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Synthèse en français

Il y a eu une intense activité dans le domaine des atomes froids dans les deux dernières
décennies [16, 116]. Depuis les premières réalisations de condensation de Bose-Einstein
[6, 18, 34], des nouveaux développements expérimentaux impliquant le refroidissement et
le confinement des particules dans des pièges optiques ont conduit à un nouveau chapitre
dans le domaine des systèmes quantiques à plusieurs corps, où les statistiques des partic-
ules est a le rôle central, plutôt que des atomes individuels.

Après la réalisation de refroidissement des fermions piégés au point où la statistique
de Fermi devient dominante [95], les expériences ont été en mesure d’explorer les pro-
priétés remarquables de gaz de Fermi [60]. Fermions sans interactions présentent des
effets quantiques non-triviaux, découlant du principe d’exclusion de Pauli. Alors que les
bosons confinés peuvent s’effondrer au plus bas niveau de la trappe, les fermions sont
contraints à diluer et à se comporter comme un système fortement corrélé, indépendam-
ment de leur interaction originale. Ceci induit un mouvement de Fermi des particules, qui
est un phénomène purement quantique et est le principal facteur pour cette dilution, en
supprimant le rôle des interactions individuelles parmi les fermions, qui peut être, dans de
nombreux cas, négligés ou traités comme une petite perturbation [116]. Cela transforme
le gaz parfait de Fermi dans la première étape naturelle pour discuter des propriétés des
gaz de Fermi.

Nous considérons le cas du gaz de Fermi à une dimension de N particules confiné
par un potentiel harmonique VQ(x) = 1

2mω
2x2. Pour plus de simplicité, nous avons posé

m = ω = ~ = 1. L’état fondamentale de la fonction d’onde à plusieurs corps de ce
système est donnée par le déterminant de Slater Ψ(~x) = det[φi(xj)]/

√
N !, Où φi(xj) est

la fonction d’onde d’un seul oscillateur harmonique φn(x) ∝ e−x2/2Hn(x) et Hn(x) sont
les polynômes d’Hermite. En manipulant le déterminant, on peut écrire la densité de
probabilité de l’état fondamental

|Ψ(~x)|2 = 1
ZN

e−
∑N

i=1 x
2
i

∏
j<k

(xk − xj)2, (1.1)

où ZN est la constante de normalisation. Rédigé sous cette forme, nous remarquons que
la fonction de densité de probabilité conjointe de la position de ces fermions sur leur état
fondamental est équivalente à la distribution des valeurs propres de la N × N matrice
gaussienne hermitienne [100]. Dans ce travail, nous utilisons ce lien remarquable entre
fermions froides et théorie des matrices aléatoires pour explorer les fluctuations quantiques
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du gaz de Fermi à une dimension harmonique confiné, élargir les résultats annoncés dans
[97].

L’un des principaux observables dans la théorie des matrices aléatoires et beaucoup
physique quantique du corps est la densité, qui est définie comme

ρN(x) = 1
N

N∑
i=1

δ(x− xi), (1.2)

où {xi} sont les positions de valeurs propres ou fermions sur la ligne. Il est connu que la
densité moyenne des valeurs propres d’une matrice aléatoire gaussienne converge vers la
loi du demi-cercle de Wigner [149, 100] dans la limite de grand N :

〈ρN(x)〉 N�1−−−→ 1
Nβπ

ρsc

(
x√
Nβ

)
, ρsc(x) =

√
2− x2

π
, (1.3)

où β est l’indice Dyson, dont la valeur est donnée par beta = 1, 2 ou 4 si la matrice
gaussienne est symétrique réelle, complexe hermitienne ou quaternionique self-dual, re-
spectivement. La correspondance avec les fermions froids est valable pour le cas β = 2.
Il y a une échelle claire sur les valeurs propres gaussiennes avec

√
N , et il est commode

de les redimensionner pour obtenir des valeurs propres de l’ordre de l’unité. Ceci est
équivalent à ajuster la variance des éléments de la matrice de Gauss d’un facteur

√
Nβ,

et correspond au problème de fermions froids pour des distances mises à l’échelle comme√
2N .

−
√

2
√

2x

ρ
sc

(x
)

edgeedge

bulk

N−2/3 N−2/3N−1

Figure 1.1 — Densité moyenne des valeurs propres gaussiennes avec la représentation
des régimes bulk et edge.

Cette mise à l’échelle donne une densité moyenne indépendante de N dans la limite de
large N , donnée par ρsc(x) dans l’équation (1.3). Cette densité a deux régimes très impor-
tants, ou zones de redimensionnement, nommés régime bulk et régime edge, représentés
dans la figure 1.1. Le bulk est un intervalle dont la taille est de l’ordre de la distance
interparticulaire, qui dans le cas à l’échelle est 1/N , et représente un “ Zoom ” dans une
partie du spectre. Dans ce régime, le confinement harmonique des fermions peut être
négligé, et le comportement des particules à cette échelle est dominé par les effets du
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principe d’exclusion de Pauli. Le bord, qui pour le cas gaussien est placé à x = ±
√

2, est
un point singulier pour la densité moyenne. Plusieurs observables changent radicalement
leur comportement lorsqu’ils sont étudiés autour du bord [115]. Statistiques de la plus
grande valeur propre d’une matrice aléatoire gaussienne, dont la valeur moyenne est

√
2,

sont décrits par la distribution de Tracy-Widom [134, 135]. Ces fluctuations typiques sont
de l’ordre O(N−2/3) autour du bord, et ils représentent la largeur du régime edge.

Cette densité fait allusion à un comportement très riche des fluctuations quantiques
de fermions froides. Une façon d’explorer ce phénomène est d’analyser les statistiques de
numéro, ou des statistiques complètes de comptage, de fermions piégés. Cela représente
compter le nombre NI de fermions à l’intérieur d’un intervalle I autour du minimum de
la trappe et d’étudier comment ce nombre évolue lorsque l’intervalle croît en taille. Pour
le cas de bosons idéal à température nulle, toutes les particules sont concentrées sur l’état
fondamentale, centré sur le minimum du piège. Elles ne sont pas corrélées et la statistique
de leur nombre peut être facilement déterminée. Le cas fermionique, cependant, présente
la question naturelle de déterminer la statistique de la variable aléatoire NI , le nombre
de fermions, ou valeurs propres, qui tombent à l’intervalle I.

