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Abstract

This thesis explores the use of discriminatively trained deformable contour

models (DCMs) for shape-based segmentation in medical images. We make

contributions in two fronts: in the learning problem, where the model is

trained from a set of annotated images, and in the inference problem, whose

aim is to segment an image given a model. We demonstrate the merit of

our techniques in a large X-Ray image segmentation benchmark, where we

obtain systematic improvements in accuracy and speedups over the current

state-of-the-art.

For learning, we formulate training the DCM scoring function as large-

margin structured prediction and construct a training objective that aims at

giving the highest score to the ground-truth contour configuration. We in-

corporate a loss function adapted to DCM-based structured prediction. In

particular, we consider training with the Mean Contour Distance (MCD)

performance measure. Using this loss function during training amounts to

scoring each candidate contour according to its Mean Contour Distance to

the ground truth configuration. Training DCMs using structured prediction

with the standard zero-one loss already outperforms the current state-of-

the-art method [Seghers et al. 2007] on the considered medical benchmark

[Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that train-

ing with the MCD structured loss further improves over the generic zero-one

loss results by a statistically significant amount.

For inference, we propose efficient solvers adapted to combinatorial prob-

lems with discretized spatial variables. Our contributions are three-fold:

first, we consider inference for loopy graphical models, making no assump-

tion about the underlying graph topology. We use an efficient decomposition-

coordination algorithm to solve the resulting optimization problem: we de-

compose the model’s graph into a set of open, chain-structured graphs. We

employ the Alternating Direction Method of Multipliers (ADMM) to fix the

potential inconsistencies of the individual solutions. Even-though ADMM

is an approximate inference scheme, we show empirically that our imple-

mentation delivers the exact solution for the considered examples. Second,

we accelerate optimization of chain-structured graphical models by using the

Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] coupled

with the pruning techniques developed in [Kokkinos 2011a]. We achieve a

one order of magnitude speedup in average over the state-of-the-art technique

based on Dynamic Programming (DP) coupled with Generalized Distance

Transforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorpo-

rate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an

efficient optimization of the underlying chain structured subproblems. The
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resulting algorithm is naturally adapted to solve the loss-augmented inference

problem in structured prediction learning, and hence is used during training

and inference.

In Appendix A, we consider the case of 3D data and we develop an efficient

method to find the mode of a 3D kernel density distribution. Our algorithm

has guaranteed convergence to the global optimum, and scales logarithmically

in the volume size by virtue of recursively subdividing the search space. We

use this method to rapidly initialize 3D brain tumor segmentation where we

demonstrate substantial acceleration with respect to a standard mean-shift

implementation.

In Appendix B, we describe in more details our extension of the Hierar-

chical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on

chain-structured graphs.

Keywords:
Shape Segmentation, Deformable Contour Models, ADMM, Structured

Prediction, Hierarchical A∗ , Kernel Density Estimation.
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Résumé

Cette thèse explore l’utilisation des modèles de contours déformables pour la

segmentation basée sur la forme des images médicales. Nous apportons des

contributions sur deux fronts: dans le problème de l’apprentissage statistique,

où le modèle est formé à partir d’un ensemble d’images annotées, et le prob-

lème de l’inférence, dont le but est de segmenter une image étant donnée un

modèle. Nous démontrons le mérite de nos techniques sur une grande base

d’images à rayons X, où nous obtenons des améliorations systématiques et des

accélérations par rapport à la méthode de l’état de l’art.

Concernant l’apprentissage, nous formulons la formation de la fonction de

score des modèles de contours déformables en un problème de prédiction struc-

turée à grande marge et construisons une fonction d’apprentissage qui vise à

donner le plus haut score à la configuration vérité-terrain. Nous intégrons

une fonction de perte adaptée à la prédiction structurée pour les modèles

de contours déformables. En particulier, nous considérons l’apprentissage

avec la mesure de performance consistant en la distance moyenne entre

contours, comme une fonction de perte. L’utilisation de cette fonction de

perte au cours de l’apprentissage revient à classer chaque contour candidat

selon sa distance moyenne du contour vérité-terrain. Notre apprentissage

des modèles de contours déformables en utilisant la prédiction structurée

avec la fonction zéro-un de perte surpasse la méthode [Seghers et al. 2007]

de référence sur la base d’images médicales considérée [Shiraishi et al. 2000,

van Ginneken et al. 2006]. Nous démontrons que l’apprentissage avec la fonc-

tion de perte de distance moyenne entre contours améliore encore plus les

résultats produits avec l’apprentissage utilisant la fonction zero-un de perte

et ce d’une quantité statistiquement significative.

Concernant l’inférence, nous proposons des solveurs efficaces et adaptés

aux problèmes combinatoires à variables spatiales discrétisées. Nos contribu-

tions sont triples: d’abord, nous considérons le problème d’inférence pour des

modèles graphiques qui contiennent des boucles, ne faisant aucune hypothèse

sur la topologie du graphe sous-jacent. Nous utilisons un algorithme de

décomposition-coordination efficace pour résoudre le problème d’optimisation

résultant: nous décomposons le graphe du modèle en un ensemble de sous-

graphes en forme de chaines ouvertes. Nous employons la Méthode de di-

rection alternée des multiplicateurs (ADMM) pour réparer les incohérences

des solutions individuelles. Même si ADMM est une méthode d’inférence ap-

proximative, nous montrons empiriquement que notre implémentation fournit

une solution exacte pour les exemples considérés. Deuxièmement, nous ac-

célérons l’optimisation des modèles graphiques en forme de chaîne en utilisant

l’algorithme de recherche hiérarchique A∗ [Felzenszwalb & Mcallester 2007]
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couplé avec les techniques d’élagage développés dans [Kokkinos 2011a]. Nous

réalisons une accélération de 10 fois en moyenne par rapport à l’état de

l’art qui est basé sur la programmation dynamique (DP) couplé avec les

transformées de distances généralisées [Felzenszwalb & Huttenlocher 2004].

Troisièmement, nous intégrons A∗ dans le schéma d’ADMM pour garantir

une optimisation efficace des sous-problèmes en forme de chaine. En outre,

l’algorithme résultant est adapté pour résoudre les problèmes d’inférence aug-

mentée par une fonction de perte qui se pose lors de l’apprentissage de prédic-

tion des structure, et est donc utilisé lors de l’apprentissage et de l’inférence.

Dans l’annexe A, nous considérons le cas des images 3D et nous dévelop-

pons une méthode efficace pour trouver le mode d’une distribution à noyau

de densité en 3D. Notre algorithme a une convergence garanti vers l’optimum

global, et une complexité logarithmique en fonction de la taille du volume

grâce à la subdivision récursive l’espace de recherche. Nous utilisons cette

méthode pour initialiser rapidement la segmentation 3D de tumeurs cérébrales

où nous démontrons une accélération substantielle par rapport à une implé-

mentation standard de l’algorithme mean shift.

Dans l’annexe B, nous décrivons plus en détails notre implémentation de

l’algorithme A∗ hiérarchique de [Felzenszwalb & Mcallester 2007].
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1.1 Context and Motivation

The automatic localization of shapes in medical images is of paramount

importance in a host of medical image analysis applications, in-

volving anatomical object segmentation [van Ginneken et al. 2002,

Seghers et al. 2007, Heimann & Meinzer 2009], tracking [Paragios 2003],

registration [Ellingsen et al. 2010] and atlas building [Durrleman et al. 2012].

These computer-aided tasks are valuable for physicians as they help to

diagnose diseases and avoid tedious manual tasks. For instance the seg-

mentation of the lung fields and the heart from a chest radiograph enables

radiologists to measure the cardiothoratic ratio -shown in Figure 1.1- for

cardiomegaly diagnosis [Nakamori et al. 1991, Ishida et al. 2005]. In this

case, the segmentation is cast as finding the outer contour of each object of

interest.

Shape extraction in medical images is challenging. Images produced by

medical image acquisition systems -such as X-rays, Computed Tomography,

Magnetic Resonance Imaging and ultrasounds- often suffer from low con-

trast, missing boundaries and non-discriminative object appearance. More-

over, anatomical objects exhibit high variability with respect to their geom-

etry and appearance; large geometrical and photometrical differences exist

between different instances of the same structure. Popular methods in med-

ical image shape segmentation use prior knowledge about the object shape
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(a) (b)

Figure 1.1: (a) Delineation of anatomical structures in a Posterior Anterior

chest radiograph. (b) The cardiothoratic ratio measures the relative heart size

and its computation helps to diagnose cardiomegaly.

to be segmented. This expertise is acquired from previously seen objects and

expressed through a model. The model describes a class of statistical relation-

ships between the image and the shape that is extracted. A set of parameters

characterize each member of this class. We refer to learning as the task of

estimating the parameters that accurately reflect the relationship between a

set of training images and a shape model. In inference we consider a new

image and we rely on the learned model to extract the shape.

In model-based approaches, a common way to represent a shape is through

a set of points known as landmarks; for instance, the continuous contours

defining a shape can be discretized into a set of sample points. The con-

nectivity between landmarks dictates how to connect the points to form the

shape. The task of shape localization is formulated as recovering a set of

K anatomical landmarks: X = {x1, . . . , xK}, where every landmark is a 2D

position vector xi = (hi, vi).

1.2 Prior Art

Deformable contour models (DCMs) constitute a main workhorse for de-

tecting shapes from images - starting from the seminal works of Snakes

[Kass et al. 1987], Deformable Templates [Yuille et al. 1992] and Active

Shape/Appearance Models [Cootes et al. 1998, Cootes et al. 1995], DCMs

have been thriving in problems involving shapes for more than two decades.
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Figure 1.2: Example of shape segmentation in medical image analysis; this

is the main application that we consider in this thesis. First image: a Pos-

terior Anterior chest radiograph. Next images: The desired output provided

by experts: a set of landmark positions strung together along the contour

delineating the shape of an anatomical structure e.g. the right lung, the left

lung, the heart, the right clavicle, the left clavicle.

One of the most desirable properties of DCMs is that they allow to cast

tasks such as segmentation or tracking in terms of optimization by incor-

porating the desirable properties of the envisioned solution in the form of

a merit function. One can then optimize this function with off-the-shelf

techniques, such as Dynamic Programming [Geiger et al. 1995], Gradient

Descent [Cootes et al. 1995], or more dedicated techniques such as curve

evolution with Level Sets [Malladi et al. 1995] or Finite Element Models

[Cohen & Cohen 1993].

Over the previous decades substantial research effort has been de-

voted to enhancing the geometrical terms in DCMs, including their for-

mulation in intrinsic geometric terms [Caselles et al. 1997], the incorpora-

tion of more sophisticated contour regularization terms [Kimia et al. 2003,

Rochery et al. 2006, Sundaramoorthi et al. 2008] and the introduction of

shape priors [Leventon et al. 2000, Rousson & Paragios 2002, Cremers 2006,

Charpiat et al. 2007] in curve evolution.

We can distinguish two broad families of shape models in the modern

literature about DCMs, Global Models akin to Active Shape Models and Active

Appearance Models, and Local Models akin to Deformable Part Models. In
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a b c

Figure 1.3: An ASM model used in [Boussaid et al. 2011] for the proximal

femur 3D reconstruction. (a) The first two eigenmodes of variation of ASM.

(b) and (c) Segmentation results by projecting the 3D solution on 2D X-ray

views.

the following we briefly review these two methods.

1.2.1 Global Models

1.2.1.1 Active Shape Models

Active Shape Models [Cootes & Taylor 1992, Cootes et al. 1995] have become

increasingly popular since their introduction by [Cootes & Taylor 1992];

several approaches have been proposed to improve their performance

[van Ginneken et al. 2002, van Assen et al. 2003, Langs et al. 2006,

Li et al. 2004, de Bruijne et al. 2003, Abi-Nahed et al. 2006,

Chui & Rangarajan 2003]; in the following, we briefly review the main

learning and inference techniques used for ASMs.

Learning

An ASM is composed of two separate models: a global shape model, and

a local appearance model. We start by describing learning the global shape

model.

We assume that we are provided with a set of training shapes D =

{Xi}, i = 1 . . . N . We recall that each shape is represented by a set of K

anatomical landmarks: X = {x1, . . . , xK}, where every landmark is a 2D po-

sition vector xi = (hi, vi). We assume as well that the training shapes have

been rigidly aligned in advance to the same referential in order to filter out

translation, rotation and scale change effects, using e.g. Procrustes analysis.

As such shape variability is exclusively due to non-rigid deformations.

ASMs are Statistical models and aim at describing the variation within a

class of objects. To this end ASMs assume that the data follows a Gaussian

distribution Pr(X, Σ). We estimate the mean shape X and the covariance
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matrix Σ by using our training set D and compute:

XD =
1

N

N∑

i=1

Xi, (1.1)

ΣD =
1

N − 1

N∑

i=1

(Xi − X)(Xi − X)T . (1.2)

Next, ASMs reduce the dimensionality of the data and assume that the data

can then be described as lying on the span of a linear subspace. To this

end, ASMs apply principal component analysis (PCA) on ΣD. This allows to

approximate this covariance matrix ΣD through a set of retained eigenvectors

ei corresponding to largest eigenvalues λi. Namely we write:

ΣD ≈ ET diag(Λ)E, (1.3)

where Λ is the vector of retained eigenvalues λi and E is the corresponding

set of retained eigenvectors ei stored in columns. Hence each shape lying in

the subspace of solutions can be written in the new basis composed of the

retained eigenvectors as:

X = XD +
m∑

i=1

wiei, (1.4)

where m is set such that a large part of the trace of ΣD is retained. The

coordinates of X in the new basis are {wi}, i = 1 . . . m ≤ N and each coordi-

nate is often constrained to belong to interval [−3
√

λi, 3
√

λi], where λi is the

eigenvalue corresponding to the eigenvector ei. This can be interpreted as ro-

tating the data in the coordinate axes to the directions of maximum variance,

retaining only the principal modes of variations of the shape with respect to

the mean shape. An example of the principal modes of variation applied in

the case of a population of femoral bones -represented by 3D meshes- is shown

in Figure 1.3.

The shape model is augmented with knowledge about the local appear-

ance around each landmark. An appearance model is associated to each

landmark k and learned from annotated data Dk = {Ii, xk}, where Ii is a

training image and xk is the location of the landmark. Since ASMs are mod-

ular regarding the shape and appearance models, several appearance mod-

els were introduced to improve the original appearance model introduced by

[Cootes & Taylor 1992]. In the appearance model by [Cootes & Taylor 1992]

intensity profiles, centered in the landmark location, and orthogonal to the

contour were extracted from training data. Then mean profiles and covariance

matrices were then computed. The quality of a new profile was assessed by
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the Mahalanobis distance. In [Caselles et al. 1997, Rousson & Paragios 2002]

profiles of derivatives were used instead and these different profiles were nor-

malized. In [van Assen et al. 2003] image patches instead of pixel profiles were

employed. Richer landmark- specific local terms were henceforth introduced.

Gabor wavelets were used in [Jiao et al. 2003] and the resulting feature dis-

tributions were modeled using Gaussian mixture models. Steerable features

[Freeman & Adelson 1991] were used in [Langs et al. 2006] to describe the ob-

ject appearance. The Active Shape Model with Optimal features (ASMOF)

was proposed by [van Ginneken et al. 2002]; in this method a given image

was fed to a bank of multiscale Gaussian derivative filters. Then, first sta-

tistical moments were extracted from local histograms in the filtered images.

These moments represented the considered features. An optimal set of features

per landmark was then extracted using a forward-backward feature selection

scheme.

The advent of machine learning techniques allowed the use of landmark

classifers/detectors to express the appearance terms. For instance, a K-

nearest neighbors (KNN) classifier was proposed in [de Bruijne et al. 2003]

to evaluate the probability of a given landmark profile, while the Adaboost

[Freund & Schapire 1997] algorithm was used in [Li et al. 2004].

Inference

In inference a shape is fitted to a new image by searching for the opti-

mal coordinates {w∗
i } that define the desired shape instance X∗ =

∑m
i=1 w∗

i ei

with respect to image features. The original inference algorithm proposed

by [Cootes & Taylor 1992] is an iterative algorithm initialized with the mean

shape X. At each iteration, the landmark points are updated using the local

appearance models and then the shape model is fitted to the updated target

points while being regularly projected into the subspace of valid model shapes.

This is repeated until a convergence criterion is met. This method can be in-

terpreted a gradient descent and therefore does not guarantee convergence to

the globally optimal solution. Other approaches [de Bruijne & Nielsen 2004]

reformulate the task as a maximum likelihood problem and optimize it using

particle filtering [Isard & Blake 1998]. In [Abi-Nahed et al. 2006] a set of can-

didate points for each landmark is extracted from the image; a point matching

algorithm [Chui & Rangarajan 2003] is then used to establish the best corre-

spondences between a legal shape instance and the pool of candidates. In

[Boussaid et al. 2011] a cost function is formulated based on the geodesic ac-

tive regions criterion used in [Varshney et al. 2009] and is optimized with the

Downhill simplex [Lewis et al. 2007] method.
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Figure 1.4: Illustration of AAMs from [Prince 2012] adapted from

[Stegmann 2002]. a) The shape is parameterized using a subspace model.

b) The intensity values for a fixed shape are parameterized using a different

subspace model. c) The subspace models are connected in that the weight-

ings of the basis functions in each model are always the same. In this way

correlations between shape and texture are described.

1.2.1.2 Active Appearance Models

As with ASMs, an Active Appearance Model [Cootes et al. 2001,

Torre & Black 2003, Matthews & Baker 2004] is also based on PCA, but

builds an integrated model combining shape and appearance. In the following

we briefly review the learning and inference techniques proposed for AAMs.

Learning

We assume that we are provided with a set of training images D =

{(Ii, Xi)}, i = 1 . . . N . In addition to modeling the shape variations through

PCA akin to ASM, AAM models also the texture of the object and its varia-

tions. To this end, AAM starts by warping the training images Ii such that

the corresponding shape Xi is transformed onto the mean shape X. Each

region inside image Ii is represented then by a texture vector. Applying PCA

on the texture vectors allows to build an appearance model such that any

texture τ can be written as:

τ = τ +
m′

∑

i=1

w′
ie

′
i
, (1.5)

where τ is the mean normalized texture vector, e′
i
are the eigenvectors and w′

i
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are coordinates of the texture τ in this eigenbasis. Each training object can

now be described by concatenating in a single vector Wi its shape coordinates

in Equation 1.4 and texture coordinates in Equation 1.5. A PCA is applied on

Wi to yield an integrated model where the coordinate vector C of an object

{X, τ}, controls both shape and texture variations; we write:

X = X + ΦXC (1.6)

τ = τ + Φτ C, (1.7)

where ΦX and Φτ are the resulting eigenvectors. To obtain a new synthesized

image, the generated texture τ is warped onto the generated geometry X. An

example of AAMs application to face objects is shown in Figure 1.4

Several variations on the standard AAM scheme training exist. In

[Stegmann et al. 2001] the intensity information that lies outside the ob-

ject is added to intensities inside the object when forming the texture vec-

tors. In [van Ginneken et al. 2006] intensities sampled along the contour

normals at each landmark point are considered in the texture vectors. In

[De la Torre & Black 2001], a flexible AAM for faces is built; a face is repre-

sented as a set of fixed shape regions which can move independently. AAMs

have been besides successfully extended to incorporate 3D information; in

[Blanz & Vetter 1999, de La Gorce et al. 2011] 3D models of face/hand are

trained and used to generate new 2D views. These 3D AAMs have shown

ability to fit 2D images and reason about complicated geometric structure

using global information about the shape and appearance of the object of

interest.

Inference

Given a new image I, the task is to find the optimal parameter vector C

such that the synthesized image I(C) resembles the texture image τI extracted

from image I. We recall that the parameter vector C characterizes a shape

Xm and a texture τm. Tis shape Xm is used to extract the texture τI from the

image I. To quantify the discrepancy between the two textures, a distance

D(I, C) is expressed as:

D(I, C) = ‖τm(C) − τI‖2 (1.8)

The goal is then to search for the parameter vector C⋆ that minimizes this

distance. To minimize this function, several approaches -that revolve around

gradient descent- have been proposed. [Cootes et al. 2001] use training data

to acquire prior knowledge about the gradient using numeric differentiation.

