
HAL Id: tel-01303138
https://theses.hal.science/tel-01303138

Submitted on 16 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-stabilizing algorithms for graph parameters
Brahim Neggazi

To cite this version:
Brahim Neggazi. Self-stabilizing algorithms for graph parameters. Computational Geometry [cs.CG].
Université Claude Bernard - Lyon I, 2015. English. �NNT : 2015LYO10041�. �tel-01303138�

https://theses.hal.science/tel-01303138
https://hal.archives-ouvertes.fr

Numéro d’ordre: 41-2015 Année 2015

Université Claude Bernard Lyon 1

Laboratoire d’InfoRmatique en Image et Systèmes

d’information

École Doctorale Informatique et Mathématiques de Lyon

Thèse de l’Université de Lyon

Présentée en vue d’obtenir le grade de Docteur,

spécialité Informatique

par

Brahim NEGGAZI

Self-stabilizing algorithms for graph

parameters

Thèse soutenue le 15/04/2015 devant le jury composé de:

Rapporteurs: Colette Johnen – Professeur à l’Université de Bordeaux 1

Achour Mostefaoui – Professeur à l’Université de Nantes

Examinateurs: Michel Habib – Professeur à l’Université Paris Diderot Paris 7

Jean-luc Baril – Professeur à l’Université de Bourgogne

Volker Turau – Professeur à l’Université de Hambourg

Directeur: Hamamache Kheddouci – Professeur à l’Université de Lyon 1

Co-directeur: Mohammed Haddad – Mâıtre de Conférences à l’Université de Lyon 1

iii

Acknowledgments

This dissertation is dedicated to the memory of my father Mâamar.

The completion of this thesis would not have been possible without the support and en-

couragement of many special people. Hence, I would like to take this opportunity to show my

gratitude to those who have assisted me in myriad ways.

I would like to express my deepest gratitude to my advisor, Pr. Hamamache Kheddouci, for

his excellent guidance, caring, patience, and for providing me with an excellent atmosphere for

doing research. He was very patient with me, especially during the last months of my thesis

that were very difficult for me. Thank you again Chief.

I would like to thank my second advisor, Dr. Haddad Mohammed, who let me experience

and practical issues beyond the textbooks, patiently corrected my writing papers and disserta-

tion. He was like a friend to me during the last four years. Thank you again my friend.

I would also like to thank Pr. Volker Turau for his collaboration and for guiding my

research for the past two years and helping me to develop my background in writing, proving

and way of presentation. Also I thank him for his fruitful discussions especially during my

stay in Institute of Telematics of Hambourg University.

Special thanks goes to Pr. Colette Johnen, Pr. Achour Mostefaoui, Pr. Michel Habib,

Pr. Volker Turau and Pr. Jean-Luc Baril who were willing to participate in my final defense

committee.

Out of sight but close to my heart. I would like to thank Dr. Omar Kermia, who as a good

friend, was always willing to help and give suggestions.

I am also deeply thankful to my colleague and my friend Fairouz for her kindness and for

helping me enormously during my thesis through very fruitful discussions and continuous moral

support. Thanks again Fairouz.

Many thanks to my friends Chellal, Sidali, Amer, Adel, Nabil, Kamel, Bacha, Reda, and

all other members of the LIRIS laboratory Said, Isabelle, Saida, Hélène, Jean-pierre...

I would also like to thank mymother, two elder sisters, and brothers, especially the youngest

one Hamid. They were always supporting me and encouraging me with their best wishes and

prayers.

Finally, I would like to thank my best friend Slimane Lemmouchi. He was always there

cheering me up and he is the one who stood by me in good and bad moments. Thank you again

Boss.

Brahim

Abstract: The concept of self-stabilization was first introduced by Dijkstra in 1973. A

distributed system is self-stabilizing if it can start from any possible configuration and converges to

a desired configuration in finite time by itself without using any external intervention. Convergence

is also guaranteed when the system is affected by transient faults. This makes self-stabilization an

effective approach for non-masking fault-tolerance.

The self-stabilization was studied in various fields in distributed systems such as the problems

of clock synchronization, communication and routing protocols. Given the importance of graph

parameters, especially for organization and communication of networks and distributed systems,

several self-stabilizing algorithms for classic graph parameters have been developed in this direction,

such as self-stabilizing algorithms for finding minimal dominating sets, coloring, maximal matching,

spanning tree and so on.

Thence, we propose in this thesis, distributed and self-stabilizing algorithms to some well-

known graphs problems, particularly for graph decompositions and dominating sets problems that

have not yet been addressed in a view of self-stabilization.

The four major problems considered in this thesis are: the partitioning into triangles, p-star

decomposition, edge monitoring set and independent strong dominating set problems. The common

point between these four problems is that they are considered as variants of dominating set and

matching problems and all propositions deal with the self-stabilization paradigm.

The partitioning into triangles describes the graph as the union of disjoint triangles. It has

been proved that this problem is NP-complete and even finding the maximum number of triangles

in arbitrary graph is NP-hard. Hence we consider the local maximal partitioning called maximal

graph partitioning into triangles. Then, we present different self-stabilizing algorithms for this

problem under two types of schedulers and we give formal proofs for correctness, convergence and

complexities.

A p-star is a tree with one center node and p leaves where p ≥ 1. The p-star decomposition

subdivides the graph into disjoint components where each one contains a p-star as a subgraph.

We propose self-stabilizing algorithms for decomposing a graph into p-stars. Formal proofs for

the correctness and the convergence of these algorithms are given within the unfair distributed

scheduler.

In 2008, a new parameter of edge domination was introduced by Dong et al., called Edge

monitoring problem. A node v can monitor (i.e. dominate) an edge e if the end nodes of e are

neighbors of v, i.e. they form a triangle. Moreover, some edges need more than one monitor.

Thus, the problem of edge-monitoring consists in identifying a set of nodes that monitor some

edges. Furthermore, the minimum set edge-monitoring problem is long known to be NP-complete.

In this thesis, we develop a new polynomial distributed and self-stabilizing algorithm for computing

a minimal set for edge-monitoring problem within the distributed scheduler.

The last studied parameter, called Independent Strong Dominating Set (ISD-set), is an inter-

esting variant of dominating sets. In addition to its domination and independence properties, the

ISD-set considers also nodes degrees that make it very useful in practical applications. Thence, we

proposed a self-stabilizing algorithm for computing an ISD-set of an arbitrary graph. Formal proofs

for the correctness, convergence and complexity of this algorithm are given within the distributed

scheduler. Moreover, some simulations with well- known self-stabilizing algorithms are provided.

Keywords: Self-stabilizing algorithms, partitioning into triangles, p-star decomposition,

distributed system, edge monitoring problem, strong dominating set, generalized matching, fault-

tolerance.

v

Résumé: Le concept d’auto-stabilisation a été introduit par Dijkstra en 1973. Un système

distribué est auto-stabilisant s’il peut démarrer de n’importe qu’elle configuration initiale et retrou-

ver une configuration légitime en un temps fini par lui-même et sans aucune intervention extérieure.

La convergence est également garantie lorsque le système est affecté par des fautes transitoires, ce

qui en fait une approche élégante, non masquante, pour la tolérance aux pannes.

L’auto-stabilisation a été étudiée dans divers domaines des systèmes distribués tels que les

problèmes de synchronisation de l’horloge, de la communication et les protocoles de routage. Vu

l’importance des paramètres de graphes notamment pour l’organisation et l’optimisation des com-

munications dans les réseaux et les systèmes distribués, plusieurs algorithmes auto-stabilisa-nts

pour des paramètres de graphe ont été proposés dans la littérature, tels que les algorithmes auto-

stabilisants permettant de trouver les ensembles dominants minimaux, coloration des graphes,

couplage maximal et arbres de recouvrement.

Dans cette perspective, nous proposons, dans cette thèse, des algorithmes distribués et auto-

stabilisants pour certains problèmes de graphes bien connus, en particulier pour les décompositions

de graphes et les ensembles dominants qui n’ont pas encore été abordés avec le concept de l’auto-

stabilisation. Les quatre problèmes majeurs considérés dans cette thèse sont: partitionnement en

triangles, décomposition en p-étoiles, Monitoring des arêtes, fort ensemble dominant et indepen-

dant.

Ainsi, le point commun entre ces problèmes, est qu’ils sont tous considérés comme des variantes

des problèmes de domination et de couplage dans les graphes et leur traitement se fait d’une manière

auto-stabilisante.

Le partitionnement en triangles décrit un graphe comme étant l’union de triangles disjoints.

Il a été prouvé que ce problème est NP-complet ainsi que trouver le nombre maximum de triangles

disjoints dans un graphe arbitraire est NP-difficile. A cet effet, nous considérons une variante

locale de ce partitionnement qui est appelé partitionnement maximale en triangles. Ensuite, nous

présentons des algorithmes auto-stabilisants à ce problème sous deux types d’ordonnanceurs. Aussi,

nous présentons des preuves formelles pour la correction, la convergence et la complexité de ces

algorithmes.

Une p-étoile est un arbre avec un noeud central et p feuilles (p � 1). La décomposition en

p-étoiles divise le graphe en plusieurs composantes disjointes où chacune d’elles contient une p-

étoile. Pour cela, nous avons proposé deux algorithmes auto-stabilisants pour la décomposition

d’un graphe arbitraire en p-étoiles. Des preuves formelles pour la correction, la convergence et les

complexités ont été présentées sous un ordonnanceur distribué.

En 2008, un nouveau paramètre de domination d’arêtes a été introduit par Dong et al., appelé

Monitoring des arêtes. Un noeud v peut monitorer (dominer) une arête e si les deux noeuds

d’extrémité de e sont voisins à v, c’est-à-dire que les trois noeuds forment un triangle. De plus,

certaines arêtes ont besoin de plus d’un moniteur. Ainsi, le problème de monitoring consiste à

l’identification des noeuds (appelés moniteurs) qui vont constituer l’ensemble de monitoring des

arêtes. Il a été démontré que trouver un ensemble minimum pour ce problème est NP-difficile.

Dans cette thèse, nous développons un nouvel algorithme polynomial distribué et auto-stabilisant

pour calculer l’ensemble minimal à ce problème tout en considérant un ordonnanceur distribué.

Le dernier paramètre étudié, appelé ensemble dominant independant fort (ISD-set), est une

variante intéressante de l’ensemble dominant dans les graphes. En plus de ses propriétés de domina-

tion et d’indépendance, ISD-set considère également les degrés des noeuds rendant cette variante

très utile dans des applications pratiques. A cet effet, nous avons proposé un algorithme auto-

stabilisant pour le calcul d’un ensemble minimal ISD dans un graphe arbitraire. Des preuves

formelles pour la correction, la convergence et la complexité de cet algorithme sont présentées dans

cette thèse. De plus, des simulations de comparaison de notre proposition avec d’autres algorithmes

bien connus sont fournies.

Contents

1 Introduction 1

2 Self-Stabilization & Graph Problems 7

2.1 Distributed algorithms . 7

2.2 Fault-tolerance approaches . 9

2.2.1 Faults taxonomy in distributed systems 9

2.2.2 Classification of fault-tolerance algorithms 10

2.3 Self-stabilization . 11

2.3.1 Self-stabilization properties 11

2.3.2 Self-stabilizing algorithm design 13

2.3.3 Daemons . 15

2.3.4 Complexity measures . 15

2.3.5 Transformers . 17

2.3.6 Proof techniques . 19

2.4 Self-stabilizing algorithms for some graph problems 21

2.4.1 Matching . 21

2.4.2 Dominating setss . 24

2.4.3 Independent sets . 27

2.5 Conclusion . 29

I Partitioning into Triangles (MPT) 31

3 Introduction and motivation of part I 33

3.1 Introduction . 33

3.2 Overview and definitions . 34

3.3 Motivation . 35

4 Algorithm for MPT under the Central Daemon 37

4.1 Introduction . 37

4.2 Algorithm description . 37

4.3 Correctness proof . 41

4.4 Convergence proof . 42

4.5 Complexity analysis . 46

4.6 Summary . 49

5 Algorithm for MPT under the Distributed Daemon 51

5.1 Introduction . 51

5.2 Impossibility result . 52

5.3 Algorithm description . 52

viii Contents

5.4 Correctness proof . 55

5.5 Convergence proof . 58

5.6 Summary . 63

5.7 Conclusion . 63

II p-Star Decomposition (MSD) 65

6 Introduction and motivation of part II 67

6.1 Introduction . 67

6.2 Definitions . 69

6.3 Motivation . 69

7 Algorithm for MSD with unique legitimate configuration 71

7.1 Introduction . 71

7.2 Impossibility result . 71

7.3 Algorithm description . 72

7.4 Correctness proof . 74

7.5 Convergence proof . 76

7.6 Complexity analysis . 77

7.7 Summary and Discussions . 79

8 Algorithm for MSD with multi-legitimate configurations 83

8.1 Introduction . 83

8.2 Algorithm description . 83

8.3 Correctness proof . 85

8.4 Convergence proof . 88

8.5 Summary . 91

8.6 Conclusion . 91

III Edge Monitoring Set (EMS)&
Independent Strong Dominating Set (ISD-set) 93

9 Introduction and motivation of part III 95

9.1 Introduction . 95

9.2 Overview and definitions . 96

9.3 Motivation . 97

10 Algorithm for EMS problem 99

10.1 Introduction . 99

10.2 Algorithm description . 101

10.3 Correctness proof . 103

10.4 Convergence proof . 105

10.5 Summary . 108

Contents ix

11 Algorithm for ISD-set problem 109

11.1 Introduction . 109

11.2 Algorithm description . 110

11.3 Correctness proof . 111

11.4 Convergence & complexity analysis 112

11.4.1 Convergence proof . 112

11.4.2 Complexity analysis . 113

11.5 Some simulations and performance analysis 114

11.6 Summary . 116

11.7 Conclusion . 117

12 Conclusions and Perspectives 119

Bibliography 123

Chapter 1

Introduction

Many computer systems are composed of multiple processors connected by com-

munication links. The development of computer networks has facilitated the inter-

connection of computers, and at the same time, the development of new systems,

called distributed systems. These systems allow us to perform the computing with

very high performance through the collaboration of different machines. Resource

sharing and communication are two goals of distributed systems. Every day, these

systems grow more and more, and now, we are using systems that run in large scale

either social networks, wireless sensors networks or ad-hoc networks.

Larger system implies greater risk of failures, and the management and the mon-

itoring of these systems are more complicated. Furthermore, repair all dysfunctions

are difficult. So, fault tolerance and robustness are then absolute necessity for the

survival of these systems. For this purpose, there are two techniques to deal with

faults in distributed systems: masking solutions hide the occurrence of faults to

the observer of the system, however, these solutions are often costly in time and

resources (computing power, memory) because they have redundant level of critical

components or information in order to contain the expected faults. Moreover, these

pessimistic solutions (masking techniques) only tolerate faults that are already pre-

set at a machine. However, the non-masking solutions are optimistic techniques

that accept the unavailability of the system for a given time and deal with all tran-

sient faults.

Self-stabilization was introduced by Dijkstra in 1973. It is a non-masking tech-

nique for designing fault-tolerant distributed systems. A distributed system is self-

stabilizing if it can automatically find the correct behavior after a failure of one or

more elements in the system. Since, the return to normal behavior occurs without

external intervention, the self-stabilization sands for a very interesting approach for

reliable distributed systems technology. However, this concept did not gain any

attention in the beginning until 1984, when Lamport referred to Dijkstra’s work as

an important approach for fault-tolerance. Lamport wrote in regard to this concept:

“I regard this as Dijkstra’s most brilliant work — at least, his most brilliant

published paper. It’s almost completely unknown. I regard it to be a milestone in

work on fault tolerance”

2 Chapter 1. Introduction

In 2000, Shlomi Dolev wrote a very nice book intituled Self-stabilization. The

author presented the fundamentals of self-stabilization and showed the process of

designing self-stabilizing distributed systems. The book proceeds from the basic

concept of self-stabilizing algorithms to advanced applications. Right after, Dijkstra

received a price for his major contribution in 2002. Since then, the self-stabilization

becomes a very interesting field in different researches.

To exploit distributed systems, software solutions must be developed. These so-

lutions must, of course, manage the communication between different machines, in

addition, they may require a particular organization of system components. Since,

it is natural to model a distributed system by a graph where nodes and edges repre-

sent the processes (resources) and their communication links and given the multiple

benefits of self-stabilization and the different needs for the management and control

distributed systems, several self-stabilizing algorithms for graph parameters were

proposed to allow the structuring, the monitoring and the organization of these

systems.

The four major problems considered in this thesis are the Partitioning into Tri-

angles, the p-Star Decomposition, the Edge Monitoring Set and the Independent

Strong Dominating Set problems. The main common point between these four

problems is that they deal with self-stabilization paradigm.

The Partitioning into Triangles (PT) is one of the classical NP-complete prob-

lems and it is defined as follows. Given q such that n = 3q where q is a positive

integer and n is the number of nodes in the graph G, a partitioning into triangles

consists of q disjoint sets T1, T2, . . . , Tq where each Ti forms a triangle in G. Since,

deciding if a graph can be partitioned into triangles or not is NP-complete, and

finding such partitioning in general graphs does not always exist, then we consider

the following variant of graph partitioning called Maximal Graph Partitioning into

Triangles (MPT). The MPT of a graph G is a set of disjoint subsets Ti of nodes such

that each subset Ti forms a triangle and no triangle can be added to this set using

only nodes not already contained in a set Ti. In addition to its theoretical aspects,

this parameter has several practical aspects in distributed system for example, com-

puting estimates of values measured in wireless sensors networks, scheduling and

so on. For this reason, we study the problem of maximal partitioning into triangles

in distributed systems using the self-stabilization paradigm. Moreover, two self-

stabilizing algorithms for such partitioning are developed.

The Maximal p-Star Decomposition is one of the well studied graph decomposi-

tion problem, also called star partitions in graph theory. Given a positive integer p,

a p-star is a complete bipartite graph K1,p with one center node and p leaves where

p ≥ 1. The p-star decomposition describes a graph as the union of disjoint stars

which all stars have equal size. This variant of decomposition belongs to the class

of generalized matchings and subgraph-decomposition problems that were proved

3

to be NP-complete. Thus, for a given arbitrary graph G, a p-star decomposition

SD of G is called maximal p-star decomposition (MSD) if the subgraph induced by

the nodes of G not contained in any p-star of SD does not contain a p-star as a

subgraph. Note that a 1-star decomposition is equivalent to the classical matching

in graphs where the aim is to find independent edges in a graph. The star decom-

positions have several applications in areas such as scientific computing, scheduling,

load balancing and parallel computing, studying the robustness of social networks.

In addition these applications in distributed systems, the decomposition into p-stars

is also used in the field of parallel computing and programming. This decomposi-

tion offers similar paradigm as the Master-Slaves (a.k.a Master-Workers) paradigm

used in grid networks, P2P infrastructures and Wireless Sensors Networks. From

the foregoing, we study the problem of Maximal p-star Decomposition with the

self-stabilizing property. Therefore, two self-stabilizing algorithms for such decom-

position are proposed with different complexity measures.

Edge Monitoring Set problem (EMS) is an effective mechanism for security of

wireless sensors networks. A node v can monitor an edge e if the end nodes of e are

neighbors of v (i.e. v and the end nodes of e form a triangle in the graph). More-

over, some edges need more than one monitor. Furthermore, finding the minimum

set of monitor nodes for such problem is proved that is NP-complete by Dong et al.

in 2008. Moreover, they propose two distributed algorithms for such problem with

provable approximation ratio in 2011. In this thesis, we develop a self-stabilizing

algorithm for such problem that converges in polynomial times, improving the ex-

isting self-stabilizing algorithm for such problem.

Independent Strong Dominating Set (abv. ISD-set) is an interesting variant of

the dominating sets (DS) and the independent sets (IS) parameters that are largely

studied in graph theory due to their several applications especially for designing

efficient protocols in wireless sensor and ad-hoc networks. In addition to its domi-

nation and independence properties, the ISD-set considers also nodes degrees that

makes it very useful in practical applications. Thence, in this part we propose the

first linear self-stabilizing algorithm for computing a minimal ISD-set of an arbitrary

graph. Furthermore, some simulations and comparisons of our ISD-set algorithm

with well-known self-stabilizing algorithms for DS and IS problems are provided.

This thesis is organized as follows: Chapter 2 gives an introduction to the

distributed algorithm and the self-stabilization paradigm as an approach for fault-

tolerance. Moreover, this chapter presents the designing of self-stabilizing algo-

rithms and the model’s assumptions used. Then the rest of thesis is split into three

main parts.

The first part is composed from three chapters. Chapter 3 presents the maxi-

mal partitioning into triangles of an arbitrary graph et its relationship with maximal

matching in graphs. Moreover, some applications of this partitioning are also pro-

4 Chapter 1. Introduction

vided. In the followingChapters 4 and 5, we present two self-stabilizing algorithms

for such partitioning under the central scheduler and the distributed scheduler re-

spectively.

The second part is also divided into three chapters. Chapter 6 presents the

Maximal p-star Decomposition problem and presents several applications of this

parameter in distributed systems. Chapters 7 and 8 present respectively two

complementary self-stabilizing algorithms for such decomposition using different

proof techniques.

In the third part, we introduce the last discussed two parameters in this the-

sis, Edge monitoring and Independent strong dominating sets problems. Then we

present their motivation and applications in wireless networks in Chapter 9. Then,

we present two self-stabilizing algorithms for these parameters in Chapters 10 and

11 respectively. Finally, Chapter 12 summarizes all results of this thesis and gives

some remarks and directions for further research.

5

List of publications arising from this thesis

International conferences

1. B. Neggazi, M. Haddad, V. Turau and H. Kheddouci. A Self-stabilizing

Algorithm for Edge Monitoring Problem. In the proceedings of Stabi-

lization, Safety, and Security of Distributed Systems, Germany, 2014.

2. B. Neggazi, V. Turau, M. Haddad and H. Kheddouci. A Self-stabilizing

Algorithm for Maximal p-Star Decomposition of General Graphs. In the

proceedings of Stabilization, Safety, and Security of Distributed Systems,

Japan, 2013.

3. B. Neggazi, M. Haddad and H. Kheddouci. Self-stabilizing algorithm

for maximal graph decomposition into disjoint paths of fixed length. In

the proceedings of Theoretical Aspects of Dynamic Distributed Systems,

Italy, 2012.

4. B. Neggazi, M. Haddad and H. Kheddouci. Self-stabilizing Algorithm

for Maximal Graph Partitioning into Triangles. In the proceedings of

Stabilization, Safety, and Security of Distributed Systems, Canada, 2012.

Accepted paper with minor revisions

5. B. Neggazi, M. Haddad and H. Kheddouci. A new Self-Stabilizing Algo-

rithm for Maximal p-Star Decomposition of General Graphs, submitted

to Information Processing Letters.

6. B. Neggazi, N. Guellati, M. Haddad and H. Kheddouci. Efficient self-

stabilizing algorithm for independent strong dominating sets in arbitrary

graphs, submitted to International Journal of Foundations of Computer

Science.

Submitted papers

7. B. Neggazi, M. Haddad, V. Turau and H. Kheddouci. A Self-stabilizing

Algorithm for Edge Monitoring Problem, a SSS 2014 paper, submitted

to a special issue in Elsevier’s Information and Computation journal.

8. B. Neggazi, V. Turau, M. Haddad and H. Kheddouci. A O(m) Self-

Stabilizing Algorithm for Maximal Graph Partitioning into Triangles,

submitted to Parallel Processing Letters.

Chapter 2

Self-Stabilization & Graph

Problems

Contents

2.1 Distributed algorithms . 7

2.2 Fault-tolerance approaches . 9

2.2.1 Faults taxonomy in distributed systems 9

2.2.2 Classification of fault-tolerance algorithms 10

2.3 Self-stabilization . 11

2.3.1 Self-stabilization properties 11

2.3.2 Self-stabilizing algorithm design 13

2.3.3 Daemons . 15

2.3.4 Complexity measures . 15

2.3.5 Transformers . 17

2.3.6 Proof techniques . 19

2.4 Self-stabilizing algorithms for some graph problems 21

2.4.1 Matching . 21

2.4.2 Dominating setss . 24

2.4.3 Independent sets . 27

2.5 Conclusion . 29

This Chapter is devoted to introduce the self-stabilizing algorithms for graph

parameters. In the first section, the distributed algorithms and their communica-

tion’s models are presented. Section 2.2 gives a classification of fault’s types in

distributed systems and the common approaches for fault-tolerance. Then, Section

2.3 introduces formal definitions of the concepts used for self-stabilizing algorithms

and the design of such algorithms. Finally, Section 2.4 presents a brief survey of

self-stabilizing algorithms proposed for some graph parameters.

2.1 Distributed algorithms

A distributed system is a collection of independent entities that cooperate to solve a

problem that cannot be individually solved [KS08]. These entities (a.k.a. processors

or resources) communicate between them using message passing or shared memory.

8 Chapter 2. Self-Stabilization & Graph Problems

Usually, the concept of distributed system is used to describe communication net-

works and multi-processor computers. Each processor can only communicate with

other adjacent processors, called neighbors. Since, it is more natural to model a dis-

tributed system by graph in which processors and communications are represented

by nodes and edges respectively. This section uses the terms processors and nodes

interchangeably, depending on the context.

There are two models assumed in distributed systems: The synchronous and

the asynchronous models. The synchronous model assumes the existence of a global

clock pulse (or simply a pulse) and all processors in the system communicate simul-

taneously at each pulse. In this model, the processors can detect the lost of messages

if a processor does not receive messages within a certain time. Contrary to syn-

chronous model, the asynchronous model have not a global clock for the system and

therefore there is no upper bounds on the message delay or local computational for

processes. As consequence, the lost messages may never be detected. In this thesis,

these types of models (synchronous or asynchronous) are encapsulated under the

assumption of the daemon and the communication atomicity used by the system.

These two terms will be defined in details later.

A distributed algorithm is an algorithm that will run on each node in the dis-

tributed system. Distributed algorithms are used in several areas such as network

communications, distributed information processing, distributed computing. Based

on local knowledge only, the nodes can operate and communicate simultaneously

with each other to resolve a common problem. Classical problems solved by dis-

tributed algorithms include spanning tree construction, leader election end mutual

exclusion. This local knowledge on each node constitutes the main difficulty in

distributed algorithms.

The communication atomicity between processes are modeled in various ways

for distributed algorithms. However, the majority of self-stabilizing algorithms use

a high level of atomicity abstraction. According to Dolev in [Dol00], the most

common communication atomicities are:

1. The shared memory model with composite atomicity (a.k.a state model): In

[Dij74], Dijkstra used this model to introduce the concept of self-stabilization.

In this model, an atomic step (or a single move) by a node consists of reading

states (registers) of all its neighbors, making internal computations and then

updating its own state (register).

2. The read-write atomicity model (a.k.a shared-register model or Dolev model):

In [DIM93], Dolev et al. introduced new type of computational model. This

model assumes separate read/write atomicity, i.e. each atomic step consists

of internal computations and either a single read operation or a single write

operation [Dol00].

3. The message-passing model [AB93]: In this model, an atomic step consists of

either sending or receiving a message but not both simultaneously.

2.2. Fault-tolerance approaches 9

In the state model and Dolev model, each two neighbors share a common mem-

ory, contrary to message-passing model where nodes exchange messages. In this

thesis, we assume the shared memory model with composite atomicity which is the

most common model used in distributed systems.

We have to note that several transformers have been proposed in the literature

for converting algorithm under one model into another algorithm that runs under

another models. These transformers are mentioned latter in this chapter.

Moreover, the distributed systems have two characterizations the anonymity of

processors and the uniformity of the algorithm. For the first characterization, we

distinguish two types:

• Anonymous system: all processors are identical and they are unable to dis-

tinguish it from other processors with the same degree in deterministic way.

In this type of system, each processor identifies its communication links with

local numbers, called port numbers.

• Non-anonymous system: In this type of system, all processors can be distin-

guished, for example by using of identifiers.

The second characterization consists on the respect of algorithm’s uniformity in

any processor. Thus, a distributed algorithm is uniform if and only if all processors

execute the same algorithm. An algorithm is non-uniform if at least one processor

does not execute the same algorithm. In this thesis, we assume that all nodes have

(locally) unique identifiers and only uniform algorithms are developed.

2.2 Fault-tolerance approaches

In the previous section, we defined the distributed systems as a set of independent

entities that cooperate between them for solving a given problem. However, the

context assumed that these systems are not disturbed by one or more external or

internal events to the system, a.k.a “faults”. Otherwise, the distributed algorithms

cannot solve the problem for which they were designed. For this reason, other

approaches have been introduced, refining the context of distributed systems, to

take into account the occurrence of faults in the system.

The following section presents a classification of different faults that can occur

in a distributed system and the main fault-tolerance approaches are presented.

2.2.1 Faults taxonomy in distributed systems

In [Tix09], Tixeuil describes faults in distributed systems using two criteria: time

and nature. Considering the time occurrence of faults, three types are distinguished:

a. Transient faults: faults that are arbitrary in nature but there is a time in the

execution where these faults not occur again.

b. Permanent faults: faults that occur at any time and stay permanently.

10 Chapter 2. Self-Stabilization & Graph Problems

c. Intermittent faults: faults that are arbitrary in nature and can occur at any time

in the execution.

Note that the two first types (transient and permanent) are specific cases of the

intermittent faults [Tix09].

The second criterion nature depends mainly on the state and the code of a node.

State-related faults change the correct state of a node, i.e. its register communica-

tion or its variables are changed after being affected by one or more faults. Usually,

this type of faults models memory corruption of a node due to environmental pertur-

bations, attacks or a dysfunction of the physical memory of a node. Code-related

faults affect the correct functioning of a node such that crashes, omissions and

byzantine faults. More details on this topic can be found in [Tix09].

2.2.2 Classification of fault-tolerance algorithms

The distributed systems are exposed to different kind of faults and they occur at

any time as it is mentioned in the previous section. However, it is essential to

develop solutions to deal with these faults in order to keep a proper functioning of

the system. These solutions are often classified according to the visibility of faults

to an observer (user) of the system. A masking solution hides the occurrence of

faults to the observer, while a non-masking solution does not have this property

[Tix09] and it accepts the unavailability of the system for a given time. It seems that

the masking solutions are more interesting than non-masking solutions, especially

for sensitive applications. However, these solutions are often costly in time and

resources (computing power, memory). Moreover, these solutions (masking) only

tolerate faults that are already preset at a node.

In [Tix09], Tixeuil classifies fault-tolerant algorithms into two categories :

1. Robust algorithms: These algorithms are typically masking solutions. They

have redundant level of critical components or information in order to contain

the expected faults. Usually, these solutions assume that even with a bounded

number of faults, the rest of the system still having a proper functioning.

However, apart resource required for redundancy, robust algorithms require

an exhaustive list of the expected faults.

2. Self-stabilizing algorithms: These algorithms are non-masking solutions and

assume that all faults are transient (cf. Section 2.2). The self-stabilizing

algorithms have no assumption on the nature of faults or extent have to

be made. An algorithm is self-stabilizing if it can start from any possible

configuration and converges to a desired configuration in finite time by itself

without any external intervention. Being able to start from any configuration

means that the algorithm does not need any initialization of its variables.

2.3. Self-stabilization 11

2.3 Self-stabilization

This section introduces in details the self-stabilization and gives more descriptions

of the concepts and methods used in this thesis. Furthermore, several techniques

for proving convergence of self-stabilizing algorithms are discussed.

2.3.1 Self-stabilization properties

A system is self-stabilizing if it can start from any possible configuration and con-

verges to a desired configuration (legitimate configuration) in finite time by itself

without using any external intervention. Convergence is also guaranteed when the

system is affected by transient faults (cf. Section 2.2). This makes self-stabilization

an elegant approach for transient fault-tolerance [Dol00]. Figure 2.1 illustrates the

behavior of self-stabilization system. Note that self-stabilizing system may not

reach a legitimate configuration (or desired configuration) if faults occur frequently

during the convergence. For this reason, most publications assume that all faults

are transient, i.e. no further faults occur during the stabilization of the system.

Legitimate

configurations

configurations

Convergence
CorrectCorrect

behavior behavior

Configurations

Fault

Time

Illegitimate

Figure 2.1: Self-stabilizing system’s behavior.

The concept of self-stabilization was first introduced by Dijkstra in [Dij74].

This concept did not gain any attention in the beginning until 1984, when Lamport

referred to Dijkstra’s work as an important approach for fault-tolerance. Lamport

said in his invited address [Lam84] in regard to [Dij74]:

“I regard this as Dijkstra’s most brilliant work — at least, his most brilliant

published paper. It’s almost completely unknown. I regard it to be a milestone in

work on fault tolerance”

Then:

“I regard self-stabilization to be a very important concept in fault tolerance, and

to be a very fertile field for research”

After few years, Lamport’s predictions have been realized and the self-stabilization

becomes very interesting field in different researches, especially in network com-

munications and graph protocol problems. Some graphs problems within self-

12 Chapter 2. Self-Stabilization & Graph Problems

stabilization properties are presented in Section 2.4. Most of these works and other

self-stabilizing algorithms for graph problems can be found in the survey of Guellati

and Kheddouci [GK10].

Self-stabilizing algorithms can be silent or not (a.k.a. non-silent). A self-

stabilizing algorithm is silent if and only if once the system reaches a legitimate

configuration, all nodes of the system do not change their states (or register’s values

of any node remain fixed), until new faults occur. The majority of self-stabilizing

algorithms for graph problems are silent, such that dominating set, matching and

coloring. Otherwise, the algorithm is non-silent such that token circulation algo-

rithm. In this thesis, all self-stabilizing algorithms are silent.

Arora and Gouda define two properties for self-stabilizing algorithms [AG93]:

(See Figure 2.2)

• Closure: Once the system reaches a legitimate configuration, this property

will be preserved, i.e. the set of legitimate configurations is closed.

• Convergence: The system always reaches a legitimate configuration after a

finite time if no further fault occurs during the stabilization.

Convergence

Legitimate configurations

Closure

Illegitimate configurations

Figure 2.2: Self-stabilization’s properties.

A third property for self-stabilizing algorithms, called Correctness, can also be

found in the literature. Usually, the correctness is used for silent algorithms and it

is defined as follows:

• Correctness: Every final configuration is legitimate, i.e. the algorithm actu-

ally computes for which it was originally developed.

The self-stabilizing algorithms presented in this thesis are all silent, as it is

the case of most graph protocols. Since, the nodes do not make others moves

when a legitimate configuration is reached, then the closure property does not have

to be proven explicitly for the proposed self-stabilizing algorithms. More formal

definitions of terms move, legitimate and illegitimate configurations are given in the

following section.

In addition to fault-tolerance aspect, the self-stabilization presents many advan-

tages:

2.3. Self-stabilization 13

• Self-recovering : The system always returns into a correct behavior without

any external intervention or global initialization. Thus, self-stabilization is

very useful for scale-free system in which manual intervention is impossible.

• No initialization: The system always converges even if it starts from illegiti-

mate configuration. Thus, the self-stabilizing algorithms do not required any

correct initialization.

• Dynamic topology adaptation: If an algorithm has a correct behavior which

depends on the system topology, such as spanning tree construction, network

decompositions and the algorithm may have an incorrect behavior when topol-

ogy changes, then the self-stabilizing algorithm is suitable in this case. Since

topology changes can be seen as transient faults that affect the correct behav-

ior of the algorithm, then the self-stabilizing algorithm returns automatically

to the correct topology in finite time.

In addition to these advantages, Berns and Ghosh show in [BG09] that self-

stabilization is currently a fundamental property for ”self-*” system’s properties

such as self-organization, self-healing, self-configuration.

