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Mâıtre d’enseignement et de recherche

École Polytechnique Fédérale, Lausanne, Suisse

/ Rapporteur

Pr. David Cazier

Professeur, Université de Strasbourg, France
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Chapter 1

Introduction

1.1 Context

Research in crowd animation became very active this last decades, because of

the success the video games, movies, and of the exploration of 3D environments.

Crowds play and important role in these fields.

In movies, background crowd animation, such as chatting or walking pedes-

trians, allows to dive main actors into a world full of life. The movie Astérix et

Obélix : au service de sa majesté or the tv-show Game of Thrones use a crowd

software Golaem Crowd [Gol, n.d.], to display crowds of rugby’s fan or a pop-

ulation of panicked people trying to escape a dragon, as in Figure 1.1. Crowd

animation is also very popular for battle scenes, for instance in the movie The

Lord of the Ring: The Return of the King, when Minas Tirith is attacked by

hordes of orcs. Background or battle scene crowds create a unique atmosphere

that increases the immersion of the viewer. Consequently, the crowd should have

appropriate behaviour according to the scenario, in terms of motion and local

interaction, to not distract the audience.

In video games, it is now common to have entire cities populated by virtual

characters. For instance in the video game Assassin’s Creed Unity [Ass, n.d.],

the player is able to explore the whole city of Paris in 1789, during the french

revolution, with streets flooded of demonstrators (Figure 1.2). The crowd of this

9



10 Introduction

Figure 1.1: Two crowd simulation computed using Golaem software. At the top,

a crowd in the tribune for the movie Astérix et Obélix : au service de sa majesté.

At the bottom, a crowd fleeing the dragon for the TV-show Game of Thrones.
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Figure 1.2: A picture from the video game Assassin’s Creed Unity. Here the main

character observes a large crowd in a street of Paris in 1789.

game allows a great immersion in the french revolution. Additionally in some

strategy games such as Starcraft II or Age of Empire Online [Sta, n.d.; Age,

n.d.], the player can directly control armies to attack the opponents. A good

control of crowd units is crucial for the game-play.

A possible evolution in the architecture and tourism fields could be to integrate

crowds in virtual 3D cities. In the case of urban projects, mock-up can go with

virtual characters to have a better feeling of the future district or city. In the

case of a virtual tour of a city, crowds could allow to feel the atmosphere of the

different districts, or to get which places are busy or calm. We can imagine a

future extension of famous world explorers, such as Google Earth [Goo, n.d.],

integrating crowds to populate cities over all continents. The kind of crowds we

expect for these fields, are crowds animated during long periods of time, to be

able to have a preview of the urban life at any moment of the day. Moreover, the

size of the crowd is to be very large as well, in order to enable the user to explore

whole cities if he or she wishes to do so.

Whether in computer games, movies, or 3D environment exploration, crowds
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have a huge impact on the final media proposed by these fields. However, it

remains hard to create crowds with specific behaviour and motion, with current

techniques. The main way to create crowds is to use a crowd simulation algorithm,

a black box taking into account user defined parameters to produce a crowd

motion. The main issue of these methods is the lack of intuitive and direct

control for the motion or the visual aspect of the crowd. Existing approaches

consist of tuning the input parameters of the simulation to alter the crowd, instead

of directly expressing what we need for the crowd. This implies that an expert

designer is required because of the complexity of the methods and the time it takes

to create the desire output. Producing large, good quality scenes for industrial

applications is thus very costly.

1.2 Problem statement

The process of interactively designing a virtual population, even for medium-scale

environments, such as a block of buildings, is not an easy task and requires ad-

dressing two main challenges. Firstly, a crowd is an intrinsically complex system,

containing characters that interact both at local and global scales, have individ-

ual or group behaviors and perform actions in close relation to their environment.

The creation of realistic and complex crowds therefore requires the use of com-

plex simulation or animation models for which the user needs to specify a large

set of parameters through a series of, generally tedious, generate and test loops.

Secondly, the required degree of control to easily and interactively populate such

large environments requires the design of novel tools offering both spatial manip-

ulation features (where to position the crowds, how to control flows or densities)

and temporal manipulation features (how a crowd can change over time in terms

of behavior, flow, and density).

Techniques based on crowd simulation only offer an indirect and generally

global control on a crowd through the manipulation of agent parameters, and

without immediate feedback [Ulicny et al., 2004; Patil et al., 2011]. These kind of

techniques are not effective to define low-level subtleties in the crowd movement,

such as the path of a character or its shape in time. Nevertheless, these kind



Contributions 13

of control is essential for conveying individuality to the crowd or for allowing a

player to achieve specific task in a video game.

Another approach would consist in directly manipulating agents trajectories

[Kwon et al., 2008; Kim et al., 2009], i.e. bending, stretching and shortening

them to fit both user requirements and the topological constraints of the environ-

ment to populate. However, large deformations may lead to unrealistic results.

Additionally, when the crowd becomes large, many operations have to be done

by the designer to reach the required output. Moreover, these methods become

slower as the number of character increases, as collision between them should be

avoided.

1.3 Contributions

The goal of this thesis is to develop methods enabling a user to design crowds while

providing a direct control of the visual aspect and the local and global behaviour of

characters, through interactive artistic-like applications. These techniques should

be able to handle crowds of very large size with an endless animation. For this

last point, we know that crowd patches [Yersin et al., 2009], pre-computed pieces

of crowd animation that can be connected together to shape a population, is an

effective method to produce large crowd with an infinite animation. In contrast,

this technique suffers from the lack of interactivity to locate and connect patches

together, and from the lack of control to create a set of crowd patches with good

properties.

In this thesis, we propose three methods to control large crowds through

interactive applications or artistic-like interfaces.

❼ Crowd sculpting: a novel approach to interactively design complex an-

imated crowds for virtual environments, with high level gestural control

and immediate visual feedback. The generated animations can be endlessly

looped in time, thanks to the crowd patches method we rely on.

❼ Crowd art: an optimization technique to compute crowd animations that

satisfy localized density and directional flow constraints. The process is
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able to avoid local loops in characters’ trajectories by computing paths

linking crowds patches with the biggest errors. The method provides an

artist-driven tool for designing crowds. Designers can create crowds very

quickly using an existing paint tool. User requirements are specified by

combining image layers which specify dynamic and static density, direction

and obstacles.

❼ Temporally varying crowds: an extension of crowd patches that im-

proves motion variety, thanks to our new temporal permutation mechanism.

Given that patches capture periodic animations, we propose a technique to

permute different version of a crowd patch over periods of time. Tempo-

rally extended motions inside a patch therefore present a more diversified

content.

1.4 Organization of this document

This thesis is organized as follow. Chapter 2 is dedicated to previous work on

crowd simulation, crowd control, and 3D design through artistic metaphors. Ad-

vantage and drawbacks of each methods are discussed, and a conclusion is for-

mulated at the end to focus on what has to be done on these fields.

All the methods developped during this thesis are based on the crowd patches

paradigm. A full descritption of crowd patches is done in Chapter 3. Unpublished

trajectories generation techniques, dedicated to crowd patches, are also described.

Then in Chapter 4, we tackle the spatial modeling of crowds. We present an

interactive method to easily populate environments through intuitive gestures,

able to shape a uniform crowd in a 3D environment.

In Chapter 5, we present a method able to create a huge crowd under station-

nary density and flow constraints. Density and flow constraints are set through

a paint-like interface to ease control.

Next, in Chapter 6, we present different methods to have motion variety over

time. First, we describe how to avoid repetition of animations in a crowd patch.

Then we present a possible extension where crowd patches become reactive to
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user actions and to changes in the environment.

Finally, in Chapter 7, we formulate a conclusion of this work, and discuss

limitations and possible future work driven by this research.

1.5 Publications

1.5.1 Technical papers

TP1. K. Jordao, P. Charalambous, J. Pettré, M. Christie, M. P. Cani. “Crowd

Art: Density and Flow Based Crowd Motion Design”. In Proceedings of

Motion In Games (2015). ACM.

TP2. K. Jordao, J. Pettré, M. Christie, M. P. Cani. “Crowd Sculpting: A space-

time sculpting method for populating virtual environments”. In Computer

Graphics Forum (2014), Volume 33, Number 2.

1.5.2 Posters

P1. K. Jordao, J. Pettré, M. P. Cani. “Density-controlled crowds”. In Euro-

graphics/ACM SIGGRAPH Symposium on Computer Animation (2014).

1.5.3 Short papers

SP1. K. Jordao, J. Pettré, M. P. Cani. “Interactive techniques for populat-

ing large virtual cities”. In Proceedings of the Eurographics Workshop on

Urban Data Modelling and Visualisation (2013) pp. 41-42. Eurographics

Association.
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18 Chapter 2

This chapter reviews the different methods for synthesizing the movement of

crowds. In Section 2.1, we give an overview of simulation systems, followed by a

discussion of advantages and drawbacks of these methods. Then, techniques able

to design crowds through direct motion or intrinsic parameter control are exposed

in Section 2.2. To inspire possible interactive interfaces to design crowds, work

on expressive modeling is presented in Section 2.3. We end this state of the art

by a conclusion in Section 2.4.

2.1 Crowd Simulation

Simulation can be divided in two main categories, microscopic simulation, macro-

scopic simulation. The first one, which focuses on individual interactions and local

behaviour, is developed in Section 2.1.1. The second one, which sees the crowd

as a whole and where individuals are implicitly represented through local density

on a grid, is explained in Section 2.1.2. Then a summary and a discussion of the

different approaches is given in Section 2.1.3.

2.1.1 Microscopic Simulation

Microscopic simulation sees the crowd as a set of autonomous agents, which are

able to follow a goal or a leader, and have their own internal properties. This

approach focuses on local interactions between individuals. Each member of the

crowd takes into account other individuals’ actions, and uses nearby information

to move through the environment. The main challenge of this approach is to avoid

agent/agent, and agent/environment collisions; while keeping realistic behaviour

and good performance.

This section reviews the main contributions of microscopic simulation. The

reader can find a description of this topic in the book of Thalmann & Musse

[2007].
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2.1.1.1 Rule-based and Path Planning Approaches

In rule-based approaches, agents are governed by rules, which define the right be-

haviour according to an individual’s situation. The first example of this approach

is [Reynolds, 1987]. Note that the concern of the author is group behaviour of an-

imals. He defined a set of basic rules for each agent, such as separation, cohesion

and alignment, to simulate flocks of birds, herds of land animals or schools of fish.

He extended his model to steering behaviour in [Reynolds, 1999], with rules to

simulate the motion of pedestrians, such as collision avoidance, leader following,

seeking and fleeing, or group cohesion. Musse & Thalmann [1997] proposed a

model where rules are based on concepts from sociology, such as polarization or

domination.

Other techniques couple path planning algorithms with rule-based methods

to create crowds with more plausible behaviours. For instance, [Bayazit et al.,

2003] combined the microscopic model of Reynolds [1987] with global informa-

tion represented as roadmaps of the environment to enable more sophisticated

flocking behaviours. In the work of Lamarche & Donikian [2004], authors use

a Delaunay triangulation to define walkable areas, and detect bottlenecks inside

the environment. This is used to allow a fast path finding and an efficient reac-

tive navigation algorithm for crowds. Pettré et al. [2005] divide the environment

into navigation corridors, giving rise to a navigation graph, which allows to find

path for individuals in the crowds. Authors use steering behaviours [Reynolds,

1999] to drive simulated characters of the simulation. This method is extended

[Pettré et al., 2006] to achieve a scalable simulation enabling to display up to

35000 pedestrians. Shao & Terzopoulos [2007] using a hierarchical environmental

modeling framework to efficiently synthesizes numerous self-animated pedestrians

performing a rich variety of activities in a large-scale indoor urban environment.

A major issue with rule-based approaches is to find adapted rules able to

generate the expected behaviour at the crowd level. This is particularly the case

in constrained environments such as cities or indoor buildings. Moreover, these

approaches require a large amount of parameters tuning to achieve the desired

results.
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2.1.1.2 Force-based Approaches

In contrast with steering behaviours that directly modify a character’s instanta-

neous velocity, the set of rules and their weights, Force-based approaches apply

external forces to crowd characters as if they were mass particles. In the manner

of the second law of Newton
∑

i

~Fi = m~a, the sum of these forces is equal to

the acceleration, which make individuals move and avoid collisions. Helbing &

Molnár [1995] propose the first example of a force-based approach. They explain

how agents can undergo social forces, by receiving it from other agents, the en-

vironment, and goals. Mousäıd and colleagues have used the social force model

to replicate observations from a series of controlled experiments [Moussäıd et al.,

2009]. Helbing et al. [2000] extended Mousäıd’s model to simulate emergency

panic situations. Braun use the social forces model to simulate the formation of

groups in a crowd using additional attractive forces [Braun et al., 2003]. Heigeas

use an approach close to the force-based techniques, based on a mass-spring-

damper system, to model collective crowd movement [Heigeas et al., 2003].

A main issue of force-based methods is the lack of prediction, because the vir-

tual characters only interact with other agents when they are sufficiently close.

Techniques based on the geometrical information of the environment are intro-

duced to increase individuals anticipation and consequently solve force-based ap-

proaches’ main issue. These methods are discussed in the following section.

2.1.1.3 Geometric Approaches

Geometric approaches consider the local area occupied by each agent to select a

future velocity to produce collision free motion. These approaches are inspired

from robotics, where they are initially designed to handle incomplete or noisy

information with regards to the robot’s local surroundings.

Fiorini & Shiller [1998] developed a method based on the Velocity Obstacles

(VO) for collision avoidance between multiple robots. In this work, objects and

characters are seen as obstacles in velocity space. This velocity space represents

for each agent a set of velocities that would cause a collision at some moment

in time with another agent. The union of VOs from any number of obstacles
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Figure 2.1: A pedestrian crosswalk modeled with RVO [van den Berg et al.,

2008b]. 400 agents distributed near the corners of the crossroads move to the

other side of the street. The opposite flows of agents automatically form lanes,

as they cross each other.

constitutes the set of unsafe velocities for an agent. The idea is to choose a velocity

from the admissible component of the velocity space to avoid collisions between

agents. Still based on VO, van den Berg et al. [2008a,b] introduced the Reciprocal

Velocity Obstacles (RVO). An example of collision avoidance done by RVO is

shown in Figure 2.1. The main contribution of this technique is to avoid oscillation

issues of VO. Optimization on performance is introduced by Guy et al. [2009]

thanks to a highly-parallel algorithm that uses a discrete optimization method.

van der Berg et al. [2011] extend this method for n-body collision avoidance. This

is later improved by Guy et al. [2010] to better match for simulation of virtual

human. Other techniques consist in predicting the trajectories of the other agents

to avoid collision, as proposed in [Paris et al., 2007]. In a similar manner, Pettré

et al. [2009], proposed a model elaborated from experimental interaction data

involving multiple characters in crossing scenarios. Authors demonstrate that

the minimum predicted distance is an adequate criterion to determine whether

humans require to adapt their trajectory or not. In the work of Ondřej et al.

[2010], collision avoidance behavior is handled as a visual-stimuli/motor-response

control law. Lemercier et al. [2012] propose a following behaviour model based
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on experimental studies.

Geometric approaches are a good trade-off between quality of individual tra-

jectories and the number of supported agents in real-time, which now goes up to

several thousands. However, the local scale resolution of these methods does not

allow to solve bottleneck situations, as is often the case in dense crowds or highly

constrained environments.

2.1.1.4 Data-driven Approaches

Instead of using previous simulation models to synthesize crowds, data-driven

approaches use precomputed data of motion or behaviours, extracted from videos

or from motion capture data [Metoyer & Hodgins, 2004], to govern the behaviour

of individual characters in a crowd. Lerner et al. [2007] solve interactions between

agents of the crowd by matching examples from the database with the current

situation. A method proposed by Lee et al. [2007], creates an agent model which

learns from real human trajectories. The model decides actions of agents based on

the environment and on the motion of nearby agents in the crowd. Another work

based on data [Ju et al., 2010], proposes to blend existing crowd data to generate

a new crowd animation with an arbitrary number of characters and duration.

Ahn et al. [2012] propose the Trajectory Variant Shift (TVS) method, based on

real pedestrian trajectories re-use. The mehod re-use and shift these trajectories

to avoid collisions while retaining the liveliness of captured data. A more recent

technique have been developed by Charalambous & Chrysanthou [2014]. This

work is based on a data structure: the perception-action graph, which stores

actions and states from the database. The graph deduce characters actions from

what they perceive. Compared to [Lerner et al., 2007], this method is twenty

times faster.