Étonnamment, l’observable NI a une dépendance riche et très non triviale sur la
taille de l’intervalle. Alors que sa moyenne est facilement obtenue en intégrant ρsc(x) sur
l’intervalle I, ses autres moments ne sont pas évidents. Calculer le statistique complète
de NI est une tâche très difficile que nous avons récemment résolu pour une symétrique
intervalle I autour de l’origine en utilisant la connexion entre les statistiques d’un gaz de
Fermi dimensions et les valeurs propres de la gaussienne unitaire ensemble de matrices
aléatoires [97]. Dans ce travail, nous obtenons la pleine j.p.d.f. de NI dans la limite de
grand N pour tout intervalle I, nous présentons une étude détaillée de sa variance des
fluctuations typiques et nous appliquons cette étude à deux autres ensembles de la matrice
aléatoire: l’ensemble de Wishart et l’ensemble de Cauchy.

La densité spectrale moyenne de ρ(x) de l’ensemble est la distribution marginale de la
joint probability density function:

ρ(x) =
〈 1
N

N∑
i=1

δ(x− xi)
〉

=
∫

dx2 · · · dxNP (x, x2 . . . , xN) . (1.4)

Ici, nous étudions trois différentes classes d’ensembles avec des potentiels différents.
Ensemble gaussien: V (x) = x2/2. L’ensemble le plus largement étudié, ayant la

propriété remarquable (et unique) d’avoir entrées indépendantes et d’être en même temps
invariant par rotation [100]. L’ensemble est composé des matrices du type symétrique
réelle β = 1, complexe hermitienne β = 2 ou quaternion auto-dual β = 4 matrices dont
les entrées sont variables gaussiennes telles que la probabilité d’obtenir la matrice X est
donné par P (X) ∝ e−TrX2/2. La densité spectrale moyenne pour grande N et pour tout
β > 0 converge vers la célèbre loi semi-circulaire de Wigner.

ρsc(x) = 1
π

√
2− x2 . (1.5)

Ensemble Wishart: V (x) = x
2 − α ln x, où α est une constante. Pour β = 1, 2, 4,

ce potentiel de confinement peut être concrètement réalisé de la façon suivante. Soit X
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une matrice M × N dont les entrées sont i.i.d. variables aléatoires gaussiennes (réel,
complexes ou quaternions). Nous définissons une matrice Wishart W comme N × N
matrice de covariance W = X†X de la matrice de données gaussiens X. La constante α
est α = β(1 + MN)/2N − 1/N . Cet ensemble est également connu comme l’ensemble
Laguerre, en raison de la classe des polynômes orthogonaux qui lui sont associés. Matrices
de Wishart sont semi-définie positives et symétriques. Cet ensemble a été introduit par
Wishart en 1928 [152] et largement étudié par les statisticiens [66, 53] longtemps avant la
naissance officielle de RMT en physique.

La densité spectrale moyenne dans la limite de N,M larges (avec N/M = c ≤ 1 fixe)
pour les matrices de Wishart a été obtenu par Marčenko et Pastur [98] (voir figure 1.2a.
pour le cas N = M) et donné par

ρmp(x) = 1
2πx

√
(x− x−)(x+ − x), (1.6)

où x± = (1± 1/
√
c)2.

0 4
x

ρ
m
p
(x

)

(a)

10-3 10-2 10-1 100

l
0.2

0.4

0.6

0.8

1.0

1.2

Va
r(
N
l)

Theory
Numerics for N=5000

5 4 3 2 1 0 1 2s
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

V
2
(s

)

(b)

Figure 1.2 — (a) Densité moyenne des valeurs propres de la matrice de Wishart dans le
cas N = M et (b) Résultat pour la variance du nombre de valeurs propre dans l’intervalle
I = [1, 1 + l].

Ensemble de Cauchy
Nous considérons N×N matrices qui pourraient être symétriques (β = 1), hermitienne

(β = 2) ou auto-dual (β = 4) tirées de la distribution

P (H) ∝
[
det

(
1N + H2

)]−β(N−1)/2−1
, (1.7)

où 1N est la matrice identité N ×N .
Initialement conçu comme un remplacement convenable pour l’ensemble gaussien dans

le contexte de transports quantique [22], l’ensemble de Cauchy est aussi trouvé dans le
contexte de probabilités libres [23, 24, 59]. La j.p.d.f. de ces valeurs propres est donnée
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par

P (λ1, · · · , λN) = 1
ZN

N∏
j=1

1
(1 + λ2

j)β(N−1)/2+1

∏
i<k

|λi − λk|β . (1.8)

L’ensemble de Cauchy est aussi un des rares ensembles exactement solubles dont la
densité spectrale moyenne a queues épaisses s’étendant sur l’axe réel complète, et donné
par (voir Fig. 3.2c)

ρN(λ) = 1
π

1
1 + λ2 . (1.9)

Notamment, la densité moyenne ne dépend pas de N .
La principale caractéristique qui nous amènent à considérer cet ensemble est la “fat

tail” dans la densité moyenne. Plusieurs quantités calculées d’un ensemble changent
radicalement une fois qu’un “ bord ” est atteint, une fois l’intervalle considéré pour le
comptage de valeurs propres traverse le bord de la densité moyenne si cette densité a un
support compact. En l’absence d’un support compact, nous nous attendons à obtenir
un comportement différent, et nous avons pu le comparer avec les résultats des autres
ensembles. Les matrices de Wigner avec “fat tails” ont été étudiés par [15] et l’ensemble
de Cauchy représente un équivalent intéressante dans le domaine invariant.

Dans ce qui suit, nous allons décrire la principale méthode appliquée pour résoudre les
problèmes traités dans cette thèse. Cette procédure est appelée la méthode de Coulomb-
gaz. Elle a été introduite par Dyson et Mehta sur les documents fondateurs du sujet
[43, 45], et des nombreuses applications ont été trouvées depuis son origine, telles que
l’étude d’analyse en composante principale (PCA) dans des ensembles aléatoires de don-
nées [94], l’évaluation des résistance, conductance et la puissance de bruit dans des cavités
mésoscopiques chaotiques [61, 140, 142], l’étude de l’information mutuelle et la transmis-
sion de données en sortie multiple à entrées multiples (MIMO) de réseaux [78], l’intrication
quantique bipartite des systèmes quantiques [28, 51, 108, 109], sur la plus grande valeur
propre de gaussiennes et Wishart matrices [91, 37] et beaucoup d’autres.

