
HAL Id: tel-01304315
https://theses.hal.science/tel-01304315v1

Submitted on 19 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the design of sparse hybrid linear solvers for modern
parallel architectures

Stojce Nakov

To cite this version:
Stojce Nakov. On the design of sparse hybrid linear solvers for modern parallel architectures. Other
[cs.OH]. Université de Bordeaux, 2015. English. �NNT : 2015BORD0298�. �tel-01304315�

https://theses.hal.science/tel-01304315v1
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR D'INFORMATIQUE

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE

SPÉCIALITÉ : INFORMATIQUE

Par Stojce NAKOV

On the design of sparse hybrid linear solvers

for modern parallel architectures

Sous la direction de : Roman Jean
co-directeur : Emanuel Agullo

Soutenue le : 14 décembre 2015

Membres du jury :

M. Marc Casas Senior researcher, BSC, Espagne Président
Mme. Sherry Li Xiaoye Senior Scientist, Lawrence Berkeley National Laboratory, USA rapporteur
M. George Bosilca Research Director, ICL, Univ. of Tennessee, USA rapporteur
M. Henri Calandra Docteur, expert HPC TOTAL, USA Examinateur
M. Julien Diaz Chargé de recherche, Inria Examinateur

Titre : Sur la conception de solveurs linéaires hybrides
pour les architectures parallèles modernes

Résumé :

Dans le contexte de cette thèse, nous nous focalisons sur des

algorithmes pour l’algèbre linéaire numérique, plus précisément sur la

résolution de grands systèmes linéaires creux. Nous mettons au point

des méthodes de parallélisation pour le solveur linéaire hybride

MaPHyS. Premièrement nous considerons l'aproche MPI+threads. Dans

MaPHyS, le premier niveau de parallélisme consiste au traitement

indépendant des sous-domaines. Le second niveau est exploité grâce à

l’utilisation de noyaux multithreadés denses et creux au sein des

sous-domaines. Une telle implémentation correspond bien à la structure

hiérarchique des supercalculateurs modernes et permet un compromis

entre les performances numériques et parallèles du solveur. Nous

démontrons la flexibilité de notre implémentation parallèle sur un

ensemble de cas tests. Deuxièmement nous considérons un approche plus

innovante, où les algorithmes sont décrits comme des ensembles de

tâches avec des inter-dépendances, i.e., un graphe de tâches orienté

sans cycle (DAG). Nous illustrons d’abord comment une première

parallélisation à base de tâches peut être obtenue en composant des

librairies à base de tâches au sein des processus MPI illustrer par un

prototype d’implémentation préliminaire de notre solveur hybride. Nous

montrons ensuite comment une approche à base de tâches abstrayant

entièrement le matériel peut exploiter avec succès une large gamme

d’architectures matérielles. À cet effet, nous avons implanté une

version à base de tâches de l’algorithme du Gradient Conjugué et nous

montrons que l’approche proposée permet d’atteindre une très haute

performance sur des architectures multi-GPU, multicoeur ainsi

qu’hétérogène.

Mots clés : Calcul haute performance' ;multi-cœur ; solveur linéaires creux ;
méthodes hybride ; programmation en tâche ; architecture hétérogène.

Title :

 On the design of sparse hybrid linear solvers

for modern parallel architectures

Abstract :
In the context of this thesis, our focus is on numerical linear

algebra, more precisely on solution of large sparse systems of linear

equations. We focus on designing efficient parallel implementations of

MaPHyS, an hybrid linear solver based on domain decomposition

techniques. First we investigate the MPI+threads approach. In MaPHyS,

the first level of parallelism arises from the independent treatment

of the various subdomains. The second level is exploited thanks to the

use of multi-threaded dense and sparse linear algebra kernels involved

at the subdomain level. Such an hybrid implementation of an hybrid

linear solver suitably matches the hierarchical structure of modern

supercomputers and enables a trade-off between the numerical and

parallel performances of the solver. We demonstrate the flexibility of

our parallel implementation on a set of test examples. Secondly, we

follow a more disruptive approach where the algorithms are described

as sets of tasks with data inter-dependencies that leads to a directed

acyclic graph (DAG) representation. The tasks are handled by a runtime

system. We illustrate how a first task-based parallel implementation

can be obtained by composing task-based parallel libraries within MPI

processes throught a preliminary prototype implementation of our

hybrid solver. We then show how a task-based approach fully

abstracting the hardware architecture can successfully exploit a wide

range of modern hardware architectures. We implemented a full

task-based Conjugate Gradient algorithm and showed that the proposed

approach leads to very high performance on multi-GPU, multicore and

heterogeneous architectures.

Keywords : High Performance Computing (HPC); multicore; sparse linear
solver; hybrid method; task ; moteur d’exécution ; heterogeneous architectures.

Inria Bordeaux - Sud-Ouest

200 Avenue de la Vieille Tour, 33405 Talence

Contents

Résumé en Français 1

Introduction 3

1 Introduction to the field 5

1.1 Some insights on numerical linear algebra in seismic imaging 5

1.2 Brief introduction to sparse linear algebra 7

1.2.1 Sparse matrices . 8

1.2.2 Solutions for large sparse systems of linear equations 9

1.3 Some basics on hybrid linear solvers . 12

1.3.1 Introduction . 12

1.3.2 A brief overview of overlapping domain decomposition 14

1.3.3 A brief overview of non-overlapping domain decomposition 15

1.4 Some background on Krylov subspace methods 18

1.4.1 Introduction . 18

1.4.2 The unsymmetric problems . 19

1.4.3 The symmetric positive definite problems 21

1.4.4 Stopping criterion for convergence detection 23

1.5 Sparse linear solvers on modern supercomputers 24

1.5.1 Manycore architectures . 24

1.5.2 Evolutionary parallel programming paradigms 26

1.5.3 Revolutionary programming paradigms 27

1.6 Positioning of the thesis . 29

iii

2 A hierarchical hybrid sparse linear solver for multicore platforms 31

2.1 Introduction . 31

2.2 Parallel algebraic non-overlapping domain decomposition methods 33

2.2.1 Governing ideas . 33

2.2.2 Related work . 35

2.3 Design of parallel implementations of MaPHyS 36

2.3.1 Baseline MPI implementation of the MaPHyS solver 36

2.3.2 Design of a 2-level MPI+thread extension of MaPHyS 43

2.4 Performance analysis . 48

2.4.1 Experimental setup . 48

2.4.2 Impact of the thread binding strategies 49

2.4.3 Multithreading performance . 52

2.4.4 Numerical and parallel flexibility of the 2-level implementation 56

2.5 Case study from geoscience applications . 62

2.6 Performance sensitivity with respect to the partitioning quality 71

2.7 Comparison of MaPHyS with the PDSLin hybrid-solver 78

2.8 Conclusion . 83

3 Towards task-based hybrid sparse linear solvers 85

3.1 Introduction . 85

3.2 Background . 89

3.2.1 Task-based runtime systems and related programming models 89

3.2.2 Sparse linear algebra on modern architectures 94

3.2.3 The StarPU task-based runtime system 96

3.3 Prototype design of an MPI+task extension of MaPHyS 98

3.4 Towards a full task-based version of MaPHyS: case study with the CG
algorithm . 101

3.4.1 Baseline STF conjugate gradient algorithm 102

3.4.2 Experimental setup . 105

3.4.3 Scheduling and mapping strategy . 106

3.4.4 Building block operations . 106

3.4.5 Achieving efficient software pipelining 108

3.4.6 Performance analysis . 114

3.4.7 Combining software pipelining with numerical pipelining 120

iv

Contents

3.5 Conclusion . 124

Perspectives and concluding remarks 127

Bibliography 129

v

vi

Résumé en Français

Dans les quelques décennies passées, il y a eu d’innombrables avancées scientifiques,
techniques et sociétales permises par la simulation numérique grâce au développement
d’applications, d’algorithmes et d’architectures de calcul haute performance (HPC). Ces
outils de simulation numérique puissants ont fourni aux chercheurs la possibilité de trou-
ver des solutions calculatoires pour de nombreux questions et problèmes scientifiques con-
séquents en médecine, biologie, climatologie, nanotechnologie, énergie et environnement.
Dans le contexte de cette thèse, nous nous focalisons sur des algorithmes pour l’algèbre
linéaire numérique, plus précisément sur la résolution de grands systèmes linéaires creux.
Nous mettons au point des méthodes de parallélisation efficaces pour l’outil MaPHyS, un
solveur linéaire hybride basé sur des techniques de décomposition de domaines algébrique.
Deux approches sont considérées.

La première approche consiste à proposer une implantation combinant MPI+threads.
Dans MaPHyS, le premier niveau de parallélisme consiste au traitement indépendant des
sous-domaines et est implémenté avec un paradigme à base d’échanges de passage de mes-
sages. Le second niveau est exploité grâce à l’utilisation de noyaux d’algèbre linéaire mul-
tithreadés denses et creux au sein des sous-domaines. Une telle implémentation hybride
hiérarchique correspond bien à la structure hiérarchique des supercalculateurs modernes et
permet un compromis entre les performances numériques et parallèles du solveur. Nous
décrivons comment l’interopérabilité entre les différents noyaux doit être appliquée afin
d’assurer le passage à l’échelle du solveur parallèle. Nous démontrons la flexibilité de notre
implémentation parallèle sur un ensemble de cas tests provenant de collections classiques de
matrices creuses issues de problèmes 3D ainsi que de configurations géophysiques délicates
fournies par notre partenaire industriel, Total.

Dans une seconde partie, nous considérons un approche plus innovante, où les algorithmes
sont décrits comme des ensembles de tâches avec des inter-dépendances, i.e., un graphe de
tâches orienté sans cycle (DAG). L’ordonnancement et l’affectation de ces tâches sont pris
en charge par un moteur d’exécution. Une telle approche permet de maintenir un descrip-
tion avec haut-niveau d’abstraction des algorithmes et ne nécessite pas d’enchevêtrer les
complexités numérique et de mise en œuvre parallèle. Plutôt que de ré-écrire entièrement
le code d’un solveur hybride suivant un tel paradigme, ce qui représenterait une tâche con-
sidérable, nous procédons à une étude incrémentale de faisabilité. Nous illustrons d’abord
comment une première parallélisation à base de tâches peut être obtenue en composant

1

des librairies à base de tâches au sein des processus MPI. Nous illustrons notre discussion
avec un prototype d’implémentation préliminaire d’un tel solveur hybride. Nous montrons
ensuite comment une approche à base de tâches abstrayant entièrement le matériel peut
exploiter avec succès une large gamme d’architectures matérielles dans le cas d’un com-
posant clé d’un solveur hybride qui la méthode itérative de Krylov. À cet effet, nous avons
implanté une version entièrement à base de tâches de l’algorithme du gradient conjugué
et nous montrons que l’approche proposée permet d’atteindre une très haute performance
sur des architectures multi-GPU, multicoeur ainsi qu’hétérogène. Cette étude préliminaire
motive la mise au point à base de tâches d’un solveur hybride dans son entier, ce qui sera
l’objet d’un travail futur.

2

Introduction

Over the last few decades, there have been innumerable science, engineering and societal
breakthroughs enabled by the development of High Performance Computing (HPC) ap-
plications, algorithms and architectures. These powerful tools have provided researchers
with the ability to computationally find efficient solutions for some of the most challeng-
ing scientific questions and problems in medicine and biology, climatology, nanotechnology,
energy and environment. It is admitted today that numerical simulation is the third pillar
for the development of scientific discovery at the same level as theory and experimentation.
While the hardware becomes more and more complex, a significant effort must be devoted
to the design and the implementation of novel numerical schemes. In the context of this
thesis, our focus is on numerical linear algebra algorithms that appear in many large scale
simulations and are often the most time consuming numerical kernel; more precisely we
consider numerical schemes for the solution of large sparse systems of linear equations.

One route to the parallel scalable solution of large sparse linear systems in parallel
scientific computing is the use of hybrid methods that hierarchically combine direct and
iterative methods. These techniques inherit the advantages of each approach, namely the
limited amount of memory and natural parallelization for the iterative component and
the numerical robustness of the direct part. The general underlying ideas are not new
since they have been intensively used to design domain decomposition techniques; those
approaches cover a fairly large range of computing techniques for the numerical solution
of partial differential equations (PDEs) in time and space. Generally speaking, it refers to
the splitting of the computational domain into subdomains with or without overlap. The
splitting strategy is generally governed by various constraints/objectives but the main is to
express parallelism. In this thesis, we focus on designing efficient parallel implementations of
a hybrid solver, namely MaPHyS. Different approaches are considered in that perspective.
In Chapter 1, we describe the general scientific computational framework and introduce
the main numerical ingredients as well as the key computing components and programming
paradigms. The main contributions of this work are detailed in the next two chapters.

Chapter 2 is devoted to the design of a 2-level parallel algorithm. The first level of par-
allelism arises from the independent treatment of the various subdomains and is managed
using message passing. The second level is exploited thanks to the use of multi-threaded
dense and sparse linear algebra kernels involved at the subdomain level. Such an hybrid
implementation of an hybrid linear solver suitably matches the hierarchical structure of

3

modern supercomputers and enables a trade-off between the numerical and parallel per-
formances of the solver. We describe how the interoperability between the various kernels
has to be mastered to ensure the scalability of the parallel solver. We demonstrate the
flexibility of our parallel implementation on a set of test examples coming from classical
test matrices as well as from geoscience challenging test cases provided by our industrial
partner Total. We furthermore perform a preliminary comparison with another state of the
art hybrid solver PDSLin that also implements a 2-level parallelism scheme. This latter
activity was developed in the framework of the FAST-LA associate team in collaboration
with S. Li’s group in LBNL.

In Chapter 3, we follow a more disruptive approach where the algorithms are described
as sets of tasks with data inter-dependencies that leads to a directed acyclic graph (DAG)
representation. The scheduling and mapping of these tasks are handled by a runtime
system. Such an approach permits to keep a high level description of the algorithms and
does not require to interleave their numerical and parallel complexities. While designing
from scratch an hybrid solver based on this paradigm would be a huge development effort, we
perform an incremental feasibility study. We first illustrate how a first task-based parallel
implementation can be obtained by composing task-based parallel libraries within MPI
processes. We illustrate our discussion with a preliminary prototype implementation of such
an hybrid solver. We then show how a task-based approach fully abstracting the hardware
architecture can successfully exploit a wide rande of modern hardware architectures in the
case of a key component of the hybrid solver that is a Krylov method. We implemented
a full task-based conjugate gradient algorithm and showed that the proposed approach
leads to very high performance on multi-GPU, multicore and heterogeneous architectures.
This preliminary study motivates the design of the whole hybrid solver as a full task-based
algorithm, which will be the focus of a future work.

Finally, we should mention that the work presented within this manuscript was conducted
within the HiePACS1 project-team at Inria Bordeaux Sud-Ouest with the financial support
of TOTAL.

1https://team.inria.fr/hiepacs/

4

Chapter 1
Introduction to the field

1.1 Some insights on numerical linear algebra in seis-

mic imaging

While the work described in this manuscript can be applied (and has been assessed, see
Section 2.4) to any sparse linear system, its main motivation came from the geophysic’s
context that we briefly describe in this section. In particular, we give brief insights on the
underlying partial differential equation (PDE) and approximation schemes that give rise to
the large sparse linear systems that are the main challenges (see Section 2.5) considered to
assess the parallel performance and numerical robustness of the hybrid solver that is the
core of this work.

The development of robust, accurate and efficient solution methodologies for 3D wave
propagation problems appears in many applications and is critical for oil companies. In
particular, the solution of the wave propagation problems is a key component for seismic
imaging that solves an inverse problem to find the best representation of the subsurface
that best matches to the data recorded during acquisition campaigns. In such an inverse
calculation, the forward problem (i.e., the wave propagation problem) has to be solved
many times. Therefor it is of paramount importance to design effective parallel techniques
to address its solution.

The simplest wave propagation model describes an acoustic wave in a fluid. The equation
resulting from this model writes

1

c2

∂2p

∂t2
−∆p = f (1.1)

where c is the wave velocity in the fluid, p the unknown pressure field that varies in time
and location and depends on the source term f . The equation is closed using boundary
conditions; for geophysics applications they often are absorbing conditions enabling to re-
strict the calculation to a bounded domain. This hyperbolic PDE can be solved either in a
time domain or in a frequency domain. The two approaches require to approximate some
space derivatives whose discretizations lead to sparse matrices.

The time domain approach directly solves (1.1). Due to the unsteady nature of the

5

solution, explicit schemes are often considered. From a linear algebra view point, once the
space and time discretization have been performed, the selected explicit scheme mainly
reduces to sparse matrix-vector product calculations plus the solution of an essentially
diagonal linear system (i.e., the mass matrix). With such an approach, all the frequencies
that compose the solution are computed as a function of time.

For the frequency domain approach, a Fourier transform is applied to Equation (1.1)
that translates into the Helmholtz equation associated with the Fourier mode ω:

−∆u− ω2

c2
u = g(ω). (1.2)

The space discretization of (1.2) using finite differences, finite elements or finite volumes
leads to the solution of a large sparse linear system.

With the increasing scarcity of oil, the oil companies explore ever more challenging geo-
logical features. To achieve high fidelity computation, more detailed models than the pure
acoustic model must be considered. Furthermore, advanced discretization techniques based
on fully unstructured meshes must be selected. With these constraints, the elastodynamic
equations are chosen to model seismic waves. In the frequency domain, these equations are{

∇ · σ(u) + ω2ρu = f in Ω,

σ(u)n = cpu · n n+ csu ∧ n on ∂Ω
(1.3)

where u is the unknown displacement field in the solid domain Ω, ω is the circular frequency,
ρ is a positive real number denoting the density of Ω, σ is the stress tensor. Equation (1.3)
is then discretized using a discontinuous Galerkin finite element method that exhibits at-
tractive features including adaptivity and flexibility. We give below a brief sketch of the
approach; we refer to [26] and the references therein for a complete and detailed description
of the approximation procedure.

First, Equation (1.3) has to be written in a weak form and an approximation space Vh
defined by a set of linearly independent test functions. The variational form associated
with (1.3) can be written as follows{

find uh ∈ Vh such that

a(uh, vh) = f1(vh), ∀ vh ∈ Vh
(1.4)

where a is a bilinear and Hermitian form and f1 is a complex-valued linear form.

The test functions are piece-wise polynomials of degree p in each element. However,
unlike standard finite elements, such functions are not continuous over the computational
domain Ω and might jump across the faces between the elements. Given a mesh on Ω and
associated finite element space, the variational problem can be recast at the algebraic level
as follows:

Ax = b (1.5)

where A is an Hermitian matrix, b the discretization of the source term and x the vectors
whose entries are the coordinates of the solution in the approximation space Vh.

Matrices arising from the discretization of the elastodynamic system on 3D meshes will
be considered in Section 2.5 to benchmark the parallel performance and robustness of our
implementation of the hybrid solver considered here.

6

1.2. Brief introduction to sparse linear algebra

1.2 Brief introduction to sparse linear algebra

Numerical linear algebra plays a central role in solving many real-world problems. To un-
derstand phenomena or to solve problems, scientists use mathematical models. Solutions
obtained from mathematical models are often satisfactory solutions to complex problems
in fields such as seismic imaging (see above), weather prediction, trajectory of a spacecraft,
car crashes simulation, etc. In many scientific fields such as electrostatics, electrodynamics,
fluid flow, elasticity, or quantum mechanics, problems are broadly modeled by partial differ-
ential equations (PDEs). The common way to solve PDEs is to approximate the solution,
which is continuous, by discrete equations that involve a finite, but often large, number of
unknowns [128, Chapter 2]. This strategy is called discretization. There are many ways
to discretize a PDE, the three most widely used being the finite element method (FEM),
finite volume methods (FVM) and finite difference methods (FDM). These discretization
strategies lead to large and sparse matrices. Thus real-word linear applications translate
into numerical linear algebra problems. There are many linear algebra problems, but this
work focuses on the resolution of linear systems of equations Ax = b.

Figure 1.1: Pattern of a sparse matrix involved in seismic imaging.

For example, we display in Figure 1.1 the pattern of a sparse matrix which is obtained
by discretization of an elastodynamic system on a 3D mesh.

7

1.2.1 Sparse matrices

A matrix is said to be sparse if it contains only very few nonzero elements, as depicted
in Figure 1.2(b), where nonzero elements are represented in blue color. There is no ac-
curate definition of the proportion of nonzero elements in sparse matrices. However, a
matrix can be considered as sparse when one can take advantage computationally of tak-
ing into account only its nonzero elements. Even if the matrix presented in Figure 1.2(a)
contains 54% of nonzero elements, it cannot be termed sparse, althought the one presented
in Figure 1.2(b) can be clearly considered as sparse. As reported for example by Yousef
Saad [128, Chapter 2], partial differential equations are among the most important sources
of sparse matrices. These matrices are not only sparse, but they may also be very large,
which leads to a storage problem. For example, a matrix A ∈ Cn×n, of order n = 106, con-
tains n×n = 1012 elements (zero and nonzero elements). In double precision arithmetic, 16
terabytes1 are necessary to store all its entries. There are special data structures to store
sparse matrices and the basic idea is to store only nonzero elements.

(a) This matrix contains 54% of
nonzero elements.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 304257

(b) This matrix contains 3% of nonzero ele-
ments.

Figure 1.2: Sparse matrices contains only a very few percentage of nonzero elements.
With 54% of nonzero elements the matrix in (a) cannot be referred as sparse whereas,

with only 3% of non zero elements, the matrix in (b) satisfies a sparsity criterion.

The main goal of these data structures is to store only non-zero elements while at the
same time facilitate sparse matrix operations. The most general sparse matrix storage is
called coordinate (COO) format and consists of three arrays of size nnz, where nnz is the
number of nonzero elements. As illustrated in Figure 1.3, the first array (AA) contains the
nonzero elements of the sparse matrix, the second array (JR) contains the corresponding
row indices and the third array (JC) contains the corresponding column indices.

The COO format is the most flexible but possibly not optimized since row indices and
column indices may be stored redundantly. In the example depicted in Figure 1.3, the
row index “3”, is stored 4 times in JR, and the column index “4” is also stored 4 times. It
is possible to compress row indices, which leads to compressed sparse row (CSR) format.
Alternatively the column indices can also be compressed, this format is called compressed

11012× 2× 8 bytes = 16× 1012 bytes. Each complex element requires 2× 8 bytes, 8 bytes for imaginary
part and 8 for real part, in double precision.

8

1.2. Brief introduction to sparse linear algebra

Figure 1.3: Coordinate (COO) format for sparse matrix representation.

sparse column (CSC). Other sparse data structures exist to further exploit particular situ-
ations. We refer to [128, Chapter 2] for a detailed description of possible data structures
for sparse matrices.

1.2.2 Solutions for large sparse systems of linear equations

1.2.2.1 Direct methods for linear systems of equations

To solve a linear system of equations of form

Ax = b

where A is a square non-singular matrix of order n, b is the right-hand side vector and x is
the unknown vector, as illustrated by Equation (1.6),

1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.

x1

x2

x3

x4

x5

 =

5

4

3

2

1

 (1.6)

a broadly class of methods is based on Gaussian elimination. One variant decomposes the
coefficient matrix of the linear system (here A) into a product of a lower triangular matrix L
(diagonal elements of L are unity) and of an upper triangular matrix U such that A = LU .
This decomposition is called the LU factorization of the matrix A; for the matrix in (1.6)
those factors are:

L =

1.00 0 0 0 0

3.00 1.00 0 0 0

0 1.50 1.00 0

0 0 0.56 1.00 0

0 0 0 0.77 1.00

 U =

1.00 0 2.00 0 0

0 4.00 −6.00 5.00 0

0 0 16.00 14.21 −4.50
0 0 0 −7.50 8.00

0 0 0 0 15.48

.

Once the LU factorization is performed, the linear system solution consists of two
steps:

1: the forward substitution that solves the triangular systems Ly = b;
2: the backward substitution that solves Ux = y.

9

In our example, it computes y = (5.00,−11.00, 19.50,−8.96, 7.93)T , which leads to the
solution x = (3.51,−1.05, .074,−0.46, 0.51)T . The advantage of this approach is that most
of the work is performed in the decomposition step (O(n3) for dense matrices) and very
little in the forward and backward substitutions (O(n2)). The solution of successive linear
systems using the same matrix but with different right-hand sides, often arising in practice,
is then relatively cheap. Furthermore, if the matrix is symmetric (or SPD), an LDLT (or
Cholesky) factorization may be performed. In finite arithmetics, direct methods enable one
to solve linear systems in practice with a high accuracy in terms of backward error [86].
However, this numerical robustness has a cost. First, the number of arithmetic operations is
very large. Second, in the case of a sparse matrix A, the number of non-zeros of L and U is
often much larger than the number of non-zeros in the original matrix. This phenomenon,
so-called fill-in, may be prohibitive in terms of memory usage and computational time.
Because of the fill-in, solving large sparse linear algebra problems using direct methods is
very challenging in terms of memory usage.

In order to minimize computational cost and guarantee a stable decomposition and lim-
ited fill-in intensive studies have been carried on that lead to efficient code implementations
such as CHOLMOD [50], Mumps [13, 14], Pardiso [133], PaStiX [81], SuperLU [100], to
name a few. Sparse methods work well for 2D PDE discretizations, but they may be very
penalizing in terms of memory usage and computational time for large 3D test cases.

To solve very large sparse problems, iterative solvers may be more scalable and con-
siderably decrease the memory consumption. Iterative methods produce a sequence of
approximates to the solution. Successive iterations implemented by iterative methods re-
quire a small amount of storage and floating point operations, but might converge slowly
or not converge at all. On the other hand iterative methods are generally less robust than
direct solvers for general sparse linear systems.

1.2.2.2 Iterative methods for linear systems of equations

Iterative methods for linear systems are broadly classified into two main types: stationary
and Krylov subspace methods.

Stationary methods for solving linear systems. Consider the solution of the linear
system Ax = b; stationary methods can be expressed in the general form

Mx(k+1) = Nx(k) + b (1.7)

where x(k) is the approximate solution at the kth iteration. The matrices N and M do not
depend on k, and satisfy A = M − N with M non singular. These methods are called
stationary because the solution to a linear system is expressed as finding the stationary
fixed point of Equation (1.7) when k will go to infinity. Given any initial guess x(0), the
stationary method described in Equation (1.7) converges if and only if ρ(M−1N) < 1,
where the spectral radius ρ(A) of a given matrix A with eigenvalues λi is defined by
ρ(A) = max(|λi|) [128, Chapter 4].

Typical iterative methods for linear systems are Gauss-Seidel, Jacobi, successive over
relaxation etc., as described in Table 1.1 according to the choice of M and N .

10

1.2. Brief introduction to sparse linear algebra

M N Method

D (L+ U) Jacobi

(D − L) U Gauss-Seidel

((1
ω

)D − L) (((1
ω

)− 1)D + U) Successive over relaxation

Table 1.1: Stationary iterative methods for linear systems. D, −L and −U are the
diagonal, strictly lower-triangular and strictly upper-triangular parts of A, respectively.

Krylov subspaces. Another approach to solve linear systems of equations consists in
extracting the approximate solution from a subspace of dimension much smaller than the
size of the coefficient matrix A. This approach is called projection method. These methods
are based on projection processes: orthogonal and oblique projection onto Krylov subspaces,
which are subspaces spanned by vectors of the form p(A)v, where p is a polynomial [128]. Let
A ∈ Cn×n and v ∈ Cn, letm ≤ n, the space denoted byKm(A, v) = Span{v,Av, ...,Am−1v}
is referred to as the Krylov space of dimension m associated with A and v. In order words,
these techniques approximate A−1v by p(A)v, where p is a specific polynomial. Based on
a minimal polynomial argument, it can be shown that these methods converge in less than
n steps compared to “infinity” for stationary schemes.

The convergence of Krylov subspace methods depends on the numerical properties of the
coefficient matrix A. To accelerate the convergence, one may use a non-singular matrixM
such that M−1A has better convergence properties for the selected solver. The linear sys-
temsM−1Ax =M−1b has the same solution as the original linear system. This method is
called preconditioning and the matrixM is called an implicit (i.e.,M attempts to somehow
approximate A) left preconditioner. On the other hand, linear systems of equations can
also be preconditioned from the right: AM−1y = b, and x =M−1y. One can also consider
split preconditioning that is expressed as follows: M−1

1 AM−1
2 y =M−1

1 b, and x =M−1
2 y,

where the preconditioner is M =M1M2. It is important to notice that Krylov subspace
methods do not compute explicitly the matrices M−1A and AM−1, in order to avoid the
associated extra cost and preserve sparsity.

Krylov methods do not require the matrices A or M to be explicitly formed. Instead,
procedures for applying A and M−1 to a vector must be provided. Preconditioners are
commonly applied by performing sparse matrix-vector products or solving simple linear
systems. The numerical requirement for a good preconditioner is that the spectrum of the
preconditioned matrix is clustered. Such a feature generally ensures fast convergence of
the conjugate gradient method (CG) for symmetric positive definite (SPD) problems as
illustrated by the CG convergence rate bound given by [74]:

||e(k)||A ≤ 2

(√
κ− 1√
κ+ 1

)k
||e(0)||A ,

where e(k) = x∗ − x(k) denotes the error associated with the iterate at step k and κ is

the condition number of the preconditioned linear system M 1
2AM 1

2 (which is simply the
ratio of the largest to smallest eigenvalue). From this bound, it can be seen that when
the condition number is small (i.e. κ ≈ 1), CG converges rapidly. Similar arguments exist
for applying Krylov solvers to unsymmetric systems (e.g. GMRES) [128]. In addition to

11

improving the spectral distribution, a preconditioner should be inexpensive to compute, to
store and apply. In a parallel distributed framework, the construction and the application
of the preconditioner should also be easily parallelizable.

1.3 Some basics on hybrid linear solvers

In this section we briefly describe the basic ingredients that are involved in the hybrid
linear solvers considered in this manuscript. The hybrid solver considered in this work bor-
rows ideas to some classical domain decomposition techniques. In this section some popular
and well-known domain decomposition preconditioners are described from an algebraic per-
spective. Numerical techniques that rely on decompositions with overlap are described in
Section 1.3.2 and some approaches with non-overlapping domains are discussed in Sec-
tion 1.3.3. Furthermore, these methods are most often used to accelerate Krylov subspace
methods. In that respect, we briefly present the Krylov subspace solvers we have con-
sidered for our numerical experiments. Both symmetric positive definite (SPD) problems
and unsymmetric problems are encountered that are solved using the conjugate gradient
method [85], described in Section 1.4.3, or variants of the GMRES technique [126, 129],
described in Section 1.4.2. Because we investigate multiple variants of the preconditioners
and intend to compare their numerical behaviors, a particular attention should be paid to
the stopping criterion, which should be independent from the preconditioner while ensuring
that the computed solutions have similar quality with respect to a certain metric. Conse-
quently, in Section 1.4.4 we introduce some basic concepts of the backward error analysis
that enables us to ensure fairness of the comparaison.

1.3.1 Introduction

As pointed in [71], the term domain decomposition covers a fairly large range of computing
techniques for the numerical solution of partial differential equations (PDE’s) in time and
space. Generally speaking, it refers to the splitting of the computational domain into
subdomains with or without overlap. The splitting strategy is generally governed by various
constraints/objectives. It might be related to

• some PDE features to, for instance, couple different models such as the Euler and
Navier-Stokes equations in computational fluid dynamics;

• some mesh generator/CAD constraints to, for instance, merge a set of meshes gener-
ated independently (using possible different mesh generators) into one complex mesh
covering an entire simulation domain;

• some parallel computing objective where the overall mesh is split into sub-meshes of
approximately equal size to comply with load balancing constraints.

In this work we consider the last situtation, where the overall mesh is split into several
sub-meshes. We focus specifically on the associated domain decomposition techniques for

12

1.3. Some basics on hybrid linear solvers

Figure 1.4: Partition of the domain based on a element splitting. Shared vertices are
indicated by a circle.

the parallel solution of large linear systems, Ax = b, arising from PDE discretizations.
Some of the presented techniques can be used as stationary iterative schemes that con-
verge to the linear system solution by properly tuning their governing parameters to ensure
that the spectral radius of the iteration matrix is less than one. However, domain decom-
position schemes are most effective and require less tuning when they are employed as a
preconditioner to accelerate the convergence of a Krylov subspace method [75,128].

In the next sections an overview of popular domain decomposition preconditioners is
given from an algebraic perspective. We mainly focus on the popular finite element practice
of only partially assembling matrices on the interfaces. That is, in a parallel computing
environment, each processor is restricted so that it assembles matrix contributions coming
only from finite elements owned by the processor. In this case, the domain decomposition
techniques correspond to a splitting of the underlying mesh as opposed to splitting the
matrix.

Consider a finite element mesh covering the computational domain Ω. For simplicity as-
sume that piecewise linear elements Fk are used such that solution unknowns are associated
with mesh vertices. Further, define an associated connectivity graph GΩ = (WΩ , EΩ). The
graph vertices WΩ = {1, . . . , ne} correspond to elements in the finite element mesh. The
graph edges correspond to element pairs (Fi, Fj) that share at least one mesh vertex. That
is, EΩ = {(i, j) s.t. Fi ∩ Fj 6= ∅}. Assume that the connectivity graph has been partitioned
resulting in N non-overlapping subsets Ω0

i whose union is WΩ . These subsets are referred
to as subdomains and are also often referred to as substructures. The Ω0

i can be generalized
to overlapping subsets of graph vertices. In particular, construct Ω1

i , the one-overlap de-
composition of Ω, by taking Ω0

i and including all graph vertices corresponding to immediate
neighbours of the vertices in Ω0

i . By recursively applying this definition, the δ-layer overlap
of WΩ is constructed and the subdomains are denoted Ωδ

i .

Corresponding to each subdomain Ω0
i , we define a rectangular extension matrix R0

i
T

whose action extends by zero a vector of values defined at mesh vertices associated with the
finite elements contained in Ω0

i . The entries of R0
i
T

are zeros and ones. For simplicity, we
omit in all the following the 0 superscripts and defineRi = R0

i and Ωi = Ω0
i . Notice that the

13

columns of a given Rk are orthogonal, but that between the different Ri’s some columns are
no longer orthogonal. This is due to the fact that some mesh vertices overlap even though
the graph vertices defined by Ωi are non-overlapping (shared mesh vertices see Figure 1.4).
Let Γi be the set of all mesh vertices belonging to the interface of Ωi (mesh vertices lying on
∂Ωi\∂Ω). Similarly, let Ii be the set of all remaining mesh vertices within the subdomain
Ωi (i.e., interior vertices). Considering only the discrete matrix contributions arising from
finite elements in Ωi gives rise to the following local discretization matrix

Ai =

(
AIiIi AIiΓi
AΓiIi AΓiΓi

)
(1.8)

where interior vertices have been ordered first. The matrix Ai corresponds to the dis-
cretization of the PDE on Ωi with Neumann boundary condition on Ωi and the one-one
block AIiIi corresponds to the discretization with homogeneous Dirichlet conditions on Ωi.
The completely assembled discretization matrix is obtained by summing the contributions
over the substructures/subdomains :

A =
N∑
i=1

RT
i AiRi. (1.9)

In a parallel distributed environment, each subdomain is assigned to one computing unit
and typically computing unit i storesAi. A matrix-vector product is performed in two steps.
First a local matrix-vector product involving Ai is performed followed by a communication
step to assemble the results along the interface Ωi.