However, there are of course some disadvantages of self-stabilization concept

which cannot be ignored:

• High complexity : The performance of self-stabilizing algorithms are often

lower than their equivalent non-self-stabilizing algorithms in case where no

transient faults.

• No termination detection: The nodes of the system have no way of detecting

the termination of the algorithm or aware if a legitimate configuration is

reached or not.

2.3.2 Self-stabilizing algorithm design

The distributed system is represented by an undirected graph G = (V,E), such

that V is a set of nodes corresponding to the processes and E is a set of edges

corresponding to the links. Let n = |V | and m = |E|. Two nodes v and u are

neighbors if and only if (v, u) ∈ E. The set of neighbors of a node v is denoted

by N(v), i.e. N(v) = {u ∈ V |(v, u) ∈ E}. The closed neighborhood of a node

v is denoted by N [v] = N(v) ∪ {v}. We denote by d(v) the degree of a node v

(i.e. d(v) = |N(v)|) and ∆ the maximum node degree in the graph. The maximum

length of the shortest path between any nodes is called diameter of G and it is

denoted by D.

In the system, every node v has a set of variables whose contents specify the

state “sv” of the node v. The union of the states of all nodes defines the system’s

global state (or configuration).

14 Chapter 2. Self-Stabilization & Graph Problems

Definition 1 (Configuration) A configuration c of the graph G is defined as the

n-tuple of all node’s states: c = (sv1 , . . . , svn). The set of all configuration is denoted

by CG.

Each node has only a partial view of the system. Based on its state and that

of its neighbors (distance-one model), a node can make a move which consists

of changing the value of one or more of its variables. Note that in distance-two

model (resp. distance-k model), a node can read its state and the state of nodes

of distance at most two (resp. at most k). In this thesis, we use only distance-one

model because it is more realistic. Therefore, self-stabilizing algorithms are given

as a set of rules of the form :

[Rule′s label] :: [If p(v) then M]

The predicate p(v) (a.k.a. guard) is defined over v’s partial view. The statement

M denotes a move that changes only state of the node v. A rule is called enabled

if its predicate evaluates to true. A node v is also called enabled (or privileged) if

at least one of its rules is enabled. Otherwise, the node v is disabled, i.e. all of its

rules are disabled.

The nodes cooperate to solve a specific problem. This problem is defined by a

predicate P . This motivates the formal definition of Legitimate configuration:

Definition 2 (Legitimate configuration) A configuration c is called legitimate

(or desired) with respect to P if c satisfies P . Let LP ⊆ CG be the set of all

legitimate configuration with respect to a predicate P .

Let us consider the problem of matching in graphs. Predicate P is evaluated to

true if any node in the graph G is matched (married) with only one neighbor. Then

any configuration that satisfies P is called legitimate configuration. Otherwise, the

configuration is illegitimate. Figure 2.3 illustrates a legitimate configuration for

matching problem. More details on this problem can be found in Section 2.4.

Figure 2.3: A legitimate configuration for matching problem. (The depicted edges

form the matching)

Definition 3 (Execution) An execution x of an algorithm is a maximal sequence

of configurations c1, c2, . . . , ci, . . . , ck such that each configuration ci+1 is the next

configuration of ci using one unit of time (a.k.a. step).

2.3. Self-stabilization 15

The execution of self-stabilizing algorithms are encapsulated under the notion

of daemon (a.k.a scheduler). An enabled node v makes a move if and only if v is

selected by the daemon i.e. the node v brought into a new state that is a function of

its old state and the states of its neighbors [Dij74]. Thus, several daemons have been

proposed for designing self-stabilizing algorithms. The following section describes

the most common daemons used in the literature.

2.3.3 Daemons

The execution of self-stabilizing algorithm is captured by an abstraction called dae-

mon (a.k.a. Scheduler) [Dij74]. Intuitively, the daemon is a mechanism for selecting

the enabled (privileged) nodes to execute their moves. This mechanism plays the

role of both scheduler and adversary against the stabilization of the algorithm.

This can be done by scheduling the worst possible cases for algorithm’s execution.

Thus, the choice of daemon is important in designing of self-stabilizing algorithm

in terms of convergence and complexity analysis. Indeed, many types of daemons

are assumed in the literature of self-stabilizing algorithms. Dubois presents a good

taxonomy of existing daemons in [DT11]. The three most common daemons are

the following:

1. Central daemon (a.k.a. serial daemon): At each step, the central daemon

selects exactly one enabled node to make a move.

2. Distributed daemon: The distributed daemon selects in each step a non-empty

subset of the enabled nodes to make their moves simultaneously.

3. Synchronous daemon: This type of daemon can be considered as a special

kind of distributed daemon where in each step all enabled nodes make their

move simultaneously.

Daemons are also associated with the notion of fairness. A daemon can be fair

(weakly), or unfair (adversarial). A daemon is fair if every continuously enabled

node is eventually selected. The unfair daemon on the other hand may delay the

move of an enabled node as long as there are other enabled nodes. Self-stabilizing

algorithms designed for a specific daemon may not operate under a different daemon.

However, an algorithm designed for an unfair distributed daemon works with all

other daemons. For this reason, we consider the unfair distributed daemon for all

problems discussed in this thesis, except the preliminary algorithm presented in

Chapter 4.

2.3.4 Complexity measures

The complexity measures are used to evaluate the performance of a self-stabilizing

algorithm. These measures include time, memory or the number of messages sent.

The latter is not used in this thesis because we use only shared memory model as

communication model (cf. Section 2.1).

16 Chapter 2. Self-Stabilization & Graph Problems

There are different measures for time complexity of self-stabilizing algorithms.

These measures do not consider the local resource demand of the nodes. This is

due to the assumption that the time needed for local computation (local resource

demand) is negligible (smaller) compared to the time needed for nodes commu-

nications. Readers can refer to Tel’s book [Tel94a] for more descriptions on this

topic.

The standard measure for evaluating self-stabilizing algorithms is moves com-

plexity. This complexity counts the maximum number of actions for all nodes in

the system. Formally,

Definition 4 (Move.) A move of a node v is one transition from state sv to a new

state s′v after the execution of the statement of an enabled rule in the algorithm.

In addition to the standard measure using moves, two other time measures,

called Step and Round, are also used in the literature.

Intuitively, a step can be seen as a minimum unit of time that permits the

system to transit from a configuration c to a new configuration c′ such that every

node in c can make one move during one step and such nodes make their moves

simultaneously, i.e. during one step, one or more nodes execute move and a node

may take at most one step. Formally,

Definition 5 (Step.) A step (a.k.a. time-step) is a tuple (c, c′), where c and c′

are configurations, such that some enabled nodes, in configuration c, make moves

during this this step, and c′ is the configuration reached after such nodes made their

moves simultaneously.

Informally, a Round is the minimal sequence of steps in which every node gets

the chance to be selected for making a move. Formally, the definition of round is

as follows:

Definition 6 (Round.) A Round (a.k.a. cycle) is a minimal sequence of steps in

which every node that was enabled at the beginning of the round, gets the chance

to be selected for making a move if it has not become disabled by a move of its

neighbors.

Hence, the complexity of algorithms is defined as follows:

Definition 7 (Time complexity.) The time complexity of self-stabilizing algo-

rithms is the maximum number of moves, steps or rounds needed for reaching a

legitimate configuration, regardless of starting configuration.

Usually, the complexity is denoted by O(f(x)) where f(x) can depend on the

number of nodes (n), the number of edges (m) or other graph characterizations as

maximum node degree (∆) and diameter (D). We also use the notation f(x) ∈

O(g(x)) that’s mean |f(x)| � k.|g(x)| for some positive k.

2.3. Self-stabilization 17

We have to note that under central daemon, the steps complexity is equivalent

to moves complexity, since the daemon selects only one enabled node per step.

Moreover, for synchronous daemon, the rounds complexity is equivalent to steps

complexity, since under this daemon, a round contains only one step.

Since moves complexity is an upper bound of steps and rounds complexities

within any daemon, then it would be more interesting to analyze self-stabilizing

algorithms using moves instead of steps or rounds. Moreover, this complexity re-

flects more the effort system, for example using moves, we can evaluate the energy

consumed by all nodes in wireless networks [CCT14]. Thus, a reduction of the

number of moves enhances the lifetime of a network. Unfortunately, finding such

complexity is still a real challenge for several graph problems.

In this thesis, most proposed algorithms are evaluated using moves, except the

algorithms presented in Chapters 7 and 11.

The last complexity measure considered in this thesis refers to the space memory

used to implement the algorithm. This complexity measures the amount of the

memory required for saving all variables used by the algorithm for each node in

system. Also, this complexity includes the size of registers for saving exchanged

messages.

2.3.5 Transformers

There are several different distributed models assumed in the literature and there-

fore we need to design different algorithms to solve a problem in each model. A com-

mon approach to avoid this is to design general methods that permit to transform an

algorithm from one model to other. Thus, many methods, called Transformers have

been proposed with self-stabilization. A Transformer converts a self-stabilizing al-

gorithm A that runs under a given model to a new self-stabilizing algorithm A’ such

that A’ runs under another model. Note that both of algorithms (A,A’) share the

same set of legitimate configurations. Usually, these transformers cause overhead

complexity in terms of time or space memory.

In general, these transformers can be classified into three types:

1. Communication model transformers: In previous section, we describe three

common communication models used in distributed systems: state model,

shared-register model and message-passing model. Thus, the design of self-

stabilizing algorithms depends heavily on the communication model used in

the system and an algorithm under specific model cannot run under another

communication model. For this reason, many transformers have been pro-

posed in literature for converting a distributed algorithm and preserving self-

stabilization property such that transformer from shared memory to message

passing proposed in [Dol00] and the transformer from message passing to

shared memory presented in [Ioa02]. More transformers and details can be

found in [Dol00].

2. Distance-knowledge transformers: Using model of computation of distributed

18 Chapter 2. Self-Stabilization & Graph Problems

algorithms, a node can read only its variables and those of its neighbors in

the case of distance-one model. Thus, it is easier to design a self-stabilizing

algorithm for certain problems assuming that a node can read the variables

of nodes that are in distance two or more. Then, such algorithm must be

transformed in order to run in distributed system (i.e. distance-one). Gair-

ing proposed a first transformer that allows a node to act only on correct

distance-two knowledge [GGH+04]. The idea is as follows: each node main-

tains its variables and copies of variables of its neighbors. Thus, in order

to maintain these variables up-to-date, a node can execute a move if and

only if all neighbors have given their permission. The only inconvenience of

this transformer is the slowdown factor of O(n2m) moves. An extension of

this work presented in [GHJT08], where the authors give a generalization of

this approach for distance-k knowledge in stead of two. This approach has

a slowdown factor of nO(logk) in terms of moves and memory requirement.

Recently, Turau proposed a new approach, called expression model [Tur12].

This technique transforms algorithms for the distance-two knowledge model

on the distance-one knowledge model with a slowdown factor of O(m) moves.

In this model, a node maintains its variables and a set of named expressions.

The value of an expression is based on the state of the node in question and

the states of its neighbors. A node reads the variables of another one in two

distance away through the evaluation of the expressions of its neighbors. This

approach can be considered as a generalization of the distance-two knowledge

transformer proposed by Gairing in [GGH+04].

3. Daemon transformers: In addition to communication model used by a sys-

tem, the design of self-stabilizing algorithms also depends on the daemon

assumption (cf. Section 2.3.3). Usually, the algorithms designed under cen-

tral daemon do not stabilize under synchronous or distributed daemon. For

example, the self-stabilizing algorithm for maximal matching in graph pro-

posed in [HH92] does not stabilize and never terminates under synchronous

daemon.

Indeed, designing self-stabilizing algorithms under central daemon is often

convenient. However, the central daemon does not consider concurrent ex-

ecutions of two neighbors and therefore it is not directly practicable in real

distributed systems. For this reason, several transformers have been proposed

for converting an algorithm designed for central daemon into an algorithm

that stabilizes under the distributed daemon. Since the distributed daemon is

more general than others daemons, then transformation from the distributed

daemon to the central daemon is not required.

In [BPV04], Boulinier et al. developed a transformer that converts an algo-

rithm for the central daemon into an algorithm that runs under the distributed

daemon. The core of the proposed transformer is a self-stabilizing local mu-

tual exclusion algorithm.

2.3. Self-stabilization 19

The distance-two knowledge transformer [GGH+04] and the expression model

[Tur12] can also be applied as daemon conversion from central daemon to

distributed daemon. The slowdown factors for these transformers are O(n2m)

moves and O(m) moves respectively.

In [GT07], Gradinariu and Tixeuil proposed a new transformer, called Conflict

manager. The basic idea is as follows: Each node that wants to make a move,

sets its Boolean flag in order to inform its neighbors, then, a node is allowed

to execute a move if and only if this node has the largest (or the smallest)

identifier among the nodes that have set theirs flags. The slowdown factor of

this transformer is O(∆) moves [GT07]. To the best of our knowledge, this

conflict manager is the best effective mechanism for daemon transformation.

For this reason, the conflict manager is usually used to compare complexities

between algorithms designed under the central and distributed daemons.

In addition, another kind of transformers can also be found in the literature.

These transformers allow to convert a distributed algorithm (non self-stabilizing)

into a self-stabilizing algorithm [AS88, APSVD94, KP93]. However, these trans-

formers usually sacrifice either convergence time complexity or memory require-

ments.

Usually, it is more efficient to develop specific self-stabilizing algorithms for each

model. However, these studies demonstrate the expressive power that have self-

stabilizing systems. In this thesis, we use only the distance-one knowledge because

it is most suitable in the real systems and we use also some daemon transformers

in order to compare the complexities between algorithms that operate under the

central daemon and the distributed daemon.

2.3.6 Proof techniques

As mentioned in Section 2.2, most self-stabilizing algorithms for graph problems

are silent, then proving their correctness is usually not difficult task; i.e. it is suffi-

cient to prove that in configuration where no node is enabled, the configuration of

the system is legitimate. However, proving the convergence of these algorithms is a

challenging task. For proving the convergence (second property) of a self-stabilizing

algorithm, several techniques has been proposed in the literature. This section de-

scribes the main proof techniques that we use some of them for proving convergence

and complexity analysis of our algorithms presented in the following chapters.

Variant Function: In [Kes88], Kessels proposed an approach for the first time by

using a Variant Function (a.k.a. Potential Function) to prove the convergence of

self-stabilizing algorithms. This technique measures the progress and the evolution

of an algorithm during its execution. The basic idea is to use a function over the

configuration set whose value is bounded, to prove that this function monotonically

increases (or decreases) when nodes execute any rule. This can be done for exam-

ple by counting nodes with certain properties. There exist very simple examples

20 Chapter 2. Self-Stabilization & Graph Problems

for variant functions in [AB93, Dol00, Kes88, Tel94b]. However for a majority of

algorithms, only very complex variant function were found. An exercise on Variant

Function proof is given in Chapter 4. Thus, finding such a variant function for arbi-

trary systems is not trivial and requires a lot of intuition. Theel writes in [The00]:

“. . . deriving a variant function for arbitrary systems is regarded as an art rather

than a craft”.

Attractor: The technique of attractor (a.k.a Convergence Stairs) is used to prove

the convergence of a self-stabilizing algorithm when it is difficult to find variant

function. The idea is to define a sequence of predicates p1, . . . , pk over the config-

uration set, where all legitimate configurations satisfy the predicate pk. Moreover,

each predicate pi+1 is a refinement of pi where 1 � i � k. The predicate pi+1 refines

the predicate pi if pi holds whenever pi+1 holds. The term attractor is often used

for each pi predicate [Dol00]. Then, the goal is to prove that a system in which

pi holds reaches a configuration satisfies pi+1. This technique is used in different

works such as [JM11, KM08, JM14].

Global State Analysis: A single node has not knowledge about the configuration

of the whole system. However, this global view can be used for proving the termi-

nation of an algorithm. For instance, it may be possible to prove that there is no

configuration that can occur twice. This proves that the number of possible config-

urations is finite due to the fixed number of nodes and their local states. Usually,

most algorithms define several local states for each node, this causes an exponential

number of possible configurations CG. Hence, this technique may not be a good

decision when the goal is to prove the performance of an algorithm. For example,

in [SX07], Srimani et al. used this technique for proving the convergence of a self-

stabilizing algorithm for computing a minimal weakly connected dominating set.

They prove that no configuration can occur twice for showing the termination of

their algorithm, but the authors did not give an upper bound for the complexity.

Later, Hauck presents an example in [Hau12] where the algorithm proposed by Sri-

mani needs an exponential moves to stabilize under a central daemon.

Analysis of Local States and Sequences: Contrary to the global state analysis,

this technique considers only the analysis of the state of a single node and its neigh-

bors. Some systems have the property that nodes become disabled after executing

certain moves. The basic idea is to show that any node in the system has a bounded

number of moves or bounded number of state sequence. This technique is used in

[Tur07] and [GHJ+08] for proving the convergence of self-stabilizing algorithms for

dominating set problems. A detailed description of this method can be found in

chapters 5 and 8.

Graph Reduction and Induction: Recently in [TH11], Turau and Hauck de-

veloped a new technique to prove the stabilization under central and distributed

daemon. The basic idea of this technique is to create a mapping from the algo-

2.4. Self-stabilizing algorithms for some graph problems 21

rithm’s execution sequence of a graph to that of a reduced graph. This allows to

use complete induction proofs [TH11]. The authors used this technique for finding

the worst-case complexity of self-stabilizing algorithms for finding the maximum

weight matching with approximation ratio 2. Inspired by this technique, we an-

alyzed the complexity of our algorithm for computing p-star decomposition, pre-

sented in Chapter 7.

Neighborhood Resemblance: This technique is used to prove lower bounds of

memory to solve a given problem within self-stabilizing paradigm. In fact, using

this technique, we obtain some impossibility results, i.e. it is impossible to find a

self-stabilizing algorithm for a given problem with less than a certain amount of

memory. Using this method, we prove that all self-stabilizing algorithms for the

decomposition into triangles (cf. Chapter 5) and p-stars (cf. Chapter 7) under

distributed daemon require a certain amount of memory for breaking symmetry

between nodes.

Finally, we have to note that there is no general technique that is suitable to all

self-stabilizing algorithms for verifying their convergence. Then, it is very difficult

and an important step to choose which method maybe the best adapted for proving

the convergence and the complexity of a given algorithm.

2.4 Self-stabilizing algorithms for some graph problems

Given the importance of graph theory for studying different problems that arise in

many areas (communication networks, scheduling, distributed computing), several

self-stabilizing algorithms for classic graph parameters have been developed in this

direction, such as self-stabilizing algorithms for finding minimal dominating sets,

coloring, maximal matching, maximal packing, spanning tree [BM12, MMPT09,

DWS15, Joh97]. Several surveys of such algorithms can be found in the literature

[Her02, GK10]. Herman [Her02] presents a list of self-stabilizing algorithms accord-

ing to several categories such as topology or proof techniques. Gartner [Gär03] sur-

veys self-stabilizing algorithms for spanning trees. Later, Guellati and Kheddouci

[GK10] present a survey of self-stabilizing algorithms for independence, domina-

tion, coloring, and matching problems. In this part, some references on matching,

domination and independence problems are summarized and more recent works are

presented in the following sections.

2.4.1 Matching

A matching is a classical problem in graph theory. Matching in a undirected graph

G(V,E) is a set M of independent edges (i.e. node-disjoint). A matching M is

maximal if no proper superset of M is also a matching (i.e. there is no another

matching M ′ such that M ⊂ M ′). Figure 2.4 presents a maximal matching of a

graph. A matching M is maximum if it has the largest cardinality (|M |) among

22 Chapter 2. Self-Stabilization & Graph Problems

all possible matchings in G. Matching problem has many applications in fields

as diverse as transversal theory, assignment problems [BNBJ+08], network flows

[REJ+07], scheduling in switches [WS05] and so on. since it is associated with

marriage-like problems where the goal is to form maximum couples while optimizing

specific criteria. For example, in networks, each client communicates with only one

server. More details on applications of matching can be found in [Gib85].

Figure 2.4: A maximal matching M in a graph G. (The depicted edges form the

matching)

The first self-stabilizing algorithm for computing a maximal matching was pro-

posed by Hsu and Haung in [HH92]. The algorithm is uniform and works in anony-

mous system. It assumes a central daemon. The proposed algorithm maintains a

variable for each node v in the system that contains a pointer. This pointer may be

null or may point at a v’s neighbor. Two nodes v and u are matched (i.e. married)

if and only if they point at each other. Then, in final configuration, each pairs of

matched nodes form a maximal matching. The basic idea of the algorithm is as

follows: Each node v that points null will point at an arbitrary neighbor u such

that u points at v (which means v accepts to be matched with u). If a node v

that points to null and any of its neighbors points at v then v points an arbitrary

neighbor u such that u points to null (which means that v invites/proposes a node

u to be matched). Then, a node v that points at neighbor u and the latter points

at another node w, so v will change its pointer to null (which means that v with-

draws its proposition/invitation). Hsu and Huang proved that the time complexity

is O(n3) steps. The complexity of the same algorithm was improved to O(n2) steps

by Tel in [Tel94b] and later it was improved to O(m) steps by Hedetniemi et al.

in [HJS01]. Chattopadhyay et al. proposed in [CHS02], two algorithms for the

same problem with read/write atomicity (cf. Section 2.1). The first algorithm that

stabilizes in O(n) rounds assumes that each node has a distinct local identifier. The

idea that each node tries to be matched with its neighbor that has the minimum

identifier. The authors extend this version by proposing the second algorithm for

anonymous system with (n2) rounds under central daemon. However, the second

algorithm assumes that each node knows ∆ (maximum node degree in the system)

and G is a bipartite graph. In [GHJS03c], Goddard et al. proposed a synchronous

version of the algorithm Hsu and Haung that stabilizes in O(n) rounds in mobile

ad-hoc networks. However, the authors assumed distinct local identifiers for nodes

and communication is ensured through message exchanges between nodes. Goddad

et al. in [GHS06] proposed a uniform version for finding 1-maximal matching in

trees assuming central daemon. A 1-maximal matching is maximal matching and its

2.4. Self-stabilizing algorithms for some graph problems 23

cardinality cannot be increased by removing an edge and adding two edges. Their

algorithm is based on the algorithm of Hsu and Haung and by adding a mechanism

for exchanging an edge of the matching by two when it was possible. The proposed

algorithm needs O(n4) steps. In [MMPT07, MMPT09], Manne et al. proposed an

algorithm for maximal matching that stabilizes in O(m) moves under distributed

daemon. The authors assumed distinct local identifiers within distance two. In the

algorithm, each node maintains two variables, one variable for pointer (the same as

used by Hsu and Haung in [HH92]) and one boolean variable for informing neigh-

bors whether the node is matched or not. The basic idea of the algorithm is as

follows: (1) a node can make a move if and only if its boolean variable is updated.

(2) a non-matched node v invites its neighbor u if u has a greater identifier and u is

non-matched node. (3) a node v accepts an invitation of a neighbor u if v is pointed

by u. (4) a node v withdraws its invitation from u (v sets it pointer to null) if u is

either already matched with another node (i.e. u points to another node and has

its boolean variable to true) or u has a lower identifier than v.

Another variant of matching, called generalized matching (b-matching), was

proposed by Goddard et al. in [GHJS03b]. The b-matching is considered as a

generalization of classical matching where each node in the graph is matched with

at most b neighbors. The algorithm converges in O(m) moves under central daemon.

We have to note that there is no self-stabilizing algorithm for finding a maximum

matching of general graphs in the literature. However, there are some algorithms

for certain classes of graph such tree [KS00] or bipartite graphs [CHS02].

Considering weighted graphs, Manne et al. proposed a self-stabilizing for maxi-

mum weighted matching in general graph [MM07]. The authors give upper bounds

of O(2n) moves under the central daemon and O(3n) for the distributed daemon.

Recently, Turau and Hauck improve this complexity in [TH11]. The authors present

a new analysis of the algorithm proposed by Manne and they proved that the same

algorithm stabilizes in O(mn) moves under the central daemon. Moreover, the

authors give a modified version that stabilizes within O(mn) moves within the

distributed daemon.

In this thesis, different self-stabilizing algorithms are developed that can be

also considered as generalization of maximal matching in graphs. The maximal

partitioning into triangles can be used for finding a maximal tripartite matching in a

graph where a node is matched with two neighbors instead of one, for example: given

three sets B, G and H that represent the sets of boys, girls and homes respectively

and their elements have ternary relation T ⊆ B×G×H. The question is to find a

maximal set of triples in T such that no two of which have a component in common.

In other words, each boy is married to a different girl and each couple has a home

of its own. For this, two self-stabilizing algorithms for maximal partitioning into

triangles were proposed in this thesis, called SMPTc and SMPTD. Moreover, other

self-stabilizing algorithms (called SMSD1 and SMSD2) developed in this thesis for

finding a p-star decomposition in arbitrary graph, also provide a maximal matching

if p is fixed to 1. More details on these generalizations can be found in Parts I and

II. The algorithms presented for the maximal matching problem and its variants

24 Chapter 2. Self-Stabilization & Graph Problems

are summarized in Table 2.1.

Reference Result Topology Anon. Daemon Complexity

[HH92] Maximal Arbitrary Yes Central O(m) moves

[CHS02]-1 Maximal Arbitrary No Distributed O(n) rounds

[GHJS03c] Maximal Arbitrary No Synchronous O(n) rounds

[GHJS03b] Generalized Arbitrary Yes Central O(m) moves

[GHS06] 1-Maximal Tree Yes Central O(n4) moves

[MMPT09] Maximal Arbitrary No Distributed O(m) moves

SMSD1 (p=1) Maximal Arbitrary No Distributed O(n) rounds

[KS00] Maximum Tree Yes Central O(n4) moves

[CHS02]-2 Maximum Bipartite Yes Central O(n2) rounds

SMPTD Max. Tripartite Arbitrary No Distributed O(m) moves

[MM07] 1/2 ap. max. wei. Arbitrary No Distributed O(3n) moves

[TH11] 1/2 ap. max. wei. Arbitrary No Distributed O(mn) moves

Table 2.1: Self-stabilizing algorithms for maximal matchings and its variants.

2.4.2 Dominating setss

Domination in graphs has been extensively studied in graph theory. In a graph

G = (V,E), a set of nodes D ⊆ V is called a dominating set (DS) if every node

of V is either in D or has a neighbor in D, i.e. ∀v ∈ V − D : N(v) ∩ D 	= ∅. A

dominating set is minimal (MDS) if no proper subset of D is a dominating set (see

Figure 2.5).

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

Figure 2.5: Minimal Dominating Set D of a graph G. (The members of D are

hatched)

In the literature, there are several self-stabilizing algorithms for finding differ-

ent variants of dominating sets such as total Dominating set, k-dominating set,

connected dominating set and weakly connected dominating set. A set D is called

total dominating set (TDS) if every node of the graph has a neighbor in D, i.e.

∀v ∈ V : N(v) ∩D 	= ∅. The set D is called k-dominating set (KDS) if every node

outside of D has at least k neighbors insideD. A dominating set D is said connected

dominating set (CDS) if D is connected and it is called weakly connected (WCDS)if

the subgraph weakly induced by D, i.e. (N [D], E∩(D×N [D])) is connected, where

N [S] =
⋃

v∈S N [v].

The structure of dominating sets can be used as virtual overlays in a distributed

system. These structures are often used for designing efficient protocols in wireless

2.4. Self-stabilizing algorithms for some graph problems 25

and ad-hoc networks [GHJ+08, UT11, GHJS03a, BDTC05]. Minimal dominat-

ing set can be used for locating some nodes to be servers; thus clients must be

closely with the servers [GHJ+08]. Connected dominating sets and weakly con-

nected dominating set are often used to represent virtual backbone in wireless net-

works [BDTC05].

Simple domination variant.

Hedetniemi et al. [HHJS03] developed two self-stabilizing algorithms for domi-

nating set (DS) and the minimal dominating set (MDS). The proposed algorithms

work for any connected graph and assume a central daemon. The basic idea of their

first algorithm is to partition the graph into two disjoint sets of nodes such that

each set is dominating set. For this, each node has a boolean variable that indicates

whether it is in the first set or in the second set. Then, a node changes its states

if all neighbors have the same state. The authors called this method a dominating

bipartition. Inspired from the algorithm MDS in [HHJS03], Xu et al. proposed

an algorithm for finding an MDS under the synchronous daemon [XHGS03]. The

basic idea is as follows: each node maintains a boolean variable (to indicate if the

node belongs to the dominating set or not) and a pointer. This pointer is null if

a node v is dominated by at least two neighbors; otherwise the node v points at a

unique neighbor that dominates it. Thus, if any node v is not dominated by any

neighbors, then this node will enter to dominating set by changing its variable to

true. In [GHJS03a], Goddard et al. proposed self-stabilizing algorithm for comput-

ing a minimal total dominating set (MTDS), inspired form the algorithm for MDS

in [XHGS03] and assumed a central daemon. However, the authors proved that the

algorithm is finite and no complexity analysis is given. Later in [GHJS05], the same

algorithm is proved that it stabilizes in exponential moves under central daemon.

Recenlty in [BYK14], Belhoul et al. present an efficient self-stabilizing algorithm

for finding MTDS using the expression model (cf. Section 2.3.5) proposed by Turau

in [Tur12]. Their algorithm converges in polynomial moves under the distributed

daemon. In [GHJ+08] Goddard et al. proposed another algorithm for finding an

MDS in an arbitrary graph under the distributed daemon. In addition to a boolean

variable, the algorithm uses an integer to count the number of neighbors that are

members of MDS. Using these counters, a node can make the decision to enter or

to leave the MDS. The authors assume the distributed daemon and nodes have

distinct local identifiers. In [Tur07], Turau extends his MIS algorithm to design

a self-stabilizing algorithm for the MDS problem. In addition to the pointers as

used in [XHGS03], the author in [Tur07] used three states (In, Out, Wait) for each

node in the system. Then each node in state Out (i.e. not belonging to MDS)

must transit by state Wait before to enter the MDS (i.e. will be in state In). A

node in state Wait can enter to MDS if it is not dominated by any neighbor and

this node has the smallest id among the waiting nodes. Using this idea, the author

proved that the proposed algorithm converges after at most 9n moves within the

distributed daemon. Recenlty in [CCT14], Chiu et al. inspired from the technique

26 Chapter 2. Self-Stabilization & Graph Problems

proposed by Turau in [Tur07] and they proposed a new algorithm for MDS problem

within complexity at most 4n. The authors used four states (In, Out1, Out2, Wait)

in order to improve the moves complexity.

Multiple domination.

Concerning the multiple domination, several self-stabilizing algorithms have

been proposed in the literature. Kamei and Kakugawa [KK03] presented two al-

gorithms for the minimal k-dominating set (MKDS) problem in a tree. The first

algorithm works in anonymous system and assumes a central daemon, while the

second one assumes that nodes have global unique identifiers and works under dis-

tributed daemon. In preference to propose a new algorithm, Huang et al. [HCW08]

relaxed some assumptions used with the first MKDS algorithm proposed in [KK03].

The authors showed that the same algorithm converges in polynomial times to find

2-dominating set (M2DS) in an arbitrary graph, under a central daemon. Another

algorithm for MKDS was proposed by Kamei and Kakugawa in [KK05]. Their

algorithm works for arbiratry graph and assumes that nodes have distinct local

identifiers. The authors proved that the algorithm converges in linear time under

synchronous daemon. Huang et al. [HLCW07] proposed the first general algorithm

for finding M2DS in arbitrary graph under distributed daemon. Using expression

model (cf. Section 2.3.5), Turau presents in [Tur12] an efficient self-stabilizing algo-

rithm for MKDS in arbitrary graphs. The algorithm stabilizes in polynomial moves

under the distributed daemon.

Connected Dominating Set.

Considering connected dominating set (i.e. the set D is connected), Jain and

Gupta [JG05] proposed an algorithm to construct a CDS in arbitrary graphs. The

proposed algorithm works under a synchronous daemon. A special communication

model used by the authors where nodes are assumed to have instant read access

in their 3-hop neighborhood and write access in their 2-hop neighborhood. The

algorithm proposed by Drabkin et al. in [DFG06] also assumes 2-hop read access

for the nodes. the algorithm constructs a CDS in arbitrary graphs assuming the

distributed daemon. Goddard and Srimani [GS10] proposed the first self-stabilizing

algorithm for CDS in arbitrary graphs that handles both anonymous nodes and a

distributed daemon at the same time. Kamei and Kakugawa [KK10] proposed an

algorithm that constructs a connected minimum dominating set (CMDS) assum-

ing that a rooted BFS (Breadth-First Spanning) tree of the graph is given. The

algorithm operates under a central daemon. The same authors proposed in [KK08]

an algorithm that constructs a CMDS in arbitrary graphs under the synchronous

daemon. In [RTAS09], Raei et al. proposed a self-stabilizing algorithm for finding

a CMDS under the central daemon. The algorithm assumes a disk graph with bidi-

rectional links (DGB). This model allows the nodes to have different ranges. The

authors prove a constant approximation ratio for the proposed algorithm.

2.4. Self-stabilizing algorithms for some graph problems 27

Weakly Connected Dominating Set.

A Weakly Connected Dominating Set is a Dominating Set where the induced

subgraph of the closed neighborhood of the set is connected. In [SX07], Srimani

and Xu developed the first self-stabilizing algorithm that finds a weakly connected

minimal dominating set (WCMDS) under the distributed daemon. This algorithm

assumes that a breadth first spanning (BFS) tree of the graph is given and con-

verges in exponential moves. Kamei and Kakugawa [KK07] proposed an algorithm

that constructs a WCMDS in arbitrary graphs under the synchronous daemon with

polynomial complexity. Turau and Hauck [TH09] proposed an algorithm that con-

structs a WCMDS under the distributed daemon. The known algorithm uses a

polynomial algorithm that constructs a BFS tree of a given graph. Recently in

[DWS14], Ding et al. proposed an algorithm that constructs a WCMDS in linear

rounds under the synchronous daemon.

Independent Strong Dominating Set.

All previous algorithms cited above do not consider node’s degrees. However,

the nodes having higher degrees in graphs usually play important roles in dis-

tributed systems. For example, clustering in wireless networks [YKR06], provid-

ing stable cluster structures [KMW04] and studying of communities structures in

p2p [LHK13]. In [SL96], Sampathkumar introduced to graph theory an interest-

ing variant of dominating sets problem, called Independent Strong Dominating Set

(ISD-set). In addition to its domination and independence properties, the ISD-set

considers also nodes degrees. Given a graph G = (V,E), a set D ⊆ V is an inde-

pendent set if no two nodes of D are adjacent. A node v strongly dominates a node

u and u weakly dominates v if (u, v) ∈ E and deg(v) � deg(u). A set D ⊆ V is

an ISD-set of G if D is an independent set and every node in V − D is strongly

dominated by at least one node in D. In part III, we present a self-stabilizing al-

gorithm for computing a minimal ISD-set of an arbitrary graph, called ISDS. The

algorithm provides MDS and MIS at the same time and converges in linear rounds

within unfair distributed daemon.

The algorithms presented for the dominating set problems and its variants are

summarized in Table 2.2.

2.4.3 Independent sets

As defined above, a set of nodes is an Independent Set if no two nodes are adjacent.

