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Curriculum Vitae

1 rue Bernes-Cambot Né le 5 novembre 1978
64000 Pau Nationalité française
page web : http ://web.univ-pau.fr/˜jdiaz1/ Pacsé
E-mail : julien.diaz@inria.fr

Postes

2006- : Chargé de Recherche, Magique 3D, Inria Bordeaux Sud Ouest

2006-2007 : Post-Doctorat à l’Université de Bâle (Suisse), sous la direction de Marcus Grote

2005-2006 : Post-Doctorat au département SINETICS d’EDF R&D de Clamart

Sujet : Étude des phénomènes de bruit de structure,

Études

2001-2005 : Doctorat en Mathématiques Appliquées de l’Université Paris VI.

Effectué au projet POems de l’Inria Rocquencourt sous la direction de
Patrick Joly

Sujet : Approches analytiques et numériques de problèmes de transmission
en propagation d’ondes en régime transitoire. Application au couplage
fluide-structure et aux méthodes de couches parfaitement adaptées.

Mention : Très honorable.

2001-2002 : Licence d’économètrie, Université Paris I

1998-2001 : Ingénieur diplômé de l’École Centrale Nantes.

2000-2001 : Option Mathématiques Appliquées à l’École Centrale Paris.

1998-2000 : Tronc commun à l’École Centrale Nantes

2000-2001 : DEA Mathématiques pour la Modélisation et la Simulation appliquées à la physique,
Université de Versailles.
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Activité dans l’Équipe Magique 3D

J’ai intégré l’équipe Magique 3D à mon arrivée à l’Inria le 1er février 2007 et j’en suis depuis
le responsable permanent. Je présente dans cette section mon implication dans l’encadrement
de doctorants, le transfert, le montage et le suivi de projets, l’organisation de manifestions
scientifiques et les activités de vulgarisation de l’équipe.

Encadrement et coencadrement d’étudiants

Dès mon recrutement, je me suis impliqué dans l’encadrement d’étudiants au niveau master
et thèse. Je ne détaille ici que la liste des thèses dont j’ai assuré le coencadrements, le plus
souvent avec des chercheurs séniors. J’ai également encadré une dizaine d’étudiants en Mas-
ter et je renvoie aux rapports d’activité de l’équipe disponibles à https://team.inria.fr/

magique3d/research/ pour plus de détails.

• Encadrement de la thèse de Caroline Baldassari, en codirection à 50% avec Hélène
Barucq. Modélisation et simulation numérique pour la migration terrestre par équation
d’ondes. Soutenue le 17 décembre 2009
Caroline est actuellement ingénieur de recherche en CDI chez SGI
• Encadrement de la thèse de Véronique Duprat, en codirection à 50% avec Hélène

Barucq. Conditions aux limites absorbantes enrichies pour l’équation des ondes acous-
tiques et l’équation d’Helmholtz.Soutenue 6 décembre 2011.
Véronique est actuellement ingénieur de recherche en CDI dans la cellule de recherche
Opéra commune à l’UPPA et à Total
• Encadrement de la thèse de Cyril Agut, en codirection à 80% avec Hélène Barucq.

Schémas numériques d’ordre élevé en espace et en temps pour léquation des ondes.
Soutenue le 13 décembre 2011.
Cyril est actuellement ingénieur de recherche en CDI chez Total
• Encadrement de la thèse de Florent Ventimiglia, en codirection à 50% avec Hélène

Barucq. Schémas d’ordre élevé et pas de temps local pour les ondes élastiques en milieux
hétérogènes. Soutenue le 5 juin 2014.
• Encadrement de la thèse de Lionel Boillot, en codirection à 50% avec Hélène Barucq.

Contributions à la modélisation mathématique et à l’algorithmique parallèle pour l’op-
timisation d’un propagateur d’ondes élastiques en milieu anisotrope. Soutenue le 12
décembre 2014.
Lionel est actuellement ingénieur expert en CDD dans le projet Inria Total DIP.
• Encadrement de la thèse de Jérôme Luquel, en codirection à 50% avec Hélène Barucq.

Imagerie de milieux complexes par Équations d’ondes élastiques. Soutenue le 16 avril
2015.

9

https://team.inria.fr/magique3d/research/
https://team.inria.fr/magique3d/research/


Activité dans l’Équipe Magique 3D

Jérôme est actuellement professeur certifié à Niort
• Encadrement de la thèse de Marie Bonnasse Gahot, en codirection à 80% avec Stéphane

Lanteri. Méthodes de Galerkine Discontinues d’ordre élevé pour l’élastodynamique en
domaine harmonique. Soutenance le 15 décembre 2015.
Après sa soutenance, Marie sera ingénieur expert en CDD dans le projet Inria Total
DIP, dans le cadre du projet européen HPC4E (HPC for Energy).
Je coencadre actuellement les thèses d’Izar Azpiroz (soutenance prévue fin 2017) et
d’Elvira Shishenina (soutenance prévue fin 2018).

Développement Logiciel

J’ai participé au développement de plusieurs logiciels de l’équipe. Je décris ici brièvement
leurs fonctionnalités et mon degré de participation et je donnerai plus de détails dans la
partie scientifique. Tous les codes ci-dessous sont écrits en Fortran 90.

• Hou10ni. Ce code calcule la solution de problèmes de propagation d’ondes acoustiques
et élastiques en milieux hétérogènes, en domaines temporel et harmonique (Helmholtz),
en dimension deux et trois. Il permet également la modélisation du couplage élasto-
acoustique. Le code se base sur la méthode de Galerkine Discontinue avec Pénalité
Intérieure pour la discrétisation en espace, avec des éléments d’ordre arbitrairement
élevé et la p-adaptabilité. Dans la version 2D, les éléments du maillage peuvent être
courbes pour mieux approcher les interfaces. Il a été parallélisé sous MPI et OpenMP.
Je suis le principal développeur de ce code. Il a été utilisé et étendu par plusieurs
étudiants de l’équipe. Il a servi aux comparaisons de performance entre la méthode de
Galerkine Discontinu avec Pénalité Intérieure (IPDG) et la méthode d’éléments finis
spectraux qui ont effectuées par Caroline Baldassari [A7]. Cyril Agut l’a utilisé pour
analyser l’influence du paramètre de pénalisation sur les performances de la méthode
IPDG [A4], puis pour développer des schémas d’ordre élevé en temps [A8]. Véronique
Duprat a développé et testé des Conditions aux Limites Absorbantes sur des frontières
arbitraires [A9, A5] La version élasto-acoustique 2D a été mise en œuvre par Élodie
Éstécahandy [17] dans le cadre de sa thèse et a été utilisée dans un solveur de type
Problème Inverse pour la reconstruction d’obstacles [77]. Plus récemment, Conrad
Hillairet a mis en oeuvre le couplage élasto-acoustique en dimension trois dans le
cadre de son stage élève ingénieur de l’Insa de Rouen.
Le code a été validé en temporel à l’aide du logiciel Gar6more (voir ci-dessous). En
harmonique, Hou10ni génère ses propres solutions analytiques, qui peuvent être des
ondes planes ou des solutions de problèmes de diffraction par un cercle. Dans ce dernier
cas, les solutions analytiques sont calculées par développement en séries de Bessel.
La version 2D a fait l’objet d’un dépôt APP.
• DIVA/TMBM. La plateforme DIVA, récemment renommée TMBM (Time Marching

Based Methods) est la plateforme de simulation de propagation d’ondes en temporel
développée par Total. Elle est optimisée pour le HPC, principalement en utilisant
MPI. Je n’interviens pas directement dans le développement de cette plateforme, mais
je supervise avec Hélène Barucq l’intégration des travaux des étudiants de l’équipe.
Plusieurs étudiants ont contribué au développement : Caroline Baldassari, Florent
Ventimiglia, Lionel Boillot et Jérôme Luquel.
• Elasticus. Ce logiciel est développé principalement par Simon Ettouati et Lionel
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Transfert

Boillot, sous ma direction. Il a pour but de faciliter l’intégration des travaux des
doctorants dans la plateforme THBM. L’idée étant d’avoir un code moins optimisé,
mais plus lisible, de manière a pouvoir tester rapidement les nouvelles fonctionnalités.
• THBM. Cette plateforme, appelée Time Harmonic Based Methods est l’équivalent

de TMBM pour l’harmonique. Son développement est plus récent que THBM, et je
supervise principalement l’intégration des travaux de thèse de Marie Bonnasse Gahot
sur des méthodes de Galerkine Discontinues Hybrides.
• Gar6more. Ce code calcule la solution analytique de problèmes de propagation d’ondes

dans des milieux 2D et 3D homogènes ou bicouches, à l’aide de la méthode de Ca-
gniard de Hoop. Dans le cas homogène, le milieu peut-être acoustique, élastique ou
poroélastique, infini ou semi-infini avec une condition de surface libre ou de bord fixe.
Dans le cas bicouche, les couplages suivants ont été considérés (la source est dans le pre-
mier milieu) : acoustique/acoustique ; acoustique/élastique ; acoustique/poroélastique ;
élastique/acoustique ; élastique/élastique ; poroélastique/poroélastique.
Le code est opensource et téléchargeable :

http://web.univ-pau.fr/~jdiaz1/gar62DCecill.html

pour la version 2D et
http://web.univ-pau.fr/~jdiaz1/gar63DCecill.html

pour la version 3D. Les utilisateurs visés sont des chercheurs ayant besoin de solutions
de référence pour valider et/ou tester les performances de leurs codes de simulation
de propagation d’ondes. Dans cette optique, Gar6more a déjà été utilisé par J. Tromp
et C. Morency (Princeton) [124] et par R. Sidler, K. Holliger (Université de Lau-
sanne) et J. Carcione (OGS Trieste) [144, 145] pour valider leurs codes de propagation
d’ondes poroélastiques. Je suis également en contact avec Stefan Wenk, de l’Université
de Münich, pour la validation de son code de couplage élasto-acoustique. Gar6more
est régulièrement utilisé pour valider les développements de l’équipe dans le domaine
temporel.
Je suis le principal développeur de ce code et j’en assure la maintenance.

Aujourd’hui, je dispose de toute l’expérience nécessaire pour faire évoluer les codes de l’équipe,
en vue du passage à l’exascale. À ce titre, j’ai une très forte activité d’encadrement au niveau
des stagiaires accueillis par l’équipe chaque année (en moyenne deux par an), des doctorants,
mais aussi des post-doctorants.

