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Resumo

Esta tese trata de dois problemas de planejamento de redes por meio de técnicas exatas,
metaheurísticos e híbridos. O primeiro problema aqui estudado é o Problema de Plane-
jamento de Redes com Rotas Ótimas para o Usuário (FCNDP-UOF), que diz respeito
ao roteamento de múltiplos produtos desde sua origem até ao seu destino. Para realizar
este roteamento uma rede é construída, minimizando a soma dos custos de adição dos
arcos selecionados mais a soma dos custos variáveis associados aos fluxos em cada arco.
Além disso, uma vez que o FCNDP-UOF é um problema de dois níveis, cada mercadoria
tem que ser transportados por um caminho mais curto, relativo à ao comprimento dos
arcos, na rede construída. Para este problema formulações matemáticas existentes foram
estudadas e tiveram a força de suas relaxações lineares comparada. Depois disso, uma
nova heurística e dois novos métodos híbridos foram testados. Os experiências computa-
cionais mostram que os algoritmos propostos para o FCNDP-UOF funcionam muito bem
superando o estado da arte do problema. O segundo problema estudado é o problema de
Planejamento de Expansão de Redes de Transmissão com Redimensionamento (TEPR),
que dado um novo conjunto de demandas e uma rede inicial, consiste na adição ou remoção
de linhas de transmissão, a fim de satisfazer as novas demandas impostas, minimizando
o custo operacional. Dois métodos foram desenvolvidos. O primeiro é uma decomposição
de benders onde um conjunto de variáveis continuas é permitido no problema mestre,
melhorando assim o limite da relaxação inicial. O segundo, chamado Busca Particionada
em Anéis, pode ser usado tanto como método exato e heurística. Experimentos computa-
cionais mostraram o impacto destes métodos em comparação com a aplicação direta da
formulação matemática em um solver comercial.

Palavras Chave: Planejamento de Redes, Métodos Exatos, Metaheurísticas, Métodos
Híbridos.



Abstract

This thesis deals with two network design problems by means of exact, metaheuristic
and hybrid techniques. The first problem studied here is the Fixed Charge Uncapacitated
Network Design Problem with User-optimal Flow (FCNDP-UOF), which concerns routing
multiple commodities from its origin to its destination by designing a network through
selecting arcs, with an objective of minimizing the sum of the fixed costs of the selected
arcs plus the sum of variable costs associated to the flows on each arc. Besides that,
since the FCNDP-UOF is a bi-level problem, each commodity has to be transported
through a shortest path, concerning the edges length, in the built network. To this
problem existent mathematical formulations were studied and had the strength of its
linear relaxations compared. After that, new heuristics and two new hybrid methods were
tested. Computational experiments shows that the proposed algorithms for the FCNDP-
UOF worked very well leading to a new state of the art method. The second problem
studied is the Transmission Expansion Planning Problem with Redesign (TEPR), which
given a new set of loads and an initial network, consists of adding or removing transmission
lines in order to satisfy the new imposed loads, while minimizing the operational cost.
Two methods have been developed. The first is a benders decomposition where a set of
continuous variables is allowed in the master problem, thereby improving the limit of the
initial relaxation. The second, called Ring Partition Search, can be used either as exact
method and heuristic. Computational experiments showed the impact of these methods
compared to the direct application of mathematical formulation in a commercial solver.

Keywords: Network Design, Exact Methods, Metaheuristics, Hybrid Methods.
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Résumé étendu

Ce travail trouve sa motivation dans le grand nombre d’applications liées aux problèmes de

conception de réseau, ainsi que dans leur complexités. En particulier, nous nous focalison

sur deux problèmes de conception de réseau, le Fixed Charge Uncapacitated Network

Design Problem with User-optimal Flow (FCNDP-UOF) et le Transmission Expansion

Planning Problem with Redesign (TEPR). Bien qu’appartenant tout deux à la classe des

problèmes de conception de réseau, ils ont des structures différentes et spécifiques qui les

rendent intéressants.

Le FCNDP-UOF est relatif au transport de produits dans les grands centres urbains

et peut être modélisé comme un problème de programmation linéaire discret à deux

niveaux. Ce type de problème implique deux agents agissant simultanément plutôt que

séquentiellement lors de la prise décisions. Au niveau supérieur, le leader est chargé

de choisir un sous-ensemble d’arrêtes qui seront ouvertes afin de minimiser la somme des

coûts fixes (d’ouverture d’arrête) et variable (de transport des commodités sur les arrêtes).

Au niveau inférieur, le suiveur doit choisir un ensemble de plus courts chemins dans le

réseau, par lesquels les produits seront envoyé. L’effet d’un agent sur l’autre est indirect:

la décision du suiveur est affectée par le réseau conçu par le niveau supérieur, alors que

la décision du leader est affectée par les coûts variables imposés par les chemins établis

au niveau inférieur.

Le TEPR est un problème permettant d’établir une stratégie d’expansion des réseaux de

transport d’électricité en ajoutant ou supprimant des lignes de transmission. Au contraire

des autres problèmes de conception de réseau, tels que les problème des transport public,

de transport de marchandises (problème de tournées de véhicules), transport de données

(conception de réseau de télécommunication), l’ajout d’une ligne de transmission peut

rendre impraticable une configuration qui avant etait réalisable. Cette caractéristique est

due au fait que le gestionnaire du réseau ne peut pas choisir la façon dont les lignes de

transmission seront utilisées. Il ne peut agir que sur la répartition de la production et

n’affecter qu’indirectement l’acheminement de l?énergie et ne peut que choisir les angles

de voltage. Cette caracteristique rend le problème a la fois très difficile et très intérêssant.

L’objectif principal de cette thèse est d’étudier ces deux problèmes et de développer des
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algorithmes exacts, des métaheuristiques et des méthodes hybrides. Pour le premièr

problème, on a étudié trois formulations mathemátiques, deux méthodes permettant de

trouver des limites inférieures (une génération de colonnes et une heuristique) et on a

développé plusieurs méthodes qui ont été combinées pour obtenir une méthode de type

GRASP et une méthode de type Recherche Locale Itérative. Pour le deuxième problème

nous avons généré de nouvelles instances, développé deux nouvelles méthodes et testé ces

deux approches comme des alternatives à la résolution directe du modèle mathématique.

La première méthode est une méthode de décomposition de Benders. La seconde est une

combinaison de la formulation mathématique avec un local branching.

Toutes les méthodes ont été testées intensivement. Les résultats montrent l’efficacité des

méthodes par rapport à l’état de l’art de chaque problème.



Chapter 1

Introduction

The motivation for this research is the great number of practical applications related to

network design problems and the complexity of these problems. In particular, this thesis

focus on two network design problems, the Fixed Charge Uncapacitated Network Design

Problem with User-optimal Flow (FCNDP-UOF) and the Transmission Expansion Plan-

ning Problem with Redesign (TEPR). Although both of them belongs to network design

problems class, they have different and peculiar structures that makes them interesting.

1.1 Main Objective

The main objective of this thesis is to develop exact, metaheuristic and hybrid algorithms

for Network Design Problems and evaluate the perks of each technique.

1.2 Specific Objectives

In this section is presented a sumarized version of the specific objectives.

1. Study the state-of-art publications;

2. Develop exact methods;

3. Develop heuristics methods and combine them in metaheuristics;

4. Combine exact and heuristic methods into hybrid methods;

5. Evaluate the quality of the developed algorithms on problem instances; available in

literature and on new instances generated by us;
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6. Publish the achieved results.

1.3 Structure of the thesis

This thesis is organized as follows. Chapter 2 describes in details the Fixed Charge

Uncapacitated Network Design Problem with User-optimal Flow. Chapter 3 presents

mathematical formulations for the FCNDP-UOF and compare the strength of its linear

relaxations. Chapter 4 describe the algorithms that we have developed and combine them

into metaheuristics and hybrid methods. Chapter 5 shows the computional experiments

and an analysis of the results obtained. Chapter 6 concludes the studies concerning the

FCNDP-UOF and gives future research directions. Chapter 7 introduce and discuss the

Transmission Expansion Planning Problem with Redesign. Chapter 8 presents mathemat-

ical formulations for the TEPR. Chapter 9 describe the developed algorithms. Chapter 10

shows the computional experiments and an analysis of the results obtained. Chapter 11

concludes the studies concerning the TEPR and gives future research directions. Chap-

ter 12, at last, presents a general conclusion and a general guide line to future researches.



Chapter 2

Introduction to the Fixed Charge Unca-

pacitated Network Design Problem with

User-optimal Flow

Due to the continuous development of society, increasing quantities of commodities have

to be transported in large urban centers. Therefore, network design problems arise as

tools to support decision-making, aiming to meet the need of finding efficient ways to per-

form the transportation of each commodity from its origin to its destination. In the Fixed

Charge Network Design Problem (FCNDP), a subset of edges is selected from a graph, in

such a way that a given set of commodities can be transported from their origins to their

destinations. The main objective is to minimize the sum of the fixed costs (due to selected

edges) and variable costs (depending on the flow of goods on the edges). In addition, fixed

and variable costs can be represented by linear functions and arcs are not capacitated.

Belonging to a large class of network design problems, the FCNDP has several variations

such as shortest path problem, minimum spanning tree problem, vehicle routing prob-

lem, traveling salesman problem and Steiner problem in graph [31]. For generic network

design problem, such as FCNDP, numerous applications can be found [8, 9, 32], thus,

mathematical formulations for the problem may also represent several other problems,

like problems of communication, transportation, sewage systems and resource planning.

It also appears in other contexts, such as flexible production systems [26] and automated

manufacturing systems [20]. Finally, network design problems arise in many vehicle fleet

applications that do not involve the construction of physical facilities, but rather model

decision problems such as sending a vehicle through a road or not [30, 40].

This work addresses a specific variation of FCNDP, called Fixed-Charge Uncapacitated

Network Design Problem with User-optimal Flows (FCNDP-UOF), which consists of
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adding multiple shortest path problems to the original problem. The FCNDP-UOF in-

volves two distinct agents acting simultaneously rather than sequentially when making

decisions. On the upper level, the leader (1st agent) is in charge of choosing a subset

of edges to be opened in order to minimize the sum of fixed and variable costs. In re-

sponse, on the lower level, the follower (2nd agent) must choose a set of shortest paths in

the network, through which each commodity will be sent. The effect of an agent on the

other is indirect: the decision of the follower is affected by the network designed on the

upper level, while the leader’s decision is affected by variable costs imposed by the routes

settled in the lower level. The inclusion of shortest path problem constraints in a mixed

integer linear programming is not straightforward. Difficulties arise both in modeling and

designing efficient methods.

The FCNDP-UOF problem appears in the design of a network for hazardous materials

transportation [3, 13, 14, 24]. Particularly for this kind of problem, the government de-

fines a selection of road segments to be opened/closed to the transportation of hazardous

materials assuming that the shipments in the resulting network will be done along short-

est paths. In hazardous materials transportation problems, roads selected to compose the

network have no costs, but the goverment wants to minimize the population exposure in

case of an incident during a dangerous-goods transportation. This is a particular case of

the FCNDP-UOF problem where, from a mathematical point of view, the fixed costs are

equal to zero.

Several variants of the FCNDP-UOF can be seen on [3, 6, 13, 14, 18, 24, 34] and have

been treated as part of larger problems in some applications on [22]. The work presented

by Bilheimer and Grey [6] formally defines the FCNDP-UOF. Both Erkut et al. [14] and

Kara et al. [24] work focus on exact methods, presenting a mathematical formulation

and several metrics for the hazardous materials transportation problem. At Mauttone et

al. [34], not only was presented a different model, but also a Tabu Search for the FCNDP-

UOF. Both, Amaldi et al. [3] and Erkut et al. [13] presented heuristic approaches to

deal with the hazardous materials transportation problem. At last, Gonzalez et al. [18],

presented an extension of the model proposed by Kara and Verter [24] and also a GRASP

method.

According to [23, 43], the simplest versions of network design problems are NP-hard and

even the task of finding feasible solutions (for problems with budget constraint on the

fixed cost) is extremely complex [44]. Therefore, heuristics methods are presented as a

good alternative in the search for good solutions. Knowing that, this thesis proposes

several methods for the FCNDP-UOF and at the end combinations of these methods are
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tested.



Chapter 3

Mathematical Formulations for the

FCNDP-UOF

In this chapter we formally introduce the FCNDP-UOF and present three different math-

ematical formulations.

The FCNDP-UOF is defined on a graph G = (V,E), where V is a set of nodes that

represent the facilities and E is a set of uncapacited and undirected edges that represent

the connection between installations. Furthermore, K is the set of commodities to be

transported over the network, which may represent physical goods such as raw material

for industry, hazardous material or even people. For each commodity k ∈ K, there is

a flow to be delivered through a shortest path between its source o(k) and its destina-

tion d(k). All the formulations presented in this report, work with variants presenting

commodities with multiple origins and destinations, and for treating such a case, it is

sufficient to consider that for each pair (o(k), d(k)), there is a new commodity resulting

from the dissociation of one into several commodities.

Two kinds of variables can be noticed for FCNDP-UOF model, one for the construction

of the network and another related to representing the flow. Let yij be a binary variable,

we have that yij = 1 if the edge (i, j) is chosen as part of the network and yij = 0 other-

wise. In this case, xk
ij denotes the commodity k flow through the arc (i, j). Although the

edges have no direction, they may be referred to as arcs, because each commodity flow

is directed. Treating y = (yij) and x = (xk
ij), respectively, as vectors of adding edge and

flow variables, a mixed integer programming formulation can be elaborated.
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3.1 List of Symbols

V Set of nodes.

E Set of admissible edges.

K Set of commodities.

AE Set of arcs obtained by bidirecting the edges in E. AE = {(i, j) ∧ (j, i)|(i, j) ∈ E}

G Associated graph G(V,E).

δ+i Set of all arcs leaving node i ∈ V .

δ−i Set of all arcs arriving at node i ∈ V .

cij Length of the arc (i, j) ∈ AE.

e(ij) Edge e related to the arc (i, j).

o(k) Origin node for commodity k ∈ K.

d(k) Destiny node for commodity k ∈ K.

qk Quantity of the commodity k ∈ K to be transported.

βij Cost to send a general commodity through the edge e = [i, j].

gkij Variable cost of transporting commodity

k through the arc (i, j) ∈ AE.

fe Fixed cost of opening the edge e ∈ E.

ye Indicates whether edge e ∈ E belongs in the solution.

xk
ij Indicates whether commodity k ∈ K passes through

the arc (i, j) ∈ AE.

Let’s also define that gkij = qkβij, where qk represents the amount of commodity k to

be transported and βij represents the shipping cost through the edge e = [i, j].

3.2 Bi-level Formulation

In the FCNDP-UOF, differently from the basic FCNDP, each commodity k ∈ K has

to be transported through a shortest path between its origin o(k) and its destination

d(k), forcing the addition of new constraints to the general problem. Besides selecting

a subset of E whose sum of fixed and variable costs is minimal (leading problem), in

this variation, we also have to garantee the shortest path constraints for each commodity

k ∈ K (follower problem). The FCNDP-UOF belongs to the class of NP-hard problems

and can be modeled as a bi-level mixed integer programming problem [10], as follows:
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min
∑

e∈E

feye +
∑

k∈K

∑

(i,j)∈AE

gkijx
k
ij

s.t. ye ∈ {0, 1}, ∀e ∈ E, (3.1)

where xk
ij is a solution of the problem:

min
∑

k∈K

∑

(i,j)∈AE

cijx
k
ij

s.t.
∑

(i,j)∈δ
+

i

xk
ij −

∑

(i,j)∈δ
−

i

xk
ji = bki , ∀i ∈ V, ∀k ∈ K,

xk
ij + xk

ji ≤ ye, ∀e = [i, j] ∈ E, ∀k ∈ K,

xk
ij ∈ {0, 1}, ∀(i, j) ∈ AE , ∀k ∈ K.

(3.2)

(3.3)

(3.4)

where:

bki =















−1 if i = d(k),

1 if i = o(k),

0 otherwise.

According to constraints (3.1)-(3.4), we can notice that the set of constraints (3.1) ensures

that the vector of variables y assume only binary values. In (3.2), we have flow conserva-

tion constraints. Constraints (3.3) do not allow flow into arcs whose corresponding edges

are closed. Finally, (3.4) describes the domaind of the vector of variables xk. An interest-

ing remark is that solving the follower problem is equivalent to solving |K| shortest path

problems independently.

