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Résumé

Les appareils modernes sont constitués de plusieurs sous-systèmes de différentes sortes qui commu-

niquent et interagissent. L’hétérogénéité de ces sous-systèmes et leurs interactions complexes rendent

très délicate leur développement. L’approche d’ingénierie dirigée par les modèles apporte une solution

en permettant l’expression de nombreux modèles structurels et comportementaux de natures très di-

verses. Dans ce contexte, il est nécessaire de construire un modèle unique qui intègre ces différents

modèles afin d’y appliquer des méthodes de validation et de vérification pour permettre aux ingénieurs

système de comprendre et de valider un comportement global. Cependant, la coordination manuelle

des différents modèles qui composent le système est une opération source d’erreurs et les approches au-

tomatiques proposent des patrons de coordination ad-hoc pour certaines paires de langages. Dans ces

approches, le patron de coordination est souvent encapsulé dans un outil dont il est difficile d’extraire

les liens avec le système global. Cette thèse propose le Behavioral Coordination Operator Language

(B-COoL), un langage dédié à la spécification de patrons de coordination entre des langages à par-

tir de la définition d’opérateurs de coordination. Ces opérateurs sont employés afin d’automatiser la

coordination de modèles exprimés dans ces langages. B-COoL est implémenté comme une suite de

plugins qui s’appuient sur l’Eclipse Modeling Framework et présente ainsi un environnement complet

pour l’exécution et la vérification de différents modèles coordonnés. Nous illustrons cette approche

avec la définition d’opérateurs de coordination entre deux langages: timed finite state machines et ac-

tivities. Ensuite, nous utilisons ces opérateurs afin de coordonner et d’exécuter un modèle hétérogène

de caméra de surveillance.





Abstract

Modern devices embed several subsystems with different characteristics that communicate and interact

in many ways. This makes its development complex since a designer has to deal with the heterogeneity

of each subsystem but also with the interactions among them. To tackle the development of complex

systems, Model Driven Engineering promotes the use of various, possibly heterogeneous, structural

and behavioral models. In this context, the coordination of behavioral models to produce a single

integrated model is necessary to provide support for validation and verification. It allows system

designers to understand and validate the global and emerging behavior of the system. However, the

manual coordination of models is tedious and error-prone, and current approaches to automate the

coordination are bound to a fixed set of coordination patterns. Moreover, automatic approaches encode

the pattern into a tool thus limiting the reasoning on the global system behavior. In this thesis, we

propose the Behavioral Coordination Operator Language (B-COoL) to reify coordination patterns

between specific domains by using coordination operators between the Domain-Specific Modeling

Languages used in these domains. Those operators are then used to automate the coordination of

models conforming to these languages. B-COoL is implemented as plugins for the Eclipse Modeling

Framework thus providing a complete environment to execute and verify coordinated models. We

illustrate the use of B-COoL with the definition of coordination operators between two languages:

timed finite state machines and activities. We then use these operators to coordinate and execute the

heterogeneous model of a surveillance camera system.
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Chapter 1

Introduction

Nowadays devices are becoming more complex. They embed several subsystems with different char-

acteristics that communicate and interact in many ways. For example, cars can integrate an adaptive

control cruise system, GPS tracking, fuel control system and so on. Furthermore, these subsystems

are widely coupled. For instance, the adaptive cruise system determines the way to get home depend-

ing on the GPS tacking, also, the fuel control system regulates the speed of the car depending on

the level of fuel. This makes the design of these systems very complex. A designer has to deal with

the heterogeneity of each subsystem but also with the interactions among them. To deal with this

inherent complexity, the design is split into different domains, e.g., mechanical, electronic, software.

The development is thus tackled by different Domain Experts.

Model Driven Engineering (MDE) promotes the use of Domain Specific Modeling Languages (DSMLs)

to model complex systems using the adequate, domain-specific, terminology and tools (see Figure 1.1).

DSMLs are developed by Language Engineers1 as dedicated languages to make a description of a

domain relying on the expert terminology so at to reduce introducing discrepancies in the model.

Models must include structural aspects but also behavioral ones. Thus defining a DSML consists in

defining its syntax but also its behavioral semantics. When several DSMLs, with different syntax

and or semantics, are used conjointly to model a complex system, we say the model is heterogeneous,

i.e., it is made of models that conform to different languages. Dealing with this kind of heterogeneity

is the problem addressed in this thesis.

With heterogeneous models, the overall behavior emerges from its parts. To perform verification and

1Also called Domain Experts.

1



2 Chapter 1. Introduction

validation activities of the whole system, designers need tools to comprehend this emerging behavior,

or at least some aspects of it depending on the domain of interest. It is therefore necessary to specify

how models and languages are related to each other, in both a structural and a behavioral way.

In this context, the GEMOC initiative proposes to coordinate and disseminate the research results

regarding the support of the coordinated use of various modeling languages, that is, the use of multiple

modeling languages to support heterogeneous development of diverse aspects of a system. This thesis

is part of GEMOC project and it focuses on the coordination [GC92a] of behavioral models to provide

simulation and/or verification capabilities for the whole system specification.

Currently, Coordination Languages [GC92a] and Architecture Description Languages (ADLs) [MT97]

provide dedicated languages to specify the coordination between particular behavioral models. This

is usually done by System Designers (see Figure 1.1) that apply some coordination patterns according

to their own skills and know-how. However, in large heterogeneous systems, the manual coordina-

tion of models can become tedious and error prone. To automate this task, Coordination Frame-

works [BHLM02, BH08] have encoded a predefined coordination pattern inside a tool. However, the

customization of these tools for a specific domain is difficult. Moreover, these approaches rely on

a general purpose language (GPL) to express the coordination, thus limiting the task of a system

designer to reason about how a system is coordinated.

In this thesis, we deal with the coordination of heterogeneous behavioral models by leveraging on the

system designer’s skills. We propose a dedicated language named B-COoL (standing for Behavioral

Coordination Operator Language) that allows for capturing coordination patterns between a given

set of DSMLs. These patterns are specified at language level, and then used to derive a coordination

model automatically for models conforming to the targeted DSMLs. The coordination at the language

level relies on a so-called language behavioral interface. This interface exposes an abstraction of the

language behavioral semantics in terms of Events.

By using B-COoL, a Language Integrator (see Figure 1.1) defines operators that specify how events

from different language behavioral interfaces interact. These operators are defined at the language

level but they are applied between models to coordinate their behavior. This results in a model of

coordination specified in the Clock Constraint Specification Language (ccsl), a declarative language

that describes causal and temporal relationships between events. By relying on ccsl, we provide

verification and validation facilities for the coordinated system. All this has been implemented as a
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4 Chapter 1. Introduction

set of plugins for Eclipse as part of the GEMOC studio2; which integrates technologies based on Eclipse

Modeling Framework (EMF)3 adequate for the specification of executable domain specific modeling

languages.

We organize the content of this thesis in six chapters. Chapter 2 presents the state-of-art approaches

that give support for the developing of heterogeneous systems. First, we present approaches that

propose to compose models/languages into a new model/language. Second, we present approaches

that propose to coordinate the behavior of models. In particular, we focus on tools and frameworks

that specify coordination patterns between languages to automate the coordination between models.

We conclude this chapter by highlighting benefits and drawbacks of existing approaches.

Chapter 3 presents the requirements for a language to specify coordination patterns in the context

og the heterogeneous development of complex systems. We first propose a framework to characterize

the approaches that specify a coordination pattern. Then, we use this framework to compare existing

approaches. From this comparison, we state the requirements to make existing approaches more

flexible and well founded.

Based on these requirements, Chapter 4 presents a particular implementation of the framework named

B-COoL; a dedicated language to specify coordination patterns. To illustrate B-COoL, we rely on

a running example: the coordination of the heterogeneous models of a coffee machine, which is built

by using timed finite state machines (TFSM) and activity diagrams. Then, we use this example

through all the chapter to illustrate the syntax and semantics of B-COoL. We present the current

implementation in the GEMOC studio by executing and verifying the coffee machine models.

To validate our approach, Chapter 5 presents the heterogeneous models of a surveillance video system

decomposed into three subsystems. To coordinate these subsystems, we propose a set of B-COoL

operators between the TFSM and activity languages. We use this example as a use case to illustrate

the different steps from the specification of the coordination patterns, the coordination of a particular

model and the verification of the coordinated system.

Finally, we provide the conclusion of this work, highlighting its main contributions and we give some

perspectives in Chapter 6.

2http://www.gemoc.org/studio
3http://eclipse.org/modeling/emf/

http://www.gemoc.org/studio
http://eclipse.org/modeling/emf/


Chapter 2

Background

2.1 Introduction

To deal with complexity issues in the development of applications for complex systems, Model Driven

Engineering (MDE) proposes to rely on Models. A model is an abstraction of the real world made in

order to facilitate an understanding of the way it works. In the context of MDE, a software model

enables a developer to reduce the complexity of an application by ignoring non-essential details. This

enables the developer to reason about the application.

The Object Management Group (OMG) proposes to specify models by relying on a language that

has a well-defined form (syntax), meaning (semantics) and possible rules of analysis, inferences or

proof for its constructs [mda03]. Thus, to build models, MDE proposes Domain Specific Modeling

Languages (DSMLs). They are built by Language Engineers to describe the structure but also the

behavior of a particular domain. As a result, a DSML is defined by a syntax and a semantics. The

syntax is described by a metamodel that defines the concepts and relations that the language is

made up. A metamodel is a model that is developed by using a metameta language, e.g., MOF,

ECORE. To define the semantics, the language theory proposed three types of semantic definitions:

Operational [Plo81], Axiomatic [Hoa69] and Translational [FJP90]. The concurrent theory has also

proposed other ways to describe the behavior of a model. This behavior is characterized by the so-

called Models of Computation (mocc) [GBA+09]. In this thesis, we focus on this approach for the

description of the behavioral semantics of a language.

5



6 Chapter 2. Background

Based on a DSML, a domain expert builds a model to describe the structure and the behavior of a

domain. However, the development of complex applications is often tackled by several domain experts.

Each domain expert uses its own DSML to describe a part of the system. Thus, the use of several

DSMLs results in a heterogeneous specification, i.e., made of models that conform to different DSMLs.

At some point of the development, a global representation of the system is needed to reason about the

system as a whole. For instance, a system designer must be able to perform verification and validation

activities of the overall system. Thus, it is necessary to specify how models and languages are related

in a structural and behavioral way.

This chapter presents the state-of-art approaches that give support for the heterogeneous development

of systems by providing composition and/or coordination of models/languages. We begin by presenting

Composition Approaches that propose to compose models/languages to obtain a new model/language.

We continue by presenting Coordination Approaches that propose to specify the interaction between

model/languages into an additional model so-called Model of Coordination.

2.2 Composition Approaches

Composition approaches propose to compose models/languages into a new model/language. We cat-

egorize these approaches into approaches that compose models and approaches that compose lan-

guages, in both structural and behavioral way. In the following, we first present Model Composition

Approaches, and then, we continue with Language Composition Approaches.

2.2.1 Model Composition Approaches

Model composition has as goal to get a resulting model that is built by composing one or more models

of the same language or from different languages. The resulting model can conform to input model

languages, or to a different language (see Figure 2.1).

Some approaches [BCE+06, KPP06, FBFG08] have automated the composition between models using

two operators: matching and merging. The matching operator is used to look for syntactic similarities

between models. This results in a set of correspondences between model elements that defines what

elements must be composed (definition in intention). From a set of correspondences, the merging

operator generates a new model in which the matched elements are composed into new model elements.



2.2. Composition Approaches 7

Language 1 Language 2

Model 1 Model 2

Syntax

Behavioral 
Semantics

Syntax

Behavioral 
Semantics

System 
Designer

Language 
Integrator

Language 3

Syntax

Behavioral 
Semantics

Model 3

Model
Composition
Specification

Language Level

Model Level

Conforms To ImportsGenerates DefinesUses

Figure 2.1: Model Composition Approaches Sketching

In [BCE+06], authors identified that the composition between models always relies on a merging of

structure. They propose a matching and merging operator to compare different approaches of model

composition. However, they do not propose any implementation.

In [FBFG08], the composition of models is also automated by relying on two generic operators:

• A matching operator that selects model elements by comparing the signature of the elements;

• A merging operator that composes the selected elements by using a generic algorithm [RFG+05].

These operators have been implemented in a tool named Kompose which is based on the metameta-

model Ecore. Thus, the operators can be used to compose models that conform to different metamod-

els, but they conform to the same metametamodel (i.e., Ecore).

While in Kompose these operators are generic, Epsilon [KPP06]1 provides dedicated languages to

define both the matching and merging. The matching is specified in the Epsilon Comparison Language

(ECL) and the merging is specified in the Epsilon Merging Language (EML). ECL is used to define

matching rules to specify correspondences between concepts of two metamodels. Matching rules apply

between models and select elements that must be composed. Then, the EML is used to define merging

1http://www.eclipse.org/epsilon/

http://www.eclipse.org/epsilon/


8 Chapter 2. Background

rules that specify how the matched elements must be composed. This results in a new model. The

metamodel of both the input models and the output model must conform to Ecore.

The approaches previously studied rely on structural similarities of the models for the composition. In

other words, the matching operator only focus on the syntax of languages. While this works well with

structural models such as class diagrams, it becomes a limitation when working, for instance, with

Sequences Diagrams (SD). Thus, to produce a meaningful composition operator for SD, the order in

which events and messages have to be composed is based on the semantics of the language. In the

following, we present some approaches that have addressed this problem by proposing an asymmetric

composition of models.

Aspect Oriented Modeling approaches (AOM) [KFJ07, KK07, KHJ06] propose an asymmetric com-

position of models in which one model plays the role of base and other the role of aspects, both models

conform to the same language. The composition of aspects into the base model is named weaving.

An aspect is made of a pointcut and an advice. The pointcut is a predicate over a model that is used

to select relevant model elements called join points. The join points are correspondences between the

aspects and the base model. During the weaving, the join points are matched in the base model, and

then, they are replaced by the advices, i.e., the elements of a model (aspects) are injected (woven)

to another model that conforms to the same metamodel. The weaving acts as merging operator that

replaces the join points by the advices.

In some approaches, the weaving of aspects considers the behavioral semantics of languages. For

example, in [KK07], authors propose the weaving of aspects in which the base model and the aspects

are represented by SD. An aspect is defined as a pair of SD: one SD serves as a pointcut (specification

of the behavior to detect), and one serves as an advice (representing the expected behavior at the

join point). When a behavior in the base model is detected, the join point is replaced by the SD that

represents the advice. However, the detection of behaviors cannot be performed by only considering

the syntax of the SD [KJ05]. For example, consider a loop over a basic scenario where we have a

message ‘a’ and then a message ‘b’. We want to weave some extra-behavior into our system each time

a message ‘a’ directly follows a message ‘b’. The only way to detect such a behavior is to unroll the

loop thus using knowledge about the semantics of the loop construct. Therefore, these approaches

use the knowledge of the behavioral semantics of languages for the weaving. The weaving algorithm

varies depending on the approach. Thus, the resulting SD varies from one approach to another.
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Figure 2.2: Language Composition Approaches Sketching

In this subsection, we have presented approaches that automated the composition between models

by relying either on a matching and a merging operator or a weaving of aspects. Most of these

approaches focus on the syntax of languages. Some of them have identified that, in some cases, is

necessary information about the behavioral semantics of the languages to compose the models. These

approaches support the heterogeneous modeling of a system by providing composition capabilities. In

this sense, they are suitable for development of a single system by using different DSMLs. In the next

subsection, we present approaches that propose to compose languages into a new language.

2.2.2 Language Composition Approaches

Language composition approaches provide techniques to compose languages into a new language (see

Figure 2.2). We begin by presenting approaches that compose the syntax of languages into a new

syntax [ES06]. Then, we present an approach [CSN05] that proposes to define the behavioral semantics

of a language as the composition of different language behavioral semantics.

In the literature, Emerson et al. [ES06] propose three techniques that compose the syntax of different

languages into a new language syntax:



10 Chapter 2. Background

• Merge: The merging composes two languages that share a concept. These concepts are used

as “join points” to stitch the two languages together into a unified whole;

• Interfacing: When languages do not present join points, the composition requires an interface.

Thus interfacing composes languages that capture distinct but related domains by relying on an

interface;

• Refinement: One language captures in detail a modeling concept that exists only as a “black-

box” in a second DSML, i.e., the concept defined in one language refines in other in the second

language.

These techniques have been implemented in the GME framework [ES06], which is based on the

metametamodel MetaGME2. The refinement and interfacing have also been implemented in Mon-

ticore [KRV10]. In this approach, these techniques are named respectively: inheritance and language

embedding. A different approach is Neverlang [Caz12] that relies on interfacing to build a custom

language from features coming from different General Purpose Languages. A feature, such as the

syntactical aspect of a loop, is encapsulated in a module block. The blocks can be composed together

for generating the compiler/interpreter of the resulting language.