Transfert

Ma contribution aux activités de transfert de l’équipe Magique3D a été principalement réalisée
dans le cadre de l’action Stratégique DIP (Depth Imaging Partnership https://dip.inria.

fr). DIP est un partenariat entre l’Inria et Total qui a pour but de regrouper les compétences
de différentes équipes Inria pour mener des actions de recherche en lien avec l’imagerie sis-
mique. Magique 3D joue une rôle prépondérant dans DIP puisque sa chef d’équipe Hélène
Barucq est à l’origine de sa création et en est la responsable scientifique. Je participe à DIP
de deux façons, par l’encadrement de thèses (Caroline Baldassari, Florent Ventimiglia, Lio-
nel Boillot, Jérôme Luquel, Marie Bonnasse et Elvira Shishenina) et par le développement
logiciel (voir ci-dessus). En particulier, je supervise les développements réalisés dans les pla-
teformes de Total et à ce titre, j’effectue des séjours fréquents à Houston où sont maintenues
ces plateformes.
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Activité dans l’Équipe Magique 3D

Montage et suivi de projets

J’ai participé au montage (rédaction des projets scientifiques et du budget) et au suivi
(rédaction des rapports à mi-parcourt et des rapports finals) des projets suivants

• Projet “Akelarre”, du fonds commun de coopération Aquitaine/Euskadi. Montant : 14
000 euros, de février 2011 à février 2013. Coordonné par H. Barucq. En collaboration
avec le BCAM.
• ANR “AHPI”, de juillet 2007 à juillet 2010. Coordonné par L. Baratchart (Inria So-

phia). En collaboration avec l’Université Bordeaux 1 et l’Université d’Orléans
• Projet Européen FP7 “HPCGA”, International Research Staff Exchange Scheme (IRSES).

De janvier 2012 à Décembre 2014. Coordonné par J.F Méhaut (Université Joseph Fou-
rier, Grenoble). En collaboration avec le BCAM, le BRGM, ISTerre, UFRGS (Federal
University of Rio Grande do Sul), Institute of Informatics, Brésil ; UNAM (National
Autonomous University of Mexico) , Institute of Geophysics, Mexique.
• Projet Inria-CNPq “HOSCAR”, de janvier 2012 à décembre 2015. Coordonné par

Stéphane Lanteri (Inria Sophia). En collaboration avec LNCC (Laboratorio Nacional
de Computaçao Cientifica), COPPE/UFRJ (Alberto Luiz Coimbra Institute for Gra-
duate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro),
INF/UFRGS (Instituto de Informatica, Universidade Federal do Rio Grande do Sul) ;
LIA/UFC (Laboratorios de Pesquisa em Ciancia da Computaçao Departamento de
Computaçao, Universidade Federal do Ceara), Brésil.
• Projet Européen FP7, “GEAGAM”, International Research Staff Exchange Scheme

(IRSES). De janvier 2015 à Décembre 2017. Coordonné par David Pardo (BCAM).
En collaboration avec le BCAM, l’Université du Pays Basque (UPV/EHU), Barcelona
Supercomputing Center (BSC), TOTAL, Politecnica Universidad Catalica de Valpa-
raiso (PUCV), Universidad de Chile (UCHILE), Universidad Tecnica Federico Santa
Maria (USM), University of Texas at Austin (UT).
• Projet européen “HPC4E”, de décembre 2015 à novembre 2017. Coordonné par Stéphane

Lanteri, en collaboration avec LNCC (Laboratario Nacional de Computaçao Cienti-
fica), COPPE/UFRJ (Alberto Luiz Coimbra Institute for Graduate Studies and Re-
search in Engineering, Universidade Federal do Rio de Janeiro), INF/UFRGS (Ins-
tituto de Informatica, Universidade Federal do Rio Grande do Sul) ; LIA/UFC (La-
boratarios de Pesquisa em Ciancia da Computaçao Departamento de Computaçao,
Universidade Federal do Ceara), Brésil.
• Projet FEDER Poctefa, soumis en novembre 2015. Coordonné par Josep de la Puente

(Barcelone Supercomputing Center). En collaboration avec le BSC, le BCAM et le
CERFACS.

Organisation de Conférences et Workshops

• Membre du comité d’organisation de la conférence Waves 2009 à Pau au Palais Beau-
mont

http://waves-2009.bordeaux.inria.fr/.
Cette conférence a rassemblé 250 chercheurs d’une trentaine de pays différents.
• Membre du comité d’organisation de la Journée Ondes et Problèmes Inverses en

Géophysique, organisée dans le cadre de l’année mondiale “Maths et Terre”.
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Diffusion Scientifique

http://www.ensta-paristech.fr/~chaillat/MPT2013.html.
• Membre du comité d’organisation du premier workshop franco-russe sur la géophysique

mathématique, la modélisation mathématique des milieux continus et les problèmes
inverses

http://uppa-inria.univ-pau.fr/m3d/ConfFR/.

Diffusion Scientifique

• Exposé à la fête de la science (20 octobre 2010)
• Réalisation d’un film de vulgarisation, Sonder l’invisible : du séisme au modèle :

http://www.universcience.tv/

video-sonder-l-invisible-du-seisme-au-modele--5539.html (2010).
Ce film a été traduit en anglais (Probing the invisible, from the earthquake to the
model). Il a été présenté lors de la journée Mathematics for Planet Earth à l’Unesco,
le 5 mars 2013

http://mpe2013.org/fr/mpe-day-at-unesco/.
Il fait également partie de l’exposition virtuelle Mathematics of Planet Earth

http://imaginary.org/fr/node/134

• Rédaction d’un article dans Interstices
https:

//interstices.info/jcms/i_58073/sonder-linvisible-du-seisme-au-modele

(2010).
• Exposé à la ”Journées jeunes chercheurs en mathématiques du lycée de Navarre /

UPPA”
http://univ-pau.fr/live/newsletter/newsletter-n46/journeesmaths?isPdf=1

(2013).
• Réalisation d’une Étude de Documents, ”Prospection pétrolière : le sous-sol révélé”,

pour le magazine TDC (Textes et Documents pour la classe), à destination des ensei-
gnants du secondaire :

http:

//www.cndp.fr/tdc/tous-les-numeros/les-mathematiques-de-la-terre.html

(2013).
• Intervention dans une école primaire d’Arthez de Béarn.
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Participation à des tâches
administratives et à des activités
d’enseignement

Tâches administratives

• Membre élu de la commission d’évaluation de l’Inria(2007-2014). J’ai effectué deux
mandats d’élu à la CE. Cette commission a en charge tous les aspects liés à la fonc-
tion de chercheur : recrutements, détachements/délégation, éméritats, promotions,
évaluations des équipes, réflexions sur la recherche chez Inria. J’ai notamment été :
— Membre du Groupe de Travail “Évaluation des logiciels”
— Coordinateur du Groupe de Travail “Transfert”
— Membre du Groupe de Travail “SELECT” (logiciel pour la gestion des recrutements

Inria)
• Membre élu suppléant du Conseil d’Administration de l’Inria (2014-2018)
• Membre élu suppléant du Conseil Scientifique de l’Inria (2014-2018)
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Introduction

Most of my research activities in the Inria team Magique-3D are linked to Geophysical ima-
ging which aims at understanding the internal structure of the Earth from the propagation
of waves. Both qualitative and quantitative information are required and two geophysical
techniques can be used : seismic reflection and seismic inversion. Seismic reflection provides a
qualitative description of the subsurface from reflected seismic waves by indicating the position
of the reflectors while seismic inversion transforms seismic reflection data into a quantitative
description of the subsurface. Both techniques are inverse problems based upon the numerical
solution of wave equations. Oil and Gas explorations have been pioneering application domains
for seismic reflection and inversion and even if numerical seismic imaging is computationally
intensive, oil companies promote the use of numerical simulations to provide synthetic maps
of the subsurface. This is due to the tremendous progresses of scientific computing which have
pushed the limits of existing numerical methods and it is now conceivable to tackle realistic
3D problems. However, mathematical wave modeling has to be well-adapted to the region
of interest and the numerical schemes which are employed to solve wave equations have to
be both accurate and scalable enough to take full advantage of parallel computing. Today,
geophysical imaging tackles more and more realistic problems and my goal is to contribute to
this task by improving the modeling and by deriving advanced numerical methods for solving
wave problems.

A The Reverse Time Migration

In order to give an overview of my research activities, I will first describe briefly the principle
of Seismic Reflection Imaging. I refer the reader to the SEG short course of Biondo Biondi
for more details on this technique [33]. Seismic Reflection Imaging is a process that consists
in three steps. The first step is called the “acquisition”. It is the acquisition of series of
recordings obtained during a seismic acquisition campaign, where elastic waves are generated
by the successive explosions of Ns sources, (si(x, t))i=1..Ns , placed all over the region to be
explored. Then the variations of a given quantity u are registered at Nr receivers (rj)j=1..Nr .
This quantity can be scalar (the vertical component of the displacement or of the velocity, the
pressure, ...), or vectorial (the displacement or the velocity fields). In the following, we denote
by uij(x, t) the recordings obtained at receiver rji after the explosion of source si. Once these
recordings are obtained, the next step is called “velocity estimation” and consists in defining
an approximate model of the subsurface. This step is usually performed using tomography
by Velocity Analysis [70, 34, 149, 31, 32] or by Migration Velocity Analysis [79, 166, 148, 49,
137, 37]. This can be done for an acoustic or elastodynamic model. In the case of an acoustic
model, only the velocities of the P-waves (the compressional waves) will be reconstructed. In
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the case of an elastic model, it is necessary to construct also an initial model for S waves (the
shear waves), and possibly a model for the Thomsen parameters if one wishes to consider
imaging of anisotropic media. I will give more details on the different kind of waves and on
the anisotropy in the last part of this section and I refer to [163, 165] for discussions on the
issues related to seismic imaging of anisotropic media.
The velocity model will be used as an initial model for the last step, which is called “mi-
gration”. This step can be performed by different methods. Kirchhoff migration [35, 48] has
been very popular during the past decades, because it is based on an approximation of the
wave equation, which reduces strongly the computational costs. However, in order to improve
the accuracy of the images, geophysicists are now interested in the Reverse Wave Equation
(RTM), which is based on the full wave equation [19, 172].
The algorithm of RTM reads as

1. For each source (i.e. for i from 1 to Ns) :

(a) Forward step : Propagate a numerical wave generated by the source si in the

initial model, and register a quantity vfi at each point of the mesh and at each

time step of the simulation. We denote by vfi (x, y, z, t) the value of this quantity
at (x, y, z) and at t. The exponent f is the abbreviation of ’forward’. Note that

the registered quantity vfi is not necessarily the quantity that has been registered
during the acquisition campaign. It is for instance possible to register the vertical
component of the displacement at the receivers during the acquisition campaign
and the complete velocity field during the forward step.

(b) Backward step : Backpropagate a numerical wave generated by all the receivers
(rij)j=1..Nr in the initial model. To do so, we use the following as a source :

s?i (x, t) =
∑

j=1..Nr

uij(x, T − t),

where T is the final time of the experiment. We register then a quantity vbi at each
point of the mesh and at each time of the simulation. This quantity should be the
same that the one registered during the forward step. We denote by vbi (x, y, z, t)
the value of this quantity at point (x, y, z) and at time t. The exponent b is the
abbreviation of ’backward’.

