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Thèse

présentée par Davide Vodola
soutenue le 20 février 2015

pour obtenir le grade de: Docteur de l’Université de Strasbourg
Discipline/Spécialité: Chimie

Correlations and Quantum Dynamics

of 1D Fermionic Models:

New Results for the Kitaev Chain

with Long-Range Pairing

THÈSE dirigée par:
Pr. PUPILLO Guido Professeur, Université de Strasbourg
Pr. ERCOLESSI Elisa Professeur, Université de Bologna

RAPPORTEURS :
Dr. ROSCILDE Tommaso Maître de Conférences, ENS de Lyon
Dr. CITRO Roberta Directeur de recherche, Université de Salerno

AUTRES MEMBRES DU JURY:
Dr. WEINMANN Dietmar Directeur de recherche, IPCMS, Strasbourg
Pr. ORTOLANI Fabio Professeur, Université de Bologna





Abstract

In the first part of the thesis, we propose and analyze an exactly-solvable one-
dimensional model for fermions with long-range p-wave pairing decaying with
distance ` as a power law 1/`↵. We studied the phase diagram by analyzing the
critical lines, the decay of correlation functions and the scaling of the von Neu-
mann entropy with the system size. We found two types of gapped regimes, where
correlation functions decay (i) exponentially at short range and algebraically at
long range (↵ > 1), (ii) purely algebraically (↵ < 1). In the latter a violation of
the area law (i.e. a logarithmic scaling) for the entanglement entropy is also ob-
served. Most interestingly, along the critical lines, long-range pairing is found to
break conformal symmetry for sufficiently small ↵. This can be detected also via
the dynamics of entanglement following a quench.

In the second part of the thesis we studied the evolution in time of the entangle-
ment entropy when the system is driven across a quantum phase transition with dif-
ferent velocities. We analyzed the Ising model in a transverse field varying linearly
in time with different velocities. We computed the time-evolution of the entangle-
ment entropy of half chain and we found that it displays different regimes depend-
ing on the velocity at which the critical point is reached: an adiabatic one (small
velocities) when the system evolves according the instantaneous ground state; a
sudden quench (large velocities) when the system is essentially frozen to its ini-
tial state; and an intermediate one, where the entropy starts growing linearly but
then displays oscillations (also as a function of the velocity). Finally, we discussed
the Kibble-Zurek mechanism for the transition between the paramagnetic and the
ordered phase.
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Introduction

Recent experimental progress in trapping and manipulating cold and ultra-cold
atomic and molecular gases [1–3] has offered the possibility to explore and simu-
late a wide class of phenomena occurring in many-body systems both at and out of
the equilibrium. Examples includes the observations of strongly correlated phases
and quantum phase transitions [4–10] and of out-of-equilibrium phenomena such
as (quasi-)particle transport and dynamical propagation of correlations [11–19].

Optical lattices [20] are the key example of structures in which the atoms can be
trapped in a well-controlled way offering the possibility to modify geometry, lattice
spacing and kinetic energy with extreme versatility while interactions among them
can be changed in strength with Feshbach resonances [21], using external fields.

It has become now possible to tune for the first time also the range and the
shape of the interactions, for example, by using Rydberg atoms [22–25] and, very
recently, trapped ions [19, 26–28]. They have been successfully employed for
creating potentials decaying with distance r as 1/r↵ where ↵ can be tuned between
0 and 3.

It is, however, an open question to understand the properties analytically of
systems with long-range interactions.

In the first part of this thesis we investigate an exactly solvable model for
fermions with a long range pairing, in particular we clarify the structure of the
static phase diagram and behavior of nonlocal quantities (such as the correlation
functions and the entanglement entropy).

The Hamiltonian H we analyzed, given by

H = −w
X

j

⇣
a
†
j
a j+1 + h.c.

⌘
− µ

X

j

 
n j −

1
2

!

+
∆

2

X

j,`

1
`↵

⇣
a ja j+` + a

†
j+`

a
†
j

⌘
,

(1)

is a generalization of the Kitaev chain [29] describing a fermionic system with
long-range p-wave pairing, decaying with distance ` as 1/`↵.

The original Kitaev Hamiltonian with only on-site or nearest-neighboring terms,
has been studied as a model for topologically ordered phase in one dimension. A
topological one-dimensional phase is characterized by two or more degenerate low-
energy lying states appearing without the breaking of any local order parameter.

As the system is in a gapped phase, these states also remain well separated from
the rest of the spectrum and, in the case of an open chain, two modes are found to be

vii



viii

localized at the edges of the system. They have been identified with two Majorana
fermions and they have attracted much interest for quantum computing because
they can be employed, in principle, as qubits, being robust against decoherence.

The long-range model we analyzed remains still quadratic in terms of the
fermionic operators and, thus, it is still exactly solvable. Using the integrability
of the model, we were able to compute exactly the decay of the correlation func-
tions, a task not always achievable for a general Hamiltonian and to demonstrate
the existence of two types of gapped regimes, where correlation functions decay
exponentially at short range and algebraically at long range (↵ > 1) or purely alge-
braically (↵ < 1).

In the same gapped regions where the correlators decay as a power law, the en-
tanglement entropy of a subsystem if found to diverge logarithmically. Both these
results are unexpected in massive phases of local Hamiltonians where correlation
functions decay purely exponentially [30] and entanglement entropy saturates to a
constant [31], in fact these effects are very peculiar to systems with strong long-
range interactions.

If one considers the limit ↵ ! 1 the model reduces, after a Jordan-Wigner
transformation, to the XY-Ising model with pure nearest-neighbor interactions [32–
34]. The latter has been widely studied because it is exactly solvable and, at the
same time, it is able to explain non trivial phenomena.

The XY model can be considered as a paradigm for the quantum phase tran-
sition [35] between a paramagnetic and an ordered phase separated by a critical
point and it defines an universality class for the phase transition described by a
conformal gapless field theory [36, 37].

In our work, we find that by introducing the long-range term in the Hamilto-
nian, this point, for sufficiently small ↵, is no more described by a conformal field
theory. This can be also proven by computing the time evolution of the entangle-
ment entropy following a quench.

In a conformal invariant model, it was shown that the entropy grows linearly
in time [38]. This can be understood if one thinks that, following a quench, in a
given point of the system, quasiparticles excitations are created. These excitations
are carried by couples of entangled particles moving with opposite momenta and
opposite finite group velocities. If now one cuts the system into two parts (say A

and B), the rate of arrival in B of quasiparticles created in A is constant (because
group velocities are constant) and the growth of entanglement between the two
regions is linear in time.

We find that the time evolution of the entropy in the chain with the long-range
pairing, instead, shows a logarithmic growth when ↵ . 1. The same has been
observed for the Ising model with long range interactions [39] and it is related to the
appearance of a divergent quasi-particle velocity. For our model, we found, indeed,
the exact point in the phase diagram where the divergence of the quasiparticle
velocity appears.

More related to the problem of the dynamics in closed quantum systems, the
second part of the thesis deals with the time evolution of the entanglement entropy
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and the entanglement spectrum when the system is driven across a quantum phase
transition with different speeds.

As key example, we focus on the transverse-field Ising model with a time-
dependent magnetic field varying linearly in time:

HIsing =
Xh
σx

i σ
x
i+1 − h(t)σz

i

i
(2)

where σx
i

and σz
i

are Pauli matrices. The magnetic field varies as h(t) = hi +
t
⌧
,

where ⌧ is the inverse of the velocity at which the system is driven and we choose
hi > 1 to in the paramagnetic phase.

We computed the time-evolution of the entanglement entropy of half chain
and we found that it displays different regimes depending on the speed at which
the critical point is reached: an adiabatic one (small velocities, large ⌧) when the
system evolves according the instantaneous ground state; a sudden quench (large
velocities, small ⌧) when the system is essentially frozen to its initial state; and an
intermediate one, where the entropy starts growing linearly (because of the quasi-
particle picture discussed before) but then displays oscillations in time (also as a
function of the velocity) because the system ends up, after passing the critical point,
in a superposition of excited states of the instantaneous Hamiltonian.

We also discussed the Kibble-Zurek mechanism [40–43] for the transition be-
tween the paramagnetic and the ordered phase. Kibble-Zurek mechanism predicts
the scaling of the number of topological defects produced after the dynamical tran-
sition of a critical point driven by the temperature (or also by an external field in
the case of a quantum phase transition at zero temperature).

The evolution of the system can be divided into three parts: a first one, where
the system will respond adiabatically to the change of the external field. A second
impulsive, in the vicinity of the critical point where the correlation length ⇠ starts
to diverge and the adiabatic behavior is obliviously violated. Here we have also the
formation of topological defects on distances smaller than ⇠ that scales, according
Kibble-Zurek mechanism, as ⇠ ⇠ ⌧⌫/(⌫z+1) where ⌧ is the inverse of the velocity
with which the critical point is reached and ⌫ and z are the critical exponent of the
transition.

As the entropy S , in a gapped region, is found to be proportional to the loga-
rithm of the correlation length ⇠ (S ⇠ log ⇠ [31]), we showed the entropy to scale,
because of Kibble-Zurek argument, as S ⇠ log ⌧.

The thesis is organized as follows: in Chapter 1, we introduce the Hamilto-
nian of the Kitaev chain with long range pairing and then discuss its exact so-
lution (Sec. 1.1), the critical lines (Sec. 1.2), the decay of the correlation func-
tions (Sec. 1.3), the scaling of the von Neumann entropy both with the system size
(Sec. 1.4) and in time after a quench (Sec. 1.5) and finally, for an open chain, the
emergence of the edge modes (Sec. 1.6).

Appendices contain some exact computations for the finite size corrections
to the ground state energy density of the Ising model (Appendix 1.A), details on
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the technique for computing the entanglement spectrum of quadratic models (Ap-
pendix 1.B), and the definition with some basic properties of polylogarithms (Ap-
pendix 1.C).

In Chapter 2, we analyze the scaling in time of the entanglement entropy for
the Ising model with a time-dependent magnetic field. We describe the adiabatic
and the sudden regimes (Sec. 2.2.1), the fast (Sec. 2.2.2) and the slow (Sec. 2.2.3)
sweeps and, finally, the Kibble-Zurek physics (Sec. 2.3). Appendix 2.A contains
the computation of the initial density matrix.

The results from the first and second part of this thesis have been collected in
two papers and have been published during the PhD.

The first part can be found in
D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, G. Pupillo,
Kitaev chains with long-range pairing,
Phys. Rev. Lett. 113, 156402 (2014)

while the second in
E. Canovi, E. Ercolessi, P. Naldesi, L. Taddia, D. Vodola,
Dynamics of entanglement entropy and entanglement spectrum

crossing a quantum phase transition,
Phys. Rev. B 89, 104303 (2014).
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Kitaev chain with long-range pairing

One of the most important exact solvable model for spins interacting in a one
dimensional chain is the quantum Ising model. This model describes the quantum
phase transition between a disordered paramagnetic and an ordered phase driven
by an external magnetic field h.

In the model Hamiltonian

HIsing =
X

i

h
σx

i σ
x
i+1 − hσz

i

i
(1.1)

the interaction term describes the coupling between two neighboring 1/2 spins
(σ(x,z)

i
are Pauli matrices) and is minimized if two spins are anti-aligned along the

x direction (ordered phase). The magnetic field, instead, tries to align them along
the z direction, so there should be a critical value hc of the magnetic field for which
the order in the x direction is destroyed (paramagnetic or disordered phase). In
Appendix 1.A, I will review the exact solution of this model.

It was found that this Hamiltonian is equivalent to a free-fermionic model. By
means of the Jordan-Wigner transformation [44]

σ+i =
1
2

⇣
σx

i + iσy

i

⌘
= a
†
i
ei⇡

Pi−1
l=1 a

†
l
al (1.2)

σ−i =
1
2

⇣
σx

i − iσy

i

⌘
= aie

−i⇡
Pi−1

l=1 a
†
l
al (1.3)

σz
i
= 2a

†
i
ai − 1 (1.4)

one can write spin 1/2 operators in terms of fermionic operators and thus cast (1.1)
in this form

HIsing =
X

j

⇣
a
†
j
a j+1 + a

†
j
a
†
j+1 + h.c.

⌘
− h

X

j

⇣
2a
†
j
a j − 1

⌘
. (1.5)

From its first appearance, this transformation has been considered only as a
mathematical technique both to map spin into fermionic degrees of freedom and to
simplify computation of physical quantities of (1.1) and similar models. Now, as
fermions can be trapped in one dimensional systems (e.g. in quantum wires), the
model (1.5) can describe the actual dynamics of fermionic particles in a lattice.

The first interpretation of the different phases of the Ising model in term of
fermionic language was given by Kitaev in [29]. He found that the spin ordered

1



2 Kitaev chain with long-range pairing

phase corresponds to a topological order, meaning that the Hamiltonian has two de-
generate (in the thermodynamic limit) ground states, separated by a finite gap from
the remaing spectrum and, the order parameter, local in terms of spin operators, is
non-local if written in terms of fermionic operators.

In this Chapter we will introduce and analyze a generalization of the Kitaev
chain for fermions with long-range pairing, which decays with distance as a power-
law.

1.1 The model

We considered the following Hamiltonian for fermionic particles on a lattice of L

sites:

H = −w
X

j

⇣
a
†
j
a j+1 + h.c.

⌘
− µ

X

j

 
n j −

1
2

!

+
∆

2

X

j,`

d−↵`
⇣
a ja j+` + a

†
j+`

a
†
j

⌘
.

(1.6)

Here, a
†
j

(a j) is a fermionic creation (annihilation) operator on site j, n j = a
†
j
a j,

and w is the tunneling rate on a lattice with unit lattice constant. The quantities µ
and ∆ are the chemical potential and the strength of the fermion p-wave pairing,
respectively.

The decay of the pairing term is given by the function d` specifying the distance
between two fermions. If the lattice is a closed ring, the maximum distance will be
L/2 and d` = min(`, L − `), while if the lattice is a closed linear chain d` = `. In
both the cases the pairing decays with distance ` as a power law with exponent ↵.

Hamiltonian (1.6), even with the long-range pairing, is still exactly solvable.
So, we were able to determine the phase diagram (Fig. 1.5) by diagonalizing it ex-
actly and to analyze (i) the critical points; (ii) the decay of the correlation functions;
(iii) the scaling of the entanglement entropy with the system size in detail.

1.1.1 Exact diagonalization

Let us consider the case of a closed translationally invariant ring (d` = min(`, L −
`)). The choice of the boundary conditions for the fermions is dictated by the
pairing term.

The terms a ja j+` and a j+`a j+`+L in the pairing connect two fermions with the
same distance ` because of the ring geometry.

If we consider periodic boundary conditions (ai = ai+L) the two terms will
sum up to zero because of the anti-commutation relations for the fermions and
the pairing term will cancel out. For this reason, we need anti-periodic boundary
conditions (ai = −ai+L).

This choice, anyway, does not affect the final results because, as we will do,
one can consider an infinite-long system.
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The translationally invariance of the ring lets us to use a Fourier transform
for the fermionic operators a

†
i
= 1p

L

PL−1
n=0 eikn xi ã

†
kn

and, because of anti-periodic

boundary conditions, lattice momenta will be quantized as kn =
2⇡
L

⇣
n + 1

2

⌘
.