For the δ-overlap partition, we can define a corresponding restriction operator Rδ
i which

maps mesh vertices in Ω to the subset of mesh vertices associated with finite elements
contained in Ωδ

i . Corresponding definitions of Ωδ
i and Iδi follow naturally as the boundary

and interior mesh vertices associated with finite elements in Ωδ
i . The discretization matrix

on Ωδ
i has a similar structure to the one given by (1.8) and is written as

Aδi =

(
AIδi Iδi AIδi Γδi

AΓδi Iδi AΓδiΓ
δ
i

)
. (1.10)

1.3.2 A brief overview on domain decomposition techniques with
overlapping domains

The domain decomposition methods based on overlapping subdomains are most often re-
ferred to as Schwarz methods due to the pioneering work of Schwarz in 1870 [134]. This
work was not intended as a numerical algorithm, but was instead developed to show the
existence of the elliptic problem solution on a complex geometry formed by overlapping
two simple geometries where solutions are known. With the advent of parallel computing,
this basic technique known as the alternating Schwarz method, has motivated considerable
research activity. In this section, we do not intend to give an exhaustive presentation of all
work devoted to Schwarz methods. Only additive variants that are well-suited for parallel
implementations are considered. Within additive variants, computation on all subdomains

14

1.3. Some basics on hybrid linear solvers

are performed simultaneously while multiplicative variants require some subdomain calcu-
lations to wait for results from other subdomains. The multiplicative versions often have
connections to block Gauss-Seidel methods while the additive variants correspond more
closely to block Jacobi methods. We do not further pursue this description but refer the
interested reader to [135].

With these notations the additive Schwarz preconditioner is given by

Mδ
AS =

N∑
i=1

(
Rδ−1
i

)T (AIiIδi)−1

Rδ−1
i . (1.11)

Here the δ-overlap is defined in terms of finite element decompositions. The preconditioner
and the Rδ−1

i operators, however, act on mesh vertices corresponding to the sub-meshes
associated with the finite element decomposition. The preconditioner is symmetric (or
symmetric positive definite) if the original system A is symmetric (or symmetric positive
definite).

A parallel implementation of this preconditioner requires a factorization of a Dirichlet
problem on each process in the setup phase. Each invocation of the preconditioner requires
two neighbour to neighbour communications. The first corresponds to obtaining values
within overlapping regions associated with the restriction operator. The second corresponds
to summing the results of the backward/forward substitution via the extension operator.

In general, a larger overlap usually leads to faster convergence up to a certain point
where increasing the overlap does not further improve the convergence rate. Unfortunately,
larger overlap implies greater communication and computation requirements.

We notice that this technique makes use of a matrix inverse (i.e., a direct solver or an
exact factorization) of a local Dirichlet matrix. In practice, it is common to replace this with
an incomplete factorization [127, 128] or an approximate inverse [28, 29, 54, 76, 91]. While
this usually slightly deteriorates the convergence rate, it can lead to a faster method due
to the fact that each iteration is less computationally expensive. Finally, we mention that
these techniques based on Schwarz variants are available in several large parallel software
libraries; see for instance [24,83,84,101,140].

1.3.3 A brief overview on domain decomposition techniques with
non-overlapping domains

In this section, methods based on non-overlapping regions are described. Such domain
decomposition algorithms are often referred to as sub-structuring schemes. This termi-
nology comes from the structural mechanics discipline where non-overlapping ideas were
first developed. In this early work the primary focus was on direct solvers. Associat-
ing one frontal matrix with each subdomain allows for coarse grain multiple front direct
solvers [60]. Motivated by parallel distributed computing and the potential for coarse grain
parallelism, a considerable research activity has been developed to iterative domain decom-
position schemes. A very large number of methods have been proposed and we cannot cover
all of them. Therefore, the main highlights are surveyed.

15

The governing idea behind sub-structuring or Schur complement methods is to split the
unknowns in two subsets. This induces the following block reordered linear system(

AII AIΓ

AΓI AΓΓ

)(
xI

xΓ

)
=

(
bI

bΓ

)
, (1.12)

where xΓ contains all unknowns associated with subdomain interfaces and xI contains
the remaining unknowns associated with subdomain interiors. The matrix AII is block
diagonal where each block corresponds to a subdomain interior. Eliminating xI from the
second block row of Equation (1.12) leads to the reduced system

SxΓ = bΓ −AΓIA−1
IIbI where S = AΓΓ −AΓIA−1

IIAIΓ (1.13)

and S is referred to as the Schur complement matrix. This reformulation leads to a general
strategy for solving (1.12). Specifically, an iterative method can be applied to (1.13). Once
xΓ is determined, xI can be computed with one additional solve on the subdomain interiors.
Further, when A is symmetric positive definite (SPD), the matrix S inherits this property
and so a conjugate gradient method can be employed.

Not surprisingly, the structural analysis finite element community has been heavily in-
volved with these techniques. Not only is their definition fairly natural in a finite element
framework but their implementation can preserve data structures and concepts already
present in large engineering software packages.

Let Γ denote the entire interface defined by Γ = ∪ Γi where Γi = ∂Ωi\∂Ω. As interior
unknowns are no longer considered, new restriction operators must be defined as follows.
Let RΓi : Γ → Γi be the canonical point-wise restriction which maps full vectors defined on
Γ into vectors defined on Γi. Analogous to (1.9), the Schur complement matrix (1.12) can
be written as the sum of elementary matrices

S =
N∑
i=1

RT
Γi
SiRΓi (1.14)

where

Si = AΓiΓi −AΓiIiA−1
IiIiAIiΓi (1.15)

is a local Schur complement and is defined in terms of sub-matrices from the local Neumann
matrix Ai given by (1.8). Notice that this form of the Schur complement has only one
layer of interface unknowns between subdomains and allows for a straight-forward parallel
implementation.

While the Schur complement system is significantly easier to solve iteratively than the
original matrix A, it is important to consider further preconditioning when employing a
Krylov method. It is well-known, for example, that κ(A) = O(h−2) when A corresponds
to a standard discretization (e.g. piecewise linear finite elements) of the Laplace operator
on a mesh with spacing h between the grid points. Using two non-overlapping subdomains
effectively reduces the condition number of the Schur complement matrix to κ(S) = O(h−1).
While improved, preconditioning can significantly lower this condition number.

16

1.3. Some basics on hybrid linear solvers

1.3.3.1 The Neumann-Dirichlet preconditioner

When a symmetric constant coefficient problem is sub-divided into two non-overlapping
domains such that the subdomains are exact mirror images, it follows that the Schur com-
plement contribution from both the left and right domains is identical. That is, S1 = S2.
Consequently, the inverse of either S1 or S2 are ideal preconditioners as the preconditioned
linear system is well-conditioned, e.g. SS−1

1 = 2I. A factorization can be applied to the
local Neumann problem (1.8) on Ω1 :

A1 =

(
IdI1 0

AI1Γ1A−1
I1I1 IdΓ1

)(
AI1I1 0

0 S1

)(
IdI1 AI1I1AΓ1I1

0 IdΓ1

)
to obtain

S−1
1 =

(
0 IdΓ1

)
(A1)−1

(
0

IdΓ1

)
.

In general, most problems will not have mirror image subdomains and so S1 6= S2. However,
if the underlying system within the two subdomains is similar, the inverse of S1 should make
an excellent preconditioner. The corresponding linear system is(

I + S−1
1 S2

)
xΓ1 = (S1)−1 bΓ1

so that each Krylov iteration solves a Dirichlet problem on Ω2 (to apply S2) followed by a
Neumann problem on Ω1 to invert S1. The Neumann-Dirichlet preconditioner was intro-
duced in [30].

Generalization of the Neumann-Dirichlet preconditioner to multiple domains can be done
easily when a coloring of subdomains is possible such that subdomains of the same color
do not share an interface. For Cartesian decomposition in 2D, a red-black coloring is
enough and the preconditioner is just the sum of the inverses corresponding to the black
subdomains:

S =
∑
i∈B

RT
Γi

(Si)−1RΓi (1.16)

where B corresponds to the set of all black subdomains.

1.3.3.2 The Neumann-Neumann preconditioner

Similar to the Neumann-Dirichlet method, the Neumann-Neumann preconditioner implic-
itly relies on the similarity of the Schur complement contribution from different subdomains.
In the Neumann-Neumann approach the preconditioner is simply the weighted sum of the
inverse of the Si. In the two mirror image subdomain case,

S−1 =
1

2

(
S−1

1 + S−1
2

)
.

This motivates using the following preconditioner with multiple subdomains :

MNN =
N∑
i=1

RT
Γi
DiS−1

i DiRΓi (1.17)

17

where the Di are diagonal weighting matrices corresponding to a partition of unity. That
is

N∑
i=1

RT
Γi
DiRΓi = IdΓ .

The simplest choice for Di is the diagonal matrix with entries equal to the inverse of the
number of subdomains to which an unknown belongs. The Neumann-Neumann precon-
ditioner was first discussed in [37] and further studied in [137] where different choices for
weight matrices are discussed. It should be noted that the matrices Si can be singular
for internal subdomains because they correspond to pure Neumann problems. The Moore-
Penrose pseudo-inverse is often used for the inverse local Schur complements in (1.17) but
other choices are possible such as inverting Ai + εI where ε is a small shift.

The Neumann-Neumann preconditioner is very attractive from a parallel implementation
point of view. In particular, all interface unknowns are treated similarly and no distinction
is required to differentiate between unknowns on faces, edges, or cross points as it might be
the case in other approaches.

1.4 Some background on Krylov subspace methods

1.4.1 Introduction

Among the possible iterative techniques for solving a linear system of equations, the ap-
proaches based on Krylov subspaces are very efficient and widely used. Let A be a square
nonsingular n× n matrix, and b be a vector of length n, defining the linear system

Ax = b (1.18)

to be solved. Let x0 ∈ Cn be an initial guess for this linear system and r0 = b−Ax0 be its
corresponding residual.

The Krylov subspace linear solvers construct an approximation of the solution in the
affine space x0 +Km, where Km is the Krylov space of dimension m defined by

Km = span
{
r0,Ar0, . . . ,Am−1r0

}
.

The various Krylov solvers differ in the constraints or optimality conditions associated with
the computed solution. In the sequel, we describe in some details the GMRES method [129]
where the solution selected in the Krylov space corresponds to the vector that minimizes the
Euclidean norm of the residual. This method is well-suited for unsymmetric problems. We
also briefly present the oldest Krylov techniques that is the Conjugate Gradient method,
where the solution in the Krylov space is chosen so that the associated residual is orthogonal
to the space.

Many other techniques exist that we will not describe in this section; we rather refer the
reader to the books [75,128].

18

1.4. Some background on Krylov subspace methods

In many cases, such methods converge slowly, or even diverge. The convergence of
iterative methods may be improved by transforming the system (1.18) into another system
which is easier to solve. A preconditioner is a matrix that realizes such a transformation. If
M is a non-singular matrix which approximates A−1, then the transformed linear system

MAx =Mb (1.19)

might be solved faster. The system (1.19) is preconditioned from the left, but one can also
precondition from the right :

AMt = b. (1.20)

Once the solution t is obtained, the solution of the system (1.18) is recovered by x =Mt.

1.4.2 The unsymmetric problems

The Generalized Minimum RESidual (GMRES) method was proposed by Saad and Schultz
in 1986 [129] for the solution of large non hermitian linear systems.

For the sake of generality, we describe this method for linear systems whose entries are
complex, everything also extends to real arithmetic.

Let x0 ∈ Cn be an initial guess for the linear system (1.18) and r0 = b − Ax0 be its
corresponding residual. At step k, the GMRES algorithm builds an approximation of the
solution of (1.18) under the form

xk = x0 + Vkyk (1.21)

where yk ∈ Ck and Vk = [v1, · · · , vk] is an orthonormal basis for the Krylov space of
dimension k defined by

K(A, r0, k) = span
{
r0,Ar0, . . . ,Ak−1r0

}
.

The vector yk is determined so that the 2–norm of the residual rk = b −Axk is minimized
over x0 +K(A, r0, k). The basis Vk for the Krylov subspace K(A, r0, k) is obtained via the
well-known Arnoldi process [17]. The orthogonal projection of A onto K(A, r0, k) results
in an upper Hessenberg matrix Hk = V H

k AVk of order k. The Arnoldi process satisfies the
relationship

AVk = VkHk + hk+1,kvk+1e
T
k (1.22)

where ek is the kth canonical basis vector. Equation (1.22) can be rewritten in a matrix
form as

AVk = Vk+1H̄k

where

H̄k =

[
Hk

0 · · · 0 hk+1,k

]
is an (k + 1)× k matrix.

19

Let v1 = r0/β where β = ‖r0‖2. The residual rk associated with the approximate solution
xk defined by (1.21) satisfies

rk = b −Axk = b −A(x0 + Vkyk)

= r0 −AVkyk = r0 − Vk+1H̄kyk

= βv1 − Vk+1H̄kyk

= Vk+1(βe1 − H̄kyk).

Because Vk+1 is a matrix with orthonormal columns, the residual norm ‖rk‖2 = ‖βe1 −
H̄kyk‖2 is minimized when yk solves the linear least-squares problem

min
y∈Ck
‖βe1 − H̄ky‖2. (1.23)

We denote by yk the solution of (1.23). Therefore, xk = x0+Vkyk is an approximate solution
of (1.18) for which the residual is minimized over x0 + K(A, r0, k). The GMRES method
owes its name to this minimization property that is its key feature as it ensures the decrease
of the residual norm associated with the sequence of iterates.

In exact arithmetic, GMRES converges in at most n steps. However, in practice, n can
be very large and the storage of the orthonormal basis Vk may become prohibitive. On
top of that, the orthogonalization of vk with respect to the previous vectors v1, · · · , vk−1

requires 4nk flops; for large k, the computational cost of the orthogonalization scheme may
become very expensive. The restarted GMRES method is designed to cope with these
two drawbacks. Given a fixed m, the restarted GMRES method computes a sequence of
approximate solutions xk until xk is acceptable or k = m. If the solution was not found,
then a new starting vector is chosen on which GMRES is applied again. Often, GMRES is
restarted from the last computed approximation, i.e., x0 = xm to comply with the mono-
tonicity property of the norm decrease even when restarting. The process is iterated until
a good enough approximation is found. We denote by GMRES(m) the restarted GMRES
algorithm for a projection size of at most m. A detailed description of the restarted GM-
RES with right preconditioner and modified Gram-Schmidt algorithm as orthogonalization
scheme is given in Algorithm 1.

We now briefly describe GMRES with right preconditioner. Let M be a square nonsin-
gular n× n complex matrix, we define the right preconditioned linear system

AMt = b (1.24)

where x = Mt is the solution of the unpreconditioned linear system. Let t0 ∈ Cn be an
initial guess for this linear system and r0 = b −AMt0 be its corresponding residual.

The GMRES algorithm builds an approximation of the solution of (1.24) of the form

tk = t0 + Vkyk (1.25)

where the columns of Vk form an orthonormal basis for the Krylov space of dimension m
defined by

Kk = span
{
r0,AMr0, . . . , (AM)k−1r0

}
20

1.4. Some background on Krylov subspace methods

and where yk belongs to Ck. The vector yk is determined so that the 2-norm of the residual
rk = b −AMtk is minimal over Kk.

The basis Vk for the Krylov subspace Kk is obtained via the well-known Arnoldi process.
The orthogonal projection of A onto Kk results in an upper Hessenberg matrix Hk =
V H
k AVk of order k. The Arnoldi process satisfies the relationship

A[Mv1, · · · ,Mvk] = AMVk = VkHk + hk+1,kvk+1e
H
k (1.26)

where ek is the kth canonical basis vector. Equation (1.26) can be rewritten as

AMVk = Vk+1H̄k

where

H̄k =

[
Hk

0 · · · 0 hk+1,k

]
is an (k + 1)× k matrix.

Let v1 = r0/β where β = ‖r0‖2. The residual rk associated with the approximate solution
defined by Equation (1.25) verifies

rk = b −AMtk = b −AM(t0 + Vkyk)

= r0 −AMVkyk = r0 − Vk+1H̄kyk

= βv1 − Vk+1H̄kyk

= Vk+1(βe1 − H̄kyk). (1.27)

Since Vk+1 is a matrix with orthonormal columns, the residual norm ‖rk‖2 =
∥∥βe1 − H̄kyk

∥∥
2

is minimal when yk solves the linear least-squares problem (1.23). We will denote by yk
the solution of (1.23). Therefore, tk = t0 + Vkyk is an approximate solution of (1.24) for
which the residual is minimal over Kk. We depict in Algorithm 1 the sketch of the Modified
Gram-Schmidt (MGS) variant of the GMRES method with right preconditioner.

1.4.3 The symmetric positive definite problems

The Conjugate Gradient method was proposed in different versions in the early 50s in
separate contributions by Lanczos [96] and Hestenes and Stiefel [85]. It becomes the method
of choice for the solution of large sparse hermitian positive definite linear systems and is
the starting point of the extensive work on the Krylov methods [130].

Let A = AH (where AH denotes the conjugate transpose of A) be a square nonsingular
n × n complex hermitian positive definite matrix, and b be a complex vector of length n,
defining the linear system

Ax = b (1.28)

to be solved.

Let x0 ∈ Cn be an initial guess for this linear system, r0 = b−Ax0 be its corresponding
residual andM−1 be the preconditioner. The preconditioned conjugate gradient algorithm
is classically described as depicted in Algorithm 2.

21

Algorithm 1 Right preconditioned GMRES

1: Choose a convergence threshold ε
2: Choose an initial guess t0
3: r0 = b −AMt0 = b; β = ‖r0‖
4: v1 = r0/‖r0‖;
5: for k = 1, 2, . . . do
6: w = AMvk;
7: for i = 1 to k do
8: hi,k = vHi w
9: w = w − hi,kvi
10: end for
11: hk+1,k = ‖w‖
12: vk+1 = w/hk+1,k

13: Solve the least-squares problem min ‖βe1 − H̄ky‖ for y
14: Exit if convergence is detected
15: end for
16: Set xm =M(t0 + Vmy)

Algorithm 2 Preconditioned Conjugate Gradient

1: k = 0
2: r0 = b −Ax0

3: for k = 0, 1, 2, . . . do
4: Solve Mzk = rk
5: if k = 0 then
6: p0 = z0

7: else
8: βk−1 = zH(k−1)rk−1/z

H
k−2rk−2

9: pk = zk−1 + βk−1pk−1

10: end if
11: qk = Apk
12: αk = zHk−1rk−1/p

H
k qk

13: xk = xk−1 + αkpk
14: rk = rk−1 − αkqk
15: Exit if convergence is detected
16: end for

The conjugate gradient algorithm constructs the solution that makes its associated
residual orthogonal to the Krylov space. A consequence of this geometric property is
that it is also the minimum error solution in A-norm over the Krylov space Kk =
span

{
r0,Ar0, . . . ,Ak−1r0

}
. It exists a rich literature dedicated to this method; for more

details we, non-exhaustively, refer to [74,108,128] and the references therein.

We simply mention that the preconditioned conjugate gradient method written as de-
picted in Algorithm 2 enables us to still have short recurrence on the unpreconditioned
solution.

22

1.4. Some background on Krylov subspace methods

1.4.4 Stopping criterion for convergence detection

The backward error analysis, introduced by Givens and Wilkinson [146], is a powerful
concept for analyzing the quality of an approximate solution:

1. it is independent of the details of round-off propagation: the errors introduced during
the computation are interpreted in terms of perturbations of the initial data, and the
computed solution is considered as exact for the perturbed problem;

2. because round-off errors are seen as data perturbations, they can be compared with
errors due to numerical approximations (consistency of numerical schemes) or to phys-
ical measurements (uncertainties on data coming from experiments for instance).

The backward error defined by (1.29) measures the distance between the data of the initial
problem and those of a perturbed problem. Dealing with such a distance both requires to
choose the data that are perturbed and a norm to quantify the perturbations. For the first
choice, the matrix and the right-hand side of the linear systems are natural candidates. In
the context of linear systems, classical choices are the normwise and the componentwise
perturbations [46,87]. These choices lead to explicit formulas for the backward error (often
a normalized residual) which is then easily evaluated. For iterative methods, it is generally
admitted that the normwise model of perturbation is appropriate [25].

Let xk be an approximation to the solution x = A−1b. The quantity

ηA,b(xk) = min
∆A,∆b

{τ > 0 : ‖∆A‖ ≤ τ‖A‖, ‖∆b‖ ≤ τ‖b‖

and (A + ∆A)xk = b + ∆b}

=
‖Axk − b‖
‖A‖‖xk‖+ ‖b‖

(1.29)

is called the normwise backward error associated with xk. It measures the norm of the
smallest perturbations ∆A on A and ∆b on b such that xk is the exact solution of (A +
∆A)xk = b + ∆b. The best one can require from an algorithm is a backward error of the
order of the machine precision. In practice, the approximation of the solution is acceptable
when its backward error is lower than the uncertainty of the data. Therefore, there is no
gain in iterating after the backward error has reached machine precision (or data accuracy).

In many situations it might be difficult to compute (even approximatively) ‖A‖. Conse-
quently, another backward error criterion can be considered that is simpler to evaluate and
implement in practice. It is defined by

ηb(xk) = min
∆b
{τ > 0 : ‖∆b‖ ≤ τ‖b‖ and Axk = b + ∆b}

=
‖Axk − b‖
‖b‖

. (1.30)

This latter criterion measures the norm of the smallest perturbations ∆b on b (assuming
that they are no perturbations on A) such that xk is the exact solution of Axk = b + ∆b.
Clearly we have ηA,b(xk) < ηb(xk). It has been shown [59, 116] that GMRES with robust

23

orthogonalization schemes is backward stable with respect to a backward error similar
to (1.29) with a different choice for the norms.

We mention that ηA,b and ηb are recommended in [25] when the concern related to the
stopping criterion is discussed; the stopping criteria of the Krylov solvers we used for our
numerical experiments are based on them.

For preconditioned GMRES, these criteria read differently depending on the location of
the preconditioners. In that context, using a preconditioner means running GMRES on the
linear systems:

1. MAx =Mb for left preconditioning;

2. AMy = b for right preconditioning;

3. M2AM1y =M2b for split preconditioning.

Consequently, the backward stability property holds for those preconditioned systems where
the corresponding stopping criteria are depicted in Table 1.2. In particular, it can be

Left precond. Right precond. Split precond.

ηM,A,b
‖MAx−Mb‖

‖MA‖‖x‖+‖Mb‖
‖AMt−b‖

‖AM‖‖x‖+‖b‖
‖M2AM1t−M2b‖

‖M2AM1‖‖t‖+‖M2b‖

ηM,b
‖MAx−Mb‖
‖Mb‖

‖AMt−b‖
‖b‖

‖M2AM1t−M2b‖
‖M2b‖

Table 1.2: Backward error associated with preconditioned linear system in GMRES.

seen that for all but the right preconditioning and ηM,b , the backward error depends on
the preconditioner. For right preconditioning, the backward error ηb is the same for the
preconditioned and unpreconditioned system because ‖AMt − b‖ = ‖Ax − b‖. This is
the main reason why for all our numerical experiments with GMRES we selected right
preconditioning. A stopping criterion based on ηb enables a fair comparison among the
tested approaches as the iterations are stopped once the approximations have all the same
quality with respect to this backward error criterion.

1.5 Sparse linear solvers on modern supercomputers

1.5.1 Manycore architectures

For many decades, the performance of CPUs had increased mostly thanks to higher clock
frequencies – a consequence of higher degrees of Instruction Level Parallelism (ILP) – and
deeper memory hierarchies. As these traditional techniques reached the point of dimin-
ishing returns and started imposing unsustainable levels of power consumption and heat
dissipation, the microprocessors industry abruptly steered towards Thread Level Parallelism
(TLP). As a consequence, the design and development of microprocessors started focusing

24

1.5. Sparse linear solvers on modern supercomputers

on adding more processing units (or cores) rather than increasing the single-threaded per-
formance. A few years from then, multicore processors are nowadays ubiquitous, and the
evolution of computers is driven by a run towards higher numbers of cores per chip.

This trend was largely anticipated by Graphical Processing Units (GPUs). Originally
designed for processing images, GPUs were highly specialized computing devices meant
to handle a particular class of applications with well defined characteristics, large compu-
tational requirements and substantial, fine-grained parallelism. These features naturally
presented GPU devices as a compelling alternative to traditional microprocessors to the
scientific computing community. First attempts to use GPUs for scientific applications
can be dated back to the 90’s [115]. GPU computing has been considered an academic
exercise for long time and only recently, also thanks to the ever increasing interest of the
scientific community, GPU devices started evolving into powerful programmable processors.
As a result of this evolution, modern GPUs can substantially outperform high-end, mul-
ticore CPUs both in terms of data processing rate and memory bandwidth: theTesla K40
model produced by NVIDIA has a peak performance of 1.43 Tflops/s for double-precision
operations (4.29 Tflop/s for single-precision) and a memory bandwidth of 288 GBytes/s,
theoretically almost a factor of six times faster than the Intel Xeon Processor E5-2680 pro-
cessor available at the same time. Moreover, if porting general purpose codes on GPUs
required a considerable programming effort mostly due to the lack of tools and interfaces,
Application Programming Interfaces (API) for GPUs such as CUDA or OpenCL have been
rapidly evolving in the last few years: GPU programs can now be written in familiar pro-
gramming languages (such as C or Fortran) according to a Single Program Multiple Data
(SPMD) parallel programming model which opened the way for the collective effort that is
commonly known under the name of General Purpose GPU (GPGPU) computing [114].

On the other side, CPU manufacturers started designing and producing accelerator
boards with features that resemble those of GPUs: extremely high core-count, Thread
Level Parallelism, memory bandwidth and limited power consumption. One example of
this trend is represented by the Intel MIC (Many Integrated Cores) boards such as the
Xeon Phi, commercialized in 2012, whose peak performance can exceed 1 Tflop/s. These
boards share the same instruction set architecture as traditional x86 CPUs – a very desirable
feature that should ease the development of applications. In addition, Intel also released a
MIC version of some basic scientific computing libraries such as BLAS or LAPACK which
readily provide considerable gains to applications that use them.

Accelerators have thus become more attractive alternatives to traditional CPUs and are
considered to cost less money-per-flop and to consume less watts-per-flop. As a result, more
production-quality codes are developed nowadays for these devices. A striking evidence of
the success of accelerators in scientific computing is the MIC based computer Tianhe-2,
installed at the National Super Computer Center in Guangzhou, China, which was ranked
number one in the November 2015 Top500 list2.

Although accelerators can achieve considerable performance on a specific class of applica-
tions, they can still hardly be considered general purpose computing devices. Furthermore,
the efficient programming of heterogeneous systems equipped with accelerators is still a
hard challenge. For example, only 60% of the theoretical peak performance can be achieved

2The Top500 (http://top500.org) ranking lists the 500 most powerful supercomputers in the world.

25

http://top500.org

on Titan as compared to the 80% or more obtained on CPU based supercomputers of the
same segment in the Top500 list.

Several software libraries for dense linear algebra have been produced. For instance, the
Magma [2] project at University of Tennessee Knoxville has been extended in collaboration
with the HiePACS and STORM Inria projects in order to handle heterogeneous nodes and
clusters3. The most common dense linear algorithms are extremely rich in computation
and exhibit a very regular pattern of access to data which makes them extremely good
candidates for execution on accelerators. The most common sparse linear algebra algorithms
are the methods for the solution of linear systems which, contrary to the dense linear
algebra variants, usually have irregular, indirect memory access patterns that adversely
interact with typical accelerator throughput optimizations. So, achieving a high effciency
on accelerators for numerical sparse linear solvers is more challenging. These solution
methods can be roughly classified in two families:

• iterative methods: in their basic, unpreconditioned version, they are very easily par-
allelizable and for this reason they have been the object of research on GPU scientific
computing. However, the accelerator implementation of efficient preconditioners is
extremely complicated, and the lack of such implementations renders iterative solvers
for accelerators insufficiently reliable and robust at present. Furthermore, iterative
methods are based on operations such as the sparse matrix-vector product character-
ized by a very low computation-to-communication ratio which can considerably limit
their performance and scalability.

• direct methods: for algorithms belonging to this family, such as sparse matrix fac-
torization methods, the computation is commonly casted in terms of operations on a
sparse collection of dense matrices which makes them much denser in floating-point
operations and opens up opportunities for massive multithreaded parallelization and
porting on accelerators. Nonetheless, sparse matrix factorization methods have ex-
tremely complicated data access patterns which render their high-performance imple-
mentation on accelerator devices complicated.

1.5.2 Evolutionary parallel programming paradigms

From the 90’s where distributed memory parllel computers have progressively replaced the
vector processor based mainframes dedicated to intensive scientific computing, most of the
parallel simulation codes have been developed using the message passing programing model.
At that time a Message Passing Interface (MPI [117]) has been defined by the computational
science community to enable the portability of the new designed codes. It was critical to
ensure the return of the human effort invested in these code porting since this development
effort was significant. During more than a decade the substainability of the Moore’s law
was ensured by adding more nodes on clusters that were mainly exploited by MPI based
large scale computations. Due to the progresses of electronic integration and to reduce the
cost of the network interconnects, clusters of symmetric multi-processors (SMP) first appear
in the 2000’s. The architecture of these computers exhibit a logical and physical memory

3https://project.inria.fr/chameleon/

26

https://project.inria.fr/chameleon/

1.5. Sparse linear solvers on modern supercomputers

hierarchy where the first level is composed by the memory of the SMP and the second
level corresponds to the physically distributed memory. This memory structure naturally
matches hybrid programming model with multithread run within the SMP nodes and MPI
processes running between the SMPs. The multithreading is managed either explicitly
through fine POSIX programming or via OpenMP directives. Such two levels of parallelism
did not received much attention in particular by explicit simulation codes where flat MPI
ensured a good control of data locality thanks to the explicit management of the data
partitioning. However its benefit first revealed in the algorithms where the message passing
exchanges had a strong impact on the design of the numerical algorithms, on the memory
consumption or on the numerical behavior. A first example can be borrowed from sparse
direct numerical linear algebra with the two sparse codes PaStiX [81] and WSMP [77]. The
attraction of such hybrid programming increases significantly with the advent of multicores
where communication cost of the flat MPI became prohibitive. The next evolution that
impacted the programming paradigms was the introduction of accelerator such as GPGPU.
Not only the memory accesses are non uniform but also the computation capability becomes
heterogeneous. The evolution to take advantage of this new computing power has first been
to explicitly off-load on GPGPU some of the numerical kernels from larger applications.

In the last decades, the evolution of the hardware technology has been accomodated by
an evolutionary path of the programming methodologies where the complexity of underlying
hardware was directly exposed to the application designers though a stack of libraries/lan-
guages such as MPI, POSIX and CUDA. The algorithm designers had to manage the low
level data management while developping more sophisticated numerical schemes, which
led to an complex interleaving of numerical and computer science applications making the
resulting codes complex to manage and to upgrade.

1.5.3 Revolutionary programming paradigms

Computing platform hardware has dramatically evolved ever since the computer science
began, always striving to provide new convenient accelerating features for achieving higher
computational power. Each new accelerating hardware feature inevitably leaves program-
mers to decide whether to make their application dependent on that feature (and break
compatibility) or not (and miss the potential benefit), or even to handle both cases (at the
cost of extra management code in the application). This common problem is known as the
performance portability issue. A discruptive approach to tackle the code development com-
plexity associated with emerging heterogeneous manycore platforms is to consider a task
based programming paradigm. Such an approach enables to have a high level expressivity
of the algorithms while ensuring the performance portability thanks to a runtime system,
a third party layer of the system stack.

The first purpose of runtime systems is thus to provide abstraction. Runtime systems
offer a uniform programming interface for a specific subset of hardware (e.g., OpenGL or
DirectX are well-established examples of runtime systems dedicated to hardware-accelerated
graphics) or low-level software entities (e.g., POSIX-thread implementations). They are
designed as thin user-level software layers that complement the basic, general purpose
functions provided by the operating system calls. Applications then target these uniform

27

programming interfaces in a portable manner. Low-level, hardware dependent details are
hidden inside runtime systems. The adaptation of runtime systems is commonly handled
through drivers. The abstraction provided by runtime systems thus enables portability.
Abstraction alone is however not enough to provide portability of performance, as it does
nothing to leverage low-level-specific features to get increased performance.

Consequently, the second role of runtime systems is to optimize abstract application
requests by dynamically mapping them onto low-level requests and resources as efficiently as
possible. This mapping process makes use of scheduling algorithms and heuristics to decide
the best actions to take for a given metric and the application state at a given point in its
execution time. This allows applications to readily benefit from available underlying low-
level capabilities to their full extent without breaking their portability. Thus, optimization
together with abstraction allows runtime systems to offer portability of performance.

In the specific case of parallel work mapping, other approaches have occasionally been
adopted instead of using runtimes. Many scientific applications and libraries, including
linear system solvers, integrate their own, customized dynamic scheduling algorithms or
even resort to static scheduling techniques, either for historical reasons, or to avoid the
potential overhead of an extra runtime layer.

However, as multicore processors densify, as cache and memory hierarchies deepen, the
resulting increase in complexity now makes the use of work-mapping runtime systems vir-
tually unavoidable. Such work-mapping runtime systems take elementary task descriptions
and dependencies as input and are responsible for dynamically scheduling the tasks on
available computing units so as to minimize a given cost function (usually the execution
time) under some pre-defined set of constraints.

Work-mapping runtime systems themselves are now facing new challenges with the recent
move of the high performance community towards the use of specialized accelerating cores
together with traditional general-purpose cores. They not only have to decide about the
interest (or not) to use some specific hardware features, but also have to decide whether
some entire application tasks should rather be performed on an accelerated core or is better
left on a standard core.

In the case where specialized cores are located on an expansion card having its own
memory (e.g., most existing GPUs), the input data of a task have to be copied from central
memory to the card memory before the task can be run. The output results must also be
copied back to the central memory once the task computation is complete. The cost of
copying data between central memory and accelerator memory is not negligible. This cost,
as well as data dependencies between tasks, must therefore also be taken into account by the
scheduling algorithms when deciding whether to offload a given task, to avoid unnecessary
data transfers. Transfers should also be done in advance and asynchronously so as to overlap
communication with computation.

An original and effective runtime system is StarPU [19] developed by the STORM In-
ria’s project. Within this framework, the algorithm is described as a sequential task flow
with data dependencies expressed through read/write attributes provided for each task pa-
rameters. This task flow is internally translated by StarPU into a Directed Acyclic Graph
(DAG) used to optimaly scheduled the task on the different computing units.

28

1.6. Positioning of the thesis

1.6 Positioning of the thesis

The work developped in the context of this thesis addresses the design and the imple-
mentation of an hybrid iterative/direct solver, namely MaPHyS. In Chapter 2, we first
extend in a pure algebraic formalism the non-overlapping domain decomposition technique
described in this introductory chapter. We describe the algebraic preconditioner that led
to the first implementation of the MaPHyS solver used as starting point of this study. We
detail in this chapter an evolutionary approach, where we first consider a 2-level parallel
implementation based on parallel multithreaded libraries for the dense and sparse linear
algebra calculation within each subdomain while communication between the subdomains
are implemented using MPI. In particular, we detail how the interoperability of different
multithreaded libraries has been mastered. On challenging large linear systems arising from
3D modeling, we illustrate that such a 2-level parallelism enables to compromise between
the numerical and parallel efficiency of the hybrid solver. We consider test problems from
our main matrix collections (Table 2.1) in Section 2.4 and test examples from geoscience
applications in Section 2.5. We also compare the performance of our solver with a state-of-
the-art hybrid solver PDSLin [149], that uses a full MPI based parallelism and that relies
on an approximate global Schur complement preconditioner described in Section 2.7.

