
HAL Id: tel-01302849
https://theses.hal.science/tel-01302849

Submitted on 15 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic growth models : universality and fragility
Thomas Gueudré

To cite this version:
Thomas Gueudré. Stochastic growth models : universality and fragility. Physics [physics]. Ecole
normale supérieure - ENS PARIS, 2014. English. �NNT : 2014ENSU0009�. �tel-01302849�

https://theses.hal.science/tel-01302849
https://hal.archives-ouvertes.fr


Physique Statistique des systèmes désordonnés
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1 Stochastic growth

Growth refers to a positive change over time, usually in size. Most objects in Nature go
through an evolution process. From the stalactites to the humans, they follow a stage
of maturation towards fullness or fulfilment. This evolution is particularly central to
the notion of emergence, a process whereby larger entities, patterns, or regularities arise
through interactions among smaller or simpler entities that themselves do not exhibit
such properties. For example, this is a common strategy found in many animal groups,
from the colonies of ants to the flocks of birds [1]. The notion of life, from the mass of
cells and molecules to a living being, can as well be linked to this vast notion.

Of course, merely having numerous interactions is not enough to guarantee an emergent
behaviour: many of the interactions may be negligible, irrelevant, or may cancel each
other. In some cases, a large number of interactions can in fact work against the emergence
of interesting behaviour, akin to a white-noise blurring the meaningful signal. One needs
self-organization, distributed over all the components, with some form of global order or
coordination spontaneously arising out of the interactions. This order is often triggered
by random fluctuations and amplified by positive feedback.

Because of the scale and the complexity of the interacting systems, it is impossible to
track the appearance of macroscopic collective behaviour from the microscopic details.
There is even debate about the impossibility of closing that gap, an hypothesis coined
strong emergence. An interesting example in [2] presents a class of physical systems
that exhibits non-computable macroscopic properties. More precisely, computing such
properties from microscopic considerations would be equivalent to solving computational
problems known to be undecidable in computer science.

In that respect, the growth process is a good candidate to scrutinize the emergence phe-
nomenon: the system is building its order in front of our eyes. During that process, it
is very common to observe the occurrence of natural patterns: trees, spirals, meanders,
waves, foams... They sometimes find explanations in chaos theory, fractals, logarithmic
spirals, topology... Strikingly, roughness of the growing interface is observed in numerous
experiments, triggering a large amount of statistical studies of those objects. Rough sur-
faces can occur under both in and ouf of equilibrium conditions but most rough surfaces
are formed under conditions that are far from equilibrium. The interfaces may exhibit
self-affinity over a significant range of length scales, their scaling properties be very sim-
ilar from one process to another. These scaling and universal properties are central to
statistical physics. The ultimate goal of identifying the main basins of attraction of these
models (coined universality classes) would reduce the problem of describing and even-
tually understanding the structure of the enormous variety of rough surfaces to one of
manageable proportions.

After this rather “grand” introduction, we will be interested in the statistical physics
of stochastic growth, and more specifically growth with non-linear mechanisms, a class
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of problem much associated to its paradigmatic representative, the Kardar-Parisi-Zhang
class.

We first give a flavour of the physical problems considered by presenting some experi-
ments, upon which we build the basic elements of the theoretical stochastic growth. After
a rapid overview of the models developed to tackle some surprising features of those pro-
cesses, we enter the main goal of this Thesis, that lays at the core of a well known mapping
to an optimization problem, the Directed Polymer (DP). We state the elaborate results
obtained recently that have triggered a renewed activity and how they might shed a new
light on this mature field.

1.1 The experiments

Very often, growth processes can be described in terms of propagation of an “active
zone”, the growth front. After the front has passed, the structure left behind does not
change anymore. For some simple growth models, this is an exact picture and (at least
in principle) the internal structure can be understood completely in these terms. But
actually, most systems expanding in time might be considered as growing interfaces, and
this approximation holds in various experiments: dielectric breakdown, fluid displacement
in porous media, fire fronts... To motivate the main object of that Thesis, the next section
is devoted to some growth processes (either experiments or models) that arguably fall into
the non-linear stochastic growth class, called the KPZ class. Two stringent difficulties
when trying to observe that class are: i) ensuring that the growth mechanisms are local
- for example, the interactions at the surface not being long-range. ii) avoiding the
occurrence of quenched disorder, which leads to another universality class.

1.1.1 Growth of bacteria colonies

The material of this subsection is borrowed from [3].

Bacteria colonies exhibit a variety of patterns depending on both baterial species and
environmental conditions. In [3], the migration of the wild-type strain B. Subtilis, with
a rod-like cell form, was investigated. Their mobility or shape are affected by several
factors, mainly the hardness of the agar medium and the surfactant they secrete. On a
nutrient poor substrate, they turn into spores. The control parameter of the experiments
is presently the agar medium. But, because in a soft agar medium, bacteria might scatter
around the growing front of the colony, resulting in a fuzzy interface, one has to use a
mutant of the bacteria in rich environment. This mutant does not produce any surfactant,
resulting in a decrease of motility, and a sharply defined front of the colony.

Two regimes were explored:

• On a hard agar medium, the cells do not move actively on the surface, they mainly
stretch. The colony interface consists on many chains of bacteria that lie almost
side by side and advance forward by increasing their length along the interface and
folding themselves (see Fig.1.1).
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Figure 1.1: (Color online) Bacteria fronts in both regimes, for different magnifications
(right and left): on top, the hard agar medium, leading to developing chains of cells
stretching and foldin. At the bottom, a rich soft agar medium, with expanding cells
colony due to a large motility.

• On a soft agar medium, the colony of mutants becomes compact and spreads homo-
geneously in every direction of the medium surface. This interface moves forward
locally through random pushes due to active movement of individual cells inside
the colony. Because of this activity, the interface advances much faster than in the
former case (see Fig.1.1).

A considerable difference between both cases lies in the scale of the correlations in the
height of the interface. The folding of bundles of long chains in the first case introduce
long range correlations. Those chains align almost in parallel with the interface and
statistically correlate a wide portion of the front. On the other hand, the growth in the
second case looks very much local, the interface being driven by the forward move of
independent bacteria. The measure of the front roughness in that case (see later for a
definition) leads to an exponent χ = 0.5.

1.1.2 Nematic crystal

The material of this subsection is borrowed from [4].

A liquid crystal is in a state enjoying properties between those of conventional liquid and
those of solid crystal. It basically flows as a liquid, but its molecules may be oriented
in a crystal-like way. The various liquid-crystal phases can be distinguished by their
different optical properties (such as birefringence), for example by observing them under a
microscope using a polarized light source: the contrasting areas in the textures correspond
to domains where the liquid-crystal molecules are oriented in different directions.

In a beautiful set of experiments [4], the convection of nematic liquid crystal when con-
fined in a thin container and driven by an electric field was studied. When subjected to
an external voltage strong enough to trigger the Carr-Helfrich instability [5], turbulent
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Figure 1.2: (Color online) Rough front in Takeuchi Sano experiment. (Left) Circular
front growth corresponding to the so-called droplet geometry. (Right) Flat front growth
corresponding to the flat geometry.

phases, called dynamic scattering modes 1 and 2 (DSM1 and DSM2) [6] are observed suc-
cessively upon increasing the root-mean-square amplitude of the voltage at relatively low
frequencies. The difference between DSM1 and DSM2 lies in their density of topological
defects in the director field. In the DSM2 state, a large quantity of these defects, called
disclinations, are present, a feature that can be very easily observed. The latter phase
can be created by nucleating a defect with a ultraviolet laser pulse. It then starts grow-
ing constantly, forming a compact cluster bordered by a moving rough interface under
voltage high enough.

In the experiment performed in [4, 7, 8], the mechanisms of the growth are carefully con-
trolled. As the experiment can be easily repeated, it gives access to very clean statistics,
and several initial geometries, droplet and flat (see Fig.1.2), can be tested. It was noticed
(and expected before from theoretical considerations [9, 10, 11, 12]) that some character-
istic scalings of the interface would exhibit universal behaviour, while the details of the
fluctuations (most notably their full probability distribution) would be dependent on of
the initial condition, even at very large time. More precisely, they measure:

h(t) = c1t+ c2t
1/3χ (1.1)

with c1 and c2 non universal constants, and χ a probability distribution depending on
the initial conditions.

1.1.3 Conductivity in Anderson Localization

To exhibit the large scope of stochastic interface growth, we now turn on a rather different
example, whose notions will be useful in later chapters. The material of this subsection
is borrowed from [13].

The distribution function of the conductance g of disordered systems is very well under-
stood in the metallic regime from the non-linear sigma model [14], but poorly understood
in the localized phase. Provided that the degree of randomness of the impurities or de-
fects is sufficiently large, the electronic waves might be localized rather than diffusing.
The Anderson hopping model, simple yet phenomenologically rich, is described by the
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Hamiltonian:

H =
∑

ǫia
+
i ai + t

∑

i,j

a+j ai (1.2)

where the operator a+i (ai) creates (destroys) an electron at site i and ǫi is the energy of
this site chosen at random from a given distribution. The double sum runs over nearest
neighbours. The conductivity g can expressed through the Landauer formula as a sum
of quantum amplitudes [15]. The amplitude between two sites a and b is expressed from
Eq.1.2 in the Green formalism by:

〈a|G(E)|b〉 =
∑

Π

∏

i∈Π

1

E − ǫi
(1.3)

where the sum runs over the set Π of all possible lattice paths connecting the two sites
a and b. In the strongly localized regime for distances much larger than the localization
length, the previous sum is dominated by the forward-scattering paths [14].

g now fluctuates depending on the realization of the disorder. It was realized in [13]
that, in the strongly localized regime, ln g obeys the very same statistics than some well
studied models of stochastic growth:

ln g = c0L+ c1L
1/3χ (1.4)

χ a probability distribution belonging to a family called Tracy-Widom.

Although baffling at first, the connection between them is drawn by a stylized model of
glassy systems, the Directed Polymer, that we shall see later in this introduction.

1.2 The statistics of roughness

Because of the very different contexts of the above examples, a quantitative treatment of
the characteristic features of the front is much needed. This goes along with the definition
of scaling exponents, often with a geometrical interpretation much inspired by the theory
of fractals.

At a mesoscopic scale, the height of a rough interface over a surface of size L1 is well-
defined and commonly enjoys a self-affine invariance property. After rescaling, the sta-
tistical properties of :

h̃(x, t) = b−χh(bx, bzt) (1.5)

are the same than h(x, t). Considering the average variations of height W (x, t) =
1/L

∫

du|h(x+ u, t)− h(u, t)|, one obtains from Eq.1.5:

W (x, t) ∼ xχf
( x

t1/z

)

(1.6)

1In higher dimensiosn, the statistical properties defined below are computed along a certain direction.
If the system is isotropic, one can of course average over all directions.
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with limu→0 f(u) = cste and limu→∞ f(u) ∼ u−χ to ensure that two sites far apart
are statistically uncorrelated. z is a dynamical exponent: it measures how fast the
fluctuations of h(x, t) laterally spread over the front. χ is the rugosity exponent [16]: if
χ = 1 the surface is flat, while for χ > 0 it exhibits roughness, up to χ = 1 where it
becomes purely fractal [17]. For χ < 1, they are coined self-affine fractals and they look
flat at large scales L.

One can define the more general height difference correlation functions:

Cq(x) = 1/L

(
∫

du|h(x+ u, t)− h(u, t)|q
)1/q

(1.7)

The role of q is to zoom on the contribution of different size populations of the increments
δh. In many cases, one observes the scaling:

Cq(x) ∼ xHq (1.8)

If Hq is independent of q, the rough surface is a statistically self-affine fractal over a
corresponding range of length scales with a characteristic exponent (that we denote χ,
but often called the Hurst exponent, and denoted H [18]). Therefore, over a space step
δx:

δh ∼ δxχ (1.9)

The self-affinity property only holds over a finite range of (δx, δh), bounded by vertical
and horizontal scales δx < ξ‖ and δh < ξ⊥. Those scales are frequently found to grow
algebraically with increasing time t, especially if growth occurs from a smooth surface.

Measuring χ poses less problem in computer simulations, where complete information
about the front is available. A variety of methods exists, the most common one being
to compute the scaling of the spatial variance C2(x), using Eq.1.8. Experimentally, the
limit of accessible scales might lead to ambiguous results. A popular approach is the “slit
island” method [19], where the rough surface is coated with a layer of a second material
and carefully ground and polished parallel to the flat reference surface. As material is
removed, “islands” of the surface material will appear in a “sea” of the coating material.
As further material is removed these islands will grow and merge. It can be shown that
the boundary between the two materials is a self-similar fractal boundary with a fractal
dimensionality given by D = d−χ. We refer to [20] for more details on the experimental
methods.

1.3 The KPZ class and its equation

We now present the two best known continuum models used to describe stochastic growth
processes.
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Figure 1.3: (Color online) A model of random deposition with surface relaxation. Each
block fall in a random place at a random time. The deposited particle is allowed to
diffuse along the surface up to a finite distance, settling when it finds the position with
the locally lowest height. From [22].

1.3.1 Anatomy of the KPZ equation

The first step towards a description in the continuum of interface growth was made by
Edwards and Wilkinson in [21]. They balance the competing effects of gravity (smoothing
the interface) with random deposition. Starting from a pure random deposit model, they
observe that a particle at the surface is more likely to fall in a local minimum around
its landing point (see Fig.1.3). Such a local rearrangement is classically modelled by a
Laplacian term, accounting for diffusion 2. They finally obtained the Edwards-Wilkinson
(EW) equation:

∂th(x, t) = ν∆h(x, t) + η(x, t) (1.10)

where h(x, t) defines the height of the interface, usually in a comoving frame chosen so
that its average speed is set to 0, ν the diffusion coefficient and η a space-time dependent
noise of variance η(x, t)η(x′, t′) = 2Dδ(x−x′)δ(t− t′). Eq.1.10 is linear and can be solved
in Fourier space (for more details, see Section 2.2.1), giving the scaling exponents:

z = 2 and χ =
2− d

2
(1.11)

The interface is rough for d = 1, flat for d > 2 and shows logarithmic corrections for
d = 2.

However, it was quickly realized that a broad variety of interfaces do not exhibit these
scalings. If one assume that the growth speed only depends on local properties, the most
general equation is:

∂th = v(h,∇h,∇2h, (∇h)2 · · · ),+η(x, t) (1.12)

2It is already worthwhile to mention, as in [21], that the microscopic details of such a local smoothing
of the interface are irrelevant in the continuum limit, a first step towards universality.
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It would be rather unphysical to keep h or ∇h, as there is no preferential direction in the
initial problem. Keeping the first relevant terms:

∂th = ν∆h+
λ

2
(∇h)2 + η(x, t) (1.13)

This equation is called the Kardar-Parisi-Zhang equation, first given in [23] and since then
cited thousands of times in both the mathematics and physics literature. It is probably
the most studied continuous model of stochastic growth. The occurrence of the non-linear
term (∇h)2 has a nice geometrical interpretation: when a random deposition occurs at
(x, t), the surface h(x, t) grows in the direction normal to the tangent, and not vertically.
Hence δh ≃ (1 + (∇h)2) at first order in ∇h. Assuming self-affinity Eq.1.5 and plugging
it into Eq.1.13, one obtains:

∂th̃ = bz−2ν∆h̃+ bχ+z−2λ

2
(∇h̃)2 + b(z−2χ−d)/2ν (1.14)

By comparing diffusion, noise and non-linearity in the limit b → ∞, when χ < 0 the non
linearity can be neglected and we recover the same scaling exponents than in the EW
model. On the other hand, for χ > 0, so for d ≤ 2 the non linear term dominates. A
dynamical RG analaysis was performed in the seminal paper, and even before [23, 24]. A
crucial parameter is the effective coupling constant g = λ2D/ν3. To the smallest order
in g, the rescaled modes obey the flow equations:

dν/db = (z − 2 +Kd g
2(2− d)/4d)ν (1.15)

dD/db = (z − d− 2χ+Kd g
2/4)D (1.16)

dλ/db = (χ+ z − 2)λ (1.17)

with Kd = Sd/(2π)
d. The Galilean invariance imposes χ+z−2 = 0 and the RG one-loop

of λ vanishes to first order. g itself obeys the flow equation:

dg

db
= β(g) = (2− d)g +

2d− 3

2d
g2 +O(g3) (1.18)

One can solve Eq.1.18 for the RG fixed points: if d < 2, the system always flows in the
strong disorder regime3, while for d > 2, there exists a critical transition at gc, above
which the system flows to the strong disorder regime, and below which thermal effects
dominate. d = 2 appears as the lower critical dimension for the EW fixed point, while
the existence of an upper critical dimension for the strong coupling regime, above which
it would never appear, is still an open question. There is no known expression for χ and
z in d ≥ 2. All those results were confirmed and refined in a two-loops computation
performed in [25]. Most notably, the fact that λ does not renormalize in Eq.1.17 holds at
every order in g because of some Ward identities extracted from the Galilean Invariance.

The case d = 1 stands apart, because the stationary distribution is known (for example
from the Fokker-Planck equation associated to Eq.1.13):

P ({h(x)}) ∼ exp

(

− ν

2D

∫

dx(∂xh)
2

)

(1.19)

a mere Brownian, akin to the EW case [26]4. Hence χ = 1/2 and z = 3/2.

3In fact, it is the case even for the marginal dimension d = 2.
4It is a Brownian in a comoving frame, after removing the linear speed of growth of the interface.



1.3 The KPZ class and its equation 9

1.3.2 Relation with Directed Polymer and Burgers Equation

Remarkably, there exists various mappings from Eq.1.13 to apparently unrelated prob-
lems. Applying the Cole-Hopf transform:

Z(x, t) = exp (λ/2νh(x, t))

∂tZ = ν∆Z +
λ

2ν
η(x, t)Z (1.20)

Eq.1.20 is now linear, with a multiplicative noise. It sometimes bears the name of stochas-
tic heat equation (SHE), or the parabolic Anderson model (PAM) with time-varying noise.
It is one of the most studied stochastic partial differential equations, as it describes elec-
tron transport in disorder media (see Section 1.1.3) but also the evolution of a field
of particles performing independent simple random walks with branching [27]. Hence it
relates to population dynamics, a point of view we shortly adopt in Chapter 4. Those sys-
tems are in themselves fascinating as they exhibit intermittency [27], where the solution
develops pronounced spatial structures on random isolated islands.

The path integral solution (or Feynman-Kac representation) of Eq.1.20 reads:

Z(x, t) =

∫ (x,t)

(0,0)

D[y(τ)] exp

(

− 1

2ν

∫ t

0

dτ

[

ẏ(τ)2

2
− λη(y(τ), τ)

])

(1.21)

It is a sum over all possible paths. The initial and final conditions depend on the t = 0
geometry of h(x, 0). The most commonly used are the flat geometry h(x, 0) = cste,
corresponding to a polymer with one fixed and one free extremity (point to flat), and the
droplet geometry h(x, 0) = δ(x), corresponding to a polymer with two fixed extremities
(point to point). Therefore Z is the partition function of a directed polymer along the
t axis with elasticity 1, in a disordered potential λη(x, t) and at temperature T = 2ν.
Naturally, Z is a random variable and the same scaling analysis is applicable. The most
common critical exponents, concerning the spatial extension of y(τ) and the free energy
lnZ, are defined as:

〈lnZ(t)2〉c ∼ t2θ (1.22)

〈x(t)2〉c ∼ t2ζ (1.23)

where · · ·c is the disorder averaged cumulant, while 〈· · · 〉 defines the thermal average.

The phase of strong disorder for the DP corresponds to the strong coupling regime for
the KPZ equation: both are controlled by the disorder landscape rather than thermal
fluctuations. Hence the scaling exponents of both problems are related: θ = χ/z and
ζ = 1/z. By equating in Eq.1.21 the elastic energy and the free energy, one obtains the
scaling relation θ = 2ζ − 1 or equivalently χ+ z = 2.

A third interpretation of Eq.1.13 is obtained with the change of variable v = −λ∇h,
resulting in the Burgers equation [28]:

∂tv + (v · ∇)v = ν∆v + λ∇η (1.24)

This equation can be seen as Navier-Stoke for the velocity field with no vorticity, no
pressure term and a noisy forcing5. It occurs in various areas of applied mathematics,

5Note that, in this case, the noise is correlated as the derivative of a white noise.
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Figure 1.4: A possible configuration of a directed polymer in dimension d = 1+1. t is the
principal direction, and y here, the transverse one. The polymer evolves in a disorder,
modelled by a space-time random field η(y, t)Its extremities are fixed to (0, 0) and (y1, t1).

such as modelling of gas dynamics [29] and traffic flow [30], stands as a toy-model for
turbulence and a prototype for equations for which the solution can develop discontinuities
or shock waves. Its exact solution for any initial condition can be expressed as a path
integral from Eq.1.21 (see [31] for a review).

1.3.3 The KPZ universality class

Eq.1.13 is believed to be the paradigmatic representative of the KPZ universality class,
to which belong the growth models obeying some basic rules:

• Diffusion mechanism smoothing the interface by preferentially filling local minima.
In the KPZ equation, the assumption is encoded in the Laplacian.

• Slope dependant speed. As we stated, along with the lack of preferential direction,
this leads to the non linear (∇h)2.

• A fast-decaying noise, with weak correlations, both in space and time. Depar-
ture from the KPZ class have been observed for quenched disorder6, or long-range
correlations [33].

Among the models obeying those hypothesis are the Eden growth model, the ballistic de-
position model, some fracture, solid-on-solid models, invasion percolation, the polynuclear
growth, fluid—fluid displacement experiments [20, 34]... A classification of the growth
models falling onto the KPZ universality class is still a field of ongoing research.

As for higher dimensions, even d = 2 has for a long time escaped even numerical sim-
ulations, but it seems now clearly understood from that point of view. A recent study
compares different lattice models, probing the universality of scalings and fluctuations

6The quenched disorder leads to another universality class, the Quenched KPZ (QKPZ) class [32].
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distributions in d = 2. Various models again yield the same scaling exponents and,
more strikingly, the same universal fluctuations distributions. The chase after the critical
exponents in higher dimensions [35, 36, 37] seems to have crushed the hope for simple
formula, and notably provides strong evidence against an upper critical dimension dc = 4,
in spite of its appearance in several theoretical arguments (as mode coupling [25, 38]).
Elucidating the behaviour of χ in d ≥ 2 remains one of the greatest challenges in the
KPZ class.

The situation in d = 1 is radically different, as it lends itself to analytic approaches.
One can even say, in the sense that will be detailed in Chapter 2, that the d = 1 is
integrable. Not only χ and z but the distribution of the fluctuation of h(x, t) and the
stochastic process x → h(x, t) are fully characterized. The origin of this solvability is not
completely understood but much light can be shed by unravelling a link to systems of
particles and Bethe Ansätze [39] that we extensively detail in Chapter 2.

The first exact solution of the fluctuations of the interface was obtained in [40]. The
author starts from a random growth model in two dimensions with an exponentially
distributed disorder, closely related to the one-dimensional totally asymmetric exclusion
process (TASEP). By the mean of the RSK correspondence, the problem at T = 0
is linked to random matrices, although the mapping only holds for this very specific
disorder. A swarm of exact results for various models followed [9, 41, 42], among them
the proof that the fluctuations of solution of the KPZ equation itself obeys the same
distribution [10, 43, 9, 11, 12, 44]. The identified distributions belong to a family called
Tracy-Widom, and labelled by Fβ. They were introduced by Tracy and Widom [45, 46]
as the probability distributions of the largest eigenvalue of a random matrix in the edge
scaling limit from Gaussian ensemble. Although it is possible to relate matrix models to
every β [47, 48], the most common values are β = 1, 2, 4 corresponding respectively to
ensembles of Gaussian orthogonal (GOE), unitary (GUE) and symplectic (GSE) matrices
[49]7.

After the fluctuations of h(0, t) around its mean value were computed, the complete
stochastic process x → h(x, t) for fixed and large t was characterized as the Airy process
Ai2 [50], also known from the time evolution of the largest eigenvalue in a Dyson Brow-
nian motion8. The very involved question of time correlations remains for the moment
hampered by technical difficulties, although some attempts courageously head in that
direction [53, 54].

1.4 Perspectives

The field of stochastic growth is so large today that it is impossible to list its expanding
directions. Likewise for the KPZ equation alone, because of its numerous links to other
fields. Therefore we postpone this daunting task and refer to excellent reviews for a larger
overview [20, 34, 55, 56, 57].

7Note however that with a brownian initial conditions, the fluctuations follow a distribution called F0

that does not possess an interpretation in terms of random matrices.
8This relation only holds for the droplet geometry, the flat geometry being describes by Ai1 with no
such analogy [51, 52].
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The field of so-called integrable probabilities is living decisive advances. It represents
today the best hope to reach a consistent understanding of the notion of universality
in the KPZ class [58]. Much effort is done to relax the hypothesis on the microscopical
details leading to universal features, but a general proof along the lines of the universality
of the Ising model [59], is still lacking. It seems to us that rather brutal modifications of
the microscopic details, expelling us out of the KPZ class, might be a fruitful approach
to probe the boundaries of this realm. We will come back to this question in Chapter 3
with the heavy-tailed disorder. Sadly, one often sacrifices analytical tools on the way.

Another interesting direction is the fast evolving theory of stochastic partial differential
equations. The attentive reader may have noticed that the KPZ equation is ill-defined,
as the product (∇h)2 can not be performed unambiguously for rough interfaces. While
a small-scale cut-off is physically expected, the continuum limit remains problematic,
as most tools for tackling SPDE rely on continuous equations. Luckily, recent progress
has been made in giving to the KPZ equation much sense [60], through the theory of
regularity structures. More details are given in Chapter 4. This approach enlightens the
sometimes confusing analytical results extracted from the KPZ equation.

Finally, while in d = 1 the global picture starts to emerge, the higher dimensions retain all
their mysteries, and it is fair to say that almost nothing is known on an analytical level.
This probably remains one of the greatest challenges of the field of stochastic growth.



2 The KPZ universality class in

d = 1 + 1

In this Chapter, we focus on the DP problem, and refer to the introduction for the detailed
mapping to the KPZ interface language. We already detailed some features of the KPZ
class in the introduction. Especially, in d = 1+1, the disorder is always relevant and the
system converges to the strong disorder fixed point. Such a denomination tries to convey
the idea that the statistical properties of the polymer are dominated by the influence of
the disorder, rather than by entropy. The present study is dedicated to the existence, in
d = 1+1, of the frozen phase and the study of its statistical properties. More specifically,
we focus on the behaviour of the free energy and present some analytical tools to monitor
both the flow towards the strong disorder fixed point observed on the polymer, and the
non-perturbative regime itself.

2.1 The strong disorder fixed point of the DP

How should we quantify the fact that the disorder is relevant to the polymer behaviour,
at some temperature ? Such a phase can be characterized by several properties, often
bonded together.

In the mathematical community, a common definition invokes martingales (see [61] for
a definition). Denoting Zt =

∫ t

0
eβH(x)dP0((x)) - dP0(x) being usually the measure of

random walks with either fixed or free extremities -, one can prove that Wt = Zt/Z is a
martingale [62]. By the zero-one law [61], one readily obtains that W∞ is almost surely
either 0 (called the strong disorder regime) or strictly positive (for weak disorder).

Another criterion, used as well in the physics community, employs overlaps It = µ⊗2(x1(t) =
x2(t)), a measure of the path shared by two different polymers subject to different thermal
noises but in the same realisation of disorder. If:

∫

µ⊗2 (x1(t) = x2(t)) dt = ∞ (2.1)

the regime is said weakly localized [63]. It is equivalent to the strong disorder regime [64].
The strong localization amounts to requiring that there exists some (random) positions
at which the polymer has a strictly positive probability of ending. It can shown that the
condition of strong disorder regime implies strong localization (in any dimension) [63].

In what follows, we look at the behaviour of the polymer free energy density −(tβ)−1 lnZ,
rather than the localization of its path. Considering the free energy density of the large
size limit f(β) = − limt→∞

1
β t
lnZt = − limt→∞

1
β t

lnZt (a self-averaging quantity), one
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Figure 2.1: (Color online) The Tracy widom family of probability distributions. F1

corresponds to shape fluctuations strating from a flat surface, while F2 is observed from
a curved initial conditions. Cross-overs between both distribution have been computed
for certain models of polymers [65].

can easily show that this energy is bounded from above by its annealed mean f̂(β) =
− limt→∞

1
β t

lnZt = −β/2. When the disorder is irrelevant (the polymer merely doing

a random walk), both annealed and quenched free energies coincide (for the so-called
weak disorder). When they differ, the regime is coined very strong disorder [63], and is
believed equivalent to the strong disorder regime, at least in the cases considered here.

In the DP model, the free energy f(β) departs from the annealed expression in its linear
part, but not only. Its fluctuations δf = lnZ − tf(β) anomalously grow as tθ with the
famous KPZ exponent θ = 1/3 (see the Introduction). Moreover, the left tail of the whole
distribution of δf fattens, an effect due to the effective optimisation of the polymer walk:
favouring deep sites introduces a bias towards negative value of the energy sites. While
the full computation of the free energy distribution is often very complicated, much can
already be deduced from the moments of Z, by computing for example the participation
ratios Zp

n/Zn
p
: they measure the importance of the tails and can provide useful bounds

on the critical temperature [66, 67].

We have in the strong disorder regime:

lnZ = tf(β) + ct1/3χ (2.2)

with χ the Tracy-Widom distribution decaying as P (f < s) ∼ e−|s|3/2 . The skewness,
measuring the asymmetry of δf , is expected to be a good indicator of the establishment
of the strong disorder regime because of the features detailed above. It has been previ-
ously used as a marker for the KPZ universality class [68], and most notably in recent
experiments and simulations [4, 69].
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2.2 The cross-over from EW to KPZ

Early stage behaviours are often more accessible to experiments. Anyone working with
various growth models will discover that, in some cases, the early time behaviour is very
different from the late stage, while in other cases, the system reaches its asymptotics in
just a few layers. Hence it is important to clearly state the time scale (noted t∗ below) at
which the transition takes place. In the present case, we start from a flat surface, where
(∇h)2 might be neglected at the very beginning.

We recall the equation of local non-linear growth given in the introduction:

∂th(x, t) = ν∆h(x, t) +
λ0

2
(∇h(x, t))2 + η(x, t) (2.3)

with η(x, t)η(x′, t′) = R(x − x′)δ(t − t′), R(x) the spatial correlator of the noise with
∫

R(u)du = D.

The full KPZ equation presents some issues with non-universality: microscopic details
about disorder distribution or dynamics might lead to variations in the macroscopic
growth process, an issue we explore more in Chapter 3. A way to get rid of those depen-
dencies is to consider the limit of high diffusivity or weak noise [70], that allows complete
determination of the scale of the fluctuations as a function of only three parameters λ0

, ν, and D, at all times, by contrast to the usual identification [71] for large time. All
the other microscopic details such as the disorder correlations or the lattice effects are
relevant only at very short times t < tf . The example with a short range correlator R(u)
on the continuum KPZ model is given in the related paper. This amounts to ensure that
the thermal wandering averages out the microscopic details before the system flows to
the strong disorder regime.

How to compare the different terms ? What are the typical scales defining the relative
contributions of the diffusion and non-linear effects to the interface growth ?

2.2.1 The solution for EW

Let us assume first that λ0 = 01, the Edwards-Wilkinson equation. Due to its linearity,
it can be tackled by Fourier transform. Writing the Fourier version of the modes h(k, t)
of the interface:

∂th(k, t) = −νk2h(k, t) + η(k, t) (2.4)

This Langevin equation is equivalent to a Brownian motion damped by viscous effects
proportional to k2 and the full functional of the height fluctuations is in principle solved
through its Fourier mode evolution, for example in the 1 + 1 model [72]:

P ({h(k, t)}) ∼ exp

(

− ν

2D

∫

dk
k2

1− e−2νk2t
h(k, t)h(k, t)

)

(2.5)

1We draw the attention of the reader on the fact that, only in that Chapter, we label by λ0 the strength
of the non-linearity, while λ will serve as a rescaled time parameter.
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From Eq.2.5, the correlation functions both in time and space can be computed. For
example, the surface roughness W (see Section 1.2 for a definition), corresponding to the
spatial second moment of the rescaled free energy f in the DP setup:

W 2(x, t) ∼ D

ν
xχfEW (νt/x2) (2.6)

where the roughness exponent is χ = 3−d
2
. The universal scaling function fEW is explicitly

known as well [73]. At large time, from Eq.2.5, we recover the stationary distribution
given in Eq.1.19.

We know turn on the non-linearities and monitor the departure from the EW regime
through a cumulant expansion at small time.

2.2.2 Moments expansion at short times

Above the microscopic cutoffs xf and tf , one can safely assume the underlying noise is
white in space and time. New scales appear by simply balancing the diffusion and the
non-linear terms in Eq.2.3:

t∗ =
2(2ν)5

D2λ4
0

(2.7)

x∗ =
√
νt∗ =

(2ν)3

Dλ2
0

(2.8)

t∗ and x∗ draw the line between the EW and KPZ regimes if they are larger than the mi-
croscopic scales (tf , xf ). The strong dependence of the diffusion on those scales, explains
why, at finite temperature, long times are sometimes needed to see non-linear effects
setting up. We define the convenient dimensionless parameter2 λ:

λ = (t/4t∗)1/3 (2.9)

The moments of Z(x, t) = exp ((λ0/2ν)h(x, t)) can be computed exactly due to some
fortunate mapping to a boson problem (see Section 2.3). Because the linear shift Z(x, t) is
problematic in the continuum limit, we work with the normalized variable z = Z/Z. The
following identity allows to extract the short time behaviour of ln z through a perturbative
expansion:

ln zr = er ln z
c
=

∞
∑

n=1

rn

n!
(ln z)n

c
(2.10)

At small time, z is concentrated around its mean value z = 1, so one can expand ln z
around 1. Such an expansion is valid only when the distribution of z is peaked around 1.
As we mentioned, the tails of z fattens at large times, hence this perturbative approach
does not hold in the strong disorder regime. However, it already reveals some typical

2Again, we insist that this parameter λ is a rescaled time, contrasting with λ0, the coefficient of the
non-linear term in the KPZ equation.
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features of the growing non-linearities. For example, the variance of z follows the formula
(exact at all time):

z2 = e2λ
3
(

1 + erf(λ3/2
√
2)
)

(2.11)

More generally, the moments zn seem to admit similar expressions made of error function,
with exponentially growing in n terms en(n

2−1)λ3
. While it would be interesting to fully

understand the underlying structure, let us just notice that, to leading order, zn ∼ eλn
3
.

Because the growth of moments with n is related to the tail decay of the distribution,
an estimate of the decay of δf by a simple Laplace argument quite miraculously leads to
the correct answer for the left tail of the free energy fluctuations P (δf < s) ∼ e−α|s|3/2

(see [74, 75] for more details).

Now if we reproduce for example, the variance of the (normalized) free energy:

(ln z)2
c
= −

√

2

π
λ3/2 +

(

5

3
− 6π

)

λ3 +O(λ9/2) (2.12)

and revert to the language of the interface height h(x, t), one finds:

h2
c
= D

√

t

2πν
+O(λ0t) (2.13)

This dominant term is independent of the non linearity λ0 and we retrieve the fact that, at
finite temperature, there exists a characteristic time below which the height fluctuations
scale with time as δh ∼ t1/4, in the EW regime: this result is consistent with Eq.2.5. With
some more algebra, one can identify the first source of departure from the Gaussian regime
in the growing of the third cumulant (ln z)3

c
, as we would expect in the introduction:

the bias of the polymer towards energy-optimized paths creates an asymmetry in δf ,
manifest in the skewness. It is interesting to note that (ln z)3

c
scales linearly with time,

both at short and at large time, although with a different coefficient. Hence, the short
time correction δh ∼ t1/3 is already of the form of the KPZ scaling (see Fig.2.2 and the
related paper for more details).

For λ > 1 (equivalently for t∗ . t), the crossover towards the KPZ regime is effectively
observed, accompanied by a important loss in precision from the numerical simulations
performed in the related paper. Indeed, such fat tails distributions are usually difficult
to sample properly due to the importance of rare, but very large events.

The previous study clearly shows the limit of the perturbative expansion in exploring the
strong disorder regime of the KPZ class, although it sheds light on its emergence. This
expansion has to be amended to access the statistics of the large time behaviour, where
the non-linearities fully control the shape of the interface.

2.3 Statistics of the KPZ regime

Due to the so-called moment growth problem, the probability distribution of ln z can
not be uniquely determined from the knowledge of zn. However, it will be shown that
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Figure 2.2: (Color online) From top to bottom, the cumulants (15 · 106 samples) ln2 z
c

(solid line, red circles), −ln z
c
(solid line, red triangles) and ln3 z

c
(solid line, red squares)

for t = 512. The solid lines are the analytical predictions given in the related paper, up
to O(λ9/2), with c = 1. There are no adjustable parameters.

some analytical (albeit non rigorous) continuation of the generating function of z allows
to handle the infinite part of the sum and properly regularize the results.

Although this procedure appears somewhat unjustified, its main interest lays in its broad
applicability. Indeed, integrable approach from Bethe Ansatz-like formula seems to rep-
resent today one of the most flexible source of exact computations in the domain of
“integrable probability”. A better understanding of this deep relationship would allow
to enlarge the class of systems under investigation to other known integrable systems
that remain to be connected with the directed polymer. Numerous works are heading
in that direction, among them the Log-Gamma polymer [76], the Sine-Gordon model
[77], or various boundary conditions. As a matter of fact, some works introduce a more
careful regularization procedure, which gives an a posteriori explanation of why “the
magic works”: this goes through q-deformed models (for example the q-TASEP) where
the parameter q forces the convergence of the series involved in the computation, allowing
for perfectly defined Laplace transforms [78]. The continuous limit is then retrieved by
setting q to specific values (q → 1).

That being said, an unfortunate common feature of integrable systems is that their del-
icate mathematical structure immediately breaks down if the model is changed ever so
slightly: no integrable approach is known for large classes of noises (and especially for
moments-diverging disorders) or general noise correlations3. Although one may think
that this limits the interest in the corresponding results, the recurring experience with
integrable systems has been that the results may persist in a broader setup, alike the first
approach of De Moivre to the Central Limit Theorem. Hence much insight can be gained
from the white-noise case.

3While in some cases, spatial correlations can be handled, it seems that time correlations still escape
the realm of integrability.
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Figure 2.3: (Color online) Directed Polymer with both end points fixed at small x = ǫ
and a hard wall constraint at x = 0. The reflected polymer, used in mirror arguments, is
pictured by a dashed line.

In the following, we present the machinery of the analysis, with a small grain of salt: our
polymer evolves in a half-space, restrained by a hard, non interacting wall (see Fig.2.3),
rather than in the full space. This system remains integrable and allows to study more
specifically the influence of confinement on the fluctuations of the free energy. This
geometry is interesting as an essential ingredient to many pinned systems. This boundary
condition, namely z(0, 0, t) = 0 for all t translates as ∇h(x, t)|x=0 = +∞ or h(0, t) = +∞.
It can be schematically thought of the boundary between two domains kinetically growing
at different average speeds. While we do not obtain different scaling exponents with the
hard wall model, boundary conditions in generel might have a drastic effect on growth,
with exponents clearly larger than in the bulk for a large range of times [79].

2.3.1 The Bethe Ansatz formalism

The appearance of Bethe Ansatz techniques in the KPZ field comes back to the seminal
work of Kardar [39], who used it to derive the anomalous exponents. The mapping goes
as follow: the central quantity is the n-point correlation function of the partition function:

ZV (x, y, t)n = Z(x, t|y, 0) · · ·Z(x, t|y, 0) (2.14)

with the boundary conditions ZV (x, y, t) = 0 for x, y = 0 and x, y = L for all t. As
we said, to stay in line with the work performed in that thesis, we choose a “hard
wall” condition, corresponding to bosons confined in the box [0, L]. This constrains the
polymer to optimize its path on half a space, instead of the full real space. Although
leaving the anomalous exponents of the KPZ fixed point unimpaired, this choice will have
an interesting effect on the fluctuations distribution.

The quantity Eq.2.14 obeys a dynamical equation equivalent to the temporal evolution
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of the n-bosons system, ruled by the Hamiltonian Hn:

Hn = −
n
∑

j=1

∂2

∂x2
j

− 2c
∑

1≤i<j≤n

δ(xi − xj) (2.15)

Consequently, the temporal evolution of Zn(x, t) is simply given by:

Zn(x, t) =
∑

µ

|Ψµ(x, · · · , x)|2
e−tEµ

‖µ2‖ (2.16)

where Ψµ(x, · · · , x) are the fully symmetric Bethe eigenfunctions that diagonalize Hn.
Those are very well known from the integrability literature [80]. The bosonic (fully
symmetric) eigenstates defined in the sector x1 < .. < xn as:

Ψµ(x1, ..xn) =
∑

P∈Sn

∑

ǫ1,···ǫn=±1

ǫ1ǫ2..ǫnA[λP1 , ǫ2λP2 , ..ǫnλPn ]

n
∏

j=1

eiǫ1x1λ1+..+iǫnxnλn (2.17)

A[λ1, .., λn] =
∏

n≥ℓ>k≥1

(

1 +
ic̄

λℓ − λk

)(

1 +
ic̄

λℓ + λk

)

They satisfy the conditions:

Ψµ(0, x2, ..xn) = 0

Ψµ(x1, .., xn−1, L) = 0 (2.18)

(∂xi+1
− ∂xi

+ c̄)Ψµ(x1, ..xn)|xi+1=xi
= 0

When plugged into Eq.2.18, those eigenfunctions obey a quantification relation on the
rapidities λj, called the Bethe equations:

e2iλjL =
∏

ℓ 6=j

λj − λℓ − ic̄

λj − λℓ + ic̄

λj + λℓ − ic̄

λj + λℓ + ic̄
(2.19)

This set of transcendental equations is essential, as it determines the way the bosons
organize themselves under an attractive interaction of strength c in a box of size L. The
first part is the standard set of Bethe equations for periodic boundary conditions, while
the second part stems from the reflected bosonic waves on the hard wall.