[Donner et al. 2006] use the canonical correlation analysis algorithm instead of

numeric differentiation. The authors of [Matthews & Baker 2004] introduce a

computationally efficient analytical Quasi-Newton algorithm. Alternative er-

ror measurements to Equation 1.8 are also proposed in [Stegmann et al. 2001,
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(a) (b)

Figure 1.5: Examples of application of DPMs to object detection from

[Felzenszwalb et al. 2010]; we show an example of detecting an object be-

longing to ‘bike’ category. The blue boxes show the part detection results,

while the red bounding box localizes the bike in the image.

van Ginneken et al. 2006] while an alternative search method is described in

[Beichel et al. 2005] to improve robustness of AAMs.

1.2.2 Local Models

Currently, Deformable Part Models (DPMs, or ‘pictorial structures’

[Fischler & Elschlager 1973]) are becoming ubiquitous in computer vision, and

are being used in a broad range of high-level tasks, including object detec-

tion [Felzenszwalb & Huttenlocher 2005, Felzenszwalb et al. 2010], pose esti-

mation [Andriluka et al. 2012, Sapp et al. 2010, Sapp et al. 2011a] and facial

landmark localization [Zhu & Ramanan 2012]. DPMs consider an object as a

set of rigid components -corresponding to visual parts (e.g eyes, nose, torso,

wheel)- that are linked together through non-rigid connections. An object

deforms when its parts change their relative positions. Hence an object in an

image is represented by parts Pi that are arranged in a deformable configura-

tion.

Each part describes an object’s local photometric appearance, and the

whole configuration encodes the global geometric layout. We represent a part

Pi by its 2D centroid coordinate xi, where every xi is described by a 2D

position vector xi = (hi, vi); we denote vectors with boldface letters and will

alternate between the vector notation x and the horizontal/vertical notation

(h, v) based on convenience. A score function UI,i(xi) is used to measures how

well a part Pi placed at location xi matches to image data.

The geometric layout between parts is expressed by pairwise edges

(Pi, Pj) ∈ E linking these parts into a global structure, where E is the set

of edges between parts. Pairwise terms Pi,j(xi, xj) between parts Pi, Pj mea-
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Figure 1.6: A pictorial structure model for a face as introduced by

[Fischler & Elschlager 1973]. The mass-spring like terms between visual parts

(eyes, noses, mouth, hair) encode geometric constraints between these parts.

sure the deformation between the difference vector xj −xj and a corresponding

precomputed geometrical configuration vector µ(Pi, Pj) for each (Pi, Pj) ∈ E ,

where E dictates the connectivity between parts.

The location of an object is found in the image by maximizing the corre-

sponding merit function which writes:

SI(X) =
K∑

i=1

UI,i(xi) +
∑

i,j∈E
Pi,j(xi, xj), (1.9)

where X = {x1, . . . , xK} is the object represented by the centroids xi of its

parts Pi.

We now turn to specifying the form of the functions UI,i and Pi,j and the

edge set E in Equation 1.9.

Unary terms:

The unary terms capture the local fidelity of the image obser-

vations at xi to a part-specific appearance model. Several works

[Felzenszwalb & Huttenlocher 2005, Zhu & Ramanan 2012] in DPMs express

this appearance model Ui in terms of an inner product between a weight vector

ui and image features extracted around xi:

UI,i(xi) = 〈ui, fI(xi)〉, (1.10)

where fI(xi) : R2 → RD is a mapping from every image coordinates to D-

dimensional features; this mapping is defined over image pixel.

One important ingredient to the success of DPMs in computer vision is

the use of local feature descriptors to describe the appearance of the model
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parts. In order to describe image patches representing the parts -in a man-

ner that is invariant to common transformations (e.g. illumination)- these

descriptors rely on histograms of image gradients. A rich line of research

has been carried in the computer vision field towards building informative,

discriminative and efficient local feature descriptors. These works include

HOG [Dalal & Triggs 2005], SIFT [Lowe 2004], SURF [Bay et al. 2008], SID

[Kokkinos & Yuille 2008], PCA-SIFT [Ke & Sukthankar 2004] and GLOH

[Mikolajczyk & Schmid 2005] descriptors.

Many of those descriptors descriptors were first introduced to represent

sparse interest points. but recent approaches compute descriptors for every

pixel in the image such as Dense SIFT (DSIFT) [Fulkerson et al. 2008] and

Daisy [Tola et al. 2008] and enable therefore their use as a generic low-level

image representation on a par with filter banks.

Pairwise terms:

The pairwise term Pi,j(xi, xj) constrains the location xi = (hi, vi) of part

Pi with respect to its neighbor’s location xj = (hj, vj) with a quadratic ex-

pression of the form:

Pi,j(xi, xj)=− (xj −xi−µi,j)
T

Ci,j (xj − xi − µi,j) , (1.11)

where Ci,j = diag(νi, ηi) is the precision matrix and µi,j = (h̄, v̄)T is the

nominal displacement between xi and xj. The quadratic term in Equation 1.11

is maximal when the displacement between xi, xj is equal to its nominal value,

µi,j, and decreases for any deviation from it. This can be interpreted as the

log-likelihood of a configuration xi, xj under a Normal distribution with mean

µi,j and covariance Σ = C−1
i,j . Constraining the concentration matrix to be

diagonal, Ci = diag(νi, ηi), allows us to write the pairwise term as a function

separable in h and v:

Pi,j(xi, xj) = −(hj − hi − h̄)2νi − (vj − vi − v̄)2ηi. (1.12)

Pi,j(xi, xj) = 〈vi,j, p(xi, xj)〉, where (1.13)

vi,j = (νi, ηj), (1.14)

p(xi, xj) = (−(hj − hi − h̄)2,−(vj −vi − v̄)2), (1.15)

where we can write the pairwise terms as the inner product between a weight

and a feature vector.

Graph topology:

In the object detection system with DPMs of [Felzenszwalb et al. 2010],

the object is modeled through a star-structured deformable part model de-

fined by a coarse root component that covers the entire object and higher

resolution part components that cover smaller parts of the object. An ex-

ample for ‘bike’ object is shown in Figure 1.5. This delivers state-of-the-art
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results [Felzenszwalb et al. 2010] in object detection challenging benchmarks

and become a standard in object recognition research.

For human body pose estimation known -also as articulated models, as

shown in Figure 1.7- the used model decomposes a person into body parts (e.g.

torso, arms, legs) and the pairwise relations can encode kinematic constraints.

The resulting model has a tree-structure, as shown in Figure 1.7.

A tree-shaped model is also used for face detection

[Felzenszwalb & Huttenlocher 2005]; a root filter captures the face ap-

pearance in a coarse resolution while the part filters capture details such as

eyes, nose and mouth.

Figure 1.7: Pictorial structures for human body pose estima-

tion. Left: qualitative result produced by pictorial structures from

[Felzenszwalb & Huttenlocher 2000]. Right: Pictorial structure model of

[Felzenszwalb & Huttenlocher 2000] for pose estimation as illustrated by

[Nowozin & Lampert 2011].

Inference

Given an image I, the task is to find the optimal configuration X∗
I that

maximizes Equation 1.9, meaning:

X∗
I = argmax

X

SI(X, w). (1.16)

Performing inference efficiently on arbitrary DPMs can be challenging, since

this involves a combinatorial problem involving a large label space (con-

sisting of discretized 2D positions). To ensure fast computation, cur-

rent works [Zhu & Ramanan 2012, Andriluka et al. 2012, Sapp et al. 2010,

Sapp et al. 2011a] make the assumption that the structure of the model has
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the form of a star -as for object and face detection shown in Figure 1.5- or a

tree -as for pose estimation shown in Figure 1.7.

As such, The Max-Product algorithm [Felzenszwalb & Zabih 2011] can be

used to recover the globally optimal solution in a time that is quadratic

in the number of pixels. Constraining the model furthermore to use

separable quadratic pairwise terms allows to couple DP with the Gen-

eralized Distance Transforms (GDTs) [Felzenszwalb & Huttenlocher 2004,

Felzenszwalb & Huttenlocher 2005]. This reduces the complexity to be lin-

ear in the number of pixels.

Learning

Learning in DPMs involves estimating the parameters of each appearance

model UI,i and learning the parameters Ci,j and µi,j of the pairwise terms Pi,j

expressed in Equation 1.11. Other works [Felzenszwalb & Huttenlocher 2005,

Besbes & Paragios 2011] aim also at learning the dependencies between parts

yielding the structure of the model.

If the appearance models are expressed in terms of an inner product as

written in Equation 1.10, a linear classifier can be learned to estimate optimal

parameter vector ui. This is done using linear SVMs in [Dalal & Triggs 2005].

Adaboost is used in [Besbes & Paragios 2011] to learn the appearance models.

In [Felzenszwalb & Huttenlocher 2005], a Bayesian formulation of the problem

is introduced. A maximum likelihood method is used to learn the appearance

parameters as well as the optimal tree structure that best explains the data.

In [Barbu & Gramajo 2014] an accurate SVM detector is used and combined

with an efficient feature selection method.

The advent of structured prediction learning techniques, allows training

all model parameters discriminatively using max-margin Support Vector Ma-

chines. In particular, we can see from Equation 1.13 that the pairwise terms

are written as the inner product between a weight and a feature vector, and

given that the unary terms are also inner products between weights and fea-

tures, it follows that Equation 1.9 can be written as:

SI(X, w) = 〈w, hI(X)〉, where (1.17)

w = (ui, vi,j) hI(X) = (fI(xi), p(xi, xj), i, j ∈ E (1.18)

In the presence of ground truth annotation where the positions

of the object parts are known, the training results in a convex op-

timization problem which can be accurately solved with Structural

SVMs as in [Zhu & Ramanan 2012, Andriluka et al. 2012, Sapp et al. 2010,

Sapp et al. 2011a]. The Latent SVMs variant aims at training DPMs while

the positions of the object parts in the training set are not known as in

[Felzenszwalb et al. 2010, Kumar et al. 2011]. However, the resulting opti-
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(a) (b)

Figure 1.8: A DPM as used by [Potesil et al. 2010, Potesil et al. 2011] for

localizing anatomical landmarks in 3D CT volumes. (a) CT of the upper-

body. (b) The constraints between parts form a tree-structured graphical

model.

mization problem in not anymore convex and hence the solutions can be only

locally optimal.

1.2.2.1 Deformable Part Models in Medical Image Analysis

The success of DPMs in a number of computer vision applications have re-

sulted in their use for organ detection [Potesil et al. 2010, Potesil et al. 2011,

Schmidt et al. 2007, Besbes & Paragios 2011, Alomari et al. 2011,

Potesil et al. 2014].

Unlike object detection where deformations are treated as a hurdle, that

must be done away with, in order to achieve robust detection, the setting

is different in medical imaging where it is typically known a priori that an

object (anatomical structure) is present in the image, and the task is to es-

timate the exact values of the deformation that brings the organs in cor-

respondence with a template. In this case a proper modeling of deforma-

tions is needed not to discount variations, but rather to reveal them. This

is true also for other tasks where shape modeling is a priority, e.g. in face

registration [Saragih & Göcke 2007, Amberg & Vetter 2011] and human pose

estimation [Andriluka et al. 2012, Sapp et al. 2010, Sapp et al. 2011a] where

accurate body part estimation is the main goal.

In [Potesil et al. 2010, Potesil et al. 2011] anatomical landmarks in 3D CT

volumes are detected in a way similar to body pose estimation as shown in
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(a) (b)

Figure 1.9: (a) Results from [Alomari et al. 2011]: a DPM is used to

localize lumbar discs from MR radiographs. Unsuccessful localization is

shown in red. Successful localization is shown in green. (b) Results from

[Schmidt et al. 2007]: a DPM is used to locate the human vertebral column

and to label the intervertebral disks in MR images of total spine.

Figure 1.8; the appearance of landmarks is modeled through the statistics

of 3D patchs around them, learned through PCA. The constraints between

parts are modeled so as to form a tree-structured graphical model which allows

the authors to use dynamic programming for inference. The model involves

several free parameters that are set separately by hand.

In [Schmidt et al. 2007], intervertebral disks in MR images of total spine

are localized. The local part detectors are based on Randomized Classification

Trees to provide candidate locations to the inference algorithm. A series of

experiments were necessary to estimate the parameters of these classifiers

(number of trees, tree depth, number of candidate points) that determine the

detection accuracy. Despite the arbitrary structure of the graphical model,

the authors apply A∗ algorithm on a tree-structured subgraph of the model in

order to estimate an upper bound on the optimal solution, which is however

not guaranteed to deliver optimal solutions.

The minimal intensity and cost path (MISCP) algorithm

[Seghers et al. 2007], shown in Figure 1.10 is a similar inference algo-

rithm to circumvent loops in the graph. The authors delineate the shape of

anatomical structures in chest radiographs by localizing a set of landmarks

strung together to form a closed contour. When it comes to inference,

the authors omit one of the problem constraints so as to apply dynamic

programming to an open chain structured graph.
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Figure 1.10: Illustration of the MISCP algorithm of [Seghers et al. 2007] for

the segmentation of an example chest radiograph. A manually delineated

left lung with n = 14 landmarks is shown in (a). The search regions for 3

landmarks are shown in (b). Evaluating the unary terms at each pixel results

in the score images (c), (d), and (e). The 20 best scoring locations are marked

in (f). Results of the minimal cost path fitting with shape knowledge ignored

and shape cost incorporated are shown in (g) and (h), respectively.

[Besbes & Paragios 2011] consider the same segmentation problem and

build landmark detectors through training an Adaboost classifier for each

landmark. They consider convolution-based filters shown in Figure 1.11 as

appearance features. The structure of the graph is estimated through man-

ifold learning and unsupervised clustering. The sequential tree-reweighted

message passing algorithm (TRW-S) [Kolmogorov 2006] is used for approxi-

mate inference.

Overall, we retain the following observations regarding the use of DPMs

in medical image analysis: (i) Local feature descriptors (e.g. SIFT, HOG) are

not commonly considered as appearance features despite their superiority in

performance over convolution based features, as proven in a series of computer

vision applications. (ii) The learning of model parameters is done in multiple

stages through training point detectors at a first stage, and estimating several

parameters separately through trial and error experiments. (iii) Only a subset

of candidate solutions are considered -promoted by the point detectors- before

running the inference algorithm. (iv) The topology of the model is restricted

to a chain- or tree- structured graph to allow the use of DP for inference. (v)
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Figure 1.11: Features images in [Besbes & Paragios 2011] using a filter bank.

Derivatives up to order 2 of the image are computed after applying Gaussian

filters, to form the feature images. Then, image patches (in red) are extracted

around a given position to form a feature vector.

The used inference algorithms are relatively slow regarding their complexity

in the number of pixels/voxels.

1.2.3 Global vs Local Models

Global models (ASMs/AAMs) exhibit a number of advantages: (i) they are

generative in the sense that they allow to synthesize new shapes/images; (ii)

they are compact because they describe deformations in terms of few param-

eters; (iii) they don’t need negatives in their training; (iv) AAMs still provide

state-of-the-art results for many application such as in [Blanz & Vetter 1999].

However, one of their main shortcomings is that the inference is prone

to find a solution which is only locally optimal. Therefore, a sufficiently

accurate initialization needs to be provided for the scheme to converge to

the correct shape. Due to the use of discrete optimization algorithms such

as Max-Product, inference in a number of classes of local models reaches

globally optimal solutions, alleviating the need for initialization. Moreover,

local models allow to the training in an end-to-end manner as enabled with

structured prediction learning, which is not obvious to do with global models.

In [Seghers et al. 2007], the authors empirically evaluated the performance

of an ASM and a DPM on the same benchmark that we consider in our work,



18 Chapter 1. Introduction

Figure 1.12: Our graphical model’s topology reflects the placement of multiple

organs corresponding to a patient’s heart, lungs, and clavicles. In the detail

(right) we are showing in black the edges used to connect the left clavicle and

the left lung, as well as the edge that makes the lung contour closed.

and they showed a substantial improvement in performance in favors of DPMs.

1.3 Our Work at a Glance

Our work lies within the scope of local models; we consider DCMs

then as a particular instance of DPMs as in [Besbes & Paragios 2011,

Seghers et al. 2007] to use to find anatomical structures in medical images.

Since we use closed contours, by-product this delivers a segmentation of

anatomical structures in the medical image. Specifically, we focus on segmen-

tation of lung, heart and clavicle in chest radiographs as shown in Figure 1.2.

We use the DPMs machinery to improve segmentation accuracy and assess our

results on the publicly available Segmentation in Chest Radiographs (SCR)

benchmark [Shiraishi et al. 2000].

Our contributions are as follows: in Chapter 2 we revisit training

DPMs and present learning techniques to automate the construction of our

DCMs using ground-truth annotated data. Specifically, We rely on re-

cent advances on structured prediction learning [Nowozin & Lampert 2011,

Joachims et al. 2009] to estimate all of our model parameters jointly. Rather

that aiming at detection accuracy as in object detection applications, our

goal is to produce anatomical structure segmentation as close as possible to

the ground truth annotation. To this end, we design a loss function to tune

our model’s performance according to the criteria used in medical image seg-

mentation. By using the Mean Contour Distance (MCD) as a structured

loss during training, we obtain clear test-time performance gains over the

standard zero one loss. Training our model with zero-one loss already outper-

forms the state of the art technique [Seghers et al. 2007] and was published

in [Boussaid et al. 2014]. The use of MCD loss further improves the results



1.3. Our Work at a Glance 19

and was published in [Boussaid & Kokkinos 2014]. Furthermore, we explore

different options for constructing our model. Namely, we experiment with the

gains that we obtain with richer graph topologies that contains loops, different

loss functions and with several state-of-the-art dense local features, including

Daisy features [Tola et al. 2008], dense SIFT features [Fulkerson et al. 2008],

as well as a multi-scale convolution baseline. We verify that the best results

are obtained with rich graph topologies. These advances were only possible

because our work on inference, where we deal with efficient inference with

loopy graphs.

Chapter 3 handles graphs with arbitrary topologies and proposes an infer-

ence algorithm for them. To this end, we decompose the model’s graph into a

set of open, chain-structured graphs each of which can be efficiently optimized

exactly. This results in separate maximization problems but with potential

inconsistencies of the individual solutions. We use the Alternating Direc-

tion Method of Multipliers (ADMM) [Boyd et al. 2011, Martins et al. 2011a]

to fix these potential inconsistencies and show that ADMM yields substan-

tially faster convergence than plain Dual Decomposition-based methods. This

inference algorithm was published in [Boussaid & Kokkinos 2014] and is de-

scribed in Figure 1.14. This algorithm is further accelerated in Chapter 4

by introducing an efficient approach for solving the subproblems that arise in

ADMM decomposition.

In Chapter 4 we consider a simple topology for our model corre-

sponding to an open chain-structured graphical model, and we investi-

gate methods to accelerate the resulting inference problem. Our first ap-

proach is to implement a Dynamic Programming algorithm accelerated with

Generalized Distance Transforms as in [Felzenszwalb & Huttenlocher 2004,

Felzenszwalb & Huttenlocher 2005]. This results in a linear time inference

algorithm that we consider as our baseline. We then capitalize on recent

approaches that solve star-shaped graph optimization in a time practically

logarithmic in the number of pixels through a coarse-to-fine approach. We

adapt this method to chain structured graphs and integrate it in the Hier-

archical A∗ Lightest Derivation (HA∗LD ) [Felzenszwalb & Mcallester 2007]

architecture. This results in an algorithm that is 210 times faster in average

than its state-of-the-art counterpart, on the considered database.

All the proposed algorithms are evaluated in a large X-Ray multi-organ

image segmentation benchmark, while each of the contributions demonstrate

systematic improvements over the current state-of-the-art.

In appendix A, we consider the case of 3D data and we develop an efficient

method to find the mode of a 3D kernel density distribution. Our algorithm

has guaranteed convergence to the global optimum, and scales logarithmically

in the volume size by virtue of recursively subdividing the search space. We
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Figure 1.13: Illustration of our DPM for shape based segmentation of the right

lung. Our graphical model combines per-landmark local appearance terms and

pairwise geometric terms. The unary terms capture the local fidelity of the

image features based on histogram of gradients at xi to a landmark specific

appearance model. The pairwise terms constrains the position of each two

consecutive landmarks xi and xj.

use this method to rapidly initialize 3D brain tumor segmentation where we

demonstrate substantial acceleration with respect to a standard mean-shift

implementation. This work was published in [Boussaid et al. 2013].
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Figure 1.14: Illustration of our inference algorithm in

[Boussaid & Kokkinos 2014]. First column: the graph is decomposed

into a set of chain structured-subgraphs, each of which is optimized with

Dynamic Programming. Second column: inference illustration for the first

subgraph; for each landmark, we show its unary term score over pixel

locations, and the belief computed for the landmark. The belief is more

localized than the unary terms.
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2.1 Introduction

In this Chapter we learn the merit function being optimized so as to improve

the performance of Deformable Contour Models (DCMs). We use annotated

data to estimate the optimal model parameters. This machine learning ap-

proach allows us to improve shape localization accuracy in medical images

with DCMs.