In Chapter 3 we consider a more disruptive task-based design. In a first step, we still
rely on MPI communicating between subdomains, but subdomains are internally processed
with task-based solvers instead of multithreade solvers. We propose a prototype extension
of MaPHyS based on that design. In a second step, we tackle a full task-based paradigm
where the architecture is fully abstracted, the algorithm being entirely expressed in terms of
task graph. In that latter case, we have not implemented an entire hybrid solver. Instead,
we have studied the attactivity of the approach on one of the core numerical kernels of
hybrid solvers, the Conjugate Gradient method; that is the Krylov subspace method used
by MaPHyS for symmetric positive linear systems. We present the high performance we
achieve following such a design both on multi-GPU and multicore architectures and present
preliminary results on heterogenous nodes.

Finally, we describe possible tracks for future research and development of MaPHyS.

29

30

Chapter 2
A hierarchical hybrid sparse linear solver for
multicore platforms

2.1 Introduction

The solution of large sparse linear systems of the form Ax = b where A is a sparse matrix,
b is a vector and x the unknown vector lies at the heart of many numerical simulations and
appears often in the inner-most loops of intensive simulation codes. Over the past decade
or so, several teams have been developing innovative numerical algorithms to exploit ad-
vanced high performance, large-scale parallel computers to solve these equations efficiently.
There are two basic approaches for solving linear systems of equations: direct methods and
iterative methods. Those two large classes of methods have somehow opposite features with
respect to their numerical and parallel implementation efficiencies.

Direct methods based on the Gaussian elimination are the oldest method for solving linear
systems. Tremendous efforts have been devoted to the design of sparse Gaussian elimination
that efficiently exploits the sparsity of the matrices. These methods indeed aim at exhibiting
dense submatrices that can then be processed with computational efficient standard dense
linear algebra kernels. Sparse direct solvers have been for years the methods of choice
for solving linear systems of equations because of their reliable numerical behavior [87].
Although there are ongoing efforts in further improving existing parallel packages, such
approaches may not be scalable in terms of computational complexity and memory for
large problems such as those arising from the discretization of large 3-dimensional partial
differential equations (PDEs). Furthermore, the linear systems involved in the numerical
simulation of complex phenomena result from modeling and discretization, which contain
some uncertainties and approximation errors. Consequently, the highly accurate but costly
solution provided by stable Gaussian elimination might not be mandatory.

As explained in the previous chapter, iterative methods on the other hand, generate se-
quences of approximations to the solution either through fixed point schemes or via search
in Krylov subspaces [128]. The best known representatives of these latter numerical tech-
niques are the Conjugate Gradient [85] and the GMRES [129] methods. These methods

31

have the advantage that the memory requirements are low. Also, they tend to be easier to
parallelize than direct methods. However, the main problem with this class of methods is
the rate of convergence, which depends on the properties of the matrix. In many computa-
tional science areas, highly accurate solutions are not required as long as the quality of the
computed solution can be assessed against measurements or data uncertainties. In such a
framework, the iterative schemes play a central role as they might be stopped as soon as
an accurate enough solution is found. In this work, we consider stopping criteria based on
the backward error analysis [25,59,75] introduced in Section 1.2.

Our approach to high-performance, scalable solution of large sparse linear systems in
parallel scientific computing is to combine direct and iterative methods. Such an hybrid
approach exploits the advantages of both direct and iterative methods. The iterative com-
ponent allows us to use a small amount of memory and provides a natural way for par-
alelization. The direct part provides its favorable numerical properties. Furthermore, this
combination enables us to naturally exploit several levels of parallelism that logically match
the hardware feature of multicore platforms as it will be described in details in this chap-
ter. In particular, we use parallel multithreaded sparse direct solvers within the multicore
nodes of the machine and message passing among the nodes to implement the gluing par-
allel iterative scheme. The general underlying ideas are not new. They have been used to
design domain decomposition techniques for the numerical solution of PDEs [107,119,135]
as briefly introduced in Section 1.3. In our work, we consider domain decomposition tech-
niques extended to general unstructured linear systems. More precisely, we consider nu-
merical techniques based on a non-overlapping decomposition of the graph associated with
the sparse matrices. The vertex separator, constructed using graph partitioning [52, 90],
defines the interface variables that will be solved iteratively using a Schur complement
approach, while the variables associated with the interior subgraphs will be handled by a
sparse direct solver. Although the Schur complement system is usually more tractable than
the original problem by an iterative technique, preconditioning treatment is still required.
For that purpose, we developed parallel preconditioners and designed hierarchical parallel
implementations.

This chapter is organized as follows. First, in Section 2.2 we describe the numerical
technique implemented by the hybrid solver, MaPHyS, that is the focus of this work and
give a brief overview of the other hybrid solvers in the literature. Section 2.3 is devoted
to the algorithmic description of its parallel implementations. We first present the baseline
parallel implementation that assigns one subgraph per processing unit. We then describe a
more flexible implementation that enables us to decorrelate the number of subgraphs from
the number of processing unit to enhance the numerical performance. In that latter imple-
mentation we can keep the number of subgraphs low while handling each subgraph with
multiple processing units, introducing two levels of parallelism. Such an implementation
enables us to exploit the natural parallelism of the subgraphs but also parallelism within
each subgraph. A performance analysis on test examples from our main matrix collections
presented in Section 2.4 as well as on geoscience challenging test cases in Section 2.5. We
also assess the performance of MaPHyS with respect to the quality of the partitioning in
Section 2.6. Achieved comparative performance analysis with the state-of-the-art PDSLin
hybrid solver is provided in Section 2.7 before concluding (Section 2.8).

32

2.2. Parallel algebraic non-overlapping domain decomposition methods

2.2 Parallel algebraic non-overlapping domain decom-

position methods

In this section we describe the design of the hybrid solvers based on a non-overlapping
domain decomposition. For the sake of simplicity, we assume that A has a symmetric
pattern. First we present the main ideas used in MaPHyS (Section 2.2.1), followed by a
brief overview of the method used in the other hybrid solvers.

2.2.1 Governing ideas

Let Ax = b be the linear problem and G = {V,E} the adjacency graph associated with
A. In this graph, each vertex is associated with a row or column of the matrix A and it
exists an edge between the vertices i and j if the entry ai,j is non zero. In the sequel, to
facilitate the exposure and limit the notation we voluntarily mix a vertex of G with its index
depending on the context of the description. The governing idea behind substructuring or
Schur complement methods is to split the unknowns in two categories: interior and interface
vertices. We assume that the vertices of the graph G are partitioned into N disconnected
subgraphs I1, ..., IN separated by the global vertex separator Γ. We also decompose the
vertex separator Γ into non-disjoint subsets Γi, where Γi is the set of vertices in Γ that are
connected to at least one vertex of Ii. Notice that this decomposition is not a partition as
Γi ∩ Γj 6= ∅ when the set of vertices in this intersection defines the separator of Ii and Ij.
By analogy with classical domain decomposition in a finite element framework, Ωi = Ii∪Γi
will be referred to as a subdomain with internal unknowns Ii and interface unknowns Γi.
If we denote I = ∪Ii and order vertices in I first, we obtain the following block reordered
linear system (

AII AIΓ

AΓI AΓΓ

)(
xI

xΓ

)
=

(
bI

bΓ

)
(2.1)

where xΓ contains all unknowns associated with the separator and xI contains the unknowns
associated with the interiors. Because the interior vertices are only connected to either
interior vertices in the same subgraph or with vertices in the interface, the matrix AII
has a block diagonal structure, where each diagonal block corresponds to one subgraph Ii.
Eliminating xI from the second block row of Equation (2.1) leads to the reduced system

SxΓ = f (2.2)

where
S = AΓΓ −AΓIA−1

IIAIΓ and f = bΓ −AΓIA−1
IIbI . (2.3)

The matrix S is referred to as the Schur complement matrix. This reformulation leads
to a general strategy for solving (2.1). Specifically, an iterative method can be applied to
solve (2.2). Once xΓ is known, xI can be computed with one additional solve for the interior
unknowns via

xI = A−1
II (bI −AIΓxΓ) .

We illustrate in Figure 2.1(a) all these notations for a decomposition into 4 subdomains.
The local interiors are disjoint and form a partition of the interior I = tIi (blue vertices in

33

0 cut edges

Ω

(a) Initial global graph.

Ω
1

Ω
2

Ω
3

Ω
4

Γ

(b) Graph subdomains. (c) Block reordered matrix.

Figure 2.1: Domain decomposition into four subdomains Ω1, . . . , Ω4. The initial domain
Ω may be algebraically represented with the graph G associated to the sparsity pattern of
matrix A (a). The local interiors I1, . . . , IN form a partition of the interior I = tIi (blue

vertices in (b)). They interact with each others through the interface Γ (red vertices in
(b)). The block reordered matrix (c) has a block diagonal structure for the variables

associated with the interior AII .

Figure 2.1(b)). It is not necessarily the case for the boundaries. Indeed, two subdomains Ωi

and Ωj may share part of their interface (Γi
⋂

Γj 6= ∅), such as Ω1 and Ω2 in Figure 2.1(b)
which share eleven vertices. Altogether, the local boundaries form the overall interface
Γ = ∪Γi (red vertices in Figure 2.1(b)), which is not a disjoint union. Because interior
vertices are only connected to vertices of their subset (either on the interior or on the
boundary), matrix AII associated to the interior has a block diagonal structure, as shown
in Figure 2.1(c). Each diagonal block AIiIi corresponds to a local interior.

While the Schur complement system is significantly smaller and better conditioned than
the original matrix A, it is important to consider further preconditioning when employing
a Krylov method. We introduce the general form of the preconditioner considered in Ma-
PHyS. The preconditioner presented below was originally proposed in [43] and successfully
applied to large problems in real life applications in [70, 78]. To describe the main precon-
ditioner in MaPHyS, we define S̄i = RΓiSRT

Γi
, that corresponds to the restriction of the

Schur complement to the interface Γi. If Ii is a fully connected subgraph of G, the matrix
S̄i is dense.

With these notations the Additive Schwarz preconditioner reads

MAS =
N∑
i=1

RT
Γi
S̄i
−1RΓi . (2.4)

We notice that this preconditioner has a form similar to the Neumann-Neumann precondi-
tioner [37, 57](See Section 1.3.3.2), but in the SPD case MAS is always defined and SPD
(as S is SPD [43]); which is not always the case for Neumann-Neumann.

If we considered a planar graph partitioned into horizontal strips (1D decomposition),

34

2.2. Parallel algebraic non-overlapping domain decomposition methods

the resulting Schur complement matrix has a block tridiagonal structure as depicted in (2.5)

S =

. . .

Sk,k Sk,k+1

Sk+1,k Sk+1,k+1 Sk+1,k+2

Sk+1,k+2 Sk+2,k+2

. . .

. (2.5)

For that particular structure of S, the submatrices in boxes correspond to the S̄i local
restriction of the Schur S. Such diagonal blocks, which overlap with one another, are
similar to the classical block overlap of the Schwarz method when writing in a matrix form
for 1D decomposition. Similar ideas have been developed in a pure algebraic context in
earlier papers [42, 122] for the solution of general sparse linear systems. Because of this
link, the preconditioner defined by (2.4) is referred to as algebraic additive Schwarz for the
Schur complement.

2.2.2 Related work

With the need of solving ever larger sparse linear systems while maintaining numerical ro-
bustness, multiple variants for computing the preconditioner for the Schur complement of
such hybrid solvers have been proposed. PDSLin [99], ShyLU [123] and Hips [64] first
perform an exact1 factorization of the interior of each subdomain concurrently. PDSLin
and ShyLU then compute the preconditioner with a two-fold approach. First, an approxi-
mation S̃ of the (global) Schur complement S is computed. Second, this approximate Schur

complement S̃ is factorized to form the preconditioner for the Schur Complement system,
which does not need to be formed explicitly. While PDSLin has multiple options for dis-
carding values lower than some user-defined thresholds at different steps of the computation
of S̃ (see details in Section 2.6), ShyLU [123] also implements a structure-based approach
for discarding values named probing and that was first proposed to approximate interfaces
in DDM [48]. Instead of following such a two-fold approach, Hips [64] forms the precondi-
tioner by computing a global ILU factorization based on the multi-level scheme formulation
from [82]. Finally, the object of this thesis, MaPHyS [72], computes an additive Schwarz
preconditioner for the Schur complement as previously described in Section 2.2.1.

To ensure numerical robustness while exploiting all the processors of a platform, an
important effort has been devoted to propose two levels of parallelism for these solvers. Re-
lying on the SuperLU DIST [100] distributed memory sparse direct solver, PDSLin im-
plements a 2-level MPI (MPI+MPI) approach with finely tuned intra- and inter-subdomain
load balancing [149]. A similar MPI+MPI approach has been assessed for additive Schwarz
preconditioning in a prototype version of MaPHyS [73], relying on the Mumps [13,14] and
ScaLAPACK [31] sparse direct and dense distributed memory solvers, respectively. On the
contrary, expecting a higher numerical robustness thanks to multi-level preconditioning,
Hips associates multiple subdomains to a single process and distributes the subdomains to

1There are also options for computing Incomplete LU (ILU) factorizations of the interiors but the related
descriptions are out the scope of this paper.

35

the processes in order to maintain load balancing [64]. Finally, especially tuned for modern
multicore platforms, ShyLU implements a 2-level MPI+thread approach [123].

Whereas PDSLin and ShyLU can be virtually turned into to a pure direct method if no
dropping is performed, and whereas Hips may expect robustness by relying on a multilevel
scheme, additive Schwarz preconditioners are extremely local. As a result, their computa-
tion is potentially much more parallel (and scalable), but their application may lead to a
dramatic increase of the number of iterations (or even to non convergence) if the number
of subdomains becomes too large. The objective of the present study is to assess whether
a 2-level parallel approach allows additive Schwarz preconditioning for Schur Complement
methods to achieve an efficient trade-off between numerical robustness and performance
on modern hierarchical multicore platforms. Following the paralelization scheme adopted
in [123], we have designed a MPI+thread approach (Section 2.3) to cope with these hard-
ware trends. Contrary to the MPI+MPI approach investigated in [73], such a paralelization
allows for a better usage of the memory (e.g. symbolic data structures such as the elim-
ination tree used within a direct solver are shared between threads of a same process)
and a better exploitation of the CPU cores local to a node at each step of the parallel
computation [3,63,97].

2.3 Design of parallel implementations of MaPHyS

MaPHyS is based on an algebraic domain decomposition whose primary motivation is
to naturally exploit some parallelism between the computation performed on each sub-
problem of the decomposition. In this chapter, we describe the choices made on the data
decomposition and the numerical algorithms that handled these data. We first describe the
baseline (starting point of this thesis) approach in Section 2.3.1 where parallelism is only
exploited between subdomains. Such an approach strongly constrains the number of cores
to be equal to the number of subdomains. This 1 level parallel implementation only relies on
the message passing paradigm and suffers from a lack of flexibility that strongly interleaves
the numerical and parallel behaviors. In order to relax this constraint, we have designed a
2-level parallel implementation that exploits multithreading within the computation of each
subdomain. Such a 2-level approach for parallel hybrid solver implementation has already
been investigated [78,88] via complex MPI-MPI implementations; those implementations do
not fully match the natural memory hierarchy of the current HPC platforms and motivate
this contribution.

We first introduce the baseline 1-level parallelism implementation of MaPHyS in Sec-
tion 2.3.1 and then explain how we have extended it to design a two level MPI+thread
version of the solver in Section 2.3.2.

2.3.1 Baseline MPI implementation of the MaPHyS solver

Based on the decomposition of G introduced in Section 2.2.1, we can define a decomposition
of the matrix A where each sub-matrix is associated with a subdomain and is allocated
to one MPI process. Note that due to the overlap between local interfaces Γi, a special

36

2.3. Design of parallel implementations of MaPHyS

attention has to be paid to the decomposition of AΓΓ as its entries are shared between
different processes. In that respect the matrix entries of AΓΓ must be weighted so that the
sum of the coefficients on the local interface submatrices are equal to one. For that, we
introduce the weighted local interface matrix AwΓiΓi that satisfies AΓΓ =

∑N
i=1RT

Γi
AwΓiΓiRΓi ,

where RΓi : Γ → Γi is again the canonical point-wise restriction which maps full vectors
defined on Γ into vectors defined on Γi. For instance, the twelve red edges shared by
subdomains Ω1 and Ω2 in Figure 2.1(b) may get a weight 1

2
as they are shared by two

subdomains. In matrix terms, a subdomain Ωi may then be represented by the local matrix
Ai defined by

Ai =

(
AIiIi AIiΓi
AΓiIi AwΓiΓi

)
. (2.6)

The global Schur complement matrix S from (2.2) can then be written as the sum of
elementary matrices

S =
N∑
i=1

RT
Γi
SiRΓi (2.7)

where
Si = AwΓiΓi −AΓiIiA−1

IiIiAIiΓi (2.8)

is the local Schur complement associated to subdomain Ωi. This local expression allows for
computing local Schur complements independently from each other.

The S̄i’s that are involved in the definition ofMAS can actually be built within this data
distribution from the Si’s. Let us simply describe this calculation on a simple example for
a given subdomain Ωi. In Figure 2.2, we depict an internal subdomain Ωi together with its

Ωi

Ωj
Ek

EgEm

E`

Figure 2.2: An internal subdomain.

interface Γi = Em ∪ Eg ∪ Ek ∪ E`. The local Schur complement matrix associated with Ωi

is dense and has the following 4× 4 block structure

Si =

S(i)
mm Smg Smk Sm`
Sgm S(i)

gg Sgk Sg`
Skm Skg S(i)

kk Sk`
S`m S`g S`k S(i)

``

 (2.9)

where each block accounts for the interactions between the unknowns on the edges of its
interface. The matrix S̄i can be built from the local Schur complement Si by assembling

37

its diagonal blocks thanks to a few neighbour to neighbour communications. For instance,
the diagonal blocks of Si associated with the edge interface Ek, depicted in Figure 2.2, is
Skk = S(i)

kk + S(j)
kk . Assembling each diagonal block of the local Schur complement matrices,

we obtain the local assembled Schur complement, that is

S̄ =

Smm Smg Smk Sm`
Sgm Sgg Sgk Sg`
Skm Skg Skk Sk`
S`m S`g S`k S``

 .

The original idea of hybrid methods based on DDM consists in subdividing the graph
into subgraphs that are individually mapped to one process. This approach is referred to
as the classical parallel implementation.

With all these components, the classical parallel implementation of MaPHyS can be
decomposed into four main phases:

• the partitioning step consists of partitioning the adjacency graph G of A into several
subdomains and distribute the Ai to different processes;

• the factorization of the interiors and the computation of the local Schur complement
Si using Ai;

• the setup of the preconditioner by assembling diagonal blocks of Si via a few neighbour
to neighbour communications and factorization of Si;

• the solve step where a parallel preconditioned Krylov method is performed on the
reduced system (Equation 2.2) to compute xΓi followed by the back solve on the
interior to compute xIi .

Comparing to other hybrid solvers, MaPHyS has one major implementation difference.
All other solvers are an extension of an already existing direct sparse solver. With this
strategy, the code of the direct sparse solver can be optimized for the needs of the hybrid
solver. MaPHyS, on the other hand, is implemented in a“black box” strategy. An external
library is used for each individual step of the algorithm. A set of needed functionalities
are defined for each step, so any library that provides these functionalities can be used.
With this strategy, MaPHyS can use several different libraries for each step. Also it will
automatically benefit from new developments of each one that is used.

In the rest of this section, a more detailed explanation for each step is presented and the
libraries that MaPHyS is able to exploit for each one of them are presented.

2.3.1.1 Partitioning step

The ultimate objective of the partitioning in MaPHyS is to construct subdomains with
balanced sizes for the interiors (similar cardinality of the Ii’s) and the interfaces (similar
cardinality of the Γi’s). Such a partitioning constraint is rather uncommon and no graph

38

2.3. Design of parallel implementations of MaPHyS

partitioner implements a heuristic to achieve this specific objective. Consequently Ma-
PHyS currently relies on the nested dissection approach from the graph partitioners such
as Scotch [118] and METIS [90]. For a given graph G = {V,E}, this method splits V into
two balanced subgraphs V 1

1 , V
1

2 with a minimal size separator V 1
3 . The same algorithm is

then applied recursively on the two subgraphs V `
1 , V

`
2 , l > 1; the outcome of this recursive

algorithm is a binary tree, where the leaves correspond to the MaPHyS’s Ii subdomains
and the other nodes are the separators generated at each level of the recursion, so that
Γ = ∪`V `

3 . To compute the interfaces Γi, we need to extract them from the hierarchy
of separators computed by the recursive nested dissection algorithm. Notice that in gen-
eral, we have no control on their individual size nor imbalance between them. We however
present a strategy that has been implemented in Scotch in the scope of this thesis in order
to limit this drawback (see Section 2.6). Another consequence of using a nested dissection
method is that the number of subdomains is a power of two.

2.3.1.2 Factorization of the interiors

Many parallel sparse direct numerical techniques have been developed such as multifrontal
approaches [61, 62], supernodal approaches [58] and fan-both algorithms [18]. Among the
available direct solvers, Mumps [13], Pardiso [133] and PaStiX [81] offer a unique feature,
which is the possibility to compute both the factorization of the interior matrices AIiIi and
the Schur complements using efficient sparse calculation techniques:

Si = AwΓiΓi −AΓiIiA−1
IiIiAIiΓi (2.10)

Because of the close research interactions with these sparse packages and to illustrate
the flexibility of the implementation, MaPHyS uses the two solvers MUltifrontal Massively
Parallel sparse direct Solver (Mumps) and Parallel Sparse matriX package (PaStiX). The
computation of the local Schur complement benefits from the general overall efficiency of
the sparse direct solver. Basically the main feature for the Schur computation, from the
algorithmic point of view, can be expressed as a partial right looking factorization where
instead of doing the factorization of the entire matrix Ai, the factorization associated with
the indices of AwΓiΓi is disabled.

From a software point of view, the user must specify the list of indices associated with the
nodes on AΓiΓi . The code then provides a factorization of the AΓiΓi matrix and the explicit
Schur complement matrix Si, that is returned as a dense matrix. The partial factorization
that builds the Schur complement matrix is used to solve linear systems associated with
the matrix AΓiΓi .

2.3.1.3 Setup of the preconditioner

The setup of the preconditioner mainly consists of two phases: the assembly and the fac-
torization of the assembled local Schur complement S̄i concurrently on each process.

39

Assembly phase. During the assembly phase, each process communicates with its neigh-
bours constructing the local S̄i. This step only requires a few point-to-point communications
between neighbours and is briefly described by Algorithm 3.

Algorithm 3 Assembling the local Schur complement

1: S̄i ← Si
2: for k = 1, nb neighbour do
3: Buffered SEND part of Si to neighbour k
4: end for
5: for k = 1, nb neighbour do
6: Receive RECV part of Si from neighbour k: buffertemp ←RECV()
7: Update S̄i ← S̄i + buffertemp
8: end for

Factorization of the Schur. The next phase consists of the factorization of S̄i that is
a dense matrix. Its factorization (as well as the backward/forward substitution at each
iteration of the Krylov solver) might be computationally expensive. A possible alternative
to get a cheaper preconditioner is to consider a sparse approximation for S̄i in (2.4), which
results in a saving of memory to store the preconditioner and saving of computation to fac-

torize and apply it. This approximation ˜̄Si can be constructed by dropping the elements of
S̄i that are smaller than a given threshold. More precisely, the following dropping strategy,
that preserves the symmetry for symmetric problems, can be applied:

˜̄S`j = { 0 if |s̄`j| ≤ θ(|s̄``|+ |s̄jj|)
s̄`j otherwise

(2.11)

where s̄`j denotes the entries of S̄i. The resulting preconditioner based on these sparse
approximations reads

MASsp =
N∑
i=1

RT
Γi
˜̄Si−1

RΓi . (2.12)

In equation 2.4, we will refer to a dense preconditioner (MASd), if no dropping is performed
during the assembly phase on the local assembled Schur complement. The sparse precondi-
tioner (MASsp), given in Equation (2.12), corresponds to a preconditioner where dropping
is performed on the local assembled Schur complement. The dense preconditioner consists
of assembling the local Schur complement on each process computed by the direct sparse
solver, and then factorizing them concurrently. MaPHyS relies on the LAPACK standard
and can use any library implementing this standard. In the work proposed in the rest of
this chapter, we use the Intel Math Kernel Library (Mkl) for that purpose. For the sparse
preconditioner, it consists in assembling the local Schur complement, sparsifying and fac-
torizing the local assembled Schur complement (S̄i) using the Mumps or PaStiX sparse
direct solvers.

40

2.3. Design of parallel implementations of MaPHyS

2.3.1.4 Solve step

Two main phases are implemented by the solve step: the iterative solution of the Schur
complement system defined on the interface unknowns (1) and the back-solve on the interiors
(2).

d1) Iterative solution. The efficient implementation of a Krylov iterative method de-
pends on two factors: optimized implementation of computational kernels and stopping
criterion for convergence detection. In these methods three major computational kernel are
crucial: matrix-vector product, the application of the preconditioner to a vector and the
dot product kernel. Below our implementation of these kernels is explained followed by the
definition of the stopping criterion used in our study.

Matrix-vector product: y = Sx. It can be performed in two ways, explicitly using
a BLAS-2 routine or implicitly using sparse matrix-vector calculations. Both versions per-
form only local point-to-point communications. The explicit computation is described by
Algorithm 4, whereas the implicit one is given by Algorithm 5.

Algorithm 4 Explicit matrix-vector product

1: Completely parallel and does not need any communication between processes.
Each process calls DGEMV to compute yi ← Sixi Si is dense

2: Update data: it needs some exchanges of information between neighbouring subdomains

Each process assembles y ←
nb neighbour∑

i=1

RΓiyi

3: for k = 1, nb neighbour do
4: Bufferize SEND part of yi to neighbour k
5: end for
6: for k = 1, nb neighbour do
7: Receive RECV part of yi from neighbour k: ytemp ←RECV()
8: Update yi ← yi + ytemp
9: end for

Algorithm 5 Implicit matrix-vector product

1: Each process computes a sparse matrix vector product yi ← AIiΓixi
We use a special subroutine for sparse matrix vector product (SpMV)

2: Concurrently, each process call the sparse direct solver to perform a forward/backward
substitution yi ← A−1

IiIiyi using the computed factors of AIiIi
3: Then also in parallel, each process computes the sparse matrix-vector product
yi ← AΓiΓixi −AΓiIiyi

4: Last step (update data): it needs some exchanges of information between neighbouring
subdomains

Each process assembles y ←
nb neighbour∑

i=1

RΓiyi

41

Application of the preconditioner: y[i] ← M−1
i xi where Mi is equal to ˜̄Si or S̄i

depending on the selected (sparse or dense) preconditioner.

Because the preconditioners have a form similar to the Schur complement, its parallel
application to a vector is implemented similarly. This step described in Algorithm 6 can be
performed using either Mkl kernels in the dense preconditioner case or Mumps or PaStiX
sparse direct solver in the sparse preconditioner case.

Algorithm 6 Application of the preconditioner

1: In parallel each process performs the triangular solve yi ←M−1
i xi

2: Update data: exchanges of information between the neighbouring subdomains

Each process assembles y ←
nb neighbour∑

i=1

RΓ[i]yi,

The dot product: yi = yTi xi. The dot product calculation is simply a local dot-product
computed by each process followed by a global reduction to assemble the complete result
as described in Algorithm 7.

Algorithm 7 Parallel dot product

1: In parallel each process performs the local dot product yi ← yTi xi
2: Global reduction across all the processes: MPI ALLREDUCE(yi)

Stopping criterion: The normwise backward error presented in Section 1.4.4 is used
for our study. As the iterative method is applied on the reduced system introduced in
Equation 2.2, one option consists in using scaled residual norm associated to that system:

εf =
‖SxΓ − f‖
‖f‖

(2.13)

The results presented in Section 2.4, Section 2.5 and Section 2.6 are based on this stopping
criterion.

However, this criterion is related to the reduced system but not necessarily to the global
system. Indeed, assuming the backsolve on the interior is performed in exact arithmetic,
we have:

‖SxΓ−f‖
‖f‖ = ‖Ax−b‖

‖f‖ . Because ‖f‖ depends on the number of subdomains, this
criterion may thus not be appropriate for comparisons between executions whose number
of subdomains differs. This is important in particular when we compare MaPHyS and
PDSLin (Section 2.7) whose respective optimum tuning often correspond to different num-
bers of subdomains. In order to be on the same foot of equality in that case, we rely on the
alternative stopping criterion:

εb =
‖SxΓ − f‖
‖b‖

(2.14)

This latter stopping criterion indeed reflects the error on the global system because, as-
suming the backsolve on the interior is performed in exact arithmetic, we have:

‖SxΓ−f‖
‖b‖ =

‖Ax−b‖
‖b‖ .

42

2.3. Design of parallel implementations of MaPHyS

d2) Back-solve on the interiors Once xΓi is obtained with the above iterative solution
step, xΓi can be calculated with a back-solve. This is done by calling the solve step of the
sparse direct solver to compute xIi = A−1

IiIi (bIi −AIiΓixΓi).

2.3.2 Design of a 2-level MPI+thread extension of MaPHyS

The baseline MPI model presented above presents some strong limitations on modern mul-
ticore supercomputers. Indeed, modern platforms tend to have an increased number of
cores. Yet, the baseline model assigns exactly one subdomain per core being used. As a
consequence, if one wants to exploit all available computational cores, he has to decompose
the matrix in as many subdomains. For instance, if two nodes of eight cores each are being
used, 16 subdomains have to be used in order to exploit all the 16 cores (see Figure 2.3(a)).
As shown later on this thesis (Section 2.4), this approach can:

• deteriorate or even prevent the convergence of the method at scale;

• leads to excessive memory consumption, possibly leading the method to run out-of-
memory.

Solving those issues with the baseline MPI MaPHyS implementation would impose to
assign fewer subdomains per node, hence fewer cores. For instance, on the same example
platform, imposing four subdomains would limit us to use four cores only (see Figure 2.3(b)).
To overcome these limitations while using all available cores, we have designed a 2-level

(a) Baseline MPI - 16 subdomains.

(b) Baseline MPI - 4 subdomains.

(c) 2-level MPI+thread - 4 subdomains.

(d) Caption.

Figure 2.3: Baseline MPI (a, b) versus MPI+thread (c) models on a 16 cores platforms
composed of two nodes of eight cores each. Imposing four subdomains limits the baseline

MPI model to exploit four cores (b) but not the MPI+thread model (c).

MPI+thread method. With such a method, each process associated to a subdomain can
use multiple cores thanks to multithreading. In our example, each subdomain would thus
be processed by four cores using four threads per process (see Figure 2.3(c)).

In this section we present the design of our MPI+thread extension of MaPHyS. Because
MaPHyS is modular, we first need to select and possibly tune multithreaded versions of
the external software packages MaPHyS relies on (Section 2.3.2.1). We then need to make

43

sure that those libraries cooperate correctly in order to maximize the overall performance of
our hybrid solver (Section 2.3.2.2). Among other important issues, the physical placement
of the threads on the processing units is critical. We present the three different binding
strategies that have been studied in Section 2.3.2.3.

2.3.2.1 Multithreaded building block operations

We focus in this section on the description of multithreaded version of the external software
packages that are used by MaPHyS. The 2-level parallel implementation will be effective
for our hybrid solver if its three main computational phases can be efficiently performed
in parallel: factorization of the interiors, setup of the preconditioner and solve step. We
do not consider the parallel implementation of the partitioning step for two reasons. First,
with the current state of MaPHyS, the domain decomposition is performed sequentially
in a pre-processing phase, which performs the decomposition and sends the needed data on
the corresponding processes. Furthermore, the current software version of the partitioners
Scotch and METIS are not multithreaded. Let us quickly recall the main numerical
kernels of the three computational steps of our solver and for each of them describe the
multithreaded strategy.

For the factorization of the interiors with the current state of our package we are able
to use two sparse direct solvers, PaStiX and Mumps. These packages are able to per-
form Cholesky, LU or LDLT factorizations of symmetric definite, symmetric and general
sparse matrices respectively. Both solvers are state of the art software, implemented with
a large number of numerical and technical functionalities. The major difference between
the two solvers is that Mumps is based on the multifrontal approach while PaStiX is a
supernodal solver. With the recent development of the Mumps group, activities towards
a multithreaded version have been accomplished [97], but when this study was developed,
only the PaStiX package offered the possibility of using multithreading. In this study
only PaStiX is considered and a more detailed description is given below. Two different
versions of the setup of the preconditioner are possible in our solver, sparse and dense. For
each one, a different library is used. For the sparse version, the PaStiX solver is used,
while for the dense version, the LAPACK routines of the Mkl libraries are used. For the
iterative solver, the BLAS operation are provided by the Mkl library and the application
of the preconditioner is performed by the Mkl library or by the back-solve operation of
the sparse direct solver that is used. Finally the back-solve on the interiors is performed by
the sparse direct solver. All in all, we use the PaStiX sparse direct solver and the Mkl
library.

Multithreaded Mkl The Mkl library provides highly optimized BLAS and LAPACK
routines for Intel processors. The multithreaded version of the Mkl library is implemented
on top of the Intel OpenMP runtime system.

Multithreaded sparse direct solver Sparse direct solvers usually consist of three dis-
tinct steps. First, the analysis step performs a reordering of the variables (by calling a
third-party library such as Scotch or METIS) and a symbolic factorization in order to

44

2.3. Design of parallel implementations of MaPHyS

compute data structures that cope with expected fill-in. Second, the matrix is decomposed
in factors in the so-called numerical factorization or factorization step for short. In Ma-
PHyS these first two steps occur in sequence during the factorization of the interiors (and
separately during the computation of a sparse preconditioner). Third, the solve step com-
putes the solution from the right-hand side and the factors. This third step occurs during
the back-solve of the interiors (and separately during the application of the preconditioner
if a spare preconditioner is used).

PaStiX is based on the supernodal technique. Once the symbolic factorization has been
performed, the elimination tree is available. Basically the supernodal method consists of
regrouping several nodes (columns) of the elimination tree in a larger set called“supernode”.
From the matrix point of view, the supernodal approach can be viewed as grouping several
contiguous columns in a single column-block. Instead of using inefficient kernels with low
fetch/compute ratio, well suited BLAS-3 operations can then be used and exploit much
more efficiently modern processing units. The supernodal factorization occuring in PaStiX
consists of performing three operations for each column-block of the matrix, as depicted
in Figure 2.4 for the first column-block. First, the factorization of the diagonal block
is computed (red block in Figure 2.4). Then a triangular solve is performed on the off-
diagonal part of the column-block (yellow blocks in Figure 2.4). For each off-diagonal
sub-block of the factorized column-block, an update to the facing column-block that owns
the same rows is applied (green blocks in Figure 2.4). This is repeated for each column-
block until the whole matrix is factorized. In PaStiX each operation is performed by one
thread and the parallelism is expressed by performing several independent matrix operations
simultaneously.

The multithreaded strategy of PaStiX was implemented for the factorization of AΓiΓi

but not for the calculation of the Schur (Si) that was performed sequentially. For the
purpose of this thesis, we relieved this bottleneck by enabling concurrent updates of Si as
long as the updates are performed on disjoint matrix blocks, the 3 green blocks in the red
bottom-right block in Figure 2.4). In that respect, we considered a 2D block decomposition
of the square dense Schur complement matrix. The concurrency is protected by a simple
deadlock-free algorithm consisting of performing active waiting until all the blocks accessed
by an update are free for being updated. This additional software development designed
to remove the final bottleneck in the Schur complement capability of PaStiX has been
eventually integrated in the public domain distribution of PaStiX.