(c) Imaging Condition : At each point (x, y, z), compute the imaging condition Ii(x, y, z).
In [48], Claerbout proposed the condition

Ii(x, y, z) =

∫ T

0
vfi (x, y, z, t)vbi (x, y, z, t) dt (A.1)

2. The total imaging condition is then obtained by summing up the conditions obtained
for each source :

I(x, y, z) =

Ns∑
i=1

Ii(x, y, z) (A.2)

The above algorithm, which is specific to time-domain problems, can be adapted to frequency
domain. One has then to preprocess the registered signals at the receivers by a Fourier trans-
form in time. We suppose here that, for each i ∈ {1..Ns} and each j ∈ {1..Nr}, the discrete
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Fourier transform of uij has been computed at Nω frequencies (ωk)k=1..Nω . We denote by
ûij(x, ωk) the value of ûij at point x and at frequency ωk.
The algorithm of RTM in frequency domain reads then as :

1. For each frequency (i.e. for i from 1 to Nω) :

(a) For each source (i.e. for i from 1 to Ns) :

i. Forward step : Propagate a numerical wave generated by the source ŝi(ωk) in

the initial model, and register a quantity v̂fi,k at each point of the mesh. We

denote by vfik(x, y, z) the value of this quantity at point (x, y, z).

ii. Backward step : Backpropagate a numerical wave generated by all the receivers
(r̂ijk)j=1..Nr in the initial model. To do so, we use the following as a source

ŝ?i (x, ωk) =
∑

j=1..Nr

¯̂uijk(x).

The complex conjugation is the “harmonic” equivalent of the reverse time ope-
rator t 7→ T − t.
We register then a quantity v̂bik at each point of the mesh. We denote by
v̂bik(x, y, z) the value of this quantity at point (x, y, z).

iii. Imaging Condition : At each point (x, y, z), compute the imaging condition
Iik(x, y, z). For instance, the condition proposed by Claerbout becomes

Iik(x, y, z) = v̂fik(x, y, z)v̂bik(x, y, z) (A.3)

(b) The imaging condition for a given frequency is then computed by summing up the
conditions obtained for each source :

Ik(x, y, z) =

Ns∑
i=1

Iik(x, y, z) (A.4)

(c) The full imaging condition is computed by summing up the conditions obtained for
each frequency :

I(x, y, z) =

Ns∑
i=1

αkIk(x, y, z) (A.5)

where the coefficients αk are weights associated to each frequency. Usually, we set
αk = 1.

Note that the computation of the imaging condition is much simpler in frequency domain than
in time domain. Indeed, the solution for a given frequency ωk can be computed independently
of the solutions for the other frequencies, while the computation of a time-domain solution at
time t depends on the solution at all the previous time steps. Since the computational domains
are huge, the computation of time-domain imaging conditions requires the implementation of
sophisticated algorithms in order to limit as much as possible the storage and computational
costs. Moreover, for a given frequency, the solution of a Helmholtz problem for each source
can be obtained by solving a multi-right hand side linear system where each right hand side
corresponds to one source. Hence, if one considers a direct solver, it is sufficient to perform
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one single factorization to model both forward and backward propagation for all the sources.
Last, the frequency domain is much more convenient to deal with dissipative media where
the attenuation depends on the frequency, since time-domain modeling would require the
introduction of convolution product to handle this kind of dissipation.

Unfortunately, when considering 3D industrial problems, the size of the computational do-
mains is so huge that the factorization of the global matrix is still out of reach, even with
the help of the most advanced supercomputing facilities. That is why harmonic RTM has
been until now mostly used for small computational domains or in two dimensions, while
time-domain RTM is preferred for larger problems.

A.1 The wave equations

In the algorithms presented above, I did not detail the equations modeling the wave propaga-
tion. The simplest model is the acoustic wave equation, which models only the propagation of
P-waves compressional waves (P-waves). Acoustic media are characterized by two parameters,
the density ρ and the wave speed VP . A more accurate model is given by the isotropic elastody-
namic wave equation that also takes into account the propagation of shear waves (S-waves).
In isotropic media the velocity of waves does not depend on the direction of propagation,
and geophysics media are generally anisotropic. To handle the anisotropy, it is necessary to
introduce additional parameters known as Thomsen parameters [162]. Of course, the more
accurate the model is, the higher the computational costs are. There exist more accurate
models, taking into account attenuation or the porosity of the media, but the computational
costs are still too high to be implemented in a Reverse Time Migration. Therefore, I will only
focus in the following on acoustic and elastodynamic wave equations, which were my main
interests during the past years. These equations can be written either as a first order formu-
lation, involving only first-order space and time derivatives, or as a second order formulation,
involving second order space and time derivatives.

The first order formulation of the acoustic wave equation reads as

1

µ(x)

∂p

∂t
(t,x)− div u(t,x) = f(t,x), (t,x) ∈]0, T [×Ω,

ρ(x)
∂u

∂t
(t,x)−∇p(t,x) = 0, (t,x) ∈]0, T [×Ω,

B1(p(t,x),u(t,x)) = 0, (t,x) ∈]0, T [×∂Ω,

p(0,x) = p0(x), x ∈ Ω,

u(0,x) = u0(x), x ∈ Ω,

(A.6)

where

• Ω is a bounded open domain of IRd, with d = 1, 2 or 3 ;
• p : [0, T ]× Ω −→ IR is the pressure in Ω, in Pa ;
• u : [0, T ]× Ω −→ IRd is the velocity of the particles in Ω, in m·s−1 ;
• µ : Ω −→ IR+ is the bulk modulus, in Pa.

It is such that 0 < µ(x) < µ∞, with µ∞ ∈ IR+ ;
• ρ : Ω −→ IR+ is the mass density, in kg·m−3.

It is such that 0 < ρ(x) < ρ∞, with ρ∞ ∈ IR+ ;
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A The Reverse Time Migration

• f : [0, T ]× Ω −→ IR is the source term, in s−2 ;
• B1 is a differential operator representing the boundary conditions. For a free surface

condition, we have B1(p,u) = p ; for a wall condition, we have B1(p,u) = u · n,
where n denotes the unit normal vector outward to ∂Ω. The expression of B1 is more
complicated in the case of an absorbing boundary condition, and we will give more
details in Chapter 1.
• p0 and u0 are the initial conditions. If their support is not in Ω, they have to satisfy

a compatibility condition such that B1(p(t,x),u0) = 0 for any x ∈ ∂Ω.
The first order formulation of the elastodynamic wave equation reads as

∂σ

∂t
(t,x)− C εu(t,x) = f(t,x), (t,x) ∈]0, T [×Ω,

ρ(x)
∂u

∂t
(t,x)−∇σ(t,x) = 0, (t,x) ∈]0, T [×Ω,

B2(σ(t,x),u(t,x)) = 0, (t,x) ∈]0, T [×∂Ω,

σ(0,x) = σ
0
(x), x ∈ Ω,

u(0,x) = u0(x), x ∈ Ω,

(A.7)

where
• Ω is a bounded open domain of IRd, with d = 1, 2 oh 3 ;
• σ : [0, T ]× Ω −→ IRd2 is the stress tensor in Ω, in Pa. It is a second order symmetric

tensor, i.e. σij = σji ;
• u : [0, T ]× Ω −→ IRd is the velocity of the particles in Ω, in m·s−1 ;

• ε is the infinitesimal strain tensor. It is an operator defined as ε(u) =
1

2

(
∇u +∇Tu

)
,

i.e. εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
;

• C : Ω −→ IRd4 is the stiffness tensor, in Pa. It is a fourth-tensor tensor that pos-

sesses the following symmetry properties : Cijkl = Cjikl = Cijlk and Cijkl = Cklij for
(i, j, k, l) ∈ {1..d}. Moreover, it satisfies Cξ : ξ > 0 for all symmetric second order

tensor ξ.

• ρ : Ω −→ IR+ is the mass density, in kg·m−3.
It is such that 0 < ρ(x) < ρ∞, with ρ∞ ∈ IR+ ;
• f : [0, T ]× Ω −→ IR is the source term, in Pa·s−2 ;

• B2 is a differential operator representing the boundary conditions. For a free surface
condition, we have B2(σ, u) = σn, where n denotes the unit normal vector outward
to ∂Ω ; for a wall condition, we have B2(σ, u) = u, . The expression of B2 is more
complicated in the case of an absorbing boundary condition, and we will give more
details in Chapter 1.
• σ

0
and u0 are the initial conditions. If their support is not in Ω, they have to satisfy

a compatibility condition such that B2(σ0(t,x),u0) = 0 for any x ∈ ∂Ω.
Using the first symmetry property of the tensor C, we associate it to a d×d matrix C, using the

Voigt notation. This notation links each pair {i, j} to a unique index I as indicated in Tabs. 1
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and 2, respectively in two and in three dimensions. For instance, in 3D, C34 = C3323 = C3332.
Moreover, C is symmetric, because of the second symmetry property of C. The tensor C

{i, j} {1, 1} {2, 2} {1, 2}
I 1 2 3

Table 1 – Voigt notation in 2D

{i, j} {1, 1} {2, 2} {3, 3} {2, 3} {1, 3} {1, 2}
I 1 2 3 4 5 6

Table 2 – Voigt notation in 3D

defines a general elastodynamic medium. For modeling seismic wave propagation, we are
particularly interested in two kinds of media, the isotropic media and the transverse isotropic
media. Isotropic media are such that the wave speed is independent of the direction of the
wave propagation. In such a case, the stiffness tensor can be expressed with the help of only
two parameters, λ and µ, that are called the Lamé parameters. We have (in 3D)

Ciso11 = Ciso22 = Ciso33 = λ+ 2µ, Ciso44 = Ciso55 = Ciso66 = µ, and Ciso12 = Ciso13 = Ciso23 = λ,

and the remaining parameters vanish.
In isotropic media, the volumic waves are of two kinds :

• the P-waves, also defined as pressure waves, or primary waves, or compressional waves,
or longitudinal waves. They are such that the velocity u is parallel to the direction
of propagation of the waves and they satisfy curlu = 0. Their wave speed is Vp =√
λ+ 2µρ ;

• the S-waves, also defined as shear waves, or secondary waves, or transverse waves.
They are such that the velocity u is orthogonal to the direction of propagation of the
waves and they satisfy ∇ · u = 0. Their wave speed is Vs =

√
µρ ;

In order to model accurately the seismic wave propagation, it may be necessary to take the
anisotropy into account. Most of geophysical media are transversely isotropic media, which
means that they are isotropic in one plane orthogonal to an axis called anisotropy axis. If
this axis is the vertical axis (the z axis), then the medium is Vertically Transverse Isotropic
(VTI) and the stiffness tensor can be expressed thanks to six parameters : ρ, VP , VS and three
additional parameters ε, δ, and µ introduced by Thomsen in[162]. We then have

CV TI
11 = CV TI

22 = ρV 2
p (1 + 2ε), CV TI

33 = ρV 2
p , CV TI

44 = CV TI
55 = ρV 2

S , CV TI
66 = ρV 2

S (1 + 2γ),

CV TI
12 = CV TI

11 − 2CV TI
66 , and CV TI

13 = CV TI
23 = ρ

√(
V 2
P − V 2

S

)2
+ 2V 2

P δ
(
V 2
P − V 2

S

)
− ρV 2

S .