Their analytic solution for finite values of L is not known, although a fair amount of
numerical progress can be made under certain assumptions [81]. It is quite surprising that
they admit an exact solution (with exponentially small corrections) in the thermodynamic
limit L → ∞, where the rapidities organise as ns strings formed by mj particles [82, 83].
Within each bound state:

λj,a = kj +
ic

2
(mj + 1− 2a) with a = 1 · · ·mj (2.20)
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the set {ki, mi} indexing the strings. Such eigenstates have energy:

Eµ =
ns
∑

j=1

(mjk
2
j −

c2

12
mj(m

2
j − 1)) (2.21)

Because of the reflective bosonic waves, the states are now invariant by λj → −λj.

At that point, the first approach focused on the ground state, namely the n bound state,
where all the particles are clustered together. This corresponds to En = nk2 − c2

12
n(n2 −

1), retrieving the cubic exponential growth noticed in Section.2.2.2. However, it turns
out [84] that an exact summation of all excited modes are needed to access the full
distribution of probability4. Following this program requires the knowledge of the norms
of the eigenstates:

||µ|| =
∫ L

0

dx1dx2 · · · |Ψ{ki,mi}(x1, · · · xn)|2 (2.22)

as well as the amplitude |Ψ(x)|2. We can now define the generating function g(s) =
exp(−e−λsZ), whose power series is:

g(s) = 1 +
∞
∑

n=1

1

n!
ZV (x, x, t)n(−1)ne−λns

g(s) is the Laplace transform of the random variable Z. Parametrizing it with e−λs (see
for example [86]) provides an immediate way to extract the cumulative of f :

lim
λ→∞

= θ(f + s) = P (f > −s) (2.23)

Such a limit requires performing exactly the sum over Zn, as they all contribute even in
the large λ limit. It would of course be handy to access asymptopia without relying on
this computation. It is a “miracle” of (at least some) integrable systems that f admits
an exact expression at all time, in term of functional determinants.

It is convenient to change the summation over the number of particles n to a summation
over the number of strings ns. This allows to relax the constraint

∑ns

i=1 mi = n, a trick
that will come handy later. We denote by Z(ns, s) the coefficient in the power series of
g(s) after such a reorganization:

g(s) = 1 +
∞
∑

ns=1

Z(ns, s)

ns!
(2.24)

g(s) now shall be recast in a convenient form for computing the asymptotic behaviour.
Thanks to some underlying algebraic structure, one can write g(s) as a Fredholm deter-
minant. However, the necessary manipulations, initially performed in [44, 43], involve
a considerable amount of subtleties and, because of their length, we postpone them for
clarity, in Section 2.3.3.

We are focusing on the half space case. For that geometry, the norms of the eigenstates,
and their amplitudes are written in Section 2.3.3, but additional remarks are to be made:

4Although nothing prevents this method to generalize to higher dimensions, analytical difficulties
quickly arise. Some works have been however pursued in that direction [85].
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• The norm full expression was mainly obtained by heuristics from low n computa-
tions. The final formula is rather similar to the full space case, with terms obtained
by transforming the rapidities λi → −λi. The larger question of computing norms
of eigenstates in integrable systems remains an open question. A formula coined
Gaudin-Korepin [87] allows a close expression in terms of a determinant. Similar
formula exist (sometimes as conjectures) for other models, f.e. the hubbard model,
but no general result seems to hold. Despite that, we are confident an amended
Gaudin formula should exist for an (eventually attractive) wall boundary condition,
an interesting perspective to explore.

• Unfortunately, computing Ψ(x, · · · , x)2 in general seems complicated. However, the
leading order in powers of x is very simple:

Ψ(x, · · · , x)2 = n!xnλ1 · · ·λn +O(xn+1) (2.25)

This term dominates the amplitude for small x, a polymer whose extremities are
very close to the hard wall (see Fig.2.3). It would be of course insightful to address
the general case.

2.3.2 Fluctuations of the free energy: the result

The above expressions can be plugged into Eq.2.24, and the summation over ns rewritten
in terms of Fredholm determinant, as a function of λ. At large time λ → ∞, the main
result of the present Chapter reads:

g(s) = F4(2
−2/3s) (2.26)

where F4 is the GSE (Gaussian Symplectic Ensemble) Tracy-Widom distribution.

We recall that for the droplet (or point to point) geometry in the full space, a similar
result holds with a convergence at large time to F2, the GUE Tracy-Widom distribution.
Comparison between the free space case and the half space is readily done by using the
known characteristics of both distributions:

• The linear speed of growth of the free energy v∞ is equal in both cases (up to loga-
rithmic corrections). Although non universal w.r.t the disorder f.e, this observable
seems to show more robustness to changes in the boundary conditions. Actually, it
is likely that, if the width of the space available to the polymer grows faster than
t2/3 with the polymer size, no effect on the extensive part of its energy should be
observed.

• Because the confinement reduces the space available to optimization, the fluctua-
tions between disorder realizations are slightly greater in the half space case. This
effects can be seen in the variances in the half and full-space σHS > σFS. Nonethe-
less, the ratio σHS/σFS decreases with time, from the value 3/2.

• Finally, the difference between the means µF2 and µF4 has an interesting interpre-
tation in terms of extremal events. Consider a polymer in the droplet geometry in
the full space. The probability that it remains on the right of the t-axis is given by
p = ZHS/ZFS. At large λ, one has ln p ∼ t1/3(µF2 − µF4). Hence this gap measures
the exponential decay of the probability with t.
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The F4 distribution is known from the random matrix theory as the pdf of the fluctuation
of the largest eigenvalue of a matrix randomly drawn from the symplectic ensemble [88].
While it is still an open question to address the striking similarity between the polymer at
finite temperature and random matrix theory, the T = 0 model of polymer can be linked
to probability measures over random ensembles of matrices by the mean of the so-called
Robinson-Shensted-Knuth correspondence [40]. On the other hand, Pfaffian identities
occur as combinatorial tools to count objects with symmetry contraints (much alike the
constraint on invariance by reflection equivalent to the hard wall condition at T = 0)
[89]. From the formula (see Section 2.3.3) appears a clear relation with the full space
case, and it would certainly be enlightening to connect it with combinatorics.

2.3.3 The half-space case

In that subsection, we give more details about the intricate computation of the free energy
in the half space, as the Letter joined to the chapter is rather concise. The avid reader
can also refer to [90].

2.3.3.1 Strings norms and amplitudes

First we give the conjecture for the norm of an arbitrary string state in the half space:

N =

∫ L

0

dx1..

∫ L

0

dxn|Ψ̃{ki,mi}(x1, ..xn)|2

= n!c̄ns−n2−ns

ns
∏

i=1

Ski,mi

ns
∏

i<j

Dki,mi,kj ,mj
Lns (2.27)

Dk1,m1,k2,m2 =
(k1 − k2)

2 + (m1 +m2)
2c2/4

(k1 − k2)2 + (m1 −m2)2c
2/4

(k1 + k2)
2 + (m1 +m2)

2c2/4

(k1 + k2)2 + (m1 −m2)2c
2/4

Sk,m =
m2

22m−2

[m/2]
∏

p=1

k2 + c2(m+ 1− 2p)2/4

k2 + c2(m− 2p)2/4

with Sk,1 = 1. For convenience, we absorbed a factor in Ψ̃µ = Ψµ/(2i)
n−1. The large

product splits into a intra-string term S and inter-string D, i.e.
∏ns

i=1 Si

∏ns

i<j Dij. This
expression was obtained by computing with Mathematica the norms of the states for few
particles. What prevents the Gaudin-Korepin formula to be readily used is the fact that
the intra-string contributions seems to vanish, and a careful consideration of the finite
size corrections has to be taken into account to properly compute the thermodynamic
limit [83].
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Some checks were performed on low values of n ≤ 3. For n = 2:

N =

∫ L

0

dx1

∫ L

0

dx2[Ψ̃{λ1,λ2}(x1, x2)]
2

= 2!

[

c2

(λ2
1 − λ2

2)
2
+

L2 (2λ2
1 (c

2 − λ2
2) + (c2 + λ2

2)
2 + λ4

1)

4 (λ2
1 − λ2

2)
2

(2.28)

− c̄L (c2 + λ2
1 + λ2

2)

(λ2
1 − λ2

2)
2

]

Inserting a single 2-string one finds (up to subdominant terms):

N =
k2 + c2/4

c̄k2
L

while two 1-strings have a norm:

N =
((k1 − k2)

2 + c2)((k1 + k2)
2 + c2)

2(k1 − k2)2(k1 + k2)2
L2

both in agreement with the conjecture. Similar computations on low values of n confirm
it as well.

For the amplitudes |Ψ(x)|2, the general case for x > 0 does not seem easily accessible.
The limit x → 0 is much simpler:

Ψ̃λ(x, ...x) = n!xnλ1..λn +O(xn+1)

= n!xn
∏

j=1,ns

Akj ,mj
+O(xn+1) (2.29)

Ak,m =
m
∏

a=1

(

k + i
c̄

2
(m+ 1− a)

)

= (−ic̄)m
Γ(1+m

2
+ ik

c̄
)

Γ(1−m
2

+ ik
c̄
)

To ensure the dominant contribution is of order O(1), we rescale the moments from now
on and define:

Z̃V (x, x, t) = lim
x→0+

1

x2
ZV (x, x, t)

2.3.3.2 Performing the summation of Zn

We have now:

Zn := Z̃V (x, x, t)n =
∑

µ

1

x2n
Ψ̃µ(x, ..x)Ψ̃µ(x, ..x)

∗ 1

||Ψ̃µ||2
e−tEµ

Gathering the previous results Eq.2.27 and Eq.2.29 , the (rather lengthy) starting point
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to the Fredholm determinant structure is:

Zn =
n
∑

ns=1

c̄nn!

ns!(c̄)ns
2ns×

∑

(m1,..,mns )n

ns
∏

j=1

∫

dkj
(2π)

Bki,mi

4mi

e(m
3
j−mj)

c̄2t
12

−mjk
2
j t

ns
∏

i<j

Cki,mi,kj ,mj
(2.30)

Bk,m =
m−1
∏

j=0

(4k2 + j2c2)

Ck1,m1,k2,m2 =
(k1 − k2)

2 + (m1 −m2)
2c2/4

(k1 − k2)2 + (m1 +m2)2c
2/4

×

(k1 + k2)
2 + (m1 −m2)

2c2/4

(k1 + k2)2 + (m1 +m2)2c
2/4

The generating function g(s) can be written as:

g(s) = 1 +
∞
∑

ns=1

1

ns!
Z̃(ns, s)

Z̃(ns, s) =
∞
∑

(m1,..,mns )n

(−1)
∑

p mp

ns
∏

p=1

∫

kp

dkp
2π

Bmp,kp

4ikp

ns
∏

i<j

Cki,mi,kj ,mj
e

t
12

m3
p−mpk2pt−λmps

As forecast, resumming g(s) involves exhibiting algebraic structures through formula
expressing large products in terms of determinants. As an example, the initial works
opening the way for a possible summation [43] used the so-called double alternant Cauchy
formula:

det

[

1

xi + yj

]

=

∏

i<j(xi − xj)(yi − yj)
∏

i,j(xi + yj)

It does not seem to help in the present case. One has to rely on Pfaffian identities instead,
following the impressive variant presented in [41, 11] for the flat geometry.

We now work in units where c̄ = 1. It is known that [11]:

ns
∏

i<j

Cki,mi,kj ,mj
=

ns
∏

j=1

mj

2ikj
pf

(

Xi −Xj

Xi +Xj

)

2ns×2ns

(2.31)

X2p−1 = mp + 2ikp p = 1, ..ns (2.32)

X2p = mp − 2ikp p = 1, ..ns (2.33)

using Schur’s identity:

pf

(

Xi −Xj

Xi +Xj

)

2n×2n

=
∏

1≤i<j≤2n

Xi −Xj

Xi +Xj
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This identity virtually doubles the number of variables. One possible route is to duplicate
the ns variables (kp,mp), p = 1, ..ns to 2ns variables with the rules g2p−1 = g2p = mp and
Q2p−1 = kp = −Q2p. This gives:

Z(ns, s) =
∑

gi≥1

(i)
∑

j gj

2ns
∏

j=1

∫

Qj

gj−1
∏

q=0

(2iQj + q)e
1
2
[λ

3

3
(g3j−gj)−4gjQ

2
jλ

3−λgjs]

×
ns
∏

p=1

δg2p,g2p−1

2π

4iQ2p−1

δ(Q2p +Q2p−1)

× pf

(

2iQi + gi − 2iQj − gj
2iQi + gi + 2iQj + gj

)

2ns×2ns

. (2.34)

The δ-function in Eq.2.34 enforce the rules of duplication stated above. Their product
over p can be rewritten as a Pfaffian as well. The above expression is invariant by
permutation of the (g,Q) variables, provided that the duplication g2p−1 = g2p andQ2p−1 =
−Q2p is preserved. Hence symmetrizing the product over the set of partitions of (1, · · ·ns)
into pairs without regard to order (the 1

(2ns−1)!!
arising as the number of pairings of 2ns

objects) leads to:

ns
∏

p=1

δg2p,g2p−1

2π

4iQ2p−1

δ(Q2p +Q2p−1) =

1

(2ns − 1)!!
pf

(

2π

4iQi

δ(Qi +Qj)(−1)giδgi,gj

)

2ns×2ns

We are left with:

Z(ns, s) =
1

(2ns − 1)!!

∑

gi≥1

(i)
∑

j gj

2ns
∏

j=1

∫

Qj

gj−1
∏

q=0

(2iQj + q)×

e
1
2
[λ

3

3
(g3j−gj)−4gjQ

2
jλ

3−λgjs]

× pf

(

2π

4iQi

δ(Qi +Qj)(−1)giδgi,gj

)

2ns×2ns

× pf

(

2iQi + gi − 2iQj − gj
2iQi + gi + 2iQj + gj

)

2ns×2ns

(2.35)

Using the representation:

Xi −Xj

Xi +Xj

= 2

∫

vi>0,vj>0

δ′(vi − vj)e
−viXi−vjXj

one can take the integration out of the second Pfaffian thanks to the identity [11]:

pf

(
∫

dvidvjai(vi)aj(vj)Bij(vi, vj)

)

=

[

ns
∏

i

∫

dviai(vi)

]

pf (Bij(vi, vj))
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an extended version of pf(BABT ) = det(B) pf(A). Using again Eq.2.36, but this time to
force the summation and integration over vi and kp inside the first Pfaffian, and reverting
to the old variables (kj,mj), one finds:

Z(ns, s) =
1

(2ns − 1)!!

2ns
∏

j=1

∫

vj>0

pf(f(vi, vj))2ns×2ns

× pf(δ′(vi − vj))2ns×2ns (2.36)

with the kernel:

f(v1, v2) =
∞
∑

m=1

∫

dk

2π

(−1)mBk,m

2ik
em

3 λ3

3
−4mk2λ3−λms

× e−m(v1+v2)−2ik(v1−v2) (2.37)

The product of the two Pfaffians can be rewritten in one, by using a block diagonal
matrice of size 4ns to obtain an explicit Fredholm pfaffian5:

Z(ns, s) =
2ns
∏

j=1

∫

vj>0

pf

(

K11(vi; vj) 0
0 K22(vi; vj)

)

4ns×4ns

with

K11 =
∞
∑

m=1

∫

dk

2π

(−1)mBk,m

2ik
em

3 λ3

3
−4mk2λ3−λms

K22 = 2δ′(vi − vj). (2.38)

We now need to take care of the sum of exponentials appearing in the kernel f(v1, v2),
and especially cancel the divergent part. The so-called Airy trick tames the divergence
by removing the cubic dependence of m:

∫

dy21/3Ai(21/3y)eym = em
3/6

Rescaling vj → λvj and kj → kj/λ with a shift y → y + s + v1 + v2 gives the new
“regularized” kernel:

f(v1, v2) =

∫

dk

2π

∫

y

Ai(y + s+ v1 + v2 + 4k2)

× fk/λ(e
λy)

e−2ik(v1−v2)

2ik
(2.39)

fk(z) =
∞
∑

m=1

bk,m(−z)m (2.40)

5Note that our definition of the Pfaffian of a matrix Kernel Kab(v1, v2) = K(a, v1; b, v2) assumes the
order 1, v1; 1, v2; ..1, v2ns

; 2, v1; 2, v2; ..2; v2ns
.
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The weight function is central in computing the long-time limit:

fk[z] =
∞
∑

m=1

m−1
∏

q=0

(4k2 + q2)(−z)m (2.41)

more specifically, the limit limλ→∞ fk/λ[e
λy]. Unfortunately, this alternating serie grows

too fast to uniquely define a function. However that, after analytical continuation, fk
can be seen as the asymptotic expansion of a well-defined function.

First, assume y > 0, and write Eq.2.41 in a more compact form using:

Γ[t+ n] = t(t+ 1) · · · (t+ n− 1)Γ[t]

Γ[t]Γ[1− t] =
π

sin πt

leading to:

fk[z] =
2k sinh(2kπ)

π

∞
∑

m=1

Γ(m+ 2ik)Γ(m− 2ik)(−z)m (2.42)

One can convert the alternating series into a integral on the complex plane by a Mellin-
Barnes representation:

∞
∑

m=1

(−1)mf(m) = − 1

2i

∫

C

ds
f(s)

sin(πs)
ds

where C is a contour around the positive x-axis, hence picking all the strictly positive pole
of the sinus but avoiding 0. Here f(s) = Γ(s+ 2ik)Γ(s− 2ik)zs. Because this integrand
has no pole in the half-plane Re(s) > 0, we can deformed C into a contour along the
imaginary axis ǫ+ iR6. This procedure transforms Eq.2.42 into:

fk[z] =
−k sinh(2kπ)

πi

∫ ǫ+i∞

ǫ−i∞

Γ(t+ 2ik)Γ(t− 2ik)zt

sin(πt)
dt (2.43)

In the long-time limit λ → ∞, Eq.2.43 can be computed by a limit inversion and the
application of Cauchy formula. Closing the contour on the negative real half-plane, the
poles of the integrands are t = ±2k i/λ and t = 0. It leads to:

lim
λ→∞

fk/λ[e
λy] = −1 + cos(2ky) (2.44)

For y < 0, both k and z vanish and the above continuation converges to 0. Note that a
closed form of Eq.2.42 exists and could formally be used to calculate the distribution f
at all times:

fk[z] =
2k sinh(2kπ)

π

∞
∑

m=1

Γ(m+ 2ik)Γ(m− 2ik)(−z)m

=
2πk

sinh(4πk)

(

J−4ik(
2√
z
) + J4ik(

2√
z
)

)

− 1F2 (1; 1− 2ik, 1 + 2ik;−1/z) (2.45)

6More details can be found in [90].
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Nonetheless, it is not clear if this summation procedure leads to a proper asymptotic
expansion for λ finite. It would certainly be an important point to check it numerically,
but it is hindered by the difficulty of evaluating numerically the multiple integrals of the
kernel Eq.2.39.

The generating function g(s) simply takes the form:

g(s) = pf[J +K] J =

(

0 I
−I 0

)

K =

(

K11 0
0 −K22

)

(2.46)

Following the procedure, and after several manipulations detailed in [11], computing the
square g(s)2 leads to:

g(s)2 = det[I − JK] = det[I +K] (2.47)

with K(v1, v2) = −2∂v1f(v1, v2)θ(v1)θ(v2). Hence we obtain:

g(s) =
√

det[I +K] (2.48)

In principle, Eq.2.48 gives access to the probability distribution of lnZ for all time.
We refer to the related paper for the complete expression and pursue the study of the
asymptotic behaviour for λ → ∞. Using Eq.2.44, the large time kernel turns into:

K(v1, v2) = −2∂v1f∞(v1, v2)

= −
∫

2k

2π

∫

y>0

Ai(y + s+ vi + vj + k2)e−i(vi−vj)k(1− eiky) (2.49)

Integrating the first term in the above equation gives the more familiar expression:

g(s)2 = det[I − PuKPu] , u = 2−2/3s

K(v1, v2) = KAi(v1, v2)−
Ai(v1)

2

∫

y>0

Ai(y + v2) (2.50)

where KAi(v1, v2) is the Airy Kernel:

KAi(v1, v2) =

∫

y>0

Ai(v1 + y)Ai(v2 + y) (2.51)

Eq.2.50 is the generating function of a well-known distribution, in disguise. It can be
rewritten as:

g(s)2 =
1

4
(det[I − Bs] + det[I +Bs])

2 (2.52)

with Bs(x, y) = Ai(x + y + s)θ(x)θ(y). Finally, in [91], it was shown that Eq.2.52
corresponds to the Tracy-Widom distribution F4 describing the fluctuations of the largest
eigenvalue of the Gaussian Symplectic Ensemble (GSE) ! Note that a similar result for
the Polynuclear Growth Model with specific nucleation rates has been obtained in [92]
in the half-space geometry. This allows us to assert that the half-space case presents
universal features, amongst them the height fluctuations distribution F4.
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2.4 Conclusion

In this Chapter, we provided some insight into the KPZ universality class through the
study of its continuum representative, the KPZ equation. An expansion from the linear
EW regime allows to scrutinize the rise of the non-linearities as the essential mechanism
for the notably anomalous values of the scaling exponents. Tools for tackling the non
perturbative strong disorder regime in d = 1 + 1 were introduced and much detailed.

We stress that those tools should be amenable to the whole cosmos of integrable models
and their scope exceeds beyond the standard polymers geometries, droplet [43] or flat
[11]. Integrability can be retained with other disorder distributions, and other initial
or boundary conditions. An illustration of that fact is given in Section 2.3.3, where the
boundary conditions are changed to half space. This modification, one of the few available
exact results in confined geometry [92], leads to a new distribution for the fluctuations, F4.
Yet again, some mysterious connections with random matrices seem to be at play. This
results gives a better understanding of the scope of the universality of the fluctuations:
more specifically, while details of the disorder or of the evolution rules have little influence
on those distributions, both initial and boundary conditions do play an essential role.

Those systems possess hidden structures that somehow lend themselves to analytical ap-
proaches. Much could be said about the more general conceptual framework in which
integrable probabilities are embedded. Unfortunately, a detailed account of those works
would take us too far and we refer to [93, 78, 57]. While recent years have unearthed a
tremendous amount of connections with apparently unrelated objects (symmetric poly-
nomials, random matrices, quantum field theories), the emergence of a coherent picture
is still inchoate, but exciting to witness.
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I. INTRODUCTION

The growth of interfaces in the presence of noise can be

classified into several universality classes. When the growth

rate does not depend on the slope of the interface, the growth

process falls in the simplest Edwards-Wilkinson (EW) class.

When instead the growth rate is slope dependent (e.g., in the so-

called lateral growth), the process falls into the class defined by

the nonlinear continuum Kardar-Parisi-Zhang (KPZ) equation

[1,2]

∂th = ν∇2h +
1

2
λ0(∇h)2 + ξ (x,t), (1)

where h(x,t) is the interface height, ν the diffusivity, and λ0 the

strength of the slope-dependent growth (with λ0 = 0 giving the

EW model). ξ (x,t) is the stochastic noise, chosen as a centered

Gaussian with short-range correlations:

ξ (x,t)ξ (x ′,t ′) = Rξ (x − x ′)δ(t − t ′), (2)

where
∫

x
Rξ (x)dx = D. Concerning the space dependence,

the most usual choice is to take uncorrelated random disorder,

i.e., Rξ (x − x ′) = Dδ(x − x ′).
In one spatial dimension, the KPZ universality class

shows a fairly robust anomalous scaling exponent [3] for

the fluctuations of the height of the interface h(x,t) ∼ t1/3

and indeed such anomalous behavior at large time has been

proved for several discrete solvable models [4–7] which are

believed to belong to the KPZ class. However, this exponent

is only one of the facets of the universality of the KPZ

equation: further universal information is encoded in the full

probability distribution function (PDF) of these fluctuations,

but their exact calculation is an extremely difficult task which

is complicated by the fact that, even after a long time,

the system keeps some memory of the initial conditions.

Remarkably, these initial conditions can be classified in a few

subclasses, each leading to a distinct universal result for the

statistics of the height field at large time [8,9]. Impressive

theoretical progress has been recently achieved and has led to

exact solutions directly of the continuum KPZ equation for

a wedge (or droplet) [10–13] and flat [14,15] and stationary

[16] initial conditions. In the first two cases the PDF of the

height h(x,t) at a given point converges at large time to the

so-called Tracy-Widom Gaussian unitary ensemble (GUE) and

Gaussian orthogonal ensemble (GOE) universal distributions

[17], for droplet and flat initial conditions, respectively. Further

impetus to the field has been given by recent experiments on

turbulent liquid crystals [18,19] in which these two long-time

predictions have been confirmed with high accuracy.

In the literature, much emphasis has been given to the

long-time limit, mainly because of the connection with random

matrix theory valid for all models belonging to the KPZ class.

However, in the general case the scale of the fluctuations

heavily depends on the microscopic details of the model:

for instance, the exact values of the mean and the variance

of the height fluctuations are known only for a few solvable

discrete models. On the contrary, the limit of high diffusivity

or weak noise allows complete determination of the scale of

the fluctuations as a function of only three parameters λ0, ν,

and D. All the other microscopic details such as the disorder

correlations or the lattice effects are relevant only at very short

times, t < tf . In particular the above mentioned exact solutions

for the KPZ height distributions are valid for arbitrary times

t > tf in the limit of high diffusivity.

Indeed, these solutions can be expressed in terms of

Fredholm determinants with rather complicated kernels, from

which it is not always easy to extract the limiting behavior for

long and short times. It is then interesting to obtain, by simpler

means, the small-time behavior in an explicit form, and to

confirm it in numerical simulations. This has been achieved in

the case of the droplet initial conditions [11,20], and the aim

of this paper is to present a similar result in the case of the flat

initial condition. As discussed in more detail below, there are

generically three time regimes:

(i) a nonuniversal very-short-time regime t ∼ tf where the

growth depends on the short-scale details of the system [e.g.,

small deviations from the flat initial condition, the precise form

of Rξ (x), etc., . . .];

(ii) a short-time regime tf ≪ t ≪ t∗ where the crossover

from the EW to the KPZ regime takes place;

(iii) a large-time regime t ≫ t∗ where KPZ scaling holds.

In the high-diffusivity limit, since t∗ is fixed to be very large,

the height distribution can be exactly computed for all times

t ≫ tf . Conversely, in the low-diffusivity limit, the height

041151-11539-3755/2012/86(4)/041151(8) ©2012 American Physical Society
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distribution depends on the microscopic details of the system

for all times and, when t → ∞, these nonuniversal details

affect only the typical scale of the height fluctuations, which

are Tracy-Widom distributed.

The paper is organized as follows. In the next section we

discuss the mapping of the KPZ equation to the directed

polymer. In Sec. III, we report the small-time expansion of

the moments of the partition function of the directed polymer

(DP) obtained in Ref. [15] and we check them in numerical

simulations. In Sec. IV we calculate analytically the small-time

expansion of the connected moments of the height field and

in Sec. V we check them by numerical simulations. Three

Appendices contain some more technical calculations.

II. MAPPING TO THE DIRECTED POLYMER

Via the Cole-Hopf transformation, the KPZ equation (1) can

be mapped onto the directed polymer in a random environment

which is an equilibrium statistical physics problem [1,21,22].

A growth starting from a droplet initial condition is mapped

onto a fixed-end-point polymer, while a flat initial surface

translates to a directed polymer with one end point fixed and

the other free [15]. Indeed, the canonical partition function

of a directed polymer x(τ ) at temperature T in a random

environment is defined in the continuum by the path integral

Z(x,t |y,0) =
∫ x(t)=x

x(0)=y

Dxe−(1/T )
∫ t

0
dτ [(1/2)(dx/dτ )2+V (x(τ ),τ )] ,

(3)

and maps to the KPZ equation after the identifications

λ0

2ν
h = ln Z, 2ν = T , λ0ξ (x,t) = −V (x,t) . (4)

A Gaussian noise ξ (x,t) corresponds to a random poten-

tial V (x,t) which is a centered Gaussian with correlator

V (x,t)V (x ′,t) = RV (x − x ′)δ(t − t ′) with RV (x) = λ2
0Rξ (x).

The white noise in the KPZ equation corresponds in polymer

language to disorder with δ correlations,

V (x,t)V (x ′,t) = cδ(t − t ′)δ(x − x ′), c̄ = Dλ2
0 . (5)

This mapping is valid in the bulk and does not depend on the

KPZ initial condition which translates into conditions for the

end points of the polymer. For the KPZ equation with flat initial

condition, one should consider the partition sum with one fixed

end point (at x) and another free (at y) [14,15], resulting in the

partition function

Z(x,t) =
∫ ∞

−∞
dyZ(x,t |y,0). (6)

The recent analytical progress has been made possible by the

calculation of the moments Z(x,t)n of the DP partition sum.

By replicating the partition function Z(x,t), the DP is mapped

[23] onto the quantum mechanics of a bosonic system of n

particles interacting with an attractive δ-function potential,

i.e., the celebrated Lieb-Liniger model [24]. This model is

integrable via the Bethe ansatz and the eigenstates are known

for both repulsive [24] and attractive interactions [25], which

is the case of our interest. The moments can be expressed as

a sum over these eigenstates [14,15] (generically labeled by μ

in the following),

Z(x,t)n =
∑

μ

�∗
μ(x, . . . ,x)

||μ||2
e−tEμ

×
∫ ∞

−∞

n
∏

j=1

dyj�μ(y1, . . . ,yn), (7)

in terms of the many-body wave function �μ(y1, . . . ,yn) and

of the eigenenergies Eμ of the state μ. In the infinite system the

eigenstates are easily enumerated, being organized in clusters

of bound particles, called strings. The norms of the states ||μ||
and the equal-point wave functions have simple expressions

[26] and lead to a time-dependent PDF starting from a droplet

initial condition [11,12]. The integral over the yi in Eq. (7),

necessary to treat the flat initial condition, is more delicate

but was handled in Refs. [14,15], leading to the moments

Z(x,t)n for arbitrary n. From these the moment’s generating

function at all times has been written in terms of a Fredholm

Pfaffian [14,15] (the square root of a Fredholm determinant).

This allowed a proof that the PDF of ln Z(x,t), i.e., of the height

field h(x,t), converges at large times to the GOE Tracy-Widom

distribution.

Here we follow a different route. We recall in the next

section the exact expressions for the lowest moments n =
2,3,4 and from them we extract the small-time cumulants of

ln Z, i.e., of the KPZ height field.

III. Moments Zn AND THEIR SMALL-TIME BEHAVIOR

For a flat initial condition, the one-point distribution

of Z(x,t) does not depend on x because of translational

invariance. Thus in the following, we simply denote

Z ≡ Z(x,t). (8)

Since we are dealing with an initially flat interface we must

have Zn = 1 at t = 0 (which is a nontrivial condition in terms

of the Bethe ansatz). Taking the average of Eq. (3) over the

Gaussian disorder gives the mean partition function

Z(x,t |y,0) =
1

√
2πT t

e−(x−y)2/2T te[RV (0)/2T 2]t , (9)

and so from the integral in Eq. (6) we have

Z = ev0t with v0 =
RV (0)

2T 2
. (10)

To eliminate this nonuniversal (self-energy) contribution, it is

convenient to define

z = Z/Z , (11)

which by construction satisfies z = 1 at all times. (Note that

in Ref. [15] the self-energy contribution was omitted, but we

indicate it here explicitly for later purposes. What is called

Z in Ref. [15] is thus z here.) This will be useful later for

comparison with the numerical simulation of lattice models.

All results for the continuum DP and KPZ models are

expressed in terms of a dimensionless parameter

λ =
(

t

4t∗

)1/3

with t∗ =
2T 5

c̄2
=

2(2ν)5

D2λ4
0

, (12)
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where, in the language of the DP, t∗ is the crossover time scale

between the Brownian diffusion at small time (i.e., λ < 1)

and the glassy large-time behavior (i.e., λ > 1). Within the

context of the growth model, t∗ is the crossover scale between

Edwards-Wilkinson and KPZ regimes. Note that a spatial

crossover scale can also be defined as x∗ =
√

νt∗ = T 3/c̄ =
(2ν)3/D2λ2

0. Both scales become very large in the large-

diffusivity limit or, equivalently, in the weak-noise limit.

It is important to recall that for any given microscopical

model with a cutoff (e.g., a lattice model) there are ad-

ditional time and space scales. The easiest example is the

same continuum KPZ equation (or DP model) with disorder

correlated over a nonzero correlation length rf , i.e., Rξ (x)

is a function decaying on a scale rf . Then, it is easily

shown [11] that if x∗ ≫ rf one can replace Rξ (x) → Dδ(x)

in which D =
∫

dxRξ (x). More generally, the condition for

the existence of the universal short-time regime studied here

is that t∗ and x∗ must be much larger than any characteristic

microscopic scale—generically called rf and tf here—such

as the lattice spacing for a lattice model. Note also that if the

initial condition is not perfectly flat on scales of the order of

rf , this will also not affect any result as long as x∗ ≫ rf . Of

course, the very short time and space regime with t � tf and

x � rf is nonuniversal.

We now recall the results of Ref. [15] for the four

lowest moments, together with their small-time (i.e., small-λ)

behavior:

z2 = e2λ3

[1 + erf(λ3/2
√

2)]

= 1 + 2

√

2

π
λ3/2 + 2λ3 +

8

3

√

2

π
λ9/2 + O(λ6), (13)

with (note the misprint in Ref. [15] for the definition of the

error function) erf(z) = 2√
π

∫ z

0
dte−t2

,

z3 = 4e8λ3 − 2e2λ3 − 2e8λ3

erfc(λ3/22
√

2) + e2λ3

erfc(λ3/2
√

2)

= 1 + 6

√

2

π
λ3/2 + 14λ3 + 40

√

2

π
λ9/2 + O(λ11/2), (14)

with erfc(x) = 1 − erf(x), and finally

z4 = 8e20λ3 − 8e8λ3 − 4e20λ3

erfc(3
√

2λ3/2)

− 4e8λ3

[−2erfc(2λ3/2) + e12λ3

erfc(4λ3/2)]

+ 48

∫ ∞

0

dx

(

2x+1√
4x+1

−
√

2x+1
x+1

)

e−8λ3x

4π [4x(x + 3) + 5]
(15)

= 1 + 12

√

2

π
λ3/2 +

(

44 +
24

π

)

λ3

+ 8(21 + 8
√

2)

√

2

π
λ9/2 + O(λ6), (16)

where the series expansion of the integral is performed in

Appendix A.

Before embarking on the calculation of the cumulants of

ln Z, we now report the results of numerical simulations for the

determination of zn for n = 2,3. As explained in more detail in

Sec. V, the simulations are performed for a directed polymer on

a square lattice. We also consider the high-temperature limit,

which ensures that all details of the lattice become irrelevant

and the results can be expressed as functions of the single

10
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4
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<
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FIG. 1. (Color online) From top to bottom the moments z3 − 1

(solid line, red squares) and z2 − 1 (solid line, red circles) for different

values of λ. Solid lines correspond to the analytical predictions in

Eqs. (13) and (14). Averages are performed over 15 × 106 samples

of size t = 512 and c = 1. There are no adjustable parameters.

parameter λ. The procedure and the identification of λ on the

lattice have been introduced already in Refs. [11,27] and are

described again in Sec. V. We report the numerical data for zn

in Fig. 1 which are found to be in excellent agreement with

our analytic predictions up to λ ≈ 0.6, while some deviations

at larger λ are evident. These deviations are caused by the

undersampling due to the growing importance of the tails in

the distribution of z, and will be properly explained in Sec. V.

IV. CUMULANTS OF ln Z AT SMALL TIME

From the above formulas for zn and following the procedure

described in Appendix B, we obtain the small-λ (i.e., small-

time) expansion of the first four cumulants of the free energy:

ln z = −
√

2

π
λ3/2 +

(

5

3
−

6

π

)

λ3

+
(

106

3
− 16

√
2 −

40

π

)

√

2

π
λ9/2 + O(λ6), (17)

(ln z)2
c

= 2

√

2

π
λ3/2 +

(

20

π
− 6

)

λ3

+
(

176
√

2

3
+

512

3π
−

412

3

)

√

2

π
λ9/2 + O(λ6),

(18)

(ln z)3
c

=
8(π − 3)λ3

π

+
(

248 − 96
√

2 −
352

π

)

√

2

π
λ9/2 + O(λ6), (19)

(ln z)4
c

=
[

64
√

2 +
320

π
− 192

]

√

2

π
λ9/2 + O(λ6), (20)

and of course (ln Z)p
c = (ln z)p

c
for p � 2. As explained in

Appendix B, in order to compute the next term O(λ6) in

the small-time expansion, or the fifth and higher cumulants,

we would need the fifth moment z5 that we did not analyze

here, but which is in principle known [15]. A simple check can

be performed on these formulas, namely, one can compute the
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series expansion in λ3/2 of exp[
∑4

p=1
np

p!
(ln z)p

c
] and check

that the expansion of all zn for n = 1,2,3,4 given above

is reproduced up to order o(λ9/2). Although this procedure

also allows the derivation of Eqs. (17)–(20) by adjusting

the coefficients of the series expansion in λ3/2, the method

described in Appendix B is more systematic.

For short times, the dominant term in the PDF is the variance

(ln z)2
c

which increases as t1/2. Using ln Z = λ0h/(2ν), one

finds

h2
c
= D

√

t

2πν
+ O

(

λ2
0t

)

. (21)

Hence the first term of the expansion of h2
c

is independent

of λ0, the coefficient of the nonlinear growth in the KPZ

equation. It corresponds to the Edwards-Wilkinson Gaussian

scaling regime δh ∼ t1/4, also found in Appendix C; cf.

Eq. (C3), where we derive the leading short-time behavior

for the average height and variance using perturbation theory

directly on the KPZ equation.

The third and fourth cumulants behave as t and t3/2, re-

spectively, suggesting that the fourth cumulant is subdominant

and that the first corrections to the EW Gaussian scaling

are given by the third cumulant as δh ∼ t1/3, which is the

form of the KPZ scaling. Indeed, it is interesting that the

third cumulant is linear in t at both short and long times

(but with an amplitude going from 8(π−3)

π
= 0.360 563 to

μGOE
3 = 0.598 268; see below).

From the above we can compute the skewness

γ1 =
(ln Z)3

c

[(ln Z)2
c
]3/2

=
23/4(π − 3)

4
√

π
λ3/4

+
π (67 − 48

√
2 + 9π ) − 86

(2π )3/4
λ9/4 + O(λ15/4)

= 0.178 865 · · · λ3/4 + 0.0138 · · · λ9/4 + O(λ15/4), (22)

which at short times scales as γ1 ∼ t1/4, and the kurtosis

γ2 =
(ln Z)4

c

[(ln Z)2
c
]2

= (40 − 24π + 8
√

2π )

√

2

π
λ3/2 + O(λ3)

= 0.115 565 · · · λ3/2 + O(λ3), (23)

which scales as t1/2.

Now we recall that at large time one can write [14,15]

λ0h

2ν
= ln Z = v∞t + ληt , (24)

such that ηt converges to the GOE Tracy-Widom (TW)

distribution limt→∞ Prob(ηt < s) = F1(s). The skewness and

kurtosis thus converge for large times to their GOE values

γ1 → γ GOE
1 = 0.293 464 524 08 . . . , (25)

γ2 → γ GOE
2 = 0.165 242 938 4 . . . , (26)

consistent with a crossover for λ ≈ 1.6 ± 0.3. The amplitude

of the (nonfluctuating) linear term is nonuniversal, v∞ =
v0 − c̄2/12 = v0 − D2λ4

0/12, where v0 = RV (0)

2T 2 = λ2
0Rξ (0)

8ν2 is

the amplitude at short time (after the very-short-time regime

t ≫ tf ). Note that the difference v∞ − v0 is universal. At large

time one also has that ln z = ln Z − ln Z = λμ1 − D2λ4
0t/12

is universal, where μGOE
1 = −1.206 533 574 582 0 . . . is the

mean of the TW distribution, while (ln Z)
c → λ2μ2 where

μGOE
2 = 1.607 781 034 581 . . . is the variance of the TW

distribution.

V. NUMERICAL RESULTS

Numerical simulations are performed for the square lattice

model depicted in Fig. 2. Directed paths grow along the

diagonals of the lattice with only (0,1) or (1,0) moves (hard

constraint condition), starting at (0,0) and with the second

end left free. With each site of the lattice is associated an

independent and identically distributed random number V (x,t)

(here we use a Gaussian distribution with variance equal to 1).