Our main contribution consists in formulating the task of learning the

DCM score function as a large-margin structured prediction problem. Our
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algorithm trains DCMs in an joint manner - all the parameters are learned

simultaneously. We obtain a training objective that aims at giving the highest

score to the ground-truth contour configuration. This effectively shapes our

score function so as to place at its optimum the correct contour configurations.

In order to learn the merit function of DCMs in an joint manner, we ex-

press it as the inner product of a weight vector with appropriately formed ap-

pearance and geometric features and then estimate the optimal weight vector

by casting the training problem as structured prediction. Our joint training

tackles the estimation of all model parameters in terms of a single objective

that directly reflects the performance in the task being solved. In particu-

lar, we give as input to our training algorithm, as appearance feature, dense

(i.e. computable at every point) image descriptors as opposed to convolution

features, which further boost shape detection performance.

In a first shot, we trained with the generic zero-one loss, the resulting

model already outperformed the current state-of-the-art [Seghers et al. 2007]

in the considered benchmark, by virtue of its end-to-end discriminative learn-

ing. We improve further the performance of our models through introducing

a structured prediction framework suited to the task at hand (i.e shape seg-

mentation). In particular, we use structured SVMs to optimize a loss function

specific to contours, considering the minimization of the mean contour distance

(MCD) performance measure. The resulting learned score function allows us

to score each candidate contour according to its MCD to the ground truth

configuration, and lends itself to straightforward inclusion into structured pre-

diction learning by virtue of being decomposable into a sum over landmark

nodes. We obtain clear test-time performance gains over the model trained

with the general zeros-one loss.

We evaluate our method on lung field, heart, and clavicle segmentation

tasks using 247 standard posterior-anterior (PA) chest radiographs from the

Segmentation in Chest Radiographs (SCR) benchmark. Our learned DCMs

systematically outperform the state of the art methods [Seghers et al. 2007]

according to a host of validation measures including the overlap coefficient,

mean contour distance and pixel error rate.

This Chapter is organized as follows: we discuss the choice of appearance

features in Section 2.2.1. In Section 2.2.2, we briefly review the two stage

learning approach used in current works and consider it as our baseline in our

experimental validation. In Section 2.3, we present our approach to learn-

ing DCMs. Having setup the machinery to train DCMs, we experiment in

Section 2.4 with several options which have a big impact on performance in-

cluding the choice of the loss function, the topology of the graph and the local

appearance features. We demonstrate the merit of our contributions where

we show evaluation measures largely superior to the current state-of-the-art.
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2.2 Previous Work

2.2.1 Appearance Features

The goal of the unary terms in our models is to localize each landmark based

on the image appearance. Using image intensities may be contingent on as-

pects that do not pertain to the task at hand, e.g. change in contrast, il-

lumination and the particular instance of the object. Image features aim at

removing as much of this unwanted variation as possible while retaining the

aspects of the image that are critical to the final decision. Therefore, the qual-

ity of the image features used to construct the unary terms is a determining

factor in performance.

We require that these features should be (a) dense, i.e. computable at

every point, to ensure we are not ruling out potential landmark locations and

(b) informative and discriminative, so that they can potentially distinguish

among different landmarks.

2.2.2 Two-Stage Learning

Current works in medical image analysis estimate the model parame-

ters in a two-stage training manner, using e.g. maximum likelihood

(ML) estimation for the pairwise terms, and potentially other com-

binations of boosting/eigenspaces for the landmark appearance models

([Potesil et al. 2010]/[Besbes & Paragios 2011] respectively). In our experi-

ence, the resulting unary and pairwise terms can often be incommensurate,

and hand-tuning the relative contribution of the resulting terms may be

needed. For instance, the minimal intensity and shape cost path (MISCP)

algorithm [Seghers et al. 2007] uses exhaustive leave-one out experiments to

calibrate unary and pairwise terms. In the following, we describe the two

stage learning method in more details which we used in [Boussaid et al. 2014]

and consider it as our baseline method for learning the model parameters.

2.2.2.1 Landmark Detectors

At the first stage, we train a separate classifier UI,i for each landmark xi using

the features fI(xi) that are computed from the image I. These classifiers are

learned independently with the goal of localizing the individual node.

Given a set of N training images, where the positions of the landmarks are

known, we obtain for each landmark xi a set of positive examples of size N by

extracting features fI(xi) from each training image around each landmark. We

also extract M feature vectors from the background to form a set of negative
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examples. Then, we obtain the training set:

Di = {(fI(xi)
j, y

j
i )}, j = 1 . . . P, i = 1 . . . K (2.1)

where P = N + M is the number of examples and the class label y
j
i ∈ {−1, 1}

refers to the landmark/background. We train the classifiers gi(fI(xi)) in order

to discriminate the landmarks from their neighborhoods. Hence, the unary

term UI,i(xi) is the response of the ith classifier gi(fI(xi)) with respect to the

feature vector fI(xi). Each classifier gi(fI(xi)) depends on a parameter vector

ui. This forms a classification problem. In order to estimate the parameter

vector ui, the classifier can be trained with Adaboost or linear SVMs or Logis-

tic Regression. In this work we use linear SVMs. Therefore, our unary term

UI,i(xi) can be written as:

UI,i(xi) = 〈ui, fI(xi)〉. (2.2)

2.2.2.2 Pairwise Term Parameter Estimation

Now we turn to estimate the parameters that appear in the pairwise terms

Pi,j(xi, xj). We recall that our pairwise terms write:

Pi,j(xi, xj) = −(hj − hi − h̄)2νi − (vj − vi − v̄)2ηi. (2.3)

Under the assumption that each vector connecting two neighboring landmarks

xi, xj is normally distributed, we estimate its mean µi,j and covariance Σi,j

from the training shapes. The pairwise term Pi,j of an observed configura-

tion xi, xj can then be seen as a log-likelihood under the Normal distribution

N (µi,j, Σi,j).

2.2.2.3 Calibration

Estimating each subset of the model parameters separately may not result in

a coherent model and is prone to a poor performance. To circumvent this

problem, a second stage of learning is needed. In this stage the magnitude

of importance of the independent detectors and the likelihood terms can be

adjusted. The merit function is then formulated as follows

SI(X) =
K∑

i=1

αi UI,i(xi) +
∑

i,j∈E
βi,jPi,j(xi, xj), (2.4)

where the task is to find the optimal weighting scalars {αi, i = . . . K} and

{βi,j, i, j ∈ E}. Another more simplistic variant is expressed as:

SI(X) =
K∑

i=1

UI,i(xi) + λ
∑

i,j∈E
Pi,j(xi, xj), (2.5)



2.3. Structured Prediction Learning 27

where the task is to find λ that calibrates to ensure a trade-off between unary

terms and pairwise terms.

In practice, these parameters are frequently hand-tuned or estimated by

means of trial and error, or using basic machine learning techniques such as

cross validation or leave one out experiments.

2.3 Structured Prediction Learning

2.3.1 Merit Function Formulation

We firstly recall that we can see our pairwise terms as the inner product

between a weight and a feature vector.

Pi,j(xi, xj) = 〈vi,j, p(xi, xj)〉, where (2.6)

vi,j = (νi, ηj), (2.7)

p(xi, xj) = (−(hj − hi − h̄)2,−(vj −vi − v̄)2). (2.8)

Since, as per Equation 2.2, the unary terms are also inner products between

weights and features and our merit function is additive, it follows that our

merit function is the inner product between two vectors:

SI(X) = 〈w, hI(X)〉 where (2.9)

w = (u1, . . . , uK , v1, . . . , vK−1) (2.10)

hI(X) = (fI(x1), . . . , fI(xK), p(x1, x2), . . . , p(xK−1, xK)) (2.11)

To make the dependence of SI(X) on w explicit, we will be denoting the

score function as SI(X, w) henceforth.

2.3.2 Structured Prediction

We assume that we have been provided with a training set of images and

associated ground-truth contour locations, which we will denote as

D = {(Ii, X̂i)}, i = 1 . . . N. (2.12)

Our goal is to use this training set to learn a merit function such that on new,

unseen, images the optimal contour configuration will be close to the respec-

tive ground truth configuration. More specifically, we can see the inference

problem that will be treated in Chapter 3 as defining a mapping Γ : I → X
between the space of images and the space of contours:

Γw[I] = X∗
I (2.13)
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Namely, given a parameter vector w we have a mapping (‘operator’) that

takes an image as input and outputs a contour. Our goal is to estimate w so

that this mapping will deliver contours close to the desired ones. Unlike the

standard binary classification problem, where the desired output of a mapping

is a binary, or discrete, label, here we face a problem with structured outputs.

The solution of such structured prediction problems has been re-

cently addressed in the machine learning community [Joachims et al. 2009]

and has delivered fruitful results in a host of computer vision prob-

lems [Nowozin & Lampert 2011] and in pose estimation [Sapp et al. 2011b,

Mittal et al. 2012] in particular. We refer to the references above for a more

thorough treatment of structured prediction and proceed to a presentation

taylored to our case, which allows us to simplify the presentation.

2.3.3 Learning the DCM merit function

We consider that we have a loss function ∆ : X × X → R+, where

∆(X1, X2) indicates the discrepancy between two elements of the output

space. We will use ∆(XI , X̂I) to specify the cost of predicting a shape

X⋆
I = argmax

X∈X SIi
(X, w) for an image I when the correct shape is X̂I .

By definition, we have ∆(X̂I , X̂I) = 0.

Learning in these settings amounts to choosing w such that the total loss

on all training instances in D is minimized and adding to it a regularizer.

Formally, we write:

w⋆ = argmin
w

‖w‖2
2 +

N∑

i=1

∆(X̂Ii
, X⋆

i ) (2.14)

= argmin
w

‖w‖2
2 +

N∑

i=1

∆(X̂Ii
, argmax

X∈X
SIi

(X, w)) (2.15)

To guarantee a good generalization on new unseen images, w is constrained

to be sufficiently smooth by minimizing its squared L2 norm.

The resulting optimization problem is hard to solve since the objective

function is non convex in w. Nonetheless, we still can achieve a good prediction

accuracy by minimizing a convex upper bound to 2.15. An upper bound to

∆(X̂Ii
, X∗

i ) can be found as :

∆(X̂Ii
, X∗

i ) ≤ ∆(X̂Ii
, X∗

i ) + SIi
(X∗, w) − SIi

(X̂i, w) (2.16)

≤ max
X∈X

∆(X̂Ii
, X) + SIi

(X, w) − SIi
(X̂i, w) (2.17)

The first inequality 2.16 holds because X∗ has the maximum score over all

contours including X̂i. In 2.17, we replaced the loss augmented score of X∗,
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∆(X̂Ii
, X∗

i )+SIi
(X∗, w) with its maximum value ∆(X̂Ii

, X∗
i )+SIi

(X∗, w) over

all possible contours X ∈ X .

We can interpret minimizing this upper bound as requiring that for a

training image Ii any configuration X other than the ground truth X̂i should

score below X̂i by a certain margin; we can write this requirement concisely

as:

SIi
(X̂i, w) ≥ SIi

(X, w) + ∆(X, X̂i), ∀X (2.18)

In particular for X = X̂i the loss on the right hand side vanishes, and the in-

equality is satisfied as an equality. Otherwise the inequality requires sIi
(X̂i, w)

to be larger than any other sIi
(X, w) by at least ∆(X, X̂i). We can see

this requirement as imposing an ordering in the space of contours, such that

the ground truth contour has the highest rank, and with a margin from the

second-best contour. For certain cases meeting this set of constraints may not

be feasible; we therefore introduce a slack variable ξi associated with the i-th

training example:

SIi
(X̂i, w) + ξi ≥ SIi

(X, w) + ∆(X, X̂i), ∀X (2.19)

ξi ≥ 0 (2.20)

which relaxes the set of constraints; namely we ’push’ the score of sIi
(X̂i, w)

upwards by ξi to make the set of constraints satisfiable. To avoid this relax-

ation in cases where it is unnecessary, we penalize the sum of slack variables

through our training criterion. In particular we cast training our merit func-

tion as the optimization of the following quadratic program (QP):

minimize C(w, ξ) = ‖w‖2
2 + λ

N∑

i=1

ξi (2.21)

subject to SIi
(X̂i, w) − SIi

(X, w) ≥ ∆(X, X̂i) − ξi, ∀X, i (2.22)

ξi ≥ 0, ∀i (2.23)

The first term in the training criterion regularizes the solution and guar-

antees good generalization, while the second term penalizes the amount by

which the constraints are relaxed; the set of constraints in Equation 2.22 re-

quires that we rank the ground truth configuration higher than all alternatives

for a given image. The cost function is quadratic in w and linear in ξ, while

the set of constraints is linear in w, since SIi
(X, w), SIi

(X, X̂i) are linear in

w; as such, a single global optimum exists and can be found in principle with

any QP solver.

In practice solving this problem can be computationally challenging due

to the large number of constraints implied by considering all possible con-

tours X. For that purpose we use cutting plane optimization which solves the
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QP iteratively by appending at each iteration the most violated constraint

[Joachims et al. 2009]; i.e. for every image i we solve the optimization prob-

lem, known as the augmented inference problem:

Xi
cp = argmax

X

SIi
(X, w) − SIi

(X̂i, w) + ∆(X, X̂i) (2.24)

This implies that we need to, given the current value of w, find a Xi
cp that

has good score according to the model, and a high loss according to the

ground-truth. The −SIi
(X̂i, w) term corresponding to the ground truth score

is constant with respect to X, and is therefore omitted. We then append the

resulting constraint to the set of constraints already entertained.

In order to accelerate the convergence of the algorithm,

[Joachims et al. 2009] formulate the problem with only one slack vari-

able ξ as follows:

minimize C(w, ξ) = ‖w‖2
2 + λξ (2.25)

subject to

SIi
(X̂i, w) − SIi

(X, w) ≥ ∆(X, X̂i) − ξ, ∀X, i (2.26)

ξ ≥ 0,

This is the standard way of training a structured output SVM along the

lines of [Joachims et al. 2009]. One last detail is that the parameters of the

pairwise terms in Equation 1.15 need to remain positive, since otherwise they

will reward deviations from the nominal displacements; we add these positivity

constraints to the set of constraints. We make sure that these hard constraints

are never violated through the iterations of the algorithm.

2.3.4 Structured Prediction for Segmentation

In this section we discuss the design of appropriate loss functions. A loss

function allows us to measure the performance of a particular weight vector

in terms of the loss ∆(X∗
Ii

, X̂i) which represents the cost incurred by labelling

image i as X∗
Ii

when the ground truth is X̂i.

The simplest option we consider is the general zero-one loss:

∆0−1(X, X̂) =

{

0, X = X̂

1, otherwise,
(2.27)

which penalizes any discrepancy between the ground truth and the recovered

solution. For the zero-one loss the augmented inference problem in equation

2.24 boils down to recovering any optimum of sIi
(X, w) different to X̂.
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Figure 2.1: The Mean Contour Distance (MCD) measures the average distance

of the landmarks of two contours.

Different loss functions can be used however to better reflect the nature

of our problem. In this work, we aim at directly optimizing a performance

measure specific to the problem at hand. In particular we use the Mean Con-

tour Distance (MCD) which measures the average distance of the landmarks

of two contours. In our case, the contours are discretized in a set of landmark

positions, connected through straight lines. The MCD between two contours

X and X̂ is then defined as:

∆mcd(X, X̂) =
1

K

K∑

i=1

||xi − x̂i||2 . (2.28)

The resulting augmented inference problem can be written as:

Xi
cp=argmax

X

K∑

k=1

(UIi,k(xk)+δ(xk, x̂k))+
∑

(k,j)∈E
Pk(xk, xj),

where δ(xi, x̂i) = 1
K

||xi − x̂i||2 is the per-landmark decomposition of the loss;

since this term is absorbed in the unary term, it follows that optimizing this

last expression can be done as efficiently as solving the original optimization

problem.

2.4 Experimental Evaluation

2.4.1 The dataset

We systematically evaluate our method on the publicly available dataset of

[Shiraishi et al. 2000, van Ginneken et al. 2006] which contains 247 standard

posterior anterior chest radiographs of healthy and non-healthy subjects (pre-

senting nodules). The database contains segmentations from radiologists,
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Figure 2.2: Left: Our segmentations (red) superimposed on the results of

the MISCP algorithm [Seghers et al. 2007] (black contours). Right: Our

segmentations (red) superimposed on the results of ASM based method of

[van Ginneken et al. 2006] (black contours). The ground truth segmentations

are shown in green. Each row represents the same patient chest.
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Table 2.1: Lung segmentation performance measures including Dice and Jac-

card coefficients (larger is better) and Means Contour Distance (smaller is bet-

ter). We compare the performance of the previous state-of-the-art, MISCP

[Seghers et al. 2007], ASM [van Ginneken et al. 2006], and different choices for our

method, involving dense SIFT at a resolution of 4 pixels per bin and a convolution

baseline (CONV) with steerable-scalable filters. The suffix TS indicates two-stage

and JT indicates joint training. The proposed method corresponds to the use of

SIFT descriptors and joint training
Right Lung (44 landmarks) Left Lung (50 landmarks)

method Dice Jaccard M.C.D Dice Jaccard M.C.D

Proposed method 97.85 95.8 1.82 97.52 95.2 1.96

SIFT+TS 97.17 94.6 1.96 96.65 93.6 2.52

CONV+JT 97.26 94.5 1.82 96.8 93.8 2.66

CONV+TS 96.84 93.9 1.96 95.81 92.0 2.38

[Seghers et al. 2007] N/A 94.0 2.1 N/A 92.0 2.38

[van Ginneken et al. 2006] N/A 92.1 2.66 N/A 88.6 3.78

which provide a delineation of the lung fields, the heart and the clavicles as

shown in Figure 2.4.1. Gold standard segmentation masks are hence available

as well as corresponding landmark positions lying on the contour.

Following the evaluation setup described in [Shiraishi et al. 2000], we use

123 images for training and a separate set of 124 images for testing, using the

provided training/testing split; all of the reported results are on the whole

test set, using images of size 256 by 256.

Left lung Heart Right Clavicle Left Clavicle

Figure 2.3: We consider the publicly available SCR dataset to assess the per-

formance of our method. This dataset contains along with chest radiographs,

manual segmentations of the right lung, the left lung, the heart, the right

clavicle and the left clavicle.
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Figure 2.4: Illustration of the true positives TP , true negatives TN and false

postives FP involved in the Dice and Jaccard evaluation measure computa-

tion.

2.4.2 Evaluation Methodology

We evaluate the performance of our method by comparing our segmentations

to the ground truth segmentations by means of a range of validation measures;

these include Jaccard, Dice coefficients, mean contour distance (MCD) and

pixel error measures. The Jaccard coefficient between two regions L and L̂ is

defined by:

J(L̂, L) =
TP

TP + FN + FP
, (2.29)

where the true positive (TP ) area is the area correctly classified as object,

the false positive (FP ) area is the area incorrectly classified as object and the

false negative (FN) area is the area incorrectly classified as background. This

amounts to computing the area of intersection divided by the area of union

of two regions:

J(L̂, L) =

∣
∣
∣L ∩ L̂

∣
∣
∣

∣
∣
∣L ∪ L̂

∣
∣
∣

. (2.30)

The Dice coefficient between two regions is defined as two times the area

of their intersection divided by the sum of their areas:

D(L̂, L) =
2
∣
∣
∣L ∩ L̂

∣
∣
∣

|L| +
∣
∣
∣L̂
∣
∣
∣

. (2.31)

The Dice coefficient is an equivalent measure to Jaccard index. We include it

for completeness. These overlap coefficients are high for large, simple objects

and low for complex, small objects.
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Figure 2.5: Dice coefficients (left) and Mean Contour Distance statistics

(right) on different chest organs (the overall decrease in the DICE coefficients

for the clavicles is anticipated due to their smaller scale).