Nous allons explorer cette méthode dans un cadre très général. Tous les ensembles
présentés ci-dessus possèdent la même forme (équation (3.7)) pour le j.p.d.f. de leurs
valeurs propres, de sorte que la méthode applique pour tout potentiel confinant V (x).

Prenons un ensemble de matrices aléatoires dont la j.p.d.f. des valeurs propres est
donnée par

P (x) = 1
ZN,β

e−βN
∑N

i=1 V (xi)
∏
j<k

|xk − xj|β. (1.10)

Nous pouvons réécrire cette expression de la façon suivante

P (x) = 1
ZN,β

e−βN
∑N

i=1 V (xi)+β
∑

k<j
log |xk−xj |. (1.11)

Cette probabilité peut être interprété comme le poids de Boltzmann d’un système
électrostatique associé. Soient N charges dans un gaz 2 dimensions limité à une ligne et
soumis à un potentiel NV (x). La répulsion électrostatique 2-D est logarithmique, et la
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probabilité de trouver des charges à des positions x = (x1, . . . , xn) sera donnée par

P (x) = 1
ZN,β

e−βE[x] E[x] = N
N∑
i=1

V (xi)−
∑
j<k

log |xj − xk|. (1.12)

Écrit comme cela, cette statistique est équivalente au poids de Boltzmann d’un sys-
tème physique de charges placées dans des positions x dont l’énergie est E[x] et ZN,β est
la fonction de partition du système. Cette correspondance fondamentale entre les par-
ticules chargées et les valeurs propres au hasard nous permet d’importer de nombreuses
techniques de la mécanique statistique pour traiter ce problème. Un système décrit par
l’énergie E[x] est appelé un gaz de Coulomb, ou log-gaz.

Prenons le cas Gaussien, où V (x) = x2/2. Nous introduisons la densité à deux points:

ρ2(x, x′) = 1
N(N − 1)

∑
i 6=j

δ(x− xi)δ(x′ − xj) . (1.13)

Et on peut écrire ∑
i

f(xi) = N
∫

dxρ(x)f(x) , (1.14)

∑
i<j

f(|xi − xj|) = N(N − 1)
2

∫∫
dxdx′ρ2(x, x′)f(|x− x′|) . (1.15)

Pour l’énergie E[x, µ,NI ] on obtient

E[x, µ,NI ] = N2
∫ +∞

-∞
ρ(x)x

2

2 dx− N(N − 1)
2

∫∫ +∞

−∞
dxdx′ρ2(x, x′) ln |x− x′|+ η

(
N
∫ +∞

-∞
ρ(x)dx−N

)
,

Où un multiplicateur de Lagrange supplémentaire η a été introduit pour assurer la nor-
malisation de la densité. À la limite de grand N , la densité à deux points peut être
remplacée par le produit de deux densité à un point et on obtient

E[x, µ,NI ] N�1∼ N2S(G)[ρ, µ], (1.16)

où

S(G)[ρ, µ] =
∫ +∞

-∞
ρ(x)x

2

2 dx− 1
2

∫∫ +∞

−∞
dxdx′ρ(x)ρ(x′) ln |x− x′|

+ µ

(∫ b

a
ρ(x)dx− kI

)
+ η

(∫ +∞

-∞
ρ(x)dx− 1

)
(1.17)

est appelée “l’action” du système.
L’introduction de la densité ρ(x) convertit cet intégrale dans une intégrale fonctionnelle

sur toutes les densités normalisées possibles. Le jacobien de cette transformation est
d’ordre O(N), qui est donc sous-dominant pour grande N . Par conséquent, nous pouvons
écrire

P(G)
β (NI = kIN) = 1

ZN,β

∫
D[ρ]dη e−βN2S(G)[ρ]+O(N) , (1.18)
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qui peut être évaluée par la méthode du colle.

P(G)
β (NI = kIN) = 1

ZN,β

∫
D[ρ]dµdη e−βN2S(G)[ρ] ≈ e−βN2(S(G)[ρ?]−S(G)[ρsc]) = e−βN2ψ(G)(kI) .

(1.19)
Nous obtenons la densité d’équilibre de la façon suivante.

δS(G)

δρ

∣∣∣∣∣
ρ?

= 0 = x2

2 −
∫

dx′ρ?(x′) ln |x− x′|+ η, x ∈ supp ρ?. (1.20)

Dériver cette équation encore une fois par rapport à x nous permet d’obtenir l’équation
qui définit la densité d’équilibre ρ?(x).

x = PV
∫ ρ?(x′)
x− x′

dx′, x ∈ supp ρ?, (1.21)

Pour résoudre cette équation, on applique la méthode de la résolvante. Soit G(z) une
fonction complexe, appelée la résolvante, définit par

G(z) =
∫ ρ?(x)
z − x

dx, z ∈ C \ supp ρ?. (1.22)

La normalisation de ρ? à 1 implique que G(z) se comporte comme 1/z lorsque |z| est
grand. On utilise l’identité suivante

lim
ε→0+

G(x+ iε) = lim
ε→0+

∫ ρ?(y)
x+ iε− ydy = lim

ε→0+

∫ ρ?(y)(x− y − iε)
(x+ iε− y)(x− y − iε)dy (1.23)

lim
ε→0+

[∫ ρ?(y)(x− y)
(x− y)2 + ε2

dy − i
∫ ρ?(y)ε

(x− y)2 + ε2
dy
]

= PV
∫ ρ?(y)
x− y

dy − iπρ?(x), (1.24)

où δ(x) = limε→0+(1/π)ε/(x2 + ε2), la ρ?(x) peut être obtenu de la partie imaginaire de
la resolvente

− 1
π

lim
ε→0+

ImG(x+ iε) = ρ?(x) . (1.25)