The time coordinate is given by t = i + j and the space

coordinate by x = (i − j )/2 (see Fig. 2). The partition sum

over all paths γt growing from (0,0) up to time t is defined as

Z(t) =
∑

γt

exp

[

−β
∑

(x,τ )∈γt

V (x,τ )

]

. (27)

The partition function satisfies the following transfer matrix

recurrence relation implemented in our simulation:

Zx,t+1 = (Zx−1/2,t + Zx+1/2,t )e
−βVx,t+1 , (28)

with Zx,0 = δx,0. The free end partition function is computed

by summing over all end points Z(t) =
∑

x Z(x,t). To avoid

numerical instabilities we divide all partition functions at fixed

τ by the biggest one and record its logarithmic value. As in

the model in the continuum, on the lattice also Z(x,t) grows

exponentially in time, as can be seen by averaging the sum

over all possible paths:

Z(t) =
∑

γt

∏

x∈γt

e−βV (x) = 2teβ2t/2. (29)

For this reason we work numerically with the ratio ln(z) =
ln(Z/Z), which remains small, but exhibits strong fluctuations.

x

t

ij

1

O

FIG. 2. (Color online) Sketch of the directed polymer model

analyzed in numerical simulations. The blue solid line corresponds to

a polymer growing over the square lattice under the hard constraint

condition.
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FIG. 3. (Color online) From top to bottom, the cumulants (15 ×
106 samples) ln2 z

c

(solid line, red circles), −ln z
c

(solid line, red

triangles), and ln3 z
c

(solid line, red squares) for t = 512. The solid

lines are the analytical predictions in Eqs. (17)–(19) up to O(λ9/2),

with c = 1. There are no adjustable parameters.

In the limit of high T , the statistical fluctuations of z depend

only on the unique dimensionless variable

λ =
(

c2κt

8T 5

)1/3

, (30)

which is the lattice version of Eq. (12). Note that the scaling

T → T/κ , c → c/κ2 allows one to go from the discrete model

variables Eq. (30) to the continuous model variables Eq. (12).

In the high-temperature regime, the parameters κ and c can

be computed explicitly [27]. Indeed c2 is just the variance of

the uncorrelated random numbers. Instead κ can be extracted

from the model without disorder, for which the polymer

behaves like a particle diffusing on a one-dimensional lattice

(x being the particle position at time t). The mean square

displacement of the particle is given by 〈x2(t)〉T = T t/κ .

Within the normalization used in this paper, we have κ = 4T .

Using this algorithm, we have numerically computed the

cumulants on the square lattice at high temperature and

compared them with the analytic predictions in Eqs. (17)–(19).

The data for lnn z
c

for n = 1,2,3 are reported in Fig. 3. The
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FIG. 4. (Color online) Finite-size effects for ln2 z
c

. Solid line,

analytical prediction Eq. (18). Numerical data, from top to bottom,

t = 128 (green circles), t = 256 (blue triangles), t = 512 (red

squares). Averages are performed over 15 × 106 samples with c = 1.
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FIG. 5. (Color online) Finite-size effects for ln z
c
. Solid line,

analytical prediction Eq. (17). Numerical data, from top to bottom,

t = 256 (empty triangles), t = 512 (full triangles). Averages are

performed over 15 × 106 samples with c = 1. The large error bars

when λ < 10−2 are due to the vanishing value of ln z
c

as λ → 0.

agreement with the analytical predictions is excellent, which

is even more impressive when we consider that these figures

are produced without any fit parameter. In Figs. 4 and 5 we

show in more detail the convergence to the theoretical value

for a fixed value of λ as a function of polymer length. The

increase of the polymer length t is equivalent to heating up

the system, hence approaching the universal prediction of the

high-temperature regime.

The analytical predictions for the moments of z are exact

for all λ. However, we can see in Fig. 1 that precision is

quickly lost above the threshold λ ∼ 1. This is due to the fact

that, for large λ, typical values of z strongly differ from the

average value z = 1. The moments of z are then dominated

by rare occurrences of very large z induced by the presence

of heavy tails. This is shown in Fig. 6 where we see that, as

λ grows, the mode of the distribution quickly goes to 0 while

the tail becomes fatter. A simple example of this peculiar

behavior lies in the log-normal probability distribution which

is characterized by an exponentially small typical value and a

10
-3

10
-2

10
-1

10
0

101

10-3 10-2 10-1 100 101

P
(z

)

z

FIG. 6. (Color online) P (z) with z = Z/Z for

λ = 1.26, 0.58, 0.27, 0.126, and 0.058, from left to right.

Histograms are obtained from numerical simulations with t = 512,

c = 1, and 15 × 106 samples. When λ is very small, P (z) is

self-averaging. When λ grows, a heavy tail is developed and

ztyp ≪ 〈z〉 = 1.
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FIG. 7. (Color online) Estimator of z2 − 1 given by MN =
(1/N )

∑N

i=1 z2
i − 1, where zi is the rescaled partition function of

a single disorder realization and N is the number of realizations

(iterations), for λ = 1.26. The sudden variations around 10 × 106

samples shows that one single event contributes to a finite fraction

(around 10%) of the whole sum.

heavy tail ∼e− ln2 z. Here, for large λ, the heavy tail behaves

as e− ln3/2 z with the exponent 3/2 corresponding to the Tracy-

Widom asymptotic behavior. In practice, because of this tail,

the moment estimators converge extremely slowly, even for

important sampling. An example is shown in Fig. 7, where

we estimate z2 − 1 for λ = 1.26 with N = 15 × 106 samples.

While the prediction from Eq. (18) is z2 − 1 = 109.023, we

found a value around 60 from numerical simulations. This

discrepancy is explained by the central limit theorem which

predicts fluctuations of order ∼(z4/N)1/2. Using Eq. (20), we

see that z4 grows very fast in λ and would require N = 1014

samples for us to have a good estimation of z2 for λ = 1.26.

VI. CONCLUSION

In this paper we have studied the stochastic KPZ equation

with flat initial conditions and extracted from the results of

Ref. [15] the short-time behavior of the connected moments of

the distribution of the height field at a given point. In this

way, we have been able to probe universality specifically

with respect to the introduction of a short scale in the

noise correlations, or a discretization in the DP model. A

wider domain of investigation, ranging from step bunching

instabilities in crystal growth to ballistic deposition (see, e.g.,

Ref. [5]) and going beyond the goals of this work, is to prove

the universality in a broader sense (including, e.g., change in

the nonlinear KPZ term, as in Ref. [28], or biased diffusion

current, as in Ref. [29]).

The importance of the results presented here stems from

the proof of the existence of a short-time universal regime

which describes the crossover from the Edwards-Wilkinson

to the KPZ growth and which can be observed when the

diffusivity is large or the noise is weak. We have compared our

analytical predictions to high-precision numerical simulations

of a discrete model, which shows how this universality arises.

Apart from the theoretical interest per se, these predictions,

valid for all times, should be useful also in future experiments

in which the parameters of the growth could be varied and

controlled in a more refined way so as to easily access this

universal crossover.

APPENDIX A: EXPANSION OF AN INTEGRAL

We need to compute the small-λ expansion of the integral

I =
∫ ∞

0

dxf (x)e−8λ3x, (A1)

where f (x) and its large-x expansion are

f (x) = 48

(

2x+1√
4x+1

−
√

2x+1
x+1

)

4π (4x(x + 3) + 5)

=
3

π
x−3/2 −

3(21 + 8
√

2)

8π
x−5/2 + O(x−7/2). (A2)

It is convenient to write

I =
∫ ∞

0

dxf (x) +
∫ ∞

0

dx
3

πx3/2
(e−8λ3x − 1)

+
∫ ∞

0

dxf1(x)(e−8λ3x − 1), (A3)

with f1(x) = f (x) − 3x−3/2/π . Two integrals are easily done,

giving

I = 1 − 12

√

2

π
λ3/2 +

∫ ∞

0

dxf1(x)(e−8λ3x − 1), (A4)

and the remaining integral is O(λ3). This can again be written

as
∫ ∞

0

dxf1(x)(e−8λ3x − 1)

= (−8λ3)

∫ ∞

0

dxxf1(x)+
∫ ∞

0

dxf1(x)(e−8λ3x −1 + 8λ3x)

=
(

44 +
24

π

)

λ3 +
∫ ∞

0

dxf1(x)(e−8λ3x − 1 + 8λ3x),

(A5)

where the remaining integral is now O(λ9/2) and can be split

again as
∫ ∞

0

dxf1(x)(e−8λ3x − 1 + 8λ3x)

=
∫ ∞

0

dx

[

−
3(21 + 8

√
2)

8π
x−5/2

]

(e−8λ3x − 1 + 8λ3x)

+
∫ ∞

0

dxf2(x)(e−8λ3x − 1 + 8λ3x), (A6)

with

f2(x) = f1(x) +
3(21 + 8

√
2)

8π
x−5/2. (A7)

Thus, putting together the three pieces, we have

I = 1 − 12

√

2

π
λ3/2 +

(

44 +
24

π

)

λ3

− 8(21 + 8
√

2)

√

2

π
λ9/2 + O(λ6). (A8)
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APPENDIX B: FROM THE MOMENTS OF Z TO THE

MOMENTS OF ln Z

In general the knowledge of the moments zn for some low

integer n does not allow one to extract much information about

the cumulants (ln z)n
c
. In the present case, however, for small

time (small λ), z is concentrated around its mean value z = 1

and this allows one to obtain the behavior of the cumulants at

small times.

Let us write z = 1 + u with u = 0 and compute its con-

nected moments. In order to lighten the notation we introduce

the notation μp ≡ zpc
. Using the expressions for znc

in the

main text, unc
are given by

μ2 = u2 = z2 − 1

= 2

√

2

π
λ3/2 + 2λ3 +

8

3

√

2

π
λ9/2 + O(λ6), (B1)

μ3 = u3 = (z3 − 1) − 3(z2 − 1)

= 8λ3 + 32

√

2

π
λ9/2 + O(λ6), (B2)

μ4 = u4
c
= z4 − 1 − 4(z3 − 1) + 6(z2 − 1) − 3(z2 − 1)2

= 64
√

2

√

2

π
λ9/2 + O(λ6). (B3)

Given the above trend it is reasonable to assume that zpc =
upc = O((λ3/2)p−1). Based on this assumption, we want to

construct a systematic series expansion of (ln z)n
c

in powers

of the cumulants of z. The reasoning is the following. First we

write

∞
∑

n=1

rn

n!
(ln z)n

c = ln zr = ln (1 + u)r

= ln

(

1 +
∞

∑

k=1

r(r − 1) · · · (r − k + 1)

k!
uk

)

.

(B4)

Expanding the right-hand side in powers of r , we obtain

formally each (ln z)n
c

as an (infinite) series of the moments

uk . The moments uk can themselves be expressed as functions

of the cumulants μp by writing

ewu = 1 +
∞

∑

k=2

wm

m!
um = exp

⎛

⎝

∞
∑

p=2

wp

p!
μp

⎞

⎠ , (B5)

and identifying them order by order in w. We can now replace

μp → ap−1μp where a is to be set to unity at the end. This

replacement allows us to keep track of the order in λ3/2 of

each cumulant. Using MATHEMATICA, it is now simple to first

generate the expansion (B5), truncate it to a given order in

a, and then insert it in Eq. (B4). During this process, we see

that, e.g., u4 = O(a2) = u3, i.e., in Eq. (B4) one must keep

a few more orders compared to Eq. (B5). Since we have not

computed z5 = O(a4), we can get our cumulants only up to

order a3. Doing so we obtain

ln(z) = −
aμ2

2
+ a2

(

μ3

3
−

3μ2
2

4

)

+ a3

(

−
5μ3

2

2
+ 2μ3μ2 −

μ4

4

)

+ O(a4), (B6)

ln(z)2
c

= aμ2 + a2

(

5μ2
2

2
− μ3

)

+ a3

(

32μ3
2

3
− 8μ3μ2 +

11μ4

12

)

+ O(a4), (B7)

ln(z)3
c

= a2
(

μ3 − 3μ2
2

)

+ a3

(

−22μ3
2 + 15μ3μ2 −

3μ4

2

)

+ O(a4), (B8)

ln(z)4
c

= a3
(

20μ3
2 − 12μ3μ2 + μ4

)

+ O(a4). (B9)

Setting a = 1 and replacing the μp by their actual values

above, we find the result given in the text.

APPENDIX C: SHORT-TIME PERTURBATION THEORY

FOR THE KPZ EQUATION

As a further final check, we recover here the leading

short-time behavior for the first and second cumulants of the

height directly from the perturbative expansion of the KPZ

equation. We start from the second cumulant, which is easier.

The KPZ equation can be studied in perturbation in λ0, which

is equivalent to short time. This is clear from the definition

of λ in Eq. (12) which gives the perturbative parameter

λ3/2 ∝
√

t/t∗ ∝
√

tλ2
0. We can write h = h(0) + h(1) + · · ·

where h(n) = O(λn
0). With the flat initial condition, the lowest

order is just the Edwards-Wilkinson result, which in Fourier

space is

h
(0)
q,t =

∫ t

0

dt1e
−νq2(t−t1)ξq,t1 ; (C1)

this leads to the variance

h
(0)
q,th

(0)
q ′,t = 2πδ(q + q ′)

∫ t

0

dt1e
−2νq2t1R̃ξ (q), (C2)

where R̃ξ (q) is the Fourier transform of the noise correlator

R(x), assumed to be of range rf in space. Then simple algebra

gives

h(0)(x,t)2 =
∫

dq

2π

∫ t

0

dt1e
−2νq2t1R̃ξ (q)

=
∫

dq

2π
R̃ξ (q)

1 − e−2νq2t

2νq2
=

D
√

ν

√

t

2π
, (C3)

where the last equation is valid for t ≫ r2
f /ν, i.e., away

from the (nonuniversal) very-short-time regime. Here D =
R̃ξ (q = 0) =

∫

dxR(x) is the only memory of the short-scale

details and thus for t ≫ tf one can set R̃ξ (q = 0) = D, i.e.,

we have a δ correlator in space. Using the correspondence

ln Z = λ0h/(2ν) and λ3/2 = Dλ2
0(t/8)1/2/(2ν)5/2 one recov-

ers exactly the leading term in Eq. (21).

The discussion of the average height h is more subtle

because we need to retain Rξ (x) in an essential way, as there are

nonuniversal contributions. For a flat initial condition, h(x,t)

041151-7
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is x independent; hence the following equation is exact at all

times:

∂th =
λ0

2
(∇h)2. (C4)

At small time we can use

∂th =
λ0

2
(∇h(0))2 =

λ0

4ν

∫

q

R̃ξ (q)(1 − e−2νq2t ). (C5)

Splitting this term in two pieces and integrating each of them

separately over time, we obtain

h =
λ0R(0)

4ν
t −

λ0

4ν

∫

dq

2π
R̃ξ (q)

1 − e−2νq2t

2νq2
. (C6)

One recognizes the same integral entering the second moment,

and so for t ≪ t∗ we have

h = v0t −
λ0

4ν
h2, (C7)

which indeed reproduces exactly, for t ≫ tf , the leading

negative correction in Eq. (17). The first term linear in time

is, however, always present, and nonuniversal. The same

exact term arises in the DP, and corresponds to the multi-

plicative contribution to the moments Zn = etn(1/2T 2)RV (0) ≡
etn(λ2

0/8ν2)Rξ (0) arising from the equal replica (self-energy) terms

after averaging the replicated partition sum. Although usually

dropped, these terms are present and correspond to an additive

(nonuniversal) nonrandom correction
λ2

0

8ν2 Rξ (0)t to ln Z.
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PACS 68.35.Rh – Phase transitions and critical phenomena

Abstract – We study the directed polymer with fixed endpoints near an absorbing wall, in the
continuum and in the presence of disorder, equivalent to the KPZ equation on the half-space
with droplet initial conditions. From a Bethe Ansatz solution of the equivalent attractive boson
model we obtain the exact expression for the free-energy distribution at all times. It converges at
large time to the Tracy-Widom distribution F4 of the Gaussian symplectic ensemble (GSE). We
compare our results with numerical simulations of the lattice directed polymer, both at zero and
high temperature.

editor’s  choice Copyright c© EPLA, 2012

Progress was achieved recently in finding exact solu-
tions in one dimension for noisy growth models in the
Kardar-Parisi-Zhang (KPZ) universality class [1,2], and
for the closely related equilibrium statistical-mechanics
problem of the directed polymer (DP) with quenched
disorder [3]. The KPZ class was explored in several recent
experiments [4,5], and applications to the DP range from
biophysics [6] to describe the glass phase of pinned vortex
lines [7] and magnetic walls [8]. The height of the growing
interface, h(x, t), corresponds to the free energy of a DP of
length t starting at x, under a mapping which is exact in
the continuum (Cole-Hopf), and for some discrete realiza-
tions. Not only the scaling exponents h∼ t1/3, x∼ t2/3 are
known [9,10], but also the one-point (and in some cases
the many-point) probability distribution (PDF) of the
height [11,12]. Their dependence on the initial condition
exhibits remarkable universality at large time, with only a
few subclasses, most being related to Tracy-Widom (TW)
distributions [13] of the largest eigenvalues of random
matrices. Most of these subclasses were initially discov-
ered in a discrete growth model (the PNG model) [14–16]
which can be mapped onto the statistics of random permu-
tations [17], and a zero-temperature lattice DP model [10].
Recently, exact solutions were obtained directly in the
continuum at arbitrary time t, for the droplet [18–21],
flat [22,23] and stationary [24] initial conditions. The
PDF of the height h(x, t) converges at large time to
F2, the Gaussian unitary ensemble (GUE), and to F1,
the Gaussian orthogonal ensemble (GOE) universal TW

distributions, for droplet and flat initial conditions, respec-
tively. One useful method which led to these solutions
introduces n replicas and maps the DP problem to the Lieb
Liniger model, i.e., the quantum mechanics of n bosons
with delta-function attraction, a model solved using the
Bethe Ansatz.
The KPZ equation on the half-line x> 0, equivalently a

DP in the presence of a wall, is also of great interest. In the
statistical-mechanics context, constrained fluctuations are
important for the study of fluctuation-induced (Casimir)
forces [25,26] and for extreme value statistics. In the
surface growth context one can study an interface pinned
at a point, or an average growth rate which jumps across a
boundary. The half-space problem was previously studied
in a discrete version, for the (symmetrized) random
permutations/PNG model [27,28] and found to involve
also TW distributions in the limit of large system size.
In order to exhibit full KPZ universality, it is important
to solve the problem directly in the continuum, i.e., for the
KPZ equation itself. Previous approaches did not address
the finite time behavior which is also universal1.
The aim of this letter is to present a solution of the

directed polymer problem in the continuum in the pres-
ence of a hard wall (absorbing wall) using the Bethe
Ansatz (BA). Equivalently, we obtain the one-point height
probability distribution for the KPZ equation on the

1In the large diffusivity, weak noise regime, equivalently high
temperature regime for the DP, see below.
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half-line x> 0 with fixed large negative value of h or of
−∇h (i.e., a small contact angle) at x= 0. For simplicity
we study a DP with both endpoints fixed —which corre-
sponds to the droplet initial condition in KPZ— near the
wall. We do not consider the case of the attractive wall
(we briefly mention it at the end). We obtain an exact
expression for the generating function of the moments of
the DP partition sum as a Fredholm Pfaffian, from which
we extract the PDF of the free energy of the DP (height of
KPZ) at all times. We then show that this PDF converges
to F4, the Tracy-Widom distribution of the largest eigen-
value of the Gaussian symplectic ensemble (GSE). Calcu-
lations are performed for the DP, consequences for the
KPZ equation are detailed at the end. Our results are
checked against numerics on a discrete DP model, both at
high and zero temperature, confirming universality. Conse-
quences for extreme value statistics are discussed. This is
the first occurrence of the F4 distribution and of the GSE
within a continuum BA calculation. It is consistent with
the results of [27,28] for the discrete model and confirms
that these belong to the same universality class as the
continuum KPZ equation on the half-space, solved here
for all times.
Directed polymer: analytical solution. We consider the

partition function of a DP at temperature T in the
continuum, i.e., the sum over positive paths x(τ)∈R+
starting at x(0) = y and ending at x(t) = x,

Z(x, y, t) =

∫ x(t)=x

x(0)=y

Dx(τ)e−
1
T

∫
t

0
dτ [ 12 (

dx
dτ )

2+V (x(τ),τ)],

(1)
with initial condition Z(x, y, 0) = δ(x− y). The hard
wall requires Z(0, y, t) =Z(x, 0, t) = 0. The random
potential V (x, t) is a centered Gaussian with correlator
V (x, t)V (x′, t) = c̄δ(t− t′)δ(x−x′). The natural units
for the continuum model are t∗ = 2T 5/c̄2 and x∗ = T 3/c̄
which allow to remove T and set c̄= 1 (see footnote 2).
The time (i.e., polymer length) dependence is embedded
in a single dimensionless parameter:

λ= (t/4t∗)1/3 (2)

as defined in our previous works [19,22,23] and in [20].
Replicating (1) and averaging over disorder, the

n-th integer moment of the DP partition sum can be
expressed [29] as a quantum-mechanical expectation for
n particles described by the attractive Lieb-Liniger
Hamiltonian [30]

Hn =−
n
∑

j=1

∂2

∂x2j
− 2c̄

∑

1�i<j�n

δ(xi−xj). (3)

in natural units (for the moment not rescaling by c̄, as
in [19]). The moments of the partition sum with both
endpoints fixed at x can be written as

Z(x, x, t)n =
∑

µ

|Ψµ(x, . . . , x)|2
e−tEµ

‖ µ ‖2 , (4)

2In the final result performing x→ x/x∗, t→ t/t∗ and in the free
energy F =−T lnZ, restores the T -dependence.

i.e., a sum over the un-normalized eigenfunctions Ψµ
(of norm denoted ‖ µ ‖) of Hn with energies Eµ. Here
we used the fact that only symmetric (i.e., bosonic)
eigenstates contribute. In the presence of a hard wall
at x= 0, Ψµ(x1, . . . , xn) vanishes when any of the xj
vanishes. It is solved by a generalization of the standard
BA [31,32]. The Bethe states Ψµ are superpositions of
plane waves [30] over permutations P of the rapidities
λj (j = 1, . . . , n), with here an additional summation over
±λj . The eigenfunctions read

Ψµ(x1, . . . , xn) =
1

(2i)n−1

∑

P∈Sn

∑

ǫ2,...,ǫn=±1

ǫ2 . . . ǫn

×AλP1 ,ǫ2λP2 ,...,ǫnλPn sin(x1λ1)
n
∏

j=2

eiǫjxjλPj , (5)

Aλ1,...,λn =
∏

n�ℓ>k�1

(

1+
ic̄

λℓ−λk

)(

1+
ic̄

λℓ+λk

)

(6)

for x1 < . . . < xn, recalling that Ψµ(x1, . . . , xn) is symmet-
ric in its arguments. Imposing a second boundary condi-
tion at x=L, e.g., also a hard wall, one gets Bethe
equations [31] which determine the possible sets of λj . The
large-L limit was studied in [32] and we do not reproduce
the analysis here. The structure of the states is very simi-
lar to the standard case, i.e., the general eigenstates are
built by partitioning the n particles into a set of ns bound
states formed bymj � 1 particles with n=

∑ns
j=1mj . Each

bound state is a perfect string [33], i.e., a set of rapidi-
ties λj,a = kj +

ic̄
2 (mj +1− 2a), where a= 1, . . . ,mj labels

the rapidities within the string. Such eigenstates have

energy Eµ =
∑ns
j=1(mjk

2
j − c̄

2

12mj(m
2
j − 1)). The difference

with the standard case is that the states are now invariant
by flipping any of the momenta λj→−λj , i.e., kj→−kj .
To simplify the problem, we restrict here to a DP

with endpoints near the wall, i.e., we define the parti-
tion sum for x= ǫ= 0+, Z = limx→0+ZV (x, x, t)/x

2.
Then, one factor in (4) drastically simplifies as
limx→0+ |Ψµ(x, . . . , x)|2/x2n = n!2λ21 . . . , λ2n. The last
needed factor in (4) is the norm, usually not trivial to
obtain [34]. With some amount of heuristics we arrive at
the following formula [35] (we now fully use the natural
units, hence setting c̄= 1):

‖ µ ‖2= n!2−ns
ns
∏

i=1

Ski,mi
∏

1�i<j�ns

Dki,mi,kj ,mjL
ns ,

Sk,m =
m2

22m−2

[m/2]
∏

p=1

k2+(m+1− 2p)2/4
k2+(m− 2p)2/4 , (7)

Dk1,m1,k2,m2 =
4(k1− k2)2+(m1+m2)2
4(k1− k2)2+(m1−m2)2

×4(k1+ k2)
2+(m1+m2)

2

4(k1+ k2)2+(m1−m2)2
. (8)
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We now have a starting formula for the integer moments

Zn =

n
∑

ns=1

n!2ns

ns!

×
∑

(m1,...,mns )n

ns
∏

j=1

∫

dkj
2π

bkj ,mj
4mj

e(m
3
j−mj)

t
12−mjk

2
j t

×
∏

1�i<j�ns

Dki,mi,kj ,mj (9)

with bk,m =
∏m−1
j=0 (4k

2+ j2). Here (m1, . . . ,mns)n stands

for all the partitioning of n such that
∑ns
j=1mj = n with

mj � 1 and we used
∑

kj
→mjL

∫

dk
2π which holds also

here in the large L limit.
This formula allows for predictions at small time.

Defining3 z =Z/Z we obtain z2
c
= z2− 1 as

z2
c
=

√

π

2
e2λ

3 (

4λ3+3
)

λ3/2(erf(
√
2λ3/2)+ 1)+2λ3

=
3

2

√
2πλ3/2+8λ3+O(λ9/2) (10)

and the short time (i.e., small λ) expansion of z3
c
=

42.99376λ3, and

ln z =−3
2

√

π

2
λ3/2− 0.27162097 λ3, (11)

(ln z)2
c
=
3

2

√
2πλ3/2+0.349154645 λ3,

(ln z)3
c
= 0.58226188 λ3, (12)

up to O(λ9/2) terms. The skewness of the PDF of ln z
behaves at short time as

γ1 =
(ln z)3

c

((ln z)2
c
)3/2
≃ 0.079863175 λ3/4. (13)

It is interesting to compare with the same results in
ref. [19] in the absence of the hard wall (full space) and
we find the universal ratio of the variances at small time:

ρ=
(ln z)2

c,HS

(ln z)2
c,FS

=
3

2
− 0.076597089 λ3/2+O(λ3) (14)

and of the skewness γHS1 /γ
FS
1 = 0.63689604+O(λ3/2).

We now study arbitrary time, i.e., any λ, and to this
aim we define the generating function of the distribution
P (f) of the scaled free energy lnZ =−λf :

g(s) = exp(−e−λsZ) = 1+
∞
∑

n=1

(−e−λs)n
n!

Zn (15)

from which P (f) is immediately extracted at λ→∞:

lim
λ→∞

g(s) = θ(f + s) = Prob (f >−s) (16)

3Z = 1/
√
4πt for full space and Z = 1/

√
4πt3/2 with a hard wall.

The non-universal global multiplicative factor [36] eRV (0)t/(2T
2)

does not affect z and was dropped.

and below we recall how it is extracted at finite λ. The
constraint

∑ns
i=1mi = n in (9) can then be relaxed by

reorganizing the series according to the number of strings:

g(s) = 1+

∞
∑

ns=1

1

ns!
Z(ns, s). (17)

Solvability arises from the Pfaffian identity:

∏

1�i<j�ns

Dki,mi,kj ,mj =

ns
∏

j=1

mj
2ikj
pf

(

Xi−Xj
Xi+Xj

)

2ns×2ns

,

(18)
where X2p−1 =mp+2ikp, X2p =mp− 2ikp, p= 1, . . . , ns,
a consequence of Schur’s identity as used in refs. [22,23]
to which we refer for details. We recall that the pfaffian
of an antisymmetric matrix A is defined as pfA=

√
detA.

Equation (18) allows to write the ns string partition sum
as4

Z(ns, s) =

∞
∑

m1,...,mns=1

(−1)
∑
pmp

ns
∏

p=1

∫

dkp
2π

bmp,kp
4ikp

×em3p t12−mpk2pt−λmpspf
(

Xi−Xj
Xi+Xj

)

2ns×2ns

(19)

Now, as in refs. [22,23] we use the representation
∫

vi,vj>0
2δ′(vi− vj)e−viXi−vjXj = Xi−XjXi+Xj

and standard

properties of the Pfaffian allow to take the integral over
the 2ns variables outside the Pfaffian. After manipu-
lations very similar to refs. [22,23] the integration and
summation over kj ,mj can be performed, leading to

Z(ns, s) =
1

(2ns− 1)!!

2ns
∏

j=1

∫

vj>0

pf(f(vi, vj))2ns×2ns .

×pf(δ′(vi− vj))2ns×2ns , (20)

where (2ns− 1)!! = (2ns)!/(ns!2ns) is the number of pair-
ings of 2ns objects, with the kernel:

f(v1, v2) =

∞
∑

m=1

∫

dk

2π

(−1)mbk,m
2ik

em
3 λ3

3 −4mk
2λ3−λms

×e−m(v1+v2)−2ik(v1−v2). (21)

We used that in the natural units t(≡ t
t∗ ) = 4λ

3. g(s) has
now the form of a Fredholm Pfaffian. One shows [35]

g(s) =
√

Det[I +K], (22)

K(v1, v2) = −2θ(v1)θ(v2)∂v1f(v1, v2).

It is interesting that g(s)2 is precisely the generating
function for the two independent half-spaces (on each
side of the hard wall) and that it is itself a Fredholm
determinant (FD). Performing the rescaling vj→ λvj and
kj→ kj/λ leaves the result (22) unchanged with the scaled
4We have performed the usual shift Z = e−c

2t/12Ẑ (we drop the
hat below) which does not affect z =Z/Z.
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kernel:

f(v1, v2) =

∫

dk

2π

∫

y

Ai(y+ s+ v1+ v2+4k
2)

×fk/λ(eλy)
e−2ik(v1−v2)

2ik
, (23)

where we have used the now standard Airy trick
∫

y
Ai(y)ewy = ew

3/3 to transform the cubic exponential in
an exponential, together with the shift y→ y+ s+ v1+ v2.
The weight function fk(z) :=

∑∞

m=1 bk,m(−z)m can be
calculated explicitly and we find

fk[z] =
2πk

sinh(4πk)

(

J−4ik

(

2√
z

)

+J4ik

(

2√
z

))

− 1F2 (1; 1− 2ik, 1+2ik;−1/z) . (24)

Equations (22), (23) (24) are our result at finite time for
g(s).
We now obtain the PDF of the free energy (i.e., of

the KPZ height), first at large time, i.e., for λ→∞.
Examination of (24) leads to [35]

lim
λ→∞

fk/λ[e
λy] =−θ(y)(1− cos(2ky)). (25)

Rescaling k→ k/2 and taking the derivative in (22) one
finds after integrations by part with respect to y:

g(s)2 =Det[I +P0KsP0] = Det[I +Ps/2K0Ps/2],

Ks(vi, vj) =−
∫

dk

2π

∫

y>0

Ai(y+ s+ vi+ vj + k
2)

×e−i(vi−vj)k(1− eiky), (26)

where Px ≡ θ(v−x) projects all vj integrations on
[x,+∞[. Using an Airy function identity [19] we find
K0(vi, vj) =−21/3K̃(21/3vi, 21/3vj) and upon rescaling of
the vi:

g(s)2 = Det[I −PsK̃Ps], s= 2−2/3s, (27)

K̃(vi, vj) = KAi(vi, vj)−
1

2
Ai(vi)

∫

y>0

Ai(y+ vj),

where KAi is the Airy Kernel KAi(vi, vj) =
∫

y>0
Ai(v1+

y)Ai(v2+ y). Our result (27) for the half-space at large
time can be compared with the full-space result [18–21]
gFS(s) =Det[I −PsKAiPs] = F2(s), i.e., the GUE distrib-
ution. Hence, the second term (projector) in (27) encodes
for the effect of the DP configurations which in full space
cross x= 0 at least once. Interestingly, since i) the set of
paths in the full space includes right and left half-space
paths, ZFS >Z

right
HS +Z

left
HS and ii) the two half-spaces are

statistically independent, this implies, using the defini-
tion (16), that

gFS(s)< gHS(s)
2, (28)

a bound valid at all times (not just for infinite λ).
We can now transform our result (27). Noting that
θ(v1)θ(v2)K̃(v1+ s, v2+ s) =B2s − 12 |Bsδ〉〈1Bs|, where
Bs(x, y) := θ(x)Ai(x+ y+ s)θ(y) one obtains, via

manipulations as in refs. [23,37] using 〈1| 11±Bs |δ〉=
Det(I ∓Bs)/Det(I ±Bs) and F1(s) =Det(I −Bs), F2(s) =
Det(I −B2

s
):

g(s) =
1

2

(

F1(s)+
F2(s)

F1(s)

)

= F4(s= 2
−2/3s) (29)

in the conventions5 of ref. [38]. To summarize, for the
continuum DP model with fixed endpoints near the hard
wall we find

ln z = 22/3λ ξt, (30)

where z =Z/Z and ξt converges at large time in distribu-
tion to the GSE Tracy-Widom distribution F4. The same
formula holds for the full space but with ξt converging at
large time to the GUE distribution F2.
We now obtain the PDF of the free energy at finite time.

We follow the method in [19]. It is written as a convolu-
tion, i.e., lnZ = lnZ0+λu0 is the sum of two independent
random variables, where lnZ0 has a unit Gumbel distrib-
ution (i.e., P (Z0) = e

−Z0). Then the PDF of u is obtained
by analytical continuation p(u) = λπ Img(s)|eλs→−eλu+i0+ .
Using (22), (23) and (24) and some complex analysis we
find the free-energy distribution as the difference of two
(complex) Fredholm Pfaffians (FP):

p(u) =
λ

2iπ
(
√

Det[I +P0KuP0]−
√

Det[I +P0K∗uP0])

(31)
with the kernel

Ku(vi, vj) =
d

dvi

∫

dk

2π

∫

y

Ai(y+u+ vi+ vj +4k
2)

× sin(2(vi− vj)k)
k

[frk/λ(e
λy)+ if ik/λ(e

λy)], (32)

frk (z) =
πk

sinh(2πk)

(

I−4ik

(

2

√

1

z

)

+ I4ik

(

2

√

1

z

))

−1F2
(

1; 1− 2ik, 1+2ik; 1
z

)

,

f ik(z) = 4k sinh(2kπ)K4ik

(

2

√

1

z

)

. (33)

Note that the same formula (31) with each FP replaced by
its square, i.e., the FD, holds for the free energy associated
to the union of the two independent half-spaces.
Numerical simulations: Here we call t̂ the (inte-

ger) polymer length. At high temperature, we
follow [19,36,39] and define the partition sum (PS)

Z(t̂) =
∑

γt̂
e
− 1
T

∑
(x,τ)∈γ

t̂
V (x,τ)

of paths γt̂ directed

along the diagonal of a square lattice from (0, 0) to
(t̂/2, t̂/2) with only (1, 0) or (0, 1) moves. We denote
space x= (i− j)/2 and time τ = i+ j. An i.i.d. random
number V (x, τ) is defined at each site of the lattice (we
use a unit centered Gaussian). The disorder averaged full

space PS is Z =Nt̂e
β2 t̂/2 where NFS

t̂
≃ 2t̂
√

2/(πt̂) is the

number of paths of length t̂. The half-space PS is obtained

5Other conventions for F4 (e.g., wikipedia) differ by a factor
√
2.
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Directed polymer near a hard wall and KPZ equation in the half-space

Fig. 1: (Colour on-line) Rescaled PDF of (minus) the free
energy at large time. i) Solid line: analytical prediction d

ds
F4(s).

Histograms: ii) in blue, ground-state energy PDF (T = 0) for
a polymer t̂= 210 with N = 106 samples; iii) in red, PDF of
s=−2−2/3f for a polymer t̂= 210 at λ= 6.3, with N = 106

samples. The numerical PDFs are rescaled to adjust the mean
and the variance of F4. The variable s in all figures is called s
in the text.

by summing only on paths with x� 0, equivalent to an
absorbing wall (hard wall), with NHS

t̂
≃ 2t̂(2/t̂)3/2/√π.

We compute ln z with z =Z/Z with the transfer matrix
algorithm. As established in [19,36,39] in the high-T limit
at fixed λ, where λ= (t̂/(2T 4))1/3 for the lattice model,
ln z can be directly compared —with no free parameter—
with the analytical predictions of the continuum model
with the same value of λ, defined there by (2). In addition
we also compute the optimal path energy (T = 0).
In fig. 1 we show the convergence to the GSE TW

distribution both for i) T = 0 and large polymer length
t̂ and ii) at T > 0 and large λ. The agreement is very
good. The variation for T > 0 as a function of λ is shown
in more detail in fig. 2 where the (small) differences in
the cumulative distributions (CDF) are shown on a larger
scale. As in fig. 1 the mean and variance of the numerical
PDFs are adjusted to those of F4. In fig. 3 we show the
ratio of half-space (HS) to full-space (FS) variances as
a function of λ. Since the two TW distributions have
variances σF2 = 0.8131947928 and σF4 = 1.03544744, the
ratio ρ should converge to the value 1.273308 at large time,
which is apparent in fig. 3, up to finite t̂ effects discussed
there. Similarly the two TW distributions have skewness
γF21 = 0.2240842 and γ

F4
1 = 0.16550949 hence the skewness

ratio is predicted to increase from 0.636896 at small time
(see above) to 0.738604 at large time.
Interestingly, the difference of the means µ of the

GSE and GUE TW distributions gives information
about extreme value properties of the DP. p=ZHS/ZFS

is the probability that, in the full space and for
endpoints fixed at position x> 0 the DP does not
cross x= 0. p is defined for each disorder realiza-
tion, with p≃ x2p̃/t for small x. Then at large time
(i.e., large λ) one has ln p̃= 22/3λ(µF4 −µF2), where
µF4 =−3.2624279 while µF2 =−1.7710868. At small
time (i.e., small λ) one finds from above (and [19])
ln p̃=− 12

√

π
2λ
3/2− 0.0082964λ3+ . . . hence −ln p̃ crosses

Fig. 2: (Colour on-line) Convergence as a function of λ: the
difference between the numerical CDFs, Fnum(s), and the
prediction for infinite λ, F4(s), is plotted for λ= 0.2 (in blue),
1 (in red), 3 (in yellow) with N = 2.105 samples. t̂= 211 is hold
fixed. For λ= 0.2 the data for t̂= 29 (dashed line) illustrates
finite-size effects. The statistical fluctuations due to finite
sample N are visible.

Fig. 3: (Colour on-line) Ratio of variances ρ= σHS
σFS
, for λ

from 0.2 to 20. Crosses: numerical data (N = 2 · 105 samples,
t̂= 211, error estimation ǫ= 3 · 10−3). Dashed horizontal lines:

analytical predictions in both limits, 3
2
for λ→ 0 and σF4

σF2
=

1.2733 for λ→∞. A finite t̂ causes a small gap between these
limits and the data, which decreases as t̂ increases. Solid line:
Taylor expansion (14) globally rescaled to account for finite t̂.
The right part of the graph shows the convergence of ρ at T = 0
as a function of t̂: the upper point is t̂= 28, the lowest t̂= 210.

over from ∼ t1/2 to ∼ t1/3. Note that p is highly non–self-
averaging at low temperature: at T = 0 it is either 0 or 1,
and a numerical study [35] indicates that p=Prob(p= 1)
decays algebraically with time. Computing the PDF of p
seems a hard, although interesting, task.
KPZ equation: let us now detail how our results trans-

late in terms of the KPZ equation,

∂th= ν∇2h+
λ0
2
(∇h)2+ η(x, t), (34)

where η(x, t)η(x′, t′) =Rη(x−x′)δ(t− t′), with Gaussian
noise correlator Rη(x) =Dδ(x). The Cole-Hopf mapping

generally implies λ02ν h= lnZ and c̄=Dλ
2
0. To be more

specific, the initial condition (1) corresponds to a wedge
h(x, 0) =−w|x− y| in the limit w→∞, before y→ 0.
Because of the hard wall one has λ02ν h(x, t) = ln(xy)+
λ0
2ν h̃(x, t), where h̃ is not singular when both x and y
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Thomas Gueudré and Pierre Le Doussal

approach zero, and the correspondence is really λ02ν h̃(0, t) =
lnZ. Schematically the boundary conditions (BC) can be
stated as h(0, t) =−∞ or∇h(0, t) =+∞ (see more general
ones below). Hence from (30):

λ0
2ν
h̃(0, t) = lnZ +22/3λ ξt (35)

with, at large t, lnZ ≃ v∞t. From footnotes 3 and 4,

v∞ =
λ20Rη(0)
8ν2 − D

2λ40
12 is the same non-universal constant

(see discussion in [36]) in both HS and FS cases, the
difference in lnZ being only sublinear in time, as ∼ ln t.
Finally, we discuss the universality of our results.