A maximal independent set (MIS) is an independent set that is not properly con-

tained in any other independent set with bigger cardinality. The definition of MIS

implies that for any graph G = (V,E), if a node is not in the MIS, then it must be

adjacent to at least one node in the MIS. Therefore, an MIS of a graph G is also a

minimal dominating set, however an MDS is not necessary an MIS. The dominance

property of the MIS and the sparseness of its nodes make it an important structure

28 Chapter 2. Self-Stabilization & Graph Problems

Reference Result Topology Anon. Daemon Complexity

[HHJS03]-1 DS Arbitrary Yes Central O(n) moves

[HHJS03]-2 MDS Arbitrary Yes Central O(n2) moves

[XHGS03] MDS Arbitrary No Synchronous O(n) rounds

[GHJ+08] MDS Arbitrary No Distributed O(n) moves

[Tur07] MDS Arbitrary No Distributed O(n) moves

[CCT14] MDS Arbitrary No Distributed O(n) moves

ISDS MDS/MIS Arbitrary No Distributed O(n) rounds

[GHJS03a] MTDS Arbitrary No Central Exponential moves

[BYK14] MTDS Arbitrary No Distributed O(mn) moves

[KK03]-1 MKDS Tree Yes Central O(n2) moves

[KK03]-2 MKDS Tree No Distributed O(n2) moves

[HCW08] M2DS Arbitrary Yes Central O(n) moves

[KK05] MKDS Arbitrary No Synchronous O(n2) rounds

[HLCW07] M2DS Arbitrary No Distributed –

[DLV10] MKDS Arbitrary No Distributed O(k) rounds

[DHR+11] MKDS Arbitrary No Distributed O(Dn2) rounds

[Tur12] MKDS Arbitrary No Distributed O(nm) moves

[JG05] CDS Arbitrary No Synchronous O(n2) moves

[DFG06] CDS Arbitrary No Distributed O(n) moves

[GS10] CDS Arbitrary Yes Distributed –

[KK10] CMDS BFS tree No Central O(k) rounds

[KK08] CMDS Arbitrary No Synchronous O(n) rounds

[RTAS09] CMDS DGB No Central O(n2) moves

[SX07] WCMDS BFS tree No Distributed O(2n) moves

[KK07] WCMDS Arbitrary No Synchronous O(n2) rounds

[TH09] WCMDS BFS tree No Distributed O(mn) moves

[DWS14] WCMDS Arbitrary No Synchronous O(n) rounds

Table 2.2: Self-stabilizing algorithms for dominating sets and its variants.

for many applications, such as clustering in wireless ad hoc networks [AWF03].

Since MDS and MIS are strongly related, many self-stabilizing algorithms were

also proposed for finding MIS. The first self-stabilizing algorithm that finds a max-

imal independent set was proposed by Shukla et al. in [SRR+95]. The algorithm

assumes a central daemon and converges in O(n) moves. Another algorithm for the

MIS problem was presented by Ikeda et al. in [IKK02]. Their algorithm operates

under the distributed daemon and stabilizes in O(n2) steps. In 2003, Goddard et al.

[GHJS03c] proposed a self-stabilizing algorithm that maintains an MIS in a mobile

ad-hoc network. The authors assume a synchronous model and proved that the

algorithm converges in O(n) rounds. Shi et al. [SGH04] give a particular interest

for MIS problem in anonymous systems. They presented a self-stabilizing algorithm

for the 1-maximal independent set (1-MIS) problem in tree graphs. A 1-maximal

independent set means that the set is a MIS, with the additional property that is

the cardinality of MIS cannot be increased by removing one node and adding more

other nodes. Their algorithm operates only under the central daemon and stabilizes

2.5. Conclusion 29

in O(n2) moves. In [Tur07], Turau proposed an efficient self-stabilizing algorithm

for the MIS problem. The algorithm stabilizes in O(n) moves under the unfair dis-

tributed daemon. The algorithms presented for the independent set problems are

summarized in Table 2.3.

Reference Result Topology Anon. Daemon Complexity

[SRR+95] MIS Arbitrary Yes Central O(n) moves

[IKK02] MIS Arbitrary No Distributed O(n2) steps

[GHJS03c] MIS Arbitrary No Synchronous O(n) rounds

[SGH04] 1-MIS Tree Yes Central O(n2) moves

[Tur07] MIS Arbitrary No Distributed O(n) moves

ISDS MDS/MIS Arbitrary No Distributed O(n) rounds

Table 2.3: Self-stabilizing algorithms for independent sets problem.

2.5 Conclusion

Self-stabilization is an elegant approach for fault-tolerance in distributed system. In

this chapter, we introduced the self-stabilization paradigm, then, we presented the

basic concepts required for better understanding of the communication’s models.

We also provided in this chapter a classification of several transformers proposed in

this domain.

Finally, we presented a brief survey of self-stabilizing algorithms proposed for

independent sets, dominating sets and matching problems. These algorithms con-

stitute the basis of our reasoning for the resolution of four parameters addressed in

this thesis: Partitioning into Triangles, p-Star Decomposition and Edge Monitor-

ing & Independent Strong Dominating sets problems. These four problems can be

considered as the generalization of the two parameters matching and domination

in graphs. More descriptions of the link between theses parameters can be found

in the following chapters.

Part I

Partitioning into Triangles

(MPT)

Chapter 3

Introduction and motivation of

part I

Contents

3.1 Introduction . 33

3.2 Overview and definitions . 34

3.3 Motivation . 35

3.1 Introduction

In the two past decades, distributed systems began to expand and became larger,

making their control and management much harder. A new line of research on

system partitioning (a.k.a. decomposition) is launched and motivated by the sim-

plification and improvement of system management.

Thus, graph partitioning finds applications in various fields including scientific

computing, scheduling, load balancing and network communications. Graph parti-

tioning problem is defined on a graph G = (V,E), where V is the set of nodes and

E is the set of edges, such that G is decomposed into small disjoint components

having specific properties. These properties are often defined on the size of the

partitions (clusters), on their shape (subgraphs) or both (patterns). There is a rich

literature on graph partitioning [FPSV09, OR09, Shy10]. However, only a small

fraction consider the self-stabilization paradigm.

Graph partitioning into clusters was considered in some works as [BDJV05,

CDDL09, JM14]. Usually, a cluster contains one clusterhead (a.k.a leader) and some

ordinary nodes (a.k.a members). Often, the criteria considered in the clustering

takes into account the distance between nodes and their clusterhead [BDJV05,

CDDL09] or the bound number of nodes in each cluster [JM14].

Another decomposition was proposed by Belkouch et al. in [BBCD02]. The

authors considered a particular graph partitioning problem that consists in decom-

posing the graph with k2 nodes into k partitions of order k. Their algorithm relies

on a self-stabilizing spanning tree construction. Considering the shape (topology)

of each partition, Ishii et al. proposed a self-stabilizing algorithm for partitioning

an arbitrary graph into maximal cliques [IK02].

34 Chapter 3. Introduction and motivation of part I

In this part of thesis, we focus on the partitioning into triangles of general

graphs. More specifically, we will study its local maximization variant, called Max-

imal Partitioning into Triangles (MPT). Partitioning into triangles (PT) describes

a graph as the union of disjoint partitions where each partition is a triangle. PT

is Maximal if no triangle can be added to this partitioning using only nodes not

already contained in partitions. Observe that a maximal partitioning into triangles

is not perfect (i.e. without a rest). In this part, we will study the problem of

maximal partitioning into triangles in distributed systems using self-stabilization

paradigm. Moreover, two self-stabilizing algorithms for such partitioning are devel-

oped considering the central and the distributed daemons. More details on these

algorithms can be found in chapters 4 and 5.

The maximal partitioning into triangles (MPT) can be considered as a gener-

alization of the maximal matching problem where nodes are matched with two of

their neighbors instead of one. This generalization is called Tripartite Matching

in graph theory. More formal definitions of this partitioning are given in Section

3.2. Furthermore, some applications of MPT are provided in Section 3.3 in order

to motivate the study of this variant.

3.2 Overview and definitions

The Partitioning into Triangles (PT) is one of the classical NP-complete problems

and it is defined as follows. Given q such that n = 3q where q is a positive integer

and n is the number of nodes in the graph G, a partitioning into triangles consists

of q disjoint sets T1, T2,, Tq where each Ti forms a triangle in G. The NP-

completeness proof of this partitioning problem was presented in [GJ79].

However, another problem linked to graph partitioning into triangles, called

node disjoint triangle packing consists in finding the maximum number of node

disjoint triangles in a graph. It is well known that finding this number in arbitrary

graph is NP-Hard [CR02].

The partitioning into triangles can be also viewed as Tripartite Matching prob-

lem in graphs. Tripartite matching is defined as follows: Given three disjoint sets

of nodes B (Boys), G (Girls) and H (Homes) where |B| = |G| = |H| = n and a

ternary relation (i.e. affinities) T ⊆ B×G×H. The question is to find n triples in

T such that no two of them have a component in common (See Figure 3.1). This

decision problem is known to be NP-complete [Pap94].

Since finding the maximum number of disjoint triangles is NP-hard, and deciding

if a graph can be partitioned into triangles is NP-complete, we consider the following

local variant of graph partitioning called Maximal Graph Partitioning into Triangles

(MPT). The MPT of graph G is a set of disjoint subsets Ti of nodes such that each

subset Ti forms a triangle and no triangle can be added to this set using only nodes

not already contained in a set Ti. Formally, a given partitioning PT is maximal if

there are no v, u,w ∈ V \PT such that (v, u), (u,w), (v,w) ∈ E.

However, this local maximization provides at least a third of the maximum

3.3. Motivation 35

Girls (G)Boys (B)

Homes (H)

Figure 3.1: Tripartite matching in a graph

triangles partitioning of an arbitrary graph G. The Figure 3.2 depicts a gadget

graph to present this ratio. The structure of G is illustrated in this figure. Then

MPT = {(1, 2, 3), (4, 5, 6), (7, 8, 9)} is the maximum partitioning into triangles of

G and MPT = {(3, 4, 7)} is a maximal partitioning into triangles of G. We note

that each triangle that belongs to the partitioning can desactivate at most three

other disjoint triangles in G. Hence, the maximal partitioning contains at least a

third of the maximum partitioning into triangles of an arbitrary graph G.

1 2

3

4 7

6

9

8

5

Figure 3.2: A gadget graph

3.3 Motivation

The classical matching problem consists in finding the maximum number of inde-

pendent edges in a given graph. This problem has received large interest due to

the abundant number of applications in fields as diverse as transversal theory, tasks

assignment [BNBJ+08], network flows [REJ+07], and scheduling [WS05]. Exam-

36 Chapter 3. Introduction and motivation of part I

ples include the problem of assigning tasks to workers or connecting client to server

where each machine in the network may need to choose exactly one neighbor to

communicate with. Many studies have addressed this problem even in the field of

self-stabilization (cf. Section 2.4). As graph partitioning into disjoint triangles is a

generalization of maximal matching then many applications of maximal matching

also apply. As an application of the assignment problem, each client can commu-

nicate with only two specific servers and the latter communicate between them in

order to satisfy the client.

In addition to its theoretical aspects, the maximal partitioning into triangles

is motivated by several practical aspects in distributed system. MPT was shown

to be effective in terms of energy consumption and scalability support. Delouille

et al. proposed an efficient approach based on this partitioning for coming up

with accurate estimates of values measured in wireless sensors networks [DNCB03,

DNB06].

More recently, triangle patterns were used in community detection problems

[SAG11] and for studying their robustness in peer-to-peer social networks [LHK13].

On the theoretical side, the partitioning problem is closely related to the tripartite

matching problem in graphs.

The contribution of the first part is the study of the Maximal Partitioning

into Triangles of general graphs and the presentation of different self-stabilizing

algorithms for finding such partitioning using different daemons. Chapter 4 presents

the generalization of maximal matching algorithm of Hsu and Huang, in order to

develop the first self-stabilizing algorithm for graph partitioning into triangles under

the central daemon. Formal proofs are given for showing the correctness of the first

proposed algorithm followed by its convergence proof using the variant function

technique. Chapter 5 presents an improved version of the algorithm presented in

Chapter 4. The second algorithm converges in linear time using the distributed

daemon. Formal proof of its correctness and its convergence proof using local

states technique are also presented. Moreover, impossibility result for finding a

deterministic self-stabilizing algorithm for such partitioning in anonymous system

is provided. Section 5.7 concludes this first part.

Chapter 4

Algorithm for MPT under the

Central Daemon

Contents

4.1 Introduction . 37

4.2 Algorithm description . 37

4.3 Correctness proof . 41

4.4 Convergence proof . 42

4.5 Complexity analysis . 46

4.6 Summary . 49

4.1 Introduction

In the previous chapter, we introduced the problem of Maximal Partitioning into

Triangles (MPT) and we presented some of its applications in distributed systems.

In this chapter, we present a first self-stabilizing algorithm for finding an MPT of an

arbitrary graph, called SMPTc. The algorithm works under the unfair central dae-

mon and assumes that nodes have distinct local identifiers. A preliminary version

of this work appeared in [NHK12].

Note that this chapter is devoted to present our reasoning to solve MPT problem

based on Hsu and Huang’s algorithm for maximal matching in arbitrary graphs. Al-

though the algorithm will be improved in the next chapter, it is useful to develop the

first version in order to improve the readability of the second proposed algorithm.

This chapter is organized as follows: In Section 4.2, we present the proposed

algorithm SMPTc for this problem. Then, we give formal proofs of its correct-

ness and convergence in Section 4.3 and Section 4.4 respectively. Furthermore, the

complexity analysis is developed in Section 4.5.

4.2 Algorithm description

Before presenting our algorithm for maximal partitioning into triangles, we briefly

revisit the essential design of the original maximal matching algorithm of Hsu and

Huang [HH92], already tackled in Section 2.4; the description of its rules is given

in Algorithm 1. Let’s recall that N(v) denotes the set of neighbors of a node v.

38 Chapter 4. Algorithm for MPT under the Central Daemon

Each node v maintains one variable, called v.p, which is either null, or contains an

identifier id of a neighbor, we say v points at a neighbor u such that u ∈ N(v). The

algorithm has three rules: acceptation rule [A], invitation [I] and withdrawal [W]:

the edge between two neighbors nodes becomes part of a matching when each node

points at the other. The Rule [A] allows a node to accept a proposed matching (i.e.

accept an invitation) by a neighbor. The Rule [I] permits a node to invite another

node to be matched. The Rule [W] allows a node to withdraw an invitation.

Algorithm 1: Maximal Matching Algorithm of Hsu and Huang

Nodes: v is the current node
(v.p = null) ∧ (∃u ∈ N(v) : u.p = v) −→ v.p = u; [A]

(v.p = null) ∧ (∀w ∈ N(v) : ¬(w.p = v)) ∧ (∃u ∈ N(V) : u.p = null)

−→ v.p = u; [I]

(v.p = u) ∧ (u.p = w) ∧ (w 	= v) −→ v.p = null; [W]

However, the maximal matching algorithm of Hsu and Huang is not suitable

for MPT problem since each node is matched with only one neighbor. Indeed, the

MPT problem is a generalization of the maximal matching, where each node is

matched with two neighbors. Thereby, we extend the Hsu algorithm to face the

MPT problem by allowing each node to maintain a list of pointers to its neighbors.

Thus, the main idea of the proposed algorithm for maximal partitioning into

triangles can be summarized as follows: each node v, in the graph G, maintains

a list of pointers v.L that defines to which triangle v may belong. We say v.L is

valid, if |v.L| = 0 or |v.L| = 2; v.L contains only pointers (id) to neighbors of

v (v.L ⊆ N(v)) and does not contain duplicate id. So, it is possible that at the

starting of the system, the list to be not valid. However, it is easy to add a rule

that forces it to become valid. For this reason and to simplify the description of

the algorithm, we assume that these lists are valid.

Furthermore, each node v maintains a variable S which contains its closed neigh-

borhoods (N [v]). Through the variable S of each u’s neighbor, a node u knows its

neighbors at distance two.

The proposed algorithm SMPTc permits to the nodes to coordinate between

them in order to belong to disjoint triangles. To do this, we have four rules:

• The updating Rule ([U]): when the variable v.S of the node v contains an

incorrect list of the closed neighborhood, the node v updates its variable i.e

to set v.S = N [v].

• The invitation Rule ([I]): when the pointer list of the node v is empty (v.L =

∅) and there are two neighbors (say, u and w) that may form a triangle with

v and their lists are empty, then node v invites/points the two neighbors u,w

by executing the Rule [I].

• The withdrawal rule ([W]): when v points at two nodes to form a triangle

and at least one of these two nodes points another triangle. In this situation,

4.2. Algorithm description 39

v

w

u

[A]

Figure 4.1: When v executes [A]

we say that v is chaining. Hence, the node v withdraws its invitation by

executing the Rule [W]. [W] is also executed when the pointer list does not

induce a triangle in the graph G.

• The acceptation Rule ([A]): if the pointer list of the node v is empty and there

is at least a node belonging to the same triangle {v, u,w} which points it, then

the node v accepts the invitation. We added another predicate Max Pv(u,w)

in the Rule [A] imposing to a node for belonging to a triangle as quickly

as possible in order to achieve it. For example, in Figure 4.1, the node v

accepts to belong to the triangle {v, u,w} instead of other triangles because

the triangle {v, u,w} contains already two confirmed nodes (u and w).

In addition to the two variables v.S and v.L, the algorithm SMPTc needs four

predicates.
The first predicate, called trianglev(u,w), means that in perspective of v, the set

{v, u,w} induces a triangle in the graph G. The second predicate, Pointedv(u,w)
means that it exists at least one node u or w which points at v and the second
remained node and trianglev(u,w) is true. The third predicate, Chainv(u,w),
means that the node v points at two nodes u,w that do not form a triangle or
one of these nodes points at another triangle. The last predicate, Max Pv(u,w),
means that the node v is pointed by the nodes u,w that form a triangle and there
is no adjacent triangle that contains more pointers than {v, u,w}. Formally, the
predicates are defined as follows:

• trianglev(u,w) ≡ {v, u, w} ⊆ u.S ∩ w.S and |{v, u, w}| = 3.

• Pointedv(u,w) ≡ (u.L = {v, w} ∨ w.L = {v, u}) ∧ trianglev(u,w).

• Chainv(u,w) ≡ (v.L = {u,w} ∧ (¬trianglev(u,w)∨
|{v} ∪ v.L ∪ u.L ∪ w.L| > 3)).

• Max Pv(u,w) ≡ (Pointedv(u,w) ∧ |u.L ∪ w.L| ≤ 3)∧
(∄u1, u2 ∈ N(v) : Pointedv(u1, u2) ∧ |u.L ∪ w.L| < |u1.L ∪ u2.L| ≤ 3 ∧ (u,w) 	=
(u1, u2)).

The proposed algorithm is composed of four rules that are mutually exclusive.

Observe also that the Rule [U] is the priority rule. The details of SMPTc is presented

in Algorithm 2.

Consider G as a chain of three adjacent triangles. In starting configuration,

v.L = ∅ for any v ∈ V , as illustrated in Figure 4.2(a). An example of the execution

40 Chapter 4. Algorithm for MPT under the Central Daemon

Algorithm 2: Self-stabilizing algorithm for MPT (SMPTc)

Nodes: v is the current node
v.S 	= N [v] −→ v.S = N [v]; [U]

v.S = N [v] ∧ v.L = ∅ ∧ (∀u,w ∈ N(v) : ¬Pointedv(u,w))∧
(∃u,w ∈ N(v) : u.L = w.L = ∅ ∧ trianglev(u,w)) −→ v.L = {u,w}; [I]

v.S = N [v] ∧ v.L = {u,w} ∧ Chainv(u,w) −→ v.L = ∅; [W]

v.S = N [v] ∧ v.L = ∅ ∧ (∃u,w ∈ N(v) : Max Pv(u,w)) −→ v.L = {u,w}; [A]

of the algorithm SMPTc for such a graph with seven nodes in presented in Figure

4.2. Using the central daemon, the proposed algorithm finds two triangles and one

single node after eight steps. The arrows show the list of pointers v.L for each node

v in G. When there is no arrows at a node v, means that its list is empty (v.L = ∅).

(a) Initial configuration (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7

(i) Step 8 (Final configuration)

Figure 4.2: Example of executing SMPTc.

4.3. Correctness proof 41

4.3 Correctness proof

In this section, we prove the correctness of SMPTc, i.e. in final configuration, each

node v having |v.L| = 2 forms a triangle with nodes v.L. Moreover, the set of all

such triangles gives a maximal partitioning into triangles of the graph G. Therefore,

Lemmas 4.3.1 to 4.3.4 prove that in final configurations any node v has a correct

v.L and the set {v} ∪ v.L form an independent triangle. Moreover, we also prove

in Lemma 4.3.5 that the final configuration always provides a maximal partitioning

into independent triangles.

Lemma 4.3.1 In a configuration with no enabled node, each node v has a correct

value of v.S.

Proof. Assuming that in a configuration with no enabled node, there exists a node

v has an incorrect value of v.S, means that v.S 	= N [v], then the node v is enabled

by the Rule [U]. �

Lemma 4.3.2 In a configuration with no enabled node, if a node v has v.L =

{u,w} then {v, u,w} forms a triangle in the graph G.

Proof. Suppose that in a configuration with no enabled node, ∃v ∈ V such that

v.L = {u,w} and {v, u,w} is not a triangle in the graph G. In this case, we have

¬trianglev(u,w) and by Lemma 4.3.1, v.S and u.S and w.S are correct, so the Rule

[W] is enabled for the node v. �

Lemma 4.3.3 In a configuration with no enabled node, if a node v has v.L =

{u,w} then u.L = {v,w} ∧ w.L = {v, u}.

Proof. Suppose that in a configuration with no enabled node, there is a node v

having v.L = {u,w} such that u.L 	= {v,w} or w.L 	= {v, u}.

Since the reasoning is symmetric for u and w, without loss of generality, we

assume that v.L = {u,w} ∧ u.L 	= {v,w}. Since u.L is valid, u.L 	= {v,w} implies

four possible cases (1) u.L = ∅, (2) u.L = {v, x}, (3) u.L = {x, y}, (4) u.L = {w, x}.

• Case 1: v.L = {u,w} ∧ u.L = ∅.

By Lemmas 4.3.1 and 4.3.2, v.L = {u,w} and {v, u,w} forms a triangle and

v.S, u.S, w.S are correct. We have two cases for the node w. If w.L = ∅

then the node u will be enabled by the Rule [A]. In the second case, w.L 	= ∅,

we will have two situations: (i) if the node w points a triangle other than

{v, u,w}. This means that |{v} ∪ v.L ∪ u.L ∪w.L| > 3. Then the node v will

be enabled by [W] to withdraw the invitation. (ii) if the node w points the

same triangle {v, u,w} then the node u will be enabled by the Rule [A].

• Case 2: v.L = {u,w} ∧ u.L = {v, x} such that x 	= w.

By Lemma 4.3.2, if v.L = {u,w} ∧ u.L = {v, x} then {v, u,w} and {v, u, x}

form two adjacent triangles, with common edge (v, u), and by Lemma 4.3.1

42 Chapter 4. Algorithm for MPT under the Central Daemon

v.S, u.S, w.S, x.S are correct. This implies |{v} ∪ v.L ∪ u.L ∪ w.L| > 3 and

|{v} ∪ v.L ∪ u.L ∪ x.L| > 3, so, at least, the two nodes v and u are enabled

by the Rule [W].

• Case 3: v.L = {u,w} ∧ u.L = {x, y} such that |{v, u,w, x, y}| = 5.

By Lemma 4.3.2, if v.L = {u,w} ∧ u.L = {x, y} then {v, u,w} and {u, x, y}

form two adjacent triangles, with common node u, and by Lemma 4.3.1 v.S,

u.S, w.S, x.S, y.S are correct. This implies |{v} ∪ v.L ∪ u.L ∪ w.L| > 3, so,

at least, the node v is enabled by the Rule [W].

• Case 4: v.L = {u,w}∧u.L = {w, x} such that |{v, u,w, x}| = 4. The proof is

similar to that of case 2, but with considering the common edge to be (u,w).

�

Lemma 4.3.4 In a configuration with no enabled node, if a node v has v.L =

{u,w} then {v, u,w} forms an independent triangle.

Proof. By Lemma 4.3.2, if v.L = {u,w} then {v, u,w} forms a triangle in G and

by Lemma 4.3.3, if v.L = {u,w} then u.L = {v,w} and w.L = {v, u}, so, each node

in the graph can belong to at most one triangle. �

Lemma 4.3.5 In a configuration with no enabled node, each node v with v.L 	= ∅

forms a triangle with v.L. Moreover, the set of all such triangles is an MPT of the

graph G.

Proof. By Lemmas 4.3.2 to 4.3.4, in a configuration with no enabled node, any

node v ∈ V is either belonging to an independent triangle, i.e v.L = {u,w} or is

a single node i.e v.L = ∅. Suppose that the partitioning given by SMPTc is not

maximal. Then there exist three nodes v, u,w such that v.L = u.L = w.L = ∅ and

trianglev(u,w). All the nodes are enabled by the Rule [I]. Contradiction. �

Theorem 4.3.6 In a configuration with no enabled node, the algorithm SMPTc

gives a maximal graph partitioning into triangles and each node v having v.L 	= ∅,

belongs to the triangle defined by {v} ∪ v.L. Moreover, any remaining node v has

v.L = ∅.

Proof. This theorem is a direct consequence of Lemmas 4.3.1 to 4.3.5. �

4.4 Convergence proof

The convergence of SMPTc is proved using the variant function technique. Note

that finding a variant function was not trivial (See Section 2.3.6).

In any configuration of the system, the node v could be in exactly one of the

following states : (see Figure 4.3)

4.4. Convergence proof 43

i k

Waiting(l) Waiting(m)

l m

Free(i)

n

j
o

p

r

q

Agree(r)

Agree(q)

Proposing(j) Chaining(o)

Free(n)

Free(k)

Agree(p)

Single(t)

t

Chaining(s)

s

Figure 4.3: States of nodes

• Agree(v) ≡ v.L = {u,w} ∧ u.L = {v,w} ∧ w.L = {v, u} ∧ trianglev(u,w).

• Single(v) ≡ v.L = ∅∧(∀u,w ∈ N(v) : trianglev(u,w) ⇒ Agree(u)∨Agree(w)).

• Waiting(v) ≡ v.L = {u,w} ∧ u.L = {v,w} ∧ w.L = ∅.

• Free(v) ≡ v.L = ∅∧(∃u,w ∈ N(v) : trianglev(u,w)∧¬Agree(u)∧¬Agree(w)).

• Chaining(v) ≡ v.L = {u,w}∧(|{v}∪v.L∪u.L∪w.L| > 3)∨¬trianglev(u,w)).

• Proposing(v)≡ v.L = {u,w}∧(u,w ∈ N(v) : u.L = w.L = ∅∧trianglev(u,w)).

We define also another predicate, called Correct S(v), which means that v.S =

N [v]. We note that each node v can be in one of the following states: Agree(v),

Single(v), Waiting(v), Free(v), Chaining(v) or Proposing(v) and has Correct v.S

or ¬Correct v.S.

Lemma 4.4.1 Each node v can execute the Rule [U] at most once.

Proof. The predicate of the Rule [U] depends only on the variable v.S for each

node v, and assuming that the closed neighborhood of each node v in the system

does not change during the stabilization, and since this rule is mutually exclusive

with all other rules, then this rule can be executed at most once at the starting of

the system. �

Lemma 4.4.2 If a node v Agree(v) or Single(v) states then the node v will never

change its state.

Proof. If Agree(v) ⇒ v.L = {u,w} ∧ u.L = {v,w} ∧ w.L = {v, u}, this implies

|{v} ∪ v.L ∪ u.L ∪ w.L| = 3. By assumption v.L, u.L and w.L are valid and

trianglev(u,w), this implies triangleu(v,w) and trianglew(v, u). In this case, the

three rules ([I],[W],[A]) will not enabled for neither v nor u nor w. The only rule

that can be enabled is [U] for updating the closed neighborhood for each node

when ¬Correct S(v). Suppose that the node v is in the state Single(v), means that

v.L = ∅ and ∀u,w ∈ N(v) : trianglev(u,w) ⇒ Agree(u) ∨Agree(w) then v has no

available pair of nodes that can form a triangle with it. Since u or w is in state

44 Chapter 4. Algorithm for MPT under the Central Daemon

agree and thus can never change its state, so the node v is disabled and it can never

execute any rule ([I],[W],[A]) and can execute only the rule [U] without changing

its state. �

Lemma 4.4.3 If there exists a node v such that Proposing(v) ∨ Waiting(v) ∨

Chaining(v) ∨ Free(v) then there exists at least one enabled node in the system.

Proof. We prove that in each state, we have at least one enabled node:

1. Proposing(v) means that v.L = {u,w} and u.L = w.L = ∅, then at least the

nodes u and w are enabled by the Rule [A].

2. Waiting(v) means that v.L = {u,w} and u.L = {v,w} and w.L = ∅, then the

node w is enabled by the Rule [A].

3. Chaining(v) means that v.L = {u,w} and ¬trianglev(u,w), then the node v

is enabled by [W].

4. Free (v) means that v.L = ∅ and (∃u,w ∈ N(v) : trianglev(u,w) and

¬Agree(u) ∧ ¬Agree(w). If Free(u) and Free(w) then the node v is enabled

by [I]. Else, the nodes u and w could be in Proposing, Waiting or Chain-

ing states, and we proved previously that in each state, there is at least one

enabled node.

We proved that if there exists a node v in state (Proposing, Waiting, Chaining

and Free), then there is at least one enabled node. So, if there exists a node in one

of these States, then the configuration of the system is not legitimate. �

Theorem 4.4.4 The algorithm SMPTc converges in finite time.

Proof. We define A, S, W, F, P, C and R as total number of Agree, Single,

Waiting, Free, Proposing, Chaining and Correct S nodes, respectively, in a con-

figuration c of the system.

We use the variant function method to prove the convergence of the algorithm

SMPTc. For this, we define the function VF(c) which returns a vector (R, A+S,

W, P, F, C). We define lexicographical order between these vectors, for example

(3,2,1,4,4,1) is greater than (3,2,1,3,5,1).

Note that every configuration c for which VF(c)=(n,n,0,0,0,0) is a legitimate

configuration and once the system reaches a legitimate configuration, no node will

move. Hence, by Lemma 4.4.3, in every illegitimate configuration, there exists at

least one node that can make a move.

Thus, in the following, we show that every rule increases the value of our function

VF:

1. Update Rule [U]

If the node v executes the Rule [U] then the number R increases by one. So,

the function is increasing after execution of [U].

4.4. Convergence proof 45

2. Invitation Rule [I]

If the node v executes the Rule [I] then the node v is not pointed by any

neighbor with whom v could form a triangle and v.L = ∅ (i.e. v is a free

node) and Correct v.S. So, after the execution of the Rule [I], the number

of proposing nodes (P) increases by one and the number of free nodes (F)

decreases by 1.

3. Withdrawal Rule [W]

Recall that only chaining nodes are enabled by [W]. We have three cases for

enabling [W]:

(a) Case 1: when v is not pointed by another neighbor with whom v could

form a triangle.

In this case, when the node v executes [W], the number of chaining

nodes (C) decreases by 1 and the number of free (F) or single nodes

(S) increases by 1. Note, that the node v becomes a single node if all

triangles to which it can belong are not available anymore (Formally,

∄u,w ∈ N(v) : trianglev(u,w) ∧ ¬Agree(u) ∧ ¬Agree(w)).

(b) Case 2: when v is pointed by another neighbor with whom v could form

a triangle.

In such configuration, since v is pointed and v.L 	= ∅, and all nodes

pointing at v are chaining. Let x be the number of these nodes. Since

v is enabled by [W], means that v is also chaining, then, we have x+ 1

chaining nodes in the closed neighborhood of v. Once v executes [W],

a node that was pointing at v will become either proposing or waiting

node. Let y be the number of nodes that become waiting and let z

be the number of nodes that become proposing. We have x = y + z.

Hence, when v executes [W], the number of free nodes increases by 1,

the number of chaining nodes decreases by x+1, the number of proposing

and waiting nodes increases, respectively, by y and z.

(c) Case 3: when v points at two neighbors that not form a triangle. For-

mally, v.L = {u,w} ∧ ¬trianglev(u,w).

In this case, when the node executes [W], the number of chaining nodes

decreases by 1 and the number of free or single node increases by 1.

4. Acceptation Rule [A]

If a node v is enabled by [A] then we have two cases:

(a) Case 1: when the node v is pointed by at least 2 waiting nodes u,w

which belong to the same triangle. (see Figure 4.4(a))

In this case, when the node v executes the [A], the number of agree nodes

increases by 3, the number of free nodes and waiting nodes decreases,

respectively, by 1 and 2. Note, that in this case, we can have other

proposing or waiting nodes pointing to the node v that will be chaining

after the move of node v. Even in those situations the VF increases.

46 Chapter 4. Algorithm for MPT under the Central Daemon

(b) Case 2: when the node v is pointed by x proposing nodes.(see Figure

4.4(b))

We have x triangles to which v may belong. So, when it executes the Rule

[A], it will arbitrary choose one triangle among x. In this configuration,

the number of proposing nodes reduces by x, the number of free node

reduces by 1, and the number of chaining and waiting nodes increase,

respectively, by x− 1 and 2.

v

w

u

(a) Node v is pointed by at

least 2 waiting nodes.

T

TT 2

1

x

v

(b) Node v is pointed by x

proposing nodes.

Figure 4.4: Case when v is enabled by [A].

We conclude that each of these rules increments the value of the function VF. The

number of executions is bounded by the number of all possible vector values. So,

using Lemma 4.4.1 and the fact that A + S = n and R = n, such that n is the

number of the nodes in the graph, the system reaches a safe configuration when

no increment is possible (i.e VF (c) = (n, n, 0, 0, 0, 0)). Hence, by Lemmas 4.4.1,

4.4.2 and 4.4.3 and since each rule only increases the function, the system reaches

a legitimate configuration in finite moves. �

Note that the complexity of SMPTc is bounded by O(n4) moves and we will

improve this result in the following section.

4.5 Complexity analysis

In this section, we compute the maximum number of rule execution of SMPTc.

First, consider the Rule [U]. We proved in Lemma 4.4.1, that this rule can be

executed at most once for each node v in the graph G.

We denote Nb invitv, Nb acceptv and Nb withv the number of invitations, ac-

ceptations and withdrawals moves respectively for a node v. Note that Nb withv �

Nb invitv +Nb acceptv + 1.

Lemma 4.5.1 If any node v executes [A] and it is pointed by waiting nodes then

the next state of v will be Agree.

4.5. Complexity analysis 47

Proof. When the node v is pointed by at least two waiting nodes (recall that

waiting nodes are present only in pairs in the graph), see Figure 4.4(a): Even if

there exists a proposing node p that point at v for forming triangle {v, p, p′}, the

node v chooses the waiting nodes because (Max Pv(p, p
′) is false). So, assume that

the node v choose arbitrary two waiting nodes, called u,w such that u.L = {v,w}

and w.L = {v, u}. In this case, when the node v executes [A] for forming triangle

{v, u,w}, the node v will have v.L = {u,w}. So, v.L = {u,w}∧u.L = {v,w}∧w.L =

{v, u} and by assumption v.L and u.L and w.L are valid, then the nodes v and u

and w become agree nodes. �

Lemma 4.5.2 If a node v executes [A] then the next state of v will be either Waiting

or Agree.

Proof. When the node v is enabled for executing the Rule [A] then v.L = ∅ and

v.S = N [v] and there exist two neighbors u,w of v such that Max Pv(u,w) is true.

In this situation, we can have two cases:

• The node v is pointed by only proposing nodes (see Figure 4.4(b)): Assume

that the node v chooses arbitrary two neighbors, one proposing node, called

u such u.L = {v,w} and one free node called w (w.L = ∅). In this case,

when the node v executes [A] for accepting the invitation of u, it will have

v.L = {u,w}. So, v.L = {u, k} and u.L = {v,w}∧w.L = ∅ and by assumption

v.L and u.L are valid, then the nodes v and u become waiting nodes.

• The node v is pointed by at least two waiting nodes: Using Lemma 4.5.1, the

next state of v will be agree.

Thus, we proved that if a node executes an acceptation Rule [A], then the

next state will be either waiting or agree.