Data-driven approaches are able to handle more varied and realistic situations

than rule-based and force-based approaches. However, to produce good quality

simulations, a huge database of various motions is required. Such a database

remains very long and expensive to create. Moreover, this large amount of data

raises two issues. Firstly, the analysis and processing of this data cannot be
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performed at runtime because computations are too costly. Secondly, the access

to such amounts of resources is too slow for real-time applications. therefore,

these methods are usually used for crowds of less than one hundred characters.

2.1.2 Macroscopic Simulation

Macroscopic simulation focuses on the global behaviour of a crowd, in opposition

to microscopic simulation which focuses on individual behaviours. Computation

of the crowd behavior and motion is done as if the crowd were made of some

continuous material, using for instance fluid simulation techniques. Characters

are then rendered as particles obeying the computed velocity field. Consequently,

macroscopic models are very efficient and are able to handle hundreds of thou-

sands of virtual characters. This can be used to simulate large group phenomena

such as evacuation of a building or a battlefield scene.

Many methods are based on fluid mechanics. The first work introducing this

approach is from Henderson [1971, 1974]. The method consists in simulating

a flow of people along a channel, based on gas dynamic equations. However,

this method only works in low density situations. Helbing [1998] proposes a gas-

kinetic model for crowds as an extension to the work by Henderson [1974], able to

handle other denser crowd situation such as, walking lanes and pedestrian jams,

the propagation of waves, and the behavior of people on a dance floor.

Other techniques are based on a particle representation of agents to describe

the global motion of the crowd. Chenney [2004] proposes a flow tiles method that

shapes a continuum velocity field in the environment. These flow tiles drive agent-

particles in the environment. Treuille et al. [2006] propose to create a continuum

potential fields in the environment to drive individuals. The potential field is

obtained by combining several parameters from areas in the environment, such

as maximum speed, density, direction, obstacles, etc. . . Crowds are animated

by using the potential field to drive individuals. Narain et al. [2009] introduce

a variational constraint called unilateral incompressibility. This allows crowds

to be compressible or incompressible, depending on their density. Moreover, the

maximum volume of the crowd is limited. The way the crowd motion is computed
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Figure 2.2: Aggregate Dynamics for Dense Crowd Simulation [Narain et al., 2009].

Examples of large, dense crowds simulated with Narain’s technique. (a) 100,000

pilgrims moving through a campsite. (b) 80,000 people on a trade show floor. (c)

25,000 pilgrims with heterogeneous goals in a mosque.

depend on the aggregation of individuals. Very large and dense crowds can be

simulated with this technique, as illustrated in Figure 2.2.

Macroscopic approaches are well adapted to simulate crowds of thousand of

characters in real time, thanks to their low consumption in term of computational

resources. However, these approaches do not allow to obtained rich individual

behaviours, because the simulation is only handled at a global scale. These

methods are preferred for large crowd scenes where individual behaviour of the

agents is less important than the overall motion of the crowd.

2.1.3 Summary

Simulation offers many ways to synthesize crowd motion. These techniques can

be classified into two main approaches:

❼ Microscopic simulation, which takes into account the behaviour of indi-

viduals to make the crowd motion emerge. These methods allow to simulate

a large variety of situations, using simple rules based on collision avoidance,

behavioural factors, and example-based local decision making. However

these techniques suffer from their parameter-tuning phase to achieve the

expected crowd motions. Moreover, results rarely exceed crowds composed

of more than several thousand characters, because of the per-agent process-
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ing.

❼ Macroscopic simulation, which gives good global behaviours for large

and dense crowds composed of thousand of characters, even for real time

applications. However, these techniques do not capture any individuality

in the behaviour of the agents.

Simulation approaches allow to create realistic crowds. If an artist wants to

design a large battlefield, he or she will prefer macroscopic models. In contrast,

microscopic models will be preferred if he or she wants to create a train station

populated with moving characters. However, in the context of animation for

movies or games, crowd designers have a clear picture of the final output they

want. Using a simulation system to obtain the desired behaviour is then time

consuming and non intuitive. The user only has an indirect control on the final

animation, by manipulating parameters of the simulation instead of the content

of the animation. Moreover, simulation techniques are hard to understand for a

beginner, because the underlying models are based on complex mathematical or

physical properties or complex data structures. Consequently, the user has to try

a first set of parameters to see if the resulted animation is satisfying, and repeat

the process many times until the result eventually matches the desired goals.

The next section describes methods for improving user control over crowd

animations.

2.2 Crowd Animation Design and Re-use

The purpose of crowd animation design methods is to give some more direct

control on the crowd animation to the user, and prevent trial and errors process

inherent to simulation methods. Crowd design is performed, by using sketch-

based interfaces, or manipulation of velocity fields etc. . . , to set in an intuitive

way parameters of the underlying simulation or to manipulate the crowd motion.

Other techniques such as Crowd Patches [Yersin et al., 2009], allow to define

repeatable local animations in space-time that can be connected to each other.

The problem of populating a scene with virtual humans changes from tuning
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Figure 2.3: Crowd Brush [Ulicny et al., 2004]. Left: Crowd following paths

defined by a “path brush”. Right: A crowd in a stadium with behaviour defined

by the brush in the center of the picture.

parameters of a simulator system to assemble a puzzle. These different approaches

are described in the following section.

2.2.1 High-Level Control on Simulation System

In Section 2.1, we listed the drawbacks of indirect control of simulation systems.

The main issue of these models is the parameters tuning phase. Some techniques

simplify this phase thanks to a user interface able the set parameters for the

desired simulation. For instance, Ulicny et al. [2004] introduce CrowdBrush, a

paint interface for designing crowds. The user is able to use different brushes to

create agents, to apply different behaviour such as running or walking, or color of

characters. Then an underlying simulation system is used to follow the inputs of

the user. CrowdBrush allows the creation of a populated scene in few minutes (See

Figure 2.3). Chenney [2004] provides an interface to design global crowd motion

by editing the velocity field of the scene. An other method consist in sketching

shapes to control the group formations ans transition between differents shapes

Gu & Deng [2013]. However, these techniques do not allow to define goals for

the agents. In contrast, Jin et al. [2008] propose an intuitive way for authoring

crowd scenes, by allowing the user to drive the flow of crowds by sketching desired

velocities out of anchor points in the scene. In a similar manner, the work of [Patil
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et al., 2011] consists of drawing strokes in the environment to define navigation

fields for agents. They are driven by user defined directions to avoid bottleneck

situations or achieve certain desired behaviours.

In all these methods, parameter setting of the simulation is performed through

a user interface. Consequently, the user specification stage is much easier. De-

spite the control on parameters on simulation, there is no direct control on the

animation results. As simulation methods, it is still time consuming and non

intuitive to obtain the desired crowd behaviour.

2.2.2 Motion Editing

In contrast with the simulation approach, the motion editing approach try to

ease the design and the creation of a crowd. Based on existing data of crowd,

obtained from real data or simulation, users are able to create new content by

editing existing motions or by assembling different motions together.

In the group motion editing technique [Kwon et al., 2008], the user is able

to edit precomputed motion of group of people, while preserving neighborhood

formation and individual moving trajectories. Several operations are possible:

bending, stretching, shrinking and merging. It becomes easy to populate an

environment by deforming and moving the motion in the scene, as shown in

Figure 2.4. However large deformation of a motion leads to unnatural speed

of characters. Moreover, this technique cannot handle thousands characters at

interactive rate, because of the expensive time of computation for deforming a

crowd motion.

This method can only deform walking behaviour. The problem is more com-

plex if the motion is linked with interactions between agents, such as carrying

boxes from point A to point B. Interactions have to be preserved while deforma-

tions are applied. This is what the paper [Kim et al., 2009] solved. But again

this method is not suited for very large crowds.

This works is extended in [Kim et al., 2012]. The system is able to connect

piece of animations together to cover the entire environment. Deformations can be

applied on it while preserving interactions between agents. The covering process
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Figure 2.4: Group motion editing [Kwon et al., 2008]. Left: In blue the original

group motion, in white the edited group motion based on the blue one. Middle:

A top view of the final output. Right: A back view of the final output.

is automatic, so user have less control on the final scene. However, this approach

can handle much more characters than other techniques [Kwon et al., 2008; Kim

et al., 2009].

A final method [Kim et al., 2014], combine both huge crowd manipulation and

interaction preservation. Thanks to a smart selection by cage, user can modify

part of motion in space and or in time to fit with the constraint environment.

The manipulation is able in real time.

All these techniques allow to manipulate group of people more or less large.

However these systems are based on motion limited in time, so creating an endless

animation of a crowd is impossible with these approaches.

2.2.3 Texture based approach

Other approaches for populating environments consist in covering the environ-

ment by animations encapsulated in patches. These patches are precomputed and

used to represent short segments of motion in small areas that can be copied and

concatenated at run time to produce larger scenes. Populated an environment

becomes equivalent to applying 4D texture on it. Yersin et al. [2009] introduced

Crowd Patch, a method able to create and connect pieces of periodic animation

of several moving characters. A Crowd Patches is defined by the following items.
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Figure 2.5: Two urban environments populated using the Crowd Patches tech-

nique [Yersin et al., 2009]. For each environment a picture with and without

displaying trajectories and borders of crowd patches are provided.

❼ Patterns, which are a set of spatio-temporal way-points on a boundary of

a Crowd Patch. They play the role of gates where characters can enter and

exist from the Crowd Patch. Two crowd patches can be connected together

if one of the two patch share a symmetric pattern (called mirror pattern)

of the second.

❼ Obstacles, which characters have to avoid. Only small objects of the scene

are represented in the Crowd Patch, such as benches or trashes.

❼ Characters, which are divided into two groups.

– endogenous, which stay inside the patch.

– exogenous, which enter and exit the patch and are constrainted by the

spatio-temporal way points of the patterns.

Note that to ensure the continuity of the animation at the end of the patch

period, characters’ trajectory have to end where another character’s trajec-

tory begins. These specific constraints are defined as inner spatio-temporal

way points.

Populating an environment is just a matter of correctly tiling the environ-

ment into a set of Crowd Patches, as demonstrate in Figure 2.5. Moreover crowd

patches have several interesting properties. Because they are periodic, the result-

ing crowd animation can be play endlessly. Also, trajectories of characters are
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precomputed, so there is no extra computational cost at runtime, contrary to the

simulation approaches. A crowd of thousands characters can be easily modeled

using a 3D rendering and animation engine.

Note that this technique is inspired from the work of Lee et al. [2006]. Authors

introduced theMotion Patches, which are animations limited by a single character

interacting with objects or environment and encapsulated into square area.

Creating periodic motions for crowd patches remains challenging. Characters

of a crowd patch are constrained by spatio-temporal way-points which they have

to meet to ensure the periodicity of the motion. A first method [Yersin et al.,

2009] consists in using the social forces approach [Helbing & Molnár, 1995] con-

strained by spatio-temporal way-points to create these periodic motion. However,

this method leads to unexpected behaviour when a high density of characters is

requested. Indeed, to satisfy spatio-temporal constraints in a dense context the

speed of characters could be abnormally high. A second approach consists in

applying an optimization based approach to avoid collision in a patch [Ramirez

et al., 2014]. This method is able to handle denser situations than the Yersin’s

approach. However unrealistic behaviours can be observed in very dense scenario.

An example of a patch generated by this method is shown in Figure 2.6. A last

method consists in modifying quasi-periodic data of human trajectories to make

it periodic [Li et al., 2012], and then create crowd patches from it. With this

approach, realistic motions are obtained. However it is hard to create a varied

and connectable database of crowd patches with this technique.

A lot of work has been done with crowd patches. Yet, no method exits to

easily design complex scenes with crowd patches, this is the problem tackled in

this thesis.

2.2.4 Summary

Different approaches were introduced to improve the design of crowd animations.

Methods based on intuitive interface to easily set parameters of a simulation, offer

the opportunity for a beginner to design a population in a virtual environment.

However, these methods are still based on simulation, and consequently suffer
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Figure 2.6: Optimization-based Computation of Locomotion Trajectories for

Crowd Patches [Ramirez et al., 2014]. Left: a patch with only entry and exit

points. Middle: Generated trajectories based on the optimization algorithm.

Right: The 3D rendering of the patch.

from limitations in the number of individuals and in possible unpredictability.

Techniques based on edition of existing data offer a direct an precise control

over individual or group motions. However these methods require a huge database

of crowd motion to have a rich variety of situations. Moreover, these techniques

could be long and fastidious for an user in charge of populating a very large

environment.

Unlike methods based on simulation, these based on patches allow crowd

animation composed of hundred of thousand individuals for and infinite period of

time. Although Patches concept eases the process of creation of crowd animation,

they still lack control for placing them, inter-connecting them, or defining their

general properties such as density or flow of characters. Moreover, these methods

limit the variation in time of the crowd, because of the periodicity of patches.

2.3 Expressive Modeling

Expressive modeling techniques aim to interactively design 3D contents through

intuitive gestures such as sketches, painting or sculpting. Such expressive meth-

ods offer high level of creation and edition for hiding the complexity of the task.

Moreover, the underlying models are smart enough to react as expected to the
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user’s gestures, by automatically maintaining constraints, or by taking into ac-

count knowledge on the content to be modeled.

Intuitivity is a very important criteria for expressive tools, as opposed to

interactive but not intuitive tools, such as The Gimp [Harford, 2000] to paint

and edit your photos or Maya [?] to model and animate 3D contents, which

require great expertise to be mastered.

The interactive design of crowds is still limited, as described in Section 2.2.

The purpose of this section is to review other more general expressive modeling

techniques to open novel perspectives of crowd design. Because important aspects

of a crowd are the characters which compose it, their motion, and the way they

are distributed, this section will focus on methods which are related to these

problems. Firstly, we review techniques based on sketching metaphors in Section

2.3.1. Then those on painting metaphors, in Section 2.3.2. Next, methods based

on interactive deformation, i.e. sculpting metaphors, in Section 2.3.3. Finally a

summary on the different techniques is given, followed by a discussion on possible

applications to crowds, in Section 2.3.4.

2.3.1 Sketching metaphors

For artists, sketches are the very first step to make his or her idea something

concrete. In many cases, the final output is just some technical processes done

by hand but inspired by the sketch. In computer graphics, we try to automatise

these processes to get from the sketch an output as close as possible to the artist’s

intent.

? and ? proposed two of the first gestural interfaces enabling to create

and edit 3D content from sketches, SKETCH and Teddy respectively. The first

one enables the creation of 3D objects and scenes by creating and assembling

primitive shapes. The second one use 2D free-form strokes sketched by the user

to automatically construct plausible 3D polygonal models.

? proposed a sketch-based method for designing trees. The technique incor-

porates botanical knowledge to infer branches that have a correct distribution in

3D. In addition, the statistical distribution of sub-branches extracted from the
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Figure 2.7: Space-time sketching of character animation [Guay et al., 2015b].

Left: The user sketches a line of action stroke on top of a path-following dynamic

line of action (DLOA) to alter the motion of the tail over a time interval. The

path-following motion (a DLOA) blends with another DLOA, the static key frame

sketched for the tail, over a time interval. Right: The user edits secondary lines

onto a separate plane and view.

user’s local sketch is automatically transformed to neighboring branches. Other

methods allow to create and animate characters. For instance, Martin Guay uses

lines of actions in [Guay et al., 2013], to easily create stylized positions for char-

acters by using a distance between shapes based on tangent vectors. This work is

extended in [Guay et al., 2015a], to enable the animation of characters based on

several postures at different time-step. The user can freely edit the dynamic line

between the different postures like an elastic band, to make parts of the animation

faster or slower. Lastly in [Guay et al., 2015b] the authors proposed to sketch

a space-time curve in order to initialize the dynamic line of action, in order to

easily drive the motion of the character through projective constraints. Moreover,

this method is also able to add secondary motion to the same character, as it is

illustrated with a dragon in Figure 2.7.

These sketching metaphors could be sources of inspirations to develop new

expressive crowd designing tools. For instance, the method for sketching distri-

butions of branches of trees is limited by static objects. It could be interesting

to extend this method to animated content such as crowds. The method [Guay
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Figure 2.8: World Brush [Emilien et al., 2015]. Top-Left: Initial arrangement.

Bottom-Left: New trees have been seamlessly inserted in the empty region,

preserving the visual appearance of the distributions. Right: A view of a complex

scene edited with World Brush system.

et al., 2015b] controls animation over time, but is limited to a single character.

Although, extension to multiple characters seems possible, it would be difficult

to extend this kind of technique at the scale of a crowd.

2.3.2 Painting metaphors

Paint-like expressive applications use a brush abstraction to design content. Brushes

can be seen as a property or a constraint to be applied everywhere you paint with.