3.3 One-level Formulation

In this section we present two different one-level formulations for the FCNDP-UOF and

compare their strength, through comparing its linear relaxations. The first one is a

variation of the one-level formulation propose by Kara and Verter [24] for the Hazardous

Material Transportation Problem, which we address as KVV Model. The second one is a

one-level formulation presented by Mautonne, Figueiredo and Labbe [34] for the FCNDP-

UOF, which we address as MFL Model.
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3.3.1 KVV Model

The model presented here is a variation of the model presented by [24], where the difference

lies in the fact that in our problem there are fixed-costs associated to adding an edge to

the solution, while in Kara and Verter’s doesn’t consider such fixed-costs. As noted in the

Bi-Level formulation, the shortest path problem has to be solved on the basis of available

links set by the upper level problem. Given y’s values, the inner problem is unimodular

[42]. Thanks to this characteristic, the inner problem can be obtained by solving the

feasibility problem defined by (3.2), (3.3) and the following set of constraints:

cij − wk
i + wk

j − vkij + λk
ij = 0, ∀(i, j) ∈ AE, k ∈ K,

vkijx
k
ij = 0, ∀k ∈ K, (i, j) ∈ AE,

λk
ij(x

k
ij − ye(ij)) = 0, ∀k ∈ K, (i, j) ∈ AE,

vkij ≥ 0, λk
ij ≥ 0, ∀k ∈ K, ∀(i, j) ∈ AE,

wk
i ∈ R, ∀k ∈ K, ∀i ∈ V,

xk
ij ≥ 0, ∀(i, j) ∈ AE, ∀k ∈ K,

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

where the variables vkij, λk
ij and wk

i are the KKT multipliers associated to constrains

(3.1)-(3.4).

Thanks to that we are allowed to represent the follower problem by Karush-Kuhn-

Tucker’s conditions of its linear relaxation, leaving us with a one level problem:
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min
∑

e∈E

feye +
∑

k∈K

∑

(i,j)∈AE

gkijx
k
ij

s.t.
∑

(i,j)∈δ+
i

xk
ij −

∑

(i,j)∈δ−
i

xk
ji = bki , ∀i ∈ V, ∀k ∈ K,

xk
ij + xk

ji ≤ ye, ∀e = [i, j] ∈ E, ∀k ∈ K,

cij − wk
i + wk

j − vkij + λk
ij = 0, ∀(i, j) ∈ AE, k ∈ K,

vkijx
k
ij = 0, ∀k ∈ K, (i, j) ∈ AE,

λk
ij(x

k
ij − ye(ij)) = 0, ∀k ∈ K, (i, j) ∈ AE,

vkij ≥ 0, λk
ij ≥ 0, ∀k ∈ K, ∀(i, j) ∈ AE,

wk
i ∈ R, ∀k ∈ K, ∀i ∈ V,

xk
ij ≥ 0, ∀(i, j) ∈ AE, ∀k ∈ K,

ye ∈ {0, 1}, ∀e ∈ E.

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where:

bki =















−1 se i = d(k),

1 se i = o(k),

0 otherwise.

The unimodularity of the inner problem is based on the fact that y is a set of parameters

at this level. In the single-level representation of the FCNDP-UOF, however, optimal

values of y and x are determined simultaneously. This structural change in the coefficient

matrix causes the loss of unimodularity, making imperative to impose integrality on x

variables.

Since we intend to focus on linear formulations in this section and constraints (3.14) and

(3.15) are non-linear, a Big-M linearization method is applied, so the model could be

written as a one-level mixed integer programming formulation, as follow:
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min
∑

e∈E

feye +
∑

k∈K

∑

(i,j)∈AE

gkijx
k
ij

s.t.
∑

(i,j)∈δ+
i

xk
ij −

∑

(i,j)∈δ−
i

xk
ji = bki , ∀i ∈ V, ∀k ∈ K,

xk
ij + xk

ji ≤ yij, ∀e = [i, j] ∈ E, ∀k ∈ K,

cij − wk
i + wk

j − vkij + λk
ij = 0, ∀(i, j) ∈ AE, k ∈ K,

vkij ≤Me(ij)(1− xk
ij), ∀k ∈ K, (i, j) ∈ AE

λk
ij ≤Me(ij)[1− (ye(ij) − xk

ij)], ∀k ∈ K,∈ AE,

vkij ≥ 0, λk
ij ≥ 0, ∀k ∈ K, ∀(i, j) ∈ AE,

wk
i ∈ R, ∀k ∈ K, ∀i ∈ V,

xk
ij ∈ {0, 1}, ∀(i, j) ∈ AE, ∀k ∈ K,

ye ∈ {0, 1}, ∀e = [i, j] ∈ E.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

where:

bki =















−1 se i = d(k),

1 se i = o(k),

0 otherwise.

After analysing the model we can see that most of it, constraints (3.20), (3.21), (3.27)

and (3.28) are previously explained. We can also notice that constraints (3.22), (3.23)

and (3.24) represent linearized Karush-Kuhn-Tucker conditions for the follower problem,

those are, shortest path problems. At last, (3.25) and (3.26) represent the domain of the

variables of KKT conditions constraints.

A simple and yet useful way of approximating the value of the Big-M to this problem is

for each e = [i, j] ∈ E \ {e} keep selecting the longest edges connected to i or j until you

got a path from i to j.

3.3.2 MLF Model

The FCNDP-UOF can be formulated as a one-level integer programming problem re-
placing the objective function and the constraints defined by (3.2)-(3.4) of the follower
problem for its optimality conditions [34]. This can be done by applying the fundamental
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theorem of duality and the complementary slackness theorem [4] to the inner problem:

πk
i − πk

j − λk
e(ij) ≤ cij ∀(i, j) ∈ AE , k ∈ K,

(ye − xk
ij − xk

ji)λ
k
e = 0, ∀e = [i, j] ∈ E, ∀k ∈ K,

(cij − πk
i + πk

j + λk
e(ij))x

k
ij = 0, ∀(i, j) ∈ AE , k ∈ K,

λk
e ≥ 0, ∀e ∈ E, k ∈ K,

πk
i ∈ R, ∀i ∈ V, ∀k ∈ K,

xk
ij ≥ 0, ∀(i, j) ∈ AE , ∀k ∈ K,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

where the variables πk
i and λk

e(ij) are dual variables, associated to the inner problem

constraints’.

Replacing the inner problem by the presented constraints, one may write the one level

mathematical formulations as:

min
∑

e∈E

feye +
∑

k∈K

∑

(i,j)∈AE

gkijx
k
ij

s.t.
∑

(i,j)∈δ
+

i

xk
ij −

∑

(i,j)∈δ
−

i

xk
ji = bki , ∀i ∈ V, ∀k ∈ K,

xk
ij + xk

ji ≤ ye, ∀e = [i, j] ∈ E, ∀k ∈ K,

πk
i − πk

j − λk
e(ij) ≤ cij ∀(i, j) ∈ AE , k ∈ K,

(ye − xk
ij − xk

ji)λ
k
e = 0, ∀e = [i, j] ∈ E, ∀k ∈ K,

(cij − πk
i + πk

j + λk
e(ij))x

k
ij = 0, ∀(i, j) ∈ AE , k ∈ K,

λk
e ≥ 0, ∀e ∈ E, k ∈ K,

πk
i ∈ R, ∀i ∈ V, ∀k ∈ K,

xk
ij ≥ 0, ∀(i, j) ∈ AE , ∀k ∈ K,

ye ∈ {0, 1}, ∀e ∈ E.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

where:

bki =















−1 if i = d(k),

1 if i = o(k),

0 otherwise.

A disadvantage of this new formulation in comparison to the bi-level one is the loss of
linearity of the model. To bypass this problem, a Big-M linearization may be used. After
it, one can write the model as a one-level mixed integer linear programming problem, as
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follows:

min
∑

e∈E

feye +
∑

k∈K

∑

(i,j)∈AE

gkijx
k
ij

s.t.
∑

(i,j)∈δ
+

i

xk
ij −

∑

(i,j)∈δ
−

i

xk
ji = bki , ∀i ∈ V, ∀k ∈ K,

xk
ij + xk

ji ≤ ye, ∀e = [i, j] ∈ E, ∀k ∈ K

πk
i − πk

j − λk
e(ij) ≤ cij ∀(i, j) ∈ AE , k ∈ K,

λk
e +Meye −Mex

k
ij −Mex

k
ji ≤Me, ∀e = [i, j] ∈ E, k ∈ K,

Me(ij)x
k
ij − πk

i + πk
j + λk

e(ij) ≤Me(ij) − cij , ∀(i, j) ∈ AE , k ∈ K,

λk
e ≥ 0, ∀e ∈ E, k ∈ K,

πk
i ∈ R, ∀i ∈ V, ∀k ∈ K,

xk
ij ∈ {0, 1}, ∀(i, j) ∈ AE , ∀k ∈ K,

ye ∈ {0, 1}, ∀e ∈ E.

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

where:

bki =















−1 if i = d(k),

1 if i = o(k),

0 otherwise.

However, optimality conditions for the problem in the lower level are, in fact, the opti-

mality conditions of the shortest path problem and they could be expressed in a more

compact and efficient way after applying to techniques. First we consider Bellman’s opti-

mality conditions for the shortest path problem. As can be seen in [1] Bellman’s optimality

conditions for the shortest path problem maybe expressed as:

Definition 1 (Bellman’s Optimality Conditions for the Shortest Path Problem). Let

Bellmans’ equations be:

d(j) = min{d(i) + cij : (i, j) ∈ A(i)}, ∀j ∈ N (3.53)

If a set of distances labels d(i)’s satisfy Bellman’s equations and the network contains no

zero-length cycle, these distance labels are shortest path distances.

After applying Bellmans’ and a simple lifting process [29], the one-level linear math-

ematical formulation can be written in a more efficient way as :



3.3 One-level Formulation 16

min
∑

e∈E

feye +
∑

k∈K

∑

(i,j)∈AE

gkijx
k
ij

s.t.
∑

(i,j)∈δ
+

i

xk
ij −

∑

(i,j)∈δ
−

i

xk
ji = bki , ∀i ∈ V, ∀k ∈ K,

xk
ij + xk

ji ≤ ye, ∀e = [i, j] ∈ E, ∀k ∈ K,

πk
i − πk

j ≤Me(ij) − ye(a)(Me(ij) − cij)− 2cijx
k
ji, ∀(i, j) ∈ AE , k ∈ K,

πk
d(k) = 0, ∀k ∈ K,

πk
i ≥ 0, ∀i ∈ V \ {d(k)}, ∀k ∈ K,

xk
ij ∈ {0, 1}, ∀(i, j) ∈ AE , ∀k ∈ K,

ye ∈ {0, 1}, ∀e ∈ E.

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

where:

bki =















−1 if i = d(k),

1 if i = o(k),

0 otherwise.

The variables πk
i , k ∈ K, i ∈ V , represent the shortest distance between vertex i and

vertex d(k). Then we define that πk
d(k) will always be equal zero. Assuming that con-

straints (3.55), (3.59) and (3.60) are satisfied, it is easy to see that constraints (3.56) are

equivalent to Bellman’s optimality conditions for |K| pairs (o(k), d(k)).

A simple and yet useful way of approximating the value of the Big-M to this problem is

for each e = [i, j] ∈ E \ e keep selecting the longest edges connected to i or j until you

got a path from i to j.

3.3.3 Comparing the Linear Relaxations

As we know, an important matter when working with integer programming is how close

the feasible set of the linear relaxation is to the convex hull of the original feasible set

[36]. The tighter the polyhedron of the relaxation is, stronger is the formulation. To

compare the strength of KVV Model and MLF Model, we consider their linear relaxation

polyhedrons, obtained by replacing the {0, 1} set by the interval [0, 1].

Since, to the best of our knowledge, nobody generalized the model presented in Kara et

al. [24] before, no comparison between the strength of the linear relaxation of the KVV

Model and the MLF Model was done. So, we dedicated this subsection to analyse them.

Accordingly, the polyhedrons for the KVV Model and for the MLF Model are respectively

defined as:
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PKV V = conv

({

(y, x, w, v, λ) satisfies:

(3.20), (3.21),

(3.22), (3.23),

(3.24), (3.25),

(3.26), for some (f, g, c),

w ∈ R
|K||V |, v ∈ R

+|K||AE |, λ ∈ R
+|K||AE |, y ∈ [0, 1]|E| and x ∈ [0, 1]|K||AE |

})

(3.61)

PMLF = conv

({

(y, x, π) satisfies:
(3.54), (3.55),

(3.56), (3.57),
(3.58), for some (f, g, c),

π ∈ R
+|V |, y ∈ [0, 1]|E| and x ∈ [0, 1]|K||AE |

})

(3.62)

Considering the structure of the polyhedrons, one first intuition is that PMLF ⊆ PKV V

and it could be proved as follow:

Proof (PMLF ⊆ PKV V ): Consider that we have (y, x, π) ∈ PMLF , what we are going

to show is that ∃(v, w, λ) | (y, x, w, v, λ) ∈ PKV V .

Without loss of generality lets take vkij and λk
ij as:

vkij = Me(ij)(1− xk
ij) and λk

ij = Me(ij)[1− (ye(ij) − xk
ij)] (3.63)

Replacing vkij and λk
ij in constraint (3.22):

cij − wk
i + wk

j −Me(ij)(1− xk
ij) +Me(ij)[1− (ye(ij) − xk

ij)] = 0

−wk
i + wk

j = Me(ij)(ye(ij) − 2xk
ij)− cij

(3.64)

Since wk
i and wk

j belong to R, one can assume them as:

wk
i = −πk

i +
1

2
Me(ij) − cijx

k
ji − ye(ij)Me(ij) −

1

2
ye(ij)cij + xk

ijMe(ij) +
1

2
cij

wk
j = −πk

j −
1

2
Me(ij) + cijx

k
ji + ye(ij)Me(ij) +

1

2
ye(ij)cij − xk

ijMe(ij) −
1

2
cij

(3.65)

Replacing wk
i and wk

j in constraint (3.64):

πk
i − πk

j = Me(ij) − ye(ij)(Me(ij) − cij)− 2cijx
k
ji (3.66)

Prooving that PMLF ⊆ PKV V .

Although not so intuitive as the previous one, it is possible to show that PKV V 6⊆ PMLF .
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In order to do this, an example is provided.

Proof (PKV V 6⊆ PMLF ): Given the following network

lets consider gkij = qkβe, where qk is the quantity of the commodity k to be transported

and βe is a transportation cost.

e i j fe βe ce

1 1 4 34 5 83

2 1 5 23 6 48

3 2 3 32 1 36

4 3 4 3 1 98

5 3 5 18 8 33

6 3 6 12 4 95

7 5 6 1 6 38

k qk

1 79

2 90

3 49

4 27

The linear relaxation of KVV is:

x1
36 = 1

y1 = 1 x1
43 = 1

y2 = 1 x2
51 = 1

y3 = 1 x3
23 = 1

y4 = 1 x3
34 = 1

y5 = 0.055684 x3
41 = 1

y6 = 1 x4
35 = 0.055684

y7 = 0.944316 x4
63 = 0.055684

x4
65 = 0.944316
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When trying to force this solution into the MLF model, constraints 3.56 can not

be fully satisfied for commodity 1. In order to satisfy the shortest path constraints for

commodity 1 the following has to be satisfied:

−π1
5 + π1

6 ≤ 38

π1
5 − π1

6 ≤ 38

−π1
3 + π1

6 ≤ −95

π1
3 − π1

6 ≤ 95

−π1
4 + π1

5 ≤ 33

π1
3 − π1

5 ≤ 33

−π1
3 + π1

4 ≤ 98

π1
3 − π1

4 ≤ −98

−π1
1 + π1

5 ≤ 48

π1
1 − π1

5 ≤ 48

−π1
1 + π1

4 ≤ 83

(3.67)

The infeasibility arises when trying to satisfy those equations. The last inequation

can only be satisfied along with the others if π1
6 6= 0, which is not possible according to

constraints (3.57), prooving that PKV V 6⊆ PMLF .

Thanks to the information above, one can state that MLF Model is stronger than

KVV Model.



Chapter 4

Algorithms for the FCNDP-UOF

This chapter focuses on presenting the different methods develop in this work. The first

section presents two approaches to find better lower bounds (dual bounds) than the linear

relaxtion . The second section presents several heuristic methods leading to a third section

where a GRASP [38] and an Iterated Local Search [28] are presented.

4.1 Relaxations

In this section we present the two aproaches developed by us to find better lower bounds

than the linear relaxation. The first one is a straitforward application of the Column

Generation as described by Wolsey in [42]. The second one is a heuristic method that at

each iteration we come closer to the original problem.

4.1.1 Column Generation

Since the structure of this problem is very welcoming to decomposition strategies, this

section presents a column generation strategy [42] to try to find a better lower bound to

the FCNDP-UOF than the linear relaxation.

In the column generation scheme the idea is to generate columns at each iteration so the

solution could be improved. To do that we divide the problem in master and subproblem,

where the master is responsable for using the generated columns to find a solution and

the subproblem is responsable for generating new columns.