Semantic Anchoring [CSN05] proposes to define the behavioral semantics of a language by relying

on the concept of Semantic Unit (SU). A SU is itself a language identified as “basic”, e.g., Finite

State Machine (FSM), Timed Automaton (TA) and Hybrid Automaton (HA). A SU is defined in the

Abstract State Machine Language (AsmL3) in terms of (a) an AsmL Abstract Data Model (which

corresponds to the abstract syntax), (b) the behavioral semantics (which is defined by the Abstract

State Machine mathematical framework). SUs can be composed into a new SU. Roughly speaking,

the composition is expressed manually by using AsmL.

The approach proposes to define a DSML by:

• Defining the syntax by its metamodel;

• Defining the behavioral semantics by specifying the model transformation rules between the

metamodel of the DSML and the abstract data model of a SU.

Such a SU could be the result of the composition of other SUs. For example, in [CSN07], a SU

2http://w3.isis.vanderbilt.edu/projects/gme/meta.html
3http://research.microsoft.com/en-us/projects/asml/

http://w3.isis.vanderbilt.edu/projects/gme/meta.html
http://research.microsoft.com/en-us/projects/asml/
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named FSM (Finite State Machine) and a SU named SDF (Synchronous Data Flow) are composed

to get a new SU called SU-EFSM. Then, this SU can be used to define the behavioral semantics of a

heterogeneous DSMLs.

In this subsection, we have presented approaches that compose the syntax and the behavioral semantics

of languages into a new language syntax and behavioral semantics. These approaches proposed to

model a heterogeneous system by using a single language which results from the composition of

different languages. In this next subsection, we discuss about the benefits and drawbacks of the

reviewed approaches.

2.2.3 Discussion

In this section, we presented approaches that have addressed the problem of the use of heterogeneous

DSMLs by providing composition capabilities between model/languages.

Model composition approaches automate the composition between heterogeneous models by relying

on a matching and a merging operator [BCE+06, KPP06, FBFG08]. In particular, Epsilon [KPP06]

eases the customization of operators by providing dedicated languages. Thus, the specification of the

composition can be adapted as needed. In these approaches, input and output models can conform to

different metamodels, but they must conform to the same metametamodel. Most of these approaches

consider only the syntax of languages thus ignoring their semantics. Only a few approaches consider

the semantics of languages for the composition [KFJ07, KK07, KHJ06]. However, they only compose

homogeneous models, e.g., sequence diagrams [KK07]. Thus, its use in heterogeneous systems remains

very limited. Furthermore, in these approaches, the composition is encoded inside a tool. Then, to

modify the specification of the composition, it is necessary to modify the implementation itself thus

limiting the customization.

Languages composition approaches propose to model heterogeneous systems by relying on a uni-

fied language. Such a language results from the composition of different languages. The presented

techniques [ES06] focus on the composition of syntaxes into a new language syntax. Only semantic

anchoring [CSN05] enables the definition of the behavioral semantics of a language by composing other

behavioral semantics through the notion of Semantics Units. The authors of this work stated that its

solution is to define semantics for heterogeneous DSMLs as the composition of semantic units. How-

ever, the developing of heterogeneous systems may involve different domain experts that use different
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languages. In this context, language composition approaches do not seem suitable for separation of

preoccupation and development of a single system by various domain experts.

We present in the next section a different kind of approaches that propose to coordinate heterogeneous

models/languages.

2.3 Coordination Approaches

Coordination approaches focus on how behavioral models interact one each other. They propose to

specify the interaction between (heterogeneous) behavioral models in an additional model namedmodel

of coordination. In this thesis, we adopt the wording of coordination as being the explicit modeling

of the interactions amongst behavioral models suitable to obtain the emerging system behavior. The

coordination must be executable to enable the evaluation of the emerging behavior of the whole system.

We categorize the coordination approaches into Model Coordination Approaches and Language Coordi-

nation Approaches. The former proposes Coordination Languages [GC92a] and Architecture Descrip-

tion Languages (ADLs) [MT97] to specify the coordination between behavioral models. The latter

are Coordination Frameworks [BHLM02, BH08] and ad-hocs solutions [BJ01, DNCSSV14] that enable

the automation of the coordination between models. To do so, they have captured the specification

of a coordination pattern between languages into a tool or framework, e.g., Ptolemy, ModHel’X. In

the following, we first present model coordination approaches, and then, we continue with language

coordination approaches.

2.3.1 Model Coordination Approaches

Model coordination approaches provide dedicated languages to specify the coordination between (het-

erogeneous) behavioral models (see Figure 2.3). We begin this subsection by presenting Coordination

Languages, and then we continue with ADLs.

Coordination Languages [GC92a] propose a dedicated language to model the coordination between

heterogeneous behavioral models. By relying on a coordination language, a system designer builds a

coordination model to specify how behavioral models interact. Depending on the entities coordinated,

approaches can be categorized into data-driven or control-driven. The former coordinates data among

models whereas the latter coordinates events among models. Arbab at al. [Arb98] proposed another
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classification into endogenous and exogenous languages. Endogenous languages provide coordination

primitives that must be incorporated within a model for its coordination. For instance, Linda [GC92b]

provides a set of primitives like in() or out() to exchange data between models. These primitives must

be added to a host language by using libraries.

Exogenous coordination languages dealt with the complexity of model behaviors by treating models

as black boxes encapsulated within the boundary of an interface. A model behavioral interface gives

a partial representation of the model behavior therefore easing the coordination of behavioral models.

The coordination is thus specified between elements of the interface. The notion of interface varies

depending on the approach. For instance, in Opus [CHM+97], the interface is a list of methods

provided by the model. Other approaches abstract away the non-relevant parts of the behavior of

models as events [Win87] (also named signals in [LSV98]). These approaches focus on events and how

they are related to each other through causal, timed or synchronization relationships. Following the

same idea, control-driven coordination languages rely on a model behavioral interface made of explicit

events [Esp09, AHS93, BFJ+04]. While in Esper [Esp09], the interface is only a set of events acceptable

by the model, some other approaches go further and also exhibit a part of the internal concurrency.

This is the case of [BFJ+04] where authors propose an interface that contains services and events, but

also properties that express requirements on the behavior of the components. Such requirements act

as a contract and can be checked during the coordination to ensure a correct behavior. The benefits
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of the use of events to coordinate the behavior of models are twofold:

• It gives support for control and timed coordination while remaining independent of the internal

model implementation;

• It enables the coordination of models without any change to their implementation, thus ensuring

a complete separation between the coordination and the computational concerns.

Concurrently with Coordination Languages, the software architecture community has developed so-

called ADLs to gain abstraction, structuring and reasoning capabilities in the development of complex

systems [LKA+95, AG97, SDK+95, MT97, GS94]. An ADL usually specifies a system in terms of

components and interactions among those components. They enable a system designer to:

• Clarify structural and semantics difference between a component and its interaction;

• Reuse and compose architectural elements;

• Identify/enforce commonly used patterns (e.g., architectural styles).

Depending on the ADL, a Component can be an encapsulation of some procedure, an encapsulation

of an object file or a (formal) abstraction of its behavior. To externally characterize the components,

ADLs rely on well identified Component Interfaces. The interfaces are used by Connectors whose

behavior is specified by a glue. Connectors can represent a large variety of interactions (e.g., procedure

call, event broadcast or database queries) and the glue can range from a simple function to complex

protocols.

Both coordination languages and ADLs make a separation between the specification of the component

(i.e., the computational aspects) and the assembly of these components (i.e., the communication/-

coordination aspects). The latter is usually done by a system designer that has to deal with the

architecture-level communication, which is expressed with different protocols. To abstract away these

protocols and make them reusable, ADLs proposed connectors as types [MT97] that can be used on

the shelf to specify domain specific interactions.

For example, Clara [Dur98] is an ADL dedicated to real time systems. It proposed built-in connector

types like Rendez-vous, Mutex or Mailboxes. A system designer can express the interactions by relying

on these specific connectors that are relevant in his domain. This eases the task of a system designer,

but also limits what can be used in the interaction.
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Other approaches introduced the notion of User Defined Type [SDK+95, AG97, AA02] that enables a

system designer to build connector types for a specific domain. A connector type is defined by a set

of roles and a glue specification. Roughly speaking, a role represents a formal parameter that is used

to specify the glue which specifies how roles are coordinated. Some approaches express the glue in a

formal language. For instance, in Wright [AG97], the glue is specified in a variant of CSP [Hoa85],

differently in Reo, it is specified by the composition of dedicated primitives [AA02]. The connector

types are later on instantiated and the roles are bound to the actual interfaces of the instances of

components. By expressing the glue in a formal language, it is possible to provide reasoning about

the global system behavior.

To illustrate the use of connector types, Figure 2.4 shows a simple client-server system described in

Wright [AG97]. The specification defines two component types named Client and Server, and one

connector type named C-S-connector. The C-S-connector has two roles (client and server) and a

glue that describes how the activities of a client and a server roles are usually coordinated. The

section Instances describes a particular configuration by instantiating the corresponding component

and connector types. The example describes a system where there is a single server (s), a single client

(c) and a single connector (cs). Then, the section Attachments defines which component ports are
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attached to the connector roles.

In this subsection, we have presented approaches that make a clear separation between the specification

of the component and the assembly of these components. While the first activity is usually done by

a system engineer, the second one is usually done by a system designer. To ease the task of a system

designer, ADLs’ community has successfully identified the need of connector types. In [AG97], authors

claimed that connector types enables to “understand a general pattern of interaction that can occur

many times in any given system”. Thus, a system designer has only to instantiate and bind connector

types as needed by its architecture. However, the major drawback of coordination languages and ADLs

is that the coordination is specified between particular models. For example, in the case of ADLs, a

system designer has to instantiate and bind connector types manually. Returning to the example of

Figure 2.4, for each new client in the system, the system designer has to instantiate one component

and one connector; then, he has to bind the component ports with the connector roles. With the

increasing number and heterogeneity of the components, this task can quickly become difficult and

error prone. We present in the next subsection approaches that automate the coordination between

behavioral models by specifying coordination patterns between languages.

2.3.2 Language Coordination Approaches

Language Coordination Approaches have identified that the instantiation and binding of connector

types can be a systematic activity the system designer repeats many times and may consequently be

defined as a coordination pattern. Such a pattern is based on the know-how of the system designer

and sometimes on naming or organizational conventions adopted by the models. In the following, we

present approaches that have captured the specification of a behavioral coordination pattern inside a

tool/framework to automate the instantiation and binding of connector types. In these approaches,

the coordination is specified between heterogeneous languages rather than between particular models.

We begin this subsection by presenting ad-hoc solutions [BJ01, DNCSSV14] which use a predefined set

of languages. We continue with more systematic approaches named Coordination Frameworks [BH08,

BHLM02].

Mascot [BJ01] is an approach focused on the integration of Matlab [Gui92] and SDL [ESH97]. Whereas

SDL is a language suitable for control systems modeling, Matlab is better for modeling dataflow

aspects of a system. These languages are rather different: while SDL processes operate on events,

represented by simple signals, Matlab processes operate on vectors, represented by vectorized signals.
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Authors proposed to automate the synchronization of control signals from SDL with data signals

from Matlab. To do so, the approach deals with the integration of the timing and synchronization

concepts from both languages by proposing two synchronization modes: head synchronization and

tail synchronization. In the head synchronization, when a model in matlab receives a frame a1, it

immediately transforms a1 into b1 (dataflow network model). Any control signal from SDL that occurs

during the transformation of a1 to b1 cannot influence its value. Then, the head synchronization mode

ensures that the occurrence of the control signal is taken into account when the next frame is processed.

In the tail synchronization, when a model in Matlab receives a control signal from SDL, the signal is

collected until it cease to occur, then, it is translated to a vector and passed to the Matlab model.

The modes of synchronization ensure the communication between Matlab and SDL by relying on the

knowledge about the semantics of the languages. In addition, the approach gives a set of guidelines to

help the choice between the two proposed synchronization. Once the synchronization policy is defined,

the approach enables the co-simulation of a SDL model and a Matlab model. A process in the SDL

specification that is specified in Matlab contains a wrapper that interfaces between the SDL simulator

and the Matlab engine. A SDL wrapper is made of a set methods that enable the SDL engine to

control the behavior of the data signals in Matlab. To do so, the approach relies on the name of

signals in SDL specification to communicate with the signals in Matlab. Thus, the approach forces

a naming convention between signals in both domains. The approach has identified and specified a

coordination pattern between Matlab and SDL by providing two mechanisms to coordinate signals

from both domains. In addition, it provides some guidelines to help the choice between the two

mechanism. The current implementation, however, partially automates the coordination since the

user has to specify what synchronization mechanism is used.

In [DNCSSV14] (see Figure 2.5), authors dealt with the integration of a language to describe the func-

tional aspects of a system with a language to describe the deployment platform of the system. They

proposed to integrate these languages by relying on a dedicated mapping language. The mapping lan-

guage syntax references syntactic elements from both the functional and the platform language to map

the functions on specific computational resources from the platform. For instance, the SWdeployment

concept from the mapping language, references the Task concept from the functional language and

the CPU concept from the platform language. Based on the mapping model, the approach generates

the code of the communication between the code of the functional and the code of the platform mod-

els. The semantics of both the functional and the platform languages are defined by a translational
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Figure 2.5: High level view of the approach proposed by Di Natale et al. in [DNCSSV14]

approach into C++ code. The translational semantics of the mapping language takes advantages of

some knowledges about the translational semantics of the other languages. For instance, for each

subsystem described using the functional language, the approach takes advantages of the knowledge

that a class is generated with a name like: SubsystemNameModelClass. It also takes advantages of

the knowledge that the generated class has a step operation used for the runtime evaluation of the

block outputs given its inputs and its internal state.

To express a coordination pattern between a functional and a platform language, the approach pro-

posed a set of connectors to specify the mapping of a functional model to a platform model. From the

mapping model, the approach generates the communication code between a functional and a platform

model. In this sense, the approach is similar to others ADLs that propose a set of built-in connectors.

It partially automates the coordination between models since a system designer has to instantiate the

connectors.

While the previous approaches are ad-hoc solutions for two particular languages, Ptolemy [BHLM02]

and ModHel’X [BH08] are systematic approaches to coordinate models that conform to heterogeneous

languages. These approaches rely on a framework in which the syntax of models is described by actors

and the semantics is given by a Model of Computation (MoC). Actors can be atomic (e.g., Actor 1 in

Figure 2.6) or composite (e.g., Actor 0 and Actor 2 in Figure 2.6), i.e., made of internal, connected,
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actors. Each composite actor is associated with a model of computation that defines a Domain. A

domain specifies both the communication semantics and the execution order among internal actors.

A domain is implemented by a Director. For instance, in Figure 2.6, Actor 0 has the director D0,

which implements a SDF (Synchronous Dataflow) domain, and the Actor 2 has the director D1,

which implements a FSM (Finite State Machine) domain. In this approach, actors, both atomic and

composite, are executable. In a composite actor, the execution order of internal actors is controlled

by a director. In the example of Figure 2.6, the director D0 controls the execution of the Actor 1

and Actor 2 and director D1 controls the execution of A3 and A4 whenever Actor 2 is executed.

In this sense, the execution of composite actors is strictly hierarchical. The behavior of actors is

represented by a generic interface that contains a set of methods, e.g., fire(). The MoC implemented

by the director of a composite actor specifies when the methods in the interface of internal actors are

invoked. For instance, when an actor is fired, the director associated with a composite actor fires the

internal actors.

In conclusion, based on a fixed syntax and a generic interface, these approaches achieved to capture

a hierarchical coordination pattern into a framework. For the syntactic aspects of the pattern, the

frameworks provide composite actors. Then, for the semantical aspects, they encode the necessary
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glue between interfaces of composite actors and internal actors to coordinate their execution. This

results in a hierarchical heterogeneous model in which the execution of actors is strictly hierarchical.

In this subsection, we have presented approaches that captured the specification of a coordination pat-

tern between languages. Such specification is defined at language level and captures a systematic way

to coordinate behavioral models. By specifying the coordination at language level, these approaches

have achieved to automate the coordination between models. In the next subsection, we discuss about

the reviewed approaches.

2.3.3 Discussion

In this section, we have studied approaches to coordinate the behavior of models. While model

coordination approaches proposed dedicated languages to build a model of coordination, Language

coordination approaches proposed frameworks/tools that automate the coordination between models

by specifying a coordination pattern between languages.

Model Coordination approaches provide dedicated languages, i.e., Coordination Languages and ADLs,

to specify the coordination between particular models. Such a model of coordination specifies how the

behavioral models interact. The main benefit of these approaches is that the global behavior is explicit

and amenable for reasoning (for instance for Verification and Validation activities). Furthermore,

they propose languages close to system designer domain. For example, ADLs provide types in order

to define domain-specific connectors. ADLs have successfully identified connector types, however, a

system designer has still to instantiate the required type of connectors when needed; he has to manually

instantiate them by relying on his know-how. In a complex system, such a task can quickly become

tedious and error prone. Furthermore, if one of the model changes, the model of coordination must

also be changed. By relying on Coordination Languages and ADLs, a system designer only captures

the solution for one single problem but he does not specify a systematic way to coordinate models.

Coordination frameworks achieved to capture the know-how of a system designer by specifying coordi-

nation patterns. Such specification defined at the language level allows for synthesis the coordination

between heterogeneous behavioral models.