In some application you can paint with different brushes, so the properties blend

together as color in a painting. The underlying system is automatically adapted

to the user’s gesture. For instance, Milliez use a motion brush to create an an-

imation in [Milliez et al., 2014]. With this method, artists are able to create

animations as if they were painting motion. Motion brushes, thank to their hier-

archical brushes, combine simple motions to create complex ones. Emilien et al.

[2015] introduced world brush, a method able to design a virtual world based

on statistical example-based synthesis to create and deform world content. The
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user is able to select regions of the world, that have as effect to store statistical

parameters of the region in a brush. Then the user is able to paint with this

brush and blend several brush strokes together, to edit the world. The Figure 2.8

gives a picture of this tool.

In Section 2.2, we discussed about [Ulicny et al., 2004], a method to paint

crowd behaviours and motion, in a similar manner of the motion brush of Milliez

et al. [2014]. However, it could be interesting to extend the work of Emilien et al.

[2015] to animated content, to enable the interactive creation of populated world.

In our work presented in Chapter 5, we also use a paint interface to draw crowds

based on their density and main directions.

2.3.3 Sculpting metaphors

In 3D graphics, even simple manipulations as deforming a 3D-object can be a

challenging task, but this task is essential to personalise them. ? is the first to

introduce the free-form deformation of a 3D model while preserving his volume.

This enable to manipulate object as manipulating clay. Another major contri-

bution on mesh deformation is the work of Sorkine & Alexa [2007]. The authors

apply the principle of as-rigid-as-possible deformation to intuitively deform and

twist 3D objects, while preserving the details on the object. A dedicated interface

allows a user to select and move nodes of the mesh to deform it, as illustrated

in Figure 2.9. The deformation of the new mesh is computed based on the min-

imization of an energy functions (Equation 2.2) with two unknown parameters:

the difference between triangle positions and orientations of the new and original

meshes.

E(Ci, C
′
i) =

∑

j∈N(i)

wij dist((p
′
i − p′j)−Ri(pi − pj)) (2.1)

E(S ′) =
∑

i∈V

E(Ci, C
′
i) (2.2)

Where S is a triangle mesh; V is the set of nodes of the mesh; i a node; Ci and

C ′
i represent the original cell and the deformed cell at node i; N(i)) represent the

neighborhood of the node i; p and p′ represent respectively the original position

and the new position of a node; and Ri the rotation of the node i.
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Figure 2.9: As rigid as possible deformation [Sorkine & Alexa, 2007]. (a) is

the original model; yellow handles are translated to yield the results (b-f), red

handles are fix. (d, e) show side and front views of forward bending, respectively.

To solve for the next local minimum energy state, author use a alternating

minimization strategy. Starting from a given initial vector of positions and ro-

tations, the authors find positions p that minimize E(S ′). Then, they find the

rigid transformations Ri that minimize E(S ′) for the given set of positions p′.

finally, they continue these interleaved iterations until the local energy minimum

is reached.

Bokeloh et al. [2011] present a deformation method able to detect and pre-

serve patterns of the mesh. Firstly, the mesh is analyzed to find symmetries and

repetitions. Then, the deformation is computed taking into account the structure

of the mesh. This structure analysis approach is then extended with a new alge-

braic model [Bokeloh et al., 2012] that enables the edition of complex structured

meshes, such as chairs, stairs, or castles.

Milliez et al. [2013] introduce mutable elastic models (MEM). More precisely,

MEM were introduced for static shapes able to take a number of different rest-

states, all preserving a meaningful structure. Let us take the example of a castle

wall. Rest states for each section of the wall can either be ”straight” or ”corner”.

When the designer bends a straight wall beyond a certain point, one of the sections

will turn into a corner, because this new rest position will best minimize the

associated deformation energy. Interestingly, the structure of shapes is captured

in this work by a bidirectional graph representation G, which deforms following

the as-rigid-as-possible model [Sorkine & Alexa, 2007]: deformation is computed



Expressive Modeling 37

Figure 2.10: Sculpting structured shapes using a “smart clay” metaphor [Milliez

et al., 2013]: as the object deforms due to user constraints (blue), local piece s

adapt their shape, and new pieces are inserted, deleted, and merged adaptively.

The basis is mutable elasticity, permitting multiple local rest states for parts.

so that the graph parts globally remain as close as possible to their rest states.

The method therefore plays on the mapping between each graph node and rest

states using a state space representation. Changes of the graph topology are also

allowed, through node insertion and removals. Both changes of state and topology

changes are based on a shape grammar, to ensure that only valid transformations

are applied. This system builds a 3D sculpting system which allows to elongate,

compress, bent, cut, and merge the structured shape, by simple user gestures.

As results a user can create and edit objects such as castle, roads, or chenille, by

manipulating and deforming it as mutable clay, as illustrated in Figure 2.10.

As we have seen in Section 2.2, sculpture metaphor have also been used to

create and manipulate crowds [Kwon et al., 2008; Kim et al., 2014]. However,

these techniques are based on existing data and can’t handle large deformation.

Inspired by [Milliez et al., 2013], we developed Crowd Sculpting a method able

to manipulate crowd as mutable clay. In opposition with [Kwon et al., 2008; Kim

et al., 2014], crowd sculpting have no limitation in deformation. All the details

of this method are given in Chapter 4.

2.3.4 Summary

Expressive modeling methods are definitely an efficient way to create and edit 3D

content. However, these techniques are often limited to static objects. Adding an-
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imation constraint can be an good opportunity to extend these models to crowds.

It will allow to hide the complexity of crowd simulation models while offering an

interface based on intuitive gesture to ease the design process design and to enable

a direct control on crowd motion and behaviour.

2.4 Conclusion

A crowd is a complex system with hardly predictable behaviour. Consequently,

simulation approaches, which offer an non-direct control on crowd creation, are

not adapted to crowd design. Some existing methods provide interfaces to get

a closer control of crowd motion, but these techniques are still based on crowd

simulation so they are limited by same limit of crowd simulation. Others tech-

niques propose motion data editing through expressive interfaces for populating

environments. However, too few of these techniques exist and present limita-

tions due to data acquisition, a fastidious user manipulations, and a short time

of animation. At least texture based approaches allow to populate very large

environments without limit on time animation. However, these techniques lack

of expressive modeling to easily cover the scene and define intrinsic parameters of

the crowds, such as the repartition of characters and their main directions. You

can refer to the Table 2.1 to have a clear summarize of the related work.

Knowledge on interactive methods for modeling demonstrate that many man-

ners exist to control complex mathematics models through intuitive interfaces.

These techniques are sources of inspiration to improve the crowd design. This the-

sis will take advantage of crowd patches and knowledge on expressive modeling,

to develop new methods able to ease the process of crowd design.
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As motivated in the related work, crowd patches have good properties for

populating large environments. This whole thesis is based on the crowd patches

paradigm. This platform and related methods is used all over the thesis. In this

chapter, we detail the principles of crowd patches and present our implementation,

within a dedicated platform. Moreover, unpublished methods for creating space-

time constraint trajectories for crowd patches are exposed.

3.1 Crowd Patches Principle

A crowd patch (Figure 3.1) is a pre-calculated animation of a virtual crowd. It

correspond to a small area traversed by moving characters. Characters anima-

tion is periodic, so it can be played endlessly in time. Boundary conditions for

animation trajectories are well controlled to enable connections between patches.

In analogy to puzzle, crowd patches is able to cover large environments. More

formally, a crowd patch is a tuple {A, π,D,S} where A ⊂ R
2 is the convex 2D

geometrical area where the animation takes place, π is the period of the anima-

tion and D and S are the sets of dynamic and static objects, respectively. Static

objects are simple obstacles whose geometry is fully contained inside the patch,

whereas dynamic objects are animated ones; i.e., they are moving in time accord-

ing to a set of constrained spatio-temporal trajectories. There are two categories

of dynamic objects: endogenous and exogenous characters (Den and Dex respec-

tively). Endogenous characters remain inside A for the entire duration π of the

patch whereas exogenous leave A and enter other patches.

3.2 Synthesizing Crowds using Crowd Patches

A patch can be considered as a spatio-temporal right prism with base area A

and height π. By defining spatio-temporal control points on each of the lateral

faces of the prism (called patterns), input and output points (I/O points) can

be defined. These points define portals between patches where characters can

respectively enter or leave the patch (Figure 3.1). Two patches can be connected
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t 

x 

y 

π 

l 

Figure 3.1: Patches and Patterns Adjacent patches can be connected if they

have matching mirror patterns. Shading on the base of the patch indicates density

and arrows represent flow direction.

if they have matching patterns but with points of opposite purpose; i.e., input

and output points switch roles. Therefore large π-periodic crowd animations can

be created by assembling patches.

Here there is one important constraint; the total number of input and output

points of a patch must be equal; i.e., exogenous characters entering a patch must

leave it at some time.

Crowd animation systems that use crowd patches as building blocks for crowds

are typically decomposed into 4 stages:

1. Patch decomposition. The scene to be populated is divided into smaller

convex areas where periodic crowd animations will be computed.

2. Patches definition. Patches parameters are then computed/defined so that

boundary constraints are not violated.

3. In-Patch trajectories generation. Boundary points in single patches are

connected and internal collision free trajectories are generated.
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4. Animation. Finally, characters are placed on the trajectories like trains on

rails and the animation can be played.

Existing methods [Yersin et al., 2009; Li et al., 2012; Ramirez et al., 2014]

focus on stage 3, and manually or automatically set stages 1 and 2. We also

designed techniques taking place into stage 3. These methods are described in

the following section. Mainly, our methods focus on stages 1 and 2. The methods

[Jordao et al., 2014] focus on stage 1, and [?] focus on stage 2. A description of

these two methods is done Chapter 4 and 5. Stage 4 is also a challenging problem,

discussed in Section 3.4.

3.3 In-Patch trajectories generation

As seen in Section 2.2.3, several methods exist to generate trajectories in crowd

patches fitting with spatio-temporal constraints at their borders. Still, these

methods present several limitations. The method exposed in [Yersin et al., 2009]

can’t handle dense scenario and often lead to unrealistic results even in non-

dense scenario. The Ramirez’s method [Ramirez et al., 2014] is better compared

to those of Yersin, but still provoke oscillation in dense scenario. The Li’s method

[Li et al., 2012] generate realistic trajectories, but the acquisition process is based

on motion capture, or real motion data of pedestrians, which makes the method

difficult to use.

The following subsection will present two new manner for creating trajectories

in crowd patches. These work was done together with interns and engineers of

my team. For now these techniques are unpublished.

3.3.1 RVO-based algorithm

Generating trajectories in a crowd patch demand to (i) define entry and exit point

on patterns of the crowd patch; which can be done in an automatic or manual

way, (ii) match the different entry and exit to define where characters will enter

and exit from the crowd patch; which can be handle by the stable matching
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Figure 3.2: The same Crowd Patch, generated with two different algorithm. Left:

Trajectories generated with the RVO-based algorithm. Right: Trajectories gen-

erated with the Ramirez’s algorithm [Ramirez et al., 2014].

pairing of Ramirez et al. [2014], and (iii) use a dedicated algorithm to generate

collision free trajectories. In this part, the RVO-based algorithm is explained.

3.3.1.1 Principle

As seen in Chapter 2, Section 2.1.1.3, the Reciprocal Velocity Obstacles (RVO)

model [Guy et al., 2010] is an efficient simulation system enabling characters to

anticipate possible collisions with other characters or obstacles.

The idea of the method is to take benefits from the RVO model while ensuring

entry and exit of crowd patch characters in times defined by patterns. More

accurately, the algorithm proceeds in two steps. In a preliminary step, input

points from patterns are linked to output points, using for instance the matching

pairing of Ramirez et al. [2014]. For each pairs, we compute the theoretical speed

ν of the character. Where (pi, po) and (ti, to) are respectively positions and times

of the input and the output.

ν =
‖po − pi‖

to − ti
(3.1)
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If ν is more or less fifty percent of the preferred speed, intermediate way-point

is added to slow down correctly the speed of the character. More way-points can

be added if one does not slow down enough the character speed. Moreover, these

way-points are set to keep a uniform speed of the character, and to be outside

obstacles or too close from other way-points. Then the initialization ends by

defining obstacles and agents which start at t = 0 (which are mostly those from

way-points) in the RVO simulator.

Next in a second step, we modify the preferred velocity of agents at each

loop of the simulation process, to ensure the constraints defined by IO points of

patterns and way-points. The agent accelerate or decelerate according to the time

he or she expects to reach his or her goal. All this process is shown is Algorithm

1.

3.3.1.2 Discussion

Our RVO-based algorithm allows to produce trajectories which predict collisions,

and avoid oscillations. The Figure 3.2 display results from RVO and compare

them with those from Ramirez et al. [2014] algorithm. However, it still does

not allow to reach very dense scenario as those propose for instance in [Narain

et al., 2009]. Indeed, the high number of characters prevents some agents to

achieve their goal in time. Consequently the system teleports missing agents,

which create unrealistic behaviours.

3.3.2 Crowd patches editor

Automatic methods for generating trajectories of characters are an effective man-

ner to create crowd patches. However, the trajectories generation may fail, be-

cause the requested density is too high, or may be inadequate because resulted

motion does not fit with what we expect. For these cases or for more control on

crowd motion, manual intervention could help creation of crowd patches. Con-

sequently, we develop a tools able to generate and edit motion in a crowd patch

from an empty one. In the following section, we present the features of this tool.
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input : Array I, O of inputs and outputs points of the crowd patch.

input : Array Ob of obstacles of the crowd patch.

output: Crowd Patch P

/* Initialization */

1 IOPairs L← StableMatching(I, O);

/* Speed should be more or less fifty percent of the preferred

speed. */

2 Float threshold← 0.5;

3 for l ∈ L do

4 while −threshold < minimumSpeed(l) < threshold do

5 Point2D p← getBestPosionBetweenPoints(l.i, l.o);

6 addWayPoint(p, L);

7 end

8 end

9 setObstacles(Ob);

10 Agents A← initRV OAgents(L);

11 Trajectories T ;

12 Patch P ;

/* Main loop */

13 while time < period do

14 modifyPrefSpeedToArriveInT ime(A);

15 doRV OStep(A);

16 recordTrajectories(A, T );

17 end

18 addTrajectories(T, P );

19 return P ;

Algorithm 1: RVO-based algorithm for generating trajectories in a crowd

patch.
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Figure 3.3: Crowd Patches Editor. The application allows to have a view of the

current edited crowd patch. Trajectories are displayed following the speed of the

character on it. Characters are represented by empty circles. Red circle is a

control-point, manipulated by the user. The part under the main view of the

application allows to edit the crowd patch, by generating trajectories or adding

IO points or obstacles, and to tune the displayer.
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3.3.2.1 Features of the tool

The crowd patches editor provide many features to create and edit a crowd

patches. An screen-shot of the application is shown on Figure 3.3.

Intrinsic parameters of the patch and patterns The first step to create a

patch from scratch is to define its patterns, i.e. the borders of the patch polygon,

the period, the average speed and the width of characters. A special window

allow to set these parameters.

Entry and exit points Before having moving character in a patch, the user

should define entry and exit point on patterns. Adding such spatio-temporal

constraint is done by specifying for both entry and exit their position in space

and time and on which pattern. It also possible to randomly generate IO points.

Obstacles Can be added in the crowd patch by setting their position, ori-

entation and size. The user can choose to do it after or before the trajectory

generation. But once trajectories are generated collision obstacles/agents are not

checked any more.

Trajectory generation The trajectories generation enable two operations: the

pairing of entry and exit points, and the computation of the characters motion.

The pairing can be made by the best matching algorithm from Ramirez et al.

[2014], or in the order entries and exits was defined. Four types of generations

are proposed: (i)the method based on Helbing simulation technique [Helbing &

Molnár, 1995] proposed by Yersin et al. [2009]; (ii) the optimization-based method

proposed by Ramirez et al. [2014]; (iii) the RVO-based method described in the

previous sub-section; (iv) a simple straight line generation. Note that the last

technique is used only for future manual editing, and does not have collision

avoidance system.

Trajectory editing The crowd patches editor also allows to edit existing tra-

jectories. User is able to grab a trajectory and to deform it following an as-rigid-as
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possible principle. During this stage, collisions between agents are not checked.

The user is in charge to modify trajectories taking care of collisions.

Other features Other features are classical, such as a zoom to be more accurate

while deforming trajectories, or displaying or not some information of the crowd

patch. Trajectories are colored depending on the speed of the character, from

blue to red, green being the preferred velocity. The tool enable to play forward

and backward the animation of the crowd patch, and to stop it. Finally, the user

is able to load/save crowd patches, and import/export them from other project,

such as crowd art or crowd sculpting.