�

Lemma 4.5.3 A node v can execute at most d(v) times acceptation rule [A] where

d(v) is the degree of v in the graph G. In other words, Nb acceptv � d(v).

Proof. We proved in Lemma 4.5.2 that if a node executes [A] then it will be either

agree or waiting. Furthermore, if a node v is pointed by waiting nodes and v

executes [A], then the next state must be agree (Lemma 4.5.1). Thus, assume that

v is enabled for executing the rule [A].

If the node v is pointed by waiting nodes, then by Lemma 4.5.1 the node v will

be agree. Using Lemma 4.4.2, the node v will never change its state. So in this

case, the node v executes [A] only once.

If the node v has only proposing nodes that point at v then the worst case is d(v)

proposing nodes. Assume that u is one from these proposing nodes. In this situation

the node u has u.L = {v,w} and w.L = ∅, so if the node v accepts to belong the

triangle {v, u,w} by executing [A] then the nodes v and u become waiting nodes

and by using Lemma 4.5.1, the next state of w will be agree. Hence, the number of

execution of [A] for the node v is at most its degree d(v) times. �

48 Chapter 4. Algorithm for MPT under the Central Daemon

Lemma 4.5.4 A node v can execute O(∆d(v)) times invitation rule [I] where ∆ is

the maximum node degree in the graph G. In other words, Nb invitv ∈ O(∆d(v)).

Proof. Assume that the node v tries to invite the two neighbors u,w by executing

the rule [I]. The node v executes [I] if v.L = u.L = w.L = ∅ and Correct v.S

and trianglev(u,w). Recall that trianglev(u,w) :: {v, u,w} ⊆ u.S ∩ w.S and

|{v, u,w}| = 3. At the starting of the system the values of u.S and w.S can be

incorrect and the nodes u and w have not yet executed any rule. Recall also,

according to Lemma 4.4.1, the rule [U] can be executed at most once for any node.

Assuming that u.S and w.S are correct. In this situation, when the node v

executes [I] for forming the triangle {v, u,w}, the u and w will be pointed and

the only rule can executed is acceptation rule [A]. Hence, by using Lemma 4.5.3,

each node u or w can execute the acceptation rule at most ∆ times where ∆ is

the maximum node degree in the graph G. So, the worst case, one of nodes u,w

accepts another invitation for belonging to adjacent triangle of {v, u,w} and the

node v will be chaining and withdraws its invitation. Assuming that the node v

will be chaining because its neighbor u accepts an adjacent triangle. Using Lemma

4.5.3 again, the node v can invite at most d(u) the same node u. So, for all its

neighbors, the node v can make at most d(v).∆ invitations.

Assuming that u.S and w.S are incorrect. In this situation, the node v can make

wrong invitation for inviting the nodes u,w for forming triangle while {v, u,w} does

not induce a triangle in G. So, in this situation, if the node v invites u,w then v

cannot execute any rule, until one of these nodes corrects its value u.S (resp. w.S).

Thus, when u (resp. w) corrects its value u.S (resp. w.S) by executing [U], then

node v will never invite again this couple of nodes. So, we can deduce that the

maximum execution of [I] for a node v is twice number of execution of [I] when u.S

and w.S are correct. Hence, we deduce that Nb invitv � 2d(v)∆. �

Lemma 4.5.5 A node v can execute at most d(v)(∆+ 1)+ 1 times the withdrawal

rule [W] where ∆ is the maximum node degree in the graph G.

Proof. Observe that Nb withv � Nb invitv+Nb acceptv+1. Then, using Lemma

4.5.4, Nb invitv � d(v)∆ and by using Lemma 4.5.3, Nb acceptv � d(v), we obtain

d(v)(∆ + 1) + 1. �

Proposition 4.5.6 The algorithm SMPTc converges in O(∆m) moves.

Proof. In addition toNb invitv, Nb acceptv, Nb withv , we also considerNb Update Sv

which counts the number of execution of the rule [U]. By using Lemma 4.4.1, we

have Nb Update Sv � 1 . So, the maximum number of moves of the algorithm

SMPTc is
∑n

v=1(Nb Update Sv +Nb invitv +Nb acceptv +Nb withv + 1). Thus,

by Lemmas 4.5.3, 4.5.4 and 4.5.5, we deduce that the maximum execution of the

algorithm SMPTc is O(∆m).

The memory requirement of the algorithm SMPTc amounts to O(∆ log n) per

node: Apart of the list of pointer L, a node has to store at most (∆+ 1) ids for S.

Thus, each node uses only O(∆ log n) memory space. �

4.6. Summary 49

Theorem 4.5.7 SMPTc is a self-stabilizing algorithm for maximal graph partition-

ing into disjoint triangles and converges in O(∆m) moves under an unfair central

daemon and using only O(∆ log n) memory space.

Proof. This theorem is a consequence of Theorem 4.4.4 and Proposition 4.5.6. �

We have to note that the proposed algorithm converges only under the central

daemon. Given a graph G composed from a cycle of four adjacent triangles as

illustrated in Figure 4.5(a). The nodes with degree 2 and 4 are called private nodes

and public nodes. At initial configuration, each private node points at its two public

nodes to form a triangle as presented in Figure 4.5(a). Hence, all public nodes have

the same view, then, they have the same behaviour. Moreover, any public node is

enabled by the acceptance rule [A]. So, if the distributed daemon selects all the

public nodes to execute their moves ([A]) simultaneously, then all nodes will be

chaining and will be enabled by the withdrawal rule [W] (see Figure 4.5(b)). So,

if the daemon selects again the same public nodes to execute their moves ([W])

simultaneously, then the system reaches the first configuration. Therefore, the

system will oscillate between the two configurations and it will never converge to a

legitimate (desired) configuration.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Public node

Private node

(a) Initial configuration

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Public node

Private node

(b) Second configuration

Figure 4.5: An infinite execution of SMPTc under the distributed daemon

4.6 Summary

In this chapter, we proposed a first self-stabilizing algorithm for maximal graph

partitioning into triangles (SMPTc). The algorithm SMPTc converges in O(∆m)

moves under the unfair central daemon. However, we show that the algorithm does

not converge under the distributed daemon and a transformation is required in

order to operate under the distributed daemon. For example, by using the conflict

managers proposed in [GT07] (cf. Chapter 2), the transformed algorithm will

stabilize in O(∆2m) under the unfair distributed daemon.

50 Chapter 4. Algorithm for MPT under the Central Daemon

At this point, it is worth looking at how to adress MPT problem under the

distributed daemon without using any transformation. The next chapter deals the

MPT problem under the distributed daemon.

Chapter 5

Algorithm for MPT under the

Distributed Daemon

Contents

5.1 Introduction . 51

5.2 Impossibility result . 52

5.3 Algorithm description . 52

5.4 Correctness proof . 55

5.5 Convergence proof . 58

5.6 Summary . 63

5.7 Conclusion . 63

5.1 Introduction

In the previous chapter, we developed the basic algorithm (SMPTc) for finding an

MPT in arbitrary graph that converges in O(∆m) moves under the central daemon.

We showed how to prove the convergence of an algorithm using the variant function.

Thus, we showed how it was difficult to prove an algorithm with such technique as

it was the case of the majority of self-stabilizing algorithms. Nevertheless, the

complexity O(∆m) moves can be very important in large free scale network and

the algorithm may not converge under the distributed daemon, then the exention

of maximal matching algorithm of Hsu and Huang is not always suitable in this

case. For this reason, in the this chapter we develop a new algorithm for computing

a maximal partitioning into triangles, called SMPTD. The new one outperforms

previous algorithm SMPTc on three points: (i) the assumption on the validity

of pointer list is avoided, (ii) the algorithm SMPTD operates under the unfair

distributed daemon while the previous one supports the unfair central daemon only,

(iii) the move complexity assuming the distributed daemon is considerably reduced

from O(∆2m) to O(m) moves.

For justifying the use of identifiers id, we present the impossibility result for

solving the maximal partitioning into triangles in anonymous networks.

52 Chapter 5. Algorithm for MPT under the Distributed Daemon

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

R2

B3

R4

B4

B1 B2

R1

R3

1

4 1

1

4
3

2

1 2

4

3
2

2

3

2

1

2

4

1

3
2

1

2 1

Public process

Private process

Figure 5.1: An example network

5.2 Impossibility result

In this section, we prove that it is impossible to solve the problem of maximal

partitioning into triangles in anonymous networks by providing a counter-example

using the synchronous daemon.

Lemma 5.2.1 There is no deterministic self-stabilizing algorithm for maximal graph

partitioning into triangles in anonymous networks under a distributed daemon.

Proof. Suppose that there exists a self-stabilizing algorithm that computes a max-

imal graph partitioning into triangles. Apply this algorithm to a network that is

composed of a cycle of four processes surrounded by four triangles as shown in Fig-

ure 5.1. Processes that belong to the cycle (i.e., B1, B2, B3, B4) are called public

processes. The remaining processes R1, R2, R3, R4 are called private processes.

Each public process has two adjacent triangles while each private process has only

one. Note that private (resp. public) processes have equal degree and equal view;

and consequently, the same behavior.

Consider an execution under the synchronous daemon. Furthermore, regard a

starting configuration where all public processes have the same state and all private

processes have the same state. Under the synchronous daemon this property is

preserved, i.e., nodes in the same group always have the same state. Assume the

algorithm stabilizes and computes a maximal graph partitioning into triangles. If

a private process belongs to a triangle of the partitioning then all private processes

do so. This is impossible. Hence, none of the private nodes belongs to a triangle of

the partitioning. Thus, the algorithm produces an empty partitioning. Obviously

this is not a maximal graph partitioning into triangles. Contradiction. �

5.3 Algorithm description

This section presents the second self-stabilizing algorithm for computing a maximal

partitioning into triangles of an arbitrary graph within the distributed daemon,

5.3. Algorithm description 53

called SMPTD.

Contrary to the algorithm SMPTc where each node v maintains a pointer list

v.L, in the second algorithm SMPTD, each node v of the graph maintains two

variables a and b pointing to different neighbors of v or to ⊥. Eventually these

variables form a pattern that leads to an MPT, i.e., a node v with v.a 	= ⊥ forms

together with the nodes v.a and v.b a triangle in the graph. For technical reasons,

the identifier of v.a must always be smaller than that of v.b. In order to verify for a

node v that it forms a triangle with the nodes v.a and v.b, node v needs to known

the neighbors of v.a and v.b. This is made possible by a variable S through which

each node exposes its closed neighborhood. The algorithm is prepared to handle

transient faults of this variable.

A node that is not already participating in a triangle selects two of its neighbors

as candidates for building a triangle. In order not to select neighbors that are

already part of a triangle, each node has a Boolean variable bound . After joining a

triangle, a node sets this variable to true. Thus, in selecting a neighbor, a node only

considers neighbors with bound =false. Since the algorithm is supposed to work

under the distributed daemon, a mechanism for symmetry breaking is needed (cf.

Section 5.2). This is based on unique identifiers. A node that starts the formation

of a triangle only invites nodes with larger identifiers. That means, a node v selects

among its neighbors with larger identifiers two nodes u and w which do not already

participate in a triangle (i.e., u.bound = w.bound = false), that form a triangle

in the graph (based on the information u.S and w.S), and which have not already

selected neighbors (i.e., u.a = u.b = w.a = w.b = ⊥). If such neighbors exist then

v.a and v.b are updated to u resp. w with u < w. The next step will be that

the invited node with the smaller identifier (i.e., u) either accepts or denies this

invitation. In the first case this node will modify its variables a and b accordingly.

Finally, the node with the larger identifier (i.e., w) will also accept the invitation

completing the triangle. If u or w decide against accepting v’s invitation and choose

to accept another invitation or make an invitation themselves then node v resets

its variables a and b to ⊥ and is ready to make or accept another invitation.

After a triangle has been formed, the participating three nodes will updated

their variable bound . The nodes do this according to their identifiers, beginning

with the node having the smallest identifier. The adherence to this order is the

cornerstone for proving that the algorithm SMPTD stabilizes after O(m) moves.

Figure 5.2 shows the six steps required to form a triangle. There are also rules

that reset the state of a node not fitting into this sequence. This may be due to an

incorrect initial configuration or due to concurrent moves of neighboring nodes.

In order to have a concise formulation of the algorithm SMPTD, a few predicates

are introduced (see Figure 5.3 for a formal definition). Predicate pseudoTriangle(v, u,w)

is true, if the three nodes form a triangle in the graph from the perspective of node

v. Note that node v does not have direct access to N(u) or N(w) but relies on u.S

and w.S which might be incorrect. Thus, the validity of pseudoTriangle(v, u,w)

does not necessarily imply that v, u and w form a triangle in the graph (nor vice

versa).

54 Chapter 5. Algorithm for MPT under the Distributed Daemon

w

v

u

w.bound=false

u.bound=false

v.bound=false

agreed(v)=false

agreed(w)=false

agreed(u)=false

(a) Initial configuration

w

v

u

a

b

w.bound=false

u.bound=false

v.bound=false

agreed(v)=false
agreed(w)=false

agreed(u)=false

(b) Step 1: v executes [I1]

w

v

u

a

b

a b

w.bound=false

u.bound=false

v.bound=false

agreed(v)=false

agreed(u)=false

agreed(w)=false

(c) Step 2: u executes [A1]

w

v

u

a

b

a b

a

b w.bound=false

u.bound=false

v.bound=false

agreed(v)=true
agreed(w)=true

agreed(u)=true

(d) Step 3: w executes [A2]

w

v

u

a

b

a b

a

b w.bound=false

u.bound=false

v.bound=true

agreed(v)=true

agreed(u)=true

agreed(w)=true

(e) Step 4: v executes [C2]

w

v

u

a

b

a b

a

b
v.bound=true

u.bound=true

w.bound=false
agreed(v)=true

agreed(u)=true

ageed(w)=true

(f) Step 5: u executes [C2]

w

v

u

a

b

a b

a

b
v.bound=true

u.bound=true

w.bound=true
agreed(v)=true

agreed(w)=true

agreed(u)=true

(g) Step 6: w executes [C2]

Figure 5.2: A Simple example of an execution of SMPTD (v < u < w) for one

triangle

Predicate semiTriangle(v, u,w) is true if u.a (resp. u.b) points to the node of

{v,w} with the smaller (resp. larger) identifier. Thus, if pseudoTriangle(v, v.a, v.b)

and pseudoTriangle(v, v.b, v.a) are both true, then {v, v.a, v.b} form a triangle using

the definition above. Furthermore, we note that semiTriangle(v, u,w) is symmetric

in v and w, i.e., semiTriangle(v, u,w) is true if and only if semiTriangle(w, u, v)

is true. This is captured by the predicate agreed(v). When a node v satisfies

agreed(v) then the nodes v.a and v.b also satisfy this predicate when their variable

S are correct. At that point, the three nodes can begin to set their variable bound

to true to signal that they do not accept further invitations. To enforce that this

step succeeds from smallest to largest identifier the predicate coherent is introduced.

This predicate permits to make a serialization for updating the variable bound in

one triangle, starting from the node with smaller identifier to the larger one.

5.4. Correctness proof 55

passive(v) ≡ v.a = ⊥ ∧ v.b = ⊥ ∧ ¬v.bound

pseudoTriangle(v, u, w) ≡ u,w ∈ N(v) ∧ {v, u, w} ⊆ v.S ∩ u.S ∩ w.S ∧ |{v, u, w}| = 3

free(v, u, w) ≡ v < u < w ∧ pseudoTriangle(v, u, w) ∧ passive(u) ∧ passive(w)

semiTriangle(v, u, w) ≡ u.a = min(v, w) ∧ u.b = max(v, w)

agreed(v) ≡ pseudoTriangle(v, v.a, v.b) ∧ v.a < v.b ∧ semiTriangle(v, v.a, v.b)∧

semiTriangle(v, v.b, v.a)

coherent(v) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

agreed(v) ∧
[(v < v.a < v.b ∧ ((¬v.a.bound ∧ ¬v.b.bound) ∨ (v.bound ∧ v.a.bound)))∨
(v.a < v < v.b ∧ ((v.a.bound ∧ ¬v.b.bound) ∨ (v.a.bound ∧ v.bound)))∨
(v.a < v.b < v ∧ (v.a.bound ∧ v.b.bound))]

Figure 5.3: Predicates of the algorithm SMPTD

The complete set of rules of algorithm SMPTD is shown in Algorithm 3. The

nine rules can be categorized in three groups. Rules of the first group ([C1],[C2])

keep the variables S and bound up to date. The rules [A1], [A2], and [I1] are

responsible for creating and accepting invitations. They all require that both vari-

ables a and b have the value ⊥. The actions of these three rules set the variables

v.a and v.b such that v.a < v.b holds and such that pseudoTriangle(v, v.a, v.b) is

true. If a node declines an invitation, the inviting node does not immediately make

a new invitation, instead it first resets its variables. This task is accomplished by

the rules of the third group ([W1],[W2],[W3],[W4]). The duty of these rules is also

to reset a node if an inconsistent state is detected (i.e., v.b ≤ v.a). Figure 5.2 shows

a sequence of rule executions for the stabilization of one triangle. A second example

is presented in Figure 5.4 showing an execution of SMPTD from starting configu-

ration having incorrect i.S for i ∈ [1, 5]. In perspective of node 1, this node has six

triangles. However, only one triangle exists ({1, 2, 3}) and the other triangles are

virtual (dashed lines).

5.4 Correctness proof

This section proves that in configurations with no enabled nodes, the variables a

and b of all nodes induce a maximal partitioning into triangle (MPT).

Lemma 5.4.1 Let v ∈ V such that v.a 	= ⊥, v.b 	= ⊥, and v.a < v.b. Then,

semiTriangle(v.a, v, v.b) = semiTriangle(v.b, v, v.a) = true.

Lemma 5.4.2 In a configuration with no enabled node, the following properties

hold for each v ∈ V .

(a) v.S = N [v].

(b) If v.a 	= ⊥ or v.b 	= ⊥ then v.a 	= ⊥, v.b 	= ⊥, v.a < v.b, and {v, v.a, v.b} form

a triangle.

56 Chapter 5. Algorithm for MPT under the Distributed Daemon

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=
2.S={1,2,3,4,5}

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=
4.S={1,2,3,4,5}

1.a=
1.b=
1.bound=false

5.a=
5.b=
5.bound=false

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(a) Initial config.

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=
2.S={1,2,3,4,5}

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=
4.S={1,2,3,4,5}

1.bound=false

5.a=
5.b=
5.bound=false

1.a=2
1.b=4

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(b) 1 executes I1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=
4.S={1,2,3,4,5}

3.bound=false1.bound=false

5.a=
5.b=
5.bound=false

1.a=2
1.b=4

2.S={1,2,3}

3.S={1,2,3,4,5}
3.a=
3.b=

(c) 2 executes C1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=
4.S={1,2,3,4,5}

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}

1.a=
1.b=

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(d) 1 executes W2

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=
4.S={1,2,3,4,5}

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}

1.a=4
1.b=5

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(e) 1 executes I1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}

1.a=4
1.b=5

4.S={1,4}

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(f) 4 executes C1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

1.a=
1.b=

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(g) 1 executes W2

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

5.S={1,2,3,4,5} 1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

1.a=3
1.b=5

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(h) 1 executes I1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

1.a=3
1.b=5

5.S={1,5} 3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(i) 5 executes C1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=
1.b=

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(j) 1 executes W2

1

4

5 3

2

4.bound=false
4.b=

2.bound=false
2.b=
2.a=

1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(k) 1 executes I1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false

1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

2.a=1
2.b=3

3.S={1,2,3,4,5}
3.a=
3.b=
3.bound=false

(l) 2 executes A1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false

1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

2.a=1
2.b=3

3.a=
3.b=
3.bound=false

3.S={1,2,3}

(m) 3 executes C1

1

4

5 3

2

4.bound=false
4.b=

2.bound=false

1.S={1,2,3,4,5}

4.a=

1.bound=false

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

2.a=1
2.b=3

3.bound=false

3.S={1,2,3}
3.a=1
3.b=2

(n) 3 executes A2

1

4

5 3

2

4.bound=false
4.b=

2.bound=false

1.S={1,2,3,4,5}

4.a=

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

2.a=1
2.b=3

3.bound=false

3.S={1,2,3}
3.a=1
3.b=2

1.bound=true

(o) 1 executes C2

1

4

5 3

2

4.bound=false
4.b=

1.S={1,2,3,4,5}

4.a=

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

2.a=1

3.bound=false

3.S={1,2,3}
3.a=1
3.b=2

1.bound=true

2.b=3
2.bound=true

(p) 2 executes C2

1

4

5 3

2

4.bound=false
4.b=

1.S={1,2,3,4,5}

4.a=

5.a=
5.b=
5.bound=false

2.S={1,2,3}4.S={1,4}

5.S={1,5}
1.a=2
1.b=3

2.a=1

3.S={1,2,3}
3.a=1
3.b=2

1.bound=true

2.b=3
2.bound=true

3.bound=true

(q) 3 executes C2

Final configuration

Figure 5.4: Example of an execution of SMPTD

5.4. Correctness proof 57

Algorithm 3: Self-stabilizing algorithm for MPT (SMPTD)

Nodes: v is the current node
v.S 	= N [v] −→ v.S := N [v]; [C1]

v.bound 	= coherent(v) −→ v.bound := coherent(v); [C2]

if v.a = ⊥ ∧ v.b = ⊥ then
∃(u,w) ∈ {u,w ∈ N(v) | u < v < w ∧ semiTriangle(v, u, w) ∧ passive(w)∧
¬u.bound ∧ pseudoTriangle(v, u, w)} −→ v.a := u; v.b := u.b; [A1]

∃(u,w) ∈ {u,w ∈ N(v) | u < w < v ∧ semiTriangle(v, u, w)∧
semiTriangle(v, w, u) ∧ ¬u.bound ∧ ¬w.bound∧
pseudoTriangle(v, u, w)} −→ v.a := u; v.b := w; [A2]

∃(u,w) ∈ {u,w ∈ N(v) | free(v, u, w)} −→ v.a := u; v.b := w; [I1]

else

v.a = ⊥ ∨ v.b = ⊥ ∨ v.a ≥ v.b −→ v.a := ⊥; v.b := ⊥; [W1]

¬pseudoTriangle(v, v.a, v.b) −→ v.a := ⊥; v.b := ⊥; [W2]

(v.a.bound ∧ ¬semiTriangle(v, v.a, v.b)) ∨ (v.b.bound ∧¬semiTriangle(v, v.b, v.a))

−→ v.a := ⊥; v.b := ⊥; [W3]

(v.a < v ∧ ¬semiTriangle(v, v.a, v.b)) ∨ (v.b < v ∧ ¬semiTriangle(v, v.b, v.a))

−→ v.a := ⊥; v.b := ⊥; [W4]

(c) If v.a 	= ⊥ and there exists no node w such that w > v and w.a 	= ⊥ then

agreed(v) is true.

(d) The validity of agreed (v) implies agreed(v.a), agreed(v.b), and v.bound = true.

Proof. Property (a) is true since rule [C1] is disabled for all nodes. The first part of

Property (b) is true because rule [W1] is disabled. Furthermore, pseudoTriangle(v, v.a, v.b)

is true since rule [W2] is disabled. Together with Property (a) this implies {v, v.a, v.b} ⊆

N [v] ∩N [v.a] ∩N [v.b]. Hence, the set {v, v.a, v.b} forms a triangle in the graph.

Let v be the node with the largest identifier such that v.a 	= ⊥. Then Prop-

erty (b) implies that v.a < v.b and that {v, v.a, v.b} form a triangle. Because of

Property (a) this implies that pseudoTriangle(v, v.b, v.a) holds for all permutations

of the three nodes. By Lemma 5.4.1 semiTriangle(v.a, v, v.b) is valid. Suppose

v < v.a. The choice of v implies v.a.a = v.a.b = v.b.a = v.b.b = ⊥. Then

agreed(v.a) = agreed(v.b) = false and thus v.a.bound = v.b.bound = false, since

rule [C2] is disabled for v.a and v.b. Hence, agreed(v) = false and passive(v.b) =

true. Since rule [A1] is disabled for node v.a this implies v.bound = true. This

leads to a contradiction since agreed(v) is false and rule [C2] is disabled for v.

Hence, v > v.a. Then semiTriangle(v, v.a, v.b) since v is disabled for rule [W4].

Suppose v < v.b. As above it follows v.b.a = v.b.b = ⊥ and v.b.bound = false.

Thus v.bound = v.a.bound = false . Furthermore, semiTriangle(v.b, v.a, v) and

semiTriangle(v.b, v, v.a) are valid by Lemma 5.4.1. Since rule [A2] is disabled for

node v.b this is impossible. This yields v.a < v.b < v. Then semiTriangle(v, v.a, v.b)

58 Chapter 5. Algorithm for MPT under the Distributed Daemon

and semiTriangle(v, v.b, v.a) are valid because rule [W4] is disabled. Hence, agreed(v)

is true. This shows Property (c).

If agreed(v) is true then semiTriangle(v, v.a, v.b) and semiTriangle(v, v.b, v.a)

are valid. This implies that semiTriangle is true for all permutations of v, v.a,

and v.b. This also holds for pseudoTriangle(v, v.a, v.b) by Property (a). Thus,

agreed(v.a) = agreed(v.b) = true and v.bound = true implying Property (d). �

Lemma 5.4.3 In a configuration where no node is enabled each node v with v.a 	=

⊥ forms a triangle with v.a and v.b. Moreover, the set of all such triangles is an

MPT of the graph G.

Proof. The proof is by induction on n. Let n ≤ 2, i.e., G does not contain any

triangle. Since n ≤ 2 predicate pseudoTriangle(v, u,w) is false for all v, u,w ∈ V .

This yields v.a = v.b = ⊥ for all v ∈ V because rule [W2] is disabled.

So let n ≥ 3. First consider the case that v.a = ⊥ for all v ∈ V . Then

free(v, u,w) = false for all v, u,w ∈ V because rule [I1] is disabled. Further-

more, v.bound = false for all v ∈ V because rule [C2] is disabled. This implies

passive(v) = true for all v ∈ V . Finally, pseudoTriangle(v, u,w) = false for all

v, u,w ∈ V because free(v, u,w) = false. Hence, G does not contain a triangle.

Let v be the node with maximal identifier such that v.a 	= ⊥. Lemma 5.4.2 (c)

and (d) imply agreed (v) = agreed(v.a) = agreed(v.b) = true and v.bound =

v.a.bound = v.b.bound = true. Since rule [W3] is disabled for all w ∈ V �
{v, v.a, v.b}, we have {w.a,w.b} ∩ {v, v.a, v.b} = ∅. This means that no node w ∈

V �{v, v.a, v.b} points at v, v.a, v.b. Let G′ be the graph induced by V �{v, v.a, v.b}.

Since no node of G′ is enabled the lemma holds for G′ by induction. This implies

that the lemma is also true for G. �

5.5 Convergence proof

This section presents the convergence proof of the algorithm SMPTD by using the

analysis of the local states and sequences technique (cf. Section 2.3.6). For this,

the following lemmas are developed in order to bound the execution of each rule of

the algorithm:

Lemma 5.5.1 Each node makes at most one [C1] move. This is always the first

move of a node.

Proof. The precondition of rule [C1] only depends on the correctness of v.S. Since

the neighborhood relation is static, this rule is executed at most once. �

Lemma 5.5.2 Let v ∈ V with agreed(v) = true. Then v.a.S = N [v.a] or v.b.S =

N [v.b] implies agreed(v.a) = agreed(v.b) = true.

Proof. Consider the case v.a.S = N [v.a], the proof of the other case is similar.

The assumption agreed(v) = true implies pseudoTriangle(v, v.a, v.b) = true and

5.5. Convergence proof 59

v.a < v.b. This yields v.b ∈ N(v.a) and hence the set {v, v.a, v.b} forms a triangle

in the graph. Clearly this implies agreed(v.a) = agreed(v.b) = true. �

Definition 8 Let v ∈ V with agreed(v) = agreed(v.a) = agreed(v.b) = true. Nodes

v, v.a, v.b are said to form to

• an ultimate constellation if v.bound = v.a.bound = v.b.bound = true and

• to a penultimate constellation if v.bound = v.a.bound = v.b.bound = false or

v.bound = true, v.a.bound = v.b.bound = false or v.bound = v.a.bound =

true, v.b.bound = false.

Steps 3, 4, and 5 of Figure 5.2 show the three penultimate constellations and Step 6

shows an ultimate constellation. Note that any node v, belonging to a penultimate

constellation or an ultimate constellation, cannot execute any rule except [C1] and

[C2].

Lemma 5.5.3 A node v belonging to an ultimate constellation makes at most one

move, a [C1] move. A node belonging to a penultimate constellation makes at most

two moves, one [C1] and one [C2] move.

Proof. Obviously v can only be enabled by rules [C1] and [C2] without chang-

ing pointers. Moreover, v belongs to a constellation means that agreed(v) =

agreed(v.a) = agreed (v.b) = true. Then, when v (resp. v.a, v.b) executes the

rules [C1] and [C2], the predicate agreed(v) remains true. Since each node makes

at most one [C1] move (Lemma 5.5.1), it remains to consider [C2] moves. Clearly

v cannot make a [C2] move if it belongs to an ultimate constellation. A node be-

longing to a penultimate constellation can only make a [C2] move if bound = false

and the other nodes of the same penultimate constellation with lower identifier have

bound = true. Thus, each such node can make at most one [C2] move. �

Lemma 5.5.4 Let v be a node that has already executed [C2] to set v.bound to

false. The next time v is enabled by rule [C2] it is part of penultimate constellation.

Proof. Since v is enabled for [C2] to set v.bound to true, we have v.bound = false

and coherent(v) = true. This implies agreed (v) = true. Furthermore, v cannot be

enabled for [C1], thus v.s = N [v]. Assume that agreed(v.a) = false or agreed(v.b) =

false. Then Lemma 5.5.2 implies that nodes v.a and v.b are enabled by rule [C1],

i.e., they have not made any move. This implies that the values of v.a.a, v.a.b, and

v.a.bound (resp. of v.b.a, v.b.b, and v.b.bound) have not changed since the start of

the execution.

First consider the case v < v.a. Then v.a.bound = v.b.bound = false since

coherent(v) = true. In particular v.a and v.b were never passive and hence node

v was never enabled by rule [I1] (note v < v.a). This yields that the val-

ues of v.a and v.b have not changed after v executed [C2] to set its v.bound

60 Chapter 5. Algorithm for MPT under the Distributed Daemon

to false. Thus, predicate agreed (v) evaluated to true when v previously exe-

cuted [C2]. This is impossible, since v.bound was set to false. This shows that

agreed(v.a) = agreed(v.b) = true. Thus, v is part of penultimate constellation.

Next consider the case v.a < v < v.b. Then v.a.bound = true and v.b.bound =

false since coherent(v) = true. This implies that v was never enabled by rule [A1].

This yields that the values of v.a and v.b have not changed after v executed [C2] to

set its v.bound to false. As in the first case this yields that v is part of penultimate

constellation.

The last case v.a < v.b < v is handled similarly. �

Corollary 5.5.5 Each node makes at most three [C2] moves.

Lemma 5.5.6 After predicate passive(v) evaluates to true for a node v, this node

makes at most one more [C2] move.

Proof. Consider a configuration c in which v is enabled to make a [C2] following

a configuration with passive(v) = true. Note that v.S = N [v] in c and v cannot

execute [C2] move if v is not agree with two neighbors v.a and v.b (i.e. agreed(v)).

By Lemma 5.5.3, it suffices to prove that v belongs to a penultimate constellation.

Since passive(v) = true implies v.bound = false , node v must satisfy coherent (v) =

true in c. Hence v must have updated the values of a and b before c. This can only

be achieved by v executing a move of type [I1],[A1] or [A2].

(i) If v executed move [I1] then v < v.a < v.b. After this move of v node

v.a must have executed [A1] and v.b must have executed [A2] for v to satisfy

coherent(v) = true. Hence, v belongs to a penultimate constellation. Note that

during execution of move [I1] by v, the nodes v.a and v.b can execute other moves

of type [I1],[A1] or [A2] for inviting or accepting an adjacent triangle. In this

case, the node v will be not agree and therefore v cannot execute [C2] move. (ii)

If v executed move [A1] then v.a < v < v.b. This requires semiTriangle(v, v.a, v.b)

and passive(v.b). After this move of v node v.b must have executed [A2] for v to

satisfy coherent(v) = true. Hence, v also belongs to a penultimate constellation.

(iii) The case that v executed a [A2] is treated similarly. �

Lemma 5.5.7 Each node v makes at most one [W1] move.

Proof. The rules of the algorithm set variables v.a and v.b of a node v either both

to ⊥ or both to a value different from ⊥ such that v.a < v.b. Hence, each node

u having u.a � u.b or u.a 	= ⊥ and u.b = ⊥ (resp. u.a = ⊥ and u.b 	= ⊥) means

that u has pointers from starting configuration and not from the execution of the

Algorithm 3. Then each node makes at most one [W1] move. �

Lemma 5.5.8 Each node v makes at most d(v) [W2] moves.

Proof. A node v making a [W2] move is not enabled with respect to [W1] or

[C1], i.e., v.a 	= ⊥, v.b 	= ⊥, v.a < v.b, and v.s = N [v]. In between two [W2]

5.5. Convergence proof 61

moves node v must make a [I1], [A1], or [A2] move. Each such move requires

pseudoTriangle(v, v.a, v.b) to be true. Thus, this predicate is invalidated between

any two [W2] moves. This can only be caused by v.a or v.b making move [C1].

Since each neighbor can do this only once, the proof is complete. �

Lemma 5.5.9 Each node v makes at most 2d(v) [W3] moves.

Proof. A node v makes a [W3] move only if it is not enabled for [W2] and [W1].

By Corollary 5.5.5 each node changes its variable bound at most twice to true.

Moreover, the values of v.a and v.b created by rules [I1], [A1], [A2] always

satisfy v.a.bound = false and v.b.bound = false. Thus, v withdraws its variables

v.a, v.b at most 2d(v) times. �

Lemma 5.5.10 Each node makes at most one [W4] move.

Proof. Observe that a node v having v < v.a cannot execute [W4]. Since rule [W4]

can be enabled if and only if [W1], [W2], [W3] are disabled, we have v.a < v.b,

pseudoTriangle(v, v.a, v.b) and ¬v.a.bound∨semiTriangle(v, v.a, v.b) and ¬v.b.bound∨

semiTriangle(v, v.b, v.a). Thus, only two situations are possible, either v.a < v <

v.b or v.a < v.b < v.

Except for initial configurations, a node v can have pointers v.a, v.b such that

v.a < v < v.b (resp. v.a < v.b < v) only by executing rule [A1] (resp. [A2]).

Hence, we prove in the following that if v executes [A1] or [A2] then v will never

be enabled by [W4]:

Claim 1: If v executes [A1], then v will never be enabled by [W4].

Proof. Recall that v executes [A1] if and only if v has two neighbors u,w such that

u.a = v and u.b = w and pseudoTriangle(v, u,w) and passive(w) and u < v < w.

So, during the [A1] move of v, the node u is disabled for [W1] because u.a 	= ⊥

and u.b 	= ⊥ and u.a < u.b and it is disabled for [W3] because u.a.bound = false

and u.b.bound = false. u is also disabled for [W4] because u < u.a. Moreover, if

pseudoTriangle(u, v, w) is valid, rule [W2] will also be disabled for u. This makes

v ineligible for [W4]. Nevertheless, if pseudoTriangle(u, v, w) is false , then u.S and

w.S are incorrect. Node u will be enabled by [C1]. So, when u executes [C1] for

updating u.S then pseudoTriangle(v, u,w) will be false for v and v will be enabled

for [W2] and not for [W4]. In addition, if w changes w.bound to true, then, by

Lemma 5.5.6, w.bound will always keep this value. Hence, nodes v and u will be

both enabled by [W3] and not by [W4]. So, we deduce that after execution [A1],

v will never be enabled by [W4]. �

Claim 2: If v executes [A2], then v will never be enabled by [W4].