and the remaining parameters vanish.
Note that the number of non zero elements is the same for VTI and for isotropic media.
However, we will see in the next sections that because VTI media require more parameters,
the computational costs of numerical simulations in VTI media are often higher than the
costs of numerical simulations in isotropic media.
If the axis of anisotropy is not aligned with the vertical axis, then the media is called Tilted
Transverse Isotropic. Besides the six previous parameters, it is then necessary to add two
angles, θ and φ which are respectively the polar and azimuth angle of the axis of anisotropy.
The TTI stiffness is then computed from the VTI stiffness tensor by using the relation

CTTI
ijkl =

d∑
p=1

d∑
q=1

d∑
r=1

d∑
s=1

RpiRqjRrkRslC
V TI
ijkl ,
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A The Reverse Time Migration

where, if d = 3,

R =

 cos θ cosφ cos θ sinφ − sin θ
− sinφ cos θ 0

sin θ cosφ sin θ sinφ cos θ

 .
Except for particular values of θ and φ, the TTI stiffness tensor is full, which induces a big
increase of the computational costs.
In three dimensions, the solution to the first order acoustic system requires to compute and
to store one pressure and the three components of the velocity, while the solution of the first
order elastodynamic system requires to compute and to store the six components of the stress
(thanks to the symmetry of σ, we do not have to compute the nine components) and the three
components of the velocity. It is possible to reduce these costs by considering only one of the
two unknowns, thanks to the second order formulation of these systems. Of course, we will
focus on the formulation that involves the “smallest” unknown : the pressure in Acoustics
and the velocity in Elastodynamics.
The acoustic second order formulation is obtained by derivating the first and the third equa-
tion of (A.6) with respect to time and by using the equation in order to replace ∂u

∂t

1

µ(x)

∂2p

∂t2
(t,x)− div

(
1

ρ(x)
∇p(t,x)

)
=
∂f

∂t
(t,x), (t,x) ∈]0, T [×Ω,

B1
(
∂p

∂t
(t,x),∇p(t,x)

)
= 0, (t,x) ∈]0, T [×∂Ω,

p(0,x) = p0(x), x ∈ Ω,

∂p

∂t
(0,x) = div u0(x), x ∈ Ω,

(A.8)

Similarly, the second order formulation of the elastodynamic wave equation reads as

ρ(x)
∂2u

∂t2
(t,x)−∇C εu(t,x) = ∇f(t,x), (t,x) ∈]0, T [×Ω,

B2(∇σ(t,x),
∂u

∂t
(t,x)) = 0, (t,x) ∈]0, T [×∂Ω,

u(0,x) = u0(x), x ∈ Ω,

∂u

∂t
(0,x) = ∇σ

0
(x), x ∈ Ω,

(A.9)

Since these formulation are second-order in time, their solution requires to store at each time
step the unknown and the first order time derivative of the unknown. If we have N degrees of
freedom, we then have to store 2N values for Acoustics and 6N value for 3D Elastodynamics.
For the first-order formulation, we only have to store the values of the unknowns. There are
N values for the pressure and 3N values for the velocity in 3D Acoustics and 3N values for
the velocity and 6N values for the stress in Elastodynamics. Hence, using the second order
formulation allows for dividing the computational costs by two in Acoustics and by 1.5 in
Elastodynamics. However, the first order formulation has several advantages. First, as we will
see later, the imaging condition presented above can be improved by taking into account the
divergence and the curl of the velocity in order to separate P waves from S waves. This can
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be easily computed by the first order formulation, since we compute the space derivatives
of the velocity to obtain the stress. With the second order formulation, it is necessary to
postprocess the solution at each time step. Second, Absorbing Boundary Conditions and
Perfectly Matched Layers are easier to implement in the first order formulation. Third, the
extension to viscoelastic media is more natural with the first order formulation. Last, when
one considers Discontinuous Galerkin Methods, the second order formulation requires the
computation of the trace of the space derivatives of the solution on each face of the mesh,
while the first order formulation only requires the trace of the solution.

This is probably because of all these advantages, that the first order formulation is the most
popular for geophysical applications in time domain. In harmonic domain, since the bottleneck
is here the solution of the linear system, it is more efficient to compute the solution to the
second order formulation and to postprocess it to obtain its space derivatives.

B Improving the efficiency of RTM

The algorithm of RTM described in the previous section requires a huge computational bur-
den, and the design of new advanced numerical methods is mandatory to improve the efficiency
of the method and to tackle 3D realistic geophysical media. Here, “improving the efficiency
of the method” means to increase its accuracy and/or reducing its computational costs. To
do so, various research topics can be considered :

• Design of efficient Artificial Boundary Conditions. Geophysical media are so
large compared to the wavelengths that they can be considered as infinite. However,
since computers are not able to handle the concept of infinity, it is necessary to reduce
the computational domain to a box. The boundaries of these boxes should be as trans-
parent as possible, in order to minimize spurious reflections. I describe in Chapter 1
my contributions to the design of Absorbing Boundary Conditions and of Perfectly
Matched Layers.
• Design of numerical schemes in space. I am particularly interested in the design

of efficient schemes for time-domain and time-harmonic equations. The ultimate goal
is to implement these schemes in order to solve realistic direct and inverse problems in
a High Performance Computing framework. For that purpose, I adopted the following
guidelines : the schemes are rigorously analyzed and validated by performing conver-
gence analysis and the associated computational burdens are also estimated, including
computational time, memory consumption, communications and load balancing. I have
distributed my efforts in two directions : 1) the development of mature solution metho-
dologies that can be almost immediately implemented in industrial codes and 2) the
design and the analysis of prototype methods which require much more developments
before being applied to industrial problems. I explain in Chapter 2 why I have chosen
to consider a particular class of Finite element methods, the Discontinuous Galerkin
method, and I detail my contributions to this topic.
• Mesh Generation. Finite Element Methods are based on meshes whose design is

a crucial issue for the efficiency of the simulation. Indeed, only one very small cell
inside a mesh of very large cells will strongly deteriorate the CFL condition of explicit
time schemes or the condition number of the linear system in harmonic domain. Low
quality cells, such as very elongated cells, will also increase the computational time
while hampering the accuracy of the solution.
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Mesh generation is outside of my research field. However, thanks to the strategic action
DIP I am in close touch with Inria teams which are experts of this topic, and I have
started to collaborate with researchers from Inria team Gamma3 on the design of
efficient meshes for realistic geological simulations.
• Time Discretization. The design of higher order time schemes has been one of my

main interests during the past ten years. I have mainly focused on two directions : 1)
The development of local time stepping methods, which allow for using locally very
small time steps where the cells of the mesh are very fine and large time steps where
the cells are coarse ; 2) The development of new global high-order time schemes, by
considering an alternative approach to the ADER [108, 73]. Instead of using auxiliary
variables, I have proposed to directly discretize the high-order space operators that
appear after the Taylor expansion in time of the wave equation. This discretization is
easily achieved thanks to DG methods.
I detail my contributions on these topics in Chapter 3.
• Design of Efficient Linear Solvers. The main bottleneck of numerical simulations

for seismic waves propagation in harmonic domain is the solution of a huge linear
system. Until now, we have chosen to consider direct solvers, mostly because we have
to solve a linear system with a huge number of right hand sides and also because of
the large condition number of the system. However, the amount of memory required
by direct solvers for realistic simulations is still out of the reach of the most power-
ful supercomputer. It is then necessary to consider alternative strategies and I am
now collaborating with the Inria team Hiepacs (Luc Giraud, Emmanuel Agullo and
Stojce Nakov) in order to implement hybrid solvers in the software of Magique 3D. Hy-
brid solvers combine Direct and Iterative solvers by mimicking Domain Decomposition
strategies.
• Improvement of Imaging Condition. The Imaging Condition I have described

above is the simplest one, and it does not take wave conversions into account. Since
P-wave and S-wave interact with each other, it might be relevant to use an imaging
condition including these interactions. In [134], it has been observed that with the vec-
torial version of Claerbout condition the images are polluted by interferences between
the various modes. Following the publication of this paper, many works proposed to
isolate P-waves from S-waves. In [78, 175], it has been proposed to distinguish the two
kinds of waves at the acquisition step, by approximating the propagation trajectory.
In [150], the authors proposed to record the whole elastic fields and then to apply a
decomposition in P- and S-waves. In [44, 45] the separation is performed P et S just
before the computation of the imaging condition. It is obviously possible to construct a
RTM image by combining different imaging conditions. In the framework of the Ph.D.
thesis of Jérôme Luquel [120], various conditions have been tested and it has been
observed that though the conditions based on P- and S- waves improve the classical
Claerbout conditions, they are not good enough to provide an accurate image of the
subsurface.
In the eighties, Lailly [115] and Tarantola [154] showed that Claerbout Imaging prin-
ciple could be rewritten as a local optimization problem in which the cost function
is defined as the difference between observed data (obtained during the acquisition
campaign) and computed data (obtained during the simulation. This theory was ex-
tended later to elastic waves by Tarantola in [155, 156] and it has been implemented
by Gauthier in [85] using finite differences. Tarantola’s works have been followed by
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numerous authors, for instance [20, 138, 46, 133, 142, 116]. During the past decade,
Jeroen Tromp and his collaborators have considered the imaging of the Earth by using
a Spectral Finite Element method [119, 123, 164] and by considering sensitivity ker-
nels. These works raised the possibility to apply the sensitivity kernels to RTM and
the objective of Jérôme was to exploit this link by using Discontinuous Finite Element,
which enables easily to compute the derivatives of the waves fields. The results he ob-
tained showed that the sensitivity kernels improve the final images on simple 2D test
cases. It now remains to extend these results to more realistic 3D geophysical domains
• Computation of the Imaging condition. If the choice of the imaging condition

clearly impacts on the accuracy of the RTM, the design of the algorithm is crucial
to reduce the computational costs. To emphasize this point, let us suppose that the
computational grid contains N grid points and that the time interval has been divided
in M time steps. We only consider here the case of one source, since each source can
be modeled independently of the others.
The most simple algorithm for computing the Imaging condition consists in (a) com-
puting and storing the whole forward field at each time step and at each point ; (b)
computing and storing the whole backward field at each time step and at each point ;
and (c) computing the imaging condition.
Steps (a) and (b) would require to store 2N ×M values, which is intractable since N
can reach 10 000 000 and M can be 10 000.
A second possibility could be (a) compute and store the whole backward field at each
time step and at each point ; (b) compute the whole forward field and the imaging
condition on the fly.
This algorithm would require to store N×M values, which is still to heavy for practical
applications.
An alternative consists in (a) computing the whole backward field at each point and
(b) at each time step of the simulation, computing the corresponding value of the
forward field and computing the imaging condition.
This approach only requires to store the field at one time step, but it is necessary to
recompute the forward field from the beginning. Hence, it requires to compute N(N +
1)/2 iterations of the forward field, which is not possible for realistic configurations.
Hence it is necessary to find a trade-off between the two previous approaches, which
has been proposed by Symes [151], using an algorithm developed by Griewank [88].
It reads as : (a) compute the forward field and store it at Mc given time steps called
“checkpoints” ; (b) compute the whole backward field ; and (c) at each time step of
the simulation, compute the corresponding value of the forward field from the closest
checkpoint and compute the imaging condition on the fly.
This algorithm requires to store only Mc time steps where Mc is usually much smaller
than M , while the amount of computation depends on the position of the checkpoint.
To optimize the computational time, we place them following the method proposed by
Griewank [88].
Another technique [76, 50, 173], relies on the following remark. If we know the value of
the forward field at the final time step M and its value on the boundaries at each time
step, then we are able to reconstruct the forward field from M to 1 and the algorithm
reads as : (a) compute the forward field, store its values on the boundaries of the
domain at each time step and store its values at each point of the grid at the final time
step M ; (b) compute the whole backward field and the whole forward field from M
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to 1 and compute the imaging condition on the fly.
If Nb denotes the number of grid points on the boundaries, this algorithm reduces the
storage cost to N +M ×Nb and the computations to 3M iterations. This method has
two drawbacks that have convinced us to focus on the Griewank algorithm. First of
all, even if Nb is much smaller than N , it is not marginal in 3D problems. Second, this
method is very sensitive to the quality of the absorbing boundary conditions imposed
on the boundary and it is often necessary to store the value of the forward field not
only on the boundary, but also on a ring surrounding the computational domain [50],
which strongly increases the storage costs.
• High Performance Computing. All the methods and algorithms that are developed