By embedding the coordination pattern inside a tool, these approaches have two major drawbacks:

1. Validation and verification activities are limited since the coordination is encoded by using a
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General Purpose Language (e.g., Java in Ptolemy and ModHel’X);

2. The system designer cannot change the proposed coordination without altering the core of the

tool.

Regarding to first point, some coordination languages and ADLs already tackled this problem by using

a formal language to express the coordination (e.g., CSP in Wright). This provides for verification

and validation support for the coordinated system

Concerning the second point, for complex systems, the system designer may need to capture several

coordination patterns and potentially combine them. However, current coordination frameworks can

only support such a variation by modifying the framework itself. The coordination model is mixed

with the functional model, which makes it very tricky to modify one without risking altering the other.

2.4 Conclusion

In this chapter, we have presented the state-of-art approaches that rely on two mechanisms to get a

global representation of a heterogeneous system: composition and coordination.

We have presented approaches that compose heterogeneous models/languages to obtain a new mod-

el/language. The composition of models has been automated by looking for correspondences between

heterogeneous models, and then composing them into a new model that conform to another language.

Most of the approaches consider structural correspondences and only few consider also the behavior of

models to find similarities. Furthermore, we have determined that these last approaches only compose

homogeneous models. This limits the use of such approaches in complex systems where heterogeneous

behavioral models may be used.

We have presented approaches that compose languages to get a new language. Most of these ap-

proaches focus on the composition of the syntax of languages into a new syntax. Only Semantics

Anchoring [CSN05] proposes to compose behavioral semantics by relying on the notion of Semantic

Units. These approaches propose to model a heterogeneous system by relying on a single language

which results from the composition of other languages. From our point of view, language composition

approaches are not suitable for separation of preoccupations and development of a single system by

various domain experts who focus on a specific part of the system.
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We have presented state-of-the-art approaches that deal with coordination of the behavior of hetero-

geneous models/languages. First, we have presented the work done by Coordination Languages and

ADLs that support the coordination of heterogeneous models. However, the system designer has to

manually specify each relation, thus making this task tedious and error prone. Then, we have shown

how language coordination approaches have leveraged on the know-how of a system designer to au-

tomate the coordination between models. However, we have noted that the knowledge about system

integration is encoded within a framework. Furthermore, in frameworks, the model of coordination is

expressed by using a general purpose language thus limiting verification and validation activities.

In this thesis, we rely on the coordination of (heterogeneous) behavioral models to get the emerging

system behavior of a heterogeneous system. We propose to automate the coordination between models

by specifying coordination patterns between languages. In the next chapter, we elaborate on the

requirements towards a language to specify coordination patterns. Such requirements tend to improve

existing language coordination approaches to make them more flexible and well founded. From these

requirements, we propose a language for specifying coordination patterns named B-COoL. Then, in

Chapter 4, we present the implementation of our language.



Chapter 3

Requirements for a Language to

specify Coordination Patterns

3.1 Introduction

Language Coordination approaches are used to capture a coordination pattern between languages.

These approaches go one step beyond Coordination Languages and ADLs by leveraging on the know-

how of a system designer. However, current implementations seem different and not always well

characterized. The lack of a systematic way to specify a coordination pattern makes these approaches

ad-hoc and not flexible. Furthermore, this prevents a wider adoption of this sort of approaches. In

this context, this chapter proposes a framework to compare and understand the approaches that offer

solutions to capture coordination patterns. The objective of the framework is to highlight similari-

ties and differences between these approaches, and to express the requirements to make them more

flexible and generic. For instance, it is important that they address other languages, or other ways of

coordinate them. The goal is not to make a further detailed analysis of state-of-the-art approaches

but rather to highlight the good points that we intend to keep in our proposition.

The proposed framework is mainly influenced by three existing comparison/categorization frameworks.

Authors proposed frameworks that focus on ADLs [MT97], Coordination Languages [PA98] and Model

Composition approaches [JFB08]. For example, in [MT97], authors identify the primary blocks used to

build an ADL. Based on these building-blocks, they have proposed a framework to classify and compare

several existing ADLs. A similar work is presented in [PA98] where authors surveyed and classified

23
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several coordination languages. They focused on 1) the nature of the entities being coordinated, 2) the

coordination mechanism, 3) the coordination architecture and 4) the semantics of the coordination.

In [JFB08], Jeanneret et al. proposed a framework to compare model composition approaches by

relying on the triplet what-where-how questions, which identifies respectively which elements should

be composed, where elements should be inserted or modified and how the composition process works

to get the expected result.

Inspired by these works, we propose a framework to characterize approaches that specify a coordination

pattern. Existing approaches have in common that:

1. They specify the coordination between languages;

2. They specify correspondences between elements of the conformed models;

3. They specify how the elements selected by the correspondences must be coordinated.

Regarding the first point, existing approaches specified the coordination at the language level by

relying on information (at least partially) about the behavioral semantics of the coordinated languages.

Therefore, the framework identifies such a representation of the language behavioral semantics as a

Language Behavioral Interface. Concerning the second and third points, the framework identifies

respectively Correspondence Rules and Coordination Rules. The former identifies how approaches

specify correspondences between elements from different models, i.e., the rules that defines which

elements of the two models should be coordinated. The latter identifies how approaches specify the

coordination between elements selected by the correspondences, i.e., how the selected elements should

be coordinated.

For this first contribution, we review some of the approaches discussed in the previous chapter and we

identify precisely what we consider to be related to the language behavioral interface, the correspon-

dence rules and the coordination rules. We also highlight the mechanisms used and what can, in our

view, be improved to build a generic and flexible language to specify coordination patterns. We then

propose some requirements to improve existing approaches by making each element of the framework

explicit and better customizable.

We organize this chapter as follows. We begin by presenting the notion of language behavioral interface,

then we continue by presenting correspondences between elements from the interfaces encoded into
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the notion of correspondence rules, and finally, we present the notion of coordination rules. Based

on the requirements presented in this chapter, Chapter 4 presents a particular implementation of this

framework named B-COoL.

3.2 Language Behavioral Interface

This section presents the notion of Language Behavioral Interface. We begin by reviewing the concept

of language interface in existing approaches, and then, we present requirements to make the behavioral

interface of a language explicit and better customizable.

3.2.1 Review of Existing Approaches

The notion of language interface has been recently the focus of some works in the context of the

globalization of modeling languages [CvdBCR15, BJL+15, DBC+15, DCB+15]. From these works,

it is consensual that the content of a language interface is purpose-specific, i.e., the content varies

depending on the use of the interface. In particular in this subsection, we discuss the notion of a

language interface for the specific purpose of specifying coordination patterns between languages.

Since the coordination activity requires a view of the behavioral semantics of languages, we name such

an interface Language Behavioral Interface.

From Chapter 2, at model level the notion of behavioral interface is used to expose information about

the model behavior to allow its coordination. Similarly, at the language level, a language behavioral

interface is used to expose only a part of the behavioral semantics of languages to allow the expression

of coordination patterns. In other words, a language behavioral interface abstracts the behavioral

semantics of a language, providing only the information required to coordinate it.

In the following, we show how existing approaches specify coordination patterns by relying on partial

information about the syntax and behavioral semantics of the languages they use. In addition, we

review the work done in [CDVL+13] in which authors propose to specify an executable language that

exposes a part of its behavioral semantics. This work will help us to understand the benefits of an

explicit language behavioral interface.

Ptolemy [BHLM02]/ModHel’X [BH08]: In these approaches, the behavioral semantics of a

language is described by a director that encodes a domain in Java, e.g., FSM, DE, SDF. To support
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the communication between different domains, each director implements a generic interface in Java.

Such an interface is made of specific set of methods (e.g., initialize(), prefire(), fire(), postfire(),

wrapup()). This mechanism provides a homogeneous view of all the domain behavioral semantics.

The implementation of these methods depends on the domain. However, they must conform to a

common goal, which is expressed in natural language. For instance, a part of the fire() function

description is: “Typically, the fire() method performs the computation associated with an actor”.

Both frameworks are based on a unique abstract syntax (i.e., actor model) to represent the syntax of

any language. Then, they propose composite actors to identify what actor can be refined into another

actor. Hence, the coordination is done according to the hierarchy of actors. In addition, only some

elements of the language syntax can be represented by a composite actor. For example, in the FSM

domain only states can be a composited actor, but not the transitions. This makes that only some

elements of the language syntax can contain other actors. Thus, frameworks are also aware of (a part

of) the abstract syntax of the coordinated language. However, such knowledge is left implicit into the

framework implementation.

The pro of these approaches is that the framework can technically coordinate actors from any do-

main without knowledge about the implementation of the actor domain. In this sense, the language

behavioral interface correctly provides an abstract and homogeneous view of the language behavioral

semantics. The methods represent the coordination points, i.e., elements that can be used to specify

the coordination between different domains.

The cons of these approaches are twofold. First, the interface is specified in a particular technological

domain, i.e., Java. This limits the representation of the language behavioral semantics as a set of

methods and the coordination as a set of calls to such methods. It is consequently not possible to

add extra coordination points without modifying deeply the framework itself. Second, all the domains

have to implement consistently these methods, however, the meaning of the methods is given by their

names together with some comments in the code. This remains very informal to ensure a correct

implementation of these methods.

These frameworks base on a fixed syntax in which all languages are represented by using the actor

model. This limits the expressiveness of the coordinated language syntax. However, it makes simple

the interface that only contains information about the language behavioral semantics. In addition,

the approach left implicit which elements from the syntax of a language can be refined, i.e., can be a
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composite actor.

Di Natale et al. [DNCSSV14]: In this work, authors use a translation to a common executable

language (i.e., C++) to provide the behavioral semantics of the coordinated languages. The coordi-

nation is supported by a mapping language, which its behavioral semantics is also translated in C++.

As a result, the behavioral semantics of both the coordinated languages and the mapping language

are represented in the same technology.

In this approach, information about the syntax and semantics of the functional and platform languages

is contained into the mapping language. First, it contains correspondences between syntactic elements

from both languages, e.g., Tasks from the functional and Cpus from the platform. Second, to express

the semantics of such correspondences, the translation semantics of the mapping language is based on

knowledge about the translation semantics of the coordinated languages. For instance, it contains the

name of the methods that are generated for each subsystem in the functional language. Such methods

are part of the translational semantics of the functional language.

The mapping language is aware of both the syntax and behavioral semantics of the coordinated

languages. This information is encoded into the syntax and the behavioral semantics of the mapping

language. More precisely, the language behavioral interface of each coordinated language is left implicit

into the mapping language. The major cons of this solution is that any change in the semantics of

the coordinated languages compromises the semantics of the mapping language. The approach lacks

of a clear specification of the coordination points, i.e., the important methods (their names but also

their parameters) that are resulting from the translation of some specific part of a language.

The only pro of this approach is that shows that the notion of language behavioral interface also makes

sense when the behavioral semantics of the languages is given by a translation to another language.

Mascot [BJ01]: This is an ad-hoc solution to coordinate SDL and MATLAB. To coordinate these

languages, authors have knowledge about the syntax and the behavioral semantics of the languages.

For instance, authors know that MATLAB relies on a data-flow MoCC which is based on the notion

of streams. Besides, they know that SDL relies on a Finite State Machine which is based on events.

Based on this knowledge, authors provide different mechanism to synchronize events from SDL and

streams from MATLAB. However, the information about what is coordinated is left implicit into

the approach. They rely on partial information about the syntax and behavioral semantics of the
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languages, but such information is not made explicit by using a language behavioral interface. The

pros of this work is that authors have achieved to coordinate two languages that are developed by

using different technologies. However, the knowledge about what elements are coordinated is implicit

into the approach, thus limiting this approach to these two languages. Thus, the major cons is that

this work cannot be easily extended to other languages.

Combemale et al. [CDVL+13]: In a recent work [CDVL+13] the authors propose to specify an

executable language as a 4-tuple < AS, DSA, DSE, MoCC > where the AS is the Abstract Syntax

of the language, the DSA defines both the data that represents the execution state of the model and

the execution functions that modify this execution state. The mocc represents the, possibly timed,

causalities and synchronization of the system by using some events and constraints between them.

Then, the Domain Specific Events (dse) link together the three other parts. A dse is an event type,

defined in the context of a metaclass of the AS that links an event from the mocc with the call to an

execution function from the DSA. dse are defined by using a specific language named ecl (standing

for Event Constraint Language [DM12a]) which is an extension of OCL [OMG03] with events. ecl

takes benefits from the OCL query language and its possibility to augment an abstract syntax with

additional attributes (without any side effects). Consequently, by using ecl, it is possible to augment

as metaclasses and add dse.

This approach reifies elements of the behavioral semantics of the language to propose an explicit

language behavioral interface. The interface is based on sets of dse (event types) and contraints.

Jointly with the dse, the related constraints give a symbolic (intentional) representation of an event

structure. With such an interface, the concurrency and time-related aspects of the language behavioral

semantics are explicitly exposed. Furthermore, from a dse, it is possible to get information about the

AS since they are defined in the context of a metaclass. Then, the context of a dse can be used to get

information from the AS. For each model conforming to a language, the model behavioral interface is

a specification, in intention, of an event structure whose events (named mse for Model Specific Event)

are instances of the dse defined in the language interface. While dse are attached to a metaclass,

mse are linked to one of its instances. The causality and conflict relations of the event structure are

a model-specific unfolding of the constraints specified in the language behavioral interface. Just like

event structures were initially introduced to unfold the execution of Petri nets, authors use them here

to unfold the execution of models. The dse are then a specification of the coordination points that

the model will propose.



3.2. Language Behavioral Interface 29

Note that the partial representation of the language behavioral semantics is exposed by using dse

(Domain Specific Event types). In that sense, the proposed language behavioral interface is domain

specific instead of generic like in Ptolemy [BHLM02] or ModHel’X [BH08].

The pro of this approach is to make explicit a language behavioral interface, which provides an

intentional specification of the coordination points, together with information about the concurrent

and time-related aspects of the language behavioral semantics. In addition, the language behavioral

interface exposes a part of the abstract syntax.

In this work, however, authors do not propose any technique or method to take advantages of their

interface. For instance, it would be interesting to understand what kind of analysis can be driven

based on their interface.

3.2.2 Requirements

We want to highlight that all approaches rely on partial information about the languages they use.

However, they have not achieved to systematically express such information in a language behavioral

interface. To improve the way that approaches represent information about the coordinated languages,

we propose the following requirements:

1. A language behavioral interface should specify in intention the coordination points;

2. A language behavioral interface should expose (a part of) the concurrency and the time-related

aspects of the language behavioral semantics;

3. A language behavioral interface should expose (a part of) the abstract syntax.

Let us consider each of these requirements in turn. In Ptolemy and ModHel’X, the coordination

is based on a language behavioral interface that is generic. The interface specifies, in intention, the

coordination points (i.e., Java methods) that any model provides. Similarly, Combemale et al. specify

coordination points in intention by using dse. This notion of coordination points specified in intention

would have been also beneficial for the approach provided by Di Natale et al. to be more flexible with

regard to the addition of a new language.

The nature of the coordination points varies from one approach to other. In Ptolemy and ModHel’X,

they are implemented by methods, whereas in Combemale et al., they are implemented by using
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event types. At the model level, [GS94] explains that there are important benefits of using events

(with implicit invocation) in the component interfaces because it provides strong support for reuse

and evolution of components. This gives support for control and timed coordination while remaining

independent of the internal model implementation, thus ensuring a complete separation between the

coordination and the computational concerns. Several causal representations from the concurrency

theory are used to capture event-based behavioral interface. A causal representation captures the con-

currency, dependency and conflict relationships among actions in a particular program. For instance,

an event structure [Win87] is a partial order of events, which specifies the, possibly timed, causality

relations as well as conflict relations (i.e., exclusion relations) between actions of a concurrent system.

This fundamental model is powerful because it totally abstracts data and program structure to focus

on the partial ordering of actions. It specifies, in extension and in order, the set of actions that can

be observed during the program execution. An event structure can also be specified in intention to

represent the set of observable event structures during an execution (see, e.g., [And09] or [BCCSV05]).

These mechanisms provide an abstraction of a language behavioral semantics by exposing concurrent

and time related aspects. This information allows reasoning about how to coordinate different lan-

guages. This could have been beneficial for Ptolemy or ModHel’X where the adaptation of the time

related aspect is based on a deep knowledge of the internal implementation of the domains. Instead,

by adding only the necessary information in the interface, such an adaptation could be easier without

all the knowledge about implementation.

Together with information about the language behavioral semantics, all the reviewed approaches also

make use of information about the syntax of the coordinated languages. For instance in Di Natale et

al., the mapping language contains information about the syntax of the functional (e.g., Tasks) and

the platform languages (e.g., CPU ). Ptolemy and Modhel’X also contains information about which

elements from the language syntax can be defined as composite actors.

In this section, we presented three requirements for a language behavioral interface to specify a coordi-

nation pattern between languages. These requirements aim at providing the needed information about

the behavioral semantics of languages for coordination purpose. Although [CDVL+13] did not address

the coordination between languages, it is the only approach to provide this interface consciously. In

the next section, we study how existing approaches get correspondences between model elements by

relying on correspondence rules.
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3.3 Correspondence Rules

This section presents the notion of Correspondence Rules. We first review the concept of correspon-

dence rules in existing approaches, and then, we present requirements to make them explicit and

better customizable.