Proof. Recall that node v executes [A2] if and only if there exist two neighbors

u,w such that u < w < v and w.a = u, w.b = v, u.a = w, u.b = v, ¬u.bound

62 Chapter 5. Algorithm for MPT under the Distributed Daemon

and ¬w.bound and pseudoTriangle(v, u,w). According to the value of variable S at

nodes u and w, there are two cases:

Case 1: pseudoTriangle(u, v, w) = false . Then the predicates pseudoTriangle(v, u,w)

and ¬pseudoTriangle(u, v, w) are true. This implies that u.S and w.S are incorrect.

In this case, nodes u and w are enabled by [C1] and when at least one of them exe-

cutes [C1] during or after the move of v, node v will have pseudoTriangle(v, u,w) =

false. Hence, node v will enabled by [W2] and not by [W4].

Case 2: pseudoTriangle(u, v, w) = true. When v executes [A2] then v, u,w will

be in a penultimate constellation with agreed(v), agreed(u), and agreed(w) being

true. Thus, using Lemma 5.5.3, any of the three nodes v, u and w can change the

values of variables a and b anymore and the only rules that may be executed are

[C1] and [C2]. �

So, we deduce that if any node v executes [I], [A1] or [A2], then v will never

be enabled by [W4]. In summary, rule [W4] is only executed only at an initial

configuration of a node. �

Theorem 5.5.11 The algorithm SMPTD converges after O(m) moves under the

unfair distributed daemon using O(∆ log n) memory.

Proof. Observe that only rules [I1],[A1] and [A2] set the values of variables a

and b to values different from ⊥, whereas rules [W1],[W2],[W3] and [W4] set these

variables to ⊥. Hence, the number of executions of rules from the first group is

at most the number of rules of the second group plus one. Using Lemmas 5.5.1,

5.5.7-5.5.10 and Corollary 5.5.5, it follows that each node v ∈ V makes at most

6d(v) + 11 moves. Thus, for a connected graph, Algorithm 3 makes O(m) moves.

The memory requirement of the algorithm SMPTD amounts to O(∆ log n) per

node: Apart of the boolean variable bound , a node has to store two ids for its

variables a and b and at most (∆ + 1) ids for S. Thus, each node uses only

O(∆ log n) memory space. �

O(m) is a tight bound ?

In the following a graph G will be presented demonstrating that the worst-case

number of moves of the algorithm is at least m. The structure of G is depicted

in Figure 5.5. G1 is the subgraph induced by the nodes labeled 1 to 5. G2 and

G3 are also induced subgraphs isomorphic to G1. Each node v satisfies v.a =

v.b = ⊥ and v.bound = false. Nodes 1 to 5 are all enabled with respect to rule

[C1] because variable S does not contain the correct closed neighborhoods (see

Figure 5.5). The dashed lines in this figure indicate edges which the nodes believe

to exist based on the values of S. Observe that from the perspective of node 1 it

is adjacent to four triangles. Thus, pseudoTriangle(1, 2, 4), pseudoTriangle(1, 4, 5),

pseudoTriangle(1, 3, 5), and pseudoTriangle(1, 2, 3) are all satisfied from node’s 1

point of view. Hence node 1 first executes rule [C1] and afterwards executes rule

[I1] four times before it finally forms the triangle {1, 4, 5}. Thus, each edge (v, u)

5.6. Summary 63

1

4 5

32

G2 G3

S={1,2,3,5}
S={1,2,3,4}

S={1,2,3,4,5,6}

S={1,2,3,4}

G1

S={1,2,3,4,5}

Figure 5.5: An initial configuration of a graph requiring m moves.

of the subgraph G1 induces at least one move. The same argument can be repeated

for the induced subgraphs G2 and G3. Note that by attaching more copies of G1

the graph may grow arbitrarily. In summary, the algorithm SMPTD requires at

least m moves for this graph.

5.6 Summary

In this chapter, we proved that finding a deterministic self-stabilizing algorithm

for maximal partitioning into triangles is impossible in anonymous graphs under

the distributed daemon. Moreover, assuming distinct local identifiers for breaking

symmetry between nodes, we developed a new self-stabilizing algorithm (SMPTD)

for such problem, improving the previous one (SMPTc) proposed in Chapter 4.

The algorithm SMPTD operates under the unfair distributed daemon and stabilizes

within O(m) moves where m is the number of edges in the graph G. Furthermore,

we showed that this complexity is a tight bound for SMPTD.

5.7 Conclusion

In this first part, we study the problem of maximal partitioning into triangles of

general graphs. This partitioning is a generalization of maximal matching problem

in graphs. We showed that finding a deterministic self-stabilizing algorithm for

such problem is impossible in anonymous graphs. Moreover, we gave approximation

of lower bound for this maximal partitioning, comparing with the maximum one.

Furthermore, assuming distinct local identifiers, a first self-stabilizing algorithm

for maximal graph partitioning into triangles is presented in Chapter 4. The first

algorithm (SMPTc) converges in polynomial moves under the central daemon only.

Then, a second algorithm (SMPTD) is developed in Chapter 5 in order to avoid the

strong assumptions used in the first version. The second algorithm operates under

the unfair distributed daemon and stabilizes in linear moves.

Part II

p-Star Decomposition (MSD)

Chapter 6

Introduction and motivation of

part II

Contents

6.1 Introduction . 67

6.2 Definitions . 69

6.3 Motivation . 69

6.1 Introduction

In Part I, the study of maximal partitioning into triangles is developed and some

of its applications are provided. Moreover, two self-stabilizing algorithms were

presented for such partitioning. This partitioning into triangles can be seen as

decomposition into patterns where each pattern is a triangle. Part II introduces

another decomposition into other types of patterns where each pattern is a star. A

star is a tree with one center node and leaf nodes (see Figure 6.1).

v

v

Center node

Leaf node
1

2

vp

v
0

Figure 6.1: A star

Star deomposition is one of the well studied graph decomposition problem, also

called star partitions in graph theory [Cai74, SW93, LS96, BEZE01, LL05, MG12].

Note that the terms of partitioning and decomposition have the same meaning.

Thus, the two terms will be used interchangeably throughout this part.

The star decomposition describes a graph as the union of disjoint stars [BEZE01].

An uniform decomposition into stars is the one in which all stars have equal size. A

p-star is a complete bipartite graph K1,p with one center node and p leaves where

p ≥ 1 (see Figure 6.1). A p-star decomposition subdivides a graph into disjoint

68 Chapter 6. Introduction and motivation of part II

p-stars [Cai74, LL05]. This variant belongs to the class of generalized match-

ings and subgraph-decomposition problems that were proved to be NP-complete

[KH78a, KH83, KH78b]. Figure 6.2 illustrates an example of p-star decomposi-

tion of a given graph. Note that a 1-star decomposition and 2-star decomposition

are equivalent to a matching in graphs (Figure 6.2(a)) and path decomposition of

graphs where length paths is 2 (Figure 6.2(b)) respectively. Figure 6.2(c) illustrates

an example of p-star decomposition where p = 3.

i k

l m

j
o

p

r

q

t

s

n

(a) 1-star decomposition

i k

l m

j
o

p

r

q

t

s

n

(b) 2-star decomposition

i k

l m

j
o

p

r

q

t

s

n

(c) 3-star decomposition

Figure 6.2: Examples of p-decomposition of a graph (The depicted edges form the

p-star decomposition)

Since, the question of the existence or not of p-star decomposition of a given

graph is NP-Complete [KH78b]. Moreover, a perfect decomposition into p-stars does

not always exist for general graphs. Therefore, we consider the problem Maximal p-

Star Decomposition defining a local maximization property. A p-star decomposition

of the graph is maximal if it cannot be extended by p-star using only nodes that are

not already in the decomposition. More formal definitions of this decomposition

are given in the following section.

6.2. Definitions 69

6.2 Definitions

Let p be a positive integer (p ≥ 1).

Definition 9 (p-Star) A graph G = (V,E) is called a p-star if |V | = p + 1 and

∃v ∈ V such that E = {(v, u) : u 	= v}. Node v is called the center of the p-star and

a node u 	= v is called a leaf (see Figure 6.1).

The problem of maximal p-star decomposition (MSD) of general graphs is de-

fined as follows.

Definition 10 (Maximal p-Star Decomposition) A p-star Decomposition of a

graph G = (V,E) is a set SD of disjoint subsets of V such that each subset U ∈

SD satisfies that |U | = p + 1 and G[U] contains a p-star as a subgraph. The

decomposition SD is called maximal (MSD) if no subgraph of G[V \
⋃

U∈SD U] is a

p-star.

6.3 Motivation

As p-star decomposition is a generalization of matching problem (p = 1), many

applications of maximal matching can also be applyed (cf. Chapter 3).

Moreover, star decompositions have several applications in areas such as scien-

tific computing, scheduling, load balancing and parallel computing [AR04, Pot97].

Furthermore, they have been used for studying the robustness of social networks

[LHK11, LHK13]. In addition to applications in distributed systems, the decompo-

sition into p-stars is also used in the field of parallel computing and programming.

This decomposition offers similar paradigm as the Master-Slaves (a.k.a Master-

Workers) paradigm used in grid [MMT07] and P2P infrastructures [BMT09] and

Wireless Sensors Networks [DXW09]. The Master-Slaves paradigm distinguishes

between two entities: masters and slaves. A master is responsible for decomposing

the problem into different tasks and distributes the tasks on its slaves and collects

results in order to produce the final result of the computation.

Generate tasks Get tasks

Result

Task 1

Task 2

Task 3

Task p

Master Slaves

Figure 6.3: Master/Slaves model

The contribution of the second part of this thesis is the study of the Maxi-

mal p-Star Decomposition (MSD) of arbitrary graphs and developing different self-

stabilizing algorithms for finding such decomposition using the distributed daemon

70 Chapter 6. Introduction and motivation of part II

and distance-1 knowledge model. Chapter 7 presents a first self-stabilizing algo-

rithm for finding a maximal p-star decomposition (SMSD1) that converges in linear

rounds under the distributed daemon. Formal proofs of its correctness and its con-

vergence using graph reduction and induction technique are also presented. More-

over, based on the impossibility result of maximal matching presented in [MMPT09],

an impossibility proof for finding a deterministic self-stabilizing algorithm for such

decomposition in anonymous system is also deduced. Unfortunately, even the pro-

posed algorithm converges in linear rounds, the simulations show that the first

algorithm may provide an exponential number of moves under the distributed dae-

mon. Moreover, SMSD1 offers a unique legitimate configuration and it may consider

a configuration with correct maximal p-star decomposition as not legitimate if it

does not match with the unique configuration expected by SMSD1. This is why, a

second algorithm (called SMSD2) is developed in Chapter 8. Hence, SMSD2 con-

verges in polynomial moves and considers all maximal p-star decompositions to be

legitimate. Section 8.6 concludes this second part.

Chapter 7

Algorithm for MSD with unique

legitimate configuration

Contents

7.1 Introduction . 71

7.2 Impossibility result . 71

7.3 Algorithm description . 72

7.4 Correctness proof . 74

7.5 Convergence proof . 76

7.6 Complexity analysis . 77

7.7 Summary and Discussions . 79

7.1 Introduction

In the previous chapter, we introduced the problem of Maximal p-star Decomposi-

tion (MSD) of general graphs and we presented some applications of this parameter

in distributed systems. In this chapter, we present a first self-stabilizing algorithm

for finding an MSD of an arbitrary graph, called SMSD1. The algorithm works

under the unfair distributed daemon and converges in linear rounds. This work is

published in [NTHK13].

This chapter is organized as follows: In Section 7.2, we present an impossibility

result for finding a deterministic self-stabilizing algorithm for MSD in anonymous

graphs in order to justify the use of identifiers (id). Section 7.3 describes the first

self-stabilizing algorithm (SMSD1) for MSD problem Formal proofs of its correctness

and convergence are developed in Section 7.4 and 7.5 respectively. The analysis

of the complexity of the proposed algorithm using graph reduction and induction

technique is provided in section 7.6. Section 7.7 summarizes this chapter.

7.2 Impossibility result

In [MMPT09], Manne et al. proved that there is no deterministic self-stabilizing

algorithm for the maximal matching problem that operates under the synchronous

daemon and performs in arbitrary anonymous graphs. Their proof idea is as follows:

72Chapter 7. Algorithm for MSD with unique legitimate configuration

Assume that for each node in the graph, its local state is either unmatched

or proposed matched with one of its neighbors. A configuration is legitimate for

matching problem if every pair of nodes is consistent in their mutual relationship.

Consider that a graph is a cycle of size at least 3. At starting, each node has the same

state, and since the local view of each node is identical, this means that all nodes

have the same behavior. Note that every node has exactly two neighbors, and a node

in state proposed matched may either be directed clockwise or counter-clockwise.

Thus, each node is either (1) unmatched, (2) clockwise proposed matched, or (3)

counter-clockwise proposed matched. Since the local state of every node is identical

and no node is matched, the initial configuration is not a maximal matching. Note

that synchronous daemon is a special case of a distributed daemon, this means that

finding a deterministic self-stabilizing algorithm for the maximal matching problem

that operates under the distributed daemon is also impossible in anonymous graphs.

Since it is impossible to find a deterministic self-stabilizing algorithm for max-

imal matching in anonymous graph under a distributed daemon [MMPT09], and

since the p-star decomposition is a generalization of the matching problem for which

p = 1, then the impossibility result remains valid for p-star decomposition for all

p ≥ 1. Hence, any self-stabilizing algorithm requires a mechanism for symmetry

breaking. Thus, the distinct node identifiers ids are used for such mechanism.

7.3 Algorithm description

This section presents a first self-stabilizing algorithm (called SMSD1) for computing

a maximal p-star decomposition of an arbitrary graph. Assume that all nodes have

unique identifiers. We say that a node v1 is smaller than a node v2 (denoted by

v1 < v2) if v1’s identifier is smaller than that of v2. For notational convenience we

assume v < null for each node v.

The general idea of the proposed algorithm SMSD1 is as follows: A node be-

comes a leaf node by selecting the smallest possible node as a center node. A node

v becomes center node only if all nodes smaller than v are either center node or

have decided not to become center node. In other words, the node v with the

smallest identifier having at least p neighbors becomes center node. The p neigh-

bors v1, . . . , vp of v with the smallest identifiers become the leaf nodes of v. This

procedure is recursively repeated for the subgraph of G consisting of all nodes ex-

cept v, v1, . . . vp. The challenge is to design an efficient distributed version of this

algorithm.

Let X be a set and p is positive integer. The algorithm SMSD1 uses two oper-

ators Xp and minX that are defined as follows:

Xp =

{

∅ if |X| < p

the p smallest elements of X otherwise.

minX =

{

null if |X| = ∅

the smallest element of X otherwise.

7.3. Algorithm description 73

Each node v of G maintains two variables m and s. Variable s of v contains

the list of pointers to its p leaves and the variable m contains the pointer to the

selected center node. If a node has not selected a center node then m = null and if

it has not selected any leaves then s = ∅.

Note that during the execution of the algorithm, a node v can be a member

of the set of leaves of many neighbors. For a node v, the set of such neighbors is

denote by M(v). Formally, M(v) = {w ∈ N(v) | v ∈ w.s}.

Moreover, the set of potential leaves of a node v is denoted by S(v). This set

contains all neighbors w of v such that w is either a center node (i.e. w.s 	= ∅) and

its identifier is bigger than v (i.e. w > v) or w is not a center node (i.e. w.s = ∅)

and w points at null or to a center node bigger or equal to v (i.e. w.m � v).

Formally,

S(v) = {w ∈ N(v) | (w.s = ∅ ∧ w.m � v) ∨ (w.s 	= ∅ ∧ w > v)}.

For each node v two cases have to be distinguished. Case (1): v can not be

a center node (i.e. S(v)p = ∅) or v is pointed by a center node having a smaller

identifier than v (i.e. minM(v) < v). In this case the correct values for v.s and v.m

are ∅ and minM(v) respectively. This means that v becomes a leaf and v selects the

smallest possible center node of v. These values are denoted by v.snew and v.mnew

respectively.

Case (2): v can be center node (i.e. S(v)p 	= ∅) and v is pointed by center

node with larger identifier than v or v is not pointed by any center node (i.e.

minM(v) > v). In this case the correct values for v.s and v.m are S(v)p and null

respectively. This means that v becomes a center node and v selects the nodes in

S(v)p as leaves. These values are also denoted by v.snew and v.mnew respectively.

Formally, the algorithm SMSD1 uses the following code permitting a node v to

compute its new values of snew and mnew.

if (minM(v) < v ∨ S(v)p = ∅) then

v.snew := ∅; v.mnew := minM(v);

else

v.snew := S(v)p; v.mnew := null;

The proposed algorithm SMSD1 consists of Rule [R] only. A node v is enabled

if and only if v.m 	= v.mnew or v.s 	= v.snew. When v executes the rule [R], v

updates the values of s and m.

Algorithm 4: Self-stabilizing algorithm for MSD (SMSD1)

Nodes: v is the current node

v.m 	= v.mnew ∨ v.s 	= v.snew −→ v.m := v.mnew; v.s := v.snew; [R]

Consider a G a complete graph with a starting configuration, where each node

v has v.m = null and v.s = ∅, Figure 7.1 shows an example of the execution of

74Chapter 7. Algorithm for MSD with unique legitimate configuration

the algorithm SMSD1 for such a graph with nine nodes. Using the synchronous

daemon, the proposed algorithm finds two 3-stars and one single node after three

rounds. The edges of the resulting two 3-stars are depicted in bold.

7.4 Correctness proof

This section proves that in configuration with no enabled node, the stars induced

by all nodes v with v.s 	= ∅ form a maximal p-star decomposition of G.

Lemma 7.4.1 In a configuration with no node is enabled, the following properties

hold for each v ∈ V .

(a) If v.s 	= ∅ then v.s ⊆ N(v) and |v.s| = p and v.m = null.

(b) If v.m 	= null then v.m ∈ N(v).

(c) If v ∈ w.s then v.m = w and v.s = ∅.

Proof. Let v.s 	= ∅. Then v.s = v.snew = S(v)p since rule [R] is disabled. Thus,

v.s 	= ∅ implies v.s ⊆ N(v) and |v.s| = p. Moreover, if v.snew = S(v)p then

v.m = v.mnew = null. This proves property (a). Let v.m 	= null then v.m =

v.mnew = minM(v) since rule [R] is disabled. Thus, minM(v) ∈ N(v) implies

v.m ∈ N(v). This proves property (b).

Property (c) is proven by contradiction. Suppose there exists v,w ∈ V such

that v ∈ w.s and v.s 	= ∅ or v.m 	= w. First assume v.s 	= ∅. Since v ∈ w.s, w.s 	= ∅.

Then v.s = v.snew = S(v)p since rule [R] is disabled for v. They are two cases to

consider.

Case v < w. v.s 	= ∅ and v ∈ S(w)p implies v > w. Contradiction.

Case v > w. Then v ∈ w.s implies w ∈ M(v). Furthermore, minM(v) < v since

w < v and w ∈ M(v). Thus, v.s = v.snew = ∅. Contradiction.

This yields that v ∈ w.s implies v.s = ∅.

Next consider the remaining case v.m 	= w. Using the previous result, if v ∈ w.s

then v.s = ∅. Hence, v.m 	= w implies v.m = null or v.m = u such that u 	= w. By

assumption, v ∈ w.s, i.e. w ∈ M(v). This implies minM(v) 	= null. To obtain a

final contradiction the remaining proof is split into two cases for v:

1. If minM(v) < v or S(v)p = ∅ then v.snew = ∅ and v.mnew = minM(v). Further

analysis depends on the value of v.m. If v.m = null then we have minM(v) 	=

null and v.m = null, this implies that v.m 	= v.mnew. Contradiction. On the

other hand if v.m = u and u 	= w then v ∈ u.s. Assume that u < v (resp. u > v)

and by assumption v ∈ S(w), this implies that w.s 	= S(w)p. So, rule [R] is

enabled for w (resp. for u). Contradiction.

2. If minM(v) ≥ v and S(v)p 	= ∅ then v.snew = S(v)p and v.mnew = null. Node

v is disabled by rule [R], i.e. v.m = v.mnew = null. So, based on the previous

result, if v ∈ w.s then v.s = ∅. Hence, v.s = ∅ and we have S(v)p 	= ∅. This

implies v.s 	= v.snew and rule [R] is enabled for v. Contradiction.

7.4. Correctness proof 75

4
m=null
s= O

1

2

3

56

7

8

9

s= O
m=null

s= O
m=null

s= O

s= O
m=null

m=null
s= O

m=nullm=null
s= O

s= O
m=null

m=null
s= O

(a) Initial configuration

4

1

2

3

56

7

8

9

m=null

m=null

m=null

m=nullm=null

s={2,3,4}

s= {1,3,4}

s= {1,2,4}

s= {1,2,3}
m=null

s= {1,2,3}

s= {1,2,3}
m=null

s= {1,2,3}

s= {1,2,3}

m=null

m=null
s= {1,2,3}

(b) Round 1

4

1

2

3

56

7

8

9

m=null

m=null

m=null

s={2,3,4}

m=null

m=null

m=null

s= O

s= O

m=1

m=1

s= {6,7,8}s= {7,8,9}

s= O

s= O

s= Os= O

m=1

(c) Round 2

4

1

2

3

56

7

8

9

m=null

m=null

s={2,3,4}

m=null

s= O

s= O

m=1

m=1

s= {6,7,8}

s= O

s= O

s= Os= O

s= O
m=5

m=5

m=5

m=1

(d) Round 3

4

1

2

3

56

7

8

9

Single node

Two stars

(e) Final configuration

Figure 7.1: Example of executing SMSD1 under the synchronous daemon (p = 3).

76Chapter 7. Algorithm for MSD with unique legitimate configuration

We conclude that if v ∈ w.s then v.m = w and v.s = ∅. This completes the proof

of property (c). �

Consider a configuration with no enabled node. Let S be the set of all nodes

v ∈ V with v.s 	= ∅. By Lemma 7.4.1, each node v of S together with the p nodes

in v.s forms a star in G. These stars do not overlap.

Lemma 7.4.2 In a configuration with no enabled node the stars induced by all

nodes v with v.s 	= ∅ form a maximal p-star decomposition of G.

Proof. It is sufficient to prove that the decomposition is maximal. Let v ∈ V such

that v.s = ∅ and v.m = null. Assume that v is the center of a star with p leaves

that are neither contained in S nor leaves of a center node contained in S. Then

w.m = null and w.s = ∅ for every leaf w of v. This implies that all p leaves of v are

contained in S(v). This is impossible because otherwise node v would be enabled.

�

7.5 Convergence proof

In this section, the convergence of the algorithm SMSD1 under the unfair distributed

daemon is proved. The time complexity of the algorithm is measured in rounds.

Note that in general a round under an unfair distributed daemon may consist of

an infinite number of moves. Thus, it is not sufficient to prove that the algorithm

stabilizes after a finite number of rounds. For this reason, we first prove in Theo-

rem 7.5.4 that the algorithm SMSD1 requires only a finite number of moves which

implies its convergence. In the following the usage of the unfair distributed daemon

is assumed.

A move of a node v is called m-move (resp. s-move) if v executes rule [R] and

assigns a new value to v.m (resp. v.s). Thus, a move can be an m-move and an

s-move at the same time.

Lemma 7.5.1 Let v ∈ V and e be an execution of SMSD1 such that no node u

with u < v makes an s-move in e. Then v makes at most d(v) + 2 s-moves in e.

Proof. We prove that each node u ∈ N(v) may enter or leave the set S(v) at most

once during e. Since between two s-moves of v the set S(v) must change the result

as follows. Let w ∈ N(v) and c be the first configuration in e where w makes a

move. Denote by ec the remaining execution, i.e., the suffix of e beginning in c. So,

there are two possible cases for w:

Case minM(w) < v. Let u = minM(w). Since u < v, by assumption u.s

will never change, thus u ∈ M(w) holds forever and hence minM(w) < v holds

forever. If w > v then minM(w) < w holds forever, this implies that w.s = ∅ will

be satisfied from now on. Hence, w will never be part of S(v) in the future. If

w < v then because minM(w) < v holds forever, w will also never be part of S(v)

7.6. Complexity analysis 77

in the future. In summary, if minM(w) < v, node w will at most once drop out of

S(v).

Case minM(w) ≥ v. Again by assumption minM(w) ≥ v holds for the rest of

the execution. Consider the case w > v. If there exists u < v with w ∈ u.s then

w will never be part of S(v) in the future. If w 	∈ u.s for all u < v, then w will be

forever in S(v). Next let w < v. Then w.s will never change by assumption. Then

as in the previous case, node w will never be part of S(v) in the future or will be

forever contained in S(v). In summary, if minM(w) ≥ v, node w will at most once

drop out of S(v) or will be inserted at most once into S(v).

Hence, each neighbor of w induces at most one change of S(v). Furthermore,

all nodes u with u < v cause together at most one change of S(v). In total we have

at most d(v) + 2 s-moves of v. �

Lemma 7.5.2 The total number of s-moves in any execution of SMSD1 is finite.

Proof. The proof is by induction on the identifier of the nodes. The node v with the

smallest identifier makes at most d(v)+2 s-moves by Lemma 7.5.1. Let w ∈ V , with

w 	= v. By induction there exists a number C such that all nodes with identifiers

less than w make together at most C s-moves. Then Lemma 7.5.1 implies that w

makes at most (C + 1)(d(w) + 2) s-moves. This completes the proof. �

Lemma 7.5.3 Let ∆ be the maximum node degree in the graph G. The total num-

ber of m-moves in any execution of SMSD1 is at most ∆C + n, here C denotes the

total number of s-moves.

Proof. If a node v makes a m-move then the set M(v) has changed since the last

m-move of v or it is v’s first m-move. The set M(v) changes if the membership of

v in w.s for a node w ∈ N(v) changes. This is caused by an s-move of w. In the

worst case a s-move of a node u changes the sets w.s of all neighbors w of u. This

completes the proof. �

Theorem 7.5.4 The algorithm SMSD1 is a self-stabilizing algorithm for comput-

ing a maximal p-star decomposition and stabilizes in finite time under the unfair

distributed daemon.

Proof. The convergence property of SMSD1 follows from Lemmas 7.5.2 and 7.5.3.

The correctness property was shown in Lemma 7.4.2. �

7.6 Complexity analysis

In the following, we analyze the round complexity of the algorithm SMSD1 under

the unfair distributed daemon.

Lemma 7.6.1 After round r0 and in all following rounds, each node v ∈ V satisfies

the following properties.

78Chapter 7. Algorithm for MSD with unique legitimate configuration

(a) v.m = null or v.m ∈ N(v).

(b) if v.s 	= ∅ then |v.s| = p ∧ v.s ⊆ N(v) ∧ d(v) ≥ p ∧ v.m = null.

Proof. It is obvious that any node v ∈ V that does not satisfy properties (a) and

(b) is enabled and when v executes rule [R] during r0, v will satisfy both of these

properties because v.mnew = null or v.mnew ∈ N(v) and v.snew = ∅ or |v.snew| = p.

Note that v.snew ⊆ N(v). �

Lemma 7.6.2 After round r1 and in all following rounds, each node v ∈ V with

v.m = u satisfies d(u) ≥ p and v.s = ∅.

Proof. After the first round r0, if a node u has d(u) < p then u.s = ∅ (Lemma

7.6.1). Moreover, u will never have u.s 	= ∅ because S(u)p = ∅ independently of

minM(u) and S(u)p. Hence, u keeps its value u.s = ∅. So, after round r1 and for

all following rounds, we have u /∈ M(v) for all v ∈ V . This completes the proof. �

Lemma 7.6.3 Let v∗ be the smallest node in G such that d(v∗) ≥ p. Then,

(a) after round r2 and in all following rounds, v∗.m = null and v∗.s = N(v∗)p.

(b) Let be S∗ = (v∗ ∪ v∗.s). After round r3 and in all following rounds, v.m /∈ S∗

and v.s ∩ S∗ = ∅ for all v ∈ V (G)� S∗.

Proof. For proving property (a), it is sufficient to prove that during round r2 and

in all following rounds, we have v∗.mnew = null and v∗.snew = S(v∗)p. This implies

that minM(v∗) ≥ v∗ ∧ S(v∗)p 	= ∅.

By assumption and according to Lemmas 7.6.1 and 7.6.2, v∗ is the smallest node

such that v∗.s 	= ∅. Hence, after r1, we have minM(v∗) > v∗. Now, we prove that

during round r2, we always have S(v∗)p 	= ∅.

By definition, S(v∗) = {w ∈ N(v∗) | (w.s = ∅∧w.m ≥ v∗)∨ (w.s 	= ∅∧w > v∗)}.

Now, we show that after round r1, any neighbor w of v∗ belongs to S(v∗). For a

node w two cases have to be considered.

Case w.s 	= ∅. Then using Lemma 7.6.1, w > v∗. This implies that w ∈ S(v∗).

Case w.s = ∅. Then node w can have w.m = null or w.m 	= null. If w.m 	= null

then by Lemma 7.6.1, w.s = ∅. By assumption and using Lemma 7.6.2, we have

w.m > v∗ and w.s = ∅, this implies that w ∈ S(v∗). If on the other hand w.m = null

then this yields w.s = ∅ and w.m = null > v∗. This implies that w ∈ S(v∗).

We deduce that any neighbor w of the node v∗ belongs of S(v∗) independent of

the values of w.m or w.s. Hence, S(v∗) = N(v∗) 	= ∅. So, during round r2 and in

all following rounds, we have S(v∗) = N(v∗) 	= ∅. This implies v∗.mnew = null and

v∗.snew = N(v∗)p. Thus, if v∗.m 	= v∗.mnew or v∗.s 	= v∗.snew then v∗ executes rule

[R] and updates its variables such that v∗.m = null and v∗.s = N(v∗)p after round

r2 and v∗ will never make a move again.

7.7. Summary and Discussions 79

Property (b) means that after round r3, there is no node v ∈ V �S∗ depending

on the star S∗ formed by v∗ ∪ v∗.s. As previously shown, after round r2 and in

all following rounds, node v∗ satisfies v∗.m = null and v∗.s = N(v∗)p. Hence,

after round r2, each node w not belonging to star S∗ that satisfies w.m ∈ S∗ or

w.s ∩ S∗ 	= ∅ will be enabled by rule [R] and must execute this rule before the

end of round r3. Thus, after round r3, any node w not belonging to S∗ will have

w.m /∈ S∗ and w.s ∩ S∗ = ∅. �

Lemma 7.6.4 The algorithm SMSD1 stabilizes after at most 2⌊ n
p+1⌋+ 2 rounds.

Proof. The proof is by induction. Consider the first two rounds r0 and r1. Each

node satisfies the properties stated in Lemmas 7.6.1 and 7.6.2. Let be v∗ the node

with the smallest identifier in G with degree at least p (i.e. d(v∗) ≥ p). Using

Lemma 7.6.3, the star S∗, which contains the node v∗ as a center node and v∗.s as

leaf nodes, will stabilize after at most two successive rounds and any node belonging

to this star (i.e. nodes in {v∗} ∪ v∗.s) will never make a move again. Let G′ be the

graph obtained by removing the nodes of S∗ from G. The argument given above

can be repeated. Hence, by induction, each star stabilizes after at most two more

rounds. Since G contains at most ⌊ n
p+1⌋ stars, SMSD1 will stabilize after at most

2⌊ n
p+1⌋+ 2 rounds. �

Theorem 7.6.5 SMSD1 is self-stabilizing algorithm for maximal p-star decompo-

sition and converges after at most 2⌊ n
p+1⌋ + 2 rounds under the unfair distributed

daemon using O(p log n) memory.

Proof. The result is a direct consequence of Theorem 7.5.4 and Lemma 7.6.4. �

7.7 Summary and Discussions

In this chapter, we presented a first self-stabilizing algorithm for graph decomposi-

tion into disjoint p-stars, called SMSD1. The algorithm operates under the unfair

distributed daemon and stabilizes after at most 2⌊ n
p+1⌋+2 rounds using O(p log n)

memory where n is the number of nodes in the graph G and p is a positive integer.

However, the proposed algorithm SMSD1 has a weak point which cannot be

ignored. SMSD1 may consider a configuration with correct maximal p-star decom-

position as an illegitimate configuration if it does not match with the unique con-

figuration expected by the algorithm. Let us show this point by a simple example.

Consider a graph G as path of four nodes v1, v2, v3, v4 such that v1 < v2 < v3 < v4
and we fixe p = 1. This means that the 1-star decomposition provides a maximal

matching in the graph G. Figure 7.2 depicts an example of SMSD1 execution under

the synchronous daemon.

The starting configuration is a correct maximal 1-star decomposition where the

node v1 (resp. v2) is a center node of a star and has v4 (resp. v3) as a leaf node, as

illustrated in Figure 7.2(a). However, this configuration is not legitimate because

80Chapter 7. Algorithm for MSD with unique legitimate configuration

v4 v v v1 2 3

m=v m=v

s= 0
2m=null

s= v3s= v

m=null

4

1

s= 0

(a) Starting configuration

v4 v v v1 2 3

m=v m=v

s= 0
2m=null

s= v3s= v

m=null1

s= 0 2

(b) 1st Round

v4 v v v1 2 3

m=v

s= 0
2

s= v

m=null

s= 0 2

m=v

s= 0
1m=null

(c) 2nd Round

v4 v v v1 2 3

s= 0s= v

m=null

s= 0 2

m=v

s= 0
1m=null m=null

(d) 3rd Round

Figure 7.2: Example of executing SMSD1 under the synchronous daemon (p = 1).

the node v1 is enabled (v1.snew = {v2} and v1.s = {v4}). So, after the first round v1
executes [R] and it will have v1.s = {v2} and v1.m = null (See Figure 7.2(b)). In

the 2nd configuration, the node v2 is enabled by [R] because min M(v2) = v1 < v2
and v4 is also enabled because S(v4) = ∅ and v4.m 	= minM(v4). So, after the 2nd

round, the nodes v2 and v4 will have v2.s = v4.s = ∅ and v2.m = v1 and v4.m = null

(See Figure 7.2(c)). In this configuration, the node v3 is enabled and after the 3rd

round, v3 will have v3.s = ∅ and v3.m = v4.m = null (Figure 7.2(d)). We conclude

that for any starting configuration, the algorithm SMSD1 always leads to a unique

configuration that is p-star decomposition.

Concerning the complexity of SMSD1, the number of moves seems to be ex-

ponential even if its rounds complexity is linear. So, we simulate the algorithm

SMSD1 on a complete graph with initially values v.m = null and v.s = ∅ for every

node v. We assume the unfair central daemon that selects the enabled node that

have the highest id. The following tables 7.1 and 7.2 present the number of moves

for the stabilization with respect to the number of nodes n. Then, we remark that

the number of moves needed for the stabilization get huge very quickly. However,

we are not aware of an example where SMSD1 requires an exponential number of

moves.

n 3 4 16 20 21 22 23

Moves 8 13 8911 65072 106686 174755 285989

Table 7.1: Simulation on complete graph with n nodes and p = 2.

7.7. Summary and Discussions 81

n 3 4 16 20 21 22 23

Moves 0 13 6176 44757 73403 120260 196904

Table 7.2: Simulation on complete graph with n nodes and p = 3.

