of δIstd. We rescale the
intensity to 15% of the barrier to enhance the trap bottom defects.
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H. Procedure for Initialization of fringe pattern fit

In 7.3.2, we are interested in characterizing quantitatively the evolution of the fringe
pattern resulting from matter-wave interference between two similar but independent
rectangular clouds set parallel and coplanar, with the cloud parameters. The interfer-
ences result in roughly linear fringes aligned along the separation between the two
clouds, roughly matching the vertical axis of our imaging camera. As described in the
main text, we characterize the fringes contrast by performing an initial fit of the density
on each line l of pixels n(x, yl) to Eq. 7.22 which reads:

n(x) = n0

(

e−x2/2σ2
0 + ce−x2/2σ2

cos(k0x + φ)
)

(H.1)

This fit function has six free parameters:

1. n0 is the central density on the line l,

2. σ0 is the gaussian width of the overall cloud,

3. σ is the gaussian width of the interference domain,

4. k0 is the momentum component associated with the fringe spacing λ = 2π/k0,

5. φ is the fringe phase,

6. c is the fringe contrast.

The most challenging part of our contrast characterization lies in the quality perfor-
mance of this fit for each line of the initial density n(x, yl) whereas the data may show
important shot noise (from photonics noise inherent to absorption imaging technique)
making each fit very sensitive to the initial condition. To enhance the performance our
fitting procedure, we performed a sophisticated initialization using several preliminary
fits. We detail this procedure here.

Firstly, we initialize the phase φ and the fringe momentum k0 by using a contrast en-

hancement method and by fitting each line of the resulting contrast–enhanced picture.
We first convolute the 2D density distribution by a 2 × 2 matrix with constant coeffi-
cients so that the high–frequency noise is filtered out but the fringes are not blurred.
On this smooth picture, we detect local maxima of each line and produce a resulting
boolean matrix of local–line–maxima (showing 1 at each detected maxima). We smooth
out this intermediate matrix by convoluting it with a gaussian whose width is selected 1

to filter out the noise without merging the different fringes and thus produce a contrast–
amplified picture. We finally iterate once this contrast enhancement procedure on the
first contrast–amplified picture. To initialize the phase φ and the momentum k0 of the
fit of n(x, yl) , we fit the corresponding lines of the final contrast–amplified picture by
a pure sinusoid:

n(x) = n0 (1 + c0 cos(k0x + φ)) (H.2)

1. The precise value of this width depends on Time–of–Flight duration τ used
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Note that the contrast c0 of the fitted sinusoid has no link to the initial fringes contrast
c.

Secondly, we initialize the contrast c and the gaussian widths σ0 and σ, and a second
test value of fringe momentum k0 by fitting the norm of the 1D Fourier transform of
each line of pixels |ñ(kx, yl)|2. This transform enables to get ride of the phase param-
eter and to isolate the interesting momentum domain. This decouples better the noise
component from the fringe component than the direct space signal. We fit |ñ(kx, yl)|2
by a sum of three gaussian peaks:

|ñ(kx)|2 = ñ2
0

(

e−k2
x/σ̃0

2
+

c2

4

(

e−(kx−k0)
2/σ̃2

+ e−(kx+k0)
2/σ̃2

)

)

+ b (H.3)

The peak centered on kx = 0 corresponds to the cloud density itself. The fringes reveals
in two symmetric peaks centered on ±k0 and of reduced amplitude compared to the
central peak by a factor c2/4, c equaling the fringes contrast in real space. We note that
photonic shot noise contributes to |ñ(kx)|2 as a constant offset. The parameter b ≥ 0
added in Eq. H.3 aims in accounting for such a contribution. Note that such an effect of
the shot noise blurs the signal of the fringes pattern by leading to random fluctuations
of the order of b for any k. The effect is thus more important as n0 and c are small.

We initialize the various parameters of the preliminary fits of Eqs. H.2 and H.3 ei-
ther with constant preselected values or, if it exists, with the results of the previously
performed fit of the above line n(x, yl−1) along Eq. H.1. We choose the best matching 2

result between these two initializations.
Finally, we perform three fits of the initial density n(x, yl) along Eq. H.1, with three

different initializations:

1. We initialize all six parameters with the results of the previously performed fit of
the above line n(x, yl−1) along Eq. 7.22.