3.3.1 Review of Existing Approaches

A correspondence is any explicit or implicit relationship between model elements. Such a relationship

is specified by a system designer that knows what elements from different models are related. In the

specification of coordination patterns, correspondences specify the model elements that are coordi-

nated. To automate the process of looking for correspondences between models, the specification of a

coordination pattern involves the definition of correspondence rules at language level. Such rule define,

in intention, the correspondences to be instantiated at model level. In the following, we review the

existing approaches by focusing on how they implemented correspondence rules and correspondences.

Ptolemy [BHLM02]/ModHel’X [BH08]: In these approaches, the notion of composite actors is

used to specified the correspondences between models: when an actor is composite (i.e., it contains

other actors) then it coordinates its internal actors. This enables the designing of a system by following

a hierarchical scheme where the level n in the hierarchy specifies the coordination of the models that

are at the level n−1. These approaches propose a fixed correspondence rule, i.e., the composite actor

relation, which is encoded into the syntax of the framework.

The pro of these approaches is the simplicity for a designer to express the correspondences. He has

only to specify what models are composited and which ones are contained inside. The correspondence

rule is unique and provided into the common abstract syntax.

The main cons of these approaches is they rely on a unique abstract syntax to describe both the

syntax of models and the syntax of the correspondences. This prevents the independent development

of the models (possibly developed in different languages) and the correspondences. In addition, the

use of a hierarchical design may limit the number of the supported languages. For instance, the UML

sequence diagram could not be easy to introduce in the hierarchical view of the framework.
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Di Natale et al. [DNCSSV14]: In this work, a mapping model is used to define the correspon-

dences between the functional and the platform model. The mapping model is defined by using a

dedicated language (i.e., mapping language) that fixes what type of concepts between the platform

and the functional languages can be bound together. For instance, the SwDeployment correspondence

maps two types of concepts: one of type CPU and another one of type Task. In this sense, the

approach provides a set of fixed correspondence rules.

The pro of the approach is that the mapping model defines explicitly the correspondences between the

functional and the platform model. Such a model could be useful both reasoning and for traceability.

The cons of this approach is that a system designer has to manually build the mapping model depend-

ing on the current deployment. The approach has successfully identified some relationships between

a functional and a platform language, which are captured by a set of predefined correspondence rules.

From such a correspondence rules, the approach, however, is not able to automate the instantiation

of correspondences at model level.

Mascot [BJ01]: In this work, the correspondences are implicit in the models. The approach relies

on a naming convention to specify when events in SDL and streams in Matlab must be coordinated. It

relies on a correspondence rule that specifies that the elements to be coordinated must have the same

name. When this rule is applied between models, the framework can automatically get correspondences

between model elements.

The pro of this approach is the use of a correspondence rule to select model elements. This makes the

approach very flexible in terms of dependencies between the languages, thus easing the support for a

new language.

The cons is the encoding of the correspondence rule in the framework. Thus, the approach is limited

to find correspondences by comparing the name of the elements (i.e., events from SDL and streams

from Matlab). In some cases, it could be interesting to compare more than the names, e.g., the types.

In addition, the approach forces the use of a naming convention in the models.

3.3.2 Requirements

In the reviewed approaches, we identified different correspondence rules to get correspondences between

models elements. Ptolemy and ModHel’X rely on a common abstract syntax to identify the elements
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to be coordinated; Di Natale et al. propose a dedicated language to express an explicit mapping

between the elements of different models; and Mascot defines some rules that allow the inference of

the correspondences for specific models. However, the main drawback of these approaches is that the

customization of the correspondence rules is not possible. Such a characteristic motivates the following

requirements for correspondence rules and correspondences:

1. Correspondence rules should provide support for heterogeneous languages;

2. Correspondence rules should avoid creating dependencies between a predefined set of languages

to enable the support of new languages;

3. Correspondence rules must be explicitly defined and customizable depending on the domain and

conventions followed by different system engineers;

4. Correspondences between model elements should be explicitly represented.

We discuss each requirement in turn. The current development of complex systems is tackled by

relying on several heterogeneous languages where each language has its own syntax and behavioral

semantics. Thus, an approach that capture the specification of a coordination pattern must be able to

identify correspondences between models that are heterogeneous in terms of the syntax. This prevents

the possibility to rely on a common syntax for the languages and the correspondences like in Ptolemy

and ModHel’X.

The support of heterogeneous languages should be done in a way that a new language can be easy

to add. For instance, in the case of Di Natale et al., the mapping language (i.e., the language used

for the correspondences) depends on the coordinated languages, (i.e., the functional and the platform

languages). So that, if any of these languages are modified or a new language has to be added,

the mapping language must be changed. Instead, correspondence rules could be defined by relying

on partial information exposed in the interface. This would avoid strong dependencies between the

correspondence rules and the coordinated languages.

A correspondence rule can be used to find correspondences between models that conform to two par-

ticular languages. This is the case in [KMDS13] where authors use design space exploration techniques

to determine the (best) correspondences between an application and its deployment platform. Also,

correspondence rules can be used to capture conventions followed by system engineers in an organiza-
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tion. The complexity of the conventions can vary from a simple naming convention (e.g., Mascot) to a

more complex ontology based system. Based on such conventions, correspondence rules can determine

what elements from different models must be coordinated.

Listing 3.1: Specification of the Mascot correspondence rule by using the Epsilon Comparison Lan-

guage

1 rule MatchEventWithStream

2 match s : SDLMetamodel!Event

3 with t : MatlabMetamodel!Stream

4 {

5 compare {

6 return s.name = t.name;

7 }

8 }

To make correspondence rules explicit, a dedicated language should be used. To illustrate this, we

propose to use the Epsilon Comparison Language (ECL [Kol09]) to sketch the definition of the corre-

spondence rule in the case of Mascot. The ECL is a language dedicated to the expression of correspon-

dence rules. In this language, correspondence rules are expressed by querying and then comparing

model elements. For example, Listing 3.1 shows the specification in ECL of a matching rule named

MatchEventWithStream. Roughly speaking, the matching rule is used to find correspondences between

instances of the Event and Stream classes (Listing 3.1: line 2 and 3). These classes can be defined

in different metamodels (i.e., Ecore models). The class Event is defined in an metamodel referred as

SDLMetamodel and the class Stream is defined in an metamodel referred as MatlabMetamodel (List-

ing 3.1: line 2 and 3). The comparison is done by using the attribute name defined in the context of

each class (Listing 3.1: line 5). To express the comparison, the approach relies on a query language

named Epsilon Object Language1. When two instances of these classes have the same name, the pairs

are matched.

The main benefit of the use of such a dedicated language is to ease the customization of the corre-

spondence rules, thus enabling to adapt them according to the company modeling conventions and

the language’s nature. For instance in Listing 3.1, the matching is equivalent to the one encoded in

Mascot, however, it can be customized to add another criteria for the matching. Furthermore, con-

ventions are independent of the languages themselves, so it is easy to add support for a new language

without changing the framework.

1http://www.eclipse.org/epsilon/doc/eol/

http://www.eclipse.org/epsilon/doc/eol/
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Finally, to understand how a particular system is coordinated, correspondences between model el-

ements must be clearly represented. This has already identified in the Ptolemy and ModHel’X by

providing a dedicated syntax to specify the correspondences. Unlike these approaches, in Mascot, the

correspondences are implicit into the approach thus making necessary to read the documentation to

find out that the approach relies on a correspondence rule that follows a naming convention. In such

a case, an explicit representation of the correspondences can help a system designer to understand the

coordinated elements. Also, it allows external tools to take advantages of the correspondences. The

explicit representation of correspondences should be done without creating dependencies between the

languages used in the system in order to fulfill the second requirement.

In this section, we have presented some requirements to improve the way that approaches implements

correspondence rules and correspondences. In the next section, we present the notion of coordination

rule that specifies how the models elements selected by a correspondence must be coordinated.

3.4 Coordination Rules

In this section, we first review the notion of Coordination Rules in existing approaches, and then, we

present some requirements to make them better defined.

3.4.1 Review of Existing Approaches

In the specification of a coordination pattern, coordination rules specify how the elements selected by

the correspondence rules must be coordinated. Based on a coordination rule, approaches specify the

interaction between elements in a correspondence. In the following, we review how existing approaches

implement a coordination rule depending on the specified coordination pattern.

Ptolemy [BHLM02]/ModHel’X [BH08]: In these approaches, composite actors interact with

their internal actors by invoking the methods in their interface. The coordination rule implements

a hierarchical execution of actors in which the coordination is expressed in Java together with the

semantics of the actors. In ModHel’X, authors made explicit the notion of semantics adaption between

actors by allowing the specification of the code between two component interfaces. Such a manual

adaptation is also done in Java.

These approaches, in particular Ptolemy, were the first to propose a hierarchical framework to coor-
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dinate heterogeneous models. These approaches, however, do not leverage on the formal works done

by their authors in the field of Model of Computation [LSV98]. The current implementation contains

only few of the ideas proposed in such works. Thus, the main cons is that the approaches are limited

in terms of verification and validation of the coordinated system.

ModHel’X went one step forward by proposing the notion of semantics adaptation between two com-

ponents. However, the semantics adaptation is never reifed at language level thus making the approach

close to the notion of glue in existing ADLs.

Di Natale et al. [DNCSSV14] & Mascot [BJ01]: In these approaches, the coordination rule

is specified by the translational semantics of the correspondences. In Di Natale et al. [DNCSSV14],

each correspondence in the mapping model is translated to a specific glue in C++. The glue encodes

how elements of the functional and the platform translation semantics are coordinated. In the case of

Mascot [BJ01], the coordination rule is encoded by using SDL wrappers which results in a coordination

expressed in C.

The pros of these approaches is that they achieved to coordinate models that are developed in different

technologies, i.e., Maltab and SDL. They do so by expressing the semantics of both the coordination

and the models in a common GPL, i.e., C, C++.

The main cons of these approaches is that they are very limited in terms of customization and explic-

itness of the coordination rule. They encode the coordination rule into tools thus limiting reasoning

about how a particular system is coordinated. In addition, the coordination rule depends on the imple-

mentation of the coordinated languages. For instance, in Di Natale et al., the translational semantics

of the mapping language depends on the translational semantics of the functional and the platform

languages. Thus, the task of adding support to a new language needs a well understanding about the

implementation of the coordinated languages.

Another cons of these approaches is that they force to express the semantics of both the model and

the coordination in the same language. The use of a GPL to express the coordination limits the

verification and validation of the resulting coordinated system.
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3.4.2 Requirements

In the reviewed approaches, we identified that they encode a different coordination rule depending on

the coordination pattern. Such a coordination rule specifies how concepts from different languages

must be coordinated. The coordination rule allows approaches to derivate a glue between the elements

selected by a correspondence rule. Such a glue specifies how elements in a correspondence are coor-

dinated. However, in these approaches, the coordination rule is encoded into a framework/tool and

the coordination is expressed in a GPL. This limits the task of a system designer to provide analysis

and verification of the coordinated system. To support the heterogeneous development of complex

systems, a system designer has to understand well how a system is coordinated and he must be able to

provide analysis of the coordinated system. These characteristics motivate the following requirements:

1. Coordination rules should be expressed independently of the implementation of the coordinated

languages;

2. Coordination rules should be customizable;

3. Coordination between models should be formally defined.

Let us consider each of these requirements in turn. For an approach to specify coordination patterns,

it is important that a new language be easy to add. In this sense, the coordination rule cannot depend

on the implementation of coordinated languages. [DNCSSV14] and [BJ01] proposed a coordination

rule whose expression is strongly linked to the implementation of the coordinated languages, thus

making tedious to add a new language without modifying the whole implementation. Note that this

requirement is strongly linked with the need for an explicit language behavioral interface.

In the proposed approaches the coordination rules are encoded in the framework/tools. Thus, a system

designer has to modify the current implementation to change the proposed coordination. To be able

to specify different coordination patterns, a system designer should be able to modify the coordination

rules without altering the whole implementation. This is somehow possible in Ptolemy and ModHel’X

but since the semantics of a composite actor and the coordination of its internal actors are mixed,

there is a risk of altering the semantics of the actor. In ModHel’X, the semantic adaptation can be

modified but only between two particular models.
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None of the approaches relies on a formal language to express the coordination. The benefits of having

a coordination expressed formally have been highlighted in the ADL community [AG97, LKA+95]. A

formal description of the coordination together with a formal description of the semantics of models

(at least partial) could provide the verification and validation of the coordinated system. In this

context, a language behavioral interface could provide an abstract and formal view of the language

behavioral semantics.

3.5 Conclusion

In this chapter, we have presented requirements towards a language that capture the specification of

a coordination pattern. To characterize existing approaches, we have proposed a framework which is

built of three elements:

• A language behavioral interface;

• Correspondence rules;

• Coordination rules.

Based on this framework, we have studied language coordination approaches and shown how they

implemented the elements of the framework. We have identified that a language behavioral interface is

a partial representation of the syntax and behavioral semantics of languages for coordination purpose.

We have determined that an explicit language behavioral interface has several benefits. For instance,

it helps to identify the coordination point thus easing the task to add support to a new language. We

have noted that, when the interface is made of events, the specification of the coordination between

languages can be done by keeping separately the coordination and the computation concerns. Thus,

it avoids altering the coordinated language semantics.

We have identified that correspondence rules specify in intention the correspondences between model

elements. We have determined that all approaches rely on a fixed set of correspondence rules. We

have noted that none approach relies on a dedicated language (e.g., Epsilon Comparison Language)

to express the correspondence rules. We have determined that such a language would ease the task of

a language integrator to find similarities between models elements.
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Together with correspondence rules, we have shown that approaches rely on a notion of coordination

rules that specify the interaction between elements in a correspondence. We have noted that all

approaches hide the coordination rules into tool/frameworks in which the coordination is expressed

in a general purpose language thus limiting verification and validation of the resulting coordinated

system. We have concluded that none approaches leverage on the work done by some Coordination

Languages and ADLs in which the coordination is expressed in a formal language.

Based on the requirements presented in this chapter, we propose, in this thesis, a dedicated language

named B-COoL to capture coordination patterns between languages. The next chapter presents

B-COoL and its implementation.
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Chapter 4

B-COoL: the Behavioral Coordination

Operator Language

4.1 Introduction

This chapter presents B-COoL, a dedicated language to specify coordination patterns. B-COoL

is a particular implementation of the framework presented in Chapter 3. It is based on a language

behavioral interface made of event types (i.e., dse [CDVL+13]) as “coordination points” to drive the

execution of languages. These events are used as handles or control points in two complementary

ways: to observe what happens inside the model, and to control what is allowed to happen or not.

When required by the coordination, constraints are used to forbid or delay some event occurrences.

Forbidding occurrences reduces what can be done by individual models. When several executions are

allowed (nondeterminism), it gives some freedom to individual semantics for making their own choices.

All this put together makes the dse suitable to drive coordinated simulations without being intrusive

in the models.

Coordination patterns are captured as constraints at the language level on the dse (see Figure 4.1).

A language integrator defines Operators that contain a correspondence matching and a coordination

rule. The correspondence matching identifies what elements from the behavioral interfaces (i.e., what

instances of dse) must be selected. To do so, we rely on the context in which a dse is defined to

selected instances of such dse. Then, a coordination rule specifies the, possibly timed, synchronization

and causality relationships between the instances of dse selected during the matching. To specify the

41
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Figure 4.1: Overview of the proposed approach

coordination rule, we rely on a CCSL-based language named moccml [DDC+14a]. Once specified

in B-COoL, integrators can shared such knowledge thus allowing reusing and tuning of coordination

patterns. System designers can then use theB-COoL specification to generate an explicit coordination

model when specific models are used. The generated coordination model is expressed in ccsl, thus

allowing system designers to verify and validate the coordinated system.

In this chapter, we illustrate the use of B-COoL through a simple running example: the coordination

of the models of a coffee machine. To build the model, we use two languages: a state-based language

named Timed Finite State Machine (TFSM) and an action-based language named Activity. The goal

here is to show that we can build an operator in B-COoL between these languages and then use it

to coordinate the models of the coffee machine. We use this operator as running example through all

the chapter.

This chapter is organized as follows. We begin by introducing the running example; we show the

languages, their language behavioral interfaces and the models of a coffee machine. We continue

by presenting the abstract syntax and the execution semantics of B-COoL. Then, we show the

implementation of B-COoL and its integration into the GEMOC studio. We use the studio to specify

the running example, and then, generate the coordination model for the coffee machine system. We
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show how the coordination model can be executed and analyzed. To finish the chapter, we compare

our approach with coordination languages and frameworks, and we conclude.

4.2 Running Example: Coordination of the Heterogeneous Models

of a Coffee Machine

In this section, we present the heterogeneous models of a coffee machine. The coffee machine system

is composed of a Coin Control System and a Coffee Algorithm System. To model the whole system,

we use the TFSM and Activity languages, which are developed as proposed in [CDVL+13]. In the

following, we present the languages and how we use them to model each subsystem.