Table 2.2: Heart and clavicle segmentation performance measures including Dice

and Jaccard coefficients (larger is better) and means contour distance (smaller

is better). We compare the performance of the previous state-of-the-art, ASM

[van Ginneken et al. 2006], and our best-performing method involving dense SIFT

at a resolution of 4 pixels per bin and joint training.
Heart (26 landmarks) Clavicles (23 landmarks)

method Dice Jaccard M.C.D Dice Jaccard M.C.D

Proposed method 94.8 90.1 3.03 90.4 80.1 1.4

[van Ginneken et al. 2006] N/A 81.4 5.96 N/A 73.4 2.04

The MCD between two contours A and B is defined in terms of the average

distance from a point on the contour A to the nearest point on the contour

B. It is obtained by averaging the distance A B to the distance B A. All the

reported MCD measures are in millimeter. The pixel error index is defined as

the proportion of pixels for which any of the five object labels (lungs, heart,

clavicles) is not in agreement with the ground truth segmentation.

To validate the merit of our contributions, we assess the performance of

our work against existing baselines. We note that both optimization and

learning do not suffer from local minima issues, while the complexity penalty

coefficient of structured SVM is determined with 10-fold cross validation; we

can thus attribute any difference in the final results exclusively to the low-level

feature, model structure, and loss function choices.
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2.4.3 Design choices

2.4.3.1 Convolution-based vs Descriptor-based Appearance Fea-

tures

Existing works in medical imaging either use potentially rich, but sparse

features [Schmidt et al. 2007, Besbes & Paragios 2011] -which requires recov-

ering from detector failures- or dense, but less discriminative features us-

ing convolution with filterbanks [Potesil et al. 2010]. Most of these works

rely on per-pixel image transformation (e.g. convolutions) and develop fea-

tures based on steerable filters [Freeman & Adelson 1991] and Gabor filters

[Wang et al. 2010a]. Recent approaches introduced descriptors to be used as

image features (e.g. [Tola et al. 2008]). The goal of a descriptor is to provide

a compact representations that summarize the contents of an image region or

a patch around a pixel.

Scale-Invariant Feature Transforms (SIFT) or Histograms-of-Gradients

(HOG) describe shape around a point as a distribution on invariant fea-

tures, such as a histogram of gradients. Several works have used sparse,

descriptor-based techniques to construct a shortlist of candidate part loca-

tions [Toews & Wells III 2012, Schmidt et al. 2007, Besbes & Paragios 2011],

but more recently dense features have been proposed in [Potesil et al. 2010,

Potesil et al. 2011]. In this work we use dense, informative features, including

Daisy descriptors [Tola et al. 2008] and dense SIFT [Fulkerson et al. 2008]. In

the following we briefly describe these two ‘dense’ descriptors since they form

a relevant component of our work.

Dense SIFT Descriptor:

Given an image patch with a selected scale and orientation, the Scale In-

variant Feature Transform (SIFT) [Lowe 2004] is built by aggregating oriented

gradients over three dimensions: the spatial coordinates and the gradient ori-

entation. The resulting histograms of gradients are then concatenated. This

illustrated in Figure 2.6 (a). Dense Sift [Fulkerson et al. 2008] allows the com-

putation of the descriptor around all points in the image domain, for constant

scales and orientations.

DAISY Descriptor:

Daisy descriptor was introduced to design a fast descriptor for dense com-

putation. Daisy aggregates image gradients obtained from convolutions over

gradient images to built its histograms. The convolution operation is separa-

ble and fast to compute. An illustration of daisy computation is provided in

Figure 2.6 (b)

Both of these descriptors can be efficiently computed in batch mode and

as such can be used on a par with standard filterbank features. But they come

with improvements in point matching/classification performance by virtue of
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(a) (b)

Figure 2.6: (a) SIFT computation: the image gradients are represented with

arrows in blue. To compute the descriptor at a point, its corresponding grid

is overlaid on top of the gradients and histograms of the gradient are com-

puted within all of these sub-regions. The overall stacking of the histograms

forms the descriptor. (b) Daisy computation [Tola et al. 2008]: first, gradient

magnitude layers in different orientations are computed. Each of these layers

are the magnitude of the gradient in a specific direction. Then, a convolution

with a Gaussian kernel is applied to get the histograms for every point. These

values are then concatenated to get the descriptor vector.

having built-in invariances due to multiplicative and additive signal changes;

furthermore they can also take a large part of the image into account without

requiring excessive blurring (unlike standard filterbanks), which has a detri-

mental effect in discriminative power. In our comparisons we use as a baseline

the responses of multi-scale steerable filterbank, implemented along the lines

of [Freeman & Adelson 1991].

We experiment with dense SIFT descriptors [Fulkerson et al. 2008] and

Daisy descriptors. Our results indicate that our dense descriptors yield a

systematic boost in performance, when compared to simpler baselines. In

our comparisons we use as a baseline the responses of multi-scale steerable

filterbank, implemented along the lines of [Freeman & Adelson 1991].

2.4.3.2 Two-stage Parameter Estimation versus Joint Training

We compare the performance of our DCMs in the following two settings: (a)

using, as in [Seghers et al. 2007], parameters estimated through Maximum

Likelihood estimation for the pairwise terms (means and standard deviations)

and classifiers trained separately per every landmark and (b) using parameters

jointly trained through our joint training objective.
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a b c d

(a,b): chain graph (baseline). (c,d): loopy-graph results (ADMM results).

Figure 2.7: Segmentation results on lungs, heart and clavicles. Ground truth

contours are shown in green, our results are shown in other colors. We observe

that the loopy-graph model delivers more accurate results that stick more

closely to the ground truth annotations. We attribute this to the ability of

our loopy-graph model to account for closedness constraints, and also to model

interactions among multiple parts - for instance that the clavicle boundaries

need to be at a prescribed distance from the lung boundaries.

2.4.3.3 Zero-one Loss Function versus MCD Loss Function

One possible simple choice of the loss function is the 0-1 loss. For our zero-one

loss this boils down to recovering any optimum of sIi
(X, w) which is different

from X̂i. We compare the performance of our shape matching algorithm in

the following two settings: (a) training with the more specific Mean Contour

Distance loss (b) using the standard 0-1 loss.

2.4.3.4 Loop-free Graphs versus Loopy Graphs

Omitting one geometric constraint breaks up the closed chain. In that case

inference becomes easier since the problem is solved directly with dynamic
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Table 2.3: Performance measures for the previous state-of-the-art of

[Seghers et al. 2007], and different choices for our method, involving Daisy features,

dense SIFT at a resolution of 4, and 8 pixels per bin, the use of chain graphs (CG

suffix) vs. loopy graphs (LG suffix), and the use of the MCD loss for training (MCD

suffix).

Right Clavicle (23 points) left Clavicle (23 points)

method mcd Dice Jacc. mcd Dice Jacc.

Daisy+CG 90.4 82.48 1.8 88.11 78.75 2.3

Daisy+LG 91.8 84.84 1.7 89.19 80.5 2

Daisy+LG+MCD 93.04 86.99 1.5 89.95 81.9 1.8

Sift-4+CG 89.9 81.65 1.9 88.1 78.73 1.8

Sift-4+LG 92.89 86.72 1.6 89.6 81.2 1.5

Sift-8+CG 90.00 81.82 1.9 87.4 77.6 2.8

Sift-8+LG 91.75 84.76 1.9 89.22 80.6 1.9

Sift-8+LG+MCD 92.8 86.57 1.7 89.8 81.5 1.4

programming at the expense of potentially decreased performance. We com-

pare the performance of two trained models.(a) an open contour model and

(b) a loopy model involving closed contours and intra organ connections. We

note that we have at our disposal algorithms that wan deal with exact infer-

ence with these models efficiently as will be described in Chapter 3. Since

both optimization and learning do not suffer from local minima issues, we can

thus attribute any difference in the final results exclusively to the low-level

feature, model structure, and loss function choices.

2.4.4 Quantitative evaluation of different design

choices:

In Table 2.4 we report validation measures for the different design choices

considered. Our very first observation is that our simplest baseline (con-

volution filters with two-stage learning) reaches similar performance to the

state-of-the-art MISCP algorithm [Seghers et al. 2007], which in turn out-

perfomrs ASMs [van Ginneken et al. 2006] as extensively demonstrated in

[Seghers et al. 2007]. We further verify that: (i) joint training boosts perfor-

mance when compared to two-stage training; (ii) dense appearance descriptors

have a clear edge over standard convolution features in both joint training and

two-stage training; (iii) the use of loopy models improves performance; (iv)

the use of the MCD loss improves performance as well.

These results are consistently supported practically by all organs, evalua-

tion measures, and front-end feature choices. Optimizing the MCD loss during
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Table 2.4: Performance measures for the previous state-of-the-art of

[Seghers et al. 2007], and different choices for our method, involving Daisy features,

dense SIFT at a resolution of 4, and 8 pixels per bin, the use of chain graphs (CG

suffix) vs. loopy graphs (LG suffix), and the use of the MCD loss for training (MCD

suffix).
Right Lung (44 points) Left Lung (50 points) Heart (26 points)

method Dice Jacc. mcd Dice Jacc. mcd Dice Jacc. mcd

Daisy+CG 97.97 96.0 1.2 97.52 95.2 1.4 95 91.3 2.3

Daisy+LG 98.1 96.27 1.3 97.66 95 1.2 96.5 93.2 1.3

Daisy+LG+MCD 98.24 96.54 1.0 97.89 95.9 1.7 96.84 93.9 1.7

Sift-4+CG 97.54 95.2 1.5 96.8 93.6 1.8 94.3 91.3 2.3

Sift-4+LG 97.35 94.84 1.7 97.52 95.2 1.4 96.17 92.6 2.7

Sift-4+LG+MCD 97.88 95.85 0.9 97.8 95.7 1.9 96.95 94.5 1.8

Sift-8+CG 97.71 95.52 1.5 97.00 94.1 2.0 95 90.7 2.3

Sift-8+LG 97.68 95.47 1.3 97.28 94.6 1.5 95.81 91.1 2.8

Sift-8+LG+MCD 98.00 96.1 0.9 97.9 95.9 1.4 96.20 92.7 1.7

training further improves the performance of our system. This is reflected by

the clear boost in performance versus the 0-1 loss training, as assessed by the

MCD validation measure on the test set.

The results in Table 2.4 are complemented by the results in Table 2.2

where we provide validation measures for the heart and clavicle segmentation

results and ASMs [van Ginneken et al. 2006] on the same dataset (results of

[Seghers et al. 2007] on the heart and clavicle segmentation tasks were not

reported in [Seghers et al. 2007]). Furthermore, Table 2.5 shows that our

baseline (dense features and joint training) already has the lowest mean pixel

error (0.022) compared to all the available methods evaluated on the SCR

database. We refer to the SCR website [scr ] for a detailed overview of the

performance of all available methods described in [van Ginneken et al. 2006].

Turning to qualitative comparison, an extensive side-by-side com-

parison of our proposed method and the state-of-the-art MISCP

algorithm [Seghers et al. 2007] as well as the ASM based method

[van Ginneken et al. 2006] is provided in Fig 2.8, which demonstrates the

higher accuracy attained by our model on challenging areas with poor low-

level information and the substantial improvement over the state-of-the art

MISCP [Seghers et al. 2007] and ASMs [van Ginneken et al. 2006]. The seg-

mentations of [Seghers et al. 2007, van Ginneken et al. 2006] were retrieved

from the SCR benchmark website [scr ].

In Figure 2.5 we provide box plots of different validation measures for the

different organs that we work with. Moreover, we compare in Table 2.5 our

pixel error results with the current state-of-the-art results on the same dataset

[van Ginneken et al. 2006, Seghers et al. 2007]. We further verify through a
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Table 2.5: Pixel error results on the SCR database [Shiraishi et al. 2000,

van Ginneken et al. 2006]. The proposed method scores better than the state-

of-the art approaches.
method pixel error

Our full-blown model 0.017 ± 0.008

Our open contour model 0.022 ± 0.006

MISCP [Seghers et al. 2007] 0.033 ± 0.017

ASM tuned [van Ginneken et al. 2006] 0.044 ± 0.014

paired T test [Goulden 2008] that the pixel error improvement is statically

significant (p=0.04). We validate hence again that structured prediction with

the MCD loss coupled with a loopy model results in clear, systematic im-

provements over the state-of-the-art for all of the organs that we consider in

our evaluation.

2.5 Conclusion

In this Chapter we have introduced a discriminative method for training

DCMs. We demonstrated systematic improvements over the current state-

of-the-art in medical image segmentation through the use of open contour

models trained with standard 0-1 loss. The use of richer models (closed con-

tours and relative shape positions), better adapted score functions trained

with structured prediction with a loss function specific to contours, as well as

rich appearance features, improved further the results.

As future work, we intend to further pursue the learning of loopy graph

models for other shape matching tasks, such as face recognition and body pose

estimation, where matching accuracy is of importance [Andriluka et al. 2012,

Sapp et al. 2010, Sapp et al. 2011a, Bourdev & Malik 2009]; with the advent

of strongly-supervised datasets [Azizpour & Laptev 2012, Vedaldi et al. 2014]

we anticipate that this will become increasingly central to high-level vision

tasks, such as object detection.

We see our work as building a bridge between recent advances in structured

prediction for pose estimation, e.g. [Sapp et al. 2011b] and the rich set of tools

developed around shape/contour detection in the medical imaging community;

in future work we intend to further pursue this research direction for tasks

involving more complex energy functions as well as 3D data.
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Figure 2.8: Left: patient chest radiograph. Middle: our segmentations (red)

with our baseline method superimposed on the results of the MISCP algorithm

[Seghers et al. 2007] (black contours). Right: Our segmentations (red) with

our baseline method superimposed on the results of ASM based method of

[van Ginneken et al. 2006] (black contours). The ground truth segmentations

are shown in green. Each row represents the same patient radiograph.
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3.1 Introduction

In this Chapter, our goal is to segment ensembles of shapes in medical images:

this involves outlining the boundaries of medical organs, while potentially ex-

ploiting inter-organ dependencies to transfer information from clearly visible

parts to harder areas. We cast multi-organ shape segmentation and landmark

localization in a graphical model framework, and tackle the resulting optimiza-

tion problem. We use loopy graphs to incorporate problem constraints such

as contour closedness and relative shape positions, that cannot be encoded

through chain- or tree- structured graphs.

This directly raises the computational efficiency issue - addressing which

is a main contribution of this Chapter. In our case we have many (196) nodes

and a label space in the order of tens, or hundreds of thousands of values,

corresponding to discretized 2D positions. As such, it is not straightforward
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to apply generic techniques for approximate discrete inference on loopy graphs,

as these are typically designed to deal with relatively small label sizes.

Our contribution relies in the use of an efficient decomposition-

coordination algorithm to solve the resulting optimization problems. We de-

compose the model’s graph into a set of open, chain-structured, graphs, as

commonly used in Dual Decomposition techniques to optimize MRFs in com-

puter vision applications. Earlier works [Sapp et al. 2011a] on applying Dual

Decomposition to Deformable part Models have reported that when imple-

mented for spatial variables Dual Decomposition is slow, or does not converge

(500 iterations were used in [Sapp et al. 2011a]), and therefore resorted to

approximate inference. Instead, in this work we use the Alternating Direc-

tion Method of Multipliers (ADMM) to fix the potential inconsistencies of

the individual solutions and we show that ADMM yields substantially faster

convergence than plain Dual Decomposition-based methods.

We demonstrate the merits of exact and efficient inference with rich, struc-

tured models in a large X-Ray image segmentation benchmark, where we ob-

tain huge speedups over sub-gradient based Dual Decomposition coupled with

GDTs.

3.2 Previous Work

As will be detailed in Section 3.3, one of our main technical contribu-

tions in this chapter consists in introducing ADMM to inference in loopy

graphs with large label spaces, corresponding to discretized spatial vari-

ables. ADMM can be understood as a generalization of Dual Decomposi-

tion (DD) [Komodakis et al. 2007, Bertsekas 1999, Sontag et al. 2011] which

in turn is already extensively used in vision and medical image segmentation

[Wang et al. 2010b, Wang et al. 2011, Xiang et al. 2012].

ADMM has found tremendous success in image processing/compressed

sensing, commonly under the name of ‘Bregman iteration’ methods

[Goldstein & Osher 2009, Yin et al. 2008]. In connection with optimization

problems revolving around MRFs, ADMM has recently been used in con-

junction with discrete MRFs [Martins et al. 2011a], and used in registration

in [D. Zosso & Thiran 2014] but little work has been done for MRFs with

large/continuous label spaces.

Recently [Salzmann 2013] used ADMM to perform inference with polyno-

mial energies in continuous graphical models, by iteratively linearizing a cost

function used for registration; this was done to constrain the energy function

to be polynomial in the unary terms. This is however not an option for our

case, where we want to match deformable shapes to unconstrained images -



3.3. Problem Decomposition 45

1 5

2 6

3 7

4 8

1 1 5 5

2 2 6 6

3 3 7 7

4 4 8 8

Figure 3.1: We decompose energy functions on loopy graphs into functions on

chain-structured subgraphs, and use the latter as slaves in a decomposition-

coordination optimization algorithm. Shown in (a) is an example of a complex

graph involving a ‘zipper’ chain between shapes (e.g. nodes 1-4 can belong

to the lung, and nodes 5-8 to the heart) and in (b) the decomposition of the

complex graph into chain structured subproblems.

where the unary terms are far from linear, or convex.

3.3 Problem Decomposition

Our goal is, given an image I to solve:

X∗
I = argmax

X

SI(X) (3.1)

X∗
I = argmax

X

K∑

i=1

UI,i(xi) +
∑

i,j∈E
Pi,j(xi, xj), (3.2)

where SI(X) is the scoring function described in Chapter 1 and its parameters

were learned in Chapter 2.

We make no assumption about the model structure as shwon in Figure 3.1,

and as such contains loops; this directly reflect the problem structure (e.g.

the closedness constraint of a region’s boundary) and delivers more accurate

segmentation results as was shown in Chapter 4, but when working with

spatial variables in a large label space it is practically prohibitive to work even

with the easiest loopy graphs; for instance, in the graph shown in Figure 3.1,

the complexity of MAP inference grows by O(N3) where N is the number of

pixels, using the junction tree algorithm [Aji & McEliece 2000].

Instead we can use problem decomposition as illustrated in Figure 3.1.

In particular, we rewrite the score SI of our graphical model as a sum of

score functions SI,i defined on overlapping subgraphs (slaves). Formally this
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is written as:

SI(X) =
N∑

i=1

SI,i(X). (3.3)

This allows (temporarily) each slave SI,i(X) to have its own solution, Xi,

subject to the constraint that, on common nodes, different slaves must have

identical solutions. As illustrated in Figure 3.1, in our problem we break

every closed contour into two open chains that overlap at their end and start

nodes, and introduce ‘zipper’ chains among organs that share edges, where the

‘zipper’ passes through the intra-organ edges. These are the slave problems Si

of our problem. Denoting by R ⊂ 1..K the subset of point indices belonging

to more than one chain model, our inference problem becomes:

max S(X) =
N∑

i=1

Si(Xi) (3.4)

s.t.Xi(r) = µ(r), ∀r ∈ R, ∀i,

where X = {Xi}, i = 1 . . . N is the ensemble of slave solutions. These slave

are sharing common nodes Xr, r ∈ R. r is the global index of the overlapping

points. Since each slave Xi is allowed to have its own solutions Xi(r) at nodes

r, we introduce µ as a reference vector for those nodes and use it to ensures

consistency at the overlapping points.

3.4 Dual Decomposition Inference

Dual Decomposition relaxes the constraints in Equation 3.5 by introducing a

Lagrange multiplier λi(r) for each agreement constraint. The Lagrangian for

problem Equation 3.5 is expressed as:

A({Xi=1..N}, µ, λ) =
N∑

i=1

Si(Xi) +
∑

r∈R

η(r)
∑

i=1

λi(r) (Xi(r) − µ(r)) (3.5)

where η(r) is the subset of slaves sharing the same node X(r) µ and µ is a

reference vector. We note that this is deviating from the standard presen-

tation of Dual Decomposition [Bertsekas 1999] where we have explicitly the

constraint of (Xi(r) − Xi(r)), but it makes the notation convenient and the

transition to ADMM technique easier.

The dual function can be written as:

L(λ) = max
Xi,µ

A(Xi, µ, λ) (3.6)

= max
Xi,µ

N∑

i=1

(

Si(Xi) +
∑

r∈R

λi(r)Xi(r)

)

−
∑

r∈R

N∑

i=1

λi(r)µ(r) (3.7)
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Figure 3.2: Dual Decomposition illustration: at each iteration, every slave

i communicates its solution Xi to the master; the master then detects in-

consistencies in the individual slave solutions (indicated by red arrows) and

drives the slaves towards a consistent solution in the next iteration, by passing

parameters λi(r) that affect the slave problems around the common nodes, r.