Avec quelques manipulations, cette technique nous permet d’obtenir plusieurs résultats
et informations sur les ensembles considérés, et est particulièrement adaptée pour obtenir
des information sur la statistique de comptage du nombre de valeurs propres dans une
intervalle I = [a, b], cela étant le résultat principal de cette thèse. On attaque ce problème,
d’abord en considérant un cas plus simple. Soit I = [0,∞), donc le comptage de valeurs
propres est en effet le comptage des valeurs propres positives de l’ensemble de matrice.
Prenons d’abord le cas de l’ensemble Gaussien V (x) = x2

2 .
L’importance de l’indice a été noté d’abord par May [99], dans le domaine de l’écologie

théorique. Dans son travail, May a étudié un système complexe de la forme dx
dt = Ax où

le éléments aij de la matrice A N × N ont été pris à partir d’une distribution aléatoire
de variance α et moyenne nulle. Il a déterminé que le système était presque sûrement
stable si α < N−1/2 et presque sûrement instable si α > N−1/2, la transition entre
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les deux régime étant forte, sa mise à l’échelle de largeur N−2/3. Lorsque la variance
est maintenue fixe, le système sera presque certainement instable, la probabilité d’avoir
toutes les valeurs propres négatives décroît très vite lorsque la taille du système augmente.
Bien que ce régime de transition obtenu par May préfigure une évolution beaucoup plus
profond dans la théorie des matrices aléatoires, la question de savoir comment exactement
cette probabilité diminue avec N est restée sans réponse jusqu’à 2006 [37].

Nous voulons calculer la densité de probabilité complète de l’index d’une matrice
aléatoire gaussienne de taille N × N . Nous rappelons que la j.p.d.f. des valeurs propres
est donnée par

P (x) = 1
ZN,β

e−
βN

2
∑N

i=1 x
2
i

∏
j<k

|xk − xj|β. (1.26)

La variable N+ possède la p.d.f. suivante

P (N+ = kN) = 1
ZN,β

∫ ∏
i

dxiP (x)δ
(∑

i

1[0,∞)(xi)− kN
)
. (1.27)

Comme présenté auparavant, nous appliquons la méthode de gaz Coulomb pour obtenir
la fonction de grandes déviations pour la variable N+. L’idée est d’écrire la p.d.f. (1.27)
comme le poids Gibbs-Boltzmann d’un système physique associé, utiliser la hypothèse de
large-N , appliquer une méthode du col et d’en tirer la fonction de grandes déviations pour
N+. Nous commençons en utilisant la représentation exponentielle du delta pour écrire

P (N+ = kN) = 1
ZN,β

∫ ∏
i

dxi
∫

dµe−
βN

2
∑

i
x2
i+β

∑
k>j

log |xk−xj |+βµ(
∑

i
1[0,∞)(xi)−kN) (1.28)

= 1
ZN,β

∫ ∏
i

dxi
∫

dµe−βE(x,µ), (1.29)

où
E(x, µ) = N

N∑
i=1

x2
i

2 −
1
2
∑
i 6=j

log |xi − xj|+ µ

(
N∑
i=1

1[0,∞)(xi)− kN
)

(1.30)

est dite l’énergie de la configuration {xi}. Dans la section précédente nous l’avons men-
tionné l’analogie entre la p.d.f. des valeurs propres de l’ensemble gaussien et un système
deux dimensionnel de charges confinées à une ligne soumise à un potentiel harmonique.
Ce résultat est toujours exigé dans le cas de l’indice, la p.d.f. (1.29) est aussi le poids
Gibbs-Boltzmann du même système électrostatique, avec un petit changement dans le
potentiel, un saut d’une hauteur µ (voir figure 1.3). Le multiplicateur de Lagrange µ a
comme rôle d’assurer la condition N+ = kN . Dans l’analogie électrostatique, ce change-
ment dans le potentiel veillera à ce que la fraction des valeurs propres positives est en
effet k. Cette quantité sera comparée à la fraction moyenne de valeurs propres positives,
k? = 1/2, et nous nous attendons à un changement brusque dans le comportement du
système lorsque k va de < 1/2 à > 1/2.

Pour analyser la fonction de probabilité (1.29), nous allons transformer l’approche
discrète de la position des valeurs propres à une intégrale fonctionnelle de continuum sur
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Figure 1.3 — Croquis du potentiel harmonique à laquelle le système de l’équation
associée (6.5) est soumise, pour le cas µ < 0.

la densité ρ, comme décrit précédemment. Remise à l’échelle µ→ N2µ on trouve

E[x, µ] N large−−−−→ N2S[ρ], (1.31)

où

S[ρ] =
∫ x2

2 ρ(x)dx− 1
2

∫∫
ρ(x)ρ(x′) log |x− x′|dxdx′

+ µ
(∫ ∞

0
ρ(x)dx− k

)
+ η

(∫ ∞
−∞

ρ(x)dx− 1
)

(1.32)

est l’action.
Comme dans l’exemple précédent, nous avons ajouté un multiplicateur de Lagrange

supplémentaire η pour renforcer la normalisation de la densité moyenne de valeur propres.
En utilisant l’hypothèse de large-N , on applique la méthode du col pour obtenir une
approximation de la fonction de probabilité (1.29).

1
ZN,β

∫ ∏
i

dxi
∫

dµe−βN2S[ρ] = 1
ZN,β

e−βN2S[ρ?], (1.33)

où ρ? minimise le fonctionnel S[ρ].
Pour l’obtenir, on dérive (1.32) fonctionnellement par rapport à ρ.

δS

δρ

∣∣∣∣∣
ρ?

= 0 = x2

2 −
∫
ρ?(x′) log |x− x′|dx′ + µ1[0,∞) + η, x ∈ supp(ρ?). (1.34)

Et encore une fois par rapport à x pour obtenir

x+ µδ(x) = −
∫ ρ?(x′)
x− x′

dx′, x ∈ supp(ρ?), (1.35)
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où −
∫
représente la partie principale de l’intégrale.