The TFSM language is a state machine language augmented with timed transitions. Its abstract syntax

is described by a metamodel (see Figure 4.2). A System is composed of TFSMs, global FSMEvents

and global FSMClocks. Each TFSM is composed of States. Each state can be the source of outgoing

guarded Transitions. A guard can be specified either by the reception of an FSMEvent (EventGuard)

or by a duration relative to the entry time in the source state of the transition (TemporalGuard).

When fired, transitions generate a set of simultaneous FSMEvent occurrences.

Listing 4.1: Partial ecl specification of TFSM

1 package tfsm

2 context FSMClock

3 def: ticks : Event = self

4 context FSMEvent

5 def: occurs : Event = self

6 context State

7 def : entering : Event = self

8 def : leaving : Event = self

The TFSM language defines the following dse: entering and leaving a state, firing a transition, the

occurrences (occurs) of a FSMEvent and the ticks of a FSMClock (see at the top of Figure 4.2). These

dse are part of the language behavioral interface of TFSM. A partial ecl specification of TFSM is

shown in Listing 4.1 where the dse entering and leaving are defined in the context of State (Listing 4.1:

line 6) while occurs is defined in the context of FSMEvent (Listing 4.1: line 4). When a metaclass

is instantiated, the corresponding dse are instantiated; e.g., for each instance of the metaclass State,

dse entering is instantiated. Each instance of dse is a mse.
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Figure 4.2: (At the top) An excerpt of the TFSM metamodel with a part of its language behavioral
interface. (At the bottom) a TFSM model with a part of its model behavioral interface
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We use the TFSM language to model the coin control system. We build a TFSM named CoffeeCoin

(At the bottom of Figure 4.2). The model is composed of two states (Locked and Unlocked) and four

FSMEvents (selectCoffee, releaseCoffee, start and coin). For each instance of state, a dse entering and

leaving are instantiated, e.g., Locked:entering, Locked:leaving. Also, for each instance of FSMEvent,

a dse occurs is instantiated, e.g., releaseCoffee:occurs, selectCoffee:occurs. In the state Locked, when

a coin is inserted (the mse coin:occurs happens), the TFSM becomes Unlocked and the mse select-

Coffee:occurs is triggered. In state Unlocked, the release of the coffee (the mse releaseCoffee:occurs

happens) makes the TFSM becomes Locked again.

Listing 4.2: Partial ecl specification of Activity diagram

1 package activitydiagram

2 context Activity

3 def: startActivity : Event = self

4 def: finishActivity: Event = self

5 context Action

6 def : executeIt : Event = self

7 context Signal

8 def : signalOccurs : Event = self

To model the coffee algorithm system, we use the action-based language Activity [CDB+15]. Figure 4.3

shows its partial metamodel. The root element is an Activity that is composed of ActivityNodes

and ActivityEdges. Each ActivityNode can be the source of outgoing ActivityEdges. The language

behavioral interface of the Activity is partially shown in Listing 4.2. For each Activity two dse are

defined: startActivity and finishActivity, to identify respectively the starting and finishing instants of

the activity. In the context of Action, the dse executeIt is defined that identifies the execution of an

Action. Finally, in the context of Action, the dsesignalOccurs is defined that identifies the occurrence

of a Signal. At the bottom of Figure 4.3, the activity named CoffeeAlgorithm represents the simple

algorithm for preparing coffee. It starts by the action selectCoffee that asks the user to select the

kind of coffee. After selected it (the mse selectCoffee:executeIt happens), the action makeCoffee is

executed. Finally, the coffee is released (the mse releaseCoffee:executeIt happens).

To represent the global behavior of the coffee machine, we have to specify how the TFSM CoffeeCoin

and the activity CoffeeAlgorithm interact. More precisely, when the FSMEvent selectCoffee triggers,

the Action selectCoffee must be executed. Also, when the Action releaseCoffee executes, the FS-

MEvent releaseCoffee must be triggered. To coordinate the execution of these models, we have to

define some constraints between the mse selectCoffee:occurs and selectCoffee:executeIt, and between
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Figure 4.3: (At the top) An excerpt of the Activity metamodel with a part of its language behavioral
interface. (At the bottom) an Activity model with a part of its model behavioral interface
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releaseCoffee:occurs and releaseCoffee:executeIt (see Figure 4.4). We propose to generate these con-

straints by developing a simple B-COoL operator between the TFSM and Activity languages. We

informally define the operator as follows: When coordinating a TFSM and an Activity model, all pairs

of FSMEvents and Actions that have the same name must be strongly synchronized, i.e., by using a

rendezvous relation. This operator is defined for any pair of TFSM and Activity models, and specifies

what and how instance of dse occurs and instances of dse executeIt must be coordinated.

In this section, we have presented the TFSM and Activity languages that we used to build the

heterogeneous models of a coffee machine. The model is composed of a TFSM named CoffeeCoin

and an Activity named CoffeeAlgorithm. To get the global behavior of the coffee machine, we have

proposed to specify some constraints between the mse of both models. To generate such constrains,

we informally sketched a simple B-COoL operator between the TFSM and Activity languages. In the

next section, we use this simple operator as running example to illustrate the syntax and semantics

of B-COoL.

selectCoffee:executeIt

releaseCoffee:executeIt

when coin /

! selectCoffee 

when releaseCoffee /

doLocked 

CoffeeCoin

selectCoffee:occurs

releaseCoffee:occurs

Figure 4.4: Coordination of the models of the coffee machine by constraining the corresponding mse

4.3 The Language

In this section, we present our language B-COoL. We begin by presenting the abstract syntax and

then we continue with the semantics. To illustrate each subsection, we develop the running example
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Figure 4.5: Simplified View of B-COoL abstract syntax

operator between the TFSM and Activity languages.

4.3.1 Abstract Syntax of B-COoL

The abstract syntax of B-COoL is defined by its metamodel (see Figure 4.5). The root element

is a BCoolSpecification that contains Operators. Each operator refers to dse to specify what event

types it coordinates. To get the dse, a B-COoL specification imports language behavioral interfaces

(importsInterfaceStatements). The number of imported interfaces is related with the number of models

that the specification accepts as input. Since the B-COoL specification is applied at least between

two models, it imports at least two interfaces. The same interface can be imported several times to

allow the specification of operators between homogeneous languages.

To build the running example operator, we need to synchronize FSMEvents and Actions. This is

done by coordinating instances of dse occurs and instances of dse executeIt. To specify this in

B-COoL, we first define a specification named TFSMAndActivity and we import the language be-

havioral interface of each language, named activity and tfsm (Listing 4.3: line 3 and 4). Then, the

operator SyncFSMEventsAndActions is defined, which refers to the dse occurs and executeIt, mapped

as FSMEventOccurs and ActionExecute respectively (Listing 4.3: line 5).

Listing 4.3: B-COoL specification of the running example operator between the TFSM and Activity
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languages

1 BCOoLSpec TFSMAndActivity

2 ImportLib "facilities.moccml"

3 ImportInterface "activitySemantics.ecl" as activity

4 ImportInterface "TFSM.ecl" as tfsm

5 Operator SyncFSMEventsAndActions(ActionExecute:activity ::executeIt , FSMEventOccurs:tfsm::

occurs)

6 when (ActionExecute.name = FSMEventOccurs.name);

7 do RendezVous(ActionExecute , FSMEventOccurs)

8 end operator

In B-COoL, operators are used to specify when and how instances of the referred dse must be

coordinated. To do so, each operator contains a correspondence matching and a coordination rule.

The former is used to select instances of dse and the latter is used to express how the selected instances

must be coordinated.

A correspondence matching selects instances of dse by using a Condition that contains an OCL

Boolean expression. To express the boolean expression, the context of the dse can be queried to get

a specific syntactic element, e.g., attribute name. The boolean condition is thus used to compare

the queried elements. The correspondence matching acts as a precondition for the coordination rule,

i.e., it is a predicate that defines when the coordination rule must be applied to the given instances of

dse. For instance, for the running example, we query the context of the dse to get the attribute name

(Listing 4.3: line 6). Then, the attributes are used as operands for the boolean condition. When an

instance of dse occurs and an instance of dse executeIt have the same name, the pairs are selected

and the coordination rule is applied.

The coordination rule specifies how the selected instances of dse must be coordinated. To do so, it

contains an EventRelation and possibly some EventVariables (localEventVariables).

The event relation is used to restrict the relative order of the occurrences of events used as parameters.

Its actual parameters can be instances of dse, some EventVariables and/or constants (e.g., integer

constants). For example, the running example operator must specify a strong synchronization between

the events. To express that, we use the event relation Rendezvous between the selected instances of

dse occurs and executeIt (Listing 4.3: line 7). This relation accepts two events as arguments and

forces the occurrences of these events to happen simultaneously. To illustrate this, Figure 4.6 partially

shows the resulting coordination when this operator is used to coordinate the models of the coffee
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machine. In the figure, the occurrences of the mse selectCoffee:occurs and selectCoffee:executeIt are

forced to happen simultaneously.

Figure 4.6: Resulting coordination of the coffee machine by using the event relation Rendezvous

Conjointly with an event relation, B-COoL enables the definition of EventVariables to express more

complex coordination rules. An event variable can be either defined locally within the coordination rule

(localEventVariables) or globally for the whole specification (globalEventVariables). These variables

either define global events used across different operators, or create a new event from the selected

instances of dse and possibly from attributes of the input models. The definition of these events is

made by using an EventExpression. An event expression returns a new event from given parameters.

For instance, this can be used to select only some occurrences of a dse instance, thus allowing the

implementation of filters. An event expression can also be used to join in a single event the occurrences

of different events (union). When used in the coordination rule, the resulting events can be used as

parameters of event relations, constraining by transitivity (some of) the occurrences of dse instances.

To illustrate the use of event variables, we suppose the situation in which the coordination between

events relies on a global synchronization clock. This is often the case in synchronous digital systems

in which a clock signal is used to coordinate the actions in a circuit. In this example, we slightly

modify the running example operator by considering that the selected instances of dse occurs (the

sampledEvent) will be sampled by a global clock (the trigger). This results in a new event named

sampledOccurs that ticks always in coincidence with the trigger and each of its occurrences represents

the last sample of the sampledEvent.

To specify this in B-COoL, we define a new specification named TimedTFSMandActivity (Listing 4.4).

We first define a global event variable named globalClock (Listing 4.4: line 5). This global event variable

represents the global synchronization clock. Then, in the coordination rule, we use the globalClock

together with the dse occurs to create a new local event named sampledOccurs (Listing 4.4: line

9). To initialize this local variable, we use the event expression SampleOn. This expression accepts

two events as parameters: the sampledEvent and the trigger. The expression creates a new event by

sampling the sampledEvent by the trigger event. This results in a new event that ticks always after
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the sampledEvent and coincides with the occurrences of the trigger event. In our case, we sample the

select instances of the dse occurs (i.e., sampledEvent) by the event global clock (i.e., trigger), which

results in the local event variable sampledOccurs. Then, in the coordination rule, we coordinate the

instances of dse executeIt and the resulting local event sampledOccurs by a Rendezvous (Listing 4.4:

line 10).

Listing 4.4: B-COoL specification of an operator that illustrates the use of Event Variables

1 BCOoLSpec TimedTFSMandActivity

2 ImportLib "facilities.moccml"

3 ImportInterface "activitySemantics.ecl" as activity

4 ImportInterface "TFSM.ecl" as tfsm

5 Global Event globalClock;

6 Operator SyncFSMEventsAndActions(ActionExecute:activity ::executeIt , FSMEventOccurs:tfsm::

occurs)

7 when (dse1.name = dse2.name);

8 do

9 Local Event sampledOccurs = SampledOn (FSMEventOccurs , globalClock);

10 RendezVous(ActionExecute , sampledOccurs)

11 end operator

To illustrate the resulting coordination, we use this specification to coordinate the models of the coffee

machine. Figure 4.7 shows the partial resulting coordination between the mse selectCoffee:occurs and

selectCoffee:executeIt when a global clock is used. The occurrences of the event selectCoffee:occurs

are sampled by globalClock (in blue in Figure 4.7). This results in a new occurrence of the event

sampledOccurs (in orange in Figure 4.7). Then, occurrences of the event sampledOccurs are strongly

synchronized with the event selectCoffee:executeIt (in red in Figure 4.7).

Figure 4.7: Resulting coordination of the coffee machine by using the global event variable globalClock

In this subsection, we have presented the abstract syntax of B-COoL by relying on the running

example operator. To specify this operator, we used event expressions and relations that are defined

in the library facilities.moccml (Listing 4.4: line 2). In B-COoL, expressions and relations are defined

in dedicated libraries that must be imported (ImportedLibStatement in Figure 4.5). We introduce the
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notion of library in the following subsection.

4.3.2 Library

Libraries are used to gather predefined event expressions and relations that can be imported by a B-

COoL specification (ImportedLibStatement in Figure 4.5). B-COoL relies on moccml [DDC+14a] to

define libraries of constraints between events. In this subsection, we overview the notion of moccml

library.

A moccml library (RelationLibrary in Figure 4.8) is a set of declarations together with their formal

parameters. It also contains some definitions, which give the actual behavior of the declarations. There

are two categories of constraint definitions: the Declarative Definitions and the Constraint Automata

Definitions. A declarative definition is defined as a set of constraint instances. For more details, we

refer the reader to [DDC+14b] that described the declarative part inspired from the ccsl language. A

Constraint Automata Definition gives state based support for the definition of relations. This helps a

language integrator in the definition of coordination protocols that may be complex like, for instance,

the AMBA protocol [Gui01].

Figure 4.8: Excerpt of MoCCML metamodel

To illustrate the use of moccml for the definition of event relations, we propose to rewrite the coordi-

nation rule presented in Listing 4.4 by using an automata relation named RendezvousWithGlobalClock.

The relation accepts three events as parameters: sampled, trigger and executeIt. The sampled event

identifies the event that will be sampled by the trigger. The executeIt event identifies the event that

will be forced to occur simultaneously with the last sample of the sampled event. The automata

representation is made of two states: waitSampled and waitTrigger (see Figure 4.9). In waitSampled,

the event trigger and sampled are both allowed to tick but not the executeIt event. When the event

sampled happens, such occurrence will be sampled by the next occurrence of the event trigger. This

is represented by the transition from waitSampled to waitTrigger. In this state, the event trigger and

executeIt are forced to happen simultaneously. This represents the sampling of the last occurrence of
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the sampled event. Conversely, in this state, the event sampled is forbidden to occur 1.

Figure 4.9: State-based representation of the relation RendezvousWithGlobalClock

By using this event relation, we rewrite the coordination rule as shown in Listing 4.5; the FSMEventOc-

curs is the sampled event, the globalClock is the trigger event and the ActionExecute is the executeIt

event.

Listing 4.5: B-COoL specification of an operator that illustrates the use of a moccml library

8 do:

9 RendezVouswithGlobalClock(FSMEventOccurs , globalClock , ActionExecute)

10 end operator

Figure 4.10 shows the resulting coordination of the models of the coffee machine by using the relation

RendezvousWithGlobalClock. In blue, we show the occurrences of the selectCoffee:occurs (sampled

event) that are sampled by global clock (trigger event). When an occurrence is sampled, this makes

the event selectCoffee:executeIt (executeIt event) to occur simultaneously with the occurrence of the

global clock (in red in Figure 4.10). This represents the sampling of the last occurrence of the event

selectCoffee:occurs.

Libraries enable integrators to organize all relevant event relations and expressions by modeling do-

mains. This improves the readability of aB-COoL specification by gathering domain specific relations,

1For this example, we chose to forbid the occurrences of the sampled event in the WaitTrigger state to prevent missing
samples.
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Figure 4.10: Resulting coordination of the Coffee Machine by using the automata relation Ren-
dezvousWithGlobalClock

which can be reused in other specification. By relying on a moccml library, the application of B-

COoL operators results in a ccsl specification. We can use ccsl tool (e.g., TimeSquare[DM12b])

to analyze and execute the generated coordination model. In the next subsection, we further explain

how the coordination model is generated from a B-COoL specification by presenting the semantics

of B-COoL.

4.3.3 Execution Semantics

In this subsection, we describe the execution semantics of B-COoL, i.e., how a B-COoL specification

is used to generate a coordination model. To illustrate the different steps in the generation, we rely

on the application of the running example operator (see Listing 4.3) between the models of the coffee

machine.

Let Ev be the (finite) set of event type names (representing the dse). Considering a language L, A

behavioral interface iL is a subset of event type names, iL ⊂ Ev. A B-COoL specification imports

N disjoint language interfaces, with N ≥ 2. Also, a B-COoL specification contains a set of operators

Op. Each operator from Op has a set of formal parameters P, where each parameter is defined by a

name and its type (i.e., an event type). Each operator also has a correspondence matching condition

(denoted CMC) and a correspondence rule (denoted CR). A B-COoL specification is applied to a

set of input models denoted MI , with |MI | = N .