for geophysical applications have to be compatible with High Performance Computing.
For instance, one motivation of favoring Discontinuous Galerkin Methods was the fact
that all the computations at one time step can performed locally, element by element,
which reduces the communications when compared with finite element methods.
As for the solution of linear system or the mesh generation, I am far from being an
expert in that field and I do not pretend to propose new techniques. However, I try
to keep up to date with the advances in the domain, and I collaborate with specialists
of Computer Science in order to improve the performance of the software I develo-
ped. For instance, the Ph.D. thesis of Lionel Boillot [36] that I co-advised with Hélène
Barucq, gave us the opportunity to collaborate with George Bosilca (University of Ten-
nessee) and Emmanuel Agullo (Hiepacs), on the implementation of task programming
strategies in the software DIVA of Total.

I have implemented most of the numerical methods I developed in numerical codes that I
describe in Chapter 5. In order to benchmark and to validate these codes, I considered the
computation of analytical solution using the Cagniard-de Hoop method, and I calculated
these solutions for poroelastic media. I detail my contribution in Chapter 4.
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Chapter 1

Design of Artificial Boundary
Conditions

Most of the problems I am interested in are set in infinite domains or in domains so large
with respect to the wavelengths that they can be considered infinite. Since a computer can
not achieve calculations on an infinite set of points, it is mandatory to limit the computation
to a domain containing the sources, the receivers and the obstacles. A first obvious solution
is to choose the computational domain large enough so that the waves do not have time to
hit the boundary and to come back to the receivers. Unfortunately, since the computational
costs grow with Ld where d is the dimension of the problem and L the characteristic length
of the problem, this solution is intractable.

Note that these problems are very close to the problems of oceanographic experiments in tank
tests. The tank is necessarily finite and the reflections of the waves at its boundary interfere
with the experiment. Two solutions can be envisaged to limit these reflections and they are
very similar to the ones that we use in numerical simulations.

1. To surround the basin by a damping material in order to absorb the waves.
There are no physical materials allowing for a perfect absorption, but for numerical
simulations we can fortunately design non physical materials with such properties.
These materials are known as Perfectly Matched Layers (PML) proposed in 1994 by
Bérenger [26, 27]. These layers became rapidly very popular because they are relatively
easy to implement and they absorb the waves very efficiently : the amplitude of waves
decreases exponentially as a function of the distance to the layer. However, they induce
a high computational burden, they deteriorate the scalability of parallel codes and they
may be unstable, in particular when coupled with TTI media or in aeroacoustics.

2. To vibrate the boundaries as the waves arrive in order to absorb them.
The mathematical equivalent of this technique is the Absorbing Boundary Condition
technique, which consists in imposing on the exterior boundary a boundary condition
representing an infinite domain. However, the transparent boundary condition, which
generate no reflections, is non-local and requires to store the whole history of the
solution on the boundary. In order to reduce the computational costs, we prefer to use
approximate boundary conditions, that are local and less computationally expensive
but produce spurious reflections. The most accurate conditions, known as “higher-
order boundary conditions” involve high-order operators in space and in time, which
reduce significantly the amplitude of the reflections, but increase the computational
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costs and the difficulty of implementation.

There exist other kinds of technique that do not have any physical equivalent, such as the
integral equation technique. As for the transparent boundary condition, this technique allows
for an exact modeling of infinite media, but the computational are a very high price to pay in
an industrial context. Another technique is the technique of infinite elements, which consists in
using finite elements whose size tends to infinity, but this technique is difficult to implement.

1.1 Absorbing Boundary Conditions for Transverse Tilted Iso-
tropic Media

One of the main drawbacks of Perfectly Matched Layers is their instability when applied to
Anisotropic Media [102, 21]. These instabilities can be removed for some particular media,
in which only one kind of waves can propagate [1, 103, 101, A17]. In elastodynamic media,
such as TTI media, where two kinds of waves, the P-waves and the S-waves, propagate, the
regular technique does not apply and its extension is still an open question. Indeed, removing
the instabilities of the P-waves induces more instabilities on the S-waves and vice-versa. This
is why, in collaboration with Lionel Boillot, Hélène Barucq and Henri Calandra, we have
proposed a low order absorbing boundary condition for elliptic media, preserving the system
stability. The construction is based on comparing and then connecting the slowness curves
for isotropic and elliptic TTI waves.

In [B1], we have described how to construct this ABC in two dimensions. This paper is given
page 6 of the Appendix and can be downloaded at

https://hal.inria.fr/hal-01085442/ ?

When applied in a TTI medium, this new ABC performs well with the same level of accuracy
than the standard isotropic ABC set in an isotropic medium. The condition demonstrates
also a good robustness when applied for large times of simulation. The extension to three-
dimensional TTI elastodynamic media will be presented in a paper to be submitted soon.

1.2 Absorbing Boundary Condition for curved boundary

PMLs are probably one of the most popular methods because they are easier to implement
than high-order ABCs and they provide exact modeling of infinite domains before discre-
tization. However, the simplicity of implementation is proved for flat boundaries only and
there are applications for which using piecewise linear boundaries is not optimal. In case of
arbitrarily-shaped boundaries, the difficulty of implementing ABCs and PMLs is similar which
implies that both approaches stand up. Nevertheless, both conditions do not demonstrate the
same properties of stability. It is even surprising that PMLs are difficult to connect to energy
estimates which can generally be established with ABCs. This is why, in collaboration with
Hélène Barucq, we have defined a research program which aims at constructing high-order
ABCs for curved boundaries and stable ABCs for media in which PMLs are known to be
unstable. Our works are characterized by arbitrarily-shaped boundaries and by stability. Re-
garding high-order ABCs, there are results obtained by Hagstrom, Warburton, Givoli et al
who proposed a new solution methodology to facilitate the implementation of high-order ABC
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1.3 Perfectly Matched Layers for Aeroacoustic media

for plane boundary [15, 97, 96]. Regarding ABCs set where PMLs are unstable, we have consi-
dered anisotropic media. To the best of our knowledge, the ABCs that we have constructed
are new. Our works distinguish themselves from others because we apply micro-local analysis
techniques for the construction of ABCs. Here again, our mathematical background allows us
to apply tools of fundamental analysis. The pseudo-differential calculus provides us a smart
way to compute out-going waves in contact with curved boundaries. In [A9], which is given
page 17 of the Appendix and available online at

https://hal.inria.fr/hal-00649837,

we have constructed a new family of absorbing boundary conditions from the micro-local fac-
torization of the acoustic wave equation, following M.E. Taylor theory. By this way, we can
generate an infinite number of boundary conditions which can not be obtained via the Ni-
renberg’s factorization method. The conditions can be applied on arbitrarily-shaped surfaces
and involve second-order derivatives. In order to easily include the boundary conditions inside
a variational formulation, we then proposed in [A5], which is given page 34 of the Appendix
and available online at

https://hal.inria.fr/hal-00759451

a reduced formulation of the wave equation using an auxiliary unknown which is defined
on the regular surface only. The corresponding boundary value problem remains well-posed
in suitable Hilbert spaces and we gave a demonstration in a framework that is suitable to
applications. We then studied the long-time behavior of the wave field and we showed that it
tends to 0 as time tends to infinity. This provided a weak stability result that we improved
by performing a quantitative study of the energy. We have then shown that the energy is
exponentially decaying if the obstacle is star-shaped and the external boundary is convex.

1.3 Perfectly Matched Layers for Aeroacoustic media

In collaboration with Hélène Barucq and Mounir Tlemcani (University of Oran, Algeria), we
have proposed in [A11], which is given page 60 of the Appendix and available online at

https://hal.inria.fr/inria-00418317,

a new Perfectly Matched Layer for Shallow Water equations, based on a transformation
proposed by Hu [103]. This layer required the computation of an auxiliary variable in the
whole computational domain. We are now considering a new strategy, which only requires
the computation of the auxiliary variable inside the layer. Moreover, the new methodology
seems to be well-adapted to the non-linear shallow water equations. A publication is now
being prepared.
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Chapter 2

Analysis of Spatial Discretization
Schemes

There exists a large variety of numerical methods to discretize the wave equation in space.
Finite Difference Methods are very popular in the geophysical community and have been
widely used during the past four decades, mainly for two reasons. First, they are relatively
easy to implement in a numerical code ; second, when applied to transient wave equation they
lead to diagonal mass matrices, which means that the solution at each time step does not
require the solution of a (huge) linear system. I refer to the seminal works of Madariaga [121]
and Virieux [171] for details on the design of Finite Difference Schemes in a geophysical context
and to [87] for an example of application to 3D realistic domain. However, the main drawback
of Finite Difference Methods is that they are based on regular cartesian grids, which severely
complicates to modeling of rough topography or strong heterogeneities (see [127, 135]).

Based on unstructured meshes, FEM have the required flexibility to reproduce correctly the
topography of the environment and the geometry of the various interfaces of the subsurface.
FEM approximations are not only very accurate but they are also able to easily combine
different orders of approximations. This important feature allows for reducing the computa-
tional cost while maintaining the level of accuracy. However, FEM methods are rarely used
for time domain geophysical problems because they often deliver an implicit representation
of the solution. In harmonic domain, they suffers from pollution effect [12, 13, 86]. I also refer
to [100] for a review of finite element methods for harmonic acoustics.

To overcome the difficulty in time domain, mass condensation procedures were suggested [47,
104]. These techniques have however the effect of blocking the order of approximation. On the
other hand, the spectral element methods (SEM) are based on the Gauss Lobatto quadrature
formula, which allows for the diagonalization of the mass matrix without affecting the order
of convergence. SEM was thus successfully applied to the wave equation [139, 53, 54] and
more specifically for problems arising in Geophysics [110, 113, 112, 64]. We also refer to the
paper of de Basabe and Sen [64] which is a very interesting state of the art for finite element
techniques applied to the propagation of seismic waves. SEM methods are often applied on
meshes with quadrilateral or hexahedral elements. Such meshes are often hard to generate,
particularly when the topography and/or interfaces are complex. Note that SEM methods
have been applied to meshes with triangular elements [160, 52, 136, 141]. Nevertheless, their
implementation with high-order finite element remains difficult, and to the best of my know-
ledge, the transition to 3D is still an open problem. This is a major drawback for SEM since
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most mesh generators have been developed for tetrahedral elements. Last, this technique does
not solve the problem of pollution effect in harmonic domain, which explains why SEM are
mostly used for time-domain problems.