2.3.2.2 Coexistence of different multithreaded libraries

The main issue of interoperability between PaStiX and Mkl is related to the different
ways these libraries manage the parallelism. As explained above, PaStiX expresses the
parallelism through individual tasks associated with different supernodes; those tasks are
handled by single threads. The supernode calculation is performed by sequential (mono-
threaded) BLAS-3 routines from the Mkl library. However, the multithreading exploited
in the other steps of MaPHyS such as the setup of the preconditioner and the Krylov
iterations is based on calls to multithreaded Mkl routines. Consequently, both mono and
multithreaded Mkl subroutines need to be used in different contexts by MaPHyS when
PaStiX or Mkl library is used respectively.

45

Figure 2.4: Operations related to the factorization of the first supernode (red block):
triangular solve on the off-diagonal column-block (yellow blocks) and update to the facing

column-blocks that owns the same rows (green blocks).

46

2.3. Design of parallel implementations of MaPHyS

Because the Mkl library relies on OpenMP, there are two different ways to
control multithreading: through the OpenMP functionalities or directly using func-
tions defined in the Mkl library such as mkl set num threads(nb threads) or
omp set num threads(nb threads). The Mkl functions override the functions of OpenMP.
We point out below the adaptation that needs to be performed for the main three steps of
MaPHyS.

First, during the factorization of the interiorsPaStiX is used. So, during this step,
we are using the mono-threaded version of Mkl. For the setup of the preconditioner,
depending on wich version od the preconditioner is used, the dense one or the sparse one,
multithreade Mkl or PaStiX on top of a mono-threaded Mkl are used respectively. In
a similar manner, during the iterative method, Mkl or PaStiX is used for applying the
preconditioner depending on the version of the preconditioner. For the rest of the routines
within the iterative part, the multithreaded version of Mkl is used. Finaly, for the back-
solve on the interiors, PaStiX is used with the mono-threaded Mkl.

2.3.2.3 Binding strategies

Three binding variants have been initially explored. The first strategy simply consists of
not enabling any binding and let the operating system handle the placement of processes
and threads (Figure 2.5(a)). The second strategy consists of binding processes to a sub-
set of cores and let the operating system handle the placement of threads (Figure 2.5(b)).
The third strategy consists of binding both processes and threads within processes (Fig-
ure 2.5(c)).

(a) No binding.

(b) Process binding.

(c) Process and thread binding.

(d) Caption.

Figure 2.5: Binding strategies.

The mechanism for binding processes and threads may differ depending on the considered
target operating system and architecture. To perform a consistent and portable binding, we
rely on the Portable Hardware Locality (hwloc) software package [38]. The hwloc library

47

indeed provides a portable interface that is an abstraction of all the low level technical details
(operating system and architecture). It also offers a consistent numbering of the physical
cores, ensuring that cores that share cache memory will be numbered next to each other.
This is not always the case with the raw information provided by the operating system.
The numbering of hwloc is thus better suited for designing portable binding algorithms.

Modern multithreaded BLAS libraries commonly perform placement of processes and
threads. It is for instance the case of the Mkl library on which we rely in this thesis. In
order to control the binding by our own, we therefore prevent Mkl from doing it. This is
achieved by setting the environment variable KMP AFFINITY to “disable”.

We further discuss the impact of binding on performance in Section 2.4.2 where we show
that the second strategy consisting of binding processes to a subset of cores and let the
operating system handle the placement of threads (Figure 2.5(b)) is consistently optimum.
For this reason, this strategy is used in the rest of this chapter.

2.4 Performance analysis

In this section, a large set of experiments is presented to analyze the parallel and numerical
performance of the proposed MPI+thread extension of MaPHyS. After selecting the most
appropriate binding strategy (Section 2.4.3), we study the impact of multithreading on
performance (Section 2.4.3). In that context, the number of subdomains is set to the
number of nodes and we only vary the number of threads per subdomain. We then study
the flexibility of our 2-level parallel implementation to achieve the best trade-off between
the numerical and parallel behaviors (Section 2.4.4). For those experiments, we vary the
number of subdomains and the number of threads per subdomain, so that the total number
of cores remains constant.

2.4.1 Experimental setup

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Nachos4M Amande

n 0.8M 0.9M 1.1M 1.3M 2.7M 4.1M 7.0M

nnz 129M 392M 40M 10M 113M 256M 58M

Symmetry non-symmetric SPD non-symmetric symmetric non-symmetric non-symmetric symmetric

Arithmetic real real complex complex complex complex complex

Table 2.1: Our main matrix collection used in this chapter.

The experiments presented in this chapter were conducted on two platforms: PlaFRIM,
located at Inria Bordeaux-Sud-Ouest and the Hopper machine from NERSC, located at the
Lawrence Berkeley National Laboratory. The PlaFRIM platform is composed of 68 nodes.
Each node is equipped with two Quad-core Nehalem Intel Xeon X5550 with a total of
eight cores per node. Each node has a total of 24Gb of RAM memory. The nodes are

48

2.4. Performance analysis

interconnected in a fat tree fashion using an Infiniband QDR network delivering a 40Gb/s
bandwidth. The Hopper platform is composed by 6384 nodes, each being two twelve-core
AMD magny-cours 2.1-GHz processors. Each node has 24Gb of RAM. Hopper’s compute
nodes are connected via a custom high-bandwidth, low-latency network provided by Cray.

We display in Table 2.1 the main characteristics of the test matrices considered in this
section. They arise from different application domains ranging from structural mechanic
analysis to electromagnetics calculation using both classical and discontinuous finite element
modeling.

We use the convergence criterion proposed in Equation 2.13 which we set to εf = 10−10

when no stated otherwise. The right preconditioned GMRES restart parameter is set to 500
and the maximum number of iterations is set to 7000. We use the version 4.0.1 of METIS
to perform the domain decompositions and rely on the Mkl library version 11.1.3 and the
modified PaStiX version 5.2 as discussed in Section 2.3.2.

2.4.2 Impact of the thread binding strategies

As discussed in Section 2.3.2, three binding strategies have been designed consisting either of
fully delegating the placement management to the operating system (Figure 2.5(a)), binding
processes to a subset of cores and let the operating system handle the placement of threads
(Figure 2.5(b)) or binding both processes and threads within processes (Figure 2.5(c)),
respectively. Intensive experiments (not reported here) have been conducted on all matrices
from Table 2.1 showing that the second strategy consisting of binding processes to a subset
of cores and allowing the operating system handle the placement of threads (Figure 2.5(b))
is consistently optimum.

Indeed, this configuration outperforms the case where threads are also binded by the
application for two reasons. First, binding threads at the application level prevents Mkl
from doing internal optimizations related to multithreading. Second, every time the number
of threads used by the Mkl library is changed, the binding needs to be performed again.
This effects turns out to be especially significant in the iterative method when the sparse
preconditioner is used, because it has to be done twice at each iteration for switching
between calls to the dense operations performed by Mkl and the call to the sparse direct
solver for applying the preconditioner.

It also outperforms the case where the placement is fully delegated to the operating
system. We report here a detailed analysis on a particular example, considering matrix
Matrix211 processed on 8 nodes of PlaFRIM with a dense preconditioner. We compare the
behavior of MaPHyS when no binding is performed (Figure 2.6) to the case where processes
are binded (Figure 2.7). When only one process per node is used (eight threads per domain),
both versions are equivalent and therefore achieve the same performance (right-most part
of the plots). However, when multiple processes compete on the same node (i.e. when
one, two or four threads per domain are used), the performance gap may be significant,
especially because of the solve step.

49

(a) All computantional steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 2.6: The maximum, average and minimum elapsed time per subdomain of
MaPHyS when binding management is fully delegated to the operating system

(configuration of Figure 2.5(a)) for matrix Matrix211 on eight nodes of PlaFRIM with
dense preconditioner. On each node, all eight cores are consistently used but the number
of threads per subdomain (1, 2, 4 or 8, x-axis) is inversely proportional to the number of

subdomains (8, 4, 2, 1).

50

2.4. Performance analysis

(a) All computantional steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 2.7: The maximum, average and minimum elapsed time per subdomain of
MaPHyS when binding processes are binded to a subset of cores (configuration of

Figure 2.5(b)) for matrix Matrix211 on 8 nodes of PlaFRIM with dense preconditioner. On
each node, all eight cores are consistently used but the number of threads per subdomain
(1, 2, 4 or 8, x-axis) is inversely proportional to the number of subdomains (8, 4, 2, 1).

51

2.4.3 Multithreading performance

In this section, we investigate the performance of the multithreaded implementation on
multicore nodes. First, we are interested in the performance behavior of MaPHyS for the
cases described in Table 2.2. For those experiments, the number of subdomains in only
four and we use the dense variant of the preconditioner. Processes (hence subdomains)
have dedicated nodes. When the number of threads increases, more and more cores can
thus be exploited (see Figure 2.8). The parallel performance, measured as a speed-up with
respect to the single threaded reference is plotted in Figure 2.9 using bar charts with the
corresponding thread number on the top of the bars. For each matrix, we vary the number
of threads from one to eight and compute the speed-ups for the three numerical steps of
MaPHyS (steps 2.3.1.2, 2.3.1.3 and 2.3.1.4 in Section 2.3.1) as well as the overall speed-up
(combination of steps 2.3.1.2, 2.3.1.3 and 2.3.1.4).

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Amande

Interior’s size (avg) 197K 233K 275K 320K 684K 1742K

Local Schur’s size (avg) 7K 6K 10K 4K 2K 12K

Schur’s size 14K 39K 11K 7K 4K 24K

#iter 36 24 28 9 5 16

Table 2.2: Sizes of the interiors (AIiIi), size of the local Schur complement (Si) and total
size of the Schur complement (S) are given for each matrix when four subdomains are

used. The number of iterations (#iter) needed with four subdomains and dense
preconditioner is also given.

Figure 2.8: Using 1, 2, 4 or 8 threads and cores per process (set up in Section 2.4.3).

It can be seen that significant speed-ups are achieved for all test cases. An average
speed-up of 4.53 is achieved for the overall execution time of our matrix collection. In

52

2.4. Performance analysis

this configuration, the overall execution time is consistently dominated by the factorization
of the interiors. An explanation for this is the fact that only four subdomains are used.
Most of the unknowns are associated with the interior resulting to relatively small Schur
complements. As a consequence, the factorization of the interiors takes more time to be
performed compare to the setup of the preconditioner. Using only four subdomains and a
dense preconditioner results with a preconditioner with good numerical quality, thus only
a small number of iterations is needed in order to achieve the target accuracy.

(a) All computational steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 2.9: Overall speed-up with using 1, 2, 4 or 8 threads (and cores) with respect to
the time when 1 thread (and core) per process, for the matrices from Table 2.1. The dense

preconditioner is used. Four nodes are used and one process per node is assigned. The
number of threads (1, 2, 4 or 8) for each histogram is given on the top of the bars.

Since the overall time is dominated by the factorization of the interiors, it has a behavior
similar to the overall speed-up. An average speed-up of 4.6 is obtained for the factorization
of the interiors (Figure 2.9(b)) when 8 threads are used. The size of the interiors is large
enough (Table 2.2) for the multithreaded direct sparse solver. During the setup of the
preconditioner with this configuration, the dense solver is used for the factorization of S̄i.
The size of the local Schur complements is large enough (at least a few thousands unknowns).
As a result, the direct dense solver is able to exploit efficiently the multicore machines

53

(Figure 2.9(c)). For the solve step, an average speed up of only 1.94 (out of 8) is achieved
(Figure 2.9(d)). Two main reasons explain this behavior. First, the iterative method is
expensive in terms of communication, which do not scale with the multithreaded version.
Additionally, the operations that are done during the iterative method have a low level of
computational intensity. These operations do not exploit efficiently the multicore machines.
In addition to what has been presented, for the Haltere and Tdr455k matrices the back-
solve on the interior represents a large portion of the solve step. This is a consequence of the
fact that only 9 and 5 iterations are needed for the Haltere and Tdr455k matrix respectively
(Table 2.2). When the number of iterations increases, the portion that corresponds to the
back-solve decreases. When more than a few dozen of iterations are used, the back-solve
becomes inconsiderable compared to the time needed for the solve step.

In the above study we have shown that MaPHyS is able to efficiently exploit the mul-
ticore platforms with a dense preconditioner and four nodes. To further explore the ca-
pabilities of the 2-level parallel implementation we consider experiments at a scale related
to the problem size and relying on a preconditioning strategy tuned for each matrix.The
characteristics of this second set of experiments are reported in Table 2.3 while the observed
speed-ups are displayed in Figure 2.10.

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Amande

#nodes 8 4 16 4 8 32

Preconditioner dense 10−3 10−2 10−3 dense 10−2

Interior’s size (avg) 97K 233K 67K 320K 341K 216K

Local Schur’s
size (avg) 6K 6K 6K 3K 2K 5K

kept entries (avg) — 2.75% 2.5% 2% — 1%

Schur’s size 23K 11K 49K 8K 10K 85K

#iter 64 49 53 11 9 94

Table 2.3: The configuration (#nodes and preconditioner) that are studied in
Section 2.4.3 and 2.4.4 are presented. The sizes of the interior’s (Ii), the sizes of the local
Schur (Si), the total size of the Schur complement (S) and the number of iterations are

given for each matrix.

Similar to the experiments reported in Figure 2.9, we display the speed-ups using bar
charts when the number of threads is varied while each subdomains is mapped to one node.
We still observe significant but lower speed-ups than the ones presented previously in Fig-
ure 2.9. Indeed, although the overall time is dominated by the factorization of the interiors,
the number of subdomains increases with the number of nodes yielding smaller interiors
(Table 2.3) and resulting in a factorization of the interiors that is harder to parallelize
efficiently with the use of multiple threads (Figure 2.10(b)).

Concerning the preconditioner step, in the case where the sparsified preconditioner is
used, the involved matrices almost do not benefit from the multithreading (Figure 2.10(c)).
The main reason is that sparsifing considerably decreases the amount of computation (fac-
torization of the local assembled Schur S̄i), which thus becomes dominated by the assembly

54

2.4. Performance analysis

(a) All computational steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 2.10: Overall speed-up when using 1, 2, 4 or 8 threads (and cores) with respect to
the time when 1 thread (and core) per process for the matrices from Table 2.3. The

configuration (#nodes and preconditioner) is given in Table 2.3 for each matrix and the
test were performed on the PlaFRIM platform. The number of threads (1, 2, 4 or 8) for

each histogram is given on the top of each bar.

55

step. Because the assembly step consists only of communications, it is not affected by mul-
tithreading. The second reason is that the local Schur complement become too small for a
multithreaded sparse direct solver. For example, for the Audi_kw matrix, the average size
of S̄i is 5,884. After applying the dropping with a threshold of 10−3, approximately 2.75
percent of the entries are kept, resulting in a sparsified S̄i that contains around 692K of non
zero values. This is not a large enough computational load for the sparse direct solver to
exploit efficiently the multicore processors. As a consequence, the overall setup of the pre-
conditioner is hard to accelerate with multithreading when a sparse preconditioner is used.
On the other hand, thanks to the sparsification, the setup of the preconditioner turns out
to be only a very limited proportion of the total execution time (see Figure 2.10(a)). For
instance, when eight threads are used on four nodes with the Audi_kw matrix, the dense
factorization is performed in 2.55 seconds, while the sparse factorization takes only 0.95
seconds. Regarding the solve step, it follows the same comportment for all the matrices for
the same reasons as explained above.

2.4.4 Numerical and parallel flexibility of the 2-level implemen-
tation

In the previous section, we mainly focused on the parallel efficiency of the 2-level im-
plementation when the number of cores is increased while keeping constant the number
of nodes. We are now investigating the capability of the code to fully exploit the com-
puting resources of a hierarchical multicore platform. To highlight the flexibility we fix
the number of cores used for the solution of a given problem and we vary the number
of subdomains and the number of threads per subdomain so that nb nodes × nb cores =
nb threads per process×nb domains (see Figure 2.11). Those iso-computing resource ex-
periments show that our 2-level approach enables us to find the best trade-off between the
numerical behavior of the solver (which depends on the number of subdomains) and its
parallel performance (which depends on the number of threads per subdomain). For those
experiments we consider the same test examples as in Table 2.3.

With this configuration, when the number of threads per process increases, the number
of subdomains decreases; this tends to reduce the number of iterations but enlarges the
elapsed time of the factorization of the interiors. For instance, for the Audi_kw matrix, the
first histogram presents a run with 32 subdomains with one thread per process, while the
last one, when 8 threads are used, corresponds to a run with 4 subdomains. Compared
to the results presented in the previous section, for each run not only the number of cores
assigned per process changes, but also the numerical problem solved. With an increased
number of subdomains, the size of the domain interior is decreasing (Figure 2.12(a)), while
the size of the total Schur complement (S) is increasing (Figure 2.12(b)). With a larger
Schur complement and the larger number of subdomains, the numerical difficulty of the
iterative part tends to increase, increasing the number iterations and possibly the overall
solution time (Figure 2.12(d)). With our 2-level parallel approach, we are able to explore
the trade-off between larger subdomains and numerical efficiency of the iterative method in
order to exploit the multicore machines in a most optimal way. The results are presented
in Figure 2.13.

56

2.4. Performance analysis

Figure 2.11: Numerical and parallel flexibility of the 2-level implementation for exploiting
all cores of a node with 1, 2, 4 or 8 subdomains per node (set up in Section 2.4.4).

For the Haltere matrix the best performance is obtained when one thread per process is
used. More specifically, each step yields the best performance when one thread per process
is used. Considering the solve step, increasing the number of subdomains does not strongly
deteriorate the quality of the preconditioner for this matrix. For instance, in this case,
when the number of subdomains varies from 4 to 32, the number of iterations increases
from 11 to only 14 respectively (Figure 2.12(d)). On that example, the best performance
is obtained when the number of subdomains is the largest. Additionally, for this matrix
with all configurations, the overall time is dominated by the factorization of the interiors.
The factorization of the interiors yields best performance when the number of subdomains
is the largest (Figure 2.13(b)). The main reason for this behavior is the fact that when the
number of subdomains doubles, the size of each interior is approximately divided by two
(see Figure 2.12(a)) and the number of threads are doubled. Since the complexity in terms
of calculation for 3D problems for the sparse direct solver is squared (Figure 2.13(d)), larger
number of domain yields better performance.

For the Nachos matrix, the best configuration is also when one thread per process is
used. Contrary to the the Haltere matrix, the solve step is expensive for this matrix.
Nevertheless, with the increasing of the number of subdomains, the number of iterations
does not decrease drastically (Figure 2.12(d)). Since the solve step does not efficiently
exploit the multithreading (Figure 2.10(d)), similar number of iterations will be executed in
approximately the same amount of time (Figure 2.13(d)). Due to this, the overall execution
time is driven by the factorization of the interiors, and as explained above, the factorization
of the interior yields the best performance when one thread per process is used.

The Amande and Matrix211 matrices both exhibit similar behaviors. The optimal perfor-
mance is obtained when two threads per process are used. Compared to the Nachos matrix,
the number of iterations decreases more rapidly. As a consequence the solve step becomes
less expensive in terms of time consumption when the number of subdomains decreases

57

 0

 2

 4

 6

 8

 10

Matrix211 Audi Nachos Haltere Tdr455k Amande

N
o

rm
a

li
z
e

d
 s

iz
e

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

(a) Interior size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Matrix211 Audi Nachos Haltere Tdr455k Amande

N
o

rm
a

li
z
e

d
 s

iz
e

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

(b) Size of the total Schur.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Matrix211 Audi Nachos Haltere Tdr455k Amande

N
o

rm
a

li
z
e

d
 s

iz
e

1

2

4

8

1
2 4

8

1

2

4

8

1

2

4

8

1 2

4
8

1

2

4

8

(c) Size of the local Schur.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Matrix211 Audi Nachos Haltere Tdr455k Amande

N
o

rm
a

li
z
e

d
 #

it
e

r

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4
8

1

2

4

8

(d) Number of iterations.

Figure 2.12: The average sizes of the interior (2.12(a)), the local Schur complement
(2.12(c)), the total Schur complement (2.12(b)) and the number of iterations (2.12(d)) for
each matrix are presented when all available cores are used and the following statement is
satisfied : nb nodes× nb cores = nb threads per process× nb subdomains. The number
of nodes and the preconditioner are given in Table 2.3 and the number of threads used per
process is given on top of each histogram bar. All histograms are normalized with respect

with the histogram when one thread per process is used.

#subdomains

8 16 32 64 128

P
re

co
n
d
it

io
n
er dense 9 21 107 315 6323

10−4 31 108 502 – –

10−3 168 1002 – – –

10−2 6496 – – – –

Table 2.4: Number of iterations for different configurations (#subdomains and
preconditioner) for the Tdr455k matrix with the GMRES algorithm. ”–” means that the

algorithm fails to achieve convergence in 7000 iterations with restart of 500.

58

2.4. Performance analysis

(Figure 2.13(d)). Moreover, both matrices are issued from difficult numerical problems, re-
sulting in a large number of iterations during the solve step. For instance, when one thread
per process is used, 223 and 468 iterations are needed for the Matrix211 and Amande ma-
trices, respectively. Therefore, the benefits of reducing the cost of the solve step have larger
consequences on the overall computational time (Figure 2.13(d)).

For the two remaining matrices, Audi_kw and Tdr455k, this phenomena is even stronger.
Additionally, when the number of subdomains increses, the size of the local Schur comple-
ment is slightly decreased (Figure 2.12(c)). Since the dense preconditioner is used for the
Tdr455k matrix, the setup of the preconditioner yields better performance with the multi-
threaded version for this matrix. For these matrices increasing the number of subdomains
has the most significant influence on the number of iterations. Therefore the solve step
yields the best performance when eight threads per process are used.

(a) All computational steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 2.13: In these experiments all available cores are used and the following statement
is satisfied : nb nodes× nb cores = nb threads per process× nb subdomains. The

number of nodes and the preconditioner are given in Table 2.3 and the number of threads
used per process is given on top of each histogram bar. Each histogram is normalized in
comparison to the time obtained when one thread per subdomain is used. The test were

performed on the PlaFRIM platform.

59

Furthermore, the Tdr455k matrix is the most difficult matrix to solve in our collection
for our algorithm. The results presented in Figure 2.13 correspond to a dense precondi-
tioner. Performing dropping on the local Schur complement strongly decreases the quality
of the preconditioner (Table 2.4). Additionally, decomposing the matrix in larger number
of subdomains increases strongly the number of iterations for each preconditioner, failing to
converge in most cases. This matrix has strong numerical barriers for our algorithm. With
the multithreaded version, we are able to break the numerical barrier by assigning larger
number of cores per subdomain. On the Hopper platform we are able to efficiently exploit
as much as 384 cores (see Figure 2.14(a)) and in the same time lower the memory peak per
node (Figure 2.14(b)).

(a) Elapsed time for all computational steps. (b) Memory peak per node.

Figure 2.14: The maximum time 2.14(a) and memory peak per node 2.14(b) when the
Tdr455k matrix is used with dense preconditioner. All the available cores per node are

used and the statement is satisfied:
nb nodes× nb cores = nb threads per process× nb subdomains. In the legend t

p
refers

to number of threads (t) per process (p).

In order to push the limit of our algorithm, we have furthermore performed tests on the
Nachos4M matrix on the Hopper platform. In these series of experiments we have increased
the number of nodes up to one thousand (see Figure 2.15). With the increased number of
nodes, the number of subdomains is also increased up to 213 when three threads per process
are used. When the number of nodes is increased, the solve step dominates more and more
the overall execution time (the red portion in each histogram in Figure 2.15(b)).

Although not illustrated up-to now, depending on the targeted accuracy, the best choice
of the number of subdomains can vary for a given number of cores to be used. In Figure 2.16
we display the convergence history as a function of the elapsed time and iteration number
for the Audi_kw matrix (Figures 2.16(a) and 2.16(b) respectively). Lower the number
of subdomains, larger the time needed for factorization of the interiors and setup of the
preconditioner is, and faster is the convergence. However, for a moderated target accuracy,
this setup cost is not worth to invest. It might be more effective to enlarge the number of
subdomains to shrink the setup time and having slower convergence rate but overall faster
solution. For instance, for a 10−4 accuracy, the best choice is 64 subdomains (one thread

60

2.4. Performance analysis

(a) Elapsed time for all computational steps.

(b) All computational steps.

(c) Memory peak per node.

(d) Sizes.

Figure 2.15: The maximum time 2.15(a) and memory peak per node 2.15(c) for the
Nachos4M matrix with sparse preconditioner when a dropping is applied to the

preconditioner with threshold of 10−02. The detailed histogram for all computational steps
is given in 2.15(b) and the sizes for the interior, the local Schur complement and the total

size of the Schur complement are given in 2.15(d). The tests were performed on the
Hopper platform. All the available cores per node are used and the statement is satisfied:
nb nodes× nb cores = nb threads per process× nb subdomains. In the legend t

p
refers

to number of threads (t) per process (p).

61

each) while for a 10−9 accuracy the best choice is 16 subdomains (i.e., 4 threads).

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 50 100 150 200 250 300 350 400

|A
.x

-b
|/
|b

|

iteration

1 threads, 1.000E-02 threshold
2 threads
4 threads
8 threads

(a)

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

|A
.x

-b
|/
|b

|

time (s)

1 threads, 1.000E-02 threshold
2 threads
4 threads
8 threads

(b)

Figure 2.16: Convergence history with respect with the elapsed time for the Audi_kw

matrix when four nodes are used in respect with the iteration (Figure 2.16(a)) and in
respect with the time (Figure 2.16(b)). Dropping with a threshold of 10−2 is applied to

the preconditioner.

2.5 Case study from geoscience applications

In this section we study on the numerical and parallel performance of MaPHyS for the
solution of large linear systems arising from the discretization of 3D elastodynamic equations
in the frequency domain. The elastodynamic equation, briefly introduced in Section 1.1 and
fully described in [26], are discretized using a discontinuous Galerkin (DG) method defined
on a fully unstructured 3D mesh similar to the one depicted in Figure 2.17. Different
polynomial degrees are considered for the finite element approximation, namely P2, P3
and P4. For the experiments with P2 and P3, the mesh size is adjusted so that the two
discretization schemes lead to linear systems of a similar dimension (i.e., a coarser mesh
is used for the P3 approximation). The features in terms of size and non zeros for these
complex symmetric matrices are displayed in Table 2.5. It can be observed that the higher
the polynomial degree, the larger the number of non zeros per row yielding a less and
less sparse matrix. Furthermore, with matrices arising from a DG discretization exhibit a
special pattern with dense blocks (whose dimensions depend on the polynomial degree) and
a connectivity between the blocks related to the mesh connectivity. Because MaPHyS is
designed to be a general purpose hybrid solver, we have made no attempt to exploit this a
priori additional information. All the calculations have been performed in double precision
complex arithmetic using a restart of 500 for GMRES with right preconditioner (i.e., right
preconditioned GMRES(500)) and a stopping convergence criterion threshold εb = 10−04

(Equation 2.13).

For all the experiments performed in this section, we consider a right-hand side corre-
sponding to a source located at the center of the cube. The solution computed by MaPHyS

62

2.5. Case study from geoscience applications

Figure 2.17: A mesh used for the elastodynamic simulations.

Matrix Matrix_P2 Matrix_P3 Matrix_P4

n 1.222M 1.244M 2.177M

nnz 89M 178M 546M

Symmetry symmetric symmetric symmetric

Arithmetic complex complex complex

Table 2.5: Main features of the discontinuous Galerkin discretization matrices.

63

is displayed in Figure 2.18; the medium is homogeneous, consequently the wave has a spher-
ical structure.

Figure 2.18: Computed solution, the source is at the center of the cube.

For the Matrix_P2 matrix, we report the number of iterations when the number of subdo-
mains varies in Table 2.6. It can be seen that the convergence deteriorates progressively and
MaPHyS does not converge anymore with 256 subdomains. The same trend is observed
when a sparse preconditioner is applied and amplified for the largest (i.e., τ = 10−3) thresh-
old parameter that leads to the sparser and numerically poorer preconditioner (less than
5 % of the assembled local Schur complement matrices are kept to build the preconditioner).
For those experiments, we display in Figure 2.19 the maximum memory consumption when
the number of subdomains and cores per subdomain varies. Similarly to what was observed
for the Nachos matrix, also arising from a 3D DG discretization, for a given number of cores,
the larger the number of subdomains (i.e., the lower the number of threads), the lower the
memory consumption is. This can be explained by the statistics given in Figure 2.19(b),
where it can be seen that, even though the size of the global Schur complement increases
with the number of subdomains, the size of the local interior decreases, so do the sizes of
the associated local factors, as well as the size of the local Schur complement matrices.

Following the same experimental approach presented in Section 2.4.4, we vary the number
of threads per subdomain so that for a given number of cores we can tune the balance
between the iterative and direct computation. For the dense variant of the preconditioner,
we display the total elapsed time-to-solution as the function of the number of cores for
various number of threads per subdomain (value on top of the bars in Figure 2.20(a)). To
evaluate the possible benefit of using fewer subdomains with a larger number of threads per
subdomain we report the normalized elapsed time in Figure 2.20(b), with respect to the
elapsed time when three thread per process are used. In particular on 96 cores, one can see
that using 24 threads per subdomain does reduce the number of iterations (see Table 2.6);
consequently the minimum time spent in the iterative part (i.e., red bar associated with

64

2.5. Case study from geoscience applications

#subdomains

4 8 16 32 64 128 256

P
re
co
n
d
it
io
n
er

dense 33 57 89 182 451 2970 –

sparse 10−4 33 58 90 184 448 2955 –

(6.5%) (8.6%) (11.6%) (13.3%) (15.5%) (15.7%) –

sparse 10−3 38 64 106 237 721 4441 –

(1.0%) (2%) (2.3%) (3.2%) (4.5%) (4.8%) –

Table 2.6: Number of iterations for different configurations (#subdomains and
preconditioner) for the Matrix_P2 matrix with the GMRES algorithm. The average

percentage of the kept entries on the local assembled Schur complement (˜̄Si) is given for
each sparse preconditioner. “–” means that the algorithm fails to achieve convergence in

7000 iterations with a restart of 500.

1000

10000

96 192 384 768 1536 3072

M
e
m

ro
y

p
e
a
k
(M

B
)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Memory peak per node.

 1000

 10000

 100000

 1e+06

 4 8 16 32 64 128

s
iz

e

#domains

Interior

Local schur

Global schur size

(b) Sizes of the interior, local and global Schur.

Figure 2.19: The memory peak per node for the Matrix_P2 matrix is given in 2.19(a). All
the available cores per node are used and the statement is satisfied:

nb nodes× nb cores = nb threads per process× nb subdomains. The sizes for the
interior (Ii), the local Schur complement (Si) and the size of the global Schur complement

(S) are given in 2.19(b).

65

solve step) is achieved at a price of a much higher time spent in the direct calculation (i.e.,
blue bar). These chart bar highlight the numerical difficulties encountered in the iterative
part to get the solution as the solve step dominates when the number of cores increases.
Similar trends can be observed in Figure 2.21 and 2.22, when dropping is applied to sparsify
the preconditioner. On that example, when the sparsification policy with the 10−3 threshold
is applied, it is the slowest in terms of iterations, but it is the fastest in terms of time.

100

1000

96 192 384 768 1536 3072

tim
e

(s
)

3 t/p
6 t/p

12 t/p
24 t/p

#cores

(a) Elapsed time for all computational steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 96 192 384 768 1536 3072

N
o

rm
a

liz
e

d
 e

la
p

s
e

d
 t

im
e

#cores

3
6

12

24

3

6
12

24

3

612
24

6

12
24

12

24

24

Factorization of the interiors
Setup of the preconditioner

Solve step

(b) All computational steps.

Figure 2.20: The elapsed time for the Matrix_P2 matrix when no dropping is applied to
the preconditioner is given in 2.20(a). The detailed histogram for all computational steps
is given in 2.20(b). All the available cores per node are used and the statement is satisfied:

nb nodes× nb cores = nb threads per process× nb subdomains. These tests were
executed on the Hopper platform. In the legend t

p
refers to number of threads (t) per

process (p).

66

2.5. Case study from geoscience applications

100

1000

96 192 384 768 1536 3072

tim
e

(s
)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Elapsed time for all computational steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 96 192 384 768 1536 3072

N
o

rm
a

liz
e

d
 e

la
p

s
e

d
 t

im
e

#cores

3 6

12

24

3

61224

3

6
12

24

6

12

12

24

24

Factorization of the interiors
Setup of the preconditioner

Solve step

(b) All computational steps.

Figure 2.21: The elapsed time for the Matrix_P2 matrix when dropping is applied to the
preconditioner with a threshold of 10−4 is given in 2.21(a). The detailed histogram for all
computational steps is given in 2.21(b). All the available cores per node are used and the
statement is satisfied: nb nodes× nb cores = nb threads per process× nb subdomains.
These tests were executed on the Hopper platform. In the legend t

p
refers to number of

threads (t) per process (p).

100

1000

96 192 384 768 1536 3072

tim
e

(s
)

3 t/p
6 t/p

12 t/p
24 t/p

#cores

(a) Elapsed time for all computational steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 96 192 384 768 1536 3072

N
o

rm
a

liz
e

d
 e

la
p

s
e

d
 t

im
e

#cores

3 612

24

3

6
1224

3

6

1224

6

12

24

12

24

24

Factorization of the interiors
Setup of the preconditioner

Solve step

(b) All computational steps.

Figure 2.22: The elapsed time for the Matrix_P2 matrix when dropping is applied to the
preconditioner with a threshold of 10−3 is given in 2.22(a). The detailed histogram for all
computational steps is given in 2.22(b). All the available cores per node are used and the
statement is satisfied: nb nodes× nb cores = nb threads per process× nb subdomains.
These tests were executed on the Hopper platform. In the legend t

p
refers to number of

threads (t) per process (p).

67

Table 2.7 gathers the number of iterations for the Matrix_P3 problem when the number
of subdomains varies for different preconditioners. The calculation with 4 subdomains could
not be ran because it exceeds the memory capacity of a node on Hopper. Compared to
the Matrix_P2 problem, which has a similar number of unknowns and provides a similar
“quality” of the geophysics solution, it can be seen that the number of iterations is sig-
nificantly larger for Matrix_P3 (except for 128 subdomains for the dense preconditioner).
Direct consequences of this higher numerical difficulty can be observed in Figure 2.24 and
2.25, where the solve step dominate and the sparsification strategy never outperforms the
dense variant.

#subdomains

8 16 32 64 128 256

P
re
co
n
d
it
io
n
er

dense 120 170 317 693 2593 –

sparse 10−4 125 180 363 883 3478 –

(4.9%) (5.9%) (6.7%) (8.0%) (9.0%) –

sparse 10−3 274 396 774 – – –

(2.0%) (2.0%) (2.3%) – – –

Table 2.7: Number of iterations for different configurations (#subdomains and
preconditioner) for the Matrix_P3 matrix with the GMRES algorithm. The average

percentage of the kept entries on the local assembled Schur complement (˜̄Si) is given for
each sparse preconditioner. ”–” means that the algorithm fails to achieve convergence in

7000 iterations with a restart of 500.

1000

10000

96 192 384 768 1536 3072

M
em

ro
y

pe
ak

(M
B

)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Memory peak per node.

 1000

 10000

 100000

 1e+06

 4 8 16 32 64 128

s
iz

e

#domains

Interior

Local schur

Global schur

(b) Sizes of the interior, local and global Schur.

Figure 2.23: The maximum memory peak per node for the Matrix_P3 matrix is given
in 2.23(a). All the available cores per node are used and the statement is satisfied:
nb nodes× nb cores = nb threads per process× nb subdomains. The sizes for the

interior (Ii), the local Schur complement (Si) and the size of the global Schur complement
(S) are given in 2.23(b). In the legend t

p
refers to number of threads (t) per process (p).