Since the µ vector is unconstrained, maximizing over µ results in the following

expression for λ:

L(λ) =







max
Xi

∑N
i=1 (Si(Xi) +

∑

r∈R λi(r)Xi(r)) if
∑N

i=1 λi(r) = 0, ∀r ∈ R

+∞ otherwise.

We call Λ the feasible set and express it as Λ = {λ,
∑N

i=1 λi(r) = 0, ∀r ∈ R}.

Since positions where L(λ) = +∞ is no use to us, we consider instead the

following optimization problem using Λ:

L(λ) = max
Xi

N∑

i=1

(

Si(Xi) +
∑

r∈R

λi(r)Xi(r)

)

, s.tλ ∈ Λ (3.8)

We underline here that the dual function decomposes in the slave variables

Xi as:

L(λ) =
N∑

i=1

max
Xi

(

Si(Xi) +
∑

r∈R

λi(r)Xi(r)

)

(3.9)

=
N∑

i=1

Li(λi) (3.10)



48

Chapter 3. Efficient Inference for Loopy Deformable Contour

Models

The term Dual Decomposition stems from the decomposition of the dual

function. Evaluating the dual function is hence equivalent to solving two in-

dependent optimization problems. For every λ, the value of the dual function

L(λ) is an upper bound on the solution to the primal problem. The dual

problem is then to compute the optimal bound and find λ∗ such that:

λ∗ = argmin
λ

L(λ) (3.11)

s.t λ ∈ Λ

This dual function L is convex in λ but is not differentiable; this moti-

vates the use of the projected sub-gradient descent method described in

[Bertsekas 1999]. This implies an iterative process, where at each iteration

the current value of each dual variable λi(r) is updated according to the sub-

gradient until convergence as follows:

λt+1
i (r) = λt

i(r) − αt[∇Li(λ
t+1
i (r))]Λ (3.12)

where αt is the step size. A sub-gradient can be obtained by:

∇Li(λ
t+1
i (r)) = Xt+1

i (r) (3.13)

where

Xt+1
i (r) = argmax

Xi(r)
Li(λ

t
i) (3.14)

= argmax
Xi(r)

(

Si(Xi) +
∑

r∈R

λi(r)Xi(r)

)

. (3.15)

We see that solving Equation 3.15 for a given slave i amounts to performing

inference independently in a chain structured model. We can verify that the

effect of the Lagrangian function on the individual subproblems is absorbed

by updating the unary terms of the slaves with a function of position.

Projecting the sub-gradient to the feasible set amounts to a centering op-

eration expressed as:

[∇Li(λ
t+1
i (r))]Λ = Xt+1

i (r) − ut+1(r) (3.16)

where ut+1(r) is the average value of individual solutions:

ut+1(r) =

∑

i Xt+1
i (r)

η(r)
(3.17)

Putting all the pieces together, we can derive now a Dual Decomposition algo-

rithm. At each iteration, the master problem 3.12 updates the dual variables
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in the direction of the sub-gradient of the dual function. The sub-gradient

at the current dual variable is provided by the slave problems 3.15. This is

schematically described in Figure 3.2.

Upon convergence, we have access to the tightest upper bound L(λ⋆) of the

optimal score, and also to solutions X⋆
i=1..N of the original problem. A lower

bound on the optimal score is then given by
∑N

i=1 Si(X
⋆
i ). We can compute

the duality gap which gives an indication of how close we are to the optimal

score.

3.4.1 Dual Decomposition Variants

In order to guarantee convergence of Dual Decomposition, we need to set

αt, t = 1 . . . T as a diminishing and non-summable sequence i.e:

αt ≥ 0 ∀t; lim
t→∞

αt = 0;
∞∑

t=1

αt = ∞ (3.18)

as demonstrated by [Bertsekas 1999]. Different variable update strategies

were introduced in the literature to decrease the number of alterations and

described in [Komodakis et al. 2011]. We experimented with the sequence

αt = a√
t
. A more sophisticated sequence is introduced in [Duan et al. 2012]

based on Polyak’s step size rule [Polyak 1967]. The dual variable update strat-

egy required by the subgradient descent technique implies that DD ends up

taking increasingly small steps toward the optimum, and hence exhibiting a

slow convergence rate. In the following we describe ADMM, a decomposition-

coordination algorithm that converges faster than DD.

3.5 ADMM Inference

We address the problem in Equation 4.8 by building on the Dual Decomposi-

tion (DD) technique [Bertsekas 1999, Komodakis et al. 2007], and in partic-

ular its acceleration attained with the Alternating Direction Method of Mul-

tipliers [Boyd et al. 2011, Martins et al. 2011b]. This combines the benefits

of DD [Bertsekas 1999] (fast optimization of the slave problems) and ADMM

(rapid convergence) practically without altering the optimization procedure

for the subproblems.

ADMM adds a quadratic penalty for constraint violation, yielding the

augmented Lagrangian:

Aρ(Xi, µ, λ)=
N∑

i=1

Si(Xi)+
∑

r∈R

N∑

i=1

λi(r) (Xi(r)−µ(r))−ρ
∑

r∈R

N∑

i=1

(Xi(r) − µ(r))2
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Figure 3.3: At each iteration, every slave i communicates its solution Xi to

the master; the master then detects inconsistencies in the individual slave

solutions (indicated by red arrows) and drives the slaves towards a consistent

solution in the next iteration, by passing parameters u(r), λi(r) that affect

the slave problems around the common nodes, r. ADMM quickly leads to

consensus among the different slaves, as shown on the right: the dual and the

primal problems reach a zero duality gap in a small number of iterations. The

estimated organ boundaries closely match the color-coded ground truth organ

segmentation.

where we augment the Lagrangian in Equation 4.33 with an euclidean penalty

on the discrepancy between the individual solutions and the reference vector µ

and introduce ρ as a positive parameter that controls the intensity of the aug-

menting penalty. The aim of this extra quadratic penalty term is to improve

the convergence properties of the corresponding minimization algorithm. We

note that we deviate a bit from the common presentation of the method, e.g.

[Boyd et al. 2011], as we phrase our original problem as one of maximization

rather than minimization.

We can see this augmented Lagrangian as formulating the Lagrangian of

the following problem:

max S(X) =
N∑

i=1

Si(Xi) − ρ
∑

r∈R

N∑

i=1

(Xi(r) − µ(r))2 (3.19)

s.t. Xi(r) = µ(r) ∀r ∈ R, ∀i (3.20)

This is an equivalent problem to the one expressed by Equation 3.5 as the
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added quadratic term vanishes at convergence. However, with this formulation

we do not only enforce the agreement constraint between the slave but we

encourage it through the quadratic penalty. Now we write the corresponding

dual problem:

Lρ(λ) = max
Xi,µ

Aρ(Xi, λ, µ)

= max
Xi,µ

N∑

i=1

(

Si(Xi) +
∑

r∈R

(

λi(r)Xi(r) − ρXi(r)2 + 2ρXi(r)µ(r)
)
)

−
∑

r∈R

N∑

i=1

λi(r)µ(r)

In order to minimize the dual function, we can apply a gradient descent

method as follows:

{Xt+1
i , µt+1} = argmax

Xi,µ

A(Xi, ut, λt) (3.21)

λt+1
i (r) = λt

i(r) − αρ(Xt+1
i (r) − µt+1(r)) (3.22)

where α is a step size. This is known as the Method of Multipliers.

However, due to the added quadratic penalty the dual problem is not

anymore decomposable in the slave variables Xi as in Equation 3.9 and we

need to perform a joint maximization over Xi and µ in Equation 3.21. As

such, we lose the decomposition property of DD, unless ρ = 0 which brings us

back to the original DD scheme. Instead, ADMM iterates the following steps:

Xt+1
i = argmax

Xi

A(Xi, µt, λt) (3.23)

µt+1 = argmax
u

A({Xt+1
i }, µ, λt) (3.24)

λt+1
i (r) = λt

i(r) − αρ(Xt+1
i (r) − µt+1(r)) (3.25)

where we decouple the joint optimization in Equation 3.21 into as sequential

optimization of Xt+1
i and ut+1. The term Alternating Direction stems for the

update of Xt+1
i and ut+1 in an alternating fashion.

In words, the slaves efficiently solve their sub-problems (Equation 3.23),

and deliver Xi to the master. The master then coordinates the individual

solutions, by updating the current multipliers λt+1
i (r) (Equation 3.25) and

ut+1(r) (Equation 3.24), and communicating them to the slaves for the next

iteration. In [Martins et al. 2011b], Equation 3.24 is shown to turn out to be

equal to the averaged vote for the position of the point if the penalty ρ is kept

constant. Regarding the slave problems, we write Equation 3.23 as:
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Figure 3.4: Evolution of the dual objective and the primal one as a function of

DD/ADMM iterations. ADMM-based optimization rapidly converges, achiev-

ing a duality gap of zero typically in less than 20 iterations. Sub-gradient

based method does not converge even after 100 iterations. These results are

obtained by averaging over hundred different example images.

Xt+1
i = argmax

Xi

A(Xi, ut, λt) (3.26)

= argmax
Xi

N∑

i=1

Si(Xi) +
∑

r∈R

N∑

i=1

λt
i(r)

(

Xi(r) − ut(r)
)

− ρ
∑

r∈R

N∑

i=1

(Xi(r) − ut(r))2 (3.27)

Since the maximization runs only over Xi and λ and µ are now fixed, we can

then decompose the optimization of this problem in the slaves as follows:

Xt+1
i = argmax

Xi

Si(Xi) +
∑

r∈R

λt
i(r)

(

Xi(r) − ut(r)
)

− ρ
∑

r∈R

(Xi(r) − ut(r))2

= argmax
Xi

Ŝi(Xi) (3.28)

We can run the optimization of each slave in parallel. We note here that

now the master broadcasts to the slaves the average solution µt. The slaves

regularize their problems so as to converge to this consensus value. The master

then gathers the individual solutions and updates the average value and the

dual variables.
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3.5.1 Application to Shape Segmentation with Loopy

Graphs

We observe that solving Equation 3.23 for a given slave i amounts to per-

forming inference independently in a chain structured model. We can verify

that the effect of the (augmented) Lagrangian function on the individual sub-

problems is absorbed by updating the unary terms of the slaves with a para-

metric, quadratic function of position; since the slaves are chain-structured,

this means that we can still efficiently optimize them with GDTs. But we will

see in Section 4.5, how we can adapt the inference algorithm in Chapter 4 to

accelerate the optimization.

After optimizing all slaves, we can recover the dual score by summing over

the optimal values of the considered functions and write:

L(λ) =
N∑

i=1

Ŝi(X
∗
i ) (3.29)

We can recover the primal score by recalling that our merit function is an

inner product that writes:

P(Xi) =
N∑

i=1

〈w, hI(X∗
i )〉 (3.30)

The primal and dual function evaluation at each iteration allows us to com-

pute the gap between the dual score and the primal score and assess therefore

the convergence of ADMM and DD. As shown in Figure 3.4, ADMM is dra-

matically faster than Dual Decomposition for our problem. For our full-blown

model, involving |R| = 30 shared nodes in Equation 3.20, Dual Decomposi-

tion would often not converge even after 100 iterations, while we obtained

convergence of ADMM in typically no more than 20 iterations. This means

that the effective complexity of our joint inference algorithm in loopy graphs

bowls down to be roughly equal to the complexity of the optimization of the

slaves.

We note that ADMM is guaranteed to converge to the global optimum

only if the score function being maximized is concave. In our case, this is not

guaranteed (the unary terms are arbitrary), so we can understand ADMM

only as an approximate optimization algorithm. The fact that we have a zero

duality gap at convergence (as shown in Figure 3.4) indicates that for the

examples considered in our experiments approximate inference delivers the

exact solution.
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t = 1 t = 2

t = 3 t = 8

Figure 3.5: Iterations of ADMM inference on an image from the considered

database; in the first image the segmentation exhibit inconsistencies in the

individual slave solutions. As shown in the 8th iteration, ADMM quickly

leads to consensus among the different slaves leading the dual and the primal

problems to reach a zero duality gap.
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3.5.1.1 ADMM hyperparameters

We have to tune two hyperparameters in ADMM consisting in the penalty

coefficient ρ and the stepsize coefficient α. We have set ρ and α empirically.

In practice, we observed that ρ has an important impact on the performance

of ADMM. On the one hand, setting ρ to small values results in a slower

convergence of the algorithm. This is anticipated since setting ρ = 0 brings

us back basically to a DD implementation. On the other hand, we observed

that when setting ρ to big values (> 10), we have oscillations in the dual

function, typically (3 or 4) but at the cost of a convergence to a local optimum

manifested by a non-zero duality gap. Picking 1 ≤ ρ ≤ 4 gave us the best

performance of ADMM in practice.

Regarding the step size coefficient α, we observed that it plays a less

important role in ADMM performance that the penalty coefficient. With ap-

propriate values it can indeed decrease relatively the number of iterations but

does not have an impact on the duality gap at convergence. Other implemen-

tations of ADMM [Martins et al. 2011b] get rid of this parameters by setting

α = 1 so that we have the penalty coefficient equal to the stepsize in the dual

variable update in Equation 3.25

3.6 Multi-Scale Optimization

We note that we accommodate global scale changes through multi-resolution

optimization; from our original image I we construct an image pyramid by

resampling at a set of scales S = (1, r, r2, . . . , rS) and compute:

X∗
I,S = argmax

X,i

sI(ri)(X, w), (3.31)

where I(ri) denotes the image resampled with a ratio ri.

3.7 Results

Our model contains 196 nodes including 30 shared nodes. We have 16 slave

problems, 2 per organ plus 26 for the links (’zipper’ contours). For ADMM

we found that we achieve fastest convergence when setting ρ = 1 in 4.33 and

setting the step size αt to follow a non-summable diminishing step length rule,

as detailed in [Bertsekas 1999].

Starting with computational efficiency, for our problem the computation

of unary terms requires 0.4 seconds on a standard PC; each slave problem

takes 0.06 seconds per contour and scale, for a contour with 20 nodes; for 8
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Figure 3.6: Qualitative results produced by our loopy model.
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contours and 7 scales, this means 3.4 seconds per iteration of ADMM/Dual

Decomposition. ADMM/DD take practically the same time per iteration, but

ADMM converges in less than 20 iterations (typically 10) while DD did not

converge even after 100 iterations.

A side-by-side comparison of our baseline model from Chapter 4 involving

open contours and the full-blown, loopy-graph model developed in this Chap-

ter is provided in Figure 2.7, which qualitatively demonstrates the higher

accuracy attained by our model on challenging areas with poor low-level in-

formation. Some notable cases include the case of the heart, where the added

geometric constraint allows us to recover from unary detector failure in the

blank area.

3.8 Conclusion

In this chapter, we developed an efficient technique to performing inference on

loopy graphs with spatial variables, by employing the Alternating Directions

Method of Multipliers (ADMM). We applied our algorithm to segment multi-

ple organs from medical images and achieved a speedup of orders of magnitude

over plain DD optimization coupled with GDTs.

Apart from the obvious societal impact of medical imaging, what we

find most interesting in this problem is the complexity, and accuracy of

the annotation being employed -we have 196 landmarks, localized by ex-

pert physicians. Such datasets provide a challenging testbed for algorithm

assessment, while with the advent of strongly supervised object annotations

[Azizpour & Laptev 2012, Bourdev & Malik 2009, Vedaldi et al. 2014] we an-

ticipate that our advances will become increasingly relevant to recognition.

While ADMM is only one of many options for accelerating over DD, we

showed that its adaptation to inference problems with spatial variables is

particularly simple and yet powerful. We anticipate hence that our work could

serve as an efficient and reliable computational module for larger inference

problems such as object detection and pose estimation.





Chapter 4

Efficient Inference for

Chain-structured Deformable

Contour Models

4.1 Introduction

In this chapter, we focus on accelerating inference on our ADMM subproblems

described in Chapter 3. We consider a chain-structured Deformable Contour

Model (DCM) for anatomical structure shape segmentation. We use a sim-

pler connectivity than the arbitrary connectivity in the model introduced in

Chapter 1 Section 1.2.2; we define an ordering constraint between landmarks

to represent a single continuous contour.

Our contributions are twofold: firstly, is the derivation of a rapid infer-

ence algorithm for chain structured graphs. We capitalize on recent advances

in fast Deformable Part Models (DPMs) optimization [Kokkinos 2011b] via

branch-and-bound and include them in the Hierarchical A∗ Lightest Deriva-

tion (HA∗LD ) [Felzenszwalb & Mcallester 2007] architecture. Our second

contribution consists in solving the slave problems in our ADMM scheme de-

scribed in Chapter 3 efficiently.

Performing inference efficiently on this chain-structured graph is a main

challenge, since this involves a large label space consisting of discretized 2D

positions. In order to achieve computational efficiency, current works rely on

Dynamic Programming (DP) [Felzenszwalb & Zabih 2011, Geiger et al. 1995]

to recover the globally optimal solution in a time quadratic in the num-

ber of pixels. Constraining the model furthermore to use separable

quadratic pairwise terms allows us to couple DP with the Generalized

Distance Transform (GDTs) technique [Felzenszwalb & Huttenlocher 2004,

Felzenszwalb & Huttenlocher 2005]. This reduces the complexity to be lin-

ear in the number of pixels.

Recent approaches improve inference efficiency in star-shaped DPMs.

[Sapp et al. 2010, Ferrari et al. 2008, Kumar & Torr 2006] simplify temporar-

ily the cost function being optimized in order to reduce the high-dimensional

search space. Pruned dynamic programming is used in [Chen et al. 2007]
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to efficiently detect DPMs, while coarse-to-fine dynamic programming

[Raphael 2001] aims at accelerating the plain dynamic programming method.

[Felzenszwalb et al. 2010] use precomputed thresholds so as to prune compu-

tation with minimal possible loss. Finally, [Kokkinos 2011b] propose an exact

Branch-and-Bound technique to solve star-shaped graph optimization in a

time practically logarithmic in the number of pixels.

This Chapter is organized a follows: we firstly describe the current base-

line method for optimizing chain-structured DPMs. This technique is based

on DP coupled with GDTs. We then devise a coarse-to-fine algorithm fol-

lowing the architecture of the Hierarchical A∗ Lightest Derivation (HA∗LD )

[Felzenszwalb & Mcallester 2007] scheme while including the pruning tech-

nique developed in [Kokkinos 2011b]. Since multi-scale optimization is re-

quired to deal with scale changes in our image, we show that we can obtain

further acceleration in multi-scale optimization scheme by using a single prior-

ity queue for all scales. We then integrate the proposed inference algorithm in

the ADMM scheme presented in Chapter 3 to ensure an efficient optimization

of the slave problems.

We apply our method to the problem of shape segmentation of several

anatomical structures in Posterior-Anterior chest radiographs. We verify that

our proposed algorithm delivers exactly the same results, but with a 10-fold

speedup on average over the state-of-the-art optimization based on multi-scale

DP accelerated with GDTs.

4.2 Merit Function

Ou merit function is an instance of the generic merit function introduced in

Chapter 1 with Equation 1.9, in the sense that we consider a particular connec-

tivity between landmarks. Namely, we represent a 2D shape as an open con-

tour consisting of a sequence of K anatomical landmarks: X = {x1, . . . , xK}.

We recall that every landmark is a 2D position vector xi = (hi, vi). Given an

image I we score a contour X with a merit function S formed as

SI(X) =
K∑

i=1

UI,i(xi) +
K−1∑

i=1

Pi(xi, xi+1). (4.1)

The unary terms keep the same form as in Chapter 1 with Equation 1.10. The

pairwise terms also keep the same form as in Chapter 1 with Equation 4.2,

except that now they constrain the location xi+1 = (hi+1, vi+1) of landmark

i + 1 with respect to its antecedent landmark xi = (hi, vi) in terms of a
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quadratic expression of the form:

Pi(xi, xi+1) = − (xi+1 − xi − µi)
T

Ci (xi+1 − xi − µi) (4.2)

= −H(hi+1 − hi − h̄)2 − V (vi+1 − vi − v̄)2. (4.3)

where Ci = diag(H, V ) is a a diagonal precision matrix and µi = (h̄, v̄)T is the

nominal displacement between xi and xi+1. In graphical model terminology

our model is a chain-structured graph, with graph nodes corresponding to

landmark locations and the edges connecting consecutive landmarks.

4.3 Previous Work

In this section we review previous work on inference approaches for chain-

structured graphs, and in particular the model expressed by Equation 4.1.