From an operational point of view, the first step consists in producing the model behavioral interface

of each input model. It results in a set of model interfaces denoted IMI
, of size N . An interface is

a set of events, each of which is typed by an event type. For instance, when the running example

operator is applied between the models of the coffee machine, the first step consists in extracted the

mse of the Activity CoffeeAlgorithm and the TFSM CoffeeCoin that results in two sets of mse named

respectively IM1 and IM2 (step 1 in Figure 4.11).
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CoffeeAlgorithm:startActivity

selectCoffee:executeIt

MakeCoffee:executeIt

ReleaseCoffee:executeIt

CoffeeAlgorithm:finishActivity

selectCoffee:executeIt

makeCoffee:executeIt

releaseCoffee:executeIt

Locked:entering

Locked:leaving

Unlocked:entering

Unlocked:leaving

selectCoffee:occurs

releaseCoffee:occurs

selectCoffee:occurs

releaseCoffee:occurs

(selectCoffee:executeIt, selectCoffee:occurs)
(selectCoffee:executeIt, releaseCoffee:occurs)
(makeCoffee:executeIt, selectCoffee:occurs)

(makeCoffee:executeIt, releaseCoffee:occurs)
(releaseCoffee:executeIt, selectCoffee:occurs)

(releaseCoffee:executeIt, releaseCoffee:occurs)

actualParameters

for the operator
SyncFSMEventsAndActions

(selectCoffee:executeIt, selectCoffee:occurs)

(releaseCoffee:executeIt, releaseCoffee:occurs)

Rendezvous (selectCoffee:executeIt, selectCoffee:occurs)

Rendezvous (releaseCoffee:executeIt, releaseCoffee:occurs)
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executeIt I
M2
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Figure 4.11: Steps in the application of the B-COoL specification between the models of the coffee
machine
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Each operator op in Op is processed individually and several times with different actual parameters,

which depend on the model interfaces in IMI
. The set of actual parameters to be used is obtained

by a restricted Cartesian product of all the model interfaces in IMI
. The restriction consists in two

steps: First, a new set of model interface (denoted I
′

MI
) is created. For each parameter p in P, a new

model interface Ip

MI
is created and all the events in IMI

that have the same type than p are collected

in Ip

MI
. Then, Ip

MI
is added to I

′

MI
(step 2 in Figure 4.11). For instance, the running example

operator has as parameters the event types Action::executeIt and FSMEvent::occurs. Thus, the set

I
′

MI
is composed of two set named IM1executeIt and IM1occurs that corresponds respectively with

events of type Action::executeIt and FSMEvent::occurs (step 2 in Figure 4.11).

Second, a classical Cartesian product is applied on I
′

MI
. It results in a set containing the list of actual

parameters to be used with the operator, i.e., each set in the result of the Cartesian product represents

the actual parameters of the operator (step 3 in Figure 4.11). For each set actualParams in the result

of the Cartesian product, if actualParams satisfies the correspondence matching condition (CMC),

then the coordination rule (CR) is instantiated with the values in actualParams. Returning to the

running example operator, the correspondence matching condition is used to select mse by comparing

the instances names. This results in two selected sets: selectCoffee:occurs and selectCoffee:executeIt,

and releaseCoffee:occurs and releaseCoffee:executeIt (step 4 in Figure 4.11). The coordination rule

is instantiated two times. The instantiation is made in two steps. First, the local events, if any,

are created in the targeted coordination language according to the expression used to initialize it.

The expression can use any event in actualParams and possibly some constants (e.g., some Integer

constants). The local events are added to actualParams so that they can be used in the next. The

second step is the application of the relation. It results in the creation of the corresponding relation

in the targeted coordination language. The actual parameters of the coordination rule are then the

ones from actualParams or some constants, like for the expressions. For the coffee machine, the event

relation rendezvous is instantiated twice; one time for each set in actualParams that satisfies the

CMC (step 5 in Figure 4.11).

Currently, the application of a B-COoL operator generates a ccsl specification that represents the

coordination. Listing 4.6 shows the partial ccsl specification for the coffee machine. The specification

begins by importing the ccsl specification of each model (Listing 4.6: line 3 and 4). Then, the

main block contains the coordination specification that is made of two instances of the event relation

rendezvous (Listing 4.6: line 9 and 11). Notice that individual specification of each model are not
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modified. So that, the behavior of individual models is not altered. Instead, the coordination adds

some constrains thus restricting the behavior of models, but it does not add new behaviors. This

results in a generated coordination that is not intrusive (i.e., exogenous).

In this section, we have presented the abstract syntax and the semantics of B-COoL. Also, we

have presented moccml for the definition of libraries. In the next section, we present the current

implementation of B-COoL as a set of Eclipse plugins into the GEMOC studio.

Listing 4.6: Resulting ccsl specification for the coffee machine system

1 ClockConstraintSystem TFSMandActivity {

2 imports {

3 import "facilities.moccml" as lib;

4 import "coffeeCoin.extendedCCSL" as coffeeCoin;

5 import "coffeeAlgorithm.extendedCCSL" as coffeeAlgorithm;

6 }

7 entryBlock mainBlock

8 Block mainBlock {

9 Block coffeeCoincoffeeAlgorithmsublock {

10 Relation SyncFSMEventsAndActionselectCoffee_executeItselectCoffee_occurs [ RendezVous ]

11 ( ClockA -> "coffeeAlgorithm :: selectCoffee_executeIt", ClockB -> "coffeeCoin ::

selectCoffee_occurs")

12 Relation SyncFSMEventsAndActionsreleaseCoffee_executeItreleaseCoffee_occurs [

RendezVous ]

13 ( ClockA -> "coffeeAlgorithm :: releaseCoffee_executeIt", ClockB -> "coffeeCoin ::

releaseCoffee_occurs")}}

14 }

4.4 Implementation

This section presents the implementation of B-COoL into the GEMOC studio2; which integrates

technologies based on Eclipse Modeling Framework (EMF) 3 adequate for the specification of exe-

cutable domain specific modeling languages. The studio includes a language workbench to design and

implement tool-supported DSMLs and a modeling workbench where the DSMLs are automatically

deployed to allow designers to edit, execute and animate their models [CDB+15].

B-COoL takes advantages of this collaborative environment by adding coordination facilities. Fig-

ure 4.12 illustrates the proposed workflow in which a language integrator uses the language workbench

2http://www.gemoc.org
3http://eclipse.org/modeling/emf/

http://www.gemoc.org
http://eclipse.org/modeling/emf/
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Figure 4.12: The proposed workflow for the heterogeneous development of complex applications

to develop B-COoL operators to specify coordination patterns between languages. Then, a system

designer can use these operators in the modeling workbench to coordinate models. In this section,

we illustrate the use of the language workbench by developing the running example operator (see

Listing 4.3). Then, in the modeling workbench, we use this operator to execute and verify the models

of the coffee machine.

B-COoL is developed as a set of plugins based on the EMF (at top of Figure 4.13). The B-COoL

abstract syntax has been developed using Ecore (i.e., the metalanguage associated with EMF) and

the textual concrete syntax has been developed in Xtext 4, thus providing advanced editing facilities.

For the running example operator, we use the TFSM and Activity languages that are integrated

into the studio. Then, we use B-COoL to specify the Listing 4.3 (Figure 4.13: step 1). In the

B-COoL specification, we can import the language behavioral interfaces of each language deployed

in the language workbench. In addition, the language workbench provides moccml thus helping the

integrator to specify relations and expression.

In the modeling workbench, a system designer can use B-COoL operators to automate the coordi-

nation of models and to execute the coordinated system. To do so, a system designer has to specify

a B-FloW specification (Figure 4.13: step 2), and then, uses it to launch the Gemoc Coordinated

Execution Engine (Figure 4.13: step 3). In the following, we elaborate on these two tasks.

We provide a simple language named B-FloW (standing for B-COoL FLoW ) that enables a sys-

4http://eclipse.org/Xtext/
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Figure 4.13: Overview of the implementation of B-COoL and its integration into the Gemoc Studio



60 Chapter 4. B-COoL: the Behavioral Coordination Operator Language

tem designer to specify how operators of a B-COoL specification are applied on a set of models

(Figure 4.13: step 2). To introduce B-FloW, Listing 4.7 shows the specification for the models of

the coffee machine. It begins by importing the B-COoL specification that contains the operators

(Listing 4.7: line 2). Then, it specifies the models that will be coordinated. For the running example,

this corresponds with the TFSM named CoffeeCoin.tfsm and the Activity named CoffeAlgorithm.ad

(Listing 4.7: line 3 and 4). Then, the specification contains a Flow that defines which operators are

used and on which models are applied. A Flow defines a sequential order of application of operators.

In other words, the first line is the first operator that will be applied and soon on. For instance,

in Listing 4.7, line 6 specifies that the operator named SyncFMEventsAndActions must be applied

between the models CoffeeCoin and CoffeeAlgorithm. This corresponds with the first and the only

operator to be applied to coordinate the models of the coffee machine. However, a B-FloW speci-

fication may use several operators depending on the number of models in the system, this is further

discussed in Chapter 5.

Listing 4.7: B-FloW specification for the models of the coffee machine

1 BCOoLFlow CoffeeMachine

2 ImportBCOoL "TFSMAndActivity.bcool" ;

3 Model CoffeCoin "coffeecoin.tfsm"

4 Model CoffeeAlgorithm "coffeeAlgorithm.ad"

5 Flow

6 applies SyncFSMEventsAndActions between (CoffeeAlgorithm , CoffeCoin);

7 end Flow;

The Gemoc Coordinated Execution Engine uses the B-FloW specification to generate a model of

coordination that is used to execute the coordinated system. The generation is implemented by using

a high-order transformation in Acceleo 5 that translates the B-COoL specification into a QVTo 6

transformation (Compilator in Figure 4.13). Then, the Gemoc Coordinated Engine invokes the gener-

ated QVTo transformation which takes as parameters the models to be applied and the operators that

must be applied. This information is retrieved from the B-FloW specification. The QVTo transfor-

mation is finally applied between the corresponding models thus generating a model of coordination

in ccsl.

To execute the coordinated model, the Gemoc Coordinated Execution Engine first initializes the

Gemoc Execution Engine of each individual model. These engines compute the next valid step for each

5http://www.eclipse.org/acceleo/
6https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

http://www.eclipse.org/acceleo/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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model. Also, there is a Coordination Engine that computes the next valid step for the coordination.

To compute the next global valid step, the Gemoc Execution Engine gets the next valid step from

each individual engine and from the coordination engine. Then, it selects the possible steps that are

valid for both the individual models and the coordination. This results in a set of global valid steps.

To illustrate the use of the Coordinated Execution Engine, we coordinate and execute the models of the

coffee machine. First, we configure the launcher that contains information about the B-COoL speci-

fication, the B-FloW specification and the configuration launcher for each model. In Figure 4.14(a),

by clicking on Debug, the execution is launched. Then, each individual engine is initialized together

with the engine for the coordination (Figure 4.14(b): point 2). The Concurrent Logical Steps Decider

view provides several options to drive the execution of the models. For instance, it provides a list of

the next valid execution steps (Figure 4.14(b): point 3). Also, the workbench provides the animation

of models (Figure 4.14(b): point 4).

The modeling workbench provides tools to analyze the resulting ccsl specification (Figure 4.14(b):

point 1). For example, it is possible to obtain by exploration quantitative results on the scheduling

state-space of the coordinated system. The exploration of all schedules can be done explicitly in a state

space graph. Any cyclic path in this graph (starting from the initial configuration) represents a valid

schedule of the models. Figure 4.15 shows the resulting state-space exploration for the coordinated

model of the coffee machine7. Each state represents a valid step in the execution. In the transitions,

the guards contain the events that tick simultaneously when a transition is taken. For example, in

red, the figure shows the transitions that contain the events forced to happen simultaneously by the

coordination, e.g., selectCoffee:occurs and selectCoffee:executeIt. For the coffee machine, the state

exploration results in 39 states, 405 transitions and no dead-locks.

The project B-COoL is hosted on Github8 as part of the GEMOC project9, thus making the source

code publicly available. B-COoL is currently integrated into the GEMOC studio10. To try the coffee

machine example, the reader needs to download the studio and then to follow the tutorial from the

companion website11. In addition, the website contains more examples with full descriptions.

In this section, we have presented the implementation of B-COoL into the GEMOC studio. The

7The graph in DOT format can be downloaded from the companion website.
8http://github.com
9http://github.com/gemoc/coordination

10The reader can download studio the from http://gemoc.org/studio-download/
11http://timesquare.inria.fr/BCOoL

http://github.com
http://github.com/gemoc/coordination
http://gemoc.org/studio-download/
http://timesquare.inria.fr/BCOoL
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(b) Coordinated Execution and animation of the models of the coffee machine

Figure 4.14: Coordinated Execution of models by using the Gemoc Coordinated Execution Engine
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Figure 4.15: State space representation of the coordinated model of the coffee machine, encoding the
set of valid schedules. The transitions in red contain the events forced to happen simultaneously by
the coordination.

workbench eases the tasks of language integrators and system designers to coordinate models. Inte-

grators can develop operators between languages that a system designer can use to coordinate, execute

and validate their models. In the next section, we compare our approach with coordination languages

and coordination frameworks.

4.5 Evaluation

In this section, we evaluate the benefits of B-COoL in terms of four criteria. Also, we use these

criteria to compare our approach with Coordination Languages and Coordination Frameworks. These

criteria are:

1. Definition of a coordination pattern between languages;

2. Generation or synthesis of the coordination between models;
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3. Analysis capabilities of the coordinated system;

4. Tooling support.

Regarding to first point, in B-COoL, the definition of a coordination pattern between languages is

based on operators. In particular, coordination rules explicitly define the semantics of the resulting

coordination. Notice that an integrator can vary the semantics of the resulting coordination by only

modifying the coordination rules of the operators. In frameworks like Ptolemy, an integrator is unable

to change the proposed coordination pattern without modifying the framework itself. For instance,

in Ptolemy, this means changing the current implementation of a director written in Java. The

same problem appears in ad-hoc translational approaches [DNCSSV14], where the transformation

needs to be changed. Since this state-of-the-art approaches is using general-purpose transformation

frameworks, this work needs a good knowledge of coordinated languages as well as a good knowledge of

the transformation language itself. This is beyond the expected skills of an integrator. In our approach,

we are using a language dedicated to language integrator experts thus easing the understanding and

adaptation of the B-COoL specification.

Concerning the coordination between models (point number two), the definition of domain specific

coordination operators enables the generation of the coordination between models. The manual coor-

dination of models (as proposed by coordination languages) requires a system designer that specifies

each relation. The reader can notice that the number of relations increases with the number of model

elements involved in the coordination. Our proposition is to leverage this task for the system designer

at the language level and then to generate all the required relations accordingly.

Regarding system execution and verification (point number three), both coordination languages and

coordination frameworks allow to execute the coordinated system, however, the verification varies

from one approach to another. Some coordination languages rely on a formal language thus providing

verification. Differently, in Ptolemy, the main validation method is based on the execution of the

coordinated system [BHLM02]. Furthermore, in Ptolemy and ModHel’X the coordination is expressed

in Java so that the verification and validation remains limited. In our approach, by relying on ccsl

to express the coordination, a system designer is able to provide execution and verification of the

coordinated system.
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In terms of tooling support (point number four), current coordination frameworks like Ptolemy [BHLM02]

and ModHel’X [BH08] provide a dedicated environment to develop and coordinate heterogeneous mod-

els. They rely on a common syntax based on actors and semantics given by Models of Computation.

In addition, they enable the system designer to hierarchically coordinate models. The environments

include a graphical editor, an execution engine, plotters and so on. These environments, however,

are ad-hoc solutions to manage both the development and the coordination of heterogeneous models.

Differently, in our approach, the studio is the integration of several plug-ins that deal with different

aspects of the heterogeneous development of models, e.g., the GEMOC studio for the design and im-

plementation of DSMLs, the Sirius animator for graphical representation, TimeSquare for the analysis

of model execution. Our approach takes advantages of this collaborative environment, and it provides

the means for modeling coordination.

Coordination frameworks do not offer a clear separation between the task of a language integrator

and the task of a system designer. They only focus on the task of a system designer. Differently, in

our approach, we provide a language workbench to develop B-COoL operators and capture coordi-

nation patterns between languages. Then, for system designers, we provide a modeling workbench to

coordinate, execute and validate models. Therefore, the integrated studio has managed the tasks of

both stakeholders by providing dedicated workbenches.

4.6 Conclusion

In this chapter, we have presented B-COoL, a dedicated (meta)language that enables integrators

to capture the specification of coordination patterns between heterogeneous languages. B-COoL is

a particular implementation of the framework presented in Chapter 3. To illustrate the syntax and

the semantics of B-COoL, We defined a simple operator between the TFSM and Activity languages.

We have presented the current implementation of B-COoL into the GEMOC studio that provides a

language workbench and a modeling workbench. In the language workbench, a language integrator

can develop B-COoL operators. Then, in the modeling workbench, a system designer can use these

operators to coordinate and execute their models. Furthermore, the modeling workbench provides tools

to analyze the coordinated model. We have shown the use of the language workbench by developing

the running example operator, and then, we have shown the use of the modeling workbench by

coordinating and verifying the heterogeneous model of the coffee machine. To finish the chapter, we

have compared B-COoL with coordination frameworks and coordination languages by relying on four



66 Chapter 4. B-COoL: the Behavioral Coordination Operator Language

criteria. From this analysis, we have determined that our approach makes a clear separation between

the task of a language integrator and a system designer. Furthermore, this separation is supported

by dedicated workbenches. In the next chapter, we propose to validate our approach by using as use

case the coordination of the heterogeneous models of a surveillance camera system. We rely on the

integrated studio to develop a set of coordination operators, and then, we use them to coordinate and

execute the system.