2. We initialize the phase φ, and the fringe momentum k0 from the contrast-enhanced

fit. The contrast c, the widths σ0 and σ and the density n0 are initialized from pre-
selected constant values.

3. We initialize the contrast c, the widths σ0 and σ, and the fringe momentum k0 from
the Fourier-transform fit and the phase φ and n0 from the "second-initialization"
fit detailed in the last point.

We then choose the best matching (defined as in footnote 2) result between the three fits
and deduce the values of γ from Eq. 7.23 from which we ultimately obtain the fringe
coherence parameter Γ via Eq. 7.24.

2. The best match is defined here by the highest value of the R2 determination coefficient that is the
normalized difference between the total sum of square SStot and the residual sum of square SSres: R2 ≡
1 − SSres

SStot
with, if we denotes ni the experimental data at pixel i, fi the fitted value at same pixel and N the

total number of pixel in a line, SSres = ∑i(ni − fi)
2 , SStot = ∑i(ni − n̄)2 and n̄ = 1

N ∑
N
i=1 ni
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I. Estimate of the collision time in a thermal cloud

In this annex, we define and calculate the collision time τcoll for a thermal cloud con-
fined in-plane in a uniform trap and along z by an harmonic potential. The estimate of
this characteristic time reveals important for accurately defining time scale over which
thermalization occurs and then setting the experimental time variables accordingly. It is
also significant for the study of its dynamical properties as the one presented in Chapter
8. First it gives the scale for a local equilibrium to be set and so a temperature to be de-
fined (it must be a few τcoll). Second it is a key variable in the general Kibble-Zurek (KZ)
formalism (which study the quench dynamic at the crossing of a transition point) used
in Chapter 8: It enters as the characteristic scale of the thermalization time divergence
of Eq. 8.2 which is used to analyze the "freezing-out" of the dynamics at the vicinity of
the transition point. Estimating this characteristic time is then useful to determine the
range of durations over which it is relevant to consider a ramp in temperature in our
investigation of the KZ mechanism (see 8.1.3.2).

I.1. Definition

We define the average collision time τcoll as :

τcoll =
1

n̄σv̄
(I.1)

where
— σ is the elastic cross-section. For a Bose gas of identical particles, cold enough for

the inter-particle interactions to be characterized in the contact approximation by
a unique scattering length as, the cross-section simply follows σ = 8πa2

s . For 87Rb
the s-wave scattering length is as = 5.1 nm.

— n̄ is the average density defined by

n̄ =
1
N

∫

n2(r)d3r (I.2)

Here and for the rest of the Annex, n(r) stands for the 3D spatial density.
— v̄ is the average velocity of the colliding particles. It is defined by

v̄ =
1
m̃

∫

pñ(p)d3 p
∫

ñ(p)d3 p
(I.3)

where m̃ is the reduced mass of the colliding particles. ñ(p) is the density in
the conjugated space for the reduced particle (of mass m̃), deduced from integra-
tion of the global phase space density d(r, p): ñ(p) =

∫

d(r, p)d3r while n(r) =
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∫

d(r, p)d3 p (d is precisely defined by the choice of a normalization condition).

I.2. Calculation using Boltzmann predictions

I.2.1. Average velocity

In the ideal case, we have ñ(p) ∝ exp −p2

2m̃kBT and :

v̄ =
1
m̃

(

1
2πkBTm̃

)3/2 ∫

p exp
−p2

2m̃kBT
d3 p (I.4)

For identical particles the reduced mass is m̃ = m/2 and thus we have

v̄ =

√

16kBT

πm
. (I.5)

I.2.2. Average density

For a classical thermal gas trapped in a potential V(r), we have n(r) = n(0) exp
(

−V(r)
kBT

)

where n(0) is the density at the trap center. We consider a transverse harmonic confine-
ment of frequency ωz/2π and a perfectly uniform in-plane confinement of area A. Then
:

n(0) =
N√

2πσzA
with σz =

√

kBT

mω2
z

(I.6)

and

n̄ =
n(0)√

2
. (I.7)

We can express this average density in terms of the average velocity given in Eq. I.5
and find :

n̄ =
N

A
2ωz

πv̄
. (I.8)

I.2.3. Collision time

Reinjecting the previous expression in Eq. I.1, we find :

τcoll =
1

16n(2D)a2
s ωz

. (I.9)

where n(2D) denotes the two-dimensional uniform density of the gas N/A. The result
is remarkably independent of the temperature.