Considering that we chose the MLF Formulation, presented in Chapter 3, to be decom-

posed.
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4.1.1.1 Master Model

Let Pk be the set of the paths found for each commodity k ∈ K. Define zkp as the binary
variable associated to a path p ∈ Pk of the commodity k ∈ K and rkp as its cost. Lets
also define R

ij
pk, (ij) ∈ AE, k ∈ K, p ∈ Pk, as a multi-dimensional matrix that keeps the

information of whether an edge is used in a path of the commodity k or not. Knowing
that, the Master Model can be formulated as:

min
∑

e∈E

feye +
∑

k∈K

∑

p∈Pk

rkpz
k
p

s.t.
∑

p∈Pk

zkp = 1, ∀k ∈ K,

ye ≥
∑

p∈Pk

zkpR
ij
pk + zkpR

ji
pk, ∀e = (i, j) ∈ E, ∀k ∈ K,

πk
i − πk

j ≤Me(a) − ye(a)(Me(a) − ca)− 2ca
∑

p∈Pk

zkpR
ji
pk, ∀a = (i, j) ∈ AE , k ∈ K,

πk
i = 0, ∀i = d(k), ∀k ∈ K,

πk
i ≥ 0, ∀i ∈ V, ∀k ∈ K,

zkp ∈ {0, 1}, ∀k ∈ K, ∀p ∈ Pk,

ye ∈ {0, 1}, ∀e ∈ E.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

The objective function minimizes the sum of the cost of choosing the best combination

of paths and the the opening cost of the edges used by the paths. Constraints (4.1) state

that for each commodity k ∈ K, only one path is chosen. Constraints (4.2) state that

if edge (i, j) ∈ E is used by at least one of the paths chosen, then yij = 1. At last,

constraints (4.3) ensure that the shortest path problem is being considered while the

combination of the paths.

4.1.1.2 Subproblems

The idea behind the column generation for the FCNDP-UOF is generating paths in order

to improve the solution found by the Master Problem. Considering that we intend to

solve |K| shortest path problems, where the objective function’s coeficient is the reduced

cost associated to the best solution found, one way of generating these columns would be

solving the following model for each k ∈ K.
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min − ζk +
∑

(i,j)∈AE

(gkij − 2cijλ
k
ji + βk

e(ij))x
k
ij

s.t.
∑

(i,j)∈δ+(i)

xk
ij −

∑

(i,j)∈δ−(i)

xk
ij = bki , ∀i, j ∈ V,

xk
ij ≥ 0, ∀(i, j) ∈ AE.

(4.8)

(4.9)

where:

bki =















−1 if i = d(k),

1 if i = o(k),

0 otherwise.

In the objective function, ζk, λk
ji and βk

e(ij) are the dual variables associated to con-

straints (4.1), (4.3) and (4.2) respectively. At last constraints (4.9) state that variables

xk are non-negative.

After defining both the master and the subproblem, it is just a matter to create the loop

described above.

4.1.2 LBound Method

LBound Method is a strategy to probably find a lower bound to the original problem

stronger than the linear relaxation. In order to do that, the method consists in relaxing

all variables and at each iteration a subset of y variables are turn into binary variables

of the model (3.54) - (3.60). The process repeats until ⌈0.2|E|⌉ iterations are done, or

more than 90% of y are fixed, or an integer solution has been found. It is important to

remark that when an integer solution is found, this solution is the optimal solution of the

problem.

Something similar to this method might have been done by some else, but to best of our

knowledge no one used in this problem.

Details of the method could be seen in Algorithm 1:

The number of iterations is defined in the computational experiments chapter.

The function LinearRelaxation() solves the linear relaxation of the problem and returns

the solution value. The function SolveR() solves a relaxation the problem with a subset

of binary variables. Function OptFound() verifies if the solution found by the method is

integer or not. It is important to remark that the condition nvbin > 0.9|E| was never
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Algorithm 1: LBound
Input: K, G
Data: nvbin, cont← 0
begin1

sinf ← LinearRelaxion();2

Ē ← E;3

repeat4

for e ∈ Ē do5

if ye ≥ 0.5 then6

ye ∈ {0, 1};7

Ē \ {e};8

nvbin← nvbin+ 1;9

end10

end11

sinf ← SolveR();12

cont← cont+ 1;13

until cont ≥ ⌈0.2|E|⌉ or OptFound(sinf ) = TRUE or nvbin > 0.9|E| ;14

return sinf15

end16

reached. In line 6 the value 0.5 was decided after several computational tests using values

in the interval [0.3; 0.7].

One must pay attention to the number of binary variables added at each iteration so the

difficult to solve the relaxation doesn’t increase too much.

4.2 Heuristic Methods

This section focuses on presenting the different heuristics developed in this work. First,

the Partial Decoupling Heuristic is introduced. After that, a variable fixing heuristic

that uses the previously explained methods. At last the Local Branching (used as Local

Search) and the Ejection Cycle (used as Perturbation) are shown so a Iterated Local

Search metaheuristics could be done.

4.2.1 Partial Decoupling Heuristic

The main idea of total decoupling heuristic for the FCNDP-UOF is dissociating the prob-

lem of building a network from the shortest path problem. This disintegration, as dis-

cussed in [13], can provide worst results than when addressing both problems simultane-

ously. To work around this situation, the method uses what we call partial decoupling,
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where certain aspects of the follower problem are considered when trying to build a solu-

tion to the leading problem.

The algorithm proposed here is a small variation of the original Partial Decoupling Heuris-

tic [18].

The Partial Decoupling Heuristic iteratively builds a network and then routes each com-

modity so a feasible solution can be built. In order to build the network the cost

f̄k
e , e = [i, j] ∈ E, k ∈ K was defined as:

f̄k
e =

{

fe + α× gkij + (1− α)× cij+cji
2

if ye = 0,

α× gkij + (1− α)× cij+cji
2

otherwise.
(4.10)

Doing that, we consider whether the edge is open or not, plus a linear combination of the

variable cost and the average length of the edge as the fixed cost. The α works as a scaling

parameter of the importance of the gkij and cij+cji
2

values. In the beginning of the heuristic

α prioritizes the variable cost (gkij), while in the end it prioritizes the average edge length

( cij+cji
2

). It is important to pay attention that gkij = qkβij, where qk represents the amount

of commodity k to be transported and βij represents the shipping cost through the edge

e = [i, j].

After building the network, another shortest path algorithm, using the edges length (cij)

as cost, is applied to take every commodity from its origin o(k) to its destination d(k) in

the built network.

In order to put the scaling parameter α in good use, the method repeats MaxIterDP

times and at each iteration using a different value for α.

The procedure is further explained on Algorithm 2.

To solve the shortest path problem, the partial decoupling heuristic applies the Dijkstra

algorithm. The function DefCost(), define the fixed costs used in the DijkstraLeader().

At the |K| runs, the function DijkstraLeader() solves the problem of network construc-

tion, then, the shortest path problem is solved using the DijkstraFollower() function,

generating a feasible solution. The ←[ operator in line 8, represents that all ye = 1

stay with the same value and every ye = 0 which the value was changed to 1 after

DijkstraLeader()receive the new value. The notation s← 〈y, x〉 means that the solution

s is storing the values of the variables y and x that were just defined by DijkstraLeader()

and DijkstraFollower(). Since the function DijskstraLeader() can open edges that

at the end do not have flow, we used the function CloseEdge() set ye = 0 for every

xk
ij = 0, ∀k ∈ K. The Random() function returns a random element from the set passed

as a parameter. In order to choose the insertion order of the |K| commodities, a candidate
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Algorithm 2: Partial Decoupling Heuristic
Input: γ, K, G
Data: MinCost←∞, α← 1, y ← 0, x← 0;
begin1

K̄ ← K;2

for numIterDP ∈ [1,MaxIterDP ] do3

while K̄ 6= ∅ do4

K̂ ← CandidateList(K̄,G, γ);5

k′ ← Random(K̂);6

f̄k′ ← DefCost(k′, α);7

y ← [ DijkstraLeader(f̄k′ , k′);8

K̄ ← K̄\{k′};9

end10

for k ∈ K do11

xk ← DijkstraFollower(c, k);12

end13

s← 〈y, x〉;14

CloseEdge(s);15

if Cost(s) < MinCost then16

sbest ← s;17

MinCost← Cost(sbest);18

end19

α← α− 1
MaxIterDP

;20

K̄ ← K, x← 0, y ← 0;21

end22

return sbest23

end24
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list consisting of a subset of commodities not yet routed, whose amount is greater than or

equal to γ% (0 ≤ γ ≤ 100) times the largest amount (qk) of the commodities not routed

is create through the use of the function CandidateList().

4.2.2 Variable Fixing Heuristic

The objetive of the Variable Fixing Heuristic (VFH) is to find a high quality solution.

The VFH starts using both the Partial Decoupling Heuristic and the LBound method.

After applying those two methods, the VFH uses a relax and fix strategy to try to find a

better solution. Based on the Relax and Fix Heuristic [42], in this third part, we separate

the variables in two distinct sets N1 and N2. N1 is the set of relaxed variables and N2

is the set of binary variables. Initialy N1 contains all variables, while N2 is empty. The

main idea is at each iteration move a subset of the variables (xk) from N1 to N2. At the

end of each iteration, if a feasible solution for the relaxed model was found, the variables

y that are both zero and attend to the reduced cost criterion [42] for variable fixing, are

fixed as zero. The method repeats until all xk have been moved from N1 to N2 or the

duality gap becomes lower than one.

In order to choose the order of xk variables to become binary, the procedure uses a

candidate list. To choose a commodity, an element is randomly selected from a candidate

list consisting of the commodities whose amount to be transported is greater than or equal

to γ% (0 ≤ γ ≤ 100) times the largest amount of the commodity whose variables are not

set as binary. A pseudo-code of the method is presented in Algorithm 3.
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Algorithm 3: VFH
Input: γ, K, G
Data: MinCost←∞
begin1

sbest ← PartialDecoupling(γ,K,G);2

sinf ← LBound(K,G);3

MinCost← Cost(sbest) ;4

K̄ ← K;5

if OptFound(sinf ) 6= TRUE then6

while K̄ 6= ∅ and |sbest − sinf | ≥ 1 do7

k ← CandidateList(K̄, γ);8

xk ∈ {0, 1};9

s← SolveR(MinCost);10

if A feasible solution for the relaxed model was found then11

for e ∈ E do12

if ye = 0 and RCV F (ye, sbest) = TRUE then13

ye ← 0;14

end15

end16

if Cost(s) < MinCost and Feas(s) = TRUE then17

sbest ← s ;18

MinCost← Cost(sbest) ;19

end20

else if Cost(s) > Cost(sinf ) and Feas(s) = FALSE then21

sinf ← s;22

end23

end24

else25

Exit26

end27

K̄ ← K̄ \ {k}28

end29

return sbest30

end31

else32

return sinf33

end34

end35
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The function SolveR() solves a relaxation of the one level formulation (3.54)-(3.60)

with a subset of binary variables, taking into consideration the primal bound MinCost.

MinCost is defined as the current best solution cost. The RCV F () function returns

TRUE if the Linear Relaxation cost plus the Reduced Cost (obtained in the last call of

the SolveR function) of ye is greater than the sbest solution, also passed as a parameter.

The function Feas() returns true if the solution s passed as parameter is a feasible solu-

tion to the original problem and returns false otherwise.

4.2.3 Local Branching

Introduced by Fiscetti and Lodi [17], the Local Branching (LB) technique could be used

as a way of improving a given feasible solution. The LB makes use of a MIP solver to

explore the solution subspaces effectively. The procedure can be seen as local search, but

the neighborhoods are obtained through the introduction of linear inequalities in the MIP

model, called local branching cuts. More specifically, the LB searches for a local optimum

by restricting the number of variables, from the feasible solution, whose values can be

changed.

Formally speaking, consider a feasible solution of the FCNDP-UOP, s = 〈ȳ, x̄〉 ∈ P , where

P is the polyhedron formed by (3.54)-(3.60). The general idea would be adding the LB

constraint
∑

e∈E|ȳe=0

ye +
∑

e∈E|ȳe=1

(1− ye) ≤ ∆, (4.11)

where ∆ is a given positive integer parameter, indicating the number of variables ye,

e ∈ E, that are allowed to flip from one to zero and vice versa.

The strategy used here consists in applying the LB constraint only on y variables, leaving

xk variables free of LB constraints.

4.2.4 Ejection Route

Given a feasible solution, the idea behind the Ejection Route is to analyse solutions that

have at least 80% of the commodities with the same path as a feasible solution passed as

reference. Since exploring this solution space is computationally expensive ( |K|!
(|K|−⌈0.8|K|⌉)!

),

we decided to just sample the solution space, using the first improvement as the acceptance

criteria. Meaning that when a solution with better quality than the solution passed as

reference is found, this new solution becomes the reference solution. Ejection Routes’
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pseudo-code can be seen in Algorithm 4.

Algorithm 4: Ejection Route
Input: s, γ, K, G
Data: numIterER← 0
begin1

while numIterER < maxIterER do2

s̄← Neighbor(s);3

if cost(s̄) < cost(s) then4

s← s̄;5

numIterER← 0;6

end7

else8

numIterER← numIterER + 1;9

end10

end11

return s12

end13

The Neighbor() function randomly returns a neighbor of the solution s that have at

least 80% of the commodities with the same path as s. To find the new solution ⌊0.2|K|⌋

paths of the solution s are randomly destroyed and than those paths are reconstructed

using the Partial Decoupling Heuristic. If the found solution has a better quality than

the current solution, s is updated.

4.2.5 Ejection Cycle

To understand the principles below the Ejection Cycle, it is necessary to get to know a

few metrics, developed by [37], to evaluate chains in a solution.

Consider a solution defined by the variables xk
ij for each arc (i, j) ∈ AE and each com-

modity k ∈ K and ye for each edge e ∈ E. For each open edge e, where ye = 1 and xk
ij > 0

or xk
ji > 0 for at least one commodity k, the edge inefficiency ratio can be defined as:

Ie =

∑

k∈K

gij(x
k
ij + xk

ji) + fe

∑

k∈K

(xk
ij + xk

ji)
; ∀e = [i, j] ∈ E. (4.12)

The lower the value of Ie, more interesting it is to have edge e in the solution. The average

inefficiency ratio is defined as:
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Ī =

∑

e∈E

Ieye

∑

e∈E

ye
. (4.13)

With these metrics we can define a set of inefficient edges as:

AI = {e | ye = 1, Ie > Ī}. (4.14)

As it can be seen above, the set of inefficient edges contains every edge in the solution

whose inefficiency ratio is greater than the average inefficiency ratio. Our aim is to create

a movement that remove flows from some of the inefficient edges in set AI .

After evaluating the edges it is possible to construct inefficient chains from a subset of the

inefficient edges. First, an edge is randomly chosen from the set AI of inefficient edges to

form a component of the inefficient chain. If the current partial inefficient chain extends

from node i to node j, then an edge (a, i) ∈ AI or (j, b) ∈ AI is added to the current chain,

where nodes a and b are not included in the current chain. Whenever an edge is added to

a chain, it is deleted from AI . The process of extending the current chain continues until

no further extension is possible or until the chain is composed by four edges. Unless AI

is empty or contains a single arc, the process iterates with a random edge chosen to start

a new chain. When the process ends, any chains containing a single edge is deleted. This

is done in order to decrease the number of edges affected at each iteration of the method.

After constructing a set of inefficient chains, we define our movement. The movement is

defined analysing each chain in the set of inefficient chains.

The key aspect of our perturbation is the re-routing of flow from edges of the inefficient

chain to other edges of the network. First, a list of commodities (KSET ) that have a

positive flow through at least one edge of the randomly selected inefficient chain is formed.

After that, the opening cost (fe) of each edge in the inefficient chain is set as infinity. After

reassigning the costs, every commodity in KSET has its route destroyed and reconstructed

by the Partial Decoupling Heuristic taking into account the new opening costs. If a

feasible solution is found the method stops, else, the previously selected inefficient chain

is removed from the set, a another inefficient chain is randomly selected and so the process

restarts. Algorithm 5 describes our Ejection Cycle procedure.
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Algorithm 5: Ejection Cycle
Input: s, γ, K, G
begin1

P← PInefChain(s);2

s̄← ∅ ;3

while P 6= ∅ and s̄ is not feasible do4

rchain← Random(P);5

P \ {rchain};6

KSET ← SK(s, rchain);7

s̄← PartialDecoupling(G, γ,KSET , s);8

if Cost(s̄) ≤ Cost(s) then9

s← s̄;10

end11

end12

return s13

end14

In order to clarify Algorithm 5 it is necessary to define a few things. The function

PInefChain() returns the set AI of inefficient chains in a solution s. The function SK()

returns the commodities that have a positive flow in solution s through at least one arc of

the inefficient chain passed as parameter and set the fixed costs of the edges in the rchain

as infinity. The function PartialDecoupling() reroutes the commodities in KSET . In order

to do that the DijkstraLeader() is applied for all k ∈ KSET and DijkstraFollower()

for all k ∈ K. To account those changes, now the method PartialDecoupling() needs to

receive two new parameters which are, the set of commodities used in DijkstraLeader()

and a partial solution for all k ∈ K \KSET .

4.3 GRASP and ILS

4.3.1 GRASP

The GRASP metaheuristic [38] is a metaheuristic based on three basic premises: greedy,

randomized and adaptive. While other metaheuristics such as tabu search and genetic

algorithms avail themselves of strategies based on emphasizing the local search, GRASP

focuses its efforts in generating better quality solutions and then use local search only

for minor improvements. The GRASP is a multi-start metaheuristic, which means that

at each iteration it performs its constructive component and a complete local search.