3.3.2.2 Discussion

This editor gathers methods from several published work [Yersin et al., 2009;

Ramirez et al., 2014] and unpublished work (see 3.3.1), and allows to edit crowd

patch motion by hand. This editor is particularly useful for editing patch tra-

jectories which have not reaches the desired quality. However, at this state of

development, no collision avoidance process exist to automatically move trajec-

tories when another is edited. A future direction of this work could be to add

such feature. For instance, by inspiring of the collision avoidance process used in

[Kwon et al., 2008]. Moreover we can imagine modifying group of motion as it is

done in [Kim et al., 2014].

3.4 Viewers

As explained in the crowd patches pipeline (see Section 3.2), a system to display

our results in essential. This Section presents two viewers developed in the team.

The first is a basic 2D viewer displaying moving dots. The second is a viewer

able to display 3D animated humanoids.
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3.4.1 SFML Viewer

The SFML viewer is developed based on the Simple and Fast Multimedia Library

(SFML) version 2.0 [?]. This viewer is able to display all information of crowd

patches, such as characters shaped by dots, entry and exit points of characters,

the trajectories, the obstacles and the border of the patch. A rendering of this

viewer is shown Figure 3.2. The viewer is design to support generic Boost graph

[?] able to react to keyboard, mouse and joystick event. It is easy to integrate the

SFML viewer into new projects, thanks to its flexibility. In term of performance,

the SFML viewer is able to display up to one billion of characters in interactive

frame rate. This viewer is useful during implementations process to track bugs.

3.4.2 Unity Viewer

The unity viewer is a more complex 3D-viewer based on Unity 5 game engine

[?], entirely developed by the engineer Tristan Le Bouffant. The viewer is shown

Figure 3.4. In this viewer characters are 3D animated humanoids running in

realistic environments with several light effects. As input the viewer is able to

load files listing positions of characters over time. Thanks to this feature, we are

able to display crowds from any projects. However, for interactive applications,

such as crowd sculpting [Jordao et al., 2014], a special plug-in is developed. This

viewer is mainly used during demonstration processes to make realistic rendering

of crowd in immersive environment. This Unity viewer is able to run a crowd of

a thousand characters in interactive frame rate. A special offline mode enable to

create video clip for more characters.

3.5 Summary

During this thesis a full and flexible framework for crowd patches has been de-

veloped, for developing new expressive methods based on this paradigm. Many

features have been introduced for crowd patches, such as new methods to gener-

ate trajectories, or deforming the geometry of the patch (as explained in Chapter
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Figure 3.4: Crowd Patches Unity viewer. Top: a view of the scene. Bottom: A

window to set parameters of the scene.
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4), and a new tool to interactively edit them. The framework is used by several

colleagues and many projects depend on it.

The framework is used as a C++11 library with the following dependencies :

the Standard Template Library (STL), boost graph v1.59.0 [?], Eigen v3.2.5 [?],

and RVO v2.0.1 [?].
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Figure 4.1: Five steps illustrating the creation and interactive manipulation of

Crowds Patches to populate a virtual environment by introducing spatio-temporal

mutable elastic models. Pictures on the top line illustrate the manipulation of

the patches while pictures on the bottom line illustrate the changes in the graph

representing the Mutable Elastic Model.

4.1 Introduction

This chapter presents a method to interactively design populated environments

by using intuitive deformation gestures to drive the spatial coverage of a crowd

motion. Our approach assembles large environments from sets of Crowd Patches,

to avoid expensive and difficult-to-control simulations. It also overcomes the lim-

itations of motion editing, that would result into animations delimited in space

and time. The insight in this work is to replace the large deformations needed for

sculpting a whole crowd by a number of local deformations and of local changes

of animated content: using such changes will ensure that each crowd patch, while

being able to continuously deform, only undergoes acceptably small deforma-

tions. More probably, each crowd patch will follow the user’s gesture, such as

stretching, shrinking or bending, and be transformed to other content whenever

the deformation becomes too large, in a similar manner to the Mutable Elastic

Models (MEMs) [Milliez et al., 2013]. The reader can refer to Figure 4.1 for a

clear picture of this process. This approach however leads to a number of chal-

lenges. Indeed, the overall spatial and temporal consistency of the crowd should

be maintained, which requires continuity between crowd patches (therefore be-
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tween agent trajectories). Moreover, they need to be provided with immediate

visual feedback of the whole animated content, which is indeed the only way for

them to achieve interactive design.

Our examples demonstrate that our method allows the space-time editing of

very large populations and results into endless animation, while offering real-time,

intuitive control and maintaining animation quality. Our specific contributions

are:

❼ a novel method to interactively design complex animated crowds for vir-

tual environments, with high level gestural control and immediate visual

feedback. Note that the animations we generate can be endlessly looped in

time, thanks to the crowd patches method we rely on.

❼ an extension of the mutable elastic models, introduced for shapes only, to

enable the manipulation of structured geometries containing animations,

while preserving spatial continuity between them.

4.2 Overview

The principle of our approach is to represent an animated crowd as a graph-based

structure in which nodes represent animated crowd patches (the reader can find a

description of the crowd patches in Chapter 3), and edges represent the connected

flows between the crowd patches. See Figure 4.2 for understanding the structure

of our method: the top-left part represents the structure of the crowd as a graph,

the top-right part displays the non-deformed crowd patches corresponding to the

graph nodes, and the bottom part represents the final deformed patches that

shape the crowd animation and ensure continuity. From there, by proposing a

novel extension of Mutable Elastic Models [Milliez et al., 2013], user interactions

applied to this representation can (i) impact the topology of the graph by in-

serting, removing or connecting nodes together thereby switching patches and

changing the way patches are connected, (ii) impact the geometry of the patches

(bending, stretching, shrinking thereby changing the way agents are moving inside

a patch).
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Figure 4.2: A simple example to illustrate the representation we use for contin-

iously deforming crowd animation. Top-Left: A geometrical graph G captures

the structure of crowd patches. Top-Right: Each vertex of G corresponds to a

crowd patch. Bottom-Left: Crowd patches are locally deformed to enable seam-

less animation continuity between patches. Bottom-Right: A 3D rendering of

the crowd.

In practice, crowd patches are organized into a bi-directional graph structure

storing adjacency relationships. Up to now, no feature was proposed to deform

the individual patches or to change the topology or geometry of this graph. Our

insight is to extend Mutable Elastic Models (MEMs) [Milliez et al., 2013] (see

MEMs description in Section 2.3.3) to the crowd patches framework: MEMS

are a unique solution for enabling large deformations of a complex structure

while limiting the distortion of individual elements (here the geometry of crowd

patches, and therefore of the trajectories). Whenever local deformation is too

large, elements are either interactively swapped with more suitable ones, or some

of them are inserted, removed, connected or dis-connected, as necessary, within

the graph.

Although we inspired from the original idea, MEMs cannot be directly applied

to our crowd patches framework. First, Milliez et Al. did not solve for spatial

continuity between the geometric elements they manipulate. In contrast, local

deformations maintaining C0 continuity at least is required in our case, in order to
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ensure smooth trajectories for virtual agents. Second, the elements of animation

we manipulate require specific treatments to ensure proper temporal connections.

In the following section, we therefore present a new mutable model, based on

crowd patches. They require defining:

❼ a set of rest-state configurations, each rest-state representing a specific patch

type and containing a patch instance (see Section 4.3.1);

❼ a state space which maps user interactions to changes in the topology of

the graph structure (see Section 4.3.2);

❼ a mean to locally deform the geometry of crowd patches to follow the graph

deformations (see Section 4.3.3);

4.3 A mutable model for sculpting crowds

The first step is to define a number of rest-states together with their corresponding

patches and then the state space which describes the possibilities to swap rest-

states or change the topological structure of the graph.

4.3.1 Patches Rest-states

A rest-state is a predefined local configuration in the graph, a specific spatial

arrangement of nodes and edges. Figure 4.3 illustrates the different rest-states

available in our system, typically:

❼ a dead-end (1 edge only), χ(DE),

❼ a flat node (2 aligned edges only), χ(F ),

❼ a L-corner (2 orthogonal edges), χ(L),

❼ a T-junction (3 orthogonal edges), χ(T )

❼ or a X-junction (4 orthogonal edges), χ(X).
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Figure 4.3: Table of possible rest-states defined in our system (1st column),

corresponding types of patches (2nd column), patches layout (3rd column) and

examples of patches instances (4th column). The red dots represent obstacles in

the patches.
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Each rest-state is first associated with a patch type. The patch type typically

defines the side on which agents flow between patches, yet without precisely

defining densities of agents nor entry/exit patterns of agents. For the sake of

simplicity, we restricted our patches to square-shaped regions. Each rest-state can

therefore be connected to a maximum of 4 other patches. Each patch type is then

associated with a collection of frame-patches including only entry/exit patterns

and obstacles, displayed in red in Figure 4.3. Each frame-patch is then associated

to different patch instances which each contains different agent trajectories (all

satisfying the entry/exit patterns and avoiding the obstacles), thereby providing

a good degree of variability.

Frame-patches and Patch Instances: Frame-patches are delimited by pat-

terns, which capture spacetime way-points for characters traversing patch bound-

aries. Frame-patches do not contain trajectories, but simply specify constraints.

Patterns capture the flow going through each of the patch boundary. This means

that we can easily deduce crowd patches instances from their type and frame-

patch. We set empty patterns p∅ (without any way-point) where there is no flow

allowed. We set a desired number of way-points for other patterns depending

on the density of the patch. Combinations in the densities and in the patterns

enable a first level of variety in the possible patches.

However, we must guarantee that the set of patches we use easily intercon-

nects. Our solution is to create patches instances from a very limited set of

patterns {p1, ..., pn} as well as their mirror patterns {p′1, ..., p
′
n}. Indeed, we re-

call that two patches can connect if the spacetime way-points on their boundary

match: one input point should correspond to one output point in the adjacent

patch. This condition is true for two mirrored patterns pi and p′i. By using a

limited set of patterns, it is possible to pre-compute all the possible combinations

of patterns to create different frame-patches, and then different patch instances.

For example, an instance of a dead-end patch type patch is built with the fol-

lowing 4 patterns for each node: Pdead end ← {pi, p∅, p∅, p∅}. This patch can

be connected for example to a flat-node type patch built with these 4 patterns:

Pflat ← {p
′
i, p∅, pj, p∅}.



62 Chapter 4

Once patterns and obstacles are set in a frame-patch, different trajectories

can be generated (for more information on trajectories generation please refer to

Chapter 3 and [Yersin et al., 2009; Li et al., 2012; Ramirez et al., 2014]). These

combinations therefore enable a second level of variety in the possible patches.

Each time a new nodeN is inserted in the graph, all the patch instances of that

node type for which all entry/exit patterns are compatible with its neighbors in

the graph, are selected in a pool of possible candidates. A random process then

chooses one among the possible candidates, and associates this patch instance

with the node.

4.3.2 Patches State Space

We now describe how the graph deforms and evolves under a set of possible user

actions, as well as how patches switch between different rest-states.

State Space: A state space is introduced to map each node in G with one rest-

state. There is no ambiguity in this mapping when nodes are dead-ends, T or

X-junctions, because the number of connected edges straightforwardly determines

the corresponding rest-state. We however have an indetermination in the case of

2-edge nodes, that can either have a flat or a L-corner node rest-state. To solve

this ambiguity, we define a state for nodes with two edges (rightmost green region

in figure 4.4). Our state space is two dimensional. The state si of the node i is

defined in the 2D state space as:

si = [li, βi] (4.1)

where β is the angle formed by the two edges connected to the node and l the

length sum of the connected edges. We can now project the node into the state

space. The state space is displayed in Figure 4.4. Depending on the position

of the node in this space, we deduce its corresponding rest-state (color-coded

areas in the state space). The figure also illustrates that, as detailed later, the

user’s actions will change the state of nodes, depending on their distance to the

rest-states we defined. Distance and projection in the state space are computed



A mutable model for sculpting crowds 63

Figure 4.4: Presentation of the state space. A colored region represents a state

and boundaries represent transitions. User deformations move nodes away from

their rest-state and inside this state space (the distance is measured using a

specific metric integrating position and orientation information of edges). When

reaching a boundary in the state space, the current rest-state is either switched to

another one (Flat towards L-Corner) or leads to a change in the graph structure

(node insertion or removal).
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Figure 4.5: Illustration of the deformation energy E(f). Each node is associated

a rest-state (closest one its state space). Here three rest-states are illustrated in

red, each one associated to a state space in which the current configuration of the

nodes (in black) are positioned. Distance between each node and its rest-state is

then evaluated (using angles and edge lengths). Distances are then summed on

all nodes to compute deformation energy.

according to the metric presented in [Sorkine & Alexa, 2007] and based on the

deformation energy E(f):

E(f) =
∑

pi∈G

dist(Ri(Ai), f(χi)) (4.2)

where E(f) is the energy to minimize, pi the graph nodes, and dist the dis-

tance between the configuration of the considered node Ri(Ai) to its rest position

f(χi). Ai is the set of possible rest-states Ai = {χ
(DE)
i , χ

(F )
i , χ

(L)
i , χ

(T )
i , χ

(X)
i }. The

method of Sorkine & Alexa [2007] is explained in Section 2.3.3. An example of

mapping between the nodes of an example graph and the rest-states is displayed

in Figure 4.5.
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Cutting and Merging: The user is able to cut or merge parts of the graph.

These actions are direct and explicit actions on the graph G. The user determines

an edge to delete from the graph (cutting) or some new edges to add to the graph

between two nodes (merging). In our application, the user performs cutting by

selecting two adjacent patches and selecting the ”cut” action. To merge two

components of G, the user moves one of the component (global translation /

rotation) close to the other one, selects two close patches and select the ”merge”

action. An edge is created between the two corresponding nodes of G.

Cutting and Merging actions directly result into changes of rest-states for the

considered nodes. When cutting, the edge removal will mutate the connected

nodes:

❼ X-junction into a T-junction: χX → χT ,

❼ T-junction into a flat node (”trunk” edge is cut): χT → χF ,

❼ T-junc. into a flat node (”branch” edge is cut): χT → χL,

❼ Flat or L-corner node into a dead-end: χL, χF → χDE.

Note that we did not consider isolated nodes because this case is useless. And

conversely, when merging, edge insertion will result into change in rest-state for

the newly connected nodes: χDE → χL, χF , χL → χT , χF → χT . We choose

whether χDE should turn into χL or χF by choosing the rest-state at closest

distance from the current state of the considered node.

Node rest-state changes also result in a change of patches type (and con-

sequently patch instances). The newly mutated node will connect to existing

neighbors. Connection is made through patterns. These existing constraints de-

fine the correct patch-frame to be used. We then randomly select any instance of

a patch with the corresponding patch-frame. Examples of cutting and merging

operations are illustrated in Figure 4.1, steps 2 and 3. One can see flat nodes

turning into dead-end nodes at step 2. In step 3, one flat node is successively

merged with two other components: it turns into a T then into a X-junction

node.
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Stretching, shrinking and bending: Second, stretching, shrinking or bend-

ing operations can be performed on the graph as illustrated in Figure 4.1, step 4.

The part to be deformed is selected by defining control nodes (represented as pins

in our examples). The in-between structure of nodes is deformed in as-rigid-as

possible way. As explained in [Sorkine & Alexa, 2007], this is done computing the

nodes configuration that minimize E(f), Equation 4.2. This new configurations

change the 2-edge nodes state.

Projection in the state-space (Figure 4.4 and 4.5) determines whether a swap

in state (or mutation) is required. For example, when a flat node is stretched,

its state is moved to the left of the state space: indeed, this move in the state

space corresponds to a shortening of edge length. At some point, the state will

go beyond the limit (between the pink and violet areas) where node removal is

triggered. In the same way, when bending a flat node, the angle formed by node

edges will increase or decrease: mutation to a L-corner χL rest-state is triggered

(transition from the violet zone to the orange zone). A hysteresis at the frontier

of different rest areas is implemented as suggested by Milliez to avoid disturbing

oscillations between different rest-states.

As for cutting and merging, when a node mutates to a new rest-state or is

added to G, the matching patch-frame is selected and any instance corresponding

to this frame is added to the animation.

4.3.3 Geometric deformations of patches

The elastic deformations controlled by the user cause some changes of distance

and alignment between patches. As crowd patches contain some animated char-

acters that move from patch to patch, un-alignment and distance changes result

into discontinuities in the animation that need to be addressed (an aspect not

tackled by [Milliez et al., 2013]).