Another standard BC is the reflecting wall (RW) ∇Z = 0,
i.e., ∇h= 0 (contact angle π/2) which may be of exper-
imental interest. For the DP it is achieved considering
two symmetric half-spaces, i.e., V (−x, t) = V (x, t) (see
footnote 6). At T = 0 there is no difference in the opti-
mal path energy between the hard and reflecting wall. At
T > 0 they become different, since there is more entropy
in the RW. However, the longer the polymer, the closer
it becomes, effectively, to T = 0. Hence we expect differ-
ent g(s), which become equal at large time. In fact all BC
such that ∇h� 0 should converge to F4. This is consistent
with the results of [28] translated into the T = 0 lattice DP
model (although the equivalent of the hard wall was not
explicitly considered there). In the PNG model it corre-
sponds to an absent or weak enough boundary source [27].
We will not discuss here the case of BC∇h< 0 which leads
to an unbinding transition. A similar transition was stud-
ied in the random permutation model [28] and in the PNG
model [14,27], but not using the BA (see, however, [40]).
Work on that case is in progress.
Our results apply to the conductance g of disordered

2D conductors deep in the localized regime. Extending
ref. [41] we predict that L−1/3 ln g should be distributed
as F4 if the leads are small, separated by L, and placed
near the frontier of the sample (which occupy, say, a half-
space).
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3 Large tails and anomalous

fluctuations

In the previous Chapter, we gave a detailed analysis of the statistical properties of the free
energy that relies on the continuum model of stochastic growth, the KPZ equation. This
analysis was performed in the weak noise/high diffusivity limit, a necessary requirement
for a complete determination of the scale of the fluctuations as a function of the three
parameters λ, ν and D. All the other microscopic details such as the disorder correlations
or the lattice effects are then relevant only at very short times t < tf .

At finite temperature however, the existence of a continuum model is more doubtful.
This can be easily seen by a coarse-graining type of argument. If we try to replace every
step of the polymer by a larger step, and substitute the disorder by its mean over the
sites encountered, we might destroy the original optimal path because some particularly
advantageous sites are deleted in the averaging process. As the statistical properties of
the DP are controlled by the ground state in a essential way at large time, the continuum
limit of the discrete model is rather ambiguous.

Motivated by experiments exhibiting different roughness exponents (see Fig.3.1), it was
soon noticed that the KPZ universality is surprisingly fragile to modifications of the
disorder. The heavy-tail noise is a typical example [94, 95, 96, 97]1. It possesses an
algebraic decay:

P (V ) ∼ A

V 1+µ

with µ the decay exponent. We refer here to distributions that do not have all their
moments finite. Their popularity is currently growing fast, as they are believed to well
describe strongly fluctuating systems.

For the DP, the ill-defined continuum limit leads to a surprising feature: even for µ >
2, with a well defined variance, the macroscopic properties of the interface are much
influenced by large events: the Central Limit Theorem (CLT) does not readily apply in
that context. Nonetheless, it is commonly believed that new scaling exponents (θµ, ζµ)
can still be defined, simply controlled by µ, as the static properties of the polymer are
determined by the rare events in the tail. Those new exponents could potentially explain
the deviations observed in experiments (as in [99], Fig.3.1). In that case, the bulk of
the disorder distribution becomes totally irrelevant. One could regard the KPZ class as
a marriage between the CLT and the Extreme Value theorem (EVT). The CLT defines

1Long-range correlations, with a algebraic decay notably, is another possible avenue to follow, but it
will not be mentioned in the following. Extensive studies (with quite some unresolved issues) have
been conducted numerically [98] or analytically [33].
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Figure 3.1: A front of glycerol invading a 2-dimensional Hele-Shaw cell filled with ran-
domly spread beads. The roughness of the front was evaluated at χ ≃ 0.81 and surpris-
ingly deviates from the standard result 1/2. From [99].

two main classes of distributions, depending on their tail behaviour with a critical value
µc = 2, while the EVT gives us three classes depending on the fact that the distribution
is compactly supported, or exhibits an algebraic decay (but with no critical value for µ).
The KPZ class is somewhat in between: the optimization mixes both sums and minimums
of random variables.

Although we already presented numerous ways to derive the anomalous exponents θ = 1/3
and ζ = 2/3, a simple argument that would unveil the deep physical origin of these
results and extend these results to similar problems, such as the DP in d+1 dimensions,
is still lacking. Emphasizing the importance of large events compared to the more global
optimisation of Gaussian disorder could potentially investigate the range of validity of
techniques exploited in the context of Gaussian disorder (such as replica method or the
functional RG). Moreover, it would be much enlightening to derive a Flory-type argument
for the Gaussian regime.

Therefore we revisit the 1+1 DP problem with heavy-tailed disorder. We first recall the
Flory argument, as well as a scaling theory developed in [100, 101] and tailored for heavy-
tailed distributions. To gain some analytical insight of the fluctuations distributions, we
consider a toy-model in d = 0, where most of the observables can be exactly computed,
before embarking on the d = 1 case. We establish numerically, as convincingly as possible,
the violation of the standard DP/KPZ 2/3 scaling and the corresponding Tracy-Widom
statistics. Our results are in good agreement with the naive Flory predictions for the
diffusion exponent ζ and the energy exponent θ, which confirms that the value ζ = 2/3
only holds if the distribution of the pinning energy V decays faster that 1/V 6. We then
focus more on the optimization strategy in presence of extreme events and study various
statistical properties of the DP in the anomalous regime, as an attempt to directly validate
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the main assumption of the Flory argument, namely that the accessible extreme values
of the pinning potential dominate the scaling behaviour.

3.1 Flory argument and scaling theory

Analytical methods to tackle noises with diverging moments are still inchoate. Most of
the formalism used in disordered systems, from Langevin equations to FRG techniques,
tends to break down when strongly fluctuating noises are present. Nevertheless, because
of the importance of extremal events, these systems lend themselves very well to Flory-
type arguments.

In the DP language, the exponents can be estimated by balancing the energy of the
deepest sites with the deformation energy it would cost to reach them [94, 102, 103].
Noting t the length and x the size of a typical excursion of the polymer, a result from
extreme statistics of heavy-tailed distributions gives, for the available volume xt, an
estimation of the energy of the minimum: Emin ∼ (xt)1/µ. On the other hand, the
deformation cost behaves as S ∼ −x2/t. Balancing both estimations, Emin ∼ S, leads to
the estimates:

ζµ =
1 + µ

2µ− 1

θµ =
3

2µ− 1
(3.1)

Those formula are valid for 1/2 ≤ µ ≤ 5. The hypothesis that elastic and total energies
are of same order of magnitude is closely linked to the scaling (STS) relation θ = 2ζ − 1.
The generalization to d dimensions is performed in the related paper.

Above the critical value µc = 5, we find θµ < 1/3 and, instead of a strategy focusing
on deep sites of the disorder, the behaviour of the polymer is dominated by a collective
strategy similar to the Gaussian case. It is interesting to note that there is no simple
scaling argument to recover the Gaussian exponents: it hints the fact that the subtle
optimisation in Gaussian-like disorder is global and introduces large correlations between
sites energies along the polymer.

The assumption that the interface remains self-affine in an heavy-tail disorder allows
to develop a new scaling theory that recovers Eq.3.1 with additional information. This
scaling theory was elaborated in [100, 101]. We reproduce their instructive analysis here.
To fix the ideas, we choose the disorder to follow a Pareto distribution:

P (η) =

{

Aµ/η1+µ if η > ηm
0 if η < ηm

(3.2)

The scale invariance P (bη) = b−µ−1P (η) is usually true only in the tails, due to the
existence of a constant cut-off ηm

Consider a simplified KPZ Equation, involving only the non-linear term:

∂th =
λ

2
(∇h)2 + η(x, t) (3.3)
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First, we investigate the scaling invariance of Eq.3.3. The noise (and the cutoff ηm) will
be scaled along with the interface. Therefore, the following results are exact: they merely
correspond to an affine change of units.

The noise, uncorrelated in space and time, follows a Pareto distribution with a density:

n(x, t, V ) dx dt dV =
Aµ

η1+µ
dx dt dV for η > ηm (3.4)

We call A the intensity of the noise, ηm the lower cut-off. With the change of units:

x = bx′

t = bzt′

h(x, t) = bχh(x′, t′)

η = bχη′

η(x, t) = bχ−zη′(x′, t′)

and requiring the invariance of the density n(x, t, η) dx dt dη2, it gives back Eq.3.1 in the
interface language, as well as χµ = 3/(µ+ 1). At the present stage, where the cutoff and
the noise are scaled, the scaling properties are not approximations or asymptotic results
but exact for all L and A and for all µ ≥ d+ 1, even beyond µc.

Now we consider the following KPZ equation with both Gaussian and Pareto noises ηG
and ηP , with µ < µc:

∂th = ν∆h+
λ

2
(∇h)2 + ηG(x, t) + ηP (x, t) (3.5)

If again a change of scale is performed on Eq.3.5 with this time the gaussian exponents
χ = 1/2 and z = 3/2, one can readily check that the intensity A grows, stretching the
interface more and more. The effective roughness exponent χ(L) for system size L thus
crosses over from χG to χP as L increases. Conversely , if µ > µc, the intensity A will
vanish under rescaling, recovering χG.

In the usual model introduced by Zhang [96], the bare cutoff ηm, representing the typical
size above which the distribution of noise events algebraically decays, is not rescaled.
Therefore, upon rescaling, the effective cutoff η̃m ∼ ηm/b

χP goes to 0 and the bulk of
the disorder distribution is irrelevant. [100] argue that the presence of this fixed cutoff
is nonetheless responsible for the very long cross-over towards χP observed in many
numerical simulations. Inspired by the exactly solvable EW case, they postulate some
logarithmic corrections at the critical transition µ = µc .

All the above relations heavily rely on some self-affinity assumptions, and the shared belief
that large noise events are the most relevant mechanism in power-law disorder. In the DP
picture, such a strong disorder is expected to greatly stretch the polymer, its statistical
properties being mainly controlled by a population of very deep sites. As we stated above,
it seems very delicate to back up those hypothesis with analytical calculations, even in
the d = 1 case.

2As we mentioned in the introduction, the Galilean invariance protects λ from renormalization.
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Nonetheless, if we can single out a site responsible for the extra wandering of the polymer,
most of the competing effects of a large elastic energy and a very negative potential will
sit precisely here. Therefore some insight might be gained by ignoring the remaining
path followed by the polymer. This amounts to study a particle in a random landscape,
attached to the origin by a spring. Although this rather drastic simplification can not
reproduce the statistics of the polymer, both models share some characteristic features.

3.2 Preliminary: the model in d = 0

Although the exponents change in heavy-tail disorder, it is likely that all the universality
is not lost, but the continuum limit has to be taken with care in order to ensure that
the tails are not erased. In that respect, the toy-model in d = 0 is interesting because
it is possible to monitor the transition from the discrete to the continuum model, and
to scrutinize how the disorder is renormalized in this limit. Moreover, it gives the decay
exponents of numerous quantities like the total energy of the particle, or its position.

3.2.1 From the discrete model...

We consider the minimization problem:

H(r) = min
u

H(r, u) = H(r, u(r))

H(r, u) =
m2

2
(u− r)2 + V (u)

where V (u) is a random potential (a random function of u) and we define u(r) =
argminH(r, u) the position of the minimum. The quadratic term confines the position
u of the particle and mimics the elastic term for interfaces (see Fig.3.2). This toy-model
has been frequently considered before [104, 105, 106, 107, 108, 28, 109]... Here we focus
on the case of an uncorrelated (or short range correlated) disorder:

P (V ) ∼ µ

|V |1+µ
(3.6)

for large negative V .

In this model, m sets an internal length Lm = 1/m [110]. This parameter will effectively
control the continuum limit, as m goes to 0 or equivalently L to ∞. As we said, the
particle mimics the extremal position of a polymer. By analogy, one can again define the
exponents:

u(r)− r ∼ m−ζ , H(r)−H(r) ∼ m−θ

The probability that the minimum total energy H is attained in position u with a value
of the disorder V is simply equal to the infinite product:

p(u, V ) = P (V )
∏

u′ 6=u

P>

(

H − m2u′2

2

)

(3.7)
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r u

H(r)

u(r)

um∼m
-ζH

Figure 3.2: A particle in a random potential landscape confined by an elastic force (i.e. a
quadratic potential centered at r). u(r) is the position with minimal total energy H(r).
Its fluctuations from sample to sample scale as um ∼ m−ζ .

To study the limit of small m, it is convenient in the following to absorb the dependence
with m in the units (um, Hm, Vm) defined for the variables (u,H, V ) respectively:

u → u/um = mζu

V → V/Vm = mθV

H → H/Hm = mθH

Except if stated, in the whole Section, we work now in the dimensionless system of units
defined above.

The computation of the joint distribution P (u, V ) in the small m limit can be written
(as detailed in the related paper):

p(u, V ) ≈ µ

|V |1+µ
exp

(

−Fµ|V +
u2

2
| 12−µ

)

θ
V+u2

2
<0

(3.8)

with Fµ =
√
2πΓ[µ− 1/2]/Γ[µ]. Eq.3.8 is obtained after taking the limit of the quantity:

exp

(

−
∫

du′m−ζP<(m
−θ(H − u′2

2
))

)

θH<0 (3.9)

Before that step, the exponents θ and ζ were not specified. But the requirement of a non-
trivial continuum limit in Eq.3.8, very reminiscent of the scaling invariance hypothesis
detailed in the previous section, imposes both:

θ = 2ζ − 2 (3.10)

ζ = θµ (3.11)
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This choice indeed leads to the subsistence of the disorder tails in the continuum, contrary
to what one would obtain after a coarse-graining scheme. With the use of Tauberian
theorems [111], one can show the quantity Eq.3.9 converges to Eq.3.8 for any disorder
distribution with algebraic decay of index µ. In particular, the bulk of the distribution
is irrelevant.

Unlike the directed polymer in d = 1, there is no critical µc where the Gaussian regime is
recovered: in d = 0, µc = ∞. The reason is transparent: the Gaussian regime is a global
optimisation that cannot be captured by our extremal toy-model.

From Eq.3.8, much of the statistics of the particle can be computed. We refer to the
related paper for detailed results. Let us just emphasize some interesting facts. After
rescaling, the total energy follows a universal fluctuation distribution that decays as a
power-law of index µ − 1/2. This surprising shift can be recovered by invoking results
from record statistics theory. Consider a realisation of the disorder with a particularly
deep minimum, where the particle sits. From record statistics, it is known that the tail
of the minimum of N heavy-tailed random variables decays as ∼ N

V 1+µ . Balancing elastic
energy and potential leads to E ∼ u2 ∼ V , and then to N ∼ u ∼ V 1/2. Hence the
dependence of N with V , inherent to the fact that large deviations in the disorder allows
the particle to explore a larger space, leads to a modified exponent µ− 1/2 of the tail of
H and V .

In a similar flavour, the distribution of the position of the particle around the center of
the parabolic potential decays with an index 2µ, a fact that can be quickly recovered
from the balance between elastic and total energy.

3.2.2 ...to the continuum limit

The continuum limit is described by some random Poisson process on the plane (u, φ) -
the spatial and potential variables - with the intensity f(u, φ) controlling the distribution
of the disorder in the cell of size du dφ centred in (u, φ). In the present case of a translation
invariant noise, f only depends on φ. For a continuum model model to be a “fixed point”
of a more general class of models (e.g., the discrete model above) one should require scale
invariance, as was discussed in Section 3.1. Within our choice of self-affine scaling, this
imposes:

f(mθ V ) = m−ζ−θf(V + Cm) (3.12)

There are three types of solutions of Eq.3.12, some of them already detailed in [112]. Each
of them corresponds to a possible continuum limit, representative of a “toy” universality
class. A clear analogy with the well-known universality classes of extremal statistics very
naturally appears, considering that the optimization problem involves finding a minimum
amongst random variables:

• f(φ) = eφ. This leads to the analogous of the Gumbel class, for fast-decaying
disorder distributions (in particular the Gaussian disorder). Much of the statistics
of this toy model has been studied by Kida in his seminal paper [104].

• f(φ) = φ−1−µθφ>0. This corresponds to disorders bounded from below, and there-
fore coined the Weibull class. It was studied in [112].
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• Finally, f(φ) = |φ|−1−µθφ<0. As forecast from Eq.3.8, this represents the continuum
limit of the discrete model above, and we shall refer to it as the Frechet class.

Of course, all the results about the decay of the distributions given previously can be
readily recovered from the continuum. This toy model possesses another interpretation
in terms of decaying Burger turbulence, mentioned in the Introduction. In particular,
one can compute in general the distribution of the shocks as a functional of the velocity
initial condition. As we did not adopt much of the language of Burger turbulence in this
Thesis, we will not elaborate on those questions and refer to the related paper for more
details.

3.3 The Directed Polymer in d = 1 + 1

In the following, we investigate the properties of the DP in d = 1 + 1. Because we are
mainly interested in asymptotics, we consider the slightly simpler case T = 0. Hence the
free energy is replaced by the total energy E(t). For this discrete model, directed paths
grow along the diagonals of the lattice with only (0, 1) or (1, 0) moves (hard constraint
condition), starting in (0, 0) and with the second end left either free or fixed. To each
site of the lattice is associated a i.i.d. random number V (x, t). The time coordinate is
given by t = i + j and the space coordinate by x = (i − j)/2. The total energy of the
polymer is the minimum over all paths γt growing from (0, 0) up to time t is defined as

E(t) = min
γt

∑

(x,τ)∈γt

V (x, τ)

with 2x ∈ [−t, t] and τ ∈ [0, t]. The energy can be computed with the fast transfer matrix
method, relying on the recursion:

Ex,t+1 = min
(

Ex− 1
2
,t, Ex+ 1

2
,t

)

+ V (x, t+ 1)

with Ex,0 = δx,0.

This discrete model can be seen as a natural regularization of the continuum elastic DP
model, with arbitrary disorder distribution. A subtlety arises for very low µ < 2, as ζ in
the discrete model saturates to 1 due to the hard constraint. Hence both models are not
equivalent anymore below µ < 2. For consistency, we only consider the discrete model in
the following, even in the limit µ → 0+.

3.3.1 Scaling exponents

Measuring the scaling exponents in presence of heayv-tailed disorder requires a bit of care.
The statistical estimator for E2

c
never averages when µ < 4 and shows large jumps even

for a very important sampling. This is related to the convergence of its statistical error
(E4

c
/N)1/2. Due to the presence of heavy tails in the disorder, high enough moments of

the distribution of energy P (E) could diverge.
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O

Figure 3.3: Sketch of the directed polymer model. The blue solid line corresponds to a
polymer growing over the square lattice under the hard constraint condition. This model
is equivalent to the elastic polymer model for disorder with decay exponents down to
µ = 2.

Another estimator of the spread of the distribution is the mean absolute deviation (MAD)
∆E:

∆E =
1

N

∑

i

|Ei − E| (3.13)

This estimator is more resilient to extreme events and works better with heavy-tailed
distributions. Contrary to the standard deviation, which squares the distance from the
average, MAD is well controlled as soon as the second moment of the pdf exists. When
needed, we use this more robust estimator.

The check of the prediction, for different values of µ compared to the theoretical result,
is summarized in a table in the related paper. The numerical estimations have been
made with the maximum likelihood method. We present the estimations of ζ in Fig.3.4.
It shows a good agreement between numerics and theory, but one clearly notes, in the
inset, that the quantities x(t)2/tζµ saturates at larger and larger times as µ → 5. This is
caused by a growing cross-over to the heavy-tail regime around µ = 5− we obtained in
Section 3.1. For µ > 5, the standard values ζ = 1/3 and θ are recovered, after a similarly
behaving cross-over. The marginal case µ = 5 presents an sub-growing behaviour, akin
to a logarithmic correction (see also [101]), although we did not simulate large enough
polymers to back up that prediction with satisfying precision.
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Figure 3.4: Mean square displacement of the end position of the optimal path for µ = 3
(in red) and µ = 4 (in blue). Dashed lines correspond to the Flory estimation. Inset :
x(t)2/tζth showing saturation at large t in both cases.

3.3.2 Fluctuations of the free energy and end position

While the scaling exponents have been well investigated before, we could not find any
study about the universal limit distributions of the fluctuations for the free energy and
the extremity. The heavy tail of the disorder is expected to pervade in their own tails.
As they correspond to rare and large fluctuations, they likely relate to the presence of
rare and deep sites in the disorder. In what follows, we define the rescaled variable:

s(t) = (E(t)− E(t))/(E2
c
(t))1/2 (3.14)

with the rescaled energy distribution φ(s).

It is worthwhile to note that not only the Gaussian scaling exponents, but also the TW
universality class, extend for µ > 5. The shadowed presence of heavy tails can only be
perceived for very negative s, where φ(s) remains algebraic below some threshold s < s∗t .
However, when t → ∞, the crossover towards the algebraic behaviour s∗t moves to −∞.

For 2 < µ < 5, the limiting distribution is very different. In particular, φ(s) exhibits an
algebraic decay 1/s1+µ. Relying on the above analysis for d = 0, we expect the tail to
actually decay with an exponent µ − 1/2 rather than µ because of the presence of the
elastic energy. Unfortunately, the simulations are quite inconclusive. Even by using a
rather high sampling (about N = 5 · 106 polymers of size L = 512) and logarithmically
binning the histogram, we were not able to clearly determine a value between µ and
µ− 1/2, as the decay seems to sit in between (see Fig.3.5). A more careful study of the
finite size effects is in progress to unambiguously answer that question. It is however
complicated by the concern of different tails, universal and non-universal, appearing at
very large values of φ(s). Although it turns out that they share the same exponential
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Figure 3.5: The left tail of the energy distribution φ(−s) for a polymer of size L = 512
(N = 5 · 106) with µ = 3. While it shows a clear algebraic decay, the decay exponent can
not be determined without ambiguity.

decay in the Gaussian regime [113], it is not obvious that this coincidence holds in the
heavy-tails case.

More generally, the family of limiting distributions Fµ only depends on µ and on the
boundary conditions. Its analytical expression is still unknown. Inspired by results
from extreme statistics, a natural guess would be the Frechet distribution P(X < x) =
exp(−α|x|−µ) or some convolutions thereof [103]. However, this distribution is supported
on the half real line, while our numerical results indicate that the support of the limiting
distributions Fµ is the whole real line. An interesting feature of Fµ is the fact that its
right tail, corresponding to unfavourable configurations of the disorder, seems to decay
as e−αs3 , similarly to TW. This fact would support a mixture of some Frechet and TW
distribution as a possible guess. An interesting avenue to explore concerns the optimal
fluctuation theory developed in [114, 113, 115] for the directed polymer. It could relate
large positive fluctuations of the free energy to the disorder landscape for heavy-tailed
disorder, and explain the robustness of the right tail decay.

One expects the rescaled position z = x(t)/tζ to converge in law towards a limiting
distribution Qζ(z). The marginal Q2/3(z) can not be computed explicitly, but it has been
shown that it has an infinite support with a rather small departure from the Gaussian
distribution [116, 117]. The heavy-tailed disorder exhibits a radically different behaviour,
asQζ(z) is strongly influenced by the large excursions of the optimal path to reach pinning
sites. The result from the d = 0 case hints at an algebraic decay of exponent 2µ.

Note that, for µ < 2, ζ saturates to 1 due to the hard constraint and the support of
Qµ(z) reduces to the interval (−1, 1): the extremity has a finite probability to reach any
point of the available space, even at large t. Remarkably the distribution Qµ(z) can be
explicitly computed in the limit µ → 0+, where the optimization becomes a hierarchical
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recursive process3:

Qgreedy(z) =
3

4

(

1− z2
)

(3.15)

Actually, Eq.3.15 asymptotically holds for the range 0 < µ < 1 because, when the mean
does not exist, the sum of energy is totally dominated by one single term: the polymer
obeys a greedy strategy, only picking the deepest site available.

Because the regimes considered in that section can be described in terms of various
optimization strategies, we study them in more details in the following.

3.3.3 Optimization strategies

As we said, the difference of extremal statistics for different disorders reflects in the
optimization strategies adopted by the polymer:

• For a Gaussian disorder, the optimisation strategy is collective: the total energy of
the polymer is equally shared between all the sites.

• For an heavy-tailed pdf with 1 < µ < 5, the optimisation strategy is elitist: an im-
portant fraction of the total energy is hold by a small fraction of the sites belonging
to the path.

• For an heavy-tailed pdf with µ < 1, the optimisation strategy is individual: most
of the total energy of the polymer is localized on one particularly deep site.

The Flory argument precisely relies on the assumption that the fluctuations of E are
controlled by the fluctuations of the deepest sites, specifically reached by the polymer.

For example, one could check the validity of the elitist optimisation strategy through the
following procedure: consider an envelope of length t and width 1/2tα, its volume scales
as t1+α. We estimate the probability Pc(α) that the minimum on the polymer is one of
the log(t) deepest sites inside of the envelope. If α is chosen too small compared to ζ,
then the minimum on the polymer should be smaller than the minimum in the envelop.
On the contrary, if α ≫ ζ, the minimum on the polymer should be higher, as the elastic
energy prevents it from reaching this favourable site. One expect that when t → ∞,
Pc(α) will become more and more peaked around α = ζ for the elitist strategy, while in
the collective regime, Pc(α) should vanish for all α. Fig.3.6 indeeds suggests a different
qualitative behaviour for µ = 3 and µ = 7, in agreement with our prediction. Note
that the maxima of the curves in Fig.3.6 corresponding to an estimation of the rugosity
according to the scaling argument are moving to the left, from 1 to 0.90 up to t = 212.
They are expected to converge to ζµ = 4/5 for µ = 3 although the convergence is very
slow.

Another interesting observable to quantify the departure from the global strategy is the
position of the minimum energy site along the polymer. Because with fast-decaying
disorder, the value of a single site does not matter to the polymer, its position tmin

3Details of the computation can be found in the related paper.
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Figure 3.6: Probability Pc(α) as defined in the text for a heavy tailed dis-
order with µ = 3. Symbols correspond to different lenghts: L =
26 (circles), 29 (squares), 211 (losanges), 212 (triangles). The averages are performed over
N = 2× 105 samples. Inset: the same analysis is performed for µ = 8.

should be uniformly distributed over the whole length. On the contrary, in heavy-tailed
disorder, it is more likely to find such a minimum where the entropy is the largest, in the
middle for the droplet geometry. This phenomenon is clearly seen Fig.3.7. For µ < 1,
the histogram adopts, at large L, a triangle shape that can be readily explained by the
greedy model.

The limiting case of a greedy strategy in the limit µ → 0+ is easier to handle analytically,
because it reduces to a hierarchical process, where recursive equations can be written
down. Hence, we gave in Eq.3.15 the probability distribution of the extremity, reduced
to a simple parabola. In [118], the multi-fractal spectrum of the polymer path was
computed as well. In [119], a family of limiting curves is obtained for the paths of the
polymer when the temperature is scaled with the length L as β ∼ L1−2/µ. Works are in
progress to obtain the general phase diagram for any µ and scaling of β [120]. Finally, the
use of hierarchical processes have been used before to provide upper bounds on the free
energy for Gaussian disorder [121]. Because the above numerical study gives the intuition
that, for µ < 5, the optimization strategy becomes more local, focusing on specific deep
sites, it would be enlightening to adapt the multi-fractal formalism developed in these
works to any exponent µ, as a sort of multiplicative cascade seems at play. Note however
that the interplay between elastic energy and potential greatly complicates this task,
compared to the greedy model where the elastic energy is neglected.
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Figure 3.7: Probability P (tmin) to find the minimum energy site at position tmin along the
polymer, with a droplet geometry. From the flattest histogram to the least one: Gaussian
disorder (green), µ = 7 (yellow), µ = 3 (red), µ = 2.2 (blue).

3.4 Conclusion

We presented a study of the modification of the KPZ universality class under heavy-tailed
disorder. Those modifications are deep, and the presence of rare and large events pervade
from the scaling exponents to the fluctuations distributions. Nonetheless, this simply
leads to new universality classes, as both the exponents and the fluctuations distributions
seem uniquely controlled by µ, the bulk of disorder being irrelevant. Aside this new
dependence, many features are shared in common in those universality classes, like the
dependence with initial conditions, or the far right-tail, corresponding to anomalously
high energies. This supports our hope to get a better grasp on the KPZ class itself by
studying its surrounding.

However, because of the lack of theoretical tools robust to heavy-tailed noise, exact results
are rather scarce and numerics have been extensively used to enlighten the situation. They
indicate a sharp transition between the scaling exponents (θµ, ζµ) and the Gaussian values
(1/3, 2/3) at µc = 5. This is at odd with the result about random matrices with heavy-
tailed distributed entries, where a similar transition takes place at µc = 4, questioning the
existence of an exact mapping between the DP problem and random matrices ensemble.

Because the optimization strategy apparently decomposes into recursive processes, where
a single advantageous sites is picked, the exactly solvable case in d = 0 gives rather
good estimates of several quantities involved in the d = 1 case. However, they fail
to reproduce the most subtle features. Nonetheless the detailed numerical study of the
polymer statistics reveals that the new statistics possess an underlying recursive structure
akin to multiplicative cascades, or multifractal processes. This hypothesis is backed by the
solvable greedy limit µ → 0+, where the recursion equations are explicit. Hopefully, this
formalism, that already provides upper bounds on Gaussian disorder, could be adapted
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to tackled the whole range 0 < µ < 5.

Finally, the possibility of a Flory-type argument for Gaussian disorder remains open.
From the above study, both collective and elitist strategies apparently coexist. We ob-
served that a specific rescaling of the disorder with the length can suppress the critical
threshold µc = 5. A possibility would be to study the dependence of the free energy
with a finite lower cut-off on the disorder. This should allow to tune more precisely the
transition from the collective to the elitist strategy, and give a better understanding of
the small population of sites responsible for the departure from the standard KPZ class.
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I. INTRODUCTION AND MODEL

Strongly pinned elastic objects, such as interfaces, occur

in nature in the presence of substrate impurity disorder which

exhibits large fluctuations. The ground-state configuration is

determined by a competition between the energy cost of

deforming the interface and the energy gain in exploring larger

regions of disorder. In the well-studied case of Gaussian disor-

der, no impurity site particularly stands out and the optimum

arises from a global optimization. The typical interfaces are

rough, with nontrivial roughness exponents u ∼ Lζ , where u

is the deformation field and L an internal coordinate scale. The

total optimal energy H fluctuates from sample to sample with

another exponent H ∼ Lθ . For directed lines (i.e., internal

dimension d = 1) wandering in one dimension, ζ = 2/3 and

θ = 1/3, which in turn are related to the exponents of the

standard universality class for the Kardar-Parisi-Zhang growth

equation [1].

In some physical systems however, the picture is completely

different: a small fraction of the impurity sites produce a finite

contribution to the total pinning energy, and the interface is

deformed over large macroscopic scales, pinned specifically

on those particular regions. One can see realizations of that

situation in various areas such as transition in chemical reaction

of BZ type, or in granular flows [2]. One expects that the usual

critical exponents are modified, but much less is known in this

case, both about equilibrium (e.g., ground states) and about

nonequilibrium dynamics (e.g., depinning).

The present paper focuses on heavy-tailed disorder, which

is paradigmatic of that situation, and whose probability

distribution function1 (PDF), P (V ), shows an algebraic tail. In

terms of the cumulative distribution function (CDF), denoted

P<(V ) =
∫ V

−∞ P (V ′)dV ′, we have

P<(V ) ≃ A

(−V )μ
for V → −∞. (1)

As was found in numerous works, such a scale-free distribution

often leads to behaviors dominated by rare events. They have

been much studied in the context of diffusion in random

media, where they generate anomalous diffusion [3]. More

1Also called probability density function below.

recently, heavy-tailed randomness was studied in the context

of spin glasses and random matrices [4,5]. For instance, in [6]

it was found that the PDF of the maximal eigenvalue of a

large random matrix with i.i.d. entries distributed as changes

from the standard Tracy-Widom distribution (the Gaussian

universality class) to a Frechet distribution as μ is decreased

below μ = 4.

Only a few works address the pinning problem in the

presence of heavy tails. In [6] it was argued, based on a

Flory argument, that for a directed polymer in the so-called

(1 + 1)-dimensional geometry (meaning internal dimension

d = 1 and displacement u ∈ RD with D = 1), for μ < 5 the

roughness and energy exponents at T = 0 change to ζ = (1 +
μ)/(2μ − 1) and θ = 3/(2μ − 1). For μ � 5 one recovers the

above-mentioned values for Gaussian disorder, i.e., the tails

have subdominant effect. While some mathematical results

are available for μ < 2 [7], little is presently known rigorously

for general μ or on the effect of a nonzero temperature on the

problem [8].

In this paper we solve the much simpler case of a particle,

which can be seen as the limit d = 0 of the elastic interface

problem. We consider the minimization problem:

H (r) = min
u

H (r,u) = H (r,u(r)), (2)

H (r,u) = m2

2
(u − r)2 + V (u), (3)

where V (u) is a random potential (a random function of

u) and we define u(r) = argminH (r,u) the position of the

minimum. The quadratic term confines the position u of

the particle and mimics the elastic term for interfaces (see

Fig. 1). More precisely, this model can be extended to an

interface in a quadratic well and there m sets an internal length

Lm = 1/m [9]. The PDF of u(r) − r and H (r) − H (r) (where

we denote by · · · the average over the disorder) are independent

of r if V (u) is statistically invariant by translation. Hence one

can again define the exponents, as m → 0 (see Sec. II A for

more details):

u(r) − r ∼ m−ζ , H (r) − H (r) ∼ m−θ . (4)

This “toy model” has been much studied in the context of

disordered systems for Gaussian disorder. It also appears in the

context of the decaying Burgers equation with random initial

1539-3755/2014/89(4)/042111(11) 042111-1 ©2014 American Physical Society
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r u

H(r)

u(r)

um m-ζH

FIG. 1. Particle in a random potential landscape confined by an

elastic force (i.e., a quadratic potential centered at r). u(r) is the

position with minimal total energy H (r). Its fluctuations from sample

to sample scale as um ∼ m−ζ .

conditions, in the limit of vanishing viscosity (see Appendix A

for details of the mapping). The case of short-range correla-

tions corresponding to a short-range potential V (u) was solved

in the seminal paper of Kida [10]. An elegant derivation using

replica was also given in [11]. Other derivations are given

in [12] (Appendix J) and [13] (Appendix A). The case of

Brownian correlations for V (u) is related to the Sinai model

studied in [12,14–18]. Other type of correlations have been

studied in [19–23].

Here we consider the case where (i) correlations of V (u)

are short range and (ii) the PDF of V (u) contains heavy tails.

We then ask how the exponents and the PDF of u(r) and

H (r) depend on the heavy-tail exponent μ. Another interesting

observable are the jumps of the process u(r). Indeed in the limit

of small m the process u(r) consists mostly of jumps called

“static avalanches” or shocks (see below), and one defines the

shock sizes s = u(r+) − u(r−).

To be specific we solve here two variants of the model as

follows.

(i) The discrete model: one starts with u on a discrete

lattice and i.i.d. random variables V (u). In the limit m → 0 by

rescaling the position u the process converges to a continuum

limit.

(ii) The second is defined directly in the continuum for u:

there V (u) is defined as a Poisson point process.

Both models enjoy the same universal scaling limit.

In the absence of the quadratic well, H = minu V (u) and

the discrete problem reduces to the standard extreme value

statistics problem. It must then be defined for a fixed system

size u = 1, . . . ,N . For i.i.d. random variable (or weakly

correlated ones) H then grows to infinity with the system

size N and, after a proper rescaling, the PDF of aNH + bN

converges to one of the famous three universality classes [24]:

(i) Gumbel when P (V ) decays faster than a power law;

(ii) Frechet of index μ when P (V ) decays as a power law (1),

and Weibull when P (V ) vanishes below some threshold (e.g.,

for V < 0). In the presence of the confining quadratic well,

the same three classes survive: the Kida case belongs to the

Gumbel class, while the heavy tail case belongs to the Frechet

class. There are, however, some different universal features,

such as the exponents and the distributions of shock sizes and

minimum position.

In this paper we derive a general formula for the PDF of

the position of the minimum u(r), and for the distribution

of the shock sizes s. Although our formula is valid for the

three universality classes, we give a detailed calculation in the

case of the Frechet class with power-law exponent μ. We find

that both distributions exhibit algebraic tails with modified

exponents. These results are extended to space dimension

D > 1.

Note that some of our results were anticipated in the

context of the decaying Burgers equation. In [25] Bernard and

Gawedzki looked for universality classes distinct from Kida

for statistically scale-invariant velocity fields: they focused on

the Weibul class and called it an “exotic regime” for Burgers

turbulence. In [26], a more general study was presented,

encompassing the three regimes. However, in none of these

works the distribution of the shock sizes was obtained. The

present work thus gives results on another exotic regime for

decaying Burgers turbulence.

Note that the nonequilibrium version of this toy model,

where one studies the dynamics of a particle pulled quasistat-

ically by the harmonic well in the random potential V (u) was

studied in [27]. The three universality classes were also found

to appear, and the distribution of the avalanche sizes were

obtained for the three classes.

In Sec. II, we solved the discrete toy model and obtain the

joint PDF of the energy and the position in the small m limit. In

Sec. III we consider the Poisson process model, and derive the

shock size distribution. In Sec. IV, we consider the discrete toy

model in higher dimension. Finally, in Sec. V, we discuss the

case of a more general elastic manifold of internal dimension d

using Flory arguments. The Appendixes contains the mapping

to Burgers, and mode details.

II. FROM THE DISCRETE MODEL TO THE CONTINUUM:

ONE-POINT DISTRIBUTIONS

A. Scaling exponents and dimensionless units

We now start from the discrete model where u ∈ Z and

V (u) are i.i.d. random variables drawn from the distribution

P (V ). We show that one obtains a nontrivial continuum

limit in the limit m → 0 upon rescaling of u (in what we

call dimensionless units below). This procedure makes the

universality appear clearly.

Let us study first the one-point distributions. For that

purpose we can set r = 0 and consider H = H (r = 0). The

probability that the minimum total energy H is attained in

position u with a value of the disorder V is equal to the

product of (i) the probability P (V ) of having V in u and

(ii) the probability to have higher total energies on all the other

sites u′ �= u. It is thus given by the infinite product:

p(u,V ) = P (V )
∏

u′ �=u

P>

(

H − m2u′2

2

)

. (5)

To study the limit of small m, it is convenient in the follow-

ing to absorb the dependence with m in the units (um,Hm,Vm)

defined for the variables (u,H,V ), respectively. One can then

recover the dimensionful results by the substitution in all
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dimensionless results:

u → u/um = mζu,

V → V/Vm = mθV,

H → H/Hm = mθH.

Except if stated, we work now in the dimensionless system of

units defined above. Without loss of generality, A in Eq. (1)

has been set to 1 by a rescaling of V .

At this stage the exponents θ and ζ are not specified. To

obtain a nontrivial limit one needs to scale V as m2u2 which

imposes the exponent relation:

θ = 2ζ − 2, (6)

which is known in the directed polymer context as the STS

relation [28].

The joint PDF Eq. (5) for the optimal position u and the

value of the random potential V on the optimal site then

becomes, in the small m limit,

p(u,V ) = m−ζ−θP (m−θV )
∏

u′ �=u

P>

[

m−θ

(

H−u′2

2

)]

≈ μ

|V |1+μ
exp

{

−
∫

du′m−ζP<

[

m−θ

(

H−u′2

2

)]}

×θH<0

≈ μ

|V |1+μ
exp

(

− Fμ

∣

∣

∣

∣

V + u2

2

∣

∣

∣

∣

1
2
−μ)

θ
V + u2

2
<0

, (7)

where H = V + u2

2
and we denote everywhere θx<0 the

characteristic function of the interval (Heaviside function).

Here and below we denote

Fμ =
√

2πŴ[μ − 1/2]

Ŵ[μ]
. (8)

The joint PDF of u and H is simply p(u,V = H − u2

2
). Going

from the infinite product to the exponential in the second line

of Eq. (7) requires that P>(·) ∼ 1 at all sites, or equivalently

H < 0, which is verified for m small enough. The final

expression for the joint PDF Eq. (7) is normalized to unity
∫

dV dup(u,V ) = 1, which shows that we have correctly

taken the small mass limit (no regions have been overlooked).

More precisely, and as is further explained in Appendix B, as

m → 0 (the continuum limit), the rescaled cumulative (CDF)

m−ζP<(m−θy) converges to
θ−y

(−y)1+μ [under the condition that

the right tail is in o(V −(1+μ)); cf. Appendix B]. Hence

only the contribution of the left tail of P<(·) contributes

to the integral in Eq. (7), a typical behavior in power-law

statistics, and one can readily replace P<(·) by its asymptotic

expression (such estimates can be established rigorously by

the use of Tauberian theorems [29]). This implies the second

relation:

ζ = μθ, (9)

which leads to

ζ = 2μ

2μ − 1
, (10)

θ = 2

2μ − 1
. (11)

One could wonder about the existence of a threshold value

μc above which the algebraic decay of the tails is fast enough

to recover the behavior in the Gaussian disorder ζ = ζSR and

θ = θSR (where SR stands for short-range Gaussian disorder).

One notes that, unlike the directed polymer (see Sec. V), such

a finite critical value μc for the disorder tail doesn’t exist. In

other words, any power-law tail matters. More precisely, one

can say that μc = +∞. In that limit, indeed, ζ → 1 which is

the value for the Gumbel class [12]. There is an interesting

crossover in that limit where the leading contribution goes

from the bulk of P (V ) (as is the case for the Gumbel class) to

the tail (for the present power-law case).

B. Results for the one-point distributions

From Eq. (7), one can obtain the joint distribution of (H,V ).