Formally, the task is to find the optimal configuration X∗ given an image I

such that:

X∗
I = argmax

X

SI(X, w). (4.4)

= argmax
X

K∑

i=1

UI,i(xi) +
K−1∑

i=1

Pi(xi, xi+1). (4.5)

This optimization runs over a large number of possible contour configurations

- for an image with N pixels, NK configurations are possible.

4.3.1 Dynamic Programming

Dynamic Programming (DP) [Bellman 1957, Bellman & Dreyfus 1962,

Felzenszwalb & Zabih 2011] is as technique commonly used for inference with

chain-structured graphical models while Max-Product is its extension that

allows handling loopfree graphical models (star- or tree- structured graphs)

akin to the models used for human pose estimation [Andriluka et al. 2012,

Sapp et al. 2010, Sapp et al. 2011a] and the models used in face and ob-

ject detection [Felzenszwalb & Huttenlocher 2005, Felzenszwalb et al. 2010,

Zhu & Ramanan 2012].

Since the merit function in these models is decomposable in pairwise and

unary local terms, DP exploits the particular structure of the underlying graph

to derive a more efficient algorithm than a brute force search through every

possible solution. The computational complexity is then reduced from O(NK)

to O(KN2). To better describe DP, we consider a toy example of a chain graph

optimization composed of K = 3 nodes as in Figure 4.1. The task is to recover

the maximal value of X = {x1, x2, x3} where each xi ∈ L, L being the space
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x1 x2 x3

Figure 4.1: A toy example of chain-structured graphical model with 3 nodes.

of possible labels. Applying the commutative property allows us to obtain the

following derivations:

ω∗ = max
x1

max
x2

max
x3

SI(X)

= max
x1

max
x2

max
x3

UI,1(x1) + UI,2(x2) + UI,3(x3) + P(x1, x2) + P(x2, x3)

= max
x1

max
x2

UI,1(x1) + UI,2(x2) + P(x1, x2) + max
x3

UI,3(x3) + P(x2, x3)
︸ ︷︷ ︸

µ3(x2)

= max
x1

UI,1(x1) + max
x2

UI,2(x2) + P(x1, x2) + µ3(x2)
︸ ︷︷ ︸

µ2(x1)

(4.6)

We can see now that the original problem can be solved by combining

solutions of nested subproblems expressed by µ3(x2) and µ2(x1).

In order to obtain ω∗, we proceed recursively. We solve each subproblem

just once and then save its answer in a table. We start by solving the subprob-

lem expressed by µ3(x2). This allows us to solve the subproblem expressed by

µ2(x1) more easily. What remains then is to solve the problem in Equation 4.6

which is then a simpler problem given the sub-solutions provided by µ2(x1).

Overall, we avoid the work of recomputing the answer every time we solve

each subproblem.

4.3.1.1 Generalized Distance Transforms

The bottleneck in inference with dynamic programming is the computa-

tion of equations expressed by µ3(x2) and µ2(x1), each of which requires

N2 operations to be evaluated. If the label space consists of spacial dis-

cretized variables and the pairwise terms P(xi, xj) are quadratic, Gen-

eralized Distance Transforms (GDTs) [Felzenszwalb & Huttenlocher 2004,

Felzenszwalb & Huttenlocher 2005] allow us to compute them in a time linear

in the number of pixels. This reduces further the overall complexity of the

DP optimization coupled with GDTs from O(KN2) to O(KN).

We recall the expression of µj(xi):

µj(xi) = max
xj

UI,j(xj) + P(xi, xj) (4.7)



4.3. Previous Work 63

[Felzenszwalb & Huttenlocher 2004] show that the problem is equivalent

to finding the minimum over a set of offset parabolas arranged in the label

space and find this minimum in a linear time complexity.

4.3.2 Shortest Path Algorithms

For convenience of the presentation, we reformulate our maximization problem

in Equation 4.8 into an equivalent energy function minimization problem, and

write:

X∗
I = argmin

X

−SI(X, w). (4.8)

= argmin
X

K∑

i=1

−UI,i(xi) +
K−1∑

i=1

−Pi(xi, xi+1). (4.9)

This minimization problem can be recast as search for the minimum cost

path through a trellis graph. The trellis contains K columns corresponding to

the number of landmarks and N rows corresponding to the number of pixels

as shown in Figure 4.2 for K = 3 and N = 4.

We refer to each node with its coordinates (i, xi) in the trellis, where

1 ≤ i ≤ K and xi ∈ L. L is the space of pixel locations (h, v) and we have

|L| = N . Each node (i, xi) in this trellis corresponds to the assignment of

a pixel location xi to a landmark i of the chain. We add to this trellis two

particular nodes s and t; s is the source node and t is the terminal node.

Edges between the source node s and (1, x1) have weight:

Cs,1(s, x1) = −UI,1(x1). (4.10)

Edges between (i, xi) and (i + 1, xi+1) have weight:

Ci,i+1(xi, xi+1) = −UI,i(xi+1) − Pi,i+1(xi, xi+1). (4.11)

Edges between (K, xK) and the terminal node t have weight:

CK,t(xk, t) = 0. (4.12)

In this trellis a path from s to t traverses exactly one node per landmark

in the chain; this corresponds to assigning a pixel to each landmark. The

cost/length of a path is the sum of the costs of the edges traversed in the

path from s to t. As such, a shortest path from s to t corresponds to a

global minimum of the energy function expressed by taking the negative of

Equation 4.1. Minimizing this cost function can thus be accomplished by

searching for the minimal cost path in a trellis graph. In the following, we

review two best-fist search techniques -akin to A∗ and Dijkstra’s algorithm

which are broadly used in the artificial intelligence domain. This will paves

the way to describe our accelerating technique described in Section 4.4.
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x1
b b b

x2
b b b

s t

x3
b b b

x4
b b b

1 2 3

Figure 4.2: A trellis graph. The optimization of Equation 4.1 can be recast

as a search for the minimum cost path from s to t in this trellis graph. The

trellis shown here contains K = 3 columns corresponding to the number of

landmarks and N = 4 rows corresponding to the number of pixels.

4.3.2.1 Dijkstra’s Algorithm

Starting from the source node s, Dijkstra’s search algorithm [Dijkstra 1959]

builds partial shortest paths Xi = {x1, . . . , xi}, i ≤ K, in order of increasing

length. The algorithm explores nodes (i, xi) in the trellis according to their

shortest path cost c(i, xi) from the source node s. We call c(i, xi) the cost-so-

far at node (i, xi) defined as:

c(i, xi) = min
x1,...,xi−1

Cs,1(s, x1) +
i−1∑

k=1

Ck,k+1(xk, xk+1) (4.13)

= min
x1,...,xi−1

c(i, xi−1) + Ci−1,i(xi−1, xi). (4.14)

A priority queue Q guides the exploration of nodes. Each element E ∈ Q is a

structure E = {(i, xi), P (i, xi), (i−1, xi−1)} composed of a trellis node coordi-

nates pair (i, xi), an assigned priority P (i, xi) and a pointer to a predecessor

node (i − 1, xi−1).

Initially, Q is empty. We start by pushing to it the structure composed

of the source node s with priority P (0, s) = 0 and no predecessor. At each

iteration, the element with the lowest priority is popped from Q. If the node

corresponding to (i, xi) in the trellis was not visited before, we set its path

cost to c(i, xi) = P (i, xi) and we mark it as visited. At the next trellis

column i + 1 each neighboring node (i + 1, xi+1) is a potential extension of

the shortest path arriving to (i, xi). The length of this extended path is

c(i, xi)+Ci,i+1(xi, xi+1) according to Equation 4.14. We push to Q all elements
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E = {(i + 1, xi+1), P, (i, xi)} where (i + 1, xi+1) is a neighbor of (i, xi) with a

priority set to:

P (i + 1, xi+1) = c(i, xi) + Ci,i+1(xi, xi+1) (4.15)

The priority assigned to each node (i+1, xi+1) is the cost of the shortest path

arriving to this node and passing through (i, xi). It is hence an estimation of

the cost-so-far c(i + 1, xi+1) .

The algorithm converges when the popped node from Q is the final node

s. We can then recover the shortest path through backtracking; each node in

the shortest path indicates its predecessor.

This algorithm finds the global shortest path while if w∗ is the cost of

the desired shortest path, then Dijkstra ends up visiting nodes such that

c(i, xi) ≤ w∗. as proved in [Cormen et al. 2001].

4.3.2.2 A∗ Search

The A∗ search algorithm [Hart et al. 1968, Hart et al. 1972] can be used to

accelerate Dijkstra’s algorithm. A∗ reduces the number of explored nodes by

anticipating the additional least path cost d(i, xi) from a node (i, xi) to reach

the final node t. The ‘cost-to-go’ d(i, xi) at node (i, xi) is expressed as:

d(i, xi) = min
xi+1...xK

K−1∑

k=i

Ck,k+1(xk, xk+1). (4.16)

Computing d(i, xi) can be demanding, but A∗ estimates the cost-to-go through

a heuristic function h(i, xi). The difference between A∗ and Dijkstra’s algo-

rithm resides in the priority of the structures. This priority is now set equal to

the cost of the path arriving to xi+1 and passing through xi, plus an estimate

of the cost-to-go from xi+1 to terminal node t. This can be written as follows:

P (i + 1, xi+1) = c(i, xi) + Ci,i+1(xi, xi+1) + h(i + 1, xi+1) (4.17)

Due to the introduction of this heuristic, A∗ limits the number of explored

nodes (i, xi) to the set of nodes satisfying:

c(i, xi) + h(i, xi) ≤ w∗. (4.18)

Given that h(.) ≥ 0 it becomes clear that this is a smaller set than the set of

nodes satisfying Equation 4.3.2.1 visited by Disjkstra’s algorithm.

A∗ leads to a globally optimal solution if the heuristic is a lower bound on

the actual cost-to-go:

h(i, xi) ≤ d(i, xi), ∀i, xi (4.19)
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In this case, the heuristic is qualified as an admissible heuristic. The design

of an appropriate heuristic function h(i, xi) is the main challenge in devising

an efficient A∗ algorithm. Ideally the heuristic function should (i) provide a

tight lower bound on the cost-to-go at a given node xi, i.e. Equation 4.19 and

(ii) be easy to compute. Problem abstraction [Held & Karp 1971, Pearl 1984,

Prieditis 1991] is a common way to construct admissible heuristics and consists

in relaxing some of the problem constraints.

4.4 Fast Optimization for Chain-structured

DCMs

Having covered the basic notions of Dijkstra’s algorithm and A∗ , we now turn

to present algorithms more relevant to our problem. The main challenge here

is that we have a large label space that however can be properly manipulated

because of its geometric structure since each label corresponds to a position

in the image. For this we draw inspiration from recent techniques that were

developed in star-shaped DPM detection [Kokkinos 2011a] and adapt them

to the case of chain-structured graphs.

4.4.1 Hierarchical A∗

To accelerate inference with chain-structured graphs, we build on the Hier-

archical A∗ Lightest Derivation (HA∗LD) [Felzenszwalb & Mcallester 2007]

algorithm. In the following we briefly review HA∗LD which was originally

introduced as a generic method for parsing. Here we proceed to a presentation

taylored to our shortest path problem.

HA∗LD is an extension to A∗ and uses an hierarchy of problem abstrac-

tions to define heuristics. In particular, the algorithm defines problem ab-

stractions by building an hierarchy of coarser versions of the original problem.

Starting from G0 -the trellis graph defining the original problem- we con-

struct M = log2(N) trellis graphs G1 . . . GM , where N is the number of pixels.

For convenience, we assume that N = 2M . All the trellis graphs have the same

number of columns K but each graph Gm has fewer nodes at each column

than the one below it Gm−1. Each trellis graph in this hierarchy represents

a problem abstraction to the problem represented by the trellis below it. In

particular, each trellis graph Gm is generated from the trellis below Gm−1 in

the following manner: at Gm−1, each two consecutive nodes (i, xi) and (i, x′
i)

at each column i are aggregated to define a supernode in the coarser trellis

Gm. We refer to this supernode as the parent node of the two nodes relying

at the finer resolution, and we use pa(.) and ch(.) to denote parent and child
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1 b b b

2 b b b
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3 b b b

4 b b b

Gm+1 at the coarse level m + 1

1 b b b

2 b b b

s t

3 b b b

4 b b b

x1 x2 x3

Gm at the finer level m

Figure 4.3: Illustration of heuristic computation in the HA∗LD algorithm; the

cost-to-go dm+1(2, pa(x1)) at the parent node (m + 1, 2, pa(x1)) in the coarse

level m + 1 serves as a heuristic for node (m, 2, x1) at the fine level m of the

hierarchy. This cost-to-go is set to lower bound he cost of any path connecting

(m, 2, x1) to final node t in the finer graph.

operators respectively. In particular, ch(xi) denotes the set of children of a

label xi. Henceforth, we will be denoting each node in this hierarchy with its

coordinates (m, i, xi), where 0 ≤ m ≤ M , 1 ≤ i ≤ K and 0 ≤ xi ≤ N
2m . We

recall that M is the number of the trellis graphs in the hierarchy, K is the

number of landmarks and N is the number of pixels.

At each trellis Gm, each edge cost between nodes (m, i, xi) and (m, i +

1, xi+1) is set to be a lower bound on the edge costs between all of their

possible child nodes (m − 1, i, ch(xi)) and (m − 1, i + 1, ch(xi+1)) at trellis

Gm−1. This can be written as follows:

Cm
i,i+1(xi, xi+1) ≤ min

x′

i
∈ch(xi),x′

i+1
∈ch(xi+1)

Cm−1
i,i+1(x′

i, x′
i+1); (4.20)

Combining Equation 4.20 and Equation 4.16, we can write:

dm(i, xi) ≤ dm−1(i, ch(xi)), (4.21)
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where the m superscript indicates the coarsening level for which the cost-to-

go is computed. Equation 4.21 allows us to define a heuristic function at

any node (m, i, xi) in the hierarchy using dm+1(i, pa(xi)) -the cost-to-go at its

parent node lying in the coarser trellis Gm+1. Formally, we can now write our

heuristic as follows:

hm(i, xi) = dm+1(i, pa(xi)). (4.22)

The cost-to-go dm+1(i, pa(xi)) at the parent node (m + 1, i, pa(xi)) is in

itself a shortest path problem from the terminal node t to the current node

(m + 1, i, pa(xi)). Its computation is prioritized. The priority of a cost-to-go

dm+1(i, pa(xi)) is the path cost of the shortest path passing through (i, pa(xi))

in the coarse trellis Gm+1. Hence, the original problem is solved recursively

through the trellis hierarchy.

HA∗LD computes the required heuristics for shortest path search while

avoiding exhaustive computation. For this, the algorithm relies on a single

global priority queue Q for all the computations. Starting from the coarsest

trellis GM , HA∗LD progressively refines only the necessary part of the hierar-

chy and computes heuristics only when needed. This results in an interleaved

computation of the cost-to-go and the cost-so-far at nodes in the hierarchy

according to the priority of the task.

In order to distinguish between elements in Q pushed from cost-so-far or

cost-to-go computation, we augment each queue element E ∈ Q with a binary

variable δ ∈ {f, b}, where f stands for ‘forward’ and b stands for ‘backward’.

Each element is then expressed with

E = {(m, i, xi), Pδ(m, i, xi), (m, i − 1, xi−1), δ}. (4.23)

We note that now the priority depends on δ. If δ = f , we have:

P m
f (i, xi) = cm(i − 1, xi−1) + Cm

i−1,i(xi−1, xi) + dm+1(i, pa(xi)). (4.24)

Otherwise, if δ = b, we have:

P m
b (i, xi) = dm(i + 1, xi+1) + Cm

i,i+1(x
m
i , xm

i+1) + cm(i, xi). (4.25)

The priority of each element in the priority queue explains the use of

heuristic functions h and g as depicted by the A∗ algorithm; as expressed in

Equation 4.24, the priority Pf (m, i, xi) of a forward element is the cost-so-

far from source node s of the path arriving to (m, i, xi) and passing through

(m, i − 1, xi−1), plus an estimate of the cost-to-go from (m, i, xi) to terminal

node t. This estimate is computed according to Equation 4.22 and is the

cost-to-go from the parent node (m + 1, i, pa(xi)) to terminal node t.
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As expressed in Equation 4.31, the priority Pb(m, i, xi) of a backward ele-

ment is the cost-so-far from terminal node t of the path arriving to (m, i, xi)

and passing through (m, i + 1, xi+1), plus the cost-to-go from (m, i, xi) to

source node t.

The HA∗LD algorithm is described in more details in Appendix B.

4.4.2 Efficient Computation of Hierarchical Edge Costs

Having described HA∗LD for the shortest path problem, we now turn to de-

scribe how we apply this algorithm to solve our specific problem expressed in

Equation 4.8. Since our label space consists in pixel locations in the image,

we use the KD-tree [Bentley 1975] data structure to partition the search space

into a hierarchy of image subspaces. Namely, any node (m, i, xi) in our trellis

hierarchy -except for nodes lying in the finest trellis- corresponds to a rectan-

gular image subspace populated by nodes (0, i, x′
i) such that x′

i ∈ ch∗(xi). We

denote by ch∗(.) the operator that maps each node to all its descendants lying

at the finest trellis. Nodes (0, i, x′
i) lying at he finest trellis correspond to pixel

locations (h, v). In particular, if x′
i ∈ ch∗(xi) we have h ∈ [l, r] and v ∈ [b, t],

where l, r, b, t are the left, right, bottom, top axes defining xi’s bounding box,

Bxi
= {l, r, b, t}.

The component that is missing from the presentation in Section 4.4.1 is

how to compute the edge-costs in the hierarchy of trellis graphs. We recall

that we need to compute lower bounds on edge costs between nodes satisfying

the constraint expressed by 4.20. In particular, this constraint can be written

as follows in our case:

min
x

′

i∈ch∗(xi)

x
′

i+1
∈ch∗(xi+1)

C0
i,i+1(x

′
i, x′

i+1) = min
x

′

i∈ch∗(xi)

x
′

i+1
∈ch∗(xi+1)

−UI,i(x
′
i+1) − Pi(x

′
i, x′

i+1)

≥ min
x′

i+1
∈ch∗(xi+1)

−UI,i(x
′
i+1) + min

x
′

i∈ch∗(xi)

x
′

i+1
∈ch∗(xi+1)

−Pi(x
′
i, x′

i+1)

≥ U I,i(xi+1) + P i(xi, xi+1)

= Cm
i,i+1(xi, xi+1). (4.26)

We compute the first term U I,i(xi+1) through fine-to-coarse minimization

when constructing each KD-tree. We compute the second term P i(xi, xi+1)

analytically using geometric reasoning; we recall that any node (m, i, xi) in

the trellis such that m > 0 is assigned a rectangular image area delimited by

Bxi
= {lxi

, rxi
, bxi

, txi
}. We recall also that our pairwise terms are separable

and can be written as:

Pi(x
′
i, x′

i+1) = H(hi − hi+1)
2 + V (vi − vi+1)

2.
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Figure 4.4:

Execution of our HA∗LD algorithm for a chain

structured model of 5 landmarks (front figure); each

row shows the best found coarse path at each itera-

tion. The last row represents the locations of the 5

landmarks at convergence. The algorithm quickly

focuses its search on promising locations.
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Figure 4.5: Illustration of the terms involved in the geometric bound compu-

tations [Kokkinos 2011a].

where x′
i = (hi, vi), x′

i+1 = (hi+1, vi+1) and we omitted the effect of µi = (h̄, v̄)T

in Equation 4.2 for simplicity. This allows us to express P i(xi, xi+1) as:

P i(xi, xi+1) ≤ min
hi,vi

min
hi+1,vi+1

H(hi − hi+1)
2 + V (vi − vi+1)

2 (4.27)

where hi ∈ [lxi
, rxi

], vi ∈ [bxi
, txi

], hi+1 ∈ [lxi+1
, rxi+1

] and vi+1 ∈
[bxi+1

, txi+1
]. To avoid confusion in the notation, let’s denote by Bl the bound-

ing box corresponding to node (m, i, xi) and by Bn the bounding box corre-

sponding to node (m, i + 1, xi+1) and describe a bounding box Bn using its

center c = (hn, vn), and dimension dh,n, dv,n attributes as in [Kokkinos 2011a].

We use dh = 1
2
(dh,n + dh,l), dv = 1

2
(dv,n + dv,l) and write:

P i(xi, xi+1) = H max(⌈hn − hl − dh⌉, ⌈hl − hn − dh⌉)2 (4.28)

+ V max(⌈vn − vl − dv⌉, ⌈vl − vn − dv⌉)2

where ⌈x⌉ = max(x, 0). We visually depict this bound in Figure 4.5. The lower

bound is zero if the boxes overlap, or else equals the distance of their closest

points scaled with H and V . The main gain is that instead of evaluating a

quantity on the cross product of pixels x′
i ∈ ch∗(xi) and x′

i+1 ∈ ch∗(xi+1), we

use two terms that are computable in a number of operations independent of

the cardinalities of the respective bounding boxes.