In this basis, Hamiltonian (1.6) reads:

H = −
X

n

✓
w cos kn +

µ

2

◆ ⇣
ã
†
kn

ãkn
+ ã
†
−kn

ã−kn

⌘

+ i
∆

2

X

n

f↵(kn)
⇣
ãkn

ã−kn
− ã
†
−kn

ã
†
k

⌘
+
µL

2

(1.7)

with

f↵(k) =
L−1X

`=1

sin(k`)
d↵
`

(1.8)

the function containing the information on the long-range pairing (see Appendix 1.C).
This Hamiltonian is in block-diagonal form, each of the block corresponding

to a different momentum kn:

H =
1
2

L−1X

n=0

⇣
ã
†
kn

ã−kn

⌘  −(2w cos kn + µ) i∆ f↵(kn)
−i∆ f↵(kn) (2w cos kn + µ)

!  
ãkn

ã
†
−kn

!
(1.9)

We can diagonalize H in each of the blocks by a Bogolyubov transformation:
 

akn

a
†
−kn

!
= U†

 
⌘kn

⌘
†
−kn

!
(1.10)

with

U =

 
cos ✓kn

i sin ✓kn

i sin ✓kn
cos ✓kn

!
(1.11)

and ✓kn
given by

tan(2✓kn
) = − ∆ f↵(kn)

2w cos kn + µ
(1.12)

The Hamiltonian in the Bogolyubov basis becomes:

H =

L−1X

n=0

λ↵(kn)

 
⌘
†
kn
⌘kn
− 1

2

!
(1.13)

each fermion ⌘kn
carrying an energy

λ↵(kn) =
q

(2w cos kn + µ)2 + (∆ f↵(kn))2 (1.14)

As the Hamiltonian does not commute with the total number of akn
fermions,

the ground state is the vacuum of the Bogolyubov ⌘kn
fermions and it has a BCS-

like structure:

|GSi =
L/2−1Y

n=0

⇣
cos ✓kn

− i sin ✓kn
ã
†
kn

ã
†
−kn

⌘
|0i (1.15)



4 Kitaev chain with long-range pairing

where |0i is the vacuum of akn
and its energy density is

e↵(L) = − 1
2L

L−1X

n=0

λ↵(kn). (1.16)

1.2 Critical lines

To find the critical lines of the Hamiltonian, we consider the thermodynamic limit
L ! 1, so momenta will belong to the continuous interval k 2 [0, 2⇡) and the
dispersion relation will be

λ1↵ (k) =
q

(2w cos k + µ)2 + (∆ f1↵ (k))2 (1.17)

with f1↵ (k) = −i(Li↵(eik) − Li↵(e−ik)) and Li↵(x) the polylogarithm functions (Ap-
pendix 1.C).

Critical lines can be determined by studying f1↵ (k). As we discuss in Ap-
pendix 1.C, when ↵ > 1, f1↵ (kc) = 0 for kc = 0 or kc = ⇡, so both the lines µ = 2w

and µ = −2w are critical. When ↵  1 f1↵ (kc) = 0 only for kc = ⇡ so, the line
µ = 2w is still critical, while the line µ = −2w is gapped because f1↵ (k) ! 1 if
k ! 0.

In this way it is now possible to connect the disordered phase |µ| > 2w in the
limit ↵! 1 with the ordered one |µ| < 2w without closing the gap.

Let us consider the limit ↵ ! 1. If we use the Jordan Wigner transformation
and we express the fermionic operators in terms of spin 1/2 matrices we get the
Hamiltonian of the XY model (Appendix 1.A):

H(↵! 1) = −1
2

X

j

⇣
(w + ∆)σx

jσ
x
j+1 + (w − ∆)σy

j
σ

y

j+1

⌘
− µ

2

X

j

σz
j
. (1.18)

At criticality, when µ = ±2w, this Hamiltonian is equivalent to that of a free
massless fermionic particle and it is described by a conformal field theory [36, 37,
45].

The conformal symmetry of the model, corresponding to the symmetry for
translations, rotations and dilations, fixes, among the others, the finite size scaling
of the ground-state energy density in a universal way:

e(L) = e1 − ⇡vFc

6L2
(1.19)

where both e1, the energy density in the thermodynamic limit and vF the Fermi
velocity are model-dependent. The previous expression can be used to read the
central charge c that can be understood as the number of fermionic massless de-
grees of freedom in the theory, each fermion counting for 1/2.

If we compute (1.19) for the XY model (Appendix 1.A) we get

eXY (L) = e1XY −
⇡vF

12L2
(1.20)
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and the central charge is c = 1/2, as expected.
For the model with long-range pairing one can also compute the finite-size

corrections (eq. (1.157)) to the ground-state energy density (1.16) in the same way

e↵(L) = e1(↵) +
⇡

12L2

h
λ1↵
0(⇡) − λ1↵ 0 (0)

i
(1.21)

with e1(↵) = −
R ⇡

0
λ1↵ (x)dx being the energy density in the thermodynamical limit.

The two contributions from k = 0 and k = ⇡ give the corrections to the ground-
state energy. We compute them in the following section.

Divergence of the quasi-particle velocity

Let us consider the line µ = 2w, where we study the behavior of λ1↵ (k) and of the
quasi-particle velocity

dλ1↵ (k)

dk
=

1
λ1↵ (k)

 
−4t2 sin k(cos k + 1) + ∆2 f1↵ (k)

d f1↵ (k)

dk

!
, (1.22)

both for k ! 0 and k ! ⇡.
We start from the expansion of the polylogarithm [46]

Li↵(e
ik) = Γ(1 − ↵)(−ik)↵−1 +

1X

n=0

⇣(↵ − n)
n!

(ik)n (1.23)

giving

f1↵ (k) = 2 cos
⇡↵

2
Γ(1 − ↵)k↵−1 + 2

1X

n=1

sin
⇡n

2
⇣(↵ − n)

n!
kn (1.24)

and

f1↵ (k)2 = 4 cos2 ⇡↵

2
Γ2(1 − ↵)k2↵−2

+ 8 cos
⇡↵

2
⇣(↵ − 1)Γ(1 − ↵)k↵

+ 4⇣2(↵ − 1)k2 + O(k3)

(1.25)

In this way, when ↵ < 1 and k ! 0 the dispersion relation diverges as

λ1↵ (k) ⇠ 2∆ cos
⇡↵

2
|Γ(1 − ↵)|
|k|1−↵

. (1.26)

This however gives a finite contribution to the ground-state energy density e1(↵)
as the integral of 1/|k|1−↵ is finite when k ! 0.

From (1.24) we have

f1↵ (k)
d f1↵ (k)

dk
= 4 cos2 ⇡↵

2
Γ2(1 − ↵)(↵ − 1)k2↵−3

+ 4 cos
⇡↵

2
Γ(1 − ↵)⇣(↵ − 1)k↵

+ 4 cos
⇡↵

2
Γ(1 − ↵)(↵ − 1)⇣(↵ − 1)k↵−1

+ 4⇣2(↵ − 1)k2 + . . .

(1.27)
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Then the k ! 0 part of the velocity has the following structure (coefficients
A, B, . . . do not depend on k):

dλ1↵ (k)

dk
=

⇣
Ak + Bk2↵−3 +Ck↵ + Dk↵−1 + Ek2 + . . .

⌘

p
A2 + Fk2↵−2 +Gk↵ + Hk2 + . . .

(1.28)

Let us now distinguish four cases:

(i) ↵ < 1: The smallest exponent in the numerator is 2↵ − 3 and in the denomi-
nator is 2↵ − 2, so by collecting these terms one has:

dλ↵(k)
dk

=
k2↵−3 (B + . . . )

k↵−1 (F + . . . )1/2
⇠ k↵−2 ! 1 (1.29)

which diverges when k ! 0 as ↵ < 1.

(ii) 1 < ↵ < 3/2: The smallest exponent in the numerator is still 2↵ − 3 while in
the denominator is 0 and

dλ↵(k)
dk

=
k2↵−3 (B + . . . )

(A + . . . )1/2
⇠ k2↵−3 ! 1 (1.30)

which diverges when k ! 0 as 1 < ↵ < 3/2.

(iii) 3/2 < ↵ < 2: The situation is the same as (ii), but

dλ↵(k)
dk

⇠ k2↵−3 ! 0. (1.31)

(iv) ↵ > 2: The smallest exponent in the numerator is 1 while in the denominator
is 0. So

dλ↵(k)
dk

⇠ k ! 0. (1.32)

Thus, if µ = 2w, when k ! 0, dλ↵(k)
dk
! 1 if ↵ < 3/2, while dλ↵(k)

dk
! 0 if

↵ > 3/2.
Let us now turn to the case k ! ⇡. f1↵ (⇡) never diverges because of the analytic

properties of the polylogarithm (see Appendix 1.C)

f1↵ (k ! ⇡)! −2Li↵−1(−1)(k − ⇡) (1.33)

and gives for the dispersion relation

λ1↵ (k ! ⇡) = 2∆|Li↵−1(−1)|(k − ⇡) (1.34)

a linear behavior with a slope fixing the Fermi velocity vF :

vF(↵) = 2∆|Li↵−1(−1)|. (1.35)

It is possible now to compute the corrections to the ground state energy density
by (1.21):
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↵ > 3/2: we have λ1↵
0(0) = 0, λ1↵

0(⇡) = vF(↵) and

e↵(L) = e1↵ −
⇡vF(↵)

12L2
(1.36)

so the central charge c = 1/2 and the transition is in the same universality
class as the Ising model. In this region we can say that the long-range pairing
of the Hamiltonian is weak enough not to change the low-energy physics of
the model, that can be considered still short range.

↵ < 3/2: we have λ1↵
0(0)! 1 and the corrections to the ground-state energy diverges,

too. This signals the breaking of the conformal symmetry of the transition
point due to the strong long-range pairing.

A similar result holds for the µ = −2w line where, if ↵ > 2 the correction to
the ground state-energy density gives c = 1/2 and the model can be consider still
short-range, while when 1 < ↵ < 2, λ1↵

0(0) ! 1 and the conformal symmetry of
the model is broken1.

1.3 Correlation functions

In this section, by exploiting the integrability of Hamiltonian (1.6), we will provide
a method for computing the correlation functions. We will find two regions of the
phase diagram one in which the correlation functions display a hybrid behavior,
the other in which the decays is purely algebraic.

We consider the Green function g1(R) = ha†
R
a0i and the anomalous one ga

1(R) =

ha†
R
a
†
0i computed on the ground state (1.15). As the model is free, we have also

ha†
R
i = haRi = 0, so from g1(R) and g2(R), all the others correlators can be built by

means of Wick’s theorem, e.g.

g2(R) = hnRn0i
= ha†

R
aRa

†
0a0i

= hnRi hn0i − ha†Ra
†
0i haRa0i + ha†Ra0i haRa

†
0i

(1.37)

Let us consider g1(R). In a finite system one has

ha†
R
a0i =

1
L

L−1X

n=0

eiknR sin2 ✓kn
=
δR,0

2
− 1

L

L−1X

n=0

eiknR cos kn + µ

2λ↵(kn)
(1.38)

while, in the limit L! 1 (if R > 0)

g1(R) = − 1
2⇡

Z 2⇡

0
dk eikRG↵(k), (1.39)

1We recall that if ↵ < 1 the line µ = −2w is no more critical.
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with

G↵(k) =
2w cos k + µ

2λ1↵ (k)
. (1.40)

In the following we will give an asymptotic expansion for (1.39) in the whole
phase diagram, and we will find that, for every finite ↵ the integral shows an hybrid
decay, e.g. exponential at short distances and algebraic at long distances. The
second behavior is unexpected because, in a gapped phase, one expects always an
exponential decay [30].

We will find that (1.39) has two main contributions:

(i) the k ! 0 part is responsible for the power-law behavior at long distance;

(ii) the k ! ⇡ part is responsible for the exponential behavior at short distance.

To evaluate the integral, we will use the integration contour in Figure 1.1 and
the Cauchy Theorem:

g1(R) = − 1
2⇡

lim
M!1

 Z

C0

+

Z

L−
+

Z

L+
+

Z

C2⇡

!
dz eizR G↵(z) (1.41)

with z = k+ iy. We have neglected the contributions from C? and C0? as they vanish
when M ! 1.

0 2⇡⇡

⇡ + i⇠1

C0

C2π
L− L+

C?
iM

C 0

?

✏

⇡ + i⇠2

Figure 1.1: Integration contour for evaluating the integral (1.39). The red dashed line is
the branch cut of the square root in the denominator of the integrand in (1.39).

We choose the L± contours since the denominator of (1.40), once extended
to the complex plane on the line ⇡ + iy, changes its sign since it vanishes for two
values ⇠1 < ⇠2 given by2:

(µ − 2w cosh ⇠1,2)2 + ∆2 f1↵ (⇡ + i⇠1,2)2 = 0 (1.42)

The presence of these roots leads to a brach cut for the square root on the line
⇡ + iy. We choose the branch cut in this way:

λ1↵ (z) =

8>>>>><>>>>>:

p
(2w cosh y − µ)2 + ∆2 f1↵ (⇡ + iy)2 if z = ⇡ + iy y < ⇠1 or y > ⇠2

i
p
−(2w cosh y − µ)2 − ∆2 f1↵ (⇡ + iy)2 if z = ⇡+ + iy ⇠1 < y < ⇠2

−i
p
−(2w cosh y − µ)2 − ∆2 f1↵ (⇡ + iy)2 if z = ⇡− + iy ⇠1 < y < ⇠2,

(1.43)

2We notice that f 2
↵ (⇡ + iy) is real.
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Let us now analyze the different contributions from the different paths. We
shall see that the paths L± give the exponential decaying part, while C0 and C2⇡

give the power-law decaying part (at long distances).

Exponential part

On L−, where z = ⇡− + iy we have3

IL− = −
1

2⇡

Z

L−
dz eizR G↵(z)

= − iei⇡R

2⇡

Z ⇠2

1

e−yR(µ − cosh y)dy
p

(µ − cosh y)2 + f 2
↵ (⇡ + iy)

− iei⇡R

2⇡

Z ⇠1

⇠2

e−yR(µ − cosh y)dy

−i
p
−(µ − cosh y)2 − f 2

↵ (⇡ + iy)

(1.44)

where we choose the right expression for the square root, according to (1.43).
In the same way, on L+, we have

IL+ =
iei⇡R

2⇡

Z 1

⇠2

e−yRG↵(⇡+ + iy)dy

+
iei⇡R

2⇡

Z ⇠2

⇠1

e−yRG↵(⇡+ + iy)dy

(1.45)

and, because of the two expressions for λ1↵ (⇡± + iy) when z = ⇡± + iy from equa-
tion (1.43), IL−+ IL+ shows an exponential decay with an inverse correlation length
given by ⇠1:

IL− + IL+ =
iei⇡R

⇡

Z ⇠2

⇠1

dy e−yRG↵(⇡+ + iy)

=
iei⇡R

⇡
e−⇠1R

Z ⇠2

0
dy e−yRG↵(⇡+ + i(y + ⇠1)).

(1.46)

The previous integral is a Laplace-type integral [47]. We can get its leading behav-
ior, first by replacing ⇠2 with infinity, as the integrand is exponentially suppressed
and then by integrating the y! 0 part of G↵(⇡+ + i(y + ⇠1)). One has

G↵(⇡+ + i(y + ⇠1)) ⇠ A↵(µ)
i
p

y
if y! 0 (1.47)

with

A↵(µ) =
µ − cosh ⇠1

2
p

2[Li↵−1(−e⇠1) + Li↵−1(−e−⇠1))]1/2[Li↵(−e⇠1) − Li↵(−e−⇠1))]1/2
(1.48)

3In this section we set 2w = ∆ = 1.
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so

IL− + IL+ = A↵(µ)
ei⇡R

p
⇡

e−⇠1R

p
R

(1.49)

showing the exponential decay.