Taking into account the Jacobian ∂(u,V )

∂(H,V )
= [

√
2(H − V )]−1/2

and a factor of 2 from integration over positive and negative u

yields

p(H,V ) = μ
√

2

|V |1+μ
√

H − V
e−Fμ|H | 1

2
−μ

θH<0,V <H . (12)

After integration, one obtains the various marginal distribu-

tions of H , V , and u. First we obtain

p(H ) =
(

μ − 1
2

)

Fμ

|H |μ+ 1
2

e−Fμ|H | 1
2

−μ

θH<0. (13)

Hence the PDF of the total energy H is a Frechet distribution.

On one hand, this appears as natural since we are dealing with

extreme value statistics of heavy-tailed distributions. However,

the index of the Frechet distribution is not μ (as would be

naively expected) but μ − 1/2, which is thus a correction

coming from the competition with the elastic energy. As the

particle chooses amongst the deepest sites, the distribution of

its energy acquires a power-law tail which is even broader than

the initial disorder. It is easy to extend the above calculation to

a generalized elastic energy growing as uα , the modified index

being then μ − 1/α.

Next we also obtain the PDF of the potential V at the

position of the minimum as

p(V ) = μ

|V |μ+1
φμ(|V |)θV <0, (14)

where we have defined the auxiliary function:

φμ(x) =
√

2

∫ x

0

dy√
x − y

e−Fμy
1
2

−μ

. (15)

Note that the factor φμ(|V |) gives the relative change of the

tail of the PDF of the potential at the optimal site with respect

to the tail of the original PDF of the disorder. For |V | of order

one it is of order one; hence the original tail exponent is not
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THOMAS GUEUDRÉ AND PIERRE LE DOUSSAL PHYSICAL REVIEW E 89, 042111 (2014)
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FIG. 2. (Color online) Comparison of the PDF for the position u

as given in Eq. (17) (black dashed lines) with numerical simulations

(red solid lines). The algebraic tails are clearly distinguishable as

straight lines on the semilogarithmic plot. From the narrowest shape

to the broadest (corresponding to the fatter tails), μ = 15, 10, and 4.

The sample size is N = 5 × 105.

changed, but the amplitude is changed.2 For large negative V ,

it diverges; hence we find

p(V ) ≃ 2
√

2μ

|V |μ+ 1
2

, V → −∞, (16)

which is again the original tail but with the same shift in

the exponent μ → μ − 1
2

as noticed above, and a different

amplitude. This surprising shift can be recovered by invoking

results from record statistics theory. Consider a realization

of the disorder with a particularly deep minimum, where the

particle sits. From record statistics, it is known that the tail of

the minimum of N heavy-tailed random variables decays as

∼ N
V 1+μ . Balancing elastic energy and potential leads to E ∼

uα ∼ V , and then to N ∼ u ∼ V 1/α . Hence the dependence

of N with V , inherent to the fact that large deviations in the

disorder allows the particle to explore a larger space, leads to

a modified exponent μ − 1/α of the tail of H and V .3

Finally we obtain the PDF of the optimal position u of the

particle as

p(u) = μ ψμ

(

u2

2

)

(17)

in terms of the auxiliary distribution:

ψμ(x) =
∫ ∞

0

dy

(x + y)μ+1
e−Fμy

1
2

−μ

. (18)

The PDF of u decreases from a constant at u = 0 to a power

law at large u. The position of the particle is thus heavy tailed

as well as its PDF decays as

p(u) ≃ 2μ

u2μ
, |u| → +∞. (19)

2One should keep in mind that here V denotes the dimensionless

potential; hence it is deep in the tail, since we use units of Vm ∼ m−θ .
3We thank Jean-Philippe Bouchaud for helping to set up this

argument.

The moments u2n thus exist only for 2n < 2μ − 1 and are

given in Appendix C. The comparison with numerics is made

in Fig. 2. Finally, note that for μ < 1
2

the particle explores the

whole space u ∼ W , as the energy of the optimal site ∼u1/μ

grows faster than the elastic energy ∼u2.

We note that the PDF of the “elastic energy” E = u2/2 has

also a tail:

p(E) ≃ 1√
2

1

E
1
2
+μ

, (20)

with exponent μ − 1
2

analogous to Eq. (16) for large values.

To conclude, the typical H,V of order one are already drawn

in the original tail of P (V ) with exponent μ (since we work in

the units m−θ ) and the rare events acquire a tail with exponent

μ − 1
2
.

III. STATISTICS OF THE SHOCKS

As the center of the harmonic potential r is shifted, the

optimal position u(r) of the particle is changed as shown in

Fig. 3. This corresponds to a jumpy motion of the particle;

each jump is called a shock because corresponding to traveling

shocks in the Burgers velocity field (see Appendix A). We now

introduce the Poisson process model.

A. General case

1. Poisson process model and one-point distribution

The computation on the discrete model being rather

cumbersome, we follow [25] and start directly in the

continuum by distributing the random energies over the

line as a Poisson process over the plane (V,u) of density

f (V )dV du. Each cell of size dV du is then either occupied

or not, depending on the value of the random potential Vi at

site ui . This means that the potential is defined only at the ui

with values V (ui) = Vi and that

H (r) = min
j

Hj (r) = min
j

(

Vj + (uj − r)2

2

)

, (21)

u(r) = argminHj (r). (22)

u

V(u)

u*r1 r2u1 u2

V1

V2

FIG. 3. Parabola construction for the minimization problem:

when the center r of the parabola is shifted from r1 to r2, the

position of the particle moves from u1 to u2. For given r1 and r2,

the intersection of both the parabola is called u∗. More details are

displayed in Appendix E.
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We denote the primitive F (x) =
∫ x

−∞ f (t)dt and assume that

F (+∞) = +∞. We now calculate, using methods similar to

the one of [25], the one- and two-point characteristic function

of the field u(r).

For the one-point function we can choose r = 0, and define

u = u(0). Using formulas similar to Eq. (5) we find for the

joint distribution of position and potential at the minimum

p(u,V )dV du

= f (V )dV du
∏

dV ′du′

(

1 − θ
V ′+ u′2

2
<V + u2

2

f (V ′)dV ′du′).

(23)

From the infinitesimal version of Eq. (5), and after the

change of variables z = u′, φ = V + u2

2
, the one-point distri-

bution of the position of the minimum can be expressed as

p(u) =
∫

dφ f

(

φ − u2

2

)

exp

[

−
∫

dz F

(

φ − z2

2

)]

.

(24)

It is easy to check the normalization
∫

dup(u) = 1 by noting

that the integral is a total derivative. This result is valid for

arbitrary Poisson measure f (V ). As we discuss below one can

recover the results of the previous section in a particular case.

2. Shock and droplet size distributions

To describe the statistical properties of the jumps of the

optimal position u(r) of the particle as r is varied one defines

the shock density as

ρ(s) = lim
δr→0+

1

δr
δ[u(r + δr) − u(r) − s]. (25)

Another definition, equivalent in the present case, uses the

decomposition

u(r) =
∑

i

siθr>ri
+ ũ(r), (26)

where ũ(r) is the smooth part of the field u(r), which, for the

Poisson process model can be set to zero. For other models in

the same universality class this part is subdominant. The shock

density is then defined as [9]

ρ(s) = δ(r − ri)δ(s − si), (27)

where the (ri,si) are the positions and sizes of the shocks. Note

that all the si > 0.

The shock density is intimately related to another quantity,

the droplet density D(s), namely the probability density for

the total energy Hj (r) in (21) for a given r , to exhibit two

degenerate minima at positions u1 and u2, separated in space by

s = u2 − u1 (see Fig. 4). By construction D(s) is a symmetric

function D(s) = D(−s) and has dimension 1/(sE), where

E is an energy. More precisely, it is defined as D(s) =
∫

du1du2δ(s − u2 + u1)p(u1,u2,0), where p(u1,u2,E) is

the probability density for the absolute minimum in u1 and

the secondary minimum in u2 separated by E > 0 in energy.

Note that the knowledge of this function allows one to study

more generally the statistics of several interesting observables

(e.g., the position u) at low (but nonzero) temperature (for

more details of the procedure, see, e.g. [12,30]).

u

s

V(u)

rsu1 u2

V1

V2

FIG. 4. Discontinuous motion of the particle can be decomposed

in shocks. Those shocks occur (here in rs) while the parabola is shifted

and touches the potential at two positions u1 and u2, as depicted. The

size of the shock is denoted s = u2 − u1.

As before, we denote the minimal total energy φ =
H (u1) = H (u2). Requiring all the other sites to have higher

total energy induces a factor exp[−
∫

F (φ − z2/2)dz] similar

to Eq. (24). Then the integrated probability over the value φ of

the minimum and the positions u1 and u2 at fixed s = u2 − u1

lead to

D(s) =
∫

dφ du1du2f

(

φ − u2
1

2

)

f

(

φ − u2
2

2

)

× exp

[

−
∫

F

(

φ − z2

2

)

dz

]

δ(s − u2 + u1). (28)

The relation between the shock and the droplet density can

be written (see Ref. [12], Secs. IV B 5 and E 4) for s > 0:

ρ(s) = sD(s)θs>0. (29)

The factor s originates from the change of variable from energy

to position as ∂H
∂r

noting that a small change in the position of

the parabola around the point of degeneracy amounts to shift

the relative energies of the two states by

δH = δr × (u1 − u2). (30)

Using this relation, from Eq. (29) we now obtain the shock

density, which can be rewritten as, for s > 0,

ρ(s) = s

2

∫

dφ dz f

(

φ − (z − s)2

8

)

×f

(

φ − (z + s)2

8

)

e−
∫

dz′F (φ− z′2
2

), (31)

where we denoted z = u1 + u2.

From the shock density one can define a normalized size

probability distribution as

ρ(s) = ρ0p(s), (32)

where
∫ ∞

0
ds p(s) = 1 and ρ0 is the total shock density. The

density ρ(s) satisfies the following “normalization” identity:
∫ ∞

0

ds s ρ(s) = 1, (33)
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which expresses that all the motion occurs in the shocks.

Similarly D(s) satisfies
∫ +∞
−∞ ds s2D(s) = 2. This identity,

proved in Appendix D, is a signature of the STS relations

which originate from the statistical translational invariance of

the problem.

As a consistency check, ρ(s) can also be extracted from

the small separation behavior of the two-point characteristic

function of the position field u(r), for r > 0:

eλ[u(r)−u(0)] = 1 + r

∫ ∞

0

ds ρ(s)(eλs − 1) + O(r2). (34)

The calculation of this function is more cumbersome and

displayed in Appendix E. As shown there, by identification

in the above formula one recovers Eq. (31).

B. Scale invariance and universality classes

From Eq. (31), one can read the distribution of the shock

sizes for any disorder in the continuum Poisson process model.

For this model to be a “fixed point” (i.e., continuum limit) of a

more general class of models (e.g., the discrete model studied

in Sec. II as m → 0) one should in addition require scale

invariance. Then, similar to the usual problem of extremal

statistics [31], and to the problem of the driven particle [27],

three different classes of universality emerge. The nice feature

of the Poisson process model is that it contains the three scale-

invariant models.

1. Three universality classes

Let us consider again the minimization problem (22) in a

dimensionful form:

Hm(r) = min
j

(

Vj + m2 (uj − r)2

2

)

. (35)

Let us require that Hm(r) is scale invariant in law, i.e., that

Hm(m−ζ r) has the same distribution as m−θHm=1(r), possibly

up to an additive constant in H . One easily sees that it implies

that f (mθV ) = m−(θ+ζ )f (V + Cm) and the STS exponent

relation (6). There are three type of solutions.

(i) The “Gumbel” class, where the disorder left tail is

exponentially fast decaying. This case corresponds to the

well-known Kida statistics of the Burgers equation [10], and

is obtained for a Poisson density f (φ) = eφ with the density

of shocks:

ρ(s) = 1

2
√

π
s e−s2/4. (36)

(ii) The “Weibull” class, where the disorder is bounded

from below. It corresponds to the Poisson process model

with f (φ) = 1
φ1+μ θφ>0 with −∞ < μ < −1. This model was

studied in [25].

(iii) The “Frechet” class, the focus of the present paper,

where the disorder presents an algebraic left tail, accounting

for rare but large events. It corresponds to the choice f (φ) =
1

|φ|1+μ θφ<0. As discussed above, this choice represents the

continuous limit of the system defined in Sec. II.

Note that in all three classes the exponents are given by (10),

the Gumbel class corresponding to μ = +∞ (with additional

logarithmic corrections in that case).

0.1 0.2 0.5 1.0 2.0 5.0 10.0
s

10− 5

0.001

0.1

ρ(s)

FIG. 5. (Color online) PDF ρ(s) of the shock size, plotted from

Eq. (37) for μ = 3/2. In black dotted lines are the asymptotics for

small and large s as given by Eqs. (38) and (39).

We now study in more detail the distribution of shock

sizes in the Frechet class, and compare to the classical Kida

statistics.

2. Shock size distribution in the Frechet universality class

Let us consider the Poisson process model with the choice

f (φ) = μ

(−φ)1+μ
θφ<0,

F (φ) = 1

(−φ)μ
θφ<0 + ∞ × θφ>0.

With this choice one sees that Eq. (24) for p(u) for the Poisson

model becomes identical (identifying y = −φ) to Eq. (17) for

the discrete model with the same constant Fμ given by (8).

Note that the exponential factor in Eq. (24) vanishes if φ > 0;

hence the φ integration is in effect restricted to φ < 0.

We now consider the shock size distribution from Eq. (31):

ρ(s) = μ2s

∫ ∞

0

dz

∫ 0

−∞
dφ exp(−Fμ|φ| 1

2
−μ)

×
[(

(z + s)2

8
− φ

)(

(z − s)2

8
− φ

)]−(1+μ)

(37)

and we assume here μ > 1/2. This distribution is plotted

Fig. 5.

This function does not exhibit any divergence for small

shock sizes, rather it behaves similarly to the Kida distribution

at small s with

ρ(s) ≃ Cμs (38)

and the constant Cμ is displayed in Appendix F. The main

difference arises in the behavior of the large shocks. Instead of

the exponential tail e−s2/2 in the Kida case, it shows algebraic

tails of the form (see Fig. 5)

ρ(s) ≃ 22+μμ

sτ ′ for large s, (39)
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with the decay exponent τ ′ for the right tail:4

τ ′ = 1 + 2μ. (40)

To obtain this result from Eq. (37) one notes that it is the

region for z near s which contributes most; hence one shifts

z → z + s in Eq. (37) and replaces 1
8
(z + 2s)2 − φ → s2/2

in the first factor. The remaining integral can be extended

from z ∈ [−∞,∞] and can then be performed exactly, being

related to the normalization of the distribution p(u) of a single

minimum (17): one uses
∫

dz ψμ(z2/8) = 2/μ. Note that

since we assumed μ > 1/2 it implies that τ ′ > 2; hence the

integral (33) exists, as required. However, the second moment

of the shock size,
∫ +∞

0
ds s2ρ(s), is finite only for μ > 1.5

Finally, it is useful to recall for comparison the avalanche

size distribution for the nonequilibrium version of this model,

i.e., the quasistatic depinning. There the jumps occur between

the metastable states actually encountered in the driven

dynamics as r increases, which are different from the absolute

energy minima. The result of [27] for the Frechet class for the

normalized distribution is

p(s) = (α + 1)(α + 2)

Ŵ
(

2 + 1
α

)

∫ +∞

0

dy

(y + s)3+α
e−y−α

, (41)

where the local disorder force is short-range distributed with

a heavy-tail index μ = 1 + α. The large s behavior is also a

power law p(s) ∼ s−(2+α) ∼ s−(1+μ).

IV. MODEL IN DIMENSION D > 1

The methods of solution presented in the previous sections

can be extended to the toy model of the particle (i.e., d = 0)

in general (external) space dimension u ∈ RD . The position of

the minimum when the quadratic well is centered in r ∈ RD is

now denoted as u(r), a vector process which exhibits jumps;

in fact it is constant on cells in RD , separated by shock walls

with discontinuities where it jumps by s. To generalize most

of the calculations one must simply replace the integrals over

the spatial variable u by integrals over vectors u. The new

scaling exponents necessary to retain invariance of the tail of

the potential are

ζ = 2μ

2μ − D
, (42)

θ = 2D

2μ − D
, (43)

which reduce to Eq. (10) for D = 1 and still satisfy the

relation (6). Let us first discuss one-point probabilities, hence

setting r = 0.

4We use the notation τ ′ to distinguish from the exponent for the

divergence of small shocks usually called τ .
5In the functional RG this quantity equals −�′(0+)/m4, while the

second moment of p(u) in Eq. (17) is m2u2 = �(0) (which exists

only for μ > 3/2), where �(u) is the correlator of the renormalized

disorder (see [9,12] for definitions).

A. One-point distribution

Due to the rotational invariance of the elastic energy, one

readily obtains the joint distribution:

p(u,V ) = μ

|V |1+μ
e−Fμ,D |H | D

2
−μ

θH<0, (44)

where H = V + u2

2
. It is normalized to unity

∫

dDu dV p(u,V ) = 1 and we have defined

Fμ,D = SD2D/2−1 Ŵ[D/2]Ŵ[μ − D/2]

Ŵ[μ]
, (45)

where SD is the surface of the unit sphere in dimension D

(S1 = 2). From this we extract the joint distribution of V and

H as

p(V,H ) = SD2
D
2
−1(H − V )

D
2
−1 μ

|V |1+μ
(46)

× exp
(

− Fμ,D|H | D
2
−μ

)

θH<0,V <H , (47)

which exhibit a “level repulsion” between H and V for D > 2.

The marginal distribution for H is again a Frechet with

index now μ − D
2

:

p(H ) =
(

μ − D
2

)

Fμ,D

|H |μ− D
2
+1

e−Fμ,D |H | D
2

−μ

θH<0, (48)

while the PDF of V takes the form

p(V ) = μSD

21−D/2|V |μ+1
φD

μ (|V |)θV <0, (49)

where we have defined

φD
μ (x) =

∫ x

0

dy

(x − y)1−D/2
e−Fμ,Dy

D
2

−μ

. (50)

Finally, the distribution of the optimal position is

p(u) = μ ψD
μ

(

u2

2

)

, (51)

where

ψD
μ (x) =

∫ ∞

0

e−Fμ,Dy
D
2

−μ

(x + y)μ+1
(52)

and, interestingly, the tail exponent of P (u) is independent

of D:

p(u) ≃ 2μ

u2μ
, |u| → +∞, (53)

while the PDF for the radius |u| decays as ≃2μSD/|u|2μ+1−D .

Note that the condition for the thermodynamic limit to be

defined is now μ > D
2

, as the typical minimum site energy at

a distance u of the center grows as uD/μ.

B. Droplet and shock densities

Note that the formula for the droplet density also general-

izes easily in D dimension as

D(s) =
∫

dφ dDu1d
Du2f

(

φ − u2
1

2

)

f

(

φ − u2
2

2

)

× exp

[

−
∫

F

(

φ − z2

2

)

dz

]

δD(s − u2 + u1), (54)
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where �s is the vector joining the two degenerate minima. It is

now normalized as
∫

dDs s2D(s) = 2D (55)

as shown in Appendix D. The shock density is now defined by

reference to a direction of unit vector ex as

ρ(s) = lim
δr→0+

1

δr
δD[u(r + δrex) − u(r) − s]. (56)

Since Eq. (30) generalizes to δH = δrex · (u1 − u2), one sees

that the relation between the shock and droplet densities is

now

ρ(s) = sxD(s)θsx>0, (57)

where sx = s · ex denotes the component of the jump along the

direction x.

Using isotropy it now enjoys the normalization
∫

sx>0

dDs sxρ(s) = 1, (58)

which, again, expresses that all motion when r varies along a

line occurs in shocks. Note that the relation Eq. (57), combined

with the isotropy of D(s) implies a number of relations6

between moments, for instance,
〈

s2
x

〉

= 2
〈

s2
y

〉

, (59)

as well as 〈s4
x〉 = 8

3
〈s4

y〉 = 4〈s2
xs

2
y〉 and so on provided these

moments exist, i.e., that the tail of D(s) decays fast enough.7

It is interesting to note that Eqs. (54) and (57) factorize in

the Kida (i.e., Gumbel) universality class [i.e., with the choice

f (φ) = eφ] leading to the simple result, after some Gaussian

integrations:

ρ(s) = sx

(4π )
D
2

e−s2
x/4e−s2

⊥/4, (60)

where we denote s = (sx,s⊥) and s⊥ represents the “wander-

ing” part of the shock motion, transverse to the shift direction

of the parabola. For instance, in two dimension s = (sx,sy),

Eq. (60) reads ρ(s) = ρD=1(sx)DD=1(sy). Hence, in the Kida

case, higher dimension statistics of the shocks are completely

solved from the D = 1 case.

The Frechet case, however, does not simplify as nicely. One

now obtains

ρ(s) = μ2 sx

2D

∫ ∞

0

dDz

∫ 0

−∞
dφ exp

(

− Fμ,D|φ| D
2
−μ

)

×
[(

(z + s)2

8
− φ

)(

(z − s)2

8
− φ

)]−(1+μ)

(61)

6These are easily shown, e.g., by integrating with respect to

D(s) → e−μs2
, since any isotropic distribution can be represented

as a superposition of such weights.
7The relation (59) is believed to be more general (i.e., to extend to

interfaces) and was anticipated in [32], where it was related via the

functional RG to the existence of a cusp in the effective action of the

theory (see also [33]).

and we assume here μ > D/2. The tail for large s = |s| is

obtained, by manipulations similar to the case D = 1 as

ρ(s) ≃ 22+μμsx

s2+2μ
for large s. (62)

Interestingly, going to higher dimensions allows the fluctua-

tions of the particle motion to spread even more. To illustrate

that fact one can compute the marginal shock density along ex

defined as

ρ(sx) =
∫

s⊥

ρ(s) = sxθsx>0

∫

s⊥

D(s). (63)

After some integrations from Eq. (61) one finds

ρ(sx) = μ2F 2
μ+1,D−1sx

∫ ∞

0

dz

∫ 0

−∞
dφ e−Fμ,D |φ| D

2
−μ

×
[(

(z + sx)2

8
− φ

)(

(z − sx)2

8
− φ

)]−( 3−D
2

+μ)

.

(64)

Hence a formula very similar to Eq. (37), but with a modi-

fied exponent μ̃ = μ − (D − 1)/2, leading to an asymptotic

algebraic decay of the shock size along x with exponent

τ ′ = 2 − D + 2μ. The thermodynamic condition μ > D/2

again ensures that the normalization integral (58) exists.

V. ELASTIC MANIFOLDS: RECALLING THE GENERAL

FLORY ARGUMENT

We now check that the obtained values for the exponents

agree with the general argument. For this we now recall the

Flory argument given in [6] for the directed polymer, which we

straightforwardly generalize to a manifold of internal dimen-

sion d (internal coordinate x ∈ Rd ) with D displacement com-

ponents u ∈ RD . We consider that the random potential V (x,u)

lives in a total embedding space dimension d + D and has

short-range correlations with a heavy-tailed PDF (1) indexed

by μ. Assume that a piece of size L (in x) explores typically

W ∼ Lζ in dimension D. The volume explored by the mani-

fold is LdWD; hence the minimal value of V on this volume

behaves as ∼(LdWD)1/μ. This leads to μθ = d + Dζ . Impos-

ing again that elasticity and disorder scale the same way (this

is guaranteed by the general STS symmetry, i.e., statistical in-

variance under tilt) leads to θ = 2ζ + d − 2. Hence we obtain

ζ = d + μ(2 − d)

2μ − D
, (65)

θ = 2d + D(2 − d)

2μ − D
, (66)

with the (naive) threshold value beyond which one

(presumably) recovers Gaussian disorder universality class:

μc = d + DζSR

d − 2 + 2ζSR

, (67)

where ζSR is the roughness exponent for short-range Gaussian

disorder. For d = 0 one recovers the above values Eq. (42) and

Eq. (43) for the toy model in general dimension D. For d = 1,

ζSR = 2/3 and θSR = 1/3, which gives the value μc = 5

given in [6] and recalled in the Introduction. It is interesting
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to note that at the upper-critical dimension duc = 4, ζSR = 0;

hence the critical value is μc = 2.

VI. CONCLUSION

In the present paper we have studied the toy model for

the interface, i.e., a point in a random potential, in presence

of heavy-tailed disorder with exponent μ. In the scaling

regime it leads to a universality class analogous to the

Frechet class for extreme value statistics. It was found that

all the relevant distributions (minimum energy, position, and

sizes of shocks) exhibit also power-law tails with modified

exponents continuously dependent on μ. Hence the presence

of heavy tails in the underlying disorder pervades through

all observables and modifies the behavior for every value

of μ. That has to be compared with the directed polymer

problem, where the effect of heavy tails disappears in favor of

a “Gaussian” behavior for μ > 5.

In addition, we have obtained here the shock size distribu-

tion for an “exotic” example of decaying Burgers turbulence,

close from the Kida class because of the short-range correla-

tions in the initial potential, but markedly different because of

the heavy tails.

Finally, because of these heavy tails the functional RG

method which, in its present form, is based [12,27] on the

existence of the moments of the position of the minimum

u(r) cannot be applied in a standard way (at least in d = 0).

We hope our study will inspire progress on the more general

problem of the elastic manifold in the heavy-tailed disorder.
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APPENDIX A: EXOTIC REGIME IN DECAYING

BURGERS TURBULENCE

The above particle model is directly related to the Burgers

equation for a velocity field v(r,t), a simplified version of

Navier-Stokes used to model compressible fluids:

∂tv = ν∂2
r v − 1

2
∂rv

2. (A1)

This equation can be integrated using the Cole-Hopf transfor-

mation. Here we study only the inviscid limit (of zero viscosity

ν = 0+). In that case the solution is given by

v(r,t) = ∂rH (r) = r − u(r)

t
. (A2)

In terms of (3) one defines the “time” t as

t = m−2 (A3)

and the initial condition

v(r,t = 0) = ∂rH (r)|t=0 = ∂rV (r), (A4)

where V (u) is the bare disorder of the toy model. In this paper

we focused on the case when V (u) is short-range correlated

with a heavy tail. This corresponds to a well defined but

peculiar type of distribution for the initial velocity field: it

also has a tail exponent μ, but exhibits local anticorrelations

so that V (u) remains short-range correlated [if v(r,t = 0)

was short-range correlated with a heavy-tail distribution, that

would correspond to V (u) following a Levy process, either a

Brownian motion for μ > 2 or a Levy flight for μ < 2].

As is well known evolution from a smooth initial condition

presents shocks in finite time, i.e., the velocity field v(r,t)

does not remain continuous but presents (negative) jumps in a

discrete set of locations rα , where v(r+
α ,t) − v(r−

α ,t) = �v <

0. These correspond to the (positive) jumps in u(r), more

precisely one has �v = −S/t , where S is the dimensionful

shock size S = ums = m−ζ s with the dimensionless size s

studied in the present paper. To translate our results in terms

of velocity jumps in Burgers, one thus just identifies �v =
−t

ζ

2
−1s (indeed the length scale is m−ζ = t ζ/2), where ζ is

given by Eq. (42).

Finally, the time dependence of the mean energy density

E is given by E = 1
2
v

2 ∼ t−(2−ζ ) = t−2(μ−D)/(2μ−D), which

recovers the result of [26]. Note that the regime D/2 < μ < D

is very peculiar since it predicts an energy density growing

instead of decaying, as discussed there.

APPENDIX B: FROM INFINITE PRODUCT TO INTEGRAL

To understand better the convergence to the continuum limit

let us first choose a Pareto distribution, i.e., with a hard cutoff,

P>(V ) =
(

1 − 1

(−V )μ

)

θV <V0
, (B1)

and consider again the infinite product Eq. (5). It can be

rewritten, in the rescaled units, i.e., u → m−ζu, V → m−θV

as (taking into account the Jacobian involved in the rescaling)

p(u,V ) = m−(ζ+θ) μ

(m−θ |V |)1+μ
θV <V0mθ

×
∏

u′ �=u

θ

(

H − u′2

2
< V0m

θ

)

eln[1−mμθ (−H+ u′2
2

)−μ].

(B2)

We see here that for m → 0 it vanishes unless H − u′2

2
< 0

for all u′ �= u, but since in that limit the lattice grid tends

to continuum, this condition becomes equivalent to H < 0.

Since V < H we do not need to retain the constraint V < 0.

The infinite product becomes an integral, and the logarithm

can be expanded, leading to

p(u,V ) = μ

|V |1+μ
θH<0e

−
∫

du′(−H+ u′2
2

)−μ

,

which leads to the result given in the text.

The mechanism holds for more general distributions with

the same tail. As discussed in the text the rescaled P>(m−θy)

converges to unity for y < 0 and to zero for y > 0 so

the precise shape of the distribution does not matter. More

precisely, the weight of the events with H > 0 vanishes. To

illustrate the point consider the worst case, i.e., when P>(V )

is slowly decaying on the positive V side, e.g., as V −α . Then,

for H > 0 (and m → 0), there is an additional factor:

≈
∏

u′ �=u

θ
H− u′2

2
>0

m−αθ
(

H− u′2
2

)α ≃mαθe
−

∫

√
2H

−
√

2H
du′ ln(H− u′2

2
) = O(mαθ ),

since the integral is convergent, and this factor kills the contri-

bution of the events with H > 0 (more precisely all the events

with H > −m−γ with any 0 < γ < θ , in the original units).
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THOMAS GUEUDRÉ AND PIERRE LE DOUSSAL PHYSICAL REVIEW E 89, 042111 (2014)

APPENDIX C: MOMENTS OF u

From Eq. (17) and Eq. (18), we find the moments, for any

real n > 0 such that 2n < 2μ − 1:

u2n = F
2n

2μ−1

μ

2nŴ
(

n + 1
2

)

Ŵ
(μ− 1

2
−n

μ− 1
2

)

Ŵ
(

μ + 1
2

− n
)

√
πŴ

(

μ + 1
2

) .

The 2nth moment thus diverges as n → μ − 1
2
|− as

u2n ≃ 2μ

μ − 1
2

− n
. (C1)

APPENDIX D: NORMALIZATION OF THE SHOCK

DENSITY

A consistency check for the shock density is to check the

normalization given in Eq. (33), i.e.,
∫

ds s ρ(s) = 1. We recall

that

I =
∫

s>0

ds s ρ(s)=1

2

∫

s

s2D(s)=1

2

∫

du1du2dφ(u1 − u2)2

×f

(

φ − u2
1

2

)

× f

(

φ − u2
2

2

)

e−
∫

dz′F (φ− (z′ )2
2

). (D1)

Due to the symmetry in the variables (u1,u2), one can only

consider, for example,

Iu1
=

∫

du1du2dφu2
1f

(

φ − u2
1

2

)

×f

(

φ − u2
2

2

)

e−
∫

dz′F (φ− (z′ )2
2

)

= −
∫

du1dφ u2
1f

(

φ − u2
1

2

)

∂φe−
∫

dz′F (φ− (z′ )2
2

)

=
∫

du1dφ u2
1∂φf

(

φ − u2
1

2

)

e−
∫

dz′F (φ− (z′ )2
2

), (D2)

where we used the fact that, because of the limits f (φ) →
0 at φ → −∞ and F (φ) → ∞ at +∞, the boundary terms

vanish. Considering the argument φ − u2
1/2 in f (·), one has

the equivalence of the operators ∂φ ↔ −u−1
1 ∂u1

acting on f (·).
Switching to ∂u1

derivatives in Eq. (D2), and integrating by

parts once again,

Iu1
= −

∫

du1dφ u1∂u1
f

(

φ − u2
1

2

)

e−
∫

dz′F (φ− (z′ )2
2

)

=
∫

du1dφ f

(

φ − u2
1

2

)

e−
∫

dz′F (φ− (z′ )2
2

) = 1,

where again the boundary terms vanish due to f (φ − u2/2) →
0 for u → ±∞. Hence I = 1

2
(Iu1

+ Iu2
) = 1 and the nor-

malization is properly recovered. The deeper reason behind

these identities arises from the STS symmetry, i.e., the fact

that the disorder is statistically translationally invariant (see,

e.g. [12,30]).

Note that all the steps of this calculation easily generalize

to higher D, the only change being that now u2
1∂φ ≡ −u1 ·

∇u1
acting on f (φ − u2

1/2). The final result is then I = D as

discussed in the text.

APPENDIX E: TWO-POINTS FUNCTION

Let us consider the joint probability that (V1,u1) and

(V2,u2) realize the minimum total energy respectively when

the quadratic well is centered in r1 and when it is centered in r2,

in the same realization of the disorder. The minimal energies

are denoted by

Hj = Vj + (uj − rj )2

2
, j = 1,2. (E1)

This probability reads

p(V1,u1,V2,u2)dV1du1dV2du2

= f (V1)f (V2)dV1du1dV2du2

×
∏

dV ′
j ,du′

j

u′
1 < u∗

u′
2 > u∗

(

1 − θ
V ′

1+
(u′

1
−r1)2

2
<V1+ (u1−r1)2

2

f (V ′
1)dV ′

1du′
1

)

×
(

1 − θ
V ′

2+
(u′

2
−r2)2

2
<V2+ (u2−r2)2

2

f (V ′
2)dV ′

2du′
2

)

, (E2)

where u∗ is the intersection abscissa of the two parabola, as

represented in Fig. 3 given by

H1 − (u∗ − r1)2

2
= H2 − (u∗ − r2)2

2
, (E3)

whose common value is denoted φ below. The additional

Heaviside functions ensure that the random potential lies above

these two parabola and touches those parabola on the two

points u1 and u2.

The characteristic function can then be written

〈eλ[u(r2)−u(r1)]〉=
∫

dV1dV2du1du2e
λ(u2−u1)

[

f (V1)δV2=V1,u2=u1

+ f (V1)f (V2)θu1<u∗<u2

]

× e−
∫

u<u∗ F (H1− (u−r1)2

2
)−

∫

u>u∗ F (H2− (u−r2)2

2
), (E4)

where the first term accounts for the contribution when there

is no shock between r1 and r2 and the second when there is at

least one. Let us now perform the change of variables:

x = r2 − r1

2
and y = u∗ − r1 + r2

2
,

z = u − r1 and z′ = r2 − u,
(E5)

z1 = u1 − r1 and z2 = r2 − u2,

φ = H1 − (x + y)2

2
= H2 − (x − y)2

2
.

Hence x + y = u∗ − r1 and x − y = r2 − u∗. In terms of the

auxiliary functions,

J+(φ,y,x) =
∫

z1�x+y

dz1f

(

φ + (x + y)2 − z2
1

2

)

e−λz1 ,

J−(φ,y,x) =
∫

z2�x−y

dz2f

(

φ + (x − y)2 − z2
2

2

)

e−λz2 ,

I+(φ,y,x) =
∫

z�x+y

dz F

(

φ + (x + y)2 − z2

2

)

,

I−(φ,y,x) =
∫

z′�x−y

dz′F

(

φ + (x − y)2 − z′2

2

)

,
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the characteristic function of the difference u(r2) − u(r1) takes

the form

〈eλ[u(x)−u(−x)]〉

=
∫

dφ dy[f (φ) + 2x e2λxJ+(φ,y,x)J−(φ,y,x)]

× exp[−I+(φ,y,x) − I−(φ,y,x)], (E6)

where the 2x = r2 − r1 factor comes from the Jacobian

dV1dV2du1du2 = 2x dφ du∗dz1dz2.

This formula generalizes to arbitrary f (φ) the one given

in [25] for a particular function f (φ). There it is given in terms

of the (scaled) Burgers velocity field v(r) = r − u(r). One

easily checks the normalization, i.e., that for λ = 0 Eq. (E6) is

a total derivative and integrates to unity.

It is now rather straightforward to expand this formula

to O(x) and to recover the expression for the shock

density ρ(s) given in the text using the identification

(34).

APPENDIX F: ASYMPTOTICS OF THE SHOCK DENSITY

The constant Cμ in the text can be obtained as

Cμ = μ(2μ − 1)(2π )
μ+1

1−2μ

3(4μ + 1)

×
(Ŵ(μ− 1

2
)

Ŵ(μ)

)
4μ+1

1−2μ Ŵ
(

2μ + 3
2

)

Ŵ
(

4 + 3
2μ−1

)

Ŵ(2μ + 2)
, (F1)

where Cμ is an increasing function which vanishes at μ =
1/2+ with an essential singularity Cμ ≃ exp(− 3

4

2−ln(9/8)

μ− 1
2

) and

grows as Cμ ≃ μ3/2

2
√

π
at large μ.
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Directed polymer in hilly landscape
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(Dated: May 19, 2014 – ”heavy tails v2”)

We study the behaviour of a polymer at zero temperature, evolving in a hilly landscape. Under-
going a Gaussian disorder, the polymer minimizes its total energy by a global optimization, where
all the sites stay rather small and weakly contributes to the sum. Unlike this situation, a hilly
landscape (typically described by underlying heavy tailed disorder distribution) forces the polymer
to distort and explore further to reach some particularly deep sites. This local strategy modifies
the scaling exponents depending on the control parameter of the heavy tails. The present article
describes the main features of this local behaviour and focuses on the transition to the classical
Gaussian exponents.

PACS numbers: 68.35.Rh

I. INTRODUCTION

The so-called “Directed Polymer” (DP) problem has
attracted an enormous amount of interest in the last
thirty years. It is stylized model for the pinning of di-
rected one-dimensional elastic objects (polymers, vortex
lines, dislocations,...) by random impurities. It is per-
haps the simplest model that captures the notion of “frus-
tration” that is so crucial in many more complex disor-
dered materials, such as spin-glasses: the elasticity of the
polymer competes with the energy of very favorable, but
distant pinning sites that would lead to a costly distor-
tion of the polymer. The huge amount of work on this
problem is justified not only because of its intrinsic inter-
est, but also because it can be mapped to a host of other
problems: the Stochastic Heat Equation, itself mapped
onto the Kardar-Parisi-Zhang equation and the stochas-
tic Burgers’ equation, population dynamics, problems of
jammed transport (TASEP), crystal growth, random ma-
trices, etc. etc.

In 1+1 dimensions (one transverse, one longitudinal,
often taken as the “time” dimension), the problem is
considered to be exactly solved, at least in some spe-
cial limits and for some particular observables. It is now
well established that in the limit of “long” polymers of
length t → ∞, the transverse excursions x are of order
t2/3, i.e. much larger than

√
t that would correspond

to the excursion of the polymer in the absence of disor-
der. The total free-energy of the polymer is furthermore
known to be −ct+ ξt1/3, where c is a non universal con-
stant and ξ is a random variable with a Tracy-Widom
distribution, identical to the one governing the statistics
of the largest eigenvalue of random matrices (GOE or
GUE, depending on the boundary conditions). Although
these scalings have been known at the level of physical
rigour since the 80’s (using either replica theory, the ex-
act stationary state of the corresponding KPZ equation,
RG techniques or Mode-Coupling theory), it is fair to say
that there is up to now no simple, heuristic derivation of
the diffusion exponent ζ = 2/3 and the energy exponent
θ = 1/3 that would a) unveil the deep physical origin

of these results and b) allow one to extend these results
to other, similar problems, such as the Directed Polymer
problem in d + 1 dimensions, for which the situation is
still quite unclear. For example, the existence of an upper
critical dimension dc beyond which ζ = 1/2 even in the
low temperature, pinned phase, is still highly debated.

We would in fact go as far as to say that in spite of the
amazing flurry of exact results, the 1+1 directed polymer
problem is far from understood. Consider for example
the role of the distribution of the pinning energy on the
large scale properties of the polymer. One would naively
expect that, as with many other problems, the existence
and finiteness of the second moment of the distribution is
enough to ensure that the above scaling results (valid for
Gaussian or exponential disorder) hold asymptotically.
Surprisingly, though, this does not seem to be the case.
A heuristic, Flory-type argument that dates back from
the early 90’s suggest that as soon as the fifth moment
of the distribution diverges, one should leave the realm
of the standard DP/KPZ 2/3 scaling, and enter a new
regime, where the extreme values taken by the pinning
potential matter and change the scaling results. In fact,
the same Flory argument suggests that the situation be-
comes worse and worse as the dimension increases. In
fact, any sub-exponential tail of the potential should play
a crucial role at and above dc. [The Derrida-Spohn solu-
tion of the DP on a tree indeed breaks down as soon as
the potential has sub-exponential tails.].

The sensitive dependence of large scale properties on
the far-tails of the disorder is certainly unsual and high-
lights our poor grasp of the standard case. It also raises
many technical questions, for example on the validity of
techniques that have been exploited in the context of
Gaussian disorder, such as replica method or the func-
tional RG. It is clear that if confirmed, these far-tailed
induced effects would require new, specific theoretical
methods that could, indirectly, shed new light on the
DP problem altogether. Before embarking on such a
program, we wanted to revisit the 1+1 DP problem
with heavy-tailed disorder, and establish numerically,
as convincingly as possible, the violation of the stan-
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FIG. 1: Sketch of the directed polymer model. The blue solid
line corresponds to a polymer growing over the square lattice
under the hard constraint condition.

dard DP/KPZ 2/3 scaling and the corresponding Tracy-
Widom statistics. Our results are, quite remarkably, in
perfect agreement with the naive Flory predictions for the
diffusion exponent ζ and the energy exponent θ, which
confirms that the value ζ = 2/3 only holds if the distri-
bution of the pinning energy V decays faster that 1/V 6.
We study various statistical properties of the DP in the
anomalous regime, and attempt to define and measure
certain quantities that directly validates the main as-
sumption of the Flory argument, namely that the ac-
cesible extreme values of the pinning potential dominate
the scaling behaviour. We conclude with several open
problems.