Chapter 8

Algorithm for MSD with

multi-legitimate configurations

Contents

8.1 Introduction . 83

8.2 Algorithm description . 83

8.3 Correctness proof . 85

8.4 Convergence proof . 88

8.5 Summary . 91

8.6 Conclusion . 91

8.1 Introduction

In the previous chapter, we developed a first algorithm (SMSD1) for maximal p-star

decomposition of general graphs. The algorithm converges in linear rounds under

the unfair distributed daemon. We proved that moves complexity of SMSD1 is

bounded but simulations showed its exponentiality. Moreover, SMSD1 provides a

unique legitimate configuration. In this chapter, a second self-stabilizing algorithm

for MSD, called SMSD2, is developed in order to outperform the first algorithm

on two points: (i) SMSD2 offers more than one legitimate configuration instead

of a unique one for the previous one, i.e. SMSD2 considers all maximal p-star

decompositions to be legitimate. (ii) SMSD2 has a polynomial move complexity

under the unfair distributed daemon.

This chapter is organized as follows: In Section 8.2, we present the second

algorithm SMSD2. Then, we give formal proofs of its correctness and convergence

in Section 8.3 and Section 8.4 respectively.

8.2 Algorithm description

In this section, we present a second self-stabilizing algorithm for maximal p-star

decomposition of an arbitrary graph G, called SMSD2. The algorithm SMSD2 can

be summarized as follows: each node v that does not belong to a p-star invites

the smallest neighbor to be its center node of a p-star. If a node v has at least p

neighbors that point at only v, then v accepts their invitations by pointing at the

84 Chapter 8. Algorithm for MSD with multi-legitimate configurations

p smallest nodes of these nodes. If a node v points at a neighbor u and u already

belongs to a p-star then v withdraws its invitation or invites another neighbor.

Let X be a set of nodes and p a positive integer. SMSD2 uses the same operator

Xp as defined for SMSD1. Recall that Xp returns at most the p smallest nodes of

X and it is defined as follows :

Xp =

{

∅ if |X| < p

the p smallest elements of X otherwise.

Each node v, in the graph G, maintains a list of pointers v.L that defines the

neighbors of v in the p-star to which node v may belong. We say v.L is coherent, if

|v.L| ∈ {0, 1, p} and v.L ⊆ N(v).

Note that v.L contains only pointers (i.e. id) of v’s neighbors. So, it is possible

that in the starting configuration, some nodes can have incoherent pointers list. For

this reason, we use the predicate incoherent(v) in the first Rule [U1]. Formally,

incoherent(v) ≡ (|v.L| /∈ {0, 1, p}) ∨ (v.L � N(v)).

In addition to the pointers list v.L, SMSD2 uses two boolean variables v.inStar

and v.leaf . A node v uses the variable v.inStar to inform its neighbors whether

v belongs to a p-star (v.inStar = true) or not (v.inStar = false). The second

variable v.leaf is used to inform neighbors whether v can be a center node (v.leaf =

false) or not (v.leaf = true). The new value v.leaf is computed using the function

S(v). Thus, S(v) returns true if the number of neighbors of v that do not belong

yet to any p-star is less than p else S(v) returns false. Formally, S(v) = true if

|{u ∈ N(v) : u.inStar = false}| < p else S(v) = false.

We say that the node v becomes agreeing to be a center node of a p-star if v

points at p neighbors defined by v.L and each node u from this list has u.L = {v}.

However, a node v becomes agreeing to be a leaf node of a p-star if v points at a

neighbor u such that |u.L| = p and u.inStar = true and v ∈ u.L. So, any node v is

agreeing if and only if the predicate agreed(v) = true. Formally, agreed is defined

as follows:

agreed(v) ≡

{

(v.L = {u} ∧ u.inStar = true ∧ |u.L| = p ∧ v ∈ u.L)∨

(∀u ∈ v.L : u.L = {v} ∧ |v.L| = p)

Note that during the execution of SMSD2, a node v can have more than one

neighbor that can be its center node. The set of such neighbors is denoted by C(v),

formally C(v) = {u ∈ N(v) : u.inStar = false ∧ u.leaf = false ∧ |u.L| � 1}.

Moreover, a node v can be pointed by many neighbors that point at only v. Then,

the set of such nodes is defined by A(v). Formally, A(v) = {u ∈ N(v) : u.L = {v}}.

Considering the unfair distributed daemon, some enabled nodes can make their

moves simultaneously. Hence, we make a serialization technique for the execution

of critical moves in order to reduce the moves complexity of the algorithm. If the

nodes can change their pointers list v.L simultaneously, this induces a higher moves

complexity. Hence, the trick is to use a Boolean flag, called v.f lag for each node

v ∈ V in order to inform its neighbors that v wants to execute a critical move.

The updating of this flag uses the predicate want to change(v), defined as follows:

8.3. Correctness proof 85

want to change(v) ≡ v.instar = false ∧ (A(v)p 	= ∅ ∨ v.L 	= C(v)1).

Hence, the smallest node in the neighborhood having this flag to true executes

its critical move for changing its pointer list. This can happen by checking the

predicate Smallest(v). Formally, smallest(v) ≡ v.f lag = true ∧ ∄u ∈ N(v) :

u.f lag = true ∧ u < v.

The complete set of rules of SMSD2 is shown in Algorithm 5. The six rules can

be categorized in two groups. We assume an order between rules as presented in

the algorithm, for example Rule [U2] is executed only if [U1] is disabled and so

on. Considering a node v, the Rules of the first group ([U1,U2,U3,U4]) keep the

variables v.L, v.leaf , v.f lag and v.instar up to date. The rules of the second group

([A,I]) are responsible for creating and accepting invitations (critical moves). The

Rule [A] permits to a node v for accepting invitations from its p neighbors and

the Rule [I] for inviting the smallest possible neighbor to be a center node or to

∅ where C(v)1 = ∅ (Recall that C(v)1 returns the smallest node in C(v)). Note

that the rules of the second group require that v.inStar = false. This means that

if a node v is agreeing then v cannot execute any rule of this group (Since [U3]

is disabled). Moreover, only one node can execute an acceptation or an invitation

move in the same neighborhood, by checking if the current node v has the smallest

v.f lag = true within its neighborhood (using predicate smallest(v)).

Algorithm 5: Self-stabilizing algorithm for MSD (SMSD2)

incoherent(v) −→ v.L := ∅; v.inStar := false; [U1]

v.leaf 	= S(v) ∧ v.inStar = false −→ v.leaf := S(v); [U2]

v.inStar 	= agreed(v) −→ v.inStar := agreed(v); [U3]

v.f lag 	= want to change(v) −→ v.f lag := want to change(v); [U4]

v.inStar = false ∧ A(v)p 	= ∅ ∧ smallest(v) −→ v.L := A(v)p ;

v.inStar := true; [A]

v.inStar = false ∧ v.L 	= C(v)1 ∧ smallest(v) −→ v.L := C(v)1; [I]

The intuitive idea of SMSD2 is as follows: each node v which is agreeing for be-

longing to a p-star has v.inStar = true. Otherwise, v points by v.L at the smallest

possible center, defined by C(v)1. Thus, if a node v has at least p neighbors that

point at only v (i.e. A(v)p 	= ∅) and v is the smallest node for executing acceptation

or invitation moves then v accepts the invitations of its p smallest neighbors, by ex-

ecuting the Rule [A]. Observe that any neighbor u that points at v cannot change

their pointer list because Rules [A] and [I] are disabled (smallest(u) = false)

during v’s move.

8.3 Correctness proof

First, we prove that in a configuration where no node is enabled, each node having

|v.L| = p is a center of a p-star, defined by {v} ∪ v.L. Moreover, the union of such

86 Chapter 8. Algorithm for MSD with multi-legitimate configurations

p-stars forms a maximal p-star decomposition of the graph G. Recall that a node

v is enabled if one rule of the algorithm SMSD ([U1-U4],[I] or [A]) is enabled.

Lemma 8.3.1 In configuration with no enabled node, the following properties holds

for each node v ∈ V :

(a) v.L is coherent, i.e. |v.L| ∈ {0, 1, p} and v.L ⊆ N(v).

(b) if v.inStar = false then v.leaf = S(v).

(c) if |v.L| = p then v.inStar = agreed(v) = true.

(d) if |v.L| = p then u.inStar = agreed(u) = true for any u ∈ v.L.

Proof. Since Rule [U1] is disabled for v ∈ V , we have incoherent(v) = false.

This means that |v.L| ∈ {0, 1, p} and v.L ⊆ N(v). This proves Property (a).

Since Rule [U2] is disabled and using Property (a) then v.leaf = S(v) for any

v with v.inStar = false. This proves Property (b).

Considering the first part of Property (c), i.e. if |v.L| = p then agreed(v) = true.

Assume in a configuration where no node is enabled, there exists a node v ∈ V with

|v.L| = p and agreed(v) = false. Using Property (a), we have v.L ⊆ N(v). So,

there are two cases: (i) if v.inStar = true then [U3] is enabled because v.inStar 	=

agreed(v). Contradiction with assumption. (ii) if v.inStar = false then v.leaf =

S(v) (Property (b)) and agreed(v) = v.inStar = false (because Rule [U3] is

disabled). Since Rule [U4] is disabled then v.f lag = want to change(v) for any

v ∈ V . Without loss of generality, let v be the smallest node having |v.L| = p.

So, if A(v)p 	= ∅ then v is enabled by the Rule [A], contradiction. In case where

A(v)p = ∅ (i.e. no neighbor points at only v), two situations are distinguished:

1. If p = 1 then we have |v.L| = 1 and agreed(v) = false by assumption. Since

[U3] is disabled at v, v.inStar = agreed(v) = false. Let v.L = {u}. Using

Property (a), we have u ∈ N(v). This situation means that v points at a

neighbor u which may have two cases:

(a) If agreed(u) = true then u.inStar = agreed(u) = true since [U3] is

disabled at u. We have v.L = {u} and u.inStar = true and agreed(v) =

false, then v.L 	= C(v)1 because u /∈ C(v). This implies Rule [I] is

enabled at v. Contradiction.

(b) If agreed(u) = false then u.inStar = agreed(u) = false since [U3] is

disabled at u. We have v.L = {u} and u.inStar = false and agreed(v) =

false, then at least Rule [A] is enabled at u because A(u)1 	= ∅. Con-

tradiction.

2. If p � 2 then we have |v.L| � 2 and agreed(v) = false by assumption. Then

v.L 	= C(v)1 because |v.L| 	= |C(v)1|. This implies that Rule [I] is enabled

at v. Contradiction.

8.3. Correctness proof 87

So, we proved that if |v.L| = p then agreed(v) = true for any integer p � 1.

Furthermore, Rule [U3] is disabled for v and agreed(v) = true, then v.inStar =

agreed(v) = true. This proves Property (c).

Considering Property (d). We have |v.L| = p and using Property (c) and defi-

nition of agreed(v), then agreed(u) = true for any u ∈ v.L. Moreover, u.inStar =

agreed(u) = true because Rule [U3] is disabled for any u ∈ v.L. This proves

Property (d). �

In the following lemma, we prove that SMSD always finds a maximal p-star

decomposition in legitimate configuration.

Lemma 8.3.2 In configuration with no enabled node, each node v having |v.L| = p

forms a p-star with v.L as leaves. Moreover, the set of such p-stars forms a Maximal

p-star Decomposition of the graph G.

Proof. The proof is by induction on n.

Let n � p, i.e. G does not contains any p-star. Using Property (a) of Lemma 8.3.1

and n � p then |v.L| � 1 for any v ∈ V . This implies that v.inStar = agreed(v) =

false for ∀v ∈ V because Rule [U3] is disabled. Using Property (b) of Lemma 8.3.1

and v.inStar = false, implies that v.leaf = S(v) for any v ∈ V . Hence, n � p

and v.leaf = S(v) and v.inStar = false for any v ∈ V , then v.leaf = true for any

v ∈ V . Furthermore, since Rule [I] is disabled and |v.L| � 1 for all nodes v ∈ V ,

then v.L = ∅ because C(v)1 = ∅. Hence, in configuration where no node is enabled

if n � p then v.L = ∅ and v.inStar = false for any v ∈ V .

Let n > p. First, consider that there is no node v ∈ V : |v.L| = p. This means that

|v.L| < p for any v ∈ V . Moreover, since Rules [U1-U4] are disabled and |v.L| < p

for any v ∈ V then v.inStar = agreed(v) = false for any v ∈ V . Since Rules

[A],[I] are disabled, then A(v)p = ∅ and v.L = C(v)1 for any v ∈ V . This implies

that v.leaf = true for any v ∈ V . Hence, we deduce that G does not contain a

p-star. Furthermore, since Rule [I] is disabled for v ∈ V , then v.L = ∅ because

C(v)1 = ∅ for any v ∈ V .

Second, consider that there exists a node v ∈ V : |v.L| = p. Let v be the smallest

identifier such that |v.L| = p. We have |v.L| = p and using Property (c) of Lemma

8.3.1, then v.inStar = agreed(v) = true. Moreover, using Property (d) of Lemma

8.3.1, we have u.inStar = agreed(u) = true for any u ∈ v.L. Moreover, since Rule

[I] is disabled for all nodes, in particular for any node w ∈ V � {v ∪ v.L}, we have

w.L ∩ {v ∪ v.L} = ∅ (because u.inStar = true for every u ∈ {v} ∪ v.L -Properties

(c) and (d) of Lemma 8.3.1-). This means that no node w ∈ V � {v ∪ v.L} points

at {v ∪ v.L}. Let G′ be the graph induced by V � {v ∪ v.L}. Since no node of G′

is enabled then the lemma holds for G′ by induction. This implies that the Lemma

is also true for the graph G. �

88 Chapter 8. Algorithm for MSD with multi-legitimate configurations

8.4 Convergence proof

In this section, we prove that the algorithm SMSD2 converges within polynomial

moves under the unfair distributed daemon. The following lemma shows that when

a node executes an acceptation rule [A], then it will never make a move again.

Lemma 8.4.1 If a node v executes Rule [A] then it will never make a move again.

Proof. Recall that only the Rules [U1], [A] and [I] can change the pointer list

of the node v. Furthermore, [A] is executed at v if Rules [U1-U4] are disabled.

Consider the Rule [A]. A node v executes the Rule [A], meaning that there are

at least p neighbors pointing at v to become a center node and v is the smallest

node having v.f lag = true within its neighborhood. So, when the node v executes

[A], the value of v.inStar is updated (v.inStar = true) and the node v chooses p

smallest neighbors from nodes that pointed it, say u1, u2, . . . , up, in order to form

a p-star. Consider the node u1 and the reasoning proof is the same for u2, . . . , up.

Observe that during the time-step where v executes [A], u1 cannot change its u1.L

by executing [I] or [A] because smallest(u1) = false. Furthermore, u1 cannot

execute Rule [U1] because incoherent(u1) = false. So, u1 cannot change its

pointer list u1.L during this time-step. Hence, after the acceptation move of v, we

have v.L = {u1, u2, . . . , up} and v.inStar = true and u1.L = {v}. Then, the node

u1 has agreed(u1) = true and the only Rules that u1 can execute are [U2] and

[U3] without changing u1.L. Observe that when u1 excutes [U3] then u1 will have

u1.inStar = true. So, u1 will not execute neither [A] nor [I]. Thereby, v will

never execute any rule again. �

We have to note that if a node v has agreed(v) = true then it is either agreeing

to be: (i) a center node i.e v points at p neighbors to be its leaves and every leaf

of its list v.L points at only v, formally |v.L| = p and ∀u ∈ v.L : u.L = v or (ii)

a leaf node of some center node u if v points at only u and v ∈ u.L and |u.L| = p

and u.inStar = true.

Thus, if v has agreed(v) = true as a center node then any v’s leaf u has

agreed(u) = true. However, if v has agreed(v) = true as a leaf node pointing

at some neighbor u to be a center then agreed(u) of the node u is not necessarily

true. This is why we distinguish the two different situations in the proof of Lemma

8.4.2. The aim of this lemma is to prove that the maximum sequence of the value

inStar for each node in the graph G is bounded by a constant.

Lemma 8.4.2 The sequence ’false → true → false → true’ is the maximum

possible sequence of v.inStar for each node v during the execution of SMSD using

an unfair distributed daemon.

Proof. A node v updates its variable v.inStar to true if and only if agreed(v) =

true. This means that the node v is either a center node of a star or a leaf node.

8.4. Convergence proof 89

Assuming that the node v will be a center node. It is clear that the only rules

that can change the value of v.inStar from false to true are [A] and [U3]. We

proved in Lemma 8.4.1 that the node v never makes a move after the execution of

[A]. Moreover, a node v executes [U3] to be a center node if agreed(v) = true,

this means that any node u ∈ v.L has u.L = {v}. This situation can only exist

in a starting configuration. So, when v updates its v.inStar to true then some

nodes u ∈ v.L may change their pointer list to invite or to accept other nodes.

Hence, v may make wrong decision by executing [U3] and it will be not agreeing.

However, the next updating of v to be a center node will be only by executing Rule

[A]. Thus, the max sequence for a center node starting from v.inStar = false is

’false → true → false → true’.

If a node v starts with v.inStar = true and v will change its v.inStar to false,

this means that agreed(v) = false. This implies that the value v.inStar is an

initial value, not obtained by an execution of Rule [A]. Then v.inStar will be set

to false by [U1] if v.L is incoherent (i.e. incoherent(v) = true). Otherwise, v

executes [U3]. In both cases, the next update of v.inStar will be by executing

the Rule [A] that makes v never move again (Lemma 8.4.1). Thus, the maximum

sequence for a center node starting from v.inStar = true is ’true → false → true’.

Assuming that the node v will be a leaf node. It is useful to note that a leaf node

v changes its value v.inStar to true (resp. false) if its center node u has already

u.inStar = true (resp. false). In other words, a leaf node stabilizes only if its

center node has already stabilized. Consider that, initially, v has v.inStar = false,

so in order to change its v.inStar to true by executing the Rule [U3], v must have

agreed(v) = true. This means that in perspective of v, the node u is a center node

because |u.L| = p and u.inStar = true and v ∈ u.L. In this situation, the node u

can have two situations agreed(u) = true or agreed(u) = false.

(i) if agreed(u) = true, means that |u.L| = p and u.inStar = true and ∀v ∈

u.L : v.L = {u}, then the node u is a real center node and keeps its u.inStar = true,

and as consequence, any u’s leaf node v will also keeping its value v.inStar to true.

(ii) if agreed(u) = false, means that u is not a real center node. In this

situation, the node v may take a wrong decision by executing [U3] to change its

v.inStar to true because agreed(v) = true. But in this configuration, agreed(u) =

false and u.inStar = true. Then, u executes [U3] for updating u.inStar to false.

This pushes the leaf node v to change again its v.inStar to false. After these

executions, v may withdraw its invitation and invites another center node if u

is not the smallest possible center (i.e. {u} 	= C(v)1), else v keeps v.L = {u}.

Thus, the next updating of v.inStar must be definitive because the next invitation

by executing Rule [I] allows v to invite only a node u with u.inStar = false and

|u.L| � 1 and only move to be a center node for u (creating p pointers and updating

inStar = true) is the Rule [A].

So, we conclude that for any node v ∈ V , then ’false → true → false → true’

is the maximum sequence for v.inStar. �

Lemma 8.4.3 Under the unfair distributed daemon, SMSD2 converges within O(∆2m)

90 Chapter 8. Algorithm for MSD with multi-legitimate configurations

moves where ∆ and m are respectively the maximum node degree and the number

of edges in the graph G.

Proof. We denote by |R| the number of executions of a Rule [R] by one node. We

give an upper bound for each |R| of a node v.

• For the Rule [U1]: Note that any rule which modifies v.L, it provides a list

of pointer such that incoherent(v) = false. So, |U1| � 1.

• For the Rule [U2]: It is clear that the variable v.leaf depends only on the

number of neighbors which have their variable u.inStar = false and by

Lemma 8.4.2, each neighbor u can change its variable u.inStar at most 3

times. Thus, in the worst case, the v.leaf can be changed at most 3d(v) + 1.

We deduce that |U2| � 3d(v) + 1 times.

• For the Rule [U3]: Using Lemma 8.4.2, each neighbor v can change its variable

v.inStar at most 3 times. So, |U3| � 3.

• For the Rule [A]: Using Lemma 8.4.1, node v can execute [A] at most once

and never move again. So, |A| � 1.

• For the Rule [I]: The new value of v.L depends on the smallest available

center node defined by C(v)1. Let be u = C(v)1. So, C(v)1 depends on

the values of u.inStar and u.leaf and |u.L|. By the algorithm, the node

u can have |u.L| = p by executing only Rule [A]. Furthermore, u will have

v.inStar = true and it will never move again (Lemma 8.4.1). So, v can change

its pointer at most once for each neighbor u when u executes [A]. Moreover,

C(v)1 also depends on u.inStar and u.leaf . We have u.inStar can changed at

most 3 times (Lemma 8.4.2) and u.leaf can changed at most 3d(u)+1 times.

Then, C(v)1 can change at most 3d(u) + 4 times for each neighbor u ∈ N(v).

We deduce that for all neighbors of v, the value of C(v)1 can change at most

d(v)(3∆ + 4) times where ∆ is the maximum node degree in G. We conclude

that |I| � d(v)(3∆ + 4) + 1.

• For the Rule [U4]: This rule depends on the predicate want to change(v)

which depends on v.instar, A(v)p and C(v)1. We have v.inStar can change

at most 3 times (Lemma 8.4.2), C(v)1 can change d(v)(3∆+4)+1 times (cf.

previous result) and A(v)p can change d(v)(∆(3∆ + 4) + 1) times (because

each v’s neighbor u can make at most d(u)(3∆ + 4) + 1 invitations or one

acceptation). Then, we conclude that |U4| � (3∆2 + 7∆ + 5)d(v) + 4.

So, for any node v in the system, the number of executions of all rules is
∑

|R|.

Since
∑n

v=1 d(v) = 2m, where m is the number of edges and n the number of nodes,

then we deduce that the complexity is O(∆2m) moves. �

Theorem 8.4.4 SMSD2 is a self-stabilizing algorithm for computing a maximal p-

star decomposition and stabilizes within O(∆2m) moves under an unfair distributed

daemon.

8.5. Summary 91

Proof. By Lemma 8.3.2, the algorithm is correct and by Lemma 8.4.3, we conclude

that SMSD2 is self-stabilizing algorithm for maximal p-star decomposition and ter-

minates in O(∆2m) moves under the unfair distributed daemon for any connected

graph. �

8.5 Summary

In this chapter, a second self-stabilizing algorithm for graph decomposition into

disjoint p-stars (SMSD2) is developed. The algorithm operates under the unfair

distributed daemon and stabilizes in O(∆2m) moves where m is the number of

edges and ∆ is maximum node degree in the graph. This complexity is also an

upper bound for round complexity. Moreover, SMSD2 considers all maximal p-star

decomposition to be legitimate configurations.

8.6 Conclusion

In this part, we study the problem of maximal p-star decomposition of arbitrary

graphs. This decomposition is a generalization of maximal matching problem in

graphs. We showed that finding a deterministic self-stabilizing algorithm for such

problem is impossible in anonymous graphs. Moreover, assuming unique locally dis-

tinct node identifiers, two self-stabilizing algorithms are developed for MSD prob-

lem.

A first algorithm, called SMSD1, is presented in Chapter 7. The first algorithm

operates under the unfair distributed daemon and stabilizes in O(n) rounds. If

p = 1 then SMSD1 provides a maximal matching in graph. Furthermore, the time

complexity in rounds of SMSD1 is the same order as the best known self-stabilizing

algorithm for maximal matching under the synchronous daemon [GHJS03c] or the

distributed daemon [MMPT09]. Using the synchronous daemon, the algorithm

SMSD1 requires at most O(n2/p) moves. Moreover, we shown that for any starting

configuration, SMSD1 always leads to a unique configuration that is p-star decom-

position.

Unfortunately, the simulations show that SMSD1 may provide an exponential

number of moves under the distributed daemon. Furthermore, SMSD1 offers only

a unique legitimate configuration which can be considered as a weak point of this

algorithm. Then, a second algorithm, called SMSD2, is presented in Chapter 8

in order to outperform the first one. The second algorithm SMSD2 converges in

polynomial moves and considers all maximal p-star decompositions to be legitimate.

Part III

Edge Monitoring Set (EMS)&

Independent Strong

Dominating Set (ISD-set)

Chapter 9

Introduction and motivation of

part III

Contents

9.1 Introduction . 95

9.2 Overview and definitions . 96

9.3 Motivation . 97

9.1 Introduction

Unlike wired networks, wireless networks have no predefined connection structure.

Then, the communications between two resources (eg. sensors) provided with omni-

directional antennas, are directly made when they are within communication range

(neighbor), or through other intermediate resources. Moreover, these networks are

obviously vulnerable in hostile environments.

Nowadays, wireless networks are often deployed in a random way by using a

huge number of resources. To have high-level structures for the control and the

monitoring of these resources, it is necessary to take into account the locality of the

resources and the closeness between them. This can be made in an auto-organized

way by awarding specific roles for certain resources of the network. For example, a

set of resources can be selected to play the server role and the remaining resources

play the client role, by being near a server.

Since it is natural to model a network by a graph, where resources and links

are represented by nodes and edges of the graph respectively, several algorithms

for graph parameters have been proposed in the literature for designing efficient

protocols in wireless sensor and ad-hoc networks. For example, self-stabilizing al-

gorithms for finding minimal dominating sets, maximal matchings, independent sets

(see Section 2.4 for more details).

In this third part of the thesis, we focus on two variants of dominating sets:

Edge Monitoring Sets and Independent Strong Dominating Sets. The goal of these

parameters is the selection of certain nodes (a.k.a. dominants or monitors) for

dominating some nodes or edges.

Edge Monitoring Sets is a simple and effective mechanism for the security of

wireless networks, especially to cope with compromised nodes in wireless sensors

96 Chapter 9. Introduction and motivation of part III

networks (WSNs). A node v can monitor (or dominate) an edge e if both end-nodes

of e are neighbors of v; i.e., e and v together form a triangle in the graph. Moreover,

some edges need more than one monitor. Finding a set of monitoring nodes satisfy-

ing all monitoring constraints is called the edge-monitoring problem. The minimum

edge-monitoring problem is known to be NP-complete [DLL08, DLL+11]. In this

part, we present a novel polynomial self-stabilizing algorithm for computing a mini-

mal edge-monitoring set which operates under the unfair distributed daemon. More

details can be found in Chapter 10.

The second parameter, called Independent Strong Dominating Sets (ISD-set),

is an interesting variant of dominating sets. In addition to its domination and

independence properties, the ISD-set considers also nodes degrees that make it very

useful in practical applications. This variant was introduced by Sampathkumar

et al. in [SL96]. In this part, we propose the first self-stabilizing algorithm for

computing an ISD-set of an arbitrary graph that operates under the distributed

daemon. Moreover, performed simulations and comparisons with well-known self-

stabilizing algorithms for dominating sets and Independent sets problems showed

the efficiency of the proposed algorithm for ISD-set. More details can be found in

Chapter 11.

9.2 Overview and definitions

We consider networks in which all communications are bidirectional. We model

the network by a graph G where resources (eg. sensors) are represented by nodes,

defined by the set V and their communications by edges, defined by the set E.

Recall that we denote by n and m the number of nodes and edges in G respectively.

Definition 11 (A monitor) Given an edge e = 〈u,w〉, a node v can monitor e,

if 〈u, v〉, 〈v,w〉 ∈ E, i.e. the three nodes v, u,w form a triangle in G.

Let ω(e) be the weight of the edge e ∈ E. This weight describes the number of

nodes that are supposed to monitor e. The set of edges that have to be monitored

is denoted by Es. Formally, Es = {e ∈ E|ω(e) > 0}.

Definition 12 (A minimal Edge Monitoring problem) Minimal Edge Moni-

toring problem consists in identifying a minimal set of nodes D that are able to

monitor a given subset of edges Es of the global edges E.

Definition 13 (k-monitoring) A set of nodes D ⊆ V is k-monitoring of a set of

edges Es ⊆ E if all edges of Es are monitored by at least k different nodes in D. A

k-monitoring D of Es is minimal if no subset of D is k-monitoring of Es.

Definition 14 (A Dominating Set) A set of nodes D is a dominating set (DS)

of G if every node v ∈ V −D has a neighbor in D. D is a minimal dominating set

(MDS) if any of its proper subsets is not a dominating set.

9.3. Motivation 97

Definition 15 (An Independent Set) A set of nodes D is an independent set

(IS) of G if ∀u, v ∈ D, (u, v) /∈ E. D is a maximal independent set (MIS) if D is

also a dominating set.

Definition 16 (Strong & Weak domination) Let d(v) be the degree of v. A

node v strongly dominates a node u and u weakly dominates v if (u, v) ∈ E and

d(v) � d(u). We say that v is stronger than u.

Definition 17 (An Independent Strong Dominating Set) A set D ⊆ V is

an independent strong dominating set (ISD-set) of G if D is an independent set

(IS) and every node in V −D is strongly dominated by at least one node in D.

By the last definition, observe that any ISD-set is at the same time a minimal

dominating set and a maximal independent set. Hence, the minimality and the

maximality are implicite in this case.

9.3 Motivation

In wireless networks with randomly deployed sensor nodes, the selection of a mini-

mal monitoring set of nodes is a challenging task, especially for large scale networks

using only distance-one knowledge. Consider for example the deployment in Figure

9.1. The black nodes can monitor all communication links depicted in bold. In

[DLL+11, DLL08], Dong et al. proved that finding a minimum set of monitoring

nodes is NP-complete. The authors also proposed two distributed polynomial al-

gorithms with provable approximation ratio. However, the algorithms assume a

synchronous model and distance-two knowledge. Furthermore, distance-two knowl-

edge is not a realistic solution in WSN. In Chapter 10, we assume the most general

model that is asynchronous model with distance-one knowledge.

To the best of our knowledge, there is only one work proposed by Hauck in

[Hau12] where the author presented the first self-stabilizing algorithm for the edge

monitoring problem. His algorithm uses the expression model [Tur12] and converges

inO(n2) moves under the central daemon. Using the transformer proposed by Turau

in [Tur12], the transformed algorithm converges in O(mn2) moves under the unfair

distributed daemon.

In this thesis, we improve the previous work by proposing a novel algorithm

that operates under the distributed daemon without using any transformer as it

the case with Hauck’s work. Moreover, our algorithm converges in O(∆2m) moves

where ∆ is the maximum node degree in graph. Thus, in particular for networks

with low maximal node degree our algorithm converges much faster. This led us

to considerate the first parameter (Edge Monitoring Set Problem). This work is

published in [NHTK14].

Regarding what led us to consider the second parameter (ISD-set), this choice

is justified by several points. The first one is essentially related on the property of

this parameter which constitutes a combination of Minimal Dominating set (MDS)

98 Chapter 9. Introduction and motivation of part III

Figure 9.1: Edge monitoring of a graph. The black nodes can monitor the bold

communication links.

and Maximal Independent Set (MIS). These two parameters have been extensively

studied on both theoretical and practical (algorithmic) aspects. Therefore, several

self-stabilizing algorithms have been proposed for MDS and MIS problems (see

the survey in section 2.4), however no one considers the degree of nodes and the

distance between dominating nodes at the same time. Hence, the nodes belonging

to the dominating set can be in the same neighborhood and some nodes can be

dominated by neighbors that have smaller degrees. Figure 9.2 illustrates a possible

configuration of a Minimal dominating set (MDS) and an ISD-set in a star graph,

composed of one center node and four leaves. The white and black nodes denote the

dominated and the dominating nodes respectively. So, we note that an MDS may

select the leaf nodes as dominating nodes and the center node as dominated (Figure

9.2(a)). However, ISD-set problem provides only the center node as dominating

node (Figure 9.2(b)). So, we note that ISD-set is more suitable than MDS to reduce

the cardinality of the dominating set. Therefore, ISD-set combines two properties

and advantages of MDS and MIS, that make ISD-set a very convenient approach for

a better network covering with minimum number of nodes in large-scale networks.

(a) MDS (b) ISD-set

Figure 9.2: MDS vs ISD-set.

Furthermore, the existing self-stabilizing algorithms for MDS and MIS has dif-

ferent complexities (steps, rounds, moves) and there is no simulation comparison

of these algorithms. In this part, we propose the first self-stabilizing algorithm for

computing an ISD-set in an arbitrary graph. Moreover, performed simulations and

comparisons with well-known self-stabilizing algorithms for MDS and MIS problems

showed the efficiency of the proposed algorithm for ISD-set. More descriptions of

this contribution can be found Chapter 11.

Chapter 10

Algorithm for EMS problem

Contents

10.1 Introduction . 99

10.2 Algorithm description . 101

10.3 Correctness proof . 103

10.4 Convergence proof . 105

10.5 Summary . 108

10.1 Introduction

A sensor network is a wireless ad-hoc network with a large number of nodes that are

micro-sensors to collect and transmit environmental data autonomously. Usually,

the deployment of these sensors is done in a random manner. These networks

find many applications such as military surveillance (detection intrusion, weapons

location and vehicles), forest fire control, industrial process control, machine health

monitoring, and so on.

The power limitation in wireless sensor networks (WSN) and hostile environ-

ments in which they could be deployed are factors that make this type of networks

very vulnerable. Since, the security of these networks is very important, especially

for sensitive and critical applications.

One of the most difficult threats in WSN is compromised nodes. Several attacks

may use the compromised nodes to divert the proper functioning of the networks.

Considering the real challenges to design security mechanisms against these attacks,

many approaches have been proposed based on local monitoring technique (a.k.a

watchdog) [KBNR05, KBS05, LC06, GBS08].

The basic idea of local monitoring is assigning monitoring role to some sensors

in the network [MGLB00]. Usually, these monitors are placed in the middle of

communication between the sender (S) and the receiver nodes (R). Figure 10.1

illustrates the case where the nodes M1 and M2 monitor the communication be-

tween nodes S and R. We have to note that both of M1 and M2 are located in the

transmission range of nodes S and R.

The sensors are deployed in random and dense manner making the selection

of minimal monitor nodes harder, especially for large scale WSN and using only

1-hop neighborhood knowledge. For example, as shown in Figure 10.2, the black

100 Chapter 10. Algorithm for EMS problem

S R

M2

M1

Figure 10.1: Local monitoring.

nodes denote the monitors and the depicted edges denote the communications that

must be monitored, i.e. there exists at least one monitor node for each depicted

edge. In [DLL08, DLL+11], Dong et al. proved that finding minimum nodes for

such problem is NP-complete and they proposed two distributed polynomial algo-

rithms for provable approximation ratio to this issue. Their algorithms operate in

synchronous model and assume distance-two knowledge.

Figure 10.2: Edge monitoring set of a graph. The black nodes are the monitors of

the depicted edges.

Using transient fault-tolerance aspect of self-stabilizing systems, Hauck devel-

oped the first self-stabilizing algorithm for computing a minimal set for edge moni-

toring problem [Hau12]. His algorithm uses the expression model defined by Turau

in [Tur12] and converges in O(n2) moves under the unfair central daemon. Using

the transformer in [Tur12], the transformed Hauck’s algorithm converges in O(mn2)

moves under the unfair distributed daemon. In this thesis, we propose a new self-

stabilizing algorithm for edge monitoring problem (called SEMS) with a lower com-

plexity than Hauck’s algorithm. Moreover, our algorithm assumes distance-one

knowledge, i.e. each node has local view and knows only the adjacent edges. All

algorithms presented for edge-monitoring problem are summarized in Table 10.1.

Ref. Dist. know. Com. model Self-stab. Comp. Transformer.

[DLL+11] Distance-two Synchronous No O(∆) Yes

[Hau12] Expression model Asynchronous Yes O(n2m) Yes

SEMS Distance-one Asynchronous Yes O(∆2m) No

Table 10.1: Distributed algorithms for edge-monitoring problem.