L’équation intégrale (1.35) est très similaire à l’équation résolue précédemment, la seule
différence étant le facteur delta supplémentaire. Nous avons mentionné que l’équation
(1.34) est un bilan de l’énergie pour le problème de gaz Coulomb, veillant à ce que la
répulsion et le potentiel sont équilibrés dans tous les points du support de la densité
moyenne. Le calcul de l’indice ajoute le multiplicateur de Lagrange µ, qui peut être
interprété comme un potentiel chimique ajouté à l’intervalle [0,∞).

Cette interprétation est important pour estimer la forme de la distribution de densité
moyenne qui émergera de l’équation (1.35). Dans le cas k > 1

2 , nous forçons plus de valeurs
propres à être positives par rapport à la valeur moyenne. Ceci est équivalent à ajouter
un potentiel chimique négative. La discontinuité de ce potentiel va créer une divergence
de charge de zéro. Les charges sur le côté positif seront empiler à l’origine, tandis que les
frais sur le côté négatif seront repoussés par cet empilement. Cela est en effet l’image que
nous observons dans la résolution de l’équation (1.35), comme nous le verrons.

Par cette description, il est clair que nous nous attendons au support d’avoir des
pièces compacts disjoints multiples. Cela transforme le théorème de Tricomi dans une
option pas très favorable. Bien que ce soit la méthode utilisée pour d’abord calculer cette
quantité dans [89], nous préférons utiliser l’option résolvant la fois pour la commodité et
l’uniformité avec le reste de calculs dans cette thèse. Certains résultats de cette thèse
impliquent un support à trois coupes, Tricomi théorème exigerait vaste calcul qui peut
être plus facilement réalisée avec la méthode résolutive.

On rappelle l’équation de la résolvante

G(z) =
∫ ρ?(x)
z − x

dx. (1.36)

À la suite de la recette prévue dans 1.22, on multiplie les deux côtés de l’équation par ρ?(x)
z−x

et nous intégrons plus de x. Notre but est d’écrire l’équation (1.35) comme une équation
algébrique sur la résolvante, obtenir le résolutive et utiliser relation entre la résolvante et
la densité pour obtenir la densité moyenne ρ?(x), ce qui est la densité moyenne soumis à
la contrainte d’avoir une fraction k de valeurs propres sur le côté positif.∫

x
ρ?(x)
z − x

dx+ µ
∫
δ(x)ρ

?(x)
z − x

dx =
∫∫ ρ?(x′)

x− x′
ρ?(x)
z − x

dx′dx, x ∈ supp(ρ?), (1.37)

On intègre équation (1.35), en répétant les mêmes étapes décrites auparavant, on
obtient

− 1 +G(z) + A

z
= 1

2G(z)2, (1.38)

dont la solution est immediate

G(z) = z ±
√

2A− 2z + z3

z
= z ±

√
(z − b1)(z − b2)(z − a)

z
. (1.39)

Bien que G n’a qu’un seul paramètre à être calculée en utilisant la fraction k, il est
commode d’écrire la résolvante en termes de racines du polynôme sur le numérateur de
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la racine carrée, tel que présenté dans l’équation (1.39). Ces racines peuvent être obtenus
en mettant en équation le coefficient de deux polynômes.

a+ b1 + b2 =0 (1.40)
ab1 + ab2 + b1b2 =− 2 (1.41)

Et à la dernière variable nous déterminons en utilisant directement la condition
∫∞
0 ρ?(x)dx =

k. En utilisant l’identité suivante, nous calculons la densité moyenne contraint à la con-
dition d’avoir une fraction k de valeurs propres positives.

− 1
π
Im

[
lim
ε→0+

G(x+ iε)
]

= 1
π

√
(b1 − x)(x− b2)(x− a)

x
= ρ?(x). (1.42)

Nous remarquons comment les racines du polynôme deviennent les bords de la densité
moyenne, dont le support est [b1, 0[∪[a, b2] pour le cas k < 1

2 et [b1, a]∪]0, b2] pour le cas
k > 1

2 . Nous traçons ces deux cas de cette densité, quand a > 0 et quand a < 0. Il y
a un changement radical dans le comportement sur le point a = 0, ce qui correspond à
k = 1

2 , sa valeur moyenne. Naturellement, lorsque la fraction des valeurs propres positives
est sa valeur moyenne, on obtient la densité moyenne sans contraintes, le demi-cercle de
Wigner. Cela peut être vu clairement dans la figure 1.4.

b1 a b20
x

ρ
(x

)

Constrained k> 1
2

Semicircle law

(a)

b1 a b20
x

ρ
(x

)

Constrained k< 1
2

Semicircle law

(b)

Figure 1.4 — Densité moyenne contrainte (bleu) et la comparaison avec le demi-cercle
de Wigner (orange) pour l’index de l’ensemble gaussien dans les cas (a) k > 1

2 et (b) k < 1
2

(équation (1.42)).

Armé de la densité moyenne ρ?(x), nous calculons la fonction totale, nommée rate
function. La p.d.f. de N+ est donné par l’équation (1.33). La fonction de partition ZN,β
peut être facilement calculée en utilisant la méthode du col

ZN,β =
∫
P (x)dx =

∫
Dρe−βN2S[ρ] ≈ e−βN

2S[ρsc] (1.43)
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Comme ρsc est la densité qui minimise le fonctionnel S sans contraintes, elle est en
fait le demi-cercle de Wigner. La p.d.f. de N+ devient

P (N+ = kN) = 1
ZN,β

e−βN
2S[ρ?] = e−βN

2ψ(k), (1.44)

où ψ(k) = S[ρ?]− S[ρsc] est la rate function. Pars définition, ψ(k) atteint son minimum
lorsque k = 1

2 .
On rappelle que l’action S évaluée à ρ? est donnée par l’équation (1.32)

S[ρ?] =
∫ x2

2 ρ
?(x)dx− 1

2

∫∫
ρ?(x)ρ?(x′) log |x− x′|dxdx′ (1.45)

+ µ
(∫ ∞

0
ρ?(x)dx− k

)
︸ ︷︷ ︸

=0

+η
(∫ ∞
−∞

ρ?(x)dx− 1
)