II. THE MODEL

Here we consider a one dimensional directed polymer
growing on the two dimensional square lattice depicted
in Fig.1.

Directed paths grow along the diagonals of the lattice
with only (0, 1) or (1, 0) moves (hard constraint condi-
tion), starting in (0, 0) and with the second end left free.
To each site of the lattice is associated a i.i.d. random
number V (x, t). The time coordinate is given by t = i+j
and the space coordinate by x = (i− j)/2. The total en-
ergy of the polymer is the minimum over all paths γt
growing from (0, 0) up to time t is defined as

E(t) = min
γt

∑

(x,τ)∈γt

V (x, τ) (1)

with 2x ∈ [[−t, t]] and τ ∈∈ [[0, t]]. The energy of the
polymer satisfies the following transfer matrix recurrence
relation:

Ex,t+1 = min(Ex− 1

2
,t, Ex+ 1

2
,t) + V (x, t+ 1) (2)

with Ex,0 = δx,0. The free end ground state is computed
by taking the minimum of the energies over all endpoints

50 100 150 200
t

-100

-50
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100

x

FIG. 2: Optimal path (t = 512) for three different random
environments: the Gaussian disorder (in yellow), the heavy-
tailed disorder with µ = 0.1 (in blue) and with µ = 2.5 (in
red). The shape of the path is strongly affected by the under-
lying disorder. Because of the hard constrain, the path can
only evolve inside the cone delimited by the dashed lines.
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FIG. 3: Rescaled energies V (τ) =
V (xopt(τ), τ)/minτ<t V (xopt(τ), τ) of the sites along the
optimal paths (t = 1024) for different random environments:
the Gaussian disorder (upper plot), the heavy-tailed disorder
with µ = 3.0 (middle plot) and with µ = 0.5 (lower plot).

E(t) = minx E(x, t). In this paper, we study the proper-
ties of the DP for different disorder distributions P (V ),
in particular we focus on heavy-tailed pdf decaying as:

P (V ) ∼ 1

V 1+µ
(3)

It is known that, in one dimension, the search for an
optimal path in a disorder landscape leads to excursions
larger than the thermal ones, which are of order

√
L. The

shape of the optimal path strongly depends on the under-
lying disorder landscape, as shown in Fig.2. In particu-
lar, the excursions are more important for a heavy-tailed
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disorder than for a Gaussian disorder. Those differences
correspond to different optimisation strategies, as shown
in Fig.3:

• For a Gaussian disorder, the optimisation strat-
egy is collective: the total energy of the polymer
is equally shared between all the sites. (Fig.2 top)

• For an heavy-tailed pdf with 1 < µ < 5, the opti-
misation strategy is elitist: an important fraction
of the total energy is hold by a small fraction of the
sites belonging to the path. (Fig.2 middle)

• For an heavy-tailed pdf with µ < 1, the optimisa-
tion strategy is individual: most of the total energy
of the polymer is localized on one particularly deep
site. (Fig.2 bottom)

Such differences in optimisation have marked effects on
the fluctuations properties at large t, in particular on the
observables:

x(t)2 ∼ t2ζ (4)

E(t)2
c
= E2(t)− E(t)

2 ∼ t2θ . (5)

Here θ and ζ are respectively the energy and the rough-
ness exponents and show some universal features: they
only depend on the behaviour of the disorder tails,
namely the index µ. Note that other important quan-
tities, as the average energy E(t), strongly depend on all
the microscopic details of the chosen model.

For a fast decaying disorder, the value of the exponents
is known to be ζ = 2/3 and θ = 1/3 ([1, 2]) and has been
recently proved, via mathematical ([3, 4]) and physical
([5, 6]) approaches, for specific fast decaying distribu-
tions such as the Gaussian, the exponential or the Log
Gamma distribution. For heavy-tailed disorder, where
extremes play a major role in the choice of the optimal
path, the values of the exponents rely on a scaling argu-
ment that balances the energy of the deep sites with the
deformation energy it would cost to reach them ([7–9]).
Noting t the length and x the size of a typical excur-
sion of the polymer, a result from extreme statistics of
heavy-tailed distributions gives, for the volume xt avail-
able to the polymer, an estimation of the energy of the
deepest sites: Emin ∼ (xt)1/µ. On the other hand, for
the model with hard constraint the deformation cost is
entropic and, provided that x ≪ t, follows a scaling sim-
ilar an elastic energy as S ∼ −x2/t. Balancing both
estimations, Emin ∼ S, leads to the estimates;

ζµ =
1 + µ

2µ− 1
(6)

θµ =
3

2µ− 1
(7)

We can guess that those formula are valid for 2 ≤ µ ≤
5. Note that the values of the exponents are compatible
with the scaling relation θ = 2ζ − 1. This relation comes
from the statistical tilt symmetry (STS), originating in

µ > 5 5 > µ > 2 2 > µ > 0

θµ 1/3 3/(2µ− 1) 2/µ

ζµ 2/3 (1 + µ)/(2µ− 1) 1

TABLE I: θµ and ζµ as a function of µ. For 0 < µ < 5 the
values of the exponents are estimated by scaling arguments.
On the contrary in the collective optimization regime (µ > 5)
no simple scaling argument is known.

the invariance of the problem upon tilting transformation
x(τ) → x(τ) + ǫτ in the large scale limit ***ref schulz
villain brezin orland**** .
Above µ = 5, we find θµ < 1/3 and, instead of a strat-

egy focusing on deep sites of the disorder, the behaviour
of the polymer is dominated by a collective strategy sim-
ilar to the Gaussian case. On the other hand for µ = 2
we have ζµ = 1 so that x ∼ t and the entropy can’t be
approximated by an elastic energy. Due to the hard con-
straint, the excursions of the polymer are confined in a
cone. This observation leads to a new estimation of the
exponents ζµ = 1 and θµ = 2/µ for 0 < µ < 2. All those
estimates are summarized in Table I.
When µ < 1, the first moment of the disorder dis-

tribution diverges. That leads to a huge separation of
energy scale in the disorder, where all the sites can be ne-
glected compared to the value of the most profound site
through which the optimal path has to go. Hence the op-
timization becomes individual and it allows to construct
recursively the optimal path by picking the deepest site
that pins the polymer, and applying the same strategy
amongst the sites inside the area delimited by the hard
constraint. Such a hierarchical optimization strategy was
coined greedy in [10], where some of its properties were
studied for the limit µ → 0+. Here we will show that this
approximation seemingly becomes asymptotically exact
as t → ∞ for all µ ≤ 1. In particular the end point dis-
tribution of the polymer is computed analytically for the
greedy strategy and very well reproduces the numerical
behavior for all µ < 1. *****dessin???*****

III. NUMERICAL SIMULATIONS

In this section, we present numerical simulations done
with the matrix transfer method, which allows to keep
track of both the energy and the position of the optimal
path at every time t.
We verify the estimates of θ and ζ from the scaling

arguments given in the the previous section, and add
additional informations about the whole pdf of the fluc-
tuations of the energy, which shares with the disorder
distribution the same power decay P (E) ∼ |E|−(1+µ).
Due to important finite size effects, those estimates have
been conjectured (see [8]) to be a good approximation
only in the limit µ → 2+. However a careful analysis
of those effects leads to the conclusion that they are in
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fact asymptotically exact. Finally, we give strong numer-
ical evidence of the existence of different optimization
strategies as µ varies. This supports the correctness of
the scaling argument in the regime of strong disorder for
µ < 5.

A. The scaling exponents

To measure the exponents θ and ζ, we can use the
definitions given in Eq.5. However, in Fig.4, we ob-

serve that the statistical estimator for E2
c
never aver-

ages when µ < 4 and shows large jumps even for a very
important sampling. Note that the statistical estimator

of E2
c
converges only if both E2

c
and its statistical er-

ror (E4
c
/N)1/2 are finite. But, due to the presence of

heavy tails in the disorder, high enough moments of the
distribution of energy P (E) could diverge. We will see

in Sec.III B that for 2 < µ < 4, E2
c
is finite while E4

c

diverges.
Another estimator of the spread of the distribution is

the mean absolute deviation (MAD) ∆E:

∆E =
1

N

∑

i

|Ei − E| (8)

This estimator is more resilient to extreme events and
works better with heavy-tailed distributions. Contrary
to the standard deviation, which squares the distance
from the average, MAD is well controlled as soon as the
second moment of the pdf exists, in our case for µ > 2,
and allows to properly extract θnum (see Fig.4). Note

that x2(t) does not present this kind of problem, because
it is compactly supported due to the hard constraint(see
Fig.4).

The check of the prediction, for different values of µ
compared to the theoretical result, is summarized in Ta-
ble II. The numerical estimations have been made with
the maximum likelihood method. Fig.5 and Fig.6 show
a good agreement between numerics and theory. One
can note in the inset of the figures that the quantities

x(t)2/tζµ and |E − E|(t)/tθµ saturate, as expected if the
scaling argument is correct, but at larger and larger times
as µ → 5. Indeed, close to µ = 5−, the strategy remains
elitist, but the effect of deep sites is not as strong and
needs a large value of t to be clearly distinguished from
the crowd. For µ > 5, the strategy becomes collective,
and the exponents θ = 1/3 and ζ = 2/3 are recovered.

B. The probability distribution of the fluctuations

of E

It has been shown, for some fast decaying disorder dis-
tributions (see [4, 6, 11]) that, after the proper rescaling
the probability distribution converges to a family of dis-
tributions, called Tracy-Widom (TW) distributions. It is

5 10 20 50 100
t

2

5

10

20

50

E2
HtL

c

x2
HtL

DEHtL

FIG. 4: Stability analysis of our numerical results. The av-
erages are performed over N = 105 samples. The mean
squared displacement x2(t) shows a well-defined smooth be-

haviour, while the variance of the energy E2(t)
c
displays a

jump around t = 70, which stems from a very deep single pin.

This makes E2(t)
c
numerically unstable. On the contrary, for

µ > 2, the quantity ∆E(t) displays a well-defined behaviour
allowing correct estimations of the exponent θnum.
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FIG. 5: Mean square displacement of the end position of the
optimal path for µ = 3 (in red) and µ = 4 (in blue). Dashed
lines correspond to the Flory estimation given in Table.I. In-
set : x(t)2/tζth showing saturation at large t in both cases.

µ θth θnum ζth ζnum

3 3/5 = 0.60 0.605± 0.006 4/5 = 0.80 0.802± 0.004
4 3/7 ≃ 0.43 0.44± 0.02 5/7 ≃ 0.714 0.715± 0.005
5 1/3 0.36± 0.03 2/3 0.69± 0.04
7 1/3 0.338± 0.008 2/3 0.669± 0.004

TABLE II: Flory prediction compared to numerical estima-
tions for several values of µ. Note that, close to the transition
value µ = 5, the numerical estimation is less precise due to
important size effects.
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FIG. 6: Mean absolute deviation ∆E of the optimal energy for
µ = 3 (in red) and µ = 4 (in blue). Dashed lines correspond
to the Flory estimation given in Table.I. Inset : ∆E(t)/tθth

showing saturation at large t in both cases.

believed that this universality extends to all fast decaying
distributions. We define the rescaled variable:

s(t) = (E(t)− E(t))/(E2
c
(t))1/2 (9)

and compute n Fig.7 the rescaled energy distribution
φ(s). It seems clear that the TW universality class ex-
tends for µ = 5 and more generally for any disorder with
µ > 5. Note that, for very negative s, φ(s) remains al-
gebraic below some threshold s < s∗t . However, when
t → ∞, the crossover towards the algebraic behaviour s∗t
moves to −∞.

On the contrary, for 0 < µ < 5, the limiting distribu-
tion is very different. In particular, φ(s) shares the same
algebraic decay 1/s1+µ as the disorder pdf (see Fig.8),
with however a different tail prefactor (see Fig.?? for
the case mu = 3). The family of limiting distributions
Fµ depends only on µ and on the boundary conditions.
Its analytical expression is still unknown; inspired by re-
sults from extreme statistics, a natural guess would be
the Frechet distribution P(X < x) = exp(−α|x|−µ) or
some convolutions thereof (see [9]). However, this dis-
tribution is supported on the half real line, while our
numerical results indicate that the support of the limit-
ing distributions Fµ is the whole real line. An interesting
feature of Fµ is the fact that its right tail, corresponding
to unfavourable configurations of the disorder, seems to

decay as e−αs3 , similarly to TW. This fact would sup-
port a mixture of some Frechet and TW distribution as
a possible guess.

For future reference, the tails analysis of F3(s) leads to
the following numerical estimation: the left tail decays as
∫ s

dxF3(x) ∼ 0.75|s|−3 for s → −∞ while for the right

tail F3(s) ∼ 0.57e−1.5s3 for s → ∞ (see Fig. ???).
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ΦHsL

FIG. 7: FIGURE TO BE REDONE FOR THE NOTA-
TION φ(s). Collapse of the pdf φ(s), for several lengths
L = 24 (blue), 27 (red), 28 (yellow) for an disorder pdf with
µ = 8. Comparison is made with the Tracy Widom distribu-
tion F2 after centring and rescaling (in dotted black). Average
over N = 2× 105 samples.
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FIG. 8: FIGURE TO BE REDONE FOR THE NOTA-
TION φ(s). Collapse of φ(s), for several lengths L =
24 (blue), 27 (red), 210 (yellow) and for an disorder pdf with
µ = 3. Comparison is made with the Tracy Widom distribu-
tion F2 after centring and rescaling (in dotted black). Inset:
far right tail of φ(|s|) compared to a power law of index 3 (in
dotted black). Average over N = 2× 105 samples.

C. The optimisation strategies

Although the scaling argument gives the correct esti-
mates, it relies on the assumption that the fluctuations of
E are controlled by the fluctuations of the deepest sites in
the disorder. This stems from the fact that the optimal
path does large excursions specifically to reach some pin-
ning sites. Note that, at variance with µ < 1 where one
site is much more negative than the others, for 1 < µ < 5,
there is still a large population of sites being of order
Vmin. Hence to check the validity of the elitist optimi-
sation strategy, one has to test the fact that the optimal
path picks some sites amongst the deepest, for example
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FIG. 9: Probability Pc(α) as defined in the
text for a heavy tailed disorder with µ = 3.
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The averages are performed over N = 2× 105 samples. Inset:
the same analysis is performed for µ = 8.

through the following procedure: Consider an envelop of
length t and width 1/2tα, its volume scales as t1+α. We
estimate the probability Pc(α) that the minimum on the
polymer is one of the log(t) deepest sites inside of the
envelope. If α is chosen too small compared to ζ, then
the minimum on the polymer should be smaller than the
minimum in the envelop. On the contrary, if α ≫ ζ, the
minimum on the polymer should be higher, as the elas-
tic energy prevents it from reaching this favourable site.
One expect that when t → ∞, Pc(α) will become more
and more peaked around α = ζ for the elitist strategy,
while in the collective regime, Pc(α) should vanish for all
α. Fig.9 highlights a different qualitative behaviour for
µ = 3 and µ = 7, in agreement with our prediction. Note
that the maxima of the curves in Fig.?? corresponding
to an estimation of the rugosity according to the scaling
argument are moving to the left, from 1 to 0.90 up to
t = 212. They are expected to converge to ζµ = 4/5 for
µ = 3 although the convergence is very slow.

IV. DISTRIBUTION OF THE END POINT

Another observable of interest is the end point of the
optimal path. Compared to the fluctuations of the en-
ergy E(t), we know much less about the statistics of x(t).
Accordingly to the scaling exponent ζ of the lateral ex-
cursions, one expects the rescaled position z = x(t)/tζ to
converge in law towards a limiting distribution Qζ(z)
For an exponential distribution of the disorder, the

whole process E(t, x) is characterized as the so-called
Airy process [12], which allows to extract the joint dis-
tribution of the position and total energy of the optimal
path P(E(t), x(t)). Although the marginal Q2/3(z) can’t
be computed explicitly, it has been shown that it has an
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FIG. 10: REDO: the range of x doesn’t have the same con-

vention than the text. The pdf Q(z) of the position of the
free end as a function of z = t/L. In blue for a disorder pdf
of µ = 1.5, in red µ = 0.5. In dotted black, the theoreti-
cal estimation for the parabola (and the guess with a Beta
distribution with α = β = 3.8). L = 211 and N = 2× 105.

infinite support with a rather weak departure from the
Gaussian distribution [13, 14]. The heavy-tailed disor-
der exhibits a radically different behaviour, as Qζ(z) is
strongly influenced by the large excursions of the opti-
mal path to reach pinning sites. For µ < 2, ζ saturates
to 1 due to the hard constraint and the support of Qµ(z)
reduce to the interval (−1, 1): the extremity has a finite
probability to reach any point of the available space, even
at large t.

Denoting z = x(t)/t ∈ [−1/2, 1/2], remarkably the dis-
tribution Qµ(z) can be explicitly computed for the greedy
strategy, where the optimization becomes a hierarchical
recursive process. In Appendix A we give the details of
the computation and the final results reads:

Qgreedy(z) = 6(
1

4
− z2) (10)

This results becomes exact for very small µ, but, in Sec.II
it was argued that the greedy strategy should asymptot-
ically hold for every µ < 1. This assumption is further
confirmed by numerics for Qµ(z) (see Fig.9), retaining its
parabola shape until µ = 1. For µ > 1, the support still
remains the interval (−1, 1), but Qµ(z) is modified. The
numerics are relatively well fitted by the Beta distribu-
tions family B(α, α) = cα(1/2− x)α(1/2 + x)α, where α
is a fitting parameter depending on µ (see Fig.9).

V. CONCLUSION

Blablabliblabla
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Appendix A: Appendix: Derivation of Qµ(x) in µ → 0

The derivation is eased by taking the continuum limit,
where for convenience we rescale the position of the end
point to z ∈ [−1, 1]. We introduce the sequence of vari-
ables ξi =

xi+yi

2 and 2ri = yi − xi, (xi, yi) being the co-
ordinates of the pinning site chosen at step i (see Fig.??
for the conventions). The measure being uniform over the
space of intervals, it stays uniform if we fix the barycen-
tre, under the constrain that the end points can’t leave
[−1/2, 1/2]. The joint probability distribution is, con-
strained on [−1, 1]× [0, 1]:

P0(ξ, r)dξdr = Θ(r ≤ 1− |ξ|)dξdr (A1)

Due to self similarity of the process, there are recur-
sive relations between the end point after i steps and
i + 1 steps. we are eventually interested in the limit of
the foolowing process, describing the position of the end
point at n → ∞:

zi = ξ1 + r1ξ2 + r1r2ξ3 + · · · (A2)

All couples (ξi, ri) having the same joint distribution
P0 and being independent for i 6= j. this bears some sim-
ilarities with Kesten variables (see Ref???) but note that
ξi and ri are not independent themselves. The variable
z∞ obeys the following equation:

z∞ =inlaw ξ + rz∞ (A3)

This leads to an integral equation for P (z∞ the PDF
of the end point, for example if we choose to condition
over the value of z in the above equation:

P (u) =

∫

r,z

P0(urz, r)P (z)dz (A4)

=

∫

r,z

Θ(r < 1− |u− rz|)P (z)dz (A5)

Although there is no generic way to solve such inte-
gral equations, we can recursively compute the moments
or use the above equation to write down a differential
equation for φ(λ) = E(eiλz∞). Or on can simply check
that a parabola is the proper solution P (z) = 3

4 (1− x2).

Θ(r < 1− |u− rz|) is non zero for r < 1+u
1+x if u < x and

r < 1−u
1−x if x < u. Hence, the right side of Eq.?? is equal

to:

3

4

(
∫

−1<x<u

1 + u

1 + x
(1− x2)dx (A6)

+

∫

u<x<1

1− u

1− x
(1− x2)dx

)

(A7)

=
3

4
(1− u2) (A8)

And the result follows as given Eq. after the rescaling
z → z/2.
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4 Effects of correlations and optimal

diffusion

We saw how some modifications of the disorder lead to exceptional fluctuations in the free
energy, to the point the universality breaks down and the formalism has to be re-built.
While long range interactions are always thought of as potential mechanisms to depart
from the gaussian noise case [33, 122, 98], short range correlations are generally harmless,
or irrelevant in the RG lingua.

Up to now, we have not really brought much attention to the actual dominant part of
the free energy, its extensive part. It is usually removed by a simple shift, to focus on
fluctuations. The reason for this lack of attention is mainly based on non-universality
concerns: different microscopic models, although in the KPZ class, or even in the KPZ
equation class, will not exhibit the same free energy density. Hence, only after this
trimming will the model in consideration reveal its universality [123, 68].

Nonetheless, being the dominant part, one would expect this quantity to retain much of
the information about the strategy the polymers uses to optimize its energy. For example,
the finite size correction to the average growth exhibits some universality [124]. In what
follows, we scrutinize the particular case of time correlations in disorder, where we em-
phasize the interplay between correlations and free energy growth through optimisation,
and how very general features survive in that case.

4.1 Correlations in space and time

Short range correlations (noted rf for spatial and τ for temporal correlations) are often
assumed to play little role in critical systems, as emphasized by a coarse graining argu-
ment. It amounts to replace every step by a larger patch, and to substitute the disorder
by its average over a patch of size (rf , τ); the disorder is then considered independent
from patch to patch. As we detailed in Chapter 3, in the Directed Polymer setup, this
replacement is not innocuous, but the universality of the anomalous exponents supersedes
those effects: they remain unchanged.

In what follows, we consider the behaviour of the free energy density limt→∞ f(t)/t, or
equivalently the average speed of growth of an interface v∞ = ∂th(x, t).

For a growth dominated by diffusion, it is equal to the energy collected by a pure random
walk in the directed polymer setup. We stated in Chapter 2 for a Gaussian noise V (x, t)
with:

V (x, t)V (x′, t′) = R(x− x′)δ(t− t′) (4.1)
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white in time, not necessarily in space, that v0 =
R(0)2

2T 2 . More generally, for an Ornstein-
Uhlenbeck process η(·, t) (see later for definition), the variance of its integral grows as
well like t, irrespectively of τ (see Appendix A.1). In purely thermal regimes, short-range
correlations do not matter much. On the other hand, the problem is more subtle when
non linearities are involved.

4.1.1 The delicate problem of the free energy density

A rigorous definition of the white noise KPZ equation is problematic. Indeed, the term
(∇h)2 pathologically diverges and escapes the formalism that was developed for stochas-
tic calculus. The easiest way to approach the KPZ equation is through the Cole-Hopf
transform Z(x, t) = eλh(x,t). Z(x, t) obeys the SHE dZ = ∆Zdt+ λZdW (x, t), where the
ill-defined non linearities are removed. However some subtleties remain in the prescription
(Ito versus Stratonovitch).

To illustrate that, let us introduce the space mollified noise Wǫ(x, t): if ∂tW (x, t) is a
white noise in (x, t), whose Fourier transform is itself a white noise, multiplying the
spatial Fourier coefficients by φ(ǫq) mollifies the spatial direction, a process we note
∂tWǫ(x, t). Writing h(x, t) = λ−1 logZ(x, t) and applying Ito’s formula for the time
variable [125, 126]:

dh(x, t) = λ−1dZ

Z
− λ−1d[Z]

Z2

= ∆h(x, t) + λ(∇h)2 + dWǫ − λ−1d[Z]

Z2
(4.2)

where [·] denotes the quadratic variation. Using:

∂tWǫ(x, t)∂tWǫ(x′, t′) = δ(t− t′)Cǫ(x− x′) (4.3)

with Cǫ(x) =
∫

q
dqeiqxφ(ǫq)φ(−ǫq), the Itô term in Eq.4.2 gives a constant:

∂th(x, t) = ∆h(x, t) + (λ∇h(x, t))2 + ξǫ − λCǫ(0) (4.4)

with Cǫ(0) ≃ ǫ−1
∫

q
φ2(q)dq. The speed of growth goes to infinity in the limit of white

noise in space ǫ → 0 ! One has to renormalise the diverging (∇h)2 by a infinite constant
[126, 127].

Although such an approach was considered as the proper way to tackle the KPZ equation,
it is not obvious how to derive a general and satisfactory approximation scheme to the
continuum white noise limit, except for the space mollification. Much progress in that
direction has been recently made by the theory of regularity structures [128, 60, 129, 130].

A detailed account of this theory is way out of the scope of this Chapter, but roughly
speaking, it lifts the solution in a abstract space, with an algebraic structure mimicking
the standard Taylor expansion. This opens a way for a clean definition of the pointwise
multiplication of two distribution through their Taylor expansion. It is suited for a very
broad class of stochastic partial differential equations. An additional -but common in
ill-defined PDE- peculiarity of the KPZ equation is the fact that even the abstract model
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diverges in the white-noise limit. Fortunately, those admissible models can be cast into
perfectly convergent models by introducing careful counter-terms. Specifically for the
KPZ equation, the counter-term Cǫ is written:

Cǫ =
c1
ǫ
+ c2 log ǫ+ c3 (4.5)

with c2 = c3 = 0 due to additional symmetries, and c1 =
∫

φ2(x)dx with φ the mollifier.
Time and space in the regularity structure theory somehow play a similar role, after a
scaling where, for parabolic equations, the time direction “counts as” two space directions.
For the space mollification, it recovers Crf ∼ 1/rf , while for an time mollification, Cτ ∼
1/
√
τ : the space singularity of Eq.4.4, involving two spatial derivatives, is naturally worst

than the time singularity.

To summarize, there exists universal limits in the continuum of the KPZ equation: al-
though the constants in the counter-terms depend on the regularization procedure, the
rate of divergence (of the free energy, in the DP language) is universal. While this di-
gression seems a bit esoteric, this insight will come handful in the later sections.

4.1.2 Explore or exploit ?

In the following, we suggest the existence of another universal mechanism, namely the ex-
istence of an optimal diffusion maximizing the free energy density, when time correlations
are present.

First come back to the SHE, ruling the evolution of Z(x, t):

∂tZ(x, t) = J∆Z(x, t) + η(x, t)Z(x, t) (4.6)

It can be seen as the continuum, homogeneous limit of a more general model Zi(t) on
the nodes i of a graph (f.e. a population of bacteria living on site i or wealth invested
in stock i). The population grows multiplicatively with the (random) resources ηi(t) it
collects on site i. With migration rates Jij from site i to site j, we obtain a sketchy but
fairly general model of population migration on graphs, ruled by the master equation:

∂tZi(t) =
∑

j

Jij(Zj − Zi) + ηi(t)Zi(t) (4.7)

This model is referred in Econophysics as the Bouchaud-Mézard model [131] (see Fig.4.1),
and remarkable in the fact that the stationary distribution exhibits algebraic tails, seem-
ingly reproducing some features of the Zipf Law. A host of studies has already been
conducted on the equilibrium state of such a system for various noises and migration
rates [132, 133, 134, 135].

In the following, we will investigate a different aspect by introducing a finite time correla-
tion τ in the random resources. How does it influence the growth of the population ? The
model somehow contains two ingredients: the collection of Jij enforcing the migration
strategy of the bacteria, and the time scale given by τ . One could wonder how to adapt
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Figure 4.1: (Color online)A flow map of the international trade in the last decades, with
imports and exports balance as coloured rings. Although the dynamics of the trading
volume is certainly complicated, the model given in Eq.4.7 already reproduces interesting
features of economical markets, as intermittency or heavy-tailed distributions.

the strategy of migration to make the best out of the environment, knowing its typical
variability measured by τ .

Those preoccupations fall into a broader category of problems, coined as “Explore or
Exploit” type of problems, where two mechanisms, the exploration and the exploitation
of resources, compete for growth. It is often illustrated by the secretary problem [136]:
you need to hire a secretary, but with no clue of the skills of the average secretary. Hence
you need to sample the available population, and so explore your environment, with a
limited amount of time. What is the best stopping rule, maximizing the probability to
select the best secretary out of the sample ? In that simple case, for n available secretaries,
one should interview (and reject) n/e first applicants and then stop at the first applicant
who is better than every applicant interviewed so far, a strategy leading to a probability
1/e of selecting the best in the whole population.

Here, in a similar flavour, the population needs agents on a site to collect the resources
(due to the multiplicative nature of the growth) but has to explore new sites as well. Local
conservation of population leads to competing effects both in exploration and exploitation.
The importance of τ lays in the fact that a site may remain fruitful for some time
τ , encouraging the bacteria to stay on that particular site instead of exploring further.
Exploring too fast does not make profit out of that correlation, while exploring too slowly
prevents you from finding good spots. Thus an optimal migration strategy is expected,
maximizing the overall “growth” (to be defined later), for a given τ . On the other hand,
pure white noise does not give any reward for exploitation and one would then expect
the fastest exploration to be the best strategy.
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4.2 A model of migration on graphs

The rather general model given Eq.4.7 is likely hard to solve. Hence we adopt the drastic
simplification Jij = J , an homogeneous migration over the whole system.

The geometry of the graph has notable effects as well. The most usual choices are:

• the Euclidian geometry in dimension d, where every node has 2d neighbours. We
will be mainly concerned with the case of a line d = 1.

• the tree geometry, where any two vertices are connected by only one simple path.
This geometry allows to write recursive equations that lend themselves to analytical
treatment, as will be shown later. The tree is sometimes thought as similar to high
dimensional Euclidian space.

• The fully connected graph, where every node is connected to all the other nodes.
This is assumed to be equivalent to Euclidian geometry in high dimensions.

Arguably the simplest coloured stochastic process is the Ornstein-Ulhenbeck (OU) pro-
cess, as it is stationary, Gaussian and enjoys the Markov property (for more details, see
Appendix A.1). It can be simulated through its Ito evolution equation:

dη(t) = −1

τ
η +

σ

τ
dW (4.8)

with W (t) a Wiener process. The unusual scaling of σ with τ used here ensures a proper
white-noise limit as τ → 0. Due to the Gaussian propagator of the OU process, the var-
ious correlations can be exactly computed and some of them are displayed in Appendix
A.1. Most importantly, the perturbation theory is very amenable with respect to such
noise. Actually, the knowledge of the propagator at all time allows to exactly simulate re-
alizations of the noise, without issues about discrete time step, or approximation schemes.
The method used in this thesis, obtained from [137], is detailed in Appendix A.1. This is
extremely useful, as stochastic PDE approximation schemes can be highly unstable. To
circumvent some limitations, a two-step simulation, by first analytically computing the
noise, and then plugging it in the approximate PDE, drastically improves the accuracy
of the simulations [138].

Finally, we need to define a proper observable to quantify the growth of the population.
While ca = lnZ would seem a natural choice, the systems under study exhibit intermit-
tency: a large part of the population might be concentrated in very few sites. Hence the
typical growth speed c = lnZ (that by analogy we call the quenched growth), observed
on most of the sites, differs from ca (the annealed speed) due to localized activity.

4.2.1 Scaling and perturbation approach

We first address the Euclidian geometry, mostly on a line d = 1 but the methods in this
chapter should extend to higher dimensions. To exhibit a maximum, one can try to infer
the behaviour of c(J) at small J and large J , hoping for a non monotonic behaviour.
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Figure 4.2: (Color online) A random walk on spatial sites x = 0, 1, 2. The walker rests
an time T distributed as an exponential distribution of mean 2J (in one dimension),
collecting an energy proportional to W (T ).

Let us consider the case J = 0. It reduces Eq.4.7 to:

∂tZi = η(t)Zi(t) (4.9)

Zi(t) is simply the exponential of an integral OU process (in the Stratonovitch sense):

Z(t) = exp

(
∫ t

0

η(u)du

)

(4.10)

The integral of an OU is not Markovian anymore but it remains Gaussian as a sum of
(correlated) normal increments, with mean:

∫ t

0

η(u)du = η(0)τ(1− e−t/τ ) (4.11)

If we assume a flat initial condition, c(0) = 0: no exploration leads to sub-exponential
growth. On the other hand, we obtain ca(0) = τσ2/2(e−t/τ −1+ t/τ) from the generating
functional of the OU.

Small J corresponds to the low temperature regime. In that regime, the population very
slowly diffuses, and τ is mostly irrelevant: small J limits for coloured and white noises
are essentially equivalent. So in what follows, we come back to white noise, in unit σ = 1.
We expect the exact value of c(J) to be dependent of the disorder, but the dependence
in J can be inferred from the Feynman-Kac representation of the solution of Eq.4.6:

Z(x, t) = Eπ

[

Z(X(t), 0) exp

(
∫ t

0

ηX(s)(t− s)

)]

(4.12)

where X(t) is a random walk of diffusion J starting at X(0) = x, and Eπ the expectation
over its probability space. The quantity

∫ t

0
ηX(s)(t − s) amounts to sum independent
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increments along a random walk on a sequence of positions held by X(s) from s = 0 to
s = t (see Fig.4.2). It is certainly possible to provide very sharp bonds on this quantity,
but assuming the random walk jumps N times between 0 and t,

∫ t

0
ηX(s)(t − s) ∼

√
tN :

the more jumps, the better. This has to be balanced with the probability of performing
N jumps in [0, t], which follows a Poisson distribution of intensity dJ , with d the space
dimension:

P (N) = e−2dJt (2dJt)
N

N !
(4.13)

Looking for a maximum of P (N) exp(
√
tN) leads to the estimated optimal number of

jumps N∗, at small J :

N∗ =
α2t

4 log(1/dJ)2
(4.14)

α being a factor dependent of the noise through its extremal statistics (for example,
influenced by the eventual correlations of the disorder). Thus we expect:

c(J) =
α2

4 log(1/dJ)
(4.15)

So c(J) → 0 = c(0) for J going to 0, but c(J) is not differentiable: switching on a
small amount of diffusion tremendously improves the typical growth of the population,
as one could expect from the advantages of the exploration. Of course, this estimation is
restrained at least to J < 1. From the very same Feynman-Kac representation, we can
compute the annealed speed ca(J). Inverting the expectations, we are led to calculate
the quantity:

exp

(
∫ t

0

ηX(s)(t− s)

)

(4.16)

It is not hard to see that it is independent of the jumps of the process X(t) ! Hence
ca(J) = 1/2, and c(J) → 1/2 at large J1.

In the large diffusion limit, because of the important wandering, the details of the disorder
are averaged out. The high J behaviour can be understood heuristically as follows.
Because coarse graining is now possible, the problem for τ > 0 must be equivalent, for
large times, to the standard uncorrelated case τ = 0, but with a renormalized disorder
amplitude. For large J and finite τ , the disorder cannot change the random walk nature
of the exploration up to time τ . The walk therefore freely visits N = O(

√
τJ) in d =

1 different sites during this time2, leading to a pre-averaging of the random disorder
that reduces the variance σ2 by a factor N . Since for τ = 0, c(0) ∼ σ2, the above
renormalization immediately leads to c(J) ∼ σ2/

√
Jτ at large J .

This behaviour can be recovered by a perturbation theory around the linear Edwards-
Wilkinson equation (done in Appendix A.2), with the non-linear interactions as small
parameter. We obtain:

c(J) =
σ2

4
√
τJ

(4.17)

1Unlike the tree, and consistently with the strong disorder regime, there is no critical value of J for
which both c(J) and ca(J) coincide, for d < 3.

2More generally, in d dimensions, N = O((τJ)d/2).
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Figure 4.3: (Color online) Comparison of simulations of a discretization of Eq.4.6 (blue
triangles) and of Eq.4.27 (red squares) for N = 512 and τ = 0.1, as functions of the
branching (diffusion) rate J . We fix σ = 1. The dashed black line is the large J asymp-
totics Eq.4.17. The dotted line reveals the J−1 behaviour of c(J) for large J , predicted
by the tree-approximation.

with an excellent agreement with numerical simulations (see Fig.4.3). It is interesting
to note that the next order in J is the white-noise term. Although we carefully chose
the scaling of τ and σ so that the OU process converges in probability to white noise,
the limit τ → 0 seems rather problematic. To better understand this, we refer again to
Section 4.1.1, and we recall that the procedure of sending τ to 0 selects the Stratonovitch
prescription, while the rigorous definition of SHE requires Ito. Both differ by a diverging
part, and the speed of divergence is universal. With the regularity structures, it is
understood as the dominant counter-term, diverging as 1√

τ
and, in fact, independent of

the coloured noise chosen.

So they are strong hints of the existence of an optimum in a fairly general way, as
c(J) exhibits non monotonic behaviour with respect to J . Unfortunately, those rough
estimates do not give much information about the optimum itself. Therefore, it would
be enlightening to obtain an exact solution for every J , even in a particular case. This is
the goal of the next section, in the rather peculiar tree geometry.

4.2.2 Exact results on trees

The tree geometry allows numerous computations, because of the ease to write down
recursive equations. Those simplifications can be traced to the ultrametric structure:
when two paths starting at the root part, they become independent. A very clever trick,
first performed in [139], maps the problem to a travelling wave problem, that can be
tackled analytically. This approach is very fruitful, especially in the field of evolution
and genetics [140, 141].

First, we illustrate the method with a white noise. We mainly follow [139], asides small
variations: additional factors 1/2 ensure conservation of the total population at each
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branching. We remove the β variable, the control parameter being the branching rate.
Then we extend this approach to OU processes. In the following, we restrain ourself to
2-branchings, the general case is treated in the related paper.

4.2.2.1 The white-noise case

The population Zt in continuous time, evolves coupled to a branching process of intensity
J . We denote J this intensity because the branching rate is encoding the strength of
exploration, much alike the diffusion constant in the previous section. Along the branches
of the tree, Zt multiplicatively collects the resources Zt+dt = e−ξtdtZt and new branches
appear at each time step with probability Jdt. When it happens, Zt is equally split
between the two branches:

Zt+dt =

{

e−ξtdtZt with prob. (1− J dt)
1
2

(

Z
(1)
t + Z

(2)
t

)

with prob. J dt
(4.18)

We define the generating function:

gt(x) := exp [−e−xZt].

gt(−∞) = 0 and gt(+∞) = 1, a behaviour typical of the travelling waves functions,
describing the propagation of a front (see Fig.4.4). Invoking the integral representation
of the logarithm:

log z =

∫ ∞

−∞
dx exp(−e−x)− exp(−e−xz)

c(J) relates to the evolution of gt through:

c(J) =
1

t

∫ ∞

−∞
dx [g0(x)− gt(x)] (4.19)

If gt is a travelling wave of speed c,
∫∞
−∞ dx [g0(x)− gt(x)] ∼ ct so the typical growth c(J)

coincides with the front speed of gt !

From Eq.4.18, gt(x) satisfies:

gt+dt =

{

gt(x+ ξtdt) with prob. (1− J dt)

gt(x+ log 2)2 with prob. J dt
(4.20)

=

∫

dξy P (ξy)gt(x+ ξydt) + J dt
[

gt(x+ log 2)2 − gt(x)
]

. (4.21)

In the last line, we used that ξt is independently distributed according to P (ξ), with dt
small (dropping all terms of order dt2). ξtdt is a Gaussian white noise and scales as σ

√
dt:

∫

dξt P (ξt)gt(x+ ξtdt) =

∫ ∞

−∞
dξ

1√
2πσ2 dt

e−ξ2/(2σ2dt)gt(x+ ξ) = gt(x) +
σ2

2
dt ∂2

xgt(x) (4.22)
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Figure 4.4: (Color online) A travelling wave at different times. The speed of the front
is denoted c(γ) and a function of the exponential decay of the precursor of the front
gt(x) ∼ 1− e−γx.

Gathering Eq.4.20 and Eq.4.22:

∂tgt(x) =
σ2

2
∂2
xgt(x) + J

[

gt(x+ log 2)2 − gt(x)
]

(4.23)

Although not the classical form of a KPP equation, as obtained in [139], its solution is
again a travelling wave, whose front speed can be extracted by postulating gt(x) = w(u =
x− ct):

− cw′(u) =
σ2

2
w′′(u) + J

[

w (u+ log 2)2 − w(u)
]

. (4.24)

The velocity c is fixed by the decay of w(u) at u → ∞. With the Ansatz w(u) ∼ 1− e−γu

(see Fig.4.4):

−cγe−γu =− σ2

2
γ2e−γu + J

[

−2e−γ(u+log 2) + e−γu
]

−cγ =− σ2

2
γ2 + J

[

1− 21−γ
]

c =
σ2

2
γ +

J(21−γ − 1)

γ
. (4.25)

The interpretation of Eq.4.25 is that the speed of the front depends on the asymptotic
decay of gt(x). With the flat initial condition Z0(x) = 1, g0(x) ∼ 1 − e−x, so γt=0 = 1.
But c(γ) exhibits a minimum for some value γmin. This peculiar feature is well known
in the KPP theory: a front prepared with a decay sharper than γmin will slow down to
a speed c = c(γmin), while for an initial γt=0 < γmin, it will maintain the corresponding
speed c(γt=0). As here γt=0 is fixed to 1, the criterion γmin = 1 (corresponding to Jc = 1)
separates the two regimes.
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• For J > Jc, γmin > 1, hence the front propagates at a steady speed c(1) = σ2/2.
We recover a result of the flavour of Eq.4.16: c(J) becomes independent of J above
a threshold Jc, where it coincides with the annealed speed ca(J).

• For J < Jc, γmin < 1. As the only range 0 < γ < γmin is allowed, the front initially
prepared with γt=0 = 1 slows down to γmin, and c(γmin) =

√
2σ2J +O(J).