The following section presents the self-stabilizing algorithm SEMS for computing

a minimal edge-monitoring set for a general graph G with edge weight function ω

10.2. Algorithm description 101

as introduced above (see Section 9.2). In this algorithm, each node v maintains

a variable state with range {In,Wait,Out}. This variable indicates whether v

belongs to the monitoring set or not. A node is called a monitor if its variable

state has value IN . Thus, the edge-monitoring set D of G is defined by D = {v ∈

V : v.state = In}. The state Wait is an intermediate state from state In to Out

required for symmetry breaking. It is used to inform neighbors that this node is

not required to be a monitor and can change its state to Out.

10.2 Algorithm description

The monitors of an edge are administered by the end node with the smaller iden-

tifier. Neighbors of v that are either monitors or potential monitors of an edge

adjacent to v are called target monitors. Thus, a node v maintains a set of target

monitors for each of its adjacent edges which it is responsible for. For an edge 〈v, u〉,

this includes all current monitors, i.e., all common neighbors of v and u with state

In or Wait. If the number of these nodes is not sufficient (i.e., less than ω(v, u))

then this set is supplemented by the smallest common neighbors of v and u with

state Out until this set has ω(v, u) elements. If on the other hand the number of

these nodes exceeds ω(v, u) then the set of target monitors is empty. Thus, the edge

does not need this node as a monitor. The union of target monitors of all adjacent

edges of a responsible node is called the “target monitoring set” of the node.

Note that there is one small drawback with the following notion: A node does

not know the set of neighbors for each of its neighbors. This information is necessary

to compute the target monitoring set of a node. However, a node can avoid this

pitfall by exposing the set of neighbors in a variable and neighbors can use this

variable for their computations. Since this variable can be corrupted by a transient

fault, the target monitoring set may be faulty for some time.

The algorithm SEMS works as follows. Nodes keep a target monitoring set as

well as the exposed set of neighbors always up-to-date. A node with state In that is

not a target monitor for any of its neighbors will change its state. In order to avoid

an oscillating behavior such a node does not immediately change its state to Out.

It first transits into state Wait. In order to transit into state Out, all neighbors

must give permission to do such transition. A node only gives this permission to the

neighbor with state Wait that has the smallest identifier among these nodes. This

is realized by a public variable containing the identifier of the neighbor that can be

removed from its monitoring set. So, only after all neighbors give this permission, a

node may transit from state Wait to state Out. If a node with state Wait becomes

a member of the target monitoring set of a neighbor then it transits back to state

In. There is also a rule for changing the state from Out to In. The precondition for

this rule is that the node is a target monitor of a neighbor and none of its neighbors

is currently giving this node the above discussed permission.

Technically, the algorithm SEMS uses the following variables for each node v:

• S :: contains the open neighborhood of v.

102 Chapter 10. Algorithm for EMS problem

• TM :: the set of target monitors. It is a set of neighbors that are either

monitors or potential monitors of an edge adjacent to v. TM will contain

a sufficient number of nodes to satisfy the monitor demands of all adjacent

edges. Note that |TM | ≤ ∆.

• PO :: used to give permissions to change state to Out. It either contains the

smallest identifier of all neighbors in state Wait not contained in TM or null.

If v.PO = u (resp. u ∈ v.TM) then we say v points at u to leave (resp. to

enter) the monitoring set.

For a set X of node identifiers and a positive integer p denote by Xp the set

of the p smallest identifiers contained in X. If |X| ≤ p then Xp = X. Note that

this definition is slightly different to those used in previous chapters. Formally, the

operator Xp of this algorithm is defined as follows:

Xp =

{

X if |X| ≤ p

the p smallest elements of X otherwise.

In algorithm SEMS a node v uses the three functionsMon(v, u), Candidate(v, u),

and TMe(v, u), defined for all neighboring nodes v, u ∈ V . Function Mon(v, u)

returns the set of nodes that are supposingly monitoring edge 〈v, u〉. These are

neighbors of v and most likely also of u that have state In or Wait. Formally,

Mon(v, u) = {z ∈ N(v) ∩ u.S | z.state = In ∨ z.state = Wait}

Function Candidate(v, u) returns the set of nodes that are supposingly new

candidates to monitor edge 〈v, u〉. These are neighbors of v and most likely also of

u that have state Out. Formally,

Candidate(v, u) = {z ∈ N(v) ∩ u.S | z.state = Out}

Function TMe(v, u) uses the first two functions to compute a target set of monitors

for edge 〈v, u〉. It is used to keep v.TM up-to-date. Formally,

if (|Mon(v, u)| � ω(v, u) ∧ v < u) then

TMe(v, u) = Mon(v, u) ∪ Candidate(v, u)ω(v,u)−|Mon(v,u)|;

else

TMe(v, u) = ∅;

Note that TMe(v, u) = ∅ for an edge 〈v, u〉 if v > u.

Algorithm SEMS is specified by six rules that are divided into two categories.

Rules [R1] and [R2] belong to the first category. They are used to update the

values of the variables TM and PO.

The remaining four rules of the second category maintain variable state . If

more than one rule is enabled, we assume that the rule with the smallest number

is executed.

10.3. Correctness proof 103

Algorithm 6: Algorithm SEMS : Maintaining TM , PO and S

Nodes: v is the current node
S 	= N(v) −→ S := N(v); [R1]

TM 	=
⋃

u∈N(v)

TMe(v, u) ∨ PO 	= min{u ∈ N(v) | u.state = Wait∧ u /∈ TM} −→

TM :=
⋃

u∈N(v)

TMe(v, u);

PO := min{u ∈ N(v) | u.state = Wait ∧ u /∈ TM} ; [R2]

Algorithm SEMS : Maintaining state

Nodes: v is the current node
state = Out ∧ ∃u ∈ N(v) : v ∈ u.TM ∧ ∀w ∈ N(v) : v 	= w.PO

−→ state := In; [R3]

state = In ∧ ∀u ∈ N(v) : v /∈ u.TM −→ state := Wait; [R4]

state = Wait ∧ ∃u ∈ N(v) : v ∈ u.TM −→ state := In; [R5]

state = Wait ∧ ∀u ∈ N(v) : v = u.PO −→ state := Out; [R6]

Figure 10.3 shows an execution of Algorithm SEMS under the synchronous

daemon for a graph with six nodes. Two of the edges require each one a monitor.

In the initial configuration, all nodes are in state Out and the values of variable S

are consistent with the neighborhood relation. Furthermore, we assume v.TM = ∅

and v.PO = null for each node v.

10.3 Correctness proof

First, we prove that in a configuration where no node is enabled, the set D forms

a minimal edge monitoring set with respect to ω.

Lemma 10.3.1 In a configuration with no enabled node, the following properties

hold for each v ∈ V .

(a) v.S = N(v),

(b) if v.state = Wait then v 	∈ u.TM for all u ∈ N(v),

(c) if v.state = Out then v 	= u.PO for all u ∈ N(v),

(d) v.state ∈ {In,Out}.

Proof. Properties (a) and (b) are satisfied because rules [R1] and [R5] are dis-

abled. Note that v.PO = {u ∈ N(v) : u.state = Wait ∧ u /∈ v.TM} since rule [R2]

is disabled for each node v ∈ V . Thus, u.PO = null or u.PO.state = Wait. Hence,

v 	= u.PO since v.state = Out. This proves property (c).

104 Chapter 10. Algorithm for EMS problem

111

6

5

4

2

3

Out

Out

Out

Out

Out

Out

(a) Initial configuration

111

6

5

4

2

3

Out

Out

Out

Out

Out

Out

TM={1} TM={4}

(b) Nodes 2 and 5 execute [R2]

111

6

5

4

2

3

Out

Out

Out

Out

In In

TM={1} TM={4}

(c) Nodes 1 and 4 execute [R3]

111

6

5

4

2

3

Out

Out

Out

In In

TM={4}TM=O

Out

(d) Node 2 executes [R2]

111

6

5

4

2

3

Out

Out

Out

Out

InWait

TM={4}

(e) Node 1 executes [R4]

111

6

5

4

2

3

Out

Out

Out

Out

InWait

PO=1

PO=1

TM={4}

(f) Nodes 2 and 3 execute [R2]

111

6

5

4

2

3

Out

Out

Out

Out

InOut

TM={4}PO=1

PO=1

(g) Node 1 executes [R6]

111

6

5

4

2

3

Out

Out

Out

Out

InOut

TM={4}TM={4}

(h) Nodes 2 and 3 execute [R2]

Figure 10.3: Example of an execution of Algorithm SEMS

Assume Property (d) is false. Among all nodes violating this property choose

a node v with a minimal identifier. Then v.state = Wait. By minimality of v, if

v 	∈ u.TM for a node u ∈ N(v) then v = u.PO. Since rule [R6] is disabled there

exists a node u ∈ N(v) such that v 	= u.PO. Hence, v ∈ u.TM and rule [R5] is

enabled. Contradiction. �

Lemma 10.3.2 In a configuration with no enabled node any edge has sufficiently

many monitors, i.e. |Mon(v, u)| � ω(v, u) for each 〈v, u〉 ∈ E.

Proof. The proof is by contradiction. Assume that there exists an edge 〈v, u〉 such

that |Mon(v, u)| < ω(v, u). Without loss of generality, let v < u. By definition,

Mon(v, u) = {z ∈ N(v)∩ u.S | z.state ∈ {In,Wait}}. Using properties (d) and (a)

of Lemma 10.3.1, we have

Mon(v, u) = {z ∈ N(v) ∩N(u) | z.state = In}.

10.4. Convergence proof 105

Since |Mon(v, u)| < ω(v, u) the set have Candidate(v, u)ω(v,u)−|Mon(v,u)| is not

empty (otherwise no solution would exist). Moreover, since rule [R2] is disabled

for v the following holds:

∅ 	= Candidate(v, u)ω(v,u)−|Mon (v,u)| ⊆ TMe(v, u) ⊆ v.TM

This shows that there exists a node z ∈ v.TM with z.state = Out. Also

z 	= w.PO for all w ∈ N(z) by property (c) of Lemma 10.3.1. This yields that rule

[R3] is enabled for node z. Contradiction. �

Lemma 10.3.3 In a configuration with no enabled node, the set D = {v ∈ V |

state(v) = In} forms a minimal edge-monitoring set with respect to ω.

Proof. According to Lemma 10.3.2, D is an edge-monitoring set. Thus, it is suf-

ficient to prove that D is minimal. Assume there exists a node v ∈ D such that

D′ = D−{v} is an edge monitoring set of G with respect to ω (see Figure 10.4 for

an example). So v.state = In. Then for any pair u1, u2 ∈ N(v) with u1 < u2 edge

〈u1, u2〉 has more than ω(u1, u2) monitors, i.e. |Mon(u1, u2)| > ω(u1, u2). Thus,

TMe(u1, u2) = TMe(u2, u1) = ∅. Now, v 	∈ u1.TM and v 	∈ u2.TM since rule

[R2] is disabled for u1 and u2. Let u1 ∈ N(v) such that N(u1) ∩N(v) = ∅. Then

v 	∈ u1.TM by definition of u1.TM (note rules [R1] and [R2] are not enabled).

Hence, v 	∈ u.TM for any u ∈ N(v). This implies that rule [R4] is enabled for v.

Contradiction. �

e
v2 1

1

u1

u2

Figure 10.4: Non-minimal edge-monitoring set. Monitoring nodes are depicted in

bold and the edge labels denote ω. Node v is not needed as a monitor.

10.4 Convergence proof

In the previous section, we proved the correctness of SEMS algorithm. Then, it

remains to prove that SEMS stabilizes in finite time for any starting configuration

under the unfair distributed daemon. Figure 10.5 shows all transitions of a node

with respect to variable state that can occur during an execution of Algorithm

SEMS.

Observe that nodes do not enter or leave the set TM if they change their state

from Wait to In or conversely.

Recall that the following lemma follows from the convention that rules with a

higher priority have precedence.

106 Chapter 10. Algorithm for EMS problem

Out In

R3

Wait

R4

R1

R2

R5

R1R2

R2

R1

R6

Figure 10.5: State Transition Diagram of Algorithm SEMS

Lemma 10.4.1 Each node executes rule [R1] at most once. If a node does execute

[R1] then in its first move.

This lemma implies that if a node v executes rules [R2] to [R6] then v.S =

N(v).

A node v can change its state from In via Wait to Out because neighboring

nodes signal to v that all their edges are sufficiently monitored. This information can

be false because some neighbor u of v wrongly assumed that its neighbor u1 could

monitor edge 〈u, u2〉. The reason for such a wrong assumption is that u2 ∈ u1.S

but u2 	∈ N(u1). Once u1 executes rule [R1] node u will realize this and u can now

consider v as a target monitor and include it into u.TM . This could then prompt

v to change its state to In again. Now the situation is different, all neighbors of v

have executed a rule in the mean time. Because of priority of rules then u.S = N(u)

holds for all u ∈ N(v). If node v changes its state again to Out with rule [R6]

then it is because all neighbors indicated with their variable PO that their edges

have a sufficient number of monitors without v. Since this number never will fall

again under the value given by ω, node v will never move to state In again. This

behavior is formally proved in the following two lemmas.

Lemma 10.4.2 Each node executes [R6] at most twice, i.e. it changes from state

Wait to state Out at most twice.

Proof. Let c be a configuration in which a node v ∈ V has state Wait and executes

rule [R6]. For v to execute rule [R6] again it must first change its state back to

Wait. This can only be achieved by first changing to state In with rule [R3] and

then to state Wait with rule [R4]. Note that v = u.PO for all u ∈ N(v) when v

executed rule [R6]. For v to be enabled for rule [R3] it is required that v 	= u.PO

for all u ∈ N(v). Thus, all neighbors of v must have executed rule [R2] before v

can execute rule [R3] again. A node executing rule [R2] cannot be enabled for rule

[R1]. Thus, each neighbor u of v satisfies u.S = N(u) when u executes rule [R2].

Hence, those neighbors of v that are responsible for edges that v can monitor have

all finally determined that v is not required as a monitor, i.e. v will never enter

u.TM for a neighbor u. Hence v will never change its state to In again. �

10.4. Convergence proof 107

Lemma 10.4.3 Each node executes [R3] at most three times, i.e. it changes from

state Out to state In at most three times.

Proof. A node executing rule [R3] four times would execute rule [R6] at least

three times. This contradicts Lemma 10.4.2.

�

Lemma 10.4.4 Each node executes [R4] at most 6∆d(v) times, i.e. it changes

from state In to state Wait at most 6∆d(v) times.

Proof. A node v with state In executes rule [R4] if v is not a target monitor of

any of its neighbors, i.e. v 	∈ u.TM for all u ∈ N(v). In order to reenter state In

at least one of v’s neighbors must declare v as a target monitor, i.e. there must

be a node u ∈ N(v) with v ∈ u.TM . Note that for u to change its set of target

monitors, a neighbor of u must change its state from Out to In or from Wait to

Out or execute rule [R1]. According to Lemmas 10.4.1 to 10.4.3, each neighbor

of u can do this at most 6 times. Hence, node u can update u.TM at most 6d(u)

times. This implies that node v changes its state to Wait at most 6∆d(v). �

Lemma 10.4.5 Each node executes [R5] at most 6∆d(v)+1 times, i.e. it changes

from state Wait to state In at most 6∆d(v) + 1 times.

Proof. By Lemma 10.4.4, a node v can change its state from In to Wait at most

6∆d(v) and using State Transition Diagram of v, then v can change from state

Wait to state In at most 6∆d(v) + 1 times. �

Lemma 10.4.6 Any node v can execute [R2] at most (6∆2 + 9)d(v) times.

Proof. Consider a node v. The execution of rule [R2] depends on the values of

v.TM and v.PO. By definition, the value of v.TM itself depends on TMe(v, u) for

each neighbor u of v. Mon(v, u) depends on the neighbors w of v which are in state

Wait or In. Note that node w can change its value from state Out to Wait at most

three times (Lemma 10.4.3) and from state Wait to Out at most twice (Lemma

10.4.2). Thus, each neighbor w of v changes Mon(v, u) at most five times and once

if w.S is incorrect. So, for each of v’s neighbor u, TMe(v, u) can change at most

6 times. Hence, we deduce that v.TM can change at most 6d(v) times for each

neighbor of v.

Next we consider variable v.PO. By definition, PO depends on the neighbors

that have state Wait. Using Lemmas 10.4.2 and 10.4.5, each neighbor u of v changes

its state from Wait to state In or Out at most 6∆d(u) + 3 times. Thus, for each

neighbor of v, the value of v.PO can change at most d(v)(6∆2 + 3) times.

In summary, v can execute rule [R2] at most d(v)(6∆2 + 9) times. �

Lemma 10.4.7 Algorithm SEMS terminates in O(∆2m) moves under the unfair

distributed daemon.

108 Chapter 10. Algorithm for EMS problem

Proof. Lemmas 10.4.1 to 10.4.6 stated upper bounds on the number of executions

for each rule on each node. In the worst case these moves all occur sequentially.

This gives the following upper bound for the total number of moves:

n+
∑

v∈V

(6∆2 + 9)d(v) + 3n+
∑

v∈V

6∆d(v) +
∑

v∈V

(6∆d(v) + 1) + 2n ∈ O(∆2m)

�

Theorem 10.4.8 Algorithm SEMS is self-stabilizing algorithm for finding a min-

imal edge monitoring set for a given set of monitoring requirements of a general

graph. It uses O(∆log n) memory space per node and stabilizes in O(∆2m) moves

under the unfair distributed daemon.

Proof. Theorem 10.4.8 is a direct consequence of Lemmas 10.3.3 and 10.4.7. �

10.5 Summary

In this chapter, we presented a new self-stabilizing algorithm to find minimal edge-

monitoring sets in general graphs. The presented algorithm SEMS converges in

O(∆2m) moves under the unfair distributed daemon and assumes the most general

model (Distance-one Knowklege). Consequently, this result improves Hauck’s work

[Hau12] by proposing a lower move complexity without using any transformer.

Chapter 11

Algorithm for ISD-set problem

Contents

11.1 Introduction . 109

11.2 Algorithm description . 110

11.3 Correctness proof . 111

11.4 Convergence & complexity analysis 112

11.4.1 Convergence proof . 112

11.4.2 Complexity analysis . 113

11.5 Some simulations and performance analysis 114

11.6 Summary . 116

11.7 Conclusion . 117

11.1 Introduction

Dominating sets and Independent sets are very important class of problems with

several theoretical and practical applications. These problems have attracted many

theoretical researches, therefore many results have been proposed and different vari-

ants have been identified by the graph community. In practical side, the dominating

sets (DS) and independent sets (IS) gave a special interest to distributed systems

field due to their importance for several applications. The structure of DS and

IS can be useful as virtual overlays in computer networks. These structures are

often used for designing efficient protocols in wireless sensor and ad-hoc networks

[GHJ+08, UT11, YKR06, BDTC05, AWF03, KMW04], for example clustering ap-

proaches in wireless sensor networks for load balancing and extending the network

lifetime [YKR06]. A survey of different node clustering approaches can be found in

[YKR06].

Usually, the nodes having higher degrees in graphs play important roles for

clustering in wireless networks [YKR06], for providing stable cluster structures

[KMW04] and for studying communities structure in p2p networks [LHK13], while

the majority of the distributed algorithms for minimal dominating set (MDS) and

maximal independent set (MIS) problems do not consider this aspect. This problem

has been studied in graph theory and it is called strong and weak domination. These

concepts were introduced by Sampathkumar et al. in [SL96]. Moreover, finding the

110 Chapter 11. Algorithm for ISD-set problem

minimum independent strong dominating set (ISD-set) is NP-hard even in bipartite

graphs [DHMU02].

Given a graph G = (V,E), a set D ⊆ V is an independent set (IS) if no two

nodes of D are neighbors (adjacent). let d(v) be the degree of v in graph G. A node

v strongly dominates a node u and u weakly dominates v if uv ∈ E and d(v) � d(u).

A set D ⊆ V is an ISD-set of G if D is an independent set and every node in V −D

is strongly dominated by at least one node in D.

In this chapter, we propose the first self-stabilizing algorithm for a minimal

ISD-set. The algorithm operates under the unfair distributed daemon.

11.2 Algorithm description

This section describes the self-stabilizing algorithm for computing a minimal ISD-

set in general graphs (called ISDS). We assume that every node v ∈ V has a distinct

local identifier denoted by id.

The approach of ISDS is based on greedy approach. The general idea of this

algorithm is as follows: A node v becomes a dominating node if there is no domi-

nating neighbor that is stronger than v. In other words, the node v with the largest

both degree and id becomes a dominating node. Thereby, all of its neighbors will

be strongly dominated. This procedure is recursively repeated for the sub-graph of

G consisting of all nodes except v and its neighbors.

In algorithm ISDS, each node v maintains a variable state with range {In,Out}.

This Boolean variable indicates whether v belongs to the strong dominating set or

not. Thus, the ISD-set is defined by D = {v ∈ V : v.state = In}. The algorithm

uses a second variable d that is supposed to contain the degree of a node in the

graph G. We define a lexicographical strong order between nodes of G, denoted by

≻, that considers their degrees and ids. Thus, the nodes are first ranked by their

degree variable and if two nodes have the same degree variable, they are ranked

by the highest id. Then, we say that v is stronger than u, denoted by v ≻ u, if

v.d > u.d or v.d = u.d ∧ v.id > u.id.

In addition to the two variables v.state and v.d for each node v ∈ V , ISDS uses

a local function, denoted by I(v). The latter permits to compute the new value of

v.state as follows:

I(v) =

{

Out if ∃u ∈ N(v) : u ≻ v ∧ u.state = In

In otherwise.

The proposed Algorithm ISDS is composed of two rules [R1] and [R2]. The first

rule [R1] permits to update the variable d and reset state to Out if d is not up-to-

date (i.e. d is not equal to the true degree of the concerned node). The second rule

[R2] updates the variable v.state. We assume that there is an order between rules,

i.e. if the two rules are enabled, we assume that the rule with the smallest number

is executed. The details of these rules are presented in the following algorithm.

11.3. Correctness proof 111

Algorithm 8: Self-stabilizing algorithm for ISD-set (ISDS)

Nodes: v is the current node
v.d 	= d(v) −→ v.d := d(v); v.state := Out; [R1]

v.state 	= I(v) −→ v.state := I(v); [R2]

Note that the definition of the lexicographical strong order ≻, can easily be

generalized for weighted graphs where the weight of any node v represents its im-

portance in G. A weight of a node can be its degree, its remaining energy or other

network parameters. Thereby, the ISDS rules still valid for such generalization to

weighted graphs.

11.3 Correctness proof

First, we prove that in a configuration where no node is enabled, the set D = {v ∈

V, v.state = In} forms an ISD-set.

Lemma 11.3.1 In a configuration where no enabled node, the following properties

hold:

(a) any node v ∈ V has v.d = d(v);

(b) any node v ∈ V − D is strongly dominated by a node u ∈ D, i.e. u ≻ v and

u.state = In;

(c) there are no two adjacent nodes in D.

Proof.

Property (a) is ensured by Rule [R1].

Property (b) is proved by contradiction. Assume that there exists a node v ∈ V −D

which is not strongly dominated by any neighbor u ∈ D, this means that there is

no neighbor u such that u ≻ v and u.state = In. In this case, we have I(v) = In

and v.state = Out and using property (a) v.d = d(v). Then [R2] is enabled at v.

Contradiction.

Property (c) is proved by contradiction. Assume that there exist two nodes v, u ∈ D

such that u ∈ N(v). By definition, v, u ∈ D means that v.state = u.state = In.

Without loss of generality, let u ≻ v then I(v) = Out. This implies that I(v) = Out

and v.state = In. Then, [R2] is enabled at v. Contradiction. �

Lemma 11.3.2 In configuration where no enabled node, the set D = {v ∈ V, v.state =

In} is an independent strong dominating set of the graph G.

Proof. Using property (b) of Lemma 11.3.1, we have ∀v ∈ V − D is strongly

dominated by a node u ∈ D. Moreover, using property (c) of the same lemma, D

is an independent set. Then, we deduce that D is an ISD-set of a general graph G.

�

112 Chapter 11. Algorithm for ISD-set problem

11.4 Convergence & complexity analysis

In this section, the convergence of ISDS under the unfair distributed daemon is

proved. The time complexity of the algorithm is analyzed in terms of rounds.

Recall that in general a round under an unfair distributed daemon may consist

of an infinite number of moves. Therefore, in the following section we bound the

number of moves for all rounds.

11.4.1 Convergence proof

First, we prove in this section that ISDS requires only a finite number of moves.

Definition 18 A move of a node v is called in-move if v executes rule [R2] and

assigns a value In to v.state.

Lemma 11.4.1 The Rule [R1] can be executed at most once for any node v ∈ V .

Proof. Since the open neighborhood of any node v ∈ V does not change during

the stabilization of the system, then its degree does not change too. �

Lemma 11.4.2 Let a node v ∈ V and suppose that during an interval of time

[t1, t2], there is no node u with u ≻ v makes an in-move. Then v makes at most

one in-move for any execution of ISDS algorithm.

Proof. Recall that a node v ∈ V can make an in-move only if Rule [R1] is disabled.

This implies that any node v must have a correct value of v.d (i.e. v.d = d(v)) before

executing an in-move.

Furthermore, a node v, having v.state = Out, makes an in-move if I(v) = In,

i.e. any neighbor u of v has u.state = Out or u.state = In and v ≻ u. By

assumption no neighbor u executes an in-move during the time interval [t1, t2] such

that u ≻ v (Note that if d(u) > d(v) and u has an incorrect u.d then u may execute

[R1] but can not execute [R2] during [t1, t2]), hence, when v executes an in-move,

then no neighbor u executes an in-move and therefore v remains v.state = In. �

Lemma 11.4.3 The total number of in-moves of ISDS is finite.

Proof. The proof is by induction on the order between nodes. The strongest node

v makes at most one in-move by Lemma 11.4.2. During each of the two times

intervals, when v is not making an in-move, using Lemma 11.4.2 again, the second

strongest node u ∈ V − {v} makes at most one in-move. Therefore, the same

situation can be repeated for the rest of nodes, showing that all nodes make only a

finite number of in-moves. This completes the proof. �

Lemma 11.4.4 The total number of moves of ISDS is finite.

11.4. Convergence & complexity analysis 113

Proof. Since the number of [R2] executions is bounded by total number of in-moves

plus n (since each node can make at most one out-move more than its number of

in-move) and using Lemma 11.4.3, then the number of [R2] executions is finite.

This implies that the number of [R1] (Lemma 11.4.1) and [R2] executions is finite.

�

Theorem 11.4.5 The algorithm ISDS always stabilizes, and finds an independent

strong dominating set.

Proof. The algorithm ISDS is correct (Lemma 11.3.2) and makes a finite number

of moves (Lemma 11.4.4), then we deduce that ISDS is a self-stabilizing algorithm

and it provides an independent strong dominating set. �

11.4.2 Complexity analysis

In the following, we prove that after at most (n + 1) rounds, the algorithm ISDS

stabilizes.

Lemma 11.4.6 After round r1 and in all following rounds, each node v ∈ V has

a correct value of v.d, i.e. v.d = d(v).

Proof. It is obvious that any node v ∈ V that has an incorrect value v.d is enabled

and when v executes rule [R1] during r1, v will have v.d = d(v) during all the

following rounds. �

Lemma 11.4.7 Let v∗ be the strongest node in G (∀v ∈ V, v∗ ≻ v). Then,

(a) after round r2 and in all following rounds, v∗.state = In.

(b) after round r3 and in all following rounds, v.state = Out for all v ∈ N(v∗).

Proof. For proving property (a), it is sufficient to prove that during round r2 and

in all following rounds, we have I(v∗) = In.

By assumption and Lemma 11.4.6, we have ∀v ∈ N(v∗), v∗ ≻ v, this means that

there are no neighbors stronger than v∗ in state In, this implies I(v∗) = In. So, if

v∗.state = Out after round r1 then v∗ will execute rule [R2] for updating v∗.state

to In and v∗ will never make a move again.

Property (b) means that after round r3, any node v ∈ N(v∗) has v.state = Out.

As previously shown, after round r2 and in all following rounds, node v∗ maintains

v∗.state = In (property (a)). By assumption any neighbor v of v∗, v∗ ≻ v, this

implies I(v) = Out. So, any neighbor v of v∗ has v.state = In after round r2,

will be enabled by rule [R2] and must execute this rule before the end of round r3.

Thus, after round r3, any node v ∈ N(v∗) will have v.state = Out and will never

move again. �

Lemma 11.4.8 Algorithm ISDS stabilizes after at most (n+ 1) rounds.

114 Chapter 11. Algorithm for ISD-set problem

Proof. The proof is by induction. Consider the first round r1, each node has a

correct v.d. Let be v∗ the strongest node in G. Using Lemma 11.4.7, the subgraph

which contains the node v∗ and its neighbors N(v∗) will stabilize after at most two

successive rounds. Let G′ be the graph obtained by removing the first stabilized

subgraph from G. The argument given above can be repeated. Hence, by induction,

each strong node and its neighbors stabilize after at most two more rounds. Since

G contains at most n nodes and using Lemma 11.4.6, Algorithm ISDS will stabilize

after at most n+ 1 rounds. �

The following theorem summarizes the main result of this section.

Theorem 11.4.9 ISDS is a self-stabilizing algorithm for computing an ISD-Set

and converges after at most (n + 1) rounds under the unfair distributed daemon

using O(log n) memory space.

Proof. Using Theorem 11.4.5 and Lemma 11.4.8, we deduce that ISDS is a self-

stabilizing algorithm for computing an ISD-set and converges after at most (n+1)

rounds.

The memory requirement of ISDS amounts to O(log n) per node: Apart of the

boolean variable state, a node has to store the variable d for its degree. Thus, each

node uses only O(log n) memory space. �

11.5 Some simulations and performance analysis

In the previous section, we showed that our algorithm ISDS has the same round

complexity as the best self-stabilizing algorithms for MIS and MDS problems under

the distributed daemon. In this section, we study the performance of ISDS by using

simulations. It has to be mentioned that this is the first work that compares the

different linear self-stablizing algorithms for MDS and MIS problems.

In our simulation, we used arbitrary undirected graphs with no loops or multiple

edges between nodes. Also, the graphs used are sparse. We chose the graph density

such that the graphs remain sparse and the maximum node degree is between 20 and

30. We used the synchronous daemon for all the algorithms. Our implementation

is based on the source code developed by Lukasz Kuszner using the JAVA language

[Luk05].

Considering an arbitrary graph G with n nodes, Figure 11.1 and Figure 11.2

show the performance of our algorithm ISDS in terms of average rounds and average

cardinality of the set D comparing to other well-known self-stabilizing algorithms

for MDS and MIS problems. The number n is varied from 0 to 10000 nodes. Thence,

we compare our algorithm ISDS with the algorithm proposed by Turau for MDS

in [Tur07], the algorithm proposed by Xu et al. in [XHGS03] and the algorithm

proposed by Goddard et al. in [GHJ+08] and the algorithm proposed by Chiu et al.

in [CCT14]. We also compare our algorithm with the algorithm proposed by Turau

for MIS in [Tur07] and the algorithm proposed by Goddard et al. in [GHJS03c].

11.5. Some simulations and performance analysis 115

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 r

o
u

n
d

s

Nodes

Legend
ISDS
Goddard et al. MDS
Turau MDS
Xu et al. MDS
Chiu et al. MDS

(a) Convergence time

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 c

a
rd

in
a

lit
y
 o

f
D

Nodes

Legend
ISDS
Goddard et al. MDS
Turau MDS
Xu et al. MDS
Chiu et al. MDS

(b) Cardinality of the set D

Figure 11.1: Comparison of ISDS with some MDS algorithms.

From the simulation results we can see that our algorithm has a convergence

speed that is close to other MDS and MIS algorithms, as illustrated by Figure

11.1(a) and Figure 11.2(a), respectively. In fact, we observe that the round com-

plexity does not depend on the number of nodes in large scale graphs. Surprisingly,

the fast algorithm of Chiu et al [CCT14] in term of moves needs more rounds for

its stabilization than others algorithms. This is because Chui et al. algorithm uses

four states for each node.

Concerning our algorithm ISDS, the number of nodes selected to belong to D is

appreciably fewer than MDS and MIS algorithms (up to 15%) especially for large

graphs, as illustrated by Figure 11.1(b) and Figure 11.2(b). Moreover, observe that

other algorithms give similar results for the cardinality of the set D while ours

always gives smallest cardinalities.

116 Chapter 11. Algorithm for ISD-set problem

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 r

o
u

n
d

s

Nodes

Legend
ISDS
Goddard et al. MIS
Turau MIS

(a) Convergence time

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 c

a
rd

in
a

lit
y
 o

f
D

Nodes

Legend
ISDS
Goddard et al. MIS
Turau MIS

(b) Cardinality of the set D

Figure 11.2: Comparison of ISDS with some MIS algorithms.

11.6 Summary

In this section, we consider the problem of independent strong dominating set (ISD-

set). Therefore, we proposed the first self-stabilizing algorithm for finding an ISD-

set in general graphs. Using only O(log n) memory space per node, the algorithm

operates under the unfair distributed daemon and stabilizes after at most (n + 1)

rounds.

Apart from the fact that ISDS algorithm theoretically converges in linear rounds,

we evaluate the practical performance of this algorithm with well-known self-stabiliz-

ing algorithms for MIS and MDS problems. The simulations show that ISDS con-

vergence speed is close to the other algorithms. However, the number of dominating

nodes selected by our algorithm is always smaller than those given by other algo-

rithms, especially for large graphs. This makes ISDS very suitable for improving

the performance of wireless networks when the dominating or independent sets are

needed to be as smaller as possible.

11.7. Conclusion 117

Furthermore, the algorithm ISDS can be generalized to weighted graphs by

changing only the definition of the lexicographical order. Thus, the weight of nodes

can be very useful in wireless networks where the weight of dominating nodes may

represent remaining energy, mobility, signal strength, or average distance to neigh-

bors. The dominated nodes may be associated with dominating nodes having the

highest weight.

11.7 Conclusion

In this third part, we studied two parameters, called Edge Monitoring sets and

Independent Dominating Sets in general graphs. Both parameters can be considered

as variants of dominating sets problems. Then, we first proposed a self-stabilizing

algorithm to find minimal edge-monitoring sets in general graphs. Such sets provide

a valuable tool to implement a simple and effective mechanism for building secure

wireless sensor networks. The algorithm has a lower move complexity than existing

self-stabilizing algorithm.

About the second parameter, we proposed a self-stabilizing algorithm (ISDS)

for finding an ISD-set in general graphs. The algorithm ISDS converges in linear

rounds, while having the same order of rounds complexity as the best self-stabilizing

algorithm for MDS and MIS problems. Furthermore, the simulations showed the

efficiency of ISDS for reducing the cardinality of the dominating set.

Chapter 12

Conclusions and Perspectives

In this thesis, the algorithmic aspects and applications of four variants of graph de-

compositions and dominating sets are investigated. This concluding chapter sum-

marizes the results presented in the previous chapters and discusses future work to

each contribution.

At the beginning of this thesis, we presented basic concepts regarding the self-

stabilization paradigm and discussed self-stabilizing algorithms for some classical

graph problems. Then, we presented the four main contributions of this work that

are divided into three parts:

In the first part, we discussed the problem of maximal partitioning into trian-

gles (MPT) of arbitrary graphs. We gave an approximation ratio for this maximal

partitioning. Moreover, we proved that finding a deterministic self-stabilizing algo-

rithm for MPT problem under the distributed daemon is impossible in anonymous

graphs.