The pseudo-code of the GRASP developed by us, GRASP-DE, which uses the Partial

Decoupling and the Ejection Route as its main components may be observed in Algorithm
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6:

Algorithm 6: GRASP-DE
Input: γ, K, G
Data: sbest ←∞
begin1

for 1 . . .MaxIterGR do2

s← PartialDecoupling(γ,K,G);3

s← EjectionRoute(s, γ,K,G);4

sbest ← UpdateBest(s, sbest);5

end6

return sbest7

end8

GRASP-DE’s constructive component is the Partial Decoupling Heuristic. To perform

the local search step, the procedure uses the method Ejection Route to tries refine the best

solution found on this iteration. The procedures are executed sequentially MaxIterGR

times.

4.3.2 Iterated Local Search

Developed by Lourenço et al. [28], the Iterated Local Search (ILS) is a metaheuristic

that applies a local search method repeatedly to a set of solutions obtained by perturbing

previously visited local optimal solutions. The ILS presented here uses as its components,

the VFH, the Local Branching and the Ejection Cycle presented in the previously subsec-

tions. The methods are applied in a straightforward way following the scheme presented

by Lourenço et al. [28]. First we execute the VFH to get a feasible solution and a lower

bound. Secondly we try to improve the quality of the previously found solution through

applying the Local Branching (as a Local Search) and the Ejection Cycle (as a Perturba-

tion). For the sake of argument form now on we are going to call this ILS, VFHLB. The

algorithm is described in Algorithm 7.
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Algorithm 7: VFHLB
Input: γ, ∆, K, G
Data: sbest ←∞
begin1

s, sinf ← VFH(G, K, γ);2

s← LB(s,∆);3

UpdateBest(s);4

if |cost(sbest)− cost(sinf )| ≥ 1 then5

while Stop Criterion=false do6

s← EjectionCycle(s, γ,K,G);7

s← LB(s,∆);8

sbest ← UpdateBest(s, sbest);9

end10

end11

return sbest12

end13

In the VFHLB, the initial solution and the lower bound are generated by the VFH method.

Then, the function LB performs the Local Branching as a Local Search and the Ejection-

Cycle performs a perturbation. There are many possible Stop Criterion to be selected.

In this case, we decided to use the number of iterations, which is going to be defined in

the computational experiments chapter.



Chapter 5

Computational Experiments for the

FCNDP-UOF

In this chapter we present computational experiments done using the methods presented

for the FCNDP-UOF.

The algorithms were coded in Xpress Mosel using FICO Xpress Optimization Suite, on

an Intel ®Core TM i3 CPU 3250 @ 3,5GHz computer with 8GB of RAM. Computing

times are reported in seconds. In order to test the performance of the presented heuristic,

we used networks data obtained from Mauttone, Labbé and Figueiredo [34].

The data used are grouped according to the number of nodes in the graph (10, 20, 30),

followed by the graph density (0.3, 0.5, 0.8) and finally the amount of different commodi-

ties to be transported (5, 10, 15, 20, 30, 45).

Our computational experiments are divided in 3 sections. Section 5.1 presents the results

comparing MLF and KVV mathematical formulations and their linear relaxation. In Sec-

tion 5.2 the results for the Column Generation and for the LBound method are reported

in comparison to the optimal solutions presented in the previously section. At last, in

Section 5.3 we compare the ILS and the GRASP presented in Chapter 4.

5.1 Results for the Mathematical Formulations

For the tests presented in the next tables, we report the solution found by the solver (Sol),

the time (Time), the value of the linear relaxation (LRelax ), the time spent to find the

value of the linear relaxation (T-RL). We also reported the GAP between the solution

found and the linear relaxation (GAP MLF/RL, GAP KVV/RL ) for each of the formula-

tions. The results in bold remark different linear relaxations found for the same problem

instance. Underlined results indicated that after 10800 seconds, the optimal solution was
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not found.

The GAPs were calculated using the expression: |Sol−LRelax|
LRelax

.

MLF KVV

Sol Time LRelax T-RL
GAP

Sol Time LRelax T-RL
GAP

MLF/RL KVV/RL
10-0.3-5-1 3942 0.009 3942 0.004 0.000 3942 0.013 3942 0.006 0.000

10-0.3-5-2 4552 0.004 4552 0.003 0.000 4552 0.03 4552 0.005 0.000

10-0.3-5-3 5762 0.004 5762 0.016 0.000 5762 0.016 5762 0.02 0.000

10-0.3-5-4 4811 0.003 4811 0.002 0.000 4811 0.017 4811 0.005 0.000

10-0.3-5-5 4831 0.004 4831 0.003 0.000 4831 0.018 4831 0.005 0.000

10-0.3-10-1 8331 0.015 8177 0.015 0.019 8331 0.099 8177 0.013 0.019

10-0.3-10-2 8812 0.012 8812 0.006 0.000 8812 0.027 8812 0.009 0.000

10-0.3-10-3 10016 0.009 10016 0.006 0.000 10016 0.027 10016 0.023 0.000

10-0.3-10-4 8750 0.007 8750 0.005 0.000 8750 0.026 8750 0.008 0.000

10-0.3-10-5 10130 0.022 10130 0.005 0.000 10130 0.027 10130 0.009 0.000

10-0.3-15-1 12490 0.018 12490 0.019 0.000 12490 0.036 12490 0.024 0.000

10-0.3-15-2 17417 0.021 17417 0.007 0.000 17417 0.238 17417 0.011 0.000

10-0.3-15-3 12378 0.018 12378 0.007 0.000 12378 0.037 12378 0.01 0.000

10-0.3-15-4 10988 0.024 10970 0.007 0.002 10988 0.057 10970 0.02 0.002

10-0.3-15-5 9066 0.015 9066 0.024 0.000 9066 0.036 9066 0.011 0.000

20-0.3-10-1 5978 0.742 5738 0.026 0.042 5978 1.576 5738 0.075 0.042

20-0.3-10-2 10469 5.555 9562.24 0.055 0.095 10469 8.125 9562.24 0.099 0.095

20-0.3-10-3 7020 4.342 6637.33 0.035 0.058 7020 5.275 6637.33 0.064 0.058

20-0.3-10-4 5484 3.095 4849.83 0.042 0.131 5484 4.713 4849.83 0.072 0.131

20-0.3-10-5 7932 6.084 7403.2 0.035 0.071 7932 6.318 7403.2 0.066 0.071

20-0.3-20-1 9488 0.947 9430.5 0.056 0.006 9488 0.508 9430.5 0.127 0.006

20-0.3-20-2 11521 3.841 11032.3 0.064 0.044 11521 7.676 11032.3 0.123 0.044

20-0.3-20-3 8270 1.415 7969.25 0.059 0.038 8270 1.183 7969.25 0.139 0.038

20-0.3-20-4 11901 23.486 11448.3 0.101 0.040 11901 4.596 11448.3 0.188 0.040

20-0.3-20-5 9656 2.132 9379.5 0.06 0.029 9656 2.088 9379.5 0.115 0.029

20-0.3-30-1 12510 1.911 12374.5 0.102 0.011 12510 1.787 12374.5 0.235 0.011

20-0.3-30-2 14216 3.178 13946.5 0.092 0.019 14216 1.646 13946.5 0.226 0.019

20-0.3-30-3 13393 6.91 12742 0.114 0.051 13393 8.526 12742 0.248 0.051

20-0.3-30-4 14452 2.751 14304.5 0.119 0.010 14452 2.169 14304.5 0.267 0.010

20-0.3-30-5 11419 1.938 11274.5 0.09 0.013 11419 1.164 11274.5 0.21 0.013

30-0.3-15-1 7840 2.645 7718 0.093 0.016 7840 1.052 7718 0.265 0.016

30-0.3-15-2 9479 15.435 8796.12 0.15 0.078 9479 15.596 8796.12 0.357 0.078

30-0.3-15-3 7045 6.558 6878.76 0.146 0.024 7045 5.605 6878.76 0.321 0.024

30-0.3-15-4 8426 36.702 7712.12 0.229 0.093 8426 16.475 7712.12 0.427 0.093

30-0.3-15-5 8792 120.837 7951.73 0.194 0.106 8792 22.648 7951.73 0.377 0.106

30-0.3-30-1 13219 10.891 12982 0.274 0.018 13219 17.957 12982 0.805 0.018

30-0.3-30-2 13117 49.375 12149.8 0.491 0.080 13117 51.671 12149.8 1.066 0.080

30-0.3-30-3 13541 24.305 12702.2 0.449 0.066 13541 44.115 12702.2 0.913 0.066

30-0.3-30-4 12789 41.188 11646.1 0.427 0.098 12789 137.107 11646.1 1.029 0.098

30-0.3-30-5 11897 9.279 11624.5 0.258 0.023 11897 3.622 11624.5 0.728 0.023

30-0.3-45-1 15938 19.941 15582.7 0.47 0.023 15938 37.223 15582.7 1.399 0.023

30-0.3-45-2 13196 38.985 12693.8 0.605 0.040 13196 140.817 12693.8 1.542 0.040

30-0.3-45-3 18893 317.888 17614.5 0.526 0.073 18893 550.705 17614.5 1.259 0.073

30-0.3-45-4 17629 39.199 16845 0.582 0.047 17629 82.705 16845 1.394 0.047

30-0.3-45-5 16392 350.022 15237 0.636 0.076 16392 709.686 15237 1.581 0.076

Avg 25.594 0.149 0.034 42.112 0.457 0.034

Table 5.1: Computational results for MLF Formulation and KVV Formulation for 0.3
density instances
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MLF KVV

Sol Time LRelax T-RL
GAP

Sol Time LRelax T-RL
GAP

MLF/RL KVV/RL
10-0.5-5-1 4360 0.022 4360 0.5 0.000 4360 0.018 4360 0.009 0.000

10-0.5-5-2 1351 0.022 1351 0.021 0.000 1351 0.034 1351 0.026 0.000

10-0.5-5-3 2932 0.02 2932 0.5 0.000 2932 0.017 2932 0.008 0.000

10-0.5-5-4 4920 0.126 4475 0.019 0.099 4920 0.604 4475 0.015 0.099

10-0.5-5-5 4469 0.049 4280.5 0.006 0.044 4469 0.04 4280.5 0.01 0.044

10-0.5-10-1 7536 0.143 7363.67 0.029 0.023 7536 0.221 7363.67 0.017 0.023

10-0.5-10-2 7263 0.183 6985.67 0.01 0.040 7263 0.209 6985.67 0.031 0.040

10-0.5-10-3 5273 0.041 5273 0.02 0.000 5273 0.035 5273 0.018 0.000

10-0.5-10-4 5854 0.044 5854 0.01 0.000 5854 0.035 5854 0.017 0.000

10-0.5-10-5 4983 1.312 4520.14 0.01 0.102 4983 1.349 4520.14 0.016 0.102

10-0.5-15-1 9341 0.132 9289 0.014 0.006 9341 0.148 9289 0.026 0.006

10-0.5-15-2 6669 0.069 6669 0.025 0.000 6669 0.052 6669 0.021 0.000

10-0.5-15-3 10324 0.228 10085 0.015 54.805 10324 0.836 10085 0.023 54.805

10-0.5-15-4 6339 0.242 6150.17 0.029 0.031 6339 0.231 6150.17 0.034 0.031

10-0.5-15-5 9517 0.941 9171 0.015 0.038 9517 0.607 9171 0.027 0.038

20-0.5-10-1 4784 2.668 4388.44 0.043 0.090 4784 1.521 4388.44 0.105 0.090

20-0.5-10-2 7689 4.319 7301 0.068 0.053 7689 5.914 7301 0.127 0.053

20-0.5-10-3 6184 0.371 6068 0.047 0.019 6184 0.4 6068 0.1 0.019

20-0.5-10-4 5189 0.754 4898 0.039 0.059 5189 2.68 4898 0.104 0.059

20-0.5-10-5 6051 6.865 5673.25 0.051 0.067 6051 9.237 5673.25 0.112 0.067

20-0.5-20-1 8816 6.188 8545.67 0.099 0.032 8816 4.07 8545.67 0.223 0.032

20-0.5-20-2 8584 1.468 8371 0.114 0.025 8584 11.063 8371 0.209 0.025

20-0.5-20-3 7560 16.505 7056.25 0.131 0.071 7560 4.899 7056.25 0.265 0.071

20-0.5-20-4 7634 1.11 7549 0.111 0.011 7634 1.173 7549 0.237 0.011

20-0.5-20-5 8270 8.697 7848.25 0.134 0.054 8270 9.746 7848.25 0.302 0.054

20-0.5-30-1 10156 1.351 10109 0.166 0.005 10156 1.518 10109 0.35 0.005

20-0.5-30-2 11403 16.107 10946.8 0.2 0.042 11403 13.946 10946.8 0.439 0.042

20-0.5-30-3 11600 26.74 10750.8 0.224 0.989 11600 27.87 10750.8 0.49 -0.989

20-0.5-30-4 11785 13.18 11195 0.163 0.053 11785 9.441 11195 0.396 0.053

20-0.5-30-5 9559 5.35 9103.83 0.188 0.050 9559 13.513 9103.83 0.39 0.050

30-0.5-15-1 5830 13.857 5591.33 0.297 0.043 5830 9.648 5591.33 0.809 0.043

30-0.5-15-2 6543 20.338 5861.33 0.218 0.116 6543 23.706 5861.33 0.736 0.116

30-0.5-15-3 5683 17.303 5282 0.217 0.076 5683 12.608 5282 0.639 0.076

30-0.5-15-4 5584 9.253 5403.8 0.264 0.033 5584 13.258 5403.8 0.981 0.033

30-0.5-15-5 5794 30.324 5453 0.379 0.063 5794 41.195 5453 0.944 0.063

30-0.5-30-1 8588 7.633 8161 0.493 0.052 8588 22.032 8161 2.006 0.052

30-0.5-30-2 8756 58.122 8122.75 0.874 0.078 8756 120.65 8122.75 2.119 0.078

30-0.5-30-3 10591 939.743 9222.46 1.41 0.148 10591 1904.09 9222.46 2.993 0.148

30-0.5-30-4 8114 75.07 7051.33 0.618 0.151 8114 1219.35 7051.33 1.995 0.151

30-0.5-30-5 12687 546.042 10954 0.936 0.158 12687 533.773 10954 2.185 0.158

30-0.5-45-1 10189 51.037 9687.5 0.913 0.052 10189 524.257 9687.5 3.542 0.052

30-0.5-45-2 10490 81.547 10081.2 1.361 56.892 10490 203.743 10081.2 3.789 56.892

30-0.5-45-3 13670 714.77 12472.9 1.603 0.096 13670 2581.85 12472.9 4.262 0.096

30-0.5-45-4 9637 72.56 8727.5 0.928 0.104 9637 631.575 8727.5 3.799 0.104

30-0.5-45-5 11609 17.074 11487 0.925 0.011 11609 28.737 11487 3.975 0.011

Avg 61.553 0.321 2.509 177.598 0.916 2.509

Table 5.2: Computational results for MLF Formulation and KVV Formulation for 0.5
density instances
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MLF KVV