4.4.3 Path Pruning

We argue in this section how we further accelerate our HA∗LD based shortest

path algorithm by drawing inspiration from the pruning techniques employed

in the branch-and-bound based algorithm of [Kokkinos 2011b]. This requires

the combination of upper bounds and lower bounds on the energy ω∗ of desired

solution so as to eliminate solutions that are guaranteed to be suboptimal.
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The goal of pruning is to permanently discard unpromising paths from an

early stage of the search. We denote by S(m, i, xi) an upper bound on the

path cost of the shortest path passing by node (m, i, xi) and by S(m, i, xi) a

lower bound on the path cost of the shortest path passing by node (m, i, xi).

The main idea of pruning is that if S(m, i, xi) ≥ S(m, i, x′
i), then the best

path passing through node (m, i, xi) cannot be better than the worst path

passing through (m, i, x′
i); we do not need then to entertain node (m, i, xi) as

an hypothesis.

Specifically, we recall that each time we compute a forward priority of a

priority queue element E = {(m, i + 1, xi+1), P, (m, i, xi), forward}, we are

actually estimating a lower bound λ
(m,i,xi)
(m,i+1,xi+1) on any path passing through

nodes (m, i + 1, xi+1) and (m, i, xi). We consider now that at the time of

computing this quantity, we have at our disposal an upper bound µ on the

shortest path ω∗. This µ ≥ ω∗ is computed from previous iterations. This

allows us to use the following rationale: if the lower bound λ
(m,i,xi)
(m,i+1,xi+1) is

greater than the available upper bound µ, we deduce that any path passing

through ch(m, i, xi) and ch(m, i + 1, xi+1) is a suboptimal candidate solution.

Recursively, this is valid for any descendant of (m, i, xi) and (m, i+1, xi+1) at

any level of the hierarchy. This is because as we go from a coarse trellis to a

finer one, lower bounds get higher and upper bounds get lower. We thus prune

all these candidates solution from search. This allows us to keep limited the

number of terms involved in the computation in finer trellis graphs. Therefore,

we dynamically define the structure of the abstraction hierarchy. We find the

neighbors (m, i + 1, xi+1) of a node (m, i, xi) by looking to (m + 1, i + 1, xi+1)

that survived the pruning and considering their children. The pruning allows

us as well to reduce the number of elements to be pushed to the priority queue

Q. This is actually a costly operation since its computational complexity is

O(n) , where n is the number of nodes already in Q.

Now we show how to compute upper bounds on ω∗. To ensure that we

prune as many elements as possible, we need to compute tight upper bounds.

To this end we start by defining the quantity Cm

i,i+1(xi, xi+1) that upper bounds

all edge costs C0
i−1,i(x

′
i−1, x′

i) for all x′
i ∈ ch∗(xi), x′

i+1 ∈ ch∗(xi+1) For this, we

use the same technique used to find compute Cm
i,i+1(xi, xi+1) in Equation 4.26.
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Namely we write:

max
x

′

i∈ch∗(xi)

x
′

i+1
∈ch∗(xi+1)

C0
i−1,i(x

′
i−1, x′

i) = max
x

′

i∈ch∗(xi)

x
′

i+1
∈ch∗(xi+1)

−UI,i(x
′
i+1) − Pi(x

′
i, x′

i+1)

≤ max
x′

i+1
∈ch∗(xi+1)

−UI,i(x
′
i+1) + max

x
′

i∈ch∗(xi)

x
′

i+1
∈ch∗(xi+1)

−Pi(x
′
i, x′

i+1)

≤ U I,i(xi+1) + P i(xi, xi+1)

= Cm

i,i+1(xi, xi+1). (4.29)

We compute the first term U I,i(xi+1) through fine-to-coarse maximization

when constructing each KD-tree. We compute the second term P i(xi, xi+1)

analytically using geometric reasoning. This allows us to write:

P i(xi, xi+1)) = H max(hn−hl+dh, hl−hn+dh)2+V max(vn−vl+dv, vl−vn+dv)2

This upper bound is visually depicted in Figure 4.5; the upper bound equals

the distance of the further points of the two boxes scaled with H and V . By

replacing Cm
i,i+1(xi, xi+1) by Cm

i,i+1(xi, xi+1), we derive an upper bound cm(i, xi)

on the cost-so-far and an upper bound d
m

(i, xi) on the cost-to-go at node

(m, i, xi). Hence, at the time of computing priorities for forward elements to

be pushed to Q, we compute upper bounds P
m

f (i, xi) on the best path cost in

the following manner:

P
m

f (i, xi) = cm(i − 1, xi−1) + Cm

i−1,i(xi−1, xi) + d
m+1

(i, pa(xi)) (4.30)

Similarly, when computing priorities for backward elements to be pushed to

Q, we compute upper bounds P
m

b (i, xi) on the best path cost as follows:

P m
b (i, xi) = d

m
(i + 1, xi+1) + Cm

i,i+1(x
m
i , xm

i+1) + cm(i, xi). (4.31)

As the algorithm advances we keep track of the smallest upper bound

encountered so far.

4.4.4 Multi-scale Optimization

To accommodate global scale changes, we run the inference over multiple

scales. Namely, an image pyramid is built from the original image I by re-

sampling at a set of scales S = (1, r, r2, . . . , rS) as shown in Figure 4.4.4. The

minimum energy contour over these images is recovered:

X∗
I,S = argmin

X,i

sI(ri)(X), (4.32)

where I(ri) denotes the image re sampled with a ratio ri.
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Figure 4.6: In order to accommodate global scale changes, we build an image

pyramid and recover the best scoring contour over these images

Similarly to [Kokkinos 2011b], we extend our algorithm to deal with mul-

tiple scales. We could run our optimization algorithm separately over multiple

scales, but additional time can be saved by prioritizing the search over scales

by inserting in the same priority queue partial solutions coming from multiple

scales. This allows us to avoid computation at irrelevant scales from an early

stage.

4.5 Fast Optimization of the Slave Problems

In this section, we focus on accelerating the optimization of the slave problems

in the ADMM based optimization of loopy graphs. Although the slaves are

still chain structured, their energy functions differ from the energy function

described in Chapter 4. Namely, we now have extra terms that appear in

shared nodes between slaves X(r):

X∗
I = argmin

X

S(X) +

(
∑

r∈R

λ(r)X(r) − ρ
∑

r

(X(r) − u(r))2

)

(4.33)

where r is the point index belonging to more than a slave and λ(r) is a

Lagrange multiplier and u(r) ensures consistency at overlapping points. The

extra term is expressed in the form of a parametric quadratic function (X(r)−
u(r))2 of position.

One straightforward approach is to evaluate this parametric function over

all pixel locations and add its values to each candidate solution in the opti-
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Figure 4.7: Trellis graph to represent the optimization of a slave problem

with first and last nodes are shared with other graphs. Two nodes µ1 and µk

are added to the trellis to account for the additional term (X(r) − u(r))2 in

Equation 4.33.

mization. This computation can be accelerated by integrating the evaluation

of this term in the hierarchical HA∗LD shortest path computation. This al-

lows us to minimize (X(r) − u(r))2 in a coarse-to-manner without having to

evaluate its value over all possible pixel locations. To this end, we modify the

trellis hierarchy to account for new virtual nodes that represent these extra

terms. An example of a trellis at the finest level of the hierarchy is shown in

Figure 4.7, where in that case the first and last nodes of the corresponding

chain graphical model are shared with other chains.

In this trellis, edges between nodes xr and the node ur have weight

C(xr, ur) = (xr − ur)
2. Starting from this finest resolution, we build the

hierarchy of increasingly coarser trellis graphs. Edges in the coarse graphs are

computed as follows:

Cm(xr, ur) ≤ min
x′

r∈ch∗(xr)
C(x′

r, ur) = min
x′

r∈ch∗(xr)
(xr − ur)

2 (4.34)

4.6 Results

We consider the GDTs based optimization as our baseline in order to assess

the performance of our algorithm. We ran experiments on a standard PC

machine equipped with an Intelr Xeon processor running at 2.66GHz and
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Figure 4.8: GDTs optimization vs A∗ running time comparison while varying

the image size

12Gb of RAM on Windowsr 7. We use a single core in all computations.

We use the publicly available dataset of [Shiraishi et al. 2000,

van Ginneken et al. 2006] which contains 247 standard posterior ante-

rior chest radiographs of healthy and non-healthy subjects (presenting

nodules). The database contains segmentations from radiologists, which

provide a delineation of the lung fields, the heart and the clavicles as shown in

Figure 2.4.1. Gold standard segmentation masks are hence available as well

as corresponding landmark positions lying on the contour. All the reported

running times are in seconds and averaged over all images belonging to the

considered database.

Our experiments show that our HA∗LD -based shortest path algorithm

outperforms the optimization based on GDTs in terms of efficiency. We start

our side by side comparisons by comparing the single scale optimization of

two algorithms.

In the first experiment, we run the algorithms on images with different sizes

as shown in Figure 4.6. We verify that our algorithm has increasingly better

performance that the GDTs optimization as the number of pixels increases.

In the second experiment, we vary the number of landmarks by subsam-

pling over the landmarks forming the contour as shown in Figure 4.6. We

observe that the performance decreases when the number of landmarks in-

creases. This is anticipated since the accumulation of many loose bounds can

result in very loose overall bounds.
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number of image scales 1 3 5 7 9 11

GDTs 0.027 0.082 0.128 0.192 0.245 2.880

HA∗LD with pruning 0.016 0.025 0.050 0.086 0.113 0.129

HA∗LD without pruning 0.021 0.034 0.060 0.099 0.130 0.139

Table 4.1: Average computational time comparison in seconds.
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Figure 4.9: GDTs optimization vs A∗ running time comparison varying the

number of landmarks

In table 4.1, we compare our multi-scale implementation against the multi-

scale implementation of GDTs according to the number of scales considered.

In these experiments, we consider K = 10 as the number of landmarks. We

observe that our gain margin increases as the number of scales increases. This

is due to the use of a single global priority queue. Moreover, we show in this

table the benefits of the pruning technique by comparing running times with

a version of HA∗LD without pruning.

A number of qualitative results on segmentation of the right lung and left

lung are shown in Figure 4.10. The learning part for this open chain structured

model will be described in Chapter 2.

4.7 Conclusion

In this chapter, we proposed an efficient algorithm for chain-structured graphs

with a large label space. Our approach is based on the HA∗LD algorithm aug-
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Figure 4.10: Segmentation results on the left lung and on the right lung using

our open chain-structured deformable contour model. Ground truth contours

are shown in green, our results are shown in red.
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mented with a pruning technique -used in branch and bound algorithms- which

further accelerates the optimization. We applied our algorithm on the task of

shape segmentation of medical images where we showed up to 23-fold speedup

in multi-scale optimization comparing to the state of the art technique based

on dynamic programming accelerated with generalized distance transforms.

Although we have focused on the shape segmentation application, we view

the main contribution of this paper as providing a fairly generic method for

efficient inference on chain structured graphical models with spatial variables.

Our method can be easily applied to face recognition and body pose estimation

tasks to accelerate the optimization. Unlike the GDTs based optimization

which requires separable kernels, our method is more flexible regarding the

form of the pairwise potentials. This can be done by properly modifying the

lower and upper bounds computation on the edge costs.
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5.1 Introduction

The purpose of this work has been to improve deformable part models for

shape-based segmentation in medical images. In this thesis, we derived effi-

cient algorithms to solve optimization problems that arise in deformable part

models. This allowed us to use richer graphs with arbitrary topologies, opti-

mize loss functions specific to contours, and segment objects in medical images

faster that the state-of-art techniques.

5.2 Our Contributions

Below we summarize our contributions on three aspects of the shape segmen-

tation problem: modeling, inference and learning.

Modeling

We cast multi-organ shape segmentation and landmark localization in a

graphical model framework. In particular, we represented every organ as a

cyclic graph, whose nodes indicate landmarks positions and we used loopy

graphs to incorporate problem constraints that cannot be encoded through

chain- or tree- structured graphs. We integrate dense local descriptors in

the appearance terms to achieve better performance than convolution-based

features currently used in medical image analysis.

Inference

We derived an efficient algorithm to tackle the inference problem under-

lying DPM-based shape segmentation. We employed ADMM to decompose

the associated loopy graph into open chain-structured subgraphs. ADMM
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Figure 5.1: The surface of a 3D object can be decomposed into chains belong-

ing to horizontal, sagittal and coronal slices sharing 3D landmarks.

allowed us to fix the potential inconsistencies of the individual solutions in

a small number of iterations (typically ≤ 10). We optimized efficiently each

of the subgraph problems -that arose from the ADMM decomposition- in

a coarse-to-fine approach to solve shortest path problems. Specifically, we

adapted HA∗LD and accelerated it through pruning techniques and a multi-

scale efficient implementation.

Learning

We used structural SVMs to learn jointly all the model parameters and

designed the structured MCD loss function which is suited to the task of shape

segmentation. The resulting training algorithm inherits efficiency from our in-

ference algorithm since an adapted version of the latter is used as a subroutine

in learning with the Cutting Plane algorithm. Training with Structured Pre-

diction and the MCD loss delivered a superior performance over structured

prediction with the generic 0-1 loss, which already outperforms the state-

of-the-art method, according to our experiments on the considered medical

benchmark.

Overall, the use of our fast and exact algorithms almost saturated the con-

sidered benchmark while being 10 times faster in average over the established

state-of-the-art.

5.3 Future Work

We now discuss several directions of research that can be investigated to im-

prove and extend the presented work.

Application

On the application level, since our method is fairly generic, the most

straightforward extension is to transfer our method to the segmentation of

anatomical structures in 3D volumes. There, the object’s surface can be de-

composed into 2D chains -as shown in Figure 5.1- on sagittal, horizontal and
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coronal slices that share nodes. Since a large number of landmarks is required

to represent the 3D surface of the object, the manual labeling of the training

shapes to establish correspondences between landmarks, becomes rapidly a

tedious task. Such datasets are currently rare for 3D medical applications.

The application of our method to other challenging vision tasks including

face recognition and pose estimation is also conceivable. A main challenge in

face detection using ADMM inference is that many object instances may exist

in the same image and the slaves might then be attracted by object parts that

belong to different objects.

Modeling

Regarding the modeling, we note that in the considered dataset, all the

training shapes have similar orientations due to acquisition. This might not be

the case for other applications. Hence a rotation invariant model is required

for an accurate detection of revolving objects in images for instance. To this

end, we can think of combining the rotation invariant appearance features,

SID of [Kokkinos & Yuille 2008] with the weak pictorial structure model of

[Gu 2012], where rotation invariant pairwise potentials are designed.

Another possible extension to our model is to consider image region sup-

port in order to improve the quality of the segmentation. The region inside the

anatomical object can be triangulated as shown in Figure 5.2. Then Green’s

theorem allows to express regional integrals as inner products on the local 2D

line segments represented by pairwise terms in the energy function.

Inference

On the inference side, the adaptation of our inference algorithm to pairwise

terms encoding region statistics and/or rotation invariance is challenging. To

this end, one direction is to precompute pairwise terms for all possible values

and cache them in a database. We also wish as to explore ADMM-based op-

timization for higher-order MRF optimization, used e.g. to encode symmetry

or hypergraph optimization.

Learning

On the learning side, we considered in this work the optimization of the

MCD loss. A different performance measure can be considered to improve

performance. In particular, the optimization of the widely used DICE co-

efficient is appealing. This requires solving efficiently a new loss-augmented

inference problem.

In our structured prediction learning algorithm, we used ADMM as a black

box optimization method to solve the augmented inference subroutine need

by the cutting plane algorithm. Therefore, ADMM was called many times

during learning. [Komodakis 2011, Hazan & Urtasun 2010] propose to reduce

training of complex graphs to parallel training of a series of easy-to-handle

slave graphs by using a dual decomposition framework. Based on this idea,
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Figure 5.2: Model triangulation from [Xiang et al. 2013].

we can think of using ADMM instead of dual decomposition to optimize the

training objective and aim for faster convergence of the learning algorithm.

Furthermore, since we now have at our disposal an efficient inference al-

gorithm that makes no assumption about the graph topology, we can think

about the optimal structure of the graph. For instance, we can investigate if

longer connections between landmarks would improve the model performance

-without worrying about the resulting model topology. To this end, the use

of supervised machine learning techniques to predict the optimal topology of

the graph is worth considering.
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In this Appendix we develop a method to rapidly initialize 3D brain tu-

mor segmentation; tumor segmentation is crucial for brain tumor resection

planning, and a high-quality initialization can significantly impact segmen-

tation quality. Our main contribution lies in developing an efficient method

to initialize the segmentation by phrasing it as nonparametric density mode

estimation, and developing a Branch and Bound method to efficiently find the

mode (maximum) of the density function.

Our technique is exact, has guaranteed convergence to the global optimum,

and scales logarithmically in the volume size by virtue of recursively subdi-

viding the search space. Our method employs the Dual Tree data structure

originally developed for kernel density estimation [Gray 2003], and recently

used for object detection with branch-and-bound in [Kokkinos 2011a]. In this
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Horizontal plane Coronal plane Saggital plane

Patient MRI and ground truth segmentations

Pixel-level scores delivered by Adaboost-based tumor classifier

Mode estimation results (yellow) segmentation (red) and ground truth (green)

Figure A.1: Illustration of our method: we use ground truth annotations

to train pixel-level tumor classifiers using boosting. The pixel-level classifier

scores are treated as weights in kernel density estimation KDE; the mode of

the resulting KDE can be interpreted as the center of the tumor. We use

branch-and-bound to rapidly find the mode of the KDE (yellow box); this is

used to initialize the graph-cut segmentation that delivers the contours shown

in red.

work we ‘close the loop’, and use the Dual Tree data structure to find the

mode of a nonparametric distribution.

This estimated mode provides our system with an initial tumor hypothesis;

this is then refined by graph-cuts to provide a sharper outline of the tumor

area. We demonstrate a 12-fold acceleration with respect to a standard mean-

shift implementation, allowing us to accelerate tumor detection to a level that

would facilitate high-quality brain tumor resection planning.

A.1 Introduction

The most common treatment of brain tumors is surgical resection, where

the quality of the intervention can be largely affected by the efficient iden-
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tification of the surgical margins during planning. Conventional segmen-

tation techniques rely on prior knowledge and smoothness constraint to

overcome the enormous variability of tumors both in terms of location as

well as in terms of geometric characteristics. Even though recent studies

[Duffau 2004] indicate statistically preferable locations for tumors in the brain

and [Parisot et al. 2012] proved that using this information improves substan-

tially the results, in our work we take a more agnostic approach, using a

clustering-based method for tumor detection.

Clustering, segmentation and nonparametric density mode estimation are

related problems whose combination has been particularly studied in 2D

images in the thread of works developed around the Mean-Shift method

[Comaniciu & Meer 2002]. This method is also used as a component in a

number of diagnosis tools such as vessel tracking [Walsum et al. 2008], Multi-

ple Sclerosis brain segmentation [Prima et al. 2008] and MRI brain clustering

[Mayer & Greenspan 2009], and is a general tool that applies transversally to

a host of problems in medical imaging.

In our work we develop a method to rapidly initialize a segmentation

by relying on nonparametric density mode estimation. The mode of a non-

parametric density estimate is used to pinpoint the center of the tumor, and

thereby initialize a 3D segmentation implemented using graph-cuts. Our main

contribution lies in addressing the computational complexity of the mode es-

timation problem.

The original Mean Shift method [Comaniciu & Meer 2002] is iterative,

scales linearly in the number of points used in the Kernel Density Estima-

tion (KDE) (as it follows the trajectory of every one of them) and can require

careful checking of convergence. Faster variants of Mean Shift exist includ-

ing Medoid Shift [Sheikh et al. 2007], Quick Shift [Vedaldi & Soatto 2008],

Fast Gauss transforms [Yang et al. 2003] as well as the Dual Tree variant

of Mean Shift [Wang et al. 2007]. However, those of them that are exact

[Yang et al. 2003, Wang et al. 2007] are ‘dense’ i.e. evaluate the KDE over

a dense set of locations; as such they may be inappropriate for application

to 3D medical image volumes. Alternatively, those that focus on the modes

[Sheikh et al. 2007, Vedaldi & Soatto 2008] are only approximate and have

complexity proportional to O(KN) where N is the number of pixels and K

is the typical neighborhood size.