︸ ︷︷ ︸
=0

, (1.46)

où l’on note les termes nuls, vu que ρ? satisfait les deux conditions par définition.
Les autres termes sont une seule intégrale sur le potentiel quadratique et une intégrale
double d’un terme logarithmique. Cette intégrale double est problématique, et on peut la
remplacer par d’autres plus faciles à calculer. Nous faisons usage de l’équation du bilan
d’énergie (1.34) appliquée à ρ? en le multipliant par ρ?(x) et en l’intégrant en x. Cela
donne∫

ρ?(x)x
2

2 dx−
∫∫

ρ?(x)ρ?(x′) log |x−x′|dxdx′+η
∫
ρ?(x)dx︸ ︷︷ ︸

=1

+µ
∫ ∞

0
ρ?(x)dx︸ ︷︷ ︸
=k

= 0, (1.47)

qui peut s’écrire comme∫∫
ρ?(x)ρ?(x′) log |x− x′|dxdx′ =

∫
ρ?(x)x

2

2 dx− η − µk. (1.48)

Cela montre que, pour le cas de ρ?, l’équation du bilan d’énergie nous permet d’échanger
l’intégrale double par une intégrale simple, il suffit de calculer les multiplicateurs de
Lagrange. La forme finale de l’action S calculée pour ρ? devient

S[ρ?] = 1
4

∫
ρ?(x)x2dx− µk

2 −
η

2 . (1.49)

Le calcul de la Lagrange multiplicateurs µ et η est encore nécessaire. Pour l’accomplir,
nous explorons une fois de plus l’équation du bilan d’énergie (1.34). Cette équation est
valable en tout point dans le support, de sorte que nous calculons sur les points a et 0. Ce
sont des bords du support, et nous prenons la limite dans la bonne direction pour obtenir
ces équation, tout en restant à l’intérieur du support de ρ?. Pour plus de simplicité, nous
prenons le cas où k < 1

2 , ce qui implique a > 0. Cela implique

a2

2 −H(a) + µ+ η = 0 (1.50)
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−H(0) + η = 0, (1.51)

où on a définit la fonction H(x) =
∫
ρ(x′) log |x− x′|dx′.

De (1.51), on obtient η = H(0). Alors que H(0) peut être traitée directement, nous
voulons éviter de traiter avec l’intégrale de ρ(x′) log |x − x′|. Au lieu de cela, nous le
remplaçons dans la première équation telle qu’elle est, et l’on obtient la valeur de µ.

µ = H(a)−H(0)− a2

2 . (1.52)

Remarquablement, vu que H est la primitive de G, la différence H(a) −H(0) peut être
écrit que

∫ a
0 G(x)dx. La formule finale pour le premier multiplicateur de Lagrange est

µ =
∫ a

0
G(x)dx− a2

2 . (1.53)

Intégrales de la résolvante sont beaucoup plus faciles à calculer que la valeur de H dans
un point, donc on effectue une petite manipulation pour obtenir η comme une intégrale
de G. On développe log |b1 − x| en x et on obtient∫

ρ?(x) log |b1 − x|dx = log |b1| −
∫ ∞∑

n=1

xn

bn1
ρ?(x)dx = log |b1| −

∫ −∞
b1

(
G(x)− 1

x

)
dx.

(1.54)
En utilisant cette rélation et muni de l’équation (1.34) appliquée à b1 on obtient

η = log |b1| −
b2

1
2 −

∫ −∞
b1

(
G(x)− 1

x

)
dx. (1.55)

Et la formule finale de l’áction devient

S[ρ?] =1
4

∫
ρ?(x)x2dx− 1

2

(∫ a

0
G(x)dx− a2

2

)
k

− 1
2

(
log |b1| −

b2
1
2 −

∫ −∞
b1

(
G(x)− 1

x

)
dx
)
. (1.56)

La valeur de l’action calculée dans le demi-cercle peut être facilement réalisée. Les
bords du support sont b1 = −

√
2, b2 =

√
2 et a = 0 pour le demi-cercle, de sorte que

la résolvante prend la forme G(z) = z ±
√
z2 − 2. Nous obtenons µ = 0 et les intégrales

restantes sont simples. Elles donnent

S[ρsc] = 1
4π

∫
x2√2− x2dx− log 2

4 + 1
2 + 1

2

∫ −∞
−
√

2

(
x+
√
x2 − 2− 1

x

)
dx = 3

8 + log 2
4 .

(1.57)
Une dernière simplification digne de mention est l’intégrale

∫
x2ρ?(x)dx. Ceci est le calcul

du deuxième moment de la densité moyenne, qui peut aussi être donnée par l’expansion
de la résolvante des commandes de z

G(z) =
∫ ρ?(x)
z − x

dx = 1
z

+ 1
z2

∫
xρ?(x)dx+ 1

z3

∫
x2ρ?(x)dx+O(z−4). (1.58)
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Développent la résolvante (1.39) et appliquant les conditions de normalisation(1.40) et
(1.41) donne

G(z) = 1
z

+ a(a2 − 2)
2z2 + 1

2z3 +O(z−4). (1.59)

Qui implique la valeur
1
4

∫
x2ρ?(x)dx = 1

8 . (1.60)

La formule finale de la rate function est, donc,

ψ(k) =− 1
2

(∫ a

0
G(x)dx− a2

2

)
k − 1

2

(
log |b1| −

b2
1
2 −

∫ −∞
b1

(
G(x)− 1

x

)
dx
)
− 1

4 −
log 2

4 .

(1.61)

La formule finale de l’action implique intégrales qui sont analytiquement compliquées,
mais ne représentent aucun défi numérique. Nous traçons les résultats numériques de
cette formule de la figure 1.5. En effet, nous observons le minimum à k? = 1/2 et la
symétrie, conséquence de l’invariance de réflexion du problème.
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Figure 1.5 — Rate function ψ(k) de l’index de l’ensemble gaussien (équation (1.61)).

La rate function, quand tracée par rapport à k, présente un minimum symétrique
claire autour k = 1/2. Cela nous invite à étudier les fluctuations typiques de k autour
de sa moyenne, et d’explorer la variance de la variable N+. Notre objectif est développer
ψ(k) environ k = 1

2 + δ pour les principaux termes dans petite δ. Cette expansion est pas
simple, et on procède de la manière suivante.