In the two last decades, a new class of methods, called Discontinuous Galerkin Methods
(DGM) emerged. DGM methods employ discontinuous functions, and therefore combine much
more easily different levels of approximation on a single mesh. Furthermore, DGM can be
applied to both hexahedral and tetrahedral elements. The approximate solution is expressed
in a quasi-explicit way because the mass matrix is block diagonal even when its entries are
evaluated analytically. DGM are also naturally adapted to parallel computing since all volume
integrals are computed locally and the communications between the cells are ensured by
integrals over the faces of the elements. In [9], the authors provide a detailed review of
the various Discontinuous Galerkin approximations of the Laplacian operator. They show
that the so-called Interior Penalty Discontinuous Galerkin Method (IPDGM), also known as
Symmetric Interior Penalty (SIP) [10, 18], is one of the most suitable since it is stable and
adjoint consistent, which guarantees the optimal order of convergence of the scheme. This
explains why this method has been successfully used to solve Helmholtz equation [3, 4] and
the wave equation [3, 91, 93, 92, 94].

DGM methods are also widely used for solving the first order wave equation. In [68], Delcourt,
Fezoui and Glinsky have proposed a DGM with centered fluxes for Elastodynamics. This
formulation is based on the one proposed in [132, 82]. It has been applied to model seismic
waves propagation in [80, 152]. Another very popular approach in seismology, the ADER
method, is based on upwind fluxes [108, 73, 73, 74].

2.1 Performance analysis and optimization of Discontinuous
Galerkin methods.

In [A7], which is given page 82 of the Appendix and available online at

https://hal.archives-ouvertes.fr/hal-00643334,

we have shown, in collaboration with Caroline Baldassari, Hélène Barucq, Henri Calandra
and Bertrand Denel, that the Interior Penalty Discontinuous Galerkin Method (IPDGM)
is well-suited for RTM in heterogeneous media in spite the widespread belief that DGM
methods are not competitive. This work can be compared to [A12], which contains, as far
as I know, the only other comparisons between DGM and SEM in a geophysical context.
The authors concluded that SEM is more efficient than DGM. This observation is however
valid only for regular quadrilaterals covering homogeneous media. We have shown here that,
using triangular-shaped elements, IPDGM exhibits the same level of performance as SEM,
for both homogeneous and heterogeneous media. We have concluded that IPDGM is more
versatile since it accommodates unstructured meshes with arbitrarily-shaped elements. Last,
we have applied IPDGM to RTM to highlight its potential efficiency. Numerical experiment
are performed in the case where the velocity varies strongly. The results reported in the paper
have shown that we can recover all the interfaces of the considered subsurface. This work has
been done in the framework of the PhD thesis of Caroline Baldassari [16].

One of the main drawbacks of IPDGM is its dependence on a penalty parameter which
could have a negative impact on the CFL condition of explicit time schemes. Except for
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regular quadrilateral or cubic meshes, the optimal value of this parameter was not known
explicitly. Moreover, there was no explicit expression of the CFL condition as a function of the
penalization parameter, even for regular meshes. We have obtained an analytical expression
of the optimal penalization parameter for regular triangular meshes. This expression is a
function of both the radius of the inscribed circle and of the angle values of the triangle. This
study was one of the topics of the PhD thesis of Cyril Agut [2]. We have also obtained an
analytical expression of the CFL as a function of the penalization parameter for quadrilateral
and cubic meshes, which is published in [A4]. This paper is given page 96 of the appendix
and available online at

https://hal.inria.fr/hal-00759457.

We have considered numerical schemes for the discretization of the first order formulation of
the wave equation, which seems to be more appropriate than the second order formulation to
obtain realistic seismic images of elastic media. For the space discretization, we implemented
the DG formulation with centered fluxes proposed in [68]. However, we observed that seismic
images were often polluted by spurious waves. Thanks to a dispersion analysis, we showed
that the DG-centered Flux formulation admits spurious modes for particular frequencies, and
that these modes could be suppressed by adding a non-dissipative penalization term similar
to the one proposed in [3]. This penalization term has enabled us to remove the spurious
waves from the seismic images and to improve the order of convergence of the schemes. These
results are part of Florent Ventimiglia PhD thesis [169].

2.2 Operator Based Upscaling for Discontinuous Galerkin Me-
thods.

Realistic numerical simulations of seismic wave propagation are difficult to handle because
they must be performed in strongly heterogeneous media. The heterogeneities are currently
very small when compared to the characteristic dimensions of the propagation medium and
to get accurate numerical solutions, engineers are then forced to use meshes that match the
finest scale of the media. But meshing the whole domain with a fine grid leads to huge linear
systems and the computational cost of the numerical method is then too high to consider
3D realistic simulations. Since it is hp-adaptive, DG method is however a good candidate
to approximate Helmholtz problems with discontinuous coefficients but it still generates high
computational costs. It was thus relevant to find a way of reducing the computational burden.
Since we wanted to avoid homogenization techniques, we have been attracted by the operator-
based upscaling method which has been developed first for elliptic flow problems [8] and
then extended to hyperbolic problems [114, 167, 168]. We have then addressed the question
of knowing if it could be interesting to apply operator-based upscaling with DG elements.
In [A6], in collaboration with Hélène Barucq, Théophile Chaumont Frelet and Victor Péron,
we have presented a preliminary attempt of using operator-based upscaling with a DG method.
We have considered the Laplace problem and we have compared the performance of our
numerical scheme with the Lagrange finite elements. By performing the numerical analysis of
the problem, we have shown that there is an interest in combining DG method with upscaling.
This paper is given page 127 of the Appendix and available online at

https://hal.inria.fr/hal-00757098.
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2.3 Efficient solution methodologies for high-frequency Helm-
holtz problems.

In collaboration with Mohamed Amara and Rabia Djellouli (CSUN) we proposed two new
solution methodologies for solving high-frequency Helmholtz problems. The first one is a
procedure for selecting basis function orientation in order to improve the efficiency of discre-
tization methods based on local plane-wave approximations. The numerical results obtained
for the case of a two-dimensional rigid scattering problem indicate that the proposed approach
reduce the size of the resulting system by up to two orders of magnitude, depending on the
frequency range, with respect to the size of the standard Least Square Method system. These
results have been presented in [A3], which is given page 139 of the Appendix and available
online at

https://hal.inria.fr/hal-01010465.

The second proposed solution method employs a boundary-type formulation without however
involving Green functions and/or incurring singular integrals. In addition, this approach does
not necessitate the use of a mesh. For these reasons, the method is named Mesh Free Frontier-
based Formulation (MF3). Furthermore, the sought-after field is locally approximated using a
set of basis functions that consist of Bessel-kind functions computed at a prescribed finite set
of points. The preliminary numerical results obtained in the case of 2D-Helmholtz problems
in the high-frequency regime illustrate the computational efficiency of MF3 (the method
delivers results with high accuracy level, about 10−8 on the L2 relative error, while requiring
the solution of small linear systems). In addition, these results tend to suggest that MF3 is
pollution free. These results have been presented at [C8]. A paper is in preparation.
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Chapter 3

Design of Higher-Order Time
Schemes

The main advantage of discontinuous approximations is their capability of allowing for space
hp-adaptivity. They contribute thus to reduce the computational costs by computing the
numerical solution on grids composed of fitted cells. However, local-time stepping schemes
should also be considered to fully exploit the flexibility of discontinuous elements to reduce
the computational burden. Indeed, a mesh that is composed of a collection of fine and coarse
cells defines implicitly a local Courant-Friedrichs-Levy (CFL) condition and suggests thus to
employ the corresponding local time step. Using the global time step that would be determined
from the smallest cell obviously involves too many computations and thus limits the interest
of using discontinuous elements. Moreover, it is well-known that a too small time step can
create spurious dispersion effects. A local time stepping scheme can thus improve both the
accuracy of the solution and the computational performances of the numerical code.

Locally implicit methods build on the long tradition of hybrid implicit-explicit (IMEX) algo-
rithms for operator splitting in computational fluid dynamics (see [128, 11] and the references
therein). Here, a linear system needs to be solved inside the refined region at every time-step,
which becomes not only increasingly expensive with decreasing mesh size, but also increa-
singly ill-conditioned as the grid-induced stiffness increases [107]. Moreover, even when each
individual method has order two, the implicit-explicit component splitting can reduce by one
the overall space-time convergence rate of the resulting scheme [71, 69]. Recently, Descombes,
Lanteri and Moya[69] remedied that unexpected loss in accuracy and hence recovered second-
order convergence, by using the LF/CN-IMEX approach of Verwer [170] instead, yet at the
price of a significantly larger albeit sparse linear system.

In contrast, locally explicit time-stepping methods remain fully explicit by taking smaller
time-steps in the “fine” region, that is precisely where the smaller elements are located. In
the mid-to late 80s, Berger and Oliger [30] and Berger and Colella [28] proposed a space-
time adaptive mesh refinement (AMR) strategy for nonlinear hyperbolic conservation laws.
Based on a hierarchy of rectangular finite-difference grids, it was later extended to hyperbolic
equations not necessarily in conservation form by using wave propagation algorithms [29].
Higher accuracy was achieved more recently by combining the AMR approach with weighted
essentially non-oscillatory (WENO) reconstruction techniques [14, 75].

In [83], Flaherty et al. proposed probably the first local time-stepping (LTS) strategy for
a DG-FEM, where each element selects its time-step according to the local CFL stability
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condition. By using the Cauchy-Kovalevskaya procedure within each element, arbitrary high-
order (ADER) DG schemes achieve high-order accuracy both in space and time [118] and also
permit each element to use its optimal time-step determined by the local stability condition.
They were also successfully applied to electromagnetic [159] and elastic wave propagation [74].

In the absence of forcing and dissipation, the classical wave equation conserves the total
energy. When a symmetric spatial FD or FE discretization is combined with a centered time-
marching scheme, such as the standard leap-frog (LF) (also known as Newmark or Störmer-
Verlet) method, the resulting fully discrete formulation will also conserve (a discrete version
of) the energy. Highly efficient in practice, centered time discretizations also display remar-
kably high accuracy over long times and remain even nowadays probably the most popular
methods for the time integration of wave equations. In particular, in [22, 55, 56, 105], the
authors proposed energy conserving local-time stepping methods. Their approach, which is
based on the introduction of a Lagrange multiplier, conserves a discrete energy. However,
it requires the solution of a linear system on the interface between the coarse and the fine
meshes. By combining a symplectic integrator with a DG discretization of Maxwell’s equa-
tions, [131] proposed an explicit local time-stepping scheme, which also conserves a discrete
energy. All of these methods are second-order accurate in time and the extension to higher
order schemes is not obvious. Alternatively, domain decomposition methods permit the use
of different numerical methods or time steps in separate subdomains [84, 99].