With white noise, there is no inherent advantage to exploit the same site over a period of
time. Hence a higher diffusion J is always desirable, a principle true in all geometries. To
observe no optimum does not come as a surprise (see Fig.4.5). We now turn to coloured
noises.

4.2.2.2 The Ornstein-Ulhenbeck noise case

Replacing the noise by an Ornstein Ulhenbeck (OU) process ηt in the t direction:

∂tηt = −ηt
τ
+

σ

τ
ξt, (4.26)

where ξt still plays the role of the white noise. Because of the correlations, the future of
the OU at each branching has to be carefully considered. Logically, one of the branches
has to retain the old OU process, while a natural choice for the initial condition of the
new OU process on the other branch is a completely independent value η2 taken from
the stationary distribution. The new generating function now keeps track of the OU
realization as well:

gt(x, η) :=exp [−e−xZi(t)] δ [ηi(t)− η]

ĝt(x) :=

∫ ∞

−∞
dη gt(x, η) = exp [−e−xZi(t)]

The variables Zi obey a similar set of equations3:

Zt+dt =

{

eηtdtZt with prob. (1− J dt)
1
2

(

Z
(1)
t + Z

(2)
t

)

with prob. J dt
(4.27)

leading to the evolution of gt(x, η):

gt+dt(x, η) = (1− Jdt) exp [−e−x+η1(t)dtZ1(t)] δ(ηi(t+ dt)− η)

+ Jdt exp [−e−x−ln 2Z1(t)δ(η1(t)− η)]

× exp [−e−x−ln 2Z2(t)] (4.28)

As we said above, η2 is an independent value taken from the stationary distribution:

POU(η) =

√

τ

πσ2
exp

[

−τη2

σ2

]

=

∫

dx gt(x, η) (4.29)

3Correcting a small typo in the related paper.
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Expanding in dt in the same way than Eq.4.22, we get the PDE:

∂tgt(x, η) =
σ2

2τ 2
∂2
ηgt +

1

τ
∂η(ηgt)− η∂xgt

+ J [gt(x+ ln 2, η)ĝt(x+ ln 2)− gt(x, η)] . (4.30)

We obtain another Fisher-KPP type equation for gt, where the diffusion operator is
replaced by the Ornstein-Uhlenbeck operator, involving the additional state variable η.

Again, we want to determine the dispersion relation between c(J) and the initial decay
of the front. However, the PDE now involves the additional state variable η. For x → ∞,
gt(∞, t) = 〈δ(η(t) − η)〉. Moreover, we expect c to be asymptotically independent of η.
Therefore, we make the following ansatz for the tail of gt:

gt(x, η) = Q(η)−R(η)e−γ(x−ct) + ...

with
∫

dη Q(η) = 1, with Q expected to be the stationary distribution of the OU process
Eq.4.29. Inserting this Ansatz into Eq.4.30, one finds, by identification that Q(η) indeed
obeys Eq.4.29 while R(η) satisfies:

Rcγ =
σ2

2τ 2
∂2
ηR +

1

τ
∂η(ηR) + ηR + J2−γQ

∫

dηR(η)

+R(η)J(2−γ − 1). (4.31)

Because Eq.4.31 is linear in R, this can be simplified by imposing
∫

dη R(η) = 1. Ab-

sorbing ∂η by setting R = φe−η2τ/2σ2
, σ2ĉ = γc− J(2−γ − 1)− σ2γ2/2 and y = η/σ2 − γ:

− 1

2σ4τ 2
φ′′ +

1

2
y2φ+ (ĉ− 1

2σ2τ
)φ =

Je−γq2

σ2

e−
(y+1)2σ2τ

2

√

πσ2/τ
.

On the left part, one can recognize the Hamiltonian of an harmonic oscillator, with
a Gaussian source term. Introducing the harmonic oscillator eigenfunctions φn(y) =
e−y2σ2τ/2Hn(yσ

√
τ), the solution of the above equation can be decomposed as φ(y) =

∑∞
n=0 Anφn(y) where the coefficients An are given by:

An

[ n

σ2τ
+ ĉ
]

=
J2−γ

σ2

e−γ2σ2τ/4 (−1)n

n!

(

σ
√
τ

2

)n

√

πσ2/τ
.

Finally, the condition
∫

dη R(η) = 1 yields an implicit equation for c, valid for arbitrary
τ :

1 = Je−γ log 2−γ2σ2τ/2

∞
∑

n=0

(γ2σ2τ/2)n

n!
[

n
τ
+ γc− J(e−γ log 2 − 1)− σ2

2
γ2
] (4.32)

Again c(γ) is found to reach a minimal value in γmin and we can perform a similar analysis
to the white-noise case. Although it lends itself to expansion, Eq.4.32 is not particularly
friendly and will be dissected in the following section. More importantly, it unravels some
connections between freezing transition and optimal growth.
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Figure 4.5: (Color online) Comparison of simulations of Eq.4.27 for various N and τ ,
as a function of the branching rate J . Green diamonds, orange squares and blue circles
were obtained for τ = 0, 0.1 and 1 with N = 220. Blue triangles correspond to τ = 1
and N = 28. σ = 1. The solid curves were obtained from Eq.4.32, with asymptotics as
dashed grey lines.

4.2.3 Freezing transition and optimal growth

The infinite sum over n can be rewritten in a integral form:

1 = Je−γ ln 2−γ2σ2τ/2

∫ ∞

0

dt exp

(

−
[

γc− J
(

2−γ − 1
)

− σ2γ2

2

]

t

+
γ2σ2τ

2
e−t/τ

)

(4.33)

Let us first consider the large J regime, where we can set γ = 1 from the analysis above.
It simplifies Eq.4.33 to:

1 = Je−σ2τ/2

∫ ∞

0

dt exp

[

−
(

c− J − σ2

2

)

t+
σ2τ

2
e−t/τ

]

(4.34)

The dominant part of this integral corresponds to small t, of order 1/J . Rescaling u = Jt:

0 =

∫ ∞

0

due−u

[

exp

(

−c
u

J
+

σ2τ

2
(e−u/Jτ − 1 +

u

Jτ
)

)

− 1

]

(4.35)

Expanding c(J) in powers of 1/J leads to:

c =
σ2

2τJ
− σ2

2τ 2J2
+O(J−3) (4.36)

The low J limit is a bit more involved, as c = c(γmin). Observing that γmin → 0 in that
limit, and that the dominant contribution now comes from t ∼ 1/J large, we set:

γ =
√
Jγ′ and c =

√
Jc1 +O(J)
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Figure 4.6: (Color online) Various c(γ) for τ = 0.1 and several values of J (red squares
J = 1.5, blue circles J = 0.68 and yellow diamonds J = 0.2). γmin goes above 1 at low
J , corresponding to the frozen regime. Jc = 0.68 is the critical transition.

Dropping the term in exp(−t/τ) in Eq.4.35 leads to:

γc− J(e−γ ln 2 − 1)− σ2γ2

2
= Je−γ ln 2−γ2σ2τ/2 (4.37)

Inserting the expansions in J , we obtain the relation:

c1 =
1 + σ2/2γ′2

γ′ (4.38)

γ′
min =

√

2

σ2
(4.39)

The final result is exactly similar to the white noise case:

c =
√
2Jσ2 +O(J) (4.40)

Satisfyingly, we retrieve the existence for c(J) of an optimum value of J . While the large
J decay was expected from the scaling argument given in Section 4.2.1, the algebraic
decay for small J is more surprising. It does not reproduce the supposedly logarithmic
behaviour obtained from a Feynman-Kac representation. On the other hand, a similar
computation over fully connected graphs recovers the logarithm. Although both models
can be seen as high dimensional limits, the Cayley tree exhibits unusual features because
of its geometrical rigid structure [142]. The peculiar square root dependence of Eq.4.40
probably belongs to those.

The advantage of the analytical solution over simple scaling arguments comes when study-
ing the behaviour of the optimum. Unfortunately, the cumbersome Eq.4.32 does not
allow exact formula for its position. Nonetheless, c(1) decreases with J and, by defini-
tion, c(γmin) < c(1). From those observation, it can be concluded that c(J) attains its
maximum precisely when c(γmin) = c(1), hence at the point J = Jc.
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Remember that the frozen phase is characterized by the condensation of the measure of
the polymer on one particular path. It can be interpreted as a weak explorative regime.
On the other hand, for large J , the system is annealed and the population diffuses too
much. It is not so suprising that the precise point where optimality is attained realises the
best compromise between the advantages and the drawbacks of both strategies. Hence, a
population grows the fastest while being almost frozen, or alternatively, almost annealed.

It would be rather instructive to explore this fact in more general contexts. The par-
ticipation ratio introduced earlier wears many habits in different fields. In ecology, the
Simpson index is used as a measure of species diversity. In economy, it is coined the
Herfindahl–Hirschman index, a measure of the size of firms in relation to the industry
and an indicator of the amount of competition among them. It is widely applied in com-
petition law, antitrust and also technology management. The above computation gives
the idea that an “optimal” tuning (in a very specific way) is obtained when two antago-
nist mechanisms simultaneously encourage or prevent the system from condensing. One
can for example think of the tendency of companies to merge being counterbalanced by
antitrust state action.

4.3 Conclusion

In this Chapter, we explored the influence of time correlations of the linear speed of growth
of an interface. Although this point of view is rather peculiar in the field of stochastic
growth field, it makes more sense to describe population dynamics. While the exact value
of this growth speed depends on the chosen model, the existence of an optimum value
with respect to diffusion seems very robust. We did not try to identify the dynamics
of the population in the localized phase, or address the question of intermittency. We
expect however that the white noise results, known in the field of population dynamics
[143] (sometimes still as conjectures) persist with coloured noises. Note that several
other questions could be tentatively extend the analysis. The limit τ → ∞ corresponds
to the so-called columnar disorder, much studied and interpreted as steps of Punctuated
Evolution [144, 145, 146]. It would correspond to the rescaling σ → σ

√
τ . However, the

FKPP approach uses the assumption of stationary t → ∞, a limit that does not commute
with τ → ∞. A more worrisome concern is the fact that c(J) in the quenched case
strongly depends on the extremal statistics of the underlying disorder. For a Gaussian
disorder, we would expect c(J) growing to ∞ with t (albeit slowly) rather than reaching
a asymptotic limit. Hence, the present framework does not adapt nicely to that case.

Presence of heterogeneities in the ressources or other geometries are other interesting
routes to follow, as they relate to various experimental interests, from vortices in super-
conductors to rebalancing in portfolio management. The above analysis could be enlarged
to economy or ecology, for example by studying how economic growth is impacted by the
ability of societies to find a tradeoff between tradition and innovation, or else collapse.
It enlightens some aspects of the Rich gets richer strategies commonly observed in those
contexts, where localization of resources is encouraged, up to a certain point. But those
extensions require a detailed study of the robustness of the optimum to various perturba-
tions. The apparent close relationship of the optimal growth with localization transition,
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if it survives in other contexts, should be a possible route for broadening the scope of the
present work.



Explore or Exploit? A Generic Model and an Exactly Solvable Case

Thomas Gueudré,
1,*

Alexander Dobrinevski,
1
and Jean-Philippe Bouchaud

2

1
CNRS-Laboratoire de Physique Théorique de l’Ecole Normale Supérieure,

24 rue Lhomond, 75231 Cedex 05, Paris, France
2
Capital Fund Management, 21 rue de l’université, 75007 Paris, France

(Received 20 October 2013; published 5 February 2014)

Finding a good compromise between the exploitation of known resources and the exploration

of unknown, but potentially more profitable choices, is a general problem, which arises in many

different scientific disciplines. We propose a stylized model for these exploration-exploitation

situations, including population or economic growth, portfolio optimization, evolutionary dynamics,

or the problem of optimal pinning of vortices or dislocations in disordered materials. We find the exact

growth rate of this model for treelike geometries and prove the existence of an optimal migration rate

in this case. Numerical simulations in the one-dimensional case confirm the generic existence of an

optimum.

DOI: 10.1103/PhysRevLett.112.050602 PACS numbers: 05.10.Gg, 68.35.Rh

The exploration-exploitation tradeoff problem pervades

a large number of different fields (see [1] and the many

references therein). Two early examples concern the

management of firms [2] (should one exploit an already

known technology or explore other avenues, potentially

more profitable, but risky?) and the so-called multiarm

bandit problem [3] (sticking with the seemingly most

profitable arm to date, or switching in search of potentially

more profitable ones?). Clearly, this is a universal paradigm

that ranges from population growth and animal foraging

to economic growth, investment strategies, or optimal

research policies. As we will show below, the same issues

also arise, in a slightly disguised form, in the context of

vortex or dislocation pinning by impurities, and are relevant

for material design. Intuitively, neither staying at the same

place (and missing interesting opportunities) nor changing

places too rapidly (and failing to exploit favorable circum-

stances) are optimal strategies. An optimal, nonzero search

rate should thus exist in general. However, there are no

exactly solvable cases where the exploration-exploitation

tradeoff can be investigated in details. The aim of this Letter

is to propose a general, stylized model for these explora-

tion-exploitation situations, which encompasses all the

examples given above. We obtain exact solutions of this

model in two cases (a fully connected and a tree geometry),

for which we explicitly prove the existence of a nontrivial

optimal search rate. Euclidean geometries are also consid-

ered, as these correspond to physical situations, like the

pinning problem alluded to above. In this case, perturbation

theory and numerical simulations confirm the existence of

an optimum as well.

Our model describes the dynamics of a quantity we

generically call Zi, defined on the nodes i of an

arbitrary graph, that evolves according to the following

equation [4]:

∂ZiðtÞ
∂t

¼
X

j≠i

JijZjðtÞ −
X

j≠i

JjiZiðtÞ þ ηiðtÞZiðtÞ: (1)

The first two terms encode “migration” effects, with Jij the
migration rate from j to i. The last term describes the

growth (or decay) of the quantity Zi with a random growth

rate ηiðtÞ. We will choose ηi to be Gaussian, centered, and

uncorrelated from site to site, with a exponential time

correlator:

hηiðt1Þηjðt2Þi ¼ δij
σ2

2τ
e−ðjt1−t2j=τÞ: (2)

Our qualitative conclusions are, however, independent of

the precise form Eq. (2), provided correlations decay on a

finite scale τ, which will play an important role in the

following.

Many different problems are described by Eq. (1).

Population dynamics (bacteria, humans, animals) is one

example with Zi the number of individuals around site (or

habitat) i. In this setting, ηiðtÞ encodes the local balance

between beneficial and detrimental effects on population

growth [5] (i.e., quality and quantity of resources or

nutrients, climate, illnesses, etc.). A slightly different

interpretation can be given in the context of evolutionary

dynamics, where the sites i correspond to different alleles

and the Jij are mutation rates. In the context of pinning

problems, Zi corresponds to the partition function of a

linear object of length t (polymers, vortices, dislocations),

ending on site i, that can hop between sites and interact

with a local random pinning potential ηiðtÞ [6]. In an

economics setting, Eq. (1) can be interpreted as describing

the dynamics of the wealth of individuals that exchange and

invest in risky projects, or of the total activity in a sector of

the economy i, that may shift from one sector to another,

and grow or decay depending on innovations, raw material
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prices, etc. Another interesting application is that of

portfolio theory, where Zi is the amount of money invested

in asset i [7]. Then ηiðtÞ is the return streams of this assets

and the Jij describe the reallocation of the gains made on

some assets towards the rest of the portfolio. Without this

rebalancing, the portfolio would end up being concentrated

in one (or a few) assets only (see, e.g., [8], p. 37), and

hence, be exceedingly risky.

In the case where Jij ≡ J and the nodes i are on a regular
lattice in d dimensions, Eq. (1) is a discretized version of

the “stochastic heat equation,”

∂Zðx⃗; tÞ
∂t

¼ J∇2Zðx⃗; tÞ þ ηðx⃗; tÞZðx⃗; tÞ: (3)

Upon a Cole-Hopf transformation Z ¼ eh, this equation

maps into the celebrated KPZ equation ∂th ¼ J∇2hþ
Jð∇hÞ2 þ η that appears in a wide variety of domains:

cosmology and turbulence [9,10], surface growth [11,12],

directed polymers [13], or Hamilton-Jacobi-Bellmann opti-

mization problems [14].

A host of exact results have recently been obtained for

the one dimensional (d ¼ 1) case, in particular, concerning

the scaling properties of the fluctuations of the h field (for a

review, see [15]). Here, however, we will not be concerned

with these fluctuations but interested in the long-time

average “velocity” c of the h field, defined in the discrete

case as

c≔ lim
t→∞

1

Nt

X

N

i¼1

ln ZiðtÞ; (4)

where N is the total number of sites. This velocity c has a

clear interpretation in all of the examples mentioned above:

it represents the average asymptotic growth rate of the

population, or of the economic wealth in models of growth,

the free energy of the polymer, vortex, etc., in the context of

pinning. It is therefore very natural to look for the

maximum of this quantity as a function of the parameters

of the model, since these will correspond to the optimal

situation—either in terms of population, economic or

portfolio growth, or in terms of pinning efficiency, which

is relevant for material design, for example, superconduc-

tors with high critical currents [16]. In this case, so-called

“columnar disorder” [17] (corresponding to a time corre-

lated random noise η in the present language) is known to

be highly effective at pinning vortices [18,19]. Our central

result is that for the nonzero correlation time of the random

noise or potential ηiðtÞ, there exists an optimal migration

rate J such that c reaches a maximum. This optimal rate

realizes the “exploration-exploitation” compromise: mov-

ing too slowly (J small) does not allow the system to probe

the environment efficiently, and some favorable opportu-

nities are missed. Moving too fast (J large), on the other

hand, does not allow the system to fully benefit from

favorable spots that last for a time ∼τ, as it leaves these

spots too early.

Let us first present numerical simulations of the 1þ 1

directed polymer problem with time-correlated disorder.

The equation we simulated is

Ziðtþ dtÞ ¼ ð1 − 2JdtÞZiðtÞ þ Jdt½Ziþ1ðtÞ þ Zi−1ðtÞ�
þ ηiðtÞdtZiðtÞ; (5)

with i ¼ 1;…; N and ηiðtÞ an exponentially correlated

Gaussian noise, as in Eq. (2). We considered a system with

N ¼ 512 sites and periodic boundary conditions. We

determined cðJÞ after a time t ¼ 40 long enough to reach

a stationary state, and much greater than the correlation

time fixed here to τ ¼ 0.1. The dependence of c on J for

σ ¼ 1 and τ ¼ 0.1 is shown in Fig. 1, together with (a) the

result of direct perturbation theory of the KPZ equation,

a priori valid for large J, and (b) the prediction of the “tree
approximation” with a ¼ 1=2 and m ¼ 1 that we detail

below. The former predicts cðJÞ ≈ σ2=4
ffiffiffiffiffi

Jτ
p

þOðσ4=JÞ
for J → ∞, which indeed fits the data quite well in the large

J region, without any adjustable parameter. The tree

approximation, on the other hand, is quantitatively incor-

rect as expected for a one-dimensional system. For exam-

ple, it predicts a J−1 decay of c (see below) but still

manages to capture approximately the overall behavior of

cðJÞ, in particular, the existence of a maximum.

Let us now turn to a simplified model, where the

interplay between exploration and exploitation, and the

optimal migration rate, can be fully understood analytically.

We first note that our general model Eq. (1) for a regular

lattice with Jij ¼ J for neighboring sites, can be slightly

altered as the following evolution rule:

0.1 1 10 100

0.05

0.10

0.20

c J

J

FIG. 1 (color online). Comparison of simulations of Eq. (5)

(blue triangles) and of Eq. (6) (red squares) for N ¼ 512 and

τ ¼ 0.1, as functions of the branching (diffusion) rate J. We fix

σ ¼ 1. The dashed black line is the large J asymptotics obtained

from perturbation theory, cðJÞ ≈ σ2=4
ffiffiffiffiffi

Jτ
p

. The dotted line

reveals the J−1 behavior of cðJÞ for large J, predicted by the

tree approximation (with a ¼ 1=2 and m ¼ 1).
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ZiðtþdtÞ¼
(

ZiðtþdtÞexp ½ηiðtÞdt� prob: 1−Jdt;

ð1−aÞZiðtÞþ a
m

P

j∧iZjðtÞ prob: Jdt;

(6)

where m is the number of neighbors of i, j∧ i means that i,
j are neighbors, and “prob.” represents “with probability.”

To obtain a solvable model, we neglect all spatial corre-

lations between the Zi’s, which amounts to the tree

approximation introduced by Derrida and Spohn for the

directed polymer problem in 1988 [20]. Following these

authors, we define the generating functions

Gtðx; ηÞ≔hexp ½−e−xZiðtÞ�δ½ηiðtÞ − η�i;

ĜtðxÞ≔
Z

∞

−∞

dηGtðx; ηÞ ¼ hexp ½−e−xZiðtÞ�i; (7)

Assuming the Zi’s to be independent allows one to write the

following evolution equation for Gtðx; ηÞ:

Gtþdtðx; ηÞ
¼ ð1 − JdtÞhexp ½−e−xþηiðtÞdtZiðtÞ�δ½ηiðtþ dtÞ − η�i
þ Jdthexp ½−e−xþq1ZiðtÞ�δ½ηiðtÞ − η�i
× hexp ½−e−xþq2ZjðtÞ�im; (8)

with q1≔ logð1 − aÞ and q2≔ logða=mÞ. The choice in

Eq. (2) of an Ornstein-Uhlenbeck process for η is particu-

larly simple, since it yields a Markovian equation for

ηiðtþ dtÞ:

ηiðtþ dtÞ ¼ ηiðtÞ þ
�

−
1

τc
ηiðtÞ þ

σ

τc
ξiðtÞ

�

dt; (9)

where ξ is a Gaussian white noise. Inserting this into

Eq. (8), and expanding to OðdtÞ, we obtain

Gtþdtðx; ηÞ ¼
�

Gt

�

x; ηþ σ

τc
ξiðtÞdt

��

ξ

− JdtGtðx; ηÞ

− ηdt∂xGtðx; ηÞ þ
dt

τ
∂η½ηGtðx; ηÞ�

þ JdtGtðx − q1; ηÞĜtðx − q2Þm þOðdtÞ2:
Using ξiðtÞdt ∼N ð0; dtÞ, we now average over ξ and

obtain a generalized Fisher-KPP equation for G, where the
diffusion operator is replaced by the Ornstein-Uhlenbeck

operator, involving the additional state variable η:

∂tGtðx;ηÞ¼
σ2

2τ2c
∂2
ηGþ 1

τc
∂ηðηGÞ−η∂xG

þJ½Gtðx−q1;ηÞĜtðx−q2Þm−Gtðx;ηÞ�: (10)

Like the Fisher-KPP equation known from the standard

mean-field directed polymer problem [20,21], it gives rise

to a front propagating in the x direction. The velocity of this
front is precisely the quantity c we are looking for and is

fixed by the tail behavior ofGt when x →∞. In this tail, we

make the following ansatz for G:

Gtðx; ηÞ ¼ QðηÞ − RðηÞe−γðx−ctÞ þ � � � (11)

with
R

dηQðηÞ ¼ 1. Inserting this into Eq. (10), one finds,

by identifying terms of order 1 and terms of order e−γðx−ctÞ,
that QðηÞ is the stationary Gaussian distribution for the

Ornstein-Uhlenbeck process ηðtÞ (as it should be), while

RðηÞ satisfies

Rcγ ¼ σ2

2τ2
∂2
ηRþ 1

τ
∂ηðηRÞ þ ηRþ Jmeγq2Q

Z

dηRðηÞ

þ RðηÞJðeγq1 − 1Þ: (12)

This can be simplified by imposing (without loss of

generality)
R

dηRðηÞ ¼ 1 and setting R ¼ ϕe−η
2τ=2σ2 ,

σ2ĉ ¼ γc − Jðeγq1 − 1Þ − σ2γ2=2, and y ¼ η=σ2 − γ. One

gets the following equation for ϕ:

−
1

2σ4τ2
ϕ00 þ 1

2
y2ϕþ

�

ĉ −
1

2σ2τ

�

ϕ

¼ Jmeγq2

σ2
e−ððyþ1Þ2σ2τ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi

πσ2=τ
p : (13)

Introducing the harmonic oscillator eigenfunctions

ϕnðyÞ ¼ e−y
2σ2τ=2Hnðyσ

ffiffiffi

τ
p Þ, the solution of the above

equation can be written as ϕðyÞ ¼
P

∞
n¼0 AnϕnðyÞ, where

the coefficients An are given by

An

�

n

σ2τ
þ ĉ

�

¼ Jmeγq2

σ2
e−γ

2σ2τ=4 ð−1Þn
n!

ðσ
ffiffi

τ
p

2
Þn

ffiffiffiffiffiffiffiffiffiffiffiffi

πσ2=τ
p : (14)

Finally, the condition
R

dηRðηÞ ¼ 1 yields an implicit

equation for c, valid for arbitrary τ [22]:

1 ¼ Jmeγq2−γ
2σ2τ=2

X

∞

n¼0

ðγ2σ2τ=2Þn
n!½n

τ
þ γc − Jðeγq1 − 1Þ − σ2

2
γ2�

.

(15)

As in the Derrida-Spohn case, the corresponding function

cðγÞ is found to reach a minimum value for a certain γmin,

that depends on the parameters J, σ2, τ, m. The interpre-

tation of this phenomenon is now standard: only traveling

waves with γ ≤ γmin can be sustained and propagate at the

speed cðγÞ. Awave front which is “too sharp,” i.e., prepared

initially with a γ > γmin, will broaden until it reaches

γ ¼ γmin, and will propagate with the velocity cðγminÞ. In
our case, the initial condition Z ¼ 1 corresponds to γ ¼ 1;

therefore, either γmin is found to be larger than unity, in

which case c is given by the solution of Eq. (15) with γ ¼ 1,

or γmin ≤ 1, in which case c ¼ cðγminÞ. For the directed

polymer problem, the first case corresponds to the
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high-temperature, annealed phase (arising for J ≥ Jc),
while the second case corresponds to a low-temperature,

frozen phase (for J ≤ Jc). In the random growth problems,

the latter case corresponds to a localization of the

population, wealth, or portfolio on a small number of

particularly favorable habitats, individuals, or assets

(see the discussion in [4]).

We determine cðγÞ, γmin, and cðγminÞ numerically from

Eq. (15), with very good agreement with numerical

simulations (see Fig. 2). We see, in particular, that for

τ ¼ 0, increasing the migration rate always increases the

growth rate, which saturates at a constant value c ¼ σ2=2,
for all J ≥ Jc. Therefore, no optimum tradeoff between

exploration and exploitation exists in this case—exploring

is always favorable or neutral. However, when a finite

correlation time τ is introduced, we see that, as expected, an

optimum migration rate indeed appears (cf. Fig. 2) [23]. In

particular, we find analytically that for small J, cðJÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ2mJ
p

þOðJÞ while for large J, cðJÞ ¼ σ2=2aJτþ
OðJÞ−2. From the examination of γmin in Eq. (15), one

can derive the uniqueness of the maximal speed cðγminÞ,
occurring for γmin ¼ 1, under the conditions τ > 0, σ > 0,

0 < a < 1, and m ≥ 1 (which is consistent with Eq. (6),

where m is the number of new bifurcations). In fact, the

large J behavior can be understood heuristically as follows.
Clearly, the problem for τ > 0must be equivalent, for large

times, to the standard uncorrelated case (τ ¼ 0), but with a

renormalized disorder amplitude. For large J and finite τ,

the disorder cannot change the random walk nature of the

exploration up to time τ. The walk therefore freely visits

N≠ ¼ OðJτÞ different sites during this time, leading to a

preaveraging of the random disorder that reduces the

variance σ2 by a factor N≠. Since for τ ¼ 0, c ∝ σ2, the

above renormalization immediately leads to cðJÞ ∼ σ2=Jτ
at large J. [Note that the very same argument leads to

cðJÞ ∼ σ2=
ffiffiffiffiffi

Jτ
p

in d ¼ 1, as found above, and is also exact

in d ¼ 2, where logarithmic corrections appear.] Now since

cðJ ¼ 0Þ ¼ 0 trivially, the decaying behavior of cðJÞ for
large J and finite τ immediately implies the generic

existence of an optimum in the exploration rate, as

anticipated above.

We find very similar conclusions [24] for another

exactly solvable limit, the fully connected graph where

Jij ¼ J0=N, ∀i, j, which in fact corresponds (up to minor

details) to the limit a ¼ 1 − ð1=NÞ and m ¼ N of the tree

model above. Other theoretical methods used to investigate

the KPZ or directed polymer problem could also be

useful to characterize cðJÞ in dþ 1 dimensions or for

other geometries, such as mode-coupling theory or the

Gaussian variational method. The mapping to interacting

bosons in the 1þ 1 case is also an interesting avenue we

are exploring [24]. It would be very interesting to observe

the predicted pinning optimum experimentally. One pos-

sibility is in superconductors where the hopping rate J is

related to the elastic energy of the vortex lattice, which

itself depends on the external magnetic field. Changing the

temperature is also a way to affect both the hopping

constant and the effective pinning strength [25].

Applications of these ideas are numerous, in particular,

to quantify how diversified portfolios benefit from a

balance between persistence and rebalancing, or to under-

stand how economic growth is impacted by the ability of

societies to find a tradeoff between tradition and innova-

tion, or else collapse [26].

We thank G. Biroli, P. Le Doussal, and R. Munos for

very helpful insights.
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5 An experimental example of

stochastic growth

This work was done with Alberto Rosso (LPTMS), as a collaboration with the FAST, at
Orsay, and with the tutoring of my PhD advisors.

Up to now, we mentioned theoretical aspects of a benchmark model in the stochastic
growth through the KPZ equation. This equation belongs to a robust universality class
characterized by anomalous scaling exponents in the diffusion and free energy fluctuation.
We gave a detailed analysis of the Directed Polymer statistical properties, under various
conditions: other geometries, different disorders, correlations... This toy-model belongs
to the large family of elastic interfaces in disordered medium. Frequently occurring in
Nature, they are the sit of a competition between elasticity and disorder. As a result,
they exhibit a complicated, glassy behaviour. We already saw some of these features,
but only at equilibrium. And yet, all these elastic structures can be set in motion by
applying an external force: one could imagine to pull the extremities of the polymer along
the x-axis and try to understand how its shape fluctuates, how its move decomposes, how
its total energy varies. From the competition between disorder and elasticity, emerges a
energy landscape with many metastable states.

5.1 Weak and strong pinnings

A characteristic feature of the dynamics of elastic interfaces is the depinning. In the
presence of disorder, the system remains (more or less) pinned and only polarizes under
the action of a small applied force, i.e. moves until it locks on a local minimum of the
tilted energy landscape (see Fig.5.1). At a larger drive, the system follows the force F
and acquires a non-zero asymptotic velocity v.

If the pinning comes from a collective participation of the disorder, it is coined weak. To
describe it, a fruitful approach, suggested in [147], has drawn much analogy between this
depinning transition and critical systems, although the system is now out of equilibrium.
A divergent correlation length scale ξ ∝ (F − fc)

−ν exists close to the critical point Fc,
emphasizing the global mechanism at play. This length is the typical size of avalanches,
sudden leaps forwards of the interface. This regime is observed in Barkhausen noise, or
fracture of brittle materials (we refer to [148, 85] for more details).

But some systems show a rather different behaviour that can be linked to the statistical
properties of the disorder. In those case, the dynamics of the system is concentrated
around very few pinning sites, and while being less rough, the interface exhibits large
distorted portions, whose shape is purely controlled by elasticity.
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Figure 5.1: (Color online) Velocity of the interface v as a function of the driving force F .
The curve exhibit a second-order transition at a critical value Fc, the depinning force.

The pinning of vortices in superconductors is particularly interesting from that point of
view [149]. In an homogeneous system, vortices arrange themselves along a Abrikosov
lattice, but in presence of disorder, they pin to defects. This mechanism greatly influences
the critical current of the superconductor. While the understanding of the pinning mech-
anisms are still ongoing research, impressive progress has been made to enhance critical
currents using specific inclusions. In the case of weak pins, the collective pinning theory
provides a reliable tool inspired by the framework developed from disordered systems. On
the other hand, the presence of large defects, strongly trapping the vortex, f.e. isotropic
and columnar inclusions [150], might be desirable to enhance the critical current. A more
thorough theory of this strong pinning regime is currently investigated [151].

In strong pinning regime, the system behaviour is simpler, as most of the metastable
states in the energy landscape are now dominated by few spots: the glassy properties do
not manifest themselves anymore. Yet, much alike we hope for heavy-tailed disorder to
probe the emergence of global optimization in Chapter 3, the very same argument for the
depinning transition gives us the hope to better understand the role of defects, or how to
adapt the analytical tools developed for Gaussian noises (like Replicas or FRG [152]) to
cope with large fluctuations.

In this Chapter, we present some experiments about this strong pinning regime in a joint
collaboration with the FAST about reaction fronts in porous media. We give a stylized,
phenomenological model to explain some of their most salient features. The virtue of this
approach, that we coin a “Poissonian way of reasoning”, is to allow simple computations
about the shape of the interface, its energy, some central limit theorems and so on. We
stress again that bridging the gap between this modelling and a differential approach
would be a great step towards a better understanding of the hydrodynamical limit of a
larger class of disordered systems.
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Figure 5.2: (Color online) Picture of the experimental apparatus. From [153].

5.2 Front propagation in porous medium

An artificial porous cell is built in a transparent Plexigas cage, filled with beads of two
different sizes (1.5 mm and 2 mm) (see Fig.5.2). This prevents any unwanted crystalline
structure. The cell width is denoted L = 100 mm, while its length in the vertical y-
direction is l = 300 mm, and its depth 4 mm. The bottom is dip in a bath full of auto-
catalytic reactants. On top, a set of injectors supply the porous cell with reactive solution
and ensure a uniform flow over the whole span. In that configuration, the chemical front
without flow field propagates upwards and remains straight. We will consider the case
of adverse propagation, meaning that the injection of reactive solution goes against the
travelling wave.

In the following, we denote U the injection rate of reactive solution, with the convention of
U > 0 for adverse flow. Vχ is the chemical speed of the travelling wave, ld the correlation
length of the porous medium, related to the radius of the beads (see below).

5.2.1 Auto-catalytic reactions in advective flow

We mainly follow the presentation given in [154].

A self-sustained reaction presents a positive retroaction loop that allows it to propagate
in space and time. The concentration in reactants of such reactions is very well modelled
by the FKPP formalism [155]. The chemical reaction used presently, iodate-arsenic acid
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is well known:

IO−
3 + 5I− + 6H+ → 3I2 + 3H2O

H3AsO3 + I2 +H2O → H3AsO4 + 2I− + 2H+

The auto-catalyst Iodide has a concentration C(x, t) obeying:

∂C

∂t
= Dm∆C + αC2(1− C)

Dm is the diffusion coefficient in water, and α the reaction rate. This reaction develops
a propagation front of speed Vχ and width lχ given by:

Vχ =

√

αDm

2

lχ =

√

2Dm

α

Because of the underlying velocity flow U(x, y), one has to amend those fundamental
equations by an advection term:

∂C

∂t
+U · ∇C = Dm∆C + f(C)

To distinguish the advection from the self propagation of the chemicals, two dimensionless
number, Peclet and Damkohler, are defined by:

Pe =
UL

Dm

=
τD
τA

and Da =
αL

U
=

τA
τR

τA, τR and τD respectively the advection, diffusion and reaction times, L a characteristic
length scale. Different regimes can be distinguished:

• The mixing regime occurs when the diffusion is the dominant mechanism Pe ≪ 1
and Da ≫ 1. Reactants diffuse before they react, leading to a blurry front. As a
consequence, the front speed is a mere composition of the chemical and flow speed
Vf = U + Vχ.

• The Eikonal regime corresponds to a reaction speed much greater than the diffusion
Pe ≫ 1 and Da ≫ 1. The front appears well-defined and sharp. Its speed depends
on the curvature, as it locally influences the density of reactants:

Vf .n = Vχ + U.n+Dmκ (5.1)

with κ the front curvature.

The present experiments are all in the Eikonal regime.
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5.2.2 Statistical properties of porous medium

The disorder is encoded in the velocity field U(x, y). Indeed, the chemicals are carried by
a fluid forced into a porous medium made of beads of different size. The Darcy-Brinkman
law relates the pressure P applied to the medium to the average speed of the flow U .
Completed with incompressibility, it characterizes U(x, y):

∇ ·U(x, y) = 0 (5.2)

U(x, y) = −K(x, y)

η
∇P +K(x, y)∆U (5.3)

where P (x, y) is the pressure field, η the fluid viscosity and K(x, y) the local permeability.
Due to the incompressibility, the mean fluid velocity is fixed by the injection rate U . We
are interested in the statistical properties of the velocity field. A common assumption in
porous media theory is to implement the effect of the disorder by incorporating a random
permeability field K(r), correlated over a distance ℓd. If the permeability is assumed to
be Gaussian, U(r) is well approximated by a log-normal distribution.

Here we can appreciate the relation such an experiment might have with the non-linear
stochastic growth. Let us recall that the quenched KPZ (QKPZ) equation is defined by
adding a term for preferential growth parallel to the interface slopes, with quenched noise.
One can write Eq.5.1 in cartesian coordinates (see [154] for the derivation), to see the
KPZ terms appearing, albeit with additional exotic terms whose role has to be cleared.
The QKPZ equation is quite a burden to solve analytically: most analytical tools tend
to fall apart for quenched disorder, although some attempts have been made to define a
proper analytical treatment [156]. Let us add that exact results concerning the coupling
of chemical reactions with (potentially turbulent) flow are unsurprisingly scare and most
studies rely on numerics [157]. To avoid those hindrances, we tackle the problem from a
more phenomenological point of view, allowing us to compute observables of experimental
interest.

5.2.3 Front freezing in adverse flow

Experiments of auto-catalytic reaction in porous media have been performed before [158,
159]. They indicated that the speed of the front was greatly modified by the presence of
disorder. Most notably, they reported the existence of a wide range of injection rates U for
which the average speed of the front vf goes to 0. At some threshold, the front undergoes
a phenomenon much alike a depinning transition (see Fig.5.3). It was attributed to
the existence of stagnation regions, protecting the chemicals from being washed out.
The originality of the present device lays in its transparent walls, allowing for a direct
observation of the front.

Fig.5.3 reveals a large range of values of U for which the front is static, a regime coined
S. At each extremity, the front displays different shapes. Close to U = −Vχ, the flow
exactly compensates the chemical speed, and the front is rough. Some works have linked
this transition to a percolation threshold [153].

On the contrary, when U ≃ USD, the front is deformed into a strongly pinned saw tooth
shape (see Fig.5.4) [160]. The pinning points are the stagnation regions expected from
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Figure 5.3: (Color online) Average speed of the front Vf as a function of the injection
speed U (the convention chosen is U > 0 for an flow from top to bottom of the cell).
Depending on the sign of Vf , different regimes Up, S and D are defined. For U = USD,
we observe a transition between a static front (Vf = 0) and a downstream front (Vf > 0).
Bottom part: Hydrodynamical simulations of the front, for U ∼ USD and for different
permeability distributions. Two scenarios are observed: a regular saw-tooth shape (right)
or a complicated shape with overhangs (left).

previous experiments. Because U(x, y) is random, there exists patches with anomalously
low speed, despite a rather high U . A screening effect of the beads protects the Iodide,
therefore acting as self-sustained sources of chemicals. Once produced, those red-coloured
chemicals are carried by advection and create characteristic cones.

Numerical simulations were performed using a Lattice Boltzmann scheme [161, 162], a
robust scheme from microscopic considerations. Some examples are given in the related
paper (see also bottom of Fig.5.3). They reveal a surprising fact: depending on the prob-
ability distribution of the permeability field K(x, y), the interface exhibits very different
geometries for U ∼ USD (compare the bottom part of Fig.5.3).

From now on, we thus study the region U ∼ USD, relevant if one is trying to wash the
chemical away by injection. Such strategy might be useful for more general propagation
fronts such as flame fronts. Some experimental studies were conducted in the petrol
industry [163, 164], as they use porous filters to separate the oil from the other products
of extraction. The behaviour of the flame front in the filter, while the latter is sucking
the oil out of the sands, may bear some similarities with the problem studied here. The
following questions arise:

• Can we always prevent the front from invading the cell, with U high enough ?

• Is it possible to wash it completely away ?

• How to characterize the peculiar shape of the front ?
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Figure 5.4: (Color online) Front geometries for increasing injection rate U . The emergence
of a triangle is clearly distinguished at large U while the small U regime is characterized
by roughness. Note that the convention chosen in the text for θ differs by a factor 2.

• How do the details of the disorder matter ?

Mere examination of the shape leads to the intuition that the geometry of the front is
controlled by those stagnant patches, whose statistics is related to extremal events of
the random field U(x, y) 1. We are clearly in a strong pinning regime. Therefore, we
elaborate a stylized model based on those remarks.