Chapter 5

Validation

5.1 Introduction

In this chapter, we validate our approach by defining different coordination patterns between the

TFSM and Activity languages, which were introduced in Chapter 4. To motivate and explain the

patters, we rely on the coordination of the models of a surveillance camera system. The system is

composed of a Camera Control Encoder and a Battery Sensor. We model the system by using the

TFSM and Activity languages, which results in heterogeneous models that need to be coordinated.

To coordinate these models, we propose in this chapter the definition of three B-COoL coordination

operators between the TFSM and Activity languages. These operators are used to capture three

coordination patterns between these languages. One operator synchronizes FSMEvents and Signals by

relying on their names. A second operator specifies a hierarchical coordination in which the entering

and leaving of states is synchronized with the execution of an activity. In addition, we propose a

third operator that specifies a timing coordination. More precisely, we specify that the execution of

an activity is atomic from point of view of the TFSM language. Thus, during the execution of an

activity, the time in the TFSM does not elapse. In this chapter, we show how to use B-COoL to

specify and customize these coordination patterns. Also, we show how the resulting coordination can

be used for analysis.

We organize this chapter as follows. We begin by presenting the heterogeneous models of a surveillance

camera system. To get the global system behavior, we propose to coordinate these models by using

67
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three operators in B-COoL. Then, we use these operators to coordinate the models, and to execute

the coordinated system by using the GEMOC studio. Finally, we conclude.

5.2 Use Case: Coordination of the Heterogeneous Models of a Surveil-

lance Camera System

This section presents the heterogeneous models of a surveillance camera system. To model the system,

we use the TFSM language for modeling the control subsystems (i.e., the controller for the camera

encoder), whereas for the dataflow aspects of the system we use the Activity language (i.e., the

encoding algorithms and the battery sensor). In the following, we present each subsystem and how we

model them by using the corresponding language. We finish this section by presenting the necessary

coordination between these models to get the global system behavior. In the following section, we

propose three operators to generate the coordination between these models.

The video surveillance system is composed of a Battery Sensor and Camera Encoder Control. The

camera encoder control takes pictures by using either the JPEG2000 or JPG algorithm depending on

the status of the battery. The TFSM named CameraEncoderControl represents the camera encoder

control (see Figure 5.1). When the TFSM model is in state JPEG2000Encoder, the JPEG2000 al-

gorithm is used. When in state JPEGEncoder, the encoding algorithm is replaced by a mere JPEG

algorithm. Each state has a temporal transition that happens every 40 ticks of the ms local clock.

Each tick of this clock represents one millisecond. Thus, in each state, the camera takes 25 frames

per second which is a reasonable frame rate for video surveillance 1. The transition from one state to

another is done when either the BatteryisHigh:occurs event or the BatteryisLow:occurs event occurs,

depending on the current state.

In the camera encoder, states represent either the JPEG encoder or the JPEG2000 encoder. Roughly

speaking, the JPEG2 algorithm encodes a picture by grouping it in blocks which are transformed by

a forward transformation. Each block of pixels is transformed to frequency coefficient using either a

Fourier transform (JPEG) or Wavelet transform (JPEG2000). The transformed blocks are quantized

and then passed to a Run-Length coder which compress the data. At the end, the block is transmit-

ted. We model these algorithms by using the Activity language: the activity named doJPEG (see

Figure 5.3) represents the JPEG algorithm and the activity named doJPEG2000 (see Figure 5.2)

1https://en.wikipedia.org/wiki/Closed-circuit_television_camera
2http://www.jpeg.org

https://en.wikipedia.org/wiki/Closed-circuit_television_camera
http://www.jpeg.org
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Figure 5.1: Representation of the Camera Encoder Control by using a TFSM

represents the JPEG2000 algorithm .

The camera control encoder is powered by a battery. When the battery is low, the battery sensor

makes the camera use the JPG algorithm, thus reducing the quality of the picture but also the energy

consumption [RSU04]. When the battery is high, the JPEG2000 algorithm is used instead. The activ-

ity diagrams named BatterySensor (see Figure 5.4) represents the simple algorithm implemented in the

battery sensor. Depending on the status of the battery, the algorithm sends either the signal Battery-

isLow or BatteryisHigh, which correspond with the occurrence of the mse BatteryisLow:signalOccurs

and BatteryisHigh:signalOccurs respectively.

To get the global behavior of the surveillance camera system, we have to specify how these models are

coordinated. Figure 5.5 shows the proposed coordinated model. The activity BatterySensor and the

TFSM CameraEncoderControl are coordinated by relying on Signals and FSMEvents. More precisely,

the trigger of the Signals BatteryisHigh and BatteryisLow must be synchronized with the occurrences

of the FSMEvents BatteryisHigh and BatteryisLow, i.e., synchronization between the mse Battery-

isHigh:signalOccurs and BatteryisHigh:occurs, and the mse BatteryisLow:signalOccurs and Battery-

isLow:occurs. In addition, the execution of the states of the TFSM CameraEncoderControl must be

coordinated with the activities doJPEG and doJPEG2000. To coordinate these models, we have to

coordinate the entering and leaving of a state (i.e., dse entering and leaving) and the execution of the
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Figure 5.2: Representation of the JPEG en-
coding algorithm by using an activity diagram

Figure 5.3: Representation of the JPEG2000
encoding algorithm by using an activity dia-
gram

corresponding activity (i.e., dse startActivity and finishActivity). Finally, to ensure that the camera

fulfills the required frames per second, we have to specify how the time in the TFSM elapses during the

execution of activities. In other words, we have to specify how the mse ms:ticks is coordinated with

the execution of the activities that represents the encoding algorithms, e.g., doJPEG2000:startActivity

and doJPEG2000:finishActivity, doJPEG:startActivity and doJPE:finishActivity. We propose to gen-

erate the necessary constrains to coordinate these models by using B-COoL operators to specify three

coordination patterns between these languages. In the next section, we present the definition of these

operators.

5.3 Definition of Coordination Operators between the TFSM and

Activity Languages

This section presents the B-COoL specification of three operators between the TFSM and Activity

languages: SyncFSMEventsAndSignals, StartActivityWhenEnter and AtomicActivity. In the following,

we describe each operator and we discuss their semantics. We then present the B-COoL specification

according with the chosen semantics.

The SyncFSMEventsAndSignals operator differs from the running example operator because it syn-

chronizes FSMEvents and Signals. Whereas in the running example the occurrences of FSMEvents
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Figure 5.4: Representation of the Battery Sensor by using an activity diagram

were synchronized with the starting of Actions, here they are synchronized with the occurrences of

Signals, i.e., by coordinating instances of dse occurs and signalOccurs. This operator only requires a

slight modification of the specification presented in the running example (see Listing 4.3). The only

modification is the type of the dse used in the operator (see Listing 5.1: line 1). The rest of the

definition (i.e., the correspondence matching and coordination rule) is unchanged (see Listing 5.1:

line 2 and 3). We want to highlight that the adaptation has been done only by identifying the new

dse to be constrained. This should also be the case for other coordination pattern.

Listing 5.1: B-COoL specification of the SyncFSMEventsAndSignals operator

1 Operator SyncFSMEventsAndSignals(SignalOccurs:activity :: signalOccurs , FSMEventOccurs:tfsm::

occurs)

2 when (SignalOccurs.name = FSMEventOccurs.name);

3 do RendezVous(SignalOccurs , FSMEventOccurs)

4 end operator

The StartActivityWhenEnter operator specifies a hierarchical coordination pattern between the TFSM

and Activity languages, unlike hierarchical coordination frameworks where the semantics is hidden,

this operator explicitly specifies how the hierarchical coordination is implemented. In our case, we

chose the semantics in which entering in a specific state of a TFSM model triggers the execution

of a given Activity. When leaving a state, several semantic variation points may be chosen. The
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BatteryisLow:signalOccurs

BatteryisHigh:signalOccurs

BatteryisLow:ocurrs BatteryisHigh_ocurrs

ms_ticks

JPEG2000Encoder:entering

JPEG2000Encoder:leaving

doJPEG2000:startActivity

doJPEG2000:finishActivity

doJPEG:startActivity

doJPEG:finishActivity

JPEGEncoder:entering

JPEGEncoder:leaving

Figure 5.5: Coordinated model of a surveillance camera system and a partial representation of the
model behavioral interface

outgoing transitions from a state can be considered, for instance, as preemptive for the activity model

(i.e., firing a transition from a state to another preempts the internal activity). Alternatively, the

transition can be considered as non-preemptive (i.e., the states cannot be left before the associated

activity finishes). In our case, we chose non-preemptive transitions because the activity should not be

interrupted until the information has been sent. Thus, we ensure that the activity executes at least

one time.

We define the StartActivityWhenEnter (Listing 5.2: line 1) operator that coordinates the entering

and leaving of a state with the execution of an activity. The entering into a state is identified by

the dse entering defined in the context of State. Instances of such dse have to be coordinated with

instances of the dse startActivity. Similarly, leaving a state is identified by dse leaving and finishing
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an activity is identified by dse finishActivity. To identify pairs of such events, the correspondence

matching selects instances of dse startActivity and finishActivity by using their context (Listing 5.2:

line 2). The pairs selected identify the starting and finishing of the same activity. Similarly, we select

instances of dse entering and leaving that correspond with the same state. Besides, we select the

activities that represent a state by comparing the OnEnterAction defined in the states and the name of

the activities. OnEnterAction is a string defined in the context of State (see Figure 4.2) that specifies

the method invoked when a state is entered. In our case, we use this attribute to specify the name of

the activity that the state represents (Listing 5.2: line 2).

Listing 5.2: B-COoL specification of the StartActivityWhenEnter operator

1 Operator StartActivityWhenEnter (activityStart : ad:: startActivity , activityStop : ad::

finishActivity , enterState : tfsm::entering , leaveState : tfsm:: leaving)

2 when (( activityStart = activityStop) and (enterState = leaveState) and (activityStart.name

= enterState.onEnterAction));

3 do

4 ExecuteActivityNonPeemptive (enterState , leaveState , activityStart , activityStop)

5 end operator;

To coordinate the selected instances of dse, the coordination rule uses the event relation ExecuteActiv-

ityNonPeemptive (Listing 5.2: line 4), which is defined by using moccml (see Figure 5.6). The relation

takes four events as parameters: the events modeEnter and modeLeave that represents respectively

the entering and leaving of a state; and the events startActivity and finishActivity that represents

respectively the starting and finishing of an activity. The state-based representation is made of two

states named waitEnterState and waitFinishActivity. In waitEnterState state, the events modeEnter,

modeLeave and startActivity are allowed to tick. Only when modeEnter and startActivity happen

simultaneously, the state waitFinishActivity is reached and the event modeLeave is forbidden to occur,

i.e., the state cannot be left. In waitFinishActivity state, only the finishActivity is allowed to happen.

When this event occurs, i.e., the activity has finished, the state waitEnterState is reached and the

modeLeave is allowed to occur. The use of this relation in the coordination rule results in transitions

that cannot preempt the execution of the internal activities. The entering a state makes the activity

to start to execute synchronously. Then, only after the activity has finished, the state can be left.

This makes the internal activity executes at least once before leave the state. We want to highlight

that an integrator can vary the semantics of the coordination by only modifying the event relation

in the coordination rule. For instance, by modifying the event relation, the transition may become

preemptive.
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Figure 5.6: ExecuteActivityNonPeemptive event relation

In the AtomicActivity operator, we deal with the temporal aspects of the model coordination. The

operator specifies how the time in the TFSM elapses during the execution of an activity. In these

languages, the time is represented differently. In the TFSM language, each state machine has a

localClock used to measure the time while the Activity language is untimed. The local clock is a

FSMClock, which defines a dse named ticks whose occurrences represent a physical time increment.

In the Activity language, the duration of activities can be represented as the time between the dse

startActivity and dse finishActivity. To coordinate the time, it is necessary to specify the number

of ticks of the local clock between the occurrence of the dse startActivity and finishActivity. Again,

several semantic variation points may be choose. For instance, the coordination rule could express

that the execution of the activities takes a fixed amount of time. In our example, we propose to enforce

the execution of the activity to be atomic with respect to the time in the TFSM model. As a result,

there are no occurrences of the dse ticks of the corresponding local clock during the execution of the

activity.

To specify this in B-COoL, we define the operator AtomicActivity (Listing 5.3: line 1) that specifies

how time is consumed during the execution of the activities. The correspondence matching selects

instances of dse startActivity and finishActivity by using their context. Thus, it selects the instances

that belong to the same activity. Note that the correspondence matching does not filter instances of

dse ticks, as a result, the selected activities will be atomic respect to all the clocks in the TFSM.
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Figure 5.7: AtomicActivity event relation

Listing 5.3: B-COoL specification of the AtomicActivity operator

1 Operator AtomicActivity (activityStart : ad:: startActivity , activityStop : ad::

finishActivity , timeTicks : tfsm:: ticks )

2 when (activityStart = activityStop );

3 do

4 AtomicExec (activityStart , activityStop , timeTicks)

5 end operator;

To express the coordination rule (Listing 5.3: line 4), we use the event relation AtomicExec which

makes the execution of the activities atomic with respect to the local clock of the TFSM. The event

relation accepts three events as parameters: ticks, startAct and finishAct (see Figure 5.7). While

the event ticks represents the ticking of the local clock, the startAct and finishAct events represent

respectively the starting and finishing of an activity. In canTick state, the event ticks is allowed to

occur, thus making the time elapse. When the startAct event happens, i.e., the activity starts to

execute, the cannotTick state is reached and the event ticks is forbidden to occur, i.e., the time in

the TFSM does not elapse while the activity executes. Only when the event finishAct happens, the

canTick state is reached, and ticks is allowed to occur again. In the operator, we use this relation

to make the execution of the activities atomic, i.e., there is no occurrence of the dse ticks of the

corresponding local clock during the execution of the activity.

In this section, we have used B-COoL to define three coordination operators that deal with both

control and timing aspects of the coordination between the TFSM and Activity languages. Unlike hi-
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erarchical coordination frameworks where the semantics is hidden, these operators explicitly specified

how the coordination is implemented. More precisely, coordination rules explicitly define the seman-

tics of the resulting coordination. Furthermore, we ease the definition of relations by using moccml,

a dedicated language to express constraints between events. Thus, an integrator can vary the seman-

tics of the coordination by only modifying the event relation in the coordination rule. Frameworks

like Ptolemy do not support such a variation without changing the current implementation of the

framework. This means modifying the implementation of a director written in Java, which needs a

good knowledge of the framework. In our approach, we are using a language dedicated to language

integrator experts thus easing the understanding and adaptation of the B-COoL specification. In the

next section, we use these operators to coordinate and execute the models of the surveillance camera

system.

5.4 Use of the Operators in a Surveillance Camera System

In this section, we use the operators previously defined to coordinate the heterogeneous models of a

surveillance camera system. To do so, we propose to use B-FloW to specify how the operators are

applied on the models that compose the surveillance camera system. In the following, we first present

the B-FloW specification, and then we use it together with the Gemoc Coordinated Execution Engine

to execute the system.

To coordinate the surveillance camera system, we use B-FloW to specify how the operators SyncF-

SMEventsAndSignals, StartActivityWhenEnter and AtomicActivity are applied between the different

models. We define a B-FloW specification named CameraSystem (Listing 5.4: line 1) that begins

by importing the B-COoL specification (Listing 5.4: line 2), and then, it specifies the models to be

coordinated (Listing 5.4: line 3 to 6). The specification contains a Flow that defines which operator

is applied and on which models. We describe in turn what operator is applied and what coordination

is generated.

First, the operator SyncFSMEventsAndSignals has to be applied between the activity BatterySensor

and the TFSM CameraEncoderControl (Listing 5.4: line 8). This results in the synchronization of

the corresponding Signal and FSMEvent by relying on theirs names. The application of this operator

results in two instances of the ccsl relation rendezvous between the mse BatteryisHigh:signalOccurs

and BatteryisHigh:occurs; and the mse BatteryisLow:signalOccurs and BatteryisLow:occurs.
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Then, the operator StartActivityWhenEnter has to be applied between the TFSM CameraEncoder-

Control and the activity doJPEG (Listing 5.4: line 9), and between the TFSM and the activity

doJPEG2000 (Listing 5.4: line 10). This results in a synchronization between the entering and leaving

of the states JPEGEncoder and JPEG2000Encoder, and the execution of the activities doJPEG and

doJPEG2000. The application of this operator results in two instances of the moccml relation Ex-

ecuteActivityNonPeemptive between the mse doJPEG:startActivity, doJPEG:finishActivity, JPEGEn-

coder:entering and JPEGEncoder:leaving ; and themse doJPEG2000:startActivity, doJPEG2000:finishActivity,

JPEG2000Encoder:entering and JPEG2000Encoder:leaving.

Finally, to coordinate the time between the TFSM and the activities, the operator AtomicActivity has

to be applied between the TFSM CameraEncoderControl and each activity (Listing 5.4: line 11 and

12). This results in a synchronization between the local clock ms of the TFSM CameraEncoderControl

and the execution of the activities. The application of this operator results in two instances of the moc-

cml relation AtomicActivity between the mse doJPEG2000:startActivity, doJPEG2000:finishActivity

and ms:ticks; and the mse doJPEG:startActivity, doJPEG:finishActivity and ms:ticks.