68

2.5. Case study from geoscience applications

100

1000

192 384 768 1536 3072

tim
e

(s
)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Elapsed time for all computational steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 192 384 768 1536 3072

N
o

rm
a

liz
e

d
 e

la
p

s
e

d
 t

im
e

#cores

3
6

12

24

3

6

1224

6

12

24

12

24

Factorization of the interiors
Setup of the preconditioner

Solve step

(b) All computational steps.

Figure 2.24: The elapsed time for the Matrix_P3 matrix when no dropping is applied to
the preconditioner is given in 2.24(a). The detailed histogram for all computational steps
is given in 2.24(b). All the available cores per node are used and the statement is satisfied:

nb nodes× nb cores = nb threads per process× nb subdomains. These tests were
executed on the Hopper platform. In the legend t

p
refers to number of threads (t) per

process (p).

100

1000

192 384 768 1536 3072

tim
e

(s
)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Elapsed time for all computational steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 192 384 768 1536 3072

N
o

rm
a

liz
e

d
 e

la
p

s
e

d
 t

im
e

#cores

3

6
1224

3

6
12

24

6

12
24

12

24

24

Factorization of the interiors
Setup of the preconditioner

Solve step

(b) All computational steps.

Figure 2.25: The elapsed time for the Matrix_P3 matrix when dropping is applied to the
preconditioner with a threshold of 10−4 is given in 2.25(a). The detailed histogram for all
computational steps is given in 2.25(b). All the available cores per node are used and the
statement is satisfied: nb nodes× nb cores = nb threads per process× nb subdomains.

These tests were executed on the Hopper platform.

69

The Matrix_P4 matrix is much larger than the former ones, but it does not translate in
the difficulty to compute the solution; the number of iterations are lower that for the two
previous examples. Contrarily to the two other examples, the number of iterations does
not monotonically increase with the number of subdomains but even decreases after 256
subdomains. Similar behavior was reported in [78] for seismic simulations based on simple
modeling (acoustic equation instead of elastodynamic here). Some additional investigations
would deserve to be performed to better understand this behavior and it will be the topic
of future research.

#subdomains

8 16 32 64 128 256 512 1024

Dense preconditioner 55 77 145 350 974 – 1956 943

Table 2.8: Number of iterations for different configurations (#subdomains and
preconditioner) for the Matrix_P4 matrix with the GMRES algorithm. “–” means that the

algorithm fails to achieve convergence in 7000 iterations with a restart of 500.

10000

100000

192 384 768 1536 3072

M
em

ro
y

pe
ak

(M
B

)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Memory peak per node.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 8 16 32 64 128 256 512 1024

s
iz

e

#domains

Interior

Local schur

Total schur

(b) Sizes of the interior, local and global Schur.

Figure 2.26: The maximum memory peak per node for the Matrix_P4 matrix is given
in 2.26(a). All the available cores per node are used and the statement is satisfied:
nb nodes× nb cores = nb threads per process× nb subdomains. The sizes for the

interior (Ii), the local Schur complement (Si) and the size of the global Schur complement
(S) are given in 2.26(b). In the legend t

p
refers to number of threads (t) per process (p).

In this section we have reported on a few experiments performed on large sparse linear
systems solution arising from the discretization of the 3D elastodynamic equation on 3D
unstructured meshes and DG discretization. We have shown that the MPI+thread imple-
mentation of MaPHyS provides the user with the capability to trade-off between memory
consumption, numerical robustness and time to the solution for a given number of cores
dedicated to the simulation.

70

2.6. Performance sensitivity with respect to the partitioning quality

100

1000

10000

192 384 768 1536 3072

tim
e

(s
)

3 t/p

#cores

6 t/p
12 t/p
24 t/p

(a) Elapsed time for all computational steps.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

192 384 768 1536 3072

N
o

rm
a

liz
e

d
 e

la
p

s
e

d
 t

im
e

#cores

3
12

24

3 6
1224

1224

3

12
24

3

6

24

Factorization of the interiors
Setup of the preconditioner

Solve step

(b) All computational steps.

Figure 2.27: The elapsed time for the Matrix_P4 matrix when no dropping is applied to
the preconditioner is given in 2.27(a). The detailed histogram for all computational steps
is given in 2.27(b). All the available cores per node are used and the statement is satisfied:

nb nodes× nb cores = nb threads per process× nb subdomains. These tests were
executed on the Hopper platform. In the legend t

p
refers to number of threads (t) per

process (p).

2.6 Performance sensitivity with respect to the parti-

tioning quality

In the context of MaPHyS, the objectives in terms of load balancing for the decomposition
domain tool (see Section 2.3.1) would be to decompose the adjacency graph associated to
the initial sparse matrix into a set of disjoint subgraphs (subdomains) with both interior
sets and interface sets (local Schur complement) of similar cardinality, while minimizing
also the size of the global Schur complement for the complete system of equations.

To illustrate this point, let us denote ni and si the number of nodes in the interior and in
the interface for subdomain i respectively. If we consider the familly of graphs corresponding
to sparse matrices arising from 3D finite element discretizations and if we perform a nested
dissection ordering on the subdomain interior nodes, the overall computation cost associated
with subdomain i grows asymptotically as

O(n2
i + n

4/3
i si + n

2/3
i s2

i) + O(s3
i) + O(nb iterations× s2

i)

where these three asymptotic terms correspond to the operation counts of the factorization
of the interiors step [102], the setup of the preconditioner step (if we consider a dense
preconditioner) and the solve step, respectively. For 3D meshes with a good aspect ratio
[109], which covers a very large application class for high performance numerical simulation,

the size si grows as O(n
2/3
i). This clearly shows the impact of the size si of the local

interfaces, first to limit the computation cost associated to each subdomain i which grows
as O(n2

i) for the two first asymptotic terms of the above formula, the third one depending
more directly from the number of iterations in the solve step, and second to achieve a good
balancing of the computation if the subdomains are distributed among the processors of the

71

compute platform. If we use a sparse preconditioner, the computation cost of the second
asymptotic term will be smaller but the number of iterations in the third asymptotic term
can be more important to achieve a similar convergence rate.

Finding a good domain decomposition with a sufficient quality in terms of interior and
interface sizes is in fact a multi-objective optimization problem to be solved. In this section,
we investigate the performance of the MaPHyS solver when the governing parameters of
a classical graph partitioner is used. Contrary to the experiments presented so far where
METIS was used to perform the domain decomposition, we rely on the Scotch [52] library
in this section. This choise was made because Scotch’s user API allows for easily tuning
of the partitioning strategy. Scotch performs a recursive bipartioning heuristic which
consists in finding at each step a well balanced bipartitioning of the current sugraph while
minimizing the size of the separator. The objective is here to study the impact of relaxing
the constraint on the balancing of the subgraph sizes (by adapting the value of the imbalance
parameter of Scotch) on the ability to obtain smaller interfaces for the subdomains.

To illustrate this impact, we consider a set of test matrices (see Table 2.9 which gives
the experimental parameters of MaPHyS runs for each matrix) and we vary the maximum
imbalance parameter of Scotch that relaxes the constraint to have a “quasi-identical” size
for the interior of the subdomains. More precisely, this imbalance parameter will vary from
1% to 25%. The tests are performed on the PlaFRIM platform.

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Amande

#nodes 8 4 16 4 8 32

Preconditioner dense 10−3 10−2 10−3 dense 10−2

#subdomains 32 8 128 32 16 128

#threads per process 2 4 1 1 4 2

Table 2.9: Number of nodes, preconditioner type, number of subdomains, number of
threads per process for each test matrix (see Figure 2.13). For each matrix, the optimal

configuration (#threads per process vs #subdomains) is used.

First, we present in Figure 2.28 for each test matrix the impact of the imbalance factor
on the total elapsed time when considering all the computational steps. In red (respectively
in blue) are given the time values for the subdomain which has the biggest (respectively the
smallest) computational cost and from a parallel elapsed time point of view, the maximum
values are of course the most relevant. We can notice that the impact of the imbalance
parameter is clear as there is a value for which the maximum time is “minimized” and
this minimum is often, as expected, in the leftmost part of the curves (less than 10% of
imbalance for all the cases).

Then, we give for three test matrices (Tdr455k, Audi_kw and Nachos) the details of the
impact of the imbalance parameter on each computational step : computation time for the
factorization of the interiors step, computation time for the setup of the preconditioner step,
computation time and number of iterations for the solve step. Finally, we display the sizes
of the interiors (solid lines) and of interfaces (dotted lines). As above, except for the number
of iterations which is in green, the maximum values are in red and the minimum values are

72

2.6. Performance sensitivity with respect to the partitioning quality

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(a) Matrix211.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(b) Audi_kw.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(c) Nachos.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(d) Haltere.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(e) Tdr455k.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(f) Amande.

Figure 2.28: Impact of the imbalance factor when using the Scotch partitioner on the
total elapsed time for all computational steps. The experiments were performed on the

PlaFRIM platform. The configuration for each matrix is given in Table 2.9.

73

in blue when considering the whole set of subdomains.

Let us consider the Tdr455k test case (see Figure 2.29). The first observation on the total
elapsed time is that, as the imbalance parameter is increasing, it enlarges the difference
between the largest and smallest subdomain sizes. Furthermore, as expected, increasing
this parameter does not lead to a significant decrease of the maximum interface size that
is nearly divided by a factor close to two (see Figure 2.29(d)).

From a parallel elapsed time point of view, the maximum values are the most interesting
and we will only comment on them. Because the factorization time associated with the
interior does not depend only on the size of the subdomain, but also on the size of the
interface (see the first term of the asymptotic computational cost formula), the only increase
of the size of the interior when the parameter is enlarged does not translate directly in a
increase of the factorization time (see Figure 2.29(a)).

On the contrary for the setup of the dense preconditioner, the factorization cost is cubic
with the interface size (see the second term of the asymptotic computational cost formula).
Consequently, the decrease of the interface size translates into a significant decrease of this
factorization time (see Figure 2.29(b)).

Of course, changing the interfaces changes the numerical convergence behavior of the
iterative part as shown in the green line in Figure 2.29(c), where the number of iterations
varies between 16 and 25. However, in the same time the size of the local interface de-
creases. The solution time, that takes into account for local matrix-vector products and
applications of the preconditioner, decreases although the number of iterations increases.
For the same reasons, a similar trend can be observed for the total elasped time displayed
in Figure 2.28(e) where around 20 % of the elapsed time can be saved. For this matrix, the
optimal performance are performed with 5% of imbalance.

Similar conclusions can be claimed for Audi_kw and Nachos test matrices. Those exper-
iments show that each ingredient of the hybrid solver plays a role on the computational
performance of the numerical scheme and that a good trade-off between the subdomain
interior and interface sizes must be found to ensure good parallel performance.

74

2.6. Performance sensitivity with respect to the partitioning quality

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(a) Factorization of the interiors.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(b) Setup of the preconditioner.

(c) Solve step.

(d) Interior and interface sizes.

Figure 2.29: Impact of the imbalance factor on the factorization of the interiors 2.29(a),
the setup of the preconditioner 2.29(b), the solve step 2.29(c) and on the interior and
interface sizes 2.29(d) for the Tdr455k matrix. The experiments were performed on the

PlaFRIM platform. The configuration for each matrix is given in Table 2.9.

75

 0

 20

 40

 60

 80

 100

 120

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(a) Factorization of the interiors.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(b) Setup of the preconditioner.

(c) Solve step.

(d) Interior and interface sizes.

Figure 2.30: Impact of the imbalance factor on the factorization of the interiors 2.30(a),
the setup of the preconditioner 2.30(b), the solve step 2.30(c) and on the interior and
interface sizes 2.30(d) for the Audi_kw matrix. The experiments were performed on the

PlaFRIM platform. The configuration for each matrix is given in Table 2.9.

76

2.6. Performance sensitivity with respect to the partitioning quality

 0

 5

 10

 15

 20

 25

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(a) Factorization of the interiors.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.05 0.1 0.15 0.2 0.25

ti
m

e
 (

s
)

imbalance

Max
Min

(b) Setup of the preconditioner.

(c) Solve step.

(d) Interior and interface sizes.

Figure 2.31: Impact of the imbalance factor on the factorization of the interiors 2.31(a),
the setup of the preconditioner 2.31(b), the solve step 2.31(c) and on the interior and
interface sizes 2.31(d) for the Nachos matrix. The experiments were performed on the

PlaFRIM platform. The configuration for each matrix is given in Table 2.9.

77

2.7 Comparison of MaPHyS with the PDSLin hybrid-

solver

In this section we present some performance comparison between MaPHyS and
PDSLin [149] a hybrid solver developed at LBNL that is closely related to Su-
perLU DIST [123]. In order to analyse and comment on these results we need to further
detail the governing ideas and main steps implemented in PDSLin. PDSLin roots are in
sparse direct techniques while MaPHyS come from classical domain decomposition ideas
adapted to an algebraic formalism. The two approaches solve iteratively a Schur com-
plement system that arises from the following block reordering of the linear system to be
solved (

AII AIΓ

AΓI AΓΓ

)(
xI

xΓ

)
=

(
bI

bΓ

)
,

where xΓ contains all unknowns associated with subdomain interfaces and xI contains the
remaining unknowns associated with subdomain interiors. The unknowns xI are computed
using a sparse direct solver while xΓ is calculated using an iterative scheme. The matrix
AII is block diagonal where each block AI`I` corresponds to a subdomain. The coefficient
matrix can then be written

AI1I1 AI1Γ

AI2I2 AI1Γ

. . .
...

AIN IN AINΓ

AΓI1 AΓI2 . . . AΓIN AΓΓ

 .

Given a LU decomposition of AI`I` = L`U`, the Schur complement matrix S can be com-
puted as follows

S = AΓΓ −
N∑
`=1

AΓI`A−1
I`I`AI`Γ

= AΓΓ −
N∑
`=1

(U−T` A
T
ΓI`)

T (L−1
` AI`Γ)

= AΓΓ −
N∑
`=1

W`G`,

where W` (G`) are the off-diagonal blocks associated with the interface rows (resp. interface
columns) of the LU factorization of A. A large amount of fill may occur in W` and G`. To
reduce the memory and computational costs, their approximations W̃` and G̃` are computed
by discarding nonzeros with magnitudes less than a prescribed drop tolerance, and an
approximate update matrix T̃` = G̃`W̃` is computed to form Ŝ = AΓΓ −

∑N
`=1 T̃`. To

further reduce the costs, small nonzeros are discarded from Ŝ to form its approximation S̃.
S̃ is eventually factorized to form the implicit preconditioner of PDSLin. A summary of
the PDSLin implementation is as follows

78

2.7. Comparison of MaPHyS with the PDSLin hybrid-solver

1. Concurrent parallel SuperLU DIST instances compute AI`I` = L`U`, each Su-
perLU DIST instance is run by ng` MPI processes.

2. Sparsification of W` and G`, to form W̃` and G̃` possibly using the thresholds τG and
τW .

3. Parallel computation of Ŝ = AΓΓ−
∑N

`=1 T̃` and its sparsification based on a threshold
τŜ to compute S̃.

4. Parallel factorization of S̃ using an additional instance of SuperLU DIST to form
the implicit preconditioner of PDSLin.

5. Parallel iterative solution using a Krylov subspace method, GMRES for our experi-
ments, using ngs MPI processes.

The sophisticated 2-level MPI implementation of PDSLin is described in details in [149],
we refer to this article for a more exhaustive presentation.

All the parallel experiments were conducted on the Hopper platform using the same
partitionning tool. Both solvers used the same stopping criterion given in Equation 2.14,
εb = 10−10. We compare the two solvers varying the number of cores for the matrices
Matrix211 and Tdr455k. For a given number of cores, we select the set of control pa-
rameters for the two solvers that minimize the parallel time to solution. We highlight the
fact that MaPHyS uses all the cores for each of its computational steps, while PDSLin
only exploits all of them in its first algorithmic step that is the factorizations of the local
subdmains matrices and calculation of S̃. In PDSLin only a subset of all the cores are
used for the iterative solution of the Schur complement system. While the optimal number
of subdomains might differ from one solver to the other, we made sure (for the sake of
comparison) that the unknowns associated with the smallest Schur complement are part of
the unknowns of the largest Schur complement (i.e., the interface vertices of the smallest
partition are a subset of the vertices of the partition with the largest number of subdo-
mains). These “optimal” sets of control parameters are listed in Table 2.10 for the two
solvers. For MaPHyS we give the number of threads per subdomain and we only used
the dense variant of the local Schur complement for the preconditioner. For PDSLin, we
display the various thresholds (τG, τW , τŜ) as well as the number of MPI-processes in the
communicators generated for the factorization of the local subdomains matrices, ng` ; and
for the iterative solution, ngS . As it can be seen, borrowing to the root principles of the
two solvers, PDSLin performs the best with fewer subdomains than MaPHyS. For larger
number of subdomains, the parallel calculation of the implicit preconditioner in PDSLin
based on a global approximation of the Schur complement becomes expensive although its
numerical scalability is still very effective.

Varying the number of cores from 192 to 1, 536 for the solution of the Matrix211 problem,
we display bar charts in Figure 2.32 the parallel elapsed time for MaPHyS (left bar) and
for PDSLin (right bar). Each bar is decomposed in three parts, the blue one represents
the time for the factorization of the interiors AI`I` , the green one corresponds to the time
for the setup of the preconditioner preconditionner (assembly and factorization) and the red
part is the time spent in the iterative solution of the Schur complement system plus the

79

Matrix211 Tdr455k

#cores 96 192 384 768 1536 192 384 768 1536

#subdomains
MaPHyS 16 16 16 32 64 64 128 256 256

PDSLin 8 8 8 8 16 32 16 16 16

cores

MaPHyS threads 6 12 24 24 24 3 3 3 6

PDSLin
ng` 12 24 48 96 96 6 24 48 96

ngS 192 192 192 192 192 96 48 48 48

preconditioner

MaPHyS dense dense dense dense dense dense dense dense dense

PDSLin

τG 10−7 10−7 10−7 10−7 10−7 10−5 10−5 10−5 10−5

τW dense dense dense dense dense 10−5 10−5 10−5 10−5

τŜ 10−5 10−5 10−5 10−5 10−5 10−4 10−4 10−4 10−4

#iterations
MaPHyS 9 9 9 21 107 160 118 118 118

PDSLin 21 21 21 21 35 60 50 50 50

Table 2.10: For each matrix the values of the governing control parameters for MaPHyS
and PDSLin.

back-solve of the interiors (solve step). For the two solvers, increasing the number of cores
always translates in a smaller time to solution, although the overall speed-ups are not very
good. One can see that MaPHyS does perform slightly better than PDSLin. Indeed,
although its time spent in the iterative solution phase takes always longer than PDSLin,
MaPHyS spends less time to set up the preconditioner and that time is dominant. Because
the best performance of MaPHyS are obtained using more sudomains than PDSLin for
a given number of cores, the time spent in the factorization of AI`I` is always lower since
the subdomains are smaller. Note that in the case of a sequence of multiple righ-hand sides
(not studied here), the solution step need to be processed multiple times and would thus
become dominant; in that case PDSLin would eventually outperform MaPHyS and the
most efficient configuration would be PDSLin using 1, 536 cores.

Similar results are depicted in Figure 2.33 for the Tdr455k matrix. While increasing
the number of cores translates in smaller time to the solution for PDSLin, the solution
time with MaPHyS increases when more than the optimal number of cores, 384, are used.
The increase in the solution time is mainly due to the lack of robustness of MaPHyS
preconditioner when the number of subdomains is increased; this leads to a significant
increase of the iterative part of the solver. If a sequence of linear systems had to be solved,
MaPHyS would outperform PDSLin up to 384 cores and PDSLin would become the
fastest when using more cores. The most efficient configuration would be MaPHyS on 384
cores for both a single and a sequence of right-hand sides.

80

2.7. Comparison of MaPHyS with the PDSLin hybrid-solver

M

M

M
M

P

P
P

P

Figure 2.32: Histogram representing the elapsed time for the Matrix211 matrix for
MaPHyS and PDSLin. For each couple of bars, the elapsed time for MaPHyS (M) and
PDSLin (P) are given in the first and second bar respectively. For each execution, the

configuration is given in Table 2.10.

81

M
M M

M

M

P

P

P
P

P

Figure 2.33: Histogram representing the elapsed time for the Tdr455k matrix for
MaPHyS and PDSLin. For each couple of bars, the elapsed time for MaPHyS (M) and
PDSLin (P) are given in the first and second bar respectively. For each execution, the

configuration is given in Table 2.10.

82

2.8. Conclusion

2.8 Conclusion

In this chapter we have described a 2-level parallel implementation of the hybrid solver
MaPHyS and shown how multithreaded libraries, namely Mkl and PaStiX, have been
composed to design an efficient parallel implementation. The resulting MPI+thread par-
allel implementation does match the hierarchical structure of modern multicore parallel
platforms. Not only it enables us to better exploit the computer architectures features but
it also introduces an additional numerical flexibility to balance the numerical and parallel
performances of the MaPHyS solver. Thanks to the new implementation we demonstrated
that large computing platforms, up to a few tens of thousand cores, can be exploited to
solve 3D linear systems that were not tractable before, neither with the baseline MaPHyS
nor a direct sparse solver. For the numerical experiments we considered matrices classically
used to benchmark parallel linear solvers as well as matrices arising from 3D geoscience sim-
ulations that are of interest for our industrial partner Total. Finally, jointly with colleagues
from Lawrence Berkeley National Lab. and the ICL team of the University of Tennessee at
Knoxville we conducted a preliminary comparison study with the state of the art parallel
hybrid solver, PDSLin that also relies on a 2-level implementation (MPI+MPI). The Ma-
PHyS numerical approach favors the parallelism, through a locally applied preconditioned,
while PDSLin favors the numerical robustness, via a global preconditioning technique.
These features of the two solvers have been illustrated by our experiments that provide
clues on what are the situations where each solver performs better.

In this chapter we have considered classical programming tools, MPI and threads, to
design our 2-level parallel hybrid solver. The next chapter is devoted to a more disruptive
programming approach based on a task graph description of the algorithm that can be effi-
ciently mapped and scheduled on multicore and manycore platforms by a modern runtime
systems. Although the performance of the complete solver is not fully assessed we demon-
strate the feasibility of the approach on a complex code and highlight the performance of
one of its key component that is the Krylov subspace solver.

83

84

Chapter 3
Towards task-based hybrid sparse linear
solvers

3.1 Introduction

In the last decade, the architectural complexity of High Performance Computing (HPC)
platforms has strongly increased. In the previous chapter we have proposed a modular,
yet relatively low-level, design for exploiting hierarchical supercomputers composed of mul-
tiple modern multicore nodes. We have shown that the proposed 2-level MPI+thread
approach could successfully achieve an efficient trade-off between the numerical behavior of
the method and the usage of the computational resources up to tens of thousands of cores.
In spite of high performance it could achieve, such a low-level design suffers from two major
bottlenecks for fully exploiting today’s platforms.

The first limitation is that the design is tightly coupled with the target architecture,
i.e., multicore processor case. One solution for relieving this bottleneck would consist in
relying on the modular software architecture and select appropriate libraries depending on
the target architecture leading to a collection of MPI+X, MPI+Y, . . . solution to support X,
Y, . . . architectures respectively. Alternatively, the architecture may be abstracted relying
on task-based programming and delegating the orchestration of the execution of the tasks
within computational nodes to a runtime system as illustrated in Figure 3.1. With such
MPI+task approach, it is not only elegant to support X, Y, . . . architectures in a consistent
fashion, but also possible to exploit heterogeneous { X + Y} architectures. We discuss such
an alternative in Section 3.3 and we propose a preliminary and partial MPI+task sparse
hybrid solver to illustrate our discussion. To do so, we considered the MPI+thread version of
MaPHyS and exploited the modular software architecture to substitute the multithreaded
Mkl and PaStiX libraries with the task-based Chameleon and prototype task-based
version of PaStiX, respectively. Preliminary experiments on a cluster of multicore and
on a cluster of heterogeneous nodes support the discussion, showing the feasibility of this
approach.

85

Figure 3.1: MPI + task paradigm applied on two nodes (composed of eight cores and four
GPUs each) with four subdomains.

86

3.1. Introduction

Figure 3.2: Full task-based paradigm applied on two nodes (composed of eight cores and
four GPUs each) with four subdomains. Different colors represent different subdomains’s

DAGs.

87

The second limitation for efficiently exploiting the large spectrum of hardware archi-
tectures on top of which are built today’s supercomputers is the static mapping imposed
by the MPI design of the solver. We showed in the previous chapter that the proposed
MPI+thread design could provide a significant flexibility but was still limited to map one
subdomain to one or multiple cores of a node. The MPI+task approach proposed in Sec-
tion 3.3 provides further flexibility but remains limited to map one subdomain to one or
multiple resources (a set of CPU cores and GPUs) within a node. One possibility to relieve
the burden of such a static mapping would consist in implementing an MPI-based dynamic
mapping strategy. However, very few fully-featured libraries implement such a scheme in
practice. One of the very few exceptions in linear algebra is the Mumps sparse direct
solver [15]. Furthermore, the scheduling engines that those libraries implement tend to be
designed as task queue managers. An alternative approach consists in fully abstracting the
MPI scheme of the solver in terms of a DAG of tasks where vertices represent fine grain
tasks and edges represent dependencies between them. Once the solver has been designed at
such a high-level of abstraction, advanced fine-grain mapping strategies can be implemented
as the burden of moving data in the system and ensuring their consistency is delegated to
a runtime system. However, such a design prevents from relying on SPMD paradigms pro-
posed in the previous chapter (MPI, MPI+thread) or in Section 3.3 (MPI+task). As a
consequence, it requires to fully rewrite the solver in terms of a DAG of tasks as illustrated
in Figure 3.2. While there has been lots of progress in that direction for dense (such as
the DPLASMA [33] and Chameleon [6] task-based libraries, derived from Plasma [3]
and Magma [2]) and sparse direct methods (such as the task-based version of PaStiX [95]
and qrm StarPU [9] proposed during the same period as the work done during this the-
sis), limited work we are aware of has been done to study task-based Krylov methods, the
third numerical pillar on top of which hybrid solvers rely. For that reason, we propose
and study a task-based CG as a preliminary work towards a fully task-based MaPHyS
solver. In this early study presented in Section 3.4, we show that this approach allows
one to design advanced 1D and 2D mapping strategies together with fine-grain software
pipelining (Section 3.4.5) leading to very competitive performance on a large range (multi-
GPUs, multicore, heterogeneous platforms) of hardware architectures (Section 3.4.6) and
ultimately combine that with advanced numerical algorithms such as the so-called pipelined
CG algorithm from [69] (Section 3.4.7). One of the originality is also that in the case of
CG, because of the importance of prefetching, static mapping strategies are more robust
than dynamic scheduling strategies [6] usually used by runtime systems in dense and sparse
direct methods.

This chapter is organized as follows. Section 3.2 presents further background on task-
based runtime systems, related programming models, task-based linear algebra solvers and
more broadly GPU-accelerated solvers. Section 3.3 proposes a preliminary and partial
prototype MPI+task extension of MaPHyS. Section 3.4 discusses the potential design
of a full task-based sparse hybrid solver motivating the implementation of one the key
components: a task-based Krylov solver. For this purpose, we propose and study a task-
based CG algorithm.

88

3.2. Background

3.2 Background

To cope with the complexity of modern architectures, programming paradigms are being
revisited. Among others, one major trend consists in writing the algorithms in terms of task
graphs and delegating to a runtime system both the management of the data consistency
and the orchestration of the actual execution. This paradigm has been intensively studied
in the context of dense linear algebra [4, 5, 7, 34,41,94,120,121] and is now a common util-
ity for related state-of-the-art libraries such as Plasma [3], Magma [2], DPLASMA [33],
Chameleon [6] and FLAME [142]. Dense linear algebra algorithms were indeed excellent
candidates for pioneering in this direction. First, their computational pattern allows one
to design very wide task graphs so that many computational units can execute tasks con-
currently. Second, the building block operations they rely on, essentially level-three Basic
Linear Algebra Subroutines (BLAS), are compute intensive, which makes it possible to split
the work in relatively fine grain tasks while fully benefiting from GPU acceleration. As a
result, these algorithms are particularly easy to schedule in the sense that state-of-the-art
greedy scheduling algorithms may lead to a performance close to the optimum, including
on platforms accelerated with multiple GPUs [6].

This trend has then been followed for designing sparse direct methods. The extra chal-
lenge in designing task-based sparse direct method is due to indirection and variable granu-
larities of the tasks. The PaStiX team has proposed such an extension of the solver capable
of running on the StarPU and PaRSEC runtime systems on cluster of heterogeneous nodes
in the context of X. Lacoste thesis [95]. In the meanwhile, the qr mumps library devel-
oped by A. Buttari [40] aims at solving sparse linear least square problems and has been
ported on top of those runtime systems in the context of F. Lopez thesis [103]. The sparse
hybrid methods considered in this thesis rely on dense and sparse direct methods but also
on Krylov solvers. However, Krylov methods are much less regular and compute intensive
than direct methods. For these reasons, they are much more challenging to design with a
task-based approach and limited work, we are aware of, has been done to study task-based
Krylov methods. We propose to address the design of such a missing component in the
context of this thesis (Section 3.4). Finally, note that task-based solvers out of the scope of
linear algebra have also recently been successfully designed; we do not propose an exhaus-
tive list here, but we may quote a few applications such as Fast Multiple Methods [8,104],
Finite Element Methods [66] and Galerkin Discontinuous Methods [32].

In the rest of this section, we further introduce task-based runtime systems and the
programming models they offer in Section 3.2.1. We then propose a brief overview of recent
efforts that have been devoted in sparse linear algebra for handling modern architectures in
Section 3.2.2. Finally, we present in more details the StarPU runtime system that is used
to illustrate our discussion all along this chapter in Section 3.2.3.

3.2.1 Task-based runtime systems and related programming
models

Computing platform hardware has dramatically evolved ever since the computer science
began, always striving to provide new convenient accelerating features. Each new accel-

89

erating hardware feature inevitably leaves programmers to decide whether to make their
application dependent on that feature (and break compatibility) or not (and miss the po-
tential benefit), or even to handle both cases (at the cost of extra management code in the
application). This common problem is known as the performance portability issue.

The first purpose of runtime systems is thus to provide abstraction. Runtime systems
offer a uniform programming interface for a specific subset of hardware (e.g., OpenGL or
DirectX are well-established examples of runtime systems dedicated to hardware-accelerated
graphics) or low-level software entities (e.g., POSIX-thread implementations). They are
designed as thin user-level software layers that complement the basic, general purpose
functions provided by the operating system calls. Applications then target these uniform
programming interfaces in a portable manner. Low-level, hardware dependent details are
hidden inside runtime systems. The adaptation of runtime systems is commonly handled
through drivers. The abstraction provided by runtime systems thus enables portability.
Abstraction alone is however not enough to provide portability of performance, as it does
nothing to leverage low-level-specific features to get increased performance.

Consequently, the second role of runtime systems is to optimize abstract application
requests by dynamically mapping them onto low-level requests and resources as efficiently as
possible. This mapping process makes use of scheduling algorithms and heuristics to decide
the best actions to take for a given metric and the application state at a given point in its
execution time. This allows applications to readily benefit from available underlying low-
level capabilities to their full extent without breaking their portability. Thus, optimization
together with abstraction allows runtime systems to offer portability of performance.

In the specific case of parallel work mapping, other approaches have occasionally been
adopted instead of using runtimes. Many scientific applications and libraries, including
linear system solvers, integrate their own, customized dynamic scheduling algorithms or
even resort to static scheduling techniques, either for historical reasons, or to avoid the
potential overhead of an extra runtime layer.

However, as multicore processors densify, as cache and memory hierarchies deepen, the
resulting increase in complexity now makes the use of work-mapping runtime systems vir-
tually unavoidable. Such work-mapping runtime systems take elementary task descriptions
and dependencies as input and are responsible for dynamically scheduling the tasks on
available computing units so as to minimize a given cost function (usually the execution
time) under some pre-defined set of constraints.

Work-mapping runtime systems themselves are now facing new challenges with the recent
move of the high performance community towards the use of specialized accelerating cores
together with traditional general-purpose cores. They not only have to decide about the
interest (or not) to use some specific hardware features, but also have to decide whether
some entire application tasks should rather be performed on an accelerated core or is better
left on a standard core.

In the case where specialized cores are located on an expansion card having its own
memory (e.g., most existing GPUs), the input data of a task have to be copied from central
memory to the card memory before the task can be run. The output results must also be
copied back to the central memory once the task computation is complete. The cost of

90

3.2. Background

Figure 3.3: Pseudo-code (left) and associated DAG (right). Arguments corresponding to
data that are modified by the function are underlined. The id1 → id3 dependency is

declared explicitly while the id1 → id2 dependency is implicitly inferred with respect to
the data hazard on x.

copying data between central memory and accelerator memory is not negligible. This cost,
as well as data dependencies between tasks, must therefore also be taken into account by the
scheduling algorithms when deciding whether to offload a given task, to avoid unnecessary
data transfers. Transfers should also be done in advance and asynchronously so as to overlap
communication with computation.

3.2.1.1 Programming models for task-based applications

Modern task-based runtime systems aim at abstracting the low-level details of the hardware
architecture and enhance the portability of the performance of the code designed on top of
them. As it is the case in this thesis, in most cases, this abstraction relies on a DAG of
tasks. In this DAG, vertices represent the tasks to be executed while edges represent the
dependencies between them.

While tasks are almost systematically explicitly encoded, runtime systems offer multiple
ways to encode the dependencies of the DAG. Each runtime system usually comes with
its own API which includes one or multiple ways to encode the dependencies and their
exhaustive listing would be out of the scope of this thesis. However, we may consider
that there are two main modes for encoding dependencies. The most natural method
consists in declaring explicit dependencies between tasks. In spite of the simplicity of the
concept, this approach may have a limited productivity in practice as some algorithms
may have dependencies that are difficult to express. Alternatively, dependencies may be
implicitly computed by the runtime system thanks to the sequential consistency. In this
latter approach, tasks are provided in sequence and the data they operate on are also
declared.

We illustrate these two dominant modes of expression of dependencies with a simple
example relying on a minimum number of pseudo-instructions. Assume we want to encode
the DAG shown in Figure 3.3 (right) relying on an explicit dependency between tasks id1

and id3 and an implicit dependency between tasks id1 and id2. A task can be defined as
an instance of a function working on a specific set of data, different tasks possibly being
different instances of a same function. For instance, in our example we assume that tasks
id1 and id3 are instances of function fun1 while task id2 is an instance of function fun2.
While tasks are instantiated with the submit_task pseudo-instruction (see Figure 3.3,
left), the explicit dependency between tasks id1 and id3 can simply be encoded with a

91

declare_dependency pseudo-instruction (see Figure 3.3, left). On the other hand, implicit
dependencies aim letting the runtime system automatically infer dependencies thanks to
so-called superscalar analysis [11] which aims at ensuring that the parallelization does not
violate dependencies, following the sequential consistency. While CPUs implement such a
superscalar analysis on chip at the instruction level [11], runtime systems implement it in
a software layer on tasks. Superscalar analysis is performed on tasks and the associated
input/output data they operate on. Assume that task id1 operates on data x and y in
read/write mode and read mode (calling fun1(x, y) if the arguments corresponding to data
which are modified by a function are underlined) respectively, while task id2 operates on
data x in read mode (fun2(x)). Because of possible data hazards occurring on x between
tasks id1 and id2, the superscalar analysis detects that a dependency is required to respect
the sequential consistency.