Sol Time LRelax T-RL
GAP

Sol Time LRelax T-RL
GAP

MLF/RL KVV/RL
10-0.8-5-1 3619 0.034 3619 0.007 0.000 3619 0.038 3619 0.015 0.000

10-0.8-5-2 3480 0.297 3177.5 0.02 0.095 3480 0.526 3177.5 0.037 0.095

10-0.8-5-3 3018 0.344 2829.5 0.009 0.067 3018 0.226 2829.5 0.016 0.067

10-0.8-5-4 3518 0.157 3229 0.019 0.090 3518 0.356 3229 0.018 0.090

10-0.8-5-5 3871 0.061 3762.5 0.007 0.029 3871 0.276 3762.5 0.016 0.029

10-0.8-10-1 5813 0.163 5685 0.022 0.023 5813 0.126 5685 0.029 0.023

10-0.8-10-2 5040 0.29 4831.48 0.012 0.043 5040 0.426 4831.28 0.027 0.043

10-0.8-10-3 3499 0.071 3499 0.026 0.000 3499 0.076 3499 0.028 0.000

10-0.8-10-4 5364 0.062 5364 0.015 0.000 5364 0.086 5364 0.031 0.000

10-0.8-10-5 4133 3.126 3856 0.016 0.072 4133 4.156 3856 0.031 0.072

10-0.8-15-1 6822 0.194 6816 0.038 0.001 6822 0.198 6816 0.041 0.001

10-0.8-15-2 5183 0.228 5172.75 0.022 0.002 5183 0.236 5172.75 0.04 0.002

10-0.8-15-3 4523 0.23 4448.5 0.021 0.017 4523 0.716 4448.5 0.044 0.017

10-0.8-15-4 7484 0.241 7361.5 0.022 0.017 7484 0.276 7361.5 0.04 0.017

10-0.8-15-5 3843 0.104 3843 0.02 0.000 3843 0.106 3843 0.044 0.000

20-0.8-10-1 3947 0.354 3947 0.097 0.000 3947 0.566 3947 0.25 0.000

20-0.8-10-2 3743 9.408 3437.9 0.111 0.089 3743 5.867 3437.9 0.271 0.089

20-0.8-10-3 3412 0.351 3412 0.061 0.000 3412 0.248 3412 0.205 0.000

20-0.8-10-4 4086 6.159 3802.36 0.081 0.075 4086 6.366 3802.36 0.215 0.075

20-0.8-10-5 4498 3.69 4260.6 0.071 0.056 4498 12.194 4260.6 0.205 0.056

20-0.8-20-1 5796 4.305 5633.5 0.138 0.029 5796 2.366 5633.5 0.563 0.029

20-0.8-20-2 7037 83.211 5938.79 0.314 0.185 7037 143.515 5938.79 0.671 0.185

20-0.8-20-3 4596 4.237 4095 0.116 0.122 4596 14.987 4095 0.588 0.122

20-0.8-20-4 4851 2.396 4681 0.149 0.036 4851 6.309 4681 0.47 0.036

20-0.8-20-5 6086 15.279 5469.62 0.174 0.113 6086 15.556 5469.62 0.496 0.113

20-0.8-30-1 7769 3.218 7534.75 0.314 0.031 7769 13.397 7534.75 0.831 0.031

20-0.8-30-2 7681 12.023 7268.36 0.216 0.057 7681 17.751 7268.36 0.808 0.057

20-0.8-30-3 5144 16.773 4539.5 0.208 0.133 5144 19.139 4539.5 0.769 0.133

20-0.8-30-4 7188 58.195 6236.48 0.442 0.153 7188 98.558 6236.48 1.124 0.153

20-0.8-30-5 7374 16.812 6999 0.276 0.054 7374 44.429 6999 0.981 0.054

30-0.8-15-1 3061 3.093 3023.5 0.329 0.012 3061 33.67 3023.5 1.649 0.012

30-0.8-15-2 3458 2.867 3393 0.299 0.019 3458 8.024 3393 1.773 0.019

30-0.8-15-3 4729 176.273 3865.62 0.371 0.223 4729 248.011 3865.62 1.848 0.223

30-0.8-15-4 6693 33.87 6191.57 0.607 0.081 6693 78.789 6191.57 1.866 0.081

30-0.8-15-5 5991 50.065 5562.25 0.519 0.077 5991 85.277 5562.25 1.946 0.077

30-0.8-30-1 4830 11.336 4597.5 0.591 0.051 4830 5135.54 4597.5 4.161 0.051

30-0.8-30-2 6989 274.313 6155.95 1.284 0.135 6989 711.804 6155.95 5.425 0.135

30-0.8-30-3 7746 4726.12 6329.17 1.329 0.224 7751 10800 6329.17 5.039 0.225

30-0.8-30-4 8384 822.508 7322.75 1.422 0.145 8384 7707.25 7322.75 5.321 0.145

30-0.8-30-5 7428 204.24 6719.5 0.864 0.105 7428 1685.07 6719.5 4.875 0.105

30-0.8-45-1 6289 72.658 5964.5 1.03 0.054 6289 86.337 5964.5 7.498 0.054

30-0.8-45-2 8485 162.386 7861.75 2.486 0.079 8485 4650.18 7861.75 9.401 0.079

30-0.8-45-3 7751 1554.03 6455.5 1.274 0.201 17300.9 10800 6455.5 7.83 1.680

30-0.8-45-4 9419 8509.33 7389.33 1.813 0.275 9711 10800 7389.33 8.496 0.314

30-0.8-45-5 7884 141.935 7220 1.185 0.092 7884 9063 7220 7.153 0.092

Avg 377.489 0.410 0.075 1384.676 1.849 0.108

Table 5.3: Computational results for MLF Formulation and KVV Formulation for 0.8
density instances
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The presented results show that the MLF formulation is a lot faster than the KVV

formulation and that although we proved in Chapter 3 that the linear relaxation of MLF

formulation is stronger than KVV’s, we can see that for this set of problem instances the

theoretical strenght made no difference, execpt for one problem instance.

5.2 Results for the Column Generation and the LBound

Method

For the tables presented in this section, we report the GAP (GAP) between the lower

bound found by the method and the optimal solutions presented in the previous section

and the time (Time) needed to find the presented lower bound. At the end the average

time spent by each method for each density is presented. Whenever a "-" symbol is

presented in the GAP column, it means that the method was not able to find a lower

bound in the time limit of 36000 seconds.
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Column
LBound

Generation

GAP Time GAP Time
10-0.3-5-1 0 0.094 0 0.006

10-0.3-5-2 0 0.05 0 0.006

10-0.3-5-3 0 0.08 0 0.006

10-0.3-5-4 0 0.049 0 0.008

10-0.3-5-5 0 0.144 0 0.005

10-0.3-10-1 0 0.498 0 0.028

10-0.3-10-2 0 0.404 0 0.009

10-0.3-10-3 0 0.518 0.158 0.013

10-0.3-10-4 0 1.084 0 0.009

10-0.3-10-5 0 0.791 0 0.009

10-0.3-15-1 0 1.072 0 0.013

10-0.3-15-2 0 0.573 0 0.035

10-0.3-15-3 0 0.71 0 0.013

10-0.3-15-4 0 0.963 0 0.038

10-0.3-15-5 0 0.971 0 0.013

20-0.3-10-1 0 35.176 0 0.609

20-0.3-10-2 0 509.108 0 3.23

20-0.3-10-3 0 316.727 0 4.814

20-0.3-10-4 0 344.741 0 3.04

20-0.3-10-5 0 78.355 0.017 0.936

20-0.3-20-1 0 270.95 0 0.302

20-0.3-20-2 0 176.931 0 2.944

20-0.3-20-3 0 112.011 0 0.389

20-0.3-20-4 0 1378.36 0.040 0.129

20-0.3-20-5 0 671.558 0 2.03

20-0.3-30-1 0 1987.51 0 0.561

20-0.3-30-2 0 1326.47 0 1.072

20-0.3-30-3 0 1774.48 0 2.271

20-0.3-30-4 0 2687.34 0 0.679

20-0.3-30-5 0 1529.77 0 0.558

30-0.3-15-1 0 734.39 0 1.036

30-0.3-15-2 0 880.898 0 8.849

30-0.3-15-3 0 991.19 0 3.381

30-0.3-15-4 0 3166.14 0 24.965

30-0.3-15-5 0 6396.6 0.003 19.667

30-0.3-30-1 0 13250.6 0 2.843

30-0.3-30-2 0.079 36000 0 47.993

30-0.3-30-3 - 36000 0 6.57

30-0.3-30-4 0.098 36000 0 16.537

30-0.3-30-5 - 36000 0 4.303

30-0.3-45-1 0.023 36000 0 4.176

30-0.3-45-2 - 36000 0 7.939

30-0.3-45-3 0.064 36000 0.005 43.842

30-0.3-45-4 0.040 36000 0 18.51

30-0.3-45-5 0.076 36000 0.005 33.84

Avg 8068.480 5.960

Table 5.4: Computational results for the Column Generation and the LBound Method
for 0.3 density instances
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Column
LBound

Generation

GAP Time GAP Time
10-0.5-5-1 0 0.119 0 0.009

10-0.5-5-2 0 1.114 0 0.009

10-0.5-5-3 0 0.125 0 0.008

10-0.5-5-4 0 1.004 0 0.118

10-0.5-5-5 0 0.972 0 0.032

10-0.5-10-1 0 6.514 0 0.12

10-0.5-10-2 0 6.1 0 0.183

10-0.5-10-3 0 4.849 0 0.015

10-0.5-10-4 0 2.843 0 0.016

10-0.5-10-5 0 11.734 0 0.776

10-0.5-15-1 0 4.31 0 0.068

10-0.5-15-2 0 5.172 0 0.02

10-0.5-15-3 0 8.496 0 0.129

10-0.5-15-4 0 20.963 0 0.176

10-0.5-15-5 0 14.841 0 0.419

20-0.5-10-1 0 329.023 0 1.185

20-0.5-10-2 0 535.369 0 0.64

20-0.5-10-3 0 48.851 0 0.207

20-0.5-10-4 0 146.497 0 0.527

20-0.5-10-5 0 167.779 0.012 4.38

20-0.5-20-1 0 904.311 0 4.339

20-0.5-20-2 0 3114.89 0 2.792

20-0.5-20-3 0 1512.63 0 5.698

20-0.5-20-4 0 938.762 0 0.513

20-0.5-20-5 0 1000.07 0 2.911

20-0.5-30-1 0 3860.83 0 0.796

20-0.5-30-2 0 5214.72 0 8.587

20-0.5-30-3 0 10144.9 0 8.62

20-0.5-30-4 0 4564.65 0 3.396

20-0.5-30-5 0 14875.1 0 2.482

30-0.5-15-1 0 36000 0 6.983

30-0.5-15-2 0 8751.52 0 9.821

30-0.5-15-3 0 5710.47 0 5.722

30-0.5-15-4 - 36000 0 8.264

30-0.5-15-5 0 17371.8 0 19.863

30-0.5-30-1 0.006 36000 0 8.106

30-0.5-30-2 0.065 36000 0 33.723

30-0.5-30-3 - 36000 0 516.239

30-0.5-30-4 - 36000 0 51.8

30-0.5-30-5 - 36000 0 205.517

30-0.5-45-1 - 36000 0 13.851

30-0.5-45-2 - 36000 0 47.105

30-0.5-45-3 - 36000 0 154.834

30-0.5-45-4 - 36000 0 38.671

30-0.5-45-5 - 36000 0 9.793

Avg 11411 26.210

Table 5.5: Computational results for the Column Generation and the LBound Method
for 0.5 density instances
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Column
LBound

Generation

GAP Time GAP Time
10-0.8-5-1 0 6.031 0 0.013

10-0.8-5-2 0 15.771 0 0.171

10-0.8-5-3 0 3.801 0 0.137

10-0.8-5-4 0 2.48 0 0.051

10-0.8-5-5 0 7.283 0 0.163

10-0.8-10-1 0 14.814 0 0.098

10-0.8-10-2 0 1.723 0.023 0.275

10-0.8-10-3 0 15.016 0 0.025

10-0.8-10-4 0 6.19 0 0.024

10-0.8-10-5 0 36.361 0 1.668

10-0.8-15-1 0 37.237 0 0.106

10-0.8-15-2 0 18.633 0 0.105

10-0.8-15-3 0 36.502 0 0.191

10-0.8-15-4 0 10.209 0 0.131

10-0.8-15-5 0 210.75 0 0.036

20-0.8-10-1 0 329.368 0 0.107

20-0.8-10-2 0 26096.9 0 4.56

20-0.8-10-3 0 2275.31 0 0.096

20-0.8-10-4 0 2511.77 0 3.728

20-0.8-10-5 0 824.617 0 2.228

20-0.8-20-1 0 1765.21 0 3.889

20-0.8-20-2 0 16218.5 0.112 21.938

20-0.8-20-3 0 4351.07 0 1.509

20-0.8-20-4 0 18389.5 0 4.833

20-0.8-20-5 0 3438.02 0 9.486

20-0.8-30-1 0 15016.4 0 1.413

20-0.8-30-2 0 15362.3 0 5.076

20-0.8-30-3 0.114 36000 0 5.454

20-0.8-30-4 0.153 36000 0 70.118

20-0.8-30-5 0 26319.9 0 9.804

30-0.8-15-1 0 29240.6 0 1.617

30-0.8-15-2 0 28724.3 0 5.664

30-0.8-15-3 - 36000 0 176.762

30-0.8-15-4 0 34148.7 0 59.054

30-0.8-15-5 0 29007.3 0 17.206

30-0.8-30-1 - 36000 0 32.095

30-0.8-30-2 - 36000 0 390.862

30-0.8-30-3 0.093 35888.7 0 946.722

30-0.8-30-4 - 36000 0 611.239

30-0.8-30-5 0.053 36000 0 105.257

30-0.8-45-1 - 36000 0 24.264

30-0.8-45-2 - 36000 0 236.999

30-0.8-45-3 - 36000 0 308.181

30-0.8-45-4 - 36000 0 1977.7

30-0.8-45-5 - 36000 0 112.556

Avg 16196.1 114.525

Table 5.6: Computational results for the Column Generation and the LBound Method
for 0.8 density instances
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As the results shown the Column Generation not only was not capable of finding

lower bounds for many of the problem instances (21 out of 135) before reaching the time

limit, but also need a lot more time than the LBound Method. On the other hand, the

Column Generation was capable of improving most of the lower bounds founded by the

linear relaxion in the previous section.

When analysing the results of the LBound method, one can state that since it improves

the lower bounds found by the linear relaxions, achieving the optimal solution in many

cases, and its computational time is not high, that this method is a suitable candidate to

be combined with heuristic methods so the stopping criterion of these heuristics could be

improved.

Just to remark, here we are not presenting a Branch-and-Price scheme, just the Column

Generation as mean of finding a better lower bound than the linear relaxation.

5.3 Results for VFHLB and GRASP

In order to calibrate the parameters of the VFHLB (ILS) and the GRASP-DE (GRASP),

for the experiments, we use 60% of our data so parameters over fitting could be avoided.

The following StopCriterion, γ and ∆ values were tested: StopCriterion = {10 iterations;

50 iterations; 100 iterations}, γ = {0.75, 0.85, 0.90} and ∆ = {⌈ |E|
4
⌉, ⌈ |E|

3
⌉, ⌈ |E|

2
⌉}. After

the tests the parameters were calibrated as: StopCriterion = 10 iterations, γ = 0.85 and

∆ = ⌈ |E|
2
⌉.

We are comparing the VFHLB results with the results of the GRASP-DE presented at

[18], which, to the best of our knowledge, is the best heuristic approach to solve the

FCNDP-UOF as shown in [18]. For the presented tables, we report the best solution

(Best Sol) and best time (Best Time) reached by each approach, the average gap (Avg

GAP) and the gap (GAP) using the optimal solution. We also reported the average values

for time (Avg Time) and for solutions (Avg Sol). Finally, it is reported standard deviation

values for time (Dev Time) and solution (Dev Sol). The results in bold represent that

the optimum has been found.
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GRASP-DE VFHLB

Avg Sol Avg Time Dev Sol Dev Time Best Sol Best Time Avg GAP GAP Avg Sol Avg Time Dev Time Best Sol Best Time Avg GAP GAP
10-0.3-5-1 3942.00 1.2870 0.0000 0.0329 3942 1.2561 0.0000 0.0000 3942 0.0070 0.0017 3942 0.0060 0.0000 0.0000

10-0.3-5-2 4552.00 1.3267 0.0000 0.0172 4552 1.3110 0.0000 0.0000 4552 0.0038 0.0004 4552 0.0030 0.0000 0.0000

10-0.3-5-3 5762.00 1.2470 0.0000 0.0276 5762 1.2420 0.0000 0.0000 5762 0.0040 0.0000 5762 0.0040 0.0000 0.0000

10-0.3-5-4 4811.00 1.3150 0.0000 0.0230 4811 1.2834 0.0000 0.0000 4811 0.0044 0.0009 4811 0.0040 0.0000 0.0000

10-0.3-5-5 4831.00 1.3158 0.0000 0.0418 4831 1.3080 0.0000 0.0000 4831 0.0034 0.0005 4831 0.0030 0.0000 0.0000

10-0.3-10-1 8331.00 2.6486 0.0000 0.0462 8331 2.6380 0.0000 0.0000 8331 0.0136 0.0021 8331 0.0120 0.0000 0.0000

10-0.3-10-2 8812.00 2.8110 0.0000 0.0755 8812 2.7941 0.0000 0.0000 8812 0.0128 0.0024 8812 0.0110 0.0000 0.0000

10-0.3-10-3 10016.00 2.7410 0.0000 0.0395 10016 2.7246 0.0000 0.0000 10016 0.0080 0.0007 10016 0.0070 0.0000 0.0000

10-0.3-10-4 8750.00 2.6676 0.0000 0.0804 8750 2.6000 0.0000 0.0000 8750 0.0072 0.0004 8750 0.0070 0.0000 0.0000

10-0.3-10-5 10130.00 2.7004 0.0000 0.0847 10130 2.6950 0.0000 0.0000 10130 0.0186 0.0040 10130 0.0160 0.0000 0.0000

10-0.3-15-1 12490.00 4.1740 0.0000 0.1084 12490 4.1657 0.0000 0.0000 12490 0.0186 0.0036 12490 0.0170 0.0000 0.0000

10-0.3-15-2 17417.00 4.1920 0.0000 0.0762 17417 4.0662 0.0000 0.0000 17417 0.0208 0.0013 17417 0.0200 0.0000 0.0000

10-0.3-15-3 12378.00 4.2074 0.0000 0.1048 12378 4.1990 0.0000 0.0000 12378 0.0182 0.0045 12378 0.0150 0.0000 0.0000

10-0.3-15-4 11007.00 4.2281 0.0000 0.0549 11007 4.1210 0.0017 0.0017 10988 0.0196 0.0029 10988 0.0170 0.0000 0.0000

10-0.3-15-5 9066.00 4.2565 0.0000 0.0537 9066 4.2060 0.0000 0.0000 9066 0.0158 0.0008 9066 0.0150 0.0000 0.0000