The main contribution of our work is a rapid mode estimation tech-

nique for 3D MRI image segmentation. Dealing with three dimensional

data challenges several algorithms which are reasonably efficient for 2D

medical image analysis. In this paper, we leverage upon recent develop-

ments using Branch-and-Bound (BB) in object detection [Kokkinos 2011a,

Kokkinos 2012b, Kokkinos 2012a], which demonstrated that detection is pos-
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sible in time sub-linear in the image size.

The main thrust of our work is the adaptation of this idea to the mode

finding problem in KDE, typically addressed through Mean Shift. We propose

an algorithm that can find the mode of the density with best-case complexity

being logarithmic in the size of the search space.

We apply our algorithm to the setting of 3D brain tumor segmentation.

Our algorithm takes the scores of a discriminatively trained classifier for tu-

mor voxels and uses them to construct weights for a KDE-based estimate of

the tumor location. Using standard mean shift would require tracking the

trajectory of each voxel, and identifying the largest basin of attraction. In-

stead our algorithm narrows down the location of the maximum through an

iterative branch-and bound algorithm. In specific, we construct bounds on

the value of the KDE over intervals of the search space, and use these bounds

to devise a prioritized search strategy for the density’s mode. We demonstrate

substantial speedups when comparing to the standard mean-shift algorithm.

Furthermore, we couple the mode estimation results with a post-processing

step using graph-cuts, which allows us to boost the segmentation performance

of our algorithm. Systematic evaluations are performed on clinical datasets

demonstrating a 12-fold acceleration in speed over classical Mean-Shift while

at the same time achieving robust tumor detection and segmentation.

A.2 Rapid 3D Structure Detection

Our goal is to devise an algorithm that can quickly detect the largest re-

gion corresponding to a class (tumor in our case) within a 3D volume.

This problem is particularly challenging for standard segmentation algorithms

as it is hard to define exact boundaries between tumor and normal tissue

[Birkbeck et al. 2009]. Moreover, relying only on a classifier to separate the

tumor class from the remaining structures in the MRI volume is challenging,

due to the similarity between tumor and normal tissue and the high diversity

in appearance of tumor tissue among different patients [Birkbeck et al. 2009].

We start by phrasing our problem as mode seeking for a Kernel Density

Estimate and then proceed to describing our Branch-and-Bound based opti-

mization algorithm. We note that even though we focus on tumor segmen-

tation, the same approach could potentially be useful to other maximization

problems in 3D space.
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Figure A.2: Our proposed efficient segmentation pipeline; namely, we pro-

pose a method to efficiently detect a volume-of-interest through KDE mode

estimation.

A.2.1 Problem Formulation

We consider that we are provided with a scoring function that estimates the

probability wi with which a voxel xi in ℜ3 can belong to the considered class

(i.e. a tumor vs non-tumor classifier). Namely, we have a mapping:

f : ℜ3 → [0, 1] , xi 7→ wi, (A.1)

where f encapsulates the feature extraction around xi and the subsequent

formation of the class posterior. In specific, this score can be the output of a

soft classifier or a likelihood function on the density distribution of the tumor

class.

In order to pool information from multiple voxels and obtain a regularized

labeling of the 3D volume, we phrase our problem in terms of a Kernel-based

Density Estimator of the form:

KDE(x) =
n∑

i=1

wiKh (x − xi) (A.2)

We consider that Kh is a separable decreasing kernel, with the parameter h

determining the used amount of smoothing. In the context of our application,

we work with the finite-support Epanechnikov kernel [Scott 1992]:

Kh(x − xi) =







0 if ‖x − xi‖ > h

3
4

(

1 −
(

‖x−xi‖
h

)2
)

else,
(A.3)
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First iteration Second iteration Last iteration

Figure A.3: Illustration of our Branch and Bound algorithm ; the prioritized

search scheme quickly drives us to the most promising intervals (rectangles)

until the first singleton interval is reached. Shown in white is the currently

popped interval form the priority queue. Shown in gray are the previously

popped intervals and not refined to save computational time.

even though any other separable decreasing kernel could be used, e.g. an

uniform or a Gaussian kernel [2]. We also note that in principle we should

normalize the wi elements to have unit sum, but the subsequent tasks are

unaffected by this normalization. We address the problem of region detection

in terms of mode estimation for the KDE above, namely we set out to find:

x∗ = argmax
ℜ3

S(x) = argmax
ℜ3

n∑

i=1

wiKh (x − xi) (A.4)

Instead of the iterative procedure employed by Mean-Shift, we now describe

how Brand-and-Bound can be used to directly recover the solution of Eq.A.4.

A.2.2 Branch and Bound Algorithm

Branch-and-Bound is an optimization method that searches for the global

maximum of a function S(x). To this end, the algorithm employs a recur-

sive subdivision of an interval of solutions X in its prioritized search for the

maximum. The priority of an interval is determined by the function’s upper

bound S within it. So, if we consider the maximum value of function S within

the interval X, say S(X) = maxx∈X S(x), we bound it with S(X) ≥ S(X).

Moreover, we require S({x}) = S(x)

At each iteration a candidate domain X is popped from the priority queue,

and split into subintervals. A new upper bound for each subinterval is com-

puted and inserted in the priority queue. The bounding function drives BB

to the most promising intervals until the first singleton interval, say x, is

reached. Since the bound is tight for singletons, we know that the solutions
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contained in the remaining intervals of the priority queue will score below x,

since the upper bound of their scores is below the returned singleton’s score.

This guarantees that once a singleton is popped from the priority queue, it

will be the global maximum of S.

A.2.3 Bounding the KDE score

Having phrased the general setting of Branch-and-Bound, we now turn to

how we can apply it to mode finding for Kernel Density Estimation; the main

mathematical construct that we need is a bound on the score of a KDE within

an interval of solutions. Namely, we need a function S(X) which gives us for

an interval X an upper bound to the score of the KDE score within X:

S(X) ≥ max
xj∈X

n∑

xi∈X′

wiKh (xj − xi) = S(X). (A.5)

We call points contained in X ′ the source locations and points in X the domain

locations, with the intuition that the points in X ′ contribute to a score in X

[Gray 2003].

We now decompose the computation of the upper bound in Eq. A.5 into

smaller parts by using the partitions X = ∪d∈DXd and X ′ = ∪s∈SX. Our

decomposition is based on the fact that maxx f(x) + g(x) ≤ maxx f(x) +

maxx g(x). For Eq. A.5 this means that if we separately maximize some of

the summands and add them back, this gives us something that will be larger

than S(X) (and as such, a valid candidate for S(X)).

Based on this observation we introduce the quantity:

µs
d = max

xj∈Xd

∑

xi∈Xs

wiKh (xj − xi) (A.6)

and upper bound the right-hand side of Eq. A.5 as:

S(X) ≤ max
d

∑

s

µs
d (A.7)

where we have brought the summation over s outside the maximization over

xj. This means that if we can construct separately upper bounds to µs
d, we

can add them up and obtain a valid upper bound for S(X). This will then be

used by Branch-and-Bound to prioritize the search over intervals that contain

the density’s mode.

In particular, we can upper bound µX′

X with µX′

X as follows:

µX′

X

.
= (

∑

i∈X′

s

wi) max
i∈X

max
j∈X′

K(xi, xj) (A.8)
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The first term in Eq. A.8 can be computed rapidly over large intervals using

fine-to-coarse summation.

The computation of the right term in Eq. A.8 can be rapidly im-

plemented if X and X ′ are rectangular domains, and K is a separa-

ble, monotonically nonincreasing kernel. Using simple interval arithmetic

[Gray 2003, Kokkinos 2011a, Kokkinos 2012b] can deliver the result of this

joint maximization, whose complexity could scale as the product of the cardi-

nalities of X and X ′ if naively implemented. In particular we can analytically

compute the maximal values of K(xi, xj), xi ∈ X, xj ∈ X ′ in terms of the min-

imal distances of points in X, X ′, illustrated as dmin in the right of Fig. A.4 -

a detailed description of the term is included in [Kokkinos 2011a, Gray 2003].

Using the quantities in A.8 we can form an upper bound S(X) to S(X)

as:

S(X)
.
= max

X

∑

X′

µX′

X ≥ S(X) (A.9)

The one thing that remains is to control the complexity of the summation

over X ′ in this last equation. In particular, tight bounds require small inter-

vals, but as the intervals become smaller, their number increases. This can

become a computational bottleneck if not properly treated.

For this we employ a ‘Dual Tree’ data structure [Gray 2003,

Kokkinos 2011a, Kokkinos 2012b], involving two kd-trees corresponding to

the domain and source intervals respectively. This is used in a ‘Dual Re-

cursion’ algorithm, where the domain intervals X and source intervals X ′ are

simultaneously refined in a coarse-to-fine manner. Starting with two intervals

X and X ′ that correspond to the whole signal domain, at each iteration of

the dual recursion these are split, bounded, and pruned if possible.

Pruning is the most crucial aspect of Dual Recursion, and guarantees that

the computation remains tractable for fine intervals. The pruning uses a rea-

soning illustrated on the left side of Fig. A.4: considering that at the current

iteration of dual recursion X and X ′ are partitioned as X = {XA, . . . , XD}
(domain nodes) and X ′ = {X1, . . . , X6} (source nodes), our goal is to reduce

the number of source nodes to be considered at the next iteration as ‘sup-

porters’ for the children of the current domain nodes. Focusing on a single

domain node, XA, we thus want to find which of X1, . . . , X6 to prune; for

this we compute not only upper bounds of the contribution of Xi to XA, but

also lower bounds; we denote these as µXi

XA
, µXi

XA
respectively. Our reasoning

goes as follows: if µXi

XA
< µ

Xj

XA
, this means that node i (and thus its chil-

dren) in the best case will contribute something less that what node j (and

its children) will contribute in the worst case. We can thus ignore node i when

refining the bound for node A. A more extensive discussion is contained in

[Kokkinos 2011a, Kokkinos 2012b]. The lower bound µXi

XA
can be efficiently
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Figure A.4: Left: an example of the rationale behind pruning in Dual Re-

cursion: source nodes are indexes by numbers, domain nodes are indexed by

letters; if the upper bound of node 6 contribution to node A does not exceed

the lower bound of, say, node 2 contribution to A, node 6 can be pruned.

Right: Distance bounds between nodes in dual trees.

computed in terms of the maximal distance between points in XA, Xi, illus-

trated as dmax in the right of Fig. A.4.

A.3 3D Brain Tumor Segmentation

Once a region of interest is efficiently selected, we proceed to segmentation

in order to delineate the tumor from the normal tissue. Many segmentation

methods have been proposed in the literature for tumor segmentation. MRF

based-segmentation [Boykov & Kolmogorov 2004] has proved its performance

and robustness in many applications. Therefore, we formulate the task of

tumor segmentation from the 3D volume of interest as a discrete energy min-

imization problem. The 3D volume V is viewed as a lattice {ϑ, ε} where each

voxel vp forms a node in the graph. The MRF energy is written as:

E(V ) =
∑

p∈ϑ

Θp(vp) +
∑

(p,q)∈ε

Θpq(vp, vq) (A.10)

The function f serves as the unary potential energy. In order to improve

the classification results, we use a regularization expressed by the binary po-

tential energy. The conventional 4-neighborhood system is extended in 3D so

that each voxel has 8 neighbors. We consider, in this work, the Potts model

modulated by the contrast of normalized intensities as our regularization func-

tion.

This global criterion measures both the total dissimilarity among the two

groups and the total similarity inside them. Global minimum of the consid-

ered energy is efficiently computed with the graph cut/max flow minimization

algorithm[Boykov & Kolmogorov 2004, Kolmogorov & Zabih 2004].
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Figure A.5: Popped intervals (white) from the priority queue and their sup-

porters (green) at each iteration; we go simultaneously in a finer level in both

candidate rectangles and supporters. At each iteration we prune the support-

ers that have insignificant contribution to the merit function. This allows

us to keep the number of supporters limited, and hence the bounds remain

cheaply computable when refining the intervals.
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Patient MRI Adaboost segmentation Graph cut

produced bounding box produced segmentation ground truth

Figure A.6: Comparison between Adaboost segmentation, graph cut segmen-

tation and our method segmentation.

A.4 Experimental Evaluation

image size profile our method Mean-Shift exhaustive search

256x256x24
detection 2.5s 31s 60s

overall time 17s 46.5s 75.5s

512x512x33
detection 8s 223s 319s

overall time 93s 293.5s 389s

Table A.1: Average computational time comparison.

To evaluate our method on a real dataset, we use Adaboost to provide

us with the scores of individual voxels. Adaboost is based on the idea that

a combination of weak classifiers such as decision trees can create a strong

classifier. We use 40 randomly selected images to train the classifier with

the following features: normalized intensities, locations (x,y,z), intensities of

smoothed image at 3 half octave scales, gradient magnitude, Laplacian of

Gaussian features at 3 half octave scales, absolute of Laplacian of Gaussian

features at 3 different scales. Our classifier was trained with 50 rounds of

boosting and we employed Decision Tress of Depth 3.
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Figure A.7: Boxplots of the Dice values. From left to right: segmentation

results with boosting only, boosting and pairwise regularization, boosting,

rapid mode estimation and pairwise regularization.

A.4.1 The Dataset

We did our experiments on a dataset composed of 113 patients with low grade

gliomas. The patient age ranged from 21 to 65 years, and tumor size between

3.5 and 250 cm3. The MRI volume size varied from 256x256x24 to 512x512x33.

The voxel resolution ranged from 0.4x0.4 to 0.9x0.9 mm2 in the (x,y) plane

and 5.3 to 6.4 mm in the z plane. The 3D images were rigidly aligned using

medInria [Toussaint et al. 2007]. The dataset comes with a manual segmenta-

tion of the gliomas tumor done by experts, which is considered as our ground

truth data.

A.4.2 Validation Methodology

In order to assess the quality of the segmentation results, we compute the

Dice similarity coefficient, which reflects the overlapping rate between the seg-

mented volume and the volume defined by experts. We evaluate the efficiency

of our algorithm by comparing the computational time of the detection part

with the Mean-Shift procedure and convolving the 3D volume with the kernel.

Since the tumor size can achieve 250 cm3 we convolve with an Epanechnikov

kernel whose scale equals nearly the quarter of the volume size. This value

matches the maximal size of the ground truth segmented gliomas. We use

the most efficient available CPU version of convolution. The used package

detects automatically if the kernel is separable and optimizes the convolution

computation.
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A.4.3 Results

The average Dice computed on our database is 0.73 (cf. Fig. A.7) which

is comparable to the results produced by the state of the art methods

[Bauer et al. 2011, Parisot et al. 2012]. we report from [Bauer et al. 2011]

that the computational cost is between 20 and 120 seconds and the average

DICE coefficient is 0.77. Our average computational time is 19 seconds. Mode

estimation is a principal ingredient of the proposed method, as the results be-

come less accurate if we only use either Adaboost classifier or graph-cuts (cf.

Fig. A.7, Fig. A.4). We compare the computational time between our work, a

standard implementation of Mean Shift and an exhaustive search over volume

locations after evaluating KDE in all locations cf. Table A.1. We run the

algorithms on a 4-core Intel Xeon computer which frequency is 2.67GHz. We

use, though, a single core in the computation.

A.5 Relation to relevant techniques

To the best of our knowledge, branch and bound has not been used before

for mode estimation of KDEs. It was used in [Kokkinos 2011a] for Object

Detection, but with a different score function. We thus expect that our work

will also be of interest to researchers working on mode estimation.

A work lying particularly close to ours is the previous work of [Gray 2003],

that introduced the Dual Tree data structure, and Dual Recursion. This pro-

vides a technique for the efficient computation of a KDE score on all do-

main points. Similarly, the multipole method [Engheta et al. 1985] evaluates

a KDE on all candidate locations, and is thus linear in the number of points.

The aforementioned methods are excellent for KDE evaluation- but for mode

estimation they perform an ‘overkill’, since they exactly evaluate the score

everywhere, while we only want the location of the maximum. Instead our

technique searches directly for the maximum location, and effectively ignores

less promising locations. This allows us to work in a time that is sublinear

(practically logarithmic) in the number of possible locations. This is crucial

for 3D medical data, where increasing the resolution by a factor of 2 will re-

sult in an 8-fold slowdown for the Multipole/Dual Tree methods, but will only

require, in the best case, 3 additional iterations for our method.

A.6 Conclusion

In this paper we have presented a Branch-and-Bound based method for effi-

cient mode estimation in KDE. We used our method for brain tumor detection
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and segmentation of 3D MR images. We demonstrate that our method re-

sults in a 12-fold speedup over standard Mean-Shift. Our approach is more

robust than applying graph cut on the whole volume. The largest part of

the computational time is taken by feature computation which can easily be

accelerated with graphic processing units. Future directions include evaluat-

ing and adapting the proposed approach to the 3D liver tumor tracking in

radiation therapy where real time is crucial.
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Horizontal plane Coronal plane Saggital plane

Patient MRI and ground truth segmentations

Pixel-level scores delivered by Adaboost-based tumor classifier

Mode estimation results (yellow) segmentation (red) and ground truth (green)

Patient MRI and ground truth segmentations

Pixel-level scores delivered by Adaboost-based tumor classifier

Mode estimation results (yellow) segmentation (red) and ground truth (green)

Figure A.8: Illustration of our method on two patient cases: we use ground

truth annotations to train pixel-level tumor classifiers using boosting. The

pixel-level classifier scores are treated as weights in kernel density estimation

KDE; the mode of the resulting KDE can be interpreted as the center of

the tumor. We use branch-and-bound to rapidly find the mode of the KDE

(yellow box); this is used to initialize the graph-cut segmentation that delivers

the contours shown in red.





Appendix B

Hierarchical A∗ Algorithm

In this Appendix we describe our implementation of

HA∗LD [Felzenszwalb & Mcallester 2007] applied to shortest path search in

a trellis graph.

We start by computing the shortest path cost at the coarsest trellis. This

level is composed of one node per column describing the whole image domain.

Since there is a unique path, we can compute cost so far and cost to go at

each node. This allows us to have the heuristic h available for each node in

the trellis below -containing 2 nodes per column. We initialize the priority

queue with a forward element corresponding to the source node s.

At each iteration, the element with the lowest priority is popped from the

Q. Since backward and forward nodes coexist in Q, we need to define which

computation is triggered when an element is popped taking into account the

current state of the hierarchy.

When a ‘forward’ element {(m, i, xi), Pδ(m, i, xi), (m, i−1, xi−1), f} comes

off the queue, we check if the corresponding node to (i, xi) in the trellis was

not visited before in a cost-so-far computation, we compute its cost-so-far

c(m, i, xi) and we mark it as visited. Since this cost-so-far is now available,

this allows us to update -if any- priorities of elements in Q that were set to

infinity because of unavailability of c(m, i, xi) needed in Equation 4.31. At the

next trellis column i + 1 each neighboring node (m, i + 1, xi+1) is a potential

extension of the shortest path arriving to (m, i, xi). In order to decide which is

the best extension, we push to Q elements E = {(m, i+1, xi+1), P, (m, i, xi), f}
with a priority expressed by Equation 4.24 and set to infinity if d(m + 1, i +

1, pa(xi+1) is not yet computed.

Similarly, when a ‘backward’ element {(m, i, xi), Pδ(m, i, xi), (m, i −
1, xi−1), b} comes off the queue, we check if the corresponding node to (i, xi)

in the trellis was not visited before in a cost-to-go computation, we compute

its cost-to-go d(m, i, xi) and we mark it as visited. Since this cost-to-go is now

available, this allows us to update -if any- priorities of elements in Q that were

set to infinity because of unavailability of d(m, i, xi) needed in Equation 4.31.

At the next trellis column i − 1 each neighboring node (m, i − 1, xi−1) is a

potential extension of the shortest path arriving to (m, i, xi) from terminal

node t. In order to decide which is the best extension, we push to Q elements
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E = {(m, i−1, xi−1), P, (m, i, xi), b} with a priority expressed by Equation 4.31

and set to infinity if c(m, i + 1, xi+1) is not yet computed.

When the terminal node t at a given trellis is reached with a cost c(m, K, t),

this triggers the kickoff of a cost-to-go computation starting by terminal node

t at the same trellis.

The algorithm stops when the node (m, i, xi) popped from Q belongs to

the finest trellis and the last column is K. That is m = 0 and i = K. We can

then backtrack the shortest path in this trellis G0.
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