We considered MPT problem as a generalization of maximal matching problem

in graphs. Then, we proposed to start from the Hsu and Huang’s algorithm for

maximal matching in arbitrary graph and extend it in such a way to face the MPT

problem by proposing the first self-stabilizing algorithm. Throughout the analysis

of the behavior of the first proposed algorithm, we showed how it was difficult to

prove its convergence using the variant function technique. Thus, we proved that

the first algorithm converges in polynomial number of moves and a transformation

is required in order to operate under the distributed daemon. Hence, a second

self-stabilizing algorithm is developed in order to improve the first version. We

showed that the improved algorithm operates under the unfair distributed daemon

and stabilizes in linear moves.

As future work for MPT problem treated in this first part, we plan to focus on

the following issues:

• The proposed algorithms for MPT problem provide a 3-approximation for

maximum triangle partitions in general graphs. The natural question is how

can we improve this approximation?

• Generalize these proposed algorithms for weighted graphs (for nodes and for

edges).

The second part of this thesis was devoted to study the problem of maximal p-

star decomposition (MSD) of arbitrary graphs. This decomposition also considered

as a generalization of maximal matching problem in graphs when p = 1. We showed

120 Chapter 12. Conclusions and Perspectives

that finding a deterministic self-stabilizing algorithm for such problem is impossible

in anonymous graphs. Therefore, assuming distinct local identifiers, we presented

two self-stabilizing algorithms for MSD problem.

The first algorithm converges in linear rounds under the unfair distributed dae-

mon. Hence, its time complexity in rounds is the same order as the best known

self-stabilizing algorithm for maximal matching under the synchronous daemon or

the distributed daemon. Moreover, we showed that for any starting configuration,

the algorithm always leads to a unique configuration that is a maximal p-star de-

composition.

Afterwards, a second algorithm was developed that operates also under the

unfair distributed daemon and considers all maximal p-star decomposition configu-

rations to be legitimate. Even though this part contains two efficient self-stabilizing

algorithms for MSD problem, a number of issues need to be further investigated.

• The first algorithm proposed for MSD stabilizes within linear rounds. How-

ever, its move complexity is not analyzed and it seems to be exponential

using simulations. Therefore, we are not aware of an example where the first

algorithm requires an exponential number of moves. For this, it would be

interesting to show the existence of a polynomial bound for the number of

moves of the first algorithm or to propose a new algorithm with linear moves

complexity.

• The second algorithm is analyzed using moves only. Thus it would be inter-

esting to find a formal proof for rounds complexity.

• All graphs considered in this part are not weighted, thus it would be interest-

ing to generalize these algorithms for weighted graphs.

The last part of this thesis was devoted to study the edge monitoring and inde-

pendent strong dominating set problems. Then, we presented a novel self-stabilizing

algorithm for edge monitoring problem, improving the existing self-stabilizing algo-

rithm for such problem. Our algorithm converges in polynomial moves and operates

under the unfair distributed daemon without using any transformer.

We would like to investigate whether the move complexity of the proposed al-

gorithm for this problem under the distributed daemon could be improved. Also,

it would be of interest to prove the approximation ratio of the number of monitor

nodes defined by the algorithm.

Concerning the second variant of dominating sets, we presented a greedy self-

stabilizing algorithm for finding a minimal independent strong dominating set in

arbitrary graphs. Moreover, we evaluated the practical performance of this al-

gorithm with well-known self-stabilizing algorithms for MIS and MDS problems.

The simulations shown that the proposed algorithm convergence speed is close to

known algorithms. However, the number of dominating nodes selected by our al-

gorithm is always smaller than those given by other algorithms, especially for large

graphs. This makes our algorithm for ISD-set problem very suitable for improving

121

the performance of wireless networks when the cardinality of the dominating or

independent sets are needed to be as smaller as possible.

Even though the proposed algorithm converges in linear rounds, finding a linear

moves algorithm for ISD-set problem is still an open problem.

Bibliography

[AB93] Yehuda Afek and Geoffrey M. Brown. Self-stabilization over unreliable

communication media. Distributed Computing, 7:27–34, 1993. (Cited

on pages 8 and 20.)

[AG93] A. Arora and M. Gouda. Closure and convergence: a foundation of

fault-tolerant computing. Software Engineering, IEEE Transactions

on, 19(11):1015–1027, 1993. (Cited on page 12.)

[APSVD94] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi

Dolev. Self-stabilization by local checking and global reset (extended

abstract). In WDAG, pages 326–339, 1994. (Cited on page 19.)

[AR04] Konstantin Andreev and Harald Räcke. Balanced graph partitioning.

In Proceedings of the sixteenth annual ACM symposium on Parallelism

in algorithms and architectures, SPAA ’04, pages 120–124, 2004. (Cited

on page 69.)

[AS88] Baruch Awerbuch and Michael Sipser. Dynamic networks are as fast

as static networks. In Foundations of Computer Science, 1988., 29th

Annual Symposium on, pages 206–219. IEEE, 1988. (Cited on page 19.)

[AWF03] Khaled M Alzoubi, Peng-Jun Wan, and Ophir Frieder. Maximal inde-

pendent set, weakly-connected dominating set, and induced spanners

in wireless ad hoc networks. International Journal of Foundations of

Computer Science, 14(02):287–303, 2003. (Cited on pages 28 and 109.)

[BBCD02] Fatima Belkouch, Marc Bui, Liming Chen, and Ajoy Kumar Datta.

Self-stabilizing deterministic network decomposition. J. Parallel Dis-

trib. Comput., 62(4):696–714, 2002. (Cited on page 33.)

[BDJV05] Doina Bein, Ajoy Kumar Datta, Chakradhar R. Jagganagari, and Vin-

cent Villain. A self-stabilizing link-cluster algorithm in mobile ad hoc

networks. In ISPAN, pages 436–441, 2005. (Cited on page 33.)

[BDTC05] Jeremy Blum, Min Ding, Andrew Thaeler, and Xiuzhen Cheng. Con-

nected dominating set in sensor networks and manets. In Ding-Zhu Du

and PanosM. Pardalos, editors, Handbook of Combinatorial Optimiza-

tion, pages 329–369. Springer US, 2005. (Cited on pages 25 and 109.)

[BEZE01] D. Bryant, S. El-Zanati, and Ch. Eynden. Star factorizations of graph

products. J. Graph Theory, 36(2):59–66, February 2001. (Cited on

page 67.)

124 Bibliography

[BG09] A. Berns and S. Ghosh. Dissecting self-* properties. In Self-Adaptive

and Self-Organizing Systems, 2009. SASO ’09. Third IEEE Interna-

tional Conference on, pages 10–19, 2009. (Cited on page 13.)

[BM12] Jean R.S. Blair and Fredrik Manne. An efficient self-stabilizing

distance-2 coloring algorithm. Theoretical Computer Science, 444(0):28

– 39, 2012. (Cited on page 21.)

[BMT09] A. Bendjoudi, N. Melab, and E.-G. Talbi. P2p design and implemen-

tation of a parallel branch and bound algorithm for grids. Int. J. Grid

Util. Comput., 1(2):159–168, 2009. (Cited on page 69.)

[BNBJ+08] Amotz Bar-Noy, Theodore Brown, Matthew P Johnson, Thomas

La Porta, Ou Liu, and Hosam Rowaihy. Assigning sensors to mis-

sions with demands. In Mirosaw Kutyowski, Jacek Cicho, and Przemy-

saw Kubiak, editors, Algorithmic Aspects of Wireless Sensor Networks,

volume 4837 of Lecture Notes in Computer Science, pages 114–125.

Springer Berlin Heidelberg, 2008. (Cited on pages 22 and 35.)

[BPV04] Christian Boulinier, Franck Petit, and Vincent Villain. When graph

theory helps self-stabilization. In Proceedings of the twenty-third an-

nual ACM symposium on Principles of distributed computing, pages

150–159. ACM, 2004. (Cited on page 18.)

[BYK14] Yacine Belhoul, Sad Yahiaoui, and Hamamache Kheddouci. Effi-

cient self-stabilizing algorithms for minimal total k-dominating sets in

graphs. Information Processing Letters, 114(7):339–343, 2014. (Cited

on pages 25 and 28.)

[Cai74] P. Cain. Decomposition of complete graphs into stars. Bull. Austral.

Math. Soc., 10:23–30, 1974. (Cited on pages 67 and 68.)

[CCT14] Well Y. Chiu, Chiuyuan Chen, and Shih-Yu Tsai. A 4n-move self-

stabilizing algorithm for the minimal dominating set problem us-

ing an unfair distributed daemon. Information Processing Letters,

114(10):515–518, 2014. (Cited on pages 17, 25, 28, 114 and 115.)

[CDDL09] Eddy Caron, Ajoy Kumar Datta, Benjamin Depardon, and

Lawrence L. Larmore. A self-stabilizing k-clustering algorithm using

an arbitrary metric. In Euro-Par, pages 602–614, 2009. (Cited on

page 33.)

[CHS02] Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dy-

namic and self-stabilizing distributed matching. In Proceedings of the

Twenty-first Annual Symposium on Principles of Distributed Comput-

ing, PODC ’02, pages 290–297, New York, NY, USA, 2002. ACM.

(Cited on pages 22, 23 and 24.)

Bibliography 125

[CR02] Alberto Caprara and Romeo Rizzi. Packing triangles in bounded de-

gree graphs. Inf. Process. Lett., 84(4):175–180, November 2002. (Cited

on page 34.)

[DFG06] Vadim Drabkin, Roy Friedman, and Maria Gradinariu. Self-stabilizing

wireless connected overlays. In Proceedings of the 10th International

Conference on Principles of Distributed Systems, OPODIS’06, pages

425–439, Berlin, Heidelberg, 2006. Springer-Verlag. (Cited on pages 26

and 28.)

[DHMU02] Gayla S Domke, Johannes H Hattingh, Lisa R Markus, and Elna Un-

gerer. On parameters related to strong and weak domination in graphs.

Discrete Mathematics, 258(1):1–11, 2002. (Cited on page 110.)

[DHR+11] S. Devismes, K. Heurtefeux, Y. Rivierre, A.K. Datta, and L.L. Lar-

more. Self-stabilizing small k-dominating sets. In Networking and

Computing (ICNC), 2011 Second International Conference on, pages

30–39, 2011. (Cited on page 28.)

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed

control. Commun. ACM, 17(11):643–644, 1974. (Cited on pages 8, 11

and 15.)

[DIM93] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization

of dynamic systems assuming only read/write atomicity. Distributed

Computing, 7(1):3–16, 1993. (Cited on page 8.)

[DLL08] Dezun Dong, Yunhao Liu, and Xiangke Liao. Self-monitoring for sensor

networks. In Proceedings of the 9th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, MobiHoc ’08, pages 431–

440, New York, NY, USA, 2008. ACM. (Cited on pages 96, 97 and 100.)

[DLL+11] Dezun Dong, Xiangke Liao, Yunhao Liu, Changxiang Shen, and Xin-

bing Wang. Edge self-monitoring for wireless sensor networks. Parallel

and Distributed Systems, IEEE Transactions on, 22(3):514–527, 2011.

(Cited on pages 96, 97 and 100.)

[DLV10] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. A self-

stabilizing o(k)-time k-clustering algorithm. Comput. J., 53(3):342–

350, March 2010. (Cited on page 28.)

[DNB06] V. Delouille, R. Neelamani, and R.G. Baraniuk. Robust distributed es-

timation using the embedded subgraphs algorithm. Signal Processing,

IEEE Transactions on, 54(8):2998–3010, 2006. (Cited on page 36.)

[DNCB03] V. Delouille, R. Neelamani, V. Chandrasekaran, and R.G. Baraniuk.

The embedded triangles algorithm for distributed estimation in sensor

126 Bibliography

networks. In Statistical Signal Processing, 2003 IEEE Workshop on,

pages 371–374, 2003. (Cited on page 36.)

[Dol00] Shlomi Dolev. Self-stabilization. MIT Press, 2000. (Cited on pages 8,

11, 17 and 20.)

[DT11] Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-

stabilization. CoRR, abs/1110.0334, 2011. (Cited on page 15.)

[DWS14] Yihua Ding, James Z Wang, and Pradip K Srimani. A linear time

self-stabilizing algorithm for minimal weakly connected dominating

sets. International Journal of Parallel Programming, pages 1–12, 2014.

(Cited on pages 27 and 28.)

[DWS15] Yihua Ding, James Wang, and Pradip K Srimani. Self-stabilizing al-

gorithms for maximal 2-packing and general k-packing (k ≥ 2) with

safe convergence in an arbitrary graph. International Journal of Net-

working and Computing, 5(1):105–121, 2015. (Cited on page 21.)

[DXW09] Xuxing Ding, Fangfang Xie, and Qing Wu. Energy-balanced clustering

with master/slave method for wireless sensor networks. In Electronic

Measurement Instruments, 2009. ICEMI ’09. 9th International Con-

ference on, pages 3–20, Aug 2009. (Cited on page 69.)

[FPSV09] P. Foggia, G. Percannella, C. Sansone, and M. Vento. Benchmark-

ing graph-based clustering algorithms. Image and Vision Computing,

27(7):979–988, 2009. (Cited on page 33.)

[Gär03] Felix C. Gärtner. A survey of self-stabilizing spanning-tree construction

algorithms. Technical report, EPFL, October 2003. (Cited on page 21.)

[GBS08] Saurabh Ganeriwal, Laura K. Balzano, and Mani B. Srivastava.

Reputation-based framework for high integrity sensor networks. ACM

Trans. Sen. Netw., 4(3):15:1–15:37, June 2008. (Cited on page 99.)

[GGH+04] Martin Gairing, Wayne Goddard, Stephen T. Hedetniemi, Petter

Kristiansen, and Alice A. McRae. Distance-two information in self-

stabilizing algorithms. Parallel Processing Letters, 14(03n04):387–398,

2004. (Cited on pages 18 and 19.)

[GHJ+08] Wayne Goddard, Stephen T. Hedetniemi, David Pokrass Jacobs,

Pradip K. Srimani, and Zhenyu Xu. Self-stabilizing graph protocols.

Parallel Processing Letters, 18(1):189–199, 2008. (Cited on pages 20,

25, 28, 109 and 114.)

[GHJS03a] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and

Pradip K Srimani. A self-stabilizing distributed algorithm for mini-

mal total domination in an arbitrary system graph. Computers and

Bibliography 127

Mathematics with Applications, 35:240–243, 2003. (Cited on pages 25

and 28.)

[GHJS03b] Wayne Goddard, Stephen T. Hedetniemi, David Pokrass Jacobs, and

Pradip K. Srimani. A robust distributed generalized matching protocol

that stabilizes in linear time. In ICDCS Workshops, pages 461–465,

2003. (Cited on pages 23 and 24.)

[GHJS03c] Wayne Goddard, Stephen T. Hedetniemi, David Pokrass Jacobs, and

Pradip K. Srimani. Self-stabilizing protocols for maximal matching

and maximal independent sets for ad hoc networks. In IPDPS, page

162, 2003. (Cited on pages 22, 24, 28, 29, 91 and 114.)

[GHJS05] Wayne Goddard, Stephen T. Hedetniemi, David Pokrass Jacobs, and

Pradip K. Srimani. Self-stabilizing global optimization algorithms

for large network graphs. IJDSN, 1(3&4):329–344, 2005. (Cited on

page 25.)

[GHJT08] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Vilmar

Trevisan. Distance- k knowledge in self-stabilizing algorithms. Theor.

Comput. Sci., 399(1-2):118–127, June 2008. (Cited on page 18.)

[GHS06] Wayne Goddard, Stephen T. Hedetniemi, and Zhengnan Shi. An

anonymous selfstabilizing algorithm for 1-maximal matching in trees.

Information Processing Letters, 91:797–803, 2006. (Cited on pages 22

and 24.)

[Gib85] Alan Gibbons. Algorithmic Graph Theory. Cambridge University

Press, 1985. (Cited on page 22.)

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

New York, NY, USA, 1979. (Cited on page 34.)

[GK10] Nabil Guellati and Hamamache Kheddouci. A survey on self-stabilizing

algorithms for independence, domination, coloring, and matching in

graphs. J. Parallel Distrib. Comput., 70(4):406–415, April 2010. (Cited

on pages 12 and 21.)

[GS10] W. Goddard and P. K. Srimani. Anonymous self-stabilizing distributed

algorithms for connected dominating set in a network graph. In Pro-

ceedings of the international multi-conference on complexity, informat-

ics and cybernetics, IMCIC, 2010. (Cited on pages 26 and 28.)

[GT07] Maria Gradinariu and Sebastien Tixeuil. Conflict managers for self-

stabilization without fairness assumption. In Proceedings of the 27th

International Conference on Distributed Computing Systems, ICDCS

128 Bibliography

’07, pages 46–, Washington, DC, USA, 2007. (Cited on pages 19

and 49.)

[Hau12] Bernd Hauck. Time- and Space-Efficient Self-Stabilizing Algorithms.

Dissertation, University of Hamburg-Harburg, 2012. (Cited on

pages 20, 97, 100 and 108.)

[HCW08] Tetz C. Huang, Chih-Yuan Chen, and Cheng-Pin Wang. A linear-time

self-stabilizing algorithm for the minimal 2-dominating set problem in

general networks. J. Inf. Sci. Eng., 24(1):175–187, 2008. (Cited on

pages 26 and 28.)

[Her02] T.R. Herman. A comprehensive bibliography on self-stabilization. The-

oretical Computer Science, Chicago J., 2002. (Cited on page 21.)

[HH92] Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for

maximal matching. Inf. Process. Lett., 43(2):77–81, 1992. (Cited on

pages 18, 22, 23, 24 and 37.)

[HHJS03] S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani.

Self-stabilizing algorithms for minimal dominating sets and maximal

independent sets. Computers and Mathematics with Applications,

46(56):805–811, 2003. (Cited on pages 25 and 28.)

[HJS01] Stephen T. Hedetniemi, David Pokrass Jacobs, and Pradip K. Sri-

mani. Maximal matching stabilizes in time o(m). Inf. Process. Lett.,

80(5):221–223, 2001. (Cited on page 22.)

[HLCW07] Tetz C. Huang, Ji-Cherng Lin, Chih-Yuan Chen, and Cheng-PinWang.

A self-stabilizing algorithm for finding a minimal 2-dominating set as-

suming the distributed demon model. Computers and Mathematics

with Applications, 54(3):350–356, 2007. (Cited on pages 26 and 28.)

[IK02] Hiroko Ishii and Hirotsugu Kakugawa. A self-stabilizing algorithm for

finding cliques in distributed systems. Reliable Distributed Systems,

IEEE Symposium on, 0:390, 2002. (Cited on page 33.)

[IKK02] M. Ikeda, S. Kamei, and H. Kakugawa. A space-optimal self-stabilizing

algorithm for the maximal independent set problem. In in: Proc.

3rd International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT), pages 70–74, 2002. (Cited

on pages 28 and 29.)

[Ioa02] Kleoni Ioannidou. Transformations of self-stabilizing algorithms. In

Dahlia Malkhi, editor, Distributed Computing (DISC), volume 2508 of

Lecture Notes in Computer Science, pages 103–117. Springer Berlin

Heidelberg, 2002. (Cited on page 17.)

Bibliography 129

[JG05] Ankur Jain and A. Gupta. A distributed self-stabilizing algorithm

for finding a connected dominating set in a graph. In Parallel and

Distributed Computing, Applications and Technologies, 2005. PDCAT

2005. Sixth International Conference on, pages 615–619, 2005. (Cited

on pages 26 and 28.)

[JM11] C. Johnen and F. Mekhaldi. Self-stabilizing computation and preser-

vation of knowledge of neighbor clusters. In Self-Adaptive and Self-

Organizing Systems (SASO), pages 41–50, 2011. (Cited on page 20.)

[JM14] Colette Johnen and Fouzi Mekhaldi. Self-stabilizing with service guar-

antee construction of 1-hop weight-based bounded size clusters. J.

Parallel Distrib. Comput., 74(1):1900–1913, 2014. (Cited on pages 20

and 33.)

[Joh97] Colette Johnen. Memory efficient, self-stabilizing algorithm to con-

struct bfs spanning trees. In PODC, page 288, 1997. (Cited on page 21.)

[KBNR05] I. Khalil, S. Bagchi, and C. Nina-Rotaru. Dicas: Detection, diagno-

sis and isolation of control attacks in sensor networks. In Security

and Privacy for Emerging Areas in Communications Networks, 2005.

SecureComm 2005. First International Conference on, pages 89–100,

2005. (Cited on page 99.)

[KBS05] Issa Khalil, Saurabh Bagchi, and Ness B. Shroff. Liteworp: A

lightweight countermeasure for the wormhole attack. In in Multihop

Wireless Network. In the International Conference on Dependable Sys-

tems and Networks (DSN, pages 612–621, 2005. (Cited on page 99.)

[Kes88] J. L. W. Kessels. An exercise in proving self-stabilization with a variant

function. Inf. Process. Lett., 29(1):39–42, September 1988. (Cited on

pages 19 and 20.)

[KH78a] D. Kirkpatrick and P. Hell. On the completeness of a generalized

matching problem. In STOC, pages 240–245, New York, USA, 1978.

ACM. (Cited on page 68.)

[KH78b] David G. Kirkpatrick and Pavol Hell. On the completeness of a gen-

eralized matching problem. In Proceedings of the Tenth Annual ACM

Symposium on Theory of Computing, STOC ’78, pages 240–245, New

York, NY, USA, 1978. ACM. (Cited on page 68.)

[KH83] D. Kirkpatrick and P. Hell. On the complexity of general graph factor

problems. SIAM Journal on Computing, 12(3):601–609, 1983. (Cited

on page 68.)

130 Bibliography

[KK03] S. Kamei and H. Kakugawa. A self-stabilizing algorithm for the dis-

tributed minimal k-redundant dominating set problem in tree net-

works. In Parallel and Distributed Computing, Applications and Tech-

nologies, 2003. PDCAT’2003. Proceedings of the Fourth International

Conference on, pages 720–724, 2003. (Cited on pages 26 and 28.)

[KK05] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing approxi-

mation algorithm for the distributed minimum k-domination. IEICE

Transactions, 88-A(5):1109–1116, 2005. (Cited on pages 26 and 28.)

[KK07] S. Kamei and H. Kakugawa. A self-stabilizing approximation algorithm

for the minimum weakly connected dominating set with safe conver-

gence. In Proceedings of the 1st International Workshop on Reliabil-

ity, Availability, and Security (WRAS), page 5766, 2007. (Cited on

pages 27 and 28.)

[KK08] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing approxima-

tion for the minimum connected dominating set with safe convergence.

In TheodoreP. Baker, Alain Bui, and Sbastien Tixeuil, editors, Princi-

ples of Distributed Systems, volume 5401 of Lecture Notes in Computer

Science, pages 496–511. Springer Berlin Heidelberg, 2008. (Cited on

pages 26 and 28.)

[KK10] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing distributed

approximation algorithm for the minimum connected dominating set.

Int. J. Found. Comput. Sci., 21(3):459–476, 2010. (Cited on pages 26

and 28.)

[KM08] Hirotsugu Kakugawa and Toshimitsu Masuzawa. Convergence time

analysis of self-stabilizing algorithms in wireless sensor networks with

unreliable links. In Sandeep Kulkarni and Andr Schiper, editors, Sta-

bilization, Safety, and Security of Distributed Systems, volume 5340

of Lecture Notes in Computer Science, pages 173–187. Springer Berlin

Heidelberg, 2008. (Cited on page 20.)

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. Initial-

izing newly deployed ad hoc and sensor networks. In Proceedings of

the 10th annual international conference on Mobile computing and net-

working, pages 260–274. ACM, 2004. (Cited on pages 27 and 109.)

[KP93] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for

message-passing systems. Distributed Computing, 7(1):17–26, 1993.

(Cited on page 19.)

[KS00] M.H. Karaata and K.A. Saleh. A distributed self-stabilizing algorithm

for finding maximum matching. Computer Systems Science and Engi-

neering, 3:175–180, 2000. (Cited on pages 23 and 24.)

Bibliography 131

[KS08] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing:

Principles, Algorithms, and Systems. Cambridge University Press,

New York, NY, USA, 1 edition, 2008. (Cited on page 7.)

[Lam84] L. Lamport. Solved problems unsolved problems and non-problems in

concurrency. In PODC, pages 1–11, 1984. (Cited on page 11.)

[LC06] Suk-Bok Lee and Yoon-Hwa Choi. A resilient packet-forwarding

scheme against maliciously packet-dropping nodes in sensor networks.

In Proceedings of the Fourth ACM Workshop on Security of Ad Hoc

and Sensor Networks, SASN ’06, pages 59–70, New York, NY, USA,

2006. ACM. (Cited on page 99.)

[LHK11] Slimane Lemmouchi, Mohammed Haddad, and Hamamache Khed-

douci. Study of robustness of community emerged from exchanges

in networks communication. In MEDES, pages 189–196, 2011. (Cited

on page 69.)

[LHK13] Slimane Lemmouchi, Mohammed Haddad, and Hamamache Khed-

douci. Robustness study of emerged communities from exchanges in

peer-to-peer networks. Computer Communications, 36(10-11):1145–

1158, 2013. (Cited on pages 27, 36, 69 and 109.)

[LL05] H. Lee and Ch. Lin. Balanced star decompositions of regular multi-

graphs and λ-fold complete bipartite graphs. Discrete Mathematics,

301(2-3):195–206, 2005. (Cited on pages 67 and 68.)

[LS96] Ch. Lin and T. Shyu. A necessary and sufficient condition for the star

decomposition of complete graphs. J. Graph Theory, 23(4):361–364,

December 1996. (Cited on page 67.)

[Luk05] Lukasz Kuszner. Source code homepage. http://kaims.pl/ kuszner,

2005. (Cited on page 114.)

[MG12] E. Ebin Raja Merly and N. Gnanadhas. Linear star decomposition

of lobster. Int. J. of Contemp. Math. Sciences, 7(6):251–261, 2012.

(Cited on page 67.)

[MGLB00] Sergio Marti, Thomas J Giuli, Kevin Lai, and Mary Baker. Mitigat-

ing routing misbehavior in mobile ad hoc networks. In Proceedings

of the 6th annual international conference on Mobile computing and

networking, pages 255–265. ACM, 2000. (Cited on page 99.)

[MM07] Fredrik Manne and Morten Mjelde. A self-stabilizing weighted match-

ing algorithm. In SSS, pages 383–393, 2007. (Cited on pages 23 and 24.)

[MMPT07] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien

Tixeuil. A new self-stabilizing maximal matching algorithm. In

SIROCCO, pages 96–108, 2007. (Cited on page 23.)

132 Bibliography

[MMPT09] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien

Tixeuil. A new self-stabilizing maximal matching algorithm. Theor.

Comput. Sci., 410(14):1336–1345, March 2009. (Cited on pages 21, 23,

24, 70, 71, 72 and 91.)

[MMT07] M. Mezmaz, N. Melab, and E-G. Talbi. A Grid-based Parallel

Approach of the Multi-Objective Branch and Bound. In Proceed-

ings 15th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing, PDP, pages 23–30, 2007. (Cited on

page 69.)

[NHK12] Brahim Neggazi, Mohammed Haddad, and Hamamache Kheddouci.

Self-stabilizing algorithm for maximal graph partitioning into triangles.

In Proceedings of the 14th International Symposium on Stabilization,

Safety, and Security of Distributed Systems, SSS, pages 31–42, 2012.

(Cited on page 37.)

[NHTK14] Brahim Neggazi, Mohammed Haddad, Volker Turau, and Hamamache

Kheddouci. A self-stabilizing algorithm for edge monitoring problem.

In Stabilization, Safety, and Security of Distributed Systems, pages 93–

105. Springer, 2014. (Cited on page 97.)

[NTHK13] Brahim Neggazi, Volker Turau, Mohammed Haddad, and Hamamache

Kheddouci. A self-stabilizing algorithm for maximal p-star decomposi-

tion of general graphs. In SSS, pages 74–85, 2013. (Cited on page 71.)

[OR09] Sibel Ozkan and C.A. Rodger. Hamilton decompositions of graphs

with primitive complements. Discrete Mathematics, 309(14):4883 –

4888, 2009. (Cited on page 33.)

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley Pub-

lishing Company, 1994. (Cited on page 34.)

[Pot97] Alex Pothen. Graph partitioning algorithms with applications to sci-

entific computing. Technical report, Norfolk, VA, USA, 1997. (Cited

on page 69.)

[REJ+07] H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy,

T. Brown, and T. La Porta. A survey of sensor selection schemes

in wireless sensor networks. In Society of Photo-Optical Instrumenta-

tion Engineers (SPIE) Conference Series, volume 6562 of Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

2007. (Cited on pages 22 and 35.)

[RTAS09] H. Raei, M. Tabibzadeh, B. Ahmadipoor, and S. Saei. A self-stabilizing

distributed algorithm for minimum connected dominating sets in wire-

less sensor networks with different transmission ranges. In Advanced

Bibliography 133

Communication Technology, 11th International Conference on, vol-

ume 01, pages 526–530, 2009. (Cited on pages 26 and 28.)

[SAG11] Belkacem Serrour, Alex Arenas, and Sergio Gomez. Detecting com-

munities of triangles in complex networks using spectral optimization.

Computer Communications, 34(5):629–634, 2011. (Cited on page 36.)

[SGH04] Z. Shi, W. Goddard, and S. T. Hedetniemi. An anonymous self-

stabilizing algorithm for 1-maximal independent set in trees. Informa-

tion Processing Letters, 91(2):77–83, 2004. (Cited on pages 28 and 29.)

[Shy10] Tay-Woei Shyu. Decomposition of complete graphs into paths and

stars. Discrete Mathematics, 310(1516):2164–2169, 2010. (Cited on

page 33.)

[SL96] E Sampathkumar and L Pushpa Latha. Strong weak domination and

domination balance in a graph. Discrete Mathematics, 161(1):235–242,

1996. (Cited on pages 27, 96 and 109.)

[SRR+95] Sandeep K Shukla, Daniel J Rosenkrantz, SS Ravi, et al. Observations

on self-stabilizing graph algorithms for anonymous networks. In Pro-

ceedings of the second workshop on self-stabilizing systems, volume 7,

page 15, 1995. (Cited on pages 28 and 29.)

[SW93] Akira Saito and Manoru Watanbe. Graph partitioning into induced

stars. Ars Combinatoria, 36:3–6, 1993. (Cited on page 67.)

[SX07] P.K. Srimani and Zhenyu Xu. Self-stabilizing algorithms of construct-

ing spanning tree and weakly connected minimal dominating set. In

Distributed Computing Systems Workshops, 2007. ICDCSW ’07. 27th

International Conference on, pages 3–3, 2007. (Cited on pages 20, 27

and 28.)

[Tel94a] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-

versity Press, New York, NY, USA, 1994. (Cited on page 16.)

[Tel94b] Gerard Tel. Maximal matching stabilizes in quadratic time. Infor-

mation Processing Letters, 49(6):271 – 272, 1994. (Cited on pages 20

and 22.)

[TH09] Volker Turau and Bernd Hauck. A self-stabilizing algorithm for con-

structing weakly connected minimal dominating sets. Inf. Process.

Lett., 109(14):763–767, 2009. (Cited on pages 27 and 28.)

[TH11] Volker Turau and Bernd Hauck. A new analysis of a self-stabilizing

maximum weight matching algorithm with approximation ratio 2.

Theor. Comput. Sci., 412(40):5527–5540, 2011. (Cited on pages 20,

21, 23 and 24.)

134 Bibliography

[The00] Oliver Theel. Exploitation of ljapunov theory for verifying self-

stabilizing algorithms. In Maurice Herlihy, editor, Distributed Com-

puting (DISC), volume 1914 of Lecture Notes in Computer Science,

pages 209–222. Springer Berlin Heidelberg, 2000. (Cited on page 20.)

[Tix09] Sébastien Tixeuil. Algorithms and Theory of Computation Handbook,

Second Edition, chapter Self-stabilizing Algorithms. CRC Press, 2 edi-

tion, 2009. (Cited on pages 9 and 10.)

[Tur07] Volker Turau. Linear self-stabilizing algorithms for the independent

and dominating set problems using an unfair distributed scheduler.

Inf. Process. Lett., 103(3):88–93, 2007. (Cited on pages 20, 25, 26, 28,

29 and 114.)

[Tur12] Volker Turau. Efficient transformation of distance-2 self-stabilizing

algorithms. Journal of Parallel and Distributed Computing, 72(4):603–

612, 2012. (Cited on pages 18, 19, 25, 26, 28, 97 and 100.)

[UT11] S. Unterschutz and V. Turau. Construction of connected dominating

sets in large-scale manets exploiting self-stabilization. In Distributed

Computing in Sensor Systems and Workshops (DCOSS), 2011 Inter-

national Conference on, pages 1–6, 2011. (Cited on pages 25 and 109.)

[WS05] Xinzhou Wu and R. Srikant. Regulated maximal matching: A dis-

tributed scheduling algorithm for multi-hop wireless networks with

node-exclusive spectrum sharing. In Decision and Control, 2005 and

2005 European Control Conference. CDC-ECC ’05. 44th IEEE Con-

ference on, pages 5342–5347, Dec 2005. (Cited on pages 22 and 35.)

[XHGS03] Zhenyu Xu, Stephen T. Hedetniemi, Wayne Goddard, and Pradip K.

Srimani. A synchronous self-stabilizing minimal domination protocol

in an arbitrary network graph. In IWDC, pages 26–32, 2003. (Cited

on pages 25, 28 and 114.)

[YKR06] Ossama Younis, Marwan Krunz, and Srinivasan Ramasubramanian.

Node clustering in wireless sensor networks: Recent developments and

deployment challenges. Network, IEEE, 20(3):20–25, 2006. (Cited on

pages 27 and 109.)

List of Figures

2.1 Self-stabilizing system’s behavior. 11

2.2 Self-stabilization’s properties. 12

2.3 A legitimate configuration for matching problem. 14

2.4 A maximal matching M in a graph G. 22

2.5 Minimal Dominating Set D of a graph G. 24

3.1 Tripartite matching in a graph . 35

3.2 A gadget graph . 35

4.1 When v executes [A] . 39

4.2 Example of executing SMPTc. 40

4.3 States of nodes . 43

4.4 Case when v is enabled by [A]. 46

4.5 An infinite execution of SMPTc under the distributed daemon 49

5.1 An example network . 52

5.2 A simple execution of SMPTD for one triangle 54

5.3 Predicates of the algorithm SMPTD 55

5.4 Example of an execution of SMPTD 56

5.5 An initial configuration of a graph requiring m moves. 63

6.1 A star . 67

6.2 Examples of p-star decomposition of a graph. 68

6.3 Master/Slaves model . 69

7.1 Example of executing SMSD1 under the synchronous daemon (p = 3). 75

7.2 Example of executing SMSD1 under the synchronous daemon (p = 1). 80

9.1 Edge monitoring Set of a graph . 98

9.2 MDS vs ISD-set. 98

10.1 Local monitoring. 100

10.2 Edge monitoring set of a graph. 100

10.3 Example of an execution of Algorithm SEMS 104

10.4 Non-minimal edge-monitoring set. 105

10.5 State Transition Diagram of Algorithm SEMS 106

11.1 Comparison of ISDS with some MDS algorithms. 115

11.2 Comparison of ISDS with some MIS algorithms. 116

List of Algorithms

1 Maximal Matching Algorithm of Hsu and Huang 38

2 Self-stabilizing algorithm for MPT (SMPTc) 40

3 Self-stabilizing algorithm for MPT (SMPTD) 57

4 Self-stabilizing algorithm for MSD (SMSD1) 73

5 Self-stabilizing algorithm for MSD (SMSD2) 85

6 Part 1:: Self-stabilizing algorithm for EMS (SEMS) 103

7 Part 2:: Self-stabilizing algorithm for EMS (SEMS) 103

8 Self-stabilizing algorithm for ISD-set (ISDS) 111