3.1 Higher order local time stepping for the wave equation

In [A15], given page 204 of the Appendix and available online at

https://hal.inria.fr/inria-00409233,

I have proposed, in collaboration with Marcus Grote, a local time-stepping method for second-
order wave equations of arbitrarily high order of accuracy. The methods is fully explicit and
requires no additional storage. With a symmetric finite element discretization in space and
a (block-)diagonal mass matrix, the resulting fully discrete scheme is not only explicit and,
thus, inherently parallel but also conserves (a discrete version of) the energy. We have also
shown via numerical experiments how a small overlap between the fine and the coarse regions
achieves an optimal CFL condition.

In [A10], given page 235 of the Appendix and available online at

https://hal.archives-ouvertes.fr/hal-00627603,

I have proposed, in collaboration with Caroline Baldassari, Hélène Barucq and Henri Ca-
landra, an hp-version of the method, where not only the time-step but also the order of
approximation is adapted within different regions of the mesh. This method has been later
applied to a realistic geological model [122].

Finally, in [A1], given page 248 of the appendix and available online at

https://hal.inria.fr/hal-01184090,

I have proposed with Marcus Grote a Multi-Level Local Time-Stepping (MLTS) method.
When a region of local refinement contains itself sub-regions of further refinement, those

46

https://hal.inria.fr/inria-00409233
https://hal.archives-ouvertes.fr/hal-00627603
https://hal.inria.fr/hal-01184090
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“very fine” elements yet again will dictate the time-step, albeit local, to the entire “fine”
region. Then, it becomes more efficient to let the time-marching strategy mimic the multilevel
hierarchy of the mesh organized into tiers of “coarse”, “fine”, “very fine”, etc. elements by
introducing a corresponding hierarchy into the time-stepping method. Hence, the resulting
MLTS method will advance in time by using within each tier of equally sized elements the
corresponding optimal time-step. In this paper, we present a numerical experiment where the
small time step is up to 150 times smaller than the coarse time step.

It is worth noting that the methods I have proposed can also be applied to finite difference
methods, to the spectral element method or to any other discontinuous Galerkin formulation.
It is a major difference as compared to the ADER method.

3.2 Local time stepping for fluid structure coupling

A key issue in the numerical modeling of fluid-solid models in the time domain is that it is
often desirable to resort to time substepping because the stability condition in the solid part
of the medium can be more stringent than in the fluid. This comes from the combination of
two reasons :

• in many cases of practical interest, for instance in the oil industry, the value of the
shear wave velocity at the ocean bottom on the solid side is similar to the value of the
pressure wave velocity on the fluid side (in the ocean) and thus a spatially conforming
mesh is needed to keep a similar mesh resolution,
• but the maximum pressure wave speed, which governs the stability condition of explicit

time schemes, is often much higher in the solid than in the fluid, which is often water ;
the ratio can typically be between 2 and 5.

Therefore, being able to use a significantly larger time step on the fluid side is useful in
order to save computational time. Several schemes or approximations are available in the
literature to do that, for instance [41] and references therein, or [147] in the context of finite
difference-finite element coupling. At an interface across which the time step changes, energy
conservation should be ensured along the interface, otherwise instabilities and/or inaccuracies
can arise. But this is often not done in the available literature and approximate techniques
that do not enforce the conservation of energy are used instead. For instance Tessmer [161]
does not explicitly enforce energy conservation and observes that small spurious reflected
and refracted waves arise in his snapshots of wave propagation. In the case of fluid-solid
coupling, one should therefore enforce the conservation of energy along the fluid-solid interface
in the time-marching algorithm in order to ensure the accuracy and the stability of the time
scheme. Some classical time integration schemes ensure the conservation of energy inside a
given domain, see e.g. [146, 158, 51, 106, 55, 56, 98, 126, 42]. But when coupling two different
domains in a non conforming way (in time or in space) one must in addition enforce the
conservation of total energy along the interface explicitly.

In [A16], given page 274 of the Appendix and available online at

https://hal.inria.fr/inria-00436429,

I have introduced in collaboration with Ronan Madec and Dimitri Komatitsch, such an energy-
conserving local time stepping method, which is both accurate and numerically stable. To
implement it we need to solve a linear system along the fluid-solid interface. We validated
it based on numerical experiments performed using a spectral-element method and checked
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that energy conservation along the fluid-solid interface is ensured from a numerical point of
view.

3.3 Explicit high-order time schemes.

In conjunction with my works on DG method, I have developed new explicit high order time
schemes, in order to make the best use of the high order space discretization, by considering
an alternative approach to the ADER schemes. Instead of using auxiliary variables, I have
proposed, in collaboration with Cyril Agut, to directly discretize the high-order space opera-
tors that appear after the Taylor expansion in time of the wave equation. This discretization
is easily achieved thanks to DG methods. We have applied this method to the second order
wave equation in [A8], which is given page 301 of the Appendix and available online at

https://hal.inria.fr/hal-00646421.

The numerical results showed that this technique induced less computational burden than
the modified equation scheme or the ADER scheme. These results are part of the PhD thesis
of Cyril Agut [2]. Then, in collaboration with Hélène Barucq, Henri Calandra and Florent
Ventimiglia, we have extended this strategy to the first order formulation of the wave equation,
which is the formulation used in the DIVA platform of TOTAL. In [B2], given at page 319 of
the Appendix and available online at

https://hal.inria.fr/hal-01111071,

we have adapted the DG formulation with centered fluxes proposed in [68] to higher order
operators. Numerical results showed once again that this method requires less computational
costs and less storage than the High-Order ADER Scheme. These results are part of Florent
Ventimiglia PhD thesis [169].
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Chapter 4

Computation of Analytical Solution

Even if the geophysical problems I am considering are too complicated to be solved ana-
lytically, the computation of analytical solutions for wave propagation problems is of high
importance for the validation of the numerical computational codes. It also provides a bet-
ter understanding of the reflection/transmission properties of the media. Cagniard-de Hoop
method [40, 66] is a useful tool to obtain such solutions and permits to compute each type
of waves (P wave, S wave, head wave...) independently. Although it was originally dedicated
to the solution of elastodynamic wave propagation, it can be applied to any transient wave
propagation problem in stratified media.
I started to develop a software based on the Cagniard-de Hoop method during a visit of
Cristina Morency in the team Magique 3D. In collaboration with Jeroen Tromp, they were
implementing a code for poroelastic wave propagation and wished to validate in the case of
bilayered poroelastic media and in the case of poroelastic/acoustic coupling. Together with
Abdelaaziz Ezziani, we developed a first version in 2D and then in 3D, and we parallelized it
with the help of Nicolas Le Goff who was engineer in the team. The results produced by the
code have been used by Morency and Tromp to benchmark their software [124].
The computation of the analytical solution in 2D is detailed in [A13], given at page 328 of
the Appendix and available online at

https://hal.inria.fr/inria-00404224,

while the 3D results are given in [A14], given at page 352 of the Appendix and available online
at

https://hal.inria.fr/inria-00404228.

Later, I extended the code to Elastodynamics, and to Acoustics, which give rise to Gar6more2D
and Gar6more3D that I describe with more details in the next chapter. It has been used by
R. Sidler, K. Holliger (University of Lausanne) and J. Carcione (OGS Trieste) [144, 145] to
validate their codes of poroelastic wave propagation. We have also been contacted by Stefan
Wenk, from the University of Munich, in order to validate his elasto-acoustic code. Gar6more
is routinely used in the team in order to validate our numerical codes.
I now intend to develop an equivalent of Gar6more in harmonic domain.
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Chapter 5

Software

In this Chapter, I detail the software packages I contributed to develop. Two of them (TMBM
and Elasticus) are specifically devoted to transient problems, one (THBM) is specifically
devoted to harmonic problems, one (Hou10ni) is adapted both to transient and harmonic
problems and one (Gar6more) is designed to compute analytical solutions.

5.1 Hou10ni

This software, written in FORTRAN 90, simulates wave propagation in 2D and 3D hetero-
geneous media in time domain and in frequency domain. It is based on the Interior Penalty
Discontinuous Galerkin Method (IPDGM). It is able to deal with both acoustic and elas-
todynamic media, but also to model elastoacoustic problems. In 2D, the surfaces between
the different media can be approximated by curved elements. Elements up to P 15 order are
available for curved elements while there is no limitation (except the one related to machine
precision) of order when dealing with non-curved elements. It has been parallelized using hy-
brid MPI/OpenMP parallelism. This code has been also implemented in an inversion solver
which determines the shape of an elastic obstacle from the knowledge of its scattered field.

The 2D Frequency Domain version has been registered in 2013 at APP (Agency for the
Protection of Programs). I do not plan to distribute it widely, but I wish to use it to build
collaboration with research teams in geophysics. I have recently started discussions with
IsTerre in Grenoble on that topic.

I am the main developer of Hou10ni, which has been used and extended by various students
of the team. It has been used for the performance comparisons between IPDGM and SEM by
Caroline Baldassari [A7]. Cyril Agut analyzed the impact of the penalization parameter on the
performances of IPDGM [A4], and then developed high order time schemes [A8]. Véronique
Duprat developed and tested Absorbing Boundary Conditions on arbitrarily-shaped boun-
dary [A9, A5].

The 2D elasto-acoustic version has been implemented by Élodie Éstécahandy [17] and em-
ployed in an inverse problem solver for shape reconstruction of obstacles [77]. More recently,
Conrad Hillairet implemented the 3D elasto-acoustic coupling in the framework of his Master
Internship.

The code has been validated in time-domain thanks to the software Gar6more (see below). In
harmonic domain, Hou10ni generates its own analytical solutions which can be plane waves
or solution of problems of diffraction by a circle. In this latter configuration, the analytical
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solutions are computed using Bessel series.

5.2 DIVA/TMBM

The plateform DIVA, now renamed as TMBM (Time Marching Based Methods) is a seismic
imaging software in time-domain developed by Total. It is a research platform available for
Inria team projects and Magique-3D contributes mainly to the implementation of Disconti-
nuous Galerkin Methods. The first version of this software relied on Finite Differences for
solving the direct problems and we have implemented a new version based on a Disconti-
nuous Galerkin Method. The DGM version, based on the DG centered fluxes formulation [68]
can solve acoustic, isotropic elastic, and TTI elastic wave propagation problems in 2D or in
3D. Several PhD and post-doc students and one engineer of Magique 3D are involved in the
development of TMBM. We validated the code with analytic solutions provided by Gar6more.
The code is optimized in a High Performance Computing framework, principally by using
MPI. I do not program directly into the plateform, but I supervise with Hélène Barucq
the integration of the student works. Many students contributed to the development of the
plateform : Caroline Baldassari, Florent Ventimiglia, Lionel Boillot et Jérôme Luquel.

5.3 Elasticus

This software is mainly developed by Simon Ettouati and Lionel Boillot under my supervision.
It aims at facilitating the integration of the student works into THBM. The objective is to
develop a code less optimized that THBM, but more readable, in order to test more rapidly
each of the new features we propose.

5.4 THBM

This plateform, called Time Harmonic Based Methods is the equivalent of TMBM in har-
monic domains. Its development is more recent than TMBM and I principally supervise the
integration of the works of Marie Bonnasse Gahot on Hybrid Discontinuous Galerkin Methods.

5.5 Gar6more

This software package compute the analytical solution of problems of waves propagation in
two layered 2D or 3D media, based on the Cagniard-de Hoop method. In the homogeneous
case, the medium can be acoustic, elastic or poroelastic ; infinite or semi-infinite with a free
boundary or a wall boundary condition at its end. In the bilayered case, the following coupling
are implemented (the source is assumed to be in the first medium) :

• acoustic/acoustic ;
• acoustic/elastodynamic ;
• elastodynamic/acoustic ;
• acoustic/poroelastic ;
• poroelastic/poroelastic,

The code is freely distributed under a CECILL license and can be downloaded online :

http://web.univ-pau.fr/~jdiaz1/gar62DCecill.html
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for the 2D version and

http://web.univ-pau.fr/~jdiaz1/gar63DCecill.html

for the 3D version.
The targeted users are researchers who need reference solutions in order to validate and/or
benchmark numerical codes simulating wave propagation.
Gar6more has been already used by J. Tromp and C. Morency (Princeton) [124] and by
R. Sidler, K. Holliger (University of Lausanne) and J. Carcione (OGS Trieste) [144, 145] to
validate their codes of poroelastic wave propagation. I have also been contacted by Stefan
Wenk, from the University of Munich, in order to validate his elastoacoustic code. Gar6more
is routinely used in the team in order to validate our numerical codes. As far as I know, the
main competitor of this code is EX2DELDEL ( available on http ://www.spice-rtn.org), but
this code only deals with 2D acoustic or elastic media. Gar6more seem to be the only one
able to deal with bilayered poroelastic media and to handle three dimensional cases.
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Chapter 6

Perspectives

To conclude this dissertation, I present the research directions I want to pursue during the
next four years. In particular, I wish to consider innovative solution methodologies for sol-
ving Helmholtz equations ; to couple regular grids with irregular grids ; to go deeper in the
performance analysis of Discontinuous Galerkin methods for geophysical simulations ; and to
consider hybrid time discretizations by coupling implicit and explicit schemes.

6.1 Advanced numerical techniques for solving the Helmholtz
equations

In the framework of DIP, I am more and more involved in the solution of Helmholtz equation.
In particular, I co-advised with Stéphane Lanteri (Inria team project Nachos )the Ph.D. thesis
of Marie Bonnasse-Gahot, who derived a new class of Discontinuous Galerkin Method, the
Hybridizable Discontinuous Galerkin method, for the harmonic elastic wave equation. This
technique provides a two-step procedure for solving the Helmholtz equations [109, 117, 125].
First, Lagrange multipliers are introduced to represent the flux of the numerical solution
through the interface (edge or face) between two elements. The Lagrange multipliers are
solutions to a linear system which is constructed locally element by element. The number
of degrees of freedom is then strongly reduced since for a standard DG method, there is a
need of considering unknowns including volumetric values inside the element. And obviously,
the gain is even more important that the order of the element is high. Next, the solution is
reconstructed from the values of the multipliers and the cost of this step is negligible since
it only requires inverting small-sized matrices. The results that Marie obtained emphasized
the efficiency of the technique and we want to apply it now to the simulation of complex
phenomena such as the 3D viscoelastic wave propagation.

I also want to pursue my collaboration with Rabia Djellouli, both on the selection of the
basis functions for local plane-wave approximations and on the Mesh Free Frontier-based
Formulation. The results are very promising and we hope to continue our study in the context
of the application to geophysical imaging. An important step to validate both methods will
be particularly the extension to 3D because the results we have achieved so far are for 2D
problems. This is up-front investigation and there is a lot of remaining work before being
applied to geophysical imaging. It will give me the opportunity of testing new ideas while
remaining in contact with potential users of the methods.

Keeping in mind the idea of limiting the difficulties of mesh, we want to study the method of

55



Chapter 6 Perspectives

virtual elements. This method attracts me because it relies on meshes that can be made of
arbitrarily-shaped polygon and meshes should thus be fairly straightforward. Existing works
on the subject have been mainly developed by the University of Pavia, in collaboration with
Los Alamos National Laboratory [24, 39, 61, 60, 38, 25]. None of them mentions the feasibility
of the method for industrial applications and to my knowledge, there are no results on the
method of virtual elements applied to the elastodynamic wave equations. First, I aim at ap-
plying the method described in [130] to the elastodynamic Helmholtz equation and to explore
opportunities to use discontinuous elements within this framework. Then hp-adaptivity could
be kept, which is particularly interesting for wave propagation in heterogeneous media.

6.2 Coupling regular and irregular grids

The geophysical subsurface is so heterogeneous that we cannot envisage to create a mesh
following all the interfaces, especially if we want to update the mesh at each iteration of an
inverse problem. Therefore, it might be more efficient to use an unstructured mesh to model
only the topography, that we know prior to the experiment, and to use a structured cartesian
mesh for the bottom of the subsurface. We did a first attempt in [B4] by coupling a finite
difference scheme (for the bottom) to a Discontinuous Galerkin scheme (for the top). The
major limitation of the method was the fact that we had to use P 0 in order to ensure the
coupling between the two meshes. This reduces drastically the accuracy of the computation. I
now wish to use Discontinuous Galerkin Method both for the structured and the unstructured
grids. By doing so, the transmission condition between the two grids will be taken into account
naturally, and we will keep the possibility to use hp-adaptivity on the regular grid, and possibly
to consider physical velocities that varies inside the mesh. Finally, we will take advantages
of the structural grids by using all the algorithms that have been implemented to optimize
Finite Differences.

This topic could bring benefit both to solutions of time-domain and of harmonic-domain
problems.

6.3 Performance analysis of discontinuous Galerkin methods
for geophysical simulations

There exists a large variety of Discontinuous Galerkin Methods, the main differences being
the type of numerical fluxes that are used at the interface between two cells. There also exists
a large variety of time schemes to discretize transient problems. It is therefore necessary to
compare the different methods in a geophysical context. For instance, the ability to accurately
handle point source is of high importance in seismic imaging, and this point is rarely discuss in
mathematical papers, the authors focusing mainly on the generation of very regular solutions.

I already performed comparisons between IPDGM and SEM in [A10] and comparisons bet-
ween IPDGM, and DG with centered fluxes in the framework of the Ph.D. thesis of Florent
Ventimiglia [169]. I now intend to compare DG with centered fluxes with DG with upwind
fluxes and to compare the efficiency of various time schemes (mainly Leap-Frog and Runge-
Kutta formulation).
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6.4 Higher-order hybrid time discretizations

Despite a very good performance assessment in academic configurations, I have observed to
my detriment that the implementation of local-time stepping algorithm inside industrial codes
is not obvious and in practice, improvements of the computational costs are disappointing,
especially in a HPC framework. Indeed, the local time stepping algorithm may strongly affect
the scalability of the code. Moreover, the complexity of the algorithm is increased when dealing
with lossy media [90].
Recently, Dolean et al [71] have considered a novel approach consisting in applying hybrid
schemes combining second order implicit schemes in the thin cells and second order explicit
discretization in the coarse mesh. Their numerical results indicate that this method could be
a good alternative but the numerical dispersion is still present. It would then be interesting
to implement this idea with high-order time schemes to reduce the numerical dispersion. The
first task should be the extension of these schemes to the case of lossy media because applying
existing schemes when there is attenuation is not straightforward. This is a key issue because
there is artificial attenuation when absorbing boundary conditions are introduced and if not,
there are cases with natural attenuation like in viscoelastic media. The second task would be
the coupling of high-order implicit schemes with high-order explicit schemes. These two tasks
can be first completed independently, but the ultimate goal is obviously to couple the schemes
for lossy media. Two strategies could be considered for the coupling. The first one is based on
the method proposed by Dolean et al, the second one consists in using Lagrange multiplier
on the interface between the coarse and fine grids and write a novel coupling condition that
ensures the high order consistency of the global scheme. Besides these theoretical aspects, I
will have to implement the method in industrial codes and the discretization methodology
should be very suitable for parallel computing since it involves Lagrange multipliers. I propose
to organize this task as follows. There is first the crucial issue of a systematic distribution of
the cells in the coarse/explicit and in the fine/implicit part. Based on my experience on local
time stepping, I claim that it is necessary to define a criterion which discriminates thin cells
from coarse ones. Indeed, I intend to develop codes which will be used by practitioners, in
particular engineers working in the production department of Total. It implies that the code
will be used by people who are not necessarily experts in scientific computing. Considering
real-world problems means that the mesh will most probably be composed of a more or less
high number of subsets arbitrarily distributed and containing thin or coarse cells. Moreover,
in the prospect of solving inverse problems, it is difficult to assess which cells are thin or
not in a mesh which varies at each iteration. Another important issue is the load balancing
that we can not avoid with parallel computing. In particular, we will have to choose one of
these two alternatives : dedicate one part of processors to the implicit computations and the
other one to explicit calculus or distribute the resolution with both schemes on all processors.
A collaboration with experts in HPC is then mandatory since I am not expert in parallel
computing.
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Références

[159] A. Taube, M. Dumbser, C.-D. Munz, and R. Schneider. A high-order discontinuous
Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer.
Model., 22, pages 77–103, 2009.

[160] M. A. Taylor and B. Wingate. A generalized diagonal mass matrix spectral element
method for non-quadrilateral elements. Applied Numerical Mathematics, 33(1), pages
259–265, 2000.

[161] E. Tessmer and D. Kosloff. 3-D elastic modeling with surface topography by a che-
bychev spectral method. Geophysics, 59(3), pages 464–473, 1994.

[162] L. Thomsen. Weak elastic anisotropy. Geophysics, 51(10), pages 1954–1966, 1986.

[163] L. Thomsen et al. Understanding seismic anisotropy in exploration and exploitation,
volume 5. Society of Exploration Geophysicist, 2002.

[164] J. Tromp, C. Tape, and Q. Liu. Seismic tomography, adjoint methods, time reversal
and banana-doughnut kernels. Seismological Laboratory, California Institute of Tech-
nology, Pasadena, CA 91125, USA, 2005.

[165] I. Tsvankin, K. Helbig, and S. Treitel. Seismic signatures and analysis of reflection
data in anisotropic media. Pergamon Amsterdam, 2001.

[166] J. A. van Trier. Tomographic determination of structural velocities from depth-
migrated seismic data. PhD thesis, Stanford University, 1990.

[167] T. Vdovina and S. Minkoff. An a priori error analysis of operator upscaling for the
acoustic wave equation. Internat. J. Numer. Anal. Modeling, 5, pages 543–569, 2008.

[168] T. Vdovina, S. E. Minkoff, and S. M. Griffith. A two-scale solution algorithm for the
elastic wave equation. SIAM Journal on Scientific Computing, 31(5), pages 3356–3386,
2009.
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