Another important paradigm for handling dependencies consists of recursive submission.
Indeed, it may be convenient for the programmer to let tasks trigger other tasks. Some-
times, one may furthermore need the task to be fully completed and cleaned up before
triggering other tasks. Runtime systems often support this option through a so-called call-
back mechanism consisting of a post-processing portion of code executed once the task is
completed and cleaned up. Depending on the context, the programmer affinity and portion
of the algorithm to encode, different paradigms may be considered as natural and appropri-
ate. For instance, the first implementation of qrm_starpu relied on a combination of these
four types of dependencies (explicit, implicit, recursive, call-back) [9].

Alternatively, one may rely on a well-defined and more simple programming model in
order to design a relatively more simple code, easier to maintain and benefit from properties
provided by the model. The Sequential Task Flow (STF) programming model consists
on fully relying on sequential consistency using only implicit dependencies. The STF
model, therefore, consists of submitting a sequence of tasks through a non blocking function
call that delegates the execution of the task to the runtime system. Upon submission,
the runtime system adds the task to the current DAG along with its dependencies which
are automatically computed through data dependency analysis [11]. The actual execution
of the task is then postponed to the moment when its dependencies are satisfied. As
mentioned above, this paradigm is also sometimes referred to as superscalar since it mimics
the functioning of superscalar processors where instructions are issued sequentially from a
single stream but can actually be executed in a different order and, possibly, in parallel
depending on their mutual dependencies. Section 3.3 proposes a preliminary and partial
prototype MPI+task extension of MaPHyS. Because the proposed approach relies on the
modular design of MaPHyS, the programming paradigms used to implement the building
block libraries is transparent. However, we show the limits of such a black-box approach and
discuss a potential extension to further exploit the fact that both the dense (Chameleon)
and sparse direct (PaStiX) solvers follow an STF design to further optimize the overall
MPI+STF approach. Section 3.4 discusses the potential design of a full STF task-based
sparse hybrid solver motivating the implementation of one the key components: an STF
CG solver. We show that the simplicity of the model allows for designing more advanced
numerical algorithms such as pipelined CG [69] with a concise yet effective expression.

One challenge in scaling to large scale manycore systems is how to represent extremely
large DAGs of tasks in a compact fashion. [55] presented a model, namely the Parametrized

92

3.2. Background

Task Graph (PTG), which addresses this issue. In this model, tasks are not enumerated
but parametrized and dependencies between tasks are explicit. For instance, in the DAG
represented in Figure 3.3 (right), tasks id1 and id3 are two instances of the same type
of task implementing fun1. This property can be used to encode the DAG in a compact
way inducing a lower memory footprint for its representation as well as ensuring limited
complexity for parsing it while the problem size grows. For this reason, the memory con-
sumption overhead in the runtime system for representing the DAG can be much lower for
the PTG model than for the STF model. In addition with a STF model the DAG has
to be completely unrolled whereas with a PTG model the DAG is only partially unfolded
during the execution following the task progression. From this point of view, the advantage
of the PTG approach over the STF one can be crucial in a distributed memory context
because the DAG is pruned on every nodes and only a portion of the DAG is represented
on each node. This could considerably reduce the runtime overhead for the management
of the DAG. On the other hand, knowing the entire DAG can be useful to compute the
schedule of the DAG or give information to the dynamic scheduler by prepossessing the
DAG. However, this latter approach is not considered in this thesis and will be addressed
in future work.

3.2.1.2 Task-based runtime systems for modern architectures

Many initiatives have emerged in the past years to develop efficient runtime systems for
modern heterogeneous platforms. Most of these runtime systems use a task-based paradigm
to express concurrency and dependencies by employing a task dependency graph to rep-
resent the application to be executed. The main differences between all the approaches
are related, to the programming model, to whether or not they manage data movements
between computational resources and to which extent they focus on task scheduling.

Some runtime systems have been specifically designed for the development of parallel lin-
ear algebra applications. One of these is the TBLAS runtime system [136], which provides
a simple interface to create dense linear algebra applications and automates data transfers.
TBLAS assumes that programmers should statically map data on the different processing
units but it supports heterogeneous data block sizes (i.e., different granularity of compu-
tations). The QUARK runtime system [93] was specifically designed for scheduling linear
algebra kernels on multi-core architectures. It is characterized by a scheduling algorithm
based on work-stealing and by its higher scalability in comparison with other dedicated run-
time systems. Finally, the SuperMatrix runtime system [47] follows nearly the same idea
as it represents the matrix hierarchically: the matrix is viewed as blocks that serve as units
of data where operations over those blocks are treated as units of computation. The imple-
mentation transparently queues the required operations, internally tracking dependencies,
and then executes the operations utilizing out-of-order execution techniques.

Most of the available runtime systems, however, do not target any specific type of appli-
cations and provide a general API. Qilin [106], for example, provides an interface to submit
kernels that operate on arrays which are automatically dispatched between the different
processing units of an heterogeneous machine. Moreover, Qilin dynamically compiles paral-
lel codes for both CPUs (by relying on the Intel TBB [124] technology) and for GPUs, using
CUDA. Another relevant framework is Charm++ [89] which is a parallel variant of the C++

93

language that provides sophisticated load balancing and a large number of communication
optimization mechanisms. Charm++ has been extended to provide support for accelerators
such as the Cell processors as well as GPUs [92]. Many runtime systems propose a task-
based programming paradigm. Runtime systems like KAAPI/XKAAPI [65] or APC+ [79],
Legion [39], Realm [139] offer support for hybrid platforms mixing CPUs and GPUs. Their
data management is based on a DSM-like mechanism: each data block is associated with
a bitmap that permits to determine whether there is already a copy locally available to
a specific processing unit or not. Moreover, task scheduling within KAAPI is based on
work-stealing mechanisms or on graph partitioning. The StarSs project is actually an um-
brella term that describes both the StarSs language extensions and a collection of runtime
systems targeting different types of platforms [21,22]. StarSs provides an annotation-based
language which extends C or Fortran applications to offload pieces of computation on the
architecture targeted by the underlying runtime system. The PaRSEC [35, 36] (formerly
DAGuE) runtime system dynamically schedules tasks within a node using a rather simple
strategy based on a locality-aware work-stealing strategy. It was first introduced for linear
algebra but was later extended to more generic applications. It takes advantage of the spe-
cific shape of the task graphs (in the sense that there are few types of tasks) to represent
the task dependency graph in an algebraic fashion. More details on this tool are given in
Section 3.2.3. The StarPU runtime system provides a generic interface for developing paral-
lel, task-based applications. It supports multicore architectures equipped with accelerator
as well as distributed memory systems. This runtime is capable of transparently handling
data and provides a rich panel of features. The details of this runtime system are given in
Section 3.2.3. All the above mentioned efforts have contributed to proving the ease of use,
the effectiveness and portability of general purpose runtime systems to the point where the
OpenMP board has decided to include similar features in the latest OpenMP standard 4.0:
the task construct was extended with the depend clause which enables the OpenMP run-
time to automatically detect dependencies among tasks and consequently schedule them.
The same OpenMP standard also provides constructs for using accelerator devices.

Whereas task-based runtime systems were mainly research tools in the past years, their
recent progress makes them now solid candidates for designing advanced scientific software
as they provide programming paradigms that allow the programmer to express concurrency
in a simple yet effective way and relieve him from the burden of dealing with low-level
architectural details.

The work presented in this thesis relies on the StarPU runtime system. This is mostly
due to its large set of features which include full control over the scheduling policy, support
for accelerators and transparent handling of data. For this reason, this runtime is described
in more details in Section 3.2.3.

3.2.2 Sparse linear algebra on modern architectures

Adapting sparse linear algebra solvers to modern heterogeneous systems is an active area
of research. From the sparse direct solvers point of view, a lot of efforts have been made to
port or adapt existing solvers to exploit GPUs. Among these efforts, we can cite the work
proposed in [67,105,151]. These approaches mainly target the multifrontal method for LU

94

3.2. Background

or Cholesky factorizations due to its very good data locality properties. The main idea is to
treat some parts of the computations (mostly, trailing submatrix updates) entirely on the
GPU. Therefore the main originality of these efforts is in the methods and algorithms used
to decide whether or not a task can be processed by a GPU. In most cases, this was achieved
through a threshold based criterion on the size of the computational tasks. More complex
approaches can be found in [125, 132, 153]. These works improve over previous efforts
mostly by proposing techniques for aggregating fine grain operations to form large grain
tasks which maximize the GPU occupancy (either by grouping basic BLAS operations or by
treating a complete subtree as a single task) and pipelining to overlap communications with
computations. In a more recent work, [131] extend the SuperLU Dist package to support
Xeon Phi architectures using analogous techniques as in their previous effort [132].

Concerning iterative solvers, the adaptation of existing methods to the new context of
GPU enhanced platform was an active area of research in the past decade. An initial step
was to focus the SpMV kernel which is the core kernel of sparse iterative methods. In [147]
(resp. [145]), an overview is given on the performance of the CSR-based SpMV (resp. the
CG algorithm) for a number of modern CPU architectures. Then, with the democratization
of GPUs, several studies have focused on the improvement of the performance of the SpMV
kernel on GPUs. These efforts have mainly targeted the sparse matrix representation format
to improve the memory access pattern/footprint of the kernel. From the format point of
view of the matrix representation, several layouts were studied such as the compressed sparse
row (CSR) format, the coordinate format (COO) format, the diagonal (DIA) format, the
ELLPACK (ELL) format and an hybrid (ELL/COO) format. An exhaustive description
of different implementations of the SpMV operation for GPU architectures can be found
in [27]. More recently, a new row-grouped CSR format was considered [113] as well as
a sliced ELLPACK format [111]. In [27], Bell and Garland propose several methods for
efficient sparse matrix-vector multiplications that take into account the structure of the
input matrices. They implemented efficient multiplication routines for various sparse matrix
layouts including a new hybrid layout (this layout stores part of the matrix using ELLPACK
and the remaining elements using the COO format in order to reduce the memory footprint).
Their hybrid layout is most suitable for unstructured matrices and delivers in general the
best performance for such matrices. This work was followed by many efforts targeting
these hybrid representations [53,110]. A model-driven auto-tuning approach was introduced
in [53] in order to find the best parameters for the hybrid storage format. Finally, in [80] a
new implementation of the SpMV operation, namely segSpMV, was introduced. This new
algorithm can enjoy full coalesced memory access compared to existing approaches and
supports multiple GPUs in a native way.

From the sparse iterative methods point of view, many efforts have been conducted to
adapt the existing algorithms and exploit GPU. The block-ILU preconditioned GMRES
method is studied for solving unsymmetric sparse linear systems on the NVIDIA Tesla
GPUs in [144]. SpMV kernels on GPUs and the block-ILU preconditioned GMRES method
are used in [98] for solving large sparse linear systems in black-oil simulations. More re-
cently, several works have addressed the multi-GPU case where the computational node is
enhanced with more than one GPU. In [12], a specific CG method with incomplete Poisson
preconditioning is proposed for the Poisson problem on a multi-GPU platform. In [68], the
authors present an implementation of the CG algorithm for multi-GPU platforms based on

95

a fast distributed SpMV kernel using optimized data formats (combining ELL and padded
CSR) to allow a good overlapping between communication and computation. In [44], the
authors present a CG algorithm running on multiple GPUs using a data parallel approach
where the number of non-zeros is balanced among GPUs. The authors have then refined
their approach in [45], by using a new partitioning for the matrix based on an hypergraph
model to reduce the amount of communications needed by the algorithm. In [143], the
authors describe mappings for the SpMV kernels and show how they parallelize the CG
algorithm over the GPUs by implementing parallel operations (i.e., kernels running on mul-
tiple devices). Moreover, they present results illustrating the fact that reordering the input
matrix can improve the performance of the method. Concerning GMRES, it has been
studied in the context of multi-GPU platforms [23, 56] where authors mainly identify the
operations that have to be performed by GPUs (e.g., SpMV) and the operations that need
to be processed by CPUs (reductions for example). More recently, a lot of efforts targeted
the reduction of the amount of communications between the GPU devices and the host to
improve the performance of the considered iterative solvers. These works either concerned
the minimization of the amount of communications by means of sophisticated partition-
ing [49,51], or by reformulating the kernels to improve data reusability [16], and finally by
relying on the communication avoiding class of algorithms [148,150]. Finally, one initiative
studied the problem of designing high-performance iterative methods for clusters of nodes
enhanced with GPU devices [152].

Although all the studies mentioned above were implemented on top of low-level program-
ming interfaces like CUDA [1] or OpenCL [112], we present in Section 3.4 an implementation
of iterative methods using a task-based runtime system, namely StarPU, to assess the op-
portunities provided by task-based programming paradigm in this context.

3.2.3 The StarPU task-based runtime system

StarPU is a runtime system developed by the STORM (formerly RUNTIME) team at
Inria Bordeaux specifically designed for the parallelization of algorithms on heterogeneous
architectures. A complete description of StarPU can be found in [20].

StarPU provides an interface which is extremely convenient for implementing and par-
allelizing applications or algorithms that can be described as a graph of tasks. Tasks have
to be explicitly submitted to the runtime system along with the data they work on and the
corresponding data access mode. Through data analysis, StarPU can automatically detect
the dependencies among tasks and build the corresponding DAG. Once a task is submit-
ted, the runtime tracks its dependencies and schedules its execution as soon as these are
satisfied, taking care of gathering the data on the unit where the task is actually executed.
In StarPU the execution is initiated by a master thread, running on a CPU, which is com-
monly in charge of submitting the tasks; the execution of the tasks, instead, is performed
by worker threads (or simply workers) whose number and type (e.g., CPU or GPU) can be
chosen by the programmer or by the user at run time. A CPU worker is bound to a CPU
core whereas a GPU worker is bound to a GPU and a CPU core which is used to drive
the work of the GPU. Note that nothing prevents worker threads from submitting tasks
although this does not comply with the Sequential Task Flow model. Because StarPU has

96

3.2. Background

full control over a task and the associated data, these have to be declared to the runtime
prior to the task submission. A task type can be declared through a codelet which specifies,
among other things, the name of the task type, the units where it can be executed (e.g.,
CPU and/or GPU), the corresponding implementations (one for each type of unit) and the
number of input data. Data, instead, is declared through a specific function call where
the programmer informs StarPU about the location of the data (i.e., the data pointer) and
about its properties such as the size, the rank, the leading dimension. Upon execution of
this function call, StarPU returns a handle; once declared, the data is not meant to be
directly accessed by the programmer anymore but only through the handle and the associ-
ated methods. A task can roughly be defined as an instance of a task type coupled with a
set of handles which represent the data used by the task itself.

Among the advanced features provided by the StarPU runtime system, in the work
described in the rest of this chapter, we will use the following ones:

• StarPU provides a framework for developing task scheduling policies in a portable
way. The implementation of a scheduler consists in creating a task container and
defining the code that will be triggered each time a new task gets ready to be exe-
cuted (push) or each time a worker thread has to select the next task to be executed
(pop).The implementation of each queue may follow various strategies (e.g., FIFO or
LIFO) and sophisticated policies such as work-stealing may be implemented. StarPU
comes with a number of predefined scheduling policies suited for different types of
architectures and workloads. We use the built-in work-stealing policy provided by
StarPU in Section 3.3 for running an MPI+STF prototype extension of MaPHyS.
However, because Krylov methods are extremely irregular and memory-bound, dy-
namic schedulers tend to take bad decisions when orchestrating their computation.
As a consequence we propose a static scheduling policy in Section 3.4.3 in order to
rule the execution of the proposed task-based CG algorithm studied in Section 3.4.

• StarPU offers several advanced utilities for data management. In this study, we
specifically consider the data partitioning and data unpartitioning operations. Data
partitioning divides a piece of data in several parts. Data unpartitioning is the op-
posite operation; it assembles several parts of a partitioned data in the original form.
Those operations are the counterpart of the scatter/gather operations in the SPMD
programming model used by MPI and similar instructions existed also on vector com-
puters a few years ago. Both these operations are blocking operations. That is, they
are control instructions for the task flow construction, which prevent the user from
submitting any new task as long as the corresponding tasks, partitioning or unpar-
titioning, have been processed. We study how to relieve such synchronizations in
Section 3.4.5.2.

• If a task is assigned to a worker sufficiently ahead of its execution, the data it needs
can be automatically prefetched.

• In StarPU, it is possible to associate a callback function with a task. This is just
a function which is executed upon termination of the task itself. We will use this
feature in Section 3.4.5.3 to help the runtime system in performing data prefetching
as soon as possible based on the knowledge of the mapping at the application level.

97

• StarPU defines several built-in data types often referred as primitive data types in
programming languages. There is also an option for extending the set of primitives
with a user defined data type. We use this feature for designing advanced packing
strategies in Section 3.4.5.3.

• StarPU also implements multiple policies for transferring data between GPUs. The
GPU-CPU-GPU communication mechanism consists of moving first the data to the
main memory before transferring it back to the destination GPU. On the contrary the
direct GPU-GPU mechanism directly transfer the data from the source GPU to the
destination GPU. We discuss in Section 3.4.5 how to best benefit from this feature
depending on the packing scheme used.

• StarPU has several facilities which allow for detailed performance profiling of an
application. For example, it can generate execution traces containing accurate timings
of all the executed tasks, of data transfers, We rely on it for performing a detailed
performance analysis in Section 3.4.6.

3.3 Prototype design of an MPI+task extension of

MaPHyS

In the previous chapter we have proposed a modular yet relatively low-level design for ex-
ploiting hierarchical supercomputer composed of multiple modern multicore nodes. The
proposed 2-level MPI+thread approach could successfully achieve an efficient trade-off be-
tween the numerical behavior of the method and the usage of the computational resources
up to tens of thousands of cores. In this section, we propose to substitute the MPI+thread
paradigm with an MPI+task approach. As illustrated in Figure 3.1, this latter approach
aims at abstracting the hardware architecture relying on task-based programming and del-
egating the orchestration of the task within computational nodes to a runtime system.

The goal of this very preliminary study is to show the feasibility of the approach. To
illustrate our discussion, we have designed a partial MPI+task sparse hybrid solver. We
restricted our scope to the Symmetric Positive Definite (SPD) case. To do so, we consid-
ered the MPI+thread version of MaPHyS and exploited the modular software architec-
ture to substitute the multithreaded Mkl and PaStiX libraries with the task-based dense
Cholesky solver from Chameleon [6] and the prototype task-based version of PaStiX
from X. Lacoste thesis [95], respectively. Following MaPHyS principles (and MPI+thread
design, see Section 2.3.2), we have enhanced the task-based version of PaStiX in order
to retrieve a Schur complement. Note that in this prototype MPI+task version of Ma-
PHyS, other operations involved in the iterative solution step such as level-one BLAS and
matrix-vector product have not been changed (these considerations are further studied in
Section 3.4 in the case of a full task-based paradigm).

The tests presented in this section were performed on the PlaFRIM 2 platform, more
precisely on the sirocco nodes. These nodes are composed of two Dodeca-core Haswell Intel
Xeon E5-2680, for a total of 24 cores per node, and 128 GB of RAM memory. Each node
is equipped with 4 Nvidia K40-M GPUs, each one having 12 GB of RAM. We consider

98

3.3. Prototype design of an MPI+task extension of MaPHyS

the SPD Audi_kw matrix presented earlier in Table 2.1 to illustrate the behavior of the
proposed prototype solver. Both Chameleon and PaStiX rely on the version 1.1 of the
StarPU runtime system described in Section 3.2.3.

Figures 3.4 and 3.5 show the traces obtained on one node of the platform, using only
CPU cores or both GPUs and CPU cores, respectively. In both cases, the matrix has been
decomposed in four subdomains. Each subdomain is associated to one MPI process in
charge of a subset of six CPU cores, or six CPU cores and one GPU, respectively. The
runtime system orchestrates the execution of the tasks on the different processing units.
The traces represent the execution on one particular subdomain. In the heterogeneous
case, each GPU has a CPU core dedicated to handle it (see Section 3.2.3). The resulting

Task execution Idle Fetching input

Figure 3.4: Multicore execution trace associated to one subdomain of the MPI+task
MaPHyS prototype processing the Audi_kw matrix. Four subdomains (hence four

processes) are used in total and a dense preconditioner is applied.

traces show the versatility of the approach. The processing units are abstracted and the
same code may be executed indistinguishably on the homogeneous or on the heterogeneous
cases. Table 3.1 shows that the resulting timings allow for accelerating all three numerical
steps with the use of one GPU per subdomain in spite of the very preliminary design. The
setup of the preconditioner benefits from the highest acceleration as it mostly consists of
a dense factorization. The factorization of the interiors has a limited (but not negligible)
acceleration because PaStiX internal kernel has not been tuned for the Nvidia K40-M
GPU.

Although this prototype is working properly and showed the feasibility of the proposed
approach, designing a solid MPI+task version of MaPHyS would require further work.
First of all, the proposed approach still follows a bulk-synchronous parallelism [141] (also
sometimes designated as fork-join approach) pattern. Indeed, the calls to PaStiX and

99

Task execution Idle Fetching input

Figure 3.5: Heterogeneous execution trace associated to one subdomain of the MPI+task
MaPHyS prototype processing the Audi_kw matrix. Four subdomains (hence four

processes) are used in total and a dense preconditioner is applied.

Multicore case Heterogeneous case

Factorization of the interiors

min 19.6 23.3

avg 37.2 31.7

max 50.8 38.2

Setup of the preconditioner

min 4.80 1.10

avg 7.02 3.63

max 9.81 7.37

Solve step

min 13.1 11.8

avg 13.2 11.8

max 13.2 11.8

Table 3.1: Minimum, average and maximum time per subdomain for the MPI+task
MaPHyS prototype for the multicore case (Figure 3.4) and the heterogeneous case

(Figure 3.5) processing the Audi_kw matrix. Four subdomains (hence four processes) are
used in total and a dense preconditioner is applied.

100

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

Chameleon, yet local to each subdomain, induce costly preprocessing. On the one hand,
PaStiX need to perform a reordering of the variables to limit fill-in and a symbolic factor-
ization (see Section 1.2.2). These steps are sequential in the present prototype. Although
there exist parallel implementations of these steps, they are known to have a very limited
parallel efficiency. To overcome the subsequent synchronizations, it would therefore be nec-
essary to overlap these symbolic preprocessing steps with other numerical operations. On
the other hand, following Plasma design, Chameleon first decomposes the dense matrix
in tiles, which is also a synchronizing operation. As for Plasma, there exists an advanced
interface allowing for tackling matrices already decomposed into tiles. Using this interface
would certainly alleviate the bottleneck occurring within the setup of the preconditioner
when calling the dense solver.

Other operations involved in the iterative solution step such as level-one BLAS and
matrix-vector product could be implemented with a task-based approach. In the case
of a dense preconditioner, these operations could also be implemented by calling BLAS
operations implemented in Chameleon. However, in the present state, without using the
advanced interface discussed above, the synchronizations would occur multiple times per
iteration. We propose a full task-based CG solver in Section 3.4 and discuss in details how
synchronization points can be alleviated.

To completely alleviate the synchronizations between the different sequences into which
MaPHyS is decomposed, it would be necessary to further overlap communications with
computations. This could be performed with a clever usage of asynchronous MPI calls.
This approach is relatively difficult to implement and has been applied to overlap main
stages in MaPHyS, both in the MPI+thread version from Chapter 2 and in the MPI+task
prototype discussed in this section. However, relying on this paradigm for performing
fine-grain overlapping would be extremely challenging and certainly result in a code very
complex to maintain. Alternatively, the MPI calls can be appended to the task flow. Doing
so, the task-based runtime system can dynamically decide when to perform the actual MPI
call to the MPI layer and interleave them with fine-grain computational tasks. Modern
runtime systems such as StarPU provide such an opportunity. However, even in that case,
the task-flow would still have to be designed accordingly to the mapping between tasks
and processes. On the contrary, the approach proposed in Section 3.4 allows for fully
abstracting the hardware architecture and makes the mapping issues practically orthogonal
to the design of the task flow.

3.4 Towards a full task-based version of MaPHyS: case

study with the CG algorithm

In the previous section, we have discussed the possible design of an MPI+task extension of
MaPHyS and proposed a preliminary prototype implementation following this paradigm.
Apart from the discussed limits due to the fact that the proposed prototype is preliminary,
we highlighted that the proposed MPI+task paradigm still had an important limitation for
exploiting efficiently the large spectrum of hardware architectures on top of which are built
today’s supercomputers. Indeed, although more flexible for exploiting versatile processing

101

units than the approach proposed in Chapter 2, the MPI+task approach proposed in Sec-
tion 3.3 remains limited to map one subdomain to one or multiple resources (a set of CPU
cores and GPUs) within a node. We investigate here an alternative approach consisting in
fully abstracting the MPI scheme of the solver within the task graph. As mentioned earlier,
there has been lots of progress in that direction for dense (such as the DPLASMA [33]
and Chameleon [6] task-based libraries) and sparse direct methods (such as the task-
based version of PaStiX [95] and qrm StarPU [9]), limited work we are aware of has been
done to study task-based Krylov methods. Nonetheless, as discussed in Section 3.3, this
is the part of the hybrid solver that requires the most effort to be ported in terms of a
task-based method because of the potential recurrent synchronizations occurring at each
iteration. For that reason, we propose and study a task-based CG as a preliminary work
towards a fully task-based MaPHyS solver. Here we focus on a efficient pipelining of the
Cg algorithm on one heterogeneous CPU+GPU node. We present detailed performance
analysis for the multi-GPU, multicore and the hybrid CPU+GPU cases when one node is
used of our optimized task-based version of the Cg algorithm.

We propose a task-based expression of CG in Section 3.4.1. We then present the ex-
perimental set up in Section 3.4.2. Although the considered platform is composed of both
GPU accelerators and CPU cores, we motivate and illustrate the design of an advanced
task-based formulation with the example of a multi-GPU architecture as the difficulties
are emphasized on that type of architecture. We indeed raise the problems of scheduling
(Section 3.4.3) and choosing an appropriate data and task granularity (Section 3.4.4) when
operating on GPUs. We then address the problem of pipelining efficiently those opera-
tions in Section 3.4.5. Although only illustrated in the multi-GPU case in those sections,
we show that the proposed algorithms lead to very competitive performance on all the
target range (multi-GPUs, multicore, heterogeneous platforms) of hardware architectures
(Section 3.4.6). Finally, in Section 3.4.7, we combine the proposed task-based CG design
with an advanced formulation of CG that implements the pipeling idea at the numerical
level [69].

3.4.1 Baseline STF conjugate gradient algorithm

In this section, we present a first task-based expression of the CG algorithm whose pseudo-
code is given in Algorithm 8. This algorithm can be divided in two phases, the initialization
phase (lines 1-5) and the main loop (lines 6-16). The initialization phase being executed
only once, we only focus on an iteration occurring in the main loop in this study.

Three types of operations are used in an iteration of the algorithm: SpMV (line 7),
scalar operations (lines 9, 13, 14) and level-one BLAS operations (lines 8, 10, 11, 12, 15).
In particular three different level-one BLAS operations are used: scalar product (dot, lines
8 and 12), linear combination of vectors (axpy, lines 10, 11 and 15) and scaling of a vector
by a scalar (scal, line 15). The scal kernel at line 15 is used in combination with an axpy.
Indeed, in terms of BLAS, the operation p← r + βp consists of two successive operations:
p← βp (scal) and then p← r+p (axpy). In our implementation, the combination of these
level-one BLAS operations represents a single task called scal-axpy. The key operation in
an iteration is the SpMV (line 7) and its efficiency is thus critical for the performance of

102

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

the whole algorithm.

Algorithm 8 Pseudo-Code of Conjugate Gradient algorithm.

1: r ← b
2: r ← r − Ax
3: p← r
4: δnew ← dot(r, r)
5: δold ← δnew
6: for j = 0, 1, ..., until ‖b−Ax‖‖b‖ ≤ eps do

7: q ← Ap /* SpMV */
8: α← dot(p, q) /* BLAS-1 */ (dot)
9: α← δnew/α /* scalar operation */
10: x← x+ αp /* BLAS-1 */ (axpy)
11: r ← r − αq /* BLAS-1 */ (axpy)
12: δnew ← dot(r, r) /* BLAS-1 */ (dot)
13: β ← δnew/δold /* scalar operation */
14: δold ← δnew /* scalar operation */
15: p← r + βp /* BLAS-1 */ (scal-axpy)
16: end for

According to our STF programming paradigm (see Section 3.2.1 and Section 3.2.3), data
need to be decomposed in order to provide opportunities for executing concurrent tasks.
We consider a 1D decomposition of the matrix, dividing the matrix in several block-rows.
The number of non-zero values per block-rows is balanced and the rest of the vectors follows
the same decomposition as illustrated in Figure 3.6.

Figure 3.6: Matrix and vector decomposition. 1D decomposition is applied to the matrix
balancing the number of non-zero values per block-rows (left). The rest of the vectors

follows the same decomposition (right).

After decomposing the data, tasks that operate on those data can be defined. The tasks
derived from the main loop of Algorithm 8 are shown in Figure 3.7, when the matrix is
divided in six block-rows. Each task is represented by a box, named after the operation
executed in that task, and edges represent the dependencies between tasks. Let us examine
in more details the task flow in Figure 3.7. The first instruction executed in the main
loop of Algorithm 8 is the SpMV . SpMV performs the operation q ← Ap where A is a

103

SpMV

SpMV

SpMV

dot

dot
Scal op

axpy

axpy

axpy

Scal op

scal-axpy

scal-axpy

scal-axpy

Line 7 Line 8

Line 9

Line 10Line 11Line
13, 14

Line 15

dot

axpy

axpy

axpy

scal-axpy

scal-axpy

scal-axpy

SpMV

SpMV

SpMV

dot

dot

dot

axpy

axpy

axpy

axpy

axpy

axpydot

dot

Line 12

dot

dot

dot

dot

Unpartitioning Partitioning

Figure 3.7: Task flow of the main loop of CG Algorithm (lines 7-15 in Algorithm 8). The
matrix is divided in six block-rows. Vertices of the graph represent tasks and edges

represent dependencies between them. The red vertical bars between the scal − axpy and
SpMV tasks and between the SpMV tasks and the dot tasks represent the partitioning

and the unpartitioning of the vector p, respectively.

104

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

sparse matrix and q and p are dense vectors. When a 1D decomposition is applied to the
matrix, dividing it in six parts implies that six tasks are submitted for this operation (the
green tasks in Figure 3.7): qi ← Aip, i ∈ [1, 6], one for each block-row Ai of the matrix.
For these tasks, a copy of the whole vector p is needed (vector p is unpartitioned). But
in order to extract parallelism of other level-one BLAS operations where vector p is used
(lines 8 and 15 in Algorithm 8), it needs to be partitioned. As discussed in Section 3.2.3,
the partitioning operation is a blocking call; it thus represents a synchronization point in
this task flow (represented with the red vertical bar after SpMV tasks in Figure 3.7). Once
vector p is partitioned, the tasks corresponding to the scalar product (line 8 in Algorithm 8)
can then be submitted. Both vectors p and q are partitioned in six parts (pi, qi, i ∈ [1, 6]),
so six tasks are again submitted. Each dot operation accesses α in read-write mode, which
induces a serialization of the operation, as shown in Figure 3.7 with the dependencies
between the successive dot tasks. This sequence thus introduces new synchronizations in
the task flow. The final value of α for the current iteration is obtained after the scalar
operation α ← δnew/α (line 9). The twelve axpy tasks (six at line 10 and six at line 11)
can then all be executed in parallel (see Figure 3.7 again). Another dot operation is then
performed (line 12) and induces other serializations (as it was the case for the dot at line
8). After the scalar operations at lines 13 and 14 in Algorithm 8, the last operation of
the loop can be executed. Similarly to the axpy operations, this operation is completely
parallel. After this last operation, the new value of vector p is obtained. At this stage, it
is partitioned in multiple pieces (pi, i ∈ [1, 6]). In order to perform the SpMV tasks (line
7, next iteration) which all need the whole vector p, these pieces are unpartitioned to form
the input variable p.

All in all, this task flow contains four synchronization points per iteration and is very
thin. Section 3.4.5.1 exhibits the induced limitation in terms of pipelining, while Sec-
tions 3.4.5.2, 3.4.5.3 and 3.4.5.4 propose successive improvements allowing us to alleviate
the synchronizations and design a wider task flow, thus increasing the concurrency and the
performance.

3.4.2 Experimental setup

All the tests presented in Section 3.4 have been run on a cache coherent Non Uniform
Memory Access (ccNUMA) machine with two hexa-core processors Intel Westmere Xeon
X5650, each one having 18GB of RAM, for a total of 36GB. It is equipped with three
NVIDIA Tesla M2070 GPUs, each one having 6GB of RAM memory.

The task-based CG algorithm proposed in Section 3.4.1 is implemented on top of the
StarPU runtime system (see Section 3.2.3). We use the opportunity offered by StarPU
to control each GPU with a dedicated CPU core. We rely on the CUBLAS v2.0 and
CUSPARSE v1.0 vendor libraries to implement the GPU tasks that execute the level-one
BLAS and SpMV operations.

To illustrate our discussion we consider the matrices presented in Table 3.2. As discussed
above, matrices are divided in block-rows and each block-row is mapped on a processing
unit (GPU or CPU core). In all the experiments presented in this study, each block-row is
thus initially prefetched on the processing unit that will perform the corresponding SpMV

105

Matrix name nnz N nnz/ N flop / iteration

11pts-256 183 M 16,7 M 10.9 1,90 G

11pts-128 22,8 M 2,10 M 10,9 224 M

Audi_kw 154 M 943 K 163 317 M

af_0_k101 17,5 M 503 K 34 38.6 M

Table 3.2: Overview of sparse matrices used in this study. The 11pts-256 and 11pts-128

matrices are obtained from a 3D regular grid with 11pt discretization stencil. The
Audi_kw and af_0_k101 matrices come from structural mechanics simulations on irregular

finite element 3D meshes.

task, before the experiment is timed, in order to represent the behavior occurring in a CG
iteration (except for the first iteration, which is not considered here). Furthermore, when
assessing the behavior of the building block operations (Section 3.4.4), the corresponding
block-vectors are also prefetched on the memories associated with those processing units.

3.4.3 Scheduling and mapping strategy

As discussed in Section 3.4.1, the task flow derived from Algorithm 8 contains four syn-
chronization points per iteration and is very thin, ensuring only a very limited concurrency.
Furthermore, as we will show in Section 3.4.4, the tasks are not very compute intensive so
that moving data between processing units is expensive relatively to the actual execution of
the task. Pipelining the task flow efficiently is thus very challenging. In particular, dynamic
strategies that led to close to optimum scheduling in dense linear algebra [5] are not well
suited here. We have indeed experimented such a strategy (Minimum Completion Time
(MCT) policy [138]) but all studied variants failed to achieve a very high performance.
Indeed, with such a thin graph, each inaccurate decision induced a strong imbalance that
could not be recovered. We have thus implemented a static scheduling strategy. Each
block-row of the matrix is associated with a processing unit and the related tasks are per-
formed on that processing unit. In order to increase concurrency, we have considered the
case where there are more block-rows than processing units. In that case, we perform a
cyclic mapping of the block-rows on the processing units in order to ensure load balancing.

3.4.4 Building block operations

In order to explore the potential parallelism of the CG algorithm, we first study the per-
formance of its building block operations, level-one BLAS and SpMV , on our platform.