As a reference point, we will first use the BEC⊥ transition point. We however already
point out that, due to the intrinsically non negligible Bose stimulation, Boltzmann pre-
dictions developed here lead to an overestimate of the actual collision time. Using
ωz/2π = 365 Hz and typical 1 surface density n(2D) = 75 µm−2 , we find τcoll = 14 ms.

1. it matches the BEC⊥ transition point of interest in 8.1.2. In this study, we consider a gas confined in
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For configuration deep in the thermal regime, which would be more reliably de-
scribed by the previous development (negligible Bose stimulation) and which is of in-
terest for a quantitative description of the KZ argument (for example in 8.1.3.2), the
surface density would be much higher and thus τcoll shorter. Indeed, in our uniform
geometry, the surface of gas is constant, while evaporative cooling leads to a loss of
atoms. The value of τcoll in this classical calculation is then reduced by the same factor
than N is higher.

I.3. Calculation using Bose Law

In order to go further in the estimate of τcoll, we will now use Bose statistics instead
of Boltzmann approximation, still applying the definition of Eq. I.1, for a set of inde-
pendent particles. This approximation must give a better estimate close to the BEC⊥
transition point that is of interest here (as in 8.1.2) as then the effect of Bose statistics can
not be neglected (at least as far as the description of z-motion is concerned). We con-
sider the same trapping potential V(r) as in the previous section (sum of a transverse
harmonic confinement of frequency ωz/2π and a perfectly uniform in-plane confine-
ment of area A). We perform Bose computations as described in Annex A using a full
quantum 3D treatment of the states. In this calculation, the spatial density is given by:

nBose(r) = N〈ψ̂†(r)ψ̂(r)〉 = ∑
j

fj|ψj(r)|2 (I.10)

where ψj(r) is the wavefunction for the state j = (jx, jy, jz) and is given by (Eq. A.2)

ψj(r) =
1

L
√
ℓz

sin(π jxx/L) sin(π jyy/L) χjz(z/ℓz), (I.11)

in the case of a square box, with ℓz = (h̄/mωz)1/2 and χj is the j-th Hermite function.
fj stands for the occupation factor of the same state j and is given by ideal Bose law
formula (Eq. A.3):

fj =
1

exp
[

(Ej − µ)/kBT
]

− 1
(I.12)

with Ej =
π2h̄2

2mL2 (j2x + j2y − 2) + jz h̄ωz (I.13)

The value of the mean velocity v̄ must also be modified. It can be approximated to
the mean value:

v̄Bose =
1
m̃

√

〈 p̂2〉 =
(

1
N ∑

j

fj

[

(

πh̄

m̃L

)2

(j2x + j2y) + (jz +
1
2
)

h̄ωz

m̃

])1/2

(I.14)

in which we replaced the mass m by the reduced mass m̃. Such a formula is easily

a square of L = 30 µm and the BEC⊥ transition point corresponds to a temperature is T = 148 nK and a
atom number N = 65700.
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summable and we check that using Boltzmann prediction for f j (instead of Bose for-
mula), we numerically recover the prediction of Eq. I.5. For the parameters given in
footnote 1, we found v̄Bose = 9.38 mm/s instead of v̄ = 8.47 mm/s using Boltzmann
prediction.

I.3.1. Approximating spatial density dependency

Performing numerical summations to deduce the full dependency of the density is
an involved task but to have an insight on the modifications of the collision time due to
Bose statistics, we can perform some approximations. We first assume that :

1. the in-plane density is uniform so that n(r) = n(z).

2. the z-dependency of the density can still be encompassed by a gaussian but with
a modified width σBose

z compared to the thermal value of σz given in Eq. I.6.

We compute the modified width σBose
z by inverting Eq. I.6 which is valid within pre-

vious approximations and using the central 3D density nBose(0) deduced from Bose law
along Eq. I.10:

σBose
z =

N√
2πnBose(0)A

(I.15)

For the parameters given in footnote 1, we found σBose
z = 0.84 µm instead of σz =

1.63 µm. We deduce the simple rescaling relation : n̄Bose = σz

σBose
z

n̄ and τBose
coll = σBose

z
σz

v̄
v̄Bose τcoll.