Power-law part

On C0, z = ✏ + iy (✏ is an infinitesimal parameter we let it go to zero) we have

IC0 = −
1

2⇡

Z

C0

eizR G↵(z)dz

= − i
2⇡

Z 1

0
e−yR G↵(✏ + iy)dy

(1.50)

while on C2⇡, z = 2⇡ − ✏ + iy

IC2⇡ = −
1

2⇡

Z

C2⇡

eizR G↵(z)dz

=
i

2⇡

Z 1

0
e−yR G↵(2⇡ − ✏ + iy)dy

(1.51)

Now, as G↵(2⇡ − ✏ + iy) = G⇤↵(✏ + iy)

IC0 + IC2⇡ =
1
⇡

Z 1

0
dy e−yR Im(G↵(✏ + iy))

=
1
⇡

Z 1

0
dy e−yR Im(G↵(iy))

(1.52)

where in the last equation we let ✏ ! 0.
The integral in (1.52) is the Laplace transform of G↵(iy)), so we can evaluate

its asymptotic behavior, as we did before, by computing the y ! 0 part of G↵(iy))
and then integrating [47]. In the following we will consider the case of ↵ , 1, 2, . . .
where we can use the series expansion of the polylogarithm

Li↵(e
±y) = −Γ(1 − ↵)(⌥y)↵−1 +

1X

j=0

⇣(↵ − j)
j!

(±y) j. (1.53)

Now

Li↵(e
y) − Li↵(e

−y) = −Γ(1 − ↵)
⇣
ei⇡↵ + 1

⌘
y↵−1

+ 2
1X

j=0

⇣(↵ − (2 j + 1))
(2 j + 1)!

y2 j+1 (1.54)

and the main contribution to the imaginary part of G↵(iy), due to Li↵(ey), is given
by

G↵(iy) ⇠ µ + 1

2
p

(µ + 1)2 − Γ2(1 − ↵)(ei⇡↵ + 1)2y2↵−2 + 4Γ(1 − ↵)(ei⇡↵ + 1)⇣(↵ − 1)y↵
(1.55)

We have now to distinguish three cases ↵ > 2, 1 < ↵ < 2 and ↵ < 1.



1.3 Correlation functions 11

↵ > 2 : The Taylor expansion of (1.55), as the leading power in the denominator is
y↵, is:

G↵(iy) ⇠ sgn (µ + 1)
2

 
1 − 2

Γ(1 − ↵)(ei⇡↵ + 1)⇣(↵ − 1)y↵

(µ + 1)2

!
(1.56)

and its imaginary part

ImG↵(iy) ⇠ −Γ(1 − ↵) sin(⇡↵)⇣(↵ − 1)y↵

sgn (µ + 1)(µ + 1)2
(1.57)

entering eq.(1.52) gives

I0 + I2⇡ = −
⇣(↵ − 1)Γ(1 − ↵) sin(⇡↵)

⇡ sgn (µ + 1)(1 + µ)2

Z 1

0
dy e−yRy↵

= −⇣(↵ − 1)Γ(1 − ↵)Γ(↵ + 1) sin(⇡↵)

⇡ sgn (µ + 1)(1 + µ)2

1

R↵+1

= − ↵⇣(↵ − 1)

sgn (µ + 1)(1 + µ)2

1

R↵+1

(1.58)

where we used Euler’s reflection formula Γ(↵)Γ(1−↵) = ⇡/ sin(⇡↵) to extend
the previous equation to integer ↵ also.

1 < ↵ < 2: The leading contribution to the denominator of G↵(y) is y2↵−2 and one has:

G↵(iy) ⇠ sgn (µ + 1)
2

 
1 +
Γ(1 − ↵)2(ei⇡↵ + 1)2y2↵−2

2(µ + 1)2

!
(1.59)

having imaginary part

ImG↵(iy) ⇠
Γ(1 − ↵)2 sin(⇡↵) cos2

⇣
⇡↵
2

⌘
y2↵−2

sgn (µ + 1)(µ + 1)2
. (1.60)

So,

I0 + I2⇡ =
Γ(1 − ↵)2 sin(⇡↵) cos2

⇣
⇡↵
2

⌘

⇡ sgn (µ + 1)(µ + 1)2

Z 1

0
dy e−yRy2↵−2

=
Γ(1 − ↵)2 sin(⇡↵) cos2

⇣
⇡↵
2

⌘
Γ(2↵ − 1)

⇡ sgn (µ + 1)(µ + 1)2

1

R2↵−1
.

(1.61)

↵ < 1: By multiplying both the denominator and the numerator of G↵(iy) in (1.55)
by y1−↵ and then by Taylor expanding we have

ImG↵(iy) ⇠ (µ + 1)
4Γ(1 − ↵)

y1−↵ (1.62)

and

IC0 + IC2⇡ =
(µ + 1)

2⇡Γ(1 − ↵)

Z 1

0
dy y1−↵ e−yR

=
(µ + 1)(1 − ↵)

4⇡
1

R2−↵

(1.63)
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Figure 1.2: Panel (a) integral (1.39) (points) and eq. (1.64) (solid line) for ↵ = 3 and
µ = 0.75. Panel (b) integral (1.39) (points) and eq. (1.66) (solid line) for ↵ = 0.4 and
µ = 0.75 showing the exact matching between analytics and numerics.

By collecting all the contributions, we found that

ha†
R
a0i =

A↵(µ)ei⇡R

p
⇡

e−⇠1R

p
R

− ↵⇣(↵ − 1)

sgn (µ + 1)(1 + µ)2

1

R↵+1
for ↵ > 2,

(1.64)

ha†
R
a0i =

A↵(µ)ei⇡R

p
⇡

e−⇠1R

p
R

+
Γ(1 − ↵)2 sin(⇡↵) cos2

⇣
⇡↵
2

⌘

⇡ sgn (µ + 1)(µ + 1)2

Γ(2↵ − 1)

R2↵−1
for 1 < ↵ < 2

(1.65)

and

ha†
R
a0i =

A↵(µ)ei⇡R

p
⇡

e−⇠1R

p
R

+
(µ + 1)(1 − ↵)

4⇡
1

R2−↵ for ↵ < 1

(1.66)

where A↵(µ) is given by (1.48) and ⇠1 is the smallest solution of

(µ − cosh ⇠1,2)2 −
⇣
Li↵(−e−⇠1,2) − Li↵(−e⇠1,2)

⌘2
= 0. (1.67)

In Fig. 1.2 the comparison between the exact integral (1.39) and equation (1.64)
is reported. One can see that the power-law tail occurs when the two contributions
in (1.64) and (1.65) become of the same order of magnitude. This usually happens
when ↵ > 1.
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Figure 1.3: (a) Decay exponent of (1.39) compared with eqs. (1.64), (1.65), (1.66). The
equations of the three straight lines are 2−↵, 2↵−1 and ↵+1. The point ↵ = 1 is discussed
in Appendix 1.C. (b) Decay exponent of (1.69). The equation of the straight line is ↵. The
discrepancy between the fitted values and the analytical line is due to numerical errors.

When ↵ < 1 one can show, numerically, that even if equation (1.42) has one
or two solutions, the exponential part in (1.66) is negligible with respect to the
power-law tail. This gives a pure power-law correlation function.

Fig. 1.3(a) shows the decaying exponent computed numerically from (1.39)
and compared with eqs. (1.64), (1.65), (1.66).

1.3.1 Anomalous correlator

The correlators ga
1(R) = ha†

R
a
†
0i is given by

ha†
R
a
†
0i =

1
L

L−1X

n=0

eiknR i sin ✓kn
cos ✓kn

=
i
L

L−1X

n=0

eiknR ∆ f↵(kn)
2λ↵(kn)

(1.68)

in a finite system, while, in the thermodynamic limit

ha†
R
a
†
0i =

1
2⇡

Z 2⇡

0
eikR F↵(k) (1.69)

with

F↵(k) = i
∆ f1↵ (k)

2λ1↵ (k)
. (1.70)

Using the same integration contour as before we get for ga
1(R)

ha†
R
a
†
0i =

ei⇡Re−⇠1R

⇡

Z 1

0
dy e−yRF↵(⇡+ + i(y + ⇠1))

− 1
⇡

Z 1

0
dy e−yR ImF↵(iy)

(1.71)
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showing both the exponential and the power law contributions. ⇠1 is always the
smallest solution of4

(µ − cosh ⇠1,2)2 −
⇣
Li↵(−e−⇠1,2) − Li↵(−e⇠1,2)

⌘2
= 0. (1.72)

If ↵ > 1, as

ImF↵(iy) ⇠ Γ(1 − ↵) sin ⇡↵
2|µ + 1| y↵−1 (1.73)

we have

ha†
R
a
†
0i =

B↵(µ)ei⇡R

p
⇡

e−⇠1R

p
R
− 1

2|µ + 1|
1

R↵
(1.74)

with

B↵(µ) =
[Li↵(−e⇠1) − Li↵(−e−⇠1)]1/2

2
p

2[Li↵−1(−e⇠1) + Li↵−1(−e−⇠1))]1/2
(1.75)

while, if ↵ < 1

ImF↵(iy) ⇠ 1
2

(1.76)

and

ha†
R
a
†
0i =

B↵(µ)ei⇡R

p
⇡

e−⇠1R

p
R
− 1

2⇡
1
R
. (1.77)

Fig. 1.3(b) shows the comparison between the fitted exponent from (1.69) and
the analytical results in (1.74) and (1.77).

From g1(R) and ga
1(R) one can compute the connected two-point correlation

function gc
2(R) = hnRn0i − hnRi hn0i that behaves as gc

2(R) ⇠ 1/R2↵ when ↵ > 1.
The the decaying exponent we found is the same as the one of the Ising model
numerically computed in [48].

1.4 Entanglement scaling

In recent years, entanglement measures have been used to characterize the proper-
ties of a quantum many-body system [49–57].

At zero temperature, the system occupies the ground state |GS i of a Hamilto-
nian H and |GS i contains all the information on the static properties that can be
readily collected by an entanglement measure on it. Entanglement can provide also
a practical way to detect the boundaries [58] between different phases, since it is
sensitive to the presence of critical points of quantum phase transitions. Mreover
the final efficiency of numerical techniques, based e.g. on density matrix renormal-
ization group and similar methods, for approximating a quantum state, is related

4From now and to the end of this section we use ∆ = 2w = 1
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to the amount of entanglement of such a state [59]. A good control on it can give
very good quasi-exact approximations.

A measure of the rate of entanglement present in |GS i can be given by the
von-Neumann entropy S vN we will introduce in the following.

Let us consider a one-dimensional chain of length L, and a partition into two
disjoint subsystems A and B containing ` and L − ` sites, respectively.

We can build the density matrix of the total system through |GS i

⇢ = |GS i hGS | (1.78)

and we can define the reduced density matrix for subsystem A tracing out the de-
grees of freedom of B from the total ⇢:

⇢A(`) = TrB ⇢ (1.79)

so we can look at the subsystem A to be in a mixed state defined by the previous
⇢A.

The von Neumann entanglement entropy S vN is defined as the entropy of the
reduced density matrix ⇢A

S vN(`) = −Tr ⇢A log2 ⇢A (1.80)

We are interested in the the scaling of the entanglement S vN(`) with the sub-
system size `.

By recalling the thermodynamic concept of entropy5, being an extensive quan-
tity, it obeys a volume law, and one could think that even S vN has an extensive
behavior.

This is, however, not true for ground states of gapped local Hamiltonians and
one generally finds they obey an area law [60], meaning that, for one-dimensional
systems, the entropy saturates to a constant.

Moreover, it has been shown that, the scaling changes at criticality and reflects
the universal behavior of the system, making the measure of entanglement a pow-
erful method for getting information on the universality properties of critical points
[31, 61].

For one-dimensional systems with local Hamiltonian defined on a ring of length
L, these two different behaviors can be summarized as follows:

(i) At criticality S vN(`) diverges logarithmically with the block size `

S vN(`) =
c

3
log2

"
L

⇡
sin

 
⇡`

L

!#
+ a (1.81)

where c is the central charge of the underlying conformal field theory and a

is a nonuniversal constant.
5Thermal entropy has the same functional form as (1.80) with ⇢A the canonical or gran-canonical

density matrix.
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This scaling can be used to compute the central charge c of the theory also
for non-integrable model, by employing, e.g. DMRG techniques [62–64]
that can directly access to the reduced density matrix ⇢A(`) and, then, to
S vN(`).

(ii) Away from criticality, where the system has a gap and because of this a finite
correlation length ⇠ [65] the entropy saturates to a constant

S vN(`) =
c

3
log2 ⇠ (1.82)

and obeys an area law.

In this section we will compute the von Neumann entropy S vN(`) for the Hamil-
tonian (1.6) by exploiting the method of Appendix 1.B as H in (1.6) is quadratic.

For different system sizes L and for different values of µ (fixing in this section
∆ = 2w = 1) and ↵, we computed the entropy S vN(L/2) for half of the chain. Then,
to study where a violation of the area law occurs (i.e. when the entropy does not
saturate to a constant), we used eq. (1.81), in principle valid only where the system
is critical, to define an effective central charge ceff throughout the all phase diagram

S vN(`) =
ceff

3
log2

"
L

⇡
sin

 
⇡`

L

!#
+ a (1.83)

in analogy of what has been done for the Ising model with long-range interactions
in [48].

Figure 1.4 shows the plots of S vN(L/2) opportunely rescaled both for a gapped
and a critical point, while the resulting ceff is reported in Figure 1.5.

What we found is that

(i) for ↵ > 1, ceff = 0 almost everywhere in the gapped region |µ| , 2w. This
is equivalent to say that the area law is not violated and the scaling of the
entropy does not depend on the system size;

(ii) for ↵ < 1, ceff , 0 within the gapped region. This corresponds to the vi-
olation of the area law and it is unexpected if the phase is gapped, because
of (1.82). The behavior of ceff, as well as of the correlation functions dis-
cussed before, can be ascribed to the very strong long-range pairing, showing
up in non-local quantities such as S vN(L/2) and correlation functions.

A cut of the phase diagram of Figure 1.5, for µ = 0.5 e µ = 1 is shown in
Figure 1.6, where one can see the increasing of the central charge on the critical
line, and the violation of the area law in the gapped phase.

Let us discuss the behavior of the central charge on the critical line µ = 1.
We have seen that the finite size corrections to the ground state energy diverge for
↵ < 3/2, while here we found c > 1/2 for ↵ < 3/2 (Figure 1.6) to arrive to c = 1
for ↵ = 0 . This value is the same as a Luttinger liquid and it would correspond to
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Figure 1.4: The plots show the values of S vN(L/2) (rescaled in order to easily read from
the y-axis the value of ceff) for (a) the gapped point µ = 0.5 and (b) the critical point µ = 1
as function of 1/ log2(L). The intercept on the y-axis gives ceff in the thermodynamic limit.
One can see that by decreasing ↵, for a gapped point (a), ceff goes from 0 (short-range
regime) to 1/2 (area law violation), while for a critical point (b), ceff goes from 1/2 (as
expected for the XY-Ising model) to 1.

Figure 1.5: Phase diagram obtained through the effective central charge ceff by fitting the
von Neumann entropy S (L/2). Two gapless conformal field theories with c = 1/2 are
visible for µ = 1 (↵ > 3/2) and µ = −1 (↵ > 2). Red vertical dotted lines: gapless
lines with broken conformal symmetry. Horizontal dashed line separates two regions:
correlation functions display a hybrid exponential-algebraic (↵ > 1) and purely algebraic
decay (↵ < 1).
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Figure 1.6: The plot shows both the violation of the area law in the gapped phase (µ = 0.5)
when ↵ < 1 and the increasing of the central charge (from 1/2 to 1) when ↵ decreases to 0
on the critical line µ = 1.

a conformal bosonic theory. These two theories (Ising with c = 1/2 and Luttinger
c = 1), are described by two completely different conformal field theories, the
principal difference being the number of primary fields they admit. For a complete
review one can see [37, 66–68].

In particular, the degeneracy patterns of the excited states have two different
behaviors.

If we take into account the Ising model, the excitations can be made up by
constructing a multi-particle state and adding the required combinations of single-
particle energy given by

λ(kn) =
q

(cos kn − 1)2 + γ2 sin2 kn (1.84)

at criticality, with kn = 2⇡(n + 1/2)/L. We note that, as the dispersion relation is
symmetric with respect to k = 0 there are two fermions with opposite momenta
carrying the same energy.

Consider now, the single particle low-lying excitations. The are created near
k = 0 and their energy, in the limit of a long, but finite chain is

λ(kn) = vF

2⇡
L

∣∣∣∣∣n +
1
2

∣∣∣∣∣ with kn ⇠ 0 (1.85)

with vF = γ the Fermi velocity (see eq. (1.159)).
If we rescale energy and momentum, by defining

✏n =
L

2⇡vF

λ(kn) =
∣∣∣∣∣n +

1
2

∣∣∣∣∣ (1.86)

pn = n +
1
2

(1.87)

the low-lying excitations are given by choosing n between 0,±1,±2 . . . and recall-
ing that, as the theory is fermionic, we cannot have two fermions with the same
quantum number.
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n 0 1 2 3 4 5
Eeven

n 0 1 2 3 4 5
degeneracy 1 1 4 5 9 13

n 1 2 3 4 5
Eodd

n 1/2 3/2 5/2 7/2 9/2
degeneracy 2 2 4 6 12

Table 1.1: Degeneracies of the even (upper table) and odd-particle (lower table) sectors of
the Ising model. The same degeneracies are found for the long-range Hamiltonian both for
↵ > 1 and for ↵ < 1 (see Figure 1.7).

Now we can divide the excitations into two groups as they can be given by an
odd or an even number of fermions and then we count their degeneracies.

Let us consider the odd-particle number excitations. The first excitation will
be given by n = 0 with momentum p0 = 1/2 and Eodd

1 = ✏0 = 1/2.
The second one, if we consider n = −1 will have always an energy ✏−1 = 1/2,

but an opposite momentum p−1 = −1/2, so it will be degenerate with the first.
The next energy level Eodd

2 = 3/2 will be always two-fold degenerate, because
it can be given by n = 1, or n = −2. The case Eodd

3 = 5/2 is different, as this can be
built directly with a particle in n = 2 (p2 = 3/2) or n = −3 (p−3 = −3/2) or with
three particles in {n1 = 0, n2 = −1, n3 = 2} (with total momentum p0 + p−1 + p2 =

5/2) or {n1 = 0, n2 = −1, n3 = −3} (with momentum −5/2) and it will be four-fold
degenerate.

In the same way, one can compute all the degeneracy pattern also in the even
sector. Table 1.1 shows the degeneracies of the first levels both for the odd and for
the even particle sectors of the Ising model [37].

If we now compute the degeneracy of the long-range Hamiltonian (1.6) we will
always find the previous patterns, no matter which ↵ we consider, as the theory has
always fermionic excitations. They are shown in Figure 1.7.

We can thus conclude, that the entanglement entropy cannot be used to probe
the fermionic character of (1.6) as the conformal field theory is broken and the
entanglement scaling of (1.81), which was derived in a conformal field theory con-
text, does not hold.

We can however explain the apparent doubling of the central charge by looking
at the correlation functions used to compute the von Neumann entropy. Using the
technique of the previous section we can compute the density-density correlation
function, for ↵ = 0, that comes out to be (Figure 1.8)

g2(R) =
1 − cos ⇡R

2⇡2R2
(1.88)

which is identical to the one of a Luttinger liquid yielding for the central charge
the value c = 1 [69].
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(a) (b)

(c) (d)

Figure 1.7: Degeneracy patterns for the long-range Hamiltonian for different ↵ at crit-
icality. (a), (b) panels for the excitations with an even particle number, (c), (d) for the
excitations with an odd number of particles. The two plots show the same degeneracies as
a c = 1/2 theory reported in Table 1.1.
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Figure 1.8: The plot shows the density-density correlation function g2(R) at µ = 1, ↵ = 0
with a dimerized behavior, responsible for the doubling of the central charge on the critical
line.

1.5 Entropy scaling after a quench

The breaking of the conformal field theory on the critical line µ = 2w for suffi-
ciently small ↵ < 1, discussed in the previous section, can be tested by looking at
the scaling of the entanglement entropy after a global quench.

In recent years, the time evolution in of entanglement measures has been in-
vestigated both analytically [38, 70–75] and numerically [39, 76–79], even because
the growth in time of the entanglement between two halves of a many-body system
takes into account the quantum correlations between them and, from a numerical
point of view, it can give information on the complexity of the numerical approx-
imation of this system, when using, for example, matrix product state representa-
tion [80–83]

A global quench is a changing of one or more parameters in the system, pre-
viously prepared in a given state | i (that can be taken as the ground state of a
pre-quench Hamiltonian H0) that, for t > 0 is allowed to evolve with a different
post-quench Hamiltonian H1.

Let us briefly review what is the entanglement dynamics for a system with short
range interactions, for which we will employ the so-called semiclassical approxi-
mation [70] for the quench dynamics, valid when the post-quench Hamiltonian can
be written in terms of free-moving particles.

We will get an estimation of the rate of the growth of the entanglement S (t)
between two parts A (of length `) and B of the system.

As soon as the evolution, ruled by the post-quench Hamiltonian H1, starts, we
have the instantaneous production of pairs of quasi-particles with opposite mo-
menta k and −k, created somewhere in the system. These are entangled pairs and
they move freely in the system with a finite group velocity vg.

The maximum for the group velocity was theoretically studied in [84] and, for a
system with short range interactions always exists. It is given by the Lieb-Robinson



22 Kitaev chain with long-range pairing

bound which also defines an effective light cone outside of which correlations are
exponentially suppressed.

Now, quasiparticles created in A arriving in B entangle the two parts and, as
the rate of arrival in B is constant (vg being constant) the entropy between A and B

grows linear in time. This was also proven for a quench in a conformal field theory
in [38] where a universal behavior for S (t) was found

S (t) =

8>>>><>>>>:

⇡ct

6
t < `/2

⇡c`

12
t > `/2

(1.89)

In the case of long-range interactions with power ↵, where the Lieb-Robison
bound has to be modified to take them into account [85], more regimes were found
for the spreading of correlations and entanglment entropy [39, 75, 77, 86, 87].

In particular for the Ising model with long range interactions three different
regimes for the entanglement were identified [39]

(i) for relatively short-range interactions (↵ > 1), entropy grows linearly in time
as explained before with the semiclassical picture;

(ii) for long-range interactions ↵ ⇠ 0.8, 0.9, 1 the half-chain entanglement en-
tropy grows logarithmically;

(iii) for strong long-range interactions ↵ . 0.2, rapid oscillations of the half-
chain entanglement entropy were observed around small values.

We studied, in this work, the entanglement growth after a quench ruled by the
Hamiltonian (1.6) for different ↵ (with ∆ = 2w = 1), by using the following quench
protocol.

We prepared the system in | (0)i that is the ground state of (1.6) when µ0 . 1.
This state is characterized by a Bogolyubov angle ✓(0)

qn
given by (1.12). Then we

let | (0)i evolve by means of H(1) eq. (1.6) with µ1 = 1:

| (t)i = e−iH(1)t | (0)i . (1.90)

We will measure time t in unit of ~/J where J is the energy scale used for the
Hamiltonian H(1).

H(1) can be written in a new Bogolyubov basis corresponding to a Bogolyubov
angle ✓(1)

qn
and it takes the form

H(1) =

L−1X

n=0

λ
(1)
↵ (qn)

 
⌘

(1)
kn

†
⌘

(1)
qn
− 1

2

!
(1.91)

with

λ
(1)
↵ (qn) =

q
(cos qn + 1)2 + f 2

↵ (qn) (1.92)
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After cutting the whole system into two equal parts (A and B of length L/2) we
compute the half-chain von Neumann entropy

S L/2(t) = −Tr ⇢A(t) log2 ⇢A(t) (1.93)

where A is the reduced density matrix of A, computed by tracing out the B degrees
of freedom

⇢A(t) = Tr B | (t)i h (t)| (1.94)

In order to get S L/2(t) we need the equal-time correlation matricesCi j(t) = hc†i (t)c j(t)i
and Fi j = hc†i (t)c†

j
(t)i, where in the Heisenberg representation operators c j(t) evolve

by H(1)

c j(t) = eiH(1)tc je
−iH(1)t (1.95)

and expectation values are computed over | (0)i.
Correlation functions are

hc†
i
(t)c†

j
(t)i = 1

L

L/2−1X

n

sin (qn(i − j))


sin 2✓(1)
qn

cos
⇣
2✓(0)

qn
− 2✓(1)

qn

⌘

+ sin
⇣
2✓(0)

qn
− 2✓(1)

qn

⌘ 
cos2 ✓

(1)
qn

e2itλ(1)
↵ (qn)

− sin2 ✓
(1)
qn

e−2itλ(1)
↵ (qn)

] ]
(1.96)

and

hc†
i
(t)c j(t)i =

2
L

L/2−1X

n

cos (qn(i − j))


sin2
⇣
2✓(1)

qn
− ✓(0)

qn

⌘
sin2(λ(1)

↵ (qn)t)

+ sin2 ✓
(0)
qn

cos2(λ(1)
↵ (qn)t)

]
.

(1.97)

and the technique to compute S L/2(t) from them is explained in section 1.B.1.
Plots in Figure 1.9 show the different behavior of the entropy in time for differ-

ent values of ↵ after a quench from µ0 = 1000.
If ↵ > 1 we have a linear growth, as predicted for a conformal field theory by

eq. (1.89). If ↵ . 1 the entropy scales logarithmically in time.
In panel (b) of Figure 1.9 we plot S L/2(t)/S max where S max is the maximum of

the entropy before it starts to oscillate. The oscillations (most visible for ↵ > 1)
are peculiar to a finite length system for which we used summations for evaluated
the correlation functions in (1.96) and (1.97).

If instead we let L ! 1 and replace summation with integrals in (1.96) and
(1.97), the oscillations disappear as one can see in Figure 1.10 showing the plots
for various ↵ of the scaling of the entanglement entropy for a block of ` = 100
sites.

As for a conformal field theory we expect a linear behavior in time of the
entanglment entropy, its logarithmic scaling can be considered as a proof of the
breaking of the conformal invariance of the model when ↵ . 1.
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Figure 1.9: The plots show the evolution of the entanglement entropy in a system of
L = 400 sites after a quench from a product state with µ0 . 1 to µ1 = 1. For ↵ > 1,
S L/2(t) grows linearly. For ↵ < 1, S L/2(t) grows logarithmically. Panel (a) linear-linear
plot. For ↵ < 1 S L/2(t) deviates from a straight line. Panel (b) linear-log plot of S L/2(t).
The logarithmic behaviors is visible for intermediate time 10 < t < 100
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Figure 1.10: The plot shows the scaling of the entanglement entropy in time for a block
of ` = 100 sites embedded in a infinite long system. For ↵ . 1 the entropy scales as a
logarithm, while for ↵ > 1 the entropy grows linearly.
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1.6 Majorana edge states

The existence of Majorana fermions, (particles that are their own antiparticles) was
predicted by Majorana [88] in 1937.

Apart from the theoretical interest Majorana fermions display, they have been
proposed as model to engineering one-dimensional quantum states strongly pro-
tected against decoherence and suitable to build e.g. quantum memories.

Robustness against decoherence is guaranteed if these states are well separated
from the rest of the spectrum of excitations. A first proposal to construct them in a
condensed matter system was given by Kitaev in [29].

In this section we discuss how Majorana edge states, already found in the short
range limit ↵! 1 of Hamiltonian (1.6), appear also in the long-range model.

In limit ↵ ! 1 (and with open boundary conditions), the resulting Hamilto-
nian is:

H(↵! 1) = −w

L−1X

j=1

⇣
c
†
j
c j+1 + c

†
j+1c j

⌘
− µ

LX

j=1

 
c
†
j
c j −

1
2

!

+ ∆

L−1X

j=1

⇣
c jc j+1 + c

†
j+1c

†
j

⌘
(1.98)

We can decompose each of the c j Dirac fermions into two Majorana fermions

c
†
j
= a j + ib j c j = a j − ib j (1.99)

that are hermitian and satisfy

{ai, a j} = {bi, b j} = 2δi, j {ai, b j} = 0 (1.100)

a2
i = b2

i = 1 (1.101)

and we can rewrite H(↵! 1) as (we will set ∆ = w)

H(↵! 1) = 2iw
L−1X

j=1

a jb j+1 − iµ
LX

j=1

b ja j (1.102)

Such Hamiltonian, as well as Hamiltonian (1.6), does not conserve the fermion
number generated by F =

PL
j=1 c

†
j
c j but only parityP of the fermion number, given

by

P = (−1)F =

LY

i=1

(−iaibi) (1.103)

and generating aZ2 symmetry.
In this way, Hamiltonian is decomposed into two sectors with even or odd

fermionic number.
Following [89], we can now define a fermionic zero-energy mode as an opera-

tor Ψ that
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(i) commutes with the Hamiltonian: [H,Ψ] = 0;

(ii) anticommutes with P: {P,Ψ} = 0;

(iii) can be normalized even in the L! 1 limit: Ψ†Ψ = 1.

We can now show that Hamiltonian (1.102) supports zero edge modes by con-
structing Ψ explicitly.

Commuting H(↵ ! 1) with b1 gives 2iµa1. Now, we can rewrite 2a1 =

[a1b2, b2] and the following combination of a1 and a2 commutes with the two terms
of H(↵! 1): 

iµa1b1 + 2wia1b2, b1 −
µ

2w
b2

]
= 0 (1.104)

In this way we can define two operators localized at the edge of the chain Ψleft

and Ψright

Ψleft = b1 −
µ

2w
b2 +

✓
µ

2w

◆2
b3 + . . . (1.105)

and

Ψright = aL −
µ

2w
aL−1 +

✓
µ

2w

◆2
aL−2 + . . . (1.106)

Then, the commutators of Ψleft and Ψright with the Hamiltonian

[H(↵! 1),Ψleft] = µ
✓
µ

2w

◆L−1
aL (1.107)

h
H(↵! 1),Ψright

i
= µ

✓
µ

2w

◆L−1
b1 (1.108)

are exponentially suppressed in the limit L ! 1 if |µ| < 2w and in this region we
have the appearance of two Majorana states Ψleft and Ψright localized at the edges
of the chain.

If we now consider the long-range Hamiltonian (1.6) in a closed chain (with
d` = `) and with ∆ = 2w = 1 we can numerically diagonalize it using the method
reported in [32, 90–92] for finding whether zero energy modes exist.

Given a fermionic quadratic Hamiltonian

H =

LX

i, j=1

c
†
i
Ai jc j +

⇣
c
†
i
Bi jc

†
j
+ h.c.

⌘
(1.109)

where the matrix A is symmetric and B is antisymmetric, we can cast the Hamilto-
nian H in diagonal form

H =

LX

n=1

λn⌘
†
n⌘n (1.110)

with λn ≥ 0 by means of a Bogolyubov transformation
 
⌘

⌘†

!
=

 
g h

h g

!  
c

c†

!
(1.111)
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Figure 1.11: The plot shows the minimum among the λn of the excitation spectrum
of (1.110) for a system of L = 200 sites. The white vertical lines are gapless lines. In
the black region |µ| < 1, ↵ & 1 there exists a λn0 = 0, that represents a zero mode edge
state degenerate with the ground state.
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Figure 1.12: Panel (a) shows the value of λn0 in the limit L ! 1. When ↵ < 1, λn0

becomes finite in the thermodynamic limit and the zero energy mode disappears.

where c = (c1, . . . , cL)T the same for ⌘ and g and h are L ⇥ L matrices.
For getting the single particle energies λ = (λ1, . . . , λL)T and the matrices g

and h we can employ a singular-value decomposition of the sum of A + B

λ =  (A + B)φT (1.112)

where  = g − h and φ = g + h.
If a zero energy mode exists we will find the minimum among the single parti-

cle energies (we will call it λn0) vanishing in a gapped region in the limit L! 1.
To distinguish it from a zero mode due to a critical point we can look at the

exact dispersion relation (1.17) (valid also for open boundary conditions as, when
L ! 1, the bulk properties are the same both for a ring and for a closed chain).
We know that the critical lines are only µ = 1,↵ > 0 and µ = −1,↵ > 1 and, thus a
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Figure 1.13: The plot shows the wavefunction of the edge mode for a chain of L = 500
sites for (a) µ = 0.5 and (b) µ = −0.5 in log-log scale for the different ↵. It is possible to
see the hybrid exponential and power-law behavior (with a tail 1/R2↵) also found for the
correlation functions.

λn0 = 0 for µ , ±1 will correspond to a true zero energy mode.
The plot in Figure 1.11 represents the position of these zero energy points

where two degenerate ground states appear.
We find that the gapped region |µ| < 1 for ↵ & 1 supports zero energy modes

and we fitted the value of λn0(L) as function of L for different ↵ and µ. Plot in
Figure 1.12 shows the thermodynamical values for λn0 as function of ↵ for several
µ and when ↵ < 1 one can see that these modes become massive.

Moreover, we can access to the wavefunction of these zero modes, by plotting
the normalized square of the n0-th row of  or φ (corresponding to the eigenvalue
λn0) as function of the lattice site R (Figure 1.13). Remarkably, its wavefunction
mirrors the hybrid exponential and power-law decay we discussed for the correla-
tion functions.

By fitting the power-law tail of | n0(R)|2 we found | n0(R)|2 ⇠ R−2↵ for ↵ & 1,
implying that | n0(R)|2 is normalizable, as required for an edge mode.

We also note that this algebraic decay is in qualitative agreement with recent
calculations for helical Shiba chains [93].

1.7 Conclusions

In this Chapter, motivated by recent experimental setups for the realization of sys-
tems supporting long-range interactions, we have presented and analyzed an inte-
grable model for fermions with long-range pairing, finding several novel features.

These include gapped phases where correlation functions exhibit purely alge-
braic or hybrid exponential-algebraic decay.

Moreover, we demonstrate a breaking of the conformal symmetry along gap-
less lines accompanied by a violation of the area law in gapped phases for suffi-
ciently long-range interactions.
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It is an exciting prospect to investigate whether some of the results of the
present work are in fact common to other models with long-range interactions,
such as, e.g., Ising-type models with tunable interactions, as currently realized in
several labs [19, 28]. As we have shown that the breaking of conformal symmetry
may be directly detected in the dynamics of the von Neumann entropy following
a quench, as recently demonstrated numerically for ion chains [39], it would be
worth to find an exact expression (like the ones in (1.81) and (1.89)) both for the
scaling of the static entropy and its time evolution after a quench in order to inte-
grate the already known results on finite-range interactions [94].





Appendices

1.A XY-Ising model

In this Appendix, I will review some results on the exact diagonalization of the XY
model [32].

We consider the following spin hamiltonian with periodic boundary condition
on a chain of N (even) sites:

H(γ, h) = −J

NX

j=1

h
(1 + γ)S x

jS
x
j+1 + (1 − γ)S y

j
S

y

j+1

i
+ Jh

NX

j=1

S z
j

(1.113)

The spin operator are defined in terms of the Pauli matrices:

S x =
1
2

 
0 1
1 0

!
S y =

1
2

 
0 −i
i 0

!
S z =

1
2

 
1 0
0 −1

!

and, by employing ladder operators:

S +i = S x
i + iS y

i
(1.114)

S −i = S x
i − iS y

i
(1.115)

one can rewrite the spin Hamiltonian as

H(γ, h) = −J

NX

j=1

"
1
2

⇣
S +j S −j+1 + S −j S +j+1

⌘
+
γ

2

⇣
S +j S +j+1 + S −j S −j+1

⌘
+ JhS z

j

#

(1.116)
and, after a Jordan-Wigner (JW) transformation

S +i = c
†
i

exp

0BBBBBB@i⇡
i−1X

l=1

c
†
l
cl

1CCCCCCA (1.117)

S −i = exp

0BBBBBB@−i⇡
i−1X

l=1

c
†
l
cl

1CCCCCCA ci (1.118)

S z
i
= c
†
i
ci −

1
2

(1.119)

31
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the Hamiltonian becomes:

H(γ, h) = − J

2

N−1X

j=1

h
c
†
j
c j+1 − c jc

†
j+1 + γ

⇣
c
†
j
c
†
j+1 − c jc j+1

⌘i

+ Jh

NX

j=1

 
c
†
i
ci −

1
2

!

+
J

2
ei⇡

PN
l=1 c

†
l
cl

h
c
†
N

cN+1 − cNc
†
N+1 + γ

⇣
c
†
N

c
†
N+1 − cNcN+1

⌘i

(1.120)

The parity P = exp(i⇡
PN

l=1 c
†
l
cl) of the number of fermions commutes with the

Hamiltonian, so there exist two sectors of the Hilbert space in which the Hamilto-
nian and the operator P can be diagonalized simultaneously.

Since P is unitary, its eingenvalues can be only +1 or −1, so its spectral de-
composition is P = P+ − P− and H(γ, h) decomposes as

H(γ, h) = H+(γ, h) + H−(γ, h) (1.121)

with H±(γ, h) = P±H(γ, h)P±

Even fermion number P = 1

We choose the sector with parity P = 1 (with an even number of fermions). In this
case we have to choose anti-periodic boundary conditions for the Jordan-Wigner
fermions (cN+1 = −c1), so, if we perform a Fourier transform, momenta will be:

kn =
2⇡
N

 
n +

1
2

!
(1.122)

and the fermionic operators

c
†
i
=

1
p

N

N−1X

n=0

eikn xic†n. (1.123)

The Hamiltonian in the parity +1 sector is:

H+(γ, h) = − J

2

N−1X

n=0

h
(cos kn − h)(c†ncn + c

†
−n−1c−n−1)

+iγ sin kn(c†−n−1c†n + c−n−1cn)
i
− JhN

2

(1.124)

Note that the term sin kn is always different from zero, due to the antiperiodic
boundary conditions for the JW fermions and the even number of site N.

We can introduce a spinor
⇣
c
†
n c−n−1

⌘
and the Hamiltonian takes the form

H+(γ, h) =
J

2

X

n

⇣
c
†
n c−n−1

⌘  −(cos kn − h) iγ sin kn

−iγ sin kn (cos kn − h)

!  
cn

c
†
−n−1

!
(1.125)
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and, after a Bogolyubov transformation

 
cn

c
†
−n−1

!
= U†

 
⌘n

⌘
†
−n−1

!
(1.126)

with

U =

 
↵n −β⇤n
βn ↵⇤n

!
=

 
cos ✓n i sin ✓n

i sin ✓n cos ✓n

!
(1.127)

and

tan 2✓n =
γ sin kn

h − cos kn

(1.128)

the Hamiltonian becomes:

H+(γ, h) =
N−1X

n=0

λ(kn)

 
⌘†n⌘n −

1
2

!
(1.129)

with

λ(kn) = J

q
(cos kn − h)2 + γ2 sin2 kn (1.130)

The ground state of H+(γ, h) is the vacuum of ⌘n: ⌘n |GS γ,hi = 0. A possible
choice for this state is

|GS γ,hi+ =
N−1Y

n=0

⌘n⌘−n−1 |0i =
N
2 −1Y

n=0

(↵n + β
⇤
nc†nc

†
−n−1) |0i (1.131)

and its energy density is

E+0 (γ, h) = −1
2

N−1X

n=0

λ(kn) (1.132)

To compute the actual ground state of the XY model we need to look also at the
spectrum of the H−(γ, h) Hamiltonian.

Odd fermion number P = −1

In this case JW fermions are periodic so, momenta will be

kn =
2⇡n

N
(1.133)

and the Hamiltonian is

H−(γ, h) =
J

2

N−1X

n=0

⇣
c
†
n c−n

⌘  −(cos kn − h) iγ sin kn

−iγ sin kn (cos kn − h)

!  
cn

c
†
−n

!
(1.134)
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The term with sin kn = 0 needs to be kept apart from the others

H−(γ, h) = −J(1 − h)

 
c
†
0c0 −

1
2

!

+
J

2

N−1X

n=1

⇣
c
†
n c−n

⌘  −(cos kn − h) iγ sin kn

−iγ sin kn (cos kn − h)

!  
cn

c
†
−n

! (1.135)

Now we have to deal with the two cases h > 1 and h < 1 separately.

h < 1

If h < 1 the Hamiltonian is

H−(γ, h) = −J|1 − h|
 
c
†
0c0 −

1
2

!

+
J

2

N−1X

n=1

⇣
c
†
n c−n

⌘  −(cos kn − h) iγ sin kn

−iγ sin kn (cos kn − h)

!  
cn

c
†
−n

! (1.136)

Since the first term decreases the energy of the ground state, we employ a
particle-hole transformation for the

⇣
c
†
0, c0

⌘
and a Bogolyubov transformation for

the
⇣
c
†
n, cn

⌘
with n > 0:

⇠0 = c
†
0 (1.137)

⇠
†
0 = c0 (1.138)

⇠n = ↵ncn − β⇤nc
†
−n (1.139)

⇠
†
−n = βncn + ↵

⇤
nc
†
−n (1.140)

which yield to

H−(γ, h < 1) = J|h − 1|
 
⇠
†
0⇠0 −

1
2

!
+

N−1X

n=1

λ(kn)

 
⇠†n⇠n −

1
2

!
(1.141)

The ground state in this case is

|GS γ,h<1i− = ⇠0

N−1Y

n=1

⇠n⇠−n |0i = c
†
0

N
2Y

n=1

(↵n + β
⇤
nc†nc

†
−n) |0i (1.142)

and its energy

E−0 (γ, h < 1) = − J

2
|h − 1| −

N−1X

n=1

λ(kn) (1.143)

The operator ⇠0 is needed because |GS γ,h<1i− must belong to the sector with an
odd number of fermions.
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h > 1

If h > 1 the Hamiltonian is

H−(γ, h) = J|h − 1|
 
c
†
0c0 −

1
2

!

+
J

2

N−1X

n=1

⇣
c
†
n c−n

⌘  −(cos kn − h) iγ sin kn

−iγ sin kn (cos kn − h)

!  
cn

c
†
−n

! (1.144)

In this case λ(kn) = J

q
(cos kn − h)2 + γ2 sin2 kn implies that λ(k0) = J|h − 1|

so by means of the following unitary transformation

 0 = c0 (1.145)

 
†
0 = c

†
0 (1.146)

 n = ↵ncn − β⇤nc
†
−n (1.147)

 
†
−n = βncn + ↵

⇤
nc
†
−n (1.148)

the Hamiltonian takes the form:

H−(γ, h > 1) =
N−1X

n=0

λ(kn)

 
 †n n −

1
2

!
(1.149)

The ground state in this case is

|GS γ,h>1i− = c
†
0

N
2Y

n=1

(↵n + β
⇤
nc†nc

†
−n) |0i (1.150)

and its energy

E−0 (γ, h > 1) = λ(k0) −
N−1X

n=0

λ(kn) = J|h − 1| − 1
2

N−1X

n=0

λ(kn) (1.151)

Ground state of the XY model

We can now construct the ground state of the model at finite number of sites.
We consider first the section h > 1. In this case, E−0 (γ, h > 1) is always larger

than E+0 (γ, h) so the ground state, for all γ and h belongs to the sector with an even
number of fermions and it is |GS γ,hi+.

In the range h < 1 the ground state is either |GS γ,hi+ or |GS γ,h<1i− depending
on whether E+0 (γ, h) is smaller or larger than E−0 (γ, h < 1), however if one considers
the Ising model, given by γ = 1, one can show that the ground state, in the region
h < 1 is still given by |GS 1,hi+.



36 Kitaev chain with long-range pairing

Finite size scaling of the ground-state energy

Finite size scaling of the ground state energy density can give insights on the con-
formal field theory underlying a critical point.

In particular, it is known that the ground state energy density e(L) of a critical
conformal model in a system of dimension L scales as

e(L) = e1 − ⇡cvF

6L2
(1.152)

where e1 is the bulk energy and vF is the Fermi velocity at the critical momentum,
that is the slope of the dispersion relation when it vanishes.

In the following section we will compute the exact scaling for the ground state
energy density of the XY-Ising model, given by (we will consider the antiperiodic
sector where kn = 2⇡(n + 1/2)/L)

e(L) = − 1
L

L/2−1X

n=0

λ(kn). (1.153)

For evaluating the sum we will use the Euler-MacLaurin summation formula
[95].

Let f (x) have its first two derivatives continuous on an interval (a, b). If we
divide the interval in n parts and let δ = (b − a)/n, then

nX

j=0

f (a + jδ) =
1
δ

Z b

a

f (x)dx +
1
2

( f (b) + f (a))

+
δ

12
(
f 0(b) − f 0(a)

)
(1.154)

In our case a = ⇡/L, δ = 2⇡/L, n = L/2 − 1 and the expansion of the previous
equation up to O(1/L2) gives

nX

j=0

f (kn) =
L

2⇡

Z ⇡

0
f (x) dx +

⇡

12L

(
f 0(0) − f 0(⇡)

)
(1.155)

If the ground state energy density is given by

e(L) = − 1
L

L/2−1X

n=0

λ(kn) (1.156)

we have

e(L) = − 1
2⇡

Z ⇡

0
λ(x) dx − ⇡

12L2

(
λ0(0) − λ0(⇡)

)
. (1.157)

Let us apply the previous equation to the XY-Ising model for which

λ(k) =
q

(cos k − h)2 + γ2 sin2 k. (1.158)
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We have seen that it shows a phase transition for a critical field hc = 1, correspond-
ing to a critical momentum kc = 0. The Fermi velocity is thus given by

vF =
d
dk
λ(k)

∣∣∣∣∣
k=0
= γ (1.159)

and the finite-size correction is

e(L) = − 1
2⇡

Z ⇡

0
λ(x) dx − ⇡γ

12L2
(1.160)

giving c = 1/2 as expected.

1.B Density matrix from correlation functions

In this Appendix we will review of the method to compute the ground-state den-
sity matrix for a free fermionic Hamiltonian. If the Hamiltonian of the system is
quadratic, it is always possible to cast it in the following form

H =
X

c
†
i
ti jc j +

⇣
c
†
i
Ui jc

†
j
+ h.c.

⌘
. (1.161)

Let the ground state of (1.161) be |GS i with its density matrix |GS i hGS |.
Let us divide the systems into two intervals (A and B) with the first ` sites

belonging to A, the others to B.
We want to compute the reduced density matrix ⇢A = TrB |GS i hGS | of the

ground state related to the subsystem A, by tracing out the degrees of freedom of
B.

To this end, we note that to reproduce the expectation value in the ground state
of a string of fermionic operators all belonging to A, the density matrix has to
be [49, 96–100]

⇢A =
e−H

Z
(1.162)

with

H =
X̀

i, j=1

c
†
i
Ai jc j +

⇣
c
†
i
Bi jc

†
j
+ h.c.

⌘
. (1.163)

having the same functional form as (1.161).
This means that all the information on ⇢A is encoded in the correlator matrices

Ci j = hc†i c ji Fi j = hc†i c
†
j
i (1.164)

with 1  i, j  `.
C and F are easily computed from the ground state of the Hamiltonian (1.161),

as the latter is readily diagonalized with a Bogolyubov transformation or follow-
ing [32, 92].

Then, one can relate the correlation matrices with the eigenvalues of the entan-
glement HamiltonianH (1.163) and so with the density matrix ⇢.
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To compute those matrices, we first diagonalize (1.163) with a Bogolyubov
transformation:  

⌘

⌘†

!
=

 
g h

h g

!  
c

c†

!
(1.165)

where g and h are ` ⇥ ` real matrices, satisfying, because of the anticommutation
relations:

ggT + hhT = 1 (1.166)

ghT + hgT = 0 (1.167)

where gT is the transpose of the matrix g.
In this basis,H takes the form

H =
X̀

k=1

"k⌘
†
k
⌘k (1.168)

and the density matrix ⇢ = ⌦⇢k, with :

⇢k =
e−"k⌘

†
k
⌘k

1 + e−"k
=

 
(1 + e"k )−1 0

0 (1 + e−"k )−1

!
(1.169)

as each of the ` modes is independent.
Now to compute the correlation matrices, we have to find the inverse of the

Bogolyubov transformation:
 

c

c†

!
=

 
gT hT

hT gT

!  
⌘

⌘†

!
(1.170)

and we have to note that

h⌘†
k
⌘k0i = Tr [⇢ ⌘†

k
⌘k0] =

e−"k

1 + e"k
δkk0 (1.171)

Let C be the matrix of the correlators hc†
i
c ji and F the matrix hc†

i
c
†
j
i related to

the block 1 < i, j < `. We have

C = gTΛg + hT Λ̄h (1.172)

F = gTΛh + hT Λ̄h (1.173)

where Λ, Λ̄ are diagonal matrices with elements

Λi j =
δi j

1 + e"i
Λ̄i j =

δi j

1 + e−"i
(1.174)

Note that Λ + Λ̄ = 1. Let us define ∆ = Λ − Λ̄, so, by using (1.166) we can write
the correlators as

C =
1

2
+

1
2

⇣
gT∆g − hT∆h

⌘
(1.175)

F =
1
2

⇣
gT∆h − hT∆g

⌘
(1.176)
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Now, from the anticommutation relations (1.166), one has (note that ∆i j =

− tanh ("i/2) δi j)

W ⌘
✓
C − 1

2
+ F

◆ ✓
C − 1

2
− F

◆
=

1
4

(g − h)T ∆2 (g − h) (1.177)

By defining a matrix  = g − h one has  T = 1 so  is orthogonal and, from
the previous equation one has

W =
1
4
 T∆2 (1.178)

that is the eigenvalues of W are ⇣i =
1
4 tanh2( "i

2 ). From these one gets the eigenval-
ues ofH :

"i = 2 arctanh
⇣
2
p
⇣i

⌘
. (1.179)

Once obtained the entanglement spectrum "i, the von Neumann entropy, de-
fined as

S vN = −Tr ⇢ log2 ⇢ = −
X̀

m=1

Tr ⇢m log2 ⇢m (1.180)

with

⇢m log2 ⇢m =

 1
1+e"m log2

1
1+e"m 0

0 1
1+e−"m log2

1
1+e−"m

!
. (1.181)

takes the form

S vN = −
X̀

m=1

"
log2(1 + e"m)

1 + e"m
+

log2(1 + e−"m)

1 + e−"m

#
(1.182)

while the Rényi entropy of order n

S Re
n =

1
1 − n

log2 Tr ⇢n (1.183)

is

S Re
n =

1
1 − n

X̀

m=1

log2
⇥
(1 + e"m)−n + (1 + e−"m)−n⇤ (1.184)

1.B.1 Reduced density matrix after a quench

In the previous section we have considered only a time-independent situation. Let
us consider the dynamical evolution of a state | i by means of a given Hamiltonian
H1, with the assumption that | i is not eigenstate of H.

We will have that the state | i evolves in time as | (t)i = e−iH1t | i as well as
the total | (t)i h (t)| and the reduced density matrices.

If H1 is still quadratic, the arguments of the previous section can be still used
to compute the reduced density matrix and the entropy, because, if the initial state
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is a Slater determinant a string of correlators factor again, because Wick’s theorem
still holds.

Therefore the reduced density matrix has the exponential form (1.162) with a
time-dependent operator H(t) and the eigenvalues of the entanglement spectrum
follow from the equal-time correlation matrices

Ci j(t) = hc†i (t)c j(t)i Fi j(t) = hc†i (t)c†
j
(t)i . (1.185)

In this case, as F matrix is, in general, complex, using Majorana fermions
defined by

a2 j−1 = c j + c
†
j

a2 j = i(c j − c
†
j
) (1.186)

turns out to be more convenient. Then, in the same way as for the static case, one
has to diagonalize the unique 2` ⇥ 2` correlation matrix eCi j(t) = hai(t)a j(t)i whose
eigenvalues m j(t) are related to the entanglement spectrum " j(t) via

m j(t) = 1 ± i tanh
" j(t)

2
. (1.187)

1.C Polylogarithm

The series defining f↵(k) is

f↵(k) =
L−1X

`=1

sin(k`)
`↵

(1.188)

In the thermodynamic limit L! 1

f1↵ (k) =
1
2i

1X

`=1

ei`k − e−i`k

`↵
= − i

2
(Li↵(e

ik) − Li↵(e
−ik)) (1.189)

where

Li↵(z) =
1X

`=1

z`

`↵
(1.190)

is the polylogarithm of complex z of order ↵ [46, 95]. If |z| < 1, the previous series
defines an analytic function of z. In our case z = eik so |z| = 1 and the series
converges when ↵ > 1. When ↵ < 1 the series converges to a finite value for z , 1
(i.e. k , 0) and diverges as

Li↵(e
ik) ⇠ Γ(1 − ↵)

i↵

k1−↵ when k ! 0. (1.191)

In the particular cases of ↵ = 1 and ↵ = 0 one can get a closed expression for
Li↵(z):

Li1(z) = − ln(1 − z) Li0(z) =
z

1 − z
(1.192)

and for f1↵ (k)

f11 (k) = ⇡ − k f10 (k) = cot

 
k

2

!
. (1.193)
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Figure 1.C.1: The plot shows f1↵ (k) for ↵ > 1, ↵ = 1, ↵ < 1. If ↵ < 1, f1↵ (k) diverges if
k ! 0 as 1/k1−↵.

Zeroes

By substituting k = ⇡ in the last equation of (1.189) one has f1↵ (⇡) = 0 as Li↵(−1)
(the Dirichlet eta function) is finite for all ↵ > 0. The situation is different when
k = 0. As we said the series converges when ↵ > 1, it is finite when ↵ = 1, diverges
if ↵ < 1, so f1↵ (0) = 0 only when ↵ > 1 (see Figure 1.C.1).

Series expansion

The following series expansions were useful for computing the long-distance be-
havior of correlation functions:

Li↵(e
y) = −Γ(1 − ↵)ei⇡↵y↵−1 +

1X

j=0

⇣(↵ − j)
j!

y j, (1.194)

Li↵(e
−y) = Γ(1 − ↵)y↵−1 +

1X

j=0

⇣(↵ − j)
j!

(−y) j (1.195)

for y! 0 and when ↵ , 1, 2, . . . .

Decay exponent of correlators for integer ↵

In the following section, we will show how to compute the decay exponent for the
Green function (1.39) when ↵ is integer.

If ↵ 2 N the following series expansions hold (y! 0):

Li↵(e
y) =

y↵−1

(↵ − 1)!
(H↵−1 − ln y − ⇡i) +

1X

k=0
k,↵−1

⇣(↵ − k)
k!

yk (1.196)

Li↵(e
−y) =

(−1)↵−1y↵−1

(↵ − 1)!
(H↵−1 − ln y) +

1X

k=0
k,↵−1

⇣(↵ − k)
k!

yk. (1.197)
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where Hn is the n-th harmonic number. So,

Li↵(e
y) − Li↵(e

−y) =
y↵−1

(↵ − 1)!
⇥
(1 + (−1)↵)H↵−1 − (1 + (−1)↵) ln y − ⇡i

⇤

+ 2
X

k odd
k,↵−1

⇣(↵ − k)
k!

yk

If ↵ is an odd integer, the previous equation reduces to

Li↵(e
y) − Li↵(e

−y) = − ⇡iy↵−1

(↵ − 1)!
+ 2

X

k odd

⇣(↵ − k)
k!

yk (1.198)

and, recalling eq. (1.55), the leading term of the imaginary part of G↵(iy) is

ImG↵(y! 0) ⇠ − ⇡⇣(↵ − 1)

(↵ − 1)! sgn(1 + µ)(1 + µ)2
y↵. (1.199)

From eq. (1.52) we can compute the long-range contribution to the correlation
function:

IC0 + IC2⇡ = −
↵⇣(↵ − 1)

sgn (µ + 1)(1 + µ)2

1

R↵+1
. (1.200)

If ↵ = 1 we have that the decay exponent is γ = 2 as shown in Figure 1.3.
If ↵ is an even integer > 2 the same expansions lead to

⇥
Li↵(e

y) − Li↵(e
−y)

⇤2
=

4(H↵−1 − ln y)2

(↵ − 1)!2
y2↵−2

− ⇡2

(↵ − 1)!2
y2↵−2

− 4⇡iy2↵−2

(↵ − 1)!2
(H↵−1 − ln y)

−4⇡i⇣(↵ − 1)
(↵ − 1)!

y↵ + . . .

(1.201)

thus, the long-range behavior is driven by the same term (⇠ y↵) as for ↵ odd, while
if ↵ = 2 we have

⇥
Li2(e

y) − Li2(e
−y)

⇤2
=y2(4 − 4 ln y − ⇡2)2 − 4⇡iy2 (1 − ln y) + . . . (1.202)

so

IC0 + IC2⇡ = −
1

sgn (1 + µ)(1 + µ)2

Z 1

0
dy y2 (1 − ln y) e−yR

=
1 − 2γ − 2 ln R

sgn (1 + µ)(1 + µ)2

1

R3

(1.203)

(γ = 0.57721566 is the Euler-Mascheroni constant). This shows a logarithmic
correction to the expected scaling R−3.



2

Dynamics of entanglement entropy crossing a quantum

phase transition

The understanding of a one-dimensional equilibrium system often relies on a
combination of analytical techniques (field theory, integrability, renormalization
group approach) giving, for instance, either the exact or the very-well approxi-
mated low-energy (ground-state) properties in terms of effective models described
by a few relevant quantities.

Away from equilibrium, when in the system is injected a huge amount of en-
ergy (for example after a quench), all the excited states take part in the dynamics
and fewer analytical methods are available for analyzing them (for a complete re-
view of both the experimental and the theoretical aspects, see Ref. [101]).

As entanglement measures revealed themselves as a powerful tool to charac-
terize the universality class of quantum phase transitions, in this Chapter we will
analyze the dynamical behavior of a closed quantum system, when crossing a phase
transition, by looking at the dynamics of the entanglement entropy [38, 102–104],
by investigating its evolution for the Ising chain in a time-dependent transverse
field h(t) as function of the speed with which we change h(t).

We will examine the adiabatic regime (low speeds), the sudden-quench situa-
tion (high speed) and the cases with intermediate speeds. Then we will see how
these results are related to the Kibble-Zurek mechanism [40–43, 105], by look-
ing both at the scaling of entanglement entropy and the Schmidt gap [106] in the
entanglement spectrum.

2.1 The model

In this work, we are interested in the time evolution of entanglement measures for
the Ising model in a time dependent transverse field h(t) [32]:

H = −1
2

LX

j=1

h
σx

jσ
x
j+1 + h(t)σz

j

i
(2.1)

where σx and σz are Pauli matrices.
We let h(t) change linearly in time, from hi to h f

h(t) = hi + sgn(h f − hi)
t

⌧
(2.2)

43
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where ⌧ is the time scale (the inverse of the velocity) of the ramping and 0 < t < t f ,
with t f = |h f −hi|⌧. The dynamics of the model is also exactly accessible [34, 107],
as we will recall below.

We will be interested in the evolution of the entanglement entropy and the
entanglement spectrum that can be computed according to the method in Ap-
pendix 1.B.

Let us consider a chain containig L sites, divided into two equally-spaced sub-
systems A and B containing ` = L/2 adjacent sites.

The reduced density matrix of A, ⇢A is obtained from the pure density matrix
of the ground state |GS (t)i evolved in time by (2.1), by tracing out the degrees of
freedom of B:

⇢A(t) = Tr B |GS (t)i hGS (t)| (2.3)

We can define the entanglement Hamiltonian [108]H of ⇢A(t) as ⇢A(t) = e−H(t) and
its energy spectrum as the entanglement spectrum (ES). We will be also interested
in the set { ⇣n(t) } of the eigenvalues of ⇢A(t) from which it is possible to compute
the von Neumann entropy

S L/2(t) = −Tr ⇢A(t) log2 ⇢A(t) = −
X

n

⇣n(t) log2 ⇣n(t). (2.4)

In the following sections, we will study the evolution of S L/2(t) during the
ramping of h(t) from the paramagnetic sector of the phase diagram (hi > 1) to the
ferromagnetic one (h f < 1). This turns out to be also the setting for the Kibble-
Zurek mechanism in the 1D quantum Ising model.

We choose a system of L = 50 (postponing the discussion of size-effects to
Sec. 2.3), and and hi = 1.4 to h f = 0.4 for the ramping.

We show how to describe the dynamics of a state according to the Hamiltonian
in Eq. 2.1. We follow the procedure of Ref. [109].

A Jordan-Wigner transformation (Appendix 1.A) can cast Hamiltonian (2.1) in
a free fermionic model

H = −1
2

LX

j=1

h⇣
c
†
j+1c j + c j+1c j + h.c.

⌘
− 2h(t)c†

j
c j

i
− Lh(t)

2
(2.5)

The time evolution of the system in eq. (2.5) is described by the Heisenberg
equation for the c operators:

i
d
dt

c j(t) =
h
c j(t),H j(t)

i
(2.6)

which can be rewritten as:

i
d
dt

c j(t) =
LX

k=1

h
A jk(t)ck(t) + B jk(t)c†

k
(t)

i
(2.7)

with
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A jk(t) = h(t)δ jk −
1
2

⇣
δ j,k+1 + δ j+1,k − δ j1δkL − δ jLδk1

⌘
(2.8)

B jk(t) = −1
2

⇣
δ j+1,k − δ j,k+1 + δ j1δkL − δ jLδk1

⌘
. (2.9)

In order to solve such an equation, we make the following ansatz, known as
time-dependent Bogolyubov transformation:

c j(t) ⌘
L−1X

m=0

h
u jm(t)bm + v⇤jm(t)b†m

i
(2.10)

with the initial conditions u jm(0) = u jm and v jm(0) = v jm given by the initial
Bogolyubov angles (1.127)

u jm =
eikm j

p
L

cos ✓n =
eikm j

p
L

s
1
2
+

h(0) + cos km

2λ(km)
(2.11)

v jm =
eikm j

p
L

sin ✓n =
eikm j

p
L

s
1
2
− h(0) + cos km

2λ(km)
(2.12)

where λ(km) is the dispersion relation (1.130) λ(km) =
q

(h(0) + cos km)2 + sin2 km.
By putting the ansatz of eq. (2.10) in the Heisenberg equation, we come to the

set of linear coupled differential equations

i
d
dt

u jm(t) =
LX

k=1

h
A jk(t)ukm(t) + B jk(t)vkm(t)

i

−i
d
dt

v jm(t) =
LX

k=1

h
B jk(t)ukm(t) + A jk(t)vkm(t)

i
(2.13)

that can be solved by standard techniques.
Once computed c j(t) one can construct the correlation matricesCi j = hc†j(t)ci(t)i

and Fi j = hc†j(t)c
†
i
(t)i and compute the entanglement spectrum by following sec-

tion 1.B.1.
Unless explicitly stated, we choose L = 50 (postponing the discussion of size-

effects to Sec. 2.3), and show our results for a ramping from hi = 1.4 to h f = 0.4.
We choose these values of the initial and final magnetic field in order to restrict the
range of integration of the differential equations eq. (2.13).

2.2 Dynamics of the entanglement

In this section we will study the dynamics of the entanglement spectrum and of the
entanglement entropy in detail (Figs. 2.1 and 2.2).

Their evolution in time displays different behaviors depending on the values of
⌧. We can identify four regimes:
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Figure 2.1: Dynamics of the first four eigenvalues of ⇢A(t) for L = 50, hi = 1.4 and
h f = 0.4. Different panels refer to different ⌧. In panels (d) , (e) and (f) the red and green
lines overlay.
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Figure 2.2: Dynamics of the entanglement entropy S L/2(t) for L = 50, hi = 1.4, h f = 0.4
for different values of ⌧.
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(i) adiabatic regime, ⌧ ⇠ 500;

(ii) slow regime ⌧ & 20;

(iii) fast regime 1 . ⌧ . 20;

(iv) sudden regime ⌧ . 1;

we will discuss in the following sections.

2.2.1 Adiabatic and sudden regimes

We begin by considering very large values of ⌧, i.e., a quasi-adiabatic quench, see
for example the curve panel (a) of Fig. 2.1 and at ⌧ = 500 of Fig. 2.2.

We observe that during the evolution the entanglement entropy and the entan-
glement spectrum closely follow the static values, i.e. those obtained from the
ground state of the system at each value of h(t), the only difference being repre-
sented by some small oscillations, that will be discussed in section 2.2.3.

This behavior is expected as the gap, because of the finite size of the system,
remains non-zero for any finite L and the adiabatic theorem holds [110] provided ⌧
is large enough.

We then consider the opposite regime, with very small values of ⌧, i.e., very
fast quenches (curve with ⌧ = 0.1 in Fig. 2.2) and panel (f) of Fig. 2.1. The entan-
glement entropy and the entanglement spectrum do not evolve at all, as expected
from the adiabatic theorem, independently on the size of the system.

2.2.2 Fast sweeps

We consider now rampings that are slower than sudden ones, but much faster than
adiabatic ones; we call them fast sweeps, and, for our system sizes, they correspond
to 1 . ⌧ . 20. We consider the faster regime ⌧ ⇠ 1 and then the slower rampings
10 . ⌧ . 20.

Starting from faster rampings (see curves with ⌧ = 1 and 5 in Figure 2.2), the
entanglement entropy increases linearly in the region close to the phase transition:
this behavior can be related to the results of Calabrese and Cardy [38] relative to
a sudden quench to a conformal critical point where the entanglement entropy is
predicted to grow linearly (see eq. (1.89)).

In our case, even if the ramping is not sudden, the picture of [38] can be also
applied because, close to the critical point, the correlation length and the relaxation
time are large, so the system behaves as critical for a finite interval of h.

The behavior of the entanglement spectrum is of course related to the one of
the entanglement entropy and it is shown in panel (e) of Figure 2.1.

In this regime of ⌧, the growth of the entanglement entropy can be ascribed to
the decreasing of the first eigenvalue and to the increasing of the other three [111].
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Figure 2.3: The plot shows the time at which the eigenvalues of the reduced density matrix
cross as a function of 1/⌧, for 8 < ⌧ < 17. This time results to be always larger than the
critical one, meaning that the oscillations start only after the system has reached the critical
point. Red crosses: numerical data. Black line: fitting formula a0 + a1/⌧ + a2/⌧

2, giving
a0 = 0.557 (critical point: 0.4).

Remarkably, ⇣2(t) and ⇣3(t) are still degenerate. They indeed correspond, at
t = 0, to the degenerate eigenstates |1i and |L/2i (see Appendix 2.A), and the time
evolution does not break the degeneracy, at least for these values of ⌧.

The second regime is encountered by further increasing ⌧ (see for example
curves with ⌧ = 8, 10 and 30 in the main panel of Figure 2.2). In such cases, the
entanglement entropy still presents a linear-growth region ending in an oscillatory
region, in which the entanglement entropy alternates between maxima and minima,
with variable frequency.

This behavior has already been observed in a thermodynamic-limit study of the
dynamics of entanglement entropy [104], and has been ascribed to the fact that the
system ends up, after passing the critical point, in a superposition of excited states
of the instantaneous Hamiltonian.

We now investigate the behavior of the entanglement spectrum in this regime.
As shown in panel (d) of Figure 2.1, the decreasing of ⇣1(t) and the growth of
the remaining eigenvalues continues until they cross, all at the same point. The
fourfold crossing, we observed, is actually a crossing between the first and the
fourth eigenvalue, while the second and the third continue evolving parallel to each
other.

Moreover, this crossing structure recurs also for later times in an almost peri-
odic pattern.

The crossings correspond, as expected, to the maxima of entanglement entropy
and this oscillatory behavior starts only after the system has crossed the critical
point.

This fact is easily confirmed by plotting the crossing time tcross as a function of
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⌧: the result is shown in Figure 2.3: the data can be fitted by a power-law:

tcross

⌧
= a0 +

a1

⌧
+

a1

⌧2
(2.14)

showing that, for ⌧ . 1, the crossing point is always greater than the critical one
(the latter being equal to 0.4). (strictly speaking, we could not take the limit ⌧! 1,
since, for larger ⌧, the behavior of the system tends to become adiabatic; however,
this extrapolation shows that the oscillations, also present for larger ⌧, always have
the same nature; see Sec. 2.2.3).

We have also verified that the crossing time tcross does not depend on the size
of the system at fixed ⌧. This fact represents a further evidence of the fact that the
physics, for these values of ⌧, coincides with the thermodynamic-limit one.

2.2.3 Slow sweeps

The last regime is observed for ⌧ & 20. As Figure 2.1(c) shows, the second and
the third eigenvalues begin to separate, making the crossing of ⇣1(t) and ⇣4(t) an
avoided crossing. For larger values of ⌧, as shown in figure 2.1(b), this separation
continues and the dynamical structure of the spectrum gets closer to the static one,
i.e., the one of figure 2.1(a).

Remarkably, the crossings, occurring between the ⇣1(t) and ⇣2(t) and between
⇣3(t) and ⇣4(t), take place at the same times for the first and the second couple.

On the other hand, the entanglement entropy, as shown in the main panel of
Figure 2.2 (curve with ⌧ = 100), at the beginning of the evolution is practically
coincident with the static one, and at a certain point begins to grow and to oscillate
around a value smaller than the ones of section 2.2.2 and decreasing as ⌧ increases.

The behavior of the entanglement spectrum and the entanglement entropy can
be ascribed to the approaching of the adiabatic regime. However, as already ob-
served in section 2.2.1, the oscillation (now between the first and the second two
eigenvalues) studied in section 2.2.2 survive as a sign of non-adiabaticity.

2.3 Kibble-Zurek physics

In this Section, we discuss the Kibble-Zurek scaling [40–43] of the entanglement
entropy already considered and of the Schmidt gap [106, 112], i.e., the difference
between the two largest eigenvalues in the entanglement spectrum. A discussion
of this mechanism for the XY-model may be found in Refs. [105, 113–115].

In its original formulation, the Kibble-Zurek mechanism is able, on the basis
of extremely simple approximations, to predict the scaling of the number of topo-
logical defects produced after the dynamical transition of a critical point.

The key assumption underlying the mechanism is that the evolution can be
divided, for suitable ramping velocities, into three parts: a first adiabatic one, where
the wave function of the system coincides with the ground state of H(t); a second
it impulsive, where the wave function of the system is practically frozen, due to the
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Figure 2.4: Entanglement entropy at the final instant of the evolution for 1 < ⌧ < 200 at
different system sizes (10  L  100, from top to bottom). The equation of the black line
is const. + (log2 ⌧)/12.

large relaxation time close to the critical point; a third adiabatic one, as the system
is driven away from the critical point [105].

This division takes the name of adiabatic-impulse-adiabatic approximation [116,
117]. What plays a role in this kind of mechanism is the correlation length ⇠ at the
times of passage between the different regimes, that can be seen to scale, for a
linear quench of inverse velocity ⌧, as [42, 43]

⇠ ⇡ ⌧ ⌫
1+z⌫ (2.15)

being ⌫ and z the critical exponents of the crossed quantum critical point [118].

2.3.1 Entanglement entropy

Any quantity that is directly related to the correlation length ⇠ is suitable to a
Kibble-Zurek analysis. In particular, close to a conformal critical point of con-
formal charge c, the entanglement entropy has been shown to scale as [31]:

S =
c

6
log2 ⇠ + const. (2.16)

and therefore the entanglement entropy after the quench is easily seen to scale
as [104]

S L/2(⌧) =
c⌫

6(1 + z⌫)
log2 ⌧ + const. (2.17)

The prefactor of the logarithm would be 1/24, since in the Ising case ⌫ = z = 1
and c = 1/2, but as the subsystem A has two boundaries we need to double the
prefactor of the logarithm. So we expected the entropy to scale as [31, 102]

S L/2(⌧) =
1
12

log2 ⌧ + const. (2.18)
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Figure 2.5: Schmidt gap at the final instant of the evolution for 10 < ⌧ < 200 at different
system sizes (80  L  150, from top to bottom). The equation of the black line is
const. + ⌧−1/2.

This clearly holds in the thermodynamic limit, where the gap is strictly closed
at the critical point.

At finite size, we expect some deviations from the Kibble-Zurek behavior for
large ⌧. We plot the results we obtain in Figure 2.4: as expected, we observe a
progressive breakdown of the Kibble-Zurek prediction lowering L.

Moreover, it is evident that the logarithmic behavior expected from the Kibble-
Zurek mechanism is superimposed to an oscillating behavior, as already observed
in Ref. [104]: it is clearly a reflex of the oscillating structure of the entanglement
entropy as a function of time, studied in Sec. 2.2.2 and 2.2.3.

Third, we observe that, for small values of ⌧, the curves at different sizes are
practically coincident. This coincidence is lost for larger values of ⌧, depending on
L: the velocities at which this coincidence is observed are the ones at which the
physics is practically the one of the thermodynamic limit. For example, at L = 50,
the physics is practically the thermodynamic limit one up to ⌧ ⇡ 15.

Finally, we note that, remarkably, the ⌧ that correspond to the passage from
the fast to the slow regime (the ⌧ for which the crossing between the first and the
fourth eigenvalue of the reduced density matrix begin to disappear), correspond to
the breakdown of the Kibble-Zurek, or, equivalently, of the thermodynamic-limit
physics.

This fact could be verified by a direct thermodynamic-limit investigation (as,
e.g., in [104]), and it could represent, in principle, a very simple tool to check the
equivalence between finite-size and thermodynamic-limit physics.
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2.3.2 Schmidt gap

As already mentioned above, the Schmidt gap ∆S is defined as the difference be-
tween the two highest eigenvalues of the reduced density matrix. It has been very
recently shown [106] to be related to the correlation length

∆S ⇡ ⇠−z (2.19)

and therefore its Kibble-Zurek scaling is

∆S ⇡ ⌧−
z⌫

1+z⌫ = ⌧−1/2 (2.20)

Figure 2.5 shows the data for the scaling of the of the Schmidt gap at the end of
the ramping as a function of ⌧with the function ∆S = ⌧

−1/2+const that surprisingly
interpolates with extreme precision the maxima of ∆S(⌧) numerically computed.

At fixed L, the shape of each curve shows also non-analyticities as a function of
⌧ that are a consequence of the crossing of the eigenvalues of the reduced density
matrix.

Thus, as for the entanglement entropy, we found also eq. (2.20) to be compati-
ble with the numerical results.

2.4 Conclusions

In this Chapter we have examined the dynamical evolution of the quantum Ising
chain in a time-dependent transverse magnetic field by looking at the evolution
of the entanglement entropy and the entanglement spectrum, that, in recent years,
have been used to investigate the physics of a closed quantum system crossing a
phase transition.

We observed qualitatively different regimes: an adiabatic one (large ⌧) when
the system evolves according the instantaneous ground state, a sudden quench
(small ⌧) when the system is essentially frozen to its initial state and an intermedi-
ate one where entropy starts growing linear in time and then displays oscillations
due to, among the others, some level crossing happening in the entanglement spec-
trum.

The entanglement spectrum can be used also to study both universal quantities
(scaling exponents) and physical phenomena, such as the Kibble-Zurek mecha-
nism, that may manifest during the evolution.



Appendices

2.A Initial structure of the entanglement spectrum

In this section we compute the reduces density matrix for the ground state of the
Ising model (2.1) at t = 0 in the limit h(0) = h ! 1. The ground state of the
system is

|0i = |"i1 |"i2 · · · |"iL (2.21)

where |"i j and |#i j are the eigenstates of σz
j
.

This is not the exact ground state for h . 1, but, at first order in perturbation
theory, it is easy to show that the latter is given by

|GS i = N

266666664|0i +
1

4h

LX

j=1

| j, j + 1i

377777775 (2.22)

with
| j, j + 1i = |"i1 |"i2 · · · |#i j |#i j+1 · · · |"iL−1 |"iL (2.23)

being the state where the spins at sites j and j+1 are flipped andN =
⇣
1 + L

16h2

⌘− 1
2

is a normalization factor.
The zero-temperature density matrix of the system is given by |GS i hGS | and

the reduced density matrix ⇢A of the half chain A = {1, · · · , L/2} takes the form

⇢A =
⇣
|0iA , |2piA , |1iA , |L/2iA

⌘
RA

0BBBBBBBBBBBBB@

A h0|
A h2p|
A h1|
A hL/2|

1CCCCCCCCCCCCCA
(2.24)

with

|0iA = |"i1 |"i2 · · · |"iL/2 (2.25)

|2piA =
✓

L

2
− 1

◆− 1
2

L
2−1X

j=1

| j, j + 1i (2.26)

|1iA = |#i1 |"i2 · · · |"iL (2.27)

|L/2iA = |"i1 |"i2 · · · |"iL/2−1 |#iL/2 (2.28)
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and

RA = N2

0BBBBBBBBBBBBBBBBBBB@

1 +
L
2−1
16h2

p
L
2−1

4h
0 0p

L
2−1

4h

L
2−1
16h2 0 0

0 0 1
16h2 0

0 0 0 1
16h2

1CCCCCCCCCCCCCCCCCCCA

(2.29)

RA shows that |1iA and |L/2iA are degenerate eigenstates of ⇢A with eigenvalues

⇣2,3 =
1

2` + 16h2
(2.30)

with ` = L/2.
Diagonalizing the remaining block gives the others two eigenvalues

⇣1,4 =
(` − 1)/2 + 4h2 ± 2

p
h2 (

` + 4h2 − 1
)

` + 8h2
. (2.31)

For large enough h, the two eigenstates related to ⇣1,4 are superpositions of |0iA
and |2piA, one in which the paramagnetic state |0iA dominates and the other in
which |2piA dominates. A numerical analysis shows also that ⇣1 < ⇣2 = ⇣3 < ⇣4,
for sufficiently high h.
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Résumé en Français

Les récents progrès expérimentaux dans le piégeage et dans la manipulation
de gaz atomiques et moléculaires ultra-froids [1–3] ont permis d’explorer et de
simuler beaucoup de phénomènes qui arrivent dans des systèmes a N corps à
l’équilibre ou hors de l’équilibre (transitions de phase quantiques [4], phases forte-
ment corrélées [5], évolution quantique [12], propagation des corrélations et des
quasi-particules [19]).

Les réseaux optiques sont l’exemple clef de systèmes où les atomes peuvent
être piégés et les interactions entre eux peuvent être contrôlées avec une extrême
versatilité.

Il est possible aussi de modifier le rayon de ces interactions en employant, par
exemple, des ions piégés [19, 26, 27] qui ont été utilisés avec succès pour créer des
potentiels inversement proportionnels à la distance r comme 1/r↵ où ↵ peut varier
approximativement de 0 à 3, en permettant la simulation de beaucoup de modèles
[du champ moyen (↵ = 0) à l’interaction dipôle-dipôle (↵ = 3)].

A cause des précédents résultats expérimentaux dans la première partie de la
thèse, nous étudierons quel est le rôle joué par un terme à long rayon d’action ajouté
à une Hamiltonienne locale, en caractérisant le diagramme de phase par des quan-
tités non locales (comme, par exemple, l’entropie d’intrication et le comportement
de corrélations).

Le modèle qui en résulte est une généralisation de la chaîne de Kitaev [29] et
il décrit un système fermionique avec un pairing p-wave à long rayon qui tombe
avec la distance telle qu’une puissance avec exposant ↵.

L’Hamiltonienne de Kitaev a été étudiée en [29] comme modèle pour l’ordre
quantique topologique. Une phase topologique dans une dimension est caractérisée
par la présence de deux ou plus d’états fondamentaux dégénérés qui paraissent sans
la brisure d’une symètrie locale de l’Hamiltonienne et par la localisation d’edge
modes, identifiés comme des modes de Majorana, lesquels, peuvent être théorique-
ment employés comme qubits.

Le modèle étudié est encore quadratique et, donc, exactement résoluble. En en
employant l’intégrabilité nous avons démontré l’existence de deux régimes mas-
sifs, l’un où les fonctions de corrélation tombent exponentiellement à de courtes
distances et comme puissance à de longues distances, l’autre où elles tombent à
puissance seulement.

Dans la seconde région, en outre, l’entropie d’intrication d’un sous-système di-
verge logarithmiquement. Les deux résultats sont inattendus pour des phases mas-
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sives d’Hamiltoniennes locales (où l’entropie d’intrication devient constante [31] et
les corrélations tombent exponentiellement [30]) et ils sont caractéristiques de sys-
tèmes avec des interactions à long rayon qui montrent leurs effets dans le comporte-
ment de quantités non locales comme les corrélations et l’entropie d’intrication.

Si l’on considère la limite ↵ ! 1 le modèle devient celui d’Ising, amplement
étudié [32–34] car il est exactement résoluble et, au même temps, car il est à même
d’expliquer des phénomènes pas banals. On peut le considérer aussi comme un
paradigme pour les transitions de phase quantiques [35] entre une phase param-
agnétique et antiferromagnétique séparées par un point critique qui appartient à la
classe d’universalité du modèle d’Ising décrit par une théorie conforme [36, 37].

Après avoir introduit le terme à long rayon, en variant ↵, ce point devient une
ligne critique qui n’est plus décrite par une théorie conforme pour des ↵ suffisam-
ment petits. On a prouvé ça en calculant l’évolution temporelle de l’entropie d’en-
tanglement après un quench.

On a trouvé [38] que dans un modèle invariant sous les transformations con-
formes, l’entropie croît linéairement dans le temps. On peut comprendre ça en
pensant qu’après un quench des couples de quasi-particules sont créés dans un
point du système. Ces quasi-particules sont entangled et se déplacent avec une
vitesse de groupe non nulle. Si l’on coupe le système en deux parités (A et B) le
nombre de particules créées en A qui arrivent en B croît linéairement avec le temps
(du moment que la vitesse de groupe est constante) et également, l’intrication entre
les deux parties change linéairement dans le temps.

L’évolution temporelle de l’entropie dans la chaîne avec le pairing a long rayon
est, au contraire, logarithmique lorsque ↵ < 1. Le même résultat a été trouvé
dans le modèle d’Ising [39] et, dans la description à quasi-particules, il peut être
expliqué par l’existence d’une vitesse divergente. Nous avons trouvé, en effet, le
point exacte dans le diagramme de phase où la vitesse des excitations diverge et
nous avons montré que pour cette valeur-là l’évolution de l’entropie d’intrication
n’est plus linéaire.

Par rapport au problème de la dynamique dans des systèmes quantiques, la sec-
onde partie de la thèse étudie l’évolution de l’entropie d’intrication et de l’intrication
spectrum lorsque le système traverse une transition de phase avec de différentes
vitesses.

Comme exemple, on peut dire que nous avons arrêté notre attention sur le mod-
èle d’Ising avec un champ magnétique qui dépend linéairement du temps:

HIsing =
X

i

h
σx

i σ
x
i+1 − h(t)σz

i

i
(3.1)

où σ(x,z)
i

sont matrices de Pauli.
Le champ magnétique change comme h(t) = hi +

t
⌧

où ⌧ est l’inverse de la
vitesse avec laquelle le système est approché du point de transition et hi peut se
trouver soit dans la phase paramagnétique que dans l’antiferromagnétique.

Nous avons calculé l’évolution temporelle de l’entropie d’intrication et nous
avons trouvé de différents régimes qui dépendent de la vitesse de transition: un
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régime adiabatique (de basses vitesses, de grands ⌧) lorsque le système évolue
selon son état fondamental instantané; un sudden quench (de hautes vitesses, de bas
⌧) lorsque le système est essentiellement congelé dans son état initial; un régime
intermédiaire où l’entropie croît linéairement et, ensuite, elle montre des oscilla-
tions du moment que, après avoir passé le point critique, le système se trouve dans
une superposition des états excités de l’Hamiltonienne instantanée.

Nous avons discuté aussi du mécanisme de Kibble-Zurek [40–43] qui donne
une estimation de la densité de défauts topologiques produits après la transition
lorsque la longueur de corrélation ⇠ diverge. Ces défauts sont produits sur des
distances plus petites que ⇠ qui satisfait ⇠ ⇠ ⌧⌫/(⌫z+1) où ⌫ et z sont les exposants
critiques de la transition.

Du moment que l’entropie S sature à une valeur S ⇠ log ⇠, nous avons montré,
enfin, que pour l’argument de Kibble-Zurek, l’entropie dépend de l’inverse de la
vitesse ⌧ comme S ⇠ log ⌧.





4

Riassunto in Italiano

I recenti progressi sperimentali nell’intrappolamento e la manipolazione di gas
atomici e molecolari ultrafreddi [1–3] hanno offerto la possibilità di esplorare e
simulare un’ampia classe di fenomeni che avvengono in sistemi a molti corpi fuori
e all’equilibrio (transizioni di fase quantistiche [4], fasi della materia fortemente
correlate [5], evoluzione quantistica [12], propagazione dinamica dei correlatori e
quasiparticelle [19]).

I reticoli ottici sono l’esempio chiave di sistemi in cui gli atomi posso essere
intrappolati e le interazioni tra di essi posso essere controllate con estrema versa-
tilità.

È diventato inoltre possibile modificare anche il raggio di tali interazioni, imp-
iegando, ad esempio, ioni intrappolati [19, 26, 27] che sono stati utilizzati con suc-
cesso per creare potenziali che decadono con la distanza r come 1/r↵ dove ↵ può
variare, approssimativamente, da 0 a 3, permettendo la simulazione di una grande
classe di modelli [dal campo medio (↵ = 0) all’interazione dipolo-dipolo (↵ = 3)].

Motivati da questi risultati sperimentali, nella prima parte della tesi, studieremo
qual è il ruolo giocato da un termine a lungo raggio aggiunto ad una Hamiltoniana
locale, caratterizzando il diagramma di fase tramite quantità non locali (quali ad
esempio l’entropia di entanglement e il decadimento dei correlatori).

Il modello che ne risulta è una generalizzazione della catena di Kitaev [29] che
descrive un sistema fermionico con un pairing p-wave a lungo raggio che decade
con la distanza come una potenza con esponente ↵.

L’Hamiltoniana di Kitaev con solo termini on site e a primi vicini è stata studi-
ata come modello per l’ordine topologico. Una fase topologica in una dimensione è
caratterizzata dalla presenza di due o più stati fondamentali degeneri che appaiono
senza la rottura di una simmetria locale della Hamiltoniana e dalla localizzazione
di modi di edge, identificati come modi di Majorana, che, in principio posso essere
utilizzati, nelle applicazioni di informatica quansti, come qubits.

Il modello a lungo raggio studiato, contenendo essenzialmente dei termini di
pairing, è ancora quadratico e quindi esattamente risolubile.

Sfruttandone l’integrabilità, abbiamo dimostrato l’esistenza di due regimi mas-
sivi, uno in cui le funzioni di correlazione decadono esponenzialmente a corte dis-
tanze e a potenza a lunghe, l’altro in cui decadono puramente a potenza.

Nella seconda regione, inoltre, l’entropia di entanglement di un sotto sistema
diverge logaritmicamente. Entrambi questi risultati sono inaspettati per fasi mas-
sive di Hamiltoniane locali (dove l’entropia di entanglement diventa costante [31]
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e i correlatori decadono esponenzialmente [30]) e sono caratteristici di sistemi con
forti interazioni a lungo raggio che mostrano i propri effetti nel comportamento di
quantità non locali come le correlazioni e l’entropia di entanglement.

Considerando il limite ↵ ! 1 il modello diventa quello di Ising, ampiamente
studiato sia perché esattamente risolubile e, allo stesso tempo, perché è in grado di
spiegare fenomeni non banali. Può essere, inoltre, considerato come un paradigma
per le transitions de phase quantiques tra una fase paramagnetica e ordinata sepa-
rate da un punto critico appartenente alla classe di universalità del modello d’Ising
descritto da une teoria conforme.

Una volta introdotto il termine a lungo raggio, tale punto, variando ↵ diventa
una linea critica che, per ↵ sufficientemente piccoli non è più descritto da une
théorie conforme. Questo è stato anche provato calcolando l’evoluzione temporale
dell’entropia di entanglement dopo un quench.

In un modello invariante conforme, è stato provato che l’entropia cresce linear-
mente nel tempo. Ciò può esser compreso pensando che, dopo un quench, coppie
di quasi-particelle vengono create in un dato punto del sistema. Queste quasi-
particelle sono entangled e si muovono con velocità di gruppo non nulla.

Se ora si divide il sistema in due parti (A e B) il numero di particelle create in A

che arrivano in B cresce linearmente con il tempo (dato che la velocità di gruppo è
costante) e, allo stesso modo, l’entanglement tra le due parti varia linearmente nel
tempo.

L’evoluzione temporale dell’entropia nella catena con il pairing a lungo raggio
è, invece, logaritmica quando ↵ < 1. Lo stesso avviene nel modello di Ising e ciò
può esser spiegato, nella descrizione a quasi particelle, perché esiste una velocità
divergente. Abbiamo, infatti, trovato il punto esatto nel diagramma di fase per
cui la velocità delle eccitazione diverge e abbiamo mostrato che per quel valore
l’evoluzione dell’entropia di entanglement non è più lineare.

In relazione al problema della dinamica in sistemi quantistici chiusi, la seconda
parte della tesi affronta lo studio dell’evoluzione dell’entropia di entanglement e
dell’entanglement spectrum quando il sistema attraversa una transizione di fase
con diverse velocità.

Come esempio, ci siamo soffermati sul modello di Ising con un campo mag-
netico linearmente dipendente dal tempo:

HIsing =
X

i

h
σx

i σ
x
i+1 − h(t)σz

i

i
(4.1)

dove σ(x,z)
i

sono matrici di Pauli.
Il campo magnetico varia come h(t) = hi +

t
⌧
, dove ⌧ è l’inverso della velocità

con cui il sistema viene avvicinato al punto di transizione e hi può essere sia nella
fase paramagnetica hi > 1 o in quella ordinata hi < 1 .

Abbiamo calcolato l’evoluzione temporale dell’entropia di entanglement di
mezza catena e abbiamo trovato diversi regimi che dipendono dalla velocità della
transizione: un regime adiabatico (basse velocità, grandi ⌧) quando il sistema
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evolve secondo il suo stato fondamentale istantaneo; un sudden quench (alte ve-
locità, bassi ⌧) quando il sistema è essenzialmente congelato nel suo stato iniziale;
un regime intermedio in cui l’entropia cresce linearmente e, in seguito, mostra delle
oscillazioni dato che il sistema, dopo aver passato il punto critico, si trova in una
sovrapposizione di stati eccitati della Hamiltoniana istantanea.

Abbiamo inoltre discusso il meccanismo di Kibble-Zurek che predice il nu-
mero di difetti topologici prodotti dopo la transizione nella fase cosiddetta im-
pulsiva, quando la lunghezza di correlazione ⇠ comincia a divergere. Tali difetti
vengono prodotti su distanze minori di ⇠ che soddisfa ⇠ ⇠ ⌧⌫/(⌫z+1) dove ⌫ and z

sono gli esponenti critici della transizione.
Dato che l’entropia S satura a un valore ⇠ log ⇠ [31], si è mostrato, infine, che

per l’argomento di Kibble-Zurek, l’entropia dipende dall’inverse della velocità ⌧
come S ⇠ log ⌧.
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Correlations and Quantum Dynamics

of 1D Fermionic Models:

New Results for the Kitaev Chain

with Long-Range Pairing

Résumé

La première partie de la thèse étudie le diagramme de phase d’une généralisation de la chaîne de Kitaev qui
décrit un système fermionique avec un pairing p-wave à long rayon qui tombe avec la distance ` comme
1/`↵. On a analysé les lignes critiques, les corrélations et le comportement de l’entropie d’entanglement
avec la taille du système. Nous avons démontré l’existence de deux régimes massifs, (i) où les fonctions
de corrélation tombent exponentiellement à de courtes distances et comme puissance à de longues distances
(↵ > 1), (ii) où elles tombent à puissance seulement (↵ < 1). Dans la seconde région l’entropie d’intrication
d’un sous-système diverge logarithmiquement. Remarquablement, sur les lignes critiques, le pairing à long
rayon brise la symètrie conforme du modèle pour des ↵ suffisamment petits. On a prouvé ça en calculant
aussi l’évolution temporelle de l’entropie d’intrication après un quench.
Dans la seconde partie de la thèse nous avons analysé la dynamique de l’entropie d’intrication du modèle
d’Ising avec un champ magnétique qui dépend linéairement du temps avec de différentes vitesses. Nous avons
un régime adiabatique (de basses vitesses) lorsque le système évolue selon son état fondamental instantané;
un sudden quench (de hautes vitesses) lorsque le système est congelé dans son état initial; un régime inter-
médiaire où l’entropie croît linéairement et, ensuite, elle montre des oscillations du moment que le système
se trouve dans une superposition des états excités de l’Hamiltonienne instantanée. Nous avons discuté aussi
du mécanisme de Kibble-Zurek pour la transition entre la phase paramagnétique et antiferromagnétique.

Mots clés: Fermions in one dimension, Long-range interactions, Entanglement measures, Area law violation, Majorana
fermions, Edge states, Quantum phase transitions, Ising model, Kibble-Zurek mechanism.

Abstract

In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-
range p-wave pairing decaying with distance ` as a power law 1/`↵. We studied the phase diagram by
analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy
with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially
at short range and algebraically at long range (↵ > 1), (ii) purely algebraically (↵ < 1). In the latter the
entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-
range pairing breaks the conformal symmetry for sufficiently small ↵. This can be detected also via the
dynamics of entanglement following a quench.
In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising
model in a transverse field varying linearly in time with different velocities. We found different regimes: an
adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden
quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one,
where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Fi-
nally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered
phase.

Keywords: Fermions in one dimension, Long-range interactions, Entanglement measures, Area law violation, Majorana
fermions, Edge states, Quantum phase transitions, Ising model, Kibble-Zurek mechanism.