20-0.3-10-1 6513.58 15.6530 136.4805 0.3393 6411 15.4965 0.0896 0.0724 5978 0.6980 0.0098 5978 0.6840 0.0000 0.0000

20-0.3-10-2 10813.30 16.5735 185.6884 0.5755 10664 16.3770 0.0329 0.0186 10469 4.7662 0.0886 10469 4.6650 0.0000 0.0000

20-0.3-10-3 7286.40 15.9854 132.1352 0.3434 7200 15.6720 0.0379 0.0256 7020 3.7044 0.1155 7020 3.5470 0.0000 0.0000

20-0.3-10-4 5754.74 15.8370 116.7287 0.3310 5598 15.7103 0.0494 0.0208 5484 2.7238 0.0806 5484 2.6230 0.0000 0.0000

20-0.3-10-5 8322.00 16.0420 0.0000 0.3995 8322 16.0100 0.0492 0.0492 7932 14.4424 0.2933 7932 14.1280 0.0000 0.0000

20-0.3-20-1 9488.00 32.0957 0.0000 1.3602 9488 31.8410 0.0000 0.0000 9488 0.8662 0.0272 9488 0.8400 0.0000 0.0000

20-0.3-20-2 11699.86 31.6390 201.3070 0.9075 11607 30.9429 0.0155 0.0075 11521 3.3546 0.1505 11521 3.2080 0.0000 0.0000

20-0.3-20-3 8670.82 32.5660 222.8998 0.7159 8568 32.4357 0.0485 0.0360 8270 1.2644 0.0393 8270 1.2280 0.0000 0.0000

20-0.3-20-4 12320.58 31.9430 300.0561 1.0738 11985 31.6236 0.0353 0.0071 11901 21.8506 0.9442 11901 21.0000 0.0000 0.0000

20-0.3-20-5 10379.38 32.1230 178.5869 0.4624 10297 31.9303 0.0749 0.0664 9656 1.8926 0.0947 9656 1.8190 0.0000 0.0000

20-0.3-30-1 13244.00 49.2763 0.0000 0.7556 13244 48.6920 0.0587 0.0587 12510 1.4656 0.0292 12510 1.4280 0.0000 0.0000

20-0.3-30-2 14854.90 49.8060 364.8115 1.7615 14737 49.4076 0.0449 0.0366 14216 2.2224 0.1063 14216 2.1130 0.0000 0.0000

20-0.3-30-3 14687.52 48.1790 577.2804 1.4053 14629 47.7936 0.0967 0.0923 13393 5.2596 0.1448 13393 5.0720 0.0000 0.0000

20-0.3-30-4 15420.97 48.6160 327.7683 0.6324 15329 48.3243 0.0670 0.0607 14452 1.7608 0.0733 14452 1.6980 0.0000 0.0000

20-0.3-30-5 12599.00 51.3221 0.0000 1.0764 12599 51.0160 0.1033 0.1033 11419 1.3276 0.0398 11419 1.2950 0.0000 0.0000

30-0.3-15-1 8529.32 69.3908 263.2338 1.5946 8395 68.5680 0.0879 0.0708 7840 2.3482 0.0674 7840 2.2900 0.0000 0.0000

30-0.3-15-2 10051.33 65.7535 340.4006 1.0051 10112 64.7180 0.0604 0.0668 9479 11.9144 0.2141 9479 11.6160 0.0000 0.0000

30-0.3-15-3 7422.75 66.0270 196.0199 1.8967 7281 65.7629 0.0536 0.0335 7045 5.4786 0.0389 7045 5.4180 0.0000 0.0000

30-0.3-15-4 8775.16 66.4171 168.0749 2.3415 8654 65.8900 0.0414 0.0271 8426 26.4730 0.5365 8426 25.7670 0.0000 0.0000

30-0.3-15-5 9626.00 66.1244 0.0000 2.0463 9626 65.7300 0.0949 0.0949 8792 98.2168 1.1438 8792 97.3190 0.0000 0.0000

30-0.3-30-1 15766.28 133.4690 287.2792 2.8935 15286 132.1343 0.1927 0.1564 13219 9.4686 0.0500 13219 9.4110 0.0000 0.0000

30-0.3-30-2 14308.35 138.7550 252.7530 2.3416 13973 137.6450 0.0908 0.0653 13117 35.3648 0.6179 13117 34.8360 0.0000 0.0000

30-0.3-30-3 15504.47 139.7580 580.6050 3.8356 15412 137.8014 0.1450 0.1382 13541 18.5124 0.3369 13541 18.2120 0.0000 0.0000

30-0.3-30-4 14766.19 132.6110 254.0662 2.3091 14649 130.7544 0.1546 0.1454 12789 31.2224 1.5092 12789 29.8950 0.0000 0.0000

30-0.3-30-5 13841.41 133.6140 307.9978 3.7867 13517 133.0795 0.1634 0.1362 11897 8.3360 0.3231 11897 8.0590 0.0000 0.0000

30-0.3-45-1 18885.64 204.8792 663.5134 2.6948 18773 200.8620 0.1849 0.1779 15938 16.7946 0.6475 15938 16.4120 0.0000 0.0000

30-0.3-45-2 14455.60 206.9196 597.8858 4.3356 14200 203.6610 0.0955 0.0761 13196 29.0830 0.5499 13196 28.5450 0.0000 0.0000

30-0.3-45-3 19346.43 202.7890 340.7032 6.4728 18893 202.3834 0.0240 0.0000 18893 230.5346 8.5348 18893 223.8230 0.0000 0.0000

30-0.3-45-4 19162.29 215.2056 637.8094 4.2326 19048 209.7520 0.0870 0.0805 17629 29.6728 0.6131 17629 29.2020 0.0000 0.0000

30-0.3-45-5 17909.32 205.4560 231.1970 6.6092 17732 200.9360 0.0926 0.0817 16392 250.6620 4.4910 16392 246.4560 0.0000 0.0000

Avg 11171.1236 57.2432 11078.3111 56.5236 0.0528 0.0446 10537.2889 19.3746 10537.2889 18.9504 0.0000 0.0000

Table 5.7: Computational results for GRASP-DE and VFHLB approaches for 0.3 density instances
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Avg Sol Avg Time Dev Sol Dev Time Best Sol Best Time Avg GAP GAP Avg Sol Avg Time Dev Time Best Sol Best Time Avg GAP GAP
10-0.5-5-1 4360.00 1.8240 0.0000 0.0568 4360 1.8058 0.0000 0.0000 4360 0.0086 0.0005 4360 0.0080 0.0000 0.0000

10-0.5-5-2 1351.00 1.9186 0.0000 0.0632 1351 1.9110 0.0000 0.0000 1351 0.0092 0.0004 1351 0.0090 0.0000 0.0000

10-0.5-5-3 2932.00 1.8339 0.0000 0.0533 2932 1.8050 0.0000 0.0000 2932 0.0082 0.0011 2932 0.0070 0.0000 0.0000

10-0.5-5-4 4920.00 1.9230 0.0000 0.0662 4920 1.8890 0.0000 0.0000 4920 0.2516 0.0138 4920 0.2430 0.0000 0.0000

10-0.5-5-5 4469.00 1.8880 0.0000 0.0604 4469 1.8730 0.0000 0.0000 4469 0.0184 0.0009 4469 0.0180 0.0000 0.0000

10-0.5-10-1 7566.00 3.7367 0.0040 0.1192 7566 3.7070 0.0040 0.0040 7536 0.0542 0.0008 7536 0.0530 0.0000 0.0000

10-0.5-10-2 7575.96 3.7589 193.3202 0.0645 7442 3.7070 0.0431 0.0246 7263 0.3026 0.0027 7263 0.3000 0.0000 0.0000

10-0.5-10-3 5399.55 3.7424 131.8461 0.0968 5273 3.6980 0.0240 0.0000 5273 0.0166 0.0005 5273 0.0160 0.0000 0.0000

10-0.5-10-4 5983.61 3.8770 105.7580 0.0847 5901 3.8460 0.0221 0.0080 5854 0.0174 0.0009 5854 0.0170 0.0000 0.0000

10-0.5-10-5 5102.45 3.7687 66.9842 0.0719 5032 3.7240 0.0240 0.0098 4983 0.8284 0.0187 4983 0.8060 0.0000 0.0000

10-0.5-15-1 9379.00 5.6480 0.0041 0.1157 9379 5.5350 0.0041 0.0041 9341 0.0312 0.0013 9341 0.0300 0.0000 0.0000

10-0.5-15-2 7512.00 5.7720 0.0000 0.0759 7512 5.7027 0.1264 0.1264 6669 0.0236 0.0013 6669 0.0220 0.0000 0.0000

10-0.5-15-3 10324.00 5.9603 0.0000 0.1085 10324 5.9130 0.0000 0.0000 10324 0.3338 0.0041 10324 0.3300 0.0000 0.0000

10-0.5-15-4 6339.00 5.9380 0.0000 0.2099 6339 5.8100 0.0000 0.0000 6339 0.0810 0.0025 6339 0.0790 0.0000 0.0000

10-0.5-15-5 9519.00 5.9964 0.0002 0.1417 9519 5.9370 0.0002 0.0002 9517 4.0846 0.0354 9517 4.0300 0.0000 0.0000

20-0.5-10-1 4784.00 21.5620 0.0000 0.8304 4784 21.4326 0.0000 0.0000 4784 2.6538 0.0199 4784 2.6310 0.0000 0.0000

20-0.5-10-2 7689.00 21.8640 0.0000 0.5656 7689 21.7328 0.0000 0.0000 7689 1.9200 0.0466 7689 1.8770 0.0000 0.0000

20-0.5-10-3 6184.00 22.6760 0.0000 0.4702 6184 22.4492 0.0000 0.0000 6184 0.5824 0.0102 6184 0.5670 0.0000 0.0000

20-0.5-10-4 5532.91 22.4149 95.1989 0.2894 5489 22.1930 0.0663 0.0578 5189 1.6642 0.0275 5189 1.6330 0.0000 0.0000

20-0.5-10-5 6233.72 22.7810 80.4730 0.5918 6172 22.7354 0.0302 0.0200 6051 26.7656 0.0977 6051 26.6630 0.0000 0.0000

20-0.5-20-1 9964.00 46.5030 0.0000 0.9544 9964 45.8520 0.1302 0.1302 8816 2.9528 0.0153 8816 2.9320 0.0000 0.0000

20-0.5-20-2 8721.34 47.4527 150.4528 1.8322 8584 46.8900 0.0160 0.0000 8584 4.4280 0.0511 8584 4.3720 0.0000 0.0000

20-0.5-20-3 8354.83 45.7165 214.8412 0.9228 8305 44.6450 0.1051 0.0985 7560 7.0656 0.0300 7560 7.0130 0.0000 0.0000

20-0.5-20-4 7750.74 45.2840 100.0567 0.8360 7674 44.9217 0.0153 0.0052 7634 1.5694 0.0201 7634 1.5470 0.0000 0.0000

20-0.5-20-5 8636.00 44.8590 0.0000 1.1159 8636 44.7693 0.0443 0.0443 8270 6.0790 0.0509 8270 6.0160 0.0000 0.0000

20-0.5-30-1 12600.00 67.9890 0.0000 2.3355 12600 67.9890 0.2406 0.2406 10156 1.8056 0.0785 10156 1.7300 0.0000 0.0000

20-0.5-30-2 12932.00 68.6630 0.0000 1.9053 12932 68.6630 0.1341 0.1341 11403 7.2198 0.2475 11403 7.0420 0.0000 0.0000

20-0.5-30-3 13021.40 73.2877 334.7399 1.3527 12867 71.5700 0.1225 0.1092 11600 13.7846 0.3707 11600 13.5040 0.0000 0.0000

20-0.5-30-4 12333.56 70.8795 317.1527 1.3237 12260 68.8150 0.0465 0.0403 11785 6.8018 0.0628 11785 6.7190 0.0000 0.0000

20-0.5-30-5 10989.00 69.4657 0.0000 1.8168 10989 69.3270 0.1496 0.1496 9559 7.3206 0.0511 9559 7.2530 0.0000 0.0000

30-0.5-15-1 6824.93 104.3949 112.2020 3.3325 6744 103.9790 0.1707 0.1568 5830 12.4814 0.1506 5830 12.3470 0.0000 0.0000

30-0.5-15-2 6888.00 103.6410 0.0000 4.0814 6888 102.8119 0.0527 0.0527 6543 20.0704 0.1470 6543 19.8560 0.0000 0.0000

30-0.5-15-3 5809.89 109.4442 52.8671 2.4582 5741 107.5090 0.0223 0.0102 5683 14.5294 0.1577 5683 14.3380 0.0000 0.0000

30-0.5-15-4 6097.00 106.1190 0.0000 2.2691 6097 103.3599 0.0919 0.0919 5584 11.6152 0.1212 5584 11.4330 0.0000 0.0000

30-0.5-15-5 5794.00 108.9972 0.0000 3.4635 5794 107.9180 0.0000 0.0000 5794 22.8150 1.1958 5794 21.9610 0.0000 0.0000

30-0.5-30-1 8823.02 209.1856 151.8084 6.4735 8753 207.9380 0.0274 0.0192 8588 28.3988 0.5552 8588 27.9600 0.0000 0.0000

30-0.5-30-2 9134.00 212.8090 0.0000 3.6315 9134 211.9578 0.0432 0.0432 8756 56.7008 1.7342 8756 55.3860 0.0000 0.0000

30-0.5-30-3 10908.73 206.0050 138.0897 4.4661 10591 203.9450 0.0300 0.0000 10591 445.2772 13.4245 10591 432.3970 0.0000 0.0000

30-0.5-30-4 9120.14 210.4039 227.4169 6.4708 9012 209.1490 0.1240 0.1107 8114 74.5170 1.2355 8114 73.2920 0.0000 0.0000

30-0.5-30-5 13575.00 214.7650 0.0000 3.1942 13575 209.1811 0.0700 0.0700 12687 117.1688 2.5543 12687 114.8630 0.0000 0.0000

30-0.5-45-1 11160.00 332.1730 0.0000 13.8050 11160 330.1800 0.0953 0.0953 10189 31.7414 0.3404 10189 31.3220 0.0000 0.0000

30-0.5-45-2 12105.07 319.6155 248.6762 7.4214 12009 316.4510 0.1540 0.1448 10490 67.9630 2.6552 10490 65.6430 0.0000 0.0000

30-0.5-45-3 15733.00 324.8540 0.0000 6.0844 15733 315.7581 0.1509 0.1509 13670 150.6902 8.3190 13670 142.3510 0.0000 0.0000

30-0.5-45-4 10910.00 322.2408 0.0000 4.1851 10910 316.5430 0.1321 0.1321 9637 76.2042 2.7176 9637 73.6180 0.0000 0.0000

30-0.5-45-5 12870.05 314.7070 267.3752 5.6402 12593 310.3011 0.1086 0.0848 11609 17.7640 0.4141 11609 17.3510 0.0000 0.0000

Avg 8315.8204 87.7409 8270.7111 86.6185 0.0583 0.0527 7781.3333 27.7027 7781.3333 26.9241 0.0000 0.0000

Table 5.8: Computational results for GRASP-DE and VFHLB approaches for 0.5 density instances
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Avg Sol Avg Time Dev Sol Dev Time Best Sol Best Time Avg GAP GAP Avg Sol Avg Time Dev Time Best Sol Best Time Avg GAP GAP
10-0.8-5-1 4033.83 3.0370 108.4895 0.0314 3986 3.0249 0.1146 0.1014 3619 0.0142 0.0004 3619 0.0140 0.0000 0.0000

10-0.8-5-2 3535.68 2.9300 60.9944 0.0883 3480 2.9100 0.0160 0.0000 3480 0.1480 0.0016 3480 0.1460 0.0000 0.0000

10-0.8-5-3 3330.27 2.7480 112.2499 0.0442 3317 2.7150 0.1035 0.0991 3018 0.2422 0.0041 3018 0.2380 0.0000 0.0000

10-0.8-5-4 3518.00 2.9770 0.0000 0.0614 3518 2.8758 0.0000 0.0000 3518 0.0886 0.0009 3518 0.0880 0.0000 0.0000

10-0.8-5-5 3960.68 2.7730 80.1635 0.0521 3906 2.7620 0.0232 0.0090 3871 0.0390 0.0012 3871 0.0380 0.0000 0.0000

10-0.8-10-1 6031.84 5.9723 114.2613 0.0866 5902 5.8210 0.0376 0.0153 5813 0.0458 0.0046 5813 0.0430 0.0000 0.0000

10-0.8-10-2 5120.64 5.7880 107.2940 0.1479 5040 5.6954 0.0160 0.0000 5040 1.0682 0.0285 5040 1.0440 0.0000 0.0000

10-0.8-10-3 3975.00 5.9039 0.0000 0.1344 3975 5.8570 0.1360 0.1360 3499 0.0826 0.0018 3499 0.0810 0.0000 0.0000

10-0.8-10-4 5460.55 5.9090 116.8811 0.1723 5364 5.7908 0.0180 0.0000 5364 0.0876 0.0086 5364 0.0830 0.0000 0.0000

10-0.8-10-5 4225.54 5.7690 72.7043 0.1662 4192 5.7690 0.0224 0.0143 4133 1.1376 0.0334 4133 1.0860 0.0000 0.0000

10-0.8-15-1 6976.61 8.9230 90.2083 0.3180 6935 8.8338 0.0227 0.0166 6822 0.1478 0.0040 6822 0.1440 0.0000 0.0000

10-0.8-15-2 5276.29 8.8852 77.3640 0.1640 5183 8.6770 0.0180 0.0000 5183 0.1492 0.0027 5183 0.1450 0.0000 0.0000

10-0.8-15-3 5017.00 9.0300 0.0000 0.0780 5017 8.9940 0.1092 0.1092 4523 0.6238 0.0080 4523 0.6140 0.0000 0.0000

10-0.8-15-4 7663.62 8.9097 64.8997 0.2998 7484 8.8390 0.0240 0.0000 7484 0.6206 0.0086 7484 0.6070 0.0000 0.0000

10-0.8-15-5 4751.60 9.2254 85.5372 0.2468 4686 9.2070 0.2364 0.2194 3843 0.4682 0.0066 3843 0.4610 0.0000 0.0000

20-0.8-10-1 4120.80 34.3230 105.3503 0.8950 4040 34.3230 0.0440 0.0236 3947 0.6520 0.0107 3947 0.6440 0.0000 0.0000

20-0.8-10-2 3915.00 34.5080 0.0000 1.1326 3915 34.0249 0.0460 0.0460 3743 6.9310 0.2826 3743 6.7250 0.0000 0.0000

20-0.8-10-3 3480.24 34.8060 74.7532 0.5791 3412 34.3883 0.0200 0.0000 3412 0.1918 0.0033 3412 0.1880 0.0000 0.0000

20-0.8-10-4 4209.00 35.2740 0.0000 0.8032 4209 34.9940 0.0301 0.0301 4086 5.0812 0.1772 4086 4.9450 0.0000 0.0000

20-0.8-10-5 4542.98 35.6360 97.5143 0.7726 4498 35.2796 0.0100 0.0000 4498 4.6612 0.0678 4498 4.6030 0.0000 0.0000

20-0.8-20-1 6909.00 70.8823 0.0000 1.7308 6909 69.2210 0.1920 0.1920 5796 4.2190 0.0869 5796 4.1280 0.0000 0.0000

20-0.8-20-2 7635.54 71.4810 187.0284 1.0189 7590 70.3373 0.0851 0.0786 7037 313.3302 20.9517 7037 297.9690 0.0000 0.0000

20-0.8-20-3 6251.89 68.9992 89.4775 1.8381 5422 68.1810 0.3603 0.1797 4596 5.2952 0.1021 4596 5.2230 0.0000 0.0000

20-0.8-20-4 5187.00 70.2559 69.0130 2.4494 5250 69.9760 0.0693 0.0823 4851 2.8762 0.0466 4851 2.8170 0.0000 0.0000

20-0.8-20-5 6855.53 72.1322 86.2333 1.9296 6267 71.4180 0.1264 0.0297 6086 10.8284 0.5098 6086 10.5270 0.0000 0.0000

20-0.8-30-1 9425.00 105.0060 0.0000 2.1653 9425 101.2258 0.2132 0.2132 7769 7.7738 0.0747 7769 7.7040 0.0000 0.0000

20-0.8-30-2 8735.33 110.7691 126.4167 1.9805 8666 109.8900 0.1373 0.1282 7681 14.1722 0.2527 7681 13.9840 0.0000 0.0000

20-0.8-30-3 5947.89 107.2994 201.4348 2.6665 5889 106.2370 0.1563 0.1448 5144 14.6920 0.3542 5144 14.4420 0.0000 0.0000

20-0.8-30-4 8768.08 104.7711 177.5349 3.7392 8630 104.5620 0.2198 0.2006 7188 48.2594 2.3096 7188 46.6700 0.0000 0.0000

20-0.8-30-5 8175.16 108.0789 127.8169 1.4551 7942 108.0789 0.1086 0.0770 7374 20.4534 0.6175 7374 19.9750 0.0000 0.0000

30-0.8-15-1 3091.61 171.4778 66.3609 0.7593 3061 169.7800 0.0100 0.0000 3061 4.5098 0.0911 3061 4.4170 0.0000 0.0000

30-0.8-15-2 3506.00 160.2209 0.0000 5.1644 3506 160.2209 0.0139 0.0139 3458 11.7516 0.2655 3458 11.5390 0.0000 0.0000

30-0.8-15-3 5159.56 166.8339 44.5643 2.8985 5139 163.8840 0.0910 0.0867 4729 105.0818 7.0616 4729 100.5670 0.0000 0.0000

30-0.8-15-4 7312.13 160.7620 161.4134 3.4133 7283 159.4759 0.0925 0.0882 6693 53.8938 2.2803 6693 52.1000 0.0000 0.0000

30-0.8-15-5 6263.50 164.5370 113.3484 2.7050 6251 162.5860 0.0455 0.0434 5991 34.2898 1.3369 5991 33.3210 0.0000 0.0000

30-0.8-30-1 4871 332.1400 0.0000 9.2200 4871 330.9080 0.0085 0.0085 4830 27.9676 0.5595 4830 27.3360 0.0000 0.0000

30-0.8-30-2 7122.2 328.2900 182.3900 4.1100 6989 325.3570 0.0191 0.0000 6989 296.6414 21.9387 6989 279.8210 0.0000 0.0000

30-0.8-30-3 8124 337.1900 16.4300 33.6300 8112 321.8380 0.0488 0.0473 7746 2115.6020 49.0532 7746 2074.4600 0.0000 0.0000

30-0.8-30-4 8384 318.0600 0.0000 26.0900 8384 338.2490 0.0000 0.0000 8384 530.1420 15.6519 8384 520.0250 0.0000 0.0000

30-0.8-30-5 7442.8 321.4300 33.0900 17.8900 7428 344.3670 0.0020 0.0000 7428 162.6760 2.9126 7428 159.9620 0.0000 0.0000

30-0.8-45-1 6633.24 495.3080 118.1999 11.4544 6620 494.3174 0.0547 0.0526 6289 48.6748 1.2567 6289 47.7090 0.0000 0.0000

30-0.8-45-2 11150.60 489.6256 220.3763 15.3625 10975 489.6256 0.3142 0.2935 8485 377.5736 13.7328 8485 367.7370 0.0000 0.0000

30-0.8-45-3 9555.00 507.0021 399.7143 17.2257 9555 507.0021 0.2327 0.2327 7751 507.0248 20.1638 7751 495.2200 0.0000 0.0000

30-0.8-45-4 11214.00 492.2408 0.0000 16.3840 11214 489.3050 0.1906 0.1906 9419 2441.1600 31.0341 9419 2414.4100 0.0000 0.0000

30-0.8-45-5 8338.56 528.5251 155.1697 7.6185 8080 522.2580 0.0577 0.0249 7884 134.6612 1.0177 7884 133.4330 0.0000 0.0000

Avg 6115.6400 136.1477 6033.7111 135.9796 0.0866 0.0717 5590.1111 162.5785 5590.1111 159.2763 0.0000 0.0000

Table 5.9: Computational results for GRASP-DE and VFHLB approaches for 0.8 density instances
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In Tables 5.7, 5.8, 5.9 were used 135 instances generated by Mautonne, Labbé and

Figueiredo [34], whose results were published by them for only 5 instances. For these

instances, the computational results suggest the efficiency of VFHLB. On average, the

time spent by VFHLB was 2.31 times faster than the time spent by GRASP, being 2.954

times faster for 0.3 density networks, 3.167 times for 0.5 density networks and 0.837 times

for 0.8 density networks. Also, VFHLB found all optimal solutions, while GRASP-DE

found only 44 optimal solutions. Besides that, the VFHLB also improved or equalled

GRASP-DE results for all 135 instances (91 improvements and 44 draws).

Another important remark is that, in Tables 5.7 and 5.8 VFHLB is faster than GRASP-

DE, both in the mean of Avg Times and in the mean of Best Times. Although VFHLB

lose to GRASP-DE in the mean of Avg Times and in the mean of Best Times on Table

5.9. On the other hand, GRASP-DE finds only 26 % of the optimal solutions while, as

told before, VFHLB finds all optimal solutions.

The experiment also showed that, at least for the tested instances, the order of the com-

modities set by the candidate list in the VFHLB does not change the solution obtained at

the end of the algorithm, but does affect the computational time, as standard deviation

for the solutions are equal to zero after our experiment (not reported in the tables).

5.3.1 Statistical Analysis

In order to verify whether or not the differences of mean values obtained by the evaluated

strategies shown in Tables 5.7,5.8 and 5.9 are statistically significant, we employed the

Wilcoxon-Mann-Whitney test technique [21]. This test could be applied to compare algo-

rithms with some random features and identify if the difference of performance between

them is due to randomness.

According to [21], this statistical test is used when two independent samples are compared

and whenever it is necessary to have a statistical test to reject the null hypothesis, with a

significance θ level (i.e., it is possible to reject the null hypothesis with the probability of

((1− θ)× 100%)). For the sake of this analysis we considered θ = 0.01. The hypotheses

considered in this test are:

• Null Hypothesis (H0): there are no significant differences between the solutions

found by VFHLB and the original method;

• Alternative Hypothesis (H1): there are significant differences (bilateral alternative)

between the solutions found by VFHLB and the GRASP.
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Table 5.10 presents the number of better average solutions found by each strategy, for each

group of instances separeted by density. The number of cases where the Null Hypothesis

was rejected is also shown between parentheses.

Instance Algorithms

Groups GRASP VFHLB

0.3 0(0) 30(29)
0.5 0(0) 34(31)
0.8 0(0) 43(33)

Table 5.10: Statistical Analysis of GRASP and DPRFLB

When comparing GRASP with VFHLB, we notice that almost all differences of perfor-

mance (86.91% of the tests) are statistically significant. We can also observe that the

VFHLB obtained 100% of the best results. These results indicate the superiority of the

proposed strategy.

5.3.2 Complementary Analysis

Another way to analyze the behavior of algorithms with random components is provided

by time-to-target plots (TTT-plots) [2]. These plots show the cumulative probability of

an algorithm reaching a prefixed target solution in the indicated running time. In TTT-

plots experiment, we sorted out the execution times required for each algorithm to reach

a solution at least as good as a predefined target solution. After that, the i-th sorted

running time, ti, is associated with a probability pi =
i−0.5
100

and the points zi = (ti; pi) are

plotted.

For these experiments we tested 10 of our largest instances with a medium target (1.22

times the cost of the optimal solution). Firstly we analyze the instances with 20 nodes,

followed by the analyses of instances with 30 nodes.
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Figure 5.1: TTT Plot - 20 Nodes Instances
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After analyzing the behavior of the methods for the selected instances of 20 nodes, through

analysis of the TTTPlot Figures 5.1a to 5.1e, we conclude that the proposed strategy

outperforms the GRASP, since the cumulative probability for VFHLB to find the target

in less then 40 seconds is 100 %, while for GRASP it is 0 %.
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Figure 5.2: TTT Plot - 30 Nodes Instances

After analyzing the behavior of the methods for the selected instances of 30 nodes, through

analysis of the TTTPlot Figures 5.2a to 5.2e, we conclude that the proposed strategy

outperforms the GRASP, since the cumulative probability for VFHLB to find the target

in less then 180 seconds is 100 %, while for GRASP it is 0 %.

Tests with a harder target were performed, but since GRASP-DE took to much time to

reach the target, the graphics were not interesting to be presented.



Chapter 6

Conclusions - FCNDP-UOF

Firstly, we compared the MLF Model and the KVV Model theoretically and in practice,

which shown us the advantages of using MLF Model instead of KVV Model. After that,

besides the good values found by the linear relaxation, very few could be used as a stop-

ping criterion for other methods (since the results were not close enough of the optimal

solution), so we developed a Column Generation and the LBound method. Analysing the

results we stated that LBound would be a better call to combine with other algorithms.

In the heuristics topic, we proposed new algorithms for FCNDP-UOF, a GRASP-DE and

the VFHLB. The GRASP-DE was a straightforward combination of the Partial Decou-

pling Heuristic (as a constructive method) with the Ejection Route (used as Local Search).

The VFHLB uses the VFH to build a initial solution and find a lower bound. In a second

moment, a Local Branching technique and a perturbation, Ejection Cycle, are applied to

reduce the solution cost.

The proposed approaches were tested on a set of instances grouped by number of nodes,

graph density and number of commodities to be transported. Our results have shown the

efficiency of VFHLB in comparison to the GRASP presented in [18], since the proposed

algorithm finds the optimal solution for all instances and presents a best average time for

the majority of the instances (125 out 135).

As future work, we intend to work on exact approaches as Benders’ Decomposition and

Lagrangian Relaxation since both are very effective for similar problems, as could be seen

in [5, 11].



Chapter 7

Introduction to the Transmission Expan-

sion Planning Problem with Redesign

With the growth of energy demand, upgrading energy transmission networks by adding

new generators and transmission lines becomes necessary. Since, in most cases, there is

the impossibility of building generators near the centers of consumption, efforts need to

be focused to the construction of transmission lines. We may consider the example of

Brazil, which has huge resources for power generation through hydropower that, however,

are located at great distances from consumption centers. Another feature that can not

be neglected is the quantitative variation of the population, especially in countries that

are experiencing a significant increase in its population, as is the case in Brazil.

The Transmission Expansion Planning problem (TEP) can be represented by a nonlinear

mixed integer programming model [35]. This problem is defined on an existing grid,

considering some of the critical factors of the power system in question.

This combinatorial optimization problem has physical and budget constraints. Typically,

operational and investment restrictions are modelled by linear constraints, but expansion

restrictions are modelled through non convex functions, usually bilinear. As seen in [19]

and [41], we can turn the bilinear constraints in linear ones through the use of known

techniques (Big-M linearization Technique). In this way we can represent the TEP as

mixed-integer linear programming problem.

As it can be seen in [27], most of the work on this theme addresses a variant which only the

addition of new transmission lines in the network is considered, i.e. all pre-existing circuits

should be part of the new transmission network. However, in [35] a new approach to the

problem is presented. This approach, denoted by TEPR, consists of, not only allowing

the addition of new transmission lines, but also the removal of pre-existing transmission

lines.
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From an economical point of view, one can consider the cost of removing a transmission

line to zero. Thus, it was shown recently in [25] and [35], that the TEPR always leads

to expansion plans cheaper or equal to the TEP. Despite the aforementioned advantages,

we must clarify that the TEPR is a problem even harder to solve than the TEP, and the

authors of [35] failed to solve to optimality benchmark instances of the problem.

As we search in the literature for solution methods for the static variant of TEP, we

find works describing primarily the use of metaheuristics like GRASP [7], Taboo Search

[12], GRAPR [15], genetic algorithms [39] and at last a study on linear relaxations with

Big-M factor [35]. However, when we searched for solving methods for TEPR, we have

seen that, because of its difficulty, few people choose to work with this variant, leading

to a small related bibliography [16, 35]. On the other hand, as stated earlier, in [35] the

results shown that it is not only justifiable to study it, but also encourage the study of

this variant, even though a it is a more complex variant.

Given the difficulty of solving efficiently the static version of the TEPR, this thesis presents

an exact method as an alternative to the direct use of the mathematical formulation with

a comercial solver. The alternative presented is a method we call Ring Partition Search

(RPS). By the end of our tests, the results were quite interesting, allowing us to get

good quality solutions and in less than the exact approach using the mixed integer linear

programming in a comercial solver.



Chapter 8

Mathematical Formulations for the TEPR

This section presents two mathematical formulations for the TEPR, taking into account

the Direct Current (DC) model to energy flow [35].

Before defining the mathematical formulations is necessary to define a transmission net-

work from a mathematical point of view. A transmission network can be represented by

a connected graph G(B,L), where B is the set of generators and L is the set of transmis-

sion lines. For better treatment of the circuits, we partitioned the set L into two disjoint

subsets, where L0 is the set of all the transmission lines already in the network and L1 is

the set of all transmission lines candidate to enter the network. For each transmission line

(i, j) ∈ L is defined as the direction of energy flow towards i→ j is positive, while towards

j → i is negative. For each generator i ∈ B we can create a set of adjacent generators

N(i) ⊆ B. By using this set, we can define the subsets N+(i) = {j ∈ B : (i, j) ∈ L} and

N−(i) = {j ∈ B : (j, i) ∈ L}, which helps us to define the flow balancing on the network.

It is necessary to also define the demand and the maximum generation of each genera-

tor, which are represented respectively by di and gi, i ∈ B. When we talk about direct

current, the flow of energy is proportional to the difference between the phase angles in

the beginning (θi, i ∈ B) and in the end (θj, j ∈ B) of the transmission line (i, j) ∈ L.