On sait que quand k = k? = 1/2, les bords a, b1 et b2 collapsent à 0, −
√

2 et
√

2
respectivement. On perturbe les bords par un petit paramètre

a = ε, b1 = −
√

2− ε2, b2 =
√

2− ε3. (1.62)
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La condition de normalisation implique les équations (1.40) et (1.41), cela implique
une relation entre les perturbations

ε− ε2 − ε3 = 0 (1.63)
ε2 − ε3 = 0 (1.64)

Qui implique ε = 2ε2 = 2ε3. La relation entre ε et δ sera donnée par la condition finale∫∞
0 ρ?(x)dx = k = 1

2 +δ. On remplace les bords par les valeurs perturbées et on développe
la résolvante en petites valeurs de ε. Vu que les cas k > 1

2 et k < 1
2 sont symétriques, on

prend, sans perdre de généralité, le deuxième cas, qui implique ε > 0.
On rappelle la formule de µ et on y remplace les bords perturbés

µ =
∫ a

0
G(x)dx− a2

2 =
∫ ε

0

√
(x−

√
2 + 2ε)(x+

√
2 + 2ε)(x− ε)

x
dx. (1.65)

Nous répétons ce genre d’intégration à plusieurs reprises dans cette thèse, et la technique
est la même. Vu que l’intervalle d’intégration est très petit, nous avons partagé l’intégrale
dans le produit d’une fonction que varie rapidement et une fonction qui varie lentement.
Les parties de variation lente peuvent simplement être évaluées en prenant x = 0, tandis
que le la partie de variation rapide est intégré. La procédure est la suivante

µ =
∫ ε

0

√
(x−

√
2 + ε/2)(x+

√
2 + ε/2)(x− ε)

x
dx =

√
2
∫ ε

0

√
ε− x
x

dx+o(ε) = π√
2
ε+o(ε).
(1.66)

D’abord, on calcule l’intégrale I =
∫−∞
b1

(
G(x)− 1

x

)
dx en partageant le domaine

d’intégration en deux parties:

I =
∫ −√2

b1

(
G(x)− 1

x

)
dx︸ ︷︷ ︸

I1

+
∫ −∞
−
√

2

(
G(x)− 1

x

)
dx︸ ︷︷ ︸

I2

. (1.67)

Pour I1, nous répétons la procédure de (1.66).

I1 =
∫ −√2

b1

(
x− 1

x

)
dx+

∫ −√2

b1

√
(x−

√
2 + ε/2)(x+

√
2 + ε/2)(x− ε)

x
dx (1.68)

=− ε

2
√

2
+ 2 3

4

∫ −√2

b1

√
x+
√

2 + ε

2dx+ o(ε) (1.69)

=− ε

2
√

2
+ o(ε). (1.70)

Pour I2, on développe l’intégrande en puissances de ε et on intègre terme à terme de
−
√

2 à −∞. Le partage du domaine est important pour préserver la convergence de cette
procédure.

I2 =
∫ −∞
−
√

2

(
x+
√
x2 − 2− 1

x

)
dx+

∫ −∞
−
√

2

ε

x
√
x2 − 2

dx+ o(ε) (1.71)
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=− 1
2 + log 2 + πε

2
√

2
. (1.72)

On ajoute le développement de log |b1| − b2
1/2 pour obtenir la formule finale de η

η = −1
2 −

log 2
2 − πε

2
√

2
. (1.73)

Pour calculer k, on développe la densité moyenne en puissances de ε

ρ?(x) = 1
π

√
(x−

√
2 + ε/2)(x+

√
2 + ε/2)(x− ε)

x
= 1
π

√
2− x2 − ε

πx
√

2− x2
+ o(ε).

(1.74)
La valeur de k peut être facilement calculé. Nous concentrons notre attention sur le cas
k < 1

2 et ε > 0. Comme ils sont symétriques, nous allons simplement calculons ce cas. La
valeur de k est l’intégrale entre a et b2, et on calcule chaque terme de l’RHS de l’équation
(1.74). ∫ b2

a

√
2− x2

π
dx = 1

2 −
√

2
π
ε+ o(ε), (1.75)∫ b2

a

ε

πx
√

2− x2
dx = 3 log 2

2
√

2π
ε− 1

π
√

2
ε log ε+ o(ε). (1.76)

On garge les deux premier termes dominants, donc on écrit

k = 1
2 + 1

π
√

2
ε log ε+ o(ε log ε). (1.77)

Où nous pouvons facilement reconnaître la relation entre ε, la perturbation dans les bords,
et δ, la perturbation dans la fraction de valeurs propres à l’intérieur de I

δ = 1
π
√

2
ε log ε. (1.78)

On ajoute les contributions calculées auparavant et, après une impressionnante suite
de simplifications, nous obtenons

ψ
(1

2 + δ
)

= −µk2 −
η

2 −
1
4 −

log 2
4 = − π

2
√

2
εδ + o(εδ). (1.79)

Comme prévu, le terme constant a été compensé par la constante de normalisation S[ρsc]
et le terme linéaire disparu lors de l’expansion dans le minimum. Le terme résiduelle est
d’ordre quadratique, mais il reste à exprimer ε en termes de δ pour être en mesure de lire
la variance de lui. Nous utilisons l’équation (1.78). L’inverse ne peut être exprimée par
des fonctions simples, mais nous pouvons utiliser le fait que les deux ε et δ sont petits
pour fournir le ansatz suivant, valable à l’ordre dominant dans ε et δ

ε = π
√

2 δ

log δ . (1.80)
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Cette relation peut être vérifiée en l’insérant dans (1.78) et vérifiant qu’elle elle correcte
en ordre dominant de delta. La rate function devient

ψ
(1

2 + δ
)

= −π
2

2
δ2

log δ + o

(
δ2

log δ

)
. (1.81)

Nous sommes intéressés aux fluctuations typiques de N+ autour de sa moyenne N/2,
on prend N+ −N/2� N . Le résultat précedent nous permet d’écrire

log δ = log
(
N+ − N

2
N

)
≈ − logN. (1.82)

La rate function de fluctuations typiques de l’index de l’ensemble Gaussien devient

ψ(N+) ≈ π2

2N2
(N+ − N

2 )2

logN . (1.83)

La p.d.f. des fluctuations typiques de N+ est,donc

P (N+) = e−βN
2ψ(N+) ≈ e−β

π2
2

(N+−
N
2 )2

logN , (1.84)

ce qui nous permet d’écrire la comportement de large N de la variance des fluctuations
typiques du nombre positif de valeurs propres

VarN+ = 1
βπ2 logN + cte + o(1). (1.85)

Ce qui est en accord avec les résultats en [32] pour β = 1 et avec le résultat présenté
en [89, 90]. Le terme constant est très difficile de déterminer avec la méthode du gaz de
Coulomb, et il a été trouvé en [90] pour β = 2 et donné par cte = γ+1+3 log 2

2π2 ≈ 0.1852....
On compare l’inclination de la formule (1.85) et des simulations numériques pour les

valeurs propres de GOE (β = 1) à la figure1.6.
La méthode décrite ci-dessus est la base des résultats de cette thèse, mais sa com-

préhension générale est possible par cet exemple de l’index de l’ensemble Gaussien. Je
laisse au texte complet en anglais pour les détails de l’application de cette méthode dans
le contexte de l’intervalle général et l’application dans d’autres ensembles des matrices.
Dans ce que suit, je résume les résultats de cette thèse.

Cette thèse met ensemble trois années de travail dans la théorie des matrices aléatoires,
et il se concentre sur un aspect particulier de celui-ci: le comptage des valeurs propres à
l’intérieur d’un intervalle donné. Bien que ce problème a été traité dans le passé en de
nombreuses occasions [43, 128, 54, 33], il y avait très peu de résultats pour les statistiques
du nombre en dehors des régimes de bulk et de edge classiques.

Le début de mon travail était pas sur ce sujet précis. Je commence à travailler dans
les applications de la théorie des matrices aléatoires au transport quantique, qui est décrit
dans le chapitre 9. Nous avons pu montrer que les effets des impuretés dans les canaux
d’un point quantique peuvent être obtenus en termes de quantités calculées dans le cas
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Figure 1.6 — Comparaison entre le comportement à large N de la variance et de simu-
lations numériques pour GOE (β = 1).

idéal, et nous avons fourni les outils nécessaires pour effectuer ce calcul. Le cas général
complet, mais pas trivial, a été obtenu en termes de polynômes de Schur, un cadre naturel
pour les variables symétriques telles que les valeurs propres de transmission d’un transport
quantique.

De cet intérêt nous sommes passés à des considérations plus générales sur l’ensemble
de Cauchy, une classe de matrices qui se dégage naturellement de transport quantique
dont la densité moyenne des valeurs propres a la propriété remarquable d’être pris en
charge sur toute la ligne réelle. Les statistiques sur le nombre de valeurs propres positives
d’une matrice de Gauss ont été obtenues dans [89, 90], et nous voulions savoir si la
même technique pourrait être appliquée à un cas différent, l’ensemble de Cauchy, où la
densité moyenne des valeurs propres ne présente pas de bord. A notre grande surprise, les
fluctuations des valeurs propres positives de l’ensemble Cauchy étaient précisément deux
fois la taille des fluctuations de l’ensemble de Gauss, comme le montre la figure 1.7. De
la variance de l’indice de l’ensemble de Cauchy nous trouvons

Var(NC
+ ) = 2

βπ2 logN +O(1), (1.86)

Ce résultat nous conduit à examiner le rôle de l’arête des fluctuations. résultats
précédents pour fluctuations de valeurs propres gaussiennes [43, 100] a montré que, pour
les petits intervalles, le nombre variance croît de façon logarithmique avec la taille de
l’intervalle. Prendre un symétrique intervalle [−L,L], il est clair que cet écart devrait
aller à zéro si l’intervalle contient l’ensemble du support de la répartition moyenne, que
de façon exponentielle quelques valeurs propres tomberait dehors de l’intervalle et les
fluctuations ne serait pas produite . De la croissance logarithmique à zéro une fonction
d’adaptation est nécessaire, et ce changement de comportement se passerait dans l’échelle
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Figure 1.7 — Évaluation numérique de la variance de l’index avec β = 2 pour l’ensemble
unitaire de Cauchy (noté NC

+ , ligne supérieure) et de l’ensemble Gaussien unitaire (noté
NG

+ , ligne inférieure). Voir [96].

mésoscopique.
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Figure 1.8 — Résultats pour la variance de NI pour l’ensemble Gaussien lorsque I =
[−L,L] et L <

√
2. Voir [97].

Information sur les échelles mésoscopiques, lorsque l’intervalle considéré était de l’ordre
de la taille du système, étaient presque inexistants, et en collaboration avec Majumdar,
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Schehr et Vivo nous avons obtenu, pour la première fois, la fonction complète des statis-
tiques de nombre de GUE [97], comme nous avons discuté dans le chapitre 7. Les résultats
pour le nombre variance correspondent simulations numériques remarquablement bien,
comme le montre la figure 1.8.

La méthode pour obtenir ce résultat, la méthode de gaz Coulomb, se sont avérés très
générale et donne des résultats pour une large classe de matrices aléatoires, ceux dont la
distribution des valeurs propres peut être écrit que l’équation (4.1). Nous avons exploré
cela entraîne pour les matrices de Wishart et matrices de Cauchy dans le chapitre 8, mais
la même étude peut être appliqué pour l’ensemble circulaire ou l’ensemble Jacobi, car ils
partagent la même structure pour la distribution des valeurs propres.

L’application de cette méthode à d’autres ensembles montré des similitudes intéres-
santes pour ces types très différents de matrices. En particulier, la structure de la variance
du nombre pour le régime dite masse prolongée est similaire. Nous trouvons, pour les
grandes valeurs de N ,

Var(NI) ≈


2
βπ2 log

(
NL(2− L2) 3

2
)
, Gaussian and I = [−L,L]

2
βπ2 log

(
Nl(3− l) 3

4
)
, Wishart and I = [1, 1 + l]

2
βπ2 log

(
NL

1+L2

)
, Cauchy and I = [−L,L]

(1.87)
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Figure 1.9 — Simulations numériques de la variance du nombre de valeurs propres de
GUE.

On fait un résume des résultats principaux de cette thèse

• L’imposition d’un mