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This document presents the work that was developed as a cotutelle thesis between the "Universidad de Guadalajara”, 

México, and the “Université Grenoble Alpes”, France. Gene and drug delivery applications are reached through the 

understanding and the knowledge of the behavior of different polymer systems. 

 

The following research topics are included in this thesis: 

 Study of DNA behavior in solution and at interfaces. 

 The role of micellar dynamics and rheology in drug controlled release. 

 

ABSTRACTS 

 

Study of DNA behavior in solution and at interfaces 

Nowadays, the target for reaching a greater efficiency in DNA compaction processes, the innovation of 

DNA sensors development and the study of changes in the interfacial properties generated between metal 

surfaces and DNA molecules has become an area of great interest in bioengineering. This section of the 

thesis proposes the coupling of rheological, electrochemical and optical techniques to perform a detailed 

study of DNA molecules behavior in the bulk state of the solution and at the interface with two different 

metallic surfaces, as a function of parameters such as temperature, DNA concentration and electric 

potential. Firstly, the rheological behavior of DNA/buffer solutions, as well as the evidence of the critical 

concentrations (C* and Ce) is discussed from simple steady state and oscillatory dynamic shear 

experiments. After studying DNA solutions properties, electrochemical and optical techniques are used to 

identify structural changes in Au/DNA and Pt/DNA interfaces and to describe the arrangement of DNA 

chains in the electrochemical double-layer as a function of concentration and within each characteristic 

regime, i.e. dilute and semi-dilute regimes. The obtained response trough Electrochemical Impedance 

Spectroscospy (EIS), Modulation Interfacial of the Capacitance (MIC) and Surface Plasmon Resonance 

(SPR) techniques reflects an adsorption process of DNA molecules taking place onto the metal surfaces. 

Finally, by selecting DNA concentrations in the dilute regime, we studied the formation of chitosan-DNA 

nanoparticles with defined stoichiometry for gene transfer.  
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The role of micellar dynamics and rheology in drug controlled release 

The specific delivery of active ingredients, known as vectorization, has actually become a great 

challenge in therapeutic research. This process has been used to control the distribution of active 

ingredients such as proteins, genes for gene therapy and drugs, to a target by associating it with a 

vector. Molecules for chemotherapy are frequently hydrophobic and require vectorization to be 

transported to the target cell. In this section of the thesis, we look up to understand the collective 

exchange dynamics (fusion and fission) between amphiphilic block copolymer micelles at the equilibrium 

and out of the equilibrium, and the exchange dynamics between these micelles (representing vectors) 

and the simplest model of cells (liposomes). We used a fluorescent technique with hydrophobic pyrene 

derivative to probe the fusion and fission of micelles at equilibrium. After characterizing amphiphilic 

block copolymers structure and studying their dynamics in and out of equilibrium, we proposed a time 

scan fluorescence technique to quantify the collective vectorization dynamics between amphiphilic block 

copolymer micelles and liposomes. The effect of the variation of several parameters such as liposome 

concentration and a chitosan adsorption were investigated in order to control the vectorization 

dynamics between these vectors and cells models. 
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Introduction  

Deoxyribonucleic acid, referred as DNA, is a very long linear polymer containing the hereditary 

genetic information of living organisms and is able to transmit it from one generation to another [1,2]. 

Several physicochemical studies of DNA aqueous solutions have shown that it is a high molecular 

weight polymer (3x105-8x1010) [3] and can present a semi-rigid and relaxed configuration. Genetic 

information is stored in the sequence of bases along the strands of the nucleic acid. The binding between 

these base pairs results in the formation of a double helix, a helical structure consisting of two strands 

stabilized by hydrogen bonds between bases and wearing negative charges due to phosphate groups 

[2,4,5]. 

Nucleotides are the monomers of DNA and have a variety of roles in cell metabolism. They 

represent the chemical bonds in the response of cells to hormones and the structural components of an 

array of enzyme cofactors and metabolic intermediates [2]. The structure of each protein and each 

molecular and cellular component results from the information programmed by the nucleotide sequence 

in the nucleic acids of a cell. DNA owns the ability to store and transmit the genetic information across 

generations, which is a fundamental condition for life [6]. Genetic information is never lost and can be 

transmitted to new generations through replication phenomenon, since the structure of DNA allows its 

duplication in two identical molecules between them and identical to the original molecule. DNA 

transcription’s ability is the basis of gene therapy, which consists in providing a functional gene to the 

cells that don’t have it, in order to correct a genetic defect or an acquired disease. The essential step of 

gene therapy, called genetic transfection, consists in the introduction of DNA into cells through a 

specific agent called vector, and largely determines the efficiency of the technique [7, 8]. Looking for a 

greater efficiency in this process, it is necessary a vast knowledge and understanding of DNA 

conformational transitions, DNA chains interactions with cationic molecules and a thorough 

characterization of DNA solutions as a function of parameters such as DNA concentration, pH, ionic 

strength and temperature, for an optimal design of vectors [9, 10]. 

Different techniques have been used to study DNA solutions in order to understand the 

interactions between DNA chains. DNA molecule has also been considered as a model for the study of 

polymeric fluids in the area of rheology, so part of their molecular dynamics and macroscopic properties 

have been previously reported [11-14]. In the field of study of polymers, there is an important 

distinction between dilute polymers solutions, where the coils are separated from one to another, and 

more concentrated solutions, where the coils overlap [15]. This threshold is known as the overlap 

concentration (C*), also considered as the overlap onset and a transition region between the dilute 

regime and the semi-dilute regime [15]. At higher concentrations, it has been reported a second critical 

concentration, Ce, defined as the entanglement concentration, at which the coils begin to become 

entangled. The dynamic properties in the unentangled regime for polymer solutions with 

concentrations between C*  and Ce, are described by the Rouse model [16]. Mason et al. reported that 
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for aqueous solutions of calf thymus DNA, Ce is identified around a DNA concentration of 2 mg/mL at 

25ºC, when experimental data agree with the model of flexible polymers dissolved in a good solvent 

[17]. 

On the other side, part of the microscopic information of DNA solutions has been obtained and 

analyzed through techniques such as Dielectric Relaxation Spectroscopy (DRS), which has contributed 

to a deeper analysis of the dynamics of DNA solutions in a wide range of temperatures and frequencies 

(106 -102 Hz) [18-20]. With this method, two relaxation processes were identified at temperatures 

below 273 K and a better understanding of conformational changes of DNA molecules in solution was 

accomplished. The study of the response of DNA molecules under the effect of electric fields is of great 

scientific interest due to its applicability in the development of biosensors, the analysis of the 

interactions DNA-DNA, DNA-RNA, DNA-protein, among others, and it has been evolving during the 

last years [21-23]. The electrochemical techniques provide also microscopic information of the 

physicochemical and electrical properties of the interface DNA/metal surfaces. Chronoamperometry, 

voltammetry and chronopotentiometry have been used as tools for detecting different electrochemical 

processes observed in DNA solutions, however, the technique of Electrochemical Impedance 

Spectroscopy (EIS) has been regarded as a more sensitive and favorable technique than the others [24]. 

DNA sensors, which transduce changes in the interfacial properties between the electrode and the 

electrolyte induced by DNA hybridization, DNA conformational changes and DNA damage by an 

electrical signal, have been investigated through the electrochemical techniques mentioned above in 

order to improve its sensitivity. However, when the current differences are not significant in a range of 

low concentrations, the technique EIS is more favorable than other electrochemical techniques since the 

differences are usually obtained by the inverse of the impedance with current, i.e. ΔR(Z)= ΔV/ ΔI [24].   

Currently, a more precisely and detailed understanding of the behavior of DNA molecules in 

solution, based on different parameters such as temperature, DNA concentration, ionic strength and pH, 

among others, has raised the interest in studying this system by coupling rheological, electrochemical 

and optical techniques. In this work, a conjunction between rheometry and several electrochemical 

techniques is proposed in order to perform a detailed study of DNA molecules behavior in the bulk state 

of the solution and at the interface with two different metal surfaces, i.e. gold and platinum. The 

electrochemical techniques chosen for their high sensitivity to adsorption processes on metal surfaces 

are the Electrochemical Impedance Spectroscopy [24] and the Modulation of the Interfacial 

Capacitance (MIC) [25]. Structural and conformational changes observed in DNA molecules, according 

to the parameter variation mentioned before, are also studied with Surface Plasmon Resonance (SPR) 

[26] and Circular Dichroism [27]. Finally, with the selection of DNA concentrations in the dilute 

regime, we studied the formation of chitosan-DNA nanoparticles for gene transfer. Different techniques 

are used to determine the role of chitosan amount on the formed complex: the obtained data from 

conductivity, -potential, dynamic light scattering, circular dichroism and UV-Vis measurements are 

combined to determine the complex stoichiometry, the net charge, the dimensions, the conformation 
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and the thermal stability of the complex, respectively.  
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Justification  

Studies of DNA molecules in aqueous solutions performed through different approaches allow to 

assess the solute-solvent interactions and to examine the strong influence of the molecule nature and its 

physicochemical properties while interacting with other kind of molecules in solution or with metal 

surfaces. The results allow us to aspire to a better understanding of the molecular interactions and to 

seek an increase in the efficiency of their applications. Actually, the ability to detect DNA and RNA by 

using DNA hybridization sensors is used in genomics and the expectations in electrochemical methods 

increase day to day [28], as well as the development of DNA biosensors [29, 30], the evaluation of 

DNA-protein interactions [31] and gene therapy studies [32]. 

Currently, the research to achieve a greater efficiency in the processes of DNA compaction [33, 34] 

and the study of the changes generated in the interfacial properties between DNA molecules and metal 

surfaces of different natures [28] represent areas of great scientific interest. It is noteworthy that, for a 

large group of biopolymers such as DNA, proteins, lipids and polysaccharides, the combination of their 

chemical structure and molecular dynamics govern numerous vital functions in living organisms [35]. 

 

Assumptions  

The possibility to take some concepts of the theory of polymer solutions used in physicochemical 

and rheological studies can open new opportunities in the research field of systems, such as DNA in 

solution, by using different techniques like electrochemical and optical ones. Electrochemical techniques 

such as Electrochemical Impedance Spectroscopy (EIS) and Modulation of the Interfacial Capacitance 

(MIC) are proposed to determine characteristic parameters that will allow identifying and studying the 

transitions of DNA molecules in solutions adsorbed onto metal surfaces in a detailed way. Therefore, 

the obtained information will show a great overview of the system.  

Through the study of DNA solutions by using the aforementioned techniques it will be possible to 

identify the critical concentrations C* and Ce and to analyze and discuss the behavior of the system 

within each regime, i.e. dilute and semi-dilute regimes. It is expected to have a detailed outline of the 

variations of each monitored parameter as a function of the analyzed variables (temperature, DNA 

concentration, ionic strength, electric potential). The knowledge of DNA molecules behavior in the 

dilute regime and their electrostatic interactions with cationic polymers will allow an optimal design of 

non-viral vectors for gene therapy.  
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Objectives  

General objective  

The general objective of this thesis is to analyze and to discuss the physicochemical properties and 

the interactions of DNA chains in the bulk state of the solution and to study the structural behavior of 

electrochemical double-layer formed by DNA molecules at two metal interfaces, as a function of 

temperature and DNA concentration by applying rheological, electrochemical, and optical techniques. 

 

Specific objectives  

- Quantify the transitions of DNA/TE buffer system by Rheometry, Electrochemical Impedance 

Spectroscopy (EIS), Modulation of the Interfacial Capacitance (MIC).  

- Determine the behavior of DNA/TE buffer system in the dilute and semi-dilute regimes as a 

function of DNA concentration and temperature using different techniques and novel approaches.  

- Quantify the basic stages of the adsorption-desorption process of DNA molecules onto platinum 

and gold electrodes. 
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CHAPTER 1  

DNA, the molecule of life  
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1. DNA, the molecule of life 

1.1. Physics and chemistry of life 

For several decades now, science has shown that life is possible due to the interactions between 

organic molecules, particularly DNA, RNA (ribonucleic acid) and proteins. The behavior of these 

molecules changes due to the different structures they can have, resulting in the union of atoms that 

form three-dimensional blocks, which are combined into increasingly larger structures. Up to 1950, 

very few information was known about the structures and functions of these molecules. Then, a series of 

major discoveries in physics and chemistry presented the functions and mechanisms within the cells, 

changing drastically the course of biology and suggesting a new field of study actually known as 

molecular biology [1]. 

In 1953, a geneticist called James Watson and his British colleague Francis Crick proposed a 

construction scheme of DNA, showing that the molecule contains the genetic material of cells and 

organisms. They revealed the mechanism of DNA replication and they showed that evolution is possible 

due to mutations that may suffer DNA molecule [2]. The model proposed by Watson and Crick 

describes DNA as a pair of strands that bind helically around a common axis. However, DNA generally 

acquires more complex spatial configurations in order to get packed enough for being as effective as 

possible, since the length of the molecule is sometimes up to one million times the size of the nucleus 

containing it. Therefore, the great discoveries of the twentieth century are led by studies of the chemical 

nature and three-dimensional structure of genetic material, DNA. The sequence of the monomers, i.e. 

the nucleotides, encodes the instructions to form all the cell components and provides a template for the 

production of identical DNA molecules to be distributed at the moment of cell division. The effective 

storage and reproduction of the genetic material define each species, distinguishing from each other and 

ensuring its continuity through successive generations [3]. 

 

1.2. DNA structure 

1.2.1. Double helix structure  

DNA is a long, thin organic polymer, a molecule that is built on an atomic scale. The basic unit of 

DNA is a linear polymer composed of four different subunits of monomers called deoxyribonucleotides, 

arranged in a precise linear sequence. Each deoxyribonucleotide is composed by a nitrogenous base, a 

deoxyribose sugar and a phosphate group. The nitrogenous bases that can build the 

deoxyribonucleotides are: adenine (A) and guanine (G), classified as a purines; thymine (T) and cytosine 

(C), classified as pyrimidines.  
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DNA linear sequence is the one that encodes the genetic information as mentioned before. Two of 

these polymeric strands are wound together to form the double helix of DNA. Before cell division, the 

two DNA strands are separated, so they operate as a template for the synthesis of a new complementary 

strand, immediately generating two identical double-helical molecules, as shown in Figure 1.1. If one 

strand is damaged, the continuity of the information is secured with the information in the other strand. 

 

 

 

 

Figure 1.1. DNA replication, as suggested by Watson and Crick [4].  

The two chains of deoxyribonucleotide constituting a DNA molecule remain linked together 

because of the bonds formed between the nitrogenous bases of both strands. The binding of the bases is 

due to hydrogen bonding, so adenine can only be attached with thymine and guanine with cytosine 

(Figure 1.2.) [1,3].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Hydrogen bonds formation between a) A-T and b) G-C [5]. 
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A-T pairs form two hydrogen bonds: one between the amino groups of the purine and the carbonyl 

of the pyrimidine, and another one between nitrogen atoms of the respective rings. G-C pairs form three 

hydrogen bonds: two between the amino and carbonyl groups of each base and a third between nitrogen 

atoms of the rings. The pairing between purines, pyrimidines or non-complementary bases, A-C or G-T 

is not favored since they can’t form suitable hydrogen bonds, the formation could present steric 

hindrance or the geometry of the helix could break. 

An important source of information about DNA structure came from the work of Erwin Chargaff 

and his colleagues during the 1940s [6]. They found that the four nucleotides are presented in different 

ratios in DNA molecules from different organisms and that the amount of certain bases is closely related 

between them. This information was obtained from DNA molecules of a variety of species, such as calf-

thymus, rye germ and wheat germ, so it was possible to reach the following conclusions: 

1. The composition of the bases present in DNA molecules varies from species to species. 

2. DNA samples isolated from different tissues of the same species have the same base composition. 

3. The composition of the bases in DNA molecules of a given species does not change with the age 

of the organism, nutritional status or changes in the environment. 

4. The number of adenosine residues is equal to the number of thymidine residues (A=T). The 

number of guanosine residues equals the number of cytidine residues (G=C). Finally, the sum of purine 

residues equals to the sum of pyrimidine residues, i.e.: A+G=T+C.  

Unlike proteins, whose two-dimensional or three-dimensional structures depend mainly on the 

composition and order of their amino acids, DNA has, under normal conditions, a regular structure, 

regardless of the frequency or the order of the four bases.  

In the common form of the DNA molecule (B-DNA), purine and pyrimidine rings of each chain are 

stacked inside de helix each 0.34 nm, with the plane of the rings almost perpendicular to the axis. Since 

the length between each consecutive base pair is equal to 0.34nm, the helix makes one complete turn 

every 3.4 nm, or each ten base pairs. The double helical structure has two external grooves, one wide 

(major groove) and another one narrow (minor groove) (Figure 1.3). 
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Figure 1.3. Double helix structure [7]. 

1.2.2. Alternative forms of the double helix 

DNA is a considerably flexible molecule having a significant rotation around a certain number of 

links in the sugar-phosphate backbone. Temperature changes can cause bending, stretching and 

decoupling of the strands of the molecule. Several significant deviations from the structure proposed by 

Watson and Crick have been found in cellular DNA, but they generally don’t affect the key properties of 

DNA, this is, complementarity of the strands.  

The structure proposed by Watson and Crick is also known as the B form (B-DNA) and it is the 

most stable structure for a random sequence of DNA molecules, which are under physiological 

conditions. B-DNA is the standard reference point for any study about DNA properties. However, two 

alternative forms of DNA double helix are also known and are possible due to the elasticity of the 

deoxyribose-phosphate backbone, which allows alternative configurations (Figure 1.4). These structural 

variations are known as A-form and Z-form. The A-form (A-DNA) is rare, it only exists in a dehydrated 

state and it differs from the B-form in a deviation of 20° with respect to the double helix axis. This 

difference reduces the distance between pairs in approximately 0.29 nm and increases the number of 

base pairs per turn in 11 or 12 pairs. Any biological function has been attributed to A-form until now. 

The Z-form (Z-DNA) is considered as a more radical variation of B-form, which its clearest distinction 

is the helical rotation to the left. This form owns 12 pairs per helical turn, its structure is thinner and 

more elongated than B-DNA structure and it acquires a zigzag shaped appearance. Table 1.1 presents a 

comparative of some structural properties between A-DNA, B-DNA and Z-DNA. 
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Figure 1.4. A-DNA, B-DNA and Z-DNA representations [3]. 

 

Table 1.1.- Structural properties of A, B and Z DNA forms [3].  

Properties A – form B – form Z – form  

Helical sense  Dextrorotatory Dextrorotatory Levorotary 

Diameter ≈ 2.6 nm ≈ 2.0 nm ≈ 1.8 nm 

Base pairs per helical turn 11 10.5 12 

Helical increase per base pair 0.26 nm 0.34 nm 0.7 nm 

Base inclination normal to the 
helix axis  

20º 6º 7º 

Sugar conformation  C-3’ endo C-2’ endo C-2’ endo for pyrimidines 

C-3’ endo for purines 

 

1.2.3. Variation in the arrangement of DNA strands   

DNA exists in both linear and circular molecule forms [8,9]. Bacterial plasmids, some bacterial 

chromosomes and many genomes of mammalian viruses consist of a single circular DNA molecule, 

covalently closed and double stranded. Although it is known that the nuclear DNA of eukaryotic cells is 

organized in large units of linear chains, numerous investigations are modifying this concept. At the 

nucleus, during the period of cell division, a considerable part of the fibril chromatin is organized as 

multiple loops. The two ends of each loop are attached to the nuclear membrane structures and acquire 

the behavior of a circular unit. Therefore, the nucleus of the eukaryotic cell contains multiple units of 

circular DNA. 

Usually, the DNA inside the cell is associated with different proteins attached there to DNA 

molecules, which unwind the helix and cause a decrease in the number of turns per unit compared to B-
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form. By separating the proteins attached to DNA, the total number of turns is established. This is a 

quick process for linear DNA because the two strands have the ability to rotate freely around each 

other. However, if the DNA is in a closed circular shape, the total number of turns of a strand over the 

other can’t be changed without producing compensating torsions [10]. 

 

1.2.4. Denaturation and renaturation    

DNA solutions tend to present high viscosities at room temperature (25 ºC) and pH 7.0 that 

decrease if the solutions are brought to extremes of pH or to temperatures above 70 ºC, which depend 

on the external salt concentration of the solutions. This change indicates that DNA has undergone a 

physical change. High temperatures and extremes of pH cause denaturation (or melting) of double-

helical DNA. DNA denaturation is the process where double-stranded DNA unwinds and separates into 

single-stranded strands throughout the breaking of hydrogen bonds between bases (Figure 1.5).  

Renaturation of DNA is a rapid one-step process if a double-helical fragment of at least twelve 

residues remains in the double-stranded configuration. When the temperature or the pH is returned to 

it’s initial state or to the range in which most organisms live, the unwound segments of the two strands 

rewind spontaneously. Though, if the two strands of DNA are totally separated, renaturation takes 

place in two steps. The first step is moderately slow and consists on the formation of a segment of 

complementary double helix by the matching of two strands by random collisions forming. The second 

step is faster than first one, so the unpaired bases bind successively as base pairs and the two strands 

close themselves to form the double helix [3]. A decreasing in the absorption of UV light compared to a 

solution with the same concentration of free nucleotides is obtained due to single nucleotides chain of 

DNA after denaturation. The absorption is further decreased when two complementary nucleic acids 

strands are paired, known as the hypochromic effect. Denaturation of a double-stranded DNA produces 

an increase of the absorption. In this manner, by monitoring the absorption of UV light at a wavelength 

of usually 260 nm it is possible to identify the transition from double-stranded helical DNA to single-

stranded DNA. 

 

 

 

 

 

Figure 1.5. Reversible denaturation of DNA [3]. 
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Each species of DNA have a characteristic denaturation temperature, also referred as melting point 

(Tm). DNA melting point increases while increasing the content of G-C base, since they possess three 

hydrogen bonds that require more heat energy to dissociate than A-T base pairs. In this manner, with 

the determination of the Tm of a DNA specimen, under fixed conditions of pH and ionic strength, it is 

possible to estimate its base composition.  

 

1.3. DNA in solution 

1.3.1. Hydration  

Water is considered as a structural component of great importance in DNA molecule, in which its 

effect in performance is remarkable, especially in cellular environments where high solute concentration 

limits the amount of water contained therein [11]. Hydration is one type of interaction responsible of 

the secondary structure of nucleic acids and other physicochemical properties of these molecules [12]. 

During strand separation, the water molecules linked closely to the double helix play an important role 

in the formation and stability of DNA structures. Thus, any conditions that may impair water activity 

have an effect on the stability of a particular DNA conformation [13]. 

Changes in the hydration and in the reorganization of water molecules can be characterized and 

properly studied through density and sound velocity methods as they provide essential data on the 

hydration of the solute. Such techniques have been used to characterize the hydration properties of 

DNA duplex [14] and complexes formed between DNA and drugs [15], proving that the G-C bases 

are hydrated at higher rates than A-T base pairs. The physicochemical properties obtained using these 

techniques have also been useful to assess the structure of the complexes formed between DNA 

molecules and cationic surfactants [16,17]. 

 

1.3.2. Properties of DNA as a polyelectrolyte   

One of the most interesting features of DNA molecule is that each base pair owns two elementary 

negative charges. This way, DNA molecule is characterized by having an exceptionally high linear 

charge density. The negative charges attract small cations in the solution, usually Na+, which create a 

positively charged cloud around DNA chain [18]. Several important properties of DNA are strongly 

dependent on DNA concentration and on the salt content, usually NaCl, due to the electrostatic 

interactions between negatively charged DNA molecule and the cloud of counterions. The theoretical 

approaches will be discussed in detail in Chapter 2 of this thesis.   

 



    

 29 

1.3.3. DNA as a polymer solution in good solvent  

 1.3.3.1. Dilute and semi-dilute regimes 

Various techniques have contributed to understand the macroscopic [19,20] and/or microscopic 

[25] behavior of DNA molecules in solution. In the field of study of polymers, there is an important 

distinction between dilute polymers solutions, where the coiled chains are separated from one another, 

and more concentrated solutions, where the coils overlap. This threshold is known as the overlap 

concentration (C*), also considered as a transition region between the dilute regime and the semi-dilute 

regime [20] (Figure 1.6). At higher concentrations, it has been reported a second critical concentration, 

Ce or C**, (depending on the authors) defined as the limit for semi-dilute entangled regime [19]. These 

concentrations macroscopically identify conditions to which interactions and entanglement between 

DNA molecules in solution are presented. This behavior will also be discussed in Chapter 2 of this thesis.   

 

 

 

 

 

 

Figure 1.6. Crossover between dilute and semi-dilute solutions: a) dilute, b) overlap concentration, and                    

c) semi-dilute [21, 22].  

  

1.3.3.2. Dynamics of DNA solutions  

There are some rheological studies of aqueous solutions of DNA that have provided information 

about the dynamics of DNA chains in solution. The viscosity, η, and the relaxation time, τc, of diluted 

solutions of T2 and T7 bacteriophage DNA in glycerol were studied by "creep recovery" measurements 

and were reported by Klotz et al. [23]. The rheological behavior of T2 DNA saline solutions was 

studied by Musti et al. at high concentrations within the entangled regime [24]. These results validate 

the postulated hypotheses by Raspaud et al. [22], who proposed that the value of the entanglement 

concentration, Ce, is greater than the value of the overlap concentration, C*, for DNA strands. Among 

the contributions in the study of the viscoelastic behavior of salt solutions of calf thymus DNA, Mason et 

al. reported the dependence of the G modulus plateau (Gp) and the crossover frequency (c) with DNA 
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concentration using a power law as follows: Gp ∼ C2.3 and c ∼ C-2.4. The values were found to be 

consistent with the model of flexible polymers dissolved in a good solvent [22]. Furthermore, the 

nonlinear rheological behavior of semi-diluted solution of T4 bacteriophage DNA was studied by Jary et. 

al [25], who reported three characteristic areas for shear stress as a function of the shear rate. They 

related this behavior to the one observed in worm-like micelles systems. Recent investigations 

performed by Boukany et al. [26] discuss the consequences of entanglements in concentrated solutions of 

DNA through linear and nonlinear rheological studies. Due to entanglements, polymeric fluids undergo 

a very high elastic deformation before transforming and reach a state of flux under continuous external 

deformation. Therefore, when the external deformation is faster than the relaxation rates of the chain, 

the entangled network disentangles progressively so that flow can take place. 

Currently, research has also focused in a more detailed study of the mechanical and dynamical 

properties of biopolymers study since they directly affect many biological processes, including protein 

folding and DNA transcription. The rigidity of the actin and myosin in muscles provides the structure 

that maintains the shape of the cell [27], while flexibility of DNA allows to the molecule to undergo a 

drastic change of state, from an elongated state to a very compact state during the compaction process 

[28]. Dynamics of biopolymer fluids have greatly attracted the attention, particularly the flow of DNA 

suspensions in devices "lab-on-chip", whose applications include the mapping of the genome [29, 30], 

DNA separation and the study of polymers physics [31]. The study of rheological and flow properties 

of DNA solutions has much practical importance and can lead to a better understanding of the dynamics 

of macromolecules [32]. 

 

1.4. DNA compaction  

1.4.1. Compaction process   

Compaction is the process where a long DNA molecule undergoes a transition between an 

elongated conformation into a very compact form. In nature, DNA compaction process occurs for 

packaging genomic material in small spaces such as the viral capsid and cell nuclei of eukaryotic cells 

[33]. In living cells, DNA strands are long, highly loaded and semi-rigid, so it is necessary to subject 

them to a strong compaction process in order to fill the available space. This process is also known as 

DNA condensation and may be reproduced and studied in vitro. Bloomfield et al. have summarized 

several studies that describe the physical and biochemical aspects of DNA compaction [34]. The 

application of DNA compaction in gene delivery is of great importance for the success of the protocols 

in gene therapy [35]. Other applications of this process are gene regulation, DNA manipulation and 

fabrication of nanostructures. 

There are different forms of DNA compaction; three of them are mentioned here. In aqueous 
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solutions, DNA adopts an elongated spiral conformation due to the high repulsions between the 

negatively charged phosphate groups. After the addition of the compaction agent, DNA undergoes a 

strong compaction process. The identification of these forms has been possible with the contributions of 

the group of Zinchenko et al. [36], who carried out DNA compaction studies for individual molecules. 

Figure 1.7 shows three possible ways of compaction of DNA elongated strands. The first type of 

compaction is a process called "all-or-nothing", where there isn’t an intermediate state but the elongated 

spiral state and the compact coexist [37]. This process is frequently observed when the attraction is 

generated between DNA molecules throughout the chain, either by adding small amounts of multivalent 

counterions or inducing unfavorable contacts between DNA monomers and the solvent, i.e. by adding a 

poor solvent, like ethanol, or neutral polymers. The second compaction process corresponds to a 

progressive transition from the elongated state to the compacted state. This usually happens when a 

strong attraction between consecutive DNA monomers is induced with polycations that have more than 

10 monomers [38]. The highly packed structure of DNA molecules located inside viruses is most likely 

a combination of the two models recently mentioned. The third type is a possibly assisted compaction 

process, carried out through the adsorption of DNA molecules and of its packaging around nanoscale 

objects. This type of compaction has been observed in the chromatin of eukaryotic cells and can be 

generated in vitro when DNA is compacted with cationic nanoparticles or dendrimers [39, 40]. 

 

 

 

 

 

 

 

Figure 1.7. Schematic representation of the three main methods of compaction in vitro [38]. 

 

The form of compacted DNA results from a balance between surface energy and the rigidity of the 

DNA molecule, which can be modified by the addition of monovalent salts that produce larger DNA 

condensed molecules [41]. The most common form is a toroidal shape with a diameter equivalent to 

twice the persistence length (lp) of DNA molecule [42], where double helical lp is around 50 nm, 

however, there are also other common shapes: spherical beads [43] rods [44], flowers [45] and 

condensed rackets [46]. 
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1.4.2. Gene therapy    

Gene therapy is a technique by which genetically modified material (DNA) is handled and 

introduced into the patient's cells with the aim of achieving a therapeutic benefit. This technique 

consists in providing a functioning gene into the cells that lack this feature, in order to correct a genetic 

defect or an acquired disease. Although the primary use of this technique occurs in the fields of medicine 

and pharmacy, the application of genetic alteration protocols of living organisms is not limited only to 

these areas [47,48].  

Gene therapy main protocol is called transfection, which is the process of deliberately introducing 

nucleic acids into cells [49]. Direct transfection of DNA chains into cells by endocytosis can't take place 

due to two reasons: on one hand, DNA negative charges and membranes repel each other, so it is 

necessary to neutralize DNA charge. On the other hand, since DNA size is too large to spontaneously 

cross the cell membrane, it is necessary to add a ligand that will form a neutral or positively charged 

complex in the nanoscale size, capable to introduce DNA into cell. This way, electrostatic repulsions 

with the membrane are discarded and the small size of the complex could have a similar size to that of a 

virus able to enter the cell. The agent that performs DNA neutralization, compaction and subsequently 

its introduction into the cell is called a vector. The efficiency on the transport of the genetically 

modified material into the target cells, especially at the stage of transfection, depends on the use and the 

characteristics of these vectors.  

The ideal vector must accomplish several features to perform its function optimally [50]. They 

should allow the incorporation during the appropriate time of one or more required agents for the 

clinical application required, they must be specific for the target cell, they should not cause an 

inflammatory response and they must be stable and easy to obtain. Vectors also must adequately protect 

the genetic material on its way to the cell nucleus since several enzymes (DNase, restriction 

endonucleases and exonucleases) degrade DNA by hydrolyzing phosphodiester linkages of the molecule. 

Finally, they should promote interactions with the cell membrane and the efficient transfection of DNA 

chains genetically modified to cytoplasm, essential step of the gene therapy protocol. 

Depending on the nature of the vectors they can be classified into two groups: viral and non-viral 

vectors [51]. Viruses have been naturally evolved over thousands of years by the evolution in order to 

perform an efficient transfection of genetic material into the cells of the body, so they are extremely 

efficient during the transfection process. In the past, most used vectors in gene therapy were the 

recombinant viruses. These vectors have an undeniable effectiveness in the transfer of DNA, but they 

also have associated limitations, such as the induction of the immune response, insertional mutagenesis, 

and infections, among others. Sometimes the virus doesn’t enter into the cells of the desired tissue or 

doesn’t have sufficient capacity to replicate in a given cell. In 2002 the Food and Drug Administration 

(FDA), agency responsible for health in the USA, banned the use of viral vectors in gene therapy [52].  
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Non-viral vectors are synthetic charged particles that bind to DNA genetically modified facilitating 

DNA transport and its entry into target cells under stable conditions. Non-viral gene transfer 

techniques represent a safer alternative than techniques using viral vectors. The main advantage of 

these agents is that they have an unlimited capacity for cloning; generally they have low toxicity and 

immunogenicity and allow repeated applications. However, the main disadvantage of such vectors is the 

low transfection efficiency, i.e.: orders of magnitude below that the efficiency obtained with viral vectors. 

Recently, three types of compounds have been used as non-viral vectors in gene therapy protocols: 

cationic surfactants [53], lipids and polycations [54].  

 

1.5. Interfaces: DNA/substrates 

1.5.1. DNA adsorption onto metal surfaces 

The study of the interactions between DNA molecules and metal surfaces such as copper, silver, 

platinum and gold [55] has become a research topic of great interest since a detailed understanding of 

the adsorption and desorption processes is required for the optimization of "DNA chips", the 

development of biosensors and the functionalization of nanoparticles [56]. Currently, one of most 

studied surfaces due to their unique optical and electrical properties is gold [57]. However, several 

reports in the literature also revealed information about the irreversible DNA adsorption process at 

mercury and carbon electrodes [58]. DNA and RNA molecules adsorption studies on mercury 

electrodes have shown that such molecules can remain adsorbed at highly negative potentials, i.e. close 

to -1.2 V vs SCE [59]. Miller [60] was the first to study the adsorption of nucleic acids on a surface of 

polarized mercury, showing that the DNA preserves its double-helical structure when it is adsorbed 

onto the negatively charged mercury surface, while it unfolds at positive potentials. Their results also 

showed that the differential capacitance reached a constant value after the surface was covered in its 

entirety. 

According to the theory of polymers adsorption at interfaces [61], the adsorption process of 

flexible linear polymers results in a conformational change in the topology of the polymer. Brabec et al. 

[62] found that all monomeric constituents of DNA, i.e. nucleobases, sugars and/or phosphoric acid 

residues, can participate in the adsorption of DNA molecules onto mercury electrodes. At neutral pH, 

the degree of participation of each constituent in the adsorption depends on the ionic strength, the 

electrode potential and the conformation of the polynucleotide in solution. At low ionic strengths, such 

as 0.1 M, double-stranded DNA is electrostatically adsorbed on a positively charged surface due to the 

negative charges of the phosphate groups. At negative potentials, DNA was only weakly adsorbed 

through sporadic bases due to the repulsion of unscreened phosphate charges from the electrode. 

Furthermore, single-stranded polynucleotides are mainly adsorbed through the nitrogen bases [62]. 
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The adsorption and desorption processes of nucleic acids onto electrodes have been extensively 

studied by several conventional methods such as polarography and voltammetry [56, 63], and by other 

methods described by Paleček et al. [58]. However, measurements in the frequency domain performed 

by Electrochemical Impedance Spectroscopy (EIS) have generated great interest due to the advantages 

that offers this technique among other electrochemical techniques [64-68]. Several studies have focus 

on the adsorption kinetics and the mobility of DNA chains adsorbed by EIS and some mechanisms have 

been proposed for processes that are carried out at the electrode surface [55]. Recently, the adsorption 

and immobilization of DNA have been considered as fundamental methods for the construction of logic 

circuits, the assembly of DNA with other electronic components and for designing surfaces that exhibit 

a greater biological activity. Therefore, the adsorption of DNA molecules on solid surfaces is of great 

interest because of the various possible applications in modern molecular biology [69-71]. 

It is worth mentioning that since the first report on the differential capacitance of the double layer 

of nucleic acid solutions in mercury electrodes [67], the impedance of polarized interfaces has been 

widely used in measurement and research of the activities of biomolecules and the interactions of 

proteins, nucleic acids and bases with electrodes surfaces [72,73]. The Electrochemical Impedance 

Spectroscopy has the advantage of being a non-destructive technique that allows studying qualitatively 

and quantitatively the electrochemical oxidation-reduction processes and the adsorption processes. 

Similarly, it offers the possibility to separate the basic steps of the overall studied process based on the 

time constant of each step and to obtain their information at different time scales, as well as their 

characteristic times. 

 

1.5.2. DNA conformational changes on surfaces, denaturation and renaturation 

Investigations of the electric field effect in DNA conformation on metal surfaces started around the 

1960s. In 1961, Miller [60] studied the differential capacitance of the double layer of adsorbed DNA 

double-stranded molecules and denatured DNA, concluding that at positive potentials, double stranded 

DNA begins to partially unroll on the electrode surface, whereas at negative potentials, DNA preserves 

its double helical structure. These results suggest that the DNA strands may be unwound at specific 

potentials on mercury electrodes and some other metal surfaces. The first studies on conformational 

changes of double-stranded DNA were carried out mostly by polarography and voltammetry [74]. 

The abilities that different surfaces acquire to stimulate renaturation/hybridization or 

denaturation/unfolding of DNA according to the applied polarization and the nature of the substrate 

are of great interest for the development of new biotechnologies. Additionally, the functionality of DNA 

is also relevant because the interactions within cells have a large number of surfaces electrically charged 

and biomacromolecules [75]. The reversible denaturation and renaturation of double stranded DNA 

form the basis of many methods and based diagnostic applications such as biosensors development and 
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nucleic acid amplification methods (i.e. polymerase chain reaction or the ligase chain reaction) [76]. 

It is expected that the spatial arrangement of adsorbed double-stranded DNA differs to that of 

single-stranded DNA, depending on the nature and the charge of the surface, as well as the ionic 

conditions near to the surface. The combination of electrochemical and optical methods, such as EIS, 

Voltammetry and Surface Plasmon Resonance (SPR), among others, is necessary for a better 

understanding of the spatial arrangement and the behavior of DNA molecules on electrically charged 

surfaces. 
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2. Characterization and rheological properties of DNA in solution  

The results of this chapter are the object of the following publication: 

Conformation and rheological properties of calf-thymus DNA in solution.  

L. M. Bravo-Anaya, M. Rinaudo and J. F. A. Soltero. 

In press: Polymers, 2016 

 

2.1. Introduction  

2.1.1. Polyelectrolytes background   

Polyelectrolytes are polymers, usually water soluble, carrying either positively or negatively 

charged ionizable groups. They can be either natural molecules, such as nucleic acids, proteins or certain 

polysaccharides, among others; they can be obtained by synthesis, such as polyacrylic acid and sodium 

polystyrene sulfonate, or they can be produced by chemical modification, such as 

carboxymethylcellulose [1]. Several biological molecules are polyelectrolytes, as DNA, polypeptides 

and glycosaminoglycans. Because of their fundamental importance in biology and biochemistry, and 

because of their hydrosolubility, polyelectrolytes have been subject of a continued interest in polymer 

science.  

Depending on the charge of their dissociable groups, polyelectrolytes can be classified as cationic 

polyelectrolytes (polycations), anionic polyelectrolytes (polyanions) or amphoteric polyelectrolytes (able 

to act as an acid or a base) [2]. Polycations and polianions are accompanied by an equivalent amount of 

compensating ions (counterions), which distribution depends in the electrostatic potential created by the 

polyion. In the presence of an external electrolyte dissociated in aqueous media, it appears a new amount 

of counterions (exchangeable ions with those of the polyelectrolyte) and co-ions (ions of the same charge 

as the polyelectrolyte) [1]. 

A richer behavior of polyelectrolyte solutions with respect to uncharged polymer solutions is 

obtained due to the electrostatic interactions between charges [3-5]. For example, for polyelectrolytes, 

the crossover from dilute to semi-dilute regime takes place at lower polymer concentrations than in 

solutions of neutral chains. The original viscosity behavior of polyelectrolyte solutions at low polymer 

concentration in absence of external salt is a large reduced viscosity increase when concentration 

decreases due to electroviscous effects [7]. As first approach, in excess of external salt, i.e. 10-1 M in 

NaCl, polyelectrolytes behave as uncharged polymers able to be characterized with the usual techniques 

of polymer physical chemistry. 
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2.1.1.1. Polyelectrolytes characterization 

Macromolecules constituting a polyelectrolyte are characterized by their average molecular weight 

related to their molecular weight distribution and also by their charge density or their charge parameter 

[1]. The optimum conditions to highlight the characteristics of a polyelectrolyte are to work in dilute 

solution, in the absence of external salt and in the absence of multivalent counterions. The molecule is 

similar to a charged wire containing  charges over a length L (countour length) connected to the 

molecular weight (Figure 2.1) [1].  

 

 

 

 

 

 

Figure 2.1 Schematic representation of a polyanion surrounded by its counterions. 

 

The charge parameter was introduced by Katchalsky and allows an adequate characterization of 

polyelectrolytes [8]. The following equation is used to obtain the value of this parameter: 

l =
ue2

eLkBT
                      (2.1) 

where is the number of ionic sites on the chain of the polyelectrolyte, e the electron charge, the 

dielectric constant of the solvent, kBT corresponds to the Boltzmann term and L the contour length.  

controls the behavior of electrostatic polyelectrolytes and describes the distribution of the 

potential around the polyion. The charge parameter λ equals to 1 in water (~ 80) at room temperature, 

i.e. 25 °C, for an average distance between two ionized sites of 0.7 nm. This is also known as the 

Bjerrum length, lB, (Equation 2.2), representing the distance between two identical elementary charges 

for which the electrostatic repulsion energy equals to kBT.   

lB =
e2

ekBT
                     

(2.2) 
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Therefore, λ=lB/bi, were bi represents the distance between two ionized sites for a polyelectrolyte. 

The distance between the projections of two successive charged groups in the axis of the polyelectrolyte 

is fixed by the chemical structure, the dissociation degree in the case of a weak polyelectrolyte (-NH2,     

-COOH) and the conformation of the polyeletrolyte [9].  

The Bjerrum length is related to the Debye length, -1, and to the concentration of ions, Ci. The 

Debye length represents the distance between the elementary charges beyond which the electrostatic 

interactions are screened. In this way, the counterions interfere to screen the charges in addition of 

external salts. By analogy to the simple electrolytes theory, the Debye-Hückel length can be given by 

the following equation: 

k -1 = 4pNAlB Cizi

2å( )
-1/2

                      
(2.3) 

where NA is the Avogadro number, Ci the concentration of the ions presents in the solution and zi their 

valence for small ions and not polyelectrolytes.   

In order to study the role of the dimensions of the polyelectrolyte itself in a solution at low ionic 

concentration, it is necessary to work with an isoionic dilution, which allows determining and analyzing 

the viscosimetric behavior of a polyelectrolyte by setting up a constant range of electrostatic 

interactions (κ-1= constant). Then it is shown that the polyelectrolyte acts as a simple electrolyte with a 

concentration Cm (in equiv/L) for λ<1 or Cm/λ for λ>1, were Cm corresponds to the concentration of 

ionized groups (counterions) and λ to the charge parameter of the polyelectrolyte. The following 

expressions for the total electrolyte concentration (CT in equiv/L) are then established [1,9]: 

For λ<1: CT = Cm + Cs                      (2.4) 

For λ>1: CT = Cm/ + Cs                      (2.5) 

And -1 (nm) ~ 0.3 CT 
-1/2                       (2.6) 

where Cm is the concentration of the polyeletrolyte and Cs corresponds to the concentration of 

monovalent salt added to the solution, also given in equiv/L.  

 

2.1.1.2. Theoretical models  

Many theories have been developed in order to quantify and study the interactions polyelectrolyte - 

compensating ions. The study of charged macromolecules, which is related to its compensating ions in a 

polar solvent, with or without addition of salts, is very complex. Indeed, this study is influenced by 

many factors such as the asymmetry between small compensating ions and the large chains of the 
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polyion, the different conformations that the polymer can acquire and the intra-molecular and 

intermolecular interactions, including small ions and the solvent molecules [10]. 

The most appropriate model for this kind of studies is the linear model. When the Debye length    

(-1) is sufficiently large compared with the average distance between two consecutive charges (b), the 

molecule becomes locally rigid, justifying a cylinder model as proposed by Katchalsky [8]. In this 

model, the effects of the end of the chains are neglected (experimentally, it was shown that it is 

necessary that the chain contains more than 15 or 20 ionic groups); it only imposes the radial variation 

of the electrostatic potential. It is assumed that the charges are uniformly distributed on the surface of 

the cylinder, or infinite long charged line, giving a constant charge density. 

Three main theoretical approaches describe the distribution of compensating ions in polyelectrolyte 

solutions. 

2.1.1.2.1. Oosawa’s model 

Oosawa’s model is the simplest theoretical approach for polyelectrolytes. This model is composed 

by two phases separated by a potential difference , the macromolecular phase is characterized by its 

radius “a0” and it’s volume V=a0
2h containing the chain and condensed counterions. In the second 

phase, which volume equals to hR2-a0
2), the ions are free. The cylinder of the molecule with radius “a0” 

is placed inside this cylindrical coaxial cell, electrically neutral, with the same length “h” and radius “Ra” 

[11]. 

For the monovalent ions, the activity coefficient of the counterions (a is given by: 

ln(
1-ga

ga

) = ln(
j

1-j
)+ail ln(

1

j
)
                    

(2.7) 

where is the volume fraction (Equation 2.8) occupied by the polyelectrolyte and iis the ionization 

degree.  

= a0
2/Ra

2                       (2.8) 

For infinite dilutions ( 0), the expression given by Equation 2.7 present the following limits   

0 < <1    ;  a  1                       (2.9) 

>1           ;  a  1/                 (2.10) 

As long as the average distance between two consecutive charges, b, is greater to the Bjerrum 

length, lB, (Equation 2.2), if <1, any counterion is in the macromolecular phase with radius “a”. 
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However, if >1, an average fraction of compensating ions (1- -1) will be inside the apparent 

macromolecular phase, which will decrease the macromolecule charge. The calculation model can be 

expanded in the case of several species of compensating ions [12]. However, the comparison between 

experimental values obtained with this theoretical prediction is imprecise with respect to the estimation 

of “a0” and consecutively  

 

2.1.1.2.2. Katchalsky’s model [8] 

This approach leads to solve the Poisson-Boltzmann equation [13-16] for cylindrical geometry and 

high electrostatic potential (i.e. no linearization). It takes into account of the concentration of polymer 

firstly in absence of external salt and describes the distribution of the electrostatic potential around the 

polyion, as shown in Figure 2.2 [1]. In this model, it is possible calculating the electrostatic potential in 

the cell volume (with radius Ra) and particularly at the surface of the polyion, (a), being “a” the 

minimum radius of the approach distance.  

 

 

 

 

 

 

 

 

Figure 2.2. Cell model proposed by Katchalsky et al. [1,17]. 

 

In Katchalsky’s model, the nature of the solvent is taken into account by using the dielectric 

constant and the compensating ions can’t go through the cylindrical space with radius “a”, defined as the 

minimum radius of approach (a≤ r ≤Ra).  

For monovalent counterions, the counterions distribution is imposed by (r) and the Poisson-

Boltzmann equation is the following: 
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Ñ2y(r) =
-4pro

e
exp(-ey / kBT)

    r≥a                   
(2.11) 

where o is the charge density corresponding to the condition =0,the dielectric constant, e the 

electron charge and kBT the Boltzmann term.   

From the values of (r), Lifson and Katchaslky [8] calculated the electrostatic free energy and 

deduced the osmotic coefficient,  which in this case is equal to the activity coefficient, . In this 

manner, the following expressions were established for the monovalent counterions at infinite dilution:   

=a = 1-     ;                    (2.12) 

=a = 1/         ;                  (2.13) 

=a = 1/       ;                    (2.14) 

In addition, (r=a) allows determining the pKa variation of the ionic sites as a function of their 

dissociation by potentiometric titration.    

 

2.1.1.2.3. Manning’s model [18] 

Manning’s approach allows obtaining simple analytical expressions for electrostatic parameters and 

in a great range of conditions. The polyelectrolyte is considered as a uniformly charged wire, with 

infinite length and for infinite dilution. A critical value of the charge parameter is defined as λeff =1 and 

corresponds to the value when a fraction of monovalent ions are “condensed”.  

This model allows a potential calculation of the Debye Hückel type, with a linearization of the 

potential when λ is ≤ 1. If λ ≥1, a fraction (1-1/λ) of the compensating ions is condensed along the 

chain, so λeff =1. The other fraction, 1/λ, of the counterions is distributed to the residual potential of the 

polyelectrolyte with the linearized Debye-Hückel potential.  

At infinite dilution, the following predictions are proposed: 

For movalent ions 

For λ <1 

               = 1- /2 

               ln a = - /2 

For divalent ions 

For λ <0.5 

= 1-  

               ln a = -        

For λ >1 

              = ½  

               a = 1.21     

               f = 0.87-1 

For λ >0.5 

= ¼  

               ln a = - ½  – ln2  

               f = 0.435-1 
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With this model it is possible to determine the characteristic parameters of the polyelectrolytes, 

such as the osmotic coefficient, , by osmotic pressure, the activity coefficient of the counterions,a, by 

potentiometry and the transport coefficient, f, by conductivity. 

  

2.1.2. Properties of polyelectrolytes  

The properties of polyelectrolytes in solutions and at charged surfaces depend on the fraction of 

dissociated ionic groups, solvent quality for polymer backbone, dielectric constant of the solvent, salt 

concentration, and electrostatic interactions.  

2.1.2.1. Conformation in diluted solution 

In a diluted solution of a polyelectrolyte in water, the electrostatic interactions are important, as it 

is shown in Figure 2.3.  

 

Figure 2.3. Influence of the addition of salt, or a dilution (since the polyelectrolyte is an electrolyte) on the 

conformation of a polyelectrolyte [1]. 

 

The electrostatic interchains and intrachains interactions have to be considered in the study of 

polyelectrolytes in diluted solutions [1]. Interchain electrostatic interactions, also known as long-range 

electrostatic interactions, are effective over a distance larger than the Debye length, and lead to 

structuring the solution. The electrostatic repulsions are screened in the presence of a simple electrolyte 

allowing studying isolated polyelectrolytes by using conventional polymers techniques as viscosity, 

light scattering, among others. On the other side, remaining intrachain electrostatic interactions 

correspond to interactions between charged neighbor sites on the same chain. These interactions lead to 

a moderate extension of the chain in presence of simple electrolyte at a low concentration. Therefore, 
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the dimensions of the chains depend on the ionic concentration of the solution. In large excess of 

external salt, the dimensions tend to the unperturbed conditions and the behavior looks like that of an 

uncharged polymer.   

 

2.1.2.2. Persistence length  

The persistence length, lp, is a measure of the degree of structural stiffness of a polymer chain [19]. 

Odijk [20] and, independently, Skolnick and Fixman [21] studied the persistence length for 

polyelectrolytes, in particularly DNA. The persistence length measures the correlations along the 

polymer chain and represents the effective local stiffness of the polyelectrolyte as the sum of two 

contributions: the intrinsic persistence length, l0, and the electrostatic persistence length, lp, which 

depends in the ionic strength due to the ions concentration in the solution. This parameter can be 

calculated through the following equation: 

lp = l0 + le                               (2.15) 

Odijk proposed different possible scaling relations for semi-dilute polyeletrolyte solutions, in the 

presence of added salt and for salt-free polyelectrolyte solutions. He postulated several power laws for 

the correlation length, the radius of a single chain, scattering functions and osmotic pressure [20].  

Therefore, Odijk’s model makes possible to assess the electrostatic contribution, denoted as le, as 

follows:  

le= 2/ (4lB 2) ;                    (2.16) 

le = 1/ (4lB 2) ;  andle (nm) ∼0.03 CT
-1                (2.1  

Odijk [22] studied DNA as a wormlike chain of contour length L and persistence length lp, bearing 

charges that interact via Debye-Hückel potential. The electrostatic persistence length for DNA 

molecule is given by Equation 2.17, which is correct only if the total persistence length is larger than the 

Debye length [23]. For ionic strengths lower than 0.1M NaCl, where it is necessary to neglect 

nonelectrostatic excluded-volume effects, he found a good agreement with the experiments of 

Harrington [24], who obtained the electrostatic persistence length of DNA as a function of ionic 

strength from intrinsic-viscosity and flow-birefringence data. In a separate treatment, Reed et al. [25] 

calculated the total persistence length and the radius of gyration for polyelectrolytes at different ionic 

concentrations and molar masses. 
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As well, many authors have extensively study the effect of electrostatics on the rigidity of the 

double helix of DNA and its persistence length in dependence of the ionic strength [19,22-24,]. DNA is 

one the stiffest polymers, with a persistence length of around 50 nm for a chain with 150 bp in 0.1 M 

aqueous NaCl [19]. Maret et al. [27] reported an ionic-strength dependence of DNA persistence length 

through magnetic birefringence experiments for DNA concentrations as low as 80 g/mL and NaCl 

concentrations between 2.5 x 10-4 M and 2 M. They reported an intrinsic persistence length equal to 67 

nm that is in relatively good agreement with the theoretical predictions of Odijk [22] and Skolnick and 

Fixman [21], when the counterion condensation is included following the concept of Manning. In salt 

excess, the unperturbed dimension of the gyration radius, <S2> allows determining the intrinsic 

persistence length from the Benoit-Doty relationship in the limit of large MW (Equation 2.18) [28]. 

<S2
>= lpl0/3 

                 (2.18) 

2.1.3. Polymer characterization: relation [](M) 

Viscometry is a characterization method directly related to the hydrodynamic properties of 

macromolecules in solution, which depend of their molecular weight and the dimensions of the chains. 

In this way, it is possible to characterize the viscosity, , of a polymer solution with a concentration C in 

a solvent with viscosity s, and to determine the intrinsic viscosity [] of the polymer.  

From viscosity measurements, it is possible to calculate the following parameters: 

Relative viscosity: 

hrel =
h

hs
                      

(2.19) 

Specific viscosity: 

hsp =
h -hs

hs
                      

(2.20) 

Reduced viscosity: 

hred =
hsp

C                       
(2.21) 

Intrinsic viscosity: 

[h](mL / g) =
C®0
limhred                      

(2.22) 
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where s is the solvent viscosity, is the solution viscosity and C is the polymer concentration in g/mL.  

According to the theory of macromolecule solution, the viscosity is given by the Huggins equation 

(Equation 2.23).  

hsp

C
= [h]+ KH[h]2C

                      
(2.23) 

The intrinsic viscosity may also be obtained using the Kramer relation as follows: 
 

lnhrel

C
= [h]+ KK[h]2C

                      
(2.24) 

where KH and KK correspond to the Huggins and the Kraemer coefficients (KK+ KH= 0.5). The Huggins 

constant depends of the solute-solvent given system and is most probably the same for several members 

of a polymer-homologous series [29, 30]. The intrinsic viscosity [] leads to the effective 

hydrodynamic volume of polymers in solution, which depend on the size and the shape of the molecule, 

influenced by polymer-solvent interactions.  

For polyelectrolyte in salt excess (Cs > 5x10-2 M in NaCl), the intrinsic viscosity is also obtained by 

linear extrapolation of the reduced viscosity. The value of [] slightly decreases when the external salt 

concentration increases going to the unperturbed value obtained in a first approximation by 

extrapolation to infinite salt concentration.  At low ionic concentration (CT < 10-3 M NaCl), the reduced 

viscosity varies strongly with polymer dilution, corresponding to an increase of the Debye length and 

consequently of the interchain electrostatic interactions (electroviscous effect). 

The hydrodynamic and conformational properties of biological macromolecules such as DNA, 

proteins and polysaccharides have been widely studied by different groups [29, 31-33]. Intrinsic 

viscosity, which is a measure of the solute contribution to the viscosity of a solution, has been studied 

for linear and double-stranded DNA. Through intrinsic viscosity values it is possible to access to the 

molecular weight of the studied DNA by using the Mark-Houwink relation (Equation 2.25) [29].       

[h]= K ´ Ma

                      
(2.25) 

where M is the molecular weight and and K are the Mark-Houwink parameters, which depend on the 

particular polymer-solvent system and the particular temperature.  

Tsortos et al. measured the intrinsic viscosity of small synthetic DNA molecules, with a number of 

pair bases between 20 and 395 and molecular weights between 1x104 and 2.4x105 [29]. They 

incorporated their results with the information reported in the literature for DNA molecules with 
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different molecular weights [34,35]. Table 2.1 summarizes several Mark-Houwink type equations for 

double-stranded DNA molecules with different molecular weights.  

 

Table 2.1.- Mark-Houwink type equations for double-stranded DNA molecules [29]. 

Equation ([] in mL/g)  Molecular weight range 

[h]=1.05´10-5 M1.32

 
[h]= 6.9´10-2 M 0.70

 
[h]=1.371´10-1M 0.665 -5

 
[h]= (3.5±0.6)´10-4 M1.05±0.01  

[h]= (8.0±0.7)´10-2 M 0.69±0.005 

3´105 < M < 2´106  

2´106 < M <1.3´108

 
3´105 £ M £1.3´108  

7´103 £ M £ 2´106

 
2´106 £ M £ 8´1010

 

 

2.1.4. Polymer chain dimensions and their viscoelastic properties 

The size of the random coil polymers depends on the solvent and the polymer concentration. As 

presented in Chapter 1 of this thesis, there is an important distinction between dilute and semi-dilute 

polymers solutions. P.G. de Gennes [5] discussed the overlap threshold (C=C*), where to swollen 

polymer coils fill the space. This concentration is the crossover between the dilute regime and the semi-

dilute regime (Figure 1.6). Yamakawa [36] stated that for dilute solutions in good solvents the coils are 

expanded by the excluded volume effect, therefore, dimensions of polymer chains might vary depending 

on the used solvent. Therefore, the effects of solvent and concentration on chain dimensions are 

reflected on the viscoelastic behavior of the solutions.  

Graessley [37] discussed the influence of polymer concentration on the chain dimension (R2, the 

mean-square end-to-end chain distance) in a good solvent. At concentrations lower than C*, R2(C) is 

independent from C and corresponds to the dilute regime (Figure 2.4). The overlap concentration is not 

precisely defined, but it was proposed to correspond to a concentration at which the average spacing is 

2S(0), where S(0) is the radius of gyration at zero concentration (Equation 2.26), with S2=R2/6 for 

random coils.  

 C*
)0(8

6
3

2/3

RN

M

A


                      

(2.26) 

where NA is Avogadro’s number.  

Considering Flory-Fox equation, with the Flory constant equal to 2.5x 1023, the previous equation 

may be written as: 
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C*= 0.77/ []
                      

(2.27) 

In a first approximation, C* may also be estimated as C*~ []-1. 

 

 

 

 

         

 

 

 

 

Figure 2.4. Mean-average end-to-end distance R2 as a function of polymer concentration [34]. 

 

At concentrations higher than C*, when C increases in the semi-dilute domain, the interactions 

between the neighbor molecules increase and the effect of the excluded volume of the molecule decreases 

due to the screening of the segments of the other molecules, so the dimensions decrease following a 

scaling relation: 

R2(c)= R2(0) (C*/C)1/4

                                
(2.28) 

A second characteristic concentration was introduced by Graessley as C** and indicates the 

transition between the semi-dilute region and the concentrated region, corresponding to the region 

where chain dimensions become independent of the concentration and in the unperturbed state (R2
). 

He calculated C** from the previous relation as: 

C**= C*(R2(0)/ R2
)4                  (2.29) 

or C**= C*( [α(0)]8 

                   
(2.30) 

where α(0) is the expansion ratio of the chains at infinite dilution. 

Graessley also introduced a concentration-polymer molecular weight diagram of viscoelastic 

regimes in a good solvent (Figure 2.5). In this diagram, he identified entangled and non-entangled semi-



    

 54 

dilute and concentrated regimes to analyse viscoelastic properties. Considering the molecular weight Mc 

for chain entanglement in undiluted state, the viscosity behavior can distinguish two C-M regimes: 

C M < Mc   (not entangled)               (2.31) 

C M > Mc   (entangled)               (2.32) 

 

.  

 

 

 

 

 

 

 

 

Figure 2.5. Concentration-molecular weight diagram of viscoelastic regimes for polystyrene in a good solvent 

[37]. 

 

2.2. Overview of the techniques  

2.2.1. Viscosity measurements     

The main methods to measure the viscosity are flow measurements in a single capillary, but in 

which the shear rate is not constant, or to shear experiments between two coaxial cylinders, for which 

the gradient is precisely defined and where the imposed stress can also be sinusoidal for measuring the 

dynamic viscosity. 

2.2.1.1. Capillary viscometry 

In capillary measurements, the studied fluid flows through a narrow tube as a result of hydrostatic 

or applied pressure. Inside the capillary viscometers, the velocity drop required for viscosity 

measurement is built up in the form of a laminar tube flow. The liquid flows in coaxial layers towards 
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the pressure drop through the capillary and a parabolic velocity flow occurs (Figure 2.6). The shear rate 

is null in the axis of the tube and maximum on the wall. These measurements are considered the most 

precise way of determining the viscosity of Newtonian and some Non-Newtonian viscous fluids and to 

get their intrinsic viscosity. Ubbelohde type viscometers or suspended-level viscometers use a capillary-

based method of measuring viscosity. Poiseuille's law (Equation 2.33) is the basis for the capillary 

method and relates the rate of flow through a capillary to the viscosity of the liquid [38]. 

dV

dt
= vpR2 =

pR4

8h

-DP

Dx

æ

è
ç

ö

ø
÷ =

pR4

8h

DP

L                
(2.33) 

where t is the time that takes a volume V to flow. The ratio 
dV

dt
 depends on the capillary radius, R, on 

the average applied pressure, P (Equation 2.34), on its length, L and the dynamic viscosity . In this 

case: 

DP= rgDH
                                

(2.34) 

where is the density of the liquid, g the gravity and H is the average high of the liquid.  

The relative viscosity is the given by the following expression:  

hrel =
h

hs

=
tr

tsrs
                      

(2.35) 

where ts and correspond to the flow time and the density of the solvent, respectively.   

Then, the specific viscosity for dilute solutions is calculated as follows:   

hsp =hrel -1=
t - ts

ts
                     

(2.36) 

 

 

 

 

Figure 2.6. Velocity profile with laminar tube flow. 
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The Ubbelohde viscometer is related to the Ostwald viscometer since they are both made of 

glassware with a U shape, having a reservoir on one tube and a measuring bulb on the other tube. The 

studied liquid is introduced into the reservoir of the first tube and the sucked through the capillary in 

the other tube. This way, the liquid flows back through the measuring bulb and the measure of the time 

that the liquid takes to pass through two calibrated marks (A, B) is then related to the viscosity. The 

Ubbelohde device has a third glass arm at the end of the capillary and is open to the atmosphere, so the 

pressure head only depends on a fixed height and not on the total volume of the liquid (Figure 2.7). 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Ubbelohde viscometer [39]. 

 

2.2.1.2. Viscoelaticity by rheometry   

Rheology focuses on the study of the relation between stress and strain that take place in materials 

subject to stress fields. The ability of a material to store strain energy is known as elasticity and can be 

considered as the capacity that this material has to return into its original shape after being deformed. 

On the other side, viscosity is a measure of the material's ability to resist the flow and reflects how the 

material can dissipate energy deformation through flow. The material may respond to the applied force 

with an elastic or viscous behavior, or usually a combination of both, which is called a viscoelastic 

behavior.  

Two important laws describe the behavior of ideal solids and fluids: Hooke’s law and Newton’s law.  
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In 1678, Robert Hooke developed his "True Theory of Elasticity". He proposed that "the power of 

any spring is in the same proportion with the tension thereof". Hooke's law describes the behavior of an 

ideal elastic solid subject to an applied strain. This law states that if some strain is applied to a solid, the 

obtained stress () in the material is directly proportional to the strain (): 

s = Gg
                      

(2.37) 

where G is the proportionality constant, also known as the rigidity modulus [40]. This modulus is a 

measure of the stiffness or the material's ability to resist any stress. The region where the modulus 

remains constant while the stress changes is called linear region, also referred as the Hookean area of 

the material. 

Newton's law describes the behavior of an ideal viscous fluid. This states that the applied stress is 

proportional to the rate of shear strain, g
·

, of the material (Equation 2.38). 

s =hg
·

                      
(2.38) 

where 

 
is the proportionality constant called shear viscosity, which can be interpreted as the resistance 

of a fluid to move when it is subjected to stress. A fluid is considered as Newtonian if its viscosity 

doesn’t depend on the shear rate.  

From energy considerations, the elastic behavior represents complete recovery of energy expended 

during deformation, while the viscous flow represents a complete loss of energy as all the energy 

supplied during deformation is dissipated as heat. Most polymer solutions exhibit non-Newtonian 

behavior since their viscosities decrease with increasing shear rate. This behavior is called a 

pseudoplastic behavior [41]. A large number of the materials (from which polymers) have 

characteristics intermediate between elastic solids and viscous fluids, which are known as viscoelastic 

materials. Different geometries have been developed in order to determine the flow and viscoelastic 

properties of polymers.  In this thesis, the studied liquid is trapped between a plate and a cone with 

radius R, whose axis is perpendicular to the plane of the plate and the truncated apex is located on the 

tray (Figure 2.8). 

 

 

 

 

Figure 2.8. Cone plane schema 
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2.2.1.2.1. Dynamic measurements  

Through dynamic measurements it is possible to determine the viscoelastic properties of the 

solutions. These measurements are performed applying a small sinusoidal strain (or stress) and 

measuring the resulting stress (or strain). The maximum amplitude of the strain and the stress, and the 

phase shift allow obtaining the complex modulus known as G(), (Equation 2.39).    

G(w) = G'(w)+ jG''(w)
                       

(2.39) 

The frequency dependent functions G’() and G’’() correspond to the shear elastic modulus (or 

storage modulus) and to the shear viscous modulus (or loss modulus), respectively. G’ is a measure of 

the stored energy and then released per cycle of deformation and G’’ is a measure of the dissipated 

energy as heat per cycle of deformation per unit volume.  

For a perfect elastic solid, G’()=G and G’’()=0. Whereas for a viscous liquid, G’()=0 and 

G’’()= 

The loss tangent is another dynamic viscoelastic characteristic that links the relative effects of 

viscous and elastic components in a viscoelastic behavior (Equation 2.40). 

tand(w) = G''/G'
                       

(2.40) 

Sometimes, the complex modulus lG*l, given by Equation 2.41, is also used to describe dynamic 

measurements.  

G* = G'2+G''2
                      

(2.41) 

It is worth mentioning that polymeric fluids have memory, which means that when a force that 

forces them to flow is removed, the fluid tends to "go back" to its original position, nevertheless, it 

doesn’t return completely. This is caused since a part of the fluid tends to be permanently deformed, but 

it has also an elastic portion that tends to recover its original shape. Maxwell equation includes viscous 

and elastic properties from Newton and Hooke laws, respectively, for gases that exhibit this behavior 

(Equation 2.42 and 2.43). However, actually this equation is used to successfully predict the behavior of a 

viscoelastic fluid with a single relaxation time.  

G'(w) = Gp

w 2t R

2

1+w 2t R

2
                    (2.42) 

G''(w) = Gp

wt R

1+w 2t R

2
                      (2.43) 
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where Gp is the plateau modulus and R the relaxation time.  

 

2.2.1.2.2. Flow measurements  

The rheological properties of materials at large strains are obtained through nonlinear 

measurements. Such experiments provide information on the rheological behavior of materials as they 

flow, either because shear or pressure gradients. In some cases, the structure of the materials is 

destroyed and other cases new structures are generated. A comparison between the obtained results 

from linear and nonlinear experiments can provide valuable information on the extent and type of 

structure that the material possesses. 

 

 

 

 

 

 

 

 

Figure 2.9. Influence of shear rate on the viscosity (circles) and shear stress (squares) of a DNA concentration of 

7.0 mg/mL at a temperature of 20 ºC.  

 

Flow measurements can be performed in steady state or transient state. Steady state flow 

measurements provide information about shear stress () and viscosity () of the polymer solution as a 

function of shear rate (g
·

), as shown in Figure 2.9 for a DNA solution, which behavior will be discussed 

in the experimental section.   
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2.2.1.2.3. Cox-Merz rule   

The Cox-Merz rule is an empirical relationship in which a correspondence is observed between the 

steady state shear viscosity, , plotted against shear rate, g
·

, and the magnitude of the complex 

viscosity, |*|, plotted against angular frequency, . The complex viscosity is defined by *=G*/j

The Cox-Merz rule has been found to be applicable for many polymer melts and concentrated and 

semi-dilute solutions. However, some deviations from the rule occur at high frequencies, and the 

oscillatory data can either over or under estimate the steady state data. Some polymeric systems for 

which Cox-Merz rule do not apply are dilute solutions, cross-linked or gelled systems and most 

particulate dispersions. 

 

2.3. Experimental conditions  

       2.3.1. Reagents  

DNA/Buffer solutions were prepared from samples of calf thymus DNA with 13,000 base pairs 

(bp). Trizma, C4H12ClNO3, (Tris-HCl) was used with a purity of 99.0%. This solution has a pKa of 8.06 

and provides effective buffering capacity in a pH range between 7.0 and 9.2. Ethylenediaminetetraacetic 

acid (EDTA), C10H16N2O8, was also used with a purity of 99.0%. A solution of sodium hydroxide, NaOH, 

3M was used for buffer solution elaboration. All solutions and dilutions were made with HPLC grade 

water. Sigma-Aldrich Company supplied all reagents. 

 

2.3.2. Buffer Tris-HCl/EDTA preparation  

A buffer solution was prepared in order to obtain and maintain a pH of 7.3. Appropriated amounts 

of Tris-HCl, 100 mM and EDTA, 10 mM were used to prepare the solution. Subsequently, this solution 

was placed on a magnetic stirrer, the pH was checked (2.75) and then adjusted to a value of 7.3 by 

adding NaOH solution (3 M). 

 

2.3.3. Preparation of DNA/Buffer solutions 

DNA solutions were prepared using appropriate amounts of DNA and a 9:1 ratio of HPLC water 

and Tris-HCl/EDTA buffer for each concentration. The vials were closed and sealed with parafilm to 

prevent water evaporation and changes in the concentration. All solutions were stored in a refrigerator 

at a temperature of 4 °C in order to prevent degradation.  
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2.3.4. UV-Vis measurements    

DNA melting temperatures (Tm) were measured by recording the absorbance A260 as a function of 

temperature (T) using a Cary 400 Scan UV-Vis Spectrophotometer. The Tm cell block contains six cells 

for samples and six cells for the solvent. We used quartz cuvettes for all measurements. The solvent 

cuvettes were filled with the Tris-HCl/EDTA buffer solution and were used as the blank. The 

controlled instrument can be programmed to increase and decrease temperature with variable 

increments. The temperature was raised at a rate of 1 ºC/min, from 25 to 90 ºC. Then the temperature 

was decrease from 90 to 25 ºC at a rate of 5 ºC/min.  

 

2.3.5. Ubbelohde viscometer 

Viscosity measurements of DNA solutions between 0.01 and 0.4 mg/mL were carried out with an 

Ubbelohde viscometer from Schott Instruments GmbH. The selected capillary is a No. 501 01 capillary 

with a diameter of 0.53 ± 0.01 mm and a constant K equal to 0.005.  

 

2.3.6. Geometries for rheological measurements  

The rheological behavior of DNA/Buffer system was studied in the rheometers DHR-3, AR-G2 

and ARES-G2 from the TA Instruments Company.  Four different geometries were used depending on 

DNA concentration and the experiment carried on. 

1.- Steel cone with a 60 mm diameter and an angle of 2º was used for DNA solutions with 

concentrations between 0.01 mg/mL to 0.4 mg/mL (DHR-3 rheometer).  

2.- Steel cone with a 60 mm diameter and an angle of 1º was used for DNA solutions with 

concentrations between 0.5 mg/mL to 2 mg/mL (AR-G2 rheometer). 

3.- Steel cone with a 40 mm diameter and an angle of 2º was used for DNA solutions with 

concentrations between 2 mg/mL to 30 mg/mL (AR-G2 rheometer). 

4.- Steel cone with a 49 mm diameter and an angle of 4.469º was used for DNA solutions with 

concentrations between 2 mg/mL to 10 mg/mL to perform visualizations (ARES-G2 rheometer).  
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2.3.7. Dynamic and flow measurements  

 2.3.7.1. Strain sweeps  

In order to define the linear viscoelastic regimes, the oscillation strain sweeps were carried out at 

an angular frequency of 10 rad/s in strain range between 0.01% and 100% and using 10 points per 

decade. For each DNA sample, each sweep was performed at the following temperatures 10, 20, 30 and 

40 ºC. 

2.3.7.2. Frequency sweeps   

Frequency sweeps were carried out at a selected strain in the linear viscoelastic region in a 

frequency range between 0.01 and 100 rad/s and using 5 points per decade. For each DNA sample, each 

sweep was performed at the following temperatures 10, 20, 30 and 40 ºC. 

 

 2.3.7.3. Steady state flow measurements    

Simple steady state measurements were performed in a shear rate between 1x10-3 and 1000 1/s and 

using 5 points per decade. For each DNA sample, each sweep was performed at the following 

temperatures 10, 20, 30 and 40 ºC. The experimental conditions allow calculating the Reynolds number, 

limit of validity for laminar flow.   

 

2.3.8. Visualizations  

Shear instabilities during rheological measurements were studied with a visualization device of the 

strain field inside the sample [42,43]. The cone (49 mm diameter and 4.469º) was pierced at a distance 

of 3 mm from the edge. A preparation with a DNA solution, identical to the one tested was colored with 

a white powder (TiO2). Once the studied DNA sample was placed between the tools, a small quantity of 

white colored DNA solution was injected with a syringe through the bulk of the sample, forming a 

vertical filament. Figure 2.10 shows the schematic diagram of the setup for the rheological 

measurements combined with visualization of the strain field inside the sample.  

The deformation of the colored filament can be monitored with a video camera since the plane 

begins to rotate. Figure 2.11 shows the initial mark of DNA colored solution in the bulk of the sample, 

which deformation is recorded by the camera during the rotation of the plate, then the homogeneous 

deformation recorded under shear rate and finally, the representation of localization, recorded under 

shear rate variation. To avoid evaporation from the sample during the test, a transparent cover was 

placed around the geometry.  
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Figure 2.10. Schematic diagram of the setup for the rheological measurements combined with visualization of the 

strain field inside the sample: a) truncated cone, b) plate, c) DNA solution, d) filament of DNA solution colored 

with TiO2, e) transparent cover to prevent water evaporation and f) CCD camera [42]. 

 

 

 

 

 

 

 

Figure 2.11 a) Initial mark of DNA colored solution in the bulk of the sample, which deformation is recorded by 

the camera during the rotation of the plate. The angle of the camera is normal to the axis of the apparatus, b) 

homogeneous deformation recorded under shear rate and c) localization, also known as shear banding, recorded 

under shear rate variation [43]. 

 

2.4. Experimental results and discussion  

Calf-thymus DNA solutions in Tris-HCl/EDTA buffer (TE buffer) were firstly characterized by 

their polyelectrolytes properties in order to know DNA charge parameter and the contribution of the 

ionic strength of the buffer solution on DNA properties. DNA concentration and purity of the samples 

were validated through spectrophotometric measurements. Then, intrinsic viscosity was determined 
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through capillary and rheometry measurements to determine molecular weight. Finally, flow and 

viscoelastic properties were studied in a wide range of DNA concentrations and temperatures.   

 

2.4.1. DNA charge parameter   

DNA charge parameter plays an important role in thermodynamic properties of DNA solutions, i.e. 

the differences in Gibbs free energy, enthalpy and entropy between the coil and helix forms of DNA at 

any temperature and salt concentration. According to Manning’s theory, only the non-condensed 

fraction of the compensating ions contributes to solution ionic strength and to the Debye length -1. For 

DNA, the value of bhelix for the helical form is equal to 0.17 nm and the value of bcoil for the coil form is 

equal to 0.68 nm [44]. Considering that λ=lB/b, as demonstrated before, then λhelix= 4.2 and λcoil= 1.0. 

It is worth to mention that λ is almost independent of temperature since for water, the product T 

present only slightly variations with temperature.  

Following the predictions proposed at infinite dilution, the subsequent parameters where calculated 

for each DNA form:   

Double stranded DNA double-helix  
 

λhelix= 4.2 

For λ >1 

              = 1/2= 0.12 

               γa= 1.21 = 0.14     

               f =0.87-1 = 0.21 

Single stranded DNA  
 

λcoil= 1.0 

For λ >1 

= 1/2= 0.5 

               γa= 1.21 = 0.6 

               f =0.87 -1 = 0.87 

 

 Therefore, according to the theory, the fraction 1-(1/4.2), equal to 0.76, corresponds to the 

phosphate groups neutralized by condensed counterions when DNA is in its double-helix form [44].   

These values allow determining the contribution of DNA under Na salt form to the ionic 

concentration at a given weight concentration. Considering that the average molar mass of a nucleotide 

is equal to 379 g/mol, for a double stranded DNA weight concentration of 1 g/L, it comes that the 

effective ionic concentration is: 

C = (1/379) x 0.12= 3.17 x 10-4 equiv/L 

For a single stranded DNA weight concentration of 1 g/L, the effective ionic concentration is: 

C = (1/379) x 0.5= 13.19 x 10-4 equiv/L 
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2.4.2. Ionic strength of TE buffer solution  

 TE buffer was selected since it is usually used in molecular biology, particularly in procedures 

concerning DNA or RNA. EDTA is used as a chelating agent of divalent counterion that can create 

metal complexes having an octahedral coordination structure. The ionic strength of TE buffer was 

determined through conductivity measurements, relating its conductivity to the concentration of a NaCl 

solution with the same conductivity. It was then determined that a corresponding NaCl concentration of 

9.8 mM (very near to 10 mM, TrisHCl concentration) is equivalent to a conductivity of 1.64 mS 

measured for the TE buffer at a ratio 9:1 (Water: Buffer). 

When DNA is solubilized in the buffer 9:1, the total ionic concentration for a DNA weight 

concentration of 1 g/L is:  

CT= Cs + C = 10.32 mM and the Debye length is -1~ 2.95 nm  

These characteristics of DNA play an essential role on its conformation in solution as well as its 

contribution to conductivity, chain-chain interactions in concentrated solutions and on polycation 

associations.        

 

2.4.3. Spectrophotometric measurement of DNA concentration and purity  

DNA concentration of the studied samples was determined by measuring the absorbance at 260 nm 

(A260), where DNA absorbs light most strongly, in a spectrophotometer [45]. The spectrophotometric 

conversions for one absorbance unit at 260 nm to concentration in g/mL, depending on the nature of 

the chain, are presented in Table 2.2. Double-stranded DNA conversion was selected for our samples. It 

is worth to mention that these conversions are only valid for measurements performed at neutral pH.    

Table 2.2.- Spectrophotometric conversions for one A260  equals 1 unit to concentration  [46] 

A260 = 1 Concentration (g/mL) 

Double-stranded DNA 50 

Single-stranded DNA 33 

RNA 40 

Oligonucleotides 20-30 

 

Absorbance measurements allow determining DNA concentration. In addition, DNA purity was 

evaluated by measuring the absorbance from 230 nm to 320 nm to detect other potential contaminants. 

The ratio A260/A280 was found to be 1.87 ± 0.11, which is in good agreement with pure DNA ratio 

reported before (between 1.8 and 2.0) [47].    
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2.4.4. DNA melting temperature   

2.4.4.1 DNA composition determination    

Starting from the fact that DNA is a polyelectrolyte bearing a series of phosphate groups along its 

backbone and that it can exist in solution in its helical or randomly coiled form [44], it is important to 

determine the melting temperature, Tm, of DNA used at the specific conditions in this research. Figure 

2.12 shows the temperature dependence of the absorbance of calf-thymus DNA at a concentration of 

0.042 mg/mL, from which is possible to identify the midpoint of the absorbance rise, corresponding to 

the Tm, at a temperature of 70 ± 0.6 ºC.  

Denaturing agents such as increase of temperature, increase or decrease of pH and decrease in Na+ 

ion concentration, disrupt double helix DNA structure, unstuck the bases and produce the increase in 

absorbance [48]. The helix-coil transition is considered as the result of the tendency of the system to go 

from high-energy states to low-energy states and the tendency to go from low entropy states to high 

entropy states.   

 

 

 

 

  

 

 

 

 

 

 

Figure 2.12. Degree of denaturation at 260 nm of calf-thymus DNA (0.042 mg/mL) of in TE buffer at a pH of 

7.3.   

 

According to the empirical relationship between Tm, G-C (Guanine-Cytosine) content and 

concentration of sodium ions in solution ([Na+]) proposed by Owen et al. [49] it is possible to 

determinate the G-C content through Equation 2.44.      

Tm =176.0- (2.60- x0 )(36.0- 7.04log[Na+])
           

(2.44) 
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where x0 corresponds to the fraction of G-C pairs in DNA.  

In this manner, the calculated value for x0 was found to be around 0.48, i.e. 48%, which is in good 

agreement with the reported G-C composition of preparations of Euchromatin DNA and 

Heterochromatin DNA from calf-thymus, determined by thin-layer chromatography, i.e. 44.5 ± 0.3% 

and 46.4 ± 0.5%, respectively, by Gawrońska et al. [50].  

 

2.4.4.2. Influence of DNA and salt concentrations on the Tm  

Salt concentration influence on melting temperature is presented on Figure 2.13. The temperature 

dependence of the absorbance of calf-thymus DNA at a concentration of 0.03 mg/mL was determined 

for a salt concentration range between 0 M and 3 x 10-2 M NaCl. Here it is possible to identify that 

DNA in water as a solvent, is partially denatured and that the addition of salt to the solution leads to an 

increase of DNA melting temperature, as expected. The observed decrease in Tm at low salt 

concentrations is caused by the increased electrostatic repulsion between the negative phosphate ions of 

DNA strands.  

 

Figure 2.13. Temperature dependence of the % denaturation of calf-thymus DNA 0.03 mg/mL at salt 

concentration between 0 M to 3x10-2M NaCl. The percent of denaturation is relative to the absorbancy at 25 ºC.       

 

Figure 2.14 shows the variation of DNA melting temperature for different DNA and salt 

concentrations in a semi-log plot. A linear behavior is observed, as well as the Tm decrease at low salt 
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concentrations (as described before) and a slightly variation of Tm for different DNA concentrations at a 

same salt concentration [31].    

 

Figure 2.14. Variation of the Tm with the salt concentration for different DNA concentrations.   

 

We can conclude that double helix DNA conformation is preserved in the TE buffer and in DNA 

solutions with salt concentrations higher than 10.3 M NaCl in the temperature range from 25 to 60 ºC.  

 

2.4.5. DNA intrinsic viscosity [] and molecular weight determination    

 2.4.5.1. Capillary measurements in dilute solutions     

Since DNA has one formal negative charge per nucleotide, the conformation of this molecule is 

certainly sensitive to changes in the ionic strength, in the amount of base pairs and in the molecular 

weight (in the low molecular weight domain). In this manner, the information about intrinsic viscosity 

of DNA in TE buffer solutions may lead to determine and understand the hydrodynamic and 

conformational properties of the molecule under specific conditions. At first instance, viscosity capillary 

measurements were performed in order to determine DNA intrinsic viscosity in TE buffer at a pH of 7.3 

and at the temperatures of 10, 20, 30 and 40 ºC. DNA dilutions were made by adding solvent of the 

same composition, i.e. TE buffer at a 9:1 ratio.  
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In order to remove the solvent contributions, the relative viscosity was calculated for each DNA 

concentration at each temperature by using Equation 2.19. As expected, DNA relative viscosity increases 

while increasing DNA concentration and, as we can observe, the temperature effect is negligible (Figure 

2.15). All curves are nearly superposed. Specific and reduced viscosities were then calculated according 

the Equations 2.20 and 2.21 in order to determinate DNA intrinsic viscosity at each temperature by 

extrapolation of the reduced viscosity to zero concentration.  

  

 

 

 

 

 

 

 

 

 

Figure 2.15. Relative viscosity dependence with DNA concentration measured at several temperatures.  

 

 The resulting values for the intrinsic viscosities are resumed in Table 2.3, but they are almost half 

of the expected values according to the Mark-Houwink type equation for double-stranded DNA (Table 

2.1) reported by Tsortos et al. [29]. This is, for a reported average molecular weight for calf-thymus 

DNA, recently obtained by size-exclusion chromatography with dual low-angle light scattering/ 

refractometric detection, corresponding to 8 418 000 [51], the calculated intrinsic viscosity is equal to   

4 858 mL/g. Therefore, we assume that the imposed shear rate in the capillary is too high to obtain the 

viscosity value equivalent to the zero shear viscosity of our DNA samples; for this reason, the intrinsic 

viscosities found are much lower than the expected. However, from these values it is possible to 

conclude that the hydrodynamic volume of DNA varies only slightly with temperature.        
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Table 2.3.- Intrinsic viscosity determined through capillary measurements  

Temperature ( ºC) [] (mL/g) 

10 1975 

20 2231 

30 2245 

40 2259 

 

2.4.5.2. Cone-plate measurements in dilute solution 

To allow getting the intrinsic viscosity at low shear rate, we selected the cone-plate rheometer. 

DNA shear viscosity was determined for a DNA concentration range between 0.010 and 0.367 mg/mL. 

A constant viscosity over a range of at least one decade of shear rate was obtained in order to determine 

with accuracy the zero shear viscosity of each sample tested. Figure 2.16 shows the measured viscosities 

at a temperature of 20 ºC.  

 

Figure 2.16. Dependence of shear viscosity on shear rate for several DNA concentrations at 20 ºC.   

 

This figure shows the sensitivity of the solution viscosity with shear rate and justifies the low 

values obtained by capillary measurements. This viscosity dependence on shear rate can be treated with 

the Cross model, given by Equation 2.45 [41].  
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h -h¥

h0 -h¥

=
1

1+ (Kg
·

)m                    
(2.45) 

where 0 is the zero shear-rate viscosity from the Newtonian plateau, ∞ is the infinite shear-rate 

viscosity, m is a dimensionless parameter related to the degree of shear thinning and Kc has the 

dimensions of time.   

 Reduced viscosities were calculated according Equation 2.21 using the zero shear-rate viscosity 

from the Newtonian plateau and were plotted as a function of DNA concentration (Figure 2.17). A 

deviation from the linear behavior in the dilute regime, following Huggins relation, is clearly observed 

at the concentration of 0.23 mg/mL, which could be related to the overlap concentration of the system, 

C*. The entanglements in the semidilute regime make the system more complicated and lead to 

viscoelastic properties that need to be studied by shear flow and dynamic measurements [52]. The 

extrapolation to zero concentration gives the intrinsic viscosity, i.e. 4 850 mL/g, which is a closer value 

to the calculated intrinsic viscosity from the Mark-Houwink theoretical equation [29]. 

 

 

 

 

 

 

 

 

 

Figure 2.17. red dependence with DNA concentration at a temperature of 20 ºC. The solid line represents only a 

visual aid.  

The viscosimetric average molecular weight of our DNA sample can be estimated using the Mark-

Houwink relation (Equation 2.26), taking as 0.69 for high molecular DNA chains and K as 6.9 x 10-4  

[29]. Therefore, the molecular weight is equal to 6 559 500, between 6 000 000 and 8 000 000 

(ultrahigh molecular weight range), in good agreement with the literature [51]. The obtained value for 

the Huggins constant, KH, equals to 0.15, although is considerably low, is also in fairly agreement with 

values previously reported by Tsortos et. al [29] for different molecular weight DNA.      
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As discussed previously, <S2> and [] are two useful characteristics of polymers in dilute solution, 

i.e. where the concentration is lower than C*. This critical concentration can be estimated as a first 

approach by using the relation C*~ []-1. In this manner, the calculated value for C* is equal to 0.245 

mg/mL, which corresponds to the observed deviation point from the linear dependence of the reduced 

viscosity with DNA concentration (Figure 2.17). The first estimation of the radius of gyration may be 

calculated using C* according to Equation 2.46 [52].  

C* =
4
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p S

3
NA
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é

ë

ê
ê

ù

û

ú
ú

-1

                   
(2.46) 

It comes that S2

 
is equal to 237 nm, the average radius of gyration in TE buffer.  

 

2.4.6. Rheological behavior as a function of DNA concentration and temperature  

Taking into account the obtained results on DNA conformation in the buffer solution used in all 

the rheological study, as well as its stability upon temperature in the range covered (10 to 40°C) and the 

reduced viscosity that is nearly independent on the temperature; in the treatment of our experimental 

data, we adopted the value of the intrinsic viscosity determined at 20 °C for all the temperatures, as well 

as for the establishment of the master curves. In addition, the influence of ionic concentration may be 

considered as the increase in DNA concentration means also an increase of the total ionic concentration. 

At 1 mg/mL, -1 ≈2.95 nm and for 10 mg/mL it comes that -1 ≈2.7 nm, i.e. relatively small influence of 

the DNA concentration.   

In order to describe the effects of DNA concentration on viscosity and to define the limits between 

the semi-dilute non entangled and entangled regimes of DNA/buffer solutions, we carried on flow and 

dynamic measurements. Both series of experiments were performed for a wide DNA concentration 

range in buffer 9:1 solution at the temperatures of 10, 20, 30 and 40 ºC. For dynamic experiments in the 

linear regime, we applied a strain of defined amplitude and frequency, from which it is possible to obtain 

the two components G’() and G’’() and calculate the complex dynamic viscosity, given by Equation 

2.47.  

h* (w) = (G'2+G''2 )1/2w-1

                     
(2.47) 

 

 2.4.6.1. Steady state measurements 

In the case of Newtonian fluids, the viscosity depends on temperature and pressure, however, for 
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polymeric fluids as DNA solutions, it also depends on shear rate, which is very sensitive to the 

molecular structure, as seen before. To complete our measurements, the influence of shear rate on the 

viscosity of DNA samples was studied in a large DNA concentration range at the temperatures of 10, 

20, 30 and 40 ºC. Data obtained at a temperature of 20 ºC are presented in Figure 2.18. The observed 

flow curves are characterized by having three important characteristics: the viscosity 0, in the 

Newtonian plateau, the critical shear rate g
·

c and the slope, s [52-54]. The critical shear rate is related to 

the characteristic time when the shear rate becomes lower than the relaxation time of DNA in solution, 

leading to the manifestation of structural changes such disentanglements, alignments of the molecules 

in the flow, among others, or to conformational modifications of the molecule. The viscosity in the 

Newtonian plateau corresponds to the viscosity when g
·

<g
·

c . It is possible to observe that g
·

c decreases 

with the increase of DNA concentration.  

 

 

 

 

 

 

 

 

 

Figure 2.18. Influence of shear rate on the viscosity of calf-thymus DNA at different DNA concentrations at a 

temperature of 20 ºC.  

 

Figure 2.19 shows the dependence of the specific viscosity on shear rate for a constant DNA 

concentration at the studied temperatures, i.e. 10, 20, 30 and 40 ºC. We can observe only very little 

influence of temperature on the rheological behavior of DNA solutions in the studied temperature 

range, i.e. low influence on the hydrodynamic volume of DNA (reflected by the intrinsic viscosity).    
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Figure 2.19. Influence of shear rate on the specific viscosity of calf-thymus DNA at a concentration of 7 mg/mL 

at the temperatures of 10, 20, 30 and 40 ºC.   

 

By increasing DNA concentration it is possible to define the dilute, semi-dilute with entanglements 

and semi-dilute without entanglements regimes, delimited by the overlap concentration, C*, which first 

approach was given by C*~[]-1 and C**, also defined by Mason et al. [55] as the entanglement 

concentration, Ce, taking into account the references of Raspaud et al. [56].   

 

Figure 2.20. Dependence of the specific viscosity, sp, at zero shear rate with DNA concentration at the 

temperatures for 10, 20, 30 and 40 ºC. 
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DNA zero shear viscosity was firstly inspected in terms of the specific viscosity, sp, as a function of 

DNA concentration at the four studied temperatures (Figure 2.20). The obtained behavior in the DNA 

concentration range 2.0 < CDNA < 10 mg/mL was found to be consistent with previous results obtained 

for polymers dissolved in a good solvent [57]. The variation of sp with concentration, ηsp∼CDNA, was 

quantified with an average slope is equal to 4.2, i.e. ηsp∼C4.2. To analyse the data in terms of the overlap 

concentration the specific viscosity at zero shear rate was plotted in log-log as a function of 

CDNA(Figure 2.21). This representation allows predicting the viscosity for different concentrations 

and molecular weights, as shown by Berriaud et al. [58], Milas et al. [59] and Fouissac et al. [60] for 

hyaluronans, a wormlike chain. C*[]≈1 can be identified and at larger concentration polymeric chains 

get progressively entangled. Equation 2.48 can be used to estimate sp for a polymeric solution at a given 

concentration when the intrinsic viscosity is known. This equation was first used for hyaluronans with 

various molecular weights [61], from which it was possible to predict any viscosity of polymer solution 

by replacing C[] on the expression.  

hsp = C[h]+ KH (C[h])2 + B(C[h])n

                  
(2.48) 

where KH is the Huggins constant and the values B and n are equal to 7.77x10-3 and 4.18, respectively.  

Additionally, a new representation was proposed by Cowman et al. [62] (Equation 2.49), on the 

same hyaluronans [61,63] and now is tested successfully for calf-thymus DNA solutions at the DNA 

concentration range between 0.01 and 10 mg/mL, using a Huggins constant (identified as k1) of 0.4, as 

found for perfectly soluble polymers. 

hsp = C[h] 1+k1(C[h])+k2(C[h])2 +k3(C[h])3{ }                
(2.49) 

where the constant k1, k2 and k3 can be calculated as follows: 

k1= 0.4                            (2.50) 

k2= (k1)2/2!= 0.08                            (2.51) 

k3= (k1)3/3!= 7.1x10-3
                            (2.52) 

For DNA at the highest concentrations, the concentration C** is obtained when the linear behavior 

in this curve starts, also defined as the entanglement concentration, Ce. For the linear domain, the 

calculated slope is 4.3 (sp∼C4.3), which presents a slight deviation from the master curve having a 

maximum slope of 4. This kind of deviation was also detected for the reported experimental values for 

hyaluronan in 0.1N NaCl (with a slope of 4.18) and xanthan in 0.1 N NaCl (with a slope of 4.24) [64]. 

The limit for linear behavior in this curve is around C[]~10, the starting point of semi-diluted 
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entangled domain, i.e. 2.45 mg/mL for DNA. The obtained behavior in the DNA concentration range 

2.0< CDNA< 10mg/mL was found to be consistent with previous results reported by Mason et al. 

obtained at 25°C [28]. The width of the semi-dilute domain (unentangled and entangled) is such as 

Ce~10 C**. The slope in the semi-dilute entangled regime deviates from the master curve 

representation, which fits very well at lower polymer concentrations. In fact, this may be connected 

with the reptation regime admitted over C** (or Ce) for which  Rouse varies as (C/Ce)3.4. In these 

conditions, it comes that varies as (C/Ce)4.42. This power law fits well with our data where the slope is 

4.3. 

 

 

 

 

  

 

 

 

 

Figure 2.21. Dependence of specific viscosity at zero shear rate as a function of the overlap parameter CDNA[] 

for calf-thymus DNA solutions in TE buffer pH 7.3 at a temperature of 20 ºC.  

 

The temperature effect on the specific viscosities of calf-thymus DNA solutions is shown in Figure 

2.22, plotting the specific viscosity at zero shear rate as a function of CDNAadopting the value of the 

intrinsic viscosity determined at 20 °C, as explained before. We can observe that all the temperatures 

present the same trend and that the viscosity of the solutions can be predicted with good accuracy at a 

specific DNA concentration.  
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Figure 2.22. Dependence of specific viscosity at zero shear rate as a function of the overlap parameter CDNA[] 

for calf-thymus DNA solutions in TE buffer pH 7.3 at the temperatures 10, 20, 30 and 40 ºC.  

 

The second important parameter characterizing DNA behavior is the critical shear rate, g
·

c , 

obtained at the onset of the non-Newtonian flow.  

 

 

 

 

 

 

  

Figure 2.23. Dependence of the critical shear rate, g
·

c , of the onset of the Non-Newtonian viscosity with CDNA[] 

for the temperatures 10, 20 and 30 ºC.  

 

Figure 2.23 shows a log-log plot of g
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c  versus CDNA[] for DNA concentrations in the semi-dilute 
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10mg/mL. Considering that there is only a very small influence of the temperature on the critical shear 

rate values, a single curve is obtained in which all concentrations and temperatures are plotted. When 

the shear rate increases, the viscosity decrease was attributed to structural changes in the solution such 

as disentanglements, alignments of the molecules in the flow or to conformational modifications of the 

molecules among others. With this curve it is possible to obtain the relation g
·

c∼CDNA[]-2.0±0.1, also 

reported for different molecular weight hyaluronans [59]. This exponent is in agreement with the 

scaling parameter from Rouse theory (9/4) corresponding to the longest relation time for an 

entanglement strand as mentioned by Colby et al. [65]. The calculated values for the critical shear rate 

with the Rouse model are in good agreement with the experimental values but only for higher 

concentration (CDNA≥ 7 mg/mL). The scaling law relating the temperature influence, with an exponent 

of 7/12 in a good solvent (considerably low), is smaller in our case, probably due to the semi-rigid 

character of DNA [65]. 

The last important parameter is the slope relating the viscosity and the shear rate. In the power 

law region of  as a function ofg
·

c , the slope s depends on the overlap parameter C[], as discussed by 

Graessley et. al [66]. For CDNA[]>35, the slope tends toward a limit, as predicted in the entanglement 

theory of Graessley, and is equal to -0.818.  

Our results are presented in Figure 2.24 and show that the limit value for calf-thymus DNA in TE 

buffer at a pH of 7.3 has an average slope of -0.82, which corresponds to the behavior described by 

Graessley and that has also been reported for a wide range of molecular weight hyaluronan samples.   

 

 

 

 

 

 

 

Figure 2.24. Slope s in the power law region determined on flow curves of calf-thymus DNA in TE buffer at the 

temperatures of 10, 20, 30 and 40 ºC. (Dashed line represents the prediction of Graessley [65]). 
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2.4.6.2. Dynamic measurements 

The linear viscoelastic region (LVR) was first determined for calf-thymus DNA solutions in TE 

buffer at a pH of 7.3 through strain sweeps. This region is defined as the regime in which G’ and G’’ are 

independent of the strain . All samples at the four studied temperatures exhibited a broad linear 

viscoelastic region, which extends to strain values around 30 %. Mason et al. previously described this 

behavior for calf-thymus DNA solutions at a pH of 8.0 and reported that for strains less than the 30%, 

G’ and G’’ were independent of  [55].  

a) 

 

 

 

 

 

 

 

 

 

b) 

Figure 2.25. Strain dependence of the storage modulus, G’ for a) several DNA concentrations at the temperature 

of 10 ºC and for b) a DNA concentration of 7 mg/mL at the temperatures of 10, 20, 30 and 40 ºC.  

 

Figures 2.25a and 2.25b show the storage modulus (G') versus strain percent (% γ) for several DNA 

concentrations at the temperature of 10 °C and for a constant DNA concentration with the temperature 

variation, respectively. By fixing γ= 0.02, inside of the linear regime, the spectra for the storage and the 

loss moduli in the same range of DNA concentrations at the four temperatures were measured 

subsequently. Figures 2.26a and 2.26 b show the dependence of G' and G’’ with frequency for the DNA 

concentration range between 2.0 and 10.0 mg/mL at the temperature of 10 °C and for the DNA 

concentration 7.0 mg/mL at the temperatures of 10, 20, 30 and 40 ºC, respectively.  

The loss and storage moduli intersect in a characteristic frequency (ωC), at which its reciprocal 

corresponds to the main relaxation time of the system, τc. This crossover frequency is related to a low-

frequency viscosity, since at very low frequencies, the entanglements of the DNA solution can relax. 

The crossover frequency (ωC) decreases with increasing DNA concentration and temperature. For 

solutions at which CDNA ≤ 0.5 mg/mL, the rheological behavior is predominantly viscous at all 

frequencies, however, at higher concentrations, the coils begin to overlap and become entangled, so an 

elastic behavior is observed.  
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a) 

 

 

 

 

 

b) 

 

Figure 2.26. Frequency dependence of the storage modulus, G’, and the loss modulus, G’’ for a) several DNA 

concentrations at the temperature of 10 ºC and for b) a DNA concentration of 7 mg/mL at 10, 20, 30 and 40 ºC.  

 

In the same way as DNA zero shear viscosity in terms of sp was inspected as a function of DNA 

concentration between 2.0 and 10 mg/mL at the four studied temperatures (Figure 2.20), the crossover 

frequency, c, was also analyzed as shown in Figure 2.27. As for sp , the obtained behavior was found to 

be consistent with previous results obtained for polymers dissolved in a good solvent [57]. The 

variation of c with concentration, was quantified with an average slope is equal to -2.17±0.12, i.e.         

c ∼C-2.17. A reduced form of the characteristic relaxation time, c, corresponding to c
-1, can be obtained 

through the relation c/s and is presented in Figure 2.28, where it is possible to observe the 

contribution of solvent viscosity to the relaxation time of DNA solutions at each studied temperature.    

 

 

 

 

 

 

 

 

Figure 2.27. Dependence of the crossover frequency (c) with DNA concentration at 10, 20, 30 and 40 ºC.   
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Figure 2.28. Dependence of c/s with DNA concentration at 10, 20, 30 and 40 ºC. 

 

Taking G’() and G’’() at a given DNA concentration as reference makes possible obtaining a 

master curve as a function of DNA concentration from a horizontal (ax) and a vertical (ay) translation. 

First one represents the coefficient of translation of the frequencies and second one the coefficient of 

translation of the modulus. Figure 2.29 shows the master curve obtained for the DNA concentration 

range between 1.5 and 10 mg/ml at the temperature of 20 ºC, by using as reference 4 mg/mL. The same 

procedure is used for the analysis of the temperature for each DNA concentration. Figure 2.30 shows the 

master curve for a constant DNA concentration at the temperatures of 10, 20, 30 and 40 ºC.     

 

 

 

 

 

 

 

 

Figure 2.29. Master curve for the reduced elastic (G’) and viscous (G’’) moduli as a function of the reduced 

frequency for the concentration variation of calf-thymus DNA in TE buffer at a temperature of 20 ºC.   
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Figure 2.30. Master curve for the reduced elastic (G’) and viscous (G’’) moduli as a function of the reduced 

frequency for the DNA concentration of 4 mg/mL at the temperatures of 10, 20, 30 and 40 ºC. 

 

Figure 2.31 shows that all DNA concentrations at the temperatures of 10, 20, 30 and 40 ºC collapse 

in a general master curve using the horizontal (ax) and the vertical (ay) translation obtained from the 

same DNA concentration as reference, i.e. 4.0 mg/mL, at a temperature of 20 ºC. We can determine 

from the superposition of the curves in one master curve that the main relaxation time of the system is 

only modified by the variation of DNA concentration.  

 

 

 

 

 

 

 

 

Figure 2.31. Master curve for the reduced elastic (G’) and viscous (G’’) moduli as a function of the reduced 

frequency for the concentration variation of calf-thymus DNA in TE buffer at 10, 20, 30 and 40 ºC. 
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The horizontal (ax) and vertical (ay) translation coefficients were plotted as a function of DNA 

concentration for all temperatures (Figures 2.33 and 2.34) and were subsequently analyzed by fitting the 

results with a power law that gives the following slope values: ax∼C2.32±0.16 and ay∼C-1.5±0.05. These 

exponents are in good agreement with those previously found on hyaluronan. The two series of shifts 

indicate that the moduli as a function of frequency is mainly imposed by concentration, i.e. density of 

entanglements [67].  
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Figure 2.33. Concentration shift factor (ax) applied to the moduli for obtaining the master curves at all 

temperatures.  
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Figure 2.34. Concentration shift factor (ay) applied to the moduli for obtaining the master curves at all 

temperatures. 
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The Rouse relaxation time for an entanglement strand in the entangled semi-dilute concentration 

regime varies as C9/4, which exponent is in good agreement with the ax shift. Nevertheless, the influence 

of temperature is lower than predicted by the scaling relation, as observed also on the critical shear rate. 

This temperature influence is related to the network relaxation. It is noted that the temperature 

dependence is smaller than for ax values and than in the scaling relationships proposed for ay. In this 

way, ay is mainly imposed by polymer concentration and density of entanglements as ax. 

In order to compare our results from flow measurements with those from dynamic measurements, 

we calculated the complex dynamic viscosity, l*l, from G’() and G’’(), as shown by Equation 2.39. 

According to the Cox-Merz rule [68], the steady state viscosity, , can be compared with the complex 

dynamic viscosity, l*l, by plotting both against shear rate and radial frequency, respectively. Figure 

2.35 shows, as an example of a constant DNA concentration at a constant temperature, a good 

superposition of l*l (and  (g
·

) as a function of shear rate and radial frequency, respectively.  

 

 

 

 

 

 

 

 

 

Figure 2.35. l*l (and  (g
·

) as a function of shear rate and radial frequency for a DNA concentration of 3.0 

mg/mL at a temperature of 20 ºC. 
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comparison with the results from flow measurements. The same trend is obtained, with the limit value 

average slope around -0.82. 

 

 

 

 

 

 

 

 

 

Figure 2.36. Slope s in the power law region determined on flow and dynamic curves of calf-thymus DNA in 

TE buffer at the temperatures of 10, 20, 30 and 40 ºC. (Dashed line represents the prediction of Graessley [65]). 

 

2.4.7. Modeling of flow and dynamic response of DNA solutions in the semi-dilute regime 
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To better understand the dynamic curves, the Maxwell model was tested allowing interpreting the 
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Figure 2.37 presents the moduli response for DNA concentrations of 2.0, 4.0, 7.0 and 10.0 mg/mL 

at the temperature of 20 ºC. The Maxwell generalized model [69] presented in Equations 2.42 and 2.43 
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to the reciprocal of the crossover frequency, is related to DNA entanglements main relaxation in the 

low-frequency viscosity region.  

 

  

 

 

 

 

 

 

Figure 2.37. Frequency dependence of the storage modulus, G’, and the loss modulus, G’’ for DNA concentrations 

of 2.0, 4.0, 7.0 and 10.0 mg/mL at the temperature of 20 ºC. The solid lines represent the fit resulting from 

Maxwell model (Equations 2.42 and 2.43).   

 

2.4.7.2. Giesekus model 

The flow measurements response in dependence of g
·

 was reproduced using the Giesekus model, 

based on the concept of deformation-dependent tensorial mobility [69]. DNA flow response is 

considered as a natural consequence of the molecules orientation effects, which has been simulated with 

the Giesekus model in order to obtain the rheological parameters of the solutions of entangled DNA 

chains, i.e.: two relaxation times (G1 and G2) and the plateau modulus (Gp1 and Gp2). Figure 2.38 

presents a set of plots of shear stress as a function of shear rate for DNA concentrations of 3.0, 4.0, 7.0 

and 10.0 mg/mL at the temperature of 20 ºC. The solid lines represent the fit of the experimental data 

by using Giesekus model given by Equation 2.53 [70,71].  
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Figure 2.38. Shear stress as a function of shear rate for DNA concentrations of a) 3.0, b) 5.0, c) 7.0 and d) 10.0 

mg/mL at the temperature of 20 ºC. The solid lines represent the fit resulting from Giesekus model. 

 

Table 2.4.- Resulting values for GP and G from the fit of the Giesekus model to the experimental data of DNA 

concentrations of 2.0, 4.0, 7.0 and 10.0 mg/mL at 20 ºC.  

         DNA concentration 
                         (mg/mL) 
 
Time constant 

3.0 5.0 7.0 10.0 

GP G GP G GP G GP G

1 0.278 0.653 0.786 4.074 2.556 18.25 4.715 25.23 

2 1.061 0.033 2.447 0.160 5.807 0.598 9.30 0.848 
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The first relaxation time (1) obtained through the Giesekus model for flow measurements is 

compared to the Maxwell main relaxation time from dynamic measurements in all the DNA 

concentration range, showing the same behavior and similar obtained values.    

The obtained response for flow measurements was then formulated in terms of the normalized 

quantities, *=/Gc and g
·

* = g
·

t c
, proposed by Berret et al. [72] for the non-linear mechanical 

response of surfactant wormlike micelles carried under a steady shear flow. A master dynamic phase 

diagram was obtained at different concentrations for each temperature with the superimposition 

procedure between flow curves. Figure 2.39 shows the master curve for * as a function of g
·

*  for DNA 

concentrations between 2.0 and 10 mg/mL at a temperature of 20 ºC.  

 

 

 

 

 

 

 

 

 

 

Figure 2.39. Master dynamic phase diagram of DNA solutions. The normalized shear stress versus the 

normalized shear rate was obtained for DNA concentrations from 2.0 to 10.0 mg/mL at the temperature of 20 

ºC. The solid lines represent the fit results obtained with the Giesekus model. 
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·
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stress plateau is observed around g
·

* =15.0 at DNA concentrations higher than 6.0 mg/mL, which is 

related to the appearance of the shear banding flow phenomenon. 

 

2.4.8. Visualizations 

In order to explore with more detail the appearance of flow instabilities, a visualization device 

[42,43] was set up and the deformation of a fine filament of white colored DNA solution injected in the 

sample, was monitored during the rotation of the plate. It is worth to mention that the injected solution 

has the same concentration that the one tested. Figure 2.40 shows the strain dependence of G’and G’’ for 

a DNA concentration of 7 mg/mL at a temperature of 20 ºC. We can observe that the elastic moduli 

(G’) is three times higher than the viscous moduli (G’’), which is in good agreement with the statement 

of a greater elastic behavior of DNA solutions at high concentrations due to entanglements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.40. Strain dependence of the storage and the loss modulus, G’and G’’, respectively, for a DNA 

concentration of 7 mg/mL at a temperature of 20 ºC. Visualization of the strain field inside the bulk of the 

solution.  
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Here it is possible to identify the critical strain, c, which is around 0.6. Below this critical strain, we 

have a homogeneous strain field and DNA molecules in solution are deformed in a uniform way, as we 

can see with left and right oscillations images presented in Figure 2.38. Above the critical strain, shear is 

positioned at half-height of DNA solution, as shown in the same figure. DNA solutions viscoelastic 

properties change above this strain level, G’ breaks down and the deformation becomes a function of the 

apparent shear rate applied, so the response to stress is not linear anymore.  

Figure 2.41 shows the transient response of stress for a DNA concentration of 10 mg/mL at a 

temperature of 20 ºC to different applied shear rates. As we can see in the three figures, the transient 

behavior presents the general response to an applied specific level of shear rate: i.e. the stress within 

DNA solution increases in linear relation with time, then reaches a maximum and finally falls 

monotonically with time until reaching the steady state.  

Three different shear rates were chosen in the range between 1.0 and 30.0 s-1, where DNA 

instabilities were firstly observed (Figure 2.39). Figure 2.41 a shows the transient response of stress at a 

shear rate of 1.0 s-1, from which is possible to observe that the mark representing the strain field is 

homogeneously deformed. On the contrary, Figures 2.41 b and c show the brake up of the mark in the 

middle of the sample after the stress falls, during the steady state, so the strain is no longer 

homogeneous and is located mostly in a fine layer dividing DNA samples in two. This response was also 

observed by using this visualization technique in laponite samples [43] and more recently, in NFC 

suspensions produced from bisulfite pulp [42]. On the other side, shear banding presence during a very 

long period in steady rheological state was also reported by Boukany et al. [69] for a DNA solution of 11 

mg/mL with glycerol as solvent, detected by particle-tracking velocimetric (PTV) measurements.  

Figure 2.42 shows the shear stress as a function of shear rate for a DNA concentration of 10.0 

mg/mL at the temperature of 20 ºC. Visual evidence of the strain field inside the bulk of the solution 

obtained at the steady state is presented for different shear rates selected in the three different regimes: 

linear Newtonian regime (0.01 s-1), shear-thinning regime (0.1 and 1.0 s-1) and shear banding flow 

regime (10.0 and 30.0 s-1). Shear banding in DNA solutions can be probably explained in terms of 

electrostatic interactions due to ionic contribution of the solvent to the total ionic concentration for a 

DNA weight at high DNA concentrations, enhancing different chain alignments at high shear rates. 

The role of electrostatic interactions was also reported by Hu et al. for DNA solutions in NaCl 0.01 M as 

solvent [73]. Other explanations on the occurrence of shear banding is water release in the specific 

shear band, or local fluctuations in concentrations due to the initial heterogeneous structural 

organization of the DNA in the volume of the solution [74].       
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Figure 2.41. Transient response of stress for a DNA concentration of 10 mg/mL at a temperature of 20 ºC at 

the following shear rates: a) 1.0 s-1, b) 10.0 s-1 and c) 30.0 s-1. Each image corresponds to a visualization of the 

strain field inside the bulk of the solution.   
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Figure 2.42. Shear stress as a function of shear rate for a DNA concentration of 10.0 mg/mL at the temperature 

of 20 ºC. Each image corresponds to a visualization of the strain field inside the bulk of the solution obtained at 

the steady state.  

 

In order to identify the appearance of shear banding in terms of DNA concentration, the transient 

response of stress to an applied shear rate of 10.0 s-1 was monitored for several DNA concentrations in 

the semi-dilute regime with entanglements. Figure 2.43 shows the transient response of stress for DNA 

concentrations of 4.0, 5.0, 7.0 and 10.0 mg/mL at a temperature of 20 ºC. We can observe that for DNA 

concentrations equal and higher than 5.0 mg/mL, the mark representing the strain field is no longer 

homogeneously deformed, leading to new DNA chain alignments and to the appearance of shear 

banding at this shear rate.   
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Figure 2.43. Transient response of stress for DNA concentrations of a) 10.0, b) 7.0, c) 5.0 and d) 4.0 mg/mL at 

a temperature of 20 ºC and at a shear rate of 10.0 s-1. Each image corresponds to a visualization of the strain field 

inside the bulk of the solution.   

 

2.5. Particular conclusions on the rheological study of calf-thymus DNA solutions in TE 

buffer  

Calf-thymus DNA solutions in TE buffer were characterized in detail in the dilute and the semi-

dilute regimes. The intrinsic viscosity [] was determined from the zero shear-rate viscosity of the 

Newtonian plateau (0),obtained from flow measurements, and is equal to 4 080 mL/g. The molecular 

weight was then determined, resulting on 8 246 800 g/mol. The first critical concentration (C*) was 

estimated as a first approach by using the relation C**~[]-1, obtaining 0.245 mg/mL. The starting 

point of the semi-diluted entangled domain, Ce, was obtained from the limit of the linear behavior in the 

higher concentrations domain of sp as a function of CDNA[] curve, i.e. C~10, 2.45 mg/mL. The 

behavior found for calf-thymus DNA/TE buffer solutions corresponds to a semi-rigid polymer behavior. 
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All experimental data show no considerable temperature dependence between 10 and 40 ºC.  All the 

experimental results are well described in terms of the overlap parameter C[]. From dynamic and flow 

measurements, a good superposition of l*l (and 0 (g
·

) as a function of shear rate and radial 

frequency was obtained in the DNA concentration range between 2.0 and 10.0 mg/mL. A master curve 

with dynamic measurements data was obtained through a horizontal (ax) and vertical (ay) translation by 

using a specific DNA concentration as reference, showing that the main relaxation time of the system is 

only modified by the variation of DNA concentration.  

DNA solutions flow response was also formulated in terms of the normalized quantities *= /G0 

and g
·

* = g
·

t c
, from which a master dynamic phase diagram was obtained with the superposition 

between flow curves. Observations of the strain field combined with mechanical measurements were 

used to demonstrate the appearance of shear banding, i.e. g
·

=10.0 s-1 and CDNA≥5.0 mg/mL. In this 

manner, it is shown by different approaches that for DNA concentrations in the semi-dilute regime with 

entanglements, DNA chains interactions and entanglements have important effects on linear 

viscoelasticity and on the different flow regimes.    
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Experimental study of the adsorption of DNA 

molecules in solution at different metal surfaces using 

Electrochemical Impedance Spectroscopy (EIS). 
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3. Experimental study of the adsorption of DNA molecules in solution at 

different metal surfaces using Electrochemical Impedance Spectroscopy 

(EIS). 

The results of this chapter are the object of the following publication: 

DNA Conformational Transitions at Different Concentrations and Temperatures Monitored by EIS. 

L. M. Bravo-Anaya, E. R. Macías, F. Carvajal Ramos, V. V. A. Fernández, N. Casillas, J. F. A. Soltero 

and E. R. Larios-Durán . 

ECS Electrochem. Lett. 2012, Volume 1, Issue 2, Pages G1-G3. doi: 10.1149/2.014202eel. 

 

One integral part of this chapter was published in the following paper:   

DNA Transitions by an Adsorption Impedance Study. 

L. M. Bravo-Anaya, E. R. Macías, F. Carvajal Ramos, J.G. Álvarez-Ramírez, N. Casillas, J. F. A. Soltero 

and E. R. Larios-Durán.   

J. Electrochem. Soc. 2013, Volume 160, Issue 4, Pages G69-G74, doi: 10.1149/2.029306jes.  

 

3.1. Introduction 

Electrochemical Impedance Spectroscopy (EIS) is a novel and non-destructive technique suitable 

for studying electrically charged surfaces that interact with molecules such as DNA. The response of 

DNA to an applied electric field has been studied for many years using several electrochemical 

techniques such as amperometry, potentiometry and voltammetry, among others [1-4]. However, the 

EIS technique is more sensitive and favorable than the above-mentioned techniques when current and 

electrical potential differences are negligible at low concentrations [5]. This technique is a useful tool 

for the study of DNA adsorption process onto metal surfaces without disturbing them by a chemical 

reaction [6]. Recent reports in the literature show the advantages for studying DNA hybridization 

processes, enabling the development of DNA biosensing platforms, immunosensors and gene therapy 

protocols [7,8]. The process of gene transfection achieves the success of gene therapy, as metioned on 

Chapter 1, which corresponds to its principal step and includes the introduction of DNA into cells by a 

specific agent known as vector [9-11]. The efficiency of gene therapy is determined by this process, and 

requires an extensive knowledge of DNA conformational changes before performing the transfection 

process [12, 13]. Since DNA molecule is a polyelectrolyte, then the conformational changes of DNA in 
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solution and DNA at an interface while interacting with charged surfaces will depend on several 

parameters such as DNA concentration, salt concentration, pH, temperature and polarization potential 

[6]. 

In this chapter, a study of calf thymus DNA molecules adsorption onto platinum and gold 

electrodes by Electrochemical Impedance Spectroscopy is presented. Impedance measurements were 

performed at open circuit potential (OCP), therefore, the response leads to a non-faradaic process with 

DNA adsorption onto the metal surface. The obtained response is interpreted in terms of the impedance 

adsorption theory [14-18], transforming the impedance results into complex capacitance data by using 

an equivalent circuit similar to the one proposed by Frumkin-Melik-Gaikazyan-Randles (FMGR) [19]. 

For Pt-DNA/TE buffer interface, the results cover the temperature range from 20 to 40 °C, while for 

the Au-DNA/TE buffer interface they cover from 25 to 35 ºC, in order to be used on the whole with the 

obtained results with the Surface Plasmon Resonance (SPR) technique and discussed in Chapter 5 of this 

work. An analysis of each electric element of the equivalent circuit, i.e. double layer capacitance (Cdl), 

adsorption capacitance (Cad), adsorption resistance (Rad) and the time-constant average of the process, 

was carried out as a function of DNA concentration and temperature, making possible to study the 

electrochemical double layer structure and the transitions at the interface caused by DNA molecules 

entanglements and interactions between DNA chains and with the metal surface. 

 

3.1.1. Electrochemical double-layer and overview of the adsorption process 

The formation of a specific interfacial region is obtained when a surface is immersed in an aqueous 

solution. There, the electrochemical properties such as the electrical potential and the electrolyte 

concentration vary along the metal-solution interface [20]. A charge separation generally takes place at 

the interface region because of the difference between chemical potentials of the two phases. This 

interfacial region, along with the charged surface, is known as the electrochemical double layer, EDL. It 

can range from a few angstroms in highly concentrated solutions to 100 nm in a very diluted solution 

[21]. The study of the double layer is of great importance in electrochemistry, colloid science and 

surface chemistry [22]. Some their applications are: metals electrosorption, energy storage devices 

production, water purification, nanomaterials processing and development of sensors, among others 

[23]. 

A large number of studies have been carried on because of the importance of the electrochemical 

double layer. Several models for the double layer have also been proposed, however, there is no general 

model that can be used in all the experimental cases. This is due since the structure of the double layer 

and its capacity depend on various parameters such as the material of the electrode (i.e. metal, carbon, 

semiconductors, the electrode porosity, the presence of other films on the surface), the type of solvent, 

the type of supporting electrolyte, the temperature and the specific adsorption degree of ions and 
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molecules [24]. In the Gouy-Chapman model, ions are considered as punctual charges, water as a 

continuous medium and the electric potential distribution can be described and predicted using the 

Poisson-Boltzmann equation [20]. This model has been used in various processes such as heavy metal 

adsorption and ion transport through membrane channels [25,26]. For higher ions concentrations and 

higher superficial charge density, it is possible to obtain a better description of the electrochemical 

double layer using the Monte Carlo method [27]. Torrie et al. used this method to generate more 

accurately numerical results for the original model of electrolytes 2:1 and 2:2, near to a flat wall 

uniformly charged within the concentration range from 0.005 to 0.50 M and for positive and negative 

charged surfaces up to 25 μC/cm2 [28].  

 

3.1.1.1. The adsorption process 

The adsorption corresponds to the accumulation process of particles on a surface. Molecules of a 

solute get concentrated on a surface by the action of intermolecular forces between them during the 

adsorption process. The adsorbed species is known as the adsorbate and the surface on which takes place 

the adsorption process is called substrate or adsorbent [29]. The adsorption processes are used in the 

production of several biotechnological materials, such as amino acids, proteins and antibiotics, among 

others [30,31] materials. In order to obtain a greater efficiency in each one of them, different factors 

have to be studied and considered in detail: the adsorption type according to the interaction type that 

occurs between the solute and the adsorbent, the type of adsorbent, the relations at the equilibrium and 

the adsorption kinetics. 

We can distinguish two general types of adsorption, although there is also the possibility of having 

an intermediate behavior. First type corresponds to the physical adsorption, also known as 

physisorption. This process is similar to a condensation process and is not a specific adsorption. 

Molecules are generally kept together through weak interactions, i.e. Van der Waals interactions type, 

like bipolar, dispersion and/or induction interactions. Thus, the physisorption is an exothermic process 

in which the released heat, ΔHads, whose value varies between 20 and 40 kJ/mol, is similar to 

condensation enthalpies of adsorbed species [32]. Physical adsorption cannot explain the catalytic 

activity of the solids in the case of interactions between stable molecules, since it is not possible to 

obtain a significant decrease in the activation energy. In the cases when superficial reactions of atoms 

and free radicals sometimes involve small changes in the activation energies, the physical adsorption is 

considered as an important process. As the temperature increases, the physical adsorption degree 

decreases rapidly [33]. This process does not depend on the heterogeneity or the irregularities in the 

nature of the surface; however, it is directly proportional to the extent of the surface. Physisorption 

studies are useful to determine properties of solid catalysts [34]. 
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The second type of adsorption corresponds to a non-specific adsorption [35], which involves 

stronger forces than the physical adsorption forces and is known as chemisorption. Langmuir [36] 

proposed that the adsorbed molecules are retained on the metal surface through valence forces of the 

same type as the forces occurring between atoms. The values for the chemisorption heats are higher 

than those of the physisorption processes and support the theory that this type of adsorption is based on 

valence bonds. Due to the high adsorption heat, the energy of molecules that have been adsorbed 

through a chemisorption process may be different from the energy of the molecule [37]. Thus, the 

activation energy for such reactions can be smaller than that of a homogeneous process. There are two 

types of chemisorption: the activated and the non-activated. In first type, the chemisorption rate varies 

with temperature, following the finite activation energy of Arrhenius equation. The non-activated 

chemisorption occurs very quickly, suggesting an activation energy close to zero [38]. Figure 3.1 shows 

the effect of temperature on physisorption and chemisorption and Table 3.1 summarizes the differences 

between both processes. 

 

 

 

 

 

 

 

Figure 3.1. Schematic representation of the temperature effect on the physical and chemical adsorption processes 

[39]. 

 

Table 3.1.- Differences between physisorption and chemisorption.  

Parameter Physical adsorption  Chemical adsorption 

Temperature range Low temperatures  Generally high temperatures. 

Adsorption heat Low (ΔHcond) High, as heat reaction.  
 

Activation energy rate Very fast, low Ea. Un-activated: low Ea. 
Activated: high Ea.  

Action rate It is possible with multiple layers.  Monolayer 

Reversibility  Highly reversible. Generally irreversible. 

 
Importance 

Important for determining the 
surface area and pore size.  

Important for determining the active 
centers are and for the evaluation of surface 
reactions kinetics.  
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3.1.1.1.1. Adsorption isotherms  

The relation between adsorption and the adsorbate concentration in the bulk solution is known as 

an adsorption isotherm. The adsorption of the component i depends on the temperature and 

concentration of the components within the phase, Cvi (Equation 3.1). 

Ai = f (T,Cvi )                          (3.1) 

Generally, for one monolayer adsorption, the adsorption isotherm is described by the following 

expression [40]: 

qi = f (Cvi )                   (3.2) 

where θ represents the fraction covered. 

Henry’s isotherm [41] describes the simplest case of adsorption, in which the surface coating is 

proportional to the adsorbate concentration in the bulk of the solution (Equation 3.3). 

q = BCv
                   (3.3) 

where Cv is the concentration in the bulk of the solution and B is the adsorption coefficient on m3/mol 

and depends on the adsorption heat as follows:  

B= B0 exp qad / RT( )                              (3.4) 

In 1961, Irving Langmuir determined the equation that relates molecules adsorption on a solid 

surface with concentration or gas pressure of the medium that is located on the solid surface at a 

constant temperature. For the Langmuir isotherm, the following assumptions are considered for the 

development [42]:  

1. The surface is homogeneous. 

2. There is no lateral interactions, this is, desorption energy is constant. 

3. The maximum adsorption corresponds to a monolayer. 

4. The number of available sites in the adsorbate for the adsorption is limited. 

The expression that describes the values for the coated fraction and the number of available sites 

for the adsorbate to adhere on the surface is the following: 

q =
BCv

(1+ BCv)
                           (3.5) 
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However, the Langmuir isotherm has some limitations because it assumes that the heat of 

adsorption is independent of the surface coating. It is noteworthy that, in many cases, the adsorption 

positions are not fully equivalent and the firsts positions that will be occupied will be those in which a 

more satble bond is present. Furthermore, interactions between adsorbed molecules can be significant. 

Thus, the adsorption enthalpy will not be constant, allowing the mobility of adsorbed molecules and the 

formation of other layers by physisorption onto the adsorbed monolayer by chemisorption. The 

consideration of the exponential variation of the heat magnitude with the surface coating is part of 

Freundlich’s proposal (1909). In this isotherm there is no limit coating and a multimolecular adsorption 

is proposed, not only monomolecular. The Freundlich adsorption isotherm is expressed as follows: 

ma

m
= KC1/n                   (3.6) 

where ma is the adsorbate mass, m is the adsorbent mass, KF and 1/n are constants for a given 

adsorbent and adsorbate at a constant temperature. 

Because of the limitations of Langmuir’s model, other adsorption isotherms have been proposed in 

order to reproduce more adequately the observed adsorption behavior. One of these empirical isotherms 

is Temkin’s isotherm [43], which assumes that adsorption is characterized by an uniform distribution of 

binding energies and that the adsorption heat decreases linearly with increasing the coated fraction due 

to adsorbent-adsorbate interactions. Langmuir’s isotherm was then modified by Frumkin [44] to take 

account of both attractive and repulsive lateral interactions between the adsorbates. Frumkin proposed 

an expression for these interactions considering that repulsions or attractions between them decrease or 

increase the heat of adsorption [44]. 

 

3.1.2. Electrochemical double layer  

       3.1.2.1. Surface properties  

The electrochemical double layer characteristics vary and depend on the properties of each 

interface and can be separated in two types: polarizable or non polarizable, depending on the interfacial 

resistance [20]. The concept of equivalent circuits can easily explain the separation. An equivalent 

circuit composed of a capacitor, representing the double layer capacitance, a faradaic resistance and the 

solution resistance, Cdl, Rf and Rs, respectively, can represent the interfacial region. If the value of the 

faradaic resistance is very large, as for the case of ideally polarizable interfaces, the equivalent circuit 

can be simplified to the series coupling of a double layer capacitor with the solution resistance. In an 

ideally polarizable surface, any electrochemical reaction takes place, only non-faradaic processes such as 

adsorption. 
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Increasing the electrical potential at the metal surface will cause the accumulation of charge in one 

of the plates of the double layer capacitor, preventing electric current to pass through the interface. On 

the other hand, if the faradaic resistance is very small, such as for the Ag/AgCl surface in contact with a 

NaCl solution, the equivalent circuit can be represented by the series coupling of the solution resistance, 

the faradaic resistance and a capacitor in parallel. Any change in the electric potential at the surface 

causes the flow of an electrical current through the interface, which is known as ideally non-polarizable. 

 

3.1.3. Electrochemical double layer structure   

            3.1.3.1. Helmholtz-Perrin model 

The Helmholtz model was introduced in 1879 and is considered as the simplest model that explains 

interface metal/solution structure. This model proposes that all the charge excess on the side of the 

solution is located at a fixed distance from the electrode, XHP, and is on the same plane [45]. Helmholtz 

also considered the arrangement of positive and negative charges rigidly on each side of the interface, 

i.e. the metal surface and the solution, respectively (Figure 3.2). In this model the charge in the solution 

borders the electrode surface and the presence of two charge planes with different polarity located at a 

distance X are considered. 

 

 

 

 

 

Figure 3.2 Schematic representation of Helmholtz model. 

 

According to the Helmholtz-Perrin model, the interface can be compared to a parallel plate 

capacitor, in which a plate would consist of the metal/solution surface and the other would contain 

oppositely charged ions in solution [22]. The separation between the two plates corresponds to the 

distance XHP. For this model, the potential variation in the double layer with respect to the distance 

from the surface is linear and is given by the following equation: 

Cdl =
ereo

XHP

                           (3.6) 
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where Cdl corresponds to the double layer capacitance, εr to the dielectric constant of the medium, εo to 

the vaccum permittivity, XHP the thickness of the electrical double layer and εrεo is equivalent to the 

dielectric constant of the medium (εr). 

However, it is observed experimentally that the capacitance of the double layer varies with the 

electrode potential and the ion concentration in the solution, which cannot be predicted by the 

theoretical model of Helmholtz. In this way, the obtained results by using this model are not totally 

satisfactory.  

 

            3.1.3.2. Gouy-Chapman model  

Gouy and Chapman proposed a model considering both the potential and the electrolyte 

concentration contribution on the structure of the electrical double layer. Their proposal was developed 

between 1910 and 1913. Both of them contributed with several amendments to the Helmholtz model to 

take into account that the arrangement of the ions takes place along a finite solution thickness, called 

diffuse layer, which is related to the thermal agitation and to the balance of the metal surface charges 

[28]. The presence of the ions diffuse layer represents a great difference with Helmholtz model, where 

the compact layer is the only one considered. The structure of the diffuse double layer proposed by 

Gouy-Chapman is illustrated in Figure 3.3 a and Figure 3.3 b shows the potential decay as a function of 

the distance X.   

a)      b) 

 

 

 

 

Figure 3.3 a) Schematic representation of Gouy-Chapman model and b) Potential profiles through the diffuse 

layer for a solution 10-2 M in a 1:1 electrolyte at 25 ºC [22].  

 

In order to maintain the overall electroneutrality of the system, it is necessary that charge excess 

on the side of the surface attract an equivalent amount of oppositely charged ions in the diffuse layer, 

wherein the electric potential distribution follows Poisson's equation: 
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Ñ2y = -
r

e
                                           (3.7) 

where ∇ 2 is the Laplacian operator, ψ is the relative electrical potential between the diffused layer and 

the bulk of the solution, εr is the dielectric constant of the medium and ρ is the charge density volume 

given by: 

r = Nizie
i

å                                       (3.8) 

In this equation, zi is the valence of ion i, e is the electron charge and Ni is the number of ion of the 

species i. According to the Boltzmann distribution it is possible to express Ni as follows: 

Ni = Nio exp
-

zie(f-fb )

kT

é

ë
ê

ù

û
ú

                         (3.9) 

where k is the Boltzmann constant, T is the absolute temperature, Nio is the ions concentration in the 

bulk of the solution and and b are the absolute electrical potentials in the double layer region and in 

the bulk of the solution, respectively. It is noteworthy that the electrical potential of reference is located 

in the bulk of the solution, therefore, b =0 and can be represented by Ψ. By combining Equations 3.7, 3.8 

and 3.9, the Poisson-Boltzmann equation is obtained: 

Ñ2y = -
e

e
Niozieexp

-ziey

kT

æ

è
ç

ö

ø
÷

i

å                      (3.10) 

If the solution contains only electrolyte type z:z, then Equation 3.10 can be simplified for a one-

dimensional system as follows: 

d2y

dx2
=

2Noze

e
sinh

zey

kT

æ

è
ç

ö

ø
÷               (3.11) 

This equation corresponds to a second-order differential equation that can be integrated 

multiplying both sides by 2 (dψ/dx): 

d

dx

dy

dx

æ

è
ç

ö

ø
÷

2

dx =
4Noze

e
sinh

zey

kT

æ

è
ç

ö

ø
÷dyòò              (3.12) 

By integrating Equation 3.7 from ψ=0 and dψ/dx=0, corresponding to the bulk of the solution to 

any point of the double layer, the following first-order differential equation for ψ is obtained: 
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dy

dx
=

-2kkT

ze
sinh

zey

2kT

æ

è
ç

ö

ø
÷               (3.13) 

where κ is the Debye-Huckel parameter for an electrolyte of type 1:1 and NA is Avogadro's number. 

The charge density in the diffuse layer, σd, is related to the charge density volume, ρ, as follows: 

s d = r dx
d

¥

ò                  (3.14) 

From Equation 3.2, ρ can be also expressed as the second order derivative of the electric potential 

for a dimensional system, therefore: 

s d = e
¥

d

ò
d2y

dx2
dx =e

dy

dx

é

ë
ê

ù

û
ú

¥

d

              (3.15) 

Since ψ=0 when x→∞, then the derivative (d/dx)x


∞=0 and d=(d/dx)x=d. From Equation 3.8 

it is possible to obtain a very useful expression between ψd and σd: 

s d =
-2ekkT

ze
sinh

zeyd

2kT

æ

è
ç

ö

ø
÷               (3.16) 

It is worth mentioning that, by definition, the differential capacitance of the diffuse double layer, 

Cdl, can be expressed as follows: 

Cdl = -
ds d

dyd

                                   (3.17) 

Taking the derivative of Equation 3.16 with respect to ψd, then the expression for Cdl can be 

described as: 

C dl =ek cosh
zeyd

2kT

æ

è
ç

ö

ø
÷                 (3.18) 

Based on the Equation 3.18, Figure 3.4 shows the dependence of Cdl with ψd. It can be observed that 

Cdl values are very small at low electrolyte concentrations and very high at greater electrolyte 

concentrations.  
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Figure 3.4. Capacitance of the diffuse layer as a function of potential at various concentrations according to 

Equation 3.13. Solid line: 0.1 M, long broken line: 0.01 M, short dashed line: 0.001 M, dotted line: 0.0001 M 

[23]. 

 

The importance of this model is due because it considers the dependence of the capacitance with 

potential. The experimental behavior of dilute solutions at potentials near to the minimum (zero charge 

potential where the capacitance has a minimum value) has been well described by this model. However, 

to apply this model it is required to assume that the dielectric constant does not depend on the distance 

of the electrode surface, which is not theoretically correct [45]. The electrostatic energy is regarded as 

the only energy making ions to come to a definite distance, X, from the electrode, ignoring other type of 

ion-ion interactions, which are considerable at higher adsorbate concentrations. 

 

            3.1.3.3. Stern model  

Stern's model was proposed in 1924 and features a combination of the two models described above, 

i.e. the Helmholtz and the Gouy-Chapman models. Figure 3.5 a shows the schematic representation of 

an ideally polarizable interface divided by the inner Helmholtz plane (IHP) and the outer Helmholtz 

plane (OHP). The IHP corresponds to the geometric place of the adsorbed and dehydrated ions, while 

the OHP corresponds to the plane of closest rapprochement of the hydrated counterions [21]. Ions 

found in the outside layer of the OHP are mobile and their distribution depends on the equilibrium 

between electrostatic interactions and thermal diffusion, therefore, this layer corresponds to the diffuse 

layer or Gouy Chapman’s layer (Figure 3.5 b). Moreover, the ions located outside the OHP are 

immobilized as they are strongly bound to the charged surface (specific adsorption). The immobile ions 

constitute the Stern layer. 
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a)      b) 

 

 

 

 

 

 

 

 

Figure 3.5. a) Schematic model of the electrochemical double layer showing the specifically adsorbed cations, the 

highly hydrated anions and the cations in the negatively charged surface and b) potential profiles [23]. 

 

Stern considered that Helmholtz and Gouy-Chapman’s models are valid and exist simultaneously, 

so that some of the charged ions are fixed and form a plane in the proximity of the metal surface 

(Helmholtz excess charge) (qH) and the other part of the ions are randomly distributed in the solution, 

forming the diffuse layer with some charge excess of Gouy Chapman (qGC). In this way, the charge on the 

surface (qSA) is given by the addition of both charges: 

qSA = qH +qCG
                                   (3.19) 

Whereas the electrochemical double layer behaves as an electrical capacitor, then, when the 

superficial potential increases, the superficial charge density increases too. The separation of the 

interface in two regions is equivalent to the separation of the double layer total capacitance by the 

contribution of two capacitances, the Helmholtz capacitance (CH) and the Gouy-Chapman capacitance 

(CGC). Therefore, the ratio between the double layer capacitors (Cdl) can be represented as follows: 

1

Cdl

=
1

CH

+
1

CGC

                            (3.20) 
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3.1.4. Generalities of polymers and polyelectrolytes adsorption onto a surface 

Interactions between polymers and surfaces are controlled by different parameters such as the 

surface properties (chemical nature and roughness, among others), the nature of the solvent, the 

polymer properties (molecular weight, concentration, chemical structure) and external factors as 

temperature and ionic concentration [46, 47]. In the case of polyelectrolytes, electrostatic interactions 

also contribute during the adsorption process onto the surface. These interactions are related to charge 

densities of both the polyelectrolyte and the surface, pH and salt concentration of the solution [48].  

Polyelectrolytes adsorption has been studied in the last four decades and several theoretical models 

have been developed in order to understand the adsorption mechanism of theses molecules [49-53]. 

Wiegel et al. [54] proposed one of the first analytical calculations of the polyelectrolyte adsorption at a 

charged surface by calculating the adsorption threshold and the thickness of the adsorbed chain as a 

function of salt concentration, supposing the Gaussian statistics of a polyelectrolyte chain. Borisov et al. 

[55] proposed a scaling theory of the conformations of a weakly charged polyelectrolyte near a charged 

surface, which were confirmed by computer simulations [56]. Schee and Lyklema [57] showed that very 

thin adsorbed layers result from strong repulsions between charged monomers and that if the repulsion 

is screened by adding salt, the adsorbed amount of polyelectrolyte increases and the adsorbed layer gets 

thicker. Recently, the theoretical interest in the polyelectrolyte adsorption process is due to the 

importance of understanding the formation of multilayer’s resulting from the successive addition of 

positively and negatively charged polyelectrolytes on charged surfaces from aqueous solutions [58].  

A traditional characterization of the adsorption process of a polymer includes the determination of 

the nature of the interactions, the association constant, the coverage degree, the conformation of the 

polymer adsorbed at the surface and the structure of the polymer layer. The origin of the interactions 

between the polymers and the surface depend on the chemical structure of interacting species at local 

scale range, as hydrogen bounds and hydrophobicity, and at a long-range scale. Usually, adsorption 

isotherms are made-up in order to determine the association constants and the maximum amounts of 

adsorbed polymers onto the surface [59].  

During the adsorption process of the polymer or polyelectrolyte onto the selected surface, the 

conformation may vary leading to the formation of segments with polymer in contact with the surface 

(trains) and segments of polymer that are not in contact with the surface (loops). Figure 3.6 presents a 

schematic representation of the equilibrium conformation of a polymer adsorbed onto a surface. 
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Figure 3.6. Schematic representation of the equilibrium conformation of a polymer adsorbed onto a surface. 1) 

trains, 2) loops and 3) the end of the chain free in solution.  

 

Perkel and Ullman [60] proposed a dependence of the adsorbed amount of polymer () with the 

molecular weight, from which it is possible to know about the polymer structure at the surface. In this 

manner, if is independent on the molecular weight, then the polymer is assumed to adsorb flat on the 

surface, however, if presents a variation with the molecular weight, then the presence of trains and 

loops is indicated.  

Polyelectrolyte charge density gives information on the conformation of the adsorbed molecule 

onto the surface. If polymer charge density is low, then the polyelectrolyte chains will only be attached 

at surfaces sites leading to the formation of extended loops. On the contrary, if polymer charge density 

is high, then intrachain electrostatic repulsions will make the chains segments to become stiffer, leading 

to the formation of trains at the surface. Figure 3.7 a and b show a schematic representation of the 

conformation models of the adsorption of polyelectrolytes on a charged surface [46, 53].  

 

 

 

 

 

 

Figure 3.7. a) Formation of a 3D-layer due to polyelectolyte loops creation (low charge density) and b) flat 

adsorption on the oppositely charged surface (high charge density) [53].  
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3.2. Overview of the Electrochemical Impedance Spectroscopy (EIS) technique  

Electrochemical Impedance Spectroscopy (EIS) is considered as a relatively modern technique, 

sensitive to small changes in the system, allowing the study of the properties of different materials and 

electrochemical systems even in less conductive medium. This technique is based on applying a 

sinusoidal potential perturbation to the studied system and recording the current response within the 

electrochemical cell, at a given frequency range. The relation between the applied potential and the 

current intensity monitored as a response is known as the impedance of the system and corresponds to a 

transfer function in the Laplace domain (Figure 3.8). 

 

 

 

 

Figure 3.8. Impedance response of a system. 

 

3.2.1. Interpretation of the impedance spectra by equivalent circuits 

The combination of different passive electrical parameters represents a descriptive method for the 

impedance response of a system over a wide range of frequencies [61]. The components are usually: 

resistances (R), associated with the conductivity of the medium, i.e. the solution resistance or the 

electrode reactions resistance, also known as the charge transfer resistance; capacitors (C), 

corresponding to the charging of the electrochemical double layer; and inductors (L), related to 

relaxations taking place at the interface and adsorption processes relaxations. Different combinations of 

these electrical parameters are known circuits as "equivalent electric circuits". 

The representation of the impedance data of a system can be performed by using different types of 

graphics. One of them corresponds to the complex plane graph or Nyquist plot, in which the response of 

the imaginary part (-Z’’) as a function of the real part (Z') of the impedance is shown. The impedance 

response generated by several well known processes and the equivalent circuits that simulate the 

obtained behavior are presented in the next figures. The simplest case corresponds to a series 

combination of a resistance and a capacitor (Figure 3.9), where the impedance response is reflected in a 

number of points at different frequency values, wherein the value -Z’’ tends to zero with the increase of 

the frequency. The system behavior reflects the arrangement of charges in the electrochemical double 

layer. The constant value of the real part of the impedance corresponds to the solution resistance. 
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Figure 3.9. Nyquist diagram for a circuit resistance (R)- capacitor (C) coupled in series. Frequency in Hz. Insert: 

equivalent circuit representing the impedance response.  

 

The second case represents the parallel coupling of a resistor and a capacitor. Figure 3.10 shows the 

impedance response in a Nyquist plot, where it is possible to observe the presence of a semi-circle in the 

complex plane that corresponds to the simple analogy of a Faradaic reaction on an electrode, which 

takes place independently, with an interfacial capacitance Cdl, related to the structure of the 

electrochemical double layer. The time constant of the process can be calculated with the reciprocal of 

the frequency at the maximum point of the semicircle and corresponds to the coupling of the resistance 

with the interfacial capacitance. 

 

 

 

 

 

 

 

Figure 3.10. Nyquist diagram for a circuit resistance (R)- capacitor (C) coupled in parallel. Frequency in Hz. 

Insert: equivalent circuit representing the impedance response.  
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Figure 3.11 shows the graphical representation of an electrochemical reaction, in which the 

presence of a resistance coupled in series with the parallel R-C circuit is depicted by a shift of the semi-

circle to higher values of the axis corresponding to the real part of the impedance. This resistance 

represents the solution resistance, Rs.   

 

 

 

 

 

 

 

 

Figure 3.10. Nyquist diagram for a series coupling of the solution resistance, Rs, with the circuit in parallel: 

resistance (R)- capacitor (C). Frequency in Hz. Insert: equivalent circuit representing the impedance response.  

 

Finally, another fundamental equivalent circuit is Randles circuit, in which the charge transfer 

resistance, Rct, is coupled in series with a Warburg impedance, which depends on frequency and 

corresponds to a diffusive process.  

 

 

 

 

 

 

 

Figure 3.11. Nyquist diagram of Randles circuit. Frequency in Hz. Insert: equivalent circuit representing the 

impedance response.  
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The analysis of a Randles circuit has two limiting cases: first one is identified at low frequencies, 

when ω approaches 0, here, the behavior is dominated by the species diffusion and the response 

corresponds to a straight line and a slope of 0.5. The second is identified at high frequencies, at which 

the Warburg impedance is a very small value compared to the Rct value, in this case, the answer is a 

semicircle. Figure 3.11 shows the impedance response of a charge transfer process controlled by 

diffusion in semi-infinite layer. 

On the other hand, there are also mathematical models that allow obtaining a detailed description 

of the process under study and to get a greater insight on its kinetics [62]. Such models are known as 

reaction mechanisms in Electrochemical Impedance Spectroscopy. This approach requires the 

development of mathematical models that take into account both the experimental factors and the 

physicochemical properties of the system. The physicochemical properties distribution, such as charge 

distribution and species concentration is determined by the charge and mass balance subject to the 

boundary conditions of the system. 

In this thesis, the analysis of the experimental data will be performed by using equivalent circuits, 

with the prospective of taking into account the obtained results and parameters to propose, in a future, a 

reaction mechanism for the adsorption process of DNA onto metal surfaces.  

 

3.2.2. Adsorption impedance theory 

Specific adsorption of ions on metal surfaces has been investigated for several years and by different 

research groups [14-18,63,64]. Most studies focus on thermodynamic and structural aspects of the 

adsorption process, which goal was to determine the coated surfaces of a specific surface area by a 

specific ion to characterize the structure of the adsorbed layer [65,66]. The adsorption impedance 

theory was initiated by the works of Ershler [22], Frumkin and Melik-Gaykazyan [19] in the 80's. One of 

the simplest cases that explains the adsorption impedance theory is the adsorption process of a species, 

which can be simulated by an equivalent circuit including a resistance solution (Rs), a double layer 

capacitance (Cdl) and three electrical parameters coupled in series that describe the adsorption process, 

i.e. an adsorption resistance (Rad), a Warburg impedance (Wad) and an adsorption capacitance (Cad). The 

specific meaning of each electrical parameter will be presented in the following section.  

 

3.2.2.1. Adsorption impedance expression and its equivalent circuit 

All electrodes show a capacitance called the double layer capacitance (Cdl), independently of the 

Faradaic reactions. While working at open circuit potential, the reflected response in the measurements 

is due to a non-faradaic process. Therefore, the impedance response observed is the arrangement of 
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charges at the interface due to the transport of species from the bulk of the solution to the vicinity of the 

electrode. The response is mostly capacitive. According to the adsorption impedance theory [68], 

impedance data can be transformed into complex capacitance with the following equation:  

C(w) =
1

Z(w)- Rs[ ] × A× jw
                           (3.21) 

where C(ω) is the complex interfacial capacitance, Z(ω) is the complex impedance, Rs is the solution 

resistance, Ae is the area of the electrode and j is the imaginary number. The equivalent circuit that 

allows simulating this response is represented in Figure 3.12. 

 

 

 

 

 

Figure 3.12. Equivalent circuit representing the complex interfacial capacitance. 

The physical meaning of each of the electrical parameters are described as follows: the double layer 

capacitance (Cdl) is located in the limit when the frequency tends to infinite, ω → ∞, and is also known 

as CHF, i.e. capacitance at high frequencies. The adsorption capacitance Cad is located in the limit when 

the frequency tends to zero, ω → 0, and is also known as CLF, i.e. capacitance at low frequencies. Cad 

value can be evaluated as follows: Cad = CLF- CHF, and is usually modeled by a constant phase element 

(CPE) for a non-ideal capacitor. The adsorption resistance, Rad, indicates the ease of the adsorbate to 

move from adsorbed to the pre-adsorbed state. This value decreases as the concentration increases and 

tends to zero. The diffusion Warburg impedance, Zw,ad is related to the mass transfer of the adsorbate, 

including the adsorbate diffusion from the bulk of the solution to the Helmholtz plane. 

 

3.2.2.2. Graphic representation of complex impedance data transformed into complex 

capacitance data  

Due to its physical meaning, C(ω) is called interfacial capacitance and can be represented through 

complex diagrams or Bode-type graphics. Figure 3.13 shows the changes of the capacitance spectra 

shape with the adsorption rate, i.e. the spectra are arcs, semicircles and “depressed arcs” for the extremes 
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of slow and fast adsorption, respectively. The capacitance spectra with a skewed-arc shape represents 

the intermediate cases of the adsorption rate [68]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Illustration of the changes on the capacitance spectra shape with the adsorption rate [68]. 

 

3.3. Experimental study of the adsorption of DNA molecules onto platinum electrodes  

3.3.1. Experimental conditions for the Pt-DNA/TE buffer interface  

The description of the reagents, buffer Tris-HCl/EDTA preparation and DNA/Buffer solutions 

are presented in Sections 2.3.1., 2.3.2. and 2.3.3. of this work. 

 

3.3.1.1. Double-layer capacitance measurements  

DNA adsorption at the electrode was monitored in terms of double-layer capacitance response in a 

wide range of potentials. Capacitance measurements were carried out in a 1260 FRA instrument coupled 

to a 1287 potentiostat both from Solartron, Inc. A two identical platinum electrode cell with a surface of 

0.25 cm2 each was selected for the counter and work electrodes and a satured calomel electrode (SCE) 

was used as the reference The following parameters were chosen: potential perturbation amplitude 

10mV, frequency 1 kHz and a polarization range from -1.1 to 1.3V vs. SCE. All measurements were 
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carried out at three different temperatures (i.e., 20, 30 and 40 ºC), controlled by the recirculation bath. 

Figure 3.14 shows the experimental setup for double-layer capacitance measurements. 

 

3.3.1.2. Impedance measurements  

EIS measurements were carried out in a 1260 FRA instrument coupled to a 1287 potentiostat both 

from Solartron, Inc. Potentiostatic mode at open circuit potential was used for each measurement, 

applying potential perturbation amplitude of 10 mV in a frequency range of 1 kHz-1 mHz. A two 

identical platinum electrode cell with a surface of 0.25 cm2 each one was used to obtain impedance 

spectra. Before each EIS experiment routinely a cyclic voltammetry in 0.5 M H2SO4 at 50 mV/s was 

applied to guaranty the cleanliness of the electrodes. Commercial software Zplot® was used to collect 

impedance data, and commercial software Zview® allowed calculating theoretical parameters from an 

equivalent circuit able to fit the experimental results. All measurements were also carried out at the 

temperatures of 20, 30 and 40 ºC, controlled by the recirculation bath and allowing a rest period for 

each sample to ensure a steady-state measurement. Figure 3.14 shows the experimental setup for EIS 

measurements.  

 

 

 

 

 

  

 

Figure 3.14. Experimental setup used for double-layer capacitance and EIS measurements. 

 

3.3.2. Experimental results and discussion for the Pt-DNA/TE buffer interface  

3.3.2.1. Differential capacitance curves of the double layer as a function of potential  

Figure 3.15 shows the typical double-layer capacitance curves obtained for the TE buffer in absence 

and presence of DNA concentrations of 0.1, 0.4 and 0.6 mg/mL at 30 °C. In all the cases, when DNA is 

present, the capacitance-potential dependence shows a decrement of double-layer capacitance values 
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observed in the TE buffer solutions at more positive polarization potentials than -0.485 V vs. SCE, 

suggesting that adsorption starts at this polarization. Since the polarization potential is an important 

parameter in any adsorption-desorption process, it could influence the structure and orientation of any 

charged adsorbate and consequently, the impedance response will depend on it [15-16]. Since our study 

is focus on the Pt-DNA/TE buffer interface and taking into account that DNA is negatively charged 

polyelectrolyte, then the polarization corresponding to the open circuit potential, at which the 

impedance measurements are carried out needs to be in the polarization range at which DNA is being 

adsorbed onto the electrode. In this figure it is also possible to observe that double-layer capacitance 

values increase when DNA concentration increments. On the other hand, at low DNA concentrations, 

the double-layer capacitance values reach a minimum at 15 mV vs. SCE, which is not visible at higher 

DNA concentrations. Based on these observations and according to the classical double-layer theory 

[69-70], we have related the minimum observed in the double-layer curves with the potential of zero 

charge (PZC), so at more positive potentials than the PZC, DNA adsorption will be highly favorable. In 

general, the behavior observed at the double-layer capacitance curves shown in Figure 3.15 is consistent 

with the double-layer capacitance dependence on the adsorbate concentration as was early demonstrated 

by Grahame and Devanathan [16,63]. Furthermore, the dependence of PZC with the adsorbate 

concentration is not described by the Esin-Markov effect [64], this fact strongly suggests that a non-

specific adsorption of DNA molecules is taking place at the electrode surface. Thus, all the adsorption 

process cited in this manuscript is related to the adsorption of the negatively charged DNA molecules. 

Similar behavior has been observed at the other studied temperatures.  

 

 

 

 

 

 

 

 

Figure 3.15. Double-layer capacitance curves as a function of polarization potential obtained for the TE buffer 

in absence (dotted line) and presence (continuous line) of DNA concentrations of at 30 ºC.  
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3.3.2.2. Complex impedance and capacitance spectra monitored at OCP 

Impedance measurements were carried out at open circuit potential which was around of 300 mV 

vs. SCE, this potential assures both, adsorption and preservation of DNA molecules (i.e. chemically 

unmodified). Figure 3.15 shows some raw impedance data presented as complex plane diagrams for the 

adsorption of DNA on the platinum electrode with the temperature and concentration of DNA as 

parameter.  

 

 

 

 

 

 

Figure 3.15. Raw impedance data for DNA concentrations of 0.3, 0.8 and 2.5 mg/mL at the temperatures of 

20, 30 and 40 ºC. Frequency in Hz.  

Impedance was then transformed into complex capacitance C() according to Equation 3.21. Figure 

3.16 shows a set of plots that reveal the results obtained from the adsorption study of DNA molecules 

onto the platinum electrode at different concentrations and temperatures by using impedance 

measurements.  Similar behavior is observed for the other concentrations and temperatures studied in 

this work. In all cases, the obtained results are presented and interpreted by using the adsorption 

impedance theory, as has been exhaustively proposed by Pajkossy et al., [71-75] among others authors 

[63-64].   

The trend in all spectra shown in Figure 3.16 is consistent with the trend of capacitance spectra 

observed in an adsorption process, as was expected [14-18]. At the three temperatures, the complex 

capacitance presents a similar typical frequency (f) dispersion depicted as a part of a well-defined 

depressed arc-shaped (1kHz<f<0.1) and an ascending curve at low frequencies (f< 0.1 Hz). At high 

frequencies, our spectra can be adequately modeled by a similar equivalent circuit proposed by FMGR 

[19], thus the complex capacitance dispersion is described by the serial arrangement of three electrical 

elements: an adsorption resistance (Rad) related to a slow electrosorption process, a constant phase 

element (CPE), associated to either the surface heterogeneity or to the distributed time constant 

[71,72], which represents in this case the non-ideal adsorption capacitance (Cad) and a Warburg-like 

diffusion impedance (ZW,ad) associated to the diffusion of the adsorbing DNA molecules at the interface.  



    

 124 

In order to completely describe the interface, the double-layer capacitance (Cdl) is considered by adding a 

capacitor in a parallel arrangement. Cdl can be associated to the real complex capacitance value obtained 

at high frequencies limit, while Cad is related to the difference of the real part of the capacitance obtained 

at low and high frequencies limits.  According to the impedance adsorption theory [14-19], the complex 

capacitance spectra at high frequencies may present two limiting cases either as a perfect loop or a 

depressed one [15,64]: if the spectra are perfect loops, then the adsorption process is slow and 

controlled by the electrosorption phenomena. On the other hand, if the spectra depict depressed loop, 

the adsorption is fast and controlled by the adsorbate diffusion. The ascending curve observed at lower 

frequencies than 0.1 Hz is associated to an incipient charge transfer process, which was taken into 

account by adding an additional resistor (Rct) in parallel in one of the branches of the equivalent circuit 

[73]. Rct is associated to a possible and incipient faradaic process from reaction of impurities or oxygen 

traces presents at the working solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Complex capacitance data for DNA concentrations of 0.3, 0.8 amd 2.5 mg/mL at the temperatures 

of 20, 30 and 40 ºC. Frequency in Hz.  
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A schematic representation of the equivalent circuit is presented in Figure 3.17 and its 

corresponding complex capacitance transfer function is given by the following expression:  

C(w) = Cdl +
1

Rad jw +s ad jw +
( jw)1-n

Cad

+
1

Rct jw
            (3.22) 

where σad(j)-1/2 corresponds to the diffusional impedance with its coefficient σad.  On the other hand, n is 

the inherent parameter of the CPE [71,72] according to: 

 CPE =
1

( jw)nCad

                          (3.23) 

 

 

 

 

 

 

Figure 3.17. Equivalent circuit representing the complex capacitance for the Pt-DNA/ TE buffer interface. 

 

The equivalent circuit shown in Figure 3.17 and Equation 3.22 were employed to interpret the 

experimental complex capacitance data obtained at each one of the experimental conditions presented in 

this work. In Figure 3.16 it is possible to observe a good correlation between the experimental data and 

the theoretical spectrum for the equivalent circuit described previously. The resulting fittings are 

depicted as continuous lines in Figure 3.16 and the obtained electrical parameters are summarized in 

Table 3.2.   
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Table 3.2.- Electrical parameters obtained by fitting the equivalent circuit in Figure 3.17. to the experimental 

complex data for 0.3, 0.8 and 2.5 mg/ml at 20, 30 and 40 ºC.  

CDNA 
mg/mL 

T 
ºC 

Cdl 

F/cm2 

Cad  

F/cm2 
n Rct 

 cm2 

Rad 

 cm2 
σad 

 cm-1 s1/2 
χ2 

 

    0.3 

20 27.3 133.2 0.936 4.7x105 13.1 1909.7 0.006 

30 15.6 141.4 0.892 2.4x105 4.3 911.3 0.008 

40 30.25 135 0.870 1.3x105 13.38 879.7 0.004 

 

    0.8 

20 22.4 158.9 0.961 5.54x105 0.6 1213.5 0.004 

30 9.3 170.5 0.94 2.77x105 0.5 666.3 0.004 

40 17.9 175.03 0.927 1.4x105 0.5 674.3 0.012 

 

    2.5 

20 33.4 144.6 0.954 5.9x105 0.37 1244.4 0.009 

30 37 132.7 0.96 4.3x105 0.06 1191.1 0.003 

40 30.6 152.6 0.932 2.3x104 0.25 715.2 0.003 

 

From this table we can observe that the temperature does not have a noticeable effect on Cdl, Rad, Cad 

and Rct parameters, which are at the same order of magnitude in the whole range of temperatures 

studied. However, the temperature effect becomes evident in the diffusional parameter σad which has one 

order of magnitude difference between the temperature limits, resulting in the largest σad value at 20°C. 

This fact suggests that the diffusional process of DNA molecule inside the interface is slower at this 

temperature and increases at higher temperatures. It should be point out that at the whole temperature 

range; DNA adsorption takes place under a diffusional control. This conclusion is derived noticing that 

Rad is always three orders of magnitude smaller than σad. Then, the main contribution to the complex 

capacitance is rather due to DNA diffusion inside the diffuse layer and not to the electrosorption 

process, thus the electrosorption phenomenon is not the limiting step [15]. This statement is also in 

good agreement with the complex capacitance spectra arc-shape shown in Figure 3.17, where it becomes 

evident a depressed loop obtained at high frequencies and it also supports a control by spatially 

dependent concentration fields. Finally, it is noted from Table 3.2. that Rct falls in the range of                  

105 Ω/cm2, being a high value that limits the charge transfer and confirming that at OCP the interface 

possess a capacitive behavior and only an incipient and negligible charge transfer is present.  
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3.3.2.3. Evaluation of the adsorption parameters as a function of temperature and 

concentration of DNA 

Figures 3.18 and 3.19 show the behavior of the electrical parameters Cdl and Cad, respectively, 

included in the equivalent circuit shown in Figure 3.17, as a function of the DNA concentration at each 

one of the temperatures studied.  As we can observe, the concentration-dependence in all the electrical 

parameters is almost the same no matter the temperature studied.  

 

 

 

 

 

 

Figure 3.18. Double-layer capacitance, Cdl, as a function of DNA concentration at the temperatures of a) 20, b) 

30 and c) 40 ºC.   

 

 

 

 

 

 

Figure 3.19. Adsorption capacitance, Cad, as a function of DNA concentration at the temperatures of a) 20, b) 30 

and c) 40 ºC. 

 

This feature in these curves strongly suggests that the interfacial double-layer structure is 

amenably altered when DNA concentration is modified. According to the most simple double-layer 

model [70,74], the changes on Cdl could reflect the changes of the interface thickness d as well as 

changes on dielectric constant ε. Consequently, if ε is considered as a constant value, changes in Cdl and 

Cad as a function of DNA concentration will be related to the interface thickness [74].  In this way, we 
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are relating the two noticeable changes on Cdl and Cad, observed at 0.36 and 1.5 mg/mL to two possible 

structural transitions in the adsorbed DNA. These values are close to the ones found for C* and Ce 

determined though a rheological study carried out at the same experimental conditions to those applied 

in our work and described in Chapter 2. A very good agreement is also found between the values 

determined in the present work and those reported by Mason et al. [77]. This fact allows proposing that 

the changes on Cdl and Cad are related to the double-layer thickness, which is presumably associated to 

the conformational structure of DNA, and chains interactions such as overlapping and entanglements.   

Figure 3.20 shows the Rad concentration-dependence at the three studied temperatures. Rad curves 

show an adsorption resistance decrement while increasing DNA concentration suggesting that the 

electrosorption process is less predominant when DNA solution is more concentrated. 

 

 

 

 

 

 

Figure 3.20. Adsorption resistance, Rad, as a function of DNA concentration at the temperatures of a) 20, b) 30 

and c) 40 ºC. 

 

3.3.2.4. Analysis of average time constant of DNA molecules adsorption process onto 

the platinum surface 

An additional analysis can be done if the mean characteristic time constant (τc) is evaluated from 

the high frequency loop observed at the complex capacitance spectra for each one of DNA 

concentrations studied. An inspection of τc at different temperatures, taking the DNA concentration as 

parameter is shown in Figure 3.21, from which is evident that τc reaches its higher values at the lowest 

DNA concentrations and slowly decreases in the millisecond range until suddenly increases at 0.4 

mg/mL to start decreasing and remains constant at higher concentration than 1.5 mg/mL. As it can be 

observed, the evaluation of the mean τc is also an useful method to determinate DNA transitions and 

their correspondence with C* and Ce. Moreover, the τc range of values is in adequately agreement with 

those calculated to the reorganization time of the diffuse double-layer [16, 75, 79]. Furthermore, it 



    

 129 

should be notice that at constant temperature and at the semi-diluted regime (CDNA ≤0.36 mg/mL), τc 

decreases while DNA concentration increases.  

 

 

 

 

 

 

 

 

Figure 3.21. Characteristic time constant of the process, c, as a function of DNA concentration at the 

temperatures of 20, 30 and 40 ºC.   

 

3.3.3. Particular conclusions for the adsorption of DNA molecules in solution on platinum  

A detailed adsorption study of calf thymus DNA onto platinum electrodes was evaluated in a wide 

concentration and temperature range and was presented by using electrochemical impedance 

spectroscopy. All the impedance data were transformed into complex capacitance values and were 

interpreted on the basis of the impedance adsorption theory using a similar FMGR equivalent circuit.  

We can conclude that at Open Circuit Potential (OCP), a diffusion controlled non-specific adsorption of 

DNA molecules is taking place at the interface. Moreover, through a detailed analysis of each one of the 

electrical parameters obtained at each studied temperature it was possible to identify two well-defined 

interfacial transitions around two DNA concentrations, i.e. 0.36 and 1.5 mg/mL, which were related to 

the overlap and the entanglement concentrations early determined by rheological methods. Thus, the 

changes in the interfacial structure, reflected as Cdl, Cad and Rad parameters, strongly depend on the DNA 

nature present inside the solution. All the results allow proposing that impedance measurements 

interpretation by the impedance adsorption theory is a well suitable method to characterize DNA 

adsorption and to identify the structural transitions on the metal-DNA/TE buffer interface. 
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3.4. Experimental study of the adsorption of DNA molecules onto gold electrodes  

3.4.1. Experimental conditions for the Au-DNA/TE buffer interface  

The description of the reagents, buffer Tris-HCl/EDTA preparation and DNA/Buffer solutions 

are presented in Sections 2.3.1., 2.3.2. and 2.3.3. of this work. 

 

3.4.1.1. Impedance measurements  

EIS measurements were carried out in a 1260 FRA instrument coupled to a 1287 potentiostat both 

from Solartron, Inc. A convetional three-electrode cell was used for these measurements. A gold 

cylinder and gold disk were used as the counter and work electrode, respectively, and a satured calomel 

electrode (SCE) was used as the reference.  Potentiostatic mode at open circuit potential was used for 

each measurement, applying potential perturbation amplitude of 10 mV in a frequency range of 1 kHz-1 

mHz. Before each EIS experiment routinely a cyclic voltammetry in 0.1 M HClO4 at 50 mV/s was 

applied to guaranty the cleanliness of the electrodes. Commercial software Zplot® was used to collect 

impedance data, and commercial software Zview® allowed calculating theoretical parameters from an 

equivalent circuit able to fit the experimental results. Figure 3.14 shows the experimental setup for EIS 

measurements. All measurements were also carried out at the temperatures of 25, 30 and 25 ºC, 

controlled by the recirculation bath and allowing a rest period for each sample to ensure a steady-state 

measurement. 

  

3.4.2. Experimental results and discussion for the Au-DNA/TE buffer interface  

3.4.2.1. Complex impedance and capacitance spectra monitored at OCP 

In order to study the adsorption process of DNA molecules onto gold electrodes by coupling 

Electrochemical Impedance Spectroscopy technique with Surface Plasmon Resonance technique (SPR), 

the chosen temperatures for the experimental study were selected in a lower temperature range that the 

range used for the impedance study of Pt-DNA/TE buffer interface. Therefore, the temperature range 

for the Au-DNA/TE buffer interface study will be limited to values 5 ºC greater and lower than the 

average room temperature, i.e. 20, 25 and 30 ºC. In this chapter, impedance results will be presented and 

discuss, whereas SPR results will be discuss in detail in Chapter 5 of this thesis.   

Figures 3.22 a, b and c show Nyquist plots for several DNA concentrations of 0.05, 0.4 and 2.5 

mg/mL at the temperatures of 20, 25 and 30 ºC. The results mainly reveal the typical behavior of an 

unideal double-layer capacitance, which is consistent with the experimental conditions of the study and 

with the results obtained for the Pt-DNA/TE buffer study. In this way, the experimental results show 
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that the DNA adsorption process onto gold electrodes is mainly capacitive [80]. This response 

represents the structural arrangement of DNA molecules on the electrochemical double-layer formed at 

the gold surface and is in good agreement with the study of the adsorption or calf-thymus DNA 

molecules onto platinum surfaces previously discussed [80,81]. It is possible to observe a displacement 

of each spectra towards lower values of the real part of the impedance (Z’) at each regime while 

increasing DNA concentration. A greater amount of negatively charged DNA molecules at higher DNA 

concentrations causes an increment in the solution’s conductivity [82]. 

 

 

 

 

 

 

Figure 3.22. Nyquist plots for Au-DNA/TE buffer interface at DNA concentrations a) 0.05, b) 0.4 and c) 2.5 

mg/mL and at the temperatures of 20, 25 and 30 ºC.  

 

Impedance data was transformed into complex capacitance according to the adsorption impedance 

theory used by Pajkossy and Kolb and recently applied to DNA molecules adsorption onto platinum 

surfaces [14-19, 80, 81], using Equation 3.21. The equivalent circuit presented in Figure 3.17 and its 

complex capacitance transfer function given by Equation 3.22 were used to interpret the experimental 

complex capacitance obtained in this study.  

The arrangement of three electrical parameters in series represents the complex capacitance 

dispersion observed at high frequencies (1 kHz < f < 1.0 Hz) and describes DNA molecules adsorption 

process taking place at the electrode surface. An adsorption resistance (Rad), a constant phase element 

(CPE) representing a non-ideal adsorption capacitance (Cad) and a Warburg-like diffusion impedance 

(ZW,ad) make up this arrangement. A double-layer capacitance (Cdl) was added in order to explain 

Au/Calf-thymus DNA interface. An ascending curve was observed at low frequencies (f< 1.0 Hz) and 

is related to an incipient charge transfer resistance (Rct). Since the adsorption process is carried out at 

open circuit potential, this parameter is associated to a possible reaction of impurities or oxygen traces 

in the working solution [73]. The physical meaning of each electrical parameter is explained in detail in 

Section 3.3.2.2. of this thesis.  
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Figures 3.23 a, b and c show the complex capacitance data obtained for DNA concentrations of 0.05, 

1.0 and 3.0 mg/mL, representing the typical behavior of the complex capacitance response in each 

characteristic regime of DNA solutions, i.e. dilute, semi-dilute without entanglements and semi-dilute 

regime with entanglements, respectively. At high frequencies a depressed loop can be observed, showing 

that the adsorption carried out on the electrode surface is rapid and is controlled by adsorbate diffusion 

[64]. 

 

 

 

 

 

Figure 3.23. Complex capacitance data for DNA concentrations 0.05, 0.4 and 2.5 mg/mL and at the 

temperatures of 20, 25 and 30 ºC. Frequency in Hz. 

 

The equivalent circuit presented in Figure 3.17 and the Equation 3.22 were used to fit the 

experimental data to obtain the value for each electrical parameter involved in the adsorption process at 

the gold electrode surface. The continuous lines observed in the set of plots of Figure 3.23 depict the 

resulting fittings.   

Table 3.3 summarizes the estimated parameters for DNA concentrations shown in Figure 3.23.  In 

this table we can observe that Rad and σad have the same order of magnitude at lower DNA 

concentrations, suggesting a mixed process, controlled by DNA diffusion and an electrosorption 

process. However, the diffusional parameter σad increases with increasing DNA concentration, showing 

that the main contribution to the complex capacitance is due to diffusional control [15]. It is evident 

that Rct values are larger than 105 /cm2, representing the presence of the incipient charge transfer at 

the interface and confirming the experimental conditions of this study (OCP).  
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Table 3.3.- Electrical parameters obtained by fitting the equivalent circuit in Figure 3.17. to the experimental 

complex data for 0.05, 0.4 and 2.5 mg/ml at a temperature of 25 ºC.  

CDNA 
mg /mL 

 

Cdl 

F/cm2 

Cad  

F/cm2 
n Rct 

 cm2 

Rad 

 cm2 
σad 

 cm-1 s1/2 
χ2 

     0.05 0.985 2.328 0.850 7.653 x 106 3 289.06 3.942 x 104 0.0005 

     0.4 1.420 2.360 0.774 3.269 x 107 2 621.82 4.174 x 103 0.0013 

     2.5 1.583 2.559 0.739 8.484 x 108 1 958.00 4.193 x 105 0.0004 

 

3.4.2.2. Evaluation of the adsorption parameters as a function of temperature and 

concentration of DNA 

Double-layer capacitance (Cdl) behavior was firstly analyzed as a function of DNA concentration 

and temperature and is presented in Figure 3.24. Cdl values were obtained by the fitting the equivalent 

circuit to the experimental data. It can be observed that Cdl values increase as the concentration 

increases, until CDNA reaches 0.4 mg/mL, where a noticeable change in the trend is depicted, 

representing a structural rearrangement of DNA molecules on the gold surface. Then a new behavior is 

then observed between CDNA of 0.4 and 1.5 mg/mL, where DNA concentration starts increasing again. 

However, Cdl values decrease around 1.5 mg/mL and remain constant at higher concentrations, DNA 

chains get entangled and there is a third behavior of DNA molecules adsorbed in the interface. 

 

 

 

 

 

 

 

 

Figure 3.24. Double-layer capacitance (Cdl) behavior as a function of DNA concentration for the temperatures of 

25, 30 and 35 ºC. 
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Two noticeable transitions are located at DNA concentrations around 0.4 and 1.5 mg/mL. This 

behavior is in good agreement with Cdl behavior for DNA adsorption onto platinum electrodes 

(previously discussed). The changes observed at Cdl are associated to the reorganization of DNA 

molecules at the double-layer, closely related to the overlapping and entanglement of DNA chains.  

Figure 3.25. presents the adsorption capacitance, Cad, as a function of DNA concentration and 

temperature. As for Cdl behavior, two transitions are also identified, related to the structural 

rearrangement of the electrochemical double layer at each characteristic regime.   

 

 

 

 

 

 

 

 

Figure 3.25. Adsorption capacitance (Cad) behavior as a function of DNA concentration for the temperatures of 

25, 30 and 35 ºC.  

 

3.4.3. Particular conclusions for the adsorption of DNA molecules in solution on gold  

Electrochemical Impedance Spectroscopy was used to perform a detailed adsorption study of calf-

thymus DNA molecules adsorption onto a gold surface. The impedance data was transformed into 

complex capacitance data using the impedance adsorption theory. Cdl and Cad values were obtained 

through an equivalent circuit similar to the one proposed by Frumkin-Melik-Gaikazyan-Randles 

(FMGR) and were analyzed as a function of DNA concentration to determine the interfacial structure 

changes in the electrochemical double-layer. It is possible to conclude that impedance technique is able 

and sensitive enough to detect the structural changes of DNA molecules in different metal surfaces. In 

this manner, we can propose EIS as an adequate technique for characterizing the structural nature of the 

adsorbate based on the changes and the rearrangement of the electrochemical double-layer. On the 

other side, Cdl values were successfully obtained and will be used in Chapter 5 with SPR measurements, 

from which DNA molecules adsorption onto a gold surface will be followed by means of an optical 
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technique. Finally, we can also conclude that the nature of the metal surface at which the adsorption 

process takes place influences both the double-layer capacitance response and the nature of the 

adsorption process, i.e. diffusion-controlled or electrosorption-controlled.        
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Chapter 4. The scaling of electrochemical parameters of DNA molecules 

through EIS 

The results of this chapter are the object of the following publications: 

1) Characterization of DNA/Buffer/H2O System Through Electrochemical Impedance Spectroscopy.  

L. M. Bravo-Anaya, E.R. Larios-Durán, N. Casillas, V.V. Fernández-Escamilla, E.R. Macías Balleza and 

J. F. A. Soltero  

ECS Transactions 2013, Volume 47(1), Pages 109-121. doi:10.1149/04701.0109ecst © The 

Electrochemical Society.  

2) The Scaling of Electrochemical Parameters of DNA Aqueous Solutions with Concentration and Temperature 

Through an Electrochemical Impedance Spectroscopy Study.  

L. M. Bravo-Anaya, E.R. Macías Balleza, N. Casillas, F. Carvajal Ramos, V.V. Fernández-Escamilla, J. F. 

A. Soltero and E.R. Larios-Durán. 

Electrochimica Acta 2015, Volume 167, Pages 311-320.  

 

4.1. Introduction  

In the field of polymer studies, molecular dynamics of bio-macromolecules cover a wide range of 

characteristic length and time scales [1]. In this manner, scaling laws are helpful for both 

understanding of the origin of the characteristic differences in a system and for generalizing results 

observed at various scales. The scaling effects usually depend on two quantities proportional at certain 

orders of magnitude and have been used to predict the behavior and characteristics of many systems 

with few experiments on a small-sized scale model. Commonly, scaling laws express one variable as a 

nonlinear function of another variable raised to a power, i.e. f(x)  xα , with α≠0. In the polymers field, 

they provide basis for estimating important parameters of polymer solutions at their different regimes 

from the knowledge of several properties of the system [2]. 

Critical concentrations such as C* and Ce and temperatures in viscoelastic aqueous solutions 

formed by ionic surfactants [3], triblock copolymers [4, 5] and polyelectrolytes such as DNA [6] have 

been evaluated using rheological measurements of frequency sweeps experiments performed in the 

linear viscoelastic region (LVR). With this experiments, some parameters can be obtained, i.e. the 

crossover frequency (c), the principal characteristic time (c), the Newtonian viscosity (0) and the 

plateau modulus (G0). Through c, which is obtained with the crossover of the elastic (G’) and the loss 
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(G”) moduli, it is possible to calculate the principal characteristic time c (1/c). Since rheological 

methods have been suitable to determine macroscopic properties of DNA chains in solution at semi-

diluted and concentrated regimes [7-9], Electrochemical Impedance Spectroscopy (EIS) is proposed as 

a suitable electrochemical technique to characterize and analyze DNA molecules behavior at a lower 

concentration range. DNA molecule response to an applied electrical field has been a subject of during 

several years using different electrochemical techniques such as amperometry, potentiometry and 

voltammetry [10-12]. However, EIS constitutes an appropriate method for studying DNA molecules 

response without being perturbed by chemical reactions, due to its sensitiveness at a low concentration 

range [13].  

In this chapter, a detailed investigation of calf thymus DNA solutions in the platinum and gold 

interfaces through EIS measurements is presented. Aqueous solutions of calf thymus DNA are adjusted 

to a pH of 7.3 and studied as a function of DNA concentration and temperature (10, 20, 30 and 40 °C for 

platinum and 25, 30 and 35 ºC for gold). EIS measurements are carried out at open circuit potential, 

leading to an adsorption response of DNA molecules on platinum electrodes. Two methods are used to 

analyze EIS measurements, first one is based on the classical theory of electrochemical impedance [14-

16] and the second one is presented using a methodology similar to the one used in linear rheology, i.e. 

through log-log Bode plots (Z 'and -Z'' vs. ) from which is possible to determine an impedance 

characteristic cross-over frequency (c), and Zo, related to the solution resistance (Rs). A characteristic 

time-constant of the process (τc) was determined by means of the reciprocal of c. The analysis of Zo and 

c as a function of DNA concentration allows identifying the two critical concentrations of DNA 

molecules in solution, C* and Ce, respectively. The relation between Zo and c as a function of DNA 

concentration exhibit a linear behavior and follows the power law at every studied temperature for each 

characteristic regime. Through the scaling of the electrochemical parameters of the system, it is 

proposed a general impedance transfer funtion able to predict the impedance behavior of a chosen DNA 

concentration within a specific regime at OCP. By using this function it is possible to study and to 

analyze theoretically the double-layer charging as a function of concentration with only one impedance 

experiment and makes possible obtaining electrical parameters concerning the interface DNA-TE buffer 

at each characteristic regime.  

 

4.2. Experimental conditions  

The description of the reagents, buffer Tris-HCl/EDTA preparation and DNA/Buffer solutions 

are presented in Sections 2.3.1., 2.3.2. and 2.3.3. of this work. The experimental conditions and the setup 

for EIS measurements are described in Section 3.3.1.2. 
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4.3. Experimental results   

4.3.1. Classical EIS analysis 

A classical approach based on the electrochemical impedance theory using Nyquist diagrams was 

performed at first instance to describe DNA molecules impedance response. Figure 4.1 a shows, a 

Nyquist plot for DNA concentrations of 0.4, 0.5, 0.6, 0.7 and 0.8 mg/mL at a constant temperature of 30 

ºC using a platinum electrode. It is possible to identify that the process, taking place at the interface 

DNA-Buffer/platinum, is predominantly capacitive and represents the structural arrangement of DNA 

molecules adsorbed onto the platinum surface. This response is in good agreement with studies reported 

through DNA adsorption impedance by complex capacitance studies [6, 17] and it is consistent with 

the experimental conditions of this study, i.e. open circuit potential.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. a) Nyquist and b) Bode-module plots for DNA concentrations of 0.4, 0.5 and 0.6 mg/mL at a 

temperature of 30 ºC using a platinum electrode, respectively c) Nyquist and d) Bode-module plots for DNA 

concentrations of 0.4, 0.5 and 0.6 mg/mL at a temperature of 30 ºC using a gold electrode, respectively. Frequency 

in Hz.  
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The increment of DNA concentration causes a shift of each spectra towards lower values of Z’ at 

higher frequencies, this means that the solution resistance decreases as expected due to the conductivity 

raise, caused by the presence of a larger amount of charged DNA molecules [18]. Figure 4.1 b shows the 

complex impedance modulus (|Z|) in a Bode diagram where it can be observed that the solution 

resistance (Rs) diminishes as CDNA increases. Figure 4.1 c and d show the Nyquist and the Bode diagrams, 

respectively, for DNA concentrations of 0.4, 0.5 and 0.6 mg/mL at a constant temperature of 30 ºC 

using a gold electrode. The obtained response is consistent with the one previously described for the 

platinum surface. 

Figure 4.2 a shows a Nyquist diagram for a DNA concentration of 0.4 mg/mL as a function of 

temperature. In this figure it is possible to observe that curves shift to lower Z’ values while increasing 

temperature, indicating a decrement in the solution resistance as a consequence of molecular diffusion 

increment [19].  This effect is similar to the one observed with augments of DNA concentration (cf. 

Figures 1a and b) and is explained as follows: since the viscosity of the medium decreases with a 

temperature increment [20], the movement of DNA molecules is greater at higher temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. a) Nyquist and b) Bode-module plots for a DNA concentration of 0.4 mg/mL at the temperatures of 

10, 20, 30 and 40 ºC using a platinum electrode, respectively c) Nyquist and d) Bode-module plots for DNA 
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concentrations of 0.4 mg/mL at a temperatures of 25, 30 and 35 ºC using a gold electrode, respectively. Frequency 

in Hz.  

Stokes-Einstein relation sets up that the diffusion coefficient also increases with temperature, 

producing an augmentation in the molecular diffusion of the species [21, 22].  Therefore, since the 

conductivity is highly related to mobility and to the diffusion coefficient [23], while increasing 

temperature, conductivity reaches higher values and is reflected in the decrease of resistivity as it is seen 

at the decrement on Z’. Figure 4.2 b shows the complex impedance modulus (|Z|) in a Bode diagram 

where it can be observed that the solution resistance (Rs) decreases as temperature increases. Figure 4.2 c 

and d show the Nyquist and the Bode diagrams, respectively, for a DNA concentration of 0.4 mg/mL at 

the temperatures of 25, 30 and 35 ºC using a gold electrode. As well as for the response obtained for the 

platinum electrode, curves shift to lower Z’ values while increasing temperature, as expected. Since the 

temperatures used for the study of Au/DNA-TE buffer interface are closer from each other, this shift is 

not as evident as the one obtained for Pt/DNA-TE buffer interface.   

According to the Nyquist diagrams, DNA-Buffer/ platinum interface behavior is adequately 

simulated by an equivalent circuit as the one representing the impedance associated to a faradaic 

reaction and expressed in terms of a constant phase element (CPE) [24, 25].  

 

 

 

 

 

Figure 4.3. Equivalent circuit representing the complex impedance for Pt-DNA/TE buffer system.  

 

This equivalent circuit includes an arrangement of the following three electrical parameters: a 

solution resistance (Rs), a resistance related to an incipient charge transfer (Rct) due to the possible 

reaction of impurities or oxygen traces present at the working solution [26] and a non-ideal capacitance 

(CPE). A schematic of the equivalent circuit is presented in Figure 4.3 and its corresponding complex 

impedance transfer function is expressed as follows:  

Z(w) = Rs +
Rct

1+ ( jw)a QRct

                     (4.1) 
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where  and j represent the frequency in rad/s and the imaginary number, respectively. The CPE 

parameters are Q and  which are independent of the frequency. Furthermore,  can take values 

between 0 and 1. If = 1, Q represents an ideal interface differential capacitance and has capacitance 

units, i.e. F/cm, but if < 1, the system is affected by several parameters such as superficial 

heterogeneity or surface roughness and displays a non-ideal behavior [27]. The effective capacitance Ceff 

associated with the CPE is expressed as:  

Ceff = Q
1
aRs

(1-a )/a                   (4.2) 

Figure 4.4 and 4.5 show the Nyquist diagrams for the impedance results of three DNA 

concentrations at the four studied temperatures for Pt-DNA/TE buffer interface and at the three 

studied temperatures for Au-DNA/TE buffer interface, respectively. Continuous lines represent the 

fittings of the experimental data obtained using Equation 4.1. The estimated values for each electrical 

parameter are summarized in Table 4.1 for Pt-DNA/TE buffer interface and in Table 4.2 for Au-

DNA/TE buffer interface.  

 

 

 

 

 

 

Figure 4.4. Nyquist plots for Pt-DNA/TE buffer interface: DNA concentrations of a) 0.2, b) 1.0 and c) 2.0 

mg/mL at the temperatures of 10, 20, 30 and 40 ºC. Frequency in Hz.  

 

 

 

 

 

Figure 4.5. Nyquist plots for Au-DNA/TE buffer interface: DNA concentrations of a) 0.2, b) 1.0 and c) 2.0 

mg/mL at the temperatures of 25, 30 and 35 ºC. Frequency in Hz.  
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In both interfaces, it is possible to observe that the magnitude order of Rct is higher than 1x104 

/cm2, confirming that only an almost negligible charge transfer is present in the process. However, for 

Au-DNA/Te buffer interface, the Rct obtained values are higher than for Pt-DNA/TE buffer interface, 

suggesting that in gold electrodes, impurities or oxygen traces present at the working solution are less 

reactive.  

 

Table 4.1.- Electrical parameters obtained by fitting the equivalent circuit in Figure 4.3 to the experimental data 

of Pt-DNA/TE buffer interface for DNA concentrations of 0.2, 1.0 and 2.0 mg/mL at the temperatures of 10, 

20, 30 and 40 ºC.    

CDNA 
mg/mL 

 

T 
ºC 

Rs 

 cm2 

Q  

 cm2 

s


 

 Ceff 

F /cm2 

Rct 

cm2 
2 

 

      0.2 

10 3949.75 200.79 0.87 236.69 4.86 x 105 0.006 

20 3061.50 209.82 0.89 234.99 1.92 x 105 0.004 

30 2471.75 214.83 0.86 239.27 8.44 x 104 0.002 

40 2027.75 224.79 0.85 249.07 3.95 x 104 0.003 

 

     1.0 

10 853.75 218.26 0.89 211.14 2.32 x 106 0.003 

20 682.75 231.27 0.89 219.35 7.95 x 105 0.002 

30 560.25 245.62 0.89 228.71  1.63 x 105 0.002 

40 473.75 262.88 0.89 241.12 5.38 x 104 0.001 

 

     2.0 

10 706.25 218.25 0.90 207.18 2.11 x 106 0.002 

20 554.25 234.70 0.90 217.99 1.01 x 106 0.002 

30 452.75 253.25 0.90 232.19 1.37 x 105 0.002 

40 383.75 271.96 0.90 246.68 4.77 x 104 0.001 

 

Tables 4.2 and 4.3 show also the dependence with temperature and concentration previously 

described for the solution resistance, this is: while increasing temperature and concentration, Rs 

decreases for all DNA concentrations. The obtained values for the effective capacitance show, as 

expected, an increase with temperature for both interfaces, however a two-order magnitude difference is 

detected in the Ceff values comparing platinum and gold interface, showing that the chosen electrode has 

an important contribution to the measured capacitance of the metal-DNA/TE buffer interface.      
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Table 4.2.- Electrical parameters obtained by fitting the equivalent circuit in Figure 4.3 to the experimental data 

of Au-DNA/TE buffer interface for DNA concentrations of 0.2, 1.0 and 2.0 mg/mL at the temperatures of 25, 

30 and 35 ºC.    

CDNA 
mg/mL 

 

T 
ºC 

Rs 

 cm2 

Q  

 cm2 s


 

 Ceff 

F /cm2 

Rct 

cm2 

X2 

 

     0.2 

25 4455.99 0.662 0.89 0.382 1.24 x 107 0.001 

30 4089.69 0.699 0.88 0.402 7.46 x 106 0.001 

35 3793.78 0.749 0.88 0.421 6.92 x 106 0.0008 

 

     1.0 

25 1012.34 0.802 0.87 0.346 9.61 x 107 0.001 

30 917.12 0.836 0.87 0.363 7.92 x 106 0.0008 

35 856.30 0.876 0.87 0.380 8.91 x 106 0.001 

 

     2.0  

25 522.57 0.735 0.88 0.311 1.18 x 108 0.001 

30 476.56 0.801 0.87 0.371 1.05 x 108 0.005 

35 431.68 0.881 0.87 0.390 5.02 x 107 0.002 

  

4.3.2. Impedance spectra analysis through graphs log-log Bode (Z’, -Z’’ vs. ) 

The impedance data obtained for this system are also analyzed by means of an analogous 

methodology to the one used in studies of oscillatory rheology measurements in the linear viscoelastic 

regime (LVR) [17-20], so impedance results were plotted by using graphs type log-log Bode.    

Figures 4.5 a and b show log-log Bode plots (Z' and -Z'' vs. ) for Pt-DNA/TE buffer and Au-

DNA/TE buffer interface, respectly, for a variation of DNA concentrations at a constant temperature, 

from which is possible to determine a characteristic crossover frequency (c) and the Zo modulus related 

to the solution resistance (Rs). For both cases, the characteristic time-constant of the process (τc) is 

obtained by calculating the reciprocal of ωc and is directly related to the metal-DNA solution interface 

relaxation due to the electrochemical double-layer formation. We can observe that ωc shifts to higher 

frequencies when DNA concentration increases. In contrast, the characteristic time-constant and the Z0 

module decrease. This phenomenon may be associated with the diffuse layer thickness decrease caused 

by DNA concentration increase.  
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Figure 4.5. Real (Z’) and imaginary (Z’’) parts of the impedance as a function of frequency () for a) Pt-

DNA/TE buffer interface and b) Au-DNA/TE buffer interface for DNA concentrations of 0.4, 1.5, 2.0 and 2.5 

mg/mL at the temperature of 30 ºC.  

 

The results for ωc, τc and Zo evaluated for such DNA concentrations at each interface are quantified 

in Tables 4.3 and 4.4 for Pt-DNA/TE buffer and Au-DNA/TE buffer, respectively. It is possible to 

observe that the time-constant is at least three magnitude orders higher for platinum than for gold, so 

the nature of the electrode affects the process dynamics, described by c (which will be explained in 

detail in the following section) taking place at the interface. This could be related with electrostatic 

interactions of DNA chains with each metal surface.  

 

Table 4.3.- Cross-over frequency (c), characteristic time-constant (c) and Zo module for DNA concentrations of 

0.4, 1.5, 2.0 and 2.5 mg/mL in the Pt-DNA/TE buffer at the temperature of 30 ºC. 

CDNA 

mg/mL 

c 

rad/ s 

ZO 

  

c 

s 

0.4 
 

0.641 4 708.74 1.559 

1.5 
 

1.473 
 

2 786.87 0.679 

2.0 
 

1.769 2 223.52 0.565 

2.5 
 

2.109 2 046.58 0.474 
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Table 4.4.- Cross-over frequency (c), characteristic time-constant (c) and Zo module for DNA concentrations of 

0.4, 1.5, 2.0 and 2.5 mg/mL in the Au-DNA/TE buffer at the temperature of 30 ºC. 

CDNA 

mg/mL 

c 

rad/ s 

ZO 

  

c 

s 

0.4 
 

168.559 4 521.929 5.93 x 10-3 

1.5 
 

648.520 3 488.600 1.54 x 10-3 

2.0 
 

1 098.678 2 349.203 9.10 x 10-4 

2.5 
 

1 413.601 2 049.200 7.07 x 10-4 

 

The physical and quantitative interpretation of τc is determined from the analysis of the transfer 

function shown in Equation 4.1, from which is possible to obtain the real and imaginary parts of the 

impedance, as are given by Equation 4.3 and 4.4. 

Z '(w) = Rs
                               (4.3) 

Z ''(w) =
Rct[1- RctQ( jw)a ]

1- Rct

2 ( jw)2a
                             (4.4) 

Since the time constant is obtained when the real and the imaginary parts of impedance reach the 

same value, as observed in Figures 4.5 a and b, we can establish the following relationship:  

Z '(w) = Z ''(w)                   (4.5) 

and evaluating the function in the limit when Rct tends to the infinite, i.e. when charge transfer 

resistance is very large, as in our case where the system is predominantly capacitive, we obtain that the 

reciprocal of the cross-over frequency corresponds to a time constant related to the coupling in series of 

the solution resistance and the effective capacitance (Equation 4.6).  

t c =wc

-1 = RsCeff                  (4.6) 

The same expression can be obtained by evaluating Equation 4.6 in the limit when Rct tends to the 

infinite.  
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4.3.3. Temperature dependence in the impedance response 

The temperature effect observed in the impedance results is illustrated in Figures 4.6 a and b for Pt-

DNA/TE buffer and Au-DNA/TE buffer interface, respectly, showing Z’ and -Z’’ as a function of 

frequency for a DNA concentration of 2.0 mg mL-1 at the temperatures of 10, 20, 30 and 40 ºC for 

platinum and at 25, 30 and 35 ºC for gold. It is possible to observe that ωc shifts at higher frequencies as 

temperature increases. On the contrary, the characteristic time-constant (c) and the Zo module decrease 

indicating the diminution of the solution resistivity.  

 

 

 

 

 

 

 

Figure 4.6. Real (Z’) and imaginary (Z’’) parts of the impedance as a function of frequency () for a) Pt-

DNA/TE buffer interface and b) Au-DNA/TE buffer interface for a DNA concentrations of 2.0 mg/mL at the 

temperatures of 10, 20, 30 and 40 ºC for platinum and 25, 30 and 35 ºC for gold.  

 

Similarly to the effect suggested by DNA concentration, this phenomenon may be associated to the 

diffuse layer thickness increment with temperature. A diminution in the distance traveled by DNA 

molecules from the bulk of the solution towards the electrode surface is then produced [28].  In this 

manner, the characteristic time constant that leads to the arrangement of DNA molecules on the 

electrochemical double-layer diminishes as temperature increases. The results for ωc, τc and Zo evaluated 

for such DNA concentrations at each interface are quantified in Tables 4.5 and 4.6 for Pt-DNA/TE buffer 

and Au-DNA/TE buffer, respectively. 
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Table 4.5.- Cross-over frequency (c), characteristic time-constant (c) and Zo module for a DNA concentrations 

of 2.0 mg/mL in the Pt-DNA/TE buffer at the temperatures of 10, 20, 30 and 40 ºC. 

CDNA 

Mg/mL 

c 

rad/ s 

ZO 

  

c 

s 

10 1.302 2 769.79 0.768 

20 1.597 2 534.43 0.626 

30 1.769 2 223.52 0.565 

40 2.020 1 500.50 0.495 

 

Table 4.6.- Cross-over frequency (c), characteristic time-constant (c) and Zo module for a DNA concentrations 

of 2.0 mg/mL in the Au-DNA/TE buffer at the temperatures of 25, 30 and 35 ºC. 

CDNA 

mg /mL 

c 

rad/ s 

ZO 

  

c 

s 

25 1 083.056 2 487.907 9.23 x 10-4 

30 1 098.678 2 349.203 9.10 x 10-4 

35 1 155.151 2 124.819 8.66 x 10-4 

 

On the other hand, in order to evaluate the temperature effect on the interface, Figures 4.7a and b 

present the plots of ln(τc) versus the reciprocal of the absolute temperature for several DNA 

concentrations on platinum and gold, respectively. A linear behavior of ln (τc) is observed at each DNA 

concentration in both figures, which demonstrates that the characteristic time constant of the process 

follows an Arrhenius-type behavior given by the following expression [29, 30]: 

t c = Ae-Ea/RT
                           (4.7) 

where Af is the frequency factor, R is the universal gas constant, T is the temperature and Ea 

corresponds to the minimum amount of energy required for the coupling of the solution resistance and 

the capacitance in terms of the equivalent circuit representing DNA-platinum interface.    
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Figure 4.7. Arrhenius dependence of the characteristic time-constant (c=1/c) with the reciprocal of the absolute 

temperature for DNA concentrations of 0.8, 1.5 and 2.0 mg/mL at the a) Pt-DNA/TE buffer interface and b) 

Au-DNA/TE buffer interface. 

 

This Arrhenius-type temperature dependence has been also obtained for the dynamics of DNA 

solutions studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy [1]. As for 

the temperature dependence of the average relaxation obtained at the higher frequency process (HFP) 

and at the lower frequency process (LFP) with dielectric measurements, the characteristic time constant 

obtained through EIS measurements increases while decreasing temperature, as described before. The 

calculated apparent energy, Ea, for the adsorption process for DNA concentrations presented in Figure 

4.7a, i.e. 0.8, 1.5 and 2.0 mg/mL at the Pt-DNA/TE buffer interface, are 10.68, 9.94 and 10.55 kJ/mol, 

respectively, in the temperature range from 10 to 40 ºC, where DNA remains in its native state and the 

evaporation of water is negligible. The obtained values for Ea increase while augmenting DNA 

concentration until reaching the first transition of the system, related to C*, i.e. around 0.3 mg/mL, 

where it is possible to observe an important change on Ea behavior (Figures 4.8a). In this manner, is it 

possible to see that the minimum amount of energy required for the process is dependent on the DNA 

concentration, on the interactions between DNA chains present in the bulk of the solution and with the 

metal surface. Using the resulting parameters, it is also possible to estimate τc at each temperature 

between the studied ranges. The calculated apparent energy, Ea, for the adsorption process for DNA 

concentrations at the Au-DNA/TE buffer interface (Figure 4.8b) is slightly lower than the calculated Ea 

values for the Pt-DNA/TE buffer interface and depict also the change on Ea behavior as a function of 

concentration. The calculated values for 0.8, 1.5 and 2.0 mg/mL are 7.19, 6.25 and 7.58 kJ/mol, 

respectively, in the temperature range from 25 to 35 ºC. These results could be related to the energetic 

nature of the electrodes, however, it will not be discussed in this work.  
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Figure 4.8. Ea as a function of DNA concentration for a) Pt-DNA/TE buffer interface and b) Au-DNA/TE 

buffer interface.  

 

4.3.4. Concentration dependence of DNA in the impedance response 

The parameters ωc, τc and Zo were evaluated from each spectrum obtained for every DNA 

concentration at each studied temperatures. Figures 4.9 a and b illustrate the results of τc and Zo as 

function of CDNA at the temperatures 10, 20, 30 and 40 ºC for Pt-DNA/TE buffer interface and Figures 

4.10 a and b present the results of the same parameters as a function of CDNA at the temperatures 25, 30 

and 35 ºC for Au-DNA/TE buffer interface.  

 

 

 

 

 

 

 

Figure 4.9. a) Characteristic time-constant (c) and Zo module for Pt-DNA/TE buffer interface as a function of 

DNA concentration at the temperatures of 10, 20, 30 and 40 ºC.   
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Figure 4.10. a) Characteristic time-constant (c) and Zo module for Au-DNA/TE buffer interface as a function 

of DNA concentration at the temperatures of 25, 30 and 35 ºC.   

 

In all figures, it is possible to identify two transitions located in the slope changes of each isotherm, 

in a more clearly way for Pt-DNA/TE buffer interface. First transition is located at a DNA 

concentration around 0.30 mg/mL and is presumably associated with the starting of the interactions 

between DNA strands. This concentration could be related to the overlap concentration (C*), which 

represents the transition from the dilute regime to the semi-dilute regime without entanglements (as 

mentioned in previous chapters of this thesis, i.e. Chapter 2 and 3). Second transition is located at a DNA 

concentration of 1.5 mg/mL, which could be associated to the entanglement concentration (Ce). These 

results are in fairly agreement with the results previously described in terms of the adsorption study of 

the Pt-DNA/TE buffer interface [10] (Chapter 3) and with the results obtained through rheological 

measurements described in Chapter 2.  The characteristic time constant reflects clearly the structural 

arrangement transitions of the electrochemical double-layer. EIS has been proved to be a suitable 

technique to characterize microscopically and macroscopically the structural behavior of DNA 

molecules during the charge arrangement at the electrode surface.  

 

4.3.5. Superposition Z’, -Z’’/DNA concentration-temperature  

Figures 4.11a and b shows the results of the impedance response for a) Pt-DNA/TE buffer interface 

and b) Au-DNA/TE buffer interface, as a function of frequency for several DNA concentrations at the 

temperatures of 10, 20, 30 and 40 ºC for platinum and 25, 30 and 35 for gold. The real and the 
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imaginary parts of the impedance were divided by Zo and plotted against the reduced frequency c. It 

was then possible to obtain a master curve with a Z’ and Z’’- concentration- temperature superposition.  

We observe that all the data at frequencies between 2.0 Hz and 10 kHz collapse in a single line for all 

DNA concentrations, however, at frequencies lower than 2.0 Hz and DNA concentrations higher than 

1.0 mg/mL, the results collapse in two lines, showing the transition between the semi-dilute regime 

without entanglements and the semi-dilute regime with entanglements. This kind of master curves are 

typically used in rheology studies, here we use the same approach to depict that from a simple visual 

inspection, normalized impedance curves could give us a qualitative information about the DNA 

concentration effect. 

 

 

 

 

 

 

Figure 4.11. Real and imaginary parts of the impedance in units of Zo as functions of the rescaled angular 

frequency c for a) Pt-DNA/TE buffer interface and b) Au-DNA/TE buffer interface.  

 

4.3.6. The scaling of electrochemical parameters as a function of DNA concentration and 

temperature 

For impedance studies, the obtained values for the parameters Zo (Figure 4.12) and c (Figure 4.13) 

obtained for the interface Pt-DNA/TE buffer follow a power law behavior as a function of DNA 

concentration according to: dilute regime (CDNA<C*): Zo∼CDNA
-0.692±0.047 and c∼CDNA

-0.793±0.059, semi-

dilute regime without entanglements (C*<CDNA< Ce): Zo∼CDNA
-0.741±0.023 and c∼CDNA

-0.822±0.05 and 

semi-dilute regime with entanglements (Ce<CDNA): Zo∼CDNA
-0.668±0.073 and c∼CDNA

-0.745±0.046.  This 

power law dependence was observed in the whole temperature range studied.  The exponent values of 

the fitting, corresponding to the relation between the solution resistance (Zo) and DNA concentration 

are lower in the semi-dilute regime without entanglements.  The results for the evaluated parameters 

(Zo and c) according to the power law are quantified in Table 4.7 for each characteristic regime at the 

four studied temperatures.    
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Table 4.7.- Parameters obtained for Pt-DNA/TE buffer by fitting Zo and c results as a function of DNA 

concentration according to the law power at the temperatures of 10, 20, 30 and 40 ºC. 

Regime DNA 
Concentration 

mg/mL 

T 
º C 

c 

s 

ZO  

cm2 
a b c d 

 

Dilute 

 

CDNA<C* 

10 1.284 -0.818 4 846.684 -0.719 

20 0.967 -0.834 3 607.698 -0.732 

30 0.948 -0.815 3 244.702 -0.691 

40 1.227 -0.704 3 155.506 -0.627 

Semi-dilute 
without 

entanglements 

 

C*<CDNA<Ce 

10 0.819 -1.339 3 673.842 -0.768 

20 0.851 -0.763 2 916.883 -0.737 

30 0.661 -0.857 2 353.754 -0.747 

40 0.726 -0.846 2 023.210 -0.713 

Semi-dilute 
with 

entanglements 

 

Ce>CDNA 

10 1.580 -1.208 4 490.697 -0.627 

20 1.023 -0.692 3 566.001 -0.633 

30 0.853 -0.772 2 937.819 -0.635 

40 0.902 -0.690 2 729.245 -0.777 

 

  

 

 

 

 

Figure 4.12. Zo as a function of DNA concentration at a temperature of 10 ºC evaluated at a) dilute regime, b) 

semi-dilute regime without entanglements and c) semi-dilute regime with entanglements for Pt-DNA/TE buffer 

interface.  

 

 

 

 

Figure 4.13. c as a function of DNA concentration at a temperature of 10 ºC evaluated at a) dilute regime, b) 

semi-dilute regime without entanglements and c) semi-dilute regime with entanglements for Pt-DNA/TE buffer 

interface. 
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The obtained values for the parameters Zo (Figure 4.14) and c (Figure 4.15) from Au-DNA/TE 

buffer interface were also evaluated in terms of a power law behavior as a function of DNA 

concentration. The following relations were found: dilute regime (CDNA<C*): Zo∼CDNA
-0.826±0.014 and 

c∼CDNA
-0.939±0.027, semi-dilute regime without entanglements (C*<CDNA< Ce): Zo∼CDNA

-0.782±0.046 and 

c∼CDNA
-0.785±0.113 and semi-dilute regime with entanglements (Ce<CDNA): Zo∼CDNA

-0.634±0.021 and 

c∼CDNA
-0.853±0.265.  This power law dependence was observed in the whole temperature range studied. 

The results for the evaluated parameters (Zo and c) according to the power law are quantified in Table 

4.8 for each characteristic regime at the four studied temperatures.    

 

Table 4.8.- Parameters obtained for Au-DNA/TE buffer by fitting Zo and c results as a function of DNA 

concentration according to the law power at the temperatures of  25, 30 and 35 ºC. 

Regime DNA 
Concentration 

mg/mL 

T 
º C 

c 

s 

ZO  

cm2 

a b c d 

 

Dilute 

 

CDNA<C* 

25 0.0021 -0.909 5 061.60 -0.842 

30 0.0018 -0.964 4 912.08 -0.812 

35 0.0018 -0.946 4 400.81 -0.825 

Semi-dilute 
without 

entanglements 

 

C*<CDNA<Ce 

25 0.0020 -0.710 4 657.69 -0.763 

30 0.0020 -0.729 4 404.42 -0.736 

35 0.0019 -0.816 4 047.33 -0.779 

Semi-dilute 
with 

entanglements 

 

Ce>CDNA 

25 0.0019 -1.010 4 707.82 -0.651 

30 0.0018 -1.000 3 495.28 -0.641 

35 0.0018 -0.547 3 158.09 -0.611 

  

 

 

 

 

 

Figure 4.14. Zo as a funtion of DNA concentration at a temperature of 25 ºC evaluated at a) dilute regime, b) 

semi-dilute regime without entanglements and c) semi-dilute regime with entanglements for Au-DNA/TE buffer 

interface.  
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Figure 4.15. c as a funtion of DNA concentration at a temperature of 25 ºC evaluated at a) dilute regime, b) 

semi-dilute regime without entanglements and c) semi-dilute regime with entanglements for Au-DNA/TE buffer 

interface. 

 

4.3.7. Transfer function designed to simulate the capacitive behavior as a function of the 

DNA concentration  

A transfer function was proposed in order to predict the impedance response generated by the 

adsorption process of DNA molecules onto the platinum surface for any DNA concentration within the 

characteristic regimes of the system studied in this work. Simulations were carried out with this transfer 

function, which was developed as a function of DNA concentration and the electrochemical parameters 

related to the characteristic time-constant of the process and the solution resistance.      

According to Equation 4.1, for an ideally polarizable electrode, this expression can be evaluated 

when Rct boundary tends to infinite. This way, since the values of the charge transfer resistance are very 

large, the contribution of a resistance due to an oxidation-reduction reaction may be discarded in the 

final transfer function. Therefore, the expression taking into account this condition is derived as follows: 

  

Z(w) = Rs +
1

( jw)a Q
                  (4.8) 

Since the characteristic time-constant of the process (c) shown in Equation 4.6 is given in terms of 

the solution resistance and the effective capacitance, it is possible to replace Equation 4.2 in Equation 4.6, 

obtaining the following expression:  

t c = [RsQ]1/a
                          (4.9) 

Solving for Q, we obtain Equation 4.10 as a function of c, Rs and : 
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Q =
t c

a

Rs

                                       (4.10) 

By using the mathematic formulation for the general power law, the characteristic time-constant 

(c) and the Zo module, related to the solution resistance (Rs), follow the relations given by Equations 

4.11 and 4.12, respectively.  

t c = aCDNA

b
                 (4.11) 

Rs = cCDNA

c
                 (4.12) 

where a, b, c and d are the defined constants for each characteristic regime at each temperature. This 

way, Equation 4.10 can be evaluated as a function of DNA concentration according to Equation 4.11 and 

4.12: 

Q=
aCDNA

bé
ë

ù
û
a

cCDNA

b
                       (4.13) 

Replacing Equations 4.12 and 4.13 in the transfer function given by Equation 4.8, it is possible to 

obtain a transfer function able to simulate the impedance response as a function of DNA concentration 

(Equation 4.14). 

 Z(w) = cCDNA

b + 1+
1

( jwaCDNA

d )a

é

ë
ê

ù

û
ú                     (4.14) 

To obtain any desired spectra, it is only necessary to model the impedance response at one 

concentration in a selected characteristic regime by using the Levenberg-Marquardt curve-fitting 

method. The results will give the information about the alpha coefficient of the constant phase element 

(CPE), and the power law constants (a, b, c and d), so it will be possible to predict the impedance 

behavior as a function of concentration and to obtain information about the characteristic time constant 

of the process and the solution resistance.  

Figures 4.16 a, b, c and d show the Nyquist plots for a DNA concentration of 0.4 mg/mL in 

platinum at the temperatures of 10, 20, 30 and 40 ºC and their respective simulations obtained by using 

the proposed transfer function given by Equation 4.14.  

 

 

 



    

 163 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Nyquist plots for Pt-DNA/TE buffer interface at a concentration of 0.4 mg/mL and the 

temperatures of a) 10, b) 20, c) 30 and d) 40 ºC. Frequency in Hz. 

 

The transfer function was also tested for Au-DNA/TE buffer interface, as we can see in Figures 

4.17a, b and c that show the Nyquist plots for a DNA concentration of 0.4 mg/mL at the temperatures of 

25, 30 and 35 ºC and their respective simulations obtained by using the proposed transfer function given 

by Equation 4.14. An average of  values obtained through the experimental data of this work and a, b, c 

and d values, presented on Tables 4.7 and 4.8 for platinum and gold, respectively, are considered in these 

simulations.  

 

 

 

 

 

Figure 4.17. Nyquist plots for Au-DNA/TE buffer interface at a concentration of 0.4 mg/mL and the 

temperatures of a) 25, b) 30 and c) 35 ºC. Frequency in Hz. 
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Several advantages have been found by using this transfer function in the study of biopolymeric 

solutions such as DNA. Through one impedance measurement it is possible to obtain Rs and c profiles 

as a function of concentration for each characteristic regime of the system. The impedance behavior for 

every concentration within a specific regime studied at OCP can be predicted, therefore, a double-layer 

charging analyze as a function of concentration can also be proposed. Since polymeric solutions and 

several soft material solutions are known by presenting characteristic behaviors within determined 

concentration and temperature ranges, the electrochemical impedance spectroscopy technique will be 

able to easily determine the parameters of interest and their profiles by using the transfer function and 

the power law relations.   

 

4.4. Particular conclusions for scaling of electrochemical parameters of DNA molecules 

by EIS 

Transitional behavior of calf thymus DNA molecules, using platinum and gold electrodes, was 

investigated through a detailed study performed by electrochemical impedance spectroscopy using the 

classical impedance analysis by means of equivalent circuits and an analogous methodology to the one 

used in linear rheology studies. From the analysis of Zo and τc as a function of DNA concentration it was 

possible to indentify two transitions located around 0.30 and 1.50 mg/mL, related to the overlap (C*) 

and the entanglement (Ce) concentrations, respectively. A linear behavior of Zo and τc was observed in 

each characteristic regime of the system, in which the relation between them and CDNA follows the 

power law at every studied temperature. Arrhenius-type temperature dependence was obtained for the 

characteristic time constant of DNA molecules arrangement on the electrochemical double-layer. A 

general impedance transfer function was proposed as a function of DNA concentration through the 

scaling of the electrochemical parameters, i.e. the Zo related to the solution resistance and the 

characteristic time constant of the process, τc.  Such transfer function allows analyzing theoretically the 

double-layer charging behavior at OCP as a function of concentration with only one impedance 

experiment and makes possible obtaining the electrochemical parameters of the interface at a chosen 

concentration and at a specific regime of the system. In our study, this function was developed through 

the analysis of the Pt-DNA/TE buffer and the Au-DNA/TE buffer interfaces, but is proposed to be 

useful in studies of polymeric and surfactant systems, characterized by having different regimes due to 

their interactions or different kind of structures formed at a wide range of temperature or concentration 

conditions. 
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CHAPTER 5  

Study of the structural rearrangement of the interface 

DNA-gold by Surface Plasmon Resonance (SPR). 
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Chapter 5. Study of the structural rearrangement of the interface DNA-gold 

by Surface Plasmon Resonance (SPR)  

The results of this chapter are the object of the following publication: 

1) Structural Behavior of Au-Calf-Thymus DNA Interface Estimated Through an Electrochemical Impedance 

Spectroscopy and Surface Plasmon Resonance Study   

L. M. Bravo-Anaya, E.R. Macías Balleza, J.L. Hernández-López, V.V. Fernández-Escamilla, A. Carreón-

Álvarez, J.R. Rodríguez, J. F. A. Soltero and E.R. Larios-Durán.   

Electrochimica Acta 2014, Volume 131, Pages 60-70. 

 

5.1. Introduction  

The control of surface interactions in the biomaterials field has been widely study for its 

importance in determining critical parameters such as biocompatibility [1]. Using the Surface Plasmon 

Resonance (SPR) technique for analyzing such interactions is advantageous due to the possibility of 

monitoring any dynamic process in real time, such as adsorption or degradation in a wide variety of 

biomedically relevant interfaces [2]. It is also possible to obtain information on the rate and the degree 

of adsorption, allowing the determination of dielectric properties, association and dissociation kinetic 

constants and affinity constants of specific interactions between the analyte-ligand [3]. Currently, the 

study of ultrathin organic films has gained interest in different fields (i.e. integrated optics, sensors, 

surface orientation layers, among others [4]), being the deposition of macromolecules such as proteins 

and DNA particularly analyzed because of its broad application field in the biosensor development [5]. 

In this chapter we study the adsorption process of calf thymus DNA molecules in TE buffer 

solution as a function of DNA concentration and at a constant temperature (25 ± 1°C) by Surface 

Plasmon Resonance (SPR). We report values for the average optical film thickness (dopt) of adsorbed 

DNA molecules on the surface of the sensor chip for each DNA concentrations studied. The variations 

of this parameter as a function of DNA concentration are related to transitions in the structural 

arrangement of the electrochemical double-layer, presumably caused by DNA interactions observed at 

the concentrations C* and Ce, previously defined as the overlap and the entanglement concentration, 

and are in good agreement with the obtained values by EIS and physicochemical techniques (Chapter 2 

and 3 and the Ce value reported by Mason et al. [6]). Complementarily, the behavior of the dielectric 

constant of the system (ε) as a function of DNA concentration was evaluated as a first approximation by 

using the simplest model of the double layer [7-9] from dopt values and the double layer capacitance 

values reported in Chapter 3 for the adsorption of DNA molecules in Au electrodes.  
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5.2. Overview of the SPR technique    

5.2.1. Surface plasmons   

The Surface Plasmon Resonance spectroscopy (SPR) is an optical technique that was introduced in 

the 90's as an underlying technology in affinity biosensors for the analysis of biomolecular interactions 

(BIA), representing a new concept for the analysis of functional properties of biomolecules [10]. The 

SPR phenomenon occurs when an incident beam of p-polarized light with a given wavelength gets into 

the surface at a certain angle through a prism. In such conditions, surface plasmon electromagnetic 

waves (surface plasmon polaritons) are created in the metal/dielectric interface. Therefore, plasmons are 

collective charge oscillations of free electrons of a metal in a gaseous medium. A surface plasmon 

corresponds to a longitudinal charge wave, which propagates in parallel way along the interface of two 

media, where one is the metal, and the other is the dielectric [10, 11] (Figure 5.1). As light, surface 

plasmons are a form of electromagnetic energy that can only be described by quantum physics. 

 

 

 

 

 

 

 

Figure 5.1. Surface plasmons in the metal-dielectric interface. 

 

5.2.2. Phenomenon of total internal reflection 

The phenomenon of total internal reflection (TIR) is very important in the SPR technique. The 

propagation of a light beam through a surface from a medium having a high refractive index to a 

medium having a low refractive index causes the light to be refracted towards the interface. In this way, 

the incidence angle (θ) increases and a point where the refracted light beam is parallel to the interface is 

reached, obtaining the critical incidence angle (θc) (Figure 5.2).  

At higher angles of incidence, all the light is reflected within the medium with high refractive 

index, this phenomena is called total internal reflection. If the medium with lower refractive index 
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absorbs light at a suitable wavelength, the evanescent field wave can transfer the photon energy 

corresponding to the medium [12]. This field comes in all circumstances where total internal reflection 

occurs. 

 

 

 

 

 

 

 

 

 

Figure 5.2. a) The light is directed from the denser medium (n2) to the lower density medium (n1) and is refracted 

to the interface. b) Above the critical incidence angle (θc), the total internal reflection (TIR) takes and the light 

don’t pass through the less dense medium. 

 

Otto [13] and Kretchmann [14] developed two different experimental systems for the excitation of 

surface plasmons. With the Otto configuration it is possible to have a separation of the TIR interface by 

a thin film of the medium with lower refractive index and is useful in studies of SPR in solid phase 

media, however, is less suitable for biosensors applications because the liquid film must be controlled 

carefully. Furthermore, the Kretchmann configuration places directly the metal film in the TIR 

interface, allowing a greater efficiency in the plasmons generation (Figure 5.3). 

A source of p-polarized monochromatic light is used in SPR and the interface between two dense 

optical media is coated with a thin metal film. The wave vector of the evanescent field (Kev) is given by: 

Kev =
w0

c

æ

è
ç

ö

ø
÷hg sinq                           (5.1) 

where o is the frequency of the incident light, g the refractive index of the dense medium (glass), θ the 

incidence angle of light and c is the speed of light in vacuum. The wave vector of the surface plasmon 

can be approximated with the following expression: 
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Ksp =
w0

c

æ

è
ç

ö

ø
÷

emhd

2

em +hd

2
                          (5.2) 

where εm is the dielectric constant of the metal film and ηd is the refractive index of the dielectric 

medium [15].   

 

 

 

 

 

 

 

 

Figure 5.3. Kretchmann configuration for SPR. The resonance of a surface plasmon is excited in the interface 

metal/air when the incidence angle of the light beam is such that the evanescent component of the wave vector (Kev) 

is equal to the wave vector of the surface plasmon that is been propagated (Ksp). 

 

5.2.3. Selection of the metal support  

The selection of the metal is very important since it must exhibit a behavior as described in the free 

electron model [16]. The most suitable metals are silver, gold, copper and aluminum, from which silver 

and gold are used more frequently. In some cases it has been observed that silver tends to undergo 

undesirable interactions with the environment (air or water), making it a less attractive metal, however, 

gold is a stable material and has become the standard metal for SPR studies [17]. 

 

5.2.4. SPR phenomenon 

When the evanescent wave of the incoming light is capable of being linked with the free oscillating 

electrons (plasmons) in the metal film and at a specific incidence angle (when ksp = kev), then the response 

of an excited plasmon is obtained. A decrease in the intensity of the reflected light at a specific incidence 

angle is obtained as a result of the energy transfer (Figure 5.4). 
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Through the graphical representation of the variation of the laser beam incidence angle we can 

obtain the minimum corresponding to the light intensity reflected at the metal/dielectric interface, 

defined by the conditions in which the energy and the momentum of light photons (kx) and surface 

plasmon (ksp) are equal. 

 

 

 

 

 

 

 

Figure 5.4. Schematic representation of SPR phenomenon. 

 

The reflectance of the incident light at a given angle (θ) can be calculated by a three layers Fresnel 

equation in relation to the p-polarization [10]. The detection system consists of three medium j, 

denoted by γ, μ and ρ, corresponding to the prism, the metal film and the sensor film. The reflectance of 

the incident light (R) is calculated as follows: 

R=
rgm + rmre

2 ikmdopt

1+ rgmrmre
2 ikmdopt

                          (5.3) 

where j = γ, μ and ρ 

kj = e j

w 2

c2
- kz

2                           (5.4) 

where kz = (εγ)1/2 (ω/c)sinθ 

The amplitude of the reflectance for the interfaces prism-metal and metal-sensor film are given by 

the following Equations 5.5 and 5.6.  
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rgm =
kgem - kmeg

kgem + kmeg

                          (5.5) 

rgm =
kger - kreg

kger + kreg

                          (5.6) 

where εj is the dielectric constant, kj is the component of the wave vector perpendicular to the respective 

media interface j (prism, metal or sensor film), kz is the component of the wave vector parallel to the 

interface,  is the angular frequency of incident light (ω(λ)= 2πc/λ), dopt is the average optical film 

thickness c is the speed of light. 

The application of this mathematical model allows simulating the obtained spectra by SPR and 

obtaining parameters as the dielectric constants and optical film thickness of the medium studied. The 

obtained changes in the SPR angle from the reflected light at a particular wavelength are directly 

related to the constants c1 and c2 for the refractive index change at the surface (Δn) and the optical film 

thickness change (Δdopt) according to the following expression: 

DQ(l) = c1Dn+c2Ddopt
                         (5.7) 

That in the case of proteins, the variations in the optical film thickness (dopt) caused by a 

conformational change in the molecule can predict a change in the refractive index (Δn) according to the 

Lorentz-Lorenz relationship [18]: 

Dn = -
1

6n
(n2 + 2)2 n2 -1

n2 - 2
-

nw

2 -1

nw

2 - 2

Vp

V

æ

è
ç

ö

ø
÷
Ddopt

dopt

                      (5.8) 

where n is the refractive index of the molecule, nw is the refractive index of water, Vp is the volume of 

the molecule and V is the volume of the film formed by the molecule (V= Vp + Vm). 

 

5.2.5. Adsorption kinetics    

The adsorption processes that are performed on the gold surface can be monitored in real time by 

selecting a suitable incidence angle and monitoring the reflected light intensity as a function of time. 

The functionalization of the gold surface with biomolecular receptors can lead to consider the SPR 

technique as a very effective tool for measuring the kinetics and the equilibrium constants of bioaffinity 

interactions of the system [19]. Three main stages are considered in the adsorption process monitored 

through SPR, i.e. association, dissociation and regeneration. Initially, the surface is calibrated with the 

buffer solution that will create the baseline in the SPR curve. Once the molecule comes in contact with 
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the surface, a rapid adsorption is produced and can be visualized as an increase in the SPR angle. This 

process is followed by the formation of a plateau in the adsorption profile, caused by the saturation of 

the surface with the molecule. Finally, the solution with the molecule is then replaced by the buffer 

solution in order to remove the material weakly bounded on the surface. The difference between the 

initial and the final SPR angle provides information about the degree of adsorption and the positive 

slope of the SPR adsorption curve determines the rate of adsorption [20]. 

 

5.3. Experimental conditions  

The description of the reagents, buffer Tris-HCl/EDTA preparation and DNA/Buffer solutions 

are presented in Sections 2.3.1., 2.3.2. and 2.3.3. of this work. 

5.3.1. Design of the instrument Nano-SPR 6/321 

Measurements of Surface Plasmon Resonance (SPR) were performed on a Nano-SPR 6/321 (USA) 

instrument that operates according to Kretschmann geometry [21]. It has a 65º retroflexion trapezoidal 

prism. The right side of the prism allows the reflection and the upper right corner of the prism is 

equivalent to 90º. The SPR phenomenon takes place in the sensor chip, which is placed on the upper face 

of the prism by using an immersion liquid. The incidence angle is calibrated by rotating the table on the 

axis with the prism, in order to match the surface to the glass substrate. Figure 5.5 shows a schematic 

representation of the Nano-SPR 6/321 instrument experimental setup. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Schematic representation of the experimental setup. 
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5.3.2. Preparation of the chip sensor surface 

Commercial gold slides used for SPR experiments were supplied by NanoSPR (USA) with the 

dimensions 20 x 20 x 1 mm. Each slide was coated with a 45 nm gold layer, deposited on a thin 5 nm 

chromium under layer used to improve the adhesion of the gold layer. Before being modified, the 

substrates were extensively washed with Milli-Q water, activated with ethanol and finally dried.  

 

5.3.3. SPR measurements  

A semiconductor laser beam (Ga-As, = 670 nm) was incident on the base of the prism. Due to the 

Kretschmann configuration of the instrument, the laser was split into two beams. Light reflectivity was 

monitored as a function of the incidence angle () through a prism (TF1-65). A minimum was observed 

at the angle where the optimal resonance with the plasmon surface polaritons was reached. The 

instrument had a flow cell and tubing coupled to a peristaltic pump Masterflex C/L, model 77120-52 

from USA. A laminar flow pumped at a speed of 2 rpm was used to carry out the adsorption study of the 

DNA solutions. For each DNA concentration, the gold slides used as substrate were initially calibrated 

with buffer EDTA/Tris-HCl for 10 minutes, which provided a baseline. A volume of 1.5 mL of DNA 

solution was injected into the flow cell and monitored for 90 minutes. After 10 minutes of rinsing with 

buffer solution, an adsorbed film of DNA molecules was recorded through the minimum angle obtained 

(SPR).  

 

5.3.4. SPR data analysis  

Since the minimum angle of reflectivity (SPR) is a function of several known parameters, such as 

refractive indices of glass, gold, chromium and the medium, dopt for the organic layers are calculated 

using the Fresnel equations [22] through the commercial software Winspall version 3.01. The optical 

constants of the gold slide film (nAu= 0.15 + 3.6i for gold and nCr = 2.10 + 3.37i for chromium), the glass 

substrates (1.616) and the prism were obtained from the supplier’s database and were used as the initial 

parameters in the simulation process. All experiments were performed at room temperature (25 °C). 

 

5.3.5. Transmission Electron Microscopy (TEM) measurements   

Transmission Electron Microscopy measurements were carried on with a JEOL JEM-1011 

microscope working at an accelerating voltage of 100 kV. One drop of the sample was placed on a 

carbon-coated copper grid before each examination, then blotted and washed. After this procedure, 
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phosphotungstic S5 acid 2% (w/v) was used to stain negatively each sample and air to dry them. 

Samples were incubated during the night prior to the imaging. No dilution was needed prior deposition 

on the grids. All measurements were performed at a constant temperature of 25 °C. 

 

5.4. Experimental results   

5.4.1. SPR angles analysis   

The study of the adsorption process of DNA molecules in TE buffer solutions through SPR 

technique began with the determination of the optimal flow rate to dismiss the mass transport 

limitations. Such limitations are present when the observed binding between the analyte and the ligand 

are affected by the diffusion process of the analyte from the bulk of the solution to the surface of the 

sensor chip. It is known that in the case of biomolecules such as proteins, the binding between analyte 

and ligand is constant within a range of flow rates of 5 to 75 L/min and the mass transport limitations 

are negligible [23]. Therefore, a calibration curve of the peristaltic pump was constructed in order to 

monitor flow in each one of the channels according to different angular speed (Figure 5.6). It was 

determined that the angular speed range from 0.1 to 2.6 rpm agrees with the criteria mentioned before, 

so the speed of 2 rpm was selected to perform our measurements. 

 

 

 

 

 

 

 

Figure 5.6. Calibration curve for the peristaltic pump. (r2=0.9945). 

 

In order to understand the structural arrangement of the electrochemical double-layer formed from 

the adsorption of DNA molecules onto the Au substrate, several physical parameters obtained through 

the SPR technique were studied and analyzed. 
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Figure 5.7. Reflectivity (au) as a function ot the incidence angle (θ in °) for a DNA concentration of 0.4 mg/mL 

at the temperature of 25 °C. Insert: incidence angles θSPR-1, θSPR-2 and θSPR-3 for Au/H2O, Au/TE buffer and Au/TE 

Buffer/CDNA interfaces, respectively. 

 

The angle of minimum reflectivity (angle θSPR) was firstly monitored for each DNA/TE buffer 

concentrations through the displacement of the calibration angle from the buffer solution towards the 

largest angle observed after DNA molecules adsorption onto the Au surface. Figure 5.7 shows, as an 

example, the normalized reflectivity spectra as a function of the incidence angle for a DNA 

concentration of 0.4 mg/mL at a constant temperature of 25 ± 1 °C. From these results it is possible to 

find the positions of the SPR angle for each DNA concentration. In the insert we can be observe the  

resonance angles θSPR-1 and θSPR-2 for Au/H2O and Au/TE buffer interfaces, respectively, before the 

adsorption and θSPR-3 for the Au/TE buffer/CDNA interface after adsorption. It is possible to detect that 

the SPR angle of the buffer solution does not present significant changes with respect to the angle      

θSPR-1. Therefore, any adsorbed film from the buffer solution is neglected. However, after injection of 

each DNA solution, followed by a 90 minutes adsorption and a 10 minutes rinse with buffer solution, a 

shift in the minimum incidence angle towards higher values is distinguished. It is then possible to 

determine the formation of a film with adsorbed DNA molecules onto the metal surface after the set 

time. The dependence of θSPR-3 with DNA concentration was then analyzed.  
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Figure 5.8. Change of the minimum incidence angle (ΔSPR) obtained from the difference between SPR-1 and 

SPR-2 as a function of DNA concentration.  

 

Figure 5.8 shows the change of the incidence angle (ΔθSPR) obtained from the difference between the 

angle θSPR-3 and θSPR-2 as a function of DNA concentration. The resulting curve shows two well-defined 

minimums located at DNA concentrations of 0.3 and 1.5 mg/mL. These minimums agree acceptably 

with the values determined by the EIS technique and that were related to C* and Ce (Chapter 3), which 

identify the two transitions of particular interest: the transition between the dilute regime and the semi-

dilute regime without entanglements and the transition between the semi-dilute regime without 

entanglements and the semi-dilute regime with entanglement [5,6]. Both critical concentrations 

determine changes in the behavior of DNA chains in solution within the three regimes of the system. As 

in studies of structural conformations of proteins, where ΔSPR changes as a function of protein 

concentration allow detection of the conformational changes of the molecules, it is possible to suggest 

that the transitions represent the variation in the structural arrangement of DNA molecules at the gold 

slide surface.  Furthermore, a more detailed study of the interface was performed simulating the 

experimental results of the reflectivity as a function of the incidence angle using the Fresnel equations 

for each DNA concentration.  In this way, it was possible to obtain dopt [24, 25] for the Au/ calf thymus 

DNA interface for every studied CDNA. 
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5.4.2. Optical film thicknesses determination  

Various phenomena such as chemical interactions and dynamic processes of adsorption or 

degradation can be monitored in real time through the incidence angles, caused by the refractive index 

variations produced in the metal surface [20]. Such changes may be related to variations in mass and 

specific interactions between DNA molecules deposited on the surface of Au [26]. The observed shift in 

the incidence angles can be transformed into increments of the DNA molecules adsorbed films adsorbed 

on the sensor chip, from which is possible to calculate the average optical film thickness by using 

Equation 5.7 through the simulations with the Winspall Software [10, 24, 25]. It is noteworthy to 

mention that is important to have knowledge of the refractive indices of the films of the interface, since 

they are parameters that depend on the molecular composition and the packing density of the films, 

enabling their geometrical thicknesses to be calculated [19]. Figure 5.9 shows the resulting simulation 

for the SPR curve obtained for a DNA concentration of 2.0 mg/mL. The simulation allowed obtaining 

the corresponding values to DNA film optical properties. The obtained values for the optical thicknesses 

and the refractive indices of each of the films (prism, Cr, Au, DNA and TE buffer solution) are 

summarized in the insert of Figure 5.9. The refractive index for the Tris-HCl buffer solution was taken 

as 1.334 according to Diéguez et al. [27].  The values of the optical properties such as the refractive 

index and the optical film thickness corresponding to DNA film were evaluated through the simulation.  

A refractive index of 1.461 was obtained for the DNA film, which is in good agreement with the value 

reported by Pei et al. for the biomolecule [28].  

 

 

 

 

 

 

 

 

 

Figure 5.9. Simulation obtained for the experimental data of the reflectivity versus the incidence angle for the 

DNA concentration of 2.0 mg/mL at 25 ºC. The optical film thicknesses of each film composing the system are 

summarized. 
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The optical film thickness for a DNA concentration of 2.0 mg mL-1 is equal to 1.9 nm, which is 

close to the thickness reported for the cross section of DNA molecule double helix, 1.8 nm [29].  

However, the observed differences could be justified because the values obtained for the optical 

thicknesses of adsorbed films on metal surfaces by the SPR technique represent the average values 

monitored during the adsorption process. Simulations were performed for each SPR curve at every 

DNA concentration and enabled the optical film thickness to be determined for each of them.  Several of 

the calculated values may be validated by some reports, since lower DNA concentrations have been used 

on the cationic bilayer deposition on self- assembled monolayers [30].  In studies of DNA interactions 

with cationic lipids, looking for thin DNA film immobilization, the reported values for dopt are in a good 

agreement with those obtained in this study. In this case, the optical thickness is reported for the 

adsorbed film of a solution of lambda phage DNA with a concentration of 0.01 mg/mL in a 5 mM Tris 

buffer and at a pH of 8.5 in three different lipid cationic bilayers each one adsorbed in a MUA 

monolayer. The thickness of this layer is based on a refractive index of 1.5 and is equal to about 0.8 nm, 

which is in good agreement with the value obtained for a calf-thymus DNA concentration of 0.01 

mg/mL in this analysis (i.e. 0.7 nm) [30].  

Figure 5.10 shows a schematic representation of the presumed structural arrangement of the DNA 

molecules adsorbed onto the gold surface. Previous studies using techniques such as fluorescence 

measurements show the attraction of the negatively charged strands of DNA due to the positive charges 

of the metal surface and the efficient energy transfer from the metal [31]. Therefore, DNA strands tend 

to be attracted to the metal surface in a horizontal manner. In the dilute regime it can be observed that 

the optical film thickness increases as a function of DNA concentration, being 0.7 nm the lowest value 

monitored for CDNA of 0.01 mg/mL.  

 

 

 

 

 

 

 

 

Figure 5.10. Schematic representation of the presumed structural arrangement of the electrochemical double layer 

at each characteristic regime.  
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Since DNA strands are not immobilize the by any organic compound, the electrochemical double 

layer formed on the substrate surface is affected only by structural changes at the interface and by the 

interchains interactions between DNA strands in the different regimes. 

An important assumption in dilute solutions is that each unit of the biopolymer has the same 

possibility to occupy every position adjacent to its neighbor, and that each coil of the molecule is 

regarded as a hard sphere whose interior is protected from the flow due to hydrodynamic interactions 

[32]. With increasing DNA concentration and reaching C*, DNA chains begin to overlap and get 

densely packed, resulting in a change of the optical film thickness behavior and generating a new 

structural arrangement of DNA molecules on the gold slide surface. A second behavior is then observed 

from 0.4 to 1.0 mg/mL, in which it is possible to detect a constant augment of dopt while increasing DNA 

concentration.  However, DNA entanglements from Ce show a third behavior for dopt at higher DNA 

concentrations. The behavior in each regime will be analyzed in the next section.  

 

5.4.3. Evaluation of the optical film thicknesses in each characteristic regime 

Figure 5.11 presents the analysis of the optical film thickness as a function of DNA concentration 

for each characteristic regime in log-log graphics. Linear behavior was observed at each regime and 

follows the power law [33] according to the following expression: 

y = axb                            (5.9) 

where a and b correspond to the proportionality constant and the power exponent associated with the 

relation between dopt vs. CDNA (Δdopt /ΔCDNA) respectively. This relation follows the Equation 5.9 

according to: dilute regime CDNA ˂ C*): dopt ~ CDNA
0.20, semi-dilute regime without entanglements 

(C*˂CDNA˂ Ce): dopt ~ CDNA
0.79 and semi-dilute regime with entanglements (Ce ˂ CDNA): dopt ~ CDNA

0.57. 

The obtained values are resumed in Table 5.1. 

 

Table 5.1.- Parameters obtained by fitting dopt as a function of DNA concentration according to the power law at 

a temperature of 25 ºC.   

DNA concentration range 

mg/mL 

Regime a b r2 

 
0.01< CDNA < C* 

 
Dilute 

 
1.782 

 
0.201 

 
0.992 

 
C*< CDNA < Ce 

Semi-dilute without 
entanglements 

 
1.898 

 
0.798 

 
0.988 

 
Ce < CDNA < 3.0 

 

Semi-dilute with 
entanglements 

 
1.217 

 
0.567 

 
0.983 
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We can observe that dopt/ΔCDNA increase from dilute regime to semi-dilute regime without 

entanglements, reaching their maximum value and then decrease when they reach the semi-dilute 

regime with entanglements. The overlap phenomenon between DNA strands and their dense 

packing is reflected in the higher value of dopt/ΔCDNA. However, the strong interaction and 

entanglement of DNA strands of semi-dilute regime with entanglements exhibited the lowest value 

of dopt/ΔCDNA.  The values obtained through these fittings by using the power law may predict the 

dopt for any DNA concentration between each characteristic regime.  

 

 

 

 

 

 

Figure 5.11. Relation between dopt and DNA concentration fitted according to the power law at each 

characteristic regime: a) dilute regime, b) semi-dilute regime without entanglements and c) semi-dilute regime with 

entanglements. 

 

5.4.4. Surface excess values determination  

The results for dopt at each DNA concentration were used to calculate the layer mass per unit area 

using Feitjer’s equation [34,35]: 

G = dopt (nL - nbuffer ) /
dn

dc

æ

è
ç

ö

ø
÷

P,T

                                    (5.10) 

where Γ is the layer mass per unit area (ng/mm2) , dopt is the optical film thickness of the adsorbed layer 

(nm) and nL and nbuffer are the refractive indices of the layer and the bulk solution, respectively, and 

dn

dc

æ

è
ç

ö

ø
÷

P,T

 is the refractive index increment. Feijter’s method uses the assumption that the refractive 

index increment of a protein in solution is a linear function of the protein concentration. The value 

dn/dc has been reported as 0.175 cm3/gr for DNA [36]. The values obtained for Γ exhibit the same 

behavior as dopt, showing that variations in the surface excess are also related to structural 
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rearrangement of the DNA strands adsorbed on the substrate surface. As expected, the obtained values 

for Γ present the same behavior as dopt at each characteristic regime, showing that the surface coverage 

variations are also related to the structural arrangement of DNA strands adsorbed onto the substrate. 

Table 5.2 summarizes the results for the layer mass coverage obtained using Feitjer’s equation, as well 

as the number of molecules at each DNA concentration.  It is noteworthy that the obtained values are in 

good agreement with those reported for DNA concentrations of the dilute regime through studies of 

DNA immobilization on preformed alkanethiol SAMs [37]. On the other hand, the number of DNA 

molecules per square centimeter deduced through quartz crystal microbalance (QCM) experiments for a 

CDNA of 0.1 mg/mL (4.60 x 1010 molecules/cm2) are the same order of magnitude and we believe this is 

consistent with the calculated value reported in this work using the SPR technique (4.51 x 1010 

molecules/cm2).  

 

Table 5.2.- DNA dependence for the mass coverage and the amount of DNA molecules present at the interface.  

CDNA 

mg/mL 

 


ng/mm 

Amount of covering DNA 
molecules 

molecules/cm2 

0.01 60.00 2.87 x 1010 

0.03 77.14 3.69 x 1010 
0.1 94.29 4.51 x 1010 
0.2 111.43 5.33 x 1010 
0.3 68.57 3.28 x 1010 
0.4 77.14 3.69 x 1010 
0.5 98.57 4.71 x 1010 
0,7 120.00 5.74 x 1010 
0.8 137.14 6.56 x 1010 
1.0 162.86 7.78 x 1010 
1.5 132.86 6.35 x 1010 
2.0 154.29 7.38 x 1010 
2.5 171.43 8.19 x 1010 
3.o 197.14 9.42 x 1010 

 

5.4.5. First approach to the variation of the dielectric constant  

In Chapter 3 we present an adsorption study of DNA molecules onto an Au surface through EIS, in 

which we show an approach in order to understand the behavior of the differential capacitance Cdl as 

function of DNA concentration and that shows two transitions around 0.36 ± 0.07 and 1.5 mg/mL. 

Such transitions may be directly related to the film thickness (d) by the following equation: 

Cdl =
ee0

d
                                            (5.11) 
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where εo is the permittivity of the vacuum and ε the dielectric constant [38]. 

According to the simplest model of the electrochemical double layer [38], changes in differential 

capacitance can reflect variations in the thickness of the interface as well as in the values of the dielectric 

constant ε of the system. It is noteworthy that dielectric constants values depend on several parameters 

such as concentration of the solvent, DNA structure and dielectric field saturation, among others. 

Furthermore, the interface thickness is directly related to the structure and the rearrangement of DNA 

molecules at the interface, which is influenced by DNA concentration, causing attractive or repulsive 

forces and changes in the nature of the DNA molecules [39]. Therefore, changes in the dielectric 

constant and in the double layer capacitance are also turn related to the average thickness of the 

interface, evaluated in this study as the average optical film thickness (dopt), resulting in different ways of 

DNA adsorption such as rolls, slide or twist [39]. Figure 5.12 shows the results for the dielectric 

constant as a function of DNA concentration calculated using Equation 5.11 and the Cdl values 

previously obtained by the EIS measurements (Chapter 3).  The obtained ε values of DNA solutions 

corresponding to the dilute regime are in good agreement with the values reported for DNA solutions 

in 1.0 M KH2PO4 (1.833) and water (1.945) by Peterlinz et al. [40]. Since the electric field intensity of 

the environment notably influences the dielectric constant [41] and DNA molecules in the 

surroundings are negatively charged, then the degree of ordering of DNA molecules and dipolar solvent 

molecules will change with DNA rearrangements, as seen in Figure 5.12. 

 

 

 

 

 

 

 

 

Figure 5.12. Dielectric constant (ε) as a function of DNA concentration (mg/mL) at a temperature of 25 ºC. 

 

Dielectric constant has a strong influence on the properties of the metal-solution interface, so the 

double-layer structure should not only depend on the gold electrode but also on the orientation of 

dipolar solvent molecules near the surface [42].  Hence, catalytic and adsorption properties such as the 
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metal’s adsorptive power, which is low at high interaction energy with solvent, will reflect the 

interactions between the solvent and the electrode. The displacement of adsorbed solvent molecules and 

their reorientation will also depend on the structural rearrangement of adsorbed DNA molecules at the 

metal surface.  As seen in Figure 5.12, dielectric constant behavior presents two transitions around DNA 

two concentrations, as observed by several microscopic and macroscopic techniques [6].  As well as 

small changes in DNA length cause significant changes in the dielectric increment [43], salt 

concentration is highly related to conformational changes and binding reactions with DNA, which in 

turn may affect dielectric and ionic strengths. Therefore, the reorientation of DNA molecules permanent 

dipoles can be associated to the regime transitions, observed at C* and Ce and depicted as a function of 

DNA concentration. 

As well as for dopt, a linear behavior is observed for each regime in log-log graphs, where the 

relation between ε and CDNA also follows the power law according to: dilute regime (CDNA˂C*): 

ε~CDNA
0.31, semi-dilute regime without entanglements (C*˂CDNA˂ Ce): ε~CDNA

1.02 and semi-dilute regime 

with entanglements (Ce ˂ CDNA): ε~CDNA
0.64. Figure 5.13 shows the analysis of the dielectric constant as a 

function of DNA concentration for each regime in log-log graphics. The values obtained for each fitting 

are summarized in Table 5.3.  Just as dopt is a function of CDNA, the values obtained through the power law 

fittings may predict the ε for any DNA concentration between each characteristic regime. 

 

 

 

 

 

 

Figure 5.13. Relation between  and DNA concentration fitted according to the power law at each characteristic 

regime: a) dilute regime, b) semi-dilute regime without entanglements and c) semi-dilute regime with 

entanglements. 
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Table 5.3.- Parameters obtained by fitting  as a function of DNA concentration according to the power law at a 

temperature of 25 ºC.   

DNA concentration range 

mg/mL 

Regime a b r2 

 

0.01< CADN < C* 

 
Dilute 

 
40.772 

 
0.313 

 
0.956 

 
C*< CADN < Ce 

Semi-dilute without 
entanglements 

 
48.365 

 
1.018 

 
0.990 

 
Ce < CADN < 3.0 

 

Semi-dilute with 
entanglements 

 
29.517 

 
0.639 

 
0.957 

 

5.4.6. TEM measurements  

Figure 5.14 shows three TEM micrographs taken from DNA concentrations of 0.1, 0.5 and 3.0 

mg/mL, respectively. Figure 5.14 a shows the typical behavior of the dilute regime, where DNA 

molecules appear like isolated plaits with any interaction between them. Once DNA concentration has 

reached the C*, DNA molecules start interacting between each other and chains get overlapped, as seen 

in Figure 5.14 b, which represents the semi-dilute regime without entanglements. DNA solutions 

properties change noticeably at these conditions. Figure 5.14 c shows the behavior for a higher DNA 

concentration. Here it is possible to observe a gellike behavior due to the presence of entanglements 

between DNA molecules, typical of the semi-dilute regime with entanglements and corresponding to 

concentrations higher than Ce. These results clearly show the structural nature of DNA molecules when 

the DNA concentration is taken as a parameter and allows validating transition concentration evaluated 

by EIS and SPR techniques. 

 

 

 

 

 

Figure 5.14. TEM micrographs for DNA concentrations of a) 0.1, b) 0.5 and c) 3.0 mg/mL 
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5.5. Particular conclusions for the study of the structural arrangement of the interface 

DNA-gold by SPR  

The optical film thickness (dopt) values observed in the surface of the sensor chip were estimated at 

each DNA concentrations, whereby two concentrations related to the overlap (C*) and the 

entanglement (Ce) were identified. The variations of dopt as a function of DNA concentration were related 

to the transitions in the structural arrangement of the electrochemical double-layer, showing a specific 

behavior of DNA chains at each characteristic regime. A linear relation between dopt vs. CDNA was 

observed in each regime, following the power law according to: dilute (CDNA ˂ C*): dopt ~CDNA
0.20, semi-

dilute regime without entanglements (C*˂ CDNA˂ Ce): dopt ~CDNA
0.79 and semi-dilute regime with 

entanglements (Ce ˂ CDNA): dopt ~CDNA
0.57.  Using the simplest double-layer model, the changes in Cdl were 

related to the changes in dopt as a function of DNA concentration and a dielectric constant behavior was 

also obtained, showing DNA transitions passing from diluted, semi-diluted unentangled and semidiluted 

entangled solutions. The power law correlations are proposed as a useful tool to predict interfacial 

parameters as well as the adsorbate concentration in a wide DNA concentration range. The combination 

of both EIS and SPR techniques emend an exhaustively characterization of structural behavior of Au-

DNA TE buffer interface. 
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6. Experimental study of the adsorption of DNA molecules on metal 

surfaces by Modulation of the Interfacial Capacitance (MIC) 

6.1. Introduction  

As we have mentioned in previous chapters of this work, DNA adsorption processes onto metal 

surfaces of different nature have been widely studied for decades. Miller [1] was probably the first who 

studied DNA adsorption, showing that the adsorption of chromosomal DNA was controlled by diffusion 

for partially covered surfaces and reporting an area per adsorbed nucleotide around 95 Å2 for denatured 

DNA. Janik and Sommer [2] followed the adsorption studies, proposing that the chain length of RNA 

molecules is an important parameter that affects the orientation of these molecules on the electrode. 

Then, Brabec and Paleček [3] showed that all components of DNA nucleotides, this is, the nitrogenous 

base, the deoxyribose sugar and the phosphate could take part in the adsorption process of DNA onto 

mercury electrodes.  

Usually, the adsorption process depends on temperature, concentration of the adsorbate and the 

polarization imposed to the electrode, since the species can be adsorbed or desorbed on the electrode in a 

specific potential region [4]. However, more specifically, DNA adsorption process also depends on the 

conformation of the molecule, pH and ionic strength of the solvent, solution dielectric constant and on 

the electric charge of the electrode surface [5]. Many methods have been used and proposed to study 

adsorption/desorption behavior of nucleic acids at electrodes and are summarized by Paleček et al. [5]. 

Among them, Electrochemical Impedance Spectroscopy (EIS) has been particularly attractive due to the 

possibility it offers to perform measurements in the frequency domain [6-9]. Previously, we have 

focused on the study of DNA adsorption onto platinum and gold surfaces by using EIS technique on 

Chapters 3 and 4 of this work. Now, we propose a recently developed technique called Modulation of the 

Interfacial Capacitance (MIC) in order to reach a greater insight on DNA adsorption onto metallic 

surfaces and to characterize double-layer dynamics during this process.   

The Modulation of the Interfacial Capacitance was developed in France in the last decade [10] and 

is a technique derived of the Electrochemical Impedance Spectroscopy. In this technique, two signals of 

sinusoidal perturbations are simultaneously applied to the system, i.e. a high and a low frequency signal. 

In this way, it is possible to measure the modulation of the interfacial capacitance of the electrode, which 

is determined by the high frequency perturbation that reflects the variations of the capacitance 

originated by the low frequency perturbation [4]. As reported by Antaño López [10], the study of the 

adsorption processes through this electrochemical technique may give acces to the characteristic 

frequencies that could be related to adsorption-desorption phenomena of the interface. Then, using an 

Hg electrode in NaBr and KCl solutions as examples, Larios-Durán et al. [11] demonstrated that the 

MIC was a promising technique for the research and characterization of physicochemical processes that 

take place inside the diffuse layer. Finally, they reported that the combination of EIS and MIC allowed 
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improving the understanding of the adsorption processes through the detection of the characteristic 

frequency of multiple relaxation processes. 

In this chapter is presented an adsorption study of calf-thymus DNA molecules in TE buffer (Tris-

HCl/EDTA buffer) onto platinum electrodes through Modulation of the Interfacial Capacitance in 

order to quantify the basic stages of the DNA adsorption-desorption process in each characteristic 

regime, i.e. dilute, semi-dilute without entanglements and semi-dilute with entanglements. The MIC 

measurements were performed at open circuit potential in the temperature range between 10 and 40 ºC. 

The experimental response as a function of temperature and DNA concentration gives information of 

the double-layer relaxation and reorganization dynamics through the time-constants displayed by the 

loops in the complex plane.  

 

6.2. Overview of the technique  

6.2.1. Qualitative description of the MIC  

The Modulation of the Interfacial Capacitance is a methodology that is able to measure 

simultaneously impedance and interfacial capacitance spectra [10]. It was originally developed due to 

the interest of studying the effect of faradic processes in the differential capacitance of the double layer 

by a similar method to the impedance; this is, by applying simultaneously two sinusoidal perturbations, 

one high (f) and one low (f) frequency, as mentioned in the introduction. In this manner, the idea is to 

measure the effect of a low frequency perturbation, i.e. less than 100 Hz at which several faradaic 

processes take place and that can be reached by the impedance technique, in the response of the 

differential capacitance of the double layer obtained through a second frequency perturbation higher 

than the first one, i.e. higher than 1 kHz [4]. The results obtained by Antaño-López et al. [12,13] using 

the MIC technique show experimental evidence of the strong relationship between charge transfer and 

capacitive processes. 

The Modulation of the Interfacial Capacitance implies the perturbation with two simultaneous 

sinusoidal perturbations, unlike impedance technique, which implies a perturbation with one sinusoidal 

signal. For EIS, the potential or current perturbation as a function frequency, f,, allows obtaining the 

impedance information of the system, that can contain capacitive, charge transfer and/or diffusive 

transport contributions. However, for the MIC, the high frequency perturbation, f,, allows accessing 

only to the capacitive response of the interface, that will also show the low frequency perturbation effect. 

Both techniques, EIS and MIC, measure transfer functions dependent on frequency, where ΔE/ΔI 

corresponds to the EIS transfer function and ΔC/ΔEto the MIC transfer function. Where 
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Crepresents the differential capacitance of the double layer obtained at the frequency f and 

Erepresents the potential at the frequency f.  

 

6.2.2. Fundamentals of the MIC  

Given the following expression for the current of a system [4,10]: 

I =
dq

dt
                                                (6.1) 

where q represents the charge for a capacitive system and is defined as: 

q= KE                                                (6.2) 

In this equation K represents the integral capacitance and E represents the potential. 

In this way, the current expression for a capacitive system is the following: 

I = E
dK

dt
+ K

dE

dt
                                               (6.3) 

By applying a sinusoidal perturbation of potential, as an example, the capacitance changes with 

time, so Equation 6.3 becomes the following expression:  

I = E
dK

dE
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That can be also written in the subsequent way:  
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dK

dE

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú
dE

dt
                                               (6.5) 

where the differential capacitance is given by the following term:   

Cdl = K + E
dK

dE
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The response in current of a capacitive system can be obtained through the analytic expression of 

dE/dt, which depends on the applied perturbation to the system. The theoretical background for the 

EIS and the MIC techniques is developed by Antaño-López [10] and Larios-Durán [4] for the current 
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expression for a perturbation of the system by a simple signal and for a perturbation of the system by a 

signal composed of two independent signals. 

 

6.3. Experimental conditions  

The description of the reagents, buffer Tris-HCl/EDTA (TE buffer) preparation and DNA/Buffer 

solutions are presented in Sections 2.3.1., 2.3.2. and 2.3.3. of this work. 

 

6.3.1. MIC measurements on platinum electrodes  

MIC measurements were performed using a data acquisition card NI model PC-6251, which makes 

possible to obtain simultaneously the impedance and the capacitance spectra. A two-platinum electrode 

cell from Fisher Scientific was used as the working and the counter electrode and a saturated calomel 

electrode (SCE) was used as the reference. Both platinum electrodes surface is 0.25 cm2. An 

electrochemical cleaning of the cell was routinely carried out applying cyclic voltammetry in a potential 

range between -1.5 and 1.0 V vs. SCE using a 0.5 M H2SO4 solution. The temperature of the samples 

was monitored using a forced circulation bath with digital temperature control. The measurements were 

carried out for DNA concentrations from 0.01 to 8.0 mg/mL at the temperatures 10, 20, 30 and 40 ° C. 

It was allowed a stabilization period of 30 min to each sample at each temperature to ensure a steady-

state measurement. Homemade software was used to monitor and calculate the EIS and Modulation of 

the Interfacial Capacitance Transfer Function (MICTF).  

 

6.3.2. Experimental setup   

The experimental setup consists of’ the interconnection of the data acquisition card (NI model 

BNC-2110), a lock-in amplifier SR530 from Stanford Research Systems and a Bipotentiostat from Pine 

Instrument Company. A diagram of this setup is presented in Figure 6.1. The lock-in provides a high 

frequency perturbation ∆EΩ (where f=1 kHz and |∆EΩ|= 20 mV rms), which allows obtaining the 

fluctuations of a low frequency perturbation ∆E (where f is between 100 Hz and 0.01 Hz and 

|∆E|=20 mV rms), generated by the data acquisition card. The electronic addition of both 

perturbations, ∆EΩ and ∆E, is carried on in a home made electronic signal adding box. The resulting 

signal from the addition is then sent to the bipotentiostat and finally imposed to the work electrode. The 

current and potential responses of the system, ∆I and ∆E, respectively, are obtained from the output 
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channels of the bipotentiostat. ∆I is sent to the input of the lock-in and then the in-phase component 

∆I
0 is sent to the channel AI3 of the card. Subsequently, the output of ∆E from the bipotentiostat is 

sent directly to channel A1 of the card.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Experimental setup used to measure EIS and MIC simultaneously [11]. 

 

The home made software calculates the EIS as a function of  following the next expression, as 

reported by Larios-Durán et al. [11]: 

Z w( ) =
DE(w)

DI (w)
=

Rst ×DEw

DIW(w)
                             (6.7) 

where Rst corresponds to the standard resistance through which the current signal was measured by the 

potentiostat. 

From Equation 6.7 is possible to calculate the corresponding admittance as the reciprocal of the 

complex impedance, i.e. Y()=1/Z(), from which it is possible to access to the capacitance transfer 
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function. In this way, the intermediate step in the computation of the Modulation of the Interfacial 

Capacitance and Associated Transfer Functions (MICTF) is determined by the following expression: 

XW w( ) =
DIW

90

Rst × DEw

                         (6.8) 

 

6.3.3. Filters characterization and data processing 

 6.3.3.1. Filters characterization  

Initially, the measured value for the MIC is altered by the experimental setup since the lock-in 

amplifier also introduces an additional transfer function, F(), proper of the internal filters of the 

instrument (Equation 6.9). This transfer function F() has to be characterized in order to remove it’s 

contribution to the experimental measurements of the system. In this thesis, F() is characterized by 

applying the MIC technique to a semiconductor diode (1N 41 48) under identical conditions to those 

used in the electrochemical adsorption studies. Equation 6.9 describes F() transfer function. 

F(w) =
Y

(1+ jwt1)
n(1+ jwt 2 )m

                       (6.9) 

where Y is the gain of the transfer function, 1 and 2 are the characteristic time constants and  is the 

angular frequency (=2f). F( order is given by the exponents n and m.  

The theoretical development of the current expression to the perturbation composed by a double 

signal has been previously described by Larios-Durán et al. [14] and allows obtaining the filter transfer 

function and the gain of the measurement chain.  

Considering that for a semiconductor diode, the relation current-potential is given by the following 

expression:  

I = Ia exp(b× E)                                      (6.10) 

where Ia and b are the characteristic parameters of the diode.  

The application of a polarization potential E0 will produce a current I0 and the expression will be: 

I 0 = Ia exp(b× E0 )                                     (6.11) 
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If the system is perturbed by two sinusoidal potentials at the frequencies f and f, with a 

polarization potential E0, then and the response to the current will be:  

I = Ia exp[b× (E0 +DEw +DEW)]                                   (6.12) 

I = I 0 ×exp(bDEw )×exp(bDEW)                             (6.13) 

Using the Taylor series to separate the different contributions and neglecting the higher order 

terms, it comes that:  

I = I a 1+ bDEW +
(bDEW)2

2
+...

é

ë
ê

ù

û
ú× 1+bDEw +

(bDEw )2

2
+...

é

ë
ê

ù

û
ú                           (6.14) 

I = I 0 + I 0bDEw + I 0bDEW + I 0b
2 ×DEWDEw +

I 0b
2

2
DEW

2 +
I 0b

2

2
DEw

2
                  (6.15) 

where DEWDEw corresponds to the component in phase of the current at the frequency modulated by 

the signal at frequency 

In this way, the response to the perturbation of sinusoidal potential of the semiconductor diode will 

be a point on the real axis (or a disperion around the same point), in the predicted value equivalent to 

the constant coefficient of the term DEWDEw . 

Experimentally, the analytical evaluation of the I vs E curve for the semiconductor diode can lead 

to the characteristic parameters of the diode, i.e. Ia and b. Subsequently, the sustitution of these values on 

the Equation 6.11 will leads us to Iab2. Any response different to this value would be attributed to the 

internal filters of the synchronous detector. 

 

 

 

 

 

 

 

Figure 6.2. I vs E curve obtained experimentally for the semiconductor diode.  
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The polarization curve for the semiconductor diode was fitted through an exponential function 

using the OriginPro software in order to find Ia and b numerical values and is presented in Figure 6.2. 

The values 4.33 x 10-9 and 20.05 were obtained for Ia and b, respectively. Through these parameters, the 

values for I0 and I0b2 were calculated by using Equation 6.11 and are equal to 9.77 x 10-5 A and 3.93 x 10-2 

SV-1, respectively. Where the value I0b2, corresponding to the coefficient of , as mentioned before, 

is related to the experimental value obtained through the perturbation of the semiconductor diode to a 

composed signal.  

Figure 6.3 a shows the typical response of the internal filters of the lock-in amplifier measured by a 

semiconductor diode, analytically described by the Equation 6.9. Figure 6.3 b corresponds to the 

normalized spectra which will be used for the arithmetic operations in order to obtain the MICTF 

values for Pt/DNA-TE buffer interface. The conditions established for the measurement are presented 

in Table 6.1 and are identical to the conditions used in the electrochemical experiments. The resistance 

corresponds to the selected parameter in the biopotentiostat and the sensitivity and time-constant are 

the selected parameters of the lock-in amplifier.   

 

Table 6.1.- Standard experimental conditions for the semiconductor diode measurement. 

f f E0 DEW
 DEw

 Resistance  Sensitivity Time-
constant 

1 kHz 100 Hz to 10 mHz 0.5 V 10 mV 10 mV 1 mA 50 mV 30 ms 

 

 

 

 

 

 

 

 

Figure 6.3. a) Semiconductor diode response to the MIC and b) normalized response of the semiconductor diode. 
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The frequency response of this semiconductor diode is fast enough for introducing no distortion at 

the frequency [12]. Theoretically, it would be expected to find a point around the calculated value for 

I0b2, however, we obtain a spectra with a semi-circle (Figure 6.3 a). This is attributed to the internal 

filters of the synchronous detector. The original spectra was then fitted in order to know the transfer 

function for the filter, F(), given by Equation 6.9 and is presented in Figure 6.4.  

 

 

 



 

 

 

 

Figure 6.4. Fitting of the experimental results for the Semiconductor diode response to the MIC.  

 

Figure 6.4 shows that the loop ends in the second quadrant, so the built-in filter is a second order 

filter. According to by Equation 6.9, the expression can be described by: 

F(w) =
Y

(1+ jwt1) × (1+ jwt 2 )
                   (6.16) 

where the dimensionless coefficient related to the gain equals to 4.80 and the characteristic time 

constants1 and 2 are 0.0142 and 0.1075, respectively.  

 

6.3.3.2. General data processing 

Since the experimental values obtained directly through the MIC measurements are not 

dimensionally capacitance values, the obtained signal, that is properly a potential signal like the input 

signal that goes to the frequency analyzer, has to be converted into a current signal by applying Ohm’s 

law and using the value of the standard resistance, Rst, of the potentiostat. The current value are then 

converted into capacitance values per area units, A.  
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Finally, after the determination of the lock-in amplifier response, then the complete correction of 

X() is given by the following expression:  

DCW =
DCW(w)

DE(w)
=

1

F(w)
×XW(w) ×

1

A× DEW ×W
                       (6.17) 

where A is the area of the electrode,  is the angular frequency of the high frequency potential 

perturbation (2f) supplied by the lock-in amplifier and ΙΔEΙ is the amplitude of this perturbation.   

The final correction of the experimental data obtained for the semiconductor diode is obtained by 

dividing them by the transfer function recently obtained (Equation 6.17). Figure 6.5 shows the correction 

of the semiconductor diode by its transfer function, from which it is possible to obtain a dispersion of 

points on the real axis around a practically constant value. The discrepancy in the magnitude of the 

value with the one predicted by Equation 6.15 is due to the gain of the measuring chain. In this manner, 

a value of 122 is obtained through a relation between the value obtained through Equation 6.16 and the 

value obtained for the transfer function fiven by Equation 6.15, and represents the gain of the amplifiers 

given by the experimental setup. 

It is then necessary to divide the response presented in Figure 6.6 by the value of the gain in order 

to access to the real response to the double sinusoidal perturbation of potential applied of the 

semiconductor diode.  

 

 

 

 

 

 

 

 

 

Figure 6.5. Correction of the experimental values by using the internal filter of the lock-in.  
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6.3.3.3. Data processing for Pt-DNA/TE buffer MIC response 

In order to obtain the corrected MIC response for Pt-DNA/TE buffer interface, the raw X 

data is introduced in Equation 6.16. Figures 6.6 a to c show the MIC data processing diagrams for a DNA 

concentration of 0.05 mg/mL at the temperature of 20 ºC. Figure 6.6. a corresponds to the untreated 

diagram analytically described by the Equation 6.8, Figure 6.6. b presents the normalized response of the 

internal filters of the lock-in amplifier measured at the same conditions that Pt-DNA/TE buffer 

interface measurements Figure 6.6. c shows the correction of the experimental values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Data processing for obtaining the Pt/DNA-TE buffer MIC spectra. 

a) Untreated diagram analytically described by the Equation 6.8. 
b) Typical normalized response of the internal filters of the lock-in amplifier measured by a semiconductor 

diode. 
c) MIC diagram after correction. 
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6.4. Experimental results and discussion 

6.4.1. Response of the Pt/Calf-thymus DNA interface to the MIC 

The differential capacitance dependence with potential, evaluated in Chapter 3 for EIS 

measurements of Pt/DNA-TE buffer interface, was taken into account in this study in order to attribute 

the MIC response to the adsorption of DNA molecules onto the platinum surface. In this manner, since 

MIC measurements were performed at open circuit potential, i.e. around 250 mV vs. SCE, which is a 

more positive potential than the potential of zero charge (15 mV vs. SCE), the adsorption and 

preservation of DNA is guaranteed at this potential and this experimental conditions (DNA 

concentration, ionic strength, pH and temperature) [15]. Figure 6.7 shows the typical MICTF response 

for the Pt/DNA-TE buffer interface after the arithmetic treatment for a DNA concentration of 1.0 

mg/mL, a temperature of 30 ºC and an ionic strength equivalent to 9.8 mM NaCl, this is, in the semi-

dilute regime without entanglements. The electronic conditions stablished for the measurements, 

selected according to the signal clarity, are presented in Table 6.2 and correspond to the parameters 

used for all electrochemical measurements in this work. As mentioned before for the semiconductor 

diode, the resistance corresponds to the selected parameter in the biopotentiostat and the sensitivity and 

time-constant are the selected parameters of the lock-in amplifier. 

 

Table 6.2.- Standard experimental conditions for the MIC measurements of Pt/DNA TE buffer interface.   

f F E0 DEW
 DEw

 Resistance  Sensitivity Time-
constant 

1 kHz 100 Hz to 10 mHz OCP≈0.25 V 10 mV 10 mV 1 mA 50 mV 30 ms 

 

 

 

 

 

 

 

Figure 6.7. Complex plane diagram and its replica of modulation of interfacial capacitance of the Pt/DNA-TE 

buffer interface for a DNA concentration of 1.0 mg/mL at a temperature of 30 ºC and an ionic strength 

equivalent to 9.8 mM NaCl. Parameter f in Hz.  
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As observed in Figure 6.7, the reproducibility of the measurements is validated with the 

overlapping of two spectra obtained for the same DNA concentration, i.e. 1.0 mg/ml using the same 

electronic conditions. For this DNA concentration, temperature and ionic strength, an average single 

time-constant is observed in the frequency range between 1.0 and 10 Hz, as obtained for the complex 

capacitance data presented on Chapter 3 [15,16]. The presence of a depressed loop in this low frequency 

range shows that DNA adsorption process is a slow process that could be taking place through several 

steps.  

Since DNA MIC spectra present a shift from negative to positive real parts while decreasing the 

frequency, in order to dismiss or attribute any other contribution to the MIC signal due to the internal 

filters of the lock-in amplifier or to the experimental setup, firstly, the evaluation of the MICTF 

response for the Pt/DNA-TE buffer interface was carried out and compared by using different time-

constants of the lock-in amplifier (Figure 6.8).   

 

 

 

 

 

 

 

 

Figure 6.8. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer interface 

for a DNA concentration of 1.0 mg/mL at a temperature of 30 ºC and an ionic strength equivalent to 9.8 mM 

NaCl with a variation of time-constants of the lock-in amplifier. Parameter f in Hz.  

 

Figure 6.8 presents the MIC spectra for the Pt/DNA-TE buffer interface obtained after applying a 

perturbation to the system by a composed signal and using a variation of three different time-constants 

of the lock-in amplifier for each measurement, i.e. 30 ms, 1 ms and 1 ms post none (which can suppress 

noise at larger frequencies). A distribution of the capacitance with the frequency is observed at the high 

frequency range between 100 and 10 Hz, followed by the superposition of the data until arriving to the 

low frequency range. The single time-constant detected in the frequency range between 1.0 and 10 Hz, 

and the shift from negative to positive real parts while decreasing the frequency, remain in the obtained 
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response. In this way, in order to guarantee the validity and reproducibility of the results obtained in 

this work, one replica of each measurement was carried out at the same the electronic conditions and a 

second one was also performed with a variation of a time-constant of the lock-in amplifier.  

The results allow concluding that the dispersion of the capacitance with frequency indicates a slow 

adsorption process of DNA molecules onto the platinum surface and does not follow immediately the 

sinusoidal perturbation.   

Since the experimental setup allows obtaining simultaneously the MIC and the EIS response of the 

interface to the applied sinusoidal potentials, the impedance response for a variation of DNA 

concentrations was also analyzed in order to confirm the expected capacitive behavior, characteristic of 

DNA adsorption process onto platinum and gold surfaces, as discussed previously in Chapters 3 and 4 of 

this work. Figure 6.9 presents the impedance spectra for the DNA concentrations of 0.3, 0.5, 0.6 and 1.0 

mg/mL at a temperature of 30 ºC.  

 

 

 

 

 

 

 

 

Figure 6.9. Raw impedance data obtained for a variation of DNA concentrations at the temperature of 30 ºC 

and an ionic strength equivalent to 9.8 mM NaCl. Parameter f in Hz.  

 

The obtained spectra correspond, as expected, to a predominantly capacitive process representing 

the structural arrangement of DNA molecules adsorbed onto the metal surface [17]. The response is in 

good agreement with the EIS measurements performed with the classical EIS setup and discussed in 

Chapter 4 and is also consistent with the experimental conditions of the measurements, i.e. open circuit 

potential. DNA concentration increment causes a shift of each spectra towards lower values of Z’ at 

higher frequencies, which is related with the decrease of the solution resistance due to the conductivity 

rise [18], caused by the presence of a large amount of charged DNA molecules.   
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In this way, the MICTF response for the Pt/DNA-TE buffer interface, obtained with the proposed 

setup in this work, was validated experimentally through several measurements, taking into account 

different variations on the electronic conditions selected to perform the measurements. The 

experimental setup was also validated through the evaluation of the EIS response of the interface, 

simultaneously collected by our setup, and which is in good agreement with previous EIS measurements 

for DNA solutions in platinum and gold electrodes [15-17]. Finally, the MIC response at low DNA 

concentrations is attributed to a slow adsorption process presenting a larger capacitance dispersion with 

frequency with a depressed loop shape, related to an adsorption process taking place through the 

superposition of several fundamental steps.  

 

6.4.2. DNA concentration dependence in the response of the MIC 

 Pt/DNA-TE buffer interface analysis is presented starting from high DNA concentrations, then in 

the semi-diluted regime with entanglements, i.e. between 2.0 and 10 mg/mL, and finally in the dilute 

regime. Figure 6.10 shows the MICTF response for the Pt/DNA-TE buffer interface performed for a 

DNA concentration of 8.0 mg/mL at a temperature of 30 ºC. 

 

 

 

 

 

 

 

 

Figure 6.10. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer 

interface for a DNA concentration of 8.0 mg/mL at a temperature of 30 ºC. Parameter f in Hz.  

 

At high DNA concentrations, the influence of ionic concentration needs to be considered since the 

increase in DNA concentration leads to an increase of the total ionic concentration, as mentioned in 

Chapter 2. According to the procedure described in Chapter 2, for this concentration, the effective ionic 
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concentration is equal to 2.96 x 10-3 equiv/L, from which is possible to calculate the total ionic 

concentration in the buffer 9:1 and the Debye length, i.e. 12.96 mM and 2.65 nm, respectively. Thus, the 

ionic concentration influence remains low compared to the ionic contribution of the buffer solution.  

As for the reported studies for the adsorption of NaBr and KCl on a mercury electrode, at 

concentrations higher than 100 mM and at 1M, respectively [11], and for a semiconductor diode, the 

MICTF diagram for a DNA solution with a CT~13 mM shows a dispersion of points on the real axis 

around a nearly constant value of around 0.745 nF/cm2. A fast adjustment of the electrochemical 

double-layer takes place under the effect of the potential modulation at the frequency f, so DNA 

asdorption process follows immediately the applied perturbation. As a first approach, to understand the 

DNA adsorption process that is taking place in the platinum electrode, it is necessary to take into 

account the concepts of polyelectrolytes adsorption recently reviewed by Dobrynin et al. [19]. In this 

way, assuming that for this DNA solution, the surface number charge density, , related with the 

thickness of the adsorbed layer, Dad, is higher than the crossover surface charge number density, e, at 

which the intrachain electrostatic repulsion is on the order of the attraction to the adsorbing surface 

[19], then DNA chains start getting compressed forming a concentrated polymer solution near the 

electrode. DNA adsorption is then fast enough (instant adsorption) and is detected by the MIC as a 

dispersion of points around a constant value. This process could be related to the so-called three-

dimensional self-similar adsorbed layer formation for polyelectrolytes, described by Dobrynin et al. [20].   

  

 

 

 

 

 

 

 

 

Figure 6.11. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer 

interface for a variation of DNA concentration in the semi-diluted regime without entanglements at a temperature 

of 20 ºC. Parameter f in Hz.  



    

 209 

At lower DNA concentrations in TE buffer, the influence of ionic concentration is lower and DNA 

chains in the bulk of the solution are characterized by being in a semi-diluted unentangled regime, as 

discussed in previous chapters of this work. In this way, the structural arrangement in the 

electrochemical double-layer will be different and the adsorption process that takes place at the metal 

surface will be also a different process than the one for the entangled regime. Figure 6.11 shows the 

MICTF response for the Pt/DNA-TE buffer interface carried out for DNA concentrations of 0.3, 0.4, 

0.5 and 0.6 mg/mL at a temperature of 30 ºC. 

Firstly, a depressed loop that may contain the contribution of more than one time constant is 

observed in the frequency range between 1.0 and 10 Hz, as obtained for the complex capacitance data 

from EIS measurements through a simple perturbation, and is related to the reorganization time of the 

diffuse double-layer [21,22]. The results reveal a complex adsorption process including different steps, 

however, it is possible to quantify the main characteristic time constant of the process. Figure 6.12 

shows the dependence of the characteristic time constant of the process obtained from the high 

frequency loop of each MIC spectra with DNA concentration, as well as the comparison with the results 

obtained from EIS measurements at the temperature of 30 ºC (discussed in Chapter 3). As we can see, the 

order of magnitude of the obtained values through MIC measurements is in good agreement with the 

obtained values from the high frequency loop observed at the complex capacitance spectra from EIS 

measurements. The diminution of c from MIC measurements as a function of DNA concentration is 

detected slightly after than the decrease detected by EIS measurements, which starts after 0.6 mg/mL. 

This could be due to the accuracy of MIC technique to detect the structural rearrangements in the 

double-layer during the adsorption process.        

 

 

 

 

 

 

 

 

Figure 6.12. Characteristic time constant of the process, τc, obtained from MIC and EIS measurements as a 

function DNA concentration at the temperature of 30 ºC.  

 

0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

 

 

 
C  

DNA
  ( mg / mL)

 
 c

  
( 

s
 )

 

 MIC

 EIS



    

 210 

It is also worth to say that for semi-dilute adsorbed layers, the chain conformation remains the 

same as in the semi-dilute polyelectrolyte solution [19]. In this manner, the conformation of DNA 

adsorbed into the metal surface corresponds to the one in the semi-dilute regime in solution (Chapter 2). 

The adsorption process in this regime could be related to a DNA arrangement into a two-dimensional 

semi-dilute DNA solution with spacing between neighboring chains corresponding to the correlation 

length of a semi-dilute DNA solution. On the other hand, we can observe the dependence of the MIC 

response to DNA concentration, from which is possible to conclude that the interfacial double-layer 

structure is modified with DNA concentration and is sensitive to DNA electrostatic interactions. 

Figure 6.13 shows the MICTF response for the Pt/DNA-TE buffer interface carried out for a 

variation of DNA concentrations in the dilute regime, i.e. 0.01, 0.03, 0.05 and 0.10 mg/mL at a 

temperature of 30 ºC. We can see clearly the dependence of MIC spectra to the frequency when DNA 

concentration decreases, which is attributed to the charge relaxation of the interface. Two relaxation 

domains are observed in the MIC response of DNA solutions in the dilute regime. The first loop is in 

the frequency range between 10 and 0.1 Hz and the second loop below 0.1 Hz. This frequency 

dependence type with concentration was also found and described by Larios-Durán et al. for the 

adsorption of NaBr and KCl on a mercury electrode by using this technique, showing that at low 

concentrations (1mM or less) the double-layer capacitance relaxation presents two time-constants: one 

from a high frequency loop that was attributed to rearrangements inside the diffuse layer, and a second 

one from the low frequency range, which was attributed to the specific adsorption-desorption processes 

[11].    

 

 

 

 

 

 

 

 

Figure 6.13. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer 

interface for a variation of DNA concentration in the dilute regime at a temperature of 20 ºC. Parameter f in 

Hz.  
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In the adsorption process of DNA molecules in a dilute solution with buffer concentration cs, the 

electrostatic repulsions between chains is high enough to create a layer with DNA molecules with a 

distance R between chains in a two-dimensional way that is larger than the end-to-end distance of the 

chain [19]. In this way, the two relaxations that the dynamics of the electrochemical double-layer 

present during DNA adsorption process in the dilute regime could be related to the structuration of the 

double-layer due to the repulsions from other DNA adsorbed chains and the attraction to the oppositely 

charged metal surface.          

Figure 6.14 shows the variation of the characteristic time constant of the process obtained from the 

first loop (high frequencies) of each MIC spectra with DNA concentration, as well as the comparison 

with the results obtained from EIS measurements at the temperature of 30 ºC. This curve includes the 

obtained results at higher DNA concentrations and discussed before in order to observe the all behavior 

as a function of DNA concentration. The obtained values through MIC measurements are in good 

agreement with the obtained values from EIS measurements.  

 

 

 

 

 

 

 

 

Figure 6.14. Characteristic time constant of the process, τc, obtained from MIC and EIS measurements as a 

function DNA concentration at the temperature of 30 ºC. 

 

6.4.3. Temperature dependence in the response of the MIC 
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a dilute solution, respectively. As identified through classical impedance measurements [17], for DNA 
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from the bulk of the solution towards the electrode takes place, the relaxation time related to the 

arrangement of DNA molecules on the double-layer diminishes with the temperature increase. In the 

dilute regime, even if we observe two loops in the MIC spectra at low temperatures, i.e. 10 and 20 ºC, 

and one depressed loop at higher temperatures, i.e. 30 and 40 ºC, the capacitance dispersion with 

frequency and the shape of the loop continue showing a complex adsorption process that includes more 

than one superposed adsorption step.  

 

 

 

 

 

 

 

 

Figure 6.15. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer 

interface for a DNA concentration of 0.4 mg/mL at the temperatures of 10, 20, 30 and 40 ºC. Parameter f in 

Hz.  

 

 

 

 

 

 

 

 

Figure 6.16. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer 

interface for a DNA concentration of 0.05 mg/mL at the temperatures of 10, 20, 30 and 40 ºC and an ionic 

strength equivalent to 9.8 mM NaCl with. Parameter f in Hz. 
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Figure 6.17 shows the dependence of the characteristic time constant, τc, with temperature for 

several DNA concentrations in the dilute regime without entanglements, i.e. 0.3, 0.4, 0.5 and 0.6 

mg/mL. Here we can clearly observe the decrease of the time-constant with the increase of temperature, 

showing that the diffusional process is favored and the adsorption process of DNA molecules onto the 

platinum surface is faster.    

 

 

 

 

 

 

 

Figure 6.17. Characteristic time constant (τc) dependence with temperature for DNA concentrations of 0.3, 0.4, 

0.5 and 0.6 mg/mL.  

 

Finally, the ln(c), obtained from the mean characteristic time constant of the adsorption process, is 

presented as a function of the reciprocal of the absolute temperature for two DNA concentrations in the 

semi-dilute regime without entanglements (Figure 6.18). A linear behavior is observed and is related to 

an Arrhenius-type behaviour given by the following equation [17]:  

c =Ae
-Ea/RT                           (6.17) 

where A is the frequency factor, R is the universal gas constant, T is the temperature and Ea is related 

to the minimum amount of energy required to adsorption process.  

This Arrhenius-type temperature dependence is in good agreement with the one obtained for the 

characteristic time-constant identified through classical EIS measurements [17], as well as the 

calculated energy Ea, which according to this data is around 13 kJ/mol in the temperature range 

between 10 and 40 ºC.   
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Figure 6.18. Arrhenius dependence of the relaxation time (c) with the reciprocal of the absolute temperature for 

DNA concentrations of 0.5 and 0.6 mg/mL.  

 

6.4.4. Ionic strength dependence in the response of the MIC  

In order to put in evidence the electrostatic interchains and intrachains interactions effects in the 

arrangement of the electrochemical double-layer, the MICTF response for the Pt/DNA-TE buffer 

interface was also monitored for a constant DNA solution in the dilute regime with a concentration of 

0.05 mg/mL at a temperature of 20 ºC and a variation of ionic strengths given by the buffer solution 

(Figure 6.19).  

 

 

 

 

 

 

 

 

Figure 6.19. Complex plane diagram of modulation of interfacial capacitance of the Pt/DNA-TE buffer 

interface for a DNA concentration of 0.05 mg/mL with a variation of ionic strengths. Parameter f in Hz.  
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As explained in Chapter 2, the ionic strength of TE buffer was determined through conductivity 

measurements, relating its conductivity to the concentration of a NaCl solution with the same 

conductivity. For this DNA concentration, the effective ionic concentration is equal to 1.85 x 10-5 

equiv/L, so the total ionic concentration and the Debye length were calculated for each solution and are 

resumed in Table 6.3. 

 

Table 6.3.- Total ionic concentration and Debye length for a DNA solution of 0.05 mg/mL with a variation of 

ionic strength given by the TE buffer solution.  

Ionic strength of TE buffer, Cs 

(equiv/L) 

Total ionic concentration, CT 

(equiv/L) 

Debye length 

(nm)  

0.30 0.32 16.7 
0.66 0.68 11.5 
1.0 1.02 9.3 
2.0 2.02 6.9 
 

The obtained MIC response shows the presence of a depressed loop including more than one 

superposed adsorption step. The main characteristic time constant of the process remains constant, i.e. 

0.5 s, showing that at this ionic strength range, the adsorption kinetics and the steps of the adsorption 

process remains the same.   

 

6.4.5. Dependence of the MIC real component at the limit of high frequencies with DNA 

concentration and temperature. 

The MIC real component at the limit of high frequencies was evaluated as a function of 

temperature and DNA concentration in the three characteristic regimes, i.e. dilute regime, semi-dilute 

regime without entanglements and semi-dilute regime with entanglements. The results are presented in  

Figure 6.20, which allow observing the increase of the MIC real component with the increase of DNA 

concentration, so the capacitance dispersion with frequency evolutes until reaching the DNA regime at 

higher concentrations and at which DNA asdorption process follows immediately the applied 

perturbation.  

A slight increase of the MIC real component with the increase of temperature is also observed and 

can be explained in terms of the evolution of the MIC spectra due to the facilitation of the diffusion 

process at higher temperatures. 
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Figure 6.20. Dependence of the MIC real component at the limit of high frequencies with DNA concentration 

and temperature. 

 

6.5. Particular conclusions for the study of DNA molecules adsorption onto metal 

surfaces by MIC 

An adsorption study of calf-thymus DNA in TE buffer in a platinum surface was performed and 

evaluated through the Modulation of the Interfacial Capacitance technique. As far as we know, this was 

the first time that this recently developed technique was used to study the double-layer relaxations due 

to the adsorption process of a polyelectrolyte, i.e. the DNA. The MIC response revealed the double-

layer dynamics in the dilute, the semi-dilute regime without entanglements and the semi-dilute regime 

with entanglements for DNA-TE buffer solutions. At high DNA concentrations, no relaxation process 

of the double-layer capacitance is observed, however, at low concentrations, more specifically in the 

semi-dilute regime without entanglements, it is possible to identify more than one superposed time-

constant. Finally, for DNA concentrations in the dilute regime, it is shown that the relaxation process 

clearly exhibits two time constants. The obtained values are in good agreement with the values 

previously obtained for DNA solutions through classical impedance measurements in the semi-dilute 

regime without entanglements. The dependence on DNA concentration, temperature and ionic strength 

for the MIC response was put on evidence and described in this study.  

It is demonstrated that MIC technique allows the study of the adsorption kinetics of the simplest 

species, such as NaBr and KCl, and the most complex species as DNA. It is then possible to identify and 

explain, semiquantitatively, the fundamental adsorption steps of these species. This technique can 

become a useful tool in order to reach to a better understanding of the adsorption process of 

polyelectrolytes such as DNA, maybe more specifically in diluted solutions. In order to get a greater 
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insight of this process by using different metal surfaces, at each characteristic regime and to analyse the 

two-dimensional or three-dimensional adsorbed layer formation for DNA solutions, a more detailed 

analysis including the concepts of the theory of polyelectrolytes in surfaces is needed. Finally, an 

experimental study with a potential variation with respect to the PZC could give us more information 

with respect to the negative to positive reals parts of the capacitance response.  
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Chapter 7. Chitosan/DNA nanoparticles development for gene therapy 

7.1. Introduction  

Electrostatic complexes between oppositely charged polyelectrolytes involving natural 

biopolymers are being developed for biomedical applications [1,2]. More specifically, the attention was 

focused on cationic polymers due to their potential for DNA complexation and for being used as non-

viral vectors for gene delivery [3-5]. Ionic complexes formed between DNA and polycationic liposomes 

were promising in the 90’s [6,7], however, the instability of the complex, the toxicity of the cationic 

lipids and the short average life of the complexed DNA limit there success. Actually, cationic polymers 

and phospholipids are the most studied types of non-viral gene delivery vectors [8,9]. Both vectors 

interact electrostatically with negatively charged DNA forming polyplexes or lipoplexes. Nevertheless, 

DNA/polymer complexes were found to be more stable than complexes formed with cationic lipids 

[10]. A great number of characteristics that benefit gene delivery are found in only few natural 

polycations available, contrary to the abundance of structurally different synthetic non-viral gene 

delivery vectors. Low immunogenicity, biocompatibility and minimal cytotoxicity are some searched 

characteristics in polymers in order to develop a better alternative to viral or lipid vectors [11,12]. In 

this manner, chitosan and its derivatives were identified as safe and efficient cationic carriers with the 

following characteristics: high biodegradability and biocompatibility, non-toxicity and low cost.  

Up to now, chitosan and DNA have been investigated for gene delivery due to the advantages that 

chitosan provides as a biocompatible non-viral vector which does not produce immunological reactions, 

contrary to viral vectors [13]. Chitosan has also been used and studied for its ability to protect DNA 

from nuclease degradation and to transfect DNA into several kinds of cells [14]. Small size complexes 

ranging from 20 to 500 nm have been previously obtained by using chitosan [15-17], presenting the 

advantage of entering the cell through endocytosis and/or pinocytosis, which increases the transfection 

rate. Gene delivery systems based on chitosans offers also to possibility of being modified by adding 

different kinds of ligands for specific cell interaction, such as transferrin or galatose [8].   

In this chapter, DNA-chitosan nanoparticles development for gene transfer is presented. DNA 

concentration was selected in the dilute regime: 10 times lower than the average value of C*, 

determined in previous chapters by different techniques. Since DNA chains are separated from each 

other, a greater stability of the complex formation was expected. Different techniques are used to 

determine the role of chitosan amount on the formed complex: the obtained data from conductivity, -

potential, dynamic light scattering, circular dichroïsm and UV-Vis measurements are combined to 

determine the complex stoichiometry, the net charge, the dimensions, the conformation and the thermal 

stability of the complex, respectively. The isoelectric point was found to be related to the protonation 

degree of chitosan. The influence of chitosan and DNA concentrations on the complex formation is 

discussed and optimized to get stable nanoparticles.  
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7.1.1. Chitosan characterization  

7.1.1.1. Chitosan structure 

Chitosan is the most important derivative of chitin, which is the second most important natural 

polymer in the world, after cellulose, and is obtained from crustaceans, shrimps and crabs [18]. 

Chitosan is a linear polysaccharide composed of randomly distributed -(1-4)-linked D-glucosamine 

(deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) (Figure 7.1).  

 

 

 

 

 

Figure 7.1. Chemical structure of the repeat unit in a) chitin and in b) chitosan [18]. 

 

In the solid state, chitosan is a semicrystalline polymer, however, it is also possible to obtain 

sponges, powders and fibers through its regeneration from solutions or its derivatives [18, 19]. 

 

7.1.1.2. Solubility 

The solution properties of chitosan depend on the following parameters: the average degree of 

acetylation (DA), the molecular weight and the distribution of the acetyl groups along the chain [20]. 

Rinaudo et al. [21,22] studied chitosan protonation in the presence of acetic acid and the role of HCl on 

chitosan solubility. Chitosan with a low DA can be solubilized in an average degree of ionization of 

chitosan equals to 0.5. This value of corresponds to a pH between 4.5 and 5.0 in presence of HCl.   

Rinaudo et al. [21] proved that the amount of required acid depends on the quantity of chitosan to 

be dissolved and showed that the solubility is also related to the ionic concentration, the pH, the nature 

of the acid used for the protonation and the conditions of isolation and drying of the polysaccharide. 

 

7.1.1.3. Degree of acetylation 

The degree of deacetylation (DA), determined by the fraction of N-acetylated glucosamine units, is 

an important property of chitosan that determines the way the polysaccharide can be applied [23]. This 
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characteristic can be obtained through the following techniques: potentiometric titration, IR, UV, 1H 

liquid-state NMR and 13C solid-state NMR [19]. DA determination method by 1H NMR spectroscopy 

was reported to be effective, precise and simple [24]. The fraction of free –NH2 in chitosan can also be 

obtained by using pH or conductivity measurements dissolving a neutral chitosan with a small excess of 

HCl on the basis of stoichiometry followed by neutralization of the protonated -NH2 groups by NaOH 

addition [25].   

 

7.1.1.4. Molecular weight  

Chitosan molecular weight can be calculated by means of its intrinsic viscosity using the Mark-

Houwink relation (Equation 2.26), so solvent needs also to be taken into account. Rinaudo [18] 

summarized several Mark–Houwink parameters for chitosan in various solvents. A set of parameters for 

the intrinsic viscosity and the molecular radius of gyration <S2>1/2 dependence on molecular weight 

were previously proposed, stating its validity for all the samples (Equations 7.1 and 7.2) [26].  

[] (mL/g) = 0.0843 M0.92                  (7.1) 

<S2>1/2 (nm) = 0.075 M0.55                  (7.2) 

It is worth to mention that the ionic strength and DA influence also the [], so some parameters K 

and a for the Mark–Houwink equation were also determined for chitosan with different average DA in 

0.3M AcOH/0.2M AcONa as solvent [27].   

 

7.1.2. Chitosan-DNA complex transfection  

Transfection of DNA through specific vectors undergoes different challenges before achieving its 

main goal. Figure 7.2 presents the necessary steps for DNA complexes in order to transfer DNA into the 

nucleus of the cell, which are listed as follows [8]: 

1) DNA compaction in the presence of chitosan, 

2) Interaction of these particles with the anionic proteoglycans at the cell surface, 

3) Endocytosis, 

4) Accumulation of cationic agents in the acidic vesicles, increase of pH of the endosomes and 

inhibition of the degradation of DNA by lysosomal enzymes, 

5) DNA transport to the nucleus and decomplexation. 
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Figure 7.2. Schematic representation of DNA transfection into a cell. 

 

7.2. Overview of the techniques  

7.2.1. Conductometric measurements  

For electrolytic solutions, the current is carried by the ions of the solution, which are in constant 

random motion in the absence of an electric field due to the action of convection and thermal forces. 

When ions are subjected to an electric field by applying a potential difference, they present a 

phenomenon known as ion migration. At these conditions, the solution can be considered as a 

homogeneous ionic conductor that follows Ohm's Law (Equation 7.3):  

R= VE /I                           (7.3) 

where R is the conductor resistence, VE is the applied potential difference and I is the intensity of 

current flowing through the conductor.  

The progress of a chemical reaction involving ionic species can be monitored through a 

measurement of the electrolytic conductivity, i.e. conductometry. In this way, when an ionic reactant is 
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added to an electrolyte, then the electrolytic conductivity of the mixture is constantly measured. 

Conductivity measurements can be considered as a tool to locate the end point of the reaction, like in a 

titration of a HCl solution by the strong base NaOH. In that reaction, highly conducting protons are 

neutralizad by NaOH addition to form water and conductivity decreases. After reaching the equivalent 

point, if more NaOH is added, then the conductiviy increases. In this way, the titration of a strong acid 

with a strong base results in a minimun of the conductivity at the equivalent point.  

 

7.2.2. potential measurements 

Zeta potential (potential) is a fundamental parameter that affects the stability of particles and 

corresponds to the magnitude of the electrostatic attraction or repulsion between particles. potential 

value is closely related to dispersion, aggregation or flocculation of particles and can be used to improve 

the formulation of suspensions, dispersions and emulsions. 

An electrical double layer is created around a charged colloidal particle in an aqueous solution with 

properties depending on the characteristics of the solution and the particle. The detection of the particle 

charge is possible through the imposition of an electric field in the suspension, since the material will 

migrate towards the electrode of opposite charge. Figure 7.3 shows a schematic representation of a 

negatively charged model colloid with its counterions immersed in an aqueous solution and the 

corresponding potential curve. The applied electric field causes the displacement of the charged colloid 

with the surface potential 0 and the counterions retained in the double-layer up to x = dek. The 

counterions in the low electrostic field domain move in the opposite direction relative to the center 

particle. These counterions are then sheared off from the electric double layer of the colloid, generating 

a potential at the plane of shear. The shear plane is located further away but close to the Outer 

Helmholtz Plane (OHP) at x = d, which shows the extend of the Stern layer and the beginning of the 

diffuse part of the electrical double layer. The -potential is then smaller than the diffuse potential d. 

The-potential is then defined as the average potential () in the electrical double layer at the 

region of shear between the mobile charged particle and the liquid phase. Particle charge is fulfilled by 

counterions that are attracted by the charged interface between the particle and the solution [27].  

Free diffusion of the particles tend to oppose the movement, however, the particle starts moving with 

a constant velocity when equilibrium has been reached between the two opposing forces. The velocity of 

a particle in an electric field is known as the electrophoretic mobility of the particle determined by the 

potential corresponding to the shear zone, experimentally determined.  
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Figure 7.3. a) Schematic representation of a negatively charged colloid suspended in electrolyte solution and its b) 

potential curve.   

 

The electrophoretic mobility increases as the electrical potential of the particle increases in a 

uniform field. It will depend on the strength of the electric field, the dielectric constant of the liquid the 

viscosity of the solvent and reflects the surface charge potential, directly conected with the potential. 

The potential can be determined by measuring the electrophoretic mobility of the particle and using 

the equation of Henry: 

= 20f(a)/3s                    (7.4) 

where  is the dielectric constant, 0 is the permittivity of the vaccum,  is the zeta potential, s is the 

solvent viscosity and f(a) is Henry’s function, which generally has values of 1.0 or 1.5, and  is the 

electrophoretic mobility, given by: 

 e/E                   (7.5) 

where e is the measured velocity and E is the applied field.  

Henry’s function takes into account the Debye-Hückel term, , which contains the electrolyte 

concentration term and leads to the value of the thickness of the double layer surrounding the particle, 

given by the reciprocal of  and the particle size, given by the radius a.  

If the particle is relatively small compared to the size of the double layer, then f(a) =1, so Equation 

7.4 results in: 
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= 20/3s                     (7.6) 

If the particle is large relative to the double layer distance, f(a) =1.5 and Equation 7.4 results in 

the Smoluchowski simplified approach given by: 

= 0/s                           (7.7) 

 

7.2.3. Dynamic Light Scattering measurements 

Dynamic light scattering (DLS) is one of the most important techniques of macromolecular 

characterization [28]. It is usually used to determine the particle size distribution of a specific particle. 

Scattering phenomena are based in the dependence of the intensity of light scattered by a particle 

population at a specific angle, to the incident light wavelength, the size, shape and concentration of the 

scattering particles, the optical properties of the particle and their environment. With this technique it 

is possible to calculate the shape factor of the particle and to determine its structure. The particles that 

can be studied by DLS are those whose size is comparable with the wavelength of visible light, so DLS 

is widely used for the analysis of colloidal dispersions [29]. DLS instruments measuring at a fixed angle 

can determine the mean particle size in a limited size range and multi-angle instruments can determine 

the full particle size distribution. 

Brownian motion, which is a relevant phenomena in dynamic light scattering measurements, is 

defined as the arbitrary motion of particles in solution and results from the thermally-driven collisions 

of the solvent molecules with the studied particles. When a solution of particles diffuses under the 

Brownian motion phenomena, the light scattered will vary with time. The analysis of the fluctuation of 

the scattered light leads then to the information of the particles. The characterization of the intensity 

fluctuations through the intensity correlation function g2 (q,t), whose analysis provides the diffusion 

coefficient of the particles. 

The standard procedure for obtaining the diffusion coefficient from the correlation function g2 (q,t) 

corresponds to the cumulants method , which is given by the following equation [30]: 

ln g2(q, t) = -Gct +
1

2!
m 2t2 +

1

3!
m23t3 +...                               (7.8) 

where c is the first cumulant, Gc = qw

2D , qw is the wave vector, and D is the diffusion coefficient. 

For spherical particles, the hydrodynamic radius can be calculated through the Stokes-Einstein 

equation: 



    

 227 

Rh =
kBT

6phsD
                                            (7.9) 

where kB is the Boltzmann constant, s is the viscosity of the solvent and T is the absolute temperature.   

 

7.2.4. Confocal fluorescence microscopy  

Confocal microscopes are integrated electronic systems where the optical microscope has a 

principal role in a configuration that consists of one or more electronic detectors, a computer for image 

display, processing, output, storage, and several laser systems combined with wavelength selection 

devices and a beam scanning assembly [31].  

The confocal microscope uses an optical imaging technique to increase the contrast and to build 

three-dimensional images using a spatial pinhole to remove the blurred light in specimens that are 

thicker than the focal plane. The pinhole is located in front of the photomultiplier and prevents the 

passage of fluorescence of the sample regions that are not focused. The light from the regions located 

above or below the focal plane does not converge on the pinhole and is not detected by the 

photomultiplier.  

 

7.2.5. Circular Dichroïm (CD) measurements  

Circular dichroïsm (CD) is a phenomenon originated from interactions of chiral molecules 

involving asymmetric carbons with circularly polarized electromagnetic rays [32,33]. CD spectroscopy 

is widely used to study chiral molecules of all types and sizes, but it has its most important applications 

in the field of large biological molecules, leading to structural, kinetic and thermodynamic information 

about macromolecules. CD spectroscopy is a technique for electronic absorption, based on the change of 

electronic molecular configuration from a fundamental state to an excited state due to the absorption of 

polarized electromagnetic radiation. Circular dichroïm theory was developed by Biot Neumann and 

Fresnel Snatzke (1990) [34]. 

To understand circular dichroïsm, it is necessary to firstly understand the basics of polarization. 

For linearly polarized light, its oscillations are confined to a single plane [34]. All polarized light states 

can be described as a sum of two linearly polarized states at right angles to each other. If we take 

horizontally and vertically polarized light waves with the same amplitude and that are in phase with 

each other, the resultant light wave is linearly polarized at 45 º. However, if the two polarization states 

are out of phase, then the resultant wave is not longer linearly polarized. If one of the polarized states is 

out of phase with the other by a quarter‐wave, then the resultant will be a helix known as circularly 



    

 228 

polarized light (CPL). The helices can be either right‐handed (R‐CPL) or left‐handed (L‐CPL) and are 

non‐superimposable mirror images. In this manner, the optical element that converts between linearly 

polarized light and circularly polarized light is termed a quarter‐wave plate. The basis of CD technique 

is the difference in absorbance of left‐hand and right‐hand circularly polarized light and can be applied 

to molecules that absorb R‐CPL and L‐CPL differently, i.e that are optically active (chiral) [34-36]. 

Circular dichroism response is represented in diagrams showing the difference of molar absorption 

coefficients for R‐CPL and L‐CPL in front of a given wavelength. CD spectra can be compared with 

conventional absorption spectra to appreciate other information. With CD spectroscopy it is possible to 

identify the absolute configurations of chiral compounds with similar electron configurations, as CD 

spectra will present the same sign. Since the great majority of biological molecules are chiral, they can 

by studied through CD spectroscopy, i.e. amino acids [37], proteins [38], DNA [39] and RNA [40]. 

This technique has been extensively used for studying the higher order structures of macromolecules 

and conformational changes of nucleic acids (DNA) [41-43]. Each structure has a specific circular 

spectra, which can be used to identify different structural elements and to follow the structural or 

conformational changes of chiral macromolecules.  

The characterization of A and B forms of DNA through CD spectroscopy was firstly reported by 

Tunis-Schneider and Maestre [44] and Z conformation of DNA was identified for the first time with this 

optical technique [45]. The nearest neighbor composition of nucleic acids and their secondary 

structures highly influence the CD spectrum above 210 nm, so information of both, composition and 

structure, are available from CD measurements.  

 

 

 

 

 

 

 

 

Figure 7.4. CD spectra of T7 phage DNA before (____) and after (---) heat denaturation. Solvent: 2mM 

Na+(phosphate buffer), pH 7. Extinction coefficient at 260nm: 6570 M-1 cm-1 for the native DNA. L - R is in 

units of M-1 cm-1 per molar concentration of nucleotide [46].     
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For denaturation of double-stranded B-form DNA, only slight CD changes above 210 nm can be 

detected. Figure 7.4 shows the CD spectra of T7 phage DNA before and after thermal denaturation. The 

denatured DNA was cooled rapidly after being denatured at 80 ºC, so both spectra were obtained at 20 

ºC [46]. The values of the major CD bands above 230 nm do not present major variations due to 

denaturation. Greater CD changes can be detected at wavelengths below 230 nm, which include an 

increase in the magnitude of the band near 220 nm. A shift of the long-wavelength crossover in the 

range between 258 and 261 nm usually indicates denaturation. 

 

7.3. Experimental conditions    

7.3.1. Reagents  

Calf thymus DNA with 13 000 base pairs (bp), NaOH in pellets with impurities ≤ 0.001 % and 

NaCl anhydrous were supplied by Sigma-Aldrich Company. Chitosan sample with a molecular weight 

(Mw) of 500 000 and a DA of 0.19 was purchased from Kitomer (Marinard, Canada). HCl 0.1 N 

(Titrisol) was supplied by Merck Millipore.  

 

7.3.2. DNA solutions preparation 

DNA solutions were prepared using appropriate amounts of DNA in water and NaCl 1 x 10-2 M, as 

solvents. The vials were closed and sealed with parafilm to prevent water evaporation and changes in 

the concentration. DNA concentrations are chosen usually around 0.03 mg/mL in order to avoid 

experimental difficulties as turbidity during chitosan addition. All solutions were stored in a refrigerator 

at a temperature of 4 °C in order to prevent degradation.  

 

7.3.3. Chitosan solution preparation   

The solutions of chitosan are prepared at 5.3 mg/mL by dissolving a known amount of 

polysaccharide with the stoechiometric amount of HCl 0.1 N (previously titrated with NaOH 0.1 N) on 

the basis of NH2 content (which final pH is around 3.35). The solution was placed under constant 

stirring for 1 night at room temperature, until complete solubilization, then it was stocked at a 

temperature of 4 ºC. Chitosan solution was then diluted to 1 mg/mL, then filtered with a 0.2m 

membrane and then adjusted to the selected pH with a solution NaOH 0.1 N.  
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7.3.4. Conductometric measurements  

Conductometric measurements were performed in a Crison CM 35 conductivity Instrument at a 

constant temperature of 25 ±0.01 ºC. Conductimetric titration was firstly performed to determine 

chitosan DA in presence of HCl by progressive NaOH addition. Then, it was used to follow the 

chitosan-DNA complex formation by adding progressively a given volume of chitosan 1 mg/mL to a 

volume of 20 mL DNA solution at a concentration of 0.03 mg/mL under continuous agitation. Each 

measurement was taken after 5 minutes of stabilization.  

 

7.3.5. potential measurements 

potential measurements were performed in a Malvern Zetasizer NanoZS at a temperature of 25 

ºC. Complex formation was carried on as follows: a given volume of chitosan 1 mg/mL was added to the 

DNA solution (0.03 mg/ml) at controlled pH, under continuous agitation. After stabilization of the 

obtained chitosan-DNA complex (i.e. 5 min), 1 mL of the solution was injected to the cell, which was 

then placed inside the instrument and finally the measurement was taken. After each measurement the 

whole solution was collected from the Zetasizer Nano cell and reintroduced into the bulk solution (to 

keep a nearly constant volume of solution) before the addition of the next volume of chitosan solution. 

The instrument measured the electrophoretic mobility of the particles and converted it to the 

potential using the classical Smoluchowski expression.  

 
 

7.3.6. Dynamic Light Scattering measurements 

Dynamic light scattering (DLS) measurements were performed in a Malvern zetasizer 5000 

apparatus equipped with a 7132 multibit correlator and multiangles goniometer. The light source was a 

He-Ne 5mW laser with a wavelength of 632.8 nm. The scattering intensity was measured through a 

400 μm pinhole. The correlation functions were averaged over 30 s in equilibrated sample. DLS 

measurements were carried out at 90 °. The corresponding hydrodynamic radius was calculated using 

the Stokes−Einstein equation.  

 

7.3.7. Confocal microscopy observations 

Optical observations of fluorescein labeled chitosan-DNA complexes were made using a laser 

fluorescence microscope (TCS SP8) with a 488 nm excitation wavelength. Fluorescence acquisitions at 

this excitation wavelength are obtained successively. In order to observe the chitosan-DNA complex 

formation by using fluorescence microscopy, chitosan (1mg/mL) was labeled with fluorescein. The 
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degree of labeling is determined from the fluorescence intensity of diluted solutions of the free 

fluorescent probe compared with the fluorescence of a diluted solution of the labeled chitosan (it is found 

around 2 % of modified sugar unit).   

 

7.3.8. Circular Dichroism (CD) measurements  

CD measurements were performed in a Chirascan CD Spectrometer with a 150W air-cooled Xe arc 

lamp as light source. Spectra were acquired in a 10 mm length quartz cuvette at 25 ° C. Three scans 

were averaged per spectrum, operating from 200 to 320 nm at a scan speed of 30 nm/min and a 

bandwidth of 1 nm. Measurements were performed under a constant nitrogen flow, to purge the ozone 

generated by the light source of the instrument. All results were normalized using the solvent spectra. 

The protocol for chitosan-DNA complexes preparation explained on Section 7.3.4. was performed to 

obtain each CD measurement. 

 

7.3.9. UV-Vis measurements  

DNA melting temperatures (Tm) were measured by recording the absorbance A260 as a function of 

temperature (T) using a Cary 400 Scan UV-Vis Spectrophotometer. Quartz cuvettes were used for all 

measurements. The solvent cuvettes were filled with water or NaCl 10-2 M and were used as the blank. 

The temperature was raised at a rate of 1 ºC/min, from 25 to 90 ºC. Then the temperature was decrease 

from 90 to 25 ºC at a rate of 5 ºC/min. The protocol for chitosan-DNA complexes preparation explained 

on Section 7.3.4. was performed to obtain each Tm measurement.  

 

7.4. Experimental results and discussion     

 7.4.1. Chitosan characterization 

 Chitosan solution was firstly characterized in order to verify the degree of deacetylation (DA) 

reported by the suppliers and to determine the protonation percentage of a function of pH. A 

conductometric titration with NaOH 0.1 N was carried out for a chitosan solution of 5.3 mg/mL at a 

temperature of 25 ºC (Figure 7.5). The fraction of [NH3
+] in chitosan was found to be 0.4875, from 

which was possible to calculate, as a first approach, the DA of our sample, i.e. DA~ 0.22, which is in 

good agreement with the information provided by the supplier.   
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Figure 7.5. Conductometric titration curve for a chitosan solution 5.3 mg/mL as a function of added volumen of 

NaOH 0.1 N. 

 

Figures 7.6 a and b present the -potential and the potentiometric titration of chitosan with NaOH 

0.1 N, respectively. The fully protonated solution of chitosan (dissolved in stoichiometric amount of 

HCl) presents a -potential around + 47 mV at a pH of 3.35, showing that under these conditions, 

chitosan is strongly positively charged since the 100 % of the amino groups are protonated. While the 

fraction of [NH3
+] in the solution of chitosan decreases, the -potential decreases and pH increases, so it 

is possible to calculate the protonation percentage at a given pH.  

 

 

 

 

 

 

 

Figure 7.6. a)-potential and b) potentiometric titration of a chitosan solution 1.0 mg/mL with NaOH 0.1 N.  
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Table 7.1 summarizes the charge fraction of chitosan at the different pH’s selected for chitosan-

DNA complex development in this work. It is shown that at the pH of 6.5, which is a closer value to the 

average pH at physiological conditions, chitosan is only partially positively charged since 17 % of the 

amino groups are protonated. 

Table 7.1.- Fractions of [NH2] and [NH3
+] as a function of pH.  

pH Fraction of [NH2] Protonated fration [NH3
+] 

4.5 0.20 0.80 

4.7 0.23 0.77 

5.0 0.33 0.67 

6.5 0.83 0.17 

 

7.4.2. Stoichiometry of chitosan-DNA complex  

Chitosan-DNA complexes were prepared by using DNA solutions at a concentration of 0.03 

mg/mL, which is 10 times lower than the average of C* value determined in previous chapters by 

different techniques. In order to study the stoichiometry of chitosan-DNA complexes with different 

ionic forces and conformations, the complexes were prepared with DNA in water and in NaCl 10-2 M, as 

solvents. It is noteworthy that DNA in water is partially denatured at 25 ºC (Figure 2.12) and DNA in 

NaCl 10-2 M is in its double-helical conformation, as described previously in Chapter 2.   

The mixture of oppositely charged compounds leads to electrostatic interactions between both 

molecules and to the formation of complexes with counterions release [47-49], in this manner, 

conductometry can be used to evaluate chitosan-DNA interactions and the degree of complexation. The 

ratio given by the total NH2 concentration (i.e. free [NH2] + protonated [NH3
+]) and the ionic 

concentration of Phosphates/L (i.e. [P-] supposed to be fully ionized in normal conditions), will lead to 

the determination of the stoichiometry during the complex formation. For a chitosan concentration of 1 

mg/mL, [NH2] equals to 4.7 x 10-3, and considering the average molar mass of a nucleotide as 379 

g/mol, for a DNA concentration of 0.03 mg/mL, [P-] equals to 7.9 x 10-5 eq/L. The ratio [NH2]/[P-] 

increases progressively with the addition of small amounts of chitosan until getting to [NH3
+]/[P-]=1, 

representing full complexation of DNA.   

Figure 7.7 shows the electrical conductivity as a function of [NH2]/[P-] during the chitosan-DNA 

complex formation at a constant temperature of 25 ºC. Small amounts of chitosan 1.0 mg/mL at a pH of 

3.35 (with 100 % of the amino groups protonated) were progressively added to a DNA solution with a 

concentration of 1.0 mg/mL in water, at a pH of 6.5. In this figure we can observe a linear increase of 

conductivity with the addition of chitosan, however, a clear change in slope is depicted at a            

[NH2]/[P-]=1, corresponding to the charge stoichiometry between strongly positively charged 
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chitosan and strongly negatively charged DNA. The increase in conductivity due to the counterion 

release from the added chitosan is attributed to an increase of the counterions release (Na+ for DNA and 

Cl- for chitosane) resulting from the complex formation [49].  

 

 

 

 

 

 

 

 

Figure 7.7. Electrical conductivity () dependence on the ratio [NH2]/[P -] during the formation of the 

chitosan-DNA complex at a temperature of 25 ºC. CDNA= 1 mg/mL at a pH of 6.5 and added CChitosan= 1 mg/mL 

at a pH of 3.35.     

 

Figure 7.8 shows the electrical conductivity as a function of [NH2]/[P-] during the chitosan-DNA 

complex formation using a chitosan 1.0 mg/mL at a pH of 6.5 (with 17 % of the amino groups 

protonated). Since chitosan is weakly protonated, then the amount of chitosan needed to reach the 

stoichiometry equivalence is greater for a chitosan-DNA complex formed at a constant pH of 6.5 than 

for a complex formed with chitosan pH 3.35. Here we also observe a linear increase of conductivity with 

the addition of chitosan and a clear change in slope around [NH2]/[P-]=5.3, corresponding to the 

charge stoichiometry between weakly positively charged chitosan and strongly negatively charged 

DNA, taking into account the percentage of protonated amino groups. The lower slope obtained after 

the equivalent point at [NH2]/[P-]=5.3 could be related to the contribution of the excess of ionized 

chitosan.   
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Figure 7.8. Electrical conductivity () dependence on the ratio [NH2]/[P -] during the formation of the 

chitosan-DNA complex at a temperature of 25 ºC. CDNA= 0.03 mg/mL at a pH of 6.5 and added CChitosan= 1 

mg/mL at a pH of 6.5.     

 

In order to study the influence of pH in chitosan-DNA complex formation, we firstly determine the 

-potential of DNA in the initial aqueous solution as a function of the adopted pH (Figure 7.9).  

 

 

 

 

 

 

 

 

 

Figure 7.9 Potential as a function of pH for a DNA concentration of 0.03 mg/mL in water at 25 ºC. 
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The stoichiometry during the formation of chitosan-DNA complexes at lowers pH, i.e. 4.5, 4.7 and 

5.0 was also studied through conductometric titrations by using DNA solutions adjusted with HCl to 

the selected pH. An example is given in Figure 7.10. It shows the electrical conductivity as a function of 

[NH2]/[P-] obtained from the complex preparation with a DNA solution of 0.03 mg/mL at a pH of 5.0 

and a chitosan solution 1.0 mg/mL at a pH of 5.0. The trend of the curve is similar to the one obtained 

for the complex formation at a constant pH of 6.5, however, the stoichiometry does not correspond to 

the calculated ratio [NH2]/[P-] between partially positively charged chitosan and negatively charged 

DNA (assuming that the net charge is given by complete dissociation of [P-]), taking into account the 

percentage of amino groups protonated in chitosan, which experimentally equals to 0.83. This could be 

related to a slight protonation of  DNA bases at lower pH’s, i.e. protonation of adenine’s N1 and 

cytosine’s N3 eliminates these as proton acceptor sites for H-bonding and leads to acquire a relative 

positive charge decreasing the net charge of DNA as indicated by lower -potential values (Figure 7.9) 

[50]. As for chitosan-DNA complex at a pH of 6.5, the lower slope depicted after the inflection point 

may be related to the lower protonation of chitosan at pH 5.0 compared to 3.35. From Figure 7.9, as a 

first approximation, the net fraction of charge of DNA is around 0.76 (assuming that -potential is 

directly proportional to the net charge) when the degree of protonation of chitosan is 0.67 at pH 5.0. 

Then, the calculated equivalence is 0.88, very near to the experimental value.  

 

 

 

 

 

 

 

 

Figure 7.10. Electrical conductivity () dependence on the ratio [NH2]/[P -] during the formation of the 

chitosan-DNA complex at a temperature of 25 ºC. CDNA= 0.03 mg/mL at a pH of 5.0 and added CChitosan= 1 

mg/mL at a pH of 5.0.     

 

Until now, our results indicate that chitosan-DNA complex is purely electrostatic and formed 

between fully ionized phosphates and the fraction of protonated chitosan. Since a slight protonation of 



    

 237 

the bases starts in acidic conditions, even above than pH 3.5, then the amount of chitosan needed to 

reach the stoichiometry of the charges in the complex is less than the calculated one from protonation of 

chitosan. On the other hand, conductomeric titration was performed for complexes prepared in a 

solution free of salts, in order to reach a greater insight to the stoichiometry of the reaction without the 

contribution of any other compound (due to lack of sensitivity in presence of external salt). The complex 

formation with DNA in NaCl 10-2 M as solvent will be then discussed in the following sections and 

compared to the complex formation with DNA in water.  

 

7.4.3. Net charge of chitosan-DNA complex evaluation 

Electrostatic interactions between chitosan and DNA, as a cationic vector and a higly negatively 

charged molecule, respectively, can be monitored during DNA complexation through electrophoretic 

mobility measurements by means of the -potential of the resulting particles. The crossover from a 

negative to a positive -potential is related to the isoelectric point of the particle, at which the ratio 

between negative charges of DNA and positive charges of the cationic vector corresponds to the 

stoichiometric neutralization of negative charges [49, 51]. In this manner, -potential is expected to be 

zero when [NH3
+]/[P-]=[NH2]/[P-]=1, for strongly positively charged chitosan and strongly 

negatively charged DNA complexes, as presented for a complex obtained from a chitosan solution at its 

original pH (3.35) and a DNA solution at neutral pH (6.5) (Figure 7.11).  

 

 

 

 

 

 

 

 

 

Figure 7.11. Potential as a function of [NH2]/[P -] during the formation of the chitosan-DNA complex at a 

temperature of 25 ºC. CDNA= 0.03 mg/mL at a pH of 6.5 and added CChitosan= 1 mg/mL at a pH of 3.35. The 

results are the average of 5 runs, so uncertainty bars represent the standard deviation. 



    

 238 

For chitosan-DNA complexes obtained from the electrostatic interactions between partially 

protonated chitosan and DNA at pH 6.5, the isoelectric point is expected to correspond to the calculated 

equivalence by taking into account the percentage of amino groups protonated. Figure 7.12 shows the    

-potential dependence with the [NH2]/[P-] ratio during the complexation process using a DNA 

concentration of 0.03 mg/mL at a pH of 6.5 with the addition of small chitosan amounts at a pH of 6.5. 

We can observe that the initial highly negative -potential (around -40 mV, corresponding to DNA 

molecules) decreases with the addition of the cationic vector to DNA solution, showing that 

electrostatic interactions between chitosan and DNA take place in the solution and represent the 

starting of the complexation process of DNA, as presented by number (1) in the figure. A plateau is then 

observed around a -potential of –20 mV, showing that electrostatic interactions are stronger between 

positively charged chitosan and negatively charged DNA (number (2) in the figure), obtaining a stable 

complexed nanoparticles dispersion that will be discussed later. A third section (number (3) in the 

figure) is then observed when the ratio [NH2]/[P-]=5.3 is reached and -potential= 0 mV, which 

corresponds to the stoichiometric equivalence charge value determined through conductometric 

measurements and the theoretical calculations for a chitosan-DNA complex at a pH of 6.5. Finally, a 

fourth section section is observed when [NH2]/[P-]>5.3 and -potential> 0 mV (number (4) in the 

figure), corresponding to overcharging of DNA. A second plateau is then observed around a -potential 

of +15 mV, which is in good agreement with the reported final -potential value for chitosan-DNA 

complexes by Pouton et al. [52] and Alatorre-Meda et al. [49]. 

 

 

 

 

 

 

 

 

 

Figure 7.12. Potential as a function of [NH2]/[P -] during the formation of the chitosan-DNA complex at a 

temperature of 25 ºC. CDNA= 0.03 mg/mL at a pH of 6.5 and added CChitosan= 1 mg/mL at a pH of 6.5. The 

results are the average of 5 runs, so uncertainty bars represent the standard deviation. 
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From these results we can conclude that the chitosan-DNA complex is formed by electrostatic 

interactions between protonated fraction of [NH3
+] and [P-], nevertheless, the stability of the complex 

could be modified in dependence of the pH.  

Figure 7.13 shows the comparison of -potential dependence with the [NH2]/[P-] ratio for the two 

chitosan-DNA complexes, first one prepared with a chitosan solution at a pH of 3.35 and second one 

prepared with a chitosan solution at a pH of 6.5. In a different way that for the complex formed at a 

constant pH of 6.5, the maximum plateau -potential attained by using the chitosan solution at a pH of 

3.35 will be higher than + 30 mV. 

 

 

 

 

 

 

 

 

 

Figure 7.13. Potential as a function of [NH2]/[P -] during the formation of chitosan-DNA complexes at a 

temperature of 25 ºC. CDNA= 0.03 mg/mL at a pH of 6.5 and added CChitosan= 1 mg/mL at a pH of 6.5 and at a 

pH of 3.35.  

 

Figure 7.14 shows the -potential dependence with the [NH2]/[P-] ratio during the complexation 

process of DNA in water with chitosan, the two solutions being adjusted to different pH’s before 

complex formation, i.e. 4.5, 4.7, 5.0 and 6.5. It is possible to observe a shift to lower [NH2]/[P-] ratios 

with the decrease of the pH (5.0> 4.7> 4.6), which values are slightly lower than the calculated 

stoichiometry of charges, as discussed previously in Section 7.4.2. This could be explained in terms of 

DNA bases protonation (Figure 7.9). As discussed before for pH 5.0, the potential= 0 mV occurs at 

ratio [NH2]/[P-] lower than 1, as predicted from the net charge of DNA and the degree of protonation 

of chitosan.     
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Figure 7.14. Potential as a function of [NH2]/[P -] during the formation of chitosan-DNA complexes at a 

temperature of 25 ºC. CDNA= 0.03 mg/mL and added CChitosan= 1 mg/mL at the same pH, i.e.: 4.5, 4.7, 5.0 and 

6.5.  

 

In order to study the ionic strength and DNA conformation influence on chitosan-DNA complex 

properties, a comparison between the -potential dependence with the [NH2]/[P-] ratio was carried 

out for two complexes using a DNA concentration of 0.03 mg/mL: first complex was prepared with 

DNA in water as solvent and second one with DNA in NaCl 10-2 M as solvent. The other conditions 

remain constant, i.e. a chitosan solution with a concentration of 1 mg/mL, a constant pH of 6.5 and a 

temperature of 25 ºC.  

Figure 7.15 presents the results of the -potential variation as a function of [NH2]/[P-] for 

chitosan-DNA complexes in water and in NaCl 10-2 M, where we can observe the same behavior for 

both complexes: a decrease of -potential with the addition of chitosan, a first plateau around -20 mV 

and a second plateau after the isoelectric point of the complex. However, we also can distinguish a slight 

shift in [NH2]/[P-] ratio, corresponding to 5.3 for the complex in water and to 5.9 for the complex in 

NaCl 10-2 M. On the other side, the second plateau is located around a -potential of +15 mV for the 

complex in water and around a -potential of + 5 mV.  
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Figure 7.15. Potential as a function of [NH2]/[P -] during the formation of chitosan-DNA complexes at a 

temperature of 25 ºC and a constant pH=6.5. CDNA= 0.03 mg/mL using water as a solvent (squares) and using 

NaCl 10-2 M as a solvent (diamonds) and added CChitosan= 1 mg/mL.  

 

From these last results it is possible to conclude that the complexation of DNA in water, partially 

denatured as shown by UV-Vis measurements, and double-helical DNA in a solution with an ionic 

strength of 10-2 M NaCl present the same electrostatic behavior and almost the same stoichiometry, 

given by the ratio between fully ionized phosphates and the fraction of protonated chitosan.  

 

7.4.4. Chitosan-DNA complex dimensions determination    

Measurements of dynamic light scattering (DLS) allowed following chitosan-DNA complex 

formation by measuring the hydrodynamic radius (Rh) and the scattered light intensity (KCps) as a 

function of  [NH2]/[P-] ratio. Figure 7.16 shows a first approximation of Rh values as a function of the 

[NH2]/[P-] ratio during the complexation process of DNA in water and DNA in NaCl 10-2 M at a 

constant pH of 6.5. The average value of Rh decreases upon the addition of chitosan, representing the 

compaction of the long DNA molecule into a compact nanoparticle by means of the neutralization of the 

negative charges. Figure 7.16 presents the first plateau, as the one observed with -potential 

measurements, obtained before the stoichiometric ratio [NH2]/[P-]. Here, the dimensions of the 

nanoparticles have an average radius of 280 nm. In order to study the stability of these nanoparticles 

with time, they were stocked at a temperature of 3 ºC and their size was monitored each day during at 

least one week. Finally, it was observed that at [NH2]/[P-] >1.0, the size of the particles increases 

0 2 4 6 8 10

-40

-30

-20

-10

0

10

20

NaCl 10   
- 2

  M

[NH  
2
 ] /  [ P   

  -
 ]

 

 

 


 (

 m
V

 )

Water



    

 242 

suddenly and the appearance of a precipitate is evident in the solution, which is expected due to the total 

neutralization of negative charges and even overcharging with aggregation. DNA precipitation was also 

observed for the compaction with cationic surfactants [53,54], cationic lipids [55] and different 

molecular weight chitosans [56].  

 

 

 

 

 

 

 

 

Figure 7.16. Rh (nm) as a function of [NH2]/[P -] during the formation of chitosan-DNA complexes at a 

temperature of 25 ºC. CDNA= 0.03 mg/mL at a pH= 6.5 using water as a solvent (black squares) and using NaCl 

10-2 M as a solvent (circles) and added CChitosan= 1 mg/mL at a pH=6.5. 

 

Fluorescence confocal observations allowed visualizing chitosan-DNA complexes formed in the 

first plateau section before reaching the stoichiometry given by [NH2]/[P-] and before the                       

-potential = 0 mV. Since labeling the chitosan with a fluorescent dye does not change its -potential or 

complexes -potential, then chitosan-DNA complexes were prepared by using a chitosan solution 

labeled with fluorescein. Figure 7.17 shows fluorescence confocal observations of chitosan-DNA 

complexes prepared with a DNA solution at a concentration of 0.03 mg/mL, a ratio [NH2]/[P -] of 4, a 

constant pH of 6.5 and a constant temperature of 25 ºC. The spherical red dots in the figure are 

chitosan-DNA complexes in the solution. An average radius around 200 nm was measured with the 

analytical software, which is in good agreement with the obtained values through dynamic light 

scattering in the first plateau region before [NH2]/[P-]= 5.3 for a pH of 6.5.  

 

 



    

 243 

 

 

 

 

 

 

 

 

Figure 7.17. Fluorescence confocal observation of chitosan-DNA complexes at a constant pH of 6.5. 

 

7.4.5. Chitosan-DNA complex conformation       

DNA conformation was firstly evaluated through CD measurements for different DNA 

concentrations in a solvent with an ionic strength of 10-2 M NaCl. Figure 7.19 shows the CD spectra for 

three DNA concentrations, i.e. 0.01, 0.03 and 0.05 mg/mL, in a solvent with an ionic strength of 10-2 M 

NaCl and at a temperature of 25 ºC. The obtained CD spectra correspond to the characteristic spectra of 

the double-stranded B-form DNA, with an isodichroic point at the wavelength of 258.5 nm. The 

dependence with the concentration is well defined with the increase in the magnitude of the band near 

280 nm and the decrease in the magnitude of the band near 250 nm. 

CD spectra of B-form DNA is presented in Figure 7.18 for a DNA concentration of 0.03 mg/mL in 

water, where it is partially denatured, and in 10-2 M NaCl where it is in a double-stranded conformation. 

It is possible to detect a slight shift of the long-wavelength crossover from 258.5 nm to 260.5 nm, which 

indicates denaturation of DNA strands. We observe also a minor increase in the magnitude of the band 

near 220 nm, which is also characteristic of denaturation [46], and slight CD changes above 220 nm. 

These results are in good agreement with the ones obtained through UV-Vis measurements discussed 

on Chapter 2, suggesting that DNA in water as a solvent is partially denatured and that the addition of 

salt at an ionic concentration of NaCl 10-2 M allows maintaining the double-stranded B-form. 
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Figure 7.18. CD spectra of DNA concentrations of 0.01, 0.03 and 0.05 mg/mL at a temperature of 25 ºC, a pH 

of 6.5 and an ionic strength of 10-2 M NaCl. The spectra were corrected by subtracting the background of water 

and three spectra were accumulated and averaged for each sample. 

 

 

 

 

 

 

 

 

 

Figure 7.19. CD spectra of two solutions of DNA at concentration of 0.03 mg/mL in water and in 10-2 M NaCl 

at a temperature of 25 ºC and a pH of 6.5. The spectra were corrected by subtracting the background of water and 

three spectra were accumulated and averaged for each sample. 
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DNA conformation in water as a solvent was then evaluated through CD measurements at the 

different pH’s, i.e. 2.0, 4.5, 5.0 and 6.5. Figure 7.20 shows the CD spectra of DNA solutions in water at a 

constant concentration of 0.03 mg/mL and at a temperature of 25 ºC.  

 

 

 

 

 

 

 

 

 

Figure 7.20. CD spectra of DNA solutions in water at a constant concentration of 0.03 mg/mL, a temperature 

of 25 ºC and the following pH’s: 2.0, 4.5, 5.0 and 6.5. The spectra were corrected by subtracting the background of 

water and three spectra were accumulated and averaged for each sample. 

 

Chitosan-DNA complex conformation was then followed by CD measurements using different 

[NH2]/[P-] ratios. Figure 7.21 shows CD spectra of chitosan-DNA complexes in water at a constant 

concentration of 0.03 mg/mL and at a temperature of 25 ºC and the following [NH2]/[P-]:0, 4.0 and 

6.4. Firstly, a slight shift in the long-wavelength crossover (260.5 nm) is observed in comparison to the 

DNA initial conformation and the ratio [NH2]/[P-]=4.0, corresponding to the stable complex region 

before the stoichiometry at -potential= 0 mV, suggesting a slight conformational variation as a result 

of the compaction between chitosan and DNA. Then, a second conformational change is detected at    

[NH2]/[P-]=6.4, corresponding to the region after the stoichiometry in chitosan excess with                

-potential>0 mV. Here, an excess of positive charges leads to a different response in the CD spectra for 

chitosan-DNA complex. These results differ from those obtained by Liu et al. [57], which observed a 

decrease in the intensity of peaks with the increase in the ratios of chitosan to DNA, but the cotton 

effect remained constant, showing that DNA remained in its B conformation upon complexing with 

chitosan.  
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Figure 7.21. CD spectra of DNA and chitosan-DNA complexes in water at a constant concentration of 0.03 

mg/mL, pH=6.5 and at a temperature of 25 ºC and the following [NH2]/[P-] ratios: 0, 4.0 and 6.4. The spectra 

were corrected by subtracting the background of water and three spectra were accumulated and averaged. 

  

Figure 7.22 a and b show the comparison between CD spectra of DNA in water and the spectra of 

the final chitosan-DNA complex formed in excess of chitosan at the three different pH’s: 4.5, 5.0 and 6.0. 

The influence of pH on the complex formation confirms a slight DNA conformational change at pH 6.5 

compared to pH 4.5 and 5.0, which final conformations are very similar between them in the initial DNA 

conformation and in the complexed DNA nanoparticles. 

 

 

 

 

 

 

 

Figure 7.22. a) CD spectra of DNA in water at the pH 4.5, 5.0 and 6.0. b) CD spectra of the complex chitosan-

DNA complex at the pH 4.5, 5.0 and 6.0 in excess of chitosan. DNA concentration: 0.03 mg/mL, added chitosan: 

1 mg/mL, temperature: 25 ºC. The spectra were corrected by subtracting the background of water and three 

spectra were accumulated and averaged for each sample. 
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7.4.6. Chitosan-DNA complex thermal stability  

Thermal stability of chitosan-DNA complexes was studied through UV-Vis measurements by 

monitoring the melting curves of the formed complexes in NaCl 10-2 M with [NH2]/[P-] ratios 

between 0 and 2.7, i.e. -potential < 0 mV.  

Figure 7.23 presents the melting curves for chitosan-DNA complexes in NaCl 10-2 M with 

[NH2]/[P-] ratios between 0 and 2.7. Here it is possible to observe a shift of the curves to higher 

temperatures with the increment of [NH2]/[P-] ratios of the complexes. The melting temperature is 

then detected at higher temperatures than the initial Tm of DNA. In this way, it is possible to say that 

the complex formation between chitosan and DNA leads to a greater thermal stability of DNA in the 

complex.     

The melting temperature dependence of chitosan-DNA complexes in NaCl 10-2 M with the ratio 

[NH2]/[P-] is presented in Figure 7.24.  

 

 

 

 

 

 

 

 

 

Figure 7.23. Melting curves of chitosan-DNA complexes in NaCl 10-2 M prepared with a DNA concentration of 

0.03 mg/mL and a chitosan concentration of 1.0 mg/mL at pH 6.5. Variation of [NH2]/[P-] ratios: from 0 to 

2.7. 
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Figure 7.24. Melting temperature dependence with the ratio [NH2]/[P-] for chitosan-DNA complexes NaCl    

10-2 M.  

 

We can clearly observe that the Tm increases with the increase of the [NH2]/[P-] ratio. 

Nevertheless, it is difficult to determine the exact value of the Tm due to experimental conditions, i.e.: it 

is not possible to perform experiments at temperatures higher than 90 ºC. Tentatively, it was supposed 

a complete denaturation at higher temperatures and we calculated a possible Tm value for the different 

complexes studied. The Tm values are obtained for chitosan-DNA complexes in NaCl 10-2 M in the 

[NH2]/[P-] range between 0 (DNA solution) and 2.7 (around  =-20 mV). These curves indicate a 

partial denaturation under 90 ºC due to a higher thermal stability of DNA chains in the complex. A 

second hypothesis may be suggested concerning the partial transition observed, i.e.: a two steps process 

taking place, in which a fraction of DNA is stabilized in the complex and is not able to be thermally 

denatured. 

 

7.5. Particular conclusions for Chitosan-DNA complex formation 

Here it is demonstrated that chitosan-DNA complex are formed between fully ionized phosphates 

and the fraction of protonated chitosan. For the first time, it is clearly shown that the net charge of the 

complex can be expressed in terms of the ratios [NH2]/[P-] and [NH3
+]/[P-], showing that 

electrostatic interactions between chitosan and DNA take place in the solution and originate the 

complexation process of DNA. For progressive additions of chitosan, before reaching the -

potential=0mV, a plateau is observed around a -potential of –20 mV, which matches with the obtained 

chitosan-DNA nanoparticles with stable average hydrodynamic radius around 280 nm. After -
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potential=0 mV, all DNA negative charges are neutralized by chitosan positive charges. It is 

demonstrated that whatever the pH is, chitosan-DNA complex formation can be interpretated on the 

basis of the electrostatic model, in which the net charge of chitosan as well as that of DNA are taken 

into account.  

The evolution of the hydrodynamic radius and the scattered light intensity was also evaluated in 

terms of [NH2]/[P-]. The scattered light increases with the addition of chitosan, corresponding to 

chitosan association with DNA. The Rh decreases to 280 nm corresponding to the compaction of DNA 

molecule into compact nanoparticles visualized through fluorescence confocal microscopy. It is worth to 

mention that these stable nanoparticles are obtained for partial neutralization of phosphate ionic sites 

([NH3
+] fraction between 0.35 and 0.80).   

Slight conformational changes of DNA were detected through CD measurements at differents pH 

and could be related to partial protonation of DNA bases suggested also by -potential measurements. 

The CD spectra of chitosan-DNA complex was studied for different ratio [NH2]/[P-] and pH values, 

which also indicate small conformational changes of DNA. Finally, the thermal stability of the 

complexes was studied by UV-Vis absorption measured as a function of temperature. It was observed 

that the melting temperature of DNA in chitosan-DNA complex increases compared to free DNA in 

NaCl 10-2 M. 
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Conclusions 

 Calf-thymus DNA solutions in TE buffer were firstly characterized in detail in the dilute and the 

semi-dilute regimes through physicochemical and rheological methods. The intrinsic viscosity []        

(4 080 mL/g) was determined from the zero shear-rate viscosity of the Newtonian plateau (0)obtained 

from flow measurements, from which was possible to access to the viscometric-average molecular 

weight of our samples (6 559 000 g/mol).  

 The overlap concentration (C*) was estimated as a first approach by using the relation C*~ []-1, 

obtaining 0.245 mg/mL. The starting point of the semi-diluted entangled domain, Ce, was then obtained 

from the limit of the linear behavior in the higher concentrations domain of sp as a function of CDNA[] 

curve, i.e. C~10, equivalent to 2.45 mg/mL.  

 A master curve with dynamic measurements data was obtained through a horizontal (ax) and vertical 

(ay) translation by using a specific DNA concentration as reference. The imposed shifts were analyzed 

as a function of DNA concentration, the main parameter controlling the solution behavior at constant 

molecular weight. 

 A master dynamic phase diagram was obtained with the superimposition procedure between flow 

curves normalized in terms of *= /G0 and g
·

* = g
·

t c
 

 Observations of the strain field combined with mechanical measurements were used to demonstrate 

the appearance of shear banding, i.e. g
·

 =10.0 s-1 and CDNA≥5.0 mg/mL. For high DNA concentrations 

in the semi-dilute regime with entanglements, DNA chains interactions and entanglements were found 

to have important effects on linear viscoelasticity and on the different flow regimes.   

 After studying and characterizing DNA behavior in the bulk of the solution, a detailed adsorption 

study of calf thymus DNA onto platinum and gold electrodes was evaluated in a wide concentration and 

temperature ranges by using Electrochemical Impedance Spectroscopy (EIS). For both Pt-ADN/TE 

buffer and Au-ADN/TE buffer interfaces, all the impedance data were transformed into complex 

capacitance values and were interpreted on the basis of the impedance adsorption theory using a similar 

FMGR equivalent circuit.  

 It was determined that at Open Circuit Potential (OCP), a diffusion controlled non-specific 

adsorption of DNA molecules is taking place at the Pt-ADN/TE buffer interface and a mixed process, 

controlled by DNA diffusion and an electrosorption process is taking place at the Au-ADN/TE buffer 

interface.  
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Through a detailed analysis of each one of the electrical parameters, Cdl, Cad and Rad, obtained at each 

studied temperature it was possible to identify two well-defined interfacial transitions around two DNA 

concentrations, i.e. 0.36 and 1.5 mg/mL. In this way, the changes in the interfacial structure, reflected in 

these parameters, strongly depend on the DNA structure solution. 

 It is possible to conclude that the impedance technique is able and sensitive enough to detect the 

structural changes of DNA molecules in different metal surfaces. In this manner, we can propose EIS as 

an adequate technique for characterizing the structural nature of the adsorbate based on the changes 

and the rearrangement of the electrochemical double-layer.  

 The transitional behavior of calf thymus DNA molecules, using platinum and gold electrodes, was 

aslo investigated through a study performed by EIS using an analogous methodology to the one used in 

linear rheology studies. A linear behavior of the Zo modulus, related to the solution resistance, and the 

characteristic time-constant of the process τc was observed in each characteristic regime of the system, 

in which the relation between them and CDNA follows the power law at every studied temperature. 

Arrhenius-type temperature dependence was obtained for the characteristic time constant of DNA 

molecules arrangement on the electrochemical double-layer.  

 A general impedance transfer function, proposed as a function of DNA concentration through the 

scaling of the electrochemical parameters, Zo and τc, allows analyzing theoretically the double-layer 

charging behavior at OCP as a function of concentration with only one impedance experiment and 

makes possible obtaining the electrochemical parameters of the interface at a chosen concentration and 

at a specific regime of the system. This function is proposed to be useful in studies of polymeric and 

surfactant systems, characterized by having different regimes due to their interactions or different kind 

of structures formed at a wide range of temperature or concentration conditions. 

 Through the optical technique Surface Plasmon Resonance (SPR), the adsorption process of DNA 

onto a gold surface allowed obtaining the optical film thickness (dopt) values observed in the surface of the 

sensor chip for each DNA concentrations. The variations of dopt as a function of DNA concentration were 

related to the transitions in the structural arrangement of the electrochemical double-layer, showing a 

specific behavior of DNA chains at each characteristic regime.  

 Using the simplest double-layer model, the changes in Cdl obtained from the Au-DNA/TE buffer 

interface were related to the changes in dopt as a function of DNA concentration and a dielectric constant 

behavior was also obtained, showing DNA transitions passing from diluted, semi-diluted unentangled 

and semidiluted entangled solutions. 

 The combination of both EIS and SPR techniques leads to a complete characterization of the 

structural behavior of Au-DNA/TE buffer interface. 
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 The recently developed technique Modulation of the Interfacial Capacitance (MIC) was used to study 

the double-layer relaxations due to the adsorption process of a polyelectrolyte: DNA. The MIC response 

revealed the double-layer dynamics in the dilute, the semi-dilute regime without entanglements and the 

semi-dilute regime with entanglements for DNA-TE buffer solutions.  

 No relaxation process of the double-layer capacitance was observed at high DNA concentrations, in 

the semi-dilute regime with entanglements, however, at low concentrations, in the dilute and the semi-

dilute regime without entanglements, it was possible to identify more than one superposed time-

constant.  

 The obtained values for the main characteristic-time constants of the adsorption process are in good 

agreement with the values obtained through impedance data transformed into complex capacitance data. 

The dependence on DNA concentration, temperature and ionic strength for the MIC response was put 

on evidence and described in terms of the main characteristic time constants of the adsorption process 

and the shape of the obtained MIC spectra.  

 It is demonstrated that MIC technique allows the study of the adsorption kinetics of the simplest 

species, such as NaBr and KCl, and the most complex species as DNA. It is then possible to identify and 

explain, at least qualitatively, the fundamental adsorption steps of these species.  

 Chitosan-DNA nanoparticles were produced by using DNA concentrations in the dilute regime and 

were studied and characterized by using different methods.  

 The formation of chitosan-DNA complexes was obtained between fully ionized phosphates and the 

fraction of protonated chitosan. The net charge of the complex was evaluated in terms of the ratio 

[NH2]/[P-], showing that electrostic interactions between chitosan and DNA take place in the solution 

and originate the complexation process of DNA. Before reaching the -potential=0mV, a plateau is 

observed around a -potential of –20 mV, which matches with the obtained chitosan-DNA nanoparticles 

stables on dimension with an average hydrodynamic radius of 220nm.  

 The evolution of the hydrodynamic radius and the scattered light intensity was also evaluated in 

terms of [NH2]/[P-], showing that Rh decreases and the scattered light increases with the addition of 

chitosan, representing the compaction of the long DNA molecule into a compact nanoparticle by means 

of the neutralization of the negative charges.  

 Slight conformational changes of DNA were detected through CD measurements and were evaluated 

for different [NH2]/[P-] ratios and different pH.  

 The melting temperature of chitosan-DNA complexes increases with [NH2]/[P-] ratio, showing a 

greater thermal stability than the initial one for DNA in its original conformation and without the 

addition of any cationic vector.  
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Perspectives 

 The dynamics of DNA molecules in their different characteristic regimes may represent important 

keys to the understanding of the functions of this biomacromolecule and its biochemical activiy. A 

further study taking into account the variation of ionic strength, molecular weight and even the 

interactions with different cationic molecules may give information about the influence that the 

variation of these parameters produces in DNA dynamics and in its biological functions. 

 The knowledge of DNA molecules behavior in the dilute regime and their electrostatic interactions 

with cationic polymers allows an optimal design of non-viral vectors for gene therapy, and may be 

applied for the study of DNA complexation with different cationic molecules, at different ionic 

strengths, pH’s, concentrations or molecular weights, among other variations.  

 For non-viral vectors applications, the stability of DNA-chitosan complexes must be further studied, 

specially with chitosan having different degree of acetylation and different molecular weights.  

 The impedance adsorption theory was successfully applied to DNA adsorption process onto metallic 

surfaces, offering new possibilities and approaches to the study of adsorption processes of 

polyelectrolytes (and even different biological macromolecules), in order to obtain important 

information about their structural behavior, the kinetics of the process and their thermodynamics 

during the adsorption.    

 The combination of both EIS and SPR techniques allows obtaining a detailed characterization of the 

structural behavior on the metal-DNA/TE buffer interface and can be implemented for the research of 

the electrochemical double-layer structural variations due to the conformational changes of different 

biological macromolecules.   

 A development of a reaction mechanism for DNA adsorption process, by taking into account the 

parameters involved in each step (DNA conformation, persistence length, ionic strength, charge 

parameter, among others) in each characteristic regime can lead to obtain more information about the 

kinetics of the adsorption process of DNA onto metallic surfaces.   

 From the obtained results of this thesis it is possible to propose the MIC technique as a useful tool in 

the research field of the adsorption processes of polyelectrolytes such as DNA and different kind of 

biological macromolecules. It may be possible to get a greater insight of DNA adsorption process by 

performing a more detailed analysis including the concepts of the theory of polyelectrolytes on surfaces 

in each characteristic regime and studying the two-dimensional or three-dimensional adsorbed layer 

formation for DNA solutions. An experimental study with a potential variation with respect to the PZC 

may give us more information with respect to the negative to positive real parts of the capacitance 

response. 
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A. List of symbols  

Nomenclature 

 

a0 radius of the macromolecular phase in Oosawa’s model 

A radius of the cylindrical space in Katchalsky’s model 

ax horizontal translation coefficients 

ay vertical translation coefficients 

A Absorbance 

Ae area of the electrode 

Af frequency factor 

Ai adsorption of the component i 

bi distance between two ionized sites for a polyelectrolyte  

B adsorption coefficient 

c speed of light in vacuum 

C concentration in Chapter 2  

capacitance in Chapter 3 and 4 

C(ω) complex interfacial capacitance 

C’ real part of the capacitance 

C’’ imaginary part of the capacitance 

Cad adsorption capacitance 

CDNA DNA concentration (in mg/mL) 

Cdl double-layer capacitance 

Ceff effective capacitance 

CGC Gouy-Chapman capacitance 

CH Helmholtz capacitance 

CHF capacitance at high frequencies 

Ci concentration of ions (in equi/L) 

CLF capacitance at low frequencies 

Cv concentration in the bulk of the solution 

Cvi concentration of the component i 

Cm concentration of ionized groups (counterions) 

C** overlap concentration 

C** or Ce  entanglement concentration 

CPE constant phase element 

dopt optical film thickness 

D diffusion coefficient 

e electron charge  

E electric potential  

Ea activation energy 

f transport coefficient in Chapter 2 

frequency range in Chapter 3 



    

 259 

f(a) Henry’s function 

f high frequency 

f low frequency 

F() filter transfer function  

g gravity  

G proportionality constant 

G’() shear elastic modulus   

G’’() shear viscous modulus 

Gp plateau modulus 

lG*l complex modulus 

kBT Boltzmann term 

h Length 

I current  

j imaginary number  

K Mark-Houwink parameter in Chapter 2 

integral capacitance in Chapter 6 

KF constants for a given adsorbent and adsorbate at a constant temperature in 

Freundlich adsorption isotherm 

k vector component  

kx energy and momentum of light photons 

ksp energy and momentum of surface Plasmon 

Kc Cross model constant 

Kev wave vector of the evanescent field 

KH Huggins coefficient 

KK Kraemer coefficient 

lB Bjerrum length 

le electrostatic persistence length 

l0 intrinsic persistence length 

lp persistence length 

L inductor  

m dimensionless parameter related to the degree of shear thinning in Chapter 2 

ma 
adsorbate mass 

M molecular weight 

Mc molecular weight for chain entanglement in undiluted state 

n inherent parameter of the CPE 

n refractive index 

n-1 Freundlich adsorption isotherm constant  

NA Avogadro’s number 

Ni number of ion of the species i 
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Nio ions concentration in the bulk of the solution 

q charge for a capacitive system 

qH Helmholtz excess charge 

qGC Gouy Chapman excess charge 

qSA charge on the surface  

qw wave vector 

Q ideal interface differential capacitance 

R Resistance 

Ra Radius 

Rad adsorption resistance  

Rct charge transfer resistance  

Rf faradaic resistance  

Rs solution resistance 

Rst standard resistance of the potensiostat  

s slope from flow curves 

t Time 

T temperature  

Tm melting temperature 

V Volume 

VE potential difference 

Wad Warburg impedance 

XHP thickness of the electrical double layer 

Y admittance  

zi valence  

ZW,ad Warburg-like diffusion impedance 

Zo impedance plateau module  

Z(ω) complex impedance  

Z’ real part of the impedance 

Z’’ imaginary part of the impedance  

|Z| complex impedance modulus  

 Mark-Houwink parameter in Chapter 2 

inherent parameter of superficial heterogeneity or surface roughness in Chapter 4 

i ionization degree 

 adsorbed amount of polymer

Γ layer mass per unit area 

c first cumulant 

 Strain 

a activity coefficient of the counterions 

g
·


shear rate 

g
·

* 
normalized shear rate 
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g
·

c  
critical shear rate 

 potential difference 

 dielectric constant  

εr dielectric constant of the medium 

εo vaccum permittivity 

εm dielectric constant of the metal film 

 Viscosity 

g refractive index of a dense medium 

0 shear viscosity in the Newtonian plateau  

∞ infinite shear-rate viscosity 

rel relative viscosity 

ηd refractive index of the dielectric medium 

sp specific viscosity 

red reduced viscosity 

[] intrinsic viscosity 

s solvent viscosity 

l*l complex dynamic viscosity 

 electrophoretic mobility 

 
 

covered fraction in Chapter 3 

incidence angle in Chapter 4 

c critical incidence angle 

 conductivity  

-1 Debye length  

 charge parameter chapter 2 

wavelength chapter 5 and 8 

G relaxation time from the Giesekus model  

λeff critical value of the charge parameter  

 number of ionic sites on the chain of the polyelectrolyte 

e Velocity 

 density in Chapter 2 

charge density volume in Chapter 3 

 stress in Chapter 2 

charge density in Chapter 3 

σad  coefficient of the diffusional impedance 

d charge density in the diffuse layer 

* normalized stress 

τc characteristic time-constant  

τR Maxwell relaxation time-constant  

 osmotic coefficient in Chapter 2 
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absolute electrical potentials in the double layer region in Chapter 3 

b absolute electrical potentials in the bulk of the solution 

 volume fraction 

ψ relative electrical potential 

ψd relative electrical potential in the diffuse layer 

(a) electrostatic potential at the surface of a polyion 

 zeta potential 

 Frequency 

o frequency of the incident light 

ωC crossover frequency  

<S2> gyration radius 

∇ 2 Laplacian operator 
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B. Abbreviations 

CD Circular Dichroism 

CPE Constant Phase Element  

CPL Circularly polarized light 

DA Degree of deacetylation 

DLS Dynamic light scattering 

DNA Deoxyribonucleic acid 

EDL Electrochemical double layer 

EDTA Ethylenediaminetetraacetic acid 

EIS Electrochemical Impedance Spectroscopy 

FMGR Frumkin-Melik-Gaikazyan-Randles 

HFP Higher frequency process 

IHP Inner Helmholtz plane 

IR Infrared 

LFP Lower frequency process 

LVR Linear viscoelastic region 

MIC Modulation of the Interfacial Capacitance 

MICTF Modulation of the Interfacial Capacitance and Associated Transfer Functions 

NMR Nuclear magnetic resonance 

OCP Open Circuit Potential  

OHP Outer Helmholtz plane 

PZC Potential of Zero Charge 

R‐CPL Right‐handed Circularly polarized light 

L‐CPL Left‐handed Circularly polarized light 

RNA Ribonucleic acid 

TE  Tris-HCl/EDTA 

TEM Transmission Electron Microscopy 

TIR Total internal reflection 

SCE Saturated Calomel Electrode 

SPR Surface Plasmon Resonance 

UV Ultraviolet 

FDA Food and Drug Administration 
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Introduction  

Amphiphilic block copolymers are macromolecules composed of a hydrophobic block and a 

hydrophilic block. In water, they aggregate into micelles, in which the hydrophobic part forms the heart 

and the hydrophilic segments form the corona [1,2]. These copolymers are characterized by having a 

critical micellization concentration (CMC) and a critical micellization temperature (CMT). According to 

the ratio between the length of the blocks and the quality of the solvent, these copolymers can form 

spherical micelles, cylindrical or lamellar structures [3-5]. These materials are of great interest because 

of their applications in drug delivery, cosmetics, synthesis of mesostructured materials and detergency, 

among many others [6,7]. The kinetics of the transition from one morphology to another is critical to 

define their spectrum of application. Unlike surfactants, which are dynamically active, the block 

copolymers have a slower dynamic. In particular, in the case where the surface tension between the 

blocks is high, they can be trapped in metastable states without reaching thermodynamic equilibrium 

[8,9]. Thus, understanding the kinetics of these transitions remains a major challenge for the design 

and control of many aspects of their applications. 

The copolymers stimulable by temperature, based on ethylene polyoxide (PEO) and polypropylene 

polyoxide (PPO) have have been used for basic and applicative research. The commercially available 

triblock copolymers (PEO)x-(PPO)y-(PEO)x are among the most studied amphiphilic copolymers [10]. 

These triblock copolymers are commercially known under the following names: Pluronic ™ and 

Polaxamers™. Other varieties of Pluronics, in which the PPO was replaced by more hydrophobic blocks 

such as poly(butylene oxide), poly(styrene oxide) or poly (phenylglycidyl ether) [11] have been also 

investigated. Unlike other copolymers, Pluronics are dynamically active even at relatively high 

molecular weight (Mw) [12,13]. Due to their thermo-stimulable properties, triblock copolymers are 

particularly interesting for several applications such as mesoporous materials development and drug 

delivery. In this way, drug delivery by PEO-PPO-PEO copolymers uses the structure transition by 

temperature stimuli. Barichello et al. [14] performed studies of insulin release in vivo and in vitro by 

using gels formed by the F127/water system. This system has been also used for the delivery of 

ophthalmic [15, 16], parenteral [17] and subcutaneous [18] drugs.  

The specific delivery of active ingredients, known as vectorization, has actually become a great 

challenge in therapeutic research [19,20]. This process has been used to control the distribution of 

active ingredients such as proteins, genes for gene therapy and drugs, to a target by associating it with a 

vector. Molecules for chemotherapy are frequently hydrophobic and require vectorization to be 

transported to the target cell [21,22]. Nevertheless, this controlled drug delivery suffers from a 

phenomenon called “burst release” as the drugs are released before their target [23]. In this manner 

main objective is to understand the exchange dynamics between vectors and cells via collective 

mechanisms. Understanding these dynamics becomes essential for the design and the control of new 

materials and new processes effective in drug delivery. In this work, our study system is composed by 
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amphiphilic block copolymer micelles modeling the transporting vehicles, liposomes representing cells 

and highly hydrophobic alkylated pyrene representing the active ingredient introduced into the 

micelles. In order to understand, control, and study in detail this system, the characterization of each 

part of it is also necessary.   

The understanding of the dynamics in systems composed by homogeneous micelles is of great 

importance before complicating the system by adding other type of molecules. In this way, we study the 

collective dynamics at the equilibrium of triblock copolymer P104/water micelles [24]. The dynamics 

of these systems were reported to occur via two main mechanisms, the first one is an individual process 

that involves the expulsion and insertion of chains [25]. The second mechanism is a collective process 

that occurs through fusion and fission of micelles [26], which are crucial for controlling the behaviour 

of amphiphilic aggregates particularly in drug delivery and for the synthesis of controlled nano-objects. 

In this work we show that fusion and fission take place at equilibrium in P104/water micelles. We 

investigated the role of fusion and fission processes in the sphere to cylindrical micelles transition in 

P104/water micelles [27]. This transition was followed by a temperature jump from the sphere phase 

to the rod-like-micelles phase and monitored with dynamic light scattering (DLS). Then, we used a 

fluorescent technique, which uses the random distribution of hydrophobic pyrene derivative between 

micelles as a tool to probe the fusion and fission of micelles at equilibrium.  

After characterizing amphiphilic block copolymers structure and studying their dynamics in and 

out of equilibrium, liposomes were prepared and characterized in order to identify their shape, size and 

their physicochemical properties [28-32]. In order to firstly explore electrostatic interactions between 

liposomes and P104 micelles, we used different techniques such as Dynamic Light Scattering (DLS) and 

-potential. Then, the time-scan fluorescence technique, which is used to quantify the kinetics between 

amphiphilic block copolymer micelles [24], is proposed to quantify the vectorization kinetics between 

P104 micelles and liposomes. The effect of the variation of several parameters such as liposome 

concentration, P104 micelles concentration and liposome coating whit chitosan are investigated in order 

to control the vectorization dynamics between amphiphilic block copolymer micelles and liposomes.  
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Justification  

The structure of amphiphilic block copolymers ensures their ability to interact with the cell 

membrane and to change its properties. The addition of amphiphiles to cell culture modifies the 

functional activity of the proteins in the membrane [33] and changes the electrical properties of 

biological membranes [34]. The high efficiency and relatively low toxicity of amphiphilic block 

copolymers, as Pluronics, explain their application in various fields of medicine and pharmacology [35, 

36]. 

Very few studies have examined the role of dynamics in amphiphilic block copolymers micelles 

during the transport and expulsion of drugs. Understanding these dynamics, as well as quantifying and 

controlling the exchange kinetics become crucial for the design and the control of new materials and 

new effective vectorization processes in controlled drug release. 

 

Assumptions  

Micelles are continuously structured on a microscopic scale: they can be formed and they can 

dissociate themselves into monomers, they can merge to form larger micelles and they can break up into 

small micelles. These mechanisms are certainly crucial for the encapsulation and transport of 

hydrophobic molecules, especially for controlled drug delivery applications. The time characteristics of 

these dynamics can vary from 10-10 s, for conventional surfactants, to years for high molecular weight 

copolymers [9, 37,38]. These times depend on the hydrophilic corona structure, the length of the 

chains, the nature of the interaction between micelles (steric/electrostatic), among others parameters.  

Recently Rharbi et al. [37] developed a technique based on stopped-flow fluorescence to 

distinguish, analyze and quantify the different dynamics. With this technique it is possible to distinguish 

fusion mechanisms of micelles from fission and separation of micelles into individual monomers by using 

hydrophobic fluorescent probes that can be only exchanged via fusion and fission processes. This 

technique can detect fusion and fission processes that take place in a time range between the ms to a 

month [37]. This technique will be used to study the exchange dynamics in amphiphilic triblock 

copolymers and in more complicated systems that include the interactions between macromolecules of 

different nature, i.e. liposomes and amphiphilic block copolymers.  
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Objectives  

General objective  

To study the exchange dynamics between vectors and cell models for the design and the control of 

new materials and new effective processes in drug delivery. In order to achieve this, we propose a study 

system composed by amphiphilic block copolymer micelles modeling the vectors to transport the 

hydrophobic molecules, liposomes as the simplest membrane model and highly hydrophobic alkylated 

pyrene representing the active ingredient introduced into the micelles.  

 

Specific objectives  

- To study the phase behavior and the rheological behavior of amphiphilic block copolymer 

P104/water. 

- To study the mechanisms of fusion and fission of amphiphilic block copolymer P104 micelles in 

water.   

- To investigate the role of fusion and fission processes in the sphere to rod-like micelles transition 

in P104/water micelles.   

- To study the exchange dynamics between amphiphilic block copolymer P104 micelles in water 

with liposomes based on phospholipids for controlled drug delivery applications.  

- To study the influence of chitosan adsorption on amphiphilic block copolymer micelles and 

liposomes on the exchange dynamics between both particles.  
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1. Self-assembling systems: amphiphilic block copolymers and liposomes 

1.1. Introduction 

The self-assembly of surfactants and amphiphilic polymers in solution has been extensively studied 

due to the great number of applications that take into account the resulting multimolecular aggregates 

of these materials. The structure of these aggregates has different effects on the properties of surfactant 

or amphiphilic polymer solutions, as their solubilization capacity for hydrophobic substances, their 

viscoelastic properties, among many others [1].  

It is important to know how the molecular structure of the surfactant, the amphiphilic polymer or 

the liposome controls the shape and size of the aggregates in order to chose the molecules that produce 

a specific structure such as spherical micelles, globular micelles, rod-like micelles or spherical bilayer 

vesicles, as well as to design novel amphiphilic molecules that generate any aggregate morphology.  

 

1.2. Surfactants   

Surface-active agents, also known as surfactants, are amphiphilic substances that lower the surface 

tension of the medium in which they are dissolved, or lower the interfacial tension between two liquid 

phases immiscible with each other [2,3]. These substances can associate in polar and non-polar solvents 

to form a variety of structures depending on the concentration or the temperature [4-6]. A surfactant is 

also characterized by its affinity to be adsorbed on the air-water interface or the water-oil interface. 

They are widely used in food and pharmaceutical industry, in cosmetics, plastics production, in 

enhanced oil recovery, agriculture and in many other fields [7-10]. In the field of pharmaceutical 

sciences, the surfactants are used as emulsifiers, wetting agents solubilizers, among others applications 

[11]. Actually, they are considered important molecules as therapeutic agents for combating several 

diseases due to their antibacterial and antiviral functions [12]. They are also suitable anti-adhesive 

coating agents for medical insertional materials, which lead to a decrease in a great number of hospital 

infections without using chemicals or synthetic drugs.   

Surfactants are composed by two parts with different affinities for solvents. One of them has affinity 

for water (polar solvents) and the other one for oil (non-polar solvents). If the solvent is water, each part 

is called hydrophilic and hydrophobic [13]. In this way, they are soluble in both organic solvents and 

water. Surfactants are indicated by the presence of a polar head and a tail as the non-polar region 

(Figure 1.1). The hydrophobic part of the molecule can have different unsaturated portions or aromatic 

entities and it may also be partially or fully halogenated, like in fluorocarbon compounds. The 

hydrophilic part of the molecule can contain functional groups such as -COOH, -OH, -NH2, among 

others, which give sufficient affinity for water, allowing the interactions with polar medium and to form 

aqueous solutions [14]. 
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Figure 1.1. Schematic representation of a surfactant 1.- hydrophilic head and 2.- hydrophobic tail. 

 

Usually, the hydrophobic group is a long-chain hydrocarbon residue and less frequently a 

halogenated or oxygenated hydrocarbon or siloxane chain, whereas the hydrophilic group is an ionic or 

polar group [15]. Surfactants can be classified according to the electric charge of their polar part, so 

they are divided in ionic and non-ionic surfactants. Ionic surfactants are in turn divided in anionic, 

cationic, amphoteric and zwitterionic surfactants [16] (Figure 1.2.). 

 

 

 

 

 

 

Figure 1.2. Surfactant classification according to their polar part: a) negatively charged, b) positively charged 

and c) two oppositely charged groups.  

 

1.2.1. Ionic surfactants 

1.2.1.1. Anionic surfactants 

This type of surfactants is largely used due to its low cost of production and its easy way to be 

applied [17]. They are characterized by having polar groups such as sulfates, sulfonates, carboxylates 

and phosphates radicals [18]. The counterions mostly used with these surfactants are sodium, 

potassium, ammonium, calcium and several protonated alkylamines. Sodium and potassium promote 

water solubility, whereas calcium generates oil solubility. Finally, both oil and water solubility is 

propitiated in the case of protonated alkylamines.  
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The most common anionic surfactants are carboxylic acids, phosphoric and polyphosphoric acid 

esters, sulfonic acids, sulfuric acid esters and perfluorinated anionic surfactants, among others [19]. 

Anionic surfactants are the most abundant group of surfactants but they are not compatible with 

cationic surfactants. They are sensitive to hard water, however, this sensitivity decreases in the 

following order: carboxylates, phosphates, sulfates and sulfonates. 

 

1.2.1.2. Cationic surfactants 

Cationic surfactants represent only about 5% of surfactants produced in the world and they are 

generally more expensive than anionics because of the high-pressure hydrogenation reaction needed 

during their synthesis. Most of them are usually based on a nitrogen atom with positive charge, since 

amines can only function as surfactants in their protonated state [20]. Therefore, this type of surfactant 

cannot be used in solutions with high pH values. Cationic surfactants are compatible with nonionic and 

zwitterionic surfactants, but usually they are not compatible with anionic surfactants, except the amine 

oxides. They adsorb easily on many surfaces and they are used to modify them. 

 

1.2.1.3. Amphoteric or zwitterionic surfactants 

Amphoteric or zwitterionic surfactants act depending on the medium in which they are, so they can 

function as anionics and as cationics surfactants depending on the pH of the solution [21].  These 

surfactants, also known as ampholytes, contain at least one anionic and one cationic group. The 

isoelectric point is the pH where the net charge is null. Therefore, in basic medium they behave as 

anionic surfactants and in acidic medium they behave as cationic surfactants. The cationic part is based 

on primary, secondary or tertiary amines, or quaternary ammonium cations. The anionic part may vary 

and can include sulfonates. The most common biological zwitterionic surfactants have a phosphate 

anion with an amine or ammonium, such as the phospholipids phosphatidylserine, 

phosphatidylethanolamine and phosphatidylcholine, among others [22].  

Several methods are used to produce these surfactants, which mostly contain a quaternary 

ammonium ion (a cation) and a negatively charged group that can be a carboxylate (-CO2
-), a sulfate         

(-OSO3
-) or a sulfonate (-SO3

-). They are compatible with all other types of surfactants, they are not 

sensitive to hard water and they are generally stable in acidic and basic media. Zwitterionic surfactants 

generally maintain their properties in high alkaline medium. 
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1.2.2. Nonionic surfactants 

Nonionic surfactants are surfactants that can be solubilized by the combined effect of a number of 

weak solubilizing groups (hydrophilic), such as ether or hydroxyls groups in the molecule. Most of the 

nonionic surfactants contain a polyether group, composed by oxyethylene obtained by the 

polymerization of ethylene oxide [23]. These surfactants form the second wider group of surfactants. 

They are usually compatible with other types of surfactants but they are not sensitive to hard water. 

Contrary to nonionic surfactants, their physicochemical properties are not affected by electrolytes. 

Finally, their physicochemical properties depend mainly on the temperature since they are less soluble 

in water at high temperatures.  

Table 1.1 summarizes some examples of each type of surfactant. 

 

Table 1.1.- Classification of surfactants and some examples [15].  

Surfactant type Nature of the hydrophilic group Example 

 

Ionic  

Anionic Negative charge RCOO-Na+ (soap)  

RC6H4SO3
-Na+ (alkylbenzene sulfonate) 

 

Cationic  

 

Positive charge 

RNH3
+Cl- (salt of a long-chain amine) 

RN(CH3)3
+Cl- (quaternary ammonium 

chloride)  

Amphoteric or 

Zwitterionic 

 

Positive and negative charges 

RN+H2CH2COO- (long-chain amino acid) 

RN+(CH3)2CH2CH2SO3
- (sulfobetaine) 

 

 

Nonionic 

 

 

No apparent ionic charge 

RCOOCH2CHOHCH2OH (monoglyceride of 
long-chain fatty acid) 

RC6H4(OC2H4)XOH (polyoxyethylenated 
alkylphenol) 

R(OC2H4)xOH (polyoxyethylenated alcohol).  

   

1.2.3. Surfactant structures  

The great variety of structures formed by surfactants is studied and determined through different 

techniques such as Nuclear Magnetic Resonance (NMR), neutron scattering, Small Angles X-ray 

Scattering (SAXS), Dynamic Light Scattering (DLS) and Quasielastic Light Scattering (QLS), among 

others. Some of the identified structures are spherical micelles, cylindrical micelles, mesophases and 

liquid crystals as cubic phases. 

In aqueous solution, a surfactant micelle is formed with its lipophilic tails oriented towards the 

interior, presenting in this way its hydrophilic surface to the polar ambient. The simplest micelles are 

spheres but as surfactant concentration increases the micelles grow and form rods. At high surfactant 
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concentrations the rods form larger structures tan can be hexagonally packed rods or palisade 

arrangements (Figure 1.3). As these structures increase in size, they take on a greater degree of order 

until they become liquid crystals (for the biggest structures).  

 

 

 

 

 

 

 

 

Figure 1.3. Some structures formed by surfactants [24].  

 

1.3. Critical Micellar Concentration (CMC) 

Micelles are small colloidal particles, relative to the wavelength of light. When micelles form, the 

behavior of the aqueous surfactant solution is such as a microheterogeneous medium. The value of the 

CMC can be determined by the change in the physicochemical properties of the surfactant solution as 

the surfactant concentration increases [25-28].  

The CMC depends on several parameters, such as temperature, pressure, the nature of the 

amphiphile, the solvent composition and the presence of solubilized substance. It decreases with 

increasing hydrocarbon chain-length of the apolar groups, and for ionic surfactants it also depends on 

the nature and concentration of counterions in solution. CMC also decreases with the addition of 

electrolytes. 

Most of the physical properties of amphiphilic solutions change drastically in the CMC. In this 

manner, the CMC was defined as the concentration at which takes place the maximum change in the 

slope of the curve presenting an ideal colligative property  as a function of the total concentration of 

amphiphile, CT (Equation 1.1).  
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Generally, the CMC is located at the intersection of two extrapolated curves of a determined 

physical property as a function of concentration (Figure 1.4.). The calculated CMC values using different 

properties can be slightly different since the CMC is not a defined concentration, but a small interval of 

concentrations.   

 

 

 

 

 

 

 

 

 

Figure 1.4. Variation of each physicochemical property as a function of surfactant concentration. 

 

1.4. Critical Micellar Temperature (CMT) 

The critical micelle temperature, also known as the Krafft temperature, is the minimum 

temperature at which surfactants form micelles. Micelle formation is a process greatly dependent on 

temperature and is also known as an entropy-driven process, which results in a important decrease in 

the CMC with the increase of temperature [29]. This behavior allows the extensive applicability of the 

critical micellar temperature CMT as a suitable micellar parameter. Above the CMT, unimers and 

micelles exist in the state of equilibrium with most of the surfactant molecules in the micellar form. The 

effects of temperature on the properties and structures of surfactants solutions have been extensively 

studied and represent an important key of their applications [30-32].  

 

1.5. Cloud Point Temperature (CPT)     

The cloud point corresponds to the temperature above which an aqueous solution of a water-

soluble surfactant becomes turbid [33]. The determination of the cloud point temperature is of great 

importance for the storage stability of the solutions. Storing formulations at temperatures significantly 
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higher than the cloud point may result in phase separation and instability. Several processes such as 

wetting, cleaning and foaming can be different above and below the cloud point. Nonionic surfactants 

usually show optimal effectiveness when they are used near or below their cloud point and low-foam 

surfactants may be used at temperatures slightly above their cloud point. 

CPT is classically measured using 1% aqueous surfactant solutions. Cloud points temperature are 

usually found between 0 and 100 °C, limited by the freezing and boiling points of water. Cloud points 

are characteristic of nonionic surfactants [34]. Anionic surfactants are more water-soluble than 

nonionic surfactants and have much higher cloud points (above 100°C). The presence of other 

components in a surfactant solution may decrease or increase the cloud point of the solution.  

 

1.6. Surfactants solubility      

Micellar solutions can solubilize nonpolar substances (such as oils) in important amounts within or 

on the surface of the micelles. These high solubilization systems can be microemulsions or liquid 

crystals due to the structures adopted in the surfactant system oil-water. By increasing temperature, the 

solubility of nonionic surfactants also increases. The increase of solubility becomes a relatively slow 

process from the Kraft temperature, since in this point the solubility increases rapidly and can reach 

miscibility in the whole range of concentration after a few degrees. Below the Kraft temperature, the 

surfactant is reasonably soluble and the concentration is not sufficient to form micelles, so that the 

balance is made between a monomolecular surfactant solution and the solid precipitate [35].  

 

1.7. Amphiphilic block copolymers  

Amphiphilic block copolymers are functional polymers that may be used in a great number of 

applications mostly related to the energetic and structural control of materials interfaces [36]. The 

interest in the synthesis and characterization of amphiphilic block has increased extremely in the last 

years. This is due to their molecular structure, which consists of at least two parts with different 

chemical natures. Amphiphilic copolymers are used as emulsifiers, foamers, thickeners, dispersants and 

vectors for drug deliver, among others applications [36,37].  

Block copolymers are substances formed by macromolecules consisting of blocks arranged in a 

linear sequence. A block is a portion of a macromolecule that is composed by several units with at least 

one characteristic that is not present in the neighboring portion [38]. Copolymers may contain two or 

three blocks which are usually represented as AB, ABA and BAB, where A and B are the polymer blocks 

(Figure 1.4). Other block copolymers containing repeated units formed by two blocks (AB)n have also 

been synthesized.  
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Figure 1.5. Schematic representation of block copolymers. 

 

1.8. Triblock copolymers 

Amphiphilic triblock copolymers are synthesized through a simultaneous polymerization of more 

than one type of monomer at which the individual monomers come as blocks of a variety of lengths in 

the copolymer molecule. As the two blocks within the copolymer are not compatible between each other, 

amphiphilic block copolymers assemble in melts and solutions [39]. Copolymers can assemble in 

aqueous solutions as microstructures similar to micelles formed by low-molecular-weight surfactants.  

Some commercially available copolymers are the water-soluble triblock copolymers of 

poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), also represented as PEO-PPO-PEO, and 

are considered as nonionic macromolecular surfactants. The production of many molecules with 

different properties that meet with specific requirements in different areas can be obtained from the 

synthesis of a variety of block copolymers with different compositions in their PPO/PEO ratio and/or a 

diverse molecular weight, given by the PEO and PPO block length.  

 

1.8.1. Synthesis and nomenclature 

The synthesis of PEO-PPO-PEO triblock copolymers is carried on by the sequential addition of 

first propylene oxide (PO) and then ethylene oxide (EO) to a low molecular weight water-soluble 

propylene glycol, a poly(propylene oxide) oligomer. An alkaline catalyst, usually NaOH or KOH, is used 

during the oxyalkylation and is then neutralized and removed from the final product [39,40].  
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The Pluronic PEO-PPO-PEO block copolymers can be obtained in a great range of molecular 

weights and PPO/PEO composition ratios [41]. The following notation is used for these materials: L 

for liquids, P for paste and F for flakes. Then the first or two numbers denote the molecular weight of 

the PPO block and the last number represent the molecular weight of the PEO block.  

Figure 1.6 shows the Pluronic grid that present the arrangement of Pluronic PEO-PPO-PEO block 

copolymers depending on their composition (PPO and PEO block groups).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Pluronic grid [39]. 

 

1.8.2. Physical properties 

Block copolymers present a reversible solubility with temperature, they are more soluble in cold 

water than in warm water and exhibit a clouding point temperature.  Copolymers with low EO content 
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have low properties for foaming, so the best antifoam is obtained with the ratio of EO/PO from 1:4 to 

1:9. The inverted materials PO/EO/PO produce less foam.  

Copolymers with high molecular weight and high content in PO groups possess good wetting 

properties.  The biodegradability is low, particularly for products with high PO content groups. 

 

1.8.3. Micelle formation in PEO-PPO-PEO triblock copolymers  

The micellization of amphiphilic block copolymers is a more complex process than micellization of 

standard low-molecular weight surfactants. In fact, a certain CMC range has been usually observed with 

some ambiguity. The CMC values determined by different methods and different techniques may vary 

depending on the sensitivity of the technique to the amount of molecularly dispersed copolymers 

(unimers) present in the solution [42]. In this manner, the values reported in the literature differ 

considerably due the several reasons such as the lack of sufficient temperature control and batch-to-

batch variations [39,43]. 

The sensitive nature of triblock copolymers micellization leads to the possible alteration of the 

aggregation characteristics due to the addition of different compounds. In fact, it has been found that the 

addition of co-solvents or solutes to aqueous triblock copolymer solutions can influence the CMT and 

the CMC [44]. Experimentally, Small-Angle Neutron Scattering (SANS) scattering curves can be fitted 

by using the model of Pedersen, which gives information about the core size, the corona thickness, and 

the aggregation number of micelles. Figure 1.7 shows a schematic of the Pedersen model for block 

copolymer micelles, where Rc is the core radius, Rint is the interaction radius, and Rg(PEO) is the radius of 

gyration of the PEO segment.  

 

 

 

 

 

 

 

 

Figure 1.7. Schematic representation of the Pederson model for block copolymer micelles [44]. 
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1.8.4. Micellization thermodynamics 

Diblock and triblock copolymers form micelles in selective solvents that can be thermodynamically 

good solvents for one of the blocks and precipitants for the other block [39]. Micellization of block 

copolymers follows the closed association model, which assumes equilibrium between molecularly 

dispersed copolymer (unimer) and multimolecular aggregates (micelles). Two main approaches have 

been previously discussed to the thermodynamic analysis of the micellization process [39]. First one is 

the phase separation model, here the micelles are supposed to form a separate phase at the CMC. Second 

one is known as the mass-action model, which considers micelles and unassociated unimers to be in an 

association-dissociation equilibrium. The standard free energy change for the transfer of 1 mol of 

amphiphile from solution to the micellar phase is given by Equation 1.2 for both cases. 

ΔG= RTln(XCMC)                    (1.2) 

where ΔG is the free energy of micellization in the absence of electrostatic interactions, R is the gas law 

constant, T is the absolute temperature and XCMC is the critical micellization concentration in mole 

fraction units. 

Here, the concentration of free surfactant (unimers) in the presence of micelles is considered to be 

constant and equal to the CMC value. The standard enthalpy of micellization can be expressed by 

applying the Gibbs Helmholtz equation (Equation 1.3).  

ΔH= -RT2[∂ln (XCMC) / ∂T]P                 (1.3) 

The standard entropy of micellization per mole of surfactant, ΔS can be also determined by using 

Equation 1.4.  

ΔS= (ΔH - ΔG)/T                  (1.4) 

It comes that for block copolymer micellization:  

∂l n(XCMC)/ ∂ (1/T) = ∂l n(X) ∂ (1/TCMT)                (1.5) 

where X is the concentration (in mole fraction) and TCMT is the critical micellization temperature. 

In this way, Equation 1.3 can be written as follows:  

ΔH= R[∂ (X) / ∂(1/ TCMT)]P                 (1.6) 

The standard enthalpy of micellization, ΔHº, can be then calculated from the inverse slope of the 

linear fit to the 1/ TCMT vs. ln(mole fraction) data.  
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The standard enthalpy of micellization, ΔH°, is positive [39], showing that the transfer of unimers 

from solution to the micelle is an enthalpically unfavorable endothermic process. The free energy, ΔG°, 

is negative due to the spontaneous formation of thermodynamically stable micelles. Therefore, a 

negative entropy contribution has to be the driving force for block copolymers micellization. However, 

it worth’s mentioning that contrary to the entropy-driven micellization in water, the micellization of 

copolymers in non-polar solvents is due to enthalpy interactions between the copolymer segments and 

the solvent.   

 

1.8.5. Gels formed by PEO-PPO-PEO triblock copolymers 

The Pluronic PEO-PPO-PEO block copolymers solutions of high copolymer concentration present 

a remarkable change in the viscosity at temperatures near to ambient temperature, showing a 

phenomena known as thermoreversible gelation [39]. Some authors related the gel transition to 

intrinsic changes in the micellar properties [45] or to the possibility of the development of an ordered 

three-dimensional structured state [46]. However, recently neutron scattering studies showed that the 

observed change in viscosity is due to a hard-sphere crystallization, since the micelle concentration gets 

close to the critical volume fraction of 0.53 (micelles close-packed) [39]. It is possible to dissolve again 

the gel at higher temperatures. The gelation temperature and the thermal stability range of the gel 

increase with the increase of the PEO block length. 

 

1.9. Applications of amphiphilic block copolymers 

Amphiphilic block copolymers can be used in many applications due to their self-assembling 

properties. They can be applied either in the solid state or in a specific solvent, which gives a great 

variety of morphologies. They are useful as compatibilizers, viscosity modifiers, dispersants to stabilize 

colloidal suspensions, nanocarriers for the encapsulation and controlled release of drugs, templates for 

mineralization or, more generally, in nanoscience and nanotechnologies [47].  

Since amphiphilic block copolymers containing hydrophilic and hydrophobic blocks can form 

different nanostructures in aqueous solution, such a micelles with an average size between 20 and 100 

nm, which is a similar size to the one of a virus or a lipoprotein, they can be used as nanocarriers for 

small compounds and for drug delivery processes. One of the advantages of these micelles is that they 

can be used as nanocarriers for small compounds [48]. Nowadays, Pluronic block copolymers have been 

studied as drug delivery vehicles to treat different multidrug resistant cancers and for cancer 

chemotherapy [49]. Recent studies showed that the interaction between Pluronic block copolymers and 

cancer cells result in a chemo-sensitization of the cancer cells [50].   
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1.9.1. Controlled release and drug delivery 

Nowadays, targeting specific cells or specific membrane proteins is being widely studied in order to 

improve diagnosis and treatments in the field of medicine [51]. Many efforts are currently focused in 

the development of nanoscale vehicles able to carry complex functionality to cell or membrane targets 

within the body and that can remain intact and can escape from the defense system. This kind of specific 

targeting is attractive since several side effects of actual drugs may appear from the undesired impact of 

a drug molecule on physiological pathways in a cell and that are not involved in the disease process.   

Polymer-based nanotechnology is actually one of the most attractive areas of pharmaceutical 

research and is growing fast since the last decade [52]. The materials more often studied include 

polymer micelles, polymer-DNA complexes, nanogels, liposomes, and other different nanoscale sized 

materials for medical applications. Many different preparations of polymeric molecules at the nanoscale 

represent promising opportunities for the safe and efficient delivery of drugs and genes [53]. 

Triblock copolymers have been studied and proposed as efficient drug delivery systems that can 

provide different useful effects [53]. In this manner, the incorporation of drugs into the core of the 

micelles formed by Pluronic® triblock copolymers produces an increase of solubility, of the metabolic 

stability and a greater circulation time for the drug [54]. Figure 1.8 shows a schematic representation of 

an amphiphilic block copolymer micelle anti-cancer drug. It has also been reported and proved that the 

interactions of these copolymers with multidrug-resistant cancer cells result in the sensitization of the 

cells compared to other anticancer agents. Additionally, the single molecular chains of copolymers, i.e. 

the unimers, inhibit drug efflux transporters in the blood–brain barrier and in the small intestine, which 

contributes to an improved transport of select drugs to the brain and increases oral bioavailability [53].  

 

  

 

 

 

 

 

Figure 1.8. Amphiphilic block copolymer micelle anti-cancer drug [55]. 
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1.9.1.1. Micellar drug carriers 

Amphiphilic block copolymers micelles have been considered as a group of drug delivery complexes 

with a nanoscale size between 5 and 100 nm characterized by a core/shell structure [56]. The inner 

core, constituted by the hydrophobic blocks, is able to create a cargo space for the solubilization, 

storage, controlled release and protection of unstable lipophilic drugs from chemical degradation of the 

metabolism through biological agents. Additionally, the outer shell or corona is composed of the 

hydrophilic blocks, which supply a protective interface between the core and the external environment 

through steric stabilization effects [57]. The solubilization of lipophilic drugs by amphiphilic block 

copolymers can be obtained by hydrophobic and/or covalent interactions between the polymer structure 

and the drug molecule. Block copolymer micelles can directly target their encapsulant to specific tissues. 

In micelles, the miscibility, compatibility and degree of interaction between the drug and the block that 

form the core are important factors for an efficient drug loading, stability and drug release. Also, several 

factors as the carrier size, polymer composition and surface characteristics are important factors that 

influence the long circulation properties [58].  

 

1.9.2. Burst release 

Premature release, also known as burst release is one of the recent challenges that limit clinical 

successes of block copolymer micelles for targeted anticancer drug delivery [59]. Burst release is also 

considered as a foremost persistent problem in the development of injectable polymeric delivery 

systems, which occurs during the first minutes of contact with the external medium [60]. Burst release 

also limits the development of controlled release formulations including drug-loaded micro and 

nanoparticles, especially with low molecular weight drugs. It’s generally assumed that burst drug 

release in blood circulation is mainly due to blood dilution and subsequent micelle disassembly after i.v. 

administration. A better prediction of burst release and its reduction can be reached with greater 

investigations on micelle disassemblies [59].  

Several strategies have been employed to reduce burst release by preventing micelle disintegration, 

such as varying the lengths of hydrophilic and hydrophobic blocks of the block copolymers, crosslinking 

of the core, and/or crosslinking the shell. These approaches decrease CMC of micelles and prevent 

micelle disintegration in the bloodstream but might not necessarily eliminate burst release. This finding 

was useful for developing polymeric micelles with controlled release of lipophilic drugs [59].   

Hasan et al. [60] studied the encapsulation, by a double-emulsion method, of polymeric 

nanoparticles within polymeric microparticles using non-water soluble polymers and an appropriate 

organic solvent for the preparation of composite microparticles, preventing the dissolution of the 

nanoparticle suspension as internal phase. They found that burst was significantly lower with the 

composite microparticles and that could be explained by the slower diffusion of the drugs through the 
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double polymeric wall formed by the nanoparticle matrix followed by second diffusion step through the 

microparticle polymeric wall.  

Because burst release happens in a very short time compared to the entire release process, it has not 

been specifically investigated in most published results, and it has been ignored in most mathematical 

models. Huange et al. [61] presented experimental observations of burst release in monolithic polymer 

controlled drug delivery systems and some of the ideas used to prevent burst and the treatment of burst 

release in controlled release models. For a prevention of burst release, some advanced technologies are 

being developed by using surface extraction of the active agent prior to in vivo usage, using double-

walled microspheres with layers made of different inert polymers, and modifying the surfaces of the 

drug-loaded matrix with an outer layer polymer coating. The complete elimination of the burst release 

effect is complicated, but a better understanding of the phenomena occurring at the early stages of 

release may help researchers quantifiably predict burst release.  

 

1.10. Lipid vesicles  

Membranes play an important role in the internal and external processes of the cell [62,63]. The 

nuclear membrane protects the DNA inside the cell and examines the molecules that try to enter or 

leave. The cell has a broad diversity of other internal membranes that are involved in several processes 

and have different characteristics [62,64]. Proteins, cholesterol and lipids, which are amphiphilic 

molecules containing hydrophilic and hydrophobic parts that tend to form bi-layered structures, are the 

most important components of the double-layered membranes that surround the cell and the nucleus 

[65]. 

Actually, the development of cell-sized giant unilamellar vesicles, which are referred as a particular 

type of compartment formed in vitro in an aqueous medium, from natural or non-natural amphiphiles, 

are of great interest since a giant vesicle membrane can model the self-closed lipid matrix of the plasma 

membrane of biological cells [66]. Nowadays, giant vesicles are used in the investigation of 

biomembranes properties, such as lateral lipid heterogeneities, membrane growing and fission, 

membrane permeabilization caused by the addition chemical compounds, among others [67].  

 

1.10.1. Lipids 

Lipids are mostly known as amphiphilic molecules that allow them forming structures such as 

vesicles, unilamellar or multilamellar liposomes or membranes in aqueous solutions [68]. They are 

divided in five main categories: glycerophospholipids, sphingomyelins, glycolipids, steroids and 

eicosanoids [69,70]. The selected lipids for this study are the glycerophospholipids, which are 
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amphiphilic molecules containing an hydrophilic head, composed of a phosphate group and a polar 

group, which are connected to two hydrophobic tails by a glycerol group.  

 

 

 

 

 

 

Figure 1.9. Chemical structure of a phospholipid containing a hydrophilic head formed by the following active 

sites: 1) a polar group, 2) a negative phosphate group and 3) and two carbonyl oxygen groups that connect the 

hydrophilic head group with the two hydrophobic tails. 

 

Figure 1.9. shows the chemical structure of a lipid composed by a hydrophilic head formed by three 

active sites. The net charge of the phospolipid can change depending on the chemical structure of the 

polar group. Some zwitterionic lipids are the phosphatidylcholine (PC), phosphatidylethanolamine (PE) 

and phosphatidylserine (PS) and some negatively charged lipids are the phosphatidic acid (PA), 

phosphatidylglycerol (PG) and phosphatidylinositol (PI) [70,71].   

In the conventional nomenclature of phospholipids, the notation Cn:m X is used to refeer to the 

carbon number on the chain (n), the number of unsaturations (m) and the polar head group (X). As an 

example, the notation diC18:1 PC corresponds to 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

which has two oleoyl chains, with 18 carbons and one double bond, and a phosphatidylcholine (PC) 

polar head [70,72].  

 

1.10.2. Self-association of lipids in aqueous solution 

Polar lipids are amphipatic and contain hydrophobic and hydrophilic domains, as mentioned before. 

Due to the hydrophobic effect, the hydrocarbon domains of polar lipids changes the stable hydrogen 

bonded structure of water causing caje-like structures around the non-polar domain [73]. The 

structural organization of a polar lipid in aqueous solutions is determined by its concentration and by 

the law of opposing forces. The lipids are not soluble anymore in water and tend to self-assemble to 

limit the contact between hydrophobic tails and water at concentrations greater that the CMC  (10-10 M 
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for phospoholipids with chain lengths of 16) [73,74]. They can form different structures that depend on 

the geometrical parameters of the global shape of the lipid [75] (Figure 1.10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Polymorphic phases and molecular shapes exhibited by lipids. 

 

Phospholipid with long alkyl chains do not form micelles, however, they organize into bilayer 

structures that allow tight packing of adjacent side chains with the greater exclusion of water from the 

hydrophobic domain. In living cells, phospholipids are not found free as monomers in aqueous solutions, 

though, they are organized in membrane bilayers or protein complexes [76]. 

 

1.10.3. Phases and phase transitions of lipids 

The phase behavior of lipids in aqueous solutions is of interest in different disciplines due to the 

possible biological importance of the different phases they form and the transitions they undergo 

[76,77]. Until now, all the collected information on lipid mesomorphic and polymorphic transitions and 

miscibility can be found in the Lipid Thermodynamic Database (LIPIDAT) [78]. This database is 

considered comprehensive for glycerophospholipids, sphingolipids, glycoglycerolipids and biological 

membrane lipid extracts. 
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Lipids self-assemble into different kind of phases depending on their chemical structure and on 

external variables such as water content, temperature, pressure and aqueous phase composition [79]. 

These phases are made of aggregates resulting of the hydrophobic effect and have diverse structures 

that are mutually related (Figure 1.11).  

The following expression presents a generalized phase sequence of thermotropic phase transitions 

in membrane lipids (phospholipids and glycolipids) [79,80]: 

Lc ↔ Lβ ↔ Lα ↔ Q[B]
II ↔ HII ↔ Q[M]

II ↔ MII 

A temperature increase on a lamellar crystalline (subgel) Lc phase results in the formation of a 

lamellar gel Lβ phase, which undergoes a melting transition into the lamellar liquid-crystalline Lα 

phase. With a greater increase in temperature, several mesomorphic phase transitions follow the 

sequence Lα, bilayer cubic (Q[B]
II), inverted hexagonal (HII), inverted micellar cubic (Q[M]

II) and micellar 

MII.  

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Structures of lipid phases. I) Lamellar phases: A) subgel, Lc; B) gel, Lβ, C) interdigitated gel, Lβ
[int], 

D) gel, tilted chains, Lβ’, E) rippled gel, Pβ’ and F) liquid crystalline, Lα. II) Micellar aggregates: G) spherical 

micelles, MI, H) cylindrical micelles, tubules, J) disks, K) inverted micelles, MII and L) liposomes. III) Non-

lamellar liquid-crystalline phases with different topology: M) hexagonal phase HI, N) inverted hexagonal phase 

HII and O) inverted micellar cubic phase QII
[M] [79]. 
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The phase transition from lamellar/gel–lamellar to liquid-crystalline phase (Lβ–Lα), also called 

melting transition, solid-fluid or main transition, is the greatest energetic transition in lipid bilayers, 

presenting a high enthalpy change. It takes into account rotameric disordering of hydrocarbon chains 

and the increasing on head-group hydration and intermolecular entropy [77,81]. The gel–liquid-

crystalline transitions in fully hydrated lipids involve large increases in lipid surface area (~25%) and 

specific volume (~4%). This can be evidenced in calorimetric measurements with narrow heat-capacity 

peaks with enthalpy of approximately 20 to 40 kJ/mol [81].  

The hydrocarbon chains mainly influence the melting transition temperature, i.e. it increases if the 

chains are longer and more saturated. For lipids with unsaturated chains, the position and type of the 

double bond modifies significantly the melting temperature. Also, the melting temperature is affected by 

chain branching and by the chemical linkage between the chains and the polar head group. Anhydrous 

lipids with identical hydrocarbon chains present melting-phase transitions at almost identical 

temperatures. However, in aqueous dispersions the head-group and lipid–water interactions modify the 

lipid phase behavior. 

 

1.10.4. Vesicles  

For phosphatidylcholines, since the sections of the polar head and the two hydrophobic tails are 

approximately the same (0.6 nm2), a three dimensionnal self-closed bilayer structure is formed in 

presence of water. This structure is characterized by an assembly of two separate lipid leaflets with a 

thickness between 3 to 6 nm, depending of the hydrocarbon chain length, called vesicles (Figure 1.12) 

[69]. 

 

 

 

 

 

 

 

Figure 1.12. Lipids self-associate in presence of water into bilayer structures that tend to close in order to form 

lipid vesicles. 
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Vesicles can have different sizes depending on the preparation technique used [82], resulting in 

sizes ranging from nanometers to micrometers in diameter. The three principal kinds of liposomes are 

the following: Small Unilamellar Vesicles (SUVs) with sizes from 20 to 100 nm, Large Unilamellar 

Vesicles (LUVs) with sizes from 100 to 500 nm and Giant Unilamellar Vesicles (GUVs) with sizes from 

0.5 to 100 m, which are generally studied as over-simple models of biological cells [83] and can be 

directly observed by optical microscopy. A giant unilamellar vesicle (GUV) has a similar basic structure 

of all biological cells, since a vesicle membrane imitates the self-closed lipid matrix of the plasma 

membrane.  

 

1.10.5. Transport across the bilayer  

1.10.5.1. Passive diffusion  

Molecules and ions dissolved in water are in constant motion, resulting in movements from regions 

where their concentration is high to regions where their concentration is lower. This process is called 

diffusion [84]. When a cell or vesicle with a high interior salt concentration is located in a solution with 

a low salt concentration it will swell and then burst. Small-uncharged non-polar molecules can diffuse 

through lipid bilayers many orders of magnitude faster than ions or water. This is valid in fats and in 

organic solvents like chloroform and ether. In spite of of their polar character larger molecules diffuse 

more slowly across lipid bilayers than small molecules. 

 

1.10.5.2. Endocytosis and exocytosis  

Some molecules or particles are too large or too hydrophilic to pass through a lipid bilayer, 

however, they can be transported across the cell membrane through fusion or budding of vesicles. 

Endocytosis is the process in which large particles are wrapped with plasma membrane and moved into 

the cell in the form of vesicles or vacuoles [85]. Exocytosis is the reverse of endocytosis, here the 

material is expelled from the cell without ever passing through the membrane as individual molecules 

[86]. Some particular types of cells move great amounts of bulk material into and out of themselves 

through endocytosis and exocytosis.   
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Figure 1.13. Two forms of endocytosis: a) phagocytosis and a) and pinocytosis [87]. 
 

 

Phagocytosis is the process where a living cell ingests other cells or particles [88] (Figure 1.13 a). 

Phagocytes may be free-living one-celled organisms, such as amoebas, or a body cell, such as white 

blood cells. Through pinocytosis, a cell will take in everything that is in the extra-cellular fluid outside 

of the cell, including solutes (Figure 1.13 b) [89]. In this process, only small amounts of material will 

enter the cell, and a minimal amount of adenosine triphosphate (ATP) is necessary. 

 

1.10.5.3. Electroporation  

The application of a large artificial electric field across the membrane results in a rapid increase in 

the bilayer permeability, known as electroporation [90]. This technique is used to introduce hydrophilic 

molecules into cells and is very useful for large highly charged molecules such as DNA, that would 

never diffuse passively across the hydrophobic bilayer core [91]. This way, electroporation is an 

important methods of transfection [92]. During electroporation, the increase in permeability affects the 

transport of ions and other hydrated species and the lipid molecules are not chemically modified but 

only shift the position, opening up a pore that behaves as the conductive pathway through the bilayer as 

it is filled with water. 
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CHAPTER 2 

Experimental techniques 

 

 

 

 

 

 

 

 

 

 



    

 307 

2. Experimental techniques  

The following experimental techniques: Rheology, Dynamic Light Scattering, -potential 

and Confocal Microscopy are presented and described in Sections 2.2 and 7.2, respectively, of 

Part I of this thesis.  

 

2.1. Density and sound velocity 

The density () is an intensive property of the matter defined as the ratio between the mass of an 

object (M) divided by its volume (V) (Equation 2.1). 

= M/V                    (2.1) 

The sound speed is the propagation dynamics of sound waves. It depends on the characteristics of 

the medium and not in the characteristics of the wave or the generating force. For liquids, the sound 

velocity () is given by the following expression: 

= (K/)1/2                         (2.2) 

where K is the compressibility modulus.  

The density is one of the mostly used properties of a solution and is needed for the design of many 

chemical processes. The experimental measurements of density and sound velocity are used to calculate 

the apparent molar volume (V) and the apparent molar adiabatic compression (K), which are 

expressed with the Equations 2.3 and 2.4. [1]. Apparent (molar) properties are not constants, even at a 

given temperature, but are functions of the composition.  

Vf =
Mw
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where  is the solution density (g/cm3) at the corresponding molality m, 0 is the solvent density and 

Mw is the molecular weight of the solute (g/mol). s and s,0 are the adiabatic compressibilities of the 

solution and the solvent, respectively, and are given by Equations 2.5 and 2.6.  
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(2.6) 

where  is sound velocity (m/s).  

In previous reports in the literature [2], V and K data obtained from aqueous solutions of some 

drug compounds have been qualitatively interpreted in terms of solute–solvent and solute–solute 

interactions. The adiabatic compressibility was correlated with the hydrational behavior of the solute 

molecule and was found to be sensitive to the structural features of the solute, such as shape, size, 

branching, and presence of aromatic rings.  

 

2.2. Viscosity 

Viscosity is a measure of its resistance to gradual deformation by shear stress or tensile stress. In 

this chapter, viscosity measurements are performed in a falling ball viscometer that measures the 

displacement time of a ball through transparent and opaque liquids according to Höppler's falling ball 

principle.  

The falling ball viscometer measures the viscosity of Newtonian liquids and gases. The method 

applies Newton’s law on a falling sphere ball when it reaches a terminal velocity. The rolling and sliding 

movement of the ball through the liquid sample are studied in an inclined cylindrical measuring tube. 

The dynamic viscosity of the sample is obtained through the correlation with the time required by the 

ball to travel a specific distance [3].  

 

2.3. Fluorescence spectrophotometry 

2.3.1. Absorption and emission of light  

Fluorophores, also known as chromophores, are substances that produce a molecule to absorb 

energy of a specific wavelength and then to remit energy at a different wavelength, which will depend 

on the fluorophore and the chemical environment [4].  

To account sufficiently for the processes of absorption and emission of light, we need to assume 

that radiant energy can only be absorbed in definite units, or quanta. The energy, E, carried by any 
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quanta is proportional to its frequency of oscillation as follows: 

E=hf=hc/                       (2.7) 

where f is the frequency, λ the wavelength and h is Planck's constant (6.624 x 10-27 ergs/second). 

Since the energy of a single quantum is too small, then it is usual to refer to the energy associated 

with NA quanta (where NA is Avogadro’s number 6.023 x 1023), which is called an Einstein. In 

fluorimetry, the ultraviolet and visible regions of the spectrum are the most interesting regions since 

absorption causes the excitation of the most electrons of the molecule.  

Excitation leads a molecule to reach any of the vibrational sub-levels associated with each 

electronic state. Since the energy is absorbed as discrete quanta, this should result in a series of distinct 

absorption bands [5].  

A plot of emission against wavelength for any given excitation wavelength is known as the 

emission spectrum. An excitation spectrum corresponds to the plot of the emission from the sample 

against the wavelength of exciting light when the wavelength of the exciting light is changed. 

Additionally, if the intensity of exciting light is constant as its wavelength is changed, the plot of 

emission against exciting wavelength is known as the corrected excitation spectrum [5]. 

 

2.3.2. The fluorescence process 

Fluorescence is the result of a three-stage process that takes place in fluorophores (generally 

polyaromatic hydrocarbons or heterocycles). A fluorescent probe is a fluorophore developed to localize 

within a specific region of a biological species or to respond to a particular stimulus.  

 

 

 

 

 

Figure 2.1. Schematic representation of fluorescence three-stage process [6]. 

 

Jablonski diagram, presented in Figure 2.1, illustrates the process involved in the production of an 
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excited electronic singlet state by absorption and then the emission of fluorescence [6]. First stage (1) 

corresponds to the excitation stage. Here, a photon of energy hex is supplied by an external source such 

as a laser and is then absorbed by the fluorophore, creating an excited electronic singlet state (S1'). This 

process makes the distinction between fluorescence and chemiluminescence, in which the excited state is 

occupied by a chemical reaction.  

Stage (2) corresponds to the excited-state lifetime. The excited state stays for a finite time (usually 

from 1 to 10 ns). During this time, the fluorophore undergoes conformational changes and is undergoes 

several interactions with its molecular environment. These processes have two important consequences: 

the energy of S1' is moderately dissipated, yielding a relaxed singlet excited state (S1) from which 

fluorescence emission is originated. Then, not all the molecules initially excited by absorption, during 

stage 1, return to the ground state (S0) by fluorescence emission.  

Finally, stage (3) is the fluorescence emission. A photon of energy hem is emitted, returning the 

fluorophore to its ground state S0. Here, the energy of the photon is lower, due to energy dissipation 

during excited-state lifetime, consequently of longer wavelength, than the excitation photon hex. Figure 

2.2 shows a schematic representation of the excitation of a fluorophore at three different wavelengths. 

All the fluorescence process is a cyclic process. Except if the fluorophore is irreversibly destroyed 

in the excited state, which is an important phenomenon known as photobleaching, the same fluorophore 

can be repeatedly excited and detected. The high sensitivity of fluorescence detection techniques is due 

the fact that a single fluorophore can generate a great amount of detectable photons.  

 

 

 

 

 

 

 

 

Figure 2.2. Excitation of a fluorophore at three different wavelengths [6]. 
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3. Structural and rheological behavior of P104 triblock copolymer 

The results of this chapter are the object of the following proceeding: 

Triblock copolymer P104 detailed behavior through a density, sound velocity and DLS study 

L. M. Bravo-Anaya, C. Fierro-Castro, Y. Rharbi and J. F. A. Soltero Martínez.   

AIP Conference Proceedings 1599, 481 (2014); doi: 10.1063/1.4876883 

 

3.1. Introduction  

Amphiphilic block copolymers are known by their efficiency during drug delivery processes with 

multiple effects [1,2]. The incorporation of drugs into the micelles core formed by these copolymers 

may lead to an increment of solubility, metabolic stability and circulation time for the drug [3]. In this 

manner, the core-shell design of the micelles is crucial for their effectiveness in drug delivery [4]. It is 

worth to mention that the core is a water-incompatible compartment that is segregated from the 

aqueous exterior by the hydrophilic chains of the shell, able to receive the incorporation of several 

therapeutic reagents [5]. It is also possible to select several block copolymers with different properties 

for specific pharmaceutical applications such as gene delivery [6-8]. Recently, the interactions of the 

triblock copolymer unimers with multidrug-resistant cancer cells have been studied, resulting in the 

sensitization of these cells with respect to various anticancer agents [7,9].  

All these applications highly depend on the triblock copolymer structure. In this manner, in water, 

they can form micelles above the critical micellar temperature (CMT) and the critical micellar 

concentration (CMC). In these amphiphilic triblock copolymers, it has been reported that the CMC 

decreases rapidly as temperature increases and that the CMT decreases as copolymer concentration 

increases [10-12]. Furthermore, the spherical micelles grow to form worm-like micelles as the 

temperature or the amphiphilic triblock copolymer concentration is increased. This growth process is 

characterized by a drastic viscosity increase of several orders of magnitude [13,14]. The phase behavior 

of theses copolymers in water is extremely dependent on temperature and the relative block sizes [15]. 

Moreover, at higher concentrations and temperatures they tend to form a great diversity of lyotropic 

liquid crystals [16,17].  

In order to determine the formation and morphology of P104 structures in aqueous solution, a 

detailed P104/water phase diagram in the dilute and semi-dilute regions was elaborated using rheology, 

dynamic light scattering (DLS), viscosity (), density () and sound velocity () measurements. With the 

obtained information we observed the transition zone between monomers and micelles, i.e. where P104 

monomers are in thermodynamic equilibrium with micelles, then the formation of spherical micelles, the 
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sphere to rod-like micelles transition, and finally, the cloud point temperature. It is worth to mention 

that in the literature there are several reports of different studies on these copolymers, however, their 

results differ from each other since they were done with different batchs. Here we are relating the 

results of different techniques on the same batch of P104 triblock copolymer. Also, all the studies that 

are presented in the following chapters of this thesis were carried out with this P104 block copolymer, 

so it’s characterization is of great interest.    

 

3.2. Experimental conditions 

 3.2.1. Materials and solutions preparation  

Triblock copolymer Pluronic® P104, [(PEO)27–(PPO)61–(PEO)27], has a molecular weight of 5900 

g/mol. This material was provided by the BASF Company. P104/H2O and P104/NaCl solutions were 

prepared with water obtained through a Millipore Milli-Q purification system and with sodium chloride 

(NaCl) in powder supplied by Sigma-Aldrich and dissolved in purified water, respectively.  

P104 solutions were prepared with adequate amounts of P104 triblock copolymer, respectively, and 

with distilled, deionized water. They were stored in 20 mL glass vials, which were placed on a 

mechanical shaker for 12 hours to homogenize the solution. Then, each solution was covered with 

aluminum foil to avoid contact with light and therefore the degradation of the sample. Each solution 

reached the equilibrium temperature in 24 hours. The solutions were prepared within the concentration 

range from 1x10-3 to 500 mg/mL.   

 

3.2.2. Density and sound velocity measurements 

Density and ultrasound velocity were continuously and automatically measured using an Anton 

Paar DSA 5000 densimeter and a sound velocity analyzer.  Since density and ultrasound velocity speed 

are strongly sensitive to temperature, the Peltier method was used to keep the temperature constant to 

within ±1x10-3 K. Density and ultrasound measurements reproducibility are ±1x10-6 g cm-3 and ±1x10-2 

m/s, respectively. The measurements were performed at a P104 concentration range from 1x10-3 to 150 

mg/mL in the temperature range from 5 to 60 °C.  

 

3.2.3. Viscosity measurements 

Viscosity measurements were performed in an automatic viscometer AMVn from Anton Paar 

Company for P104 concentrations from 1x10-3 to 100 mg/mL at the temperatures of 10, 20, 30, 40 and 

50 ºC, starting from the highest temperature and including 5 replicates for each measurement. A 
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temperature sweep was carried out for P104 concentrations of 10, 20 and 30 mg/mL by taking viscosity 

values every two degrees in the temperature range from 6 to 80 °C. All samples were analyzed at 

different inclination angles, i.e. 30 °, 50 ° and 70 °. 

 

3.2.4. Dynamic Light Scattering measurements  

Dynamic light scattering (DLS) measurements were performed in a Malvern Zetasizer 5000 

instrument equipped with a 7132 multibit correlator and multiangles goniometer. The light source was 

a laser of He-Ne (5 mW) with a wavelength of 632.8 nm. The scattering intensity was measured 

through a 400 μm pinhole. DLS measurements for P104 were carried out at 45, 90 and 135 º for a 

temperature range between 10 and 64 ºC.    

 

3.2.5. Rheological measurements in the linear domain   

The rheological behavior of P104/water system was studied in the rheometer AR-G2 from the TA 

Instruments Company.   

Two different geometries were used depending on P104 concentration: 

1.- Steel cone with a 60 mm diameter and an angle of 1º was used for P104 solutions with 

concentrations between 10 and 250 mg/mL.  

2.- Steel cone with a 40 mm diameter and an angle of 2º was used for P104 solutions with 

concentrations between 250 and 600 mg/mL. 

 

3.2.5.1.  Strain sweeps  

In order to define the linear viscoelastic regimes, the oscillation strain sweeps were carried out at 

an angular frequency of 10 rad/s in a strain range between 0.1% and 100% and using 10 points per 

decade. For each P104 sample, each sweep was performed at different temperatures depending on the 

chosen concentration.  

 

3.2.5.2. Temperature sweeps 

These sweeps were performed using a selected strain in the linear viscoelastic region, applying an 

angular frequency of 10 rad/s in a temperature range from 1 to 90 °C with a heating rate of 1 °C/min. 
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3.3. Experimental results 

3.3.1. P104 micellization in water evaluated through density and sound velocity  

The study of the dependence of density and sound velocity with concentration and temperature 

give information in order to determine the regions where only unimers of amphiphilic block copolymers 

exist, the formation of spherical micelles as well as their maximum formation rate and the sphere-to-rod 

like micelles transition [18].  

Figure 3.1 shows the behavior of P104 density as a function of temperature for several P104 

concentrations. Here we can observe the increase of density with P104 concentration, as expected, and 

the decrease of density with temperature up to a critical temperature Ti, where a more pronounced 

decrease is identified. Ti shifts to lower temperature while increasing P104 concentration. A second 

critical temperature is identified as Tf and is the onset at which density starts decreasing monotonically 

with temperature. As for P103 [18] and P94 [19] triblock copolymers, this transition is related to 

micelle formation due to dehydration around the hydrophobic PPO segments, which form the core, and 

more hydrophilic hydrated PEO segments that for the corona. This transition is then attributed to the 

critical micellar temperature (CMT) and decreases as P104 concentration increase.   

 

 

 

 

 

 

 

 

Figure 3.1. Density () as a function of temperatures for different P104 concentrations: 0.001, 10, 30, 80, 100 

and 150 mg/mL.   

 

Figure 3.2 shows the dependence of P104 sound velocity as a function of temperature for several 

P104 concentrations. We can observe that the transition temperature Ti shifts to lower values when 

P104 concentration increases and is nearly the same than the value determined through density 

measurements. At lower temperatures than Ti, the P104 unimers increase with concentration, so sound 

0 10 20 30 40 50 60

0.984

0.992

1.000

1.008

1.016

1.024

Tf  


  
 (

 g
 /

 c
m

 3
 )

 

 

T ( °C)

[ P104 ] ( mg /mL)

 0.001

 10

 30

 80

 100

 150

Ti  



    

 317 

velocity increases with P104 concentration increment. Nevertheless, at the onset of micellization, the 

unimers start to aggregate due the increase of temperature and the dehydration of PPO segments, 

resulting in a drop of sound velocity caused by the decrease on the number of effective particles in the 

solution [18]. This transition is then related to the critical micellar transition (CMT). The obtained 

values are consistent with literature reports [10]. After the transition temperature, since P104 

concentration and temperature increase, the size of micellar aggregates also increases, leading to 

stronger interactions among them and to a decrease in their number density, which results in the 

decrease of sound velocity values.  

 

 

 

 

 

 

 

 

Figure 3.2. Sound velocity () as a function of temperatures for different P104 concentrations: 0.001, 10, 30, 80, 

100 and 150 mg/mL. 

 

3.3.2. Evaluation of the apparent molar adiabatic compressibility  

The apparent molar adiabatic compression (K) was calculated by using Equation 2.4, which is 

directly related with the apparent molar volume (V). Figure 3.3 shows the apparent molar adiabatic 

compressibility (K) as a function of temperature for several P104 concentrations. Two linear regions 

with a sharp increase with temperature are depicted in all the curves. First onset is directly with the 

CMT, as previously described.    

Figure 3.4 shows the temperature dependence of the first derivative of K as a function of 

temperature. A sharp peak is detected for each P104 concentration and is directly related with the onset 
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temperature is observed with the increase on temperature. At higher temperatures, a slight shoulder is 

detected around 55 ºC, which could be related to a transition from micelles to rod-like micelles.  

However, since micellization of P104 block copolymer takes place at higher temperatures than other 

triblock copolymers [10-12,18], the use of techniques such as density measurements is limited.   

 

 

 

 

 

 

 

Figure 3.3. Apparent molar adiabatic compressibility (K) as a function of temperature for several P104 

concentrations: 10, 30, 80, 100 and 150 mg/mL.  

 

 

 

 

 

 

 

 

Figure 3.4. Temperature dependence of apparent molar adiabatic compressibility derivative (dK/dT) for 

different P104 concentrations: 10, 30, 80, 100 and 150 mg/mL.  
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3.3.3. P104 micellization in water evaluated through viscosity measurements  

The effect of temperature on the viscosity of P104 samples was analyzed to corroborate the phase 

transitions previously observed and the structural changes determined by ultrasound and density 

measurements and DLS. Figure 3.5 shows the obtained profiles for the viscosity as a function of 

temperature for P104 solutions at the flowing concentrations: 10, 20 and 30 mg/mL. As expected, an 

increase on viscosity is observed with the increase on P104 concentration, as well as the decrease of 

viscosity with the increase on temperature.  

 

 

 

 

 

 

 

 

Figure 3.5. Dynamic viscosity as a function of temperature for P104 concentrations of 10, 20 and 30 mg/mL.  

The measurements were carried out at 30º, 50º and 70º.  

 

 

 

 

 

 

 

Figure 3.6. Dependence of d/dT with temperature for P104 concentrations of of 10, 20 and 30 mg/mL. The 

measurements were carried out at 30º, 50º and 70º. 
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The first derivative of the viscosity with temperature allows detecting the transitions of P104 in 

water as a function of temperature. Figure 3.6 shows the variation of d/dT with temperature for P104 

concentrations of of 10, 20 and 30 mg/mL. A noticeable change is observed between 24 and 27 ºC, 

depending on P104 concentration, and is related to the critical micellar transition (CMT), representing 

the onset of micellization when unimers start to aggregate due the increase of temperature and the 

dehydration of PPO segments. These results are in good agreement with the obtained values through 

density and sound velocity measurements, previously presented and discussed. 

 

3.3.4. Morphology of P104 micelles in water by Dynamic Light Scattering (DLS)  

Dynamic Light Scattering (DLS) measurements were performed in a temperature range from 10 to 

64 ºC to obtain, as first approximation, information about the shape of the micelles from the 

combination of the scattering intensity and the hydrodynamic radius [21,22]. DLS measurements 

normally use the Stokes-Einstein equation (Equation 3.1) in order to obtain the information about the 

hydrodynamic radius through the measured diffusion coefficient (D). The experiments are usually 

carried out at low concentrations since they are affected by this parameter. However, we noticed that 

between 10 and 20 mg/mL, we still have reliable data. Above these concentrations, we measure an 

apparent diffusion coefficient and a smaller apparent hydrodynamic radius is obtained.  

Rh =
kBT

6phsD
                                                  (3.1) 

Here, k is the Boltzmann constant, s is the viscosity of the solvent and T is the absolute 

temperature.   

Figure 3.7 shows the temperature dependence of the hydrodynamic radius, Rh, and the scattered 

light intensity for a P104 solution at a concentration of 10 mg/mL in water, from which it is possible to 

determinate that micelles form in a temperature range between 26 and 54 ºC with an average size of 

11.4 ± 1 nm. An increment in both the Rh and the scattered light intensity is observed after the 

temperature of 55 ºC. The scattered light intensity is low at the temperatures below 26 ºC, which is 

related with the presence of unimers in the solution [23]. In this manner, the temperature of 26 ºC 

corresponds to the CMT of P104 triblock copolymer at this concentration, which is in good agreement 

with the CMT temperature reported by Alexandridis et al. [24] for a P104 concentration of 10 mg/mL 

in water. After the CMT, the scattered light intensity starts to increase with temperature and remains 

almost constant between the temperature range of 26 and 54 ºC. However, after 55 ºC, it increases 

progressively until reaching a two-magnitude order difference from the initial value, suggesting the 

appearance of a new P104 structure. This transition in good agreement with the one obtained through 

the evaluation of dK/dT as a function of temperature. This phenomenum has been presented in terms 
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of the enhanced dehydration of the micelle corona, consisting essentially of PEO, with temperature 

increase [24,25].  

 

 

 

 

 

 

 

 

Figure 3.7. Temperature dependence of the hydrodynamic radius and the scattered light intensity for 10 mg/mL 

P104 solution in water measured at 90 º. The sample was equilibrated during 24h before each measurement. 

 

The formation of new structures is determined with the variations of the intrinsic asymmetry [Z], 

obtained through the relation of the scattering intensity values measured at 45º and the scattering 

intensity values measured at 135º (I45° /I135°).  

 

 

 

 

 

 

 

 

Figure 3.8. Intrinsic asymmetry [Z]=I45° /I135° as a function of temperature P104 concentration of 10 mg/mL. 

I45° and I135° are the scattering intensity measured at 45 ° and 135 ° respectively. 
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Figure 3.8 presents the aspect factor I45° /I135° as a function of temperature for a P104 solution at a 

concentration of 10 mg/mL in water, where it is possible to observe the onset of an I45°/I135° ratio 

different than 1.0 at the temperature of 54 ºC. The ratio between the characteristic dimension of the 

structure and the wavelength (D/) is found to be around 0.04 when [Z]≈1, i.e. between 10 and 54 ºC, 

suggesting spherical micelle morphology. Then, the growth of micelles is detected at higher 

temperatures.  

 

 

 

 

 

 

 

Figure 3.9. Scattered intensity ISCA/ISCA
0 plotted as a function of the hydrodynamic radius Rh for a 10 mg/mL 

P104 solution in water. ISCA and Rh are measured at various temperatures and ISCA
0 is the scattering intensity at 

38ºC. The plot ISCA/ISCA
0 is compared to the Perrin model of prolate ellipsoids, oblate ellipsoids and spheres.   

 

On the other side, the combination of the hydrodynamic radius and the scattered light intensity 

allow obtaining another approximation about the shape of micelles [26]. The Perrin model is used to 

estimate the dimensions of micelles for prolate and oblate ellipsoids [27-29]. The expression for the 

prolate case is given by the following equation:  

Rh = (b
2
) ×

p2 -1

ln(P+ p2 -1)                         
(3.1) 

where p=a/b, b corresponds to the semiminor axis and a corresponds to the semimajor axis. For prolate, 

a is the micelle length L and b corresponds to the diameter of the spherical micelle b=2Rh
0. Rh

0 being the 

hydrodynamic radius at 38 ºC.  

On the other side, the expression for the oblate ellipsoid is given by the following equation:  
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Rh = (a
2
) ×

( 1
p
)2 -1

arctan( ( 1
p
)2 -1)

                        
(3.2) 

where a=2Rh
0. 

The volume of the micelle (Vmic) is given by the following expression:  

ISCAaVmicP(q)
                        

(3.3) 

where ISCA is the total scattering intensity and P(q) is the micelle form factor. P(q) for sphere, prolate and 

oblate ellipsoids can be calculated using the Debye and Anacker equation [29].  

Figure 3.9 shows the scattered intensity ISCA/ISCA
0 as a function of the hydrodynamic radius Rh for a 

10 mg/mL P104 solution in water. The plot ISCA/ISCA
0 is compared to the Perrin model of prolate 

ellipsoids, oblate ellipsoids and spheres. ISCA and Rh were measured at six different temperatures from 

the spherical micelles domain to the elongated micelles domain. ISCA
0 is the scattering intensity taken at 

38 ºC, which corresponds to the temperature chosen as the initial one, in the spherical micelles domain. 

The dependence of ISCA/ISCA
0 with Rh is close to the predicted behavior for prolate ellipsoids, which 

suggest that P104 micelles grow as prolate rods. This behavior was previously obtained for P103 

micelles [23]. 

From this study, a spherical micelle morphology of P104 triblock copolymer was firstly proposed 

since the scattering intensity did not show any dependence on the scattering angle. Above 54 °C, both 

the scattering intensity (ISCA) and Rh increase steadily with increasing temperature, suggesting a 

structural transition from spheres to elongated micelles. This conclusion was supported by the variation 

of the aspect factor (I45°/I135) from ∼1 between 25 and 54 °C to above 1.5 for T > 54 °C. The 

dependence of ISCA on Rh was also compared with the Perrin model, taking b=2Rh
0 and a=2Rh

0 for 

prolate ellipsoid and oblate ellipsoid respectively, from which a small problate rod growth was 

determined.  

In terms of the applications, the obtained micellar structure for P104 amphiphilic copolymer in the 

temperature range between 25 and 55 ºC (spherical micelles domain) can be used as micellar 

nanocarriers for drug controlled release. Firstly, their nanoscale size makes them a suitable option for 

targeted drug delivery applications, including storage, controlled release and protection of the 

hydrophobic drugs. Contrary to P103 triblock copolymer, which starts to aggregate at 37 ºC, the 

spherical micellar stability of P104 at the temperature of 37 ºC becomes a good selection in order to 

maintain a determined shape at the average body temperature, which could be then degraded through a 

determined stimulation (temperature, pH or ionic strength variations) in order to release the 

hydrophobic drug. It becomes evident that the shape of micelles is affected by temperature, which can be 
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exploited for the design of new formulations. These stimuli-responsive materials present a great 

advantage for drug targeting strategies, allowing the drug delivery system to respond in a specific way.  

 

3.3.5. Morphology of P104 micelles in NaCl   

It is well known that the self-assembly behaviors of amphiphilic block copolymers in aqueous 

solutions can be affected by varying temperature [31], water-soluble electrolytes [32] and solvent 

[33]. For vectorization applications, the effects of salts on triblock copolymers morphology needs to be 

studied in order to understand the variations caused due to different ionic strength environments. 

 

 

 

 

 

 

 

Figure 3.10. Scattered light intensity measured at an angle of 90º for a P104 solution with a concentration of 10 

mg/mL in presence water and in 0.2, 0.5, 1.0 and 2.0 M NaCl.  

 

Firstly, the scattered light intensity was then monitored as a function of temperature for P104 

solutions at a constant concentration of 10 mg/mL P104 but in presence of different concentrations of 

NaCl, measured at a constant angle of 90 º (Figure 3.10). The observed trend is the same for all curves, 

detecting the presence of a regime with spherical micelles and another one with rod-like micelles [22-

25]. However, we can observe a shift of the spherical micelles region to lower temperatures with the 

increment of salt concentration, so the addition of NaCl facilitates the process of sphere to rod-like 

micelles transition at lower temperatures [34,35]. In this manner, and according to several reports on 

the literature, the greater propensity of sphere-to rodlike transition is related to an increase of micelle 

dehydration (decrease in solubility) [31-35]. As it is possible to observe in our results, it would be 

possible to work with NaCl concentrations up to 1.0 M at 37 ºC, since at higher NaCl concentrations, 

the CMT decreases considerably.  
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The influence of the addition of the inorganic salt NaCl to P104 triblock copolymer solutions was 

then studied through the determination of the variation of the CMT (critical micellar temperature), the 

MGT (micellar growth temperature) and the CPT (cloud point temperature) of P104 solutions with 

different NaCl amounts. Figure 3.10 shows the dependence of the CMT, MGT and CPT with NaCl 

concentration for a 10 mg/mL P104 solution. We can observe that the temperature range for solubility 

of the triblock copolymer or CPT, the CMT and the MGT decrease with the increase on NaCl 

concentration. The addition of inorganic salts dehydrates the ethylene oxide chains and reduces the 

critical temperatures of the solutions [32]. The addition of NaCl to amphiphilic block copolymer P104 

induces micellization in a similar way that temperature does, this way, the temperatures of the micellar 

sphere to rod-like micelles transition and cloud points are shifted to lower values [36]. In this manner, 

the addition of a simple salt is a simple way to modify the properties of an amphiphilic triblock 

copolymer solution in order to have a specific behavior in a desired temperature range, which can be 

exploited in the development of drug nanocarriers for the specific drug delivery. In the same way, the 

increase on the ionic strength is another stimulus that will allow a specific realese of a hydrophobic 

drug.  

 

 

 

 

 

 

 

Figure 3.10. Dependence of the CMT, MGT and CPT of a P104 solution with a concentration of 10 mg/mL 

with NaCl concentration.  

 

3.3.6. Rheological measurements  

The hydrophobic core of PPO in amphiphilic triblock copolymers is used to give the delayed 

release of hydrophobic drugs. At higher concentrations and temperatures, some of these copolymers 

solutions form thermo-reversible and physical gels [37,38]. These gels consist of liquid crystals of 

packed spherical or rod-like micelles. Rheological measurements allow studying different properties of 

the materials useful in many biomedical applications [39,40].  
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3.3.6.1. Linear Viscoelastic Region 

Strain sweeps for a P104 concentration range between 50 and 600 mg/mL were performed in order 

to identify the linear viscoelastic region (LVR) as a function of temperature. Figure 3.11 a and b show 

the strain dependence of G’ and G’’ for P104 concentration of 50 mg/mL at the temperature of 75 ºC 

and for a P104 concentration of 350 mg/mL at the temperature of 65 ºC, respectively. We can observe 

that for a P104 concentration of 50 mg/mL, at strains less than the 20%, G’ and G’’ are independent of 

however, for a P104 concentration of 350 mg/mL G’ and G’’ are independent of  at strains less than 

the 1.0%. In this manner, it was found that the LVR is highly dependent in both P104 concentration and 

temperature. Table 3.1 summarizes the %where G’ and G’’ are independent of for several P104 

concentrations at different temperatures.  

 

 

 

 

 

Figure 3.11. Strain dependence of G’ and G’’ for a) P104 concentration of 50 mg/mL at the temperature of 75 

ºC and for b) P104 concentration of 350 mg/mL at the temperature of 65 ºC.  

Table 3.1.- Linear viscoelastic region (LVR) for several P104 concentrations at different temperatures.  

[P104] (mg/mL) T (ºC) %

50 40 40 
75 12 

 
100 

20 80 
30 80 
70 2.0 

150 40 90 
70 1.0 

200 50 90 
70 0.1 

250 20 100 
30 0.1 
70 0.5 

350 30 0.2 
65 0.7 

400 20 0.1 
60 1.0 

600 20 0.4 
45 0.4 
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3.3.6.2. Temperature sweeps  

Figure 3.12 presents a set of plots showing the temperature dependence on the storage and loss 

modulus for different P104 concentrations, i.e. 100, 150, 200 and 225 mg/mL. For P104 concentration 

of 100 mg/mL (Figure 3.12 a), a viscous behavior (G’’>G’) is firstly observed within the temperature 

range from 3 to 20 ºC. A first crossover of G’ and G’’ is then observed around the temperature 20 ºC. 

The loss modulus is then independent of the temperature until reaching the temperature of 58 ºC, at 

which a large increase of two orders of magnitude is observed, changing from the dilute to the soft gel 

domain. A drop of both G’ and G’’ values is then observed at the temperature of 81 ºC, at which the soft 

gel condition returns to a liquid condition. Figure 3.12 b shows the temperature dependence of G’ and 

G’’ for the P104 concentration of 150 mg/mL. A similar behavior to the one obtained for P104 

concentration of 100 mg/mL is observed. Here, the loss and the storage modulus are independent of the 

temperature until reaching the temperature of 60 ºC, at which a large increase of also two orders of 

magnitude is observed, changing from the dilute to the soft gel domain. The drop of both G’ and G’’ 

values is slightly shifted to higher values of temperature, i.e. 85 ºC.  

  

 

 

 

 

 

 

 

 

 

Figure 3.12. Temperature sweeps of P104 concentrations: a) 100, b) 150, c) 200 and d) 225 mg/mL. 
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Figure 3.12 c shows the temperature dependence of G’ and G’’ for the P104 concentration of 200 

mg/mL. As for P104 concentration of 100 mg/mL, a viscous behavior (G’’>G’) is firstly observed 

within the temperature range from 3 to 18 ºC. A first crossover of G’ and G’’ is also observed around the 

temperature 20 ºC. A slight increase in both modulus is then observed from around 20 to 58 ºC. Then, 

an increment on G’ of one order of magnitude is detected, changing from the dilute to the soft gel 

domain in a temperature range between around 63 and 83 ºC. A pronounced drop of G’ and G’’ is 

detected around 83 ºC. Finally, a new behavior of P104 solutions is presented in Figure 3.12 d, in which 

the material reaches the hard gel domain between a temperature range of around 22 and 52 ºC. In this 

manner, an increase of around three orders of magnitude is reached from this P104 concentration in a 

ΔT of around 30 ºC. In this manner, P104 solutions form thermo-reversible gels that depend on P104 

concentrations and on temperature, which could be used for different applications at physiological 

temperatures [37,41,42]. 

 

3.3.7. Temperature-composition phase diagram of P104/water 

Figure 3.13 shows the phase diagram for P104/water system in the concentration range from 0 to 

150 mg/mL. Here we can observe that the CMT slightly decreases with the increase of P104 

concentration, as previously reported for several P104 concentrations [10].  

 

 

 

 

 

 

 

 

 

Figure 3.13. Temperature-composition phase diagram of P104/water binary composition. 
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The existence of micelles and unimers in a wide range of temperatures was detected through 

density and sound velocity measurements, dynamic light scattering and viscosity. The CMT and the 

temperature at which the micellization is finished were determined from the start and the end of the 

peak of the derivative of the apparent molar adiabatic compressibility (represented by the dashed line). 

After the MGT (micellar growth temperature), spherical micelles grow into rod-like micelles (prolates, 

according to the first approximation by using Perrin´s model). At higher temperatures, a reversible 

phase separation takes place and the clouding point is reached, at which a great storage modulus (G’) is 

detected.  

 

3.4. Particular conclusions for the structural behavior of P104 triblock copolymer   

A study of amphiphilic block copolymer P104 was performed through density, sound velocity, 

viscosity and dynamic slight scattering (DLS) measurements in the dilute and semi-dilute regimes 

between 10 and 65ºC. The results made possible to analyze the structural behavior of the system, to 

determine the critical micellar temperature (CMT) and the micellar growth temperature (MGT) as a 

function of P104 concentration. The temperature domains at which P104 spherical micelles and P104 

elongated micelles exist are greater than for other triblock copolymers, allowing their applications in a 

wider field. ISCA and Rh were obtained through DLS measurements at six different temperatures from 

the spherical micelles domain to the elongated micelles domain. As first approximation for a 

morphology study, the dependence of ISCA/ISCA
0 with Rh was compared to the Perrin model of prolate 

ellipsoids, oblate ellipsoids and spheres, which was found to be close to the predicted behavior for 

prolate ellipsoids, which suggest that P104 micelles grow as prolate rods. The effect of NaCl addition on 

CMT, MGT and CPT was described. Rheological properties were studied in a P104 concentration 

range from 50 to 600 mg/mL and were found to be greatly dependent on temperature and 

concentration, since the storage modulus increase between two and three orders of magnitude.  
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4. Collective dynamics of P104 amphiphilic block copolymer in and out of 

equilibrium  

4.1. Introduction  

Amphiphilic block copolymers can self-assemble in water forming micelles, spheres, cylinders, 

vesicles and other types of structures [1,2]. Because of their high molecular weights, they present slow 

dynamics to frozen, which can catch those structures in metastable states without reaching the 

equilibrium [1-3]. Amphiphilic block copolymer dynamics can be studied at the equilibrium or out of 

the equilibrium [4], as in the sphere-to rod like micelles transition.   

Surfactant micelles kinetics at equilibrium are dominated by two mechanisms [5-10]. First 

mechanism has been described by Anniasson and Wall (A−W) and involves unimer/micelle interactions 

via insertion−expulsion of unimers [11-13]. The second mechanism involves micelle−micelle 

interactions via fusion and fragmentation [14-16]. However, the dynamics in block copolymer micelles 

differs from the surfactant kinetics due to the chain correlation in the core and the strong steric 

repulsion of the corona. Halperin et al. proposed insertion−expulsion as the main dynamic process in 

diblock copolymers [2], nevertheless, Dormidontova reported that fusion and fragmentation were 

favorable in the early stage of micellization while unimer insertion−expulsion is the main process at 

equilibrium [17]. Recently, the detection of fusion-fission mechanisms at equilibrium was reported in 

P103 triblock copolymer micelles (pluronics) by Rharbi [5].  

On the other side, for the study of the dynamics out of equilibrium, structural transitions such as 

the sphere to cylinder transition have been caused by a jump of co-solvent, which consist in the addition 

of a second solvent in small quantities to modify the solvent influence of the medium. Usually, 

experiments known as jumps represent the abrupt change of a selected variable for the study of the 

system response to the perturbation [19,20]. In two recent studies, the slow dynamics of the transition 

from sphere to cylinder of the triblock copolymer Pluronic P123 were investigated in a mixture of 

water, salt, and ethanol [20,21]. One of these studies reported that the transition could exist through 

the mechanisms of fusion and fragmentation-exchange of unimers [20]. Recently, Landazuri et al. [22] 

presented a kinetics study of the sphere-to-rod transition in aqueous micelle solutions of triblock 

copolymer P103. This transition was followed by a temperature jump from the sphere phase to the rod 

phase and monitored with dynamic light scattering.  

In the field of controlled drug release, molecules for chemotherapy are usually hydrophobic and 

require vectorization to be transported to the target cell [23,24]. Micelles made of amphiphilic block 

copolymers with a nanoscale size between 5 and 100nm, have an inner core that is comprised of the 

hydrophobic blocks and creates a space for the solubilization, storage, controlled delivery and protection 

of hydrophobic drugs [25]. Many studies have been performed in order to develop a variety of 
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nanostructures, including micelles, polymersomes and hydrogels for an efficient drug delivery [25-28]. 

However, very few studies have examined the collective mechanisms as fission-fusion on micelles in the 

transport and expulsion of active ingredients. Understanding these dynamics at the equilibrium state 

and during specific stimuli for the release of the active ingredient becomes crucial for the design and the 

control of new materials and new processes effectives in controlled drug delivery. 

In this chapter, a study of the dynamics of the sphere to rod-like micelle transition of the triblock 

copolymer P104 in water is presented in first place. This transition was obtained by increasing the 

temperature of the micellar spherical domain to the cylindrical domain. The scattering intensity and the 

hydrodynamic radius of the micelles were monitored throughout the experiment using Dynamic Light 

Scattering. The influence of salt addition in the sphere to ro-like micelle transition was also studied. 

Then, the micellar dynamics at equilibrium of the triblock copolymer P104 in aqueous solution were 

studied by fluorescence spectroscopy. A fluorescent technique proposed several years ago by Rharbi et al. 

[18,29-31], which uses the random distribution of hydrophobic pyrene derivatives (PyC18) between 

micelles is selected as a tool to investigate the fusion and fission dynamics between P104 micelles. 

 

4.1.1. Surfactant micelles dynamics  

Two main principal mechanisms have been proposed in order to explain the surfactant micelles 

dynamics [5-10]. First one consists in the gradual expulsion and insertion of surfactants unimers 

(Figure 4.1) and second one consists in the fusion and fission of complete micelles (Figure 4.2).  

 

 

 

Figure 4.1. Schematic representation of expulsion and insertion of surfactants unimers where k + corresponds to 

the kinetic constant of the insertion process and k - corresponds to the kinetic constant of the expulsion process [22]. 

 

 

 

Figure 4.2. Schematic representation of fussion and fission of complete micelles, where kfus corresponds to the 

kinetic constant of the fusion process and kfra corresponds to the kinetic constant of the fission process [22]. 
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Most experiments in surfactants kinetics that study the return to equilibrium after a small 

perturbation has reported two relaxations with two different time scales. The fast kinetics have been 

attributed by Aniansson et. al. [11,12] to the insertion of existing free surfactant in micelles. This 

process changes micelle size without affecting its number. Moreover, the slow kinetics was related to 

the slow dissociation-growth of micelles through the insertion and subsequent expulsion of unimers 

[11-13] or the fusion and fission of micelles [14-16]. The equilibrium dynamics in surfactant micelles 

was performed through time sweeps experiments using fluorescence hydrophobic probes of pyrene [29-

31]. In these studies it was concluded that the fusion and fission occurs at the equilibrium in non-ionic 

surfactant. Finally, wormlike micelles dynamics was studied by Turner et. al [32] and discussed in terms 

of fusion and fission mechanisms. Their model proposes an exponential distribution of the average 

length, L, of micelles, with respect to the surfactant concentration surfactant as follows: 

L≈[surfactant]0.5. 

 

4.1.2. Amphiphilic block copolymer micelles dynamics  

Amphiphilic block copolymer micelles dynamics are very sensitive to the type of solvent, unlike 

surfactants dynamics, so it may be affected and may vary from slow to frozen dynamics [22, 33-35]. 

The unimer insertion-expulsion mechanisms were proposed by Haperin et al. [2] to be the dominant 

processes for block copolymer micelles dynamics. However, Dormidontova [17] proposed that fusion-

fission mechanisms were favorable in the early stage of micellization. Two different kind of kinetics 

experiments in amphiphilic block copolymers allow studying the dynamics at equilibrium and the 

transition dynamics from one morphology to another.  

 

4.1.2.1. Dynamics at equilibrium in amphiphilic block copolymers  

The dynamics at equilibrium of amphiphilic block copolymers can be studied and discussed in terms 

of the randomization kinetics of block copolymer micelles [33,34,36].  Experimentally, these dynamics 

can be detected and quantified by using time-resolved neutron scattering on mixtures of deuterated and 

hydrogenated copolymers, or by copolymers labeled with fluorescent probes.  

The dynamics at equilibrium in amphiphilic block copolymers have recently been proved to be 

collective mechanisms that can be monitored through the exchange of fluorescent probes hydrophobic 

between micelles [29-31]. The exchange of solutes between micelles takes place in the same way that 

the exchange of copolymer chains (Figure 4.3). The transfer of a hydrophobic probe molecule (P) from a 

filled micelle to an empty micelle takes place through three major routes, as it is possible to observe in 

Figure 4.3. In the first mechanism (a), the probe leaves the filled micelle to go to the aqueous phase and 

then enters into the empty micelles. In the second mechanism (b), the filled micelle is broken into two 
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micelles, each one of them retaining one probe molecule, followed by the growth of the fragments 

through the insertion of copolymer chains or the fusion with an empty micelle. In the third mechanism 

(c), complete micelles can fuse with empty micelles to form large micelles that break giving rise to two 

normal size micelles containing one probe molecule each one. The exit-entry and fission-growth 

processes are first order process, which can lead to the rate constants kexit and kfiss, respectively. The 

fusion-fission a second order kinetics process. When the concentration of empty micelles is much larger 

than the filled micelles concentration, the fusion-fission process leads to a first order kinetics with a rate 

kfus x[micelles]. The exchange rate is then given by the following expression: 

kdecay = kfis + kfus x[micelles]                 (4.1) 

 

 

 

 

 

 

 

 

 

Figure 4.3. Different processes for exchanging copolymer chains and probes (P) between micelles: a) Exit–entry of 

the probe, b) fission-growth, c) fusion-fission and d) insertion-expulsion of single chains [18]. 

 

4.1.2.2. Dynamics of micellization in amphiphilic block copolymers  

In this case, as well as for surfactant micelles kinetics, the transition from monomer to micelle 

presents two processes [29-31]. First one corresponds to a fast process associated with the formation of 

metastable micelles through the insertion of free copolymers in the existing micelles [35] Second one is 

a slow process that is related to either fusion-fission or to insertion-expulsion mechanisms. 
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4.1.2.3. Sphere-to-rod like micelles transitions in amphiphilic block copolymers  

The transition from sphere-to-rod like micelles has been studied through experiments called 

“jumps”, which could be cosolvent jumps [19], salt jumps [20] or temperature jumps [37]. The 

dynamics of the sphere-to-rod-like transition in polystyrene-poly(acrylic acid) (PS-PAA) copolymers 

were reported by Burke et al. [3], attributing this transition to a three-steps mechanism, i.e. the adhesion 

of spherical micelles, the formation of a pearl necklace shaped rods and the smoothing of the rods. The 

sphere-to-rod dynamics in the pluronic triblock copolymer P123 in a mixture of water, salt and ethanol 

were also studied [20]. The obtained results allowed proposing that the transition could take place 

through both fusion-fission and unimer exchange. Recently, Landazuri et al. [22] studied the sphere-to-

rod transitions in aqueous solutions of P103 triblock copolymer, showing that the transition was 

dominated by a mechanism involving fusion and fission of micelles.  

 

4.2. Experimental conditions    

Materials and solutions preparation are described in Chapter 3 of this part of the thesis.  

 

4.2.1. Solutions preparation for fluorescent measurements  

For fluorescent measurements, the fluorescent probe 1-pyrenyloctadecanone, C34H44O (PyC18), was 

prepared using a Friedel-Crafts acylation of pyrene with stearoyl chloride in dichloroethane in the 

presence of aluminum chloride (AlCl3) [15]. The PyC18 was solubilized into the P104 micelles by 

mixing triblock copolymer P104 (20 mg/ mL) with PyC18 at a temperature greater than 75 ° C. The 

solution was strongly stirred for 10 min with a Vortex genie 2 model G 650 mechanical shaker at its 

maximum frequency (>10 Hz). 

 

4.2.2. Dynamic Light Scattering measurements 

Dynamic Light Scattering (DLS) measurements were performed on a Malvern Zetasizer 5000 

instrument equipped with a particle analyzer with variable angle, between 45° and 135°, and a multi-bit 

correlator 7132. A He-Ne laser (5 mW) with a wavelength of 632.8 nm was used as a light source. The 

scattered light intensity was measured through a pinhole of 400 μm. The correlation functions were 

averaged from 5 measurements of 60 s each one. The temperature was controlled with an internal 

Peltier in the instrument. The intensity correlation function is analyzed by the Cumulants method, from 

which is possible to calculate the apparent hydrodynamic radius and the total intensity of the scattered 

light [328,39]. The size distribution of micelles is obtained using the application of the Laplace 
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transform to the autocorrelation function of the measured scattering intensity data with the Contin 

program [22]. DLS measurements for P104 were carried out at the angles 45 º, 90 º and 135 º at the 

equilibrium for a temperature range between 10 and 64 ºC.    

 

4.2.3. Kinetics experiments through DLS  

Studies of micellar dynamics out of the equilibrium were carried out by experiments called 

"temperature jumps", which consist in monitoring the evolution of the hydrodynamic radius and the 

scattering intensity versus time during a sudden change of temperature for a micellar solution at the 

equilibrium from a temperature T1 to a temperature T2. To perform these experiments, the sample was 

stabilized at a temperature T1 during 24 hours; in this way, it was possible to ensure the micellar 

equilibrium. Then, the sample was introduced to the instrument previously calibrated at the 

temperature T2 and the measurements were initiated immediately.  

The autocorrelation decays were measured each 5s and averaged over the same time. The kinetics 

measurements were carried out at 45º, 90º and 135º. The measurements were performed carrying out a 

temperature jump from T1= 38ºC at which spherical micelles are stable to a temperature T2 which 

yields rod-like micelles (T2= 42, 50 55, 58 and 64 ºC). Cell 1 cm. We investigated the required time to 

reach the desired temperature and we found that this temperature can be reached in 2 min., which means 

that the kinetics below 2 min. should not be taken into account. In this Chapter we are forced to work at 

higher P104 concentrations since fusion and fission cannot be identified at lower triblock copolymer 

concentrations. 

 

4.2.4. Fluorescence measurements    

Fluorescence measurements were performed with a Jobin Yvon spectrometer Fluorolog III (2-2) in 

the S/R mode. Kinetic experiments were carried out mixing a solution with micelles of P104 containing 

PyC18 (B) with probe-free P104 micelles (A) in a 2 mm thick cell (Figure 4.4). A ratio of 1:20 (P104 

solution with PyC18: Probe free P104 solution) was used to study the dynamics. All the measurements 

were carried in a temperature range between 30 and 62 °C. An excitation wavelength of 344 nm was 

used for each measurement, monitoring the emission every 30 s at λex= 480 nm for the excimer and     

λmon  = 376 nm for the monomer. Measurements were performed in the concentration range between 10 

and 100 mg/mL. Figure 4.4 presents a schematic representation of the mechanism used to perform these 

kinetic experiments. 
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Figure 4.4. Schematic representation of the kinetic experiments performed with a stopped flow mechanism.    

 

4.3. Experimental results  

4.3.1. Collective dynamics of P104 triblock copolymer out of equilibrium  

4.3.1.1. Growth kinetic observed on the evolution of the hydrodynamic radius and the 

scattering intensity  

The total scattering intensity contains information of the average size of micelles, the polydispersity 

of the solution, the size distribution and the water content in the micelles. In the case of monodisperse 

micelles, scattering intensity can be described by the following expression: 

Idisp α (nmic – nw)2 φmic α Vmic                           (4.2) 

where Idisp the total intensity scattered, Vmic corresponds to the volume fraction of micelles, φmic is the 

volume fraction of surfactant, nmic and nw are the refraction indices of the micelles and water, 

respectively.   

During kinetics of the structure transition, all these parameters can vary simultaneously and may 

complicate the description of the dynamic process. The more accelerated process, identified during the 

rapid increase of the scattering intensity can be attributed to the increase on the micellar size or the 

dehydration of the micelles. Thus, the change of each of the micellar parameters must be monitored 

individually.  



    

 342 

While increasing the temperature of the spherical micelles domain T1 (which have an average 

hydrodynamic radius of 11 nm) to the temperature of the rod-like micelles domain T2, both the 

hydrodynamic radius and the total scattering intensity increase as a function of time (Figures 4.5 a and 

b). The sphere to rod-like micelle transition in P104 amphiphilic block copolymer is then slow enough to 

be monitored by Dynamic Light Scattering measurements, as P103 amphiphilic block copolymer 

transition. Figure 4.5 a shows the dependence of the hydrodynamic radius as a function of time for a 

P104 solution in water with a concentration of 20 mg/mL by changing the temperature from 38 to 64 

ºC. We observe that a single process (Equation 4.3) describes the increase of the hydrodynamic radius 

(Rh) as a function of time, showing that the process involving monomer-micelle interactions is negligible 

in this temperature range. The increasing decay of Rh can be adequately simulated by using an mono-

exponential expression with a rate kgrowthRh = 1/  

Rh(t) = [Rh(∞)- Rh(0)]*exp(-t/) + Rh(∞)                            (4.3) 

 

 

 

 

 

 

 

Figure 4.5. a) Hydrodynamic radius, Rh, and b) scattered intensity versus time for a P104 solution with a 

concentration of 20 mg/mL obtained after a temperature jump from a T1=38 °C to T2 = 64 °C. The solid line 

represents the obtained fitting using a mono-exponential expression that simulates the intensity decay. Inset: 

residual of the fit to the single exponential function.   

 

Figure 4.5 b shows the response of the total scattering intensity as a function of time for the P104 

solution with a concentration of 20 mg/mL by changing the temperature from 38 ºC to 64 ºC. The 

kinetic decay can be also adequately simulated using a mono-exponential function with an apparent 

relaxation time according to the next expression: 

ISCAT (t) = [ISCAT (∞)-ISCAT (0)]*exp(-t/ + ISCAT (∞)                     (4.4) 

where ISCAT is the dispersed intensity and   
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The fits of the experimental data were obtained beyond 2 min. since the desired temperature can be 

reached in 2 min. after the sample is placed in the measuring cell.  

The results allow proposing that the increasing decay consists on a single process. However, in 

some literature reports, the temperature jumps experiments of triblock copolymers as L64 [29,40,41] 

and F85 [42] show two processes, one fast and one slow. They mention that the scattering intensity is 

increased in the rapid process and then decreases during the second process, which means that the slow 

process is obtained at slightly higher temperatures than the CMT. The first process is related to the 

incorporation of free copolymer to the micelles, generating metastable micellar structures. Furthermore, 

for P104 triblock copolymer, the critical micellar concentration was detected around 0.07 mg/mL at the 

temperature of 38 °C and decreases with increasing temperature, therefore, it is consider as a negligible 

parameter (cmc <0.1 mg/mL) [29]. Since the concentration of free copolymer is negligible compared to 

the concentration of micellization, the increase on the temperature does not cause the growth of the 

micelles by incorporating free monomer on them. The slow kinetics may include the following 

mechanisms: dehydration of the micelles, cooperative condensation and monomer dissolution, a fusion 

process or a fission-growth process. 

 

4.3.1.2. Growth kinetic observed on the intrinsic asymmetry [Z] 

The intrinsic asymmetry, given by the ratio between the intensity observed at an angle of 135° and 

an angle of 45°, allows identifying the longitudinal growing process of the micelles.  

 

 

 

 

 

 

 

Figure 4.6. Intrinsic asymmetry, I45º/I135º, as a function of time for a solution of P104 at a concentration of 25 

mg/mL after carrying the solution from a temperature T1 = 38 °C to a temperature T2 =64 °C. The solid line 

represents the fitting using a mono-exponential expression that simulates the decay of the intensity. I45° and I135º are 

the intensities of scattering measured at 45° and 135°, respectively. 
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Figure 4.6 shows the intrinsic asymmetry, I45º/I135º, versus time, of a solution of P104 with a 

concentration of 20 mg/mL after carrying the solution from a temperature T1 = 38 °C to a temperature 

T2 = 64 °C. After this temperature jump from 38 to 64 ° C, I45º/I135º increases progressively with time 

and reaches a maximum value at 1.4, indicating the presence of elongated micelles. This curve can also 

be simulated with a mono-exponential function having one characteristic time constant, similar to the 

one used for evaluating the behavior of Rh. This way, it can be inferred that micelles grow 

longitudinally during the relaxation process and their length increases with time. 

 

4.3.1.3. Exchange rate  

The structural transition rate from spherical micelles to elongated micelles depends directly on the 

relation between the blocks PPO/PEO and from PPO block length. P103 triblock copolymer            

[(PEO)17–(PPO)60–(PEO)17], with a ratio PPO/PEO=1.76 has relaxation times between the range of 

100s to 6000s, depending on the concentration. A more hydrophobic system, Pluronic P123 [(PEO)20–

(PPO)70–(PEO)20], with a ratio PPO/PEO=1.75 and a longer PPO block, exhibits relaxation times that 

can last days in the absence additives. In our case, the relaxation times of P104 [(PEO)27–(PPO)61–

(PEO)27], with a ratio PPO/PEO=1.13, are in the range from 800s to 4000s. 

Figure 4.7 a and b show the hydrodynamic radius and the scattering light, respectively, as a function 

of time for several concentrations of P104 solutions. For the evolution of the hydrodynamic radius, the 

maximum values reached by the kinetics decrease while increasing P104 concentration at the studied 

concentration range. The growth rate calculated through the scattering intensity and the hydrodynamic 

diameter, kgrowth = 1/ is between 0.00031 s-1 and 0.00125 s-1 for the concentration range of P104 

between 10 mg/mL and 100 mg/mL.  

 

  

 

 

 

 

 

Figure 4.7. a) Hydrodynamic radius and b) intensity scattered as a function of time for P104 solutions with 

concentrations of 30 , 40 and 50 mg/mL after the temperature jump from T1 = 38 °C to T2 = 64 °C.  
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The exchange kinetics in triblock copolymers involve changing various parameters such as the 

number of copolymers per micelle or the aggregation number (Nagg), the size distribution and the 

content of water [29]. If the growth is sphere to sphere, the relation between the growth rate calculated 

from the scattering intensity (kgrowth
I) and the growth rate calculated from the hydrodynamic diameter 

(kgrowth
Dh) should be the following: kgrowth

I = 3 kgrowth
Dh.  

Figure 4.8 shows the dependence of growth rate with the triblock copolymer concentration 

obtained from the mono-exponential fits of the hydrodynamic radius, the scattering light intensity and 

the aspect factor in the concentration range of P104 triblock copolymer in water between 10 and 60 

mg/mL. In all cases, we observe a linear increase with the concentration that corresponds to a second-

order process including fusion of micelles into a long micelle. Through these results, it is found that the 

growth process of P104 triblock copolymer micelles in water follows two mechanisms. The first 

mechanism involves the integration of copolymer chains and micelles to form thermodynamically stable 

micelles. The second mechanism involves fusion-fission processes of aggregates/chains of triblock 

copolymer into micelles to produce micelle with any size until reaching a thermodynamically stable 

micellar size. The growth dynamics exhibit a relatively slow process with a characteristic time with 

values from 800s to 4000s. A simulation of this process is possible in order to take into account the 

reduction of micelles and an exponential behavior, however it will be done in order to analyse the 

process in a more detailed way in a future.  

 

 

 

 

 

 

 

 

Figure 4.8. Growth rate (kgrowth) calculated from the evaluation of the hydrodynamic radius, Rh, the scattering 

light and the aspect factor decays by using the mono-exponential expression as a function of P104 concentration.   
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4.3.1.4. Temperature effect on the growth process  

Figure 4.9 a and b show the growth kinetics through the response of the hydrodynamic radius and 

the light scattering intensity, respectively, as a function of time for a P104 solution with a concentration 

of 20 mg/mL, after the temperature jump from the temperature T1= 38 ºC to the temperatures of 42, 

50, 55 and 58 ºC. We can observe that the final values for Rh increase with the temperature increase, i.e. 

22 nm at 42 ºC, 24 nm at 50 ºC, 38 nm at 55 ºC and 54 nm at 58 ºC. With light scattering intensity 

measurements, it is possible to observe that he growth process becomes evident after a temperature of 

50 ºC.  

 

 

 

 

 

 

 

Figure 4.9. a) Hydrodynamic radius and b) scattering light intensity as a function of time for a P104 solution 

with a concentration of 20 mg/mL after the temperature jump from T1 = 38 °C to the temperatures of 42, 50, 55 

and 58 ºC. 

 

4.3.1.5. NaCl effect on the growth process  

Figure 4.10 a shows the dependence of the hydrodynamic radius as a function of time for a P104 

solution with a concentration of 20 mg/mL in 0.5 M NaCl by changing the temperature from 38 ºC to 

64 ºC. We can observe that a single process describes also the increase of the hydrodynamic radius (Rh) 

as a function of time, in the same way that for a P104 solution in water. In this manner, at this NaCl 

concentration, the increasing decay of Rh can be also be simulated by using an mono-exponential 

expression with a rate kgrowth Rh = 1/ However, here the kgrowth obtained from the Rh decay differs to 

the one obtained from the Scattering Light Intensity, suggesting the formation of a different structure 

during the growth process. This effect will be further studied. Figure 4.10 b shows the influence of NaCl 

concentration on the growth rate for a P104 solution with a concentration of 20 mg/mL. We can 

observe that kgrowth increases with the increase of NaCl concentration, suggesting a slower transition from 

spherical micelles to rod-like micelles compared to P104 micelles in water as a solvent. 
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       b) 

 

 

 

 

 

 

Figure 4.10. a) Hydrodynamic radius, Rh, versus time for a P104 solution with a concentration of 20 mg/mL in 

0.5 M NaCl obtained after a “temperature jump” from a T1=38 °C to T2 = 64 ° C. The solid line represents the 

obtained fitting using a mono-exponential expression that simulates the intensity decay. b) Growth rate (kgrowth) 

calculated from the evaluation of the scattered intensity by using the mono-exponential expression as a function of 

P104 concentration. 