The proportionality constant related to the flow in the transmission line (i, j) is called

susceptance, which is represented by the symbol γij. From a practical point of view,

the susceptance is a physical characteristic of the transmission line and therefore a given

input. Also, each transmission line has a capacity (f ij) for limiting the flow past through

it. It notes that there may be transmission lines in parallel (i, j)1, (i, j)2, denoted by

(i, j)1 ‖ (i, j)2, connecting the same generators. Finally, defining cij as the cost of adding

the transmission line (i, j) ∈ L1, we have all the necessary components to represent the

TEPR mathematicaly. To facilitate the understanding, a list symbol is shown below.
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8.1 List of Symbols

G(B,L) Associated graph G(V,E).

B Set of generators.

L Set of transmission lines.

L0 Set of existing transmission lines.

L1 Set of candidate transmission lines.

δ+(i) Set of all transmission lines beginning at generator i.

δ−(i) Set of all transmission lines ending at generator i.

γij Transmission line (i, j) ∈ L’s susceptance.

f ij Maximum flow allowed in the transmission line (i, j) ∈ L.

gi Maximum generation allowed in the generator i ∈ B.

cij Operational cost of adding the transmission line (i, j) ∈ L1 in the network.

xij Indicates whether or not the transmission line (i, j) ∈ L is in the final network.

fij Indicates the flow in the transmission line (i, j) ∈ L.

gi Indicates the generated energy in the generator i ∈ B.

Θi Indicates the phase angle in the generator i ∈ B.

8.2 Mathematical Formulations for the TEPR

Given the definitions made, a possible nonlinear mixed integer mathematical formulation

for the static variant of TEPR [35] can be written as:

min
∑

(i,j)∈L1

cijxij

s.t.
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji + gi = di ∀i ∈ B

fij − γijxij(θi − θj) = 0 ∀(i, j) ∈ L

|fij| ≤ f ij ∀(i, j) ∈ L

gi ≤ gi ∀i ∈ B

gi ≥ 0 ∀i ∈ B

θi ∈ R ∀i ∈ B

fij ∈ R ∀(i, j) ∈ L

xij ∈ {0, 1} ∀(i, j) ∈ L

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)
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Constraint (8.1) ensures the flow balance, i.e., the entire flow coming in, less all flow

out, plus the energy generated in the generator must match the demand of the genera-

tor. Constraint (8.2) regulates the flow behaviour depending on the difference between

the phase angles, this phenomenon is governed by the Kirchoff Law [35]. Constraints

(8.3)-(8.5) ensure respectively that flow in each transmission line and generation in each

generator are larger than their lower bounds and do not exceed their upper bounds. All

other constraints define the domain of each of the variables.

8.2.1 A Linear Formulation

In view of the difficulties imposed by the nonlinear constraints, in this thesis we chose to

work with the linear formulation of the problem. For this we use the Big-M linearization

technique. Given a constant Mk > 0, we can replace (8.2) by the following constraints

[35]:

−Mij(1− xij) ≤ fij − γij(θi − θj) ≤Mij(1− xij), ∀(i, j) ∈ L (8.9)

In this case, the constraint (8.3) need to be rewriten as:

|fij| ≤ xij f̄ij, ∀(i, j) ∈ L (8.10)

Thus, the model we address as DC model is written as:



8.2 Mathematical Formulations for the TEPR 56

min
∑

(i,j)∈L1

cijxij

s.t.
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji + gi = di ∀i ∈ B

fij − γij(θi − θj) ≤M(1− xij) ∀(i, j) ∈ L

−M(1− xij) ≤ fij − γij(θi − θj) ∀(i, j) ∈ L

fij ≤ xijf ij ∀(i, j) ∈ L

fij ≥ −xijf ij ∀(i, j) ∈ L

gi ≤ gi ∀i ∈ B

gi ≥ 0 ∀i ∈ B

θi ∈ R ∀i ∈ B

fij ∈ R ∀(i, j) ∈ L

xij ∈ {0, 1} ∀(i, j) ∈ L

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

where the constraints (8.12)-(8.15) represent constraints (8.2) and (8.3).

One procedure to calculate de Big-M value is described in detail in [35].
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Algorithms for the TEPR

In this chapter two exact approaches are presented. The first one is a Benders’ decompo-

sition and the second one is the Ring Partition Search.

9.1 Benders’ Decomposition

In the early stages of the expansion planning through a technique of decomposition,

relaxations of the original problem are solved for which convexity conditions are met and

optimum solutions can be found (first hierarchical level). The relaxed restrictions are

then gradually reintroduced so that at every step we become closer to the solution of

the problem. So, initially, we solved a relaxed problem from which some restrictions are

removed. The optimal solution obtained, as well as other relevant information, are then

reused to start the settlement process of the second hierarchical level, which should contain

only continuous variables. After solving the second hierarchical level new constraints are

added to the problem of the first level. The process is then repeated until all necessary

constraints have been added to the first level.

From a more practical point of view, we defined the first level as responsible to select

which transmission line will be in the network, taking into consideration a relaxed flow,

described by (8.12) and (8.13) before being relaxed. In the second level, the network is

already built and the flow must respect again the Kirchoff law, so it will be in function

of the ωi ∈ B, leading to a real representation of the flow behaviour.

In view of the described procedure, one can define the elements of each hierarchical level.
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9.1.1 First Hierarchical Level

min ω +
∑

(i,j)∈L1

cijxij

s.t.
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji + gi = di ∀i ∈ B

fij ≤ xijf ij ∀(i, j) ∈ L

fij ≥ −xijf ij ∀(i, j) ∈ L

0 ≤ gi ≤ gi ∀i ∈ B

θi ∈ R ∀i ∈ B

gi ≥ 0 ∀i ∈ B

fij ∈ R ∀(i, j) ∈ L

xij ∈ {0, 1} ∀(i, j) ∈ L

ω ≥ 0

ω ∈ R

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

In this formulation, following the idea of the Benders decomposition [33], we defined a

variable ω, which will be used in the construction of the constraints that will be generated

on the second level. Furthermore, the flow constraints have been relaxed, leading to what

we call the transportation model.

9.1.2 Second Hierarchical Level

min
∑

i∈B

λiri

s.t.
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji + gi = di − ri ∀i ∈ B

fij − γij(θi − θj) ≤M(1− x̄ij) ∀(i, j) ∈ L

−M(1− x̄ij) ≤ fij − γij(θi − θj) ∀(i, j) ∈ L

fij ≤ x̄ijf ij ∀(i, j) ∈ L

(9.11)

(9.12)

(9.13)

(9.14)
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fij ≥ −x̄ijf ij ∀(i, j) ∈ L

0 ≤ gi ≤ gi i ∈ B

θi ∈ R ∀i ∈ B

gi ≥ 0 ∀i ∈ B

ri ≥ 0 ∀i ∈ B

fij ∈ R ∀(i, j) ∈ L

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

In this level, we use the values of the variables xij found in the previous level as

constant, ie, x̄ij is constant equal to xij, for all (i, j) ∈ L. In addition, we introduce ri

variables which work as slack variables allowing that the load may not be fulfilled. Thanks

to that, we do not deal with extreme rays, for every solution is a feasible solution. There-

fore, when the objective function of the subproblem is equal to zero, then the solution is

feasible for the original problem.

Once defined the model of the second hierarchical level, we get the expression that repre-

sents the constraint (Benders’ Cut) which will be added to the first level problem in each

iteration of the method:

∑

i∈B

diβi +
∑

(i,j)∈Ω

Mij(1− xij)ζ
1
ij +

∑

(i,j)∈Ω

Mij(1− xij)ζ
2
ij+

∑

i∈B

ḡiφi +
∑

(i,j)∈Ω

ρ1ij f̄ijxij +
∑

(i,j)∈Ω

ρ2ij f̄ijxij ≤ ω
(9.21)

where the values βi, ζ1ij, ζ
2
ij, φi, ρ1ij and ρ2ij are the values of the dual variables associated

with constraints (9.11) - (9.15), obtained by the resolution of the second level problem.

9.2 Ring Partition Search

The idea of RPS is to divide the solution of the problem into two parts. The first part is

to fix part of the variables and solve the problem. Thus solving this problem we will get

an upper bound of the original problem. A natural choice of variables to be established is

to fix all existing transmission lines and thus obtain a TEP solution. The second part is

to partition the solution space, using a technique called Local Branching [17], and search

each subspace. This is an exact approach, but can be easily used as heuristic. To do that,

select a subset of the space to analyze or limit the execution time.

Formally speaking, being x̂ = (x̂ij) a feasible solution of the TEPR obtained by solving
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the TEP model described by the model whose constraints are (8.11)-(8.20), the local

branching constraints can be defined as:

∑

(i,j)∈L|x̂ij=0

xij +
∑

(i,j)∈L|x̂ij=1

(1− xij) ≥ ∆1 (9.22)

∑

(i,j)∈L|x̂ij=0

xij +
∑

(i,j)∈L|x̂ij=1

(1− xij) ≤ ∆2 (9.23)

where ∆’s are non-negative integers indicating the minimum value of xij, (i, j) ∈ L

variables that have to exchanged (∆1) and the maximum number that may be exchanged

(∆2) from one to zero and vice versa. These constraints allow us to make a circular search

around the solution found for the TEP, as shown in Figure 9.1.

Figure 9.1: RPS Search Space Methodology

This process of creating search subspaces is repeated until the entire space has been

explored. The pseudo-code of the method is presented in Algorithm 8:
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Algorithm 8: RPS Pseudo-code
Input: G, MaxIter, T imeLimit

Data: ∆1 ← 1, CParada← 1, sbest ←∞
begin1

x̄←MIP.Solver(TEP );2

sbest ← UpdateBest(x̄, f, g, θ, sbest);3

while (CParada < MaxIter and gettime() < TimeLimit) do4

∆2 ← ∆2 +
|Ω|

MaxIter
;5

LocalBranching(x̄,∆1,∆2);6

sbest ← UpdateBest(x̄, f, g, θ, sbest);7

∆1 ← ∆2;8

CParada← CParada+ 1;9

end10

end11

In the given pseudo-code getT ime() function returns the execution time. MIP.Solver()

calls the solver for solving a mathematical formulation passed as a parameter and returns

the value of our variable vector x = (xij). It is important to remark that to solve the TEP

using TEPR model one just need to set the variables xij to one, for all transmission lines

(i, j) ∈ L0. The UpdateBest() verifies that the solution passed as a parameter is better

or not than the best solution cost stored sbest,if so it saves the value of the variables and

updates the sbest. Finally, the LocalBranching() adds the local branching constraints, as

described by equations (9.22) and (9.23) using the passed parameters and then calls the

solver to solve TEPR’s mathematical formulation with the local branching constrainsts

created in this iteration. Remark that since we are working with rings, at each iteration

the previously used local branching constraints are removed.
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Computational Experiments for the TEPR

In this chapter we present computational experiments done using the methods presented

for the TEPR.

The algorithms were coded in Xpress Mosel using FICO Xpress Optimization Suite, on

an Intel ®Core TM i3 CPU 3250 @ 3,5GHz computer with 8GB of RAM. Computing

times are reported in seconds. In order to test the performance of the presented methods,

we used 5 benchmark instances of the TEP and 10 instances generated by us using the

multistage TEP.

After several tests, the parameter MaxIter was set to 100 iterations. Both the mathe-

matical formulation, the Benders’ decomposition and RPS had their maximum execution

times set as 10h.

Table 10.1 shows the comparison between the proposed algorithms and the mathematical

formulation proposed by [35] presented in Chapter 8. For a matter of comparison, the

value of the solution found by each method (Solution / Lower Bound) and the time spend

by them in seconds (Time) are presented. Finally on line Avg the average time is pre-

sented for each of the three tested methods. Underlined results indicate that the optimum

was achieved and proved. The column Lower Bound is called Lower Bound because even

though we are solving the bender’s first level with integer variables, for most of the cases

we were not able to find the optimal solution in the given time.
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Mathematical Benders’ Ring Partition
Formulation Decomposition Search

Solution Time Lower Bound Time Solution Time
Garver 110.000 0.203 110.000 0.084 110.000 0.211
IEEE24 152.000 4.653 152.000 10655.8 152.000 2.875
South Brazil 63.200 26.052 55.657 36000.000 63.200 7.879
South Brazil

151.985 36000.000 127.272 36000.000 146.200 3184.540
Whitout Redispatch
Southeast 907.800 36000.000 284.100 36000.000 424.800 36000.000
IEEE24M_1 151000.000 3.307 151000.000 13285.000 151000.000 3.637
IEEE24M_2 325000.000 83.071 287000.000 36000.000 325000.000 41.421
IEEE24M_3 350000.000 9.395 350000.000 18360.300 350000.000 10.593
IEEE24M_4 182000.000 15.035 168000.000 36000.000 182000.000 4.304
IEEE24M_5 287000.000 42.475 244000.000 36000.000 287000.000 32.518
IEEE46M_1 63163.000 21.893 53334.000 36000.000 63163.000 16.548
IEEE46M_2 148738.000 36000.000 127272.000 36000.000 146242.000 3544.420
Colombian_1 794.644 36000.000 172.200 36000.000 296.454 36000.000
Colombian_2 409.870 36000.000 248.846 36000.000 443.494 36000.000
Colombian_3 773.385 36000.000 315.354 36000.000 562.417 36000.000
Avg 14413.739 29220.079 10056.796

Table 10.1: TEPR computational experiments.

Table 10.1 shows the superiority of RPS in relation to mathematical formulation,

both in solution quality, as in time. As for Benders’ decomposition the results show its

inefficiency both to find the optimum as to find a good quality lower bounds.

Since the RPS can be divide in two parts, where the first consists in solving the TEP

and using the solution found as a start solution, a test comparing the RPS and the

Mathematical Formulation when the Mathematical Formulation starts with the same

upper bound as the RPS was done.
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Mathematical Ring Partition
TEP’s Optimal SolutionFormulation Search

Solution Time Solution Time
Garver 110.0 0.202 110.0 0.211 110.000
IEEE24 152.0 3,653 152.0 2.875 152.000
South Brazil 63.2 21,882 63.2 7.879 63.200
South Brazil

146.2 9097.35 146.2 3184.540 154.420
Whitout Redispatch
Southeast 411,442 36000.000 424.8 36000.000 424.800
IEEE24M_1 151000.0 3.217 151000.0 3.637 152000.000
IEEE24M_2 325000.0 72.679 325000.0 41.421 390000.000
IEEE24M_3 350000.0 9.745 350000.0 10.593 390000.000
IEEE24M_4 182000.0 4.446 182000.0 4.304 218000.000
IEEE24M_5 287000.0 43.963 287000.0 32.518 342000.000
IEEE46M_1 63163.0 16.811 63163.0 16.548 72870.000
IEEE46M_2 146242.0 8164.82 146242.0 3544.420 154420.000
Colombian_1 240.134 36000.000 296.5 36000.000 296.456
Colombian_2 273.907 36000.000 443.1 36000.000 443.494
Colombian_3 323.429 36000.000 562.4 36000.000 562.400
Avg 13752.555 10056.596

Table 10.2: TEPR computational experiments with the same initial solutions.

In view of the new experiments one can state that whenever TEP’s optimal solution

is near TEPR’s the RPS out performs the mathematical formulation. On the other

hand, since the Branch-and-Bound strategy can vary according to the solver criterions,

sometimes when a better solution is far from the initial solution, the stratefoward use of

the mathematical formulation may lead to the discover of a better solution in less time.

Although not presented here, it is possible to change the order of the rings or divide them

so each ring takes approximatly the same time to be solved.
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Conclusions - TEPR

In view of the results, we see that not only RPS has found solutions of the same quality (9

out 15) or better (5 out 15) then the mathematical formulation. Besides that RPS is 43%

faster on average, thus proving its usefulness as an alternative to the direct application of

mathematical formulation. Unfortunatelly when feeding the branch-and-bound with the

same initial solution as the RPS, the RPS doesn’t find the same or better solutions for 4

out 15 instances, but is still faster in average. Benders’ decomposition was executed until

the time limit without reaching the optimal solution not even for several instances where

other methods have achieved very quickly.

Given the results, possible ways to further develop these methods are:

• Try different relaxations to the master problem of decomposition of Benders;

• Remove the artificial variables from Benders’ decomposition sub problem;

• Exchange the mathematical formulation of the TEP by a metaheuristic to solve the

TEP [7] as the first phase of RSP;

• Try new ring division strategies so the time to solve each ring stay approximately

equal.
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Conclusions and Future Works

In this thesis two network design problems were studied. For the FCNDP-UOF math-

ematical formulations were studied, followed by the study of techniques to find efficient

lower bounds. These techniques were combined with several heuristics so high quality

solutions could be found in reasonably time. At the end, a GRASP and two hybrids tech-

niques were compared, leading to the acknowledgement of a new state of the art method

to the problem. For the TEPR, initial solutions and branch strategies were tested leading

to a new exact method and a new heuristic to the problem. The analysis of the results

obtained showed that this is an interesting strategy that may also be applied to other

network design problems.

As future works, studies to extend the method applied to the TEPR for other network

design problems may be done, possibly leading to a general MIP based framework to solve

this class of problems. Besides that, decomposition techniques such as Benders’ decom-

position and lagrangian relaxation mighty be studied for both of the studied problems,

since their structures seems to be favourable.
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