5.2.4 The Poissonian model of interface

We directly address the question of the statistical properties of the velocity field U(x, y).
It can be seen as a collection of patches of area l2d. For large U , U(x, y) is well ap-
proximated by a scalar field: U ≃ Uey. On each patch, the random velocity follows a
probability distribution of fixed average U , denoted PU with the scaling form:

PU(U) =
1

U
φ(U/U) (5.4)

To quantify the influence of the disorder on the front geometry, we consider two different

1The situation is very different for U small: although the front is frozen again because of the stagnant
regions, those do not obey any extremal statistics.
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families. The log-normal distribution is observed most of the time in experiments:

φ(v) =
1

v
√
2πσ

e−(log v)2/1σ2

(5.5)

The second choice, for reasons detailed later, is the Weibull family:

φ(s) =
k

λ

(x

λ

)k−1

exp
(

−(x/λ)k
)

(5.6)

The stagnation regions are patches of area l2d, centred at (x, y) where |U(x, y)| < Vχ.
Therefore, the probability for a patch to be pinning is:

P (|U(x, y)| < Vχ) =

∫ |Vχ/U |

0

φ(v)dv = λ (5.7)

We recall that the front speed is given by Eq.5.1. For a front which is frozen (Vf = 0)
and straight (κ ≃ 0), wefining θ the top edge angle of the cones (see Fig.5.5), we obtain:

sin

(

θ

2

)

=

∣

∣

∣

∣

Vχ

U

∣

∣

∣

∣

(5.8)

The collection of patches represents a point process, a type of random process for which
each realisation consists of a set of isolated points either in time or space. Most of the
analytical tools applied to random variables are readily generalized to point processes.
In our case, the point process is Poisson: in the continuum limit, the number of pinning
points N(S) in a given area S follows a Poisson distribution of parameter λ:

P (N(B) = k) = e−λS (λS)
k

k!
(5.9)

In particular, P (N(B) = 0) = e−λS = Q(S).

In the experiments, the cell was totally invaded with the reaction before the injection
were turned on. Due to no slip boundary conditions, the interface is always pinned on
the lateral walls for every U (see Fig.5.4). Hence we condition the realizations of the
point process to the fact that the walls are pinning. If no stagnant patch is found in the
bulk of the cell, the interface acquires a V shape, called the depinned state (again see
Fig.5.4).

A central quantity for our analysis is Q(y), the probability that, from y = 0 to y, no
stagnant patch is encountered. Q(y) obeys to the differential equation:

Q(y + dy) =
(

1− λdy (L− 2 tan(θ/2) y) /ℓ2d
)

Q(y) (5.10)

because the probability that no pinning occurs between y and y + dy is 1 − λdy(L −
2 tan(θ/2) y)/ℓ2d in an interval of size L− 2 tan(θ/2) y. Hence:

Q(y) = e−λ(Ly− tan(θ/2) y2)/ℓ2d (5.11)



5.2 Front propagation in porous medium 109

L

U

ℓ∆

y

x ℓd

Vχ

ℓχ

θ/2

Figure 5.5: (Color online) Sketch of the stylized model: in the thin Eikonal limit ℓd ≫ ℓχ,
the system can be described as a propagating front. Close to USD, the density of stagnant
regions becomes small and the interface adopts a sawtooth structure.

This formula2 is valid up to yV = L
2 tan(θ/2)

, value above which the front is in the depinned
state.

With Eq.5.11, it is possible to introduce an efficient algorithm to generate the sites
pinning the front: with ǫ a random number uniformly distributed in (0, 1), if ǫ < Q(yV )
the algorithm terminates with a V shape, while if ǫ > Q(yV ) the height of the first
pinning site is y1 = Q−1(ǫ) and its position x1 is chosen at random in the segment of
length L−2 tan(θ/2)y1. This patch divides the segment into two pieces and we recursively
apply the algorithm on both pieces until no more stagnant patch is found.

5.2.5 A transition to depinning ?

Of experimental interest is the characterization of the threshold USD. From Eq.5.11, the
probability that no more pinning sites are encountered by the front at a given injection
rate U is:

Qdep

U
= exp

(

− L2
∫ |Vχ|/U
0

φ(v)dv

ℓ2d tan(arcsin(|Vχ|/U))

)

(5.12)

This probability goes to 0 quadratically in L or more generally, in d dimensions, Q(yV )
would decay as exp(−L−d). This explains why washing a propagating front in disordered
medium can be surprisingly hard.

USD diverges with L, or equivalently with ld → 0. Its fluctuations around the mean
value are sub-dominant and it leads to a sharp (albeit infinite) threshold speed. At finite
size L, the full distribution of USD over the disorder realizations can be computed from
P (USD) = ∂UQ

dep

U
|U=USD

.

2It can be simply recovered from Eq.5.9.
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The typical value of USD is given by the balance:

L2

ℓ2d

∫ |Vχ|/U

0

φ(v)dv ∼ |Vχ|
U

(5.13)

The left term measures the statistical depletion of stagnant regions when U grows, while
the right term comes from the geometrical stretching of the front. The depletion of
stagnant regions is strongly dependent of the underlying statistics of the disorder, much
alike the Gnedenko-Tippett theorem: in Eq.5.12, only the behaviour of φ close to 0
matters. Assuming:

φ(v) ∼ vδ−1 when v → 0

Eq.5.12 reduces to:

Qdep

U
= exp

(

−L2

ℓ2d

( |Vχ|
U

)δ−1
)

when
|Vχ|
U

→ 0 (5.14)

Two scenarios now emerge naturally: if δ > 1, the number of teeth decreases with U
and the interface always gets depinned, while if δ < 1, the pinning sites proliferate, the
front becomes rougher and rougher, the stylized model breaks down and the formation
of overhangs is expected. The transition between the two regimes occurs at a critical
value δc = 1: in that marginal case, the number of teeth remains constant. The interface
statistical properties becomes independent of U .

This prediction is well supported by hydrodynamical simulations of the porous media for
different PU(v), where a clear transition towards roughening for δ < 1 is observed (see
Fig.5.3 bottom). For a log-normal distribution φ(v) = (

√
2πvσ)−1e−(log v)2/2σ2

with a scale
parameter σ = 0.315 - obtained from direct fit of the velocity distribution close to zero -,
a very good agreement with numerics and no adjusting parameter is observed. Note that
a Log-normal distribution decays to 0 as v−1 exp(− log(v)2), faster than the critical case,
but not much. Hence, in the experiments, depinning indeed occurs, but it was noticed
that, in some cases, the cell was contaminated by the reactants and impossible to wash
by injection. This is reminiscent of the above analysis.

The typical size of the triangular structures of the front can be computed as well. One
could even access the full distribution ρ(l∆) of the gaps between pins (see Fig.5.5):

ρ(l∆) =
1

ℓtyp
ρ̂(r) with r = l∆/ℓtyp

ρ̂(r) =
2√
π

(

2
(

e−
r2

4 − e−r2
)

+

√
πr
(

erf
(r

2

)

− 2erf(r) + 1
)

)

(5.15)

and ℓtyp =
√

tan θ/λ. The details of the computation are given in the related paper.
It gives finer statistical details about the distortion of the front, for example the width
of the interface, even if ℓtyp can be easily recovered by a simple scaling argument. The
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Figure 5.6: (Color online) The Avrami-Kolmogorov model of crystal growth. Seeds are
dispersed over the plane, and they randomly act as nucleations of radially growing layers,
usually at constant speed. When two layers meet, they merge.

use of those scalings are common in superconductors with strong pinning regimes, as the
gap between pins determines the critical current [151]. But it seems that a statistical
treatment akin to the model above is still lacking, and would be an interesting extension
of the present work.

5.2.6 Mapping to growth models

If we consider the vertical y-axis as the time t-axis and look at the evolution along t of
the region of space invaded by the red colouring, the red region behaves as layers whose
extremities move at constant speed v = tan θ. The top of the interface corresponds
to the time τ at which the segment, of size L, is totally covered by the layer. This
schematic model is a well known model of crystal growth, the Kolmorogov-Avrami model
(see Fig.5.6), with a close relation to the Polynuclear Growth model.

This mapping3 allows to translate many of the known results about the time statistics
in Avrami theory to observables in our context: the width of the interface becomes
the time needed to cover the entire substrate, and the typical size of the teeth is the
distance between nucleation events through time. We feel worthy to mention a version
of the Central Limit Theorem (CLT), giving information about the fluctuations of the
nucleation events before the end of the process. This maps onto the number of front teeth
NT , for a large size L. The theorem states that NT −E(NT )/V ar(NT ) weakly converges
to a Normal distribution. Although one may derive this result from the results given in
the previous section, a rather elegant proof is given in [165], the CLT refreshingly coming
back after so many pages.

5.3 Conclusion

In this Chapter, we presented the regime of strong pinning and compared its most salient
features to the weak pinning regime. The analysis of the statistics of the pinning is much

3Of course, it holds for models with non-linear geometries, notably for vortices in superconductors with
impurities.
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eased in that case, because the pinning mechanism relies on few sites. Useful tools for
enlightening this situations were illustrated on an experimental collaboration with the
FAST, Orsay, about chemical fronts in porous medium.

We did not address the transient behaviour of the the interface, whereas [154] dedicates a
large part to that question. Going downwards, the interface exhibits a discontinuous move
made of avalanches. A natural question is to explore the critically of those avalanches.
Are the sizes distributed with a power-law ? How is it related to other known exponents
of avalanches models ? As many interfaces are driven in a disordered landscape, those
interrogations are clearly relevant for experiments. Unfortunately, the conclusions from
[154] are rather hard to draw, and we do not expect the dynamical exponents to clearly
relate to standard critical models, but this is definitely an interesting avenue to pursue.

Very little is known currently about the hydrodynamical coupling between diffusion-
reaction and advective flow. And yet it is commonly observed, for example plankton
in oceanic currents, or in the ozone hole phenomenon. It has been noticed that this
complex interplay greatly modifies the behaviour of the front, usually by enhancing its
propagation speed. Although the present analysis is far from solving (or even addressing)
those questions, it presents an rather simple “solvable” case of interplay that could be
used to benchmark tools developed for a broader context.
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Reaction fronts evolving in a porous medium exhibit a rich dynamical behavior. In the presence of an adverse

flow, experiments show that the front slows down and eventually gets pinned, displaying a particular sawtooth

shape. Extensive numerical simulations of the hydrodynamic equations confirm the experimental observations.

Here we propose a stylized model, predicting two possible outcomes of the experiments for large adverse flow:

either the front develops a sawtooth shape or it acquires a complicated structure with islands and overhangs.

A simple criterion allows one to distinguish between the two scenarios and its validity is reproduced by direct

hydrodynamical simulations. Our model gives a better understanding of the transition and is relevant in a variety

of domains, when the pinning regime is strong and only relies on a small number of sites.
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In the systems separated in distinct phases, the dynamics

is controlled by the behavior of the propagating fronts. Those

fronts pervade a broad variety of domains in physics, ranging

from chemotaxis [1] and plasma physics [2] to flame fronts [3]

or epidemics, therefore triggering much activity in their

modeling (for a recent review, see [4]). One of the cornerstones

in this field is the celebrated Fisher–Kolmogorov-Petrowsky-

Piscunov (FKPP) theory, describing the front propagation in

reaction-diffusion systems [5]. However, this approach was

limited to systems with no advection, i.e., not undergoing

any fluid flow, despite its physical importance. Coherent

fluidlike motion strongly impacts the dynamics of the fronts [6]

and remains a challenging problem, whether because of the

appearance of turbulence [7] or because of the influence of a

disordered media [8,9]. One natural disordered environment

for propagation fronts is a porous medium. Some examples

were investigated in the petroleum industry and aeronautics

with attempts to address the evolution of a flame front in a gas

filter [10,11]. Recently, experiments on self-sustained chemi-

cal reactions have allowed a fine and controlled examination

of the propagation fronts in a porous medium, revealing some

striking features by direct observation [12].

The experimental setup employs an autocatalytic reaction

invading a cell filled with a solution of reactants. To reproduce

porosity, the cell also contains a mixture of glass spheres of

different sizes. The reaction starts at the bottom of the cell

and, in the absence of advection flow, develops into an almost

flat front propagating upwards with constant chemical speed

|Vχ | = √
Dmα/2 and width ℓχ = Dm/|Vχ |, with Dm being

the molecular diffusion constant and α the reaction rate. In

the presence of an adverse flow injected from the top at speed

U , the porosity generates a fixed random velocity map of the

fluid with short range correlations of characteristic length ℓd .

A rich dynamical phase diagram is observed as a function of

the flow velocity U , which is the control parameter of the

experiment (see Fig. 1). In particular, the self-sustained fronts

can travel downstream along the flow (D), remain static over

a range of flow rate values (S), or move upstream (Up). In all

*thomas.gueudre@lpt.ens.fr

of these phases, the heterogeneities make the front rough and

the dynamics proceeds by random jumps called avalanches

displaying a free scale statistics.

Here we focus on the transition between the static and

the downstream regimes, occurring at the threshold USD

(see Fig. 1). Hydrodynamical simulations show two different

scenarios: either the invading chemical reaction is completely

washed away for U > USD or some stagnant chemicals remain

trapped in the porous media for any U . In the first case,

approaching USD from below, the front is largely deformed

into a sawteeth structure (see Fig. 1, bottom right), while

in the second case, the interface adopts a very rough and

complicated structure with overhangs (see Fig. 1, bottom

left). Experiments typically correspond to the first scenario but

the second one has also been observed in very contaminated

cells [12].

In this Rapid Communication, we describe the front prop-

agation with a stylized model controlled by two parameters

that can be easily measured in experiments. This model gives

a simple criterion to discriminate between both scenarios,

depending only on the behavior of the disorder distribution

close to 0. The critical threshold USD and the shape of the

front can be characterized. Comparison with hydrodynamical

ab initio simulations using the Darcy equation shows a perfect

agreement with our results. Although our approach addresses

questions raised by the experiments of [12], the results of

this stylized model are much more general and relevant

to all systems where the transition between a static and a

moving regime is controlled by a small number of pinning

sites [13–16].

From first-principles hydrodynamics to a simple statistical

model. The flow field �U (�r) can be computed via the Darcy-

Brinkman equation:

�∇ · �U (�r) = 0, (1)

�U (�r) = −K(�r)

η
�∇P + K(�r)� �U, (2)

where P (�r) is the pressure field, η is the fluid viscosity, and

K(�r) is the local permeability. Due to the incompressibility,

1539-3755/2014/89(4)/041004(4) 041004-1 ©2014 American Physical Society
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FIG. 1. (Color online) Average speed of the front Vf as a function

of the injection speed U (the convention chosen is U > 0 for a flow

from top to bottom of the cell). Depending on the sign of Vf , the

different regimes Up, S, and D are defined. For U = USD , we observe

a transition between a static front (Vf = 0) and a downstream front

(Vf > 0). Bottom part: Hydrodynamical simulations of the front, for

U ∼ USD and for different permeability distributions. Two scenarios

are observed: a regular sawtooth shape (right) or a complicated shape

with overhangs (left).

the mean fluid velocity is fixed to the injection rate U .

Once the hydrodynamic problem is solved, the concentration

of the chemicals C(�r,t) obeys an advection-diffusion equation

(see [17]):

∂C

∂t
+ �U · �∇C = Dm�C + αC2(1 − C). (3)

The effect of the disorder is incorporated in the permeability

K(�r), usually modeled as a random field, correlated over a

distance ℓd . Here we study the front geometry for different

permeability distributions: the log-normal distribution, often

employed to model permeability [18], and the distributions

belonging to the Weibull family of parameter δ. Figure 1

displays typical fronts for both log-normal distributed (bottom

left) and Weibull distributed (bottom right, with δ = 0.8)

permeability fields. Those are generated using a standard

method detailed in the Supplemental Material [19]. Both U (�r)

and C(�r,t) were solved using a lattice Boltzmann scheme

(see [20,21]). We ran the simulations on a square grid of size

L = 512, up to N = 2000 realizations.

In the experimental conditions ℓd ≫ ℓχ , the front lays in

the so-called thin front eikonal limit [22,23]. In this limit, at

each point of the front, the normal component of the interface

velocity satisfies �Vf (�r) · �n = Vχ + �U (�r) · �n + Dmκ , where �n
is the unit normal vector and κ is the curvature of the front. For

U ∼ USD , �U (�r) is mainly directed along the y axis, �U (�r) ∼
[0,U (�r)]. It is natural to assume that U (�r) is constant on patches

of area ℓ2
d and decorrelated between patches. The velocity of

each patch is an independent random variable of average U ,

distributed as

PU (U ) = 1

U
φ(U/U ), (4)

where the scaling function φ(v) is independent of U . When

U � USD , the front is pinned by the very few stagnant

sites where U (�r) < |Vχ |. Hence the distance ℓ� between

L

U

∆

y

x d

Vχ

χ

θ/2

FIG. 2. (Color online) Sketch of the stylized model: in the thin

eikonal limit ℓd ≫ ℓχ , the system can be described as a propagating

front. Close to USD , the density of stagnant regions becomes small

and the interface adopts a sawtooth structure.

them is much larger than ℓd . In the neighborhood of a

pinning site, the front has a sawtooth shape of angle θ

and the front displays a sawtoothlike structure (see Fig. 2).

θ can be computed observing that, in that regime, κ ≃ 0,

Vf (�r) = 0, and U (�r) ≃ U , and thus the eikonal equation

becomes [12]

Vχ + U sin(θ/2) = 0. (5)

Therefore, the geometry of the frozen fronts is completely

determined by the velocity-dependent angle θ and by the

positions of the pinning sites. In particular, the probability

that a given patch of area ℓ2
d is a pinning site is

λ =
∫ |Vχ |

0

PU (U )dU =
∫ |Vχ |/U

0

φ(v)dv. (6)

For large downstream injection rate U ≫ |Vχ |, the value of

λ is controlled only by the behavior of φ(v) for v close to

0. In [12], it was observed that the fluid velocity vanishes

near the wall. To mimic that fact, we always set the interface

pinned at the points �r = (0,0) and �r = (L,0). Therefore, if

no stagnant patch inside the cell pins the front, except at the

walls, the interface acquires a V shape that we call the depinned

state.

A central quantity for our analysis is Q(y), i.e., the

probability that, from y = 0 to y, no stagnant patch is

encountered. Q(y) obeys the differential equation,

Q(y + dy) =
{

1 − λdy[L − 2 tan(θ/2)y]/ℓ2
d

}

Q(y), (7)

because the probability that no pinning occurs between y and

y + dy is 1 − λdy[L − 2 tan(θ/2)y]/ℓ2
d in an interval of size

L − 2 tan(θ/2) y. Hence,

Q(y) = e−λ[Ly−tan(θ/2)y2]/ℓ2
d . (8)

This formula is valid up to yV = L
2 tan(θ/2)

, the value above

which the front is in the depinned state. This quantity allows

one to introduce an efficient algorithm to generate the sites

pinning the front: Note ǫ as a random number uniformly

distributed in (0,1). If ǫ < Q(yV ), the algorithm terminates

with a V shape, while if ǫ > Q(yV ), the height of the first

pinning site is y1 = Q−1(ǫ) and its position x1 is chosen at
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FIG. 3. (Color online) Probability distribution of the velocity

threshold USD . The histogram corresponds to the hydrodynamical

simulations of N = 2000 samples with a log-normal permeability,

setting L = 512, Vχ = 0.0016, U = 0.0036, and ℓd = 5.0. The

dashed line corresponds to the prediction of the stylized model

[Eq. (9)] for a log normal φ(v) with a scale parameter σ =
0.315 (see main text). Inset: Sketch of the algorithmic recursive

procedure.

random in the segment of length L − 2 tan(θ/2)y1. This patch

divides the segment into two pieces (see inset of Fig. 3) and we

recursively apply the algorithm to both pieces until no more

stagnant patch is found.

Moreover, Eq. (8) determines the statistics of the threshold

USD . The probability of being in the depinned state for a certain

injection rate U (y = yV ) is given by

Q
dep

U
= exp

⎧

⎨

⎩

− L2
∫ |Vχ |/U

0
φ(v)dv

ℓ2
d tan[arcsin(|Vχ |/U )]

⎫

⎬

⎭

. (9)

We note that this probability goes to 0 quadratically in L.

More generally, in d dimensions, Q(yV ) would decay as

exp(−L−d ). Hence the effect of the cell size on the transition

is very strong and explains why washing a propagating front in

disordered medium can be surprisingly hard. With raising U ,

Eq. (9) exhibits two competing effects: the stagnant patches get

decimated, while the reaction front stretches (namely, θ → 0)

and explores a larger region. Assuming φ(v) ∼ vδ−1 when

v → 0, we get

Q
dep

U
= exp

[

−L2

ℓ2
d

( |Vχ |
U

)δ−1
]

when
|Vχ |
U

→ 0. (10)

The two scenarios pictured in Fig. 1 now emerge naturally:

if δ > 1, the number of teeth decreases with U and the

interface always gets depinned, while if δ < 1, the pinning

sites proliferate and the front becomes rougher and rougher.

As the formation of overhangs is expected, the stylized

model breaks down. The transition between the two regimes

occurs at a critical value δc = 1: in that marginal case, the

number of teeth remains constant. This prediction is well

supported by the hydrodynamical simulations of the porous

media for different PU (v), where a clear transition towards

roughening for δ < 1 is observed. In the experiments, the

measured velocity map was fitted to a log-normal distribution,

1 2 3 4 5
l

0.1

0.2

0.3

0.4

0.5

P l

(x2,y2)

y

(x1,y1)
S

x

S

l

FIG. 4. (Color online) Distribution of l� for the stylized model

with parameters λ = 0.5 and θ = π/2. The system size is L = 100

and the simulation is performed over N = 3000 samples. The

dashed line corresponds to the asymptotic prediction of Eq. (15).

Inset: Interface pinned between two adjacent stagnant patches of

coordinates x1 and x2.

decaying to 0 as v−1 exp[− ln(v)2], which is faster than the

critical case, but not much. Hence, depinning indeed occurs.

Note that the threshold speed USD is itself random and

depends on the realization of the disorder. Its probability

distribution P (USD) = ∂UQ
dep

U
|U=USD

depends on the scaled

velocity distribution φ(v). In Fig. 3, we test the prediction

of our model against hydrodynamical simulations for a

log-normal permeability. We assume that the velocity of

the fluid displays as well a log-normal distribution, φ(v) =
(
√

2πvσ )−1e−(ln v)2/2σ 2

, with a scale parameter σ = 0.315

obtained from the direct fit of the velocity distribution close to

zero. A very good agreement with no adjusting parameter is

observed.

To get a better grasp on the front roughness for U � USD ,

we compute the distance l� between two adjacent pinning

sites. A scaling argument (that can be easily extended to

various geometries) extracts the main dependence in λ and

θ of the typical distance between stagnant patches: Let us

assume the interface pinned at some site and consider its right

part (see inset of Fig. 4). The probability of having another

pinning is important when the area S ∼ l2
�/ tan(θ/2) ∼ λ−1,

leading to

l� ∼
√

tan θ/2

λ
= ℓtyp. (11)

It turns out that it is possible to compute the whole probability

distribution ρ(l�) in the sawtooth geometry. It obeys

ρ(l�) =
∫

D
dx1dx2P (x12)δ(l� − |x2 − x1|),

D =
{

0 < xi < L,0 < yi < min

(

xi

tan θ/2
,
L − xi

tan θ/2

)}

,

(12)

with i ∈ {1,2}. D simply parametrizes the area of the interface

in the depinned state. P (x12) is the probability that the interface
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is pinned in x1 = (x1,y1) and x2 = (x2,y2), with no other

nucleation in between:

P (x12)dx1dx2 = λ2dx1dx2e
−λS(x1,x2,y1,y2),

S(x1,x2,y1,y2) = tan(θ/2)

4

[

y1 + y2 + x2 − x1

tan(θ/2)

]2

×H (|x2 − x1|/ tan(θ/2) − |y2 − y1|) ,

(13)

with S being the triangular area depicted in the inset of Fig. 4

and H a Heaviside function. Integration over the variables

under the constraint that l� = |x2 − x1| leads, in the limit L →
∞, to

ρ(l�) = 1

ℓtyp

ρ̂(r) with r = l�/ℓtyp, (14)

ρ̂(r) = 2√
π

{

2(e− r2

4 − e−r2

) + √
πr

[

erf

(

r

2

)

− 2erf(r) + 1

]}

.

(15)

The maximum of ρ̂ is of the order of 1, recovering the scaling

argument given in Eq. (11), and an excellent agreement with

the stylized model is observed (see Fig. 4). This distribution

gives full information about the fluctuations of the static front

in the porous media and allows one, for example, to compute its

lateral extension through �H ∼ l�/[2 tan(θ/2)]. Finer details

about the statistical properties of the interface can be useful,

for example, to study fluctuations of the critical currents of a

strongly pinned vortex in superconductors [15].

In this Rapid Communication, we presented a general

model of pinning for interfaces in random media, when the

pinning regime is strong and only relies on a finite number

of sites. This, in particular, makes an approach through

Poisson processes possible, allowing at the same time efficient

numerical simulations and analytical results on the statistical

properties of the interface. The essential experimental pic-

ture [12] is reproduced and we identified a clear criterium

that allows one to discriminate between the possible scenarios

shown in Fig. 1. Supported by excellent agreement with

ab initio simulations used to model the experiments [24],

this validates the hypothesis that the depinning transition is

controlled by a limited number of events, randomly spread

over the medium.

The above model assumes that the interface is in its

final state. However, strong pinning phenomena often exhibit

avalanches during transient phases, where some stagnant

patches temporarily pin the interface before getting suddenly

depleted. The temporal critical properties of those systems

are not well understood. As a perspective, it would hence be

interesting to extend the present work to transient states by

introducing the random lifetime of the nucleation events.

We gratefully acknowledge Severine Atis, Pierre Le

Doussal, and Dominique Salin for useful discussions.
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6 Summary

The KPZ universality class is currently the simplest and most studied of the non-linear
stochastic growth models, describing roughening in experiments. From a more mathe-
matical point of view, it is seen as the best candidate to broaden the applicability of
the Central Limit Theorem to strongly correlated random variables. Therefore, recent
years have witnessed a large activity from both the physics and mathematics community.
From the bridges between both fields has emerged an intricate picture, made of demand-
ing mathematical tools (whose surface we barely scratched) mixed with a sophisticated
picture of the physics involved.

In the present Thesis, rather than digging even deeper into this rich structure, we probed
the range of the universality with respect to various modifications. They essentially re-
vealed a complex, multi-faceted picture of the KPZ universality, sometimes exhibiting
an astonishing robustness, sometimes breaking down completely. The previous Chapters
present a set of theoretical tools that could be employed to enlarge the flexibility of those
stochastic models, as various as population dynamics, networks of vortices in supercon-
ductors or chemical fronts. Integrable systems and Bethe Ansatz, various perturbative
approaches, tree geometry and FKPP theory, multi-fractality and multiplicative cascades,
Poisson processes... are only a few of the possible routes.

They are many directions in which the present work can be extended, and we chose to
give them at the end of each chapter, rather to postpone to the end. From the exact
solution of a depinning transition to the link between Anderson localization and optimal
growth, new avenues to explore are not lacking, and although stochastic growth is already
interdisciplinary, the numerous bridges between various fields of physics are clearly not
all built.

We did not address at all the existence of a rough phase in higher dimension, a problem
that has resisted twenty years of efforts, and still broadly open. Numerical simulations
are progressively ruling out the existence of an upper critical dimension. But a definitive
answer would certainly come as a relief. Although it might appear of rather theoretical
interest, hopefully an argument about the rough phase holding in every dimension will
unravel a more detailed picture of the interplay between disorder and entropy. An in-
depth study of the anatomy of the optimal path from a local point of view (for example,
the correlations induced between the energies along the polymer) has yet to be performed,
while it would allow to characterize the notion of optimality in disordered environment.

The deep analysis of this stochastic model will hopefully broaden the present framework
of stochastic calculus. The KPZ equation is one of the simplest Langevin equations with
non linearities that could be written down, and yet, it immediately escapes the standard
formalism ! It is fair to say that the KPZ equation has nucleated a fast evolution in our
understanding of stochastic PDE. Because those systems exhibits intermittency, this class



118 6. Summary

might be a path to a better quantification of the irregular phases of activity observed in
noise-driven physical systems, and the reasons behind. The chaotic character of SPDE
is again a field where much remains to explore.



A Appendix

A.1 The Ornstein Ulhenbeck process

In this Appendix, we briefly review the properties of the Ornstein-Uhlenbeck process, as
it is extensively used for enforcing temporal correlations. This process can be regarded as
the simplest temporally correlated process. It is the only process simultaneously Marko-
vian, Gaussian and stationary. Mean-reverting, it drifts towards its mean asymptotically.
One can think about it as a Brownian motion with a spring It obeys the Langevin equa-
tion1:

dUt = −Ut

τ
dt+

σ

τ
dWt (A.1)

and the following Fokker-Planck equation for its probability density f(x, t):

∂f

∂t
=

1

τ

∂

∂x
(xf) +

σ2

2τ

∂2f

∂x2
(A.2)

Mostly everything can be computed for the OU process, from the exact expression for
f(x, t):

f(x, t) =

√

τ

πσ2(1− e−t/τ )
exp

(

− τ

σ2

x2

1− e−t/τ

)

(A.3)

with the initial condition x(0) = 0. The stationary limit is readily obtained as fs(x) =
√

τ
πσ2 e

− τx2

σ2 . It enjoys an Ito integral expression as well:

Ut =
σ

τ

∫ t

0

e−(t−s)/τdWs (A.4)

from which can be computed cov(Ut, Us) =
σ2

2τ
e−|t−s|/τ .

The knowledge of the transient probability distribution allows for efficient and precise
numerical computation. We can follow a procedure much alike a Langevin white noise ξt,
exactly coarse-grained over an interval dt as a Gaussian of variance σ2 = dt. Indeed the
integrated OU, denoted Vt, although not a markovian process, is analytically tractable
because it remains Gaussian. Hence the knowledge of the first moments is sufficient. For
example:

σ2
Vt

= σ2τ 3
(

t

τ
− 2(1− e−t/τ +

1

2
(1− e−2t/τ ))

)

(A.5)

1The peculiar scaling of σ with τ stems from the fact that the limit τ → 0 matches with the standard
white noise.
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We refer to [137] for the details.

Now, we want to numerically simulate the Langevin equation ∂tZ = J∆Z + ηt(x)Z as
stated in Chapter 4, discretizing it on a scale dt requires a coarse grained integrated OU
on a scale dt, that can be exactly updated through:

U(t+ dt) = U(t)µ+ σUn1

V (t+ dt) = U(t) + V (t)τ(1− µ) +

(

σ2
V − κUV

σ2
U

)1/2

n2 +
κUV

σU

n1

µ = e−∆t/τ

σ2
U = σ2τ/2(1− µ2)

σ2
V = σ2τ 3

(

t

τ
− 2

(

1− e−t/τ +
1

2
(1− e−2t/τ )

))

κUV = σ2τ 2/2(1− µ)2

(A.6)

n1 and n2 being two independent normally distributed variables.

It is much more efficient numerically to sequentially update the noise depending on the
chosen dt following the above formula, and then apply the scheme chosen for the PDE, as
it virtually gets rid of errors done on the stochastic part of the integration. Applications
of this procedure in other contexts can be found in [138]. This trick was used for the
numerical simulations presented in Chapter 4.

One can check that the limit τ → 0 naturally recovers the white noise process. Note that
that the limit τ → ∞ allows to recover the columnar noise(or the Brownian, but with a
different scaling of σ with τ , namely when dUt = −Ut/τ + σdWt).

A.2 A temporal perturbation expansion

In this section we present the perturbation expansion of the KPZ equation for temporally
correlated noise, where the perturbative parameter is λ the strength of the non-linear
growth term (∇h)2.

A.2.1 First order in J

Note that the perturbative regime here is associated to high diffusivity, or equivalently
to short time. The following rescaling allows us to get rid of other dependencies of J :

h =
h̃√
J

t =
t̃

J
τ = τ̃ /J
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leading to the rescaled equation:

∂t̃h̃ = ∆h̃+
(∇h̃)2√

J
+ η = ∆h̃+ λ(∇h̃)2 + η (A.7)

Writing h = h(0) + h(1) + . . . where h(n) = O(λn), the lowest order is just the Edwards-
Wilkinson result, namely in Fourier space:

h̃q(t) =

∫ t̃

0

dt̃′e−q2(t̃−t̃′)η̃q(t̃
′) (A.8)

〈∂t̃h̃q〉 = λ〈(∇h̃)2〉

= λ

∫

dq

4π2
q2e−2q2 t̃

∫ t̃

0

dt̃1dt̃2e
q2(t̃1+t̃2)〈η̃q(t̃1)η̃−q(t̃2)〉 (A.9)

with the time-rescaled OU correlator (τ̃ = τJ):

〈η̃q(t̃1)η̃q′(t̃2)〉 =
2πσ2

2τ̃
e−|t̃1−t̃2|/τ̃δ(q + q′) (A.10)

It leads to:

〈∂t̃h̃〉 =
λσ2

2πτ̃

∫

q

q2e−2q2 t̃

∫ t̃

0

dt1e
q2 t̃1

∫ t̃1

0

dt̃2e
q2 t̃2e−(t̃1−t̃2)/τ̃

≈ λσ2

2πτ̃

∫

dq
τ̃

2(1 + τ̃ q2)

=
λσ2

4
√
τ̃

Introducing the original variables, one obtains:

c(J) ≃ σ2

4
√
τcJ

(A.11)

A.2.2 Second order in J

If we note, always in rescaled variables:

h = h0 + λh1

We obtain the correction to the speed:

c = λ(∇h0)
2 + 2λ2∇h0∇h1 + λ3(∇h1)

2

The second term involves 3-point function of the OU, which vanishes due to Gaussianity.
Computing 〈(∇h1)

2〉 with:

h1(q, t) =

∫ t

0

e−q2(t−t′)(∇h0)
2(q, t′)dt′ (A.12)
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One gets:

(∇h1)
2(q, t) =

−1

2π

∫

q′
q′(q − q′)h1(q

′, t)h1(q − q′, t)

=
1

2π

∫

q′
q′2h1(q

′, t)h1(−q′, t) (A.13)

as only the mode q = 0 will remain.

And so, writing down the complete expression of h1(q, t):

h1(q, t) =

∫ t

0

e−q2(t−t′)

∫

q′
q′(q − q′)h0(q

′, t′)h0(q − q′, t′)

=

∫ t

t′=0

∫

q′
e−q2(t−t′)q′(q − q′)

∫

t1,t2

e−q′2(t′−t1)e−(q−q′)2(t′−t2ηq′(t1)ηq−q′(t2)

Expanding 〈h1(q, t)h1(−q, t)〉 leads to the 4 point function of OU (with the time variables
being integrated):

〈ηq′(t1)ηq−q′(t2)ηq′′(t3)η−q−q′′(t4)〉 (A.14)

The Wick theorem gives only two (symmetrical) contributions for q′ = −q′′ and q′ = q−q′′

with a factor of
(

σ2π
τ

)2

:

〈h1(q, t)h1(−q, t)〉 = 2

(

σ2π

τ

)2

∫

q′

∫

(t′,t′′)<t

∫

(t1,t2)<t′,(t3,t4)<t′′
e−2q2t2e(q

2−q′2−(q−q′)2)(t′+t′′)

eq
′2(t1+t3)e(q−q′)2(t2+t4)q′2(q − q′)2e−|t3−t1|/τe−|t4−t2|/τ

So basically, from the 2-times integral, ones obtains:
∫

t1,t3

eq
′2(t1+t3)e−|t3−t1|/τ = τ 2f(T ′, T ′′, q′) (A.15)

f(T ′, T ′′, Q′) =

∫ T ′

T1=0

∫ T ′′

T3=0

eQ
′2(T1+T3)−|T3−T1| (A.16)

that we can symmetrize and which has an explicit (but not really user-friendly) expression.
However, its scaling is easily extracted in the dimensionless variables T = t/τ and Q =√
τq. At the end, it boils down to:

c̃ =
λ3σ4

τ 2+3+1−6

∫

Q,Q′,T ′,T ′′

Q2Q′2(Q−Q′)2

e−2Q2T 2

e(Q
2−Q′2−(Q−Q′)2)(T ′+T ′′)f(T ′, T ′′, Q′)f(T ′, T ′′, Q−Q′)
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with the following counting in τ : 2 from the OU correlator, 3 from the Q2 factors, 1 from
the dQ, dQ′, 6 from all the dT . Finally, reintroducing the original variables:

c =
√
Jc̃ ∼

√
Jλ3σ4

∼ σ4

J
(A.17)

Hence the next term is τ independent.

A.3 A small correlations expansion

It turned out that on a tree, the speed can be exactly computed for arbitrary large
values of τ . However, it relies on the ability to properly guess the limiting form of
the generating function g defined in Eq.4.2.2.2. A more systematic approach is possible
through perturbations in τ . For small τ , the noise is ”almost” white, and Eq.4.30 can be
expanded in fast and slow modes. The details of the general procedure can be found in
[166].

Let us first rescale η =: V/
√
τ and rewrite Eq.4.30 as

∂tGt(x, η) =
1

τ
L1Gt(x, V ) +

1√
τ
L2Gt(x, V )

+ λGt(x− q1, V )Ĝt(x− q2)− λGt(x, V ), (A.18)

where the operators L1 and L2 are defined as

L1f :=
σ2

2
∂2
V f + ∂V (V f), (A.19)

L2f :=− V ∂xf (A.20)

We also define the projector P on the stationary distribution P0 of V

Pft(x, V ) :=P0(V )

∫

V2

ft(x, V2) = P0(V )f̂t(x) (A.21)

P0(V ) =
1√
πσ2

exp

(

−V 2

σ2

)

. (A.22)

The projector P and the operators L1, L2 satisfy, among others, the relations PL1 =
L1P = 0 and PL2P = 0. Let us now decompose the solution Gt(x, V ) in a slow part vt
and a fast part wt , defined as

vt(x, V ) :=PGt(x, V ) = P0(V )Ĝt(x) (A.23)

wt(x, V ) :=(1− P )Gt(x, V ) = Gt(x, V )− vt(x, V ) (A.24)
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Inserting this into Eq.A.18 we obtain a system of coupled equations for w, v:

∂tvt(x, V ) =
1√
τc
PL2wt(x, V ) + λvt(x− q1, V )Ĝt(x− q2)

− λvt(x, V ), (A.25)

∂twt(x, V ) =
1

τc
L1wt(x, V ) +

1√
τc
(1− P )L2wt(x, V )

+
1√
τc
L2vt(x, V ) + λwt(x− q1, V )Ĝt(x− q2)

− λwt(x, V ). (A.26)

Comparing the leading-order term 1
τc
L1wt(x, V ) for small τ in the second equation with

the source term 1√
τc
L2vt(x, V ) shows that w is of order

√
τ , i.e. small. This means that

v and w can be expanded in powers as follows:

w =
√
τ w(0) + τ w(1) + τ 3/2 w(2) +O(τ)2, (A.27)

v =v(0) +
√
τ v(1) + τ v(2) +O(τ)3/2. (A.28)

Note that the ansatz for v implies an anologous expansion for Ĝ:

Ĝ = Ĝ(0) +
√
τ Ĝ(1) + τ Ĝ(2) +O(τ)3/2. (A.29)

Inserting this into Eq.A.25 and solving it order by order in τ , one obtains after some
algebra expressions for the fast modes w(i) in terms of the slow modes v(i), Ĝ(i):

w(0)(x, V ) =− L−1
1 L2v

(0)(x, V ),

w(1)(x, V ) =− L−1
1 (1− P )L2w

(0)(x, V )− L−1
1 L2v

(1)(x, V ),

w(2)(x, V ) =− L−1
1

[

−∂tw
(0)(x, V ) + λw(0)(x− q1, V )Ĝ(0)(x− q2)

−λw(0)(x, V )
]

− L−1
1 (1− P )L2w

(1)(x, V )− L−1
1 L2v

(2)(x, V ).

This allows evaluating the source terms in (A.25), which are driving the slow modes
v(i), Ĝ(i):

PL2w
(0)(x, V ) =P0(V )

σ2

2
∂2
xĜ

(0)(x)

PL2w
(1)(x, V ) =P0(V )

σ2

2
∂2
xĜ

(1)(x)

PL2w
(2)(x, V ) =P0(V )

σ2

2

{

∂2
xĜ

(2)(x)

−∂t∂
2
xĜ

(0)(x) +
σ2

2
∂4
xĜ

(0)(x)

+λ∂x

[

(∂xĜ
(0)(x− q1))Ĝ

(0)(x− q2)− ∂xĜ
(0)(x)

]}

.

Inserting these expressions into (A.25), one obtains closed equations for the slow modes
Ĝ(i). After cancelling the P0(V ) factors and combining the different orders in τ , one finds
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the following equation for Ĝ(x) = Ĝ(0)(x) +
√
τĜ(1)(x) + τĜ(2)(x) +O(τ)2:

∂tĜ(x) =
σ2

2
∂2
xĜ(x) + λ

[

Ĝ(x− q1)Ĝ(x− q2)− Ĝ(x)
]

+
σ2

2
τ

{

−∂t∂
2
xĜ(x) +

σ2

2
∂4
xĜ(x)

+ λ∂x

[

(∂xĜ(x− q1))Ĝ(x− q2)− (∂xĜ(x))
]}

+O(τ)2. (A.30)

From this last expression, now only depending on x, the same analysis than in the white-
noise case can be performed, to extract the lowest order dependence of the dispersion
relation similar to Eq.4.25 with τ . This leads as well to the existence of an optimum.
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[132] Takashi Ichinomiya. Bouchaud-mézard model on a random network. Phys. Rev. E,
86:036111, Sep 2012.

[133] Feng-Rung Hu. On the ratio processes induced from the mean-field bouchaud-
mezard model. WSEAS Trans. Math., 7(6):406–416, June 2008.
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