 

4.3.2. Collective dynamics of P104 triblock copolymer in water at the equilibrium  

The availability of a hydrophobic core region within triblock copolymer micelles (Pluronics) allows 

for stable loading of poorly soluble hydrophobic drugs during micellization. The encapsulation of 

hydrophobic drugs in nanoparticles can increase the accumulation of drugs in tumors, reduce toxicity 

for healthy tissue and improve pharmacokinetics in comparison to administration processes of free drug 

[43]. However, when developing nanoparticles for drug delivery, it is important to understand the 

interaction mechanisms between the nanoparticles and the delivery mechanisms of the encapsulated 

drug to achieve efficient delivery and release of drugs to the target [44].  

 

4.3.2.1. Micellar dynamics  

The micellar dynamics at equilibrium of aqueous solutions of P104 triblock copolymer were studied 

by using a fluorescent hydrophobic substance (PyC18) in order to follow the exchange between micelles 

at equilibrium. Fluorescence measurements were performed by mixing P104 micelles containing PyC18 

with micelles probe-free at the same temperature and with the same P104 concentration. Through these 

measurements it is possible to analyze different exchange mechanisms between micelles in order to 

determinate the dominant ones.  
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4.3.2.2. Solubilization and fluorescence of PyC18 in P104 triblock copolymer micelles 

As previously determined from DLS measurements, P104 aqueous solutions form spherical micelles 

between the temperatures of 26 ºC and 55 ºC with a hydrodynamic radius of 11.85 ± 1 nm (for a P104 

concentration of 10 mg/mL). Therefore, P104 amphiphilic copolymer presents a range of temperatures 

where it is possible to obtain spherical micelles at low temperature (25 ºC - 54 ºC) and rod-like micelles 

below 54 ºC. The dynamics at equilibrium at both domains (spherical micelles and rod-like micelles) 

were studied using the formation of an excimer of a highly hydrophobic pyrene as a function of time. 

For the incorporation of the hydrophobic probe (PyC18) (Figure 4.11), P104 aqueous solutions were 

heated above the clouding point and then cooled to a temperature within the range in which spherical 

micelles are formed. This way, micelles dissolve the modified pyrene PyC18 randomly. The fluorescent 

spectra of the copolymer micelles containing more than one molecule of PyC18 depict a wide excimer 

emission band with a peak at 480 nm and a monomer band between 375.5 and 400 nm. 

 

 

 

 

 

 

Figure 4.11. Molecular structure of the hydrophobic fluorescent probe PyC18. 

  

Figure 4.12 a shows the fluorescence spectra for various concentrations of PyC18 in P104 aqueous 

solutions at a concentration of 50 mg/mL. By diluting the 50 mg/mL P104 solution filled with PyC18 

with probe-free copolymer, the spectrum evolves and shows a greater monomer emission. At the lowest 

concentration of PyC18, the excimer emission is barely detectable, however, at higher concentrations it is 

very important, with a peak at 480 nm. The ratio of the excimer to monomer intensities, Iex/Imon, is very 

sensitive to the distribution of PyC18 in the P104 micelles. When two PyC18 molecules are present in the 

micelles, their signal is emitted in the excimer regime (i.e. between 450 and 550 nm) and when one 

PyC18 molecule is in the micelle, its signal is emitted in the monomer form (376 nm). When the 

distribution of PyC18 in the micelles follows the Poisson distribution, the ratio between Iex and Imon is 

proportional to <n> (i.e. [PyC18]/[Micelles], where [Micelles]=([P104] – CMC)/Nagg) [29]. Nagg 

corresponds to the aggregation number, which is a temperature dependent parameter and has been take 

from the reported values by Liu et al. [46]. An UV-Vis analysis allows calculating PyC18 concentration 

present on the initial solution (i.e. 2.9 x 10-4 M). 
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a)          b) 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. a) Emission spectra (ex=344nm) for various concentrations of PyC18 in P104 aqueous solutions at 

a concentration of 50 mg/mL monitored at ac onstant temperature: 37 ºC. b) Linear dependence between Iex/Imon 

with PyC18 concentration in a 50 mg/mL P104 solution at a temperature of 37 ºC (r2 = 0.971). 

 

Figure 4.12 b shows the linear dependence between Iex/Imon and the PyC18 concentration in a 50 

mg/mL P104 sample. The relation between the excimer intensity (λex = 480 nm) and the monomer 

intensity (λmon = 375 nm), Iex/Imon, increases linearly with the increase of the average number of 

hydrophobic probe per micelle <n>. This linear dependence suggests that the PyC18 follows a random 

Poisson distribution for all P104 concentrations at all the studied temperatures in this work. The 

exchange kinetics was then performed taking into account low values of the average number of PyC18 

per micelle, <n>.   

 

 

4.3.2.3. PyC18 exchange kinetics in P104 triblock copolymer micelles  

Figure 4.13 shows the fluorescence spectra of PyC18 solubilized in a P104 aqueous solution with a 

concentration of 50 mg/mL before and after the addition of a probe-free P104 aqueous solution with the 

same concentration at a temperature of 37 ºC. In this figure it is possible to observe clearly that the 

value of the excimer intensity, detected at a wavelength at 480 nm and identified as "before the 

exchange", is lower than the value of the monomer intensity, located at a wavelength at 376 nm and 

labeled as "after the exchange." The spectrum has a broad excimer emission with a peak at 480 nm and 

monomer fluorescence at 376-400 nm. The existence of the excimer emission at 480 nm infers the 

presence of micelles bearing two or more PyC18 molecules [29]. 
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Figure 4.13. Emission spectra (λex= 344 nm) of PyC18 in 50 mg/mL P104 solution. The spectrum labeled 

“before exchange” identifies the P104 solution containing the hydrophobic probe PyC18. The spectrum labeled “after 

exchange” identifies the solution obtained by mixing 0.05 mL of micelles filled with PyC18 and 1 mL of empty 

P104 micelles (50 mg/mL) measured after 2 hours.  

 

Figure 4.14 shows the excimer and monomer decays obtained after mixing a 40 mg/mL P104 

solution filled with PyC18 and a 40 mg/mL free-probe P104 solution as a function of time. A volume 

ratio of 0.05:1 ([PyC18 in P104 micelles]:[Probe free P104 micelles]) was used for the mixing process of 

the P104 solutions filled with hydrophobic probe and the P104 micelles probe-free, respectively. This 

behavior follows an exponential function.  

 

 

 

 

 

 

 

 

Figure 4.14. Decay of the excimer band (λem = 480 nm) and the monomer band (λem = 376 nm) after mixing 

0.05 mL of a 40 mg/mL P104 solution with PyC18 and 1mL of a 40 mg/mL P104 probe-free solution at the 

temperature of 40 °C. The solid line represents the fit to a single exponential expression (r2 = 0.988). 
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The fitting of each of the decays was performed using a mono-exponential function in order to 

determine the kinetic constants from the inverse of the relaxation times (kdecay=1/). The relaxation time 

() from the mono-exponential function is similar to the average value <> calculated from the fit to 

two exponentials.  

4.3.2.4. Concentration dependence on the exchange dynamics    

Kinetic experiments were performed in a P104 concentration range between 10 and 100 mg/mL  

for the temperatures from 30 ºC to 64 °C, this way, the dynamic micellar profiles were obtained within 

the spherical micelles region and the cylindrical elongated micelles region before the clouding point. 

Figure 4.15 shows the excimer decays obtained after mixing a 30, 50, 80 and 100 mg/mL P104 solution 

filled with PyC18 with their respective free-probe P104 solution as a function of time. 

  

 

 

 

 

 

 

Figure 4.15. Decay of the excimer band (λem = 480 nm) and the monomer band (λem = 480 nm) after mixing 0.05 

mL of a 30, 50, 80 and 100 mg/mL P104 solution with PyC18 and 1mL of a 30, 50, 80 and 100 mg/mL P104 

probe-free solution at the temperature of 30 °C. The solid line represents a fit to a single exponential expression     

(r2 = 0.988). 

 

Figure 4.16. shows the linear dependence of the kinetic constant (kdecay) with [micelles] at the 

temperature of 30 ºC, as described by Equation 4.5.  

kdecay = k1 + k2 [micelles]                   (4.5) 

This behavior suggests the existance of a first order process with a rate k1 independent of free-

probe micelles and a secong order process with a linear dependence of kdecay with [micelles].  
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As presented in Figure 4.3, the exchange of the probe could take place by fission-growth of micelles, 

exit-entry of the probe and fusion-fission of micelles, which could occur simultaneously. Since the rates 

of these processes have different sensitivities to copolymer concentration, their individual contribution 

can be separated. If the exchange is carried out via exit-entry of the probe and via fission-growth of 

micelles, it is characterized by a first-order kinetics, whereas the collision fusion-fission mechanism 

exhibits a second-order kinetics with a second-order rate constant. The second-order process k2 is 

dominated by fusion−fission, involving several steps: collision of a full and an empty micelle, adhesion of 

these micelles, fusion of the two micelles to form a large one, exchange of the solute within the large 

micelle, and fission of the large micelle into two micelles containing one PyC18 each one. It was shown 

that the fusion rate is independent of the polarity of the probe in Triton X-100 and synperonic 

surfactants, so the second-order fusion rate reflects the rate of fusion [29-31]. 

When the concentration of empty micelles is larger than the concentration of micelles containing 

PyC18, we obtain a pseudo-first-order exchange rate constant dependent on the concentration of empty 

micelles (Equation 4.6). 

kdecay = kexit + kfiss + kfus [micelles] = kexit + kfiss + kfus ([P104] – CMC)/ Nagg               (4.6) 

where kexit is the exit-entry kinetic constant, kfiss corresponds to the fission micelles kinetic constant and 

kfus to the fusion kinetic constant between micelles filled with PyC18 and probe-free micelles.  

 

 

 

 

 

 

 

 

Figure 4.16. Linear dependence of the kinetic constant (kdecay) with micelle concentration for P104 triblock 

copolymer at the temperature of 30 ºC, where [Micelles]=([P104] – CMC)/ Nagg. 
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As shown on Figure 4.3, the first order mechanism may be due to the exit-entry (kexit) and the fission 

(kfiss) processes. The limiting rate for the exit-entry mechanism of the probe is water solubility (Cw) and 

diffusion through the core/corona. If water solubility is the dominant barrier, then the exit rate can be 

estimated through the following expression:  

kexit = kentry* c/nm                     (4.7) 

where nm is the average number of probe per micelle at the equilibrium.  

A water-soluble probe soluble such as pyrene (10-7 mol/L) can be exchanged mainly through an 

exit-entry mechanism. However, the C18 chain present on the hydrophobic probe, PyC18, reduces its 

water solubility and makes insignificant the exit rate. This way, the first order mechanism is related to 

the fission process. 

In Figure 4.26, the intercept represents the first order mechanism that describes an exchange due to 

a fission of a micelle filled with PyC18 in two micelles, followed by the growth of this resulting micelle 

(by association or fusion). The second order mechanism, with linear dependence on kdecay on the 

[micelles] is related to a fusion-fission process, which involves the following steps: collision of a micelle 

filled with PyC18 and an empty micelle, exchange of the solute inside that big micelle and fission of this 

micelle in two normal size micelles with a fluorescent probe inside each one of them.  

Halperin et al. [12] suggested that fission and fusion mechanisms are negligible in comparison to 

the expulsion-insertion of the copolymer chain. They reported that the coronal energetical barrier 

(steric barrier) and the interfacial barrier (surface tension) lead to fission-fusion rates extremely small, 

which are not possible to identify. However, our results show that fission and fussion mechanisms take 

place at equilibrium in block copolymer micelles. Even if kfiss and kfus are 10
6
 times slower, they are still 

important and are crucial for controlling the structure of the block copolymer micelles. This has been 

presented in the sphere to rod-like micelles transition, which is dominated by the fussion and fission 

rates. Furthermore, we will show in the following chapter that these mechanisms are important in the 

vectorization process.  

  

4.3.2.5. Temperature dependence on the exchange dynamics 

Figure 4.17 a shows the linear dependence of kdecay with [micelles] for the temperatures between 30 

and 50 °C, where spherical micelles are thermodinamically stable. Figure 4.17 b presents the kobs versus 

[micelles] in the rod-like micelles regime between 50 ºC and 57 °C. Here it is possible to identify that 

kdecay values decrease in the spherical regime and increase in the rod-like micelles regime.  
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Figure 4.17. Kinetic constant (kdecay) obtained through the fitting of the exchange decays of PyC18 in P104 

solutions with a mono-exponential function plotted as a function of empty micelles concentration at the 

temperatures of a) 30, 32, 40, 45 and 50 ºC and b) 50, 53, 57 and 60 ºC.  

 

Figures 4.18 a and b present kfiss and kfus in Arrhenius plots. In both figures it is possible to observe 

that the fission and fusion constants present two apparent activation energies with opposite sign, a 

negative apparent activation energy in the micelles regime and a positive apparent activation energy in 

the rod-like micelles regime. In the spherical regime, both kinetic constants (kfiss and kfus) decrease with 

the increase of temperature, with almost similar apparent activation energy, suggesting that they have a 

similar energy barrier. According to Halperin et al. [12], the energy barrier to fission can be estimated 

from the combination of surface tension energy and core elastic energy (PPO/water). When increasing the 

temperature in the spherical regime, PPO/water increases, enhancing the barrier to fussion and leading to 

the reduction of kfiss. The similarity in the slope of kfiss and kfus versus the inverse of temperature suggests 

that the barrier to fusion in the spherical regime is also the core surface tension. This is not consistent 

with Halperin’s suggestion, since they proposed that the coronal steric energy is the main contribution 

to the energy barrier. Here we show that the core surface tension and the coronal energy are important 

barriers to fusion of micelles. 

When the sphere to rod-like micelles transition is approached, kfus shows a plateau and then 

drastically increases in the rod regime. In this regime, the PEO corona collapses, reducing the steric 

coronal repulsion and leading to a decrease of the barrier energy to fusion. The fission rate also 

increases in the rod-like micelles regime, with a lower magnitude than fusion, which suggests that the 

coronal energy contributes to the fission barrier to some extent. Surface instabilities can appear when 

the corona collapses, promoting micelles pinching and micelles breaking. This was recently seen in 

surfactant micelles and reported by Rharbi et al. [47].  
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Our results show that the barrier energy to fission is controlled by the core surface tension in the 

spherical micelles regime and by a combination of the surface tension and the coronal energy in the rod-

like micelles regime. The fusion process is mainly affected by the core surface tension in the spherical 

regime and the collapse of the corona in the rod-like micelles regime.   

 

 

 

 

 

 

 

Figure 4.18. Arrhenius plots for the a) fission kinetic constant, and the b) fusion kinetic constant calculated by the 

linear dependence of the kinetic constant kdecay as a function of P104 empty micelles concentration.  

 

4.4. Particular conclusions for the collective dynamics of P104 amphiphilic block 
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“temperature jumps”, obtaining the variation of the scattering intensity and the hydrodynamic radius as 

a function of time with dynamic light scattering (DLS). The growth dynamics present a relatively slow 

process with characteristic times within the range of 800s to 4000s. The scattering intensity, the 

hydrodynamic radius and the aspect factor evolution as a function of time were analyzed by using a 

mono-exponential function with an apparent relaxation time. The linear increase of the growth rate 

with P104 triblock copolymer concentration shows that the structural transition is dominated by a 

fusion-fission mechanism with normal size micelles. The growth constant increases with the increase of 

NaCl concentration, suggesting a slower transition from spherical micelles to rod-like micelles 

compared to P104 micelles in water as a solvent. 

Additionally, we demonstrated that collective dynamics take place between P104 spherical micelles 

and P104 rod-like micelles at the equilibrium. The exchange mechanism depicted by kdecay consists on 

two processes: a first order mechanism with linear velocity independent of the empty micelles 
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kdecay as a function of the empty micelles concentration, related to the fusion process. Fission and fusion 

constants present two apparent activation energies with opposite sign, a negative apparent activation 

energy in the micelles regime and a positive apparent activation energy in the rod-like micelles regime. 

We show that the barrier energy to fission is controlled by the core surface tension in the spherical 

micelles regime and by a combination of the surface tension and the coronal energy in the rod-like 

micelles regime. 
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CHAPTER 5  

Exchange dynamics between amphiphilic block 

copolymers and lipidic membranes 

 

 

 

 

 

 

 

 

 



    

 361 

5. Exchange dynamics between amphiphilic block copolymers and lipidic 

membranes  

5.1. Introduction  

Nowadays, the specific delivery of active ingredients, known as vectorization, represents a great 

challenge in therapeutic research [1-3]. This process has been used to control the distribution of active 

ingredients such as proteins, genes for gene therapy and drugs, to a target by associating it with a 

vector [4,5] and allows maximizing the therapeutic effects of the drug and may minimize the side 

effects [6]. Vectorization may be achieved by chemical, physical or biological methods, and is 

considered an important process in cases where the drug is chemically unstable or presents weak 

characteristics pharmacokinetics [7,8]. Vectorization proposes benefits such as increasing the 

therapeutic effect, decreasing toxicity causing the active principle, increasing half-life of the active 

ingredient and releasing the active ingredient release in time among others [9,10].  

The three main types of physical vectors are liposomes, microparticles and nanoparticles [11,12]. 

Liposomes are different from the microparticles and nanoparticles due to their nature and composition. 

However, the main difference between microparticles and nanoparticles is the size of both structures, 

i.e., greater or less than 1 m, respectively [13,14]. More specifically, it is noteworthy that the 

liposomes are vesicles consisting of concentric membranes with single or multiple phospholipid bilayers 

[15] that contain an aqueous volume within and are used as the simplest models of cells [16]. They are 

formed spontaneously as a result of lipid-water interactions. Various techniques exist for preparing 

liposomes, which can allow obtaining vesicles with different sizes, internal volume and encapsulation 

capacity [16,17]. 

Vectorization has undergone significant development in the last few years [18,19]. Currently, 

molecules used in chemotherapy are generally hydrophobic and require a vectorization process to be 

transported to the target cell [20,21]. However, this controlled release of drugs suffers from a 

phenomenon known as "burst release", in which the active ingredient is released before reaching its 

target [22-24]. The focus of this chapter is related to these dynamics between triblock copolymers and 

liposomes for the vectorization of hydrophobic molecules, using a fluorescence technique. Very few 

studies have examined the collective mechanisms of micelles in the transport and removal of the active 

ingredients. Understanding the exchange dynamics becomes crucial for the design and control of new 

materials and new effective processes in controlled drug release. 

Our study system is composed by liposomes representing cells, amphiphilic block copolymer 

micelles modeling the transporting vehicles and highly hydrophobic alkylated pyrene representing the 

active ingredient introduced into the micelles. Time scan fluorescence technique, which has been 

previously used to quantify the collective dynamics between amphiphilic block copolymer micelles [25], 
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was used in this work to quantify the vectorization dynamics between micelles and liposomes. We first 

used different techniques such as dynamic light scattering (DLS) and potential to characterize 

liposomes and block copolymer micelles and to explore liposome/micelles interactions. Then, we 

investigated several parameters that control the collective vectorization dynamics between micelles to 

liposomes, i.e. liposomes concentration and a chitosan coating on liposomes and micelles.   

 

5.2. Experimental conditions  

5.2.1. Materials 

Triblock copolymer Pluronic® P104, [(PEO)27–(PPO)61–(PEO)27], has a molecular weight of 5900 

g/mol. This material was provided by the BASF Company. Solutions P104/H2O were prepared with 

water obtained through a Millipore Milli-Q purification system. Chitosan sample with a molecular 

weight (Mw) of 500 000 and a DA of 0.19 was purchased from Kitomer (Marinard, Canada). HCl 0.1 N 

(Titrisol) was supplied by Merck Millipore. L--Phosphatidylcholine, also known as 1,2-Diacyl-sn-

glycero-3-phosphocholine (from egg yolk) (Figure 5.1), C42H82NO8P, with a molecular weight of 776 

g/mol, was selected to prepare the lipid structures and was supplied by Sigma Aldrich. It is a 

zwitterionic phospholipid with two chains of 18 carbons having one unsaturation per each carbon chain 

(Figure 5.1). Its main transition temperature, Tm, is evaluated to -15 ºC [26]. We used an organic 

solvent prepared with chloroform and methanol. Both reagents were supplied also by Sigma Aldrich. 

 

 

 

 

Figure 5.1. Chemical structure of L--Phosphatidylcholine [27]. 

 

5.2.2. Formation of GUVs and LUVs 

The phospholipids were dissolved in a solution of chloroform and methanol with a ratio of 2:1 

[28]. The aqueous phase (distilled water) was added carefully to the solution. The vesicles were formed 

in distilled water at a concentration of 25 mg/mL. The organic solvent was removed through a 

hydration and evaporation process during 72 hours at a temperature of 37 ºC. The obtained solution 

contains giant unilamellar vesicles, known as GUV's. Figure 5.2 shows a schematic representation of 

GUV’s formation [28]. The liposomes were stored at 4 ºC.  
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Figure 5.2. Schematic representation of GUV's formation. a) Formation of an ordered monolayer of 

phospholipids at the interface between the aqueous phase and the organic phase. b) Formation of bubbles observed 

during evaporation. c) Rupture of a phospholipid film causing its fragmentation. d) Formation of micellar 

structures. e) Spontaneous vesiculation. f) Formation of phospholipid fragments with bilayers [28]. 

 

The LUVs were obtained by extrusion of a suspension of GUVs, using a 0.2 m filter (Figure 5.3). 

At these conditions, LUVs are unilamellar and have diameters of around 200 ± 10 nm [29,30]. LUVs 

were prepared from the GUVs solution in order to obtain a suspension with the same lipid composition 

[31] and were used to perform Dynamic Light Scattering (DLS) measurements in convenient 

conditions.   

 

 

 

 

 

 

 

Figure 5.3. Schematic representation of LUV's formation by extrusion of a GUVs suspension. 
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Taking into account the structure of GUVs and LUVs, it is assumed that half of the lipid heads 

(Lipid out) are outside the vesicle and contribute to the interactions with the external medium.   

 

5.2.3. Preparation of triblock copolymer solutions  

A fluorescent solution 1-pyrenyl-octadecanone C34H44O (PyC18) was preparated using a Friedel-

Crafts acylation of pyrene with stearoyl chloride in dichloroethane in the presence of aluminum chloride 

(AlCl3). The PyC18 was solubilized in micelles of triblock copolymer P104 mixing an aqueous copolymer 

solution (10 mg/mL) with PyC18 at a temperature of 75 °C or higher, this way the clouding point of the 

copolymer is exceeded. The solutions were stirred vigorously for 10 min. in a Vortex Genie 2 model G 

650 with a mechanical stirrer at its maximum frequency (> 10 Hz). The vials were covered with 

aluminum foil to prevent samples degradation caused by contact with light. An UV-Vis analysis allowed 

calculating the PyC18 concentration present on the initial solution (i.e. 2.1 x 10-4 M).  

 

5.2.4. Chitosan solution preparation   

The solutions of chitosan are prepared at 5.3 mg/mL by dissolving a known amount of 

polysaccharide with the stoechiometric amount of HCl 0.1 N (previously titrated with NaOH 0.1 N) on 

the basis of NH2 content (final pH is around 3.35). The solution was placed under constant stirring for 1 

night at room temperature, until complete solubilization, then it was stocked at a temperature of 4 ºC. 

Chitosan solution was then diluted to 1 mg/mL, filtered with a 0.2m membrane and adjusted to the 

selected pH with a solution NaOH 0.1 N. (Chitosan properties and characteristics are described in 

Chapter 7 of Part I of this thesis).  

 

5.2.5. Confocal microscopy measurements  

In order to observe the chitosan coating on GUVs by using fluorescence microscopy, chitosan 

(1mg/mL) was labeled with fluorescein. The degree of labeling is determined from the fluorescence 

intensity of diluted solutions of the free fluorescent probe compared with the fluorescence of a diluted 

solution of the labeled chitosan (it is found around 2 % of modified sugar unit). Optical observations of 

GUVs suspensions and fluorescein labeled chitosan-GUVs suspensions were made using a laser 

fluorescence microscope (TCS SP8) with a 488 nm excitation wavelenght. Fluorescence acquisitions at 

this excitation wavelength are obtained successively.  
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5.2.6. Dynamic Light Scattering measurements  

Dynamic light scattering (DLS) measurements of P104 triblock copolymer micelles and LUV’s 

were performed in a Malvern zetasizer 5000 apparatus equipped with a 7132 multibit correlator and 

multiangles goniometer. The light source was a He-Ne 5mW laser with a wavelength of 632.8 nm. The 

scattering intensity was measured through a 400 μm pinhole. The correlation functions were averaged 

over 30 s in equilibrated sample. DLS measurements were carried out at 90°. The corresponding 

hydrodynamic radius was calculated using the Stokes-Einstein equation.  

 

5.2.7. Fluorescence measurements 

Fluorescence measurements were carried out on a Jobin Yvon Spectrometer Fluorolog III (2-2) in 

the S/R mode. Kinetic experiments were performed mixing a P104 solution containing PyC18 with a 

suspension of L-α-phosphatidylcholine liposomes at a pH of 6.5 without hydrophobic probe. 

Measurements were performed for different liposome concentrations and a constant P104 micelles 

concentration (10 mg/mL) with PyC18. Measurements were carried out at a temperature of 37 °C. An 

excitation wavelength of 344 nm was used, monitoring the emission every 30 s at λem= 480 nm for the 

excimer and at λmon= 376 nm for the monomer. The exchange dynamics between chitosan-coated 

liposomes and P104 micelles were performed by mixing a GUVs suspension at a pH= 6.5 with a specific 

coating of chitosan at a pH= 6.5 and with a selected -potential, with P104 triblock copolymer micelles 

at a concentration of 10 mg/mL.  

 

5.2.8. -potential measurements 

potential measurements were performed in a Malvern Zetasizer NanoZS at a temperature of 37 

ºC. The results are the average of 5 runs. The instrument measured the electrophoretic mobility of the 

particles and converted it to the potential using the classical Smoluchowski expression. For each 

potential during chitosan-coating of liposomes, the following protocol was performed: a given volume 

of chitosan solution at a constant pH was added to the liposome suspension, after homogenization, 1 mL 

of the solution was injected to the cell, which was then placed inside the instrument and finally the 

measurement was taken. After each measurement the whole solution was collected from the Zetasizer 

Nano cell and reintroduced into the bulk solution (to keep a nearly constant volume of solution) before 

the addition of the next volume of chitosan solution.  
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5.3. Experimental results   

5.3.1. Micellar structure and net charge of P104 amphiphilic triblock copolymer in aqueous 

solutions 

Dynamic light scattering measurements were used to identify conditions at which we can observe 

the formation of spherical and elongated micelles in P104 triblock copolymer solutions in water. As 

discussed in Chapter 3, the hydrodynamic radius remains constant within the temperature range from 30 

to 54 °C, indicating the formation of spherical micelles with an average size of 11.4 ± 1 nm [32].  

The net charge of P104 micelles was then evaluated with potential measurements at a 

temperature of 37 ºC and at a pH of 6.5, obtaining a value of -5.8 ±0.4 mV, which reveals a slight 

negative charge due mostly to traces of sodium or potassium hydroxide used as catalysts during the 

oxyalkylation step of P104 triblock copolymer synthesis [32].  

 

5.3.2. L-phosphatidylcholine liposomes characterization  

 5.3.2.1. Confocal microscopy observations of GUVs 

Confocal observations allowed visualizing L-phosphatidylcholine GUVs suspension in water at a 

concentration of 2 mg/mL and a pH of 6.5. Figures 5.4 a, b and c show confocal observations of 

liposomes in water with a -potential of around -26 mV. The average hydrodynamic radius for the 

observed GUVs in the images is around 12 m, however, a polydisperse suspension is obtained for 

GUVs formation (Figure 5.4 c).  

 

 

 

 

 

 

Figure 5.4. a)-c) Confocal observations of GUVs in water at a concentration of 2 mg/mL and a pH of 6.5. 
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5.3.2.2. LUVs size measurements through DLS 

The morphology of L-α-phosphatidylcholine large unilamellar vesicles (LUVs) was studied by 

Dynamic Light Scattering (DLS). The values of the hydrodynamic diameter and the intensity of 

scattering light were determined using 10 consecutive measurements at a constant temperature of 37 ºC 

and an incident light angle of 90°. We obtained an average value of 160 ± 20 nm for the hydrodynamic 

diameter. The formation of LUVs is then confirmed with the obtained size [1,33]. 

 

5.3.2.3. Net charge of liposomes  

-potential is a measure of the electric charge of a liposome, which is an important parameter since 

charge affects both the particle stability and liposomal pharmacology [34]. At a pH of 6.5, 

corresponding to the pH of the liposomes preparation (GUVs and LUVs), -potential is negative and 

has a value around to -22 mV, which is in good agreement with the values previously reported by 

several authors [34,35]. This negative value is probably due to the presence of carboxylic groups 

caused by the lipid degradation and to the phosphate and the quaternary amino groups of the 

phosphatidylcholine polar head, as we can see in Figure 5.5.  

 

 

 

 

 

Figure 5.5. Active sites of L-α-phosphatidylcholine: a) polar head group with a positive quaternary amino group, 

b) a negative phosphate group and c) two carbonyl oxygen groups, connecting the hydrophilic head group with the 

two hydrophobic tails. 

 

Figure 5.6 shows the -potential dependence with pH of L-α-phosphatidylcholine GUVs 

suspension. We can observe that -potential increases with the addition of HCl, which decreases the pH 

of the suspension. The isoelectric point (IEP) is found when -potential= 0 mV around a pH of 4.0, in 

good agreement with the literature [36]. Then, the -potential becomes positive and reaches a constant 

value of +14 mV at a pH around 2.0. When pH decreases, the dissociation of the phosphate acid and 

carboxyl groups is reduced, so the relative positive contribution of the quaternary amino group 
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increases [31]. On the other side, the -potential decreases with the addition of NaOH until reaching a 

constant value of around -30 mV at a pH of 8. The presence of a plateau, which slightly decreases with 

the addition of NaOH, was attributed to the complete dissociation of the phosphate and carboxyl groups 

of the lipids.  

 

 

 

 

 

 

 

Figure 5.6. -potential variation of L-α-phosphatidylcholine GUVs as a function of pH. The isoelectric point 

(IEP) is obtained around a pH=4.0. 

 

In the following study, the pH value of GUVs and LUVs suspension is maintained at pH=6.5, 

where the membrane is negatively charged and stable [34].  

 

5.3.3. Interactions between L-phosphatidylcholine LUVs and P104 micelles. 

 5.3.3.1. Electrostatic interactions through -potential measurements  

Since liposomes are stable and highly negatively charged, and P104 amphiphilic triblock copolymer 

micelles are weakly negatively charged probably due to catalysts residues [32], the electrostatic 

interactions between both particles were studied through -potential measurements. Figure 5.7 shows 

the -potential dependence with the ratio given by the P104 micelles concentration and the lipid out 

concentration, i.e. [P104]/[Lipid out], at a constant pH of 6.5 and a temperature of 37 ºC. Different 

amounts of a P104 micelles solution with a concentration of 10 mg/mL were mixed with a GUVs 

suspension with an initial concentration of 25 mg/mL, resulting on different [P104]/[Lipid out] 

ratios. We can observe that the -potential slightly decreases with the increase of the amount of P104 

micelles in the mixture, suggesting the presence of weak electrostatic interactions between micelles and 

the lipidic membrane. 
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Figure 5.7. -potential variation with the [P104]/[Lipid out] ratio, measured at a constant temperature of       

37 ºC and a pH=6.5.  

 

 5.3.3.2. Interactions through DLS measurements   

Interactions between P104 micelles and LUVs were also studied through DLS measurements by 

following the evolution of the hydrodynamic radius of different concentration LUVs suspensions upon 

the addition of various amounts of P104 micelles solution to the liposomes suspension. Figure 5.8 shows 

the variation of the hydrodynamic radius as a function of liposomes concentration for different amounts 

of P104, measured at a constant temperature of 37 ºC and a pH=6.5. We observe that the average 

hydrodynamic radius presents a constant value of 160 ± 20 nm.  

It is then of our interest to analyze the possibility of full coverage of liposomes with P104 micelles, 

unimers or if micelles can be completely independent. In this manner, as an example, the mixture of 

P104 micelles at a concentration of 2 mg/mL and liposomes at a concentration of 1.6 mg/mL is studied. 

Firstly, the number of micelles present in the mixture is calculated using the aggregation number (Nagg) 

of the amphiphilic triblock copolymer. For P104, an average value of Nagg = 74, reported for a P104 at a 

temperature of 35 ºC was taken from Liu et al. reports [37]. In this way, for a P104 concentration of 2 

mg/mL, the amount of micelles is 2.8 x 1015 micelles/mL. Then, the number of liposomes is obtained for 

a concentration of 1.6 mg/mL by calculating the average number of lipids per liposomes (with an 

average radius of 160 nm) knowing the area per polar head (0.71 nm) [38], this number equals to 2.45 

x1012 liposomes/mL. Then, from these two numbers of particles, micelles are able to cover liposomes, 

but due their small dimensions, the increase on the hydrodynamic radius (Rh) of eventually covered 

liposomes by micelles is not detected as shown in Figure 5.8, due to lack of precision of this technique. In 
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addition, due to the large molar mass of liposomes, it is not possible by DLS to identify the presence of a 

fraction of free micelles.  

 

 

       

 

 

 

 

 

Figure 5.8. Rh variation with the liposomes concentration, measured at a constant temperature of 37 ºC and a 

pH=6.5. P104 concentrations: 0.5 mg/mL (black line), 1 mg/mL (red line), 2 mg/mL (dark green line), 3 

mg/mL (light green line), 4 mg/mL (blue line) and 5 mg/mL (purple line).  

 

 5.3.3.3. Interactions through fluorescence measurements    

P104 triblock copolymer forms spherical micelles in water in a temperature range from 30 to 54 °C 

with an average size of 11.4 ± 1 nm. When a P104 solution containing micelles is mixed with a 

liposomes suspension, the total concentration of P104 is diluted. Some of the micelles will go to the 

liposomes and they will fuse together, some micelles will be adsorbed on the liposomes and another part 

of the copolymer will go into water since the CMC is approached.   

 The micellar behavior of P104 in water was investigated using the excimer and the monomer 

formation of PyC18. The evolution of the PyC18 emission spectra contained in a P104 solution at 

different concentrations in a liposome suspension of fixed concentration of 25 mg/mL, was then studied 

and is illustrated in Figure 5.9 a. Here it is possible to observe the increase in the excimer and monomer 

bands, located at λex=480 nm and λmon=376 nm, respectively, with increasing the micelles concentration 

in the final solution. Figure 5.9 b shows the evolution of the PyC18 emission spectra contained in a P104 

solution in water at different concentrations. The variation on the excimer and monomer bands was 

quantified by using the ratio between the monitored intensities, i.e. Imon/Iex, for the P104 micelles and 

liposomes mixture and for the dilution of P104 micelles in water. Figure 5.10 a shows the obtained 

results in terms of the inverse of P104 triblock copolymer concentration. In both cases it is possible to 
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identify a change localized around the P104 concentration of 0.67 mg/mL in water and around the P104 

concentration of 0.53 mg/mL in liposome suspensions, related to the CMC of the amphiphilic block 

copolymer at the temperature of 37 ºC, in good agreement with previous results. With these results, we 

can see that the value of P104 CMC at 37 ºC remains almost constant in the liposomes environment. 

Figure 5.10 b shows a schematic representation of P104 structural behavior in GUVs suspension.   

The control of the stability of the structures of drug delivery vectors to a particular variation in the 

environment plays an important role in the efficiency of controlled drug release. The low CMC is taken 

as an indicator that shows that the dilution after administration will not lead to the breakdown of 

micelles, allowing them to circulate in the environment in which they are released and accumulate in 

their specific target [43]. 

 

 

 

 

 

 

Figure 5.9. Emission spectra of PyC18 in a) P104 aqueous solutions mixed with GUVs suspensions evaluated at 

different concentrations of P104 and b) different P104 concentrations in water at a temperature of 37 °C.  

a)       b)  

 

 

 

 

 

 

Figure 5.10. a) CMC evaluation of P104 triblock copolymer in water and in L-α-phosphatidylcholine GUVs 

suspension at a constant pH=6.5 and a temperature of 37 °C. b) Schematic representation of P104 in GUVs 

suspension. 
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5.3.4. Experimental conditions to monitor the exchange dynamics between amphiphilic 

block copolymers and L--phosphatidylcholine GUVs suspensions through fluorescence 

measurements  

The dynamics between P104 amphiphilic triblock copolymer, selected as vectors, and GUVs 

prepared with L--phosphatidylcholine are studied in this section. PyC18 was firstly solubilized in P104 

micelles by mixing P104 (10 mg/mL) with PyC18 at higher temperatures than 70 ºC. P104/water 

solutions were used at concentrations and at a temperature above the critical conditions at which 

spherical micelles are formed. The experimental conditions were selected close to the physiological 

conditions, i.e. controlled pH of 6.5 and a temperature of 37 ºC, in order to facilitate the understanding 

of micellar drug delivery vehicles interactions with phospholipid membranes.  

Figure 5.11a and b show the spectra of a GUVs suspension at a concentration of 25 mg/mL and the 

emission spectra of PyC18 in an aqueous solution of P104 with a concentration of 10 mg/mL mixed 

with GUVs suspension 17.5 mg/mL and the emission of the liposome, respectively. In our study, we 

used an excitation wavelength of 344 nm. The fluorescence spectra of copolymer micelles containing 

more than one molecule of PyC18 exhibit an emission excimer band at 480 nm and an emission monomer 

band at 376 nm. We noticed that L--phosphatidylcholine presents a fluorescence spectrum in the 

wavelength range between 350 and 600 nm with a characteristic peak around 425 nm. This response is 

related to impurities of liposomes suspensions.  

a)       b) 

 

 

 

 

 

 

Figure 5.11. a) Emission spectra of GUVs suspension at a concentration of 25 mg/mL and b) emission spectra of 

PyC18 in an aqueous solution of P104 with a concentration of 10 mg/mL mixed with GUVs at a concentration of 

17.5 mg/mL, both measured at a temperature of 37 ºC and at a pH=6.5.   
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We can observe that the intensity signal obtained for liposomes suspension is considerably lower 

than the intensity signal obtained for PyC18 in P104 micelles, however, it is important is important to 

avoid the emission spectra of liposomes. In this way, in further analysis, the emission spectrum of 

liposomes will be subtracted from PyC18 in P104 micelles emission spectra in order to remove any other 

contribution to the fluorescence intensity that gives us the information about the exchange dynamics by 

following PyC18 bands evolution [25,40-42]. It is worth to mention that the contribution of the 

liposome intensity signal depends on its concentration, while increasing liposomes suspension 

concentration the intensity increases, however, at low concentrations, the signal is almost negligible. 

Figure 5.12 shows the initial emission spectra of PyC18 in P104 micelles mixed with GUVs suspensions 

and the spectra after after subtraction of the liposomes emission signal. A slight decrease in the excimer 

band is detected after removing the fluorescence signal of liposomes.  

 

 

 

 

 

 

 

Figure 5.12. Emission spectra PyC18 in an aqueous solution of P104 with a concentration of 10 mg/mL mixed 

with GUVs at a concentration of 17.5 mg/mL before and after the subtraction of liposomes fluorescence intensity, 

both measured at a temperature of 37 ºC and at a pH=6.5.   

 

Additionally, and contrary to P104 micelles kinetic measurements, in these experiments it was not 

possible to measure the excimer and monomer decays as a function of time with a simple kinetic 

measurement. It was then necessary to measure consecutively the emission spectra of the mixture of 

P104 micelles and GUVs suspensions every 5 minutes. The evolution of the obtained spectra as a 

function of time was treated in terms of the ratio given by the value obtained from the integration of the 

excimer intensity peak (440 nm< Iex <550 nm) and the integration of the monomer intensity peak (366 

nm< Imon<425 nm). Several wavelength intervals were tested in order to remove any other liposomes 

signal contribution to the emission spectra, resulting in the same values. A special program using 

OriginPro software was developed in order to subtract the intensity signal of liposomes from each 

emission spectra and to integrate the excimer and monomer intensity peaks. Finally, measurements 
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lasted about a week, so it was necessary to inspect that liposomes remained unaffected during the 

exchange period. Figure 5.13 shows the evolution with time of the emission spectra of PyC18 in an 

aqueous solution of P104 at a concentration of 10 mg/mL mixed with GUVs.  

 

 

 

 

 

 

 

Figure 5.13. Evolution with time of the emission spectra of PyC18 in an aqueous solution of P104 at a 

concentration of 10 mg/mL mixed with GUVs suspension at a concentration of 17.5 mg/mL. The temperature 

was maintained at 37 ºC and at the pH=6.5.   

 

5.3.5. Experimental study of the exchange dynamics between P104 micelles and 

liposomes.   

Firstly, it is worth to mention that the difference in the hydrophobicity of P104 triblock copolymer 

micelles and L--phosphatidylcholine contributes to the exchange of PyC18. Figure 5.14 shows the 

emission spectra of PyC18 in an aqueous solution of P104 with a concentration of 3 mg/mL before and 

after the exchange with a GUVs suspension at concentration of 17.5 mg/mL and a constant pH of 6.5. 

The emission spectrum presents a broad excimer emission with a peak at 480 nm and monomer 

fluorescence at 376-400 nm, as for the case of PyC18 spectrum in amphiphilic block copolymer micelles 

[25]. The existence of the excimer emission at 480 nm infers the presence of micelles bearing two or 

more PyC18 molecules. The response of the monitored emission 4 days after the mixture of P104 

micelles and GUVs shows a decrease in the value of the excimer and an increase of the monomer 

intensity.  
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Figure 5.14. Emission spectra of PyC18 in 3 mg/mL P104 aqueous solution mixed with a 17.5 mg/mL GUVs 

suspension (right after mixing) before and 4 days after the exchange, both measured at a temperature of 37 ºC.  

 

Figures 5.15 a and b show the time-scan analysis for the evolution of the monomer and the excimer 

intensities, respectively, after mixing a 3 mg/mL P104 solution, containing PyC18, with 6, 8, 10 and 15 

mg/mL GUVs suspensions. During the mixing, a change on the environment of P104 micelles with 

PyC18 is caused, modifying the overall fluorescence intensity, which increases rapidly in the first hour 

and then decreases progressively. This phenomenon is probably due to some of the additives of the 

liposomes that could migrate into the micelles and change the fluorescence of the PyC18. The increase is 

most likely due to oxygen reduction in P104 micelles, leading to an increase of the total fluorescence 

intensity. We can also observe that the intensity of the peak reached after the increase of the overall 

fluorescence intensity varies with the concentration of liposomes.   

 

 

 

 

 

 

 

 

 

Figure 5.15. a) Imon decay and b) Iex decay as a function of time obtained during the exchange of 3 mg/mL P104 

micelles containing PyC18 with a 6, 8, 10 and 15 mg/mL GUVs suspension. The measurement temperature is 37 

ºC.  
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Figure 5.16 shows the Iex/Imon decay as a function of time for a mixture of 3 mg/mL P104 micelles 

containing PyC18 with GUVs suspension at a concentration of 17.5 mg/mL. The observed peak from the 

evolution of the monomer and the excimer intensities disappears here. Since Iex/Imon I/I0, this ratio 

will depend mainly on the average number of PyC18 per micelles, resulting in the best way to measure 

the exchange dynamics between P104 micelles containing PyC18 and liposomes. From the time-scan 

analysis of Imon/Iex it is possible to obtain the main relaxation time () of the global exchange dynamics 

between micelles and liposomes (i.e. 420 min for these specific conditions). The kinetic decay can be 

simulated by a mono-exponential function with an apparent relaxation time (), which equals to 740 min 

for this case. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Iex/Imon decay as a function of time obtained during the exchange of 3 mg/mL P104 micelles 

containing PyC18 with a 17.5 mg/mL GUVs suspension. The measurement temperature is 37 ºC. The solid line 

represents the fit with a mono-exponential function that simulates the decay of Iex/Imon. 

 

A similar behavior to the one obtained for the interactions between amphiphilic triblock 

copolymers micelles at the equilibrium, in which the response follows a mono-exponential function, is 

observed. The kinetic decay can be simulated by a mono-exponential function with an apparent 

relaxation time (). The kinetic constant, kdecay, of P104 micelles-GUVs exchange can be then quantified 

from the reciprocal of the apparent relaxation time obtained from the following expression: 

Iex/Imon= Ae-t/          (5.1) 

where A and B are the constants obtained from the fit of the experimental results. 

It is worth to mention that the apparent relaxation time () obtained from the mono-exponential 

function is similar to the average value <τ> calculated from the fit to two exponentials.  
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5.3.5.1. Dependence on liposomes concentration  

When the kinetics are repeated with different GUVs concentrations and with a P104 solution with 

a constant concentration, we observe a linear dependence of the exchange rate kdecay=1/τ on the 

concentration of liposomes (GUVs). Figure 5.17 shows the kinetic constant (kdecay) dependence with the 

concentration of liposomes in a mixture containing P104 micelles filled with PyC18 at a concentration of 

3 mg/mL. We can observe an increment on kdecay values with the increase of liposomes concentration in 

the mixture and a linear dependence within the concentration range from 8 to 17.5 mg/mL according to 

the following equation: 

kdecay= k1+ k2 [liposomes]                        (5.2) 

 

 

 

 

 

 

 

Figure 5.17. Kinetic constant (kdecay) calculated from the fits of the exchange decays obtained for P104 micelles 

containing PyC18 and GUVs suspension as a function of liposomes concentration. The measurement temperature is 

37 ºC and the pH= 6.5.  

 

5.3.5.2. Exchange dynamics between P104 micelles and liposomes  

The linear dependence on kdecay as a function of the liposomes concentration with a kinetic constant 

called k2 or fusion-adherence kinetic constant is considered a second order mechanism. From this we can 

say that the exchange dynamics between P104 amphiphilic block copolymers and liposomes is a 

collective mechanism involving adhesion-fusion, exchange and separation. It depends on the variation of 

the amount of liposomes in the suspension.  

Now it is possible to compare the collective dynamics obtained from the exchange between P104 

micelles and from the exchange between P104 micelles and liposomes. Figure 5.18 shows the kinetic 
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constant (kdecay) dependence with [liposomes] in different mixtures containing P104 micelles filled with 

PyC18 at a concentration of 3 mg/mL and the kinetic constant (kdecay) dependence with [P104] at a 

temperature of 37 ºC. A three magnitude-order difference of kdecay values calculated for P104 micelles-

liposomes exchange is obtained in comparison with kdecay values calculated for micelle-micelle exchange.  

 

 

 

 

 

 

 

Figure 5.18. Kinetic constant (kdecay) calculated from the fitting of the exchange decays of a sample of PyC18 in 

P104 and L--phosphatidylcholine vesicles as a function of P104 triblock copolymer concentration. The 

measurement temperature is 37 ºC.  

 

However, a better comparison of these two systems is performed through the analysis of kdecay as a 

function of the number of empty micelles and empty liposomes (Figure 5.19 a and b). The rate of 

collision-adhesion exchange, k2, calculated from the slope of the kdecay as a function of the molar 

concentration of liposomes is k2= 1256 M-1 s-1. This value is 50 times the fusion rate of P104 micelles–

micelles, which is equal to 25 M-1s-1. 

The exchange rate via collision-adhesion-exchange process is the product of a diffusion controlled 

rate kdiff and the probability of adhesion-exchange (Preac) (Equation 5.3).  

k2 =kfus = kdiff . Preac                    (5.3) 

The diffusion controlled rate kdiff can be written as:  

kdiff =  4π NA (Rh1+Rh2)(D1+D2)*1000                (5.4) 
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where NA is the Avogadro number, Rh1 and Rh2 are the hydrodynamic radius of liposomes and P104 

micelles, respectively. D1 and D2 are the diffusion coefficients of liposomes and the P104 micelles, 

respectively. When using Stokes-Einstein equation for the diffusion-controlled coefficient (Equation 3.1 

of this part of the thesis), Equation 5.4 becomes:  

kdiff = 4 NA.kB T/3 (Rh1+Rh2)2/(Rh1 Rh2) . 1000               (5.5) 

where kB is the Boltzmann constant, T is the temperature and  is the water viscosity. For the liposome-

micelles case, kdiff = 5x1010 M-1 s-1 while for micelle-micelle case kdiff = 7x109 M-1 s-1. The collision rate of 

micelle-liposome is higher than that of micelle-micelles due to the liposome size. Therefore, the 

probability of adhesion-exchange (Preac) is 1.25x10-8, which is in the same order of magnitude of P104 

micelle-micelle Preac (2.4x10-8). This suggests that P104 micelles control the adhesion-exchange process 

of P104-liposome system.   

 

 

 

 

 

 

Figure 5.19. a) Kinetic constant (kdecay) vs [Micelles] and b) Kinetic constant (kdecay) vs [Liposomes]. The 

measurement temperature is 37 ºC.  

 

On the other hand, a first order mechanism with a rate independent of the liposomes concentration 

and with a kinetic constant called k1 is related to the exit-entry process of the probe (dominated by 

water solubility and which is very low), to the exchange-assisted by the unimer (almost negligible) of 

the probe or to fission-fusion exchange.  

A moderately water soluble molecule as pyrene (10-7 mol/L) can be mainly exchanged through an 

exit-entry process with a rate of certain orders of magnitude greater than the rate observed in this 

dynamic. In addition, the C18 chain present in the pyrene derivative, PyC18, reduces its solubility in 

water and causes the exit ratio to be negligible during the experiment. To confirm this statement, 

complementary experiments were performed, as the limitation for the exit-entry process of the PyC18 is 

the insolubility in water (Cw) or the diffusion through the core/corona of micelles. GUVs suspensions 
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was left in contact for a week with a dialysis bag dialysis tubing cellulose membrane (which is supposed 

to be permeable for free pyrene) with P104 micelles containing PyC18. The emission spectra of GUVs 

suspensions shows a very low signal allowing concluding that exit-entry of PyC18i into GUVs 

suspension (25 mg/mL) has to be experimentally discarded (Figure 5.20). Some results are also obtained 

for PyC18 in water. Then, the emission spectra of the liposome suspensions in contact with the bag 

containing P104 micelles with PyC18 and water with PyC18 do not present any appearance of a specific 

fluorescent peak. These results show that the exchange of the probe by exit-entry of the micelles to the 

liposomes is most likely not crucial in the mechanism.  

 

 

 

 

 

 

 

Figure 5.20. Emission spectra of a GUVs suspension containing PyC18 (P) (black line), emission spectra of GUVs 

suspension left in contact with a membrane filled with P104 micelles containing PyC18 (P) (red line), emission 

spectra of GUVs suspension left in contact with a membrane filled with water containing PyC18 (P) (blue line).  

 

Finally, we propose an interaction mechanism between P104 triblock copolymer micelles and L--

phosphatidylcholine GUVs suspensions dominated by collective dynamics that could involve the 

following steps: collision of a micelle and a GUV, adhesion of micelles on the lipidic membrane, transfer 

of solute inside the lipidic membrane of the GUV and followed by a possible separation (Figure 5.21). As 

conclusion, the vectorisation dynamics of hydrophobic drugs through vectors such as amphiphilic block 

copolymers can be followed, studied and quantified by using this fluorescence technique.  

 

 

 

 

Figure 5.21. Schematic representation of the exchange mechanism between P104 micelles and liposomes. 
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5.3.6. Role of chitosan interactions in the exchange dynamics between amphiphilic block 

copolymers and L--phosphatidylcholine liposomes suspensions 

In liposomes applications, polymer coating can improve the structural stability of membranes, the 

biocompatibility and drug delivery efficiency [44,45]. Chitosan has been recently used to improve 

liposomes biocompatibility, biodegradability and mucoadhesivity [44,46]. Quemeneur et al. [44] 

previously reported that chitosan adsorbs flat on the surface of a zwitterionic phosphatidylcholine 

membrane of vesicles and demonstrated that the origin of the interactions is mainly electrostatic. They 

also reported that the net charges of positively charged chitosan and DOPC phospholipid membranes 

depend on the pH (passing from positive to negative net charge when pH increases). In our work, the 

role of the addition of chitosan on liposomes in the interactions between amphiphilic block copolymer 

micelles and liposomes is firstly studied through DLS and potential measurements. Then, we 

investigated the role of chitosan-liposomes coating in the collective exchange mechanisms between 

micelles and liposomes through fluorescence measurements.  

 

5.3.6.1. Chitosan coating on GUVs observed by fluorescence confocal microscopy 

GUVs suspensions were incubated with fluorescein labeled chitosan at a pH of 6.5 and were then 

observed by confocal imaging. The lipidic membrane can be visualized if an adsorption of the labeled 

polyelectrolyte is obtained from the electrostatic interactions between negative and positive charges of 

chitosan and GUVs, respectively. The obtained -potential of labeled chitosan coated GUVs, which 

represents the net charge of the particle, is not affect by the fluorescein dye, as reported previously by 

Quemeneur et al. [46]. Figure 5.22 shows the observation of the fluorescent lipid bilayer and polymer 

decoration of a chitosan coated GUV, in which all the surface of the liposome vesicle looks 

homogeneously covered by the chitosan without any apparent modification of the vesicle shape.    

 

 

 

 

Figure 5.22. Fluorescence confocal observations of a chitosan (Mw=500 000 and a DA of 0.19) coated GUV 

incubated at a pH= 6.5. We visualize the lipid membrane with the polyelectrolyte coating.   
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5.3.6.2. Chitosan adsorption onL--phosphatidylcholine LUVs and GUVs  

The role of chitosan adsorption on LUVs was determined through DLS and -potential 

measurements and observed through fluorescence confocal microscopy on GUVs. The pH of both initial 

chitosan and LUVs suspension, which is equal to 6.5, was controlled in order to maintain the net charge 

of each component constant during the adsorption process. As reported before [44], the influence of 

vesicle size on chitosan adsorption, determined through -potential measurements of LUVs and GUVs 

as a function of added cationic chitosan is negligible, so both LUVs and GUVs present the same 

behavior with chitosan coating.      

Figure 5.23 a shows the -potential and particle size variation upon the addition of cationic chitosan 

to a LUVs suspension of 2.0 mg/mL at a temperature of 37 ºC, as a function of the molar ratio 

[NH2]added/[Lipid out]; [NH2] represents the total concentration of amino groups added whatever is 

the degree of protonation. It is possible to observe that upon the first additions of the positively charged 

chitosan, the negative net charge of the GUV decreases until reaching a value of 0 mV, i.e. the 

isoelectric point (IEP), corresponding to a molar ratio [NH2]added/[Lipid out]= 3 at which the 

neutralization of the global negative charges of the liposomes is reached.  

The information obtained through DLS for the hydrodynamic radius of the particles reveals a 

maximum around the IEP, corresponding to the presence of aggregation of of partially chitosan-coated 

LUVs with a maximum size of around 1600 nm. Then, upon progressive addition of chitosan, 

adsorption still takes place on liposomes but aggregates dissociate until resulting in isolated positively 

charged LUVs with the same average size as LUVs in the bare state. This is due to an overcharging of 

liposomes upon the addition of chitosan, which originates electrostatic repulsion. Then, the 

concentration of chitosan in the obtained -potential plateau corresponds to the dissociation of 

aggregates, from which it is possible to work with isolated chitosan-coated vesicles. Figure 5.23 b shows 

a schematic representation of LUVs suspension structure for the cases previously described: (1) 

corresponds to isolated bare LUVs without the addition of chitosan, (2) aggregation of LUVs upon the 

addition of chitosan up to the IEP, -potential= 0 mV, and (3) isolated chitosan-coated LUVs at coating 

saturation. As proposed by Quemeneur et. al [31,44], this mechanism is due to the equilibrium between 

long range repulsions and short range attractions of electrostatic nature related to a patch-like structure 

model  for membrane coating [47]. Figure 5.23 c presents the different states described in Figure 5.23 b 

with confocal fluorescence microscopy by using fluorescein labeled chitosan at a pH of 6.5. Firstly it is 

presented the visualization of a bare GUV with a -potential=-26 mV, then we observe the aggregation 

of GUVs at the isoelectric point and finally, the isolated chitosan-coated GUVs with a -potential=20 

mV, corresponding to the -potential plateau at overcharging state. In this manner, the coating of 

GUVs with cationic chitosan at different -potentials, at which liposomes present a different behavior 
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(isolation or aggregation), will be used to study their effects on the interactions with P104 amphiphilic 

block copolymer micelles. 

a) 

 

 

 

 

 

 

b) 

 

 

c) 

  

 

 

 

 

Figure 5.23. a) -potential and Rh variation upon the addition of cationic chitosan to LUVs, expressed by the 

molar ratio [NH2]added/[Lipid out] at a pH=6.5. b) Schematic representation of LUVs suspension structure for 

the following cases: (1) isolated bare LUVs without the addition of chitosan, (2) aggregation of LUVs upon the 

addition of chitosan up to the isoelectric point, -potential= 0 mV, and (3) isolated chitosan-coated LUVs at 

coating saturation. c) Aggregation-separation process observed on GUVs with confocal fluorescence microscopy.          
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5.3.6.3. Chitosan adsorption onP104 triblock copolymer micelles  

After studying the role of chitosan adsorption on LUVs and GUVs, a chitosan adsorption study on 

P104 triblock copolymer micelles was also performed through DLS and -potential measurements. The 

pH of both initial chitosan and P104 micelles solution, which is equal to 6.5, was controlled in order to 

maintain the net charge of each component constant during the adsorption process. The concentration 

and temperature of P104 were maintained at the conditions at which stable spherical micelles are 

preserved, i.e. 10 mg/mL and 37 ºC. Figure 5.24 a shows the -potential and particle size variation upon 

the addition of cationic chitosan to P104 micelles as a function of the molar ratio [NH2]added/[P104]. 

As for the case of LUVs, we can observe that upon the first additions of the positively charged chitosan, 

the slightly negative net charge of P104 micelles decreases until reaching a value of 0 mV, i.e. the 

isoelectric point (IEP), corresponding to a molar ratio [NH2]added/[P104]= 0.05, so a very small 

amount of chitosan is needed in order to neutralize all the negative charges of P104 micelles resulting 

from the synthesis residues.  

 a) 

 

 

 

 

 

 

b) 

 

 

Figure 5.24. a) -potential and Rh variation upon the addition of cationic chitosan to P104 block copolymer 

micelles at a concentration of 10 mg/mL, pH=6.5 and a controlled temperature of 37 ºC, expressed by the molar 

ratio [NH2]added/[P104]. b) Representation of micelles structure for the following cases: (1) isolated bare P104 

micelles without the addition of chitosan, (2) aggregation of P104 micelles upon the addition of chitosan up to the 

isoelectric point, -potential= 0 mV, and (3) isolated chitosan-coated P104 micelles at coating saturation. 
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From DLS measurements, we can observe that the hydrodynamic radius of P104 micelles, which is 

initially around 12 nm, shows a maximum around the IEP, corresponding to the presence of aggregates 

of partially chitosan-coated P104 micelles with a maximum size of around 50 nm. Upon progressive 

addition of chitosan, the adsorption on P104 micelles continues, but aggregates also dissociate until 

resulting in isolated positively charged P104 micelles with the same average size as an initial micelle in 

the bare state. As for the liposomes, this is due to an overcharging of P104 upon the addition of 

chitosan, which originates electrostatic repulsion. Figure 5.24 b shows a schematic representation of 

P104 micelles structure during the addition of cationic chitosan: (1) corresponds to isolated bare P104 

micelles without the addition of chitosan, (2) aggregation of P104 micelles upon the addition of chitosan 

up to the IEP, -potential= 0 mV, and (3) isolated chitosan-coated P104 micelles at coating saturation. 

These modifications on P104 micelles characteristics could improve the storage stability of 

hydrophilic drugs in micelles core and could prevent their release before reaching the specific target and 

receiving the adequate stimuli to achieve an efficient and controlled drug delivery. As an example, a 

drug delivery vector was recently developed with chitosan coated iron oxide nanoparticles, which was 

capable of being internalized by cells, was able to escape the endosome and inhibited the production of 

pro-inflammatory cytokines (small proteins important in the immune system) [48].   

 

5.3.6.4. Influence of GUVs suspensions concentration on chitosan adsorption  

The influence of liposome concentration in the mechanism of adsorption of chitosan on the lipidic 

membrane was studied through -potential measurements. Figure 5.25 shows the dependence of the -

potential with the added [NH3
+] for three different liposome suspensions concentrations: 0.02, 2.0 and 

10.0 mg/mL.  

 

 

 

 

 

 

 

Figure 5.25. Variation of the -potential as a function of the added [NH3
+] for three different liposome 

suspensions concentrations: 0.02, 2.0 and 10.0 mg/mL at a constant pH of 6.5.  
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Both chitosan solution and GUVs suspension were used at a constant pH of 6.5. The initial 

potential values for each GUVs suspensions are negative due to the dissociation of phosphates and 

possibly carboxylates resulting from lipid oxidation. However, with the progressive addition of 

chitosan, the potential values become positive reaching a constant value that will dependent in the 

concentration of liposomes. The amount of chitosan added to get potential= 0 mV increases with 

liposome concentration. For a liposome concentration of 0.02 mg/mL, a plateau in potential values is 

reached around 35 mV, though, for higher liposome concentrations, the potential values decrease, 

reaching constant value around 27 mV and 18 mV, for concentrations of 2.0 and 10 mg/mL, 

respectively. In this manner, we can observe that the potential in the plateau presents a dependence 

on liposome concentration for the adsorption process of chitosan on the lipidic membrane. Some 

interactions between liposomes coated by excess of chitosan may form supramolecular structures (with 

some turbidity).   

 

5.3.6.5. Interactions between chitosan coated P104 micelles and chitosan coated GUVs 

Figure 5.26 shows the dependence of the -potential with the ratio [P104]/[Lipid out] obtained 

through the progressive addition of chitosan-coated P104 micelles in excess (-potential average of 22 

mV) to a GUVs suspension of 10 mg/mL coated with 30 L chitosan (-potential average of -20 mV). 

The obtained results could be interpreted by an adsorption mechanism of positively charged chitosan 

coated P104 on the lipidic membrane. However, this needs to be more studied in order to determine a 

detailed mechanism. A plateau is observed around a -potential value of +20 mV, which corresponds to 

the isolated chitosan-coated P104 micelles adsorbed in the lipidic membranes.  

 

 

 

 

 

 

Figure 5.26. Variation of the -potential as a function of the ratio [P104]/[Lipid out] for the progressive 

addition of chitosan-coated P104 micelles to chitosan-coated GUVs at a constant pH of 6.5. All measurements 

were performed at a constant temperature of 37 ºC.  
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5.3.6.6. Exchange between P104 triblock copolymer micelles and GUVs with chitosan 

coatings  

P104 triblock copolymer micelles and chitosan-coated GUVs exchange dynamics where studied 

through -potential and fluorescence measurements, by using the highly hydrophobic PyC18 as the 

simulation of the hydrophobic drug. The fluorescence emission spectra of PyC18 (P) in P104 micelles 

were firstly compared with the fluorescence emission spectra of PyC18 (P) in chitosan-coated P104 

micelles. These measurements were performed in order to identify any kind of variation due to the 

addition of the cationic chitosan to the micelles. Figure 5.27 shows the emission spectra of PyC18 (P) in 

P104 micelles at a concentration of 10 mg/mL, with and without a chitosan-coating. The emission 

response for both systems can be superposed, so the chitosan adsorption on the lipid membrane does not 

interfere in the emission spectra of PyC18 at the chosen environment. 

 

  

 

 

 

 

 

 

Figure 5.27. Emission spectra of PyC18 (P) in P104 aqueous solutions at a concentration of 10 mg/mL, with 

and without a chitosan-coating at a temperature of 37 °C. 

 

In a second step, the influence of chitosan adsorbed on liposomes and/or micelles is examined to 

evidence its role on PyC18 transfer. In Figure 5.28 a, negatively charged P104 micelles are added 

progressively to chitosan-coated liposomes at -potential around zero (form aggregates, see Figure 5.28 

b). The -potential becomes negative as a proof of P104 micelle interactions. After 9 hours, a small 

modification of the fluorescence spectrum is observed (Figure 5.28 c). When liposomes are highly 

positively charged, they are stable and isolated, as seen in Figure 5.28 b. In this case, the fluorescence 

spectrum shows only a slight modification. This indicates that the transfer of PyC18 into the liposome is 

even slower. One hypothesis should be that micelles adsorb the excess of chitosan and that these two 

types of particles repel each other, both being positively charged.  
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a) 

 

 

 

 

b) 

 

 

 

 

c) 

 

 

 

 

 

 

 

Figure 5.28. a) -potential variation upon the addition of P104 micelles to chitosan-coated GUVs suspension at 

a concentration of 10 mg/mL: A) -potential=0 mV and B) -potential= 24.5 mV. b) Visualizations of liposome 

initial state A) aggregation of chitosan-coated GUVs at the IEP and B) isolated chitosan-coated GUVs observed 

with confocal fluorescence microscopy. c) First and last emission spectra of PyC18 (P) in P104 aqueous solutions at 

a concentration of 10 mg/mL mixed with chitosan-coated GUVs: A) -potential=0 mV and B) -potential= 24.5 

mV. The temperature was always controlled at 37 °C. 

 

Finally, the schematic representations of the role of chitosan in the exchange mechanism between 

P104 micelles and chitosan-coated liposomes with a -potential near to the IEP and with -potential in 

the adsorption plateau of the -potential curve are presented in Figures 5.29 a and b, respectively. 
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Figure 5.29. Schematic representations of the role of chitosan in the exchange mechanism between liposomes and 

P104 micelles for a) -potential near to the IEP and b) -potential in the adsorption plateau of the -potential 

curve. 

 

5.4. Particular conclusions for the exchange dynamics between amphiphilic block 

copolymers and lipidic membranes  

P104 triblock copolymer micellization was firstly studied in water and in a GUVs suspension in 

order to determine P104 CMC at these conditions. A CMC value was found around the P104 

concentration of 0.53 mg/mL in the GUVs suspensions. The exchange dynamics between amphiphilic 

block copolymers and GUVs suspensions were successfully monitored by using a hydrophobic 

fluorescent probe that can be exchanged via different mechanisms. The evolution of the emission spectra 

as a function of time was treated in terms of the ratio given by the values obtained from the integration 

of the excimer intensity peak (440 nm< Iex <550 nm) and the integration of the monomer intensity peak 

(366 nm< Imon<425 nm). We found that the decrease of the ratio Iex/Imon with time follows a single-

exponential decay after mixing GUVs suspension with P104 micelles containing PyC18, from which it is 

possible to quantify the exchange time constant. Finally, we demonstrated that the exchange dynamics 

between amphiphilic block copolymer micelles and liposomes is a collective mechanism that follows a 
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first order mechanism with linear velocity rate independent of the liposomes concentration and a second 

order mechanism with linear dependence of kdecay as a function of the liposome concentration.  

On the other side, we demonstrated that electrostatic interactions play an important role in the 

adsorption of chitosan on amphiphilic block copolymer micelles and liposomes. The collective exchange 

mechanisms between chitosan coated liposomes and micelles could be reduced in presence of chitosan 

(near the isoelectric point) and the chitosan addition slows down the exchange rate of collective 

mechanisms.   
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Conclusions 

 A study of amphiphilic block copolymer P104 in water was performed through density, sound 

velocity, viscosity and dynamic slight scattering (DLS) measurements in the dilute and semi-dilute 

regimes between 10 and 65 ºC.  

 The structural behavior of the P104/water system was analyzed and allowed determining the critical 

micellar temperature (CMT), the micellar growth temperature (MGT) and the clouding point 

temperature (CPT) as a function of P104 concentration.   

 The temperature domains at which P104 spherical micelles and P104 elongated micelles exist are 

greater than for other triblock copolymers, allowing their applications in a wider field.  

 The dependence of ISCA/ISCA
0 with Rh was compared to the Perrin model of prolate ellipsoids, oblate 

ellipsoids and spheres, and was found to be close to the predicted behavior for prolate ellipsoids, 

suggesting that P104 micelles grow as prolate rods.  

 The determined micellar structures for P104 amphiphilic copolymer in the temperature range 

between 25 and 55 ºC (spherical micelles domain), can be used as micellar nanocarriers for drug 

controlled release. Their nanoscale size makes them a suitable option for targeted drug delivery 

applications, including storage, controlled release and protection of the hydrophobic drugs. The shape of 

micelles is affected by temperature, which can be exploited for the design of new formulations. 

 The effect of NaCl addition on CMT, MGT and CPT was described.  

 Rheological properties were studied in a P104 concentration range from 50 to 600 mg/mL and were 

found to be greatly dependent on temperature and concentration, since the storage modulus increases 

between two and three orders of magnitude. At higher concentrations and temperatures, this copolymer 

solutions form thermo-reversible and physical gels. After the MGT, spherical micelles grow into rod-

like micelles (prolates), which increases the viscoelasticity of the solutions. 

 We described the growth dynamics of spherical micelles to elongated micelles in aqueous solutions of 

P104 triblock copolymer by performing “temperature jumps” experiments, from which it was possible to 

obtain the variation of the scattering light intensity and the hydrodynamic radius as a function of time.  

 The scattering intensity, the hydrodynamic radius and the aspect factor evolution as a function of 

time were analyzed by using a mono-exponential function with an apparent relaxation time. The growth 

dynamics present a relatively slow process with characteristic times within the range of 800s to 4000s.  

 The linear increase of the growing rate with P104 triblock copolymer concentration shows that the 

structural transition is dominated by a fusion-fission mechanism with normal size micelles.  
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 We demonstrated that collective dynamics take place between P104 spherical micelles and P104 rod-

like micelles at the equilibrium. The exchange mechanism, depicted by kdecay, consists on two processes: a 

first order mechanism with linear velocity independent of the empty micelles concentration, related to 

the fission process, and a second order mechanism with linear dependence on kdecay as a function of the 

empty micelles concentration, related to the fusion process. 

 It was found that fission and fusion constants present two apparent activation energies with opposite 

sign, a negative apparent activation energy in the micelles regime and a positive apparent activation 

energy in the rod-like micelles regime. We show that the barrier energy to fission is controlled by the 

core surface tension in the spherical micelles regime and by a combination of the surface tension and the 

coronal energy in the rod-like micelles regime. 

 P104 triblock copolymer micellization was studied in water and in GUVs suspension, from which 

was possible to detect a similar CMC of P104 in both environments. 

 The exchange dynamics between amphiphilic block copolymers and GUVs suspensions were 

successfully monitored by using a hydrophobic fluorescent probe that can be exchanged via different 

mechanisms.  

 The emission spectra obtained from fluorescence measurements during the interactions between 

P104 amphiphilic block copolymers filled with PyC18 and GUVs suspensions show an increase on the 

monomer, representing the presence of the PyC18 (which simulates the hydrophobic drug) interacting 

with GUVs lipidic membrane 

 The evolution of the emission spectra as a function of time can be treated in terms of the ratio given 

by the values obtained from the integration of the excimer intensity peak (440 nm< Iex <550 nm) and 

the integration of the monomer intensity peak (366 nm< Imon<425 nm).  

 We found that the decrease of the ratio Iex/Imon with time, obtained after mixing GUVs suspension 

with P104 micelles containing PyC18, follows a single-exponential decay, from which it is possible to 

quantify the exchange time constant.  

 We demonstrated that the exchange dynamics between amphiphilic block copolymer micelles and 

liposomes is a collective mechanism that follows a first order mechanism with linear velocity rate 

independent of the liposomes concentration and a second order mechanism with linear dependence of 

kdecay as a function of the liposome concentration.  

 The collision rate of micelle-liposome was calculated and was found to be higher than that of micelle-

micelles due to the liposome size. It is proposed that P104 micelles control the adhesion-exchange 

process of P104-liposome system.   
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 We demonstrated that electrostatic interactions play an important role in the adsorption of chitosan 

on amphiphilic block copolymer micelles and liposomes.  

 The modifications on P104 micelles characteristics with a chitosan coating could improve the storage 

stability of hydrophilic drugs in micelles core and could prevent their release before reaching the specific 

target and receiving the adequate stimuli to achieve an efficient and controlled drug delivery. 

 The collective exchange mechanisms between chitosan coated liposomes and micelles could be 

reduced in presence of chitosan (near the isoelectric point) and the chitosan addition slows down the 

exchange rate of collective mechanisms.  
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Perspectives 

 The experimental results of the growth dynamics of P104 spherical micelles to elongated micelles in 

water and in NaCl should be simulated in order to analyze the process in a more detailed manner.  

 Now that we successfully monitored the exchange dynamics between P104 triblock copolymer and 

L--phosphatidylcholine GUVs suspensions by using a hydrophobic fluorescent probe, the variation of 

amphiphilic block coplymers, ionic strength of the GUVs suspension, pH and temperature could be 

studied in order to control the vectorization rate.    

 A theoretical model should be proposed in order to simulate the experimental results obtained 

through the kinetics between amphiphilic block copolymers and lipidic membranes and to obtain more 

information about the mechanism. 

 The interactions between chitosan-coated micelles and chitosan-coated liposomes could be deepened 

in order to indentify conditions at which the vectorization dynamics are accelerated.  

 Since the vectorization dynamics were studied by using L--phosphatidylcholine liposomes as the 

simplest cell models, it would be of great interest to study the exchange dynamics by using real cells.  
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A. List of symbols   

Nomenclature 

 

a semimajor axis of a prolate in Perrin model 

b semiminor axis of a prolate in Perrin model 

CT total concentration of amphiphile 

E Energy 

G’ elastic modulus 

G’’ viscous modulus  

H Planck's constant 

Iex excimer intensity 

Imon monomer intensity  

ISCA total scattering intensity 

ISCA
0 scattering intensity taken at a reference temperature  

Idisp total intensity scattered 

k + kinetic constant of the insertion process 

k - kinetic constant of the expulsion process 

kB Boltzmann constant 

kdiff diffusion controlled rate 

kfus kinetic constant of the fusion process 

kfiss kinetic constant of the fission process 

kdecay general exchange constant  

kgrowth growth constant  

K compressibility modulus 

KCps scattering light intensity  

K 
apparent molar adiabatic compression 

Lα lamellar liquid-crystalline phase  

Lβ lamellar gel phase 

Lc lamellar crystalline phase  

L micelle length  

M molality  

M mass of an object  

MII micellar phase  

Mw molecular weight 

nmic refraction indices of micelles 

nw refraction indices of water 

NA Avogadro’s number 
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Nagg aggregation number 

HII inverted micellar cubic phase  

P(q) micelle form factor in Perrin’s model  

Preac probability of adhesion-exchange 

Q[B]
II bilayer cubic phase  

Q[M]
II inverted micellar cubic phase  

R gas law constant 

Rc core radius of a block copolymer micelle  

Rg(PEO) 
radius of gyration of the PEO segment of a block copolymer micelle  

Rh hydrodynamic radius  

T temperature  

XCMC critical micellization concentration in mole fraction units 

V volume of an object  

Vmic volume of a micelle 

V 
apparent molar volume 

ΔG free energy of micellization per mole of surfactant 

ΔH standard enthalpy of micellization per mole of surfactant 

ΔS standard entropy of micellization per mole of surfactant 

 ideal colligative property 

s adiabatic compressibility of the solution 

s,0 adiabatic compressibility of the solvent  

 strain  

 Viscosity 

Λ Wavelength 

 density  

0 solvent density  

 sound velocity 

f frequency  

φmic volume fraction of surfactant 

 relaxation time  

 zeta potential  

<n> average number of hydrophobic fluorescent probe per micelle 
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B. Abbreviations 

ATP Adenosine Triphosphate 

CMC Critical Micellization Concentration 

CMT Critical Micellization Temperature 

CPT Cloud Point Temperature 

DA Degree of Deacetylation 

DNA Deoxyribonucleic Acid 

DLS Dynamic Light Scattering 

DOPC Lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine 

GUVs Giant Unilamellar Vesicles 

IEP Isoelectric Point 

LUVs Large Unilamellar Vesicles 

LIPIDAT Lipid Thermodynamic Database 

LVR Linear Viscoelastic Region 

MGT Micellar Growth Temperature 

NMR Nuclear Magnetic Resonance 

PA Phosphatidic Acid 

PC Phosphatidylcholine 

PE Phosphatidylethanolamine 

PEO Ethylene Polyoxide 

PG Phosphatidylglycerol 

PI Phosphatidylinositol 

PPO Polypropylene Polyoxide 

PS Phosphatidylserine 

PyC18 Fluorescent probe 1-pyrenyloctadecanone, C34H44O 

SUVs Small Unilamellar Vesicles 

QLS Quasielastic Light Scattering 

SAXS Small Angles X-ray Scattering 
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Résumé étendu géneral 

  

1. Étude du comportement d’ADN en solution et aux interfaces 

1.1. Introduction  

Les études de molécules d'ADN dans des solutions aqueuses effectuées par différentes approches 

permettent d'évaluer la forte influence de la nature de la molécule et ses propriétés physico-chimiques 

quand elles interagissent avec d'autres types de molécules en solution ou avec des surfaces métalliques. 