The collision time is then reduced to τBose
coll = 6.6 ms.

Using Bose law, it is easy to characterize a configuration away from the transition
point by simply considering a (relatively) small value of the fugacity z. For example,
we choose z = 0.96 (at the transition point we had z = 0.998 for the considered pa-
rameters). Using a typical temperature of T = 250 nK (characteristic of our loading
conditions, see 7.1) we deduce N = 1.4 × 105 and found τBose

coll = 3.9 ms.
In conclusion, the characteristic collision time typically verifies τBose

coll . 10 ms in a 2D
thermal cloud above or around the BEC⊥ transition point and for our typical experi-
mental parameters.
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Résumé

La dimensionnalité d’un système affecte fortement ses propriétés physiques ; les transitions de phase
qui s’y déroulent ainsi que le type d’ordre qui y apparaît dépendent de la dimension. Dans les sys-
tèmes de basse dimension, la cohérence s’avère plus difficile à établir car les fluctuations thermiques et
quantiques y jouent un rôle plus important. Le fluide de Bose à deux dimensions est particulièrement
intéressant car, même si un ordre total est exclu, un ordre résiduel à « quasi-longue » portée s’établit à
basse température. Deux ingrédients ont un effet significatif sur l’état du système : (i) la taille finie d’un
système réel permet de retrouver une occupation macroscopique d’un état à une particule ; (ii) les inter-
actions entre particules conduisent à l’apparition d’un type non-conventionnel de transition de phase
vers un état superfluide.

Dans cette thèse, nous présentons une étude expérimentale du gaz de Bose bidimensionnel (2D) uti-
lisant deux types de paysages énergétiques pour piéger nos atomes. Dans la première partie, nous utili-
sons la dépendance spatiale de certaines propriétés locales d’un gaz inhomogène pour caractériser l’état
du système homogène équivalent. Nous extrayons son équation d’état des profils de densité et nous
testons son comportement superfluide en mesurant le chauffage induit par le mouvement d’une per-
turbation locale. Dans la deuxième partie, nous observons et caractérisons l’émergence d’une cohérence
de phase étendue dans un gaz 2D homogène, en particulier via le passage de trois dimensions à deux
(croisement dimensionnel). Nous étudions l’établissement dynamique de la cohérence par un passage
rapide du croisement dimensionnel et nous observons des défauts topologiques dans l’état superfluide
final. Nous comparons nos résultats avec les prédictions du mécanisme de Kibble–Zurek.

Mots-clés : Condensation de Bose–Einstein, basse dimension, équation d’état, superfluidité, gaz uni-
forme, cohérence de phase quantique.

Abstract

The dimensionality of a system strongly affects its physical properties; the phase transitions that take
place and the type of order that arises depend on the dimension. In low dimensional systems phase
coherence proves more difficult to achieve as both thermal and quantum fluctuations play a stronger
role. The two-dimensional Bose fluid is of particular interest as even if full order is precluded, a residual
"quasi-long" range order arises at low temperatures. Then two ingredients have a significant effect
on the state of the system: (i) the finite size of a real system enables one to recover of a macroscopic
occupation of a single-particle state; (ii) the interactions between particles lead to the emergence of a
non-conventional type of phase transition toward a superfluid state.

In this thesis, we present an experimental study of the two-dimensional (2D) Bose gas using two dif-
ferent energy landscapes to trap our atoms. In the first part, we use the spatial dependence of some
local properties of an inhomogeneous gas to characterize the state of the equivalent homogeneous sys-
tem. We extract its equation of state with a high accuracy from the gas density profiles and test its
superfluid behavior by measuring the heating induced by a moving local perturbation. In the second
part, we observe and characterize the emergence of an extended phase coherence in a 2D homogeneous
gas in particular via a 3D-to-2D dimensional crossover. We investigate the dynamical establishment of
the coherence via a rapid crossing of the dimensional crossover and observe topological defects in the
final superfluid state. We compare our findings with the predictions for the Kibble–Zurek mechanism.

Key words: Bose–Einstein condensation, low dimension, equation of state, superfluidity, uniform
gas, quantum phase coherence.
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