Listing 5.4: B-FloW specification for the Surveillance Camera System

1 BCOoLFlow CameraSystem

2 ImportBCOoL "TFSMAndActivity.bcool" ;

3 Model BatterySensor "batterysensor.ad"

4 Model CameraEncoderControl "cameraencodercontrol.tfsm"

5 Model doJPEG "doJPEG.ad"

6 Model doJPEG2000 "doJPEG2000.ad"

7 Flow

8 applies SyncFSMEventsAndSignals between (BatterySensor , CameraEncoderControl);

9 applies StartActivityWhenEnter between (CameraEncoderControl , doJPEG);

10 applies StartActivityWhenEnter between (CameraEncoderControl , doJPEG2000);

11 applies AtomicActivity between (CameraEncoderControl , doJPEG);

12 applies AtomicActivity between (CameraEncoderControl , doJPEG2000);

13 end Flow;

The resulting model of coordination is thus composed of six relations, i.e., two ccsl relations and four

moccml relations. In the modeling workbench, we use the B-FloW specification together with the

Gemoc Coordinated Execution Engine to execute the coordinated system. Figure 5.8 illustrates the

coordinated execution of the models. In the figure, four Gemoc execution engines are launched that

correspond with the four models of the surveillance camera system. Also, one coordinated execution

engine is launched that corresponds with the coordination between these models.
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Individual Execution Engines

Coordinated Execution Engine

Next global valid steps 

Coordinated Execution of the 
surveillance camera system

Figure 5.8: Coordinated execution of the models of the surveillance camera system by using the Gemoc
studio

Figure 5.9 illustrates the partial timing output of the execution of the camera. As a result of the

coordination, the mse BatteryisHigh:occurs and BatteryisHigh:signalOccurs are strongly synchronized

(in red in Figure 5.9). When the camera entered into the JPEG2000Encoder state (in magenta in

Figure 5.9), the activity doJPEG2000 executes and the time in the TFSM does not elapse (in cyan in

Figure 5.9). Only after the activity has finished, the time can elapse thus the mse ms:ticks is allowed

to tick. Also, only after the activity has finished the state is allowed to be left. In this example,

the state-space graph of the coordinated system is not finite. Thus, we could not get results on the

scheduling state-space of the coordinated system.

CameraEncoder in 

JPEG2000Encoder state

doJPEG2000 execution doJPEG2000 execution

Figure 5.9: Partial resulting timing output of the surveillance camera system

In this section, we have shown the use of B-FloW to specify how the operators defined in the

previous section are applied between the models of the camera. Then, we used this specification in

the modeling workbench to execute and verify the coordinated system. By relying on ccsl to express
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the coordination, we could provide execution and verification of the coordinated system. We want to

highgligt that in coordination frameworks these tasks are limited since they express the coordination

in a GPL like Java in Ptolemy. The reader can find the complete example in the companion website,

which contains the models together with a detailed procedure to execute and verify them. In addition,

the site includes a video that shows the complete workflow by using the GEMOC studio.

5.5 Conclusion

In this chapter, we have validated the use of B-COoL by defining three operators between the TFSM

and Activity languages. These operators were used to specify three coordination patterns between

these languages. We defined the operator SyncFSMEventsAndSignals that specifies a coordination

between FSMEvents and Signals by relying on their names. We defined this operator by slightly

modifying the running example operator. Then, we specified the operator StartActivityWhenEnter

that specifies a coordination between the entering and leaving of a state and the execution of an

activity. Finally, we defined the operator AtomicActivity to specify how the time is coordinated

between these languages.

We have noted that some of these coordination patterns are common in coordination frameworks,

e.g., Ptolemy, ModHel’X. However, their specification is encoded inside a tool and expressed in a GPL,

thus limiting the customization of the coordination and the validation of the coordinated system.

Conversely, in our approach, operators are explicitly defined by using B-COoL, which eases the

customization of the operators.

We have used these operators to coordinate the heterogeneous models of a surveillance camera system.

To do so, we used B-FloW to specify how the operators are applied between the different models.

Then, in the modeling workbench, we used the B-FloW specification to execute the coordinated

system.

During this thesis, we have defined more operators that can be found in the companion website. For

example, we developed the SyncronizedProduct operator between the TFSM languages [VLDCM15].

This is an operator that coordinates TFSM models by synchronizing FSMEvents. In a more recent

work [CBC+16], we have investigated the use of B-COoL into Capella 3. The Capella modeling

3https://www.polarsys.org/capella/

https://www.polarsys.org/capella/
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workbench is an Eclipse application implementing the ARCADIA 4 method providing both a DSML

and a toolset which is dedicated to guidance, productivity and quality. The Capella DSML aggregates

a set of 20 metamodels and about 400 meta-classes involved in the five engineering phases (aka.

Architecture level) defined by ARCADIA. In this context, B-COoL has been used to define an operator

named ModeEnteringActivateFunctionalChain that coordinates the action of entering and leaving a

mode with the activation of a functionalChain.

In the next chapter, we summarize the most important contributions of this thesis and we propose

various perspective paths that could be a guide to continue this work.

4https://www.polarsys.org/capella/arcadia.html

https://www.polarsys.org/capella/arcadia.html
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Conclusion

In this thesis, we have proposed B-COoL, a dedicated (meta)language that enables language integra-

tors to specify coordination patterns between heterogeneous languages. By relying on this specification

at language level, system designers can automatically generate the coordination between heterogeneous

models. Such a model of coordination can be used to verify and execute the coordinated system. In

the following, we summarize the main findings of this thesis. We finish this chapter by proposing

future works.

6.1 Overview

This thesis has focused on the coordination of heterogeneous behavioral models to provide execution

and verification of the global system behavior. We studied the state-of-art approaches that aim at

getting the global representation of a heterogeneous system, in both structural and behavioral way.

First, we have studied approaches that propose to compose models into a new model. The composi-

tion of models has been automated by looking for correspondences between heterogeneous models, and

then composing them into a new model. We have noted that most of the approaches consider struc-

tural correspondences and only few consider also the behavior of models to find similarities. These

approaches have achieved to automate the composition of models by expressing the composition at

language level. However, these approaches only consider structural models.

Then, we have studied approaches that compose languages to get a new language. Most of these

approaches focus on the composition of the syntax of languages into a new syntax. Only Semantics

81
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Anchoring [CSN05] proposes to compose behavioral semantics. We have determined that these ap-

proaches proposed to model a heterogeneous system by relying on a single language which results from

the composition of other languages.

We have presented a different kind of approaches that propose to coordinate the behavior of models.

They propose to specify the interaction between heterogeneous behavioral models by using a dedicated

language, i.e., Coordination Languages and ADLs. To ease the task of a system designer, ADLs’

community has successfully identified the need of connector types. Thus, a system designer has

only to instantiate and bind connector types as needed by its architecture. Furthermore, in some of

these approaches, the coordination is expressed in a formal language thus providing reasoning about

the coordinated system. We have noted, however, that in coordination languages and ADLs, the

coordination is specified between particular models. With the increasing number and heterogeneity

of the components, the manual coordination of models can quickly become difficult and error prone.

We have determined that, by relying on Coordination Languages and ADLs, a system designer only

captures the solution for one single problem but he does not specify a systematic way to coordinate

models.

Then, we have presented Coordination Frameworks and ad-hoc solutions which identified that the

instantiation and binding of connector types can be a systematic activity the system designer repeats

many times and may consequently be defined as a coordination pattern. Such a pattern is based

on the know-how of the system designer and sometimes on naming or organizational conventions

adopted by the models. These approaches have captured the specification of a behavioral coordination

pattern inside a tool/framework to automate the instantiation and binding of connector types. These

approaches go one step beyond Coordination Languages and ADLs by leveraging on the know-how of a

system designer. However in these approaches, we have noted that the knowledge about how a system

is coordinated is hidden inside a tool, thus limiting reasoning. Moreover, they express the coordination

in a general purpose language thus limiting the verification and validation of the coordinated system.

Based on this state-of-art approaches, we have determined that:

• The specification of coordination patterns between languages is specified at language level;

• The specification of coordination patterns should be done by using a dedicated language;

• The coordination between models should be generated by using a formal language to enable

system designers to verify and validate the coordinated system.
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We have determined that the lack of a systematic way to specify a coordination pattern makes existing

approaches ad-hoc and not flexible. Furthermore, this prevents a wider adoption of this sort of

approaches. To understand how existing tools and frameworks have achieved to capture a given

coordination pattern, we proposed a framework for the specification of coordination patterns. We

have determined three building-blocks:

• A Language Behavioral Interface, which exposes partial information about the syntax and the

behavioral semantics of languages for coordination purpose;

• A Correspondence Rule, which specifies what and when elements from different languages must

be coordinated;

• A Coordination Rule, which specify how the selected elements must be coordinated.

Then, we have used this framework to compare existing approaches. Based on this comparison, we

stated the requirements to make them more flexible and better customizable. More precisely, we

proposed the requirements for a language to specify coordination patterns. These requirements tend

to improve existing approaches in the customization of coordination patterns between heterogeneous

languages.

Based on these requirements, we proposed B-COoL, a dedicated (meta)language to capture coordina-

tion patterns between languages. B-COoL is a particular implementation of the proposed framework.

We based on a language behavioral interface made of event types, i.e., dse. These event types act

as coordination points on the language behavioral semantics. Then, we proposed to specify coordi-

nation patterns by using operators that define a correspondence matching that selects instances of

dse, and a coordination rule that defines how the selected instances of dse must be coordinated.

Using B-COoL, the know-how of a system designer is made explicit, stored and shared in libraries.

Furthermore, such coordination patterns, expressed at the language level, can be applied on particular

models to automatically generate the corresponding coordination model in ccsl language. The use of

the formal ccsl language to express the coordination allowed us to provide execution and verification

of the coordinated system.

We implemented B-COoL as a set of Eclipse plugins integrated into the GEMOC studio. The

studio proposes a language workbench and a modeling workbench. In the language workbench, an

language integrator can develop operators between languages. Then, in the modeling workbench, a
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system designer can use these operators to automate the coordination of models. We have proposed

a dedicated language named B-FloW that allows a system designer to specify what operators are

applied on a set of models. Then, from this specification, a system designer can generate a model of

coordination in ccsl so that the whole system can be executed and verified.

To validate our approach, we have presented the coordination of the heterogeneous models of a surveil-

lance camera system. We modeled the different parts of the system by using the TFSM and Activity

languages. To coordinate these models, we specified in B-COoL three coordination patterns that

we captured by using three operators. Unlike coordination frameworks in which the semantics of the

coordination is hidden, we have explicitly specified these patterns by using a dedicated language. We

used this specification to generate the coordination for the surveillance camera system, and then we

executed the overall system.

6.2 Future Works

B-COoL provides some perspectives to extend and to improve the work carried out in this thesis.

We list the propositions we consider essential to the continuity of this work:

• Extending B-COoL to support the coordination of data: System designers build co-

ordination models to specify how models interact. The interactions between models can rely

on events but also on data, i.e., data-driven coordination. In this case, a model exchanges

data with another model. With B-COoL, we have managed interactions that rely on events,

i.e., control-driven coordination. To support the specification of coordination patterns that in-

volve the exchange of data between models, we have to extend B-COoL to support data driven

coordination. More precisely, we have to add a way to specify when a value of a variable in a

model is carried to a new value in a variable in another model. In B-COoL, such information

should be encoded in a data coordination rule. In addition, the current coordination rule should

be used to synchronize the events associated with the change of the value of a variable. Thus,

the resulting model of coordination would have some ccsl specification but also some code

that represents the exchange of data between models. During the execution of models, such

an exchange of data could be handled by the heterogeneous engine. Thus, a configuration file

should be also generated to tell the engine what and when data from different models must be

exchanged.
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• Generalizing the specification of correspondences by using a dedicated language:

In B-COoL, the correspondence matching can capture implicit and explicit correspondences

between elements of models. Currently, the explicit correspondence is only supported if one

of the metamodel is modified to refer concepts from a different metamodel. To avoid such

modification, we need a language to specify correspondences between concepts from different

languages without modifying the metamodels (e.g., like in megamodels [BJV04]). This is, for

instance, the case of Atlas Model Weaver [DDFV08], a tool that enables to create links between

model elements. In [BBF+06], such links are used for model composition. Once links between

models are established, a model transformation written in ATL can compose the model elements

into a composed model. In our case, these links could be used to identify the elements to be

coordinated. This is interesting, for instance, in the case of allocation in which there is a model

of the hardware, a model of the application and a mapping model that is often generated by

using some heuristic. Such a mapping model contains the links between the application model

and the hardware model that represent the deployment. The mapping model could be the input

for a B-COoL specification to generate the coordination model that represents the deployment

between the hardware model and the platform model.

• Using B-COoL for the synthesis of the orchestrator for Co-Simulation of Functional

Mock-up Units: The analysis of Cyber-Physical Systems (CPS) involves the use of physical

components (for instance described by differential equations evaluated according to the continu-

ous time simulation paradigm) but it also involves the use of cyber components (usually relying

on discrete time or discrete event simulation paradigms). Each language comes with existing

tooling and several simulation tools and techniques are needed for CPS simulation and analysis.

In this context, the Functional Mock-up Interface (FMI) [fmi] is a tool independent standard

to support the co-simulation of dynamic models. The FMI standard provides a well defined

specification and API to integrate heterogeneous simulation components. One key requirement

for Co-Simulation via FMI is to develop a Master Algorithm that orchestrates the steps of Co-

Simulation [fmi14]. For instance, the master algorithm has to control the data exchange and

the time advancement among individual simulations. The FMI standard, however, does not

describe or limit the implementation of the master algorithms. Currently, it is specified each

time a particular system has to be co-simulated, which remains tedious and error prone. An

interesting future work would be to generate such algorithm from a B-COoL specification and

the particular model used. Currently, the control and timing coordination is well managed by
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B-COoL. However, to exploit the data exchange proposed by the FMI standard, it is mandatory

to first extend B-COoL to support data-driven coordination.

• Generalizing the specification of coordination patterns between existing modeling

languages: The development of heterogeneous system is currently done by using different ex-

isting modeling languages like Matlab, SDL or Modelica, which are developed by using very

different technologies. To specify coordination patterns between these languages, we have to

investigate how to add support for existing modeling languages in B-COoL. Currently, to cap-

ture the specification of coordination patterns, we rely on partial information about the syntax

and the behavioral semantics of languages that is contained in the language behavioral interface.

It is thus mandatory that current modeling languages expose part of its syntax and behavioral

semantics. The language behavioral interface may be a standard way to do it. In other words,

modeling languages could provide a language behavioral interface for coordination purpose.
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[CBC+16] Benoit Combemale, Cédric Brun, Joël Champeau, Xavier Crégut, Julien Deantoni, and

Jérome Le Noir. A Tool-Supported Approach for Concurrent Execution of Heteroge-

neous Models. In 8th European Congress on Embedded Real Time Software and Systems

(ERTS 2016), Toulouse, France, 2016. 5.5

[CDB+15] Benoit Combemale, Julien Deantoni, Olivier Barais, Arnaud Blouin, Erwan Bousse,

C’edric Brun, Thomas Degueule, and Didier Vojtisek. A Solution to the TTC’15 Model

Execution Case Using the GEMOC Studio. In 8th Transformation Tool Contest (work-

shop TTC 2015), 2015. 4.2, 4.4

[CDVL+13] Benoit Combemale, Julien Deantoni, Matias Vara Larsen, Fr’ed’eric Mallet, Olivier

Barais, Benoit Baudry, and Robert France. Reifying Concurrency for Executable Meta-

modeling. In SLE, 2013. 3.2.1, 3.2.2, 4.1, 4.2

[CHM+97] Barbara Chapman, Matthew Haines, Piyush Mehrota, Hans Zima, and John

Van Rosendale. Opus: A coordination language for multidisciplinary applications. Sci.

Program., 1997. 2.3.1

[CSN05] Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring in-

frastructure for domain-specific modeling languages. In Proceedings of the 5th ACM

International Conference on Embedded Software, EMSOFT ’05, pages 35–43, New York,

NY, USA, 2005. ACM. 2.2.2, 2.2.2, 2.2.3, 2.4, 6.1

[CSN07] Kai Chen, J. Sztipanovits, and Sandeep Neema. Compositional specification of behav-

ioral semantics. In Design, Automation Test in Europe Conference Exhibition, 2007.

DATE ’07, pages 1–6, 2007. 2.2.2

[CvdBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Concep-

tual model of the globalization for domain-specific languages. In Benoit Combemale,

Betty H.C. Cheng, Robert B. France, Jean-Marc Jézéquel, and Bernhard Rumpe, edi-
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[KHJ06] Jacques Klein, Löıc Hélouët, and Jean-Marc Jézéquel. Semantic-based weaving of sce-

narios. In Robert E. Filman, editor, Proceedings of the 5th International Conference

on Aspect-Oriented Software Development, pages 27–38, Bonn, Germany, March 2006.

ACM. 2.2.1, 2.2.3
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