Les résultats nous permettent d'aspirer à une meilleure compréhension des interactions moléculaires et 

de chercher une meilleure efficacité de leurs applications. Maintenant, la capacité de détecter l'ADN et 

de l'ARN en utilisant des capteurs d'hybridation d'ADN est utilisé en génomique et les attentes dans les 

procédés électrochimiques augmentent chaque jour, ainsi que le développement de biocapteurs  d’ADN, 

l'évaluation des interactions ADN-protéines et des études de thérapie génique. Aujourd'hui, l'objectif de 

parvenir à une plus grande efficacité dans les processus de compaction de l'ADN, l'innovation du 

développement des capteurs d'ADN et l'étude des changements de propriétés interfaciales générés entre 

les surfaces métalliques et les molécules d'ADN sont devenus des sujets de grand intérêt en 

bioingénierie. 

La possibilité de prendre quelques concepts de la théorie des solutions de polymères utilisés dans 

les études physico-chimiques et rhéologiques peut ouvrir de nouvelles possibilités dans le domaine des 

systèmes comme l'ADN en solution, en utilisant différentes techniques dont les méthodes 

électrochimiques et optiques. Des techniques électrochimiques telles que la Spectroscopie d'Impédance 

Électrochimique (EIS, en anglais) et la Modulation de la Capacité Interfaciale (MIC, en anglais) sont 

proposées pour déterminer les paramètres caractéristiques qui permettront d'identifier et d'étudier les 

transitions des interfaces formées par de molécules d'ADN adsorbées sur différentes surfaces métalliques 

d'une manière détaillée. De cette manière, ce travail propose le couplage des techniques rhéologiques, 

électrochimiques et optiques pour effectuer une étude détaillée du comportement de molécules d'ADN 

en solution et aux interfaces (utilisant deux surfaces métalliques différentes), en fonction de paramètres 

tels que la température, la concentration de l'ADN, la concentration en sel et le potentiel électrique. 

 

1.2. Caractérisation et propriétés rhéologiques de l’ADN en solution 

Initialement, le comportement rhéologique des solutions ADN/tampon, ainsi que la détérmination 

des concentrations critiques (C* et Ce), sont présentés et discutés à partir des expériences d’écoulement 

et des expériences dynamiques. La viscosité intrinsèque [η] (4 080 ml/g) a été déterminée à partir de 

l'extrapolation à concentration d’ADN nulle, de la viscosité de cisaillement (0)au plateau Newtonien 
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obtenue par écoulement. Cette valeur a été utilisée pour accéder à la masse moléculaire de nos 

échantillons d’ADN (8246 800 g/mol).  

L'influence du gradient de cisaillement sur la viscosité des échantillons d'ADN a été étudiée dans 

une large gamme de concentrations de ADN (0.1 à 10 mg/mL) à des températures de 10, 20, 30 et 40 ° 

C. Les données obtenues à la température de 20 °C sont présentées dans la Figure 1. Les courbes 

d'écoulement sont caractérisées par trois paramètres importants: la viscosité 0 du plateau Newtonien, le 

gradient de cisaillement critique g
·

c  et la pente s. Le gradient de cisaillement critique est lié au temps 

caractéristique R de l’ADN en solution. Un gradient de cisaillement plus élevé que le temps de 

relaxation de la solution d'ADN conduit à la manifestation de changements structurels tels que 

desenchevêtrements, alignements des molécules dans l'écoulement, entre autres, ou à des modifications 

conformationnelles de la molécule. La viscosité dans le plateau Newtonien correspond à la viscosité 

lorsque g
·

<g
·

c . Aussi, g
·

c diminue avec l'augmentation de la concentration de l'ADN. 

 

 

 

 

 

 

 

 

 

Figure 1. Influence du gradient de cisaillement sur la viscosité de solutions d'ADN de thymus de veau, pour 

differentes concentrations d’ADN et à une température de 20 ° C.  

 

Les courbes d’écoulement (g
·

) en fonction de g
·

 et la détermination de la viscosité sur le plateau 

Newtonien permettent d'estimer les viscosités spécifiques à gradient de cisaillement nulle pour la 

gamme suivante de valeurs de C[]: CDNA[] < 40. On obtient une courbe maîtresse à partir de la 

variation de la viscosité spécifique en fonction du paramètre de recouvrement C[η], à partir dequel on 

peut déterminer les deux concentrations d'ADN critiques (Figure 2). La première concentration critique 
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(C*) a été estimée, comme première approche, en utilisant la relation C*~[η] -1, et est égal à 0.245 

mg/mL. Le point de départ du domaine semi-dilué enchevêtré, Ce, a été obtenu à partir de la limite du 

comportement linéaire en representation log-log pour le domaine de concentrations plus élevées dans la 

courbe sp en fonction de CDNA[], i.e. CDNA[] ~ 10, c’est à dire:  2.45 mg/mL.  

 

 

 

 

 

 

 

 

Figure 2. Dépendance de la viscosité spécifique en fonction du paramètre de chevauchement C[η] pour des 

solutions d'ADN de thymus de veau dans du tampon TE à un pH de 7.3 et pour les températures de 10, 20, 30 et 

40 ºC. 

 

Le deuxième paramètre qui caractérise le comportement de l'ADN est le gradient de cisaillement 

critique g
·

c , obtenu au début de l'écoulement non Newtonien. À partir d’un graphique log-log de g
·

c  en 

fonction de CDNA[] pour des concentrations d'ADN dans le régime semi-dilué il est possible d'obtenir 

la relation g
·

c∼CDNA[]-1.9, avec une pente moyenne de -2, laquelle a été également constaté pour 

hyaluronanes de différentes masse moléculaire par M. Milas et al.. On peut aussi constater que les 

résultats à toutes les températures ont un comportement identique et la même pente moyenne. 

A partir d’une translation horizontale (ax) et d’une translation verticale (ay), en utilisant une 

concentration d'ADN comme une référence spécifique, on obtient une courbe maîtresse qui montre que 

le temps de relaxation principal du système est modifié seulement par la variation de la concentration de 

l'ADN. Le paramètre de translation horizontale représente le coefficient de translation des fréquences et 

le deuxième représente le coefficient de translation du module. La Figure 3 montre la courbe maîtresse 

de l'ADN obtenu pour une gamme de concentrations entre 1.5 et 10.0 mg/mL à la température de 20 

°C, en utilisant comme référence 4 mg/mL. La même procédure a été utilisée pour l'analyse de la 

température pour chaque concentration d'ADN. 
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Figure 3. Courbe maîtresse pour les modules élastique (G ') et visqueux (G’') réduits en fonction de la fréquence 

réduite pour la variation de concentrations d'ADN entre 1.5 et 10.0 mg/mL à la température de 20 ° C.  

 

À partir des mesures dynamiques et d'écoulement on obtient une bonne superposition de l*l (et 

0 (g
·

) en fonction du gradient de cisaillement et de la fréquence radiale dans la gamme de 

concentrations d'ADN comprise entre 2.0 et 10.0 mg/mL, en accord un comportement de polymere en 

solution. De la meme facon, la pente s obtenue en ecoulement suit le meme comportement que les 

valeurs obtenues a partir de la dynamique (Figure 4).    

 On détermine aussi la pente de la région de loi de puissance de l*l (en fonction de la fréquence 

radiale pour chaque concentration d'ADN et à chaque température. Dans la région de loi de puissance de 

η, en fonction de g
·

c , la pente s dépend du paramètre de chevauchement C[], tel que décrit par 

Graessley et. al. Pour CDNA[]>35, la pente tend vers une limite, comme prévu dans la théorie de 

l'enchevêtrement de Graessley, et est égal à -0.818. 

Les résultats sont présentés dans la Figure 4 et montrent que la valeur limite pour l'ADN thymus 

de veau dans du tampon TE à un pH de 7.3 présente une pente moyenne de -0.82, ce qui correspond au 

comportement décrit par Graessley et qui a également été rapporté pour une grande gamme 

d'échantillons d'acide hyaluronique avec différentes masses moléculaires. 
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Figure 4. Pente s dans la région de loi de puissance déterminé à partir des courbes d’écoulement et des courbes 

dynamiques pour l'ADN de thymus de veau dans du tampon TE à des températures de 10, 20, 30 et 40 ºC. 

 

En utilisant une approche complémentaire pour l’étude des solutions d'ADN enchevêtrées, i.e. 

concentrations d’ADN supérieures à 2.0 mg/mL, le comportement non-linéaire a été formulée en termes 

de quantités normalisées *= /G0 et g
·

=g
·

* c, à partir desquelles on obtient une courbe maîtresse avec 

la superposition des courbes d’écoulement et de dynamique. Le comportement non-linéaire de solutions 

ADN/tampon est reproduit en utilisant le modèle de Giesekus avec deux temps caractéristiques, sur la 

base du concept de déformation dépendante de la mobilité tenseur. 

La Figure 5 montre la courbe maîtresse de σ* en fonction de g
·

*  pour la gamme de concentrations 

d'ADN entre 2.0 et 10 mg/mL à une température de 20 ºC. En dessous de g
·

* =0.20, tous les données 

sont superposées, c’est à dire qu’ils sont invariants par rapport aux variations relatifs de la concentration 

d'ADN, comme prévu pour le régime Newtonien linéaire (σ*=g
·

* ). À des concentrations d'ADN entre 

2.0 et 6.0 mg/mL et à des valeurs plus élevées de g
·

* , c’est à dire g
·

*  ≥ 0.20, la pente de la courbe de 

contrainte diminue, montrant la présence du phénomène de rhéofluidification. L'apparition d'un plateau 

de contrainte est observée autour de g
·

* =15.0, à des concentrations d'ADN supérieures à 6.0 mg/mL, ce 

qui est liée à l'apparition du phénomène de bandes de cisaillement. 
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Figure 5. Courbe maîtresse pour les solutions d’ADN. Contrainte de cisaillement normalisé, en fonction du 

gradient de cisaillement normalisé, pour des concentrations d'ADN de 2.0 à 10.0 mg/mL à la température de 20 

°C. Les lignes en trait plein représentent les simulations obtenus avec le modèle de Giesekus.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Contrainte de cisaillement en fonction du gradient de cisaillement pour une concentration d'ADN de 

10.0 mg/mL à la température de 20 °C. Chaque image correspond à une visualisation du champ de déformation à 

l'intérieur de la solution obtenue à l'état d'équilibre. 
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L'apparition des bandes de cisaillement est démontré a partir d’observations du champ de 

déformation combinée avec des mesures mécaniques. Les conditions trouvées sont les suivantes:            

g
·

 =10.0 s-1 and CDNA> 5.0 mg/mL. Des preuves visuelles du champ de déformation à l'intérieur de la 

solution, obtenues à l'état d'équilibre sont présentées pour différents gradients de cisaillement 

sélectionnés dans les trois régimes différents: le régime Newtonien (0.01 s-1), le régime de 

rhéofluidification (0.1 et 1.0 s-1) et le régime d'écoulement avec bandes de cisaillement (10.0 et 30.0 s-1) 

(Figure 6). Pour les concentrations en ADN plus élevées dans le régime semi-dilué avec 

enchevêtrements, les interactions entre chaînes d'ADN et les enchevêtrements ont des effets importants 

sur la visco-élasticité linéaire des solutions dans les différents régimes d'écoulement. 

 

1.3. Etude expérimentale de l'adsorption des molécules d'ADN en solution en différentes 

surfaces métalliques  

Après avoir étudié les propriétés des molécules d’ADN en solution, on a utilisé des techniques 

électrochimiques et optiques pour identifier les changements structurels aux interfaces Au/ADN et 

Pt/ADN et pour décrire le comportement des chaînes d'ADN dans la double couche électrochimique en 

fonction de la concentration d’ADN pour chaque régime caractéristique, c’est-à dire, les régimes dilué et 

semi-dilué. Les résultats d’impédance obtenus par Spectroscopie d’Impédance Électrochimique ont été 

transformés en valeurs de capacité complexes et interprétés sur la base de la théorie de l'impédance 

d’adsoption en utilisant l'approche des circuits équivalents proposé par Frumkin-Melik-Gaikazyan-

Randles (FMGR). La Figure 7 montre les spectres de capacité complexe pour des concentrations d'ADN 

de 0.3, 0.8 and 2.5 mg/mL à des températures de 20, 30 et 40 ºC avec une electrode de platine. 

La tendance de tous les spectres montrés dans la Figure 7 correspond à celle des spectres de 

capacité observés pour un processus d'adsorption. Pour les trois températures, la capacité complexe 

présente une dispersion typique en fonction de la fréquence (fω), avec une forme d'arc déprimé bien défini 

(1 kHz <fω <0.1) et une courbe ascendante dans les basses fréquences (fω <0.1 Hz). 

Aux fréquences élevées, les spectres peuvent être adéquatement modélisée par un circuit équivalent 

similaire proposé par FMGR, de cette façon, la dispersion de la capacité complexe est décrite par 

l’arrangement en série de trois éléments électriques: une résistance à l'adsorption (Rad), liée avec un 

processus d’électrosorption lent, un élément de phase constante (CPE), associé avec l'hétérogénéité de 

surface, qui représente dans ce cas la capacité d'adsorption non idéale (Cad) et une impédance de diffusion 

de Warburg (ZW,ad), associé à la diffusion des molécules d'ADN qui s’adsorbent à l'interface. Pour décrire 

complètement l'interface, on considère une capacité à double couche (Cdl) par l'ajout d'un condensateur en 

parallèle dans le circuit équivalent. 
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Figure 7. Spectres de capacité complexes pour les concentrations d'ADN de 0.3, 0.8 et 2.5 mg/mL à des 

températures de 20, 30 et 40 ºC. Fréquence en Hz. 

 

Le circuit équivalent représenté dans la Figure 8 et l'Équation 1 ont été utilisés pour interpréter les 

données expérimentaux de capacité complexe obtenus à chacune des conditions expérimentales 

présentées dans ce travail. 

 

 

 

 

 

 

Figure 8. Circuit équivalent représentant la capacité complexe pour l'interface Pt-ADN/tampon. 



    

 410 

C(w) = Cdl +
1

Rad jw +s ad jw +
( jw)1-n

Cad

+
1

Rct jw
                 (1) 

Où σad(j)-1/2 correspond à l'impédance de diffusion avec son coefficient σad. D'autre part, le paramètre n 

est inhérent au CPE selon: 

CPE =
1

( jw)nCad

                                (2) 

On établit ensuite les dépendances de chaque paramètre du circuit équivalent, soit la capacité de la 

double couche (Cdl), la capacité d’adsorption (Cad), la résistance d'adsorption (Rad) et la résistance au 

transfert de charge (Rct) en fonction de la concentration en ADN (Figure 9 et 10). L'analyse de ces 

paramètres, ainsi que la constante de temps caractéristique c, permettent de détecter deux changements 

remarquables dans la structure de la double couche autour des concentrations d'ADN de 0.30 et 1.50 

mg/mL, lesquelles sont reliées avec le recouvrement et l'enchevêtrement des molécules d’ADN, 

déterminées par des méthodes rhéologiques. Le réarrangement de la structure de la double couche est 

expliquée selon les interactions des molécules d'ADN à l'interface, résultant du recouvrement et des 

enchevêtrements des chaînes d'ADN. Ainsi, les changements dans la structure interfaciale, reflétés dans 

les paramètres Cdl, Cad et Rad, dépendent fortement de la nature de l'ADN présent dans la solution. 

Les Figures 9 et 10 montrent la dependence de la capacité de la double couche (Cdl) pour les 

interfaces Pt-ADN et Au/ADN, respectivement, en fonction de la concentration d’ADN à différentes 

températures. Puisque la nature du processus d’adsorption dépend aussi des électrodes utilisées, 

l’arrangement des charges dans la double-couche éléctrochimique varie d’une électrode à autre. 

Néanmoins, les variations de la capacité de la double couche (Cdl) en fonction de la concentration d’ADN 

sont détectées avec les deux electrodes.   

 

 

 

 

 

 

Figure 9. Capacitance de la double-couche (Cdl) en fonction de la concentration d'ADN à des températures de a) 

20 b) 30 c) 40 °C. 
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Figure 10. Capacitance de la double-couche (Cdl) en fonction de la concentration d'ADN pour les températures de 

25, 30 et 35 ºC. 

 

On a déterminé qu’à potentiel de circuit ouvert (OCP), une adsorption non spécifique contrôlée par 

la diffusion de molécules d'ADN se déroule à l'interface Pt-ADN/tampon, par contre un processus 

mixte, contrôlée par la diffusion de l'ADN et par un processus de électrosorption se déroule à l'interface 

detampon Au-ADN/tampon. Tous les résultats permettent de proposer que l'interprétation des mesures 

d’impédance par la théorie impédance d'adsorption est un procédé bien adapté pour caractériser les 

procesus d’adsorption d’ADN et qui permet d’identifier les transitions structurelles sur l'interface metal-

ADN/tampon. De cette manière, nous pouvons proposer EIS comme une technique adéquate pour 

caractériser la nature structurelle des adsorbats sur la base des changements et du réarrangement de la 

double couche électrochimique. 

Ensuite, les effects du comportement structurel des molécules d'ADN de thymus de veau aux 

interfaces platine et or ont été étudiés par Spectroscopie d'Impédance Électrochimique en utilisant une 

méthodologie analogue à celle utilisée dans les études de rhéologie linéaires. Les Figures 11 a et b 

montrent les graphiques Bode en log-log (Z' et -Z'' vs ω) pour les interfaces Pt-ADN/tampon et Au-

ADN/tampon, respectivement, pour une variation de concentrations d'ADN à une température 

constante. À partir de ce type de graphiques il devient possible de déterminer une fréquence 

caractéristique de coupure (en ωc) et le module Zo associé à la résistance à la solution (Rs). Pour les deux 

interfaces, la constante de temps caractéristique du processus (τc=1/ωc) est obtenue en calculant 

l'inverse de ωc et peut être directement liée à la relaxation de l’interface métal-ADN adsorbé, en raison 

de la formation d’une double couche électrochimique. 
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Figure 11. Parties réel (Z ') et imaginaire (Z' ') de l'impédance en fonction de la fréquence (ω) pour les interfaces 

a) Pt-ADN/tampon et b) Au-ADN/tampon.  

 

À partir de l’information obtenue des deux interfaces, on obtient un comportement linéaire du 

module Zo et de c dans chaque régime caractéristique du système, dans lequel la relation avec la 

concentration d’ADN suit une loi de puissance à chaque température étudiée. Une fonction de type 

Arrhenius pour la température a été obtenue au niveau de la constante de temps caractéristique pour l’ 

l’arrangement des molécules d'ADN dans la double couche électrochimique, à partir de laquelle on peut 

accéder à l’énergie d’activation (Ea) du processus d'adsorption.  

 

 

 

 

 

 

 

 

Figure 12. Dépendance du type Arrhenius pour la constante caractéristique de temps (c=1/c) avec l'inverse de 

la temperature absolue pour les concentrations d'ADN de 0.8, 1.5 et 2.0 mg/mL aux interfaces a) Pt-

ADN/tampon et b) Au-ADN/ tampon.  
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Une fonction de transfert d'impédance générale a été proposée en fonction de la concentration 

d'ADN à partir des paramètres électrochimiques, Zo liée à la résistance de la solution et la constante de 

temps caractéristique du processus, τc (Équation 3).  

Z(w) = cCDNA

b + 1+
1

( jwaCDNA

d )a

é

ë
ê

ù

û
ú                          (3) 

Cette fonction de transfert permet l'analyse théorique du comportement de la double couche 

éléctrochimique à OCP en fonction de la concentration avec seulement une mesure expérimentale 

d'impédance et rend possible l'obtention des paramètres électrochimiques de l'interface dans un régime 

particulier du système. Dans notre étude, cette fonction a été développé grâce à l'analyse des interfaces 

Pt-ADN/tampon et Au-ADN/tampon, mais elle peut être utile dans les études de systèmes polymères 

et d'agents tensioactifs, caractérisés par des régimes différents en raison de leurs interactions ou des 

différentes types de structures formées sur une large gamme de conditions de température ou de 

concentration. 

Avec la technique optique Résonance de Plasmons de Surface (SPR, en anglais), on a completé 

l’étude du processus d'adsorption des molécules d'ADN sur une surface d'or et on a pu a obtenir les 

valuers moyens des épaisseurs de film optique (dopt) des molécules d'ADN adsorbées (Figure 13).  

 

 

 

 

 

 

 

 

 

 

Figure 13. Simulation obtenue pour les données expérimentales de la réflectivité par rapport à l'angle d'incidence 

pour la concentration d'ADN de 2.0 mg/mL à la température de 25 ºC. Les épaisseurs de film optiques de chaque 

film composant le système sont résumées dans le tableau. 
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Les variations de dopt en fonction de la concentration de l'ADN sont liés à des transitions dans 

l'arrangement structurel de la double couche électrochimique, telle que celles détectées avec les 

techniques électrochimiques. Un comportement linéaire a été observée pour chaque régime et suit la loi 

de puissance en fonction de la concentration: en régime dilué (CADN ˂ C*) dopt ~ CADN
0.20, en régime semi-

dilué sans enchevêtrements (C*˂CADN˂ Ce) dopt ~ CADN
0.79 et en régime semi-dilué avec enchevêtrements 

(Ce ˂ CADN) dopt ~ CADN
0.57 (Figure 14). 

 

 

 

 

 

 

Figure 14. Relation entre dopt et la concentration de l'ADN en utilisant conformément la loi de puissance pour 

chaque régime caractéristique: a) régime dilué, b) régime semi-dilué sans enchevêtrements et c) régime semi-dilué 

avec enchevêtrements. 

 

En utilisant le modèle de la double couche la plus simple, les changements de Cdl obtenus à partir de 

l’étude de l'interface Au-ADN/tampon par impédance ont été associées aux changements dans les 

valeurs de dopt en fonction de la concentration de l'ADN. De cette façon, on peut obtenir le comportement 

de la constante diélectrique, présentant les transitions de l’ADN aux interfaces.  

D’autre part, la technique de Modulation de la Capacité Interfaciale (MIC), en combinaison avec des 

mesures de EIS, a été développé pour étudier les dynamiques de la double couche formée dans l’interface 

Pt-ADN/buffer dans les régimes dilué et semi-dilué. Cette technique est appliquée pour la première fois 

dans l'étude de la dynamique de la double couche d'un polyélectrolyte tel que l'ADN dans une large 

gamme de concentrations d'ADN et à des températures où la double hélice de l'ADN est bien préservée. 

La réponse MIC a révélé la dynamique de la double couche dans le régime dilué, le régime semi-dilué 

sans enchevêtrements et le régime semi-dilué avec enchevêtrements. À des concentrations élevées 

d'ADN, aucun processus de relaxation de la capacité à double couche n’est observée (Figure 15), 

cependant, à de faibles concentrations, et plus spécifiquement dans le régime semi-dilué sans 

enchevêtrement (Figure 16), il est possible d'identifier plusieurs constantes de temps superposées. Pour 

des concentrations d'ADN dans le régime dilué (Figure 17), il est démontré que le processus de détente 

présente clairement deux constantes de temps. 
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Figure 15. Diagramme du plan complexe pour la modulation de la capacité interfaciale à l'interface Pt-

ADN/tampon à une concentration d'ADN de 8.0 mg/mL et à une température de 30 °C. Paramètre fω en Hz. 

 

 

 

 

 

 

 

 

 

 

Figure 16. Diagramme du plan complexe pour la modulation de la capacité interfaciale à l'interface Pt-

ADN/tampon pour une variation de concentrations d'ADN dans le régime semi-dilué sans enchevêtrements et à 

une température de 20 °C. Paramètre fω en Hz. 
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Figure 17. Diagramme du plan complexe pour la modulation de la capacité interfaciale à l'interface Pt-

ADN/tampon pour une variation de concentrations d'ADN dans le régime dilué et à une température de 20 °C. 

Paramètre fω en Hz. 

 

Les valeurs obtenues pour les constantes de temps characteristiques du processus d’adsorption par 

MIC sont en bon accord avec les valeurs précédemment obtenues pour des solutions d'ADN par des 

mesures d'impédance classiques (Figure 18).  

 

 

 

 

 

 

 

 

Figure 18. Constantes de temps caractéristiques du processus d’adsorption, τc, obtenues à partir des mesures de 

MIC et de EIS en fonction de la concentration d'ADN et à la température de 30 ºC. 
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La fonction de la concentration d'ADN, de la température et de la force ionique de la réponse de 

MIC pour l’interface Pt-ADN/tampon a été mis en évidence et décrite dans cette étude. Il est démontré 

que la technique MIC permet l'étude de la cinétique d'adsorption des espèces les plus simples, tels que 

KCl et NaBr, et des espèces les plus complexes, tel que l'ADN. Il est alors possible d'identifier et 

d'expliquer, au moins qualitativement, les étapes fondamentales d'adsorption de ces espèces.  

 

1.4. Développement de nanoparticules Chitosane/ADN pour la thérapie génique 

Nous avons étudié finalement la formation de nanoparticules de chitosane-ADN pour le transfert de 

gènes comme application. Des concentrations d’ADN ont été choisies dans le régime dilué, 10 fois plus 

faibles que la valeur trouvée por C*. Le chitosane forme des complexes électrostatiques avec l’ADN avec 

une stoechiométrie définie entre des phosphates complètement ionisés et la fraction de chitosane 

protonée. La charge nette du complexe a été évaluée en fonction du rapport [NH2]/[P-], montrant que 

les interactions électrostatiques entre le chitosane et l'ADN ont lieu dans la solution et proviennent du 

processus de complexation de l'ADN. Avant d'atteindre le potentiel =0 mV, on observe un plateau 

autour d'un  potentiel de -20 mV (Figure 19), ce qui correspond avec la formation des nanoparticules 

stables de chitosane-ADN avec un rayon hydrodynamique moyen de 220 nm. Le point isoélectrique est 

liée au degré de protonation du chitosane. Après le potentiel  =0 mV, toutes les charges négatives de 

l’ADN sont neutralisées par des charges positives du chitosane. On a également trouvé que la stabilité 

du complexe peut être modifié avec le pH (Figure 20). 

 

 

 

 

 

 

 

 

Figure 19. Potentiel  en fonction du ratio [NH2]/[P -] au cours de la formation du complexe chitosane-ADN 

à une température de 25 ° CADN = 0.03 mg/mL à un pH de 6.5 et CChitosane = 1 mg/mL à un pH de 6.5. Les 

résultats sont la moyenne de cinq points, de sorte que les barres d'incertitude représentent la déviation standard. 
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Figure 20. Potentiel  en fonction du ratio [NH2]/[P -] au cours de la formation du complexe chitosane-ADN 

à une température de 25 ° CADN = 0.03 mg/mL à un pH de 6.5 et CChitosane = 1 mg/mL aux pH’s de 4.7, 5.0 et 6.0.   

 

Le processus de compaction de l'ADN dans l'eau, partiellement dénaturé, et l'ADN en double hélice 

dans une solution ayant une force ionique de 10-2 M de NaCl, présente le même comportement 

électrostatique avec la même stoechiométrie, donné par le rapport entre les phosphates complètement 

ionisés et la fraction de chitosane protoné. 

 

 

 

 

 

 

 

 

Figure 21. Rayon hydrodynamique en fonction du ratio [NH2]/[P -] au cours de la formation du complexe 

chitosane-ADN à une température de 25 ° CADN = 0.03 mg/mL à un pH de 6.5 et CChitosane = 1 mg/mL pH de 4.7, 

5.0 et 6.0.   

L'évolution du rayon hydrodynamique (Rh) et de l'intensité de la lumière diffusée a été évaluée en 
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fonction de [NH2]/[P-]. Le Rh diminue et l’intensité de lumière diffusée augmente avec l’addition de 

chitosane, représentant la compaction de la longue molécule d'ADN dans une nanoparticule par la 

neutralisation des charges negatives (Figure 21). Les complexes chitosane-ADN formés dans le premier 

plateau de potentiel , avant d'atteindre la stoechiométrie, ont été visualisés par microscopie confocale 

de fluorescence, et un rayon moyen a été trouvé autour de 200 nm. De légers changements de 

conformation de l'ADN ont été détectés mesures CD-travers et ont été évalués pour différents ratios 

[NH2]/[P-] et différents pH. 

 

 

 

 

 

 

 

 

Figure 22. Dépendance du % de dénaturation avec la température pour des complexes chitosane-ADN dans       

10-2 M de NaCl à un pH de 6.5. Variation de ratios [NH2]/[P -]: de 0 à 2.7. 

 

La stabilité thermique des complexes d'ADN-chitosan a été étudiée par des mesures de UV-Vis en 

étudiant les courbes de fusion des complexes à différents rapports [NH2]/[P-]. Ensuite, la température 

de fusion de l’ADN dans le complexe (Tm) a été détectée à des températures plus élevées que celle de 

l’ADN en double-hélice en solution. La stabilité thermique est alors supérieure pour les complexes 

chitosane-ADN formés et dépendant du rapport [NH2]/[P-] (Figure 22).  

 

1.5. Conclusions 

Pour conclure, dans ce travail, nous avons caractérisé un échantillon d’ADN en solution dans un 

tampon Tris-HCl/EDTA en fonction de la concentration et de la température en utilisant différentes 

méthodes physico-chimiques (rhéologie, dichroïsme circulaire et spectroscopie UV). La viscosité 

intrinsèque determinée dans le plateau Newtonian en écoulement a permis d’obtenir la masse molaire (8 

246 800 g/mol). Les différents régimes de concentration en polymère C* et Ce ont été caracterisés. Le 
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comportement rhéologique en écoulement et en dynamique est caractéristique d’un comportement en 

solution et indépendent de la température entre 10 et 40 ºC, domaine dans lequel l’ADN est en double-

hélice.   

L’adsorption de l’ADN sur des électrodes de platine et d’or a été déterminée dans une large gamme 

de concentrations et de températures en utilisant différentes méthodes électrochimiques (Spectroscopie 

d’Impédance Électrochimique, Modulation de la Capacité Interfaciale et Résonance de Plasmons de 

Surface). Les résultats d’impédance ont été interprétés en utilisant la théorie d’adsorption d’impédance 

avec un circuit équivalent similaire a celui de FMGR. Différents régimes de concentrations sont 

observés et sont en bon accord avec les études de l’ADN en solution par rhéologie. 

Enfin, la formation du complexe electrostatique chitosane-ADN a été étudiée et conduit à la 

formation de nanoparticules stables pour une neutralization partielle de l’ADN. Ces nanoparticules de 

200 nm de diamètre correspondent à l’étape de compaction de l’ADN dont la température de fusion 

augmente par la formation du complexe. 

 

2. Le rôle de la dynamique micellaire et la rhéologie dans la libération contrôlée de 
médicaments.  

2.1. Introduction  

Les copolymères amphiphiles à blocs sont des macromolécules constituées d'une partie hydrophobe 

et d’une partie hydrophile. Dans l'eau, ils s’assemblent en micelles, dans lesquelles la partie hydrophobe 

forme le coeur et les segments hydrophiles forment la couronne en milieu aqueux. Ces copolymères sont 

caractérisés par une concentration micellaire critique (CMC) et une température micellaire critique 

(CMT). Selon le rapport entre la longueur des blocs et de la qualité du solvant, ces copolymères peuvent 

former des micelles sphériques, cylindriques ou des structures lamellaires. Actuellement, ces matériaux 

sont d’un grand intérêt en raison de leurs applications dans l'administration contrôlée de médicaments. 

La cinétique de transition d'une structure à autre est essentielle pour atteindre une meilleure efficacité 

dans les applications. Contrairement aux agents tensio-actifs, qui sont dynamiquement actifs, les 

copolymères à blocs ont une dynamique plus lente. En particulier, dans le cas où la tension de surface 

entre les blocs est élevée, ils peuvent être piégés dans des états métastables sans atteindre l'équilibre 

thermodynamique. Les copolymères à trois blocs, stimulables par la température, à base de polyoxyde 

d'éthylène (PEO) et polyoxyde de polypropylène (PPO), sont disponibles dans le commerce et se 

trouvent parmi les copolymères amphiphiles les plus étudiés. 

La libération spécifique d'ingrédients actifs, connue comme vectorisation, est devenue un grand défi 

pour la recherche thérapeutique. Ce procédé a été utilisé pour contrôler la distribution des ingrédients 

actifs tels que les protéines, les gènes pour la thérapie génique et les médicaments, à une cellule cible en 

l'associant à un vecteur. Les molécules de la chimiothérapie sont souvent hydrophobes et ont besoin 
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d’être vectorisées pour être transportés vers la cellule cible. Néanmoins, cette libération contrôlée de 

médicaments souffre d'un phénomène appelé «libération en rafale» («burst release»), dans lequel les 

médicaments sont libérés avant d’arriver vers leur cellule cible. De cette façon, l'objectif principal de 

cette partie de la thèse est d’étudier la dynamique d'échange entre les vecteurs et les cellules par des 

mécanismes collectifs. Comprendre cette dynamique devient essentielle pour le développement et le 

contrôle de nouveaux matériaux et de nouveaux procédés efficaces dans la libération contrôlée de 

médicaments. 

Initialement, nous étudions le rôle des processus de fusion et de fission dans la transition micelles 

sphériques à micelles allongées de copolymère amphiphile P104 (Pluronic ®) dans l’eau. Cette transition 

a été induite par un saut de température et a été suivie par diffusion dynamique de lumière (DLS). Après, 

nous étudions les dynamiques collectives à l'équilibre et hors équilibre des micelles P104 dans l’eau. Les 

dynamiques de ces systèmes se produisent par l'intermédiaire de deux mécanismes principaux : le 

premier est un processus individuel qui implique l'expulsion et l'insertion de chaînes et le deuxième est 

un processus collectif qui se produit à travers le processus de fusion et fission de micelles. Ces 

mécanismes sont cruciaux pour contrôler le comportement des micelles d’amphiphiles, en particulier 

dans l'administration de médicaments. Ensuite, nous avons préparé et caractérisé des liposomes, qui 

seront utilisés comme les modèles les plus simples de cellules, afin d'identifier leur forme, la taille et 

leurs propriétés physico-chimiques. Tout d'abord, on a exploré les interactions électrostatiques entre les 

liposomes et les micelles de P104. Ensuite, on a utilisé une technique de fluorescence pour quantifier la 

cinétique de vectorisation entre les micelles de P104 et les liposomes. L'effet de la variation de plusieurs 

paramètres tels que la concentration des liposomes et des recouvrements avec un polycation, le 

chitosane, a été étudiée afin de contrôler la dynamique de vectorisation entre les micelles de copolymères 

à blocs amphiphiles et les liposomes. 

 

2.2. Comportement structurel et rhéologique du copolymère tribloc P104 

Afin de déterminer la formation des structures P104 et leur morphologie en solution aqueuse, on a 

élaboré un diagramme de phases détaillé du P104 dans l’eau différentes domaines de concentration 

(régions diluées et semi-diluées) en utilisant des mesures de rhéométrie, de diffusion dynamique de la  

lumière (DLS), de viscosité (), densité (ρ) et vitesse du son (υ). On a étudié les transitions de monomère 

à micelles, c’est à dire, les conditions dans lesquelles les monomères sont en équilibre thermodynamique 

avec des micelles, puis la formation de micelles sphériques, la transition en micelles allongées et enfin, la 

température de trouble.  

La Figure 1 montre le comportement de la densité du P104 en fonction de la température pour 

plusieurs concentrations de P104. Ici, nous pouvons observer l'augmentation de la densité avec la 

concentration P104, comme prévue, et la diminution de la masse volumique avec la température, jusqu'à 
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une température critique Ti, où on identifie une diminution plus prononcée. La température Ti diminue 

quand la concentration de P104 augmente. Une seconde température critique est identifiée comme Tf, le 

début de la diminution monotone de la masse volumique avec la température. De la même façon que 

pour les copolymères P103 et P94, cette transition est liée à la formation de micelles due à la 

déshydratation des segments PPO hydrophobes, qui forment le noyau, et des segments hydrophiles 

PEO plus hydratée pour la couronne. Cette transition est alors attribuée à la température micellaire 

critique (CMT) et diminue à mesure que la concentration en P104 augmente. 

 

 

 

 

 

 

Figure 1. Masse volumique () en fonction de la température pour différentes concentrations en P104: 0,001, 10, 

30, 80, 100 et 150 mg/mL. 

La Figure 2 montre la dépendance de la vitesse du son en fonction de la température pour 

plusieurs concentrations en P104. À des températures inférieures à Ti, la quantité d’unimères de P104 

augmente avec la concentration, alors la vitesse du son augmente avec la concentration P104. Pendant 

l'apparition de micelles, les unimères commencent à s’agréger due à l'augmentation de la température et 

déshydratation des blocs de PPO, résultant en une baisse de la vitesse du son, causée par la diminution 

du nombre de particules efficaces dans la solution.  

 

 

 

 

 

 

Figure 2. Vitesse du son () en fonction de la température pour différentes concentrations en P104: 0,001, 10, 30, 

80, 100 et 150 mg/mL. 
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Des mesures de diffusion dynamique de la lumière (DLS) ont été effectuées dans une gamme de 

température de 10 à 64 °C afin d’obtenir l’information structurelle des micelles à partir de la 

combinaison de l'intensité de lumière diffusé et du rayon hydrodynamique. La Figure 3 montre la 

dépendance du rayon hydrodynamique, Rh, et de l'intensité de la lumière diffusée avec la température 

pour une solution de P104 dans l’eau à une concentration de 10 mg/mL, à partir de laquelle il est 

possible d’identifier la formation des micelles sphériques dans une gamme de température entre 26 et 54 

°C, ayant une taille moyenne de 11.4 ± 1 nm.  

 

 

 

 

 

 

 

 

Figure 3. Dépendance du rayon hydrodynamique et de l'intensité de la lumière diffusée avec la température pour 

une solution de P104 à une concentration de 10 mg/mL mesurée à 90 °. L'échantillon a été équilibré pendant 24 

heures avant chaque mesure. 

 

L’augmentation du Rh et de l'intensité de lumière diffusée est observée au dessus de la température 

de 55 °C. Le début de cette transition est directement lié à une transition structurelle du P104 en 

solution aqueuse. Ce phénomène est expliqué en termes de la déshydratation de la couronne des 

micelles, constitué essentiellement de PEO, avec l'augmentation de la température. 

La combinaison de l’information sur le rayon hydrodynamique et l'intensité de lumière diffusée 

permettent d'obtenir des informations sur la forme de micelles. Pour cela, on utilise le modèle de Perrin 

pour estimer les dimensions de micelles pour les ellipsoïdes prolates et oblates. La Figure 4 montre 

l'intensité diffusée (Sous la forme du rapport ISCA/ISCA
0 avec ISCA

0 l’intensité initiale de la solution) en 

fonction du rayon hydrodynamique Rh pour une solution de P104 avec une concentration de 10 mg/mL. 

La courbe ISCA/ISCA
0 est comparée avec le modèle de Perrin pour les ellipsoïdes prolates, les ellipsoïdes 

oblates et les sphères. ISCA et Rh ont été mesurées à six températures différentes à partir des 

températures du domaine de micelles sphériques jusqu’aux températures de micelles allongées. 
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L'intensité de lumière diffusée ISCA
0 est sélectionnée à 38 °C, ce qui correspond à la l’intensité diffusée à 

la température initiale dans le domaine des micelles sphériques. La dépendance d’ISCA/ISCA
0 avec Rh est 

proche du comportement prédit pour ellipsoïdes prolates, ce qui suggère que les micelles P104 poussent 

comme des tiges applaties. Ce comportement a été précédemment obtenu pour des micelles de 

copolymère tribloc P103. 

 

 

 

 

 

 

 

 

Figure 4. ISCA/ISCA
0 tracée en fonction du rayon hydrodynamique Rh pour une solution de P104 à 10 mg/mL. ISCA 

et Rh ont été mesurés à différentes températures et ISCA
0 correspond à l'intensité de lumière diffusée à 38 °C. La 

courbe ISCA/ISCA
0 est comparée avec le modèle de Perrin pour ellipsoïdes prolates allongé, ellipsoïdes applatis et 

sphères.  

 

Les structures micellaires déterminées pour le copolymère amphiphile P104 dans le domaine de 

température entre 25 et 55 °C, c’est à dire, le domaine de micelles sphériques, peuvent être utilisés 

comme nanosupports micellaires pour la libération contrôlée de médicaments. Tout d'abord, leur taille 

nanométrique est une option appropriée pour des applications de vectorisation de médicaments ciblée, y 

compris le stockage, la libération contrôlée et la protection des médicaments hydrophobes. Ensuite, la 

stabilité des micelles sphériques à la température de 37 °C devient un bon choix afin de maintenir leur 

structure déterminée à la température moyenne du corps, laquelle pourrait être ensuite dégradée par une 

stimulation spécifique (température, pH ou des variations de force ionique) afin de libérer le médicament 

hydrophobe.  

À des concentrations et des températures plus élevées, certaines solutions de copolymères forment 

des gels physiques thermoréversibles. Ces gels sont constitués de cristaux liquides et de micelles 

sphériques ou bâtonnets enchevêtrés. Les mesures rhéologiques permettent l'étude des différentes 

propriétés des matériaux utiles dans de nombreuses applications biomédicales. En rhéologie, des 
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balayages en contrainte pour des solutions de copolymère P104 dans une gamme de concentration entre 

50 et 600 mg/mL ont été effectuées afin d'identifier la région viscoélastique linéaire (LVR) pour 

différentes températures. Ensuite, des balayages de température ont été effectués pour observer les 

propriétés viscoélastiques des solutions de P104 dans une grande gamme de température (3-90ºC). La 

Figure 5 présente un ensemble de courbes montrant la dépendance de la température sur les modules G’ 

et G’’ pour les suivantes concentrations de solutions de P104 : 100, 150, 200 et 225 mg/mL. Pour la 

solution de P104 à la concentration de 100 mg/mL (Figure 5 a), on observe tout d’abord un 

comportement visqueux (G’’>G’) dans la gamme de température entre 3 et 20 ° C. Un premier 

croisement des courbes G’ et G’’ en fonction de la température ensuite observé à 20 °C. Le module de 

perte est indépendant de la température jusqu'à la température de 58 °C, à laquelle une forte 

augmentation de deux ordres de grandeur est observée, passant du domaine dilué au domaine de gel 

mou (ou faible). On observe ensuite la diminution de G’ et G’’ à la température de 81 °C, à laquelle le gel 

revient à un comportement d’état liquide.  

La Figure 5 b illustre la dépendance de G’ et G’’ avec la température pour une solution de P104 avec 

une concentration de 150 mg/mL. On observe un comportement similaire à celui obtenu pour la 

solution de P104 à la concentration de 100 mg/mL. Ici, les modules G’ et G’’ sont indépendantes de la 

température jusqu'à la température de 60 ° C, suivi d’une grande augmentation de deux ordres de 

grandeur. La Figure 5 c montre la dépendance de G’ et G’’ avec la température pour une solution de 

P104 à la concentration de 200 mg/mL. On observe un comportement visqueux (G’<G’’) dans le 

domaine de température de 3 à 18 ° C. Un premier croisement entre G’ et G’’ est observé autour de la 

température 20 ° C. Ensuite, une légère augmentation des deux modules est identifiée entre 20 à 58 °C. 

Ensuite, un incrément sur G’ d'un ordre de grandeur est détecté, changeant du régime sol au 

comportement de gel mou dans une gamme de températures entre 63 et 83 °C. Une diminution 

prononcée de G’ et G’’ est détectée autour de 83 °C. Enfin, un nouveau comportement des solutions de 

P104 est présenté dans la Figure 5 d, dans lequel le matériel atteint le comportement de gel dur dans la 

gamme de températures de 22 et 52 °C. De cette façon, une augmentation d'environ trois ordres de 

grandeur est accessible avec cette solution de P104 à cette concentration. Les solutions de P104 forment 

donc des gels thermo-réversibles qui dépendent des concentrations des solutions P104 et de la 

température, ce qui peut être utilisé pour différentes applications thérapeutiques à des températures 

physiologiques.  

La Figure 6 représente le diagramme de phases pour le système P104/eau dans la gamme de 

concentration de 0 à 150 mg/mL. L’information obtenue pour le copolymère tribloc P104 dans des 

solutions aqueuses représente un outil pour les applications de libération de médicaments et de gènes en 

profitant des structures formées et de leur dépendance avec la température et la concentration.   
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Figure 5. Balayages en température pour des solutions de P104 à concentration variable: a) 100, b) 150, c) 200 

and d) 225 mg/mL. 

 

 

 

 

 

 

 

 

Figure 6. Diagramme de phase : température-composition du copolymère tribloc P104 dans l’eau. 
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2.3. Les dynamiques collectives du copolymère tribloc P104 à l'équilibre et hors 

équilibre 

Après avoir étudié et déterminé les transitions structurelles du P104 en solutions aqueuse, on a 

étudié le dynamique de croissance et transition de micelles sphériques à micelles allongées. Cette 

transition a été obtenue en augmentant la température dans le domaine sphérique micellaire (T1) à la 

température du domaine de micelles allongées (T2). L'intensité de lumière diffusée et le rayon 

hydrodynamique des micelles ont été contrôlés tout au long de l'expérience en utilisant la technique de 

diffusion dynamique de la lumière. Pour effectuer ces expériences, l'échantillon a été stabilisé à la 

température T1 pendant 24 heures, de cette façon, il est possible d'assurer l'équilibre micellaire. Ensuite, 

l'échantillon a été introduit dans l'appareil déjà stabilisé à la température T2 et les mesures ont été 

débutées immédiatement.  

En augmentant la température du domaine de micelles sphériques T1 (qui ont un rayon 

hydrodynamique moyen de 11 nm) à la température T2 du domaine de micelles allongées, le rayon 

hydrodynamique et l'intensité de diffusion augmentent en fonction du temps (Figures 7 a et b). La 

transition de micelles sphériques à micelles allongées du copolymère tribloc P104 est  suffisamment 

lente pour être suivie par des mesures de diffusion dynamique de lumière, comme pour la transition du 

copolymère amphiphile P103.  

                            

 

 

 

 

 

 

 

Figure 7. a) Rayon hydrodynamique, Rh, et b) l'intensité diffusée en fonction du temps pour une solution de P104 

avec une concentration de 20 mg/mL obtenus après un saut de température à partir d'une temperature T1 = 38 

°C à une deuxième température T2 = 64 ° C. La ligne continue représente l’ajustement obtenu en utilisant une 

expression mono-exponentielle qui simule la croissane de l'intensité. Encart: résiduelle de la forme de la fonction 

exponentielle unique. 
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La Figure 7 a montre la dépendance du rayon hydrodynamique avec le temps pour une solution de 

P104 dans l'eau à une concentration de 20 mg/mL en modifiant la température 38 à 64 ° C. On observe 

qu’un seul processus (Équation 1) décrit l'augmentation du rayon hydrodynamique (Rh) en fonction du 

temps, montrant que le processus impliquant des interactions monomère-micelles est négligeable dans 

cette gamme de température. 

La croissante du Rh peut être simulé de manière adéquate en utilisant une expression mono-

exponentielle avec une vitesse kdecay correspondante à kobs Rh = 1/  

RH (t) = [RH(∞)- RH(0)]*exp(-t/) + RH(∞)                                       (1) 

La Figure 7 b représente la variation de l'intensité de diffusion totale en fonction du temps pour la 

même solution de P104. La cinétique de croissane peut aussi être simulée de manière adéquate en 

utilisant une fonction mono-exponentielle avec un temps apparent de relaxation selon l'expression 

suivante: 

ISCAT (t) = [ISCAT (∞)-ISCAT (0)]*exp(-t/ SCAT (∞)                            (2) 

où ISCAT est l'intensité diffusée et τ représente le temps de relaxation apparent. 

Le facteur asymétrique, donné par le rapport entre l'intensité observée à un angle de 135 ° et un 

angle de 45 °, I45º/I135º, permet d'identifier le processus de croissance longitudinale des micelles. Les 

résultats obtenus pour ce rapport en fonction du temps, peuvent également être simulés avec une 

fonction mono-exponentielle ayant une constante de temps caractéristique, analogue à celle utilisée pour 

évaluer le comportement de Rh. De cette façon, on peut en déduire que des micelles se développent 

longitudinalement pendant le processus de relaxation et que leur longueur augmente avec le temps. 

Le taux de transition structurelle de micelles sphériques à micelles allongées dépend directement de 

la relation entre les blocs PPO/PEO et de la longueur du bloc PPO. Le copolymère tribloc P103 

[(PEO)17–(PPO)60–(PEO)17] à un ratio PPO/PEO=1.76 et présente des temps de relaxation entre la 

gamme de 100s à 6000s, en fonction de la concentration. Un système plus hydrophobe, par exemple le 

Pluronic P123 [(PEO)20–(PPO)70–(PEO)20], avec un ratio PPO/PEO=1.75 et un bloc plus long de PPO, 

présente des temps de relaxation qui peuvent durer des jours en absence d’additifs. Dans notre cas, les 

temps de relaxation du P104 [(PEO)27–(PPO)61–(PEO)27], qui a un ratio PPO/PEO = 1.13, se trouvent 

dans la gamme de 800s à 4000s. La Figure 8 montre la dépendance des taux de croissance avec la 

concentration en copolymère tribloc P104 obtenue à partir des fonctions mono-exponentielle du rayon 

hydrodynamique, de l'intensité de la lumière diffusé et du facteur de forme dans la gamme de 

concentration de P104 en solution aqueuse entre 10 et 60 mg/mL. Dans tous les cas, on observe une 

augmentation linéaire avec la concentration qui peut correspondre à un processus de second ordre y 

compris la fusion des micelles dans une longue micelle. 
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Grâce à ces résultats, il est alors constaté que le processus de croissance des micelles de copolymère 

tribloc P104 dans l'eau présente deux mécanismes. Le premier mécanisme possible implique l'intégration 

de chaînes de copolymère et des micelles pour former des micelles stables thermodynamiquement. Le 

deuxième mécanisme possible implique des processus de fusion-fission d'agrégats et chaînes de 

copolymère tribloc dans des micelles pour produire des micelles de différentes tailles jusqu'à atteindre 

une taille micellaire thermodynamiquement stable. La dynamique de croissance présente un processus 

relativement lent avec un temps caractéristique variant de 800s à 4000s. 

 

 

 

 

 

 

 

Figure 8. Taux de croissance (de kgrowth) calculé à partir de l'évaluation du rayon hydrodynamique, Rh, l’intensité 

de lumière diffusée et le facteur de forme en utilisant une expression mono-exponentielle, en fonction de la 

concentration P104. 

 

D’autre part, on a étudié la dynamique micellaire à l'équilibre du copolymère tribloc P104 en 

solutions aqueuse par spectroscopie de fluorescence. Une technique de fluorescence avec un dérivé de 

pyrène hydrophobe (PyC18) est sélectionnée comme un outil pour étudier les mécanismes de fusion et 

fission entre les micelles de P104. Pour cela, la disponibilité d'une région de coeur hydrophobe à 

l'intérieur des micelles de copolymère tribloc permet un chargement stable de médicaments 

hydrophobes peu solubles au cours de micellisation, dont la molécule de PyC18 sera utilisée comme 

modèle. L'encapsulation des médicaments hydrophobes dans des nanoparticules peut augmenter 

l'accumulation de médicaments dans les tumeurs, réduire la toxicité pour les tissus sains et améliorer la 

pharmacocinétique par rapport aux processus d'administration de médicament libre. Cependant, lors de 

l'élaboration des nanoparticules pour l'administration de médicaments, il est important de comprendre 

les mécanismes d'interaction entre les nanoparticules et les mécanismes de distribution du médicament 

encapsulée pour obtenir une forme efficace et la libération de médicaments sur la cible. 

Les mesures de fluorescence ont été effectuées à partir d’un mélange de micelles de P104 contenant 

du PyC18 et des micelles de P104 sans marqueur fluorescent en préservant la même température et la 

1 2 3 4 5
0.0000

0.0003

0.0006

0.0009

0.0012

0.0015

0.0018

[ P104 ]  ( mg/mL)
 

 

 R  
h

 Scattering light 

 Aspect factor

k
  

g
ro

w
th
  

( 
s
  

-1
 )



    

 430 

même concentration totale en P104. À partir de ces mesures il est possible d'analyser les différents 

mécanismes d'échange entre les micelles afin de déterminer les mécanismes dominants. Les dynamiques 

à l'équilibre dans les deux domaines suivants: domaine de micelles sphériques et domaine de micelles 

allongées ont été étudiées en utilisant la formation d'un excimère d'un dérivé de pyrène fortement 

hydrophobe en fonction du temps. Pour l’insertion de lala molécule hydrophobe (PyC18) dans le cœur 

des micelles, des solutions aqueuses P104 ont été chauffés au-dessus du point de trouble et ensuite 

refroidies à une température située dans la gamme dans laquelle des micelles sphériques sont formées. 

Ce processus est répété jusqu'à 8 fois. De cette façon, les micelles dissolvent le PyC18 de façon aléatoire. 

Les spectres de fluorescence des micelles de copolymère contenant plus d'une molécule de PyC18 

présentent une bande d'émission large correspondant à l’excimère avec un pic à 480 nm et une bande de 

monomères entre 375,5 et 400 nm.  

Les cinétiques d’échange ont été réalisées en tenant compte des valeurs faibles du nombre moyen de 

molécules hydrophobes par micelles, <n>, de sorte qu'il est possible d'obtenir une dépendance linéaire 

du ratio de l'intensité de l'excimer (Iex) et de l'intensité de monomère (Imon) avec la concentration de 

micelles de P104. La relation entre l'intensité de excimer (λex =480 nm) et du monomère (λmon=375 nm), 

Iex/Imon, augmente linéairement avec l'augmentation du nombre moyen de PyC18 par micelles <n>. La 

distribution du PyC18 correspond à une distribution de Poisson aléatoire entre les micelles. La Figure 9 

illustre les spectres de fluorescence du PyC18 solubilisé dans une solution aqueuse de micelles de P104 à 

la concentration de 50 mg/mL avant et après l'addition d'une solution aqueuse de P104 sans molécule 

fluorescente avec la même concentration (50 mg/mL), à une température de 37 °C. L'existence de 

l'émission d’un excimère à 480 nm indique la présence de micelles portant deux ou plusieurs molécules 

de PyC18. La diminution de l’excimère représente l'interaction du PyC18 avec une autre micelle de la 

même nature.  

 

 

 

 

 

 

Figure 9. Spectres d'émission ((λex= 344 nm) du PyC18dans une solution de copolymère P104 pa une concentration 

de 50 mg/mL. Le spectre marqué "before the exchange" identifie la solution initiale de P104 contenant le PyC18. 

Le spectre étiqueté " after the exchange " identifie la solution obtenue en mélangeant 0.05 ml de micelles remplies 

avec du PyC18 et 1 ml de micelles de P104 sans PyC18 (50 mg/mL) mesurée après 2 heures. 
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La Figure 10 montre l'excimère et le monomère en fonction du temps obtenue après le mélange 

d’une solution de P104 40 mg/mL avec du PyC18 et d’une solution sans PyC18 à la même concentration 

(40 mg/mL). Ce comportement suit une fonction exponentielle, ce qui représente un échange 

correspondant à un mécanisme micellaire fusion-fission au premier contact entre deux micelles. 

L’évaluation de chaque déclin peut être effectuée en utilisant une fonction mono-exponentielle, ce qui 

permet de déterminer les constantes cinétiques avec l'inverse du temps de relaxation (kdecay= 1/τ). Le 

temps de relaxation (τ) obtenu à partir de la fonction mono-exponentielle est similaire à la valeur 

moyenne <τ> calculé à partir de l'ajustement de deux exponentielles. 

 

 

 

 

 

 

 

 

Figure 10. Déclins de la bande de l’excimère (λem = 480 nm) et de la bande du monomère (λem = 376 nm) après le 

mélange de 0.05 mL d’une solution de P104 à 40 mg/mL avec PyC18 et 1 ml d'une solution de P104 libre de 

PyC18 à 40 mg/mL à la température de 40 °C. Les lignes solides correspondent aux ajustements utilisant une 

expression mono-exponentielle (r2 = 0.988). 

 

Les expériences cinétique ont été réalisées dans une gamme de concentrations de P104 comprise 

entre 10 et 100 mg/mL pour les températures de 30 °C à 64 °C, de cette façon, les profils micellaires 

dynamiques ont été obtenus dans la région des micelles sphériques et la région de micelles allongée 

avant le point de trouble. 

La Figure 11 montre la dépendance linéaire de la constante cinétique (kdecay) avec la concentration 

micellaire de copolymère tribloc P104 ([Micelles]=([P104]-CMC)/Nagg) à la température de 30 °C. Un 

mécanisme de premier ordre avec une vitesse linéaire indépendante de la concentration en micelles vides 

avec une constante cinétique k1 est lié au processus de fission. Un mécanisme de deuxième ordre, avec 

une dépendance linéaire de kdecay en fonction de la concentration de micelles vides, est liée à un processus 

de fusion-fission, qui est effectuée par les étapes suivantes: collision d'une micelle remplie avec du PyC18 
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et d’une micelle vide, échange du PyC18 à l'intérieur de la grande micelle et fission de cette micelle en 

deux micelles de taille standard avec du PyC18 à l'intérieur de chacune d'elles. L'interception représente 

le mécanisme de première ordre qui décrit l’échange due à la fission d'une micelle avec du PyC18 en deux 

micelles, suivie par la croissance de la micelle pour entrer dans la micelle vide. 

 

 

 

 

 

 

 

Figure 11. Dépendance linéaire de la constante cinétique (kdecay) avec la concentration micellaire de copolymère 

tribloc P104 à la température de 30 °C.  

 

La Figure 12 illustre la dépendance linéaire entre la constante cinétique kobs et la concentration 

micellaire ([Micelles]=([P104]-CMC)/Nagg) dans la solution de P104 à des températures de 30 à 50 ° 

C, où des micelles sphériques sont stables micelles thermodynamiquement.  

 

 

 

 

 

 

 

Figure 12. Constante cinétique (kdecay) en fonction avec la concentration micellaire de copolymère tribloc P104 aux 

températures de 30, 32, 40 et 45 ° C. 
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Il est possible d'observer que les valeurs kdecay diminuent avec l'augmentation de la température, 

jusqu'à une température de 45 °C. Ensuite, l’analyse des constantes de fission et de fusion en fonction de 

la température permet de trouver deux énergies d'activation de signe opposé, l'une à des températures 

élevées et l'autre à basse température. Quand les températures augmentent, les micelles sphériques sont 

compactés et les constantes de fission et de fusion, k1 et k2, diminuent jusqu'à ce que les micelles 

commencent à se développer, pour former ensuite des micelles allongées. 

 

2.4. La dynamique d'échange entre copolymères triblocs amphiphiles et membranes 

lipidiques 

Dans cette partie, on a étudié les dynamiques d’échange entre les copolymères triblocs P104 et les 

membranes lipidiques pour essayer de mieux comprendre les mécanismes d’échange dans la 

véctorisation des médicaments hydrophobes. Notre système d'étude est composé par des liposomes, 

représentant cellules, des micelles de copolymères tribloc, modélisant les véhicules, et le pyrène alkylée 

hautement hydrophobe, PyC18 représentant le principe actif dans le cœur des micelles. Les conditions 

expérimentales sélectionnées sont proches des conditions physiologiques moyennes, pH=6.5 et 

température contrôlée de 37 °C, afin de faciliter la compréhension des interactions pendant la libération 

des médicaments par des vecteurs micellaires avec des membranes de phospholipides. 

 Le rayon hydrodynamique des micelles sphériques reste constant dans la gamme de température 

de 30 à 54 ° C, avec moyenne de 11.4 ± 1 nm. La charge nette de micelles P104 a été évaluée avec des 

mesures de potentiel  à une température de 37 °C et à un pH de 6.5, pour lesquelles on obtient une 

valeur de -5.8 ± 0.4 mV, ce qui révèle une légère charge négative due vraissemblablement aux traces 

d'hydroxyde de potassium ou de sodium utilisé comme catalyseur lors de l'étape de synthèse du 

copolymère tribloc P104. 

Des vésicules de L-α phosphatidylcholine, GUVs et des LUVs ont été préparées avec des tailles 

moyennes de 12 m et de 160 ± 20 nm, respectivement. Les LUVs ont été préparées à partir de la 

solution initiale de GUVs afin d'obtenir une suspension à la même composition lipidique; elles ont été 

utilisées pour effectuer des mesures de diffusion dynamique de la lumière de dans des conditions 

convenables. Le potentiel  est une mesure de la charge électrique d'un liposome, qui est un paramètre 

important, car la charge de particules affecte à la fois la stabilité et la pharmacologie liposomale (dont les 

interactions électrostatiques). A un pH de 6.5, correspondant au pH de la préparation des liposomes 

(GUVs et LUVs) le potentiel  est négatif et a une valeur d'environ -22 mV. Dans cette étude, la valeur 

du pH des GUVs et des LUVs est maintenue à pH=6.5, où la membrane est chargée négativement et est 

stable. 
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Les interactions électrostatiques entre les liposomes hautement chargés négativement et les 

micelles de copolymères triblocs ont été étudiées par des mesures de potentiel . La Figure 13 montre la 

dépendance du potentiel  avec le rapport de la concentration de micelles de P104 et la concentration en 

lipides, correspondante à la moitié des têtes polaires qui sont sur la face externe de la vésicule et qui 

contribuent aux interactions avec le milieu extérieur, soit [P104] / [Lipid out], à un pH constant de 6.5 

et une température de 37 °C. Différentes quantités de solution de micelles de P104 avec une 

concentration de 10 mg/mL ont été mélangés avec une suspension de GUVs 25 mg/mL, résultant sur 

différents rapports [P104]/ [Lipid out]. On observe que le potentiel  diminue légèrement avec 

l'augmentation de la quantité de micelles de P104, suggérant la présence d’interactions électrostatiques 

entre les micelles et la membrane lipidique. 

 

 

 

 

 

 

 

 

Figure 13. Variation du potentiel  avec le rapport [P104]/[Lipid out], à une température constante de 37 ° C 

et à pH = 6.5. 

 

La dynamique entre les micelles de P104, choisis comme vecteurs, et les GUVs préparés avec L-α-

phosphatidylcholine sont étudiées par fluorescence en insérant des molécules du dérivé fluorescent 

hydrophobe du pyrène, PyC18, dans le cœur des micelles. Les spectres de fluorescence des micelles de 

copolymère contenant plus d'une molécule de PyC18 présentent une bande d'émission d’excimère à 480 

nm et une bande d'émission à 376 nm pour le monomère.  

Les Figures 14 a et b montrent les spectres d’émission d'une suspension de GUVs à une 

concentration de 25 mg/mL et le spectres d'émission du PyC18 dans une solution aqueuse de P104 avec 

une concentration de 10 mg/mL mélangée avec une suspension de liposomes 17.5 mg/mL et le spectre 

d’émission de la suspension de liposomes, respectivement, mesurés à une température de 37 °C. 

L'intensité de signal des liposomes est presque négligeable par rapport à l'intensité de signal obtenu 
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pour les micelles de P104 avec inclusion de PyC18, et sera soustraite des spectres d'émission du PyC18 

dans les mélanges liposomes-micelles de P104. 

a)       b) 

 

 

 

 

 

Figure 14 Spectres d'émission a) d’une suspension de GUVs à une concentration de 25 mg/mL et b) du PyC18 

dans des micelles de P104 avec une concentration de 10 mg/mL mélangés avec une suspension de liposomes 

17.5mg/mL et l’émission de la suspension de GUVs. Les mesures ont été faites à une température de 37 °C et à un 

pH = 6.5. 

 

La CMC du copolymère tribloc P104 a été vérifiée en présence d’eau et d’une solution de GUVs par 

des mesures de fluorescence. Dans les deux cas on a d'identifié des changement d’intensités Imon/Iex en 

fonction de la concentration de P104 localisés à des concentrations de P104 de 0.67 mg/mL (dans l'eau) 

et de 0.53 mg/mL (dans les suspensions de liposomes), valeurs liées à la CMC du copolymère tribloc 

P104, en bon accord avec résultats précédents. Le contrôle de la stabilité des structures de vecteurs de 

libération de principes actifs avec la variation de l'environnement joue un rôle important dans l'efficacité 

de libération contrôlée de médicaments. La faible CMC est considérée comme un indicateur qui montre 

que l'administration après dilution ne conduira pas à la rupture des micelles, leur permettant de circuler 

dans l'environnement dans lequel ils sont libérés et de s’accumuler sur leur cible spécifique. 

La Figure 15 montre le spectre d'émission du PyC18 dans une solution aqueuse de P104 avec une 

concentration de 3 mg/mL avec une suspension à une concentration de GUVs 17.5 mg/mL juste après 

le mélange et le spectre d'émission 4 jours après l’échange. De la même façon que pour la dynamique 

d'échange entre des micelles de copolymère tribloc amphiphile suivie avec les spectres d’émission du 

PyC18, le spectre obtenu pour les micelles-liposomes présente deux grands pics dans les émissions de 

l’excimère, à 480 nm et du monomère, entre 376-400 nm. De l'existence de l'émission de l’excimère à 

480 nm on déduit la présence de micelles de P104 portant deux ou plusieurs molécules PyC18. 

L'augmentation du monomère représente l’interaction du PyC18 avec la membrane lipidique hydrophobe 

des GUVs. La réponse de l'émission 4 jours après le mélange de micelles de P104 et des GUVs montre 

une diminution considérable de l’excimère et une augmentation de l'intensité du monomère. Cependant, 
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il est possible de constater que la dynamique d’échanges entre les micelles de P104 et les suspensions 

des GUVS sont beaucoup plus lentes que les dynamiques entre micelles. 

 

 

 

 

 

 

 

 

Figure 15. Spectres d'émission du PyC18 dans une solution de P104 3 mg/mL mélangée avec une suspension de 

GUVs 17.5 mg/mL juste après le mélange et après 4 jours, les deux mesurés à une température de 37 ° C. 

 

L'évolution des spectres d'émission en fonction du temps est traitée en termes du rapport de la 

valeur obtenu à partir de l'intégration du pic d'intensité de l’excimère (440 nm <lex <550 nm) et 

l'intégration du pic d'intensité du monomère (366 nm <Imon <425 nm); chaque déclin est analisé (Imon, lex 

et Iex/Imon).  

 

 

 

 

 

 

 

Figure 16. Déclins du rapport Iex/Imon en fonction du temps obtenus pendant l'échange de micelles de P104 3 

mg/mL contenant du PyC18 avec des suspensions de GUVs à des concentrations de 17.5 mg/mL. La température 
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de mesure est de 37 ° C. La ligne continue correspond à la fonction mono-exponentielle qui simule le déclin de 

l’excimère. 

La Figure 16 présente le déclins de Iex en fonction du temps après les mélanges d’une solution de 

micelles de P104 à la concentration de 3 mg/mL avec une suspensions de GUVs 17.5 mg/mL. La 

décroissance cinétique peut être simulée par une fonction mono-exponentielle avec un temps de 

relaxation apparent (τ).  

La Figure 17 montre la dépendance de la constante cinétique (kdecay) avec la concentration de 

liposomes après le mélange avec une solution des micelles de P104 remplis avec du PyC18  à une 

concentration de 3 mg/mL. Nous pouvons observer une augmentation des valeurs de kdecay avec 

l'augmentation de la concentration des liposomes dans le mélange et une dépendance linéaire dans la 

gamme de concentration de 8 à 17.5 mg / ml selon l'équation suivante: 

kdecay = k1 + k2 [liposomes]                     (3) 

Ensuite, il est possible de déterminer que le mécanisme d'échange est composé par les deux 

processus suivants: un mécanisme de premier ordre avec une vitesse linéaire indépendante de la 

concentration en liposomes et avec une constante cinétique appelé k1, liée au processus d'échange-

séparation, et un mécanisme de deuxième ordre, avec une dépendance linéaire du kdecay en fonction de la 

concentration liposomes, avec une constante cinétique de fusion-adhésion appelée k2. Nous pouvons 

conclure que la dynamique d'échange entre des micelles de copolymère amphiphiles P104 et des 

liposomes est un mécanisme collectif qui peut être contrôlée avec la variation de la quantité de liposomes 

dans la suspension. 

 

 

 

 

 

 

 

Figure 17. Constante cinétique (kdecay) en fonction de la concentration en liposomes. La température de mesure est 

de 37 °C. 
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Nous proposons un mécanisme d'interaction entre les micelles de copolymères P104 et des 

suspensions de GUVs obtenues avec la L-α-phosphatidylcholine dominé par des dynamiques collectives 

qui pourraient impliquer les étapes suivantes: collision d'une micelle et d’une GUV, adhérence des 

micelles sur la membrane lipidique, le transfert de la molécule hydrophobe à l'intérieur de la membrane 

lipidique et une séparation possible. La réponse observée après l'échange montre la présence de du 

pyrène hautement hydrophobe (PyC18) dans la membrane lipidique et est représenté par la diminution 

de la valeur de l'intensité de l'excimère et l'augmentation de la valeur d'intensité du monomère. Les 

dynamiques de vectorisation des médicaments hydrophobes par des vecteurs tels que les copolymères 

triblocs amphiphiles peuvent être suivis, étudiés et quantifiés en utilisant la technique de fluorescence. 

Finalement, dans les applications des liposomes, le recouvrement avec un polymère peut améliorer 

et augmenter la stabilité de la structure des membranes, la biocompatibilité et l'efficacité de la délivrance 

des médicaments. Pour cela, le chitosane a été récemment utilisée pour améliorer la biocompatibilité, la 

biodégradabilité et la mucoadhésivité des liposomes. Dans ce travail, on étudie aussi l’influence de 

l’adsorption du chitosane sur des liposomes dans les interactions entre les micelles de P104 et les 

liposomes. Dans un premier temps, le rôle de l'adsorption du chitosane sur les LUVs a été déterminé à 

l’aide de mesures de DLS, de mesures du potentiel et ensuite, en utilisant la microscopie confocale de 

fluorescence pour les GUVs. Le pH initial de la solution de chitosane et des suspensions de LUVs et de 

GUVs, qui est égal à 6.5, a été contrôlé afin de maintenir la charge nette de chaque composante 

constante pendant le processus d'adsorption. Le revêtement des GUVs avec du chitosane cationique à 

différents potentiels , dans lequel les liposomes présentent des comportements différents (d'isolement 

ou d'agrégation), ont été utilisés pour étudier les interactions avec les micelles de P104.  

Après avoir étudié le rôle de l’adsorption du chitosane sur les LUVs et les GUVs, on a étudié 

l'adsorption du chitosane sur des micelles de copolymères triblocs P104. Les suivants changements ont 

été identifiés dans la structure des micelles de P104 lors de l'ajout du chitosane cationique: agrégation 

des micelles de P104 lors de l'addition du chitosane au point isoélectrique, = 0 mV, et des micelles de 

P104 revêtues de chitosane isolées et en excès de chitosane. Ces modifications de caractéristiques des 

micelles de P104 pourraient améliorer la stabilité de stockage des médicaments hydrophiles dans le 

cœur des micelles et pourrait empêcher leur libération avant d'atteindre la cible spécifique et la réception 

des stimuli adéquats pour parvenir à une libération de médicament efficace et contrôlée.  

Les échanges entre micelles de P104 et GUVs revêtues de chitosane ont été étudiés par des mesures 

de potential  et de fluorescence, en utilisant le PyC18 hautement hydrophobe pour la simulation du 

médicament hydrophobe. L'influence du chitosane adsorbé sur des liposomes et/ou sur des micelles a été 

examinée pour mettre en évidence son rôle sur le transfert de pyrène. Dans la Figure 18 a, des micelles 

de P104 chargés négativement ont été progressivement ajoutées à des liposomes revêtus de chitosane 

avec un potentiel  de 0 mV (formation des agrégats, Figure 18 b). Le potentiel   devient négatif comme 

une preuve des interactions de micelles P104. Après 9 heures, une faible modification du spectre de 
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fluorescence est observée (Figure 18 c). Lorsque des liposomes sont fortement chargés positivement, ils 

sont stables et isolés, comme on le voit dans la Figure 18 b. Dans ce cas, le  potentiel  montre une légère 

modification et le spectre de fluorescence est légèrement modifié. Une hypothèse est que les micelles 

adsorbent l'excès de chitosane présent dans le milieu et que ces deux types de particules se repoussent 

mutuellement, les deux étant chargées positivement. 

a) 

 

 

 

 

b) 

 

 

 

 

c) 

 

 

 

 

 

Figure 18. a) Variation du potential  avec l’addition de micelles de P104 à des liposomes 10 mg/mL revêtus de 

chitosane à: A) potential =0 mV et B) potential = 24.5 mV, b) Visualisations du liposome initiale en A) état 

d’agrégation état pour des GUVs revêtues de chitosane au point isoélectrique et B) GUVs revêtues de chitosane 

isolés observés par microscopie confocale de fluorescence et c) Première et dernière émission du PyC18 (P) dans des 

solutions de P104 10 mg/mL mélangées avec des GUVs revêtues de chitosane: A) potential =0 mV et B) 

potential = 24.5 mV. La temperature es toujours de 37 °C.  
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2.5. Conclusions 

Le comportement structurel du système P104 /eau a été analysée à détail, permettant la 

détermination de la température critique micellaire (CMT), la température de croissance micellaire 

(MGT) et la température de point de trouble (CPT) en fonction de la concentration P104. Les structures 

micellaires déterminées pour P104 copolymère amphiphile dans la gamme de température comprise 

entre 25 et 55 ºC, peuvent être utilisés comme nanosupports micellaires pour la libération contrôlée de 

médicaments. Les propriétés rhéologiques du P104 en solution ont été étudiées dans une gamme de 

concentration en P104 de 50 à 600 mg/mL et sont fortement dépendantes de la température et de la 

concentration.  

Le processus de croissance de micelles sphériques à micelles allongées de P104 a été étudié par 

DLS. L'intensité de lumiére diffusé, le rayon hydrodynamique et l'évolution du facteur de forme en 

fonction du temps ont été analysés en utilisant une fonction mono-exponentielle avec un temps de 

relaxation apparent. La dépendance linéaire de la vitesse de croissance avec la concentration en P104 

montre que la croissance structurale est dominée par un mécanisme de fusion-fission. 

La dynamique d'échange entre copolymères amphiphiles tribloque et les liposomes a été suivie avec 

succès à l'aide d'une molécule fluorescente hydrophobe qui peut être échangé via mécanismes différents. 

La cinétique du rapport excimère/monomère, Iex/Imon, suit une décroissance exponentielle après le 

mélange des copolymères et liposomes, à partir de laquelle il est possible de quantifier la constante 

cinétique d'échange. On a montré que la dynamique d’échange entre copolymères triblocs et liposomes 

est une dynamique collective. 
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