106

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

3.4.4.1 Level-one BLAS operations

As mentioned in Section 3.4.1, three level-one BLAS operations are used in CG: dot, axpy
and scal − axpy. These kernels have a computational cost of 2N for the dot and axpy
operations and of 4N for the scal−axpy operation, where N is the size of the vectors. This
low computational cost relatively to the amount of data involved makes them hard to accel-
erate on GPUs. Figure 3.8 shows this effect. We recall that the matrix is split in balanced

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Vector size (N)

1GPU
3GPU

Figure 3.8: Performance of level-one BLAS operations on multiple GPUs. Both axes are
expressed in logarithmic scale. Data is divided in equal pieces and is prefetched on every

GPU before execution and performance assessment. Here is shown the performance of the
axpy kernel, but all kernels follow the same behavior.

block-rows and that the vectors are divided accordingly. Following the experimental set up
presented in Section 3.4.2, the input vectors are prefetched on the GPUs before execution.
Therefore, in this experiment, only the computational time is measured. Nonetheless, very
large vectors need to be considered (N > 106) to benefit from multi-GPU acceleration (rel-
atively to one GPU). When the input vectors are of intermediate size (105 < N < 106),
the use of multiple GPUs does not speed up the overall performance anymore. When the
vectors are smaller (N < 105), a multi-GPU context even slows down the execution. In
that latter case, the computation time is negligible and there is still no communication; the
only measured time is the start-up spent for launching the kernels. Because of a lock occur-
ring within the NVIDIA driver1 when launching a CUDA kernel, at such a fine granularity,
concurrent tasks are thus actually serialized and the launching times are paradoxically and
unexpectedly cumulated.

1we have reported this surprising behavior to NVIDIA

107

3.4.4.2 The SpMV operation

When the matrix is split in multiple block-rows, the SpMV operation may be executed
as concurrent SpMV tasks. The performance obtained for the audikw 1 matrix is shown

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

G
F

lo
p

/s

#blocks

1 GPU
2 GPU
3 GPU

Figure 3.9: Performance of SpMV with audikw 1 matrix when split in nb block
block-rows (x-axis). All needed data is prefetched on GPUs before the experiment.

in Figure 3.9. The impact of the task granularity on performance may be assessed with
the performance observed on one GPU. When the matrix is split in multiple block-rows,
the performance is not strongly penalized. For instance, the mono-GPU execution only
decreases less then 1% when the matrix is split in three blocks (from 10.20 Gflop/s to 10.13
Gflop/s). When multiple GPUs are used, if the number of blocks is a multiple of the number
of GPUs, a correct load balancing may be furthermore achieved. In particular, when the
matrix is divided in three block-rows, the penalty on granularity is minimal while achieving
a decent load balancing. A performance of 29.85 Gflop/s is indeed achieved which represents
a speed-up of 2.95 over the mono-GPU execution with the same number of blocks (10.13
Gflop/s) and an overall 2.93 speed-up over the best mono-GPU execution (10.20 Gflop/s).

3.4.5 Achieving efficient software pipelining

In accordance with the example discussed in Section 3.4.1, the matrix is split in six block-
rows and three GPUs are used. We pursue our illustration with matrix 11pts-128.

108

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

3.4.5.1 Assessment of the proposed task-based CG algorithm

Figure 3.10 shows the execution of one iteration of the task flow (Figure 3.7) derived from
Algorithm 8 with respect to the mapping proposed in Section 3.4.3. Figure 3.10 can be
interpreted as follows. The top black bar represents the state of the CPU Random Access

Task execution Idle Fetching input

Figure 3.10: Execution trace of an iteration with the CG task flow of Figure 3.7 using
three GPUs.

Memory (RAM) during the execution. The periods when the RAM is used for a data
transfer from (or to) a GPU are highlighted by an arrow from the source to the destination.

As explained in Section 3.2.3, data transfers between GPUs are handled by the runtime
system. In the present execution, the GPU-CPU-GPU communication mechanism (see
Section 3.2.3 for details) is used. Below the bar of the CPU RAM (top black bar), the three
other couples of bars represent the state of the three GPUs. Indeed, for each GPU, the top
bar represents the activity of the GPU itself, whereas the bottom bar represents the state
of its GPU memory. The activity of a GPU (top bar) may have one of the three following
states: active computation (green), idle (red) or active waiting for the completion of a data
transfer (purple).

An iteration starts with the execution of a SpMV operation (line 7 in Algorithm 8), time
interval [t0,t1] in Figure 3.10. As shown in Figure 3.7, the SpMV operation is decomposed
in six tasks (green tasks in Figure 3.7). Following the cyclic mapping strategy presented
in Section 3.4.3, each GPU is thus in charge of two SpMV tasks. At time t1, vector q is
available, distributed in six pieces but vector p is unpartitioned. The vector p is partitioned
into six pi pieces, i ∈ [1, 6], with respect to the block-row decomposition of the matrix.
However, this data partitioning operation is a blocking call (see Section 3.2.3) which means
that no other task can be submitted until it is completed at time t1 (the red vertical bar
after the SpMV tasks in Figure 3.7). Once vector p is partitioned, tasks for all remaining
operations (lines 8-15) are submitted. The scalar product tasks are executed sequentially
with respect to the cyclic mapping strategy explained in Section 3.4.3. The reason for

109

this, as explained in Section 3.4.1, is that the scalar α is accessed in read-write mode.
In addition, α needs to be moved to GPU between each execution of a dot task (interval
[t1, t2] in Figure 3.10). Once the scalar product at line 8 is computed, the scalar division
follows (line 9) executed on GPU 1 (respecting the task flow in Figure 3.7). The execution
of the next two instructions follows (lines 10 and 11). But before the beginning of the
execution of the axpy tasks on GPU 2 and GPU 3, the new value of α is sent according
to the GPU-CPU-GPU transfer model (the purple period at t2 in Figure 3.10). The axpy
tasks (yellow tasks in Figure 3.7) are executed during the period [t2, t3] in parallel. The
scalar product at line 12 is then executed during the time interval [t3, t4], following the same
sequence as explained above for line 8. Next, β and δold are computed on GPU 1 at time
t4 in Figure 3.10, representing the scalar operations from lines 13 and 14 of Algorithm 8.
Tasks related to the last operation of the iteration (scal−axpy tasks in Figure 3.7) are then
processed during the time interval [t4,t5]. When all the new vector blocks pi are calculated,
the vector p is unpartitioned (red vertical bar after the scal − axpy tasks in Figure 3.7).
As explained in Section 3.2.3, this data unpartition is another synchronization point and
may only be executed in the RAM. All blocks pi of vector p are thus moved from the GPUs
to the RAM during the time interval [t5,t6] for building the unpartitioned vector p. This
vector is then used to perform the qi ← Ai × p tasks related to the first instruction of the
next iteration (SpMV at line 7). We now understand why the iteration starts with an
active waiting of the GPUs (purple parts before time t0): vector p is only valid in the RAM
and thus needs to be copied on the GPUs.

During the execution of the task flow derived from Algorithm 8 (Figure 3.7), the GPUs
are idle during a large portion of the time (red and purple parts in Figure 3.10). In order
to achieve more efficient pipelining of the algorithm, we present successive improvements
on the design of the task flow: relieving synchronization points (Section 3.4.5.2), reducing
volume of communication that is achieved using a packing data mechanism (Section 3.4.5.3)
and relying on a 2D decomposition (Section 3.4.5.4).

3.4.5.2 Relieving synchronization points

Alternatively to the sequential execution of the scalar product, each GPU j can compute
locally a partial sum (αj) and perform a reduction to compute the final value of the scalar
(α =

∑n gpus
j=1 αj). Figure 3.11(a) illustrates the benefit of this strategy. The calcualtion of

the scalar product, during the time interval [t0, t1] is now done in parallel. Every GPU is
working on its own local copy of α and once they have finished, the reduction is performed
on GPU 1 just after t1.

The partition (after instruction 7 of Algorithm 8) and unpartition (after instruction 15)
of vector p represents two of the four synchronization points within each iteration. They fur-
thermore induce extra management and data movement costs. Indeed, after instruction 15,
each GPU owns a valid part of vector p. For instance, once GPU 1 has computed p1, it
sends p1 to the RAM and receives it back, which is useless. Second, vector p has to be fully
assembled in the main memory (during the unpartition operation) before prefetching a copy
of the fully assembled vector p back to the GPUs (after time t3 in Figure 3.11(a)). We have
designed another scheme where vector p is kept in a partitioned form all along the execution
(it is thus no longer needed to perform partitioning and unpartitioning operations at each

110

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

(a) (b)

Figure 3.11: Execution trace of an iteration of the Cg algorithm on three GPUs when the
vector p is partitioned and unpartitioned (on the left) and a trace when these operations

are avoided (on the right).

iteration). Instead of building and broadcasting the whole unpartitioned vector p, each
GPU gathers only the missing pieces. Assuming if p is decomposed in six pieces, GPU 1
had computed p1 and p4 at the previous iteration (following the cyclic mapping strategy
presented in Section 3.4.3). So, by using this vector scheme, the GPU 1 will only receive
p2, p3, p5 and p6 vector blocks. This enables us to decrease the overall traffic. Furthermore,
each vector block pi can be copied from the RAM to GPUs as soon it is fetched in main
memory without waiting the other vector blocks to be copied, as it was required in the
previous case. Finally, we ensure that all the pieces of p get copied in a contiguous fashion
on the device, so that vector p is valid when the task qi ← Aip is executed.

Figure 3.11(b) illustrates the benefits of this policy. Avoiding the unpartitioning opera-
tion allows us to decrease the time required between two successive iterations from 8.8 ms
to 6.6 ms. Furthermore, since the partitioning operation is no longer needed, the corre-
sponding synchronization in the task flow control is removed. The corresponding idle time
(red part at time t0 in Figure 3.11(a)) is removed and instructions 7 and 8 are now pipelined
(period [t0,t1] in Figure 3.11(b)).

Coming back to Figure 3.11(a), one may notice that GPUs are idle for a while just
before time t1 and again just before time t2. This is due to the reduction that finalizes
each dot operation (dot(p, q) at instruction 8 and dot(r, r) at instruction 12, respectively).
In Algorithm 8, vector x is only used at lines 10 (in read-write mode) and 6 (in read-only
mode). The execution of instruction 10 can thus be moved anywhere within the iteration
as long as the other input data of instruction 9, i.e., p and α have been updated to the
correct value. In particular, instruction 10 can be moved after instruction 12. This delay
enables us to overlap the final reduction of the dot occurring at instruction 12 with the
computation of vector x.

The red part before t2 in Figure 3.11(a) becomes (partially) green in Figure 3.11(b).
The considered CG formulation does not provide a similar opportunity to overlap reduc-
tion finalizing the dot operation at instruction 8. This is why the red part before t1 in
Figure 3.11(a) remains red in Figure 3.11(b). We will come back to this limitation in Sec-
tion 3.4.7 where we consider an alternative formulation of CG to alleviate that ultimate
synchronization point but for now we focus on reducing the amount of communication by
packing data.

111

3.4.5.3 Reducing communication volume by packing data

By avoiding data partition and data unpartition operations, the broadcast of vector p has
been improved (from period [t2, t4] in Figure 3.11(a) to period [t2, t3] in Figure 3.11(b))
and the communication time remains the last main performance bottleneck (time interval
[t2, t3] in Figure 3.11(b)). This volume of communication can be decreased. Indeed, if a
column within the block-row Ai is zero, then the corresponding entry of p is not involved in
the computation of the task qi ← Aip. Therefore, p can be pruned. With a SPMD model,
using MPI, the natural method would consist in packing the relevant data into buffers
before performing the associated communication.

We now explain how we can achieve a similar behavior with a task flow model. Instead
of broadcasting the whole vector p on every GPU, we can only transfer the required subset.
Before executing the CG iterations, this subset is identified with a symbolic preprocessing
step. Based on the structure of the block Ai,j, we determine which part of pj is needed to
build qi. If pj is not fully required, we do not transfer it directly. Instead, it can be packed
into an intermediate data, pi,j. According to the task-based model, this packing operation
can be implemented with a task. The receiving GPU then needs to unpack this data before
performing the SpMV (since SpMV operates on a full vector). One possibility would be
to implement this unpack operation with a new task. In order to limit the overhead due
to the task creation, we could alternatively merge this unpack operation with the SpMV
operation, resulting in a sparse SpMV task, where the input vector is now sparse. However,
StarPU provides an elegant support for implementing all these advanced techniques through
the definition of new data types (see discussion on primitives in Section 3.2.3 for details).
We rely on that mechanism for implementing this packing scheme.

A direct consequence of using a packing scheme is that the amount of data transferred
on the critical path is potentially dramatically decreased. It is then advantageous to rely on
direct GPU-GPU communication mechanism (see Section 3.2.3 for details) since different
parts of vector pi are now transferred to different GPUs. To do so, we just need to enable
the GPU-GPU communication mechanism provided by StarPU.

Other optimizations related to data movement have also been designed. First, the pack-
ing operation may have a non negligible cost whereas sometimes the values of pi,j that needs
to be sent are almost contiguous. In those cases, it may thus be worth sending an extra
amount of data in order to directly send the contiguous superset of pi,j ranging from the
first to the last index that needs to be transferred. We have implemented such a scheme. A
preliminary tuning is performed for each matrix and each pi,j subvector to choose whether
pi,j is packed or transferred in a contiguous way. Second, although StarPU can perform
automatic prefetching, the prefetching operation is performed once all the dependencies
are satisfied. In the present context, this may be too much late and further anticipation
may be worthy. Therefore, we are performing explicit data prefetching as soon as possible
(see Section 3.2.3) within the callback of the scal − axpy task. We also do so after the
computation of the α and β scalar values (lines 9 and 13 in Algorithm 8) for broadcasting
them on all GPUs.

Figure 3.12 shows the execution trace. The time interval [t2, t3] in Figure 3.11(b) needed
for the broadcasting of the vector p has been reduced to the interval [t0, t1] in Figure 3.12. In

112

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

Figure 3.12: Execution trace when furthermore the vector p is packed.

the rest of the chapter we refer to as the full algorithm, when all the blocks are transferred
or to as the packed algorithm if this packing mechanism is used.

3.4.5.4 2D decomposition

The 1D decomposition scheme requires that for each SpMV task, all blocks of vector p
(packed or not packed) are in place before starting the execution of the task. In order to
be able to overlap the time needed for broadcasting the vector p (time interval [t0, t1] in
Figure 3.12) a 2D decomposition must be applied to the matrix. The matrix is first divided
in block-rows, and then the same decomposition is applied to the other dimension of the
matrix. Similarly as for a 1D decomposition, the entire block-row will be mapped on a
single GPU. Contrary to the 1D decomposition, where we had to wait for the transfer of
all missing blocks of the vector p, with the 2D decomposition, time needed for the transfer
of the vector p can be overlapped with the execution of the tasks for which the blocks of
the vector p are already available.

Figure 3.13: Execution trace when relying of a 2D decomposition of the matrix.

The result of the impact of a 2D decomposition is shown in Figure 3.13. During the time

113

interval [t1, t2] in Figure 3.12 there is no communication. All of them are performed before
the beginning of the SpMV task (time interval [t0, t1]). In Figure 3.13 during the time
interval [t0, t1], communications are performed while the SpMV is executed. In the rest of
the chapter we refer to either 1D or 2D depending on the data decomposition used. The
trade-off between large task granularity (1D) and increased pipeline (2D) will be discussed
in Section 3.4.6.

3.4.6 Performance analysis

We now propose a detailed performance analysis of the task-based CG algorithm designed
above. In this thesis, we focus on the design of efficient parallel schemes and rely on
externals libraries to perform the inner-most computation. As a consequence, we propose
to analyze the behavior of our algorithms in terms of speed-up with respect to the execution
occurring on one single computational unit (or worker to be consistent with the terminology
introduced in Section 3.2.3). When normalized to the number of workers involved in the
parallel computation, such a speed-up is called parallel efficiency (or simply efficiency). If
we denote Tb(p) the elapsed time with p workers when the matrix is decomposed in b blocks,
these metrics can be defined as follows:

Definition 1. The speed up, denoted by S, and the overall efficiency, denoted by e, are
defined as S = T1(1)/Tb(p) and e = T1(1)/(Tb(p)× p), respectively.

Generally speaking, three major factors influence the overall efficiency. First data need
to be decomposed in order to have concurrent tasks. The drawback of this decomposition
is that we operate at a smaller granularity, which may deteriorate the performance of the
computing kernels. Second, a given task executed concurrently with other tasks may have a
lower performance because it shares resources with those other tasks such as caches, buses,
. . . , which may be especially critical on modern multicore chips. Third, to be triggered, a
task must satisfy two conditions: its predecessors must have been completed and the data
it operates on must have been fetched on memory associated with the worker that will
process it. If one of these conditions is not satisfied, some processing units may be idle.

We now show that the overall efficiency may be decomposed as the product of three
efficiencies representing those respective effects. To that effect, the cumulated time spent
by workers executing tasks is denoted as T exeb (p) whereas the cumulated time they spent
being idle is denoted as T idleb (p). Note that elapsed times are expressed in units of time
(say seconds) whereas cumulated times are expressed in units of processing unit × time
(say processors × seconds). Because workers are either idle or executing tasks, we have:

Property 1. Tb(p)× p = T exeb (p) + T idleb (p).

When using one worker, the cumulated time spents executing tasks when data is decom-
posed in b blocks (i.e., T exeb (1)) is likely to be longer than when data is not split and tasks
act on the complete matrix (i.e., T exe1 (1)). As observed in Section 3.4.4, this effect may
indeed be significant in the mono-GPU case. The measure of this penalty due to the fact
we operate at a lower granularity on the efficiency may be quantified as follows:

114

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

Definition 2. The effect of operating at a lower granularity on the efficiency is defined as:
egranularity = T exe1 (1)/T exeb (1).

Definition 3. The effect of concurrency on the efficiency of tasks is defined as: etasks =
T exeb (1)/T exeb (p).

In the multi-GPU case, the efficiency of tasks is trivially equal to one (i.e., etasks = 1)
as multiple GPUs execute tasks independently (without sharing any hardware capability)
from one another and are thus not penalized by their mutual concurrency. On the other
hand, in the multicore case, a given task executed concurrently with other tasks may have
a lower performance because it shares resources with those other tasks such as caches or
buses.

Finally, a worker may spend part of its time being idle because no task can be processed
at a given time. The ability of a task flow to efficiently pipeline tasks and therefore prevents
this drawback can be measured in terms of proportion of the cumulated time spent in tasks
T exeb (p) with respect to the overall cumulated time T exeb (p) + T idleb (p):

Definition 4. The effect of achieving a high task pipeline on the efficiency is defined as:
epipeline = T exeb (1)/(T exeb (p) + T idleb (p)).

In the mono-worker case (i.e., p = 1), the idle time (i.e., T idleb (1)) may be neglicted with
respect to the elapsed time (experiments not further detailed showed that we consistently
had T idleb (1) << 0.1%×Tb(1)) and we can thus consider that Tb(1) = T exeb (1). Furthermore,
given that the elapsed time can be expressed in terms of the sum of cumulated time spent
in execution and idle modes normalized with the number of processing units (Property 1),
the overall efficiency e can then precisely be expressed as the product of the three effects
as stated by Property 2.

Property 2. e = egranularity × etasks × epipeline.

3.4.6.1 Multi-GPU experiments

Tables 3.3, 3.4, 3.5 and 3.6 present the performance achieved for all four matrices for the
multi-GPU case. The optimal performance is represented for each scheme. The objective
of this section is to assess the benefits of using multiple GPUs over a mono-GPU execution.
We thus rely on the metrics defined above and present a detailed performance assessment.

The first thing to be observed is that for all the matrices the packed version of our
algorithm where only just the needed part of the vector p is broadcasted yields the opti-
mal performance. Broadcasting entire sub-blocks is too expensive and thus considerably
slows down the execution of the CG algorithm on multi-GPU platforms. For the matri-
ces that have a regular distribution of the non zeros, i.e., the 11pts-256, 11pts-128 and
the af_0_k101 matrices, the 1D algorithm outperforms the 2D algorithm as shown in Ta-
bles 3.3, 3.4 and 3.6, respectively. On the other hand, in the case of the Audi_kw matrix
that has an unstructured pattern, the 2D algorithm exhibits more parallelism, which en-
ables the communication time needed for broadcasting larger portion of the vector p to be
overlapped with the execution of the 2D block of the SpMV that is already in-place.

115

1D 2D

GPUs full packed full packed

1 9.74

2 12.33 19.10 16.66 17.24

3 11.70 28.39 13.26 23.17

Table 3.3: Performance (in Gflop/s) of CG on the 11pts-256 matrix for the multi-GPU
case.

1D 2D

GPUs full packed full packed

1 9.58

2 11.5 17.6 14.3 16.1

3 9.01 24.2 9.22 20.6

Table 3.4: Performance (in Gflop/s) of CG on the 11pts-128 matrix for the multi-GPU
case.

1D 2D

GPUs full packed full packed

1 10.0

2 15.6 15.6 16.3 16.7

3 17.7 20.0 22.0 23.6

Table 3.5: Performance (in Gflop/s) of CG on the Audi_kw matrix for the multi-GPU case.

1D 2D

GPUs full packed full packed

1 9.84

2 12.1 16.3 13.6 15.0

3 11.1 19.4 12.5 18.2

Table 3.6: Performance (in Gflop/s) of CG on the af_0_k101 matrix for the multi-GPU
case.

116

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

Matrix 11pts-256 11pts-128 Audi_kw af_0_k101

S 2.91 2.52 2.36 1.97

e 0.97 0.84 0.79 0.65

egranularity 0.99 0.98 0.87 0.96

etasks 1.00 1.00 1.00 1.00

epipeline 0.97 0.86 0.91 0.68

Table 3.7: Speed-up and efficiency. If Tb(p) represents the execution time with p GPUs
when the matrix is decomposed in b block-rows, S the speed-up, e the overall efficiency,

the effects of granularity on efficiency egranularity, the effect of using multiple GPUs at the
same time etasks and the effects of pipeline on efficiency epipeline are defined with

Definition 1, 2, 3 and 4, respectively. In our case p = 3 and all values in this table are
obtained using the algorithm which yields the best overall performance (bold values in

tables 3.3, 3.4, 3.5 and 3.6).

Table 3.7 allows for analyzing how the overall efficiency is decomposed according to the
metrics proposed above. Dividing the 11pts-256 matrix in several block-rows does not
induce a penalty on the task granularity (egranularity = 0.99 ≈ 1). Furthermore, thanks to
all the improvements of the task flow proposed in Sections 3.4.5.2 and 3.4.5.3 a pipeline
efficiency of epipeline = 0.97 is achieved. All in all, a global efficiency of e = 0.97 is obtained.
For the 11pts-128 matrix, the matrix decomposition induces a similar granularity penalty
egranularity = 0.98. The slightly lower granularity efficiency is a direct consequence of the
matrix order. For smaller matrices, the tasks are preformed on smaller sizes, thus the
execution time per task is decreased. This makes our algorithm more sensitive to the
overhead created by the communications induced by the dot-products and the broadcasting
of the vector p, ending up with a pipeline efficiency of epipeline = 0.86 with the 1D algorithm.
The global efficiency for this matrix is e = 0.84. This phenomenon is amplified when the
matrix order is getting lower, such as in the case of the af_0_k101 matrix, resulting in a
global efficiency of e = 0.65 and mainly due to a limited pipeline (epipeline = 0, 68).

The Audi_kw matrix yields optimal performance with the 2D algorithm (see Sec-
tion 3.4.5.4). Although the 2D algorithm requires to split the matrix in many more blocks
inducing a higher penalty on granularity (egranularity = 0.87), it allows for a better overlap
of communication with computation ensuring that a higher pipeline (epipeline = 0.91) is
achieved. With this trade-off, an overall efficiency of equal to e = 0.79 is obtained.

3.4.6.2 Multicore experiments

Table 3.8 presents the performance achieved for all four matrices in the multicore case. The
optimal performance is represented for each scheme. For a comparison purpose, we have also

117

implemented a CG algorithm on top multi-threaded Mkl. In this case, for each operation
the corresponding Mkl kernel is called and the multi-threading is managed internally by the
library. The observed performance for the Mkl-based code are also presented in Table 3.8.

11pts-256 11pts-128 Audi_kw af_0_k101

#CPU version 1D 2D 1D 2D 1D 2D 1D 2D

1
STF 1.15 1.19 1.32 1.37

Mkl 1.10 1.12 1.25 1.37

3
STF 1.80 1.79 1.90 1.70 2.14 2.01 2.30 2.09

Mkl 2.19 2.21 2.22 2.54

6
STF 2.13 2.16 2.21 2.07 2.51 2.40 2.60 2.48

Mkl 3.13 3.02 2.75 3.77

12
STF 3.71 – 3.64 3.51 4.23 3.75 3.91 3.71

Mkl 3.49 3.41 3.24 4.14

Table 3.8: Performance (in Gflop/s) of our version and the Mkl version of the CG
algorithm for the multicore case.

For each matrix when only one CPU is used we observe a performance slightly larger than
1 Gflop/s (both for our task-based code and the Mkl-based version). As a consequence,
when 12 CPU cores are used, ideally we would expected a parallel performance of about
12 Gflop/s. Nevertheless, for all the matrices the optimal performance obtained with 12
CPU cores is approximately 4 Gflop/s. Table 3.9 indeed shows that in spite of a very decent
pipeline (0.89 ≤ epipeline ≤ 0.99), the overall efficiency is strongly limited by the efficiency of
the tasks (0.26 ≤ etasks ≤ 0.28). Indeed, CG relies on memory-bound operations. On this
platform, we achieve a bandwidth peak of around 25 GB/s (theoretical peak is 32 GB/s).
For instance, the most costly operation for the CG algorithm is the SpMV operation. On
this platform the optimal performance for this operation is about 5.5 Gflop/s with the CSR
spare matrix format. On the other hand, dividing the matrix in several sub-blocks does not
deteriorate the achieved performance (egranularity = 1 for all matrices). These matrices are
large enough to provide enough computational load for the CPU cores even once divided.

3.4.6.3 Preliminary results in the heterogeneous case

One advantage of relying on task-based programming is that the architecture is fully ab-
stracted. We have shown above that the same code could hence be executed on both a
multi-GPU platform and a multicore platform while consistently achieving very competi-
tive performance. We prove here that we can furthermore benefit from this design to run
on an heterogeneous node composed of all available computational resources. Because the
considered platform has 12 CPU cores and three GPUs but that each GPU has a CPU core
dedicated to handle it, we can rely on nine CPU workers and three GPU workers in total.

Figure 3.14 present execution traces relying on two different strategies for balancing the

118

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

Matrix 11pts-256 11pts-128 Audi_kw af_0_k101

S 3.22 3.06 3.20 2.85

SMkl 3.17 3.04 2.59 3.02

egranularity 1.00 1.00 1.00 1.00

etasks 0.26 0.26 0.28 0.27

epipeline 0.99 0.97 0.96 0.89

e 0.27 0.25 0.27 0.24

eMkl 0.26 0.25 0.22 0.25

Table 3.9: Speed-up and efficiency for the multicore case. S the speed-up, e the overall
efficiency, the effects of granularity on efficiency egranularity, the effect of using multiple

CPUs at the same time etasks and the effects of pipeline on efficiency epipeline are defined
with Definition 1, 2, 3 and 4 respectively. In our case p = 12 and all values in this table
are obtained using the algorithm which yields the best overall performance (bold values in

Tables 3.8).

(a) nnz-based load balancing. (b) performance model-based load balancing.

Figure 3.14: Traces of an execution of one iteration of the CG algorithm in the
heterogeneous case (nine CPU and three GPU workers) with different partitioning
strategies for the Audi_kw matrix. The nnz is equilibrated per block-row in 3.14(a)

(33µs). In 3.14(b) a feed-back from a history based performance model is used for the
partitioning of the matrix (16µs).

119

load between CPU cores and GPU. These traces show the ability of task-based programming
in exploiting heterogeneous platforms. However, they also show that more advanced load
balancing strategies need to be designed in order to achieve a better occupancy. This
question has not been further investigated and remains open for future work.

3.4.7 Combining software pipelining with numerical pipelining

We have shown above that task-based programming allows for achieving a high efficiency
of software pipelining in the case of the classical formulation of the CG algorithm. To cope
with the large number of computational units, another possibility consists in rewriting the
considered numerical algorithm in order to alleviate numerical synchronizations. In the
particular case of CG, a so-called “pipelined CG” algorithm was recently proposed [69].
Equivalent to the classical formulation of CG in exact arithmetic, the idea consists in inter-
leaving part of the computation from one iteration to another as shown in the pseudo-code
provided in Algorithm 9. In this section, we study the effects of combining the software
pipelining techniques proposed above together with the numerical pipelining from [69] (Al-
gorithm 9). For that, all optimizations discussed in Section 3.4.5 for achieving a high
software pipelining are applied to the pipelined CG formulation (Algorithm 9).

Algorithm 9 Pseudo-code of the pipelined CG algorithm.

1: r0 ← b− Ax0

2: u0 ← r
3: w0 ← A0u
4: for j = 0, 1, ..., until ‖b−Ax‖‖b‖ ≤ eps do

5: γi = dot(ri, ui)
6: δ = dot(wi, ui)
7: ni = Awi
8: if i > 0 then
9: βi = γi/γi−1;αi = γi/(δ − βiγi/αi−1)
10: else
11: βi = 0;αi = γi/δ
12: end if
13: zi ← ni + βizi−1

14: qi ← wi + βiqi−1

15: pi ← ui + βipi−1

16: xi+1 ← xi + αipi
17: ri+1 ← ri − αiqi
18: ui+1 ← ui − αizi
19: wi+1 ← wi − αizi
20: end for

Although equivalent to the classical formulation of CG in exact arithmetic, pipelined CG
does not consist of the exact same sequence of computation and uses three additional vectors
(vectors u,w and z in Algorithm 9). As a consequence, in finite arithmetic, convergence
may be impacted. These effects are out of the scope of this thesis and the reader is invited

120

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

to read [69] for further details. Another impact of relying on the pipelined CG formulation
is that additional calculation (extra-flop) are performed. More precisely, two additional
scal − axpy (lines 13 and 14 in Algorithm 9) and two additional axpy (lines 18 and 19
in Algorithm 9) operations are required. Because the choice of relying on an algorithm
performing extra-flop shall be transparent to an end-user we normalize the number of flop
performed with pipelined CG to the classical case. This choice also makes performance (in
Gflop/s) of pipelined CG presented below immediately comparable to the one of classical
CG discussed in Section 3.4.6: the higher, the better.

Task execution Idle Fetching input

Figure 3.15: Execution trace of an iteration with the 1D pipelined CG using three GPUs
with the 11pts-256 matrix.

Task execution Idle Fetching input

Figure 3.16: Execution trace of an iteration with the 2D pipelined CG using three GPUs
with the Audi_kw matrix.

Figure 3.15 shows the resulting trace for the 11pts-128 matrix in the 1D case. We

121

can observe that this pipelined version of the task-based CG algorithm overcomes the
numerical synchronization point that was remaining with the previous task-based code
based on classical CG that was due to the reduction finalizing the dot operation (line 8 of
Algorithm 8) as it was highlighted in Section 3.4.5.2. For matrices with an irregular pattern
where we showed above that the 2D version is more appropriate, the impact is even more
spectacular. Figure 3.16 indeed shows that the Audi_kw matrix processed with a 2D scheme
is now fully pipelined.

Matrix 11pts-256 11pts-128 Audi_kw af_0_k101

S 33.1* 2.73 2.42 2.29

e 11.0* 0.90 0.81 0.76

Table 3.10: Speed-up and efficiency of task-based pipelined CG. If Tb(p) represents the
execution time with p GPUs when the matrix is decomposed in b block-rows, the speed-up
S and the overall efficiency e, are defined with Definition 1. In our case p = 3 and all

values in this table are obtained using the algorithm which yields the best overall
performance (bold values in Tables 3.12, 3.13, 3.14 and 3.15). The ’*’ symbol indicates

that the mono-GPU execution occurred out-of-GPU-memory (the runtime system
transparently handles it, preventing a failure but not a performance penalization).

Matrix 11pts-128 Audi_kw af_0_k101

S 3.15 3.21 3.07

e 0.62 0.28 0.26

Table 3.11: Speed-up and efficiency of task-based pipelined CG. If Tb(p) represents the
execution time with p CPU cores when the matrix is decomposed in b block-rows, the

speed-up S and the overall efficiency e, are defined with Definition 1. In our case p = 12
and all values in this table are obtained using the algorithm which yields the best overall

performance (bold values in Table 3.16.)

Table 3.10 presents the speed-up and efficiency of the task-based pipelined CG code
on three GPUs according to the best overall performance represented in bold values in
Tables 3.12, 3.13, 3.14 and 3.15. Similarly, Table 3.11 shows the speed-up and efficiency
when running on 12 CPU cores according the the best overall performance represented
in bold values in Table 3.16. All in all we observe that pipelined CG achieves higher
speed-ups and efficiency than the corresponding classical CG studied in Section 3.4.6 in all
cases. However, because of the extra-flop (which we do not count as mentioned above), the
achieved performance (in terms of Gflop/s) is almost consistently lower both for the multi-
GPU (Tables 3.12, 3.13, 3.14 and 3.15) and the multicore (Table 3.16) cases. The Audi_kw

122

3.4. Towards a full task-based version of MaPHyS: case study with the CG algorithm

matrix processed on a multicore processor is the only exception because its irregular pattern
makes any synchronization point prohibitive and the ability of pipelined CG to fully remove
them brings a definite benefit (see again Figure 3.16).

This observation goes beyond the study of task-based algorithms. Indeed, the proposed
task-based classical CG and pipelined CG implementations can be viewed as highly opti-
mized versions of the algorithms. As a consequence, the above results show that adding
additional pipeline through numerical pipelining is not necessarily beneficial if the original
algorithm already benefits from a high level of software pipelining. Nonetheless, having
the flexibility of adding up this extra level of pipelining provides the opportunity to fur-
ther accelerate CG in the cases where the remaining numerical synchronization point would
otherwise be too much penalizing.

1D 2D

GPUs full packed full packed

1 0.70*

2 11.09 15.55 11.50 14.27

3 11.09 23.18 14.20 19.47

Table 3.12: Performance (in Gflop/s) of pipelined CG on the 11pts-256 matrix for the
multi-GPU case. The ’*’ symbol indicates that the execution occurred

out-of-GPU-memory (the runtime system transparently handles it, preventing a failure
but not a performance penalization).

1D 2D

GPUs full packed full packed

1 7.76

2 10.63 14.88 11.05 13.69

3 10.40 21.14 12.51 18.49

Table 3.13: Performance (in Gflop/s) of pipelined CG on the 11pts-128 matrix for the
multi-GPU case.

1D 2D

GPUs full packed full packed

1 9.33

2 15.42 14.92 13.92 14.61

3 18.59 19.03 20.88 22.60

Table 3.14: Performance (in Gflop/s) of pipelined CG on the Audi_kw matrix for the
multi-GPU case.

123

1D 2D

GPUs full packed full packed

1 8.56

2 12.05 15.24 13.22 14.56

3 12.09 19.58 13.22 18.45

Table 3.15: Performance (in Gflop/s) of pipelined CG on the af_0_k101 matrix for the
multi-GPU case.

11pts-128 Audi_kw af_0_k101

#CPU 1D 2D 1D 2D 1D 2D

1 0.94 1.22 1.18

3 1.26 1.22 1.68 1.56 1.75 1.48

6 1.71 1.66 2.30 2.19 2.37 2.08

12 2.96 2.70 3.92 2.62 3.62 3.22

Table 3.16: Performance (in Gflop/s) of task-based pipelined CG in the the multicore case.

3.5 Conclusion

In this chapter, we investigated the opportunities of designing a task-based version of Ma-
PHyS. We first proposed a MPI+task formulation. This formulation had the advantage of
being relatively conservative and incremental with respect to the approach proposed in the
previous chapter in the sense that it was still an MPI+X paradigm. We however showed
that it was disruptive in the sense that we could abstract the hardware architecture, hence
exploiting homogeneous platforms as well as heterogeneous machines enhanced with GPUs.

To further abstract the hardware architecture, we have discussed the missing ingredients
towards a full task-based expression of a sparse hybrid solver. We have identified that one
key component deserved to be first studied: the Krylov subspace method. Subsequently, we
have proposed a full task-based formulation of the CG algorithm. We managed to refine the
task flow by removing almost all synchronizations of the classical CG algorithm, ensuring
an efficient pipelining of the task flow such that GPUs are almost fully exploited. Although
not so penalizing thanks to an efficient software pipelining, the remaining synchronization
point could be alleviated with the use of the alternative pipelined CG formulation from [69].
There is a trade-off between task granularity and concurrency, controlled by the number
of block-rows. Our performance assessment has shown that the optimum case consistently
corresponds to a perfect matching between the number of blocks and the number of GPUs,
meaning that benefits in terms of scheduling opportunities by splitting the matrix in a
larger number of blocks are by far dominated by the penalty of operating at a smaller
granularity. Contrary to dense linear algebra, where state-of-the art dynamic scheduling
algorithms are sufficient to achieve nearly optimum performance, scheduling opportunities
are thus much more constrained for CG. As a result, each individual scheduling decision

124

3.5. Conclusion

may be fatal to the overall performance and we have proposed a carefully defined static
scheduling algorithm to prevent such effects. This statement also tells us what is (and what
is not) a runtime system. A runtime system is a software layer that allows the user to
express what to do (which task flow, which scheduling algorithm, . . .) and delegate the
question of how to do it (and how to do it efficiently) to a third party. This approach
also ensures performance portability of the code, as illustrated with the benefits of being
immediately able to run the code on different hardware configurations.

Another interesting conclusion is that the proposed task-based classical CG and pipelined
CG implementations can be viewed as highly optimized versions of the algorithms. As a
consequence, this study shows that adding additional pipeline through numerical pipelining
is not necessarily beneficial if the original algorithm already benefits from a high level
of software pipelining. Nonetheless, having the flexibility of adding up this extra level
of pipelining provides the opportunity to further accelerate CG in the cases where the
remaining numerical synchronization point would otherwise be too much penalizing.

125

126

Perspectives and concluding remarks

In this thesis we have studied a few approaches for designing sparse hybrid solvers for mod-
ern supercomputers using the MaPHyS library as a testbed to illustrate our discussions.
We have first proposed a relatively conservatory paradigm consisting in adding a second
level of parallelism to the baseline MPI version of MaPHyS. To efficiently exploit hierar-
chical supercomputer architectures, designed as clusters of multicore processors, we have
proposed an MPI+thread design. Intensive and detailed experiments up to tens of thou-
sands of CPU cores showed that this approach could achieve a very competitive performance
while maintaining enough flexibility to remain numerically robust.

The drawback of that approach was thus not lying in the achievable performance neither
on the numerical robustness that could be ensured but in the maintanibilty and extensi-
bility of the design. Indeed, the hardware versatility of modern supercomputers advocates
for higher level programming paradigms. We have subsequently investigated the potential
of task-based programming paradigms. We first proposed an MPI+task formulation. This
formulation had the advantage of being relatively conservative with respect to the approach
proposed earlier in the sense that it was still an MPI+X paradigm while versatile in the sense
that we could abstract the hardware architecture, hence exploiting homogeneous platforms
as well as heterogeneous machines enhanced with GPUs. To illustrate our discussion, we
have designed a prototype implementation of an MPI+task version of MaPHyS. Although
this prototype is working properly and showed the feasibility of the proposed approach, de-
signing a solid MPI+task version of MaPHyS would require further work. First of all, the
proposed approach still follows a bulk-synchronous parallelism. To overcome the subsequent
synchronizations, it would be necessary to overlap symbolic preprocessing steps occurring
within the internal PaStiX and Chameleon solvers. Second, except the application of
the preconditioner, other operations occurring within the iterative part of the solve step
step have not been implemented following a task-based internal design. Finally, to com-
pletely alleviate the synchronizations between the different sequences into which MaPHyS
is decomposed, it would be necessary to further overlap communication with computation.
This could be either performed with a clever usage of asynchronous MPI calls (but would
certainly be hard to achieve at a fine-grain level) or by appending the MPI calls to the task
flow so that the runtime system can dynamically decide when to perform the actual MPI
calls to the MPI layer and interleave them with fine-grain computational tasks. Modern
runtime systems such as StarPU provide such an opportunity and investigating such an
approach is one of our main perspectives.

127

We have finally considered a full abstraction of the hardware architecture by considering
a full task-based expression of the solver. After having discussed the missing ingredients
towards a full task-based expression of a sparse hybrid solver, we have identified that one
key component deserved to be first studied: the Krylov subspace method. Subsequently,
we have proposed a full task-based formulation of the CG algorithm. We managed to refine
the task flow up to removing almost all synchronizations of the classical CG algorithm, en-
suring an efficient pipelining of the task flow. We showed that the considered approach was
extremely efficient to achieve high performance on multiple types of modern architectures.
We relied on the STF paradigm to design our prototype task-based CG solver. We showed
that such a design could ensure a high productivity, making reasonable to implement ad-
vanced numerical scheme such as the pipelined CG formulation from [69] and subsequently
achieving an even higher performance.

The potential bottleneck of the STF paradigm is that the dependencies are computed
at runtime based on sequential consistency. As a consequence, a centralized view of the
task flow needs to be built, which might be a bottleneck for going at scale. One possibility
to overcome it would consist on another full task-based paradigm that explicitly encodes
dependencies such as PTG discussed in Section 3.2.1.1. This approach is not considered in
this thesis and will be addressed in future work relying on a modern runtime system that
can support it such as PaRSEC.

At longer term, this thesis motivates for the implementation of a full task-based sparse
hybrid solver and compare the underlying potential STF and PTG designs for extreme scale
computing.

128

Bibliography

[1] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide.
http://developer.download.nvidia.com, 2007.

[2] MAGMA Users’ Guide, version 0.2. http://icl.cs.utk.edu/magma, November 2009.

[3] PLASMA Users’ Guide, Parallel Linear Algebra Software for Multicore Architectures,
Version 2.0. http://icl.cs.utk.edu/plasma, November 2009.

[4] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Mathieu Faverge, Julien Langou,
Hatem Ltaief, and Stanimire Tomov. LU factorization for accelerator-based systems.
In Howard Jay Siegel and Amr El-Kadi, editors, The 9th IEEE/ACS International
Conference on Computer Systems and Applications, AICCSA 2011, Sharm El-Sheikh,
Egypt, December 27-30, 2011, pages 217–224. IEEE, 2011.

[5] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Mathieu Faverge, Hatem Ltaief,
Samuel Thibault, and Stanimire Tomov. QR Factorization on a Multicore Node
Enhanced with Multiple GPU Accelerators. In IPDPS, pages 932–943. IEEE, 2011.

[6] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond
Namyst, Samuel Thibault, and Stanimire Tomov. Faster, Cheaper, Better – a Hy-
bridization Methodology to Develop Linear Algebra Software for GPUs. In Wen mei
W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann, September
2010.

[7] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond
Namyst, Samuel Thibault, and Stanimire Tomov. Faster, Cheaper, Better – a Hy-
bridization Methodology to Develop Linear Algebra Software for GPUs. In Wen mei
W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann, September
2010.

[8] Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve, Matthias Messner,
and Toru Takahashi. Task-based FMM for multicore architectures. SIAM J. Scientific
Computing, 36(1), 2014.

[9] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, and Florent Lopez. Multi-
frontal QR factorization for multicore architectures over runtime systems. In Euro-Par
2013 Parallel Processing - 19th International Conference, Aachen, Germany, August
26-30, 2013. Proceedings, pages 521–532, 2013.

129

[10] Gabrielle Allen, Jaroslaw Nabrzyski, Edward Seidel, G. Dick van Albada, Jack Don-
garra, and Peter M. A. Sloot, editors. Computational Science - ICCS 2009, 9th
International Conference, Baton Rouge, LA, USA, May 25-27, 2009, Proceedings,
Part I, volume 5544 of Lecture Notes in Computer Science. Springer, 2009.

[11] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, 2002.

[12] Marco Ament, Günter Knittel, Daniel Weiskopf, and Wolfgang Straßer. A parallel
preconditioned conjugate gradient solver for the Poisson problem on a multi-GPU
platform. In Marco Danelutto, Julien Bourgeois, and Tom Gross, editors, PDP,
pages 583–592. IEEE Computer Society, 2010.

[13] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41, 2001.

[14] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[15] Patrick Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Xiaoye S. Li. Analysis and
comparison of two general sparse solvers for distributed memory computers. ACM
Trans. Math. Softw., 27(4):388–421, 2001.

[16] Hartwig Anzt, Stanimire Tomov, Piotr Luszczek, William Sawyer, and Jack Don-
garra. Acceleration of gpu-based krylov solvers via data transfer reduction. IJHPCA,
29(3):366–383, 2015.

[17] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9(1):17–29, 1951.

[18] C. Ashcraft. The fan-both family of column-based distributed Cholesky factorisation
algorithm. In A. George, J.R. Gilbert, and J.W.H Liu, editors, Graph Theory and
Sparse Matrix Computations, pages 159–190. Springer-Verlag NY, 1993.

[19] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures. Concurrency and Computation: Practice and Experience, Special Issue:
Euro-Par 2009, 23:187–198, February 2011.

[20] Cedric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures. Concurrency and Computation: Practice and Experience, Special Issue:
Euro-Par 2009, 23:187–198, February 2011.

[21] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta, Rafael Mayo,
and Enrique S. Quintana-Ort́ı. An extension of the starss programming model for
platforms with multiple GPUs. In Euro-Par, pages 851–862, 2009.

130

[22] Rosa M. Badia, José R. Herrero, Jesús Labarta, Josep M. Pérez, Enrique S. Quintana-
Ort́ı, and Gregorio Quintana-Ort́ı. Parallelizing dense and banded linear algebra
libraries using SMPSs. Concurrency and Computation: Practice and Experience,
21(18):2438–2456, 2009.

[23] Jacques Bahi, Raphaël Couturier, and Lilia Ziane Khodja. Parallel sparse linear solver
GMRES for GPU clusters with compression of exchanged data. In HeteroPar’11, 9-th
Int. Workshop on Algorithms, Models and Tools for Parallel Computing on Hetero-
geneous Platforms, LNCS, Bordeaux, France, August 2011. Springer. To appear.

[24] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. Curfman McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

[25] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, second
edition, 1994.

[26] Hélène Barucq, Rabia Djellouli, and Elodie Estecahandy. Efficient DG-like formu-
lation equipped with curved boundary edges for solving elasto-acoustic scattering
problems. International Journal for Numerical Methods in Engineering, 2014. To
appear.

[27] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In SC. ACM, 2009.

[28] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner
for the conjugate gradient method. SIAM Journal on Scientific Computing, 17:1135–
1149, 1996.

[29] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsym-
metric linear systems. SIAM Journal on Scientific Computing, 19:968–994, 1998.

[30] P. Bjørstad and O. Widlund. Iterative methods for the solution of elliptic problems
on regions partitioned into substructures. SIAM Journal on Numerical Analysis,
23(6):1097–1120, 1986.

[31] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM Press, 1997.

[32] Lionel Boillot. Contributions to the mathematical modeling and to the parallel al-
gorithmic for the optimization of an elastic wave propagator in anisotropic media.
Theses, Université de Pau et des Pays de l’Adour, December 2014. Collaboration
Inria-Total.

[33] G. Bosilca, A. Bouteiller, A Danalis, M. Faverge, H. Haidar, T. Herault, J. Kurzak,
J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan, and J. Dongarra.

131

Distributed-Memory Task Execution and Dependence Tracking within DAGuE and
the DPLASMA Project. Innovative Computing Laboratory Technical Report, 2010.

[34] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam
Haidar, Thomas Hérault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem
Ltaief, Piotr Luszczek, Asim YarKhan, and Jack Dongarra. Flexible Develop-
ment of Dense Linear Algebra Algorithms on Massively Parallel Architectures with
DPLASMA. In IPDPS Workshops, pages 1432–1441. IEEE, 2011.

[35] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J. Dongarra. Parsec: Exploiting heterogeneity to enhance scal-
ability. Computing in Science and Engineering, 15(6):36–45, 2013.

[36] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Hérault, Pierre
Lemarinier, and Jack Dongarra. DAGuE: A generic distributed DAG engine for high
performance computing. Parallel Computing, 38(1-2):37–51, 2012.

[37] J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational formula-
tion and algorithm for trace operator in domain decomposition calculations. In Tony
Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors, Domain De-
composition Methods, pages 3–16, Philadelphia, PA, 1989. SIAM.

[38] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc:
a Generic Framework for Managing Hardware Affinities in HPC Applications. In
IEEE, editor, PDP 2010 - The 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing, Pisa, Italy, February 2010.

[39] Alfredo Buttari. Fine granularity sparse QR factorization for multicore based systems.
In Proceedings of the 10th international conference on Applied Parallel and Scientific
Computing - Volume 2, PARA’10, pages 226–236, Berlin, Heidelberg, 2012. Springer-
Verlag.

[40] Alfredo Buttari. Fine-grained multithreading for the multifrontal QR factorization of
sparse matrices. SIAM J. Scientific Computing, 35(4), 2013.

[41] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled QR
factorization for multicore architectures. Concurrency and Computation: Practice
and Experience, 20(13):1573–1590, 2008.

[42] X.-C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general
sparse matrices. Numerical Linear Algebra with Applications, 3:221–237, 1996.

[43] L. M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-level
non-overlapping domain decomposition methods. Numerical Linear Algebra with Ap-
plications, 8(4):207–227, 2001.

[44] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. Fast conjugate gradients with
multiple GPUs. In Allen et al. [10], pages 893–903.

132

[45] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. High performance conjugate gra-
dient solver on multi-GPU clusters using hypergraph partitioning. Computer Science
- R&D, 25(1-2):83–91, 2010.

[46] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations.
SIAM, Philadelphia, 1996.

[47] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, and
R. A. van de Geijn. Supermatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks. In PPOPP, pages 123–132, 2008.

[48] Tony F. C. Chan and Tarek P. Mathew. The interface probing technique in domain
decomposition. SIAM J. Matrix Anal. Appl., 13(1):212–238, January 1992.

[49] Langshi Chen, Serge Petiton, Leroy Drummond, and Maxime Hugues. A commu-
nication optimization scheme for basis computation of krylov subspace methods on
multi-gpus. In High Performance Computing for Computational Science – VECPAR
2014, volume 8969 of Lecture Notes in Computer Science, pages 3–16. Springer Inter-
national Publishing, 2015.

[50] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajaman-
ickam. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and
update/downdate. ACM Trans. Math. Softw., 35(3):22:1–22:14, October 2008.

[51] Zhangxin Chen, Hui Liu, and Bo Yang. Accelerating iterative linear solvers using
multiple graphical processing units. Int. J. Comput. Math., 92(7):1422–1438, 2015.

[52] C. Chevalier and F. Pellegrini. PT-SCOTCH: a tool for efficient parallel graph order-
ing. Parallel Computing, 34(6-8), 2008.

[53] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse
matrix-vector multiply on GPUs. Technical report, 2010.

[54] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse precondi-
tioners. SIAM Journal on Scientific Computing, 21(5):1804–1822, 2000.

[55] M. Cosnard and M. Loi. Automatic task graph generation techniques. In System
Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International Conference
on, volume 2, pages 113–122 vol.2, Jan 1995.

[56] Raphaël Couturier and Stéphane Domas. Sparse systems solving on GPUs with
GMRES. The Journal of Supercomputing, 59(3):1504–1516, 2012.

[57] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain decomposition
preconditioner. In Roland Glowinski, Yuri Kuznetsov, Gérard Meurant, Jacques Péri-
aux, and Olof Widlund, editors, Fourth International Symposium on Domain Decom-
position Methods for Partial Differential Equations, pages 112–128. SIAM, Philadel-
phia, PA, 1991.

133

[58] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal
algorithm for sparse Gaussian elimination. SIAM Journal on Matrix Analysis and
Applications, 20(4):915–952, October 1999.

[59] J. Drkošová, M. Rozložńık, Z. Strakoš, and A. Greenbaum. Numerical stability of the
GMRES method. BIT, 35:309–330, 1995.

[60] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, London, 1986.

[61] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Transactions on Mathematical Software, 9:302–325, 1983.

[62] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear
systems. SIAM Journal on Scientific and Statistical Computing, 5:633–641, 1984.

[63] Mathieu Faverge and Pierre Ramet. Dynamic scheduling for sparse direct solver on
NUMA architectures. In PARA’08, LNCS, Trondheim, Norvège, 2008.

[64] J. Gaidamour and P. Hénon. A parallel direct/iterative solver based on a schur
complement approach. 2013 IEEE 16th International Conference on Computational
Science and Engineering, 0:98–105, 2008.

[65] Thierry Gautier, Fabien Le Mentec, Vincent Faucher, and Bruno Raffin. X-kaapi: A
multi paradigm runtime for multicore architectures. In 42nd International Conference
on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013, pages 728–735,
2013.

[66] Damien Genet, Abdou Guermouche, and George Bosilca. Assembly operations for
multicore architectures using task-based runtime systems. In Euro-Par 2014: Parallel
Processing Workshops - Euro-Par 2014 International Workshops, Porto, Portugal,
August 25-26, 2014, Revised Selected Papers, Part II, pages 338–350, 2014.

[67] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury. Multifrontal
factorization of sparse SPD matrices on GPUs. In Proceedings of 25th International
Parallel and Distributed Processing Symposium (IPDPS’11), pages 372–383, 2011.

[68] Serban Georgescu and Hiroshi Okuda. Conjugate gradients on multiple GPUs. In-
ternational Journal for Numerical Methods in Fluids, 64(10-12):1254–1273, 2010.

[69] Pieter Ghysels and Wim Vanroose. Hiding global synchronization latency in the pre-
conditioned conjugate gradient algorithm. Parallel Computing, 40(7):224–238, 2014.

[70] L. Giraud, A. Haidar, and L. T. Watson. Parallel scalability study of hybrid precon-
ditioners in three dimensions. Parallel Computing, 34:363–379, 2008.

[71] L. Giraud and R. Tuminaro. Algebraic domain decomposition preconditioners. In
F. Magoules, editor, Mesh partitioning techniques and domain decomposition methods,
pages 187–216. Saxe-Coburg Publications, 2007.

134

[72] Luc Giraud and A. Haidar. Parallel algebraic hybrid solvers for large 3D convection-
diffusion problems. Numerical Algorithms, 51(2):151–177, 2009.

[73] Luc Giraud, A. Haidar, and S. Pralet. Using multiple levels of parallelism to enhance
the performance of domain decomposition solvers. Parallel Computing, 36(5-6):285–
296, 2010.

[74] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[75] A. Greenbaum. Iterative methods for solving linear systems. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[76] M. Grote and T. Huckle. Parallel preconditionings with sparse approximate inverses.
SIAM Journal on Scientific Computing, 18:838–853, 1997.

[77] Anshul Gupta and Anshul Gupta. Wsmp: Watson sparse matrix package. Technical
report, IBM, 2000.

[78] Azzam Haidar. On the parallel scalability of hybrid linear solvers for large 3D prob-
lems. PhD thesis, Institut National Polytechnique de Toulouse, December 17 2008.

[79] T. D. R. Hartley, E. Saule, and Ü. V. Çatalyürek. Improving performance of adaptive
component-based dataflow middleware. Parallel Computing, 38(6-7):289–309, 2012.

[80] Kai He, Sheldon X.-D. Tan, Hengyang Zhao, Xue-Xin Liu, Hai Wang, and Guoyong
Shi. Parallel GMRES solver for fast analysis of large linear dynamic systems on GPU
platforms. Integration, the VLSI Journal, 52:10 – 22, 2016.

[81] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–321,
January 2002.

[82] Pascal Hénon and Yousef Saad. A parallel multistage ILU factorization based on a
hierarchical graph decomposition. SIAM J. Sci. Comput., 28(6):2266–2293, December
2006.

[83] M. Heroux. AztecOO user guide. Technical Report SAND2004-3796, Sandia National
Laboratories, Albuquerque, NM, 87185, 2004.

[84] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tumi-
naro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An overview
of the trilinos project. ACM Transactions on Mathematical Software, 31(3):397–423,
September 2005.

[85] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
system. J. Res. Nat. Bur. Stds., B49:409–436, 1952.

135

[86] D. Higham and N. Higham. Structured backward error and condition of generalized
eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 20(2):493–
512, 1998.

[87] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

[88] P. Jolivet. Méthodes de décomposition de domaine. Application au calcul haute per-
formance. PhD thesis, Université de Grenoble, 2014.

[89] Laxmikant V. Kalé and Sanjeev Krishnan. CHARM++: A portable concurrent object
oriented system based on c++. In OOPSLA, pages 91–108, 1993.

[90] G. Karypis and V. Kumar. MeTiS – Unstructured Graph Partitioning and Sparse
Matrix Ordering System – Version 2.0. University of Minnesota, June 1995.

[91] L. Yu Kolotilina, A. Yu. Yeremin, and A. A. Nikishin. Factorized sparse approxi-
mate inverse preconditionings. III: Iterative construction of preconditioners. Journal
of Mathematical Sciences, 101:3237–3254, 2000. Originally published in Russian in
Zap. Nauchn. Semin. POMI, 248:17-48, 1998.

[92] D. M. Kunzman and L. V. Kalé. Programming heterogeneous clusters with accelera-
tors using object-based programming. Scientific Programming, 19(1):47–62, 2011.

[93] Jakub Kurzak and Jack Dongarra. Fully dynamic scheduler for numerical computing
on multicore processors. LAPACK working note, lawn220, 2009.

[94] Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia. Scheduling dense
linear algebra operations on multicore processors. Concurrency and Computation:
Practice and Experience, 22(1):15–44, 2010.

[95] X. Lacoste. Scheduling and memory optimizations for sparse direct solver on multi-
core/multi-gpu cluster systems. PhD thesis, LaBRI, Université Bordeaux, Talence,
France, February 2015.

[96] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res.
Nat. Bur. Stand., 49:33–53, 1952.

[97] Jean-Yves L’Excellent and Wissam M. Sid-Lakhdar. A study of shared-memory par-
allelism in a multifrontal solver. Parallel Computing, 40(3-4):34–46, 2014.

[98] Ruipeng Li, Hector Klie, Hari Sudan, and Yousef Saad. Towards Realistic Reservoir
Simulations on Manycore Platforms. SPE Journal, pages 1–23, 2010.

[99] X. S. Li, M. Shao, I. Yamazaki, and E. G. Ng. Factorization-based sparse solvers and
preconditioners. Journal of Physics: Conference Series, 180(1):012015, 2009.

[100] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw.,
29(2):110–140, June 2003.

136

[101] Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recur-
sive multilevel solver. Technical Report Technical Report UMSI-2001-100, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, 2001.

[102] R. J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized Nested Dissec-
tion. SIAM Journal on Numerical Analysis, 16(2), 1979.

[103] Florent Lopez. Task-based multifrontal QR solver for heterogeneous architectures.
PhD thesis, University Paul Sabatier, Toulouse, France, 2015. submitted.

[104] Hatem Ltaief and Rio Yokota. Data-driven execution of fast multipole methods.
CoRR, abs/1203.0889, 2012.

[105] Robert F. Lucas, Gene Wagenbreth, Dan M. Davis, and Roger Grimes. Multifrontal
computations on GPUs and their multi-core hosts. In Proceedings of the 9th inter-
national conference on High performance computing for computational science, VEC-
PAR’10, pages 71–82, Berlin, Heidelberg, 2011. Springer-Verlag.

[106] C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In MICRO, pages 45–55, 2009.

[107] T. Mathew. Domain Decomposition Methods for the Numerical Solution of Partial
Differential Equations. Springer Lecture Notes in Computational Science and Engi-
neering. Springer, 2008.

[108] G. Meurant. The Lanczos and conjugate gradient algorithms: from theory to finite
precision computations. Software, Environments, and Tools 19. SIAM, Philadelphia,
PA, USA, 2006.

[109] G. L. Miller and S. A. Vavasis. Density graphs and separators. In Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 331–336, 1991.

[110] Alexander Monakov and Arutyun Avetisyan. Implementing blocked sparse matrix-
vector multiplication on NVIDIA GPUs. In Koen Bertels, Nikitas J. Dimopoulos,
Cristina Silvano, and Stephan Wong, editors, SAMOS, volume 5657 of Lecture Notes
in Computer Science, pages 289–297. Springer, 2009.

[111] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. Automatically tun-
ing sparse matrix-vector multiplication for GPU architectures. In Yale N. Patt, Pier-
francesco Foglia, Evelyn Duesterwald, Paolo Faraboschi, and Xavier Martorell, edi-
tors, HiPEAC, volume 5952 of Lecture Notes in Computer Science, pages 111–125.
Springer, 2010.

[112] A. Munshi. The OpenCL specification, khronos opencl working group, version 1.1,
revision 44, 2011.

[113] Tomás Oberhuber, Atsushi Suzuki, and Jan Vacata. New row-grouped CSR for-
mat for storing the sparse matrices on GPU with implementation in CUDA. CoRR,
abs/1012.2270, 2010.

137

[114] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[115] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell. A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum, 26(1):80–113, 2007.

[116] C. Paige, M. Rozložńık, and Z. Strakoš. Modified Gram-Schmidt (MGS), least-
squares, and backward stability of MGS-GMRES. SIAM Journal on Matrix Analysis
and Applications, 28(1):264–284, 2006.

[117] Forum Message Passing. MPI: A message-passing interface standard. Technical re-
port, University of Tennessee, Knoxville, TN, USA, 1994.

[118] F. Pellegrini and J. Roman. Sparse matrix ordering with scotch. In Proceedings of
HPCN’97, Vienna, LNCS 1225, pages 370–378, April 1997.

[119] A. Quarteroni and A. Valli. Domain decomposition methods for partial differential
equations. Numerical mathematics and scientific computation. Oxford science publi-
cations, Oxford, 1999.

[120] G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, E. Chan, F. G. Van Zee, and R. A. van de
Geijn. Scheduling of QR factorization algorithms on SMP and multi-core architec-
tures. In Proceedings of PDP’08, 2008. FLAME Working Note #24.

[121] Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Ort́ı, and Robert A.
van de Geijn. Solving dense linear systems on platforms with multiple hardware
accelerators. ACM SIGPLAN Notices, 44(4):121–130, April 2009.

[122] G. Radicati and Y. Robert. Parallel conjugate gradient-like algorithms for solving
nonsymmetric linear systems on a vector multiprocessor. Parallel Computing, 11:223–
239, 1989.

[123] S. Rajamanickam, E. G. Boman, and M. A. Heroux. ShyLU: A hybrid-hybrid solver for
multicore platforms. Parallel and Distributed Processing Symposium, International,
0:631–643, 2012.

[124] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism. O’Reilly, 2007.

[125] Steven C. Rennich, Darko Stosic, and Timothy A. Davis. Accelerating sparse cholesky
factorization on gpus. In Proceedings of the Fourth Workshop on Irregular Applica-
tions: Architectures and Algorithms, IA3 ’14, pages 9–16, Piscataway, NJ, USA, 2014.
IEEE Press.

[126] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput., 14:461–469, 1993.

[127] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear
Algebra with Applications, 1:387–402, 1994.

138

[128] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[129] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

[130] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20-th
century. Tech. Rep. UMSI-99-152, University of Minnesota, 1999.

[131] Piyush Sao, Xing Liu, Richard Vuduc, and Xiaoye Li. A sparse direct solver for dis-
tributed memory xeon phi-accelerated systems. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pages 71–81, May 2015.

[132] Piyush Sao, Richard W. Vuduc, and Xiaoye Sherry Li. A distributed CPU-GPU
sparse direct solver. In Euro-Par 2014 Parallel Processing, pages 487–498, 2014.

[133] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. PARDISO:
A high-performance serial and parallel sparse linear solver in semiconductor device
simulation, 2000.

[134] H. A. Schwarz. Über eine grenzübergang durch alternirendes verfahren. Gesammelete
Mathematische Abhandlungen, Springer-Verlag, 2:133–143, 1890. First published in
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, vol.15, pp. 272-286,
1870.

[135] B. F. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition, Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, New
York, 1st edition, 1996.

[136] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems. In Proceedings
of the ACM/IEEE Conference on High Performance Computing, SC’09, 2009.

[137] P. Le Tallec, Y.-H. De Roeck, and M. Vidrascu. Domain-decomposition methods for
large linearly elliptic three dimensional problems. J. of Computational and Applied
Mathematics, 34:93–117, 1991.

[138] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems, 13(3):260–274, Mar 2002.

[139] Sean Treichler, Michael Bauer, and Alex Aiken. Realm: an event-based low-level
runtime for distributed memory architectures. In International Conference on Parallel
Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, August 24-27,
2014, pages 263–276, 2014.

[140] R. S. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid. Official Aztec user’s
guide: Version 2.1. Technical Report Sand99-8801J, Sandia National Laboratories,
Albuquerque, NM, 87185, Nov 1999.

139

[141] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[142] Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S. Quintana-Orti,
and Gregorio Quintana-Orti. The libflame Library for Dense Matrix Computations.
Computing in Science and Engineering, 11(6):56–63, November/December 2009.

[143] Mickeal Verschoor and Andrei C. Jalba. Analysis and performance estimation of the
conjugate gradient method on multiple GPUs. Parallel Computing, 38:552 – 575,
2012.

[144] Mingliang Wang, Hector Klie, Manish Parashar, and Hari Sudan. Solving sparse
linear systems on NVIDIA Tesla GPUs. In Allen et al. [10], pages 864–873.

[145] W.A. Wiggers, V. Bakker, A.B.J. Kokkeler, and G.J.M. Smit. Implementing the
Conjugate Gradient algorithm on multi-core systems. In System-on-Chip, 2007 In-
ternational Symposium on, pages 1 –4, nov. 2007.

[146] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, 1963.

[147] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Proceedings of the 2007 ACM/IEEE conference on Supercom-
puting, SC ’07, pages 38:1–38:12, New York, NY, USA, 2007. ACM.

[148] Ichitaro Yamazaki, Hartwig Anzt, Stanimire Tomov, Mark Hoemmen, and Jack J.
Dongarra. Improving the performance of CA-GMRES on multicores with multiple
gpus. In 2014 IEEE 28th International Parallel and Distributed Processing Sympo-
sium, Phoenix, AZ, USA, May 19-23, 2014, pages 382–391, 2014.

[149] Ichitaro Yamazaki and Xiaoye S. Li. On techniques to improve robustness and scala-
bility of a parallel hybrid linear solver. In VECPAR, pages 421–434, 2010.

[150] Ichitaro Yamazaki, Sivasankaran Rajamanickam, Erik G. Boman, Mark Hoemmen,
Michael A. Heroux, and Stanimire Tomov. Domain decomposition preconditioners
for communication-avoiding krylov methods on a hybrid CPU/GPU cluster. In In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014, pages 933–944,
2014.

[151] Chenhan D. Yu, Weichung Wang, and Dan’l Pierce. A CPU-GPU hybrid approach
for the unsymmetric multifrontal method. Parallel Comput., 37:759–770, December
2011.

[152] Lilia Ziane Khodja, Raphaël Couturier, Arnaud Giersch, and JacquesM. Bahi. Parallel
sparse linear solver with gmres method using minimization techniques of communi-
cations for gpu clusters. The Journal of Supercomputing, 69(1):200–224, 2014.

140

[153] Dan Zou, Yong Dou, Song Guo, Rongchun Li, and Lin Deng. Supernodal sparse
cholesky factorization on graphics processing units. Concurrency and Computation:
Practice and Experience, 26(16):2713–2726, 2014.

141

	THÈSE PRÉSENTÉE
	POUR OBTENIR LE GRADE DE
	L’UNIVERSITÉ DE BORDEAUX
	ÉCOLE DOCTORALE
	Par Stojce NAKOV
	On the design of sparse hybrid linear solvers
	for modern parallel architectures
	Soutenue le : 14 décembre 2015
	Titre€: Sur la conception de solveurs linéaires hybrides pour les architectures parallèles modernes
	Résumé€:
	Dans le contexte de cette thèse, nous nous focalisons sur des
	algorithmes pour l’algèbre linéaire numérique, plus précisément sur la
	résolution de grands systèmes linéaires creux. Nous mettons au point
	des méthodes de parallélisation pour le solveur linéaire hybride
	MaPHyS. Premièrement nous considerons l'aproche MPI+threads. Dans
	MaPHyS, le premier niveau de parallélisme consiste au traitement
	indépendant des sous-domaines. Le second niveau est exploité grâce à
	l’utilisation de noyaux multithreadés denses et creux au sein des
	sous-domaines. Une telle implémentation correspond bien à la structure
	hiérarchique des supercalculateurs modernes et permet un compromis
	entre les performances numériques et parallèles du solveur. Nous
	démontrons la flexibilité de notre implémentation parallèle sur un
	ensemble de cas tests. Deuxièmement nous considérons un approche plus
	innovante, où les algorithmes sont décrits comme des ensembles de
	tâches avec des inter-dépendances, i.e., un graphe de tâches orienté
	sans cycle (DAG). Nous illustrons d’abord comment une première
	parallélisation à base de tâches peut être obtenue en composant des
	librairies à base de tâches au sein des processus MPI illustrer par un
	prototype d’implémentation préliminaire de notre solveur hybride. Nous
	montrons ensuite comment une approche à base de tâches abstrayant
	entièrement le matériel peut exploiter avec succès une large gamme
	d’architectures matérielles. À cet effet, nous avons implanté une
	version à base de tâches de l’algorithme du Gradient Conjugué et nous
	montrons que l’approche proposée permet d’atteindre une très haute
	performance sur des architectures multi-GPU, multicoeur ainsi
	qu’hétérogène.
	Mots clés€: Calcul haute performance'€;multi-cœur€; solveur linéaires creux€; méthodes hybride€; programmation en tâche€; architecture hétérogène.
	Title€:
	On the design of sparse hybrid linear solvers
	for modern parallel architectures
	Abstract€:
	In the context of this thesis, our focus is on numerical linear
	algebra, more precisely on solution of large sparse systems of linear
	equations. We focus on designing efficient parallel implementations of
	MaPHyS, an hybrid linear solver based on domain decomposition
	techniques. First we investigate the MPI+threads approach. In MaPHyS,
	the first level of parallelism arises from the independent treatment
	of the various subdomains. The second level is exploited thanks to the
	use of multi-threaded dense and sparse linear algebra kernels involved
	at the subdomain level. Such an hybrid implementation of an hybrid
	linear solver suitably matches the hierarchical structure of modern
	supercomputers and enables a trade-off between the numerical and
	parallel performances of the solver. We demonstrate the flexibility of
	our parallel implementation on a set of test examples. Secondly, we
	follow a more disruptive approach where the algorithms are described
	as sets of tasks with data inter-dependencies that leads to a directed
	acyclic graph (DAG) representation. The tasks are handled by a runtime
	system. We illustrate how a first task-based parallel implementation
	can be obtained by composing task-based parallel libraries within MPI
	processes throught a preliminary prototype implementation of our
	hybrid solver. We then show how a task-based approach fully
	abstracting the hardware architecture can successfully exploit a wide
	range of modern hardware architectures. We implemented a full
	task-based Conjugate Gradient algorithm and showed that the proposed
	approach leads to very high performance on multi-GPU, multicore and
	heterogeneous architectures.
	Keywords€: High Performance Computing (HPC); multicore; sparse linear solver; hybrid method; task€; moteur d’exécution€; heterogeneous architectures.
	Inria Bordeaux - Sud-Ouest
	200 Avenue de la Vieille Tour, 33405 Talence