To ensure animation continuity, we propose to locally deform the patches

geometry together with the animation to connect them seamlessly. Such a local

deformation is illustrated in Figure 4.6. The results of a complex deformation is

illustrated in Figure 4.2. Patches adjacency is easily deduced from G. It allows us
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Figure 4.6: Local deformation of patches. Vertices of two adjacent patches are

interpolated. A bilinear interpolation of the internal animation trajectories is

performed to fit the new patch position and shape.

to map patch vertices of adjacent patches two-by-two. In the example of Figure

4.6, A2 and B1 are mapped, as well as A3 and B4. This allows to compute the

new coordinates of locally deformed patches: they stand at the center of mapped

vertices. For example, B′
1 is at the center of A2 and B1. Finally, all the internal

trajectories as well as internal objects coordinates are deformed to follow the new

shape of patches vertices. This local deformation is performed using a simple

bilinear interpolation. Each trajectory control point τxy is located at the same

coordinates (αx, αy) expressed relatively to the moving axis (
−−−→
B′

1B
′
2,
−−−→
B′

1B
′
3). Given

that deformations on the patches are limited (due to changes in states that arise)

the bilinear interpolation only leads to small deformations on the trajectories.

4.4 Results

We have implemented our crowd sculpting method with crowd patches frame-

work described in Chapter 3. On top of this, two visualization components were

developed for the sake of manipulation and visualization. First, a simple 2D

trajectory visualization component in which characters are displayed as moving

points based on SFML. And second, a more complete visualization module based

on the Unity Game Engine (see Figure 4.8). Note that in the current version

we are using, Unity does not allow the display of more than 1.500 characters.

Therefore our examples with more characters are only showed using our 2D vi-
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Figure 4.7: Example of an animated city. Existing geometry is populated by

crowd sculpting.

sualization component.

As displayed in the companion video1, interaction with the crowd is made

using the mouse. The user selects the patches he wants to interact with by pinning

them. The pinned patches are static or being moved by the mouse. The user

then drags the selected patches to deform the structure. All the patches between

two pinned and selected patches freely deform. As the patches are deformed all

the trajectories are recomputed in real-time.

The crowd patches method is efficient, because computations are limited to

data replay; complexity remains linear in the number of patches and characters.

Together with deformation and the simple 2D visualization, the method is fast

and able to deal with large environments. Based on the kind of examples we

show in Figure 4.8, we are able to simulate the crowd and deform the structure of

patches with smooth user experience (refreshing rate above 20 frames per seconds)

up to 500 patches, which represents an average of 6000 characters (and given that

our implementation is mono-thread, there is large room for improvement).

1Online version: https://youtu.be/YNurdcADhlA

https://youtu.be/YNurdcADhlA
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Figure 4.8: Example of an animated crowd shaped as the Eurographics logo.

Figure 4.7 and 4.8 illustrate two results. In the first example, we deformed a

structure of patches to match an existing environment. We reached the desired

result in 15 minutes. These 15 minutes of Crowd Sculpting are almost entirely

displayed in the companion video (×10 acceleration). In the second example, we

created a crowd moving along the EG logo. We reached the desired result in 5

minutes after a dozen of deformations.

4.5 Summary

The crowd sculpting method we presented is the first approach that makes the

task of populating large virtual environments at the reach of any user. It offers
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a unique interaction experience with the complex animations in a crowd: in-

deed, designers can quickly manipulate a full crowd motion through a few sculpt-

ing gestures, enabling complex environments to be populated easily and quickly.

Compared to crowd simulation approaches, we offer direct high-level control of

trajectories, instead of indirect parameters. Compared to crowd motion editing

techniques, we are not limited in terms of amount of deformation, animation du-

ration or spatial coverage. Finally, compared to CrowdBrush Ulicny et al. [2004],

we do not edit some crowd simulation parameters but directly manipulate the

coverage and shape of a crowd motion. We believe that it opens a new path for

crowd motion design, by providing both new control paradigms and an interactive

support for expressivity.

Still, a limitation of this editing method is that it only produces crowds with

an uniform or quasi-uniform density. The next chapter introduces the first patch

based method for designing crowds with space-varying density.
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Figure 5.1: Our system can be used to populate a large city like environment

such as the Wall Street area in New York with crowds of different density and

direction constraints in minutes. Resulting crowd motion can then be played

endlessly always satisfying the user’s intent.

5.1 Introduction

This chapter presents a method to intuitively populate virtual environments by

specifying two key features: localized density, defined as the amount of agents

per unit of surface, and localized flow, defined as the direction in which agents

move through a unit of surface. The technique we propose is also stationary

in time, meaning that whatever the time in the animation, the resulting crowd

satisfies both features. As in the previous chapter, we rely on the Crowd Patches

model introduced by Yersin et al. [2009]. We first discretize the environment into

regular patches and create a graph that links these patches. Then, we generate

an assembly of patches, in which patches locally match a user-defined level of

density and flow direction, while maintaining boundary constraints. This is done
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by applying an optimization process that operates on the patch graph – a graph

whose nodes are patches and edges are faces that connect patches. Optimization

is performed along patch parameters in the graph; these are (i) the number of way-

points at the boundaries of patches to account for density, and (ii) the connections

between possible entry end exit way-points to account for flow direction. The

resulting animation progressively converges to match the expected constraints, by

using the difference between the actual features and the expected constraints as

a cost function. Another computational stage is however necessary both to avoid

unwanted behaviours such as characters walking in small loops, and to globally

create flows that satisfy the user inputs. To this end, we first identify distant

patches which differ the most from user input. A path-planning process is then

proposed to compute paths in the patch graph linking such patches. Along these

paths, entry and exit points are created to construct a trajectory for characters.

As a result, the method has the capacity of generating large realistic crowds

in minutes that endlessly satisfy both user specified densities and flow directions,

and is robust to contradictory inputs. At last, to ease the design the method is

implemented in an artist-driven tool through a painting interface.

The contributions are the following:

❼ an optimization technique to compute crowd animations that satisfy differ-

ent sizes under localized density and directional flow constraints;

❼ a process to avoid local loops in characters’ trajectories by computing paths

linking unsatisfactory patches;

❼ an artist-driven tool for designing crowds. Designers can create crowds

very rapidly using an existing paint tool. User requirements are specified

by combining image layers which specify exogenous and endogenous density,

direction and obstacles.

This chapter is organized as follows. Section 5.2 provides a global description

of our solution and of its main components. The optimization technique to com-

pute patches with desired density and flow direction is detailed in Section 5.4.
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3D Environment

Obstacles

Dynamic Crowd

Static Crowd

Direction

Converged

Result

Figure 5.2: Overview of the Crowd Art platform. (1) Users define a set of

maps that annotate the environment with crowd information. (2) These maps are

merged to generate a set of crowd patches under density and direction constraints

(color indicates direction). (3) Crowd patch parameters are iteratively optimized

to satisfy user requirements which are then used for (4) real-time animation of

large crowds.

Section 5.5 introduces a simple interface for users to sketch those inputs. Finally,

results are discussed in Section 5.6.

5.2 Overview

Our solution to control crowd density and direction first requires (i) the provision

of an interface to design the crowd requirements and (ii) an optimization process

by which the crowd is generated (Figure 5.2). In the first step, users can use a

painting interface to draw areas of endogenous and exogenous people as well as

paint motion directions through color gradients (Section 5.5). They can use and

combine as many layers of constraints as necessary; additionally these maps can

be overlayed on top of environment maps to match obstacle free regions.

Secondly, these maps are merged and discretized to generate a graph describ-

ing density and flow direction requirements for the environment. Each node of the

graph corresponds to a crowd patch [Yersin et al., 2009]. These patches are then

constructed and iteratively optimized to satisfy the user constraints (Section 5.4).
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Figure 5.3: Patches and Patterns Adjacent patches can be connected if they

have matching mirror patterns. Shading on the base of the patch indicates density

and arrows represent flow direction.

5.3 Density and Direction Control in Patches

We aim in computing parameters of our crowd patches from user-defined density

and flow directions values over period π. Both are supposed to remain constant

in time. Density in a patch can be defined as:

ρ =
1

π

∫ π

0

ρ(t)dt =
1

Aπ

∫ π

0

|D(t)|dt. (5.1)

Assuming patches of constant size A and period π, density can be changed

only by playing on the number of characters |D(t)| that are present in the patch at

any given time. Recall that we have two kinds of characters; endogenous Den and

exogenous Dex. Endogenous affect density during the entire period of the patch,

whereas exogenous affect density dynamically and are dependant of the number

of input and output points and inter-connections between them (Figure 5.3).

Equation 5.1 therefore can be written as:
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ρ =
|Den|

A
+

1

Aπ

∫ π

0

|Dex(t)|dt. (5.2)

Therefore density can be controlled in two ways:

❼ by modifying endogenous characters Den.

❼ by modifying input and output points on the sides of the patch (this changes

Dex(t)).

Playing only with endogenous characters would result in quasi-static crowds.

Therefore, playing with the number of inputs and outputs point is a much better

solution. The difficulty to find a correlation between these points and the density

value. In our work, we use the following approximation : we directly use the

number of input and output points as an approximation for density.

This is justified by the experimental measurements shown in Figure 5.4 that

demonstrate a direct correlation between the two with small variance (due to

temporal placement and optimal connections between points). To compute these

data, we generated multitudes of patches of different parameters (area A, period

π), and different numbers and placement of IO points; endogenous characters

were not considered. For each of these patches, we found optimal connections 1

between points and then measured the resulting density (Equation 5.2).

Flow direction in patches can be defined by the way input/output points are

placed and how they are interconnected. A connection between an input and

output point defines a single direction di that lasts ti seconds. By knowing all

connections D = {di : i ∈ [1, n]} in a patch, we define the main flow direction of

a patch as:

d =
n

∑

i=1

tidi. (5.3)

One can observe the difference of density and flow direction between two

neighboring patches in the simple example displayed in Figure 5.3.

1Optimal connections were retrieved using the approach of Ramirez et al. Ramirez2014.
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Figure 5.4: Density and I/O points Experimental data demonstrating the

correlation between density and the number of I/O points for patches of different

size and same period (π = 30 secs). Shaded regions represent the variance in

density.



78 Chapter 5

5.4 Optimizing Crowd Requirements

In this section we explain how to construct an assembly of crowd patches with

locally controlled density and flow direction. An optimization-based strategy is

employed to find the optimal crowd patches parameters without violating bound-

ary conditions between neighboring patches.

Optimization Strategy The main principle behind our optimization strat-

egy is to add or remove sets of input and output points at boundaries of patches

at each step of the optimization loop aiming to get as close as possible to the

user inputs. We measure a signed error for each patch. The error is computed as

a combination of (i) a density error measuring the difference in terms of number

of characters between existing and expected values in a patch and (ii) a direction

error measuring the difference between the expected direction and the weighted

sum of actual characters’ directions (Equation 5.3). Given that every change on a

patch impacts its neighboring patches – therefore changing neighboring densities

and flows, the steps are repeated until convergence. Convergence is met when

error change is negligible.

Constraints During optimization, two types of constraints need to be sat-

isfied: user and patch constraints. User constraints define desired density and

direction where needed; every patch has a density constraint whereas direction is

optional and can be defined in parts of the environment. Patch constraints on the

other hand concern cardinality of input and output points as well as compatibility

between patterns of neighboring patches (Section 3.1 and 3.2); i.e., patches must

be connectable and periodic. Additionally, there is a maximum allowed density

value ρmax for all patches.

Representation Our problem is modelled as a graph G = (V,E); nodes V

and edges E indicate patches and connections between them respectively. Each

node u ∈ V stores the measured density ρu,c in the patch, the required density ρu,r,

the measured direction du,c (if needed) and the required direction du,r. Directions

are unit length 2D vectors.



Optimizing Crowd Requirements 79

5.4.1 Algorithm

For all the remaining, please consult Algorithm 2; numbers near the paragraph

titles indicate lines in the algorithm.

Initialization (Alg. 1, lines 1, 2) The graph is initialized by setting all

patches to have the same density value so that each one of them has the exact

same number of input/output points and can be easily connected without vio-

lating patch constraints (setting all patches to a zero density value is a possible

initialization). The initial values for density affect the speed of convergence which

is also dependant on the complexity of the density and direction requirements

(Section 5.6). Given the initial density value, we use a regression on experimen-

tal data in order to compute the initial number of input and output points in

patch. Figure 5.4 displays the relation between density (vertically) and number

of input/output points for different patch sizes. Additionally patch size A and pe-

riod π are uniformly set by the user depending on accuracy requirements; smaller

patch sizes lead to better approximation of density.

Finally, during initialization the graph is split into strongly connected com-

ponents using Tarjan’s algorithm [?]; optimizations are then performed indepen-

dently on each connected component (Section 5.4.2). Splitting the graph first

reduces the overall complexity of the process and then allows to concentrate the

modifications in strongly connected areas (i.e. where there are more possibilities

of connections between components).

Measuring Convergence (Alg. 1, lines 3, 22) To measure the error to the

desired solution, we define a function E(G) that composes density and direction

errors of the entire scene at each iteration step (Eρ(G) and Ed(G) respectively):

E(G) = Eρ(G) + Ed(G) (5.4)

We define Eρ(G) to be the Root Mean Square Error (RMSE) of density scaled

to the maximum allowed density ρmax
2:

2This is currently user defined and set to 0.35 characters.m
−2.
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input : Graph G = (V,E) of density and main direction user constraints.

output: Graph G = (V,E) modified to satisfy all constraints.

1 InitRandomSolution(G);

2 SC← StronglyConnectedComponents(G);

3 while not converged do

/* Mutate Graph G */

4 for each component Gi = (Vi, Ei) ∈ SC do

/* Update error values on nodes and edges */

5 UpdateSignedError(Gi, Vi);

6 UpdateEdgeWeights(Gi, Ei);

/* Find error extrema and fix them in groups */

7 max← ErrorMaxima(Vi) > 0;

8 min← ErrorMinima(Vi) < 0;

9 MG← CreateGroups(max);

10 for each group of maxima m ∈MG do

11 path←MinimumCostPath(Gi,m);

/* Check if points can be deleted */

12 if CanRemove(path) then

13 RemovePoints(path);

14 end

15 end

16 MG← CreateGroups(min);

17 for each group of minima m ∈MG do

18 path←MinimumCostPath(Gi,m);

19 AddPoints(path);

20 end

21 end

22 globalError ← measureGlobalError(G)

23 end

24 return G;
Algorithm 2: Optimizing density and main direction constraints. Each mu-

tation manipulates I/O points and affects a set of patches.
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Eρ(G) =
1

ρmax

√

1

|V |

∑

u∈V

(ρu,r − ρu,c)
2 (5.5)

We then define Ed(G) based on the angle between du,c and du,r:

Ed(G) =
1

|Vd|

∑

u∈Vd

(1− du,r.du,c) (5.6)

where Vd ⊆ V represents the subset of patches that have direction require-

ments. Now the interesting aspect here is that rather than computing the current

direction du,r from existing trajectories, we actually optimize the assignments be-

tween inputs and output points and then measure the direction. The assignments

are based on optimal matching by extending the work of [Ramirez et al., 2014].

The direction is measured using the weighted average direction of connections (a

connection being a straight line between I/O points). Weights are simply defined

as the duration between the input/ouput points of a connection. Ramirez et al.

[2014] optimize the connections between pairs of input/output points in a patch

by using a score function that gives more imortance to points on opposing pat-

terns based on the preferred speed of each agent. We extend this in two ways; by

defining a new matching function that additionally takes into account the direc-

tion contraints and by setting the preferred speed of agents in any given patch

based on the density requirements. We base the latter on the fact that people

tend to move slower in dense rather than sparse situations [?].

5.4.2 Optimization steps

During each step of Algorithm 2, three basic operations are performed to minimize

Equation 5.4: (i) finding areas with large errors, (ii) selecting subsets of them and

(iii) removing/adding points in patches that lie on these paths of minimal cost

between them.

Error and Local Extrema (Alg. 1, lines 4-8) At every optimization step,

we set an error value on each node u ∈ V of the graph:

e(u) = eρ(u) + sign(eρ(u)).ed(u) (5.7)



82 Chapter 5

eρ(u) = ρu,c − ρu,r is the signed error in density, ed(u) = |1 − du,r.du,c|/2 is

the error in direction and sign(.) is the sign function. Positive values of eρ(u)

indicate that the node has more density than requested whereas negative indicate

that the node is lacking density. Values of ed(u) near 0 indicate good direction

whereas values near 1 indicate opposite direction. Local positive maxima of e(u)

in G indicate neighborhoods of patches that either have an abundance of density

or direction is not correct, whereas local negative minima indicate areas that need

characters and have bad direction (Figure 5.5).

Fixing errors (Alg. 1, lines 7, 8, 9, 16) We use these positive maxima

and negative minima patches as starting points to fix problems in the patches.

First, all of them are found and grouped based on distance, type (maxima and

minima) and if they belong in the same connected component; these groups

typically consist of 2–5 extrema. Then, circular paths that aim in minimizing

error between the patches of a single group are found. We emphasize that these

paths are not actual paths; rather they act as on/off switches between patches

that open doors so that when the time comes, connections can be made that

satisfy user constraints. Also, by forcing circular paths we ensure that pairs of

input and output points are added so that boundary constraints are not violated.

Additionally, we limit the matching of extrema based on distance so that it is

easier to find paths and minimize error instead of actually increasing it.

Path finding between extrema (Alg. 1, lines 10-15, 17-20) Having a set

O = {Oi : 1 ≤ i ≤ k} of k extrema, a path between each pair {Oi, O(i+1)%k}, ∀i ∈

[1, k] of extrema is found. In the case where these extrema are positive maxima,

points must be deleted (Figure 5.5 right). To do so, a path between two maxima

is found that minimizes the derivative e′(u) between any two patches in the

path (i.e., the direction of slower descent). More importantly, each pattern that

connects two patches in the entire path must have enough I/O points to allow for

deletion. After the entire path between all maxima is found, pairs of input and

output points that connect consecutive patches are deleted. In the case where

the extrema are negative minima, the operation is slightly easier since we do not

need to make sure that points exist or not on each pattern touched by the path

(Figure 5.5). Here, we again aim in minimizing e′(u) and when the entire path is
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Figure 5.5: Fixing errors. (left) The leftmost image shows the signed error

map at one step of the optimization. Green values indicate 0, cold and hot

colors indicate negative and positive values respectively. The darkest blue indicate

negative minima and red positive maxima. (middle) Two minima A and B have

been selected based on distance and a path of minimal cost is found between

A and B and back; pairs of output/input points are added on the sides that

connect two patches of the path increasing density. (right) Three maxima have

been selected and paths from A to B, B to C and C to A are found; pairs of

input/output points are removed on the path only if points can be removed from

all patches on the path. Observe that in this case, patches that were ok (green)

were modified to fix erroneous ones.

found, points are added instead of deleted.

We note that in both cases, it is possible to have patches in the path where

error increases; this effect is minimized by following patches with “high” same

sign errors and by adding a penalty if we cross the boundary where we have

e(u) = 0. Even though some patches can have an increase in error, these are

typically fixed on a following update step. Finally, instead of modifying all groups

of maxima and minima found at each step, we select a few; this selection is simply

a linear function of the number of patches in a given connected component, i.e.

if Gi = (Vi, Ei) ⊂ G = (V,E) is a connected component, we update at each step

⌊Vi/400⌋+ 1 paths.

Internal Trajectories (Alg. 1, line 22) At the end of each optimization

step, current density and direction values (ρu,c and du,c respectively), must be
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Figure 5.6: Convergence Algorithm 2 convergence for some of the experiments

presented in Section 5.6.

computed for each patch. To speed up calculations, simplified trajectories are

found that do not take into account collision avoidance; this simplification does

not affect accuracy (Section 5.4.1). Accurate trajectories are calculated at the end

of optimization using a Reciprocal Velocity Obstacles based algorithm described

in Section 3.3.1.

Algorithm Convergence (Alg. 1, line 3) The proposed approach converges

to a globally good solution (Equation 5.4) after a few minutes (Figure 5.6). Con-

vergence depends on the initial configuration of each patch, the complexity of the

user constraints, the number of paths updated at each step and and the number of

requested characters. See Table 5.1 for the convergence time of the experiments

discussed in Section 5.6.
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5.5 User Interface

This section describes the user interface for specifying crowd density and direction

requirements. The proposed approach is paint-driven and exploits tools familiar

to artists such as brushes, selections, movement, gradients, strokes, etc. The

system was integrated in an open source image processing tool [Harford, 2000] as

a set of plugins. An artist can define a crowd by painting a set of grayscale layers

on top of the environment map; these layers are essentially metadata having all

the information needed to generate a crowd with density and direction controls.

We define four basic types of layers (Figure 5.7): exogenous and endogenous

density, direction and obstacles; a user can create as many layers of a specific

type as she pleases. Additionally, layer and pixel opacity are used to assign

weights to layers and pixels respectively.

Crowd Maps Exogenous and endogenous density layers are used to define the

density of exogenous and endogenous characters respectively. Density is defined

through the intensity of pixels; the brighter the values the higher the density.

Direction is defined by drawing dark to bright gradients and finding the layer’s

2D gradient. Finally, obstacle layers are used to easily mask out areas where

density must be zero; this can also be achieved by careful painting of density.

We found that this approach eases the process for various kinds of pre-existing

environment maps where obstacles can be selected based on color.

Layer Merging Layers are then separately merged to generate three grayscale

layers describing the final requirements for overall (a) exogenous density, (b) en-

dogenous density and (c) direction. All direction and density layers are accumu-

lated using weights based on pixel and layer opacity. Additionally areas where

obstacles are present are removed.

From maps to crowd patchesHaving global merged layers, three additional

parameters are defined: the desired number of characters, the crowd patches size

and global period π. These parameters affect the quality and accuracy of the

generated crowd. Each crowd patch is defined by a square set of pixels depending

on maps resolution and patch size; desired density and direction for a patch are

computed by the average of the pixel values. Empty patches are removed and a
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Figure 5.7: Defining Constraints Users can annotate an environment with

various information using image layers; these include obstacles, exogenous and

endogenous density and directions. Layers are separately accumulated to generate

final constraints. (bottom) Finally, a graph of density and direction contraints is

generated.
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graph of interconnected patches is generated based on neighborhood information

(Figure 5.7 bottom); this graph is given as input to the optimization approach

described in Section 5.4 to generate the desired crowd. We found that users need

only a few minutes to populate scenes such as the ones shown in Section 5.6.

5.6 Results

We evaluate our method according to different types of scenarios. First, simple

scenarios explore how accurately our method actually match users’ inputs; both

for density and flow requirements. Secondly, we demonstrate our approach in

typical use cases that include populating city like environments. Finally, we

analyze the performance of our approach.

Please refer to the accompanying video3 for animated versions of the paper

results; this is especially useful for the flow experiments. We emphasize here

that all resulting animations can be efficiently and endlessly played with user

requirements being constantly satisfied ; i.e., direction and flow direction remain

constant over time and the optimized result is never violated. In comparison with

previous approaches, only our method provides such a feature. For all presented

examples, patches were defined so that patch area A ranged between 16 and

100m2.

5.6.1 Density Control

Our system is capable of generating crowds of different density requirements

(Figure 5.8); to simulate different density patterns, users provide grayscale density

maps, the required number of characters and the size of the area and patches.

We remind that users can provide two kinds of density maps; exogenous and

endogenous. Here we demonstrate moving crowds and not static which are trivial

to handle.

The proposed system is capable of handling very diverse inputs such as simple

uniform density (not shown), lanes of discrete density, smooth gradients and even

3Online version: https://youtu.be/TUCr7zBRxOM

https://youtu.be/TUCr7zBRxOM
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Figure 5.8: Density ControlOur system can simulate crowds of different density

patterns ranging from the very simple discrete density cases of a few thousand

characters to the very complex ones (e.g., paintings) of hundreds of thousands.

We note that characters move continuously between densities without violating

the overall density requirements.

complex ones such as paintings with minimal errors (Figure 5.8). The demon-

strated examples consist of crowds of different sizes, ranging from 1000 characters

up to 100000 characters. We note that characters move around the environment

between areas of high and low density and are not localized.

5.6.2 Flow Direction Control

Flow direction can easily be controlled with our approach. We set up three

simple scenarios; a uniform density crowd with a flow constraint in a part of the

crowd (Center Flow), a circular moving crowd (1-Circular Flow) and finally three

circular motions (3-Circular Flows); in both of the circular motions there is a

small number of characters moving in the remainder of the region without any

direction constraint (Figure 5.9).

In Center Flow, uniform density is achieved and the characters in the middle

follow the requested direction. Importantly, in this scenario, flows emerge in

other parts of the environment that guide the characters from the end of the
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Center Flow 1-Circular Flow 3-Circular Flows

Figure 5.9: Flow Direction Control Our system allows for easy control of flow

direction.

flow, around the flow and back at the beginning. In both 1-Circular Flow

and 3-Circular Flow, circular lanes of characters are satisfied; characters in the

areas without any flow constraints enter the lanes, follow them and either leave

them to satisfy density constraints around the lanes or just follow the motions.

These kind of control can be used to generate scenes such as strikes or people

entering/leaving a train station.

5.6.3 Use Cases

Having demonstrated our system in typical scenarios, we can populate virtual

environments with combinations of constraints. We demonstrate these results in

two example scenarios; a single street around a park under different constraints

(Figure 5.10) and a simulation of the Wall Street area in New York city (Fig-

ures 5.1 and 5.12).

Changing User Requirements A user can change the requirements for the

same environment quite easily as demonstrated in Figure 5.10; here the scene is

populated with a set of immobile characters (endogenous density) that are lying

on the lawn and a set of moving characters with different flows around them.

Moving characters avoid both exogenous and static ones.

Urban Examples It is also easy and intuitive to populate large city-like

environments such as the one shown in Figures 5.1 and 5.12. We populate this

environment with a non uniform crowd of 5000 characters and add direction con-

straints in some areas (Figure 5.12). Obstacles such as buildings are additionally
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Immobile 
Characters

Moving 
Characters

Immobile 
Characters

Moving 
Characters

Figure 5.10: Same environment, different constraints. With the proposed

system it is easy to change constraints in an area.



Results 91

Figure 5.11: Two pictures of a district of Rennes generated with our method.

Top: the vasselot street. Bottom: the Honoré Commeurec place.



92 Chapter 5

marked through the user interface. Our system converges to a good solution

satisfying density and flow constraints with minimal error in just a few steps.

Crowd sculpting also allows to populate a district of the city of Rennes, as

shown in Figure 5.11. These results are the fruit of a collaboration between our

laboratory and Dassault Systèmes company.

Massive Crowds Finally, we demonstrate that our system can scale to very

large crowds of hundreds of thousands of characters under complex constraints

such as the one in Figure 5.13. This scene consists of ∼100000 moving characters

in an area of 0.8km2 (∼13000 patches) satisfying an image based density pattern.

The system converges to density patterns that are close to the requested even

though characters move in areas where the requested density was very low; this

happens because of the high contrast between high and low density areas. Again,

the resulting animation is endless and collision free.

5.6.4 Performance

The proposed framework can take up to a few minutes to find crowd patches

configurations under user constraints (see Table 5.1); these results do not include

the time to resolve internal collisions for the patches which is out of the scope of

this work. We provide time for both optimization and resolving collisions using

our velocity based implementation for completeness; notice that this time is sig-

nificantly larger than the time to optimize patch parameters. Optimization time

is affected by the number of patches, number of characters and the complexity of

user constraints; it typically takes minutes. All of the performance measurements

were collected on a 64-bit Linux based system having an 8 core Intel➤Xeon(R)

CPU E5-1620 clocked at 3.60GHz, with 16GB of RAM and a GeForce GTX

680/PCIe/SSE2 GPU card.

5.7 Discussion

A method to intuitively design crowd motion with simultaneous control of density

and direction has been presented. These two quantities are essential to define
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Figure 5.12: City simulation (top) User requirements and error in the opti-

mization. (middle-bottom) Views of the final generated scene.
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Input Density

Optimized Density

Optimized Crowd Animation

Figure 5.13: Massive Crowds Our system can handle complex density patterns

based on chapitre3/fig or photographs such as this one based on a painting.

We demonstrate here the generated patches’ density and direction results for a

massive crowd of 100000 characters in a 0.8km2 area. Notice that there is some

error in the resulting density due to the complexity of the pattern. We note

that the resulting animation is collision free and can be played real time (no

rendering).

the visual aspect of crowd motion, but no previous methods allow users to easily

control them over large-scale crowd motion: many of our demonstrations required

minimal time to define and optimize. Our framework is robust to various kind of

inputs such as simple user strokes, city maps or digital images and is particularly

efficient to populate environments with ambient crowds of certain patterns such as

cities and expressive artistic crowds. Users can create crowds using our prototype

system in minutes, with no specific knowledge, no need to annotate environments

and no need to tune complex sets of parameters. Additionally, generated crowds

satisfy user constraints endlessly and not just for a short period of time.

However, satisfying user constraints endlessly can be a drawbacks if the goal

is to reproduce a convincing crowd running an entire day. Indeed, during a day

densities in the crowd evolve over time, but densities and flows of our resulting

crowds remains the same. A next feature for this work could be finding transitions

between several set of crowd patches, and add more motion variety in crowd

patches.
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The next chapter tackles these issues by proposing solution to avoid repetition

of motion in crowd patches, and also allowing for external events to modify crowd

patches content.
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Temporal Editing of Crowd
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This chapter presents solutions to add motion variety over time on crowd

patches. Firstly, we introduce a method to avoid repetition of same motion over

period of time, due to crowd patches paradigm. The key idea of this technique is

to switch at the end of the period a crowd patch by another. These crowd patches

get the same constraints, but different motion, to ensure animation continuity and

non repetitive content. Secondly, we discuss a possible solution to make crowd

patches reactive to external events, such as activity of a player. This is enabled

thanks to a hybrid crowd patch/simulation engine prototype.

6.1 Crowd Patches Permutation

This Section presents a method enabling to permute crowd patches with another

to avoid repetition of the motion over time. This method allows to add mo-

tion variety of motion in a given crowd patch without impacting animations in

neighboring patches. This method is a part of the contribution of [Jordao et al.,

2014].

6.1.1 Overview

Crowd patches captures time-periodic animations. This enables endless replay of

crowd motion. If a user carefully observes the same area for quite a long period

of time, he may detect animation loop repetition. This is a drawback of the

initial crowd patches we address here. In order to improve motion variety and

lower the risk of animation loop detection, where needed (e.g., in the portion of

the environment likely to be the most observed), we propose a mean to control

the temporal variety. Our key-idea is to use different instances of patches at a

given place instead of a unique one and play patch instances in sequence (patches

permutation is performed at the end of the period). See Figure 6.1.

In a given patch, trajectories are deduced from two constraints:

❼ a set of space-time constraints at the limit of the patch: the patterns.

Characters need to exit or enter patches through the space-time way-points
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Figure 6.1: Time permutation: three different instances of a patch built from

the same patterns and initial state are used to animate this specific area. Patch

instances of same period are looped in sequence. Given that initial states are the

same, the patch instances are seamlessly permuted at the end of each period.
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as defined by patterns to enable smooth animations between two connected

patches.

❼ the initial position of the characters in the patch at t = 0. Characters

remaining inside the patch at the end of the period (t = π) need to be

located at the same positions than the ones where some characters were at

the beginning (t = 0). Note that different characters can occupy these same

positions.

To enable time editing, we allow the possibility to enqueue different patch in-

stances and play them sequentially (all have the same period). These motions are

computed using the constraints of the initial patch, to ensure continuity between

neighbor patches. As a result motions inside a patch appear longer (for they

are not repetitive) and much more different than a patch with shorter period.

Finally, we compute several versions1 of motions for a given patch instance to

offer diversity when sculpting a crowd patch in time. Several versions of a patch

are represented in Figure 6.2.

Figure 6.2: Three different versions of a patch with similar patterns (blue and

green arrows) and time boundary conditions (purple points).

In the task of computing the animation trajectories of a given patch, the first

step is to choose a mapping between each input and output space-time way-points

1Patches instance and patches versions are close notions. To help differientating them, in

simple words, a patch instance is a set of spatiotemporal constraints that drive trajectories. A

patch version is a patch with animation that satisfy those constraints. There can be several

version of a same patch instance.
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as defined by the four patterns forming a patch. This mapping is a great help

for the generation of motion variety. Indeed, to compute several variants of a

given patch instance, we simply randomize the way we connect input and output

points over all the ones defined by patterns. An example of insertion of 3 different

versions of a same patch is displayed in Figure 6.1. Instead of one period of time,

the motion will look different for at least 3 periods of time (however characters

enter and leave the patch at the same time and position). Note that the selection

order for versions of the patch can be randomized, to get the repetition harder to

notice. Moreover the repetition become even harder in a whole scene using this

method.

6.1.2 Conclusion

With this method we can avoid the visual artifact of repetitive motion within

a patch at each period. However, it could be interesting to realise an experi-

mental study on the perception of this artifact. This would allow to estimate

the efficiency of this technique. Moreover, the alternative patches need to be

pre-computed. It offers few possibilities for user interactions. The next section

presents the idea of a possible extension to get rid of this limitation.

6.2 Reactive Crowd Patches

So far, we developed several methods based on crowd patches, that ease the cre-

ation of populated environments by a designer. However, the crowd patches tech-

nique gets limited to non interactive application, because trajectories of crowd

patches characters are precomputed. Consequently external characters or events

can not modify behaviour of inner characters. Nevertheless, in a context of inter-

active applications, such as video games, characters motion should be influenced

by player actions. By interacting with a non-player characters, the player can

trigger events which modify their trajectories, such as talking to them or enter-

ing in collision with them. This section describes a solution enabling reactive

crowd patches, i.e. adapting characters behaviour from a crowd patch according



102 Chapter 6

to user’s actions. This solution is an on-going work and remains unpublished.

6.2.1 Principle

The main principle of our approach is to combine two techniques to steer charac-

ters. First is the crowd patches one, the second is an existing classical simulation-

based steering method. Practically, we use the Reynold’s steering approach

Reynolds [1999]. A character may then be steered from one or the other ap-

proach, and is respectively called a patch-character or a reactive-character. We

may transfer characters from patch-based or simulation-based steering, and three

cases may occur:

❼ patch-character can enter in interaction with an external element. The state

of this patch-character (position, velocity, goal, etc. . . ) is transferred to the

simulator engine, preliminary set with obstacles of the environment. A new

reactive-character is initialized in the simulation system. Consequently,

it is the simulator engine which handles the interactions with the player:

the reactive-character path is adapted to the user’s actions. Moreover,

because crowd patches play pre-computed data, a character transferred in

the simulation engine is not deleted in the crowd patches but marked as

hidden. These hidden patch-characters are still animated by crowd patches,

but not displayed on the screen.

❼ By entering in the simulation engine, a character animated by the simula-

tion, called reactive-character leave a free-slot in the crowd patches system.

This last becomes the goal for the reactive-character. He or she can be

transferred back to the crowd patches system if and only his or her position

is identical to his or her free-slot goal.

❼ A last case happens when an animated character, handled by the crowd

patches or the simulator, becomes definitely out of the animation system

(the player kill him or her). This character become a free-slot if he or she is

handled by crowd patches, or deleted if is handled by the simulation engine.
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Animated characters can have different behavior depending on the interaction

with the player. If they need to avoid the player, they are steered by the free-

slot as goal. The interaction may last longer (the player talk with them), so the

interaction must be over before chasing their goal. Finally, if the player kill them

(a common situation in video games), the characters have to be permanently

removed form the animation system.

To steer reactive-characters correctly, the simulation engine gets information

about neighbour animated characters as well as environment geometry from the

crowd patches system: patch-characters positions is retrieved and synchronized

with the simulation. Note that the crowd patches structure allows doing this in

an efficient manner by limiting this synchronisation to the closest neighbors of

the reactive-characters (the patch containing the reactive-characters as well as

its 8-connected patches).

6.2.2 Results and Discussion

This on going work is a solution to get background characters in a large inter-

active environment. This is due to two main components: (i) crowd patches,

which are able to efficiently handle crowds composed of many characters, (ii) and

a simulation engine which is able to solve local interactions. Our current tech-

nique allows to operate several interactions with non-player characters, which are

avoiding the player, stopping to talk with him or her, and dying. One of these

interactions is presented in Figure 6.3.

These first results are encouraging but many points can be improved. The

current version of the method is implemented with a steering behaviour [Reynolds,

1999] simulation approach. This choice was made to quickly develop a first version

of the algorithm. Recent simulation system could replace our basic one, for better

motion quality when a reactive-character avoid a collision. Moreover, the current

version of the method set as a goal for reactive-character the free-slot he or she just

left. Possible other free-slots could be a better option for more realistic behaviour.

For instance, the free-slot goal of a reactive-character could be far away, specially

if he or she just talked to the player, whereas possible other free-slot could be
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Figure 6.3: Reactive Crowd Patches. Pink: the player. Light-blue: patch-

characters. Dark-blue: reactive-character. Grey: free slot. Black lines:the

borders of crowd patches. The player get in collision with a patch-character. This

last become a reactive-character and avoid the player and try to get the slot it

just lost. Some others free-slots are available in the scene. (May be because the

player killed them..)
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closer.

6.3 Conclusion

In this chapter, we presented two techniques that break temporal repetition of

crowd patches. The first enabling permutation of different crowd patches. The

second is an on-going work allowing to make crowd patches responsive to actions

of a player. These work are still in progress and present several limitations. More

details on future directions are discussed in the conclusion of this thesis.
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Conclusion

The main goal of this thesis was to provide expressive tools to intuitively control

the design of animated of crowds, in large environments. This is an important

problem which had too few attention before. The methods we developed can

be used to generate endless animation of very large crowds. This contributes to

design of more lively virtual worlds.

7.1 Contributions and discussion

This thesis led to two main contributions in the computer graphics and animation

domain, as published as full papers in international conferences. The first one,

Jordao et al. [2014], is a new method using a sculpting metaphor to edit crowd

motion in space and time. The second one, ?, is a paint tool enabling to design a

crowd based on density and main direction of motion. A detailed review of these

works and of their current limitations is provided in the following sub-sections.

7.1.1 Crowd sculpting

Crowd sculpting is the first method for interactively sculpting everlasting crowd

motion at a large spatial scale. In addition to intuitive spatial control through

deformation gestures, the method for temporal editing is one of the first solutions

for providing interactive visual control of temporal content. This work enables
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non-specialists to quickly shape lively environments. It therefore represents a

large step towards making authoring tools more widely available.

In the current version, our approach however displays several limitations, dis-

cussed next.

Extensions to multi-scale control: Our approach provides the users with

control over the spatial layout of patches and enables local edits of motions in

time. This control could be completed by larger or lower scales of control: at

larger scales, it would be relevant to control global parameters, such as the evo-

lution of global density in time (to reproduce daily cycle of a living city). At

lower scales, it would be interesting to edit some individual trajectories, while

automatically preserving the integrity of the patch (space and time constraints

on the trajectories, typically entry and exit points).

Trajectories lengthening & shortening: The different bending, stretching

or shrinking operations on patches result in similar variations on the animation

trajectories. Typically, this impacts the speed of walking characters (given that

timing of entry and exit points in a patch are not changed). In our implemen-

tation, the maximum increase in speed is fixed to ×1.5 the initial speed, a value

above which node insertion is performed, bringing the speed back to ×0.66 ×1.5

the initial speed. The longer the strip of stretched patches, the smaller the pro-

portion of speed change (for example 10 patches turned into 11 patch yield a

×1.10 speed increase). However, such changes in speed may induce possible ar-

tifacts in animations (such as characters slowing down in large, straight, ways).

An easy solution would be to extend the number patch types by including shorter

or longer, rectangular shaped patches.

Environments and animation content: Though we illustrated our approach

with examples of pedestrian streets, our method is not limited to these environ-

ments. Green parks, public squares, public buildings, etc. are easily integrated

by first, defining the set of rest states and second, mapping and computing the

corresponding types of patches. For example, parks and squares would require a
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2D stretching mode in addition to the 1D stretching used for pedestrian streets.

For populating very large environments, an improvement would be to provide

a semi-automatic technique offering a balance between automated and interactive

steps, e.g. automatically integrating the topological constraints of the environ-

ment, while offering all our other interactive features. For example, a designer

would sculpt a crowd along the geometry of existing sidewalks and building walls,

with the system automatically fitting the required width for the patch along these

sidewalks and walls.

Linear Deformation of patches: As detailed in Section 4.3.3, local deforma-

tions of patches are computed using a bilinear interpolation technique. While

other techniques (such as group motion editing Kwon et al. [2008]) could be used

to increase the quality of the resulting trajectories, the low computational cost

of bilinear interpolations enables the simultaneous deformations on a very large

number of patches.

7.1.2 Crowd Art

The crowd art method we presented is the first approach that proposes to pop-

ulate large environments by controlling crowd densities and main directions of

motion. This method is based on crowd patches produces crowds which satisfy

both constraints over time.

However, the results of optimization process are not computed in real-time.

We can only offer an intuitive, but not interactive, interface to design constraints

map. Our interface is not as expressive as the one of crowd sculpting.

In the future, more diverse ways to enhance crowd control should be con-

cidered, such as more diverse flow directions inside patches (e.g., bi-directional or

cross sections); this can be achieved for example by having multiple directions in

each patch. Another possible improvement is adding sources and sinks (buildings,

subway stations, etc.); this will remove circular paths and improve convergence.

Importantly, we are considering conducting user studies to asses the quality or

results and the user experience of our approach both by naive and expert users.
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Another direction for future work is to consider an approach to find an optimal

set of convex crowd patches that fit precisely obstacles and user requirements.

Finally, we would like to be able to transition between different constraints to

model situations like different hours of the day for the same places; e.g., parks,

business areas, etc. These transitions should look natural and be continuous, so

a careful method of morphing between patches should be considered.

7.2 Future Directions

7.2.1 Authoring tool to control crowds over time

Despite this thesis and other techniques which bring new possibilities for crowd

design, expressive modeling for crowds is still at its beginning. In both crowd

sculpting and crowd art, the extension through temporal control of animations

was evoked. A first direction for a future work would consist in finding and

expressive method to create transition between two crowds (composed of crowds

patches or not). We can imagine a simple process as linear transition between two

(or more) scenes of crowd patches, generated at first with crowd art. Another

idea could be to create a more expressive method based on a paint interface.

Some time brushes, for instance a brush for the morning, the afternoon and the

evening, could paint densities for specific period of the day, and the system would

automatically compute transitions between these periods.

7.2.2 Reactive Crowd Patches

Crowd patches get good properties such as being scalable to large environment

and producing endless animation of crowd. Thank to this this thesis, they are

now enhanced with expressive method to easily design populated crowd patches

environments. However in interactive application like video games, crowd patches

are not relevant. Indeed, crowd patches store motion data, so a player character

can not interact with a patch character, because the patch character has no

knowledge about external characters. A direction of research could be to improve
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and extend the on-going work presented in Section 6.2, to make crowd patches

reactive to external components of the environment. We can imagine a simulation

system mixing the efficiency of crowd patches to run a huge background crowd

in real time, with a modern crowd simulator to process interactions between

elements from the environment and those from crowd patches. It would enable to

interact with characters of crowd patches for game applications. For instance, by

making them stop for a while, or even to make them disappear. This contribution

would encourage crowd patches in applications using crowds, since the drawback

of the non reactivity of crowd patches would be overcome.
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Paris, S., Pettré, J., & Donikian, S. 2007. Pedestrian Reactive Navigation for

Crowd Simulation: a Predictive Approach. Eurographics’07: Comp. Graph.

Forum, 26((3)), 665–674.

Patil, S., van den Berg, J., Curtis, S., Lin, M.C., & Manocha, D. 2011. Direct-

ing Crowd Simulations Using Navigation Fields. Visualization and Computer

Graphics, IEEE Transactions on, 17(2), 244–254.
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Résumé étendu

.1 Contexte

La recherche en animation de foules est devenue très active ces dernières décénies,

grâce entre autre, aux succès des jeux vidéos, du cinéma et l’exploration d’environnements

3D. Les foules jouent un rôle primordiale dans ce genre de média.

Dans les films, les animations de foules d’arrière plan, tel que des pétions

discuttant ou marchant, permmettent de plonger les acteurs principaux dans un

monde vivant. Le film Astérix et Obélix : au service de sa majesté ou série

Game of Thrones utilisent un logiel de conception de foules Golaem Crowd, pour

afficher des foules de supporters de rugby ou une population paniquée, essayant

d’echaper a une attaque d’un dragon. L’animation de foule est aussi très populaire

pour les scène de batailles de grand evergure, comme c’est le cas dans le film Le

seigneur des anneaux : le retour du roi, quand Minas Tirith est attaquée par des

hordes d’urukai. Les foules de d’arrière plan ou de scène de bataille permettent de

renforcer le sentiment d’immersion du spectateur. Par conséquent, la foule doit

avoir un comprtement qui correspond au sénario, que ce soit sur ses déplacements

ou sur ces interactions locales, pour ne pas perturber les spectateurs.

Dans les jeux videos, il est commun d’avoir des villes entierement modélisées

à échelle réel, peuplées de personnages virtuels. C’est par exemple le cas pour le

jeux Assassin’s creed Unity, ou le joueur a la possibilité d’explorer les moindre

recoins de la ville de Paris 1789, pendant la révolution française, dont les rues sont

innondées de manifestants. Les foules de ce jeux permet une grande immersion

dans ce contexte geo-politique. De plus, dans des jeux en ligne tel que Star

Craft II ou Age of Empire Online, le joueur peut contrôler de maniere directe

le mouvement de ses troupespour attaquer les adversaires. Un bon contrôl des

unités est crutial pour le game-play de ces jeux.

Une evolution possible dans le domaine de l’architecture et du tourisme pour-

rait être d’intégrer des foules dans des villes modélisées en 3D. Pour le cas de

projet urbain, les maquettes virtuelles pourrait etre accompagnée de foules pour

avoir un meilleur ressenti du quartier future ou de la ville. Dans le cas du tourisme



on pourrait imaginer du tourisme virtuel dans des villes existante ou fantastique

peuplées de manière realiste par des foules de personnages. Ces foules perme-

ttraient d’avoir un bon ressenti de l’ambiance et de l’atmosphere qui pourrait

regner dans ces villes virtuelles. On peut imaginer une extension future du très

connus explorateur du monde, Google Earth, intégrant des foules pour peupler

les villes du monde entier. Le type de foules attendues pour ce domaine, sont des

foules capable d’être animées sur une longue période de temps, pour être capable

de visionner une partie du monde à n’importe quel moment de la journée. De

plus, les foules devront être de taille astronomique, pour permettre à l’utilisateur

d’explorer une ville dans son ensemble s’il le souhaite.

Que ce soit dans les jeux videos, le cinéma, ou l’exploration d’environnement

3D, les foules ont un grand impact sur le media finale proposé par ces domaines.

Cependant, la creation de tels foules avec un contrôl précis du comportement et

du mouvement reste très complexe avec les techniques actuelles. La principale

méthode pour pour créer des foules consiste à utiliser un algorithme de simulation

de foules, qui est une boite noire prennant en entrée un jeux de paramètre défini

par l’utilisation et qui produit un mouvement de foules en conséquence. La diffi-

culté principale de ce genre d’approache est que l’utilisateur n’a pas un contrôle

directe sur le mouvement qu’il créé et que l’utilisation de tels système requière une

expertise dans le domaine. Les techniques modernes consiste à faire un premier

essaie avec un jeux de paramètre, puis d’ajouter petit à petit le jeu de paramètre

pour obtenir le mouvement de foule souhaité. Le temps passé pour concevoir

de tels mouvement peut être très long et couteux en therme de dévelloppement.

Cette complexité croit avec le nombre d’agents dans la foules que l’on souhaite.

.2 Enoncé du problème

Le processus de conception interactive de foules, même pour des environnements

de tailles moyennes, comme une zone de batiments, n’est pas une tâche facile et

pose deux problèmes majeur. Premièrement, une foule est un système intrasec

complèxe, contenant des personnages qui interagissent entre eux à l’echelle locale

et globale, qui ont des comportement de groupe ou individuel et qui effectuent



des actions en rapport avec l’environnement dans lequel ils evoluent. La creation

de foules realistes et complèxe demandent l’utilisation de simulation de foules

sophistiqués et de modèles d’animation complèxe pour lesquel l’utilisateur doit

spécifier et ajuster un grand jeux de paramètres via la répétition, générallement

longue, de séries de génération et de testes. Deuxièment, le degrés de contrôle

requis pour facilement et interactivement peupler de grand environnement de-

mande la conception de nouveaux outils capable de manipuler dans l’espace (où

positionner la foule, comment contrôler les flux et les densités des personnages)

et dans le temps (comment une foule peut changer dans le temps en terme de

comportement, flux et densités).

Les techniques basées sur des simulations de foules n’offrent seulement un

contrôle indirecte et générallement globale sur la foule via la manipulation des

paramètres des agents, et sans retour visuel immédiat. Ces types de techniques

ne sont pas efficaces pour définir des subtilités dans le moiuvement de foule, tel

que le chemin d’un personnage ou sa forme dans le temps. Cependant, ce type de

contrôle est essentiel pour transmettre l’individuallité à la foule ou pour permettre

à un joueur d’achever une tâche précise dans un jeux vidéo.

Une autre approche conciste à directement deformer la ou les trajectoires d’un

ou plusieurs personnages de la foule, en la ou les déformant, la ou les tordant, le ou

les étirant, ou les raccourciçant, pour satisfaire à la fois les désire de l’utilisateur

et les contraintes de l’environnement. Cependant, de trop grosses dééformation

mènnent à des comportement non réaliste, comme des accélérations subistes des

personnages. De plus, quand la foule devient trop grande, un nombre important

d’opérations doit être effectué par le concepteur pour atteindre son résultat. De

plus, ces méthodes deviennent de plus en plus lente en fonction du nombre de

personnage dans la foule, car des collisions inter-personnages doivent être résolues.

.3 Contributions

Le but de cette thèse est de developper des outils permettant à un utilisateur de

concevoir des foules tout en fournissant un contrôle directe sur l’aspect visuel,

le comportement locale et globale des personnages, à travers une application



interactive et artistique. Ces techniques doivent être capable de gérer des foules

de grande tailles avec une animation sans fin. Par rapport a ce dernier point,

nous savons que les Crowd Patches, des morceaux pré-calculés d’animations de

foules qui peuvent être assemblées ensemble pour former une population vivante,

est une méthode efficace pour produire de vastes foules animées sans fin. Par

contre, cette technique souffre d’un manque d’interactivités pour créer, situer et

connecter un ensemble de crowd patches entre eux; et d’un manque de contrôle

pour créer un ensemble de crowd patches ayat de bonnes propriétés.

Dans cette thèse, nous proposons trois méthodes pour contrôler de vastes

foules à travers des applications interactives ou à interfaces artistique

❼ Crowd sculpting : une nouvelle approche pour concevoir de manière in-

teractive de complèxe foules animées dans des environnements virtuels, avec

un haut niveau de contrôle par gestes et un retour visuel immédiat. Les an-

imations générées sont joués sans fin, grâce à la méthode des crowd patches

sur laquelle notre méthode s’appuie.

❼ Crowd art : une technique d’optimisation pour calculer des animations

de foules qui satisfont des contraintes de densité et de flux localement.

L’algorithme est capable d’éviter des boucle locales dans les trajectoires

des personnages pour éviter que ceux ci ne tournent en rond, grâce a notre

système permettant de lier par un chemin les crowd patches avec les plus

grosses erreures. La méthode fournie un outil artistique pour concevoir les

différentes contraintes. L’utilisateur peut créer des foules très rapidement en

utilisant un logiciel de painture deja existant. Les exigences de l’utilisateur

sont spécifiés au système en combinant les différents calques de contraintes

(pour la densité, les flux, obstacles. . . )

❼ Foules variant dans le temps : une extension qui améliore la diversité

des mouvement dans les patches de foules, grâce a un méchanisme de per-

mutaton des crowd patches. Etant donné qu’un patche de foule capture

une animation périodique, nous proposons un méthode permettant de créer

différentes versions d’un patche de foule le tout en respectant ses contraintes



d’entré/sortie de personnage et de période, et de remplacer par une autre

version d’un patche quand le premier arrive à la fin de sa periode. Les

mouvement sont donc plus diversifiés a l’interieur d’un patche.

.4 Organisation du document

Cette thèse est organisée de la manière suivante. Le Capitre 2 est dédié au travaux

existant sur la simulation de foules, sur la conception et le contrôle de tel foules,

et sur la conception 3D grâce des outils hauts niveaux utilisant des métaphors

artistiques. Les avantages et les inconvegnants de chaque méthodes sont discutés,

et une conclusion est formulée à la fin en concentrant sur ce qui a été fait et pas

fait dans le domaine.

Les méthodes développées pendant cette thèse se basent toutes sur la méthode

des crowd patches. Une description détaillée sera faitte dans le Chapitre 3. Une

méthode non publiée sur la génération de trajectoires périodiques, spécialisé pour

les crowd patches, sera présenté.

Ensuite dans le Chapitre 4, nous abordons le problème de la modelisation spa-

tial de foules. Nous présentons une méthode interactive pour peupler de manière

simple des environnements via des gestuels intuitives, capable de de former des

foules de densité uniformes dans des environnement 3D.

Dans le chapitre 5, nous présentons une méthode capable de créer de vaste

foules en maitrisant la densité constante dans le temps et les flux. Les contraintes

de densité et de flux sont spécifié par l’utilisateur en utilisant une interface de

type artistique pour facilité le contrôle de ces paramatres.

Ensuite dans le Chapitre 6, nous présentons plusieurs méthodes pour créer

de la varité de mouvement dans le temps. Premièrement, nous décrivons com-

ment éviter la répétition des animations dans un crowd patch. Deuxiement, nous

présentons une extension possible des crowd patches ou ceux-ci deviendrait reactif

aux actions d’un utilisateur et aux changements de l’environnement.

Finalement, dans le Chapitre 7, nous formulons une conclusion de ce travaille,

discutons des limitations et des directions de recherche future de cette thèse.
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.6 Conclusion

Le but principal de cette thèse est de fournir des outils expressifs pour contrôler

la conception des animations de foules dans de vastes environnements. C’est un

problème concéquant qui n’a eu que peu d’attention auparavant. Les méthodes

que nous avons développées peuvent être utilisées pour générer des animations

sans limite de temps de foules. Ce qui contribue dans le domaine de la conception

de mondes virtuels plus vivant.



.6.1 Contributions et discussion

Cette thèse mène à deux contributions dans le domaine de l’informatique graphique

et de l’animation, publiés en tant que papier long dans des conférences interna-

tionnales. La première, Crowd Sculpting, est une nouvelle méthode utilisant une

métaphor de sculpture pour éditer une foule dans l’espace et le temps. La sec-

onde, Crowd Art, est un outil de painture capable de concevoir une foule en se

basant sur sa densité et ses flux. Une revue détaillée de ces travaux et de leurs

limites sont exposés dans les sous parties suivantes.

.6.1.1 Crowd sculpting

Crowd sculpting est la première méthode permettant de sculpter de manère inter-

active un mouvement de foule pour des vastes environnemts. En plus du contrôle

spatial intuitif via les gestuels de déformation, la méthode permet d’éditer dans

le temps tout en gardant un contrôle visuel du contenu. Ce trvail permet au util-

isateurs non expérimenter de facilement prendre en main un outil de conception

de foules, et de créer rapidement des environnements vivants. Cette contribution

représente un pas en avant vers la fabrication d’outils de crétions expréssifs.

Dans sa version actuelle, notre approche possède cependant plusieurs limites

qui sont discutées dans la suite.

Extensions vers un contrôle multi-echel : Notre approche fourni à l’utilisateur

des contrôles sur le plan spatial des patches et sur des modifications locales

du mouvement dans le temps. Ces contrôles pourraient être complété par des

contrôles plus ou moins grandes échelles. Il pourrait être intéressant de contrôler

des paramètres plus généraux comme l’évolution dans le temps de la densité

(dans le but de produire des cycles journaliés). A une echelle plus petite, il

pourrait être intéressant de contrôler finement la trajectoire d’un personnage,

tout en preséservant automatiquement l’intégrité des crowd patches (contraint

générallement en espace temps sur les etrés sorties du patche).

Agrendissement et rétrécissement des trajectoires : Les opérations de

torsions, d’étirements, de rétrécissements, on pour effet diverses variations sur

l’animation des crowd patches. Typiquement, cela impact la vitesse des person-



nages qui marchent (entant donné que l’entré et la sortie d’un personnage est

fixé par le patche). Dans notre implémentation, la vitesse peut augmenter au

maximum de 1.5 la vitesse initial, depassé cette valeur un nouveau patche est

inséré ramenant la vitese à 0.66 la vitesse initial. Plus longue est la suite de

crowd patches, plus petite sera la deformation, car chaque patche recevra une

part homogene de la déformation globlale. Par exemple, une suite de 10 patches

aura sa vitesse deformé au maximum de 1.1. Cependant, de tel changement en

vitesse peut impliqué des artefacts dans l’animation, comme des personnage al-

lant subitement plus vite. Une solution pourrait être d’inclure des patches de

différentes tailles pour intervertir un patch par un autre un peu plus grand quand

celui ci est déformé.

Contenu des environnement et des animation : Bien que nous ayons

illustré notre approche par des exmeples de rues pietonnes, notre méthode ne

se limite pas à ça. Les parcs, les places publiques, les centre commerciaux, etc.

sont facilement intégrable en définissant un ensemble d’états de repos pour la

grammaire des patches aproprié au sénario, puis en associant et calculant les

types crowd patches correspondant. Par exemple, les parcs et places publiques

pourraient avoir besoin d’un mode de sculpture 2D en plus du mode 1D, c’est a

dire faire evoluer la sculpture par carré en plus du mode ligne.

Pour peupler de très grands environnements, une amélioration pourrait être

de fournir une technique semi-automatique permettant de préremplir de foules

l’environnement en prennant en compte sa topologie, l’utilisateur n’aurait plus

qu’a s’occuper des ajustements et des comportement spécifiques. Par exemple un

artiste pourrait culpter une foule le long de la géométrie des troitoires d’une ville

grâce au systeme semi automatique ces patches seraient directement bien placé

le long de ces trotoires.

Déformation linéaire des patches Comme décrit dans la section 4.3.3, les

déformations locales d’un patche sont calculées utilisant une technique d’interpolation

bilinéaire. Alors que d’autres méthodes, tel que celle utilisée dans group motion

editing de Kwon, pourrait être utilisée pour améliorer la qualité des trajectoires,

cependant le faible cout de calcule de la technqiue par interpolation bilinéaire

nous permet d’avoir du temps réel sur des foules composées de millier de patches.



.6.1.2 Crowd Art

Le méthode crowd art que nous avons présentée est la première méthode qui

propose de peupler un environnement en contrôle a la fois la densité et les flux

de la population. Cette méthode est basée sur la technqiue des crowd patches et

produit des foules qui satisfont ces contraintes dans l’espace et le temps.

Cependant, les resultats de la boucle d’optimisation peuvent mettre plusieur

sminutes avant d’être calculés. Nous pouvons seulement offrir un contrôle intuitif

mais pas interactif sur les foules que l’on concoie. De ce fait notre interface n’est

pas expressive comme celle de crowd sculpting.

Par la suite, plusieurs pistes pour améliorer le contrôle sur la conception de

la foule doivent être pris en concidération, comme le fait d’avoir plusieurs flux

possible dans un patche ou bien en permetant l’ajout de sources et de puits

pour permettre aux personnages d’entrer et de sortir de l’environnement. Ce

dernier ajout pourrait permettre d’éviter les chemins circulaires des trajectoires

des personnages. Une étude utilisateur pourrait être menée pour confirmer la

qualité des résultats.

Une autre direction pour un travail future est de concidérer une approche

pour trouver un ensemble fini de crowd patches qui collent parfaitement avec la

topologie de l’environnement.

Finallement, nous aimerions être capable de contrôler des transitions dans le

temps d’un crowd art à un autre. Ce qui permettrait de modéliser des situations

comme l’évolution d’une journée dans une ville. Ces transitions devrait être

naturelles et continues.

.6.2 Directions future

.6.2.1 Outil de création pour contrôler la foule dans le temps

Bien que cette thèse et d’autres technique existent pour offrir de nouvelles pos-

sibilités pour concevoir des foules, la modélisation expressive de foule en est tou-

jours à son début. Que ce soit pour crowd sculpting ou pour crowd art, l’extension

des modèles à travers une dimension temporel a été évoquée. Une première direc-



tion pour les travaux future pourrait concister à trouver une méthode expressive

pour créer des transitions entre foules foules. Nous pouvons imagner un procédé

simpliste qui se contenterai d’une transition linéaire entre les deux. Une autre

idée pourrait être de créer une méthode plus expressive basée sur une interface

de painture. Des pinceau temporel, comme un pinceau matinal et un nocturne,

pourrait peindre différent moment de journée et le système déterminerai automa-

tiquement les transitions entre ces différent moment.

.6.2.2 Crowd patches reactifs

Les crowd patches possèdent de bonnes propriétés comme être très bien adapté

aux grands environnements et de produire des animations sans fin. Et grâce à

cette thèse ils sont maintenant renforcé de méthodes expressive pour facilement

concevoir des foules avec eux. Cependant dans les apllication interactive comme

les jeux vidéos, les crowd patches ne sont pas pertinants. En effet, les crowd

patches collectent les données du mouvement, donc un joueur ne peut peut pas

interagir avec la foule car les personnages du patch n’ont aucune connaissance sur

les personnages non patches ou joueurs. Une direction de recherche pourrait être

de developper et d’étendre le travail en cours présenté dans la Partie 6.2, pour

rendre les crowd patches reactifs aux composants externes de l’environnement.

Nous pouvons imaginer un système de simulation de foule mélangeant un sim-

ulation moderne avec les crowd patches, ce qui permettrait d’obtenir à la fois

l’immensité des foules obtenues par crowd patches et la reactivité des simulateur.

Cela permettrait à un joueur d’interagir avec les personnages des crowd patches

pour un jeux vidéo. En les faisant s’arrêter par exemple. Ou en les faisant dis-

parâıtre. Cette contribution encouragerait l’utilisation des crowd patches dans

plus d’applications, etant donné que l’inconvéniant des crowd patches serait levé.
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Résumé 

 

Les foules sont de plus en plus présentes dans les médias 
grands publics, comme le cinéma ou les jeux vidéo. Elles 
permettent de renforcer l'immersion du sujet dans 
l'environnement qui lui est présenté. Or, la création de 
mouvement de foule est la plus part du temps basé sur des 
modèles dures à prendre en main et qui n'offrent pas un 
contrôle direct sur le mouvement de foule que l'on souhaite 
créer. Dans cette thèse nous proposons des contributions sous 
forme de méthodes pour concevoir des mouvements de foules 
par le biais d'outils interactifs et intuitifs.  
 
Dans un premier temps, nous présentons une méthode 
interactive permettant de concevoir des foules en les déformant 
comme de l'argile. L'utilisateur peut tirer, compresser et torde la 
forme global de des foules pour leurs donner la forme qu'il ou 
elle souhaite. Les personnages qui composent la foule 
s'adaptent automatiquement à la nouvelle forme imposée par 
l'utilisateur.  
 
Dans un second temps, nous présentons une méthode 
permettant de peindre les mouvements et la densité de la foule 
pour la créer. Nous offrons la possibilité à l'utilisateur de créer 
des foules en peignant une carte de densité en niveau de gris, 
et une carte de mouvement via des dégradés. Ses cartes de 
couleurs sont utilisées par notre système pour le transformer en 
un mouvement de foule, via un algorithme itératif cherchant à 
optimiser les différentes valeurs des cartes de couleurs. Les 
foules obtenues par ces méthodes peuvent occupées un 
espace très large, et sont animées indéfiniment.  
 
Contrairement aux méthodes classiques de création de foules 
qui se basent sur l'ajustement de paramètres de modèles, nos 
méthodes permettent de concevoir les mouvements de foules 
en se basant sur des caractéristiques plus hauts niveaux de la 
foule, comme sa forme globale, ses mouvements internes ou sa 
densité. Ce qui offre la possibilité de créer du contenu de foule 
animée de manière simple, rapide et intuitif. 
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Crowds are increasingly present in audio-visual media, such as 
movies or video games. They help to strengthen the immersion 
of the subject in the virtual environment. However, creating 
crowds is most of the time based on models hard to master and 
which do not offer a direct control on the motion that you want 
to create. In this thesis we propose contributions for designing 
crowd motions through interactive and intuitive tools.  
 
Firstly, we present an interactive method for designing the 
crowds by distorting it like clay. The user can stretch, compress 
and twist the overall shape of the crowd to give it the shape he 
or she wishes. The inner characters of the crowd automatically 
adapt to the new shape imposed by the user.  
 
Secondly, we present a method to paint the motion and the 
density of the crowd to create it. We offer the opportunity to the 
user to create crowds by painting a grayscale density map and 
a motion map by gradients. Its colored maps are transformed by 
our system to crowds, thanks to our iterative algorithm seeking 
to optimize the different values of colored maps. Crowds 
obtained by these methods can occupy a very large space and 
are animated indefinitely.  
 
Unlike conventional methods of creating crowds, that are based 
on the adjustment of model parameters, our methods allow to 
design crowd motions based on higher level features of the 
crowd, as its overall shape, its internal movement or density. 
This offers the possibility to simply, quickly and intuitively create 
animated crowd contents. 
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