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Résumé en français

Au cours de ces dernières décennies, l’image numérique en tant que média fut un moyen

particulièrement efficace pour le stockage et la transmission de l’information. Pour des uti-

lisations académiques, les documents, les archives d’art, et les images médicales ont été nu-

mérisés afin de faciliter le stockage et la recherche. En outre, la production massive d’images

numériques émerge dans les applications multimédias. Récemment, la société internet Yahoo

a affirmé que pas moins de 880 milliards photos ont été prises en 2014. Selon les sources is-

sues du SEC(U.S. Securities and Exchange Commission), plus de 250 millions des photos sont

téléchargées par Facebook tous les jours.

Afin de réduire les ressources de stockage pour la représentation d’une image, l’organisa-

tion internationale de normalisation (ISO) a établi et publié de nombreux standards de com-

pression d’image, tels que JPEG, JPEG, JPEG2000 et JPEG XR. En plus des normes, il existe

ensuite de nombreuses méthodes de compression efficaces, telles que CALIC ou SPIHT. Les

contributions présentées dans cette thèse se situent dans le contexte du codage LAR (Locally

Adaptive Resolution). Ce projet de recherche doctoral vise à proposer solution améliorée du

codec de codage d’images LAR, à la fois d’un point de vue des performances de compression

et de la complexité. L’étude présentée dans cette thèse concerne principalement les techniques

d’optimisation débit/distorsions (RDO) pour LAR. Avec un double objectif d’efficacité de co-

dage et de basse complexité, un nouveau schéma de codage LAR est également proposé dans

le mode sans perte (compression entièrement réversible).

Chapitre 1 la Technologie de Compression d’image

Afin de dresser le contexte de cette thèse, ce chapitre donne une introduction générale à la

compression d’image.

Tous d’abord, les éléments communs à la compression d’image sont présentés. Un schéma

global pour la compression et décompression est Figure. 1. Pour l’encodeur, la première étape

3
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Figure 1 – la procédure de la compression et la décompression d’image.

est la décorrélation qui permet de réduire la redondance spatiale. Cette redondance représente

la similitude des pixels locaux. Les techniques utilisées sont la prédiction, la transformation, la

mise en correspondance, etc. La deuxième étape, la quantification, est classiquement utilisée en

compression avec pertes. A l’issue de l’étape précédente, il existe de très nombreuses valeurs

autour de zéro, permettant de réduire la dynamique des coefficients, ce qui induit la redon-

dance statistique. Cette redondance est réduite par l’étape suivante, le codage de la entropie.

Le codage de Huffman, le codage arithmétique et le codage par plage sont les techniques cou-

ramment utilisées pour cette étape. Après la phase d’encodage, le flux est envoyé au décodeur

pour reconstruire l’image.

Dans un second temps, les techniques standards ou non de compression d’image sont pré-

sentées en tant que pratiques exemples de solutions. JPEG fut spécifié en 1991, et est basé sur

la transformée DCT (transformée en cosinus discrète). Le JPEG “classique” définit un proces-

sus de compression avec pertes. La partie de compression sans pertes fait l’objet d’une norme

spécifique appelée JPEG-LS qui utilise un algorithme différent de celui de JPEG. JPEGXR per-

met la compression avec perte ou sans pertes, et fut adopté comme norme en 2007. Il fournit

un format permettant la compression et la décompression en n’utilisant que des calculs sur des

entiers. JPEG2000 est aussi une norme commune à l’ISO et ITV, adopté en 2001. Il est capable

de compresser avec ou sans pertes, et se base principalement sur une transformée en ondelettes.

Les performances de JPEG 2000 en compression avec et sans pertes sont supérieures à celle

de la méthode de compression JPEG. Outre les normes, il excite des méthodes efficaces pour
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la compression d’image, comme CALIC et SPIHT. CALIC (Context based Adaptive Lossless

Image Codec) permet de réaliser une compression sans perte uniquement, avec une efficacité

supérieure en comparaison avec méthodes standards, mais au prix d’une complexité de cal-

culs accrue. SPIHT (Set Partitioning in Hierarchical Trees) est un algorithme de compression

destiné à la compression des coefficients de la transformée en ondelettes. Il transforme progres-

sivement ces coefficients en un flux de bits. Au cours de décodage, les coefficients sont raffinés

plus en plus.

Enfin, nous présentons un test comparatif entre les performances des différents codecs

d’image. Pour la compression sans pertes, JPEG2000 propose la meilleure efficacité pour les

images couleur, et CALIC pour l’image en niveau gris. JPEG2000 et SPIHT obtiennent les

meilleurs résultats que les autres codecs pour la compression d’image avec pertes.

Chapitre 2 l’introduction de codec LAR

Plusieurs standards de compression d’images ont été proposés par le passé et mis à profit

dans de nombreuses applications multimedia, mais la recherche continue dans ce domaine afin

d’offrir de plus grande qualité de codage et/ou de plus faibles complexité de traitements. En

2008, le comité de standardisation JPEG a lancé un appel à proposition appelé AIC (Advanced

Image Coding). L’objectif était de pouvoir standardiser de nouvelles technologies allant au-

delà des standards existants. Le codec LAR fut alors proposé comme réponse à cet appel. Le

système LAR tend à associer une efficacité de compression et une représentation basée contenu.

Il supporte le codage avec et sans pertes avec la même structure.

Image
codeur 

spatial

image basse 

résolution
+

+

- Texture codeur 

spectral

 

Figure 2 – LAR codec à deux couches

La méthode LAR est constituée d’un codec à deux couches : le codeur spatial, fournissant

une image basse résolution, et le codeur spectral traitant de la texture (Fig. 2). L’originalité de

l’algorithme repose sur le principe suivant : la résolution locale, i.e. la taille des pixels, peut

varier en fonction de l’activité locale. Ainsi, les pixels de petite taille se situent naturellement

sur les contours de l’image, alors que les zones uniformes sont représentées par un bloc de

grande taille. Cette grille de résolution spécifique s’appuyant sur le Quadtree déterminé par un
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gradient morphologique. En outre, une technique, l’interleaved S+P, a été utilisée pour la pro-

priété de scalabilité de codage de la source. Elle est constituée de deux parties : la construction

et la décomposition de la pyramide.
 

 

Figure 3 – Construction de la pyramide par deux pyramides

Soit Y l’image originale de taille Nx × Ny, la représentation multirésolution d’une image

est donnée par l’ensemble {Il}
lmax
l=0 , où lmax désigne le sommet de la pyramide et l = 0 la pleine

résolution. Quatre blocs sont représentés au niveau supérieur par un bloc de valeur égale à la

moyenne des deux blocs sous-jacents de la première diagonale (Fig. 3).
I0(i, j) = Y(i, j), l = 0;

Il(i, j) =

⌊
Il−1(2i, 2 j) + Il−1(2i + 1, 2 j + 1)

2

⌋
, l > 0,

(1)

avec 0 ≤ i ≤ Nl
x, 0 ≤ j ≤ Nl

y, où Nl
x = Nx/l and Nl

y = Ny/l. La transformation de la deuxième

diagonale d’un bloc 2×2 donné peut en effet aussi être vue comme la réalisation d’une seconde

pyramide.

Le processus de décomposition dyadique de la pyramide résulte de l’extension de la mé-

thode de prédiction. Pour la première pyramide, la valeur de la moyenne étant déjà connue

(niveau supérieur de la première pyramide). Il faut ainsi estimer la valeur gradient de la pre-

mière diagonale d’un bloc 2 × 2 :

2G̃l(i, j) =2.1
[
0.9Il+1(i, j) +

1
6

(
Il(2i + 1, 2 j − 1) + Il(2i − 1, 2 j − 1)

+ Il(2i − 1, 2 j + 1)
)
− 0.05

(
Il(2i, 2 j − 2) + Il(2i − 2, 2 j)

)
− 0.15

(
Il+1(i, j + 1) + Il+1(i + 1, j)

)
− Il+1(i, j)

] (2)

.
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Pour la deuxième pyramide, l’estimation de la moyenne de la deuxième diagonale fait

intervenir une prédiction :

3M̃l(i, j) =
1
4
β0

0

(
Il(2i − 1, 2 j + 1) + Il(2i, 2 j + 2) − Il(2i + 2, 2 j) + Il(2i + 1, 2 j − 1)

)
+ β1

0
ˆ1Ml(i, j) ,

(3)

où (β0
0, β

1
0) = (0.25, 0.75), et 1M̂l(i, j) représente la valeur reconstruite du coefficient Il+1(i, j).

La valeur gradient de la deuxième diagonale se calcule selon :

3G̃l(i, j) =β0
1

(
Il(2i − 1, 2 j + 1) + Il(2i, 2 j + 2) − Il(2i + 1, 2 j − 1) − Il(2i + 2, 2 j)

)
− β0

1

(
Il(2i − 1, 2 j) + Il(2i − 1, 2 j + 2) − Il(2i, 2 j − 1) − Ĩl(2i, 2 j + 1)

)
,

(4)

où (β0
1, β

1
1) = (3/8, 1/8). Ĩl(2i, 2 j + 1) correspond à la prédiction du Wu de la troisième passe

appliquée au pixel Il(2i, 2 j + 1).

La réalisation de la deuxième phase de décomposition de la pyramide permet la recons-

truction de la texture. Soit me(u1, u2, ..., un) la valeur médiane d’un ensemble (u1, u2, ..., un) de

n valeurs. La valeur estimée du gradient de la première diagonale situe dans une zone de texture

est donnée par

2G̃t(i, j) =
1
4

(
me

(
Il(2i − 2, 2 j), Il(2i, 2 j − 2), Il(2i − 1, 2 j − 1)

)
+ me

(
Il+1(i + 1, j), Il+1(i, j + 1), Il+1(i + 1, j + 1)

))
.

(5)

Pour la deuxième diagonale, les valeurs de moyennes sont traitées par l’application de la

relation Eq. (3), où (β0
0, β

1
0) = (0.37, 0.63). Quant aux gradients, leur estimation est obtenue

après application de Eq. (4).

Comme le codec LAR est un codec prédictif, il nécessite que les valeurs des erreurs de

prédiction soient entièrement reconstruites. Le codeur arithmétique est implémenté dans le

codec LAR pour effectuer un codage entropique efficace.

Chapitre 3 Le modèle RDO pour le codec LAR

Au début de cette étude, le codec LAR ne mettait pas en œuvre de techniques d’optimi-

sation débit/distorsions (RDO). Ainsi dans ce travail, il s’agit dans un premier temps de ca-

ractériser l’impact des principaux paramètres du codec sur l’efficacité de compression, sur la
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caractérisation des relations existantes entre efficacité de codage, puis de construire des mo-

dèles RDO pour la configuration des paramètres afin d’obtenir une efficacité de codage proche

de l’optimal.
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Figure 4 – Combinaisons optimales des paramètres pour ’bike crop’

Pour la compression avec pertes, la distorsion provient de deux fonctions dans le codec

LAR : la Quadtree partition et la quantification. La distorsion de Quadtree partition est com-

mandée par le seuil Thr, et la quantification est par le paramètre quqp. La Figure. 4 présente

les combinaisons de ces deux paramètres afin d’atteindre la performance optimale de codage

de l’image ’bike crop’. Les tendances similaires existent également pour les autre images. Il

est possible de décrire le relation des combinaisons optimales par ces modèles


Thr2,1 =

HG

α
(quqp + ∆ · β)

Thr2,2 =
HG

α
(quqp + ∆ · β) + 10

, si quqp ≥ 53


Thr1,1 =

HG

α
(1 +

∆ · β

53
) quqp

Thr1,2 =
HG

α
(1 +

∆ · β

53
) quqp + 10

, si 0 < quqp < 53

(6)

Où HG est l’entropie du gradient, (α, β) = (17.93, 121.07), ∆ est un coefficient du gradient.

(Thri,1,Thri,2) sont les valeurs sont définies pour Thr et fonction.

De plus, basée sur ces modèles RDO, une méthode de « contrôle de qualité » est introduite

qui permettant de coder une image à une cible MSE donnée. Cette méthode se fonde un modèle
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(a) appliqués localement

      

     

(b) appliqués globalement

Figure 5 – Comparaison des images décodées avec quqp = 45. (a) MSSIM = 0.9898 (39.8670
dB) ; (b) MSSIM = 0.9875 (38.0621 dB).

      

      

      

(a) appliqués localement

      

      

      

(b) appliqués globalement

Figure 6 – Comparaison des images décodées avec quqp = 45. (a) MSSIM = 0.9766 (32.6064
dB) ; (b) MSSIM = 0.9739 (31.6630 dB).

par 
quqp =

MSEset + 0.9∆
HG
α + 4.5

0.058H2
G − 0.9 HG

α

, MSEset ≥ MSEboundary

quqp =
MSEset + 4.5

0.058H2
G −

0.9
α HG

(
1 − ∆

53β
) , 0 < MSEset < MSEboundary

(7)
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Figure 7 – Schéma global du codage LAR-LLC

où MSEset est la cible MSE. La valeur gradient de la première diagonale se calcule selon :

Ğ1,l(2i, 2 j) = 0.153
[
1.5

(
Yl(2i − 1, 2 j − 1) − M1,l(2i + 2, 2 j + 2)

)
+ 0.5

(
M1,l(2i − 2, 2 j) + M1,l(2i, 2 j − 2) − M1,l(2i, 2 j + 2)

− M1,l(2i + 2, 2 j)
)] (8)

De plus, la mesure de qualité subjective est prise en considération et les modèles RDO

sont appliqués localement dans l’image et non plus globalement. La qualité perceptuelle est

visiblement améliorée, avec un gain significatif mesuré par la métrique de qualité objective

MSSIM. Les Figures. 5 et 6 présentent deux exemples pour ces améliorations.

Chapitre 4 Un codec d’image sans perte à basse complexité

Avec un double objectif d’efficacité de codage et de basse complexité, un nouveau schéma

de codage LAR est également proposé dans le mode sans perte. Dans ce contexte, toutes les

étapes de codage sont modifiées pour un meilleur taux de compression final.

La Figure. 7 présente la cadre de ce codage LAR-LLC. A la Différence du codec LAR

classique, la structure pyramidale dans le LAR-LLC est construite ainsi :

Yl(i, j)=


I(i, j) , l = 014

1∑
k=0

1∑
m=0

Yl−1 (2i + k, 2 j + m)

 , l > 0
(9)
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Où 0 ≤ i ≤ Nx/2l. b.c signifie l’arrondi vers le bas.

Pour la prédiction multi-niveaux, l’estimation de la moyenne des deux diagonales est

Ğd,l(2i, 2 j) =
α

4

(
Gd,l(2i − 2, 2 j − 2) + Gd,l(2i + 2, 2 j − 2)

)
+ β

(
Yl+1(i − 1, j − 1) + Yl+1(i + 1, j + 1)

− Yl+1(i − 1, j + 1) − Yl+1(i + 1, j − 1)
) (10)

Où α = 0.3, β = 0.035. L’estimation de la gradient de la première diagonale fait intervenir une

prédiction :

Ğ1,l(2i, 2 j) = 0.153
[
1.5

(
Yl(2i − 1, 2 j − 1) − M1,l(2i + 2, 2 j + 2)

)
+ 0.5

(
M1,l(2i − 2, 2 j) + M1,l(2i, 2 j − 2) − M1,l(2i, 2 j + 2)

− M1,l(2i + 2, 2 j)
)] (11)

La valeur gradient de la deuxième diagonale se calcule selon :

Ğ2,l(2i, 2 j) =
α

2

(
Yl(2i, 2 j) − Yl(2i − 1, 2 j + 1) + Yl(2i + 2, 2 j) − Yl(2i + 1, 2 j + 1)

)
+

1 − α
2

(
Yl(2i + 1, 2 j − 1) − Yl(2i, 2 j) + Yl(2i + 1, 2 j + 1)

− Yl(2i, 2 j + 2)
) (12)

Où

Ğ2,l(2i, 2 j) =
3
8

(
Yl(2i + 1, 2 j − 1) + Yl(2i + 2, 2 j) − Yl(2i − 1, 2 j + 1) − Yl(2i, 2 j + 2)

)
−

1
8

(
Yl(2i, 2 j − 1) + Yl(2i + 2, 2 j − 1) − Yl(2i − 1, 2 j) − Xl(2i + 1, 2 j)

) (13)

Après la prédiction, les erreurs sont classées en quatre groupes, afin de réduire l’entropie

de la séquence à coder. Cette classification se fonde sur le fait que l’entropie de la source

diminue quand la source est séparée en deux sous-sources avec les différentes distributions de

probabilité. La Figure. 8 présente un exemple pour la gradient de la première diagonale de

l’image « bike ».

Le LAR-LLC utilise le codeur Huffman pour effectuer un codage entropique efficace.
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Chapitre 5 Conclusion et Perspectives

Dans le chapitre 5, nous effectuons une conclusion du travail réalisé en résumant les idées

principales et en donnant des perspectives sur RDO et sur le problème de classification.

Conclusion

La compression d’image est un sujet important pour de nombreuses applications traitant de

l’image ou de la vidéo. Les motivations de cette thèse portent sur l’amélioration de techniques

basées sur le cadre de LAR. Elles sont appliquées au codage d’image sans et avec pertes. Nos

contributions principales portent sur l’optimisation débit/distorsions (RDO) pour le codage

avec pertes et une nouvelle méthode pour le codage sans pertes. Nous pensons que les méthodes

et idées proposées dans cette thèse peuvent donner de nouvelles perspectives pour des futures

méthodes de compression d’images.
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Introduction

In nowadays, digital images are commonly captured by digital cameras, smart-phones, ta-

blets and so on. The main usage of the digital image is to record the visual information for the

conservation and communication. In the academic field, the digital imaging has been a practi-

cal tool for the storage of important documents, art archives, and medical images. Besides, the

massive production of digital images emerges in multimedia applications. The internet corpora-

tion Yahoo claimed that as many as 880 billion photos were taken in 2014 [pop13]. According

to the quote directly from the SEC doc [SC12], on average more than 250 million photos per

day were uploaded to Facebook in the three months ended December 31, 2011. That’s almost

3,000 photos per second. All those photos take up a lot of space on servers, stored more than

100 petabytes (100 million gigabytes) [pop12]. Meanwhile, for popular photo sharing games,

the transmission of digital images also occupies the bandwidth of the telecommunication.

In this context, the image compression technique is required. The aim of this technique

is to reduce the bit resource for the representation of an image. In practical cases, the image

compression codec should be able to perform lossless and lossy compressions. The lossless

coding is mainly used for the original archive and other important cases where any losses are

not allowed. The lossy coding aims at a high compression ratio and is commonly applied to

the commercial multimedia, such as videos and images for the entertainment in internet. In

the case of social networking, different targeted devices exhibiting different screen resolutions

have to be considered. Moreover, those terminals have also different computational abilities.

Therefore, there is a need for the codec with both resolution and computation scalability.

With the development of digital cameras, computer entertainments and internet commu-

nications, different image codecs have been proposed. The mostly used one is JPEG which

has been standardized by the JPEG committee in 1992 [CCI92]. It is based on the Discrete

Cosine Transform (DCT) with a dedicated quantization process. This coding method has a

low computational complexity and has been well implemented in both software and hardware.

The drawbacks are the limited quality of the decoded image and the lack of the lossless co-
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ding function. For the lossless function, JPEG-LS was standardized in 1998 [IT98]. It adopts

a predictive coding method which is different from the JPEG. In 2002, JPEG committee stan-

dardized JPEG2000 which supports both the lossy and the lossless coding [IT02]. Compared

with JPEG, its decoded images have better objective qualities, such as PSNR, at the same com-

pression ratios. Besides, JPEG2000 supports the multiresolution, the rate control functions and

so on. However, JPEG2000 requires high computation, limiting its application. Then, JPEG

XR was created by Microsoft and standardized in 2009 [ISO09]. It has a lower computational

complexity than that of JPEG2000 and better coding quality than JPEG.

Besides these standards, other image coding methods were proposed to improve the com-

pression performance such as CALIC and SPIHT which are introduced in Section 1.3. The

LAR (Locally Adaptive Resolution) codec, which is explained in Chapter 2, was also designed

as an image coding solution. It is the base for the study in this thesis.

The contributions presented in this thesis aim at the improvement of the coding perfor-

mance of the LAR codec. Although the LAR codec has a complete structure, its coding steps

are still under a rough configuration and need a further analysis to achieve a preferable perfor-

mance. The first research aims at the study of the distortion caused by different configurations.

This work gives a better choice of parameters for the rate distortion optimization. The second

research focuses on a more efficient coding solution with a low computational cost.

The thesis is organized as follows. The commonly used image compression methods are

firstly presented in Chapter 1. Next, Chapter 2 introduces the LAR codec. The rate distor-

tion optimization scheme for the LAR codec is proposed in Chapter 3. In Chapter 4, the low-

complexity lossless image codec is designed and tested. Finally, the conclusion and prospects

are presented in Chapter 5.

1 Image compression technology

The commonly applied image coding structure and methods are presented. Based on these

methods, the standardized schemes and some non-standardized codecs are briefly introduced.

Their lossy and lossless coding performance finally are compared respectively.

2 Introduction to LAR codec

The coding steps of the LAR codec are presented. In this chapter, the framework of the

LAR codec is introduced step by step. The quadtree partition is firstly used to detect the local

activity of pixels of the image and draw a quadtree map which is determined by a threshold.

Based on the map, the image is degraded from the full resolution to lower resolutions level
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by level, generating to a pyramidal structure. Then, a decomposition starts from the lowest

resolution level to higher resolution levels, until the full resolution image is reconstructed.

The prediction and the quantization of the prediction errors are used in the decomposition.

Finally, the quantized prediction errors are coded. Although the LAR has the complete coding

framework, the coding parameters have not been well configured to find the optimal coding

performance. In order to relieve this limitation, a Rate-Distortion-Optimization (RDO) model

is proposed in Chapter 3.

3 Rate-Distortion-Optimization (RDO) model for LAR codec

In this chapter, the distortions caused by the change of the quantization factor and the

quadtree partition threshold are studied to understand the rate-distortion performance of the

LAR codec. Next, the relationship between the optimal coding efficiency and changes of the

parameters are analyzed in order to propose a RDO model for the LAR codec. The RDO model

is tested and the experimental results are discussed. Based on the RDO model, a linear quality

control (QC) model is also built. This QC model is used to constraint the distortion of the coded

image to the target one which is set before the coding by the user. Besides, a locally adaptive

scheme of the RDO model is proposed to improve the perceptual quality of the decoded image.

Finally, the coding performance of optimized LAR codec is compared with other image coding

schemes.

4 A low complexity lossless image codec : LAR-LLC

The LAR codec has the lossless coding function. However, the coding performance is not as

efficient as the one of JPEG2000. Therefore, we propose a new lossless coding method aiming

at improving the compression ratio and reducing the computational complexity. This method

still uses the framework of the LAR, but changes each coding steps. It adopts a new transform

for the resolution scalability and reconstructs images in different resolutions according to new

context models for prediction. Besides, it exploits the remaining correlation of the prediction

errors, and a classification process is proposed to improve the compression efficiency. Finally

the lossless coding efficiency of the codec is compared with standard codecs and recently pro-

posed image codecs.

5 Conclusion and Prospects

The contributions of the thesis are based on a predictive image codec. An RDO model is

firstly proposed to this codec, then a quality constraint scheme and a locally subjective quality
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enhancement scheme are introduced. After, a new complete lossless image coding method is

proposed to achieve an efficient compression ratio with a low computational complexity.

Thanks to the study presented in this thesis, different ideas are proposed as prospects for

the image coding. Firstly a scheme of the lossy coding based on the characters of the Human

Visual System is designed. This envisage can be seen as an extension of the locally adaptive

scheme of the RDO model introduced in Chapter 3, but the idea can be a reference for other

image coding solutions. Another idea is to improve the efficiency of the classification step used

in the lossless codec introduced in Chapter 4. More analysis and experiments are required to

design a new pre-coding scheme.



Chapter 1

Image compression technology

Modern industry employs images extensively. As an important medium, the image is a

common form used for the storage and transmission of the visual information. Besides the

traditional photography, the image is also applied for the technical drawing, art archiving, me-

dical imaging, film production and so on. These extensive applications bring a massive storage

of images. This requirement encourages researchers on the image compression technology to

make use of the limited storage and communication capacity efficiently.

A digital image is a rectangular array of picture elements, arranged in m rows and n

columns. The size m × n refers to the resolution of the image and the elements are called

pixels. In an image, especially for the natural image, some adjacent pixels probably have the

same or very similar colors. These pixels are highly correlated. This correlation is also cal-

led spatial redundancy. Image compression technologies mainly focus on the reduction of the

spatial redundancy to save the required capacity of the image. Fig.1.1 is a common used image

compression and decompression procedure. Because the compression often refers to the coding

process, the compression and decompression are represented by the encoder and decoder. The

decorrelation step aims to map the pixels to a new representation with much less redundancy.

Prediction and transform are two well used methods in this step. Quantization is an optional

process and mainly used for the lossy coding. It quantizes the prediction error or transform

coefficient by a degraded element set. It is irreversible in most cases and used in the lossy

compression. Entropy coding aims to decrease the statistical redundancy in the data stream.

Variable length coding (VLC) methods, such as Huffman coding and arithmetic coding, are

often adopted in this step.

An complete image compression method is normally designed by a specific way. The ge-

neral principles are discussed in the following section.
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Figure 1.1 – Image compression and decompression procedure.

1.1 Common approaches in image compression
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Figure 1.2 – Pixels for prediction.

In order to exploit the spatial redundancy, a feasible scheme is to use the context of a pixel

to predict its value. Fig.1.2 illustrates the position of the context and the predicted pixel Xi.

Pixels Yi, which are adjacent to Xi, form a reference space. Pixels in the reference space can

be selected out to arranged into a context model. This context model can be a first-order linear

combination of Yi [Wu97] [CH09], as defined in Eq. (1.1), where X̂ is the estimated value of X.

X̂(i) =

p∑
j=1

a jY(i − j) (1.1)
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The linear model is easy to calculate. However, the correlation between X and Y is variable

and probably not linear. One solution is to use non-linear model [ZM04]. This model adopts two

or higher order relations to describe the non linear correlation. Another solution is still apply

the linear one, but select it from a linear context model set [PKC+10]. Both solutions make

efforts to give a precise predicted value for Xi. It leads to a low amplitude prediction error for

each pixel. The reason why the prediction is helpful for the compression can be shown by the

change of entropy. Assuming that the pixel of the image is from a set of X = {X1, X2, X3, ..., Xn},

the probability of occurrence of X is {p1, p2, p3, ..., pn}. The uncertainty of the pixel can be

represented by the entropy H(X).

H(X) = H(p1, p2, p3, ..., pn) = −

n∑
i=1

pi log pi (1.2)

If we consider the pixels Y of the reference space in order to predict X, the image entropy

becomes H(X|Y). It means the uncertainty of X when Y has been known. Because after pre-

diction, the prediction error replaces the pixel, H(X|Y) can also be seen as the entropy of the

prediction error. In information theory, it exits that

H(X|Y) ≤ H(X) (1.3)

and the equality exits only when Y is independent to X. Because Y is correlated to X, H(X|Y)

must be less than H(X). Another fact is that the entropy also represents the required least

average codeword length by the entropy coding. Thus, after the prediction step, the information

of the image needs less codeword resource than that without the prediction by the entropy

coding. As a result, the prediction is an effective process to reduce the spatial redundancy.

1.1.2 Transform

Transform is another way to convert the pixels (which are correlated) of an image to a more

compact representation where they are decorrelated. One proper method of the transform is the

spatial rotation. Take the image "lena" as an example. We scan the image in raster order and

groupe pairs of adjacent pixels (x, y). Next we plot pairs (x, y) of pixels in two-dimensional

space. For the correlation of adjacent pixels, x and y normally have similar values. Most pairs

(x, y) locate on the line y = x. We rotate the image by multiplying all points with a 45◦ clo-

ckwise rotation matrix (1.4). And then we plot the new (x′, y′) in the space. The rotated pairs
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(x′, y′) are distributed around the x coordinate as shown in Fig.1.3.

(x′, y′) = (x, y)

 cos 45◦ –sin 45◦

sin 45◦ cos 45◦

 = (x, y)
1
√

2

 1 –1

1 1

 = (x, y)R (1.4)

After this rotation, the amplitudes of y′ are close to zero, while the range of x′ does not

change much. It means the enegy of pixels are concentrated to the x coordinate. In this case, y′

data has a shorter range than that of y and needs less codeword resource. In lossy coding, the

less important coefficient, such as y′, can be quantized more than the important one, such as x′.

We take an image matrix A as an example.

A =


8 9 10 6

7 6 8 6

6 6 5 8

9 6 7 5


(1.5)
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Let the rotation be W,

W =


1 1 1 1

1 1 -1 -1

1 -1 -1 1

1 -1 1 -1


(1.6)

and we can get the matrix B.

B =
1
4

(W · A ·WT ) =


28 0.5 -0.5 2

2 -0.5 -2.5 1

2 1.5 -1.5 2

1 -0.5 -0.5 -2


(1.7)

The Matrix A is available by the inverse transform.

A =
1
4

(WT · B ·W) (1.8)

According to B, we can find that the energy is concentrated to the left-up position. If the

less important values, such as two ‘-0.5’ in the fourth line of B, are ignored to get a degrated

Bd, a matrix Ad which is approximate to A can be achieved by Eq. (1.8).

Ad =
1
4

(WT · Bd ·W) =
1
4

WT


28 0.5 -0.5 2

2 -0.5 -2.5 1

2 1.5 -1.5 2

1 0 0 -2


W =


8.25 9 9.75 6

6.75 6 8.25 6

6.25 6 4.75 8

8.75 6 7.25 5


≈ A (1.9)

In lossy coding, less important tranformed coefficients are quantized to get many 0 elements

which are helpful for the entropy coding. This loss does not change the original image a lot. The

discrete cosine transform (DCT) [XGO96] [LG00] and the discrete wavelet transform (DWT)

[ABMD92] [XROZ99] [DWW+07] are common used transforms for the image coding.

1.1.3 Matching

Matching also takes advantage of the spatial correlation. As the reference space in the

prediction, there is a searching space for matching. But the matching deals with a set of pixels

instead of only one in one time. Neighbors of a pixel X tend to have the same value of X or

very similar values to it. As a result, if X is the leftmost pixel in a target set S t, its left neighbors

will have close values to X, and a set of neighbouring pixels (searching set) on the left, or in
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the searching space, will probably also match the target set S t.
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Figure 1.4 – Matching process.

Besides the pixels on the left and above X, the pixels on the right and above X are also

available. It is reasonable to use an around target set S t for the comparison. In practice, M ×M

blocks of pixels are often used, instead of individual pixels X and this method is called block

matching [PG97].
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Figure 1.5 – Template matching.

Recently, a template matching method was proposed [TBS06]. It was derived from the

texture synthesis subject [Ash01]. As shown in Fig.1.5, the block B is the target block and

contains pixels to be predicted. A group of pixels on top and to the left of B forms the template

T . The pixels in T are reconstructed ones and are also known in the decoder. A searching step

is done in the Searching space to find the best-matched template Tm by minimizing the Sum

of Absolute Difference (SAD) between T and Tm. The block Bp adjacent to Tm is assigned

as the predictor of the target block B. In order to improve the performance of the template

matching, Y. Suzuki et al. created multiple candidates Tm, and used the average of Tm to form
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the final predictor, reducing the coding noise [SBT07]. M. Turkan et al. applied the sparse

signal approximation to search a basis function which approximates the known values in T ,

and kept the same basis function and weighting coefficients to estimate the pixels in B [TG10].

1.1.4 Scalar Quantization

Quantization is a common approach in digital signal processing. It aims at assigning a va-

riable quantity to discrete values rather than to a continuous set of values . In data compression,

quantization is often used to convert large values of the data to smaller ones which need less

space for storage or transmission.

Iq = [tq, tq+1), q = 0, 1, ...,M − 1

with

− N = t0 < t1 < ... < tM = N

(1.10)
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Figure 1.6 – Scalar quantization.

Consider a data signal with a data range [−N,N], partition the signal range into M disjoint

intervals {Iq}. Within each interval, a point x̂q is selected as the output value of this interval Iq,

as shown in Fig. 1.6. Quantization is a procedure using index q to represent values in Iq, its

inverse procedure is to output x̂q according to the index q. For example, let x be a given value

contained in the interval Iq, the quantization Q(x) and dequantization Q−1(x) can be expressed

as
Q(x) = q

Q−1(q) = x̂q

(1.11)

1.1.5 Variable length coding

Variable length coding (VLC) is a kind of coding methods mainly used in the entropy co-

ding which aims at the lossless compression of specific data streams. Let {Xn} be a data stream

with an alphabet AX and probability distribution pX . VLC methods allocate a distinct codeword

cx to each element x ∈ AX . The length of the cx is variable and often decided by pX . The se-

quence of the outcomes xn from the random process are represented by the codewords cxn . The
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xn pxn c1
xn

c2
xn

x1 0.05 000 000
x2 0.1 011 001
x3 0.25 01 01
x4 0.6 1 1

Table 1.1 – Variable length codes

choice of codewords should guarantee that the decoder is able to identify the outcomes {Xn}

from the sequence of the codewords cxn . An example of VLC is introduced in the following.

Table 1.1 shows a alphabet {X} with four symbols {xn, 0 ≤ n ≤ 4} having different probabi-

lities pxn . The entropy of the data formed by these symbols is

H(Xn) = −

4∑
n=1

pxn log2 pxn

= −
(
0.05 log2 0.05 + 0.1 log2 0.1 + 0.25 log2 0.25 + 0.6 log2 0.6

)
= 1.4905

(1.12)

The entropy indicates the least number of bits required on average. If using 2-bit fixed-length

codewords 00, 01, 10 and 11 to assign the four symbols, the redundancy caused by this coding

is R(2bit) = 2−H(Xn) = 0.5095. The VLC mode, as c1
xn

and c2
xn

in Table 1.1, has a redundancy

R(VLC) = (3 × 0.05 + 3 × 0.1 + 0.25 × 2 + 0.6 × 1) − H(Xn)

= 1.55 − 1.4905

= 0.0595

(1.13)

which is much less than R(2bit). However, the code stream formed by c1
xn

is not decodable.

When decoder reads the code “011”, it can not recognize which symbols this code stands for,

“x3x4” or “x2” only. To facilitate efficient decoding, the VLC only adopts “prefix codes”. A

prefix code is one in which no codeword is the prefix of any other codeword. This property

requires that once a certain bit pattern has been assigned as the code of a symbol, no other

codes should start with that pattern. As shown in the codewords c2
xn

, Once the string “1” was

assigned as the code of x4, no other codes could start with 1. Once “01” was assigned as the

code of x3, no other codes could start with 01. This is why the codes of x1 and x2 had to start

with 00 and became 000 and 001.

From the example above, it can be found that VLC has two properties : (1) The length of
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the codeword is variable. Assigning short codes to symbols which occur more frequently in

order to reduce required average codeword length ; (2) Codewords have the prefix property.

The classic design of VLC, such as Huffman coding, Golomb coding and Arithmetic coding,

are common methods used in data compression. In practical image coding schemes, the classic

methods are combined with other processes to make up a complex VLC approach. As noted

above, the probability of the symbol is important for the coding ratio. However, the statistic of

probability delays the overall coding and goes against the parallel processing. One solution is to

set context states which identify the most probable symbol. The context state is adaptive during

the coding. This approach can be found in MQ coder [SAT08a] and context-based adaptive

binary arithmetic coding (CABAC) [MSW03].

1.1.6 Conclusion of common methods

Image compression methods are not limited to the approches above. Some methods are

designed for specific type of images or application scenarios. For example, the fractal coding

is suited for images which have parts looking like other ones [WDJ99]. Progressive coding

is adaptive to the storage and transmission capacity for the multiresolution. Modern image

compression schemes have distinctive coding procedures to each other. One scheme can adopt

several coding concepts and use two or more methods for different parts of the image, or in dif-

ferent stages during the procedure. The International Organization for Standardization (ISO)

and International Telecommunication Union (ITU) have announced image compression stan-

dards for practical applications. Four widely used JPEG series will be introduced in Section

1.2.

1.2 Still image coding standards

1.2.1 JPEG

JPEG is the first international compression standard for the continuous tone still images,

both grayscale and color images [Wal92] [CCI92]. It includes two basic compression methods.

A DCT (Discrete cosine transform) based method is specified for lossy compression, and a

predictive method for lossless compression. The lossless mode of JPEG has not been very

successful in the coding efficiency, so ISO has proposed another standard for the lossless image

compression. This standard is known as JPEG-LS and will be introduced in Subsection 1.2.2.

The lossy mode of JPEG has been widely used for natural image coding due to its acceptale
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Figure 1.7 – JPEG mainly coding steps

quality of reconstructed images, and its low complexity of implementations on both software

and hardware. The main steps of JPEG lossy coding are summarized in the following :

1. Color images are transformed from RGB to a luminance/chrominance color space, such

as YCbCr. This step is skipped for grayscale images. Because the eye is more sensitive to

luminance changes than to chrominance changes, the latter can be highly compressed without

great visible changes to the image.

2. Each 8×8 pixels are grouped to a unit, and each unit is transformed to an 8×8 map of

the frequency components by DCT. This DCT map represents the average value and different

frequency information of the image pixels.

3. Each DCT component in the 8×8 DCT map is quantized by a quantization coefficient

(QC). As indicated in Subsection 1.1.2, the left top DCT component (DC) reflects the main

energy of pixels, and the following components (AC) which reflect the frequency change often

has less energy. The DC component is quantized less or not, but AC is quantized by large QC

and has more losses.

4. Quantized components of each 8×8 unit are encoded by entropy coding, such as RLE

and Huffman coding.

The JPEG decoder runs the inverse steps to reconstruct lossy images.

1.2.2 JPEG-LS

JPEG-LS is not an extension of JPEG, but a new method [IT98] which mainly focuses on

the lossless coding. It does not use DCT, and carrys out the quantization in a restricted way.

JPEG-LS is based on the LOCO-I compression method [WSS00]. It examines several previous
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Figure 1.8 – Prediction for x

neighbors of the current pixel and use them as a context in order to predict the current pixel.

Next, a probability distribution is selected out from a distribution set. This distribution is used

to encode the prediction error with a special Golomb code.

JPEG-LS has two modes in prediction. As shown in Fig.1.8, the encoder firstly examines

the adjacent pixels of x, and then decide to encode x in the run mode or in the regular mode.

If the following pixels y, z... are identical, the run mode is used. Encoder starts at x to find

the longest run of pixels whose values are close to that of the pixel a. Since a has been coded

and known in the decoder, the length of the run is the only key to be encoded.

Besides the run mode, the encoder adopts the regular mode. The encoder uses the values

of the context a, b and c to predict x. The prediction error is coded by a Golomb code. The

Golomb coding depends on the context a, b and c. It also considers the the prediction errors

that have been coded for the same context.

1.2.3 JPEG2000

JPEG has been widely used. However, its decoded images do not have good qualities at low

bitrates. The DCT on 8×8 blocks causes visible blocking distortions in reconstructed images.

For better image compression quality, JPEG commitee approved a new still image compression

standard – JPEG2000 [IT02] [SCE01]. Compared with JPEG, JPEG2000 has improvements on

the efficiency and functionalities.

1. Superior compression efficiency – In the lossy coding mode, the compression distor-

tion of JPEG2000 is less than that of JPEG, not only measured by objective criteria, such as

PSNR, but also evaluated by the subjective tests. The blocking artefacts are almost impercep-

tible [ECW04].

2. Progressive transmission by pixel accuracy and image resolution – JPEG2000 supports

multiresolution coding. Its code-stream organization is formed progressively by pixel accuracy

and by image size. After receiving small parts of the code-stream file, a low quality image can
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Figure 1.9 – Decomposition on the tile by the wavelet transform

be decoded. The quality of the image is improved progressively by receiving and decoding

more data of the code stream.

3. Uniform coding method for lossy and lossless compressions – Unlike JPEG, JPEG2000

completes lossless and lossy coding based on the wavelet transform in one compression archi-

tecture.

As JPEG, for color images, JPEG2000 needs to convert them from RGB components to

luminance and chrominance components. It is not required for gray images. Each component

is partitioned into rectangular regions called tiles. The tile can be any size, but once the size is

chosen, all the tiles have the same size during the coding. Each tile is compressed individually

in four main steps.

The first step is to apply the wavelet transform to the tile to get subbands of wavelet coef-

ficients. JPEG2000 uses the one-dimensional wavelet transform in the horizontal and vertical

directions to form a two-dimensional transform. The achieved coefficients are located in four

blocks and describe the horizontal and vertical characteristics of the original tile component :

one is the low resolution representation (LL), one responds strongly to vertical edges and line

segments (HL), one responds to horizontal edges and line segments (LH), and one responds

primarity to diagonally oriented features (HH). The low resolution one LL can be transformed

further to get the more low resolution image blocks. This process is then repeated several times

until a certain low resolution is achieved. This procedure can be seen as a decomposition of the

image block and illustrated in Fig. 1.9. An example of decomposition into subbands with the

image as one tile is shown in Fig. 1.10.
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Figure 1.10 – Example of decomposition on image

There are two kinds of transforms, integer and floating point. The integer one is reversible

and designed for lossless coding. After transformation, the next step is to quantize the transfor-

med coefficients. Each coefficient is divided by a quantization step size Q and rounded down.

This operation is lossy. The larger Q is, the coarser the coefficients are quantized, and the lower

bitrate can be achieved. For the lossless coding, Q is essentially set to 1.0 and the coefficients

are integers produced by the reversible transform.

The third step is using an arithmetic coding which is called MQ coder to encode the quan-

tized wavelet coefficients. The coder encodes the bits of coefficients, starting with the most

significant bits and progressing to less significant ones by a process called EBCOT (Embedded

Block Coding with optimal Truncation) [Tau00].

The last step is the construction of the bitstream. The bitstream is composed of packets and

many “markers”. The marker is a sign of certain code parts. By the use of markers, the deocoder

can skip some parts of the bitstream to decode a certain code part, and display certain regions of

the image before others. The bitstream is also organized by layers. Each layer contains a certain

resolution information and the decoder can achieve the image progressively by releasing the

layers one by one.

Besides the high coding eddiciency and scalable coding on quality and resolution, the Rate-

Distortion Optimizatin (RDO) technique, which is involved in EBCOT, is also an important

advantage. This technique is achieved by a post-compression rate-distortion (PCRD) optimi-

zation algorithm which can truncate each of the independent “code-block” bit-streams in an

optimal way so as to minimize distortion subject to a target bitrate [Tau00][TM02]. In EBCOT,

each subband is partitioned into relatively small blocks (e.g., 64×64 or 32×32 samples), which

are called “code-blocks”. Each code-block, Bi, is coded independently, producing an elemen-
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tary bitstream ci. It is assumed that the overrall distortion of the reconstructed image can be

represented as a sum of distortions from each code-block. Let Di denote the distortion contri-

buted by the block Bi, if its elementary bitstream is truncated to the length Li, the overall length

of the final compressed bitstream is constrained as Lmax, the selection of the set of trunction

points {zi} should have ∑
i

L(zi)
i ≤ Lmax (1.14)

and can minimize the overall distortion D.

D =
∑

i

D(zi)
i (1.15)

In order to combine Eq.(1.14) and Eq.(1.15), a quantity λ is involved. Let {zi,λ} be the set of

truncation points which minimizes

D(λ) + λL(λ) =
∑

i

(
D(zi,λ)

i + λL(zi,λ)
i

)
(1.16)

Where λ > 0. The truncation points {zi,λ} are optimal, when the distortion D cannot be further

reduced. Thus, it is desired to find a value of λ such that the truncation points {zi,λ} which can

minimize Eq. (1.16) yield L(λ) = Lmax. Since the set of available truncation points is discrete,

the suitable λ could not be found to make L(λ) be exactly equal to Lmax. Nevertheless, the

code-blocks are relatively small and there are typically many truncation points to find λ to

meet L(λ) ≤ Lmax. PCRD does not try to find the optimal truncation points zopt of Eq.(1.16)

directly, but focuses on
(
D(zi,λ)

i + λL(zi,λ)
i

)
for each code-block Bi respectively. For a given λ > 0 :

1. Initialize zopt = 0.

2. For j = 1, 2, ..., set ∆L = L j
i − Lzopt

i , and ∆D = Dzopt
i − D j

i . ∆L is the increment of the

length, and ∆D is the decrement of the distortion if zopt is replaced by j. If ∆D/∆L > λ, replace

zopt by j. This step guarantees that D(zopt)
i + λL(zopt)

i ≤ D(z)
i + λL(z)

i for all z ≤ t.

3. Set zi,λ = zopt.

Because the number of code-blocks may be very large, and the searching for zopt needs

to be executed under many different λ, a subset Hi which contains feasible truncation points

should be found to reduce unnecessary computation.

Fig. 1.11 illustrates an example of rate distortion curve. It can be noticed that the distortion

D dicreases while the bitrate R increases (the length of the bit-stream L will replace R in the
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Figure 1.11 – Example of rate distortion curve

following discussion). Thus, the distortion-rate slope, S j
i , which is defined as

S j
i =

∆D j
i

∆L j
i

=
D j−1

i − D j
i

L j
i − L j−1

i

(1.17)

should be decreasing strictly while j increases. As a result, if S j+1
i ≥ S j

i , the corresponding

truncation point z j
i could not be used in the searching method above. Other points which

conform to Eq.(1.17) are included in Hi.

PCRD can search optimal results in terms of rate-distortion. However, heavy computational

resources are needed for the iteration procedure. Several methods for reducing the complexity

have been proposed in the literature. One approach is to carry out the sample data coding

and RDO at the same time [SF03] [KKTA05] [YSF06]. This approach encodes some “coding

passes” only included in the final code-stream. The drawback of the method is that it is required

to maintain the wavelet data in the memory in order to stop and restart the coding of code-

blocks. To overcome this drawback, methods collecting statistics from the already encoded

code-blocks to decide which “coding passes” are needed to be encoded in the remaining code-

blocks are proposed in [Tau02] [CK06]. In [QYZ+04] [VVS05], methods which aim at the

estimation of the rate-distortions of the code-blocks before the encoding process are introduced.

These methods may have some lost of the coding performance due to possible non optimal

accuracy of estimations. Besides that, the complementary problem of the optimization of the

bitrate for a target quality is addressed in [LKW06] [CFC+06].

1.2.4 JPEGXR

In July 2007, the Joint Photographic Experts Group and the Microsoft put the HD photo

into consideration for a new JPEG standard. In 2009, JPEGXR passed an ISO/IEC Final Draft
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International Standard (FDIS) ballot to be a new still image compression standard and file

format for continuous tone photographic images [ISO09]. JPEGXR is based on the technology

developed by Microsoft under the name HD Photo[STZ+07].

Compared with JPEG, JPEGXR also shows a better quality at an equivalent compression

ratio. Its compression efficiency is close to, but not exceeds that of JPEG2000 [DSOD+07].

Although JPEG2000 has provided high coding ratios, it is not put into wide application for

the reason of the high computation complexity, especially caused by EBCOT. JPEGXR was

proposed to offer a low complexity coding solution. It has same capabilities as JPEG2000,

such as the same processing steps for both lossless and lossy coding, and coding images by

segmented tile regions.

JPEGXR uses an integer transform adopting a lifting scheme [TSS+08]. This transform is

close to a 4×4 DCT but is lossless. JPEGXR allows an optional overlap step. This step operates

on 4×4 blocks which are offset by 2 samples in each direction from the 4×4 core transform

blocks. Its purpose is to improve compression capability and reduce block-boundary artifacts

at low bitrates. At high bitrates, when the block-boundary artifacts are not obvious, this overlap

step is skipped for reducing the encoding and decoding time.

JPEGXR format (.JXR) is popularized mainly by Microsoft, it is supported in Adobe Flash

Player 11, Windows Imaging Component, Windows operating systems, such as Windows Vista,

Windows 7 and 8, Internet Explorer from 9 to 11.

1.3 Nonstandard still image coding methods

Besides the standards, there are many other image coding methods. Some of them deal

with lossy compression trying to achieve high qualities of decoded images as far as possible

[ZZX14] ; some concentrate on the bitrate only for lossless coding [WSLY09], and also one

general coder performing lossless and lossy coding is desirable [PINS04]. Most contributions

are published in literature, but a few of them provide reference programmes. In this section

we present two efficient image coding methods which have been tested by researchers and

practitioners.

1.3.1 CALIC

The name “CALIC” stands for Context-based, Adaptive, Lossless Image Compression

[WM96] [WM97]. It is one of the best performing practical and general purpose lossless image

coding techniques.
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Figure 1.12 – Schematic description of CALIC

CALIC encodes an image in a raster scan order with a single pass through the image

[WM00]. Context modeling and prediction are two cores of its coding technique. It takes neigh-

bor pixel values only from the previous two rows of the image, and requires a buffer to hold the

two rows of pixels that immediately precede the current pixel. Fig. 1.12 presents a schematic

description of the coding process of CALIC. Decoding is a reverse process.

CALIC operates in two modes : Binary mode and Continuous-tone mode. This optional

scheme allows CALIC to distinguish between binary and continuous-tone types of images on

a local, rather than a global, basis. This distinction between the two modes is important due to

the vastly different compression methodologies employed within each mode. In the continuous-

tone mode, CALIC uses predictive coding, whereas the binary mode codes pixels directly. The

selection of the mode depends on whether or not the local neighborhood of the current pixel

has more than two distinct pixel values. The two-mode design contributes to the universality

and robustness of CALIC over a wide range of images.

In the continuous-tone mode, the procedure of the coding has four major parts : predic-

tion, context selection and quantization, context-based bias cancellation of prediction errors,

and conditional entropy coding of prediction errors. The input pixel y is predicted by a gra-

dient adjusted description (GAP). The predict value yp is further adjusted via bias cancellation

procedure that involves an error feedback loop of one-step delay. The feedback value is the

sample mean of prediction errors ē which are conditioned on the current context. As a result,

an adaptive, context-based, nonlinear predictor is achieved yap = yp + ē. These operations are

completed in “bias cancellation” function as shown in Fig. 1.12. The bias corrected predic-

tion error is finally entropy coded based on few estimated conditional probabilities in different

conditioning states or coding contexts. The context quantization generates a small number of
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Figure 1.13 – Neighbor pixels

coding contexts, and partitions prediction error terms into few classes by the expected error

magnitude.

In the binary mode, the CALIC encoder firstly checks six neighbor pixels around the current

one y as shown in Fig. 1.13. If these six pixels have no more than two different values, then

binary mode is taken, otherwise the encoder turns to the continuous-tone mode. In the binary

mode, the system sets two reference values s1 and s2, and then y is coded as one of three

symbols by comparing it to s1 and s2.

T =


0, i f y = s1

1, i f y = s2

2, otherwise

(1.18)

T = 2 is the escape case. It makes the encoder switch from the binary mode to the continuous-

tone mode. When entering the binary mode, encoder quantizes the context C = {y1, y2, ..., y6}

to a 6-bit binary number B = b6b5...b1

bk =

 0, i f yk = s1

1, i f yk = s2

, 1 ≤ k ≤ 6 (1.19)

After that, the binary number B is cosed by an adaptive ternary arithmetic coder driven by

conditional probabilities [WM00].

1.3.2 SPIHT

The SPIHT (Set Partitioning in Hierarchical trees) method was firstly introduced in [SP96].

It was designed for optimal progressive transmission, as well as for compression. One impor-

tant features of SPIHT is that, at any point during the decoding of an image, the quality of the

displayed image is the best that can be achieved for the number of bits input by the decoder

up to that moment. Another feature is its embedded coding. If two files are produced by the

encoder, a large one with size M and a small one with size m, and then the small one must be
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k 1 2 3 4 5 6
sign s s s s s s
14 1 1 0 0 0 0
13 a b 1 1 0 0
12 c d e f 1 1
...

...
...

...
...

...
...

0 h i g k l m

Table 1.2 – Structure of 16-bit numbers

identical to the first m bits of the large file.

SPIHT encodes from the largest absolute value to the smallest, from the most significant

bit to the least for one value in order to realize the progressive coding starting with the most

important information. Considering an array of coefficients {cn, 1 ≤ n ≤ 6} to be coded, the

first step is sorting coefficients from large to small, and the sorting information is contained in

another data array s, such that |cs(k)| > |cs(k+1)|. Assuming that each coefficient is represented

as a 16-bit number with the most significant sign bit (bit 15) and remaining 15 bits (bit 14 to 0)

constituting the magnitude, as shown in Table 1.2.

The 6 signs are need to be transmitted, after that, the encoder starts a loop, where in each

iteration, a sorting step and a refinement step are performed. In the first iteration, a number

len = 2 is transmitted. It means |cs(1)| and |cs(2)| have bit “1” in the bit 14 position. This is the

first sorting pass which transmits the information that enables the decoder to construct approxi-

mate versions of the 16 coefficients as follows : coefficients cs(1) and cs(2) are constructed as

16-bit numbers s100...0. The left 14 coefficients are constructed as all zeros. The refinement

pass in the first iteration is not required.

In the second iteration, the sorting pass transmits the number l = 2. It means |cs(3)| and |cs(4)|

have bit “1” in the bit 13 position. In the refinement, the two bits “a” and “b” are transmitted.

The information received so far enables the decoder to improve the 16 approximate coefficients

constructed in the previous iteration.

cs(1) = s1a0...0, cs(2) = s1b0...0, cs(3) = s010...0,

cs(4) = s010...0, cs(5) = s000...0, cs(6) = s000...0.
(1.20)

Because SPIHT uses the wavelet transform, the coefficients are derived from the transform on

pixels.

The method above is simple, since the coefficients had been assumed to be sorted before the
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loop started. In practice, there may be more than a million coefficients, so sorting all of them

is very time-consuming. Instead of sorting the coefficients, SPIHT uses the fact that sorting is

done by comparing two elements at a time, and each comparison results in a simple yes/no

result. Therefore, if both encoder and decoder use the same sorting algorithm, the encoder can

send the decoder the sequence of yes/no results, and the decoder can use those to duplicate the

operations of the encoder.

1.4 Image compression performance

In this section, we compared the compression efficiencies of different methods. For the

lossy coding, the criterion is to compare the quality (PSNR) of decoded images at one specific

coding bitrate (bits per pixel). For the lossless, it is to compare the required bitrates after the

coding. The images for the comparison are shown in Fig. 1.16. Because CALIC and JPEG-LS

have been more specially designed for the lossless coding issue, we consider the comparison

only between JPEG, JPEG2000, JPEGXR and SPIHT solutions.

1.4.1 Lossy compression performance

The implementations of coding methods are derived from Independent JPEG Group [Gro]

for JPEG codec, Jasper [Ada] for JPEG 2000, JPEG XR reference [ITU] software for JPEG

XR and demo program [ASX] for SPIHT.

The parameters of reference softwares are introduced here :

JPEG : the command line of the JPEG is “cjpeg.exe -quality N -outfile o.c jg s.ppm”. N

controls the compression quality (0...100), the quality of the coded image increases when N

raises. Integer DCT is used and the DCT block size is 8. s.ppm is the source image to code and

o.c jg is the compressed file.

JPEG2000 : the command line is “jasper –input s.ppm –output o. jp2 –output-format jp2

-O rate=n -O mode=real”. s.ppm is the source image and o. jp2 is the compressed file. n

represents the target ratio of the coded file and the source image s.ppm. The augment of ’mode’

controls the coding mode, for lossless coding, the augment should be changed to int.

JPEGXR : the command line is “jpegxr -c s.ppm -o o. jxr -f YUV444 -l 1 -d -q n”. s.ppm

is the source image and o. jxr is the compressed file. ’-l’ represents the overlapped block fil-

tering(0 :off | 1 :HP only | 2 :all). ’-d’ selects quantization for U/V channels derived from Y

channel. ’-q’ sets the quantization values separately, or one per band(0<default, lossless> -

255).
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Figure 1.14 – Performance curves of the lossy coding on gray images

SPIHT : the command line is “codetree s.raw o.sp M N n bitrate”. s.raw is the source

image and o.sp is the compressed file. M and N are the size of the image. n is the number of

bytes per pixel. bitrate is the rate (bits per pixel). For the lossy coding, SPIHT uses the wavelet

transform and the arithmetic entropy coding. The S+P prediction method and the arithmetic

coding are applied in the lossless coding mode.

Fig. 1.14 and 1.15 show the lossy coding performances of different methods on gray and

color images. For the gray ones, JPEG2000 has the least distortion of the decoded image at a

specific bitrate in most cases. SPIHT, which also adopts the wavelet transform, has the close

performance to JPEG2000. The following method is JPEGXR, which has similar the quality

curve trend. The JPEG curves are lower than others, especially at low bitrates which are less

than 0.25 bpp. For the color images, JPEG2000 also achieves the superior quality. JPEGXR fol-

lows JPEG2000 closely. Because the available software of SPIHT does not support the coding

of the color image, its performance is not included in this group.
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Figure 1.15 – Performance curves of the lossy coding on color images

1.4.2 Lossless compression performance

JPEG is commonly used in lossy coding. “Lossless JPEG” (LJPEG) is an addition to JPEG

standard by the Joint Photographic Experts Group to enable lossless compression in 1993. The

implementation of LJPEG is available in [HS], the one of JPEGLS is from [UBC] and CALIC

is available in [XW]. Besides, Kim et al. proposed a hierarchical prediction and context adap-

tive coding for lossless color image compression (LCIC) [KC14]. They offered the reference

execution [KC].

Table 1.3 and 1.4 give the lossless coding results. For the gray images, CALIC needs the

least bit resource during the coding, the followed one is SPIHT. In JPEG series, JPEGLS per-

forms best, while the results of JPEG2000 are close to the ones of JPEGLS. For the color

images, CALIC reference software does not support this mode and its performance is not tes-

ted. JPEG2000 gains bits the most for images “bike crop”, “woman crop” and “green crop”,

but costs more than JPEGLS for “TOOLS”.

From the lossy and lossless tests, it can be found that, SPIHT performs very well for both
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codec areal2 barbara bridge lena
LJPEG 5.588 5.662 5.761 4.694

JPEGLS 5.288 4.862 5.500 4.236
JPEG2000 5.441 4.786 5.740 4.308
JPEGXR 5.484 5.011 5.806 4.474
CALIC 5.161 4.595 5.334 4.094
SPIHT 5.331 4.711 5.626 4.188

Table 1.3 – Bitrates (bpp) of lossless coding for gray images

codec bikecrop womancrop greencrop TOOLS
LJPEG 15.968 15.852 17.947 18.441

JPEGLS 14.303 14.152 16.824 16.860
JPEG2000 12.741 11.466 16.646 17.295
JPEGXR 13.359 12.214 16.908 17.714

LCIC 12.805 11.555 16.809 17.437

Table 1.4 – Bitrates (bpp) of lossless coding for color images

modes. CALIC can save the most bitrates in lossless coding. For color images, JPEG2000 has

the best coding efficiency among JPEG series. More results of the comparison between image

coding methods will be provided in latter chapters.

1.5 LAR codec for JPEG-AIC Response

In 2008, JPEG Committee announced a Call for Advanced Image Coding (AIC) and eva-

luation methodologies [Lar08]. This call aims to : (1) Standardize potential technologies going

beyond JPEG standards ; (2) Define guidelines for evaluation of coding technologies. The

Image group of IETR laboratory proposed the LAR (Locally Adaptive Resolution) codec as

a response of the Call of AIC for both natural images [BD09] and medical images [BD10].

From July 2010 to July 2011, three core experiments are taken to test LAR codec with other

candidates [Lar10a] [Lar10b] [Lar11]. LAR codec supports lossy and lossless coding in one

framework, scalable resolution coding and Region of Interest (ROI) coding. The details of the

LAR codec are introduced in Chapter 2.



44 chapter 1

          
                                          areal2 (2048×2048)                              barbara (512×512) 

          
                                           bridge (512×512)                                     lena (512×512) 

          
                                           bike_crop (1280×1600)           woman_crop (1280×1600) 

        
                              green_crop (1280×1152)                                TOOLS (1524×1200) 

 

 

 Figure 1.16 – Test images



Chapter 2

Introduction to LAR codec

The LAR (Locally Adaptive Resolution) method was initially proposed for the lossy image

coding initially [DBBR07]. Besides the image compression, it also provides functions such as

resolution/quality scalability, lossy to lossless compression and region of interest (ROI) coding.

The LAR codec is based on the assumption that an image can be represented by a two-layer

system : a Flat layer for the basic image information and a Texture layer for the detail informa-

tion. The Flat layer is implemented by a Flat coder in LAR codec. It encodes the image at a low

bitrate cost. The second layer is completed by texture coder which aims at quality improvement

at medium/high bitrates. This structure offers a natural quality scalability.

Source image Flat coder

LAR low 

resolution image
+

+

- Texture
Texture coder

 

Figure 2.1 – Two-layer LAR coder

In order to provide a multi-resolution image coding solution, the LAR codec adopts a

Quadtree partitioning scheme and an ‘S+P’ pyramid structure [BDR05]. The image is firstly

partitioned to blocks with different sizes according to the local pixel variety. Next a pyrami-

dal resolution structure is built. After that, a reconstruction step starts from the low resolution

image representation to the original resolution image progressively. During the lossy coding,

this step controls the distortion of the pixel under consideration of the Quadtree partioning data

and quantization coefficients. The Flat coder and Texture coder work together in this part. The

former encodes pixels in each Quadtree blocks, but only basic information is processed. In or-

der to get the complete representation information of different resolutions, the ignored pixels

45
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Figure 2.2 – Framework of the LAR coder

in the former should be coded in the texture coder. The texture coding is not the requisite for

compression, but an important component for the quality scalability function. At last, the re-

sidual data from the Flat and Texture coders are entropy coded into a binary data stream. The

framework of the LAR coder is shown in Fig.2.2. The key processing parts are introduced in

the following sections.

2.1 Quadtree Partitioning

Quadtree is used for a partition on an image so as to achieve a variable-size block repre-

sentation of the image. It is an effective way to sign and identify the local activity of pixels.

It is often applied to the image coding with a specific compression method [TN96][CCX00].

In the LAR codec, the criterion for the partition is based on the edge detection. This detection

checks the difference between maximum and minimum luminance values in a given block, and

compares the absolute value D of the difference with a threshold Thr. If D is greater than Thr,

the current block should be separated to 4 equal sized sub-blocks.

Let I(x, y) represent a pixel in an image with size Nx × Ny, I(bN(i, j)) be the block bN(i, j)

of size N × N in I such as

bN(i, j) = {(x, y) ∈ Nx × Ny,where N × i ≤ x < N × (i + 1),N × j ≤ y < N × ( j + 1)} (2.1)

Let a Quadtree partition be P[Nmax...Nmin], where Nmax represents the largest allowable block size
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and Nmin is the smallest one. Let the I(bN(i, j))min the minimum and I(bN(i, j))max the allowed

maximum value in the block I(bN(i, j)). For the pixel I(x, y), the size of the block in which it is

is shown as

S ize (x, y) =


max(N), ∃ N ∈ [Nmin...Nmax],

i f
∣∣∣∣I (

bN
(⌊

x
N

⌋
,
⌊

y
N

⌋))
max
− I

(
bN

(⌊
x
N

⌋
,
⌊

y
N

⌋))
min

∣∣∣∣ ≤ Thr

Nmin, otherwise

(2.2)

After the Quadtree partitioning, the image is segmented to a map which is composed of

blocks with different sizes. The smallest block with Nmin are mainly located in areas of highly

local activity of pixels, such as contours and highly textured areas.

For color images, the RGB color space is firstly conversed to YCbCr space, and then the

Quadtree partition is taken in each color component. The smallest size among the results of the

components is chosen as the size of the block.

S ize(x, y) = min
[
S izeY (x, y), S izeCr(x, y), S izeCb(x, y)

]
(2.3)

For the gray images, the luminence Y is the only component used for the partition. The

threshold Thr is pre-defined before coding in the LAR coder.

2.2 Interleaved Pyramid Construction

The pyramid structure (2.2) is designed for the multiresolution function. For the implemen-

tation in a reversible and fast way, the main process adopts the S transform [SP93] which can

be completed by the integer operation. If (a0, a1) is a couple of value, the mean value z0 and

the gradient value z1 are given by

z0 =

⌊a0 + a1

2

⌋
,

z1 = a0 − a1 .
(2.4)

where b.c means rounding downwards.

During the pyramid building process, the S transform is applied on 2 vectors in a 2 × 2

block. Each vector is formed by 2 diagonally adjacent pixels, as depicted in Fig. 2.3. z0,1 is

the mean value and z1,1 is the gradient value of the S transform in the 1st diagonal ; while z0,2

is the mean value and z1,2 is the gradient value of the S transform in the 2nd diagonal. Some

notations are defined here :
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Figure 2.3 – S transform on two diagonally adjacent pixels
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Figure 2.4 – Construction of the pyramid

Let 1M be the image composed of the z0,1 such as 1M(i, j) = z(2i, 2 j), 2G be the image

composed of the z1,1 such as 2G(i, j) = z(2i + 1, 2 j + 1), 3M be the image composed of the

z0,2 such as 3M(i, j) = z(2i + 1, 2 j), 3G be the image composed of the z1,2 such as 3G(i, j) =

z(2i, 2 j + 1).

Let Y be the original image with size Nx × Ny. The multiresolution representation of an

image is described by the set {Il}
lmax
l=0 , where lmax is the top of the pyramid and l = 0 is the full

resolution image. The pixels of upper level l + 1 are derived from the 1M in the current level l.

It can be expressed in the following equation.


I0(i, j) = Y(i, j), l = 0;

Il(i, j) =

⌊
Il−1(2i, 2 j) + Il−1(2i + 1, 2 j + 1)

2

⌋
, l > 0,

(2.5)

with 0 ≤ i ≤ Nl
x, 0 ≤ j ≤ Nl

y, where Nl
x = Nx/l and Nl

y = Ny/l.

Similarly, the transform on the second diagonal can form another pyramid structure as
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Figure 2.5 – Decomposition of the LAR block process
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Figure 2.6 – Positions of pixels in a block at level l

shown in Fig. 2.4.

2.3 Pyramid Decomposition and Prediction Model

After building the pyramid resolution structure, the coding starts from the top level (lo-

west resolution) to the bottom level (full resolution) level by level. The decomposition has two

decent processes. One is the LAR block process, and is based on the Quadtree Partition. The

pixels of upper level give the mean value of the first diagonal of the current level. If the corres-

ponding 2 × 2 block has been seen as a whole (the difference D is less than the threshold Thr

in the Quadtree Partition), the value of upper pixel Il+1(i, j) is copied directly to the four pixels

Il(i, j), Il(i + 1, j + 1), Il(i + 1, j) and Il(i, j + 1) of the block in the current level. Otherwise, the

pixels of the block are predicted and the prediction errors are coded. This process can be de-

picted in Fig.2.5. The other process is for the texture. In the LAR process, if the non-prediction

situation is proposed, the texture process still takes a prediction to this block and encodes er-

rors in order to get a more precise representation of the block. This process is not requisite for

coding but offers a quality progressive function to each resolution.

In the following part, the prediction ways used in the decomposition are introduced. Before

that, some parameters are renoted here. Fig. 2.6 shows the positions of pixels in a 2 × 2 block.
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On the level l, the S transform is applied on the first diagonal so that

1Ml(i, j) =

⌊
Il(2i, 2 j) + Il(2i + 1, 2 j + 1)

2

⌋
,

2Gl(i, j) = Il(2i, 2 j) − Il(2i + 1, 2 j + 1).
(2.6)

The transform on the second diagnal is

3Ml(i, j) =

⌊
Il(2i + 1, 2 j) + Il(2i, 2 j + 1)

2

⌋
,

3Gl(i, j) = Il(2i + 1, 2 j) − Il(2i, 2 j + 1).
(2.7)

It can be noticed that the pixel in the upper level equals to 1Ml(i, j)

1Ml(i, j) = Il+1(i, j). (2.8)

2.3.1 LAR block process

At the top level of the pyramid, the classical mean predictor [WSS00] is used to encode the

pixels. The prediction errors are needed to be sent to the decoder in a lossy or lossless context.

For the lower levels, the pixels are coded by the linear prediction models. The level l + 1

provides the mean value of the two pixels of the first diagonal in the level l. The difference of

them is estimated by

2G̃l(i, j) =2.1
[
0.9Il+1(i, j) +

1
6

(
Il(2i + 1, 2 j − 1) + Il(2i − 1, 2 j − 1)

+ Il(2i − 1, 2 j + 1)
)
− 0.05

(
Il(2i, 2 j − 2) + Il(2i − 2, 2 j)

)
− 0.15

(
Il+1(i, j + 1) + Il+1(i + 1, j)

)
− Il+1(i, j)

] (2.9)

For the second diagonal, the estimation of 3Ml uses inter- and intra-level prediction from

reconstructed values, so that

3M̃l(i, j) =
1
4
β0

0

(
Il(2i − 1, 2 j + 1) + Il(2i, 2 j + 2) − Il(2i + 2, 2 j) + Il(2i + 1, 2 j − 1)

)
+ β1

0
ˆ1Ml(i, j) ,

(2.10)

where (β0
0, β

1
0) = (0.25, 0.75), and 1M̂l(i, j) is the reconstructed value of 1Ml(i, j). For the
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3Gl(i, j), its estimation is

3G̃l(i, j) =β0
1

(
Il(2i − 1, 2 j + 1) + Il(2i, 2 j + 2) − Il(2i + 1, 2 j − 1) − Il(2i + 2, 2 j)

)
− β0

1

(
Il(2i − 1, 2 j) + Il(2i − 1, 2 j + 2) − Il(2i, 2 j − 1) − Ĩl(2i, 2 j + 1)

)
,

(2.11)

where (β0
1, β

1
1) = (3/8, 1/8). Ĩl(2i, 2 j + 1) can be obtained by the Wu predictor [Wu97] for the

third pass to the pixel Il(2i, 2 j + 1).

2.3.2 Texture block process

The decomposition of the texture block (second pyramidal decomposition process) is still

processed in two diagonals. In the texture block, the difference of pixels is not so large as be in

the LAR block, the coefficients used for the estimation are more balanced.

Let me(u1, u2, ..., un) be the median value of n values (u1, u2, ..., un). The estimation of

2G(i, j) in a texture block is

2G̃t(i, j) =
1
4

(
me

(
Il(2i − 2, 2 j), Il(2i, 2 j − 2), Il(2i − 1, 2 j − 1)

)
+ me

(
Il+1(i + 1, j), Il+1(i, j + 1), Il+1(i + 1, j + 1)

))
.

(2.12)

For the second diagnal, the 3Mt is estimated by the equation 2.10, but with (β0
0, β

1
0) =

(0.37, 0.63). 3Gt is predicted by 2.11, with (β0
1, β

1
1) = (1/4, 0).

2.4 Quantization

In the lossy coding mode, the prediction errors are scalar quantized. The index data obtai-

ned after the quantizition is sent to the entropy coding part. The prediction error is uniformly

quantized. Let the error be ep, a quantization factor is Q, the index data i is expressed by

i =


⌊ (

ep +

⌊Q
2

⌋) /
Q

⌋
, ep ≥ 0⌊ (

ep −

⌊Q
2

⌋) /
Q

⌋
, ep < 0

, (2.13)

where b.c stands for rounding downward.

Since the image is processed in a pyramidal multi-level structure, each level produces pre-

diction errors to be quantized. The quantization factor Ql of level l is determined by a global
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Figure 2.7 – Example of the symbol-oriented coding

quatization parameter quqp, which can be set at the beginning of the coding.

Ql = quqp · fl, 0 ≤ l ≤ N (2.14)

{ fl, 0 ≤ l ≤ N} represnets a fixed coefficient set which adjust the quantization distortion in

each level. It allocates integer values between 1 and quqp to Ql.

2.5 Entropy coding

In LAR coder, the entropy coding part is implemented by a symbol-oriented QM coding

[Pas11] [XHGH07]. The JPEG2000 entropy coder uses a bit-plane oriented coding [SAT08b].

The bit plane oriented coding firstly encodes all most significant bits from all values, then the

next less significant bit plane until it reaches the least significant bits. As JPEG2000 uses the

wavelet transform, the interesting information to reconstruct the pixels can be given from the

few first bits already decoded. Such a bit plane coding can be used as part of a rate control.

LAR codec is a prediction method. It requires fully reconstructed prediction error values.

A bit plane oriented coding needs the whole input stream to be available to start encoding. In

the case of the LAR codec, prediction errors are computed one after another following a raster

scan. This way, the bit plane oriented coder has to wait that all predictions have been realized

before starting and therefore does not allow parallelism between prediction and entropy coding.

As a result, LAR coder uses a symbol-oriented QM coding. This method sees all bits of an input

value as a symbol and codes it. After that, it starts the encoding of the symbol of the next value.

The symbol-oriented one has three different passes : magnitude, sign and refinement coding,
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as shown in Fig.2.7.

The magnitude coding has two functions in the coding. The first one is coding the number of

bits needed to represent the symbol to be encoded. The second one is to adjust the complexity of

the overall entropy coding by minimizing the number of coding passes needed. The magnitude

coding firstly computes the minimal number of bits Ā to represent the symbol A. Then, the bits

Ā are coded through unary coding with a dictionnary containing the length of the codeword.

Finally, each bit from the unary codeword is encoded with the QM Coder.

The sign is directly coded after the magnitude coding and the algorithm is not different from

the bit plane oriented QM Coding. At last, the remaining bits are encoded in the refinement

coding. The number of the refinement bits has been determined by the magnitude coding pass.

2.6 Conclusion

The LAR framework tends to associate the compression efficiency and the content-based

representation. It relies on an S transform based multiresolution representation. The coding

scheme involves the prediction, quantization and entropy coding of the quantized prediction

errors. The implementation of the LAR codec can complete both lossy and lossless coding

under the same coding structure.

Although the LAR codec has the complete and independent coding structure, it is not op-

timized for the rate-distortion. For the implementation, there are key parameters, such as the

Thr of the quadtree partition and the quqp of the quantization, play important roles for the

compression efficiency. The optimal collocations of parameters are not determined during the

coding. As a result, the coding efficiency is much limited. Since the original version of the LAR

codec aims at coding functionalities, the computation comlexity causes a more time consump-

tion than JPEG 2000. These problems make the LAR be not standardized successfully in the

JPEG-AIC response.

The main drawbacks of LAR codec are about its limited coding efficiency and the compu-

tation complexity. In my work, I firstly analyzed the main coding steps of LAR, next tried to

build models to describe the relation of key parameters and keeped the LAR codec work under

a configuration which is close to the optimal choice. Further, the subjective measurement is

taken into consideration and perceptual quality is improved at high bitrates.

Aiming at a low complexity efficient image codec, a new coding scheme is proposed and

achieved in lossless mode under the LAR framework. In this context, coding steps are changed

for better coding performance, and a classification module is introduced to decrease the entropy
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of the prediction errors. The QM coding is also replaced by the classic Huffman coding for

less computation cost. This new coding scheme achieves a better lossless image compression

efficiency which is equivalent to the one of JPEG2000, while has much lower coding latency.



Chapter 3

Rate-distortion-optimization (RDO) mo-
del for LAR codec

The rate-distortion-optimization (RDO) is an important issue for the image coding tech-

niques. Studies have been conducted on state of the art codecs to understand their behaviors

in terms of quality and/or rate. Such studies are often a step of a rate distortion optimization

design. For example, the impacts of quantization on the DCT coefficients for the JPEG codec

[YL96], and an improved algorithm for RDO in JPEG2000 [XGC+06].

Given a particular compression framework, there are often two ways to study the possible

optimization methods. One is to focus on the statistic properties of inside functions. It tries to

monitor each coding unit and adjust parameters during the coding so as to achieve a desirable

performance at a specific bitrate, such as the PCRD used in JPEG2000 1.2.3. This process

is effective but involves large of computation and possible required memory. Another way is

looking for the best operating points for that specific system. For example, consider a scalar

quantizer followed by an entropy coder. If all the quantization choices have been considered,

an operational rate-distortion curve can be defined and plotted by pairs of each bitrate and the

distortion achieved by designing the best codec for this bitrate. This curve can distinguish bet-

ween the best achievable operating points and those which are sub-optimal or unachievable. A

particular case is shown in Fig. 3.1. The encoder can select among a discrete set of coding pa-

rameters, such as a discrete set of quantization elements. The R-D points are obtained through

the choice of different combination of coding parameters. The individual admissible operating

points are connected to form a convex hull. This method tries to find the optimal rate-distortion

performance in the current compression framework. Once some key parameters are chosen, the

coding processes step by step without much adaptive modification. Thus it reduces the coding

55
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Figure 3.1 – Convex hull of operating points

complexity, delay and memory. One solution of this method is proposing a mathematic model

to describe the relation between parameters and the rate-distortion in a coding framework, and

then choosing best combinations of parameters to achieve admirable performances [WK08].

To perform rate distortion optimization on LAR codec, the second scheme is adopted to de-

sign a low computation complexity RDO coding plan. This study is presented in six sections.

The first one is to present the effects of key parameters for the rate-distortion performance. The

second section analyzes the relationship between the optimal coding efficiency and parameters,

and builds description models. The third section shows and discusses the experiments of this

model. The fourth part indicates a linear quality control (QC) model and checks its perfor-

mance. The fifth section discusses the application of the RDO model aiming at improving the

subjective quality of the decoded image. Finally, the coding performance of optimized LAR

codec is compared with other image coding methods.

3.1 Parameter effects on distortion

In lossy coding of LAR coder, the distortion is caused by two functions : Quadtree partitio-

ning and Quantization of prediction errors. As introduced in sections 2.1 and 2.3, the Quadtree

map controls the clarity of pixels recovered of each level. If the contrast of pixels of a block

does not exceed the threshold Thr, the decomposition of the LAR block will directly copy

the value of the pixel from the upper level to the four pixels of the block in the current level

directly. It causes an indistinct distortion on the image. Although the second pyramid decom-

position provides the texture information, it also brings a bitrate cost and a heavy time delay
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Figure 3.2 – Examples of distortion from the Quadtree and quantization

by the computation. Thus in this low complexity RDO scheme, we only consider the first LAR

pyramidal decomposition process. For the quantization part, the errors whose amplitudes are

less than the quantization factor Q are ignored so as to create lots of statistic redundancy which

is beneficial for the entropy coding. Meanwhile, the missing of the information about the am-

plitude causes the misrepresentation of the error at the decoder. It brings a noise contaminated

distortion to the reconstructed image. Fig. 3.2. shows examples of the two kinds of the dis-

tortion. During the coding of the LAR coder, Quadtree and quantization will create different

artifacts in the image, and the global scheme induced a mixed distortion.

Although the two kinds of distortion have different visible effects, we need an uniform

criteria to evaluate them. The objective metric Mean Square Error (MSE) is firstly considered.

Let xi be the value of the pixel, x̂i be the restored one, N represents the number of pixels, the

MSE of a decoded image is expressed by

MSE =
1
N

N∑
i=1

(x̂i − xi)2 . (3.1)

A large MSE stands for a high distortion. Further, the Peak Signal-to-Noise Ratio (PSNR) is
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 Figure 3.3 – Examples of distortion curves of bike crop

defined as

PSNR = 10 · log10

(
MAX2

MSE

)
, (3.2)

where MAX is the maximum pixel value of the image. It is noticed that a large PSNR indicates

a high quality of the decoded image. For the range of 8 bits/pixel, MAX is 255.

The lossless mode of LAR is achieved by setting Thr = 0 and quqp = 1, which represent

full resolution reconstruction and no quantization lost, respectively. Increasing quqp while kee-

ping Thr as a constant, the augment of MSE reflects the distortion resulting from the quanti-

zation. Fig. 3.3. gives an example of the distortion curves. Each point represents a distortion

caused by the a combination of Thr and quqp. In each curve, the points have the same Thr.

It is noticed that the best operating points, which have the lowest MSE at particular bitrates,

are not located in only one curve, as the red points in the figure. In order to achieve optimal

rate-distortion performance, it is interesting to extract the optimal points out and analyze the

relationship existing in their corresponding optimal pairs of Thr and quqp.

3.2 Optimal Thr-quqp model

Fig. 3.4 illustrates the optimal pairs of Thr and quqp. It can be seen that they are not in a

mass, but located in a belt which has an inflexion approximately at quqp = 53. The inflexion

points also exist in the belts of other images. While the values of the inflexions are around

quqp = 53. Thus, in order to describe the belt with low difficulty, piecewise linear functions are

considered. The belt is firstly divided into 2 regions by quqp = 53. In each region, two linear

equations are designed to simulate the area of the belt. The following part introduces important
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Figure 3.4 – Optimal pairs of bike crop

parameters to build the models.
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Figure 3.5 – Optimal belts of "sky", "p26 crop", "bike crop" and "green crop"

It is necessary to know the slope k and intercept d to confirm a linear equation. Let quqp

be the independent variable, Thr be the dependent one, the equation can be

Thr = k · (quqp + d). (3.3)

Besides the ability of the coding framework, the complexity of the image also affects the co-

ding efficiency. Texture parts often requires more bit resources than flat parts, as it contains

more information about the variety of adjacent pixels. Fig. 3.5 gives four images with different



60 Rate-distortion-optimization (RDO) model for LAR codec

sky p26 crop bike crop green crop
HG 2.335 4.495 5.498 5.892

Table 3.1 – Contrast entropies of the images

complexities on texture and their optimal pairs of Thr and quqp. “sky” contains the cloud with

weak changes of the texture. “p26 crop” shows a part of the city and has horizontal and ver-

tical structural texture. “bike crop” contains different objects. “green crop” shows a scene of

the garden. If regarding (0, 0) as the starting point of all the belts, these optimal belts should

have different slopes to the quqp axis. In order to describe the change of adjacent pixels, many

proposals have been attempted and one promising solution, the contrast entropy HG, is intro-

duced here. Since the image is separated into 2 × 2 blocks in Quadtree partition and pyramid

decomposition, the difference between the maximum and minimum luminance values in each

block is considered as the gradient g of this block. According to the probabilities of gradients

p(g), HG is defined as

HG = −
∑

g

p(g) · log2 p(g). (3.4)

Table 3.1 gives the contrast entropies of the four images. The values correspond to the

slopes of the belts approximately. “green crop” has the largest one, the followed images are

“bike crop”, “p26 crop” and “sky”.

The entropy HG does not concern the amplitudes of the gradients. However, in some parts,

such as the interlaced texture and the contour of the object, the large difference between adja-

cent pixels possibly causes great prediction errors and costs more bitrate. For the image “sky”,

most parts are homogeneous and has less changes of pixels. Increasing the Thr does not affect

the Quadtree partition a lot. The distortion is more related to the quantization. In contrast, the

Quadtree partition has more influence to images with much texture. Fig. 3.6 gives the partition

grids at two Thr. Most blocks in the grid of “sky” have been 8 × 8. Their sizes keep unchange.

The smallest blocks 2, which exit a lot in “bike crop” and “green crop”, combine together du-

ring the increasing of Thr. This combination raises the clarity distortion which is not controlled

by the quantization. Therefore, the amplitude of the gradient is another issue considered for the

model.

Fig. 3.7 presents curves of cumulative probability distribution functions of the four images.
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The gradient represents the values of the gradient g. The r(i) is defined as

r(i) =

i∑
g=0

p(g). (3.5)

If an image has large portions of the same color and moderate transitions, most gradients have

small values and the r(i) curve rises more quickly as the “sky” one. The cumulation curve

becomes close to 1 even the gradient is only 10. after that, since r(i) is no more than 1, the

increasing of the curve becomes very small. For the “green” one, the curve rises much slower

and r(i) reaches 0.9 at Gradient = 50. The rate of rise is obvious and comparable before reaching

the flat part where r(i) is close to 1. There are two choices to reflect the rising speed. One is

to fix a threshold, such as r(i) = 0.9. Each image has its own value of i when its r(i) curve

reaches 0.9. The images with much texture information have a wide range of the gradient. The

curve increases slowly and get a large i, as the one of “green crop” in Fig. 3.7. However, the

threshold are not constant exactly. The r(i − 1) may be lower than 0.9 but r(i) rises to 0.92

or more, especially for the simply structured image with the sharp rising of r(i). It is not fair

for the comparison. The other solution used here is choosing a range of the gradient [id, iu ]

and calculate the difference of r(i). A large difference indicates that lots of gradients fall in

this range. In Fig. 3.7, the curves become more steady after i = 45. Before that, the curves

rise in different speeds and locate separately. The difference between r(0) and r(45) would be

a choice to represent their speeds. However, r(0) is quite small for the textured images. The

difference between r(0) and r(45) mainly depends on the values of r(45) which do not differ

much between images. In order to distinguish the difference between [id, iu ] obviously, the

lower bound id is increased to 7 and the difference between r(45) and r(7) is used to evaluate

the slope of a r-curve. From the Fig.3.7, the “green crop” has the largest difference while the

“sky” one is the least.

∆ = r(45) − r(7) (3.6)

According to the study above, the RDO linear model is firstly formed as

Thr =
HG

α
(quqp + ∆ · β). (3.7)

HG contributes to the slope. For images with less textures, ∆ has a small value in order to

slow the augment of Thr. α and β are coefficients trying to map the models according with

the distribution of the optimal belt. These coefficients are constant and achieved by the curve

fitting.
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The objective of curve fitting is to theoretically describe experimental data with a model

(function or equation) and to find the parameters associated with this model. In this section,

the curve fitting is applied to find the values of the coefficients, α and β, which make the RDO

model match the data of the optimal quqp-Thr belt as closely as possible. The best values of

the coefficients are the ones that minimize the value of the summed square of residuals, which

is given by

SR =

n∑
i=1

(yi − ŷi)2 (3.8)

where y is a fitted value for a given point, yi is the measured data value for the point, n is the

number of data points included in the fit and SR is the sum of square of residuals. 8 cropped

images from the ISO 12640 JPEG test set and 12 free images in high resolution are taken out to

form a training set. The RDO model is trained for each image to get a pair of corresponding α

and β by the curve fitting. Indeed, the values of (α, β) of images are different but wave in a small

range. Therefore, the average value of α and the average one of β, α = 17.93 and β = 121.07,

are chosen as the coefficients of the model. Noticing the equation (3.7) does not go through

the original point, it is used for the region II. However, this equation can provide the crossover

point C (quqp = 53,Thr = Thrquqp=53), which should exit in both linear models of the region

I and II. Considering the two points (0, 0) and C, the linear model for the region I can also be

obtained

Thr =
HG

α
(1 +

∆ · β

53
) quqp. (3.9)

Since the belt has the width, a distance, 10, in the Thr direction is used to shift the linear model

so as to cover the possible area of the belt. The proposed RDO model is expressed as


Thr2,1 =

HG

α
(quqp + ∆ · β)

Thr2,2 =
HG

α
(quqp + ∆ · β) + 10

, i f quqp ≥ 53


Thr1,1 =

HG

α
(1 +

∆ · β

53
) quqp

Thr1,2 =
HG

α
(1 +

∆ · β

53
) quqp + 10

, i f 0 < quqp < 53

(3.10)

where Thri,1 is the model 1 for the region i (i = 1, 2) and Thri,2 is the model 2. The two models

try to simulate the boundaries of the belt. During the practical coding, the average value of

model 1 and 2 is chosen as Thr.

Thr = (Thri,1 + Thri,2)/2 (3.11)
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 Figure 3.8 – Performance of the RDO model for “bike crop”

Fig. 3.8 gives the performance of the RDO model for “bike crop”. Given quqp, the Thri,1

and Thri,2 can be calculated out by (3.10). In the Fig. 3.8 (a), the area limited by the Thri,1

and Thri,2 lines covers most parts of the optimal belt. When quqp is greater than 125, the

estimating area is higher than the optimal belt, leading to a little deviation. The average of

Thri,1 and Thri,2 is chosen as the parameter Thr for coding. The rate-distortion results with

the chosen (quqp,Thr) are indicated in Fig. 3.8 (b). The proposed points locate closely to the

optimal positions. As the “bike crop” is included in the training set, images out of the training

set should be tested to confirm the effectiveness of the model. Therefore, more examples and

discussions are provided in the next section.

3.3 Experiment of the RDO model

Fig.3.9 to 3.20 give six examples of coding efficiencies of the LAR codec by the use of

the RDO model. The “p26 crop” is from the training set, while “flower”, “leaves”, “louvre”,

“TOOLS” and “rokounji” are out of the training set. Since the RDO model is derived from the

distortion curves, the performance of the RDO model is firstly presented in MSE, and then in

PSNR which is widely applied to evaluate the coding efficiency. The optimal curve represents

the best results can be achieved by the LAR lossy coding. It is drawn by a totally searching

from all the possible R-D points. The points of the “proposed method” are the coding results

of the RDO model.

Fig. 3.9 and 3.10 are the results of “p26 crop” (HG = 4.495). The modeled points are very
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Figure 3.9 – Coding efficiencies of the RDO model in MSE on “p26 crop”
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Figure 3.10 – Coding efficiencies of the RDO model in PSNR on “p26 crop”

close to the optimal curve in both MSE and PSNR. The maximum difference in PSNR is 0.06

dB at 0.26 bpp.

Fig. 3.11 and 3.12 show the efficiency for the image “flower” (HG = 2.332). The coding for

“flower” has a less distortion, but the RDO model shows a deviation to the optimal curve. In

Fig.3.11, the deviation is obvious at low bitrates. For example, the MSE of the optimal curve

is 12.1 approximately at 0.0927 bpp, while the modeled one is 14.2 at the same bitrate. This

difference causes a gap of 0.7 dB in PSNR, where the optimal one is about 37.3 dB and the

modeled is 36.6 dB.

Fig. 3.13 and 3.14 give the results of “leaves” (HG = 5.017). As shown for the image “p26

crop”, most of the modeled points are in the optimal curve and others are also very close to it.

Fig. 3.15 and 3.16 are for the image “louvre” (HG = 5.045). The largest difference in MSE

is 8.25 at 0.168 bpp, where the optimal one is 266.75 and the modeled one is 275. This diffe-
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Figure 3.11 – Coding efficiencies of the RDO model in MSE on “flower”
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Figure 3.12 – Coding efficiencies of the RDO model in PSNR on “flower”
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Figure 3.13 – Coding efficiencies of the RDO model in MSE on “leaves”
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Figure 3.14 – Coding efficiencies of the RDO model in PSNR on “leaves”
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Figure 3.15 – Coding efficiencies of the RDO model in MSE on “louvre”
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Figure 3.16 – Coding efficiencies of the RDO model in PSNR on “louvre”
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rence results in an 0.14 dB gap approximately in PSNR.
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Figure 3.17 – Coding efficiencies of the RDO model in MSE on “TOOLS”
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Figure 3.18 – Coding efficiencies of the RDO model in PSNR on “TOOLS”

Fig. 3.17 and 3.18 show the results of “TOOLS” (HG = 6.143). The MSE can reach to 437

at 0.48 bpp. But the RDO model follows the optimal curve well at low bitrates and differs in

only 1 at 0.572 bpp. The largest difference of MSE is 2, where the optimal one is 70.3 and the

modeled one is 72.3. The corresponding gap in PSNR is 0.12 dB.

The last results are shown in Fig. 3.19 and 3.20 for the image “rokounji” (HG = 4.152).

When the bitrate is lower than 0.5 bpp, the modeled points are exactly in the optimal curve.

The maximum difference in MSE occurs at 0.735 bpp where the modeled one is 20.8 and the

optimal one is about 20. The largest difference in PSNR is 0.18 dB at 2.39 bpp, where the

modeled point is 39.57 dB and the optimal one is 39.75 dB.

According to the experimental results, the RDO model can follow the optimal curve and

finds the optimally efficient coding points in most cases, while the other coding results of the
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Figure 3.19 – Coding efficiencies of the RDO model in MSE on “rokounji”
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 Figure 3.20 – Coding efficiencies of the RDO model in PSNR on “rokounji”

RDO model are also close to the optimal ones. For different images, the coding results are

better for images with higher HG than the ones with lower HG. Because a textured image

brings difficulties for the prediction and often causes a high distortion in the decoded image

at a low bitrate. In this case, a small deviation from the optimal curve does not generate a

large relative error in MSE. In contrast, for the images with less texture, a small difference

of MSE leads to a obvious deviation from the optimal curve, as shown by Fig. 3.11 and 3.12

for the image “flower”. Another factor is that, for images with less texture information, some

optimally coding points require Thr = 0, even their quqp have large values. This feature is

beyond the simulation of the RDO model.
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3.4 Quality Control

Rate-distortion optimization (RDO) schemes aim at optimizing compression performance.

Depending on the RDO, functionalities, such as Rate Control (RC) and Quality Control (QC),

can realize practical applications during the coding. RC enables to compress the images at

a given rate. Its techniques are coding technique dependent, with various original possibility

of the coder. For example, besides the PCRD 1.2.3, JPEG2000 provides an embedded stream

enabling a fine RC [CLC08], [ZWD11]. Recently, RDO-domain has been introduced as an

efficient RC technique for H.264 [LLW10].

Besides, QC is also an important function. For the data storage and quality preferred ap-

plications, such as the archive recording, medical imaging and High Definition Television

(HDTV), the quality of the decoded image is the most concerning issue to the users. Recent

works of QC mostly focus on the perceptual quality metric. In [LKW06], a vision model was

proposed to incorporate various masking effects of human visual perception and a perceptual

distortion metric. This model was applied into JPEG2000 to control the embedded bit-plane

coding in order to meet the desired target perceptual quality. Similarly, Gao and Yuan pro-

posed a quality metric called weighted normalized mean square error of wavelet subbands

(WNMSE) [GZ08]. Besides, they also introduced a compression algorithm, quality constrai-

ned scalar quantization (QCSQ), to compress the image to a desired visual quality measured by

WNMSE. Because the perceptual evaluation of the image is still a developing issue. The novel

metrics are proved by examples in the papers, but it is hard to say that they have answered

all the questions for measuring the human visual system (HVS) and can work well for other

images. Besides, considering only the HVS is not affair for the objectively detecting applica-

tion. For the medical imaging and the areal relief mapping, the visual system based metrics

may be insensitive to some distortion, which contains the valuable information, and give a

“lossless” score. In this case, the objective quality metrics, MSE and PSNR, are better choices

to find any distortion of the decoded image.

By applying the Quadtree partition, the quantization of the LAR codec focuses on the small

blocks, which often appear in the texture parts and edges, where HVS are not sensitive. Thus,

the LAR codec also puts the effects of the HVS into consideration. For a wide application

in both objectively and visually oriented metrics, the QC method introduced for LAR is still

aiming at the targeted MSE and PSNR.
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Figure 3.21 – Examples of the linear relationship between MSE and quqp

3.4.1 MSE Determination Model

Depending on the RDO model, the quqp becomes the decisive parameter. Besides, an ap-

proximately linear relationship between the distortion in MSE and quqp is observed. Fig. 3.21

gives four examples. Similarly, this section also tries to construct linear models to describe the

relationship. With the RDO model, quqp and Thr have been be linked by linear equations.

Thus, Thr should also have a linear relationship with MSE. For images with much texture

parts, they often have higher MSE than the ones with less texture parts at a particular quqp.

This feature indicates that the HG can also reflect the slope of the linear relationship in Fig.

3.21. The quality model is firstly defined as

MSE = α · H2
G · quqp + β · Thr . (3.12)

Since the proposed RDO model adopts the piecewise function, this MSE model also has dif-

ferent forms for two regions. Firstly considering the region II which represents the area of

quqp > 53, by the use of the curve fitting to the training set, we can get a practical pair of

(α, β), α = 0.058 and β = −0.9. With the equation (3.10), the relationship between MSE and

quqp can be expressed by
MSEest =

(
0.058H2

G − 0.9
HG

α

)
quqp − 0.9

HG

α
∆ − 4.5 , quqp ≥ 53

MSEest =

[
0.058H2

G −
0.9
α

HG

(
1 −

∆

53
β

)]
quqp − 4.5 , 0 < quqp < 53

(3.13)
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(a) bike crop
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(b) p10 crop
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(c) p26 crop
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Figure 3.22 – The comparison between the MSE obtained and the estimated by the MSE model

MSEest is the estimated MSE value according to the quqp. For illustration, the fitting accuracy

of the linear MSE determination model is shown in Fig. 3.22.

3.4.2 MSE constraint method

With equation (3.13), we can estimate the Quality (MSE) from a given quqp. For a quality

constrainst, we have to fix MSE to control compression distortion as shown in equation (3.14).

The user sets the targeted MSE and calculate out the suitable quqp. MSEboundary is chosen by

equation (3.13) considering quqp = 53. After the determination of quqp by the equation (3.14),
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(a) The original image, “bike
crop”

(b) MSE = 30.866 while the
MSE constraint is 30

(c) MSE = 56.399 while the
MSE constraint is 50

Figure 3.23 – MSE constraint on “bike crop”

the threshold Thr for Quadtree can be calculated by the equation (3.10).


quqp =

MSEset + 0.9∆
HG
α + 4.5

0.058H2
G − 0.9 HG

α

, MSEset ≥ MSEboundary

quqp =
MSEset + 4.5

0.058H2
G −

0.9
α HG

(
1 − ∆

53β
) , 0 < MSEset < MSEboundary

(3.14)

With quqp and Thr, the LAR codec have then enough parameters to complete the coding. The

steps of the MSE setting method are shown below.

Step 1. Analyze the image to be coded, calculate the probilities of the gradients of blocks

in order to get the entropy HG and ∆ ;

Step 2. Compute the MSEboundary according to the equation (3.13) with quqp = 53 ;

Step 3. Compare the MSEset with MSEboundary, choose which formulation in (3.14) should

be used and calculate the suitable quqpexp ;

Step 4. Substitute quqpexp into the equation (3.10) to get Thr1 and Thr2, the average value

of them is chosen as the suitable Threxp for Quadtree partition ;

Step 5. Start the coding with quqpexp and Threxp.

Fig. 3.23 shows the examples of the quality (MSE) constraint on the image “bike crop”.

The obtained MSE is close to the constrained one.
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Figure 3.24 – Comparison between the MSE set and MSE obtained for “p06 crop”
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Figure 3.25 – Comparison between errors and MSE set for “p06 crop”

3.4.3 Experiments of the MSE setting method

In this part, the images “p06 crop”, “flower”, “leaves” and “louvre” which are out of the

training set are put into the tests of the MSE setting method. Fig 3.24 to 3.31 show the com-

parisons between the MSE set and MSE obtained. The errors of the MSE obtained are also

compared with the MSE set.

Fig 3.24 is the comparison for “p06 crop”. The MSE obtained curve is close to the targeted

MSE set curve. At high bitrates, they match well, but the obtained curve raises faster than the

set one and causes a larger error. This trend is also indicated in Fig 3.25. With the increase of

the MSE set, the absolute error becomes larger. However, the ratio of the absolute error and

MSE set keeps stable at about 10% when MSE set is larger than 60.

Fig. 3.26 and 3.27 show the results of “flower”. At high bitrates, the difference between
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Figure 3.26 – Comparison between the MSE set and MSE obtained for “flower”
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Figure 3.27 – Comparison between errors and MSE set for “flower”

the MSE set curve and MSE obtained curve is more obvious. This difference is less at low

bitrates, with larger MSE as shown in Fig 3.27. The ratio curve decreases quickly to 10%

approximately.

Fig 3.28 and 3.29 are the results of “leaves”. The two curves matches well in Fig 3.28. The

largest difference is around 0.5 bpp and the absolute value is about 6, which occupies the MSE

less than 14%, but most points have small ratios which less than 10% even to 4%.

Fig 3.30 and 3.31 are for the last image “louvre”. The errors are all less than 6 and the ratio

decreases steadily to below 5%.

This MSE setting method provides a quality constraint scheme for the LAR codec. Al-

though at high bitrates, the ratio of the error and the MSE set is not stable and possible larger

than 10%, the absolute value of the error is not large and the MSE obtained is not far from the
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Figure 3.28 – Comparison between the MSE set and MSE obtained for “leaves”
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Figure 3.29 – Comparison between errors and MSE set for “leaves”

set one. The ratio reduces at low bitrates which have more MSE and keeps below 10%. As this

method depends on the proposed RDO model, it also assures an optimal or sub-optimal coding

efficiency.

3.5 Locally perceptual quality enhancement

The simplest and most widely used quality metric is MSE, along with PSNR. They are

simple to calculate, have clear physical meanings, and are convenient in the context of optimi-

zation. But they are not well matched to perceived visual quality [EF95] [EB98] [WB02]. MSE

is based on an assumption that the loss of perceptual quality is directly related to the visibility

of the error signal, therefore, it objectively quantifies the strength of the error signal. But two

distorted images with the same MSE may have different types of errors, some of which are
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Figure 3.30 – Comparison between the MSE set and MSE obtained for “louvre”

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

MSE

|E
rr

or
| /

 M
S

E

0 50 100 150
0

2

4

6

8

10

12

14

16

18

MSE

|E
rr

or
|

 

p06 crop  flower leaves louvre 

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

MSE

|E
rr

or
|

0 5 10 15 20 25
0

1

2

3

4

5

6

MSE

|E
rr

or
| /

 M
S

E

 

0 50 100 150
0

1

2

3

4

5

6

7

MSE

|E
rr

or
|

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

MSE

|E
rr

or
| /

 M
S

E

 

0 50 100 150
0

1

2

3

4

5

6

MSE

|E
rr

or
|

Absolute values of the MSE setting errors

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

MSE

|E
rr

or
| /

 M
S

E

Ratios of errors and MSE  
Figure 3.31 – Comparison between errors and MSE set for “louvre”

more visible than others. Fig. 3.32 gives two examples of the distortion on the image “bike

crop”. Both images have the same MSE = 50. Fig. 3.32a shows the distortion only caused by

the quantization of the LAR coder, while Fig. 3.32b shows the one caused by the Quadtree

only. The quantization brings the impulsive noise to the decoded image, but the visible distor-

tion is weak at MSE = 50. In contrast, the Quadtree Partition results in an obviously blurring

distortion on the background. Thus, for nature images, which mainly serve for the observation

of the multimedia application, it is interesting to take the visible distortion into consideration

while keeping a traditional RDO performance in MSE or PSNR.
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(a) Distortion caused by the quantization (b) Distortion caused by the Quadtree

Figure 3.32 – Comparison of the distortions on “bike crop”, MSE = 50

3.5.1 Adaptive Thr allocation scheme

The Weber’s law is a detective sensitivity method. It has been used to model the light adap-

tion in the HVS [WB06] [TVDY12]. The Weber’s law indicates that the magnitude of a justly

noticeable luminance change ∆I is approximately proportional to the background luminance I

for a wide range of the luminance values. That is to say, the HVS is sensitive to the relative lu-

minance change, and not the absolute luminance change. For example, in Fig. 3.32b, the stripe

in the white and gray background reflects a strong relative differences in brightness and the loss

of the stripe results in a noticeable distortion. While the noise in the bright background is less

perceptible in Fig. 3.32a. Thus, it is not proper take a high threshold of the Quadtree Partition in

the brightly monotonous background. Another fact of the HVS is that the human eyes are less

sensitive to noise in strong texture areas than the less textured areas [ZJY07]. The classic LAR

codec has concentrated the quantization on the texture parts. For the Quadtree partition, a sui-

table improvement for the perceptual quality would be transferring the blurring distortion from

the flat part to the texture part. Noticing that the proposed RDO model is based on the detection

of the texture, one solution is to separate the source image into different parts and allocate each

part a local threshold Thr for the Quadtree Partitioning. The RDO model is applied to each part

to get the local Thr, rather than the whole image as introduced in previous sections. This is an

adaptive Thr allocation scheme. In practice, the image is firstly separated into blocks with size

64×64. In each block, the RDO model calculates a Thr according to the quqp. The quqp is set
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before the coding and used for all the 64 × 64 blocks. Fig. 3.33 and 3.34 give two examples of

the adaptive scheme. Fig.(b) shows the Thr map. A block with a greater luminance represents

a higher Thr and vice versa. In Fig. 3.33b, the Thr tend to be large on the rotation shaft, leaves

and dishes, where have much texture information. In contrast, the Thr equals to 34 when using

the RDO model directly to the image. Fig. 3.33c and 3.33d show a comparison of the grids of

the Quadtree partition. A small block of the grid indicates that a change of pixels is detected,

while a larger block will treat the pixels in it as a whole and provide the same value to pixels

in the block in the decoded image. Therefore, a large block in the grid probably causes the

blurring distortion. Fig. 3.33c gives the Quadtree grid drawing with the adaptive Thr scheme.

It is noticed that the strip of the ground is well detected while the strip is lost in Fig. 3.33d. The

similar Thr allocation also occurs in the image “woman crop” in Fig. 3.34. Large Thr values

appear in the hair, and on the sweater. For the face and finger, most 64 × 64 blocks have the

small Thr. From Fig. 3.34c and 3.34d, we can see that some details of the finger and face are

kept. This feature is helpful to weaken the visible blurring distortion.

3.5.2 The Structure Similarity (SSIM) quality assessment

In order to evaluate the efficiency of the adaptive Thr allocation scheme for improving the

perceptual quality of the decoded image, we need a quality metric to measure the image. As

indicated before, MSE and PSNR are not efficient to evaluate the subjective quality. Another

way, Mean opinion score (MOS) is a directly subjective test to obtain the human user’s view

of the quality. It requires the users to evaluate the image and give a perceived score, and then

average the score values to generate the final MOS value. This test really gives the subjective

results of the image, but it requires a certain number of users to take the test without any

distortion. Any change of the users or the scene of the test possibly bring the different MOS. It

is not as convenient as the MSE and PSNR. In 2004, Z. Wang et al. proposed a new paradigm

for quality assessment, SSIM, which is based on the hypothesis that the HVS is highly adapted

for extracting structural information [WBSS04]. They developed the measure of Structural

Similarity (SSIM) that compared local patterns of pixel intensities that have been normalized

for luminance and contrast. The SSIM metric is calculated in a specific form of the index as

Eq. (3.15).

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
. (3.15)

The vectors x and y are two nonnegative image signals, which have been aligned with each
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(a) “bike crop”
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Figure 3.33 – Adaptive Thr allocation according to quqp = 45 for “bike crop”. 3.33a is the ori-
ginal image ; 3.33b illustrates different Thr in blocks, the brighter block represents a larger Thr
than the darker one ; 3.33c gives the Quadtree grid with the adaptive Thr allocation scheme ;
3.33d shows the grid without the scheme.
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(a) “woman crop”
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Figure 3.34 – Adaptive Thr allocation according to quqp = 45 for “woman crop”. 3.34a is
the original image ; 3.34b illustrates different Thr in blocks, the brighter block represents a
larger Thr than the darker one ; 3.34c gives the Quadtree grid with the adaptive Thr allocation
scheme ; 3.34d shows the grid without the scheme.
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other. µ is the mean intensity of the signal, such as

µx =
1
N

N∑
i=1

xi. (3.16)

σ is the standard deviation (the square root of variance) as an estimate of the signal contrast.

Its an unbiased estimate is given by

σx =

 1
N − 1

N∑
i=1

(xi − µx)2


1
2

(3.17)

σxy is the covariance of x and y. Coefficients C1 = K1L,C2 = K2L, where K1 << 1 and

K2 << 1. L is the dynamic range of the pixel-values (255 for 8-bit gray scale images). In

practice, the SSIM index is applied locally rather than globally. Because the image statistical

features are usually highly spatially non-stationary. The localized quality measurement can

provide a spatially varying quality map of the image, which delivers more information about

the quality degradation of the image. The local statistics µx, σx and σxy are computed within a

local 8×8 square window. The window moves pixel-by-pixel over the entire image. In order to

solve the undesirable “blocking” artifacts, Z. Wang et al. used an Gaussian weighting function

w = {wi| i = 1, 2, ...,N}, with normalized unit sum
∑N

i=1 wi = 1, to modify the local statistics as

µx =

N∑
i=1

wixi

σx =

 N∑
i=1

wi(xi − µx)2


1
2

σxy =

N∑
i=1

wi(xi − µx)(yi − µy).

(3.18)

In each window, the SSIM measure uses the default coefficient setting : K1 = 0.01 ; K2 = 0.03.

According to the local quality measurement, a single overall quality measure of the entire

image, the mean SSIM (MSSIM) index, is given to evaluate the overall image quality

MSSIM(X, Y) =
1
M

M∑
j=1

SSIM(x j, y j) (3.19)

where X and Y are the reference and the distorted images. x j and y j are the pixels in the jth
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(a) Mean shift (b) Salt-pepper noise (c) Blurring

Figure 3.35 – Comparison of different distortions in the same MSE = 200. (a) MSSIM = 0.9934
(43.5534 dB) ; (b) MSSIM = 0.9894 (39.5122 dB) ; (c) MSSIM = 0.8878 (18.9973 dB).

local window, and M is the number of the windows of the image. A MATLAB implementation

is available online at [Wan]. Since the MSSIM values have a small range (0, 1] and are often

close to 1 in the comparison, the results of MSSIM are also given in the logarithmic domain

to express the different perceptual qualities clearly [Ric08]. The equation is expressed in Eq.

(3.20).

MSSIM(dB) = −20 · log10(1 − MSSIM) (3.20)

Fig. 3.35 shows three images measured by the MSSIM. The three images have different

types of distortion, but the same quality value measured by MSE. 3.35a keeps the complete

structure information and gets the highest MSSIM score than others, while 3.35c looses lots of

contours and visible texture information. It has the lowest perceptual quality in MSSIM.

Fig. 3.36 and 3.37 show the decoded images with and without the Thr adaptive scheme.

Their subjective quality is measured by MSSIM. We can find that the decoded images with the

adaptive scheme have the visible improvement for the texture parts on the bright background.

For example, the stripe in “bike crop”, the details on the face and the hand in “woman crop”

are reserved better than the one without the scheme. The improved images also achieve better

scores in MSSIM. In order to exam the effectiveness of the adaptive scheme, more images are

tested and the results of the bpp-MSSIM are shown in the next part.
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(a) With adaptive scheme

      

     

(b) Without adaptive scheme

Figure 3.36 – Comparison of the decoded images in quqp = 45. (a) MSSIM = 0.9898 (39.8670
dB), bitrate :0.841 bpp ; (b) MSSIM = 0.9875 (38.0621 dB), bitrate :0.836 bpp.

      

      

      

(a) With adaptive scheme

      

      

      

(b) Without adaptive scheme

Figure 3.37 – Comparison of the decoded images in quqp = 45. (a) MSSIM = 0.9766 (32.6064
dB), bitrate :0.680 bpp ; (b) MSSIM = 0.9739 (31.6630 dB), bitrate :0.674 bpp.

3.5.3 Experiments of the adaptive Thr allocation scheme

Five images are shown in Fig. 3.38. They are used to test the performance of the adaptive

Thr scheme. Each image is coded with or without the allocation scheme, and the decoded

images are compared by the MSSIM scores at a range of the bitstream. The results are drawn

from the Fig. 3.39 to 3.43.

From the test results, it can be noticed that the adaptive Thr allocation scheme improves

the subjective quality of the decoded image measured by MSSIM at a certain bitrate. For the
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(a) bike crop
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(b) louvre
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(c) woman crop
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(d) p06
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(e) leaves

Figure 3.38 – Images for tests of the adaptive Thr scheme.

images “bike crop” and “woman crop”, the amelioration is limited and the improved results

are around 1 dB better than the ones without the adaptive scheme. The enhancement of the

perceptual quality is large for the image “p06” and has the improvement by 4 to 6 dB. The

adaptive one reproduces the structure of the car and the reflection on the door more clearly

as shown in Fig. 3.44 . For “louvre” and “leaves”, the recovered images have about 2 dB in

advantage with the adaptive Thr scheme.

The adaptive Thr scheme can ameliorate the perceptual quality of the coding image. Its im-

pact on the objective quality also needs to be tested. The following experiments are performed

by PSNR. The performance of the standards, “JPEG”, “JPEGXR” and “JPEG2000” are also

compared with the ones of the LAR codec. The results are shown from the Fig. 3.45 to 3.48 .

According to these comparisons, JPEG2000 has the best objective quality of the lossy co-

ding. JPEGXR follows the JPEG2000 closely and is lower than JPEG2000 by 0.5 to 1 dB. For

the LAR codec, the adaptive Thr allocation scheme does not differ the quality a lot measured

by PSNR. Thus, the adaptive Thr scheme can improve the perceptual quality of the decoded

image while keep the objective quality. With the RDO model, the LAR codec achieves a better

PSNR score than the JPEGXR for “p06”, but for other images, the performance is lower than

JPEG2000 by 1 dB and JPEGXR by 0.5 dB respectively. JPEG shows the lowest coding qua-

lity in PSNR. It is designed much earlier than JPEG2000 and has been well developed for the
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Figure 3.39 – MSSIM scores of “bike crop”.
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Figure 3.40 – MSSIM scores of “woman crop”.  
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Figure 3.41 – MSSIM scores of “louvre”.
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Figure 3.42 – MSSIM scores of “p06”.
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Figure 3.43 – MSSIM scores of “leaves”.

 

       

 

(a) reference

 

       

 (b) improved

 

       

 (c) unimproved

Figure 3.44 – Part of the image “p06”. (a) the reference image ; (b) the improved decoded
image, 0.5 bpp ; (c) the unimproved image, 0.5 bpp.
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Figure 3.45 – PSNR of “bike crop”.  
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Figure 3.46 – PSNR of “woman crop”.

 

Bike crop 

 

Woman crop 

 

P06 

0 0.5 1 1.5 2
22

24

26

28

30

32

34

36

38

bpp

P
S

N
R

 (
dB

)

 

 

LAR with adaptive Thr
LAR with overall RDO
JPEG
JPEGXR
JPEG2000

0 0.5 1 1.5 2 2.5
24

26

28

30

32

34

36

38

40

bpp

P
S

N
R

 (
dB

)

 

 

LAR with adaptive Thr
LAR with overall RDO
JPEG
JPEGXR
JPEG2000

0 0.5 1 1.5 2 2.5
22

24

26

28

30

32

34

36

38

40

bpp

P
S

N
R

 (
dB

)

 

 

LAR with adaptive Thr
LAR with overall RDO
JPEG
JPEGXR
JPEG2000

Figure 3.47 – PSNR of “p06”.
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Figure 3.48 – PSNR of “leaves”.

implementation in both software and hardware. It is still a common digital image format.

The proposed RDO model can help the LAR codec achieve the optimal or sub-optimal

coding performance, but the results are lower than those of JPEG2000. Thus, it is necessary to

change the inside coding steps of the LAR codec to improve the coding efficiency.

3.6 Conclusion

In this chapter, a rate distortion optimization (RDO) model is designed for the LAR codec.

Two important coding processes, the Quadtree Partition and the quantization for the prediction

error, are considered to analyze their influences on the coding efficiency of the LAR codec.

The optimal coding performance is firstly selected out to extract the corresponding pairs of the

parameters which are seen as the target parameters. Next, by analyzing the texture complexity

of the image, a RDO model is constructed to calculate the target parameters. Based on this

model, the LAR codec can code the image with a lowest objective distortion which the LAR

codec is able to achieve. Besides, a distortion constraint method for the LAR codec is also

proposed. It depends on a linear relationship between the quantization and the distortion.

In order to improve the perceptual quality of the decoded image, the RDO model is applied

in a locally adaptive way. The experimental results show that this adaptive scheme bring a

better subjective quality while the objective quality measured by PSNR is close to the result

obtained without the scheme. The comparison with the JPEG series shows that the LAR codec

has a lower coding performance than JPEG2000 and JPEGXR. Thus, the coding steps of the

LAR codec should be modified to construct a new image coding method in order to achieve a

higher compression efficiency which is equivalent or better than the one of JPEG2000.
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Chapter 4

A low complexity lossless image codec :
LAR-LLC

Due to the fast development of multimedia industry, the increasing demand of the media

data encourages the studies on promising technologies in order to efficiently make use of the

limited storage and communication capacity. Image compression plays an important role in this

field. In this chapter, the statement focuses on the scalable lossless image compression with

low complexity. Despite the wide use of lossy coding, for some applications, such as technical

drawing, art archiving, medical imaging and film post-production, the lossless compression is

more suitable for these high fidelity scenes. Therefore, the image coding standards, such as the

JPEG, JPEGXR and JPEG2000 also provide the lossless mode.

The compression ratio is the main indicator for evaluating the image compression method,

since the compression essentially aims at reducing the image storage space and the transmis-

sion capacity. For practical applications, the complexity is also a considerable performance

factor. In multimedia entertainment, such as Internet and High-definition television (HDTV),

high resolution images are generally desired by users. However, large size images need much

computations at the end which aggravate the coding latency. As a result, an efficient scalable

coding method with less computation is required to reduce the time-delay and adjust the image

resolution according to the channel capacity and user requirements. When implementing com-

pression techniques used in embedded systems such as digital cameras, and smart phones,

the low complexity coding algorithm is also preferable in order to reduce the electrical power

consumption and the processing time. In this context, reduced coding solutions are required for

both encoding and decoding parts. The compression methods often rely on two main stages :

a first decorrelation step based on transform and/or prediction techniques, and a final Variable

91
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Length Coding (VLC) stage. As the VLC part is always a reversible process, the lossless co-

ding feature is generally only dependent on the first stage. For transform-based approaches, it

implies to use only reversible transforms, or to encode the residual errors after the transform.

Besides the standards, new methods are also proposed for specific image coding applica-

tions. Matsuda et al. designed an image coding scheme including a variable block-size adaptive

inter-color prediction technique [MKMI07]. This scheme requires a high computational com-

plexity of encoding due to an iterative optimization procedure. Zhao et al. applied a structure

learning and prediction scheme to the lossless image coding [ZH10]. This method is efficient

to images with rich high-frequency components, but also demands much computational com-

plexity caused by the expensive structure prediction. Pan et al. developed a low-complexity

screen compression scheme for lossy coding [PSL+13]. This scheme performs well on screen

images of texts, but underperforms JPEG2000 for natural images. Park et al. presented a low

complexity lossless image compression scheme using the context modeling and got compres-

sion results close to that of JPEGLS [PKC+10].

In this chapter, a lossless image coding method is introduced. It has the compression ef-

ficiency equivalent to JPEG2000, but lower computational complexity. This method is based

on the LAR (Locally Adaptive Resolution) framework. The extensions to the LAR codec are

also presented in [DBM06] and [BDR05] to implement the functions of the multi-resolution

and the lossless coding. The two articles introduce different pyramidal representations of the

image with the dyadic decomposition scheme for the multi-resolution. In [BDR05], the pro-

posed transform/prediction scheme called “Interleaved S+P” is directly derived from the “S

transform and Prediction (S+P) method” introduced in [SP93]. This scheme has been adopted

as the implementation of the LAR codec introduced in the chapter 2. Another dyadic decom-

position which is proposed in [DBM06] is based on the 2 × 2 block Walsh-Hadamard, with

a specific reversible mode (R-WHT) in the lossless context. This transform provides better

decorrelation performances than the “Interleaved S+P”, but at the expense of complexity.

The previous LAR codec did not achieve the compression efficiency as excellent as the

JPEG2000, and also required a medium computation cost about the same with JPEG2000.

Therefore, it is reasonable to design different coding stages based on the previous works in

order to raise the compression ratio while keeping the time consumption lower than those

of the standards. In this chapter, the proposed LAR-LLC (Lossless Low Complexity) coding

method adopts a 2×2 block transform called “Hierarchical Diagonal S Transform” (HD-ST). It

combines the advantages of the R-WHT and “S+P” for high decorrelation and low complexity,

respectively. A new inter and intra-levels prediction scheme is also introduced, with a very
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limited complexity. Both transform and prediction are performed on the integer calculation

only.

For the VLC stage, the context adaptive arithmetic coders are generally preferred as they

provide significant gain by catching a part of the residual redundancy between symbols. Howe-

ver, these methods are also time-consuming [Sai04], [SBRM11]. The static Huffman coding is

a ideal choice for the low computational solution. In order to compensate the inherent loss of

compression efficiency compared with the arithmetic coder, a context modeling/classification

step before the VLC coding is introduced. Context modeling is an open problem in the image

coding, which has been widely analyzed in [Wu97], [PKC+10]. To avoid the problem of context

dilution and to reduce the complexity, a simple while efficient method of classification is intro-

duced. Based on the probability of distribution of the data source, we use a fixed context model

to classify the error stream into four sub-classes. The classification criterion is directly deduced

from the prediction error values, so the proposed scheme does not add significant processing

time overhead. Experiments show that the proposed low complexity lossless codec achieves a

compression ratio equivalent to JPEG2000, whereas it has much less coding latency.

The chapter is organized as follows. In Section 4.1, the general procedure of the proposed

lossless image coding method is presented. Section 4.2 introduces HD-ST transform to build

a pyramid structure for the multi-resolution. Section 4.3 introduces the prediction process ap-

plied for the reconstruction of the coded image based on lower resolution levels. Section 4.4

discusses the classification method for entropy coding. Results of the lossless coding efficiency

and the analysis of the complexity are provided in Section 4.5. Finally, this paper is concluded

in Section 4.6.

4.1 Framework of Coding Scheme

The proposed coder offers a scalable multi-resolution lossless image coding implementa-

tion. Fig. 4.1 shows the coder structure. The color image is firstly converted from RGB space to

Y Db Dr space [PSB+09]. As given in the equation (4.1), the Y Db Dr color space is reversible

and has a low computation complexity as only shift and addition operations are required. Be-

cause the green light contributes the most to the intensity perceived by humans, the luminance

Y reserves the half amplitude of the green element G, and quartered of the red and blue. The

chrominance Db and Dr represent the difference to G from B and R respectively. After the color

transform, the luminance Y and chrominance Db, Dr components are coded in parallel chan-

nels. In the pyramid structure, a multi-resolution image representation is built. Starting from
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Figure 4.1 – Scalable lossless coder

the full resolution image, four pixels in a 2×2 pixel block are combined together into one ele-

ment. All the elements compose a lower resolution image as the upper level. This degradation

process repeats until the size of the top level is close to but not less than 64×64 in our coder

version. Then, the next step is a top-down dyadic decomposition with prediction. From the top

level (lowest resolution), the higher resolution image is restored level by level until the full re-

solution is achieved. In each level, the prediction error values are classified into sub-classes, in

order to decrease the total information entropy. Finally, each subsequence is separately coded.
Y

Db

Dr

 =


1/4 1/2 1/4

0 -1 1

1 -1 0




R

G

B

⇔


R

G

B

 =


1 -1/4 3/4

1 -1/4 -1/4

1 3/4 -1/4




Y

Db

Dr

 (4.1)

4.2 HD-ST Transform and Pyramid

The 2D Walsh-Hadamard Transform (WHT2×2), whose kernel is given in (4.2), is suitable

for hardware implementation, since it requires only simple operations.

W2×2 =
1
√

2

 1 1

1 -1

 (4.2)

A pyramidal representation based on this particular transform is straightforward. Let I(i, j)

represent the pixel in an image I of size Nx ×Ny, l is the level number, the full resolution image
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Figure 4.2 – Construction of the upper level.

is in the l = 0 level. The pyramid structure {Yl} can be expressed in (4.3).

Yl(i, j)=


I(i, j) , l = 014

1∑
k=0

1∑
m=0

Yl−1 (2i + k, 2 j + m)

 , l > 0
(4.3)

where 0 ≤ i ≤ Nx/2l. b.c stands for rounding downward. In this case, the upper lever pixel is the

mean value of its four sons as shown in Fig. 4.2. However, the WHT2×2 is not fully reversible,

due to the rounding operations. In [DBM06], a solution was provided to the reversibility aspect.

It can refine the sum of elements from the rounded average value plus an addition bit. This bit

records the remainder of the division and is separately encoded from the other coefficients. This

solution offers ideal first-order entropy based on the reversible pyramid structure. The major

drawback is that it adds a significant complexity for the correlation/decorrelation process. An

alternative solution was proposed in [BDR05], with the “Interleave S+P” pyramid which is

based on the S transform [SP93]. S transform considers that a sequence of integers C(n) can be

represented reversibly by two sequences M(n) and G(n) in the equation (4.4). M(n) and G(n)

are the mean and gradient values of the two pixels, respectively. M(n) =
⌊(

C(2n) + C(2n + 1)
) /

2
⌋

G(n) = C(2n) −C(2n + 1)C(2n) = M(n) +
⌊(

G(n) + 1
) /

2
⌋

C(2n + 1) = C(2n) −G(n)

(4.4)

In [BDR05], the S transform is applied on the two pixels on the first diagonal. The achieved

mean value is used for the upper level, and the gradient is coded. Then, the S transform is
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Figure 4.3 – Hierarchical Diagonal S Transform, Md,l is the evaluation of the average in a block
and used for upper level.

applied on the second diagonal, and the two transformed coefficients (mean + gradient) are

coded for this stage. The major drawback is that the value associated to a block is the mean

value of the diagonal pixels inside the block, instead of the mean estimated over all the pixels.

The major advantage of the method is that, besides the addition and subtraction operation, the

transform only needs the division by 2, which can be implemented by shifts. Thus, it has a

low computation complexity. In order to combine advantages of both methods, a Hierarchical

Diagonal S Transform (HD-ST) is proposed in this section.

It is reasonable to use all the pixels in a block to compose the pixel in the upper level.

Besides, the WHT2×2 is easy for the implementation. Therefore, we still apply (4.3) to build the

scalable structure. In order to make the transform reversible, it is achieved by the S transform

in two steps. As illustrated in fig.4.3, the first step of the decomposition consists of applying

the S transform on two diagonals respectively. For each diagonal, the S transform produces

one mean coefficient Ml and one gradient coefficient Gl. In the second step, the S transform is

applied on the two mean coefficients (DC) M1,l from the first diagonal, and M2,l from the second

diagonal. The resulting DC value Md,l is used as the pixel of the upper level, and three gradients

are coded : two (G1,l,G2,l) in the step 1, and one (Gd,l) in the step 2. Different transformed

coefficients are defined as follows.

Step 1.  M1,l(2i, 2 j) =
⌊(

Yl(2i, 2 j) + Yl(2i + 1, 2 j + 1)
) /

2
⌋

G1,l(2i, 2 j) = Yl(2i, 2 j) − Yl(2i + 1, 2 j + 1) M2,l(2i, 2 j) =
⌊(

Yl(2i + 1, 2 j) + Yl(2i, 2 j + 1)
) /

2
⌋

G2,l(2i, 2 j) = Yl(2i + 1, 2 j) − Yl(2i, 2 j + 1)

(4.5)
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Step 2.  Md,l =
⌊(

M1,l(2i, 2 j) + M2,l(2i, 2 j)
) /

2
⌋

Gd,l = M1,l(2i, 2 j) − M2,l(2i, 2 j)
(4.6)

Where Md,l represents the estimated DC value for the upper pixel. The pyramid can be written

in (4.7).

Yl(i, j) =


I(i, j) , l = 0⌊

1
2

(
M1,l−1(2i, 2 j) + M2,l−1(2i, 2 j)

)⌋
, l > 0

(4.7)

Since the S transform is reversible and the HD-ST is composed of the uses of the S trans-

form in three times, the HD-ST is also reversible and the converse process is referred in 4.4.

Details are presented in Section 4.3. It does not need an additional bit to decide whether DC is

odd or even for the reconstruction as did in [DBM06]. We can note in 4.7 that the mean value

is computed from all the pixels in the block. The decomposition process is fully asymmetrical,

starting from step 2 to step 1. The total amount of operations per pixel can be easily estimated

for composition/decomposition between two levels of the resolution : 1.5 add/sub and 0.75 shift

operations only.

The next section will present the associated prediction process.

4.3 Pyramidal Prediction

x

a b

c
 

Figure 4.4 – A median edge predictor.

For the top level of the pyramid, it has a very limited size. A median edge predictor (MED)

is used to encode the top level. As shown in Fig.4.4, the target pixel x is predicted by the

adjacent ones a, b and c. The estimated value x̆ is expressed as

x̆ =


min{b, c}, i f a ≥ max{b, c}

max{b, c}, i f a < min{b, c}

b + c − a

. (4.8)
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The prediction error is coded by the Huffman coder. After coding the top level, the following

work aims to recover higher resolution levels inside the pyramid. The transformed gradient

coefficients are estimated by three predictors. In a classical “flat” prediction scheme, the al-

ready known (decoded) values that can be used are located before the current position. In a

multi-layers prediction scheme such as the proposed one, partial decoded information is also

available in the current position and following space. The different strategies implemented for

the prediction of the three gradients are detailed in following. Ğ denotes the predicted value of

G. For image borders, predicted values are set to zero.

4.3.1 Prediction for Gd,l

Let Gd,l represent the contrast between M1,l and M2,l. In most cases, the mean values of the

two diagonals are quite close, thus Gd,l is generally close to zero. For the prediction to Gd,l,

available values are the mean value Yl+1(i, j) of the each block and previously reconstructed

Gd,l. The prediction Ğd,l is defined as (4.9)

Ğd,l(2i, 2 j) =
α

4

(
Gd,l(2i − 2, 2 j − 2) + Gd,l(2i + 2, 2 j − 2)

)
+ β

(
Yl+1(i − 1, j − 1) + Yl+1(i + 1, j + 1)

− Yl+1(i − 1, j + 1) − Yl+1(i + 1, j − 1)
) (4.9)

In one block, M1,l and M2,l often have closed values, which leads to a small amplitude of Gd,l.

Thus, coefficients are relatively small in order to respect the low amplitude feature of Gd,l. After

a learning stage over a large set of images, the weights are set with α = 0.3, β = 0.035. Once

Gd,l decoded, M1,l and M2,l are computed by the inverse transform (4.10). M1,l(2i, 2 j) = Yl+1(i, j) +
⌊(

Gd,l(2i, 2 j) + 1
) /

2
⌋

M2,l(2i, 2 j) = M1,l(2i, 2 j) −Gd,l(2i, 2 j)
(4.10)

4.3.2 Prediction for G1,l

Fig. 4.5 (a) illustrates the actual availability of data to predict G1,l. {Yl} represents the

already reconstructed pixels. {Xl} indicates the ones that have not been encoded in one block.

Their mean values M1,l and M2,l are available. G1,l(2i, 2 j) is represented by [Xl(2i, 2 j)−Xl(2i +

1, 2 j + 1)]. To evaluate G1,l(2i, 2 j), we consider six pairs of pixels with the same direction

around G1,l(2i, 2 j), and assume that they have an equivalent contribution. The difference of the

each pair is,
(
Yl(2i − 1, 2 j − 1) − Xl(2i, 2 j)

)
,
(
Xl(2i − 1, 2 j) − Xl(2i, 2 j + 1)

)
,
(
Xl(2i, 2 j + 1) −
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Figure 4.5 – Prediction for G1,l.

Xl(2i + 1, 2 j + 2)
)
,
(
Xl(2i − 1, 2 j + 1) − Xl(2i + 2, 2 j + 2)

)
,
(
Xl(2i + 1, 2 j) − Xl(2i + 2, 2 j + 1)

)
and

(
Xl(2i, 2 j − 1) − Xl(2i + 1, 2 j)

)
. The Ğ1,l(2i, 2 j) is expressed as (10).

Ğ1,l(2i, 2 j) =
1
6

[(
Yl(2i − 1, 2 j − 1) − Xl(2i, 2 j)

)
+
(
Xl(2i + 1, 2 j + 1) − Xl(2i + 2, 2 j + 2)

)
+

1∑
k=0

(
Xl(2i − 1 + k, 2 j + k) − Xl(2i + k, 2 j + 1 + k)

)
+

1∑
n=0

(
Xl(2i + n, 2 j − 1 + n) − Xl(2i + 1 + n, 2 j + n)

)]
(4.11)

Xl(2i + 1, 2 j) and Xl(2i, 2 j + 1) are removed for the addition and subtraction. Xl(2i + 2, 2 j + 2)

is estimated by M1,l(2i + 2, 2 j + 2). Other Xl pixels are evaluated by the average of four nearby

pixels as shown in fig. 4.5 (b). The difference, Xl(2i, 2 j) − Xl(2i + 1, 2 j + 1), is equal to the

Ğ1,l(2i, 2 j). After simplification, Ğ1,l becomes (4.12).

Ğ1,l(2i, 2 j) = 0.153
[
1.5

(
Yl(2i − 1, 2 j − 1) − M1,l(2i + 2, 2 j + 2)

)
+ 0.5

(
M1,l(2i − 2, 2 j) + M1,l(2i, 2 j − 2) − M1,l(2i, 2 j + 2)

− M1,l(2i + 2, 2 j)
)] (4.12)
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Figure 4.6 – Prediction for G2,l.

By coding the prediction error, G1,l(2i, 2 j) can be calculated out and the pixels Yl(2i, 2 j) and

Yl(2i + 1, 2 j + 1) in the first diagonal are available according to (4.13). Yl(2i, 2 j) = M1,l(2i, 2 j) +
⌊(

G1,l(2i, 2 j) + 1
) /

2
⌋

Yl(2i + 1, 2 j + 1) = Yl(2i, 2 j) −G1,l(2i, 2 j)
(4.13)

4.3.3 Prediction for G2,l

The previous step enables to decode values in the first diagonal. Then, the prediction of

G2,l(2i, 2 j), which is used to recover pixels Yl(2i+1, 2 j) and Yl(2i, 2 j+1), can take advantage of

a rich context. The prediction is anisotropic when a horizontal or vertical direction is adopted,

otherwise it is isotropic.

Fig. 4.6 presents the neighbourhood space for the analysis. We introduce di f_h and di f_v

as the gradient estimations for the horizontal and vertical directions, given as (4.14). The di f_h

is used to evaluate the similarity of the pixels in the horizontal direction while the di f_v is in

the vertical direction.

di f_h =
∣∣∣∣2M2,l(2i, 2 j) −

1
2

(
Yl(2i, 2 j) + Yl(2i − 1, 2 j + 1)

+ Yl(2i + 2, 2 j) + Yl(2i + 1, 2 j + 1)
)∣∣∣∣

di f_v =
∣∣∣∣2M2,l(2i, 2 j) −

1
2

(
Yl(2i + 1, 2 j − 1) + Yl(2i, 2 j)

+ Yl(2i + 1, 2 j + 1) + Yl(2i, 2 j + 2)
)∣∣∣∣

(4.14)

where |.| denotes the absolute value here and after. The di f_h represents the absolute diffe-
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rence between the second mean value M2,l(2i, 2 j) and the average of the adjacent pixels in the

horizontal direction, and the di f_v represents the one in the vertical direction. A large value

of di f_h or di f_v is often due to the presence of an edge. In that case, a better estimation can

be achieved by a directional prediction. Therefore, the prediction of G2,l(2i, 2 j) is treated for

the “flat” part and “edge” part respectively. In this implementation, we set a threshold to 20 to

separate the prediction into two branches. We set this threshold value in order to keep a weight

coefficient α no less than 95.5% when di f_h = 1 for the “edge” prediction in the Branch 1. α

is given by

α =
di f_v

di f_h + di f_v
. (4.15)

Similarly, (1 − α) is not less than 95.5% when di f_v = 1.

Branch 1 : If one of di f_h and di f_v, or both are greater than the threshold, this block

is considered in an “edge” part. The proposed predictor is defined as (4.16). When di f_h is

greater than di f_v, it probably means the “edge” is in vertical direction. Thus, the contribution

from the vertical direction is favored 1 − α is greater than α.

Ğ2,l(2i, 2 j) =
α

2

(
Yl(2i, 2 j) − Yl(2i − 1, 2 j + 1) + Yl(2i + 2, 2 j) − Yl(2i + 1, 2 j + 1)

)
+

1 − α
2

(
Yl(2i + 1, 2 j − 1) − Yl(2i, 2 j) + Yl(2i + 1, 2 j + 1)

− Yl(2i, 2 j + 2)
) (4.16)

Branch 2 : If both di f_h and di f_v are not greater than the threshold, a smoother predic-

tion is suited to Ğ2,l(2i, 2 j), given in (4.17).

Ğ2,l(2i, 2 j) =
3
8

(
Yl(2i + 1, 2 j − 1) + Yl(2i + 2, 2 j) − Yl(2i − 1, 2 j + 1) − Yl(2i, 2 j + 2)

)
−

1
8

(
Yl(2i, 2 j − 1) + Yl(2i + 2, 2 j − 1) − Yl(2i − 1, 2 j) − Xl(2i + 1, 2 j)

) (4.17)

Xl(2i + 1, 2 j) is estimated by Wu’s predictor for the third pass [Wu97].

X̆l(2i + 1, 2 j) =
3
8

(
Yl(2i, 2 j) + Yl(2i + 1, 2 j − 1) + Yl(2i + 2, 2 j) + Yl(2i + 1, 2 j + 1)

)
−

1
4

(
Yl(2i, 2 j − 1) + Yl(2i + 2, 2 j − 1)

) (4.18)

The floating-point operations are much more complex and time-consuming than the integer

ones for both software and hardware implementations [CLHH09]. Thus, we approximate the

floating-point multiplication by simple integer operations, such as the add/sub and shift. The
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division by 2m (m ≥ 0, m is an integer) can be achieved by right-shift in m times, denoted by

(>> m), while the multiplication with 2n (n ≥ 0, n is an integer) can be achieved by left-shift

in n times, denoted by (<< n). For the prediction of the Ğd,l, the coefficient 0.3 is approxima-

ted by ( 1
4 + 1

8 −
1
16 = 0.3125), 0.035 is ( 1

32 + 1
256 = 0.03515). For Ğ1,l, the coefficient 0.153

is approximated by ( 1
8 + 1

32 −
1

256 = 0.1523). The multiplications with these coefficients are

estimated by (4.19),

0.3 · X ≈ (X >> 2) + (X >> 3) − (X >> 4)

0.035 · X ≈ (X >> 5) + (X >> 8)

0.153 · X ≈ (X >> 3) + (X >> 5) − (X >> 8)

(4.19)

where X represents the multiplier. The division operation is only required for Ğ2,l in (4.16).

After this step, pixels in the second diagonal are available in (4.20). Yl(2i + 1, 2 j) = M2,l(2i, 2 j) +
⌊(

G2,l(2i, 2 j) + 1
) /

2
⌋

Yl(2i, 2 j + 1) = Yl(2i + 1, 2 j) −G2,l(2i, 2 j)
(4.20)

4.4 Entropy Pre-coding and Coding of Prediction Errors

Context adaptive arithmetic coders are efficient solutions for VLC encoding. However,

the complexity is still considered to be higher than the Huffman one [Sai04]. For the “ultra-

fast” mode of JPEG2000, T. Ritcher et al. replaced the EBCOT coding by a simple Huffman-

runlength one [RS12]. Similarly, a Pre-coding+Huffman scheme is adopted in this section.

For the Huffman coding, we adopt the classic static mode rather than the adaptive mode.

The former generates a non-adaptive codebook from the data source, and then codes symbols

by pre-fixed codebook elements. The latter often uses the feedback loop and delays the coding

because of the limitation on the amount of symbols to be each time handled. Before the Huff-

man coder, a pre-coding step consisting in a pre-classifying symbols is applied to increase the

coding gain. This concept is based on the source separation theory : the global entropy of a

source can be reduced if the source is “well” separated into sub-sources with different Probabi-

lity Distributions (PD) [HDG92]. The implementation of pre-coding is dependent on the ove-

rall coding scheme. Marpe et al. [MC97] propose a partitioning, aggregation and conditional

coding (PACC) based on the discrete wavelet transform. Further, they use an adaptive binary

arithmetic coding to reduce the alphabet size of quantized transform coefficients [MSW03].

Instead of the arithmetic coding, LAR-LLC adopts the Huffman coding and focuses on the
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arrangement of PD. The details are introduced here.

After prediction, most residual errors have small amplitudes, and the distribution function

is symmetric around zero. A suitable classification solution would be to separate errors ac-

cording to their amplitude. The following part gives an analysis on the change of the source

entropy by the use of the amplitude classification. The error stream can be considered as a finite

input sequence A of a discrete memoryless source with a alphabet set U = {a1, a2, ..., an}. The

sequence A has a length N. Ni is the amount of the symbol ai (1 ≤ i ≤ n) in this sequence. Let

the probability of a symbol ai be

pA(ai) =
Ni

N
, 1 ≤ i ≤ n. (4.21)

The entropy of the sequence can be expressed by Eq. (4.22). H(A) gives the lower bound of the

average code length L̄ for each symbol to losslessly encode A.

H(A) = −

n∑
i=1

pA(ai) · log2 pA(ai) (4.22)

The least totally required code length is NH(A). Consider any subsequence A1 with a length

N1 and A2 with a length N2, A1 ∈ U1 = {a1, a2, ..., an1} and A2 ∈ U2 = {an1+1, an1+2, ..., an}.

Then U = U1 ∪ U2 and U1 ∩ U2 = ∅. It has N = N1 + N2, and the least required code length

can be expressed by (4.23) when coding A1 and A2 separately.

N1H(A1) + N2H(A2) = −N1

n1∑
j=1

pA1(a j) · log2 pA1(a j)− N2

n∑
k=n1+1

pA2(ak) · log2 pA2(ak) (4.23)

where pA1(a j) is the probability of a j in subsequence A1 and pA2(ak) is the probability of ak in

A2. Notice that N1 pA1(a j) equals to N p(a j), and N2 pA2(ak) equals to N p(ak). Let α = (N1/N)

(0 < α < 1), then (4.23) can be simplified as

N1H(A1) + N2H(A2) =N

− n1∑
j=1

pA(a j) · log2 pA(a j) −
n∑

k=n1+1

pA(ak) · log2 pA(ak)


+ N

 n1∑
j=1

pA1(a j) · log2
N1

N
+

n∑
k=n1+1

pA2(ak) · log2
N2

N


=NH(A) + N

[
α · log2α + (1 − α) · log2(1 − α)

]
(4.24)

Let [ −α · log2α − (1 − α) · log2(1 − α)] be β, it can be achieved that
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N1H(A1) + N2H(A2) = N
[
H(A) − β

]
≤ N H(A)

(4.25)

where 0 ≤ β ≤ 1.

The length 4.25 has the minimum value N(H(A) − 1) when α = 0.5. It is noticed that the

required code length descends after the classification, and at most 1 bit is saved while N1 equals

to N2. The saved 1 bit indicates the reduction of the range of the sub alphabet of A1 and A2

compared to the alphabet of A. In order to reduce the alphabet set by the classification, one

possible way is to separate errors according to their amplitude and separately encode them.

This classification allocates the elements of the error sequence into sub-sequences. The sub-

sequences should have the equal length.

The side information will be needed for the decoder in order to recover the sub-sequences

exactly during the decoding process. For instance, in this binary classification, 1 bit is required

to indicate which class has been chosen for the current prediction error. The side information

increases the bitrate and overbalances the potential benefit of the entropy reduction. To avoid

this side information, we prefer a prior classification, and the pre-coding in LAR-LLC mainly

consists of defining good error amplitude estimation based on the information around the cur-

rent position.

In order to find an efficient, but not computationally complex estimation method, we have

investigated different criteria such as the amplitude of the gradient prediction, co-located errors

for previous gradient, and errors of the upper level. Eventually, the available prediction errors

from adjacent positions at current level and the corresponding one at upper level are considered

together for a notable improvement in the coding efficiency. The classification method based

on it is introduced in the following.

Let el(2i, 2 j) be the current prediction error of any G component in a block. The evaluated

value of its amplitude ĕl_apt(2i, 2 j) is defined as (4.26).
Coeadjacent =

1
4

(∣∣∣∣el(2i − 2, 2 j)
∣∣∣∣+∣∣∣∣el(2i, 2 j − 2)

∣∣∣∣
+
∣∣∣∣el(2i − 2, 2 j − 2)

∣∣∣∣ +
∣∣∣∣el(2i + 2, 2 j − 2)

∣∣∣∣)
Coeupper =

∣∣∣∣el+1(i, j)
∣∣∣∣

⇒ ĕl_apt(2i, 2 j) =
3
4

Coead jacent +
1
4

Coeupper

(4.26)

In (4.26), Coead jacent is the average of adjacent available errors, Coeupper is the one from upper

level. Their positions are shown in Fig. 4.7 .
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Figure 4.7 – Estimation for ĕl_apt(2i, 2 j).

The next problem to solve is to define a relevant classification strategy. Every division

from the original error sequence probably leads to a reduction of the required code length.

However, the uncertainty of the accuracy of the classification weaken the change of the PD

of the sub-sequences. Too many sub-sequences increase the uncertainty of the accuracy and

nullify the change of the PD of the classification. To avoid this problem, we limit the number

of classes to four, and a fixed criterion of uniform partitions (try to let each class have the

equal number of elements). The corresponding thresholds thi can be easily deduced from the

cumulated probabilities function of ĕl_apt, denoted by C(ĕl_apt), defined as (4.27).

C(ĕl_apt) =

ĕl_apt∑
n=0

p(n) (4.27)

where p(n) is the probability of the amplitude n. This function can be estimated when the

prediction stage has been completed for a specific gradient. Then, the amplitude thresholds can

be determined by setting C(th1) = 0.25, C(th2) = 0.50 and C(th3) = 0.75 (as shown in Fig.4.8).

The three thresholds are transmitted to the decoder. The classification is finally completed by a

binary search as described in Algorithm 1.

After the classification, subsequences A1, A2, A3 and A4 are coded separately. Fig. 4.9

shows a result of classification for the prediction error of G1 on image “bike”. It can be no-

ted that the distributions of subsequences are different from the original one. During the pre-

coding, each residual error needs 4 additions, 3 divisions to achieve ĕl_apt according to (4.26) :

3 additions and 1 division are used to compute Coead jacent, 1 addition and 2 divisions are used

to calculate ĕl_apt. The division by 4 can be achieved by the shift operation. The operation
3
4Coead jacent can be implemented by [Coead jacent − (Coead jacent >> 2)]. Besides, the binary search

step makes the decision 2 times in order to choose the class for each residual error e. By the
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Figure 4.8 – Thresholds for classification.

Algorithm 1 Binary search for the class
if ĕl_apt(2i, 2 j) > th2 then

if ĕl_apt(2i, 2 j) > th3 then
e(2i, 2 j) ∈ A4

else
e(2i, 2 j) ∈ A3

end if
else

if ĕl_apt(2i, 2 j) > th1 then
e(2i, 2 j) ∈ A2

else
e(2i, 2 j) ∈ A1

end if
end if

use of the shift operation, Table 4.1 gives the numbers of different operations used in the clas-

sification step.

Table 4.1 – Operation numbers for each prediction error in the classification step

operation add/sub shift decision

number 5 3 2
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Figure 4.9 – Distributions of subsequences and original error sequence of G1 on image “bike”.

4.5 Compression Performance

In this section, the effectiveness of the proposed LAR-LLC is compared with those of still

image compression standards in compression efficiency and coding speed. These standards

are still current references for image coding and their complete reference solutions are avai-

lable : the JPEG2000 (JPEG2K) implementation is available in [Ada] ; the JPEGXR reference

software is generated from [ITU] ; JPEGLS is from [UBC] and Lossless JPEG is offered in

[HS]. Because this work focuses on the complexity, although some other image coding me-

thods report better compression ratios with heavier computations, they are not compared in

detail in this section. Kim et al. proposed a hierarchical prediction and context adaptive coding

for lossless color image compression (LCIC) [KC14]. They offered the reference execution

[KC]. They pointed out that their coding method LCIC can show an average bit rate reduc-

tion over JPEG2K, but it needs slightly more computation time than JPEG2K. Therefore, we

also take this referenced method into the comparison. 16 images (RGB 24 bit/pixel) with dif-

ferent content/features are chosen mainly from the set of ISO/ITU reference images. They cover

contents of objects, human and surrounding views. Test images are presented in Fig.4.10.

4.5.1 Compression Efficiency

This subsection firstly shows the effectiveness of the classification scheme used in the Pre-

coding part. Table 4.2 gives the entropy reduction of the prediction error stream G1 of each
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Figure 4.10 – Test images.

image. H(A1), H(A2), H(A3) and H(A4) are the entropies of the classified sub-sequences A1,

A2, A3 and A4 respectively. Hclass is the expected entropy of the sub-sequences. Let N1, N2, N3

and N4 be the numbers of elements in H(A1), H(A2), H(A3) and H(A4). Hclass is calculated by

Hclass =
H(A1) · N1 + H(A2) · N2 + H(A3) · N3 + H(A4) · N4

N1 + N2 + N3 + N4
. (4.28)

Horiginal is the entropy of the original prediction error sequence G1. The column ratio gives

the ratios of the entropy reduction, and the ratio is calculated by

Ratio =
Horiginal − Hclass

Horiginal
(4.29)
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Table 4.2 – Entropy reduction for the prediction error stream G1

Image Image Size H(A1) H(A2) H(A3) H(A4) Hclass Horiginal Ratio

bike 2048×2560 3.251 3.994 5.209 7.290 5.080 5.493 7.51%

tools 1524×1200 4.394 5.234 6.324 7.954 6.156 6.534 5.79%

boats 2268×1512 2.613 3.381 4.503 6.275 3.959 4.421 10.45%

flowers 4064×2704 3.768 4.552 4.993 5.795 4.757 4.902 2.97%

food 3072×2048 2.225 3.310 3.836 4.983 2.652 2.877 7.83%

woman 2048×2560 3.697 4.102 5.414 7.217 5.061 5.497 7.92%

woman2 2268×1512 3.170 3.876 4.644 6.072 4.371 4.695 6.91%

birthday 3008×2000 3.440 3.621 3.916 5.267 3.848 3.956 2.75%

boy 4064×2704 3.208 3.489 3.757 4.477 3.475 3.533 1.64%

cafe 2048×2560 3.999 5.251 6.807 8.008 6.243 7.089 11.92%

green 1440×1152 4.378 5.328 6.271 7.313 5.942 6.224 4.53%

cabin 2268×1512 2.718 4.113 5.346 6.513 4.739 5.192 8.73%

fall 2704×3499 3.060 3.783 4.684 6.452 4.590 4.959 7.44%

leaves 4064×2704 4.396 4.880 5.299 5.778 5.119 5.177 1.12%

building 4064×2704 4.590 4.868 5.064 6.175 5.094 5.168 1.44%

mount. 4064×2704 3.454 3.682 4.035 5.048 3.945 4.049 2.57%

Average 5.72%

Table 4.2 shows that Hclass is less than Horiginal and the reduction ratio is 5.72% in average.

Table 4.3 shows the compression results of different codec solutions. The addition data in-

dicates the ratio of bits per pixel (bpp) between codec solutions and JPEG2K used as reference.

It is calculated in (4.30).

Addition =
(bitrate of codec) − (bitrate of JPEG2K)

bitrate of JPEG2K
(4.30)

Besides, Hsum is the summation of entropies from the luminance and chrominances. It is defined

as (4.31).

Hsum = H(Y) + H(Db) + H(Dr) (4.31)

H(Y) is the entropy of Y component introduced as the luminance Y, while H(Db) and H(Dr)

are entropies of chrominances Db and Dr. Hsum is used to represent the optimal code rate of the

image if Y, Db and Dr components are directly coded respectively.

According to the Table 4.3, Fig.4.11 gives the comparison of bitrates of coders. Based on

the Table 4.3 and Fig.4.11, LAR-LLC keeps quite close to JPEG2K in compression ratio for
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Table 4.3 – Bitrates (bits/pixel) of Lossless Color Image (24 bits/pixel) Codecs

Image Hsum JPEGXR JPEG2K JPEGLS LJPEG LCIC LARLLC LARLLC?

bike 18.9574 12.7117 11.9620 13.4238 15.2339 11.9717 11.9980 12.6153

tools 21.6405 17.7141 17.2953 16.8608 18.4419 17.4366 17.1031 17.6948

boats 17.9918 10.2317 9.5897 9.8568 11.9158 9.1201 9.6360 10.3803

flowers 19.4811 12.8349 11.0428 10.3861 12.0695 10.8445 11.0215 11.3957

food 19.3113 8.8038 7.5938 7.3736 8.7659 7.4742 7.5773 7.8830

woman 18.4163 12.1915 11.5022 13.7202 15.3821 11.5965 11.4827 12.0114

woman2 20.4784 10.5590 9.9005 12.2876 13.5644 9.5871 9.9011 10.4169

birthday 18.9132 10.0703 8.8880 10.2907 11.3325 8.9251 8.5474 8.7910

boy 20.2896 8.4229 6.9459 8.2635 9.5655 6.7187 7.0269 7.2244

cafe 20.9485 16.0008 15.5082 15.3658 17.9514 15.6295 15.5327 16.2929

green 20.8334 16.7807 16.5124 16.6452 17.7940 16.6764 16.2514 16.5517

cabin 20.7533 11.8518 11.3156 12.2742 14.3281 11.0487 11.3700 12.3011

fall 17.2929 10.8843 9.4066 11.0843 13.0315 9.0087 9.4190 10.0468

leaves 19.2470 14.4032 13.8618 9.6327 11.4100 14.4082 12.7797 13.0207

building 18.0781 9.6831 8.4068 12.7103 13.7053 8.0496 8.4108 8.6159

mount. 17.6862 8.6423 7.1561 9.1210 10.0601 7.2050 7.0910 7.2159

Average 19.3949 11.9866 11.0555 11.8311 13.4095 10.9813 10.9468 11.4036

Addition 8.42% 0% 7.02% 21.29% -0.67% -0.98% 3.15%

LARLLC shows the results with the classification step ;
LARLLC? shows results without classification.
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Figure 4.11 – Comparison of bitrates of color image codecs.

each test image, and gains a 0.98% advantage at the average bitrate. As JPEG2K, LAR-LLC

has no inferior records and performs steadily during the test. Compared with the results of
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Table 4.4 – Bitrates (bits/pixel) Comparison with Method [PKC+10]

Image Size Hsum JPEGLS [PKC+10] LARLLC

Airplane 512×512 16.9182 11.8397 12.2927 11.7717

Baboon 512×512 21.0706 18.5151 18.6777 18.0242

House 512×512 20.4015 12.7533 13.1484 13.2397

Lena 512×512 20.5414 13.6047 13.6230 13.3004

Peppers 512×512 20.6455 14.2654 14.4266 11.3169

Tiffany 512×512 19.2903 11.5741 11.7727 13.4683

Average 19.8113 13.7587 13.9902 13.5202

JPEG2K for “bike”, “boats”, “woman2”, “boy”, “cabin”, “fall” and “building”, although LAR-

LLC is not as efficient as JPEG2K, it achieves very closed bitrates to those of the standard

JPEG2K. For images “birthday” and “green”, LAR-LLC has the salient better coding results

compared to other solutions. The reason probably relies on the directional texture parts which

appear on the shirt in “birthday” and the grass in “green”. JPEGLS shows obvious fluctuations

for the compression ratio. For example, It obtains a superior coding gain for the image “lea-

ves”, whereas suffers more than 3 bpp compared with JPEG2K and LAR-LLC for the image

“building”. JPEGXR reaches close results to JPEG2K for lossy coding [DSOD+07], but not

exceeds JPEG2K for the lossless coding as shown in Table 4.3.

Besides, Table 4.3 provides the coding bitrates of the LAR-LLC solution without the clas-

sification step. This solution is named LAR-LLC? in the table. For each image, LAR-LLC?

costs more bpp than the one of LAR-LLC. Its average bitrate is also higher than that of JPEG2K

by 3.15%. Consequently, it is concluded that the classification step is beneficial for the com-

pression efficiency.

Compared with the latest non-standard method LCIC, LAR-LLC also has the equivalent

compression efficiency. Indeed, the coding ratio is relevant with the tested images. Such as the

image “leaves”, JPEGLS and LJPEG perform well on it, but they cost much for the average

bitrate. According to the Table 4.3, we can argue that LAR-LLC has an equivalent lossless

coding ratio with the one of JPEG2K, is as efficient as the non-standard color coding method,

such as the LCIC.

Park et al. [PKC+10] also introduced a low complexity lossless image coding scheme based

on context modelling. Because the reference software is not available, its bitrates are calculated

from the data in [PKC+10], and shown in Table 4.4. As indicated in [PKC+10], this method

yields the performance of JPEGLS, while LAR-LLC achieves a better overall coding efficiency.
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4.5.2 Computation Complexity

Measuring the complexity of coding method is a hard issue. The execution times of their

implementations are dependent on the codec language, the execution environment and so on.

Commercial solutions are often implemented by assembly languages and Single Instruction,

Multiple Data (SIMD). They are platform dependent and fast. In our tests, the parallel technique

is not used. All the executable programs are compiled from the plain C/C++ language and

run in the same environment as shown in table 4.5. For the LCIC, the executable software is

available, but it needs much more time to complete the encoding and decoding. We notice that

the LCIC website also provides a version of the Jasper (JPEG2K reference solution) [KC]. This

version of Jasper costs the time which is about 2 times more than the one of the jasper version

implemented from [Ada] in our platform. Thus, it is possible that the authors of [KC14] may

upload the debug version of LCIC, or release it in a rather different platform from the ours. For

the fairness, the LCIC is not put into this test section. However, as described in [KC14], the

LCIC requires more coding time than the one of JPEG2K.

Table 4.5 – Platform of the Test Environment

CPU Intel(R) Xeon(R) W3670 @ 3.20 GHz

Memory (RAM) 6G (DDR3)

Mother board Intel X58

Operating System Windows 7 Professional 64 bits

Disk Hitachi HDS721010CLA632

In order to compare the computation complexity of codecs, the processing speeds are pre-

sented in the Table 4.6 and Table 4.7. Table 4.6 shows speed results of images coded by different

encoders, and Table 4.7 are the results from the decoders. The data in the table is expressed

by “pixels/ms”. It means the total number of pixels encoded/decoded per millisecond. As the

same in the section 4.5.1, the speed of JPEG2K is set the origin, and it is compared with other

codecs to calculate the speed gain by (4.32).

speed gain =
(codec coding speed) − (JPEG2K coding speed)

JPEG2K coding speed
(4.32)

According to the average data in the Table 4.6, JPEGLS provides the least encoding la-

tency and runs more than 3 times faster than JPEG2K. For JPEGXR, the implementation [ITU]

is faster than JPEG2K by 49.38%. The proposed LAR-LLC has a speed gain up to 76.11%

compared to JPEG2K, and this result is better than LJPEG (32.35%) and JPEGXR.
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Table 4.6 – Comparison of Encoding Speeds of Lossless Image Codecs, Unit : Pixels/Millisecond

Image Image Size JPEG2K JPEGXR JPEGLS LJPEG LAR-LLC

bike 2048×2560 1507 2403 7066 2281 3062

tools 1524×1200 1138 2019 6158 2177 2438

boats 2268×1512 1706 2646 7115 2085 2926

flowers 4064×2704 1635 2438 8552 2397 3017

food 3072×2048 2125 2844 7535 2128 3279

woman 2048×2560 1599 2494 6183 2253 3025

woman2 2268×1512 1741 2588 7296 2234 2985

birthday 3008×2000 1936 2677 7539 2241 3079

boy 4064×2704 2283 2959 8086 2292 3215

cafe 2048×2560 1237 2217 6818 2191 2767

green 1440×1152 1218 2063 6480 2076 2584

cabin 2268×1512 1547 2485 6804 2090 2843

fall 2704×3499 1822 2615 7317 2278 3221

leaves 4064×2704 1383 2323 10184 2462 2829

building 4064×2704 1935 2785 7400 2340 3142

mount. 4064×2704 2245 2853 7900 2285 3231

Average 1691 2526 7402 2238 2978

Add. 0% 49.38% 337.73% 32.35% 76.11%

Table 4.7 presents the speed of decoders. JPEGLS also has the best record which is more

than 2 times faster than JPEG2K. LAR-LLC saves the decoding latency by 75.94% which is

higher than 65.85% of JPEGXR, and a little less than LJPEG which has 82.01%.

Since the source codes of some recently proposed compression methods are not available,

their performances, especially on the computational complexity, are analyzed and compared

here based on the references. In [MKMI07], Matsuda et al. proposed a block-adaptive inter-

color prediction carried out by computing a linear combination of many samples of different

color signals in an adaptive way. After the inter-color prediction, the prediction errors are coded

by adaptive arithmetic coding with context modelling. For images with size 512×512, although

this coding scheme obtains good coding rates in [MKMI07], it takes several tens of minutes in

encoding and at most 0.5 seconds in decoding on a computer with the 3.6 GHz Xeon proces-

sor which is faster than the processor we used (3.2 GHz) as shown in Table 4.5. In contrast,

based on the average coding speeds in Table V and VI, LAR-LLC only needs 0.088 seconds

in encoding and 0.081 seconds in decoding for an image with size 512×512. In [ZH10], Zhao

et al. applied their structure learning and prediction scheme to the lossless image compression.
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Table 4.7 – Comparison of Decoding Speeds of Lossless Image Codecs, Unit : Pixels/Millisecond

Image Image Size JPEG2K JPEGXR JPEGLS LJPEG LAR-LLC

bike 2048×2560 1612 2967 5749 3354 3003

tools 1524×1200 1198 2533 5123 3068 2442

boats 2268×1512 1873 3146 5852 3294 3561

flowers 4064×2704 1749 2998 7058 3513 3019

food 3072×2048 2341 3397 6506 3325 3779

woman 2048×2560 1724 3003 5730 3357 3151

woman2 2268×1512 1904 3137 5812 3266 3453

birthday 3008×2000 2079 3252 6247 3405 3356

boy 4064×2704 2548 3504 6957 3523 3780

cafe 2048×2560 1281 2724 5793 3293 2631

green 1440×1152 1294 2592 5457 3072 2588

cabin 2268×1512 1642 3011 5832 3229 3342

fall 2704×3499 1967 2482 6049 3268 3449

leaves 4064×2704 1498 2908 8473 3369 2790

building 4064×2704 2116 3363 5950 3404 3626

mount. 4064×2704 2440 3525 6519 3530 3529

Average 1829 3033 6194 3329 3218

Add. 0% 65.85% 238.65% 82.01% 75.94%

This method shows an advantage on the lossless coding of the luminance component in the

test in [ZH10]. However, as noted in [ZH10], one drawback of this method is its computational

complexity. It applies a structure prediction scheme which is quite computational expensive.

In [PSL+13], a low complexity compression method for screen sequence is provided for lossy

coding. For coding images, this method is faster than JPEG2K. It outperforms JPEG2K on

textual contents but under-performs on natural images in terms of compression efficiency. As

introduced in Subsection A, a low complexity lossless image compression method is also intro-

duced in [PKC+10]. This method adopts the context modelling and has 250 context conditions

which are fewer than 365 context conditions used in JPEGLS. In this case, this method can

have fast coding speeds (not specified in the reference). However, with the fewer conditions,

the compression efficiency is lower and more bpp are required for each of 6 test images compa-

red with JPEGLS in [PKC+10]. According to the results of high resolution images in Table 4.3,

JPEGLS costs about 8.08% bpp more than LAR-LLC and the method proposed in [PKC+10]

probably costs more than that.

In 2011, a Core Experiment Report [55t11] was made to evaluate different image coding
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methods. The original LAR method is about 2 times slower than JPEG2K in both encoding

and decoding during tests. It encouraged the design of a new low complexity solution. LAR-

LLC can achieve the equivalent lossless compression efficiency of JPEG2K, while be 76.11%

faster than JPEG2K for encoding and 75.94% faster for decoding. JPEGLS has the least time

consumption on coding. However, it costs 7.02% bpp more than JPEG2K and about 8.08%

more than LAR-LLC, and has fluctuations for the compression ratio compared with LAR-

LLC. LAR-LLC has less coding latency than JPEGXR, and saves 8.67% bpp of JPEGXR.

Besides, LAR-LLC also supports the spatial scalability as JPEG2K does for multi-resolution

application.

The LAR-LLC currently runs in a mono thread configuration, but has potential parallel

processing ability in multi-threading. For the pyramid building process in Section 4.2, the DC

component for blocks at each level is independently estimated. Then, the global process can

be performed in a SIMD approach, with one thread processing one part of the image. Besides,

during the pyramidal decomposition, the image coding process involves three main pipelined

steps : prediction, classification and Huffman coding. These stages are performed for each level

and for three coefficients per level. It means that the last Huffman coding step in level l + 1 can

run simultaneously with the prediction step in level l, both handled by different threads. Some

parallel processing is also possible for JPEG2K for the Discrete Wavelet Transform (DWT)

part [SJ09] or the EBCOT module [MOS11]. Recently, new parallel processing methods and

advanced graphic processing units are also applied to JPEG2K for a significant speedup in the

execution time [LBM11][WCL12].

4.6 Conclusion

In this chapter, a low complexity scalable lossless image compression method LAR-LLC

is introduced to decrease the latency of encoding and decoding while remaining high compres-

sion efficiency. Based on a Hierarchical Diagonal S Transform, coding starts at a top-down

dyadic decomposition with targeted prediction processes. For each process, the predictor runs

in one pass and avoids the latency caused by the feedback action. Because the prediction errors

are coded from the low resolution to the full resolution level, this coding structure offers the

scalable resolution ability in the bit stream. The receiving terminal can decode the image in

progressive-resolution according to the channel capacity and user requirements. After the pre-

diction, a classification step is applied to reduce the entropy of prediction errors for increasing

the coding efficiency.
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Experiments showed that, the pre-coding scheme including the classification action really

decreases the entropy of the error sequence, and it is beneficial for the following entropy co-

ding step. For the lossless coding of the nature color images, LAR-LLC achieves the coding

efficiency equivalent to JPEG2K, and as good as the latest non-standard coding method. Be-

sides, LAR-LLC has less coding latency in both encoding and decoding parts than the ones of

JPEG2K. Due to the space scalability, low complexity and notable compression ratio, LAR-

LLC is a good image compression solution with high quality for the multimedia storage and

communication, implementing both in hardware and in software.



Chapter 5

Conclusion and Perspectives

In this manuscript we introduced a RDO (Rate-distortion-optimization) model, an objec-

tive quality control model and an enhancement scheme of the subjective quality for the lossy

coding based on LAR the (Locally Adaptive Resolution) image codec. Besides, a new lossless

image codec, LAR-LLC (Locally-adaptive resolution, lossless low complexity), is introduced

to achieve a coding efficiency equivalent to that of JPEG2000, while having a lower computa-

tional complexity in order to reduce the coding latency. The contributions of the novelties are

presented in the conclusion section in detail.

5.1 Conclusion of the thesis work

5.1.1 Rate-distortion-optimization model for LAR codec

The classic LAR codec has complete lossy and lossless coding structures. In the lossy

coding mode, two functions, the Quadtree partitioning and the quantization of the prediction

errors, are designed to miss the information of the image in order to economize the bitrate.

Meanwhile, the Quadtree partition is controlled by a threshold Thr, and the Quantization is

regulated by a parameter quqp. The study firstly analysed the different distortions derived from

the Thr and the quqp, next selected the optimal pairs of the Thr and the quqp. Based on the

characters of adjacent pixels, a RDO model is built to describe the relationship of the Thr and

the quqp of the optimal pairs. According to the model, a suitable Thr corresponding to a set

quqp can be chosen. With the modeled Thr and quqp, the LAR codec can achieve an optimal

or closely optimal lossy coding efficiency. The RDO model is introduced in Section 3.2.

By the use of the RDO model, the Mean Square Error (MSE) of the decoded image shows

117
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a nearly linear relationship with the quqp. Therefore, a linear model is proposed to describe

this relationship. With this linear model, users can refrain the overall distortion of the decoded

image to a target MSE by a choice of quqp. This part is introduced in Subsection 3.4.1.

Moreover, because the RDO model is sensitive to the change of pixels, it is used in adjacent

regions in order to allocate a series of Thr which is adaptive to local change of pixels. This

allocation meets the fact that the human visual system is less sensitive to noise in strong texture

areas than the less textured areas. After this adaptive Thr allocation, the decoded image has

a better perceptual quality and higher subjective score measured by the Structure Similarity

(SSIM) than the one without the allocation scheme. Meanwhile, this allocation scheme brings

a little influence on the objective quality measured by the Peak signal-to-noise ratio (PSNR).

The relative analysis is given in Section 3.5.

5.1.2 Lossless Low-complexity codec LAR-LLC

Due to the limited compression efficiency and high computational complexity, the classic

LAR codec shows a lower performance than that of the standard JPEG2000. In Chapter 4, a

new lossless image coding method LAR-LLC which is based on the LAR framework is intro-

duced. This method still supports the multi-resolution function which is realized by a HD-ST

Transform. This transform is reversible and easy to be implemented. The coding process is

similar with the classic LAR codec, and starts from the lowest resolution level. It uses the cor-

relation of intra and inter levels to reconstruct higher resolution images, until the full resolution

image is achieved. The reconstruction procedure depends on three prediction steps. The predic-

tion errors need to be coded for the decoder to recover the image. The prediction errors should

be lossless coded. In order to improve the compression efficiency of the entropy coders for the

prediction errors, a pre-coding step is added to reduce the entropy of the error sequence. The

experiments are introduced in Subsection 4.5.1. The experimental results firstly confirm that

the pre-coding step decreases the entropy of the sequence of the prediction errors, next, accor-

ding to the comparison of different codecs on the compression efficiency, LAR-LLC shows an

equivalent performance to the one of JPEG2000 : the average bitrate of LAR-LLC is 0.98%

less than the one of JPEG2000, this result is a little better than the one (0.67%) of the codec

derived from the recent proposed lossless image coing method LCIC [KC14]. LAR-LLC also

has relative stable compression ratios as JPEG2000 does in the comparison with JPEGLS. In

the complexity test, LAR-LLC shows the less coding latency than JPEG2000 : 76.11% faster

than JPEG2000 in the encoding and 75.94% in the decoding.
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5.2 Perspectives

This section presents some ideas that could be prospects of the future research. These ideas

are derived from the study of the LAR, and could be benefit for other image codecs or data

compression techniques.

5.2.1 Distortion control based on the perceptual quality in the lossy coding

The metrics of the objective quality are still the most widely used methods to evaluate the

decoded images. They can detect any distortions in the reconstructed image and give corres-

ponding quality “scores” for the image. Many lossy coding methods aim at the reduction of

the objective distortion, and design their RDO and rate control (RC) schemes. However, this

strategy is not suitable in some cases for the natural images. Although some kinds of distortions

may reduce largely the objective quality, such as PSNR, they do not bring much visible uncom-

fortable effects to the decoded image, as examples discussed in Section 3.5. A human viewer

is the final judge of the image quality in most applications, therefore, it is advantageous to take

into account the properties and characteristics of the Human Visual System (HVS) that affect

the image quality as judged by human viewers when one is designing an image compression

algorithm and assessing picture quality.

The objective quality measures are mainly used because of their simple analysis and the

lack of other available and accepted standardized quality measures [EF95] [SF96]. Meanw-

hile, for the subjective measurement, the images are often rated based on the visibility of the

distortion artefacts according to a predetermined scale [SF96]. Although the test is reliable, it

requires specialized viewing conditions [CLCB03] and can not be used as a real-time scheme to

improve the coding. There has been considerable amount of research done to develop objective

metrics which incorporate the perceived quality measurement by considering HVS characteris-

tics [SF96], [GMK02], [WBSS04]. Similarly, for the LAR codec, it is possible to modify the

lossy coding under the consideration of the perceived quality. As described in Chapter 3, the

RDO model is derived from the analysis on the objective distortion measurement. The subjec-

tive enhancement scheme has been based on the fact that the edge lying in a textured region is

less visible to a human observer compared to the edge in a plain background.

In the future work, another factor needs to be considered for the visual sensitivity is the

background luminance : the visibility of the edge is often affected by the surrounding regions.

For example, the edge lying in a darker region is less visible compared to the edge in the

brighter region [KK95] [VBP05]. It indicates that the distortion in the dark region is more
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tolerable than the one in the bright region. Therefore, it is more important to record the changes

of pixels in the plain and bright region rather than in the textured and darker region. Take the

Fig.3.34 as an example, with the adaptive Thr allocation scheme, the Quadtree grid uses small

blocks to reserve the details on the face and hand, but in the hair and the gray background, the

Quadtree grid does not need to allocate a lot of small blocks to record the changes of pixels.

This idea requires a luminance detection before the adaptive Thr allocation. For the dark region,

a fixed Thr is directly applied to the Quadtree partition. It can be seen as an extension of the

locally adaptive Thr allocation scheme in order to modify the Thr map.

Moreover, in the future work, the distortion derived from the quantization needs to be

controlled. As indicated in Subsection 3.5.1, the magnitude of a justly noticeable luminance

change ∆I is approximately proportional to the background luminance I for a wide range of

the luminance values. In the quantization step, the difference between the original pixel and the

de-quantized one is weighted by the Weber’s law as did in [WB06] [TVDY12].

5.2.2 Better context model for the classification in the Pre-coding process

Section 4.4 introduced a forward classification scheme in order to reduce the entropy of the

prediction error stream. It also indicates that if the two subclasses have no intersections, and

the same length, the average code length can reach H(A) − 1. Therefore, the accuracy of the

classification affects the final average code length. The proposed context model, shown in Fig.

4.7 and Eq. (4.26), can differ the probability distribution of subclasses as shown in Fig. 4.9.

This model has accurate rates about 60% to 70% in the tests. The entropy coding efficiency

can be enhanced with a higher accuracy. One possible method is to build a context model

set and choose a suitable model adaptively during the classification. This method requires a

local analysis on the direction of pixels in order to decide which prediction error, such as

el(2i− 2, 2 j− 2), el(2i, 2 j− 2), el(2i + 2, 2 j− 2), el(2i− 2, 2 j) and el+1(i, j), should has a higher

weight. Indeed, more latency of the coding is caused by this analysis.

Another solution is to use a data sequence to record the information of the accurate clas-

sification. This side sequence needs to be coded. Notice that the side sequence has a very li-

mited alphabet, the symbols probability repeats frequently. A Run-length plus Huffman coding

is considered to code this side information. The run-length coding generates the successive

symbols onto one new symbol and the sequence the new generated symbols is coded by the

Huffman coding. The total entropy is not reduced, but the side information sequence is quite

simple to achieve an efficient coding ratio.
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p(x) the probability of occurrence of the symbol x

H(X) the entropy of the alphabet set X

H(X|Y) the conditional entropy, the uncertainty of X when Y has been known

DCT the Discrete Cosine Transform

DWT the Discrete Wavelet Transform

VLC the variable length coding

Thr the threshold used for the Quadtree Partition

I(x, y) the pixel of an image in the position (x, y)

b.c rounding downward

1M the Image made of the mean value of the first diagonal by S transform

2G the Image made of the gradient value of the first diagonal by S transform

3M the Image made of the mean value of the second diagonal by S transform

3G the Image made of the gradient value of the second diagonal by S transform

2G̃ the predicted image of 2G

3M̃ the predicted image of 3M

3G̃ the predicted image of 3G

quqp the global quantization factor

RDO rate distortion optimization

QC quality control
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RC rate control

MSE Mean Square Error

PSNR Peak Signal-to-noise Ratio

r(i) the cumulation of the probabilities

MSEest the estimated MSE

MSEset the target MSE

HVS Human Visual System

SSIM Structural Similarity

MSSIM mean SSIM

Yl(i, j) the pixel on the position (i,j) in the level l

M1,l the mean value of the first diagonal in the block of the level l

G1,l the gradient value of the first diagonal in the block of the level l

M2,l the mean value of the second diagonal in the block of the level l

G2,l the gradient value of the second diagonal in the block of the level l

Md,l the mean value of the block in the level l

Gd,l the difference value of M1,l and M2,l in the level l

Ğd,l the predicted value of Gd,l

Ğ1,l the predicted value of G1,l

Ğ2,l the predicted value of G2,l

∪ the union

∩ the intersection

∅ the null set

e the prediction error

SIMD Single Instruction, Multiple Data
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Résumé

Ce projet de recherche doctoral vise à proposer solution améliorée du codec de codage

d’images LAR (Locally Adaptive Resolution), à la fois d’un point de vue performances de

compression et complexité. Plusieurs standards de compression d’images ont été proposés par

le passé et mis à profit dans de nombreuses applications multimedia, mais la recherche continue

dans ce domaine afin d’offrir de plus grande qualité de codage et/ou de plus faibles complexité

de traitements. JPEG fut standardisé il y a vingt ans, et il continue pourtant à être le format

de compression le plus utilisé actuellement. Bien qu’avec de meilleures performances de com-

pression, l’utilisation de JPEG 2000 reste limitée due à sa complexité plus importe comparée à

JPEG. En 2008, le comité de standardisation JPEG a lancé un appel à proposition appelé AIC

(Advanced Image Coding). L’objectif était de pouvoir standardiser de nouvelles technologies

allant au-delà des standards existants. Le codec LAR fut alors proposé comme réponse à cet

appel. Le système LAR tend à associer une efficacité de compression et une représentation

basée contenu. Il supporte le codage avec et sans pertes avec la même structure. Cependant,

au début de cette étude, le codec LAR ne mettait pas en œuvre de techniques d’optimisation

débit/distorsions (RDO), ce qui lui fut préjudiciable lors de la phase d’évaluation d’AIC. Ainsi

dans ce travail, il s’agit dans un premier temps de caractériser l’impact des principaux para-

mètres du codec sur l’efficacité de compression, sur la caractérisation des relations existantes

entre efficacité de codage, puis de construire des modèles RDO pour la configuration des pa-

ramètres afin d’obtenir une efficacité de codage proche de l’optimal. De plus, basée sur ces

modèles RDO, une méthode de « contrôle de qualité » est introduite qui permet de coder une

image à une cible MSE/PSNR donnée. La précision de la technique proposée, estimée par le

rapport entre la variance de l’erreur et la consigne, est d’environ 10%. En supplément, la mesure

de qualité subjective est prise en considération et les modèles RDO sont appliqués localement

dans l’image et non plus globalement. La qualité perceptuelle est visiblement améliorée, avec

un gain significatif mesuré par la métrique de qualité objective SSIM.

Avec un double objectif d’efficacité de codage et de basse complexité, un nouveau schéma

de codage LAR est également proposé dans le mode sans perte. Dans ce contexte, toutes les

étapes de codage sont modifiées pour un meilleur taux de compression final. Un nouveau mo-

dule de classification est également introduit pour diminuer l’entropie des erreurs de prédiction.

Les expérimentations montrent que ce codec sans perte atteint des taux de compression équi-

valents à ceux de JPEG 2000, tout en économisant 76% du temps de codage et de décodage.



Abstract

This doctoral research project aims at designing an improved solution of the still image

codec called LAR (Locally Adaptive Resolution) for both compression performance and com-

plexity. Several image compression standards have been well proposed and used in the multi-

media applications, but the research does not stop the progress for the higher coding quality

and/or lower coding consumption. JPEG was standardized twenty years ago, while it is still a

widely used compression format today. With a better coding efficiency, the application of the

JPEG 2000 is limited by its larger computation cost than the JPEG one. In 2008, the JPEG

Committee announced a Call for Advanced Image Coding (AIC). This call aims to standardize

potential technologies going beyond existing JPEG standards. The LAR codec was proposed

as one response to this call. The LAR framework tends to associate the compression efficiency

and the content-based representation. It supports both lossy and lossless coding under the same

structure. However, at the beginning of this study, the LAR codec did not implement the rate-

distortion-optimization (RDO). This shortage was detrimental for LAR during the AIC eva-

luation step. Thus, in this work, it is first to characterize the impact of the main parameters of

the codec on the compression efficiency, next to construct the RDO models to configure para-

meters of LAR for achieving optimal or sub-optimal coding efficiencies. Further, based on the

RDO models, a “quality constraint” method is introduced to encode the image at a given target

MSE/PSNR. The accuracy of the proposed technique, estimated by the ratio between the error

variance and the set-point, is about 10%. Besides, the subjective quality measurement is taken

into consideration and the RDO models are locally applied in the image rather than globally.

The perceptual quality is improved with a significant gain measured by the objective quality

metric SSIM (structural similarity).

Aiming at a low complexity and efficient image codec, a new coding scheme is also propo-

sed in lossless mode under the LAR framework. In this context, all the coding steps are changed

for a better final compression ratio. A new classification module is also introduced to decrease

the entropy of the prediction errors. Experiments show that this lossless codec achieves the

equivalent compression ratio to JPEG 2000, while saving 76% of the time consumption in

average in encoding and decoding.
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Resolution), à la fois d’un point de vue performances de 
compression et complexité. Plusieurs standards de 
compression d’images ont été proposés par le passé et mis à 
profit dans de nombreuses applications multimédia, mais la 
recherche continue dans ce domaine afin d’offrir de plus grande 
qualité de codage et/ou de plus faibles complexité de 
traitements. JPEG fut standardisé il y a vingt ans, et il continue 
pourtant à être le format de compression le plus utilisé 
actuellement. Bien qu’avec de meilleures performances de 
compression, l’utilisation de JPEG 2000 reste limitée due à sa 
complexité plus importe comparée à JPEG. En 2008, le comité 
de standardisation JPEG a lancé un appel à proposition appelé 
AIC (Advanced Image Coding). L’objectif était de pouvoir 
standardiser de nouvelles technologies allant au-delà des 
standards existants. Le codec LAR fut alors proposé comme 
réponse à cet appel. Le système LAR tend à associer une 
efficacité de compression et une représentation basée contenu. 
Il supporte le codage avec et sans pertes avec la même 
structure. Cependant, au début de cette étude, le codec LAR ne 
mettait pas en œuvre de techniques d’optimisation 
débit/distorsions (RDO), ce qui lui fut préjudiciable lors de la 
phase d’évaluation d’AIC. Ainsi dans ce travail, il s’agit dans un 
premier temps de caractériser l’impact des principaux 
paramètres du codec sur l’efficacité de compression, sur la 
caractérisation des relations existantes entre efficacité de 
codage, puis de construire des modèles RDO pour la 
configuration des paramètres afin d’obtenir une efficacité de 
codage proche de l’optimal. De plus, basée sur ces modèles 
RDO, une méthode de « contrôle de qualité » est introduite qui 
permet de coder une image à une cible MSE/PSNR donnée. La 
précision de la technique proposée, estimée par le rapport entre 
la variance de l’erreur et la consigne, est d’environ 10%. En 
supplément, la mesure de qualité subjective est prise en 
considération et les modèles RDO sont appliqués localement 
dans l’image et non plus globalement. La qualité perceptuelle 
est visiblement améliorée, avec un gain significatif mesuré par 
la métrique de qualité objective SSIM. 
 
Avec un double objectif d’efficacité de codage et de basse 
complexité, un nouveau schéma de codage LAR est également 
proposé dans le mode sans perte. Dans ce contexte, toutes les 
étapes de codage sont modifiées pour un meilleur taux de 
compression final. Un nouveau module de classification est 
également introduit pour diminuer l’entropie des erreurs de 
prédiction. Les expérimentations montrent que ce codec sans 
perte atteint des taux de compression équivalents à ceux de 
JPEG 2000, tout en économisant 76% du temps de codage et 
de décodage. 
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Abstract  
 

This doctoral research project aims at designing an improved 
solution of the still image codec called LAR (Locally Adaptive 
Resolution) for both compression performance and complexity. 
Several image compression standards have been well 
proposed and used in the multimedia applications, but the 
research does not stop the progress for the higher coding 
quality and/or lower coding consumption. JPEG was 
standardized twenty years ago, while it is still a widely used 
compression format today. With a better coding efficiency, the 
application of the JPEG 2000 is limited by its larger computation 
cost than the JPEG one. In 2008, the JPEG Committee 
announced a Call for Advanced Image Coding (AIC). This call 
aims to standardize potential technologies going beyond 
existing JPEG standards. The LAR codec was proposed as one 
response to this call. The LAR framework tends to associate the 
compression efficiency and the content-based representation. It 
supports both lossy and lossless coding under the same 
structure. However, at the beginning of this study, the LAR 
codec did not implement the rate-distortion-optimization (RDO). 
This shortage was detrimental for LAR during the AIC 
evaluation step. Thus, in this work, it is first to characterize the 
impact of the main parameters of the codec on the compression 
efficiency, next to construct the RDO models to configure 
parameters of LAR for achieving optimal or sub-optimal coding 
efficiencies. Further, based on the RDO models, a “quality 
constraint” method is introduced to encode the image at a given 
target MSE/PSNR. The accuracy of the proposed technique, 
estimated by the ratio between the error variance and the set-
point, is about 10%. Besides, the subjective quality 
measurement is taken into consideration and the RDO models 
are locally applied in the image rather than globally. The 
perceptual quality is improved with a significant gain measured 
by the objective quality metric SSIM (structural similarity). 
  
Aiming at a low complexity and efficient image codec, a new 
coding scheme is also proposed in lossless mode under the 
LAR framework. In this context, all the coding steps are 
changed for a better final compression ratio. A new 
classification module is also introduced to decrease the entropy 
of the prediction errors. Experiments show that this lossless 
codec achieves the equivalent compression ratio to JPEG 2000, 
while saving 76% of the time consumption in average in 
encoding and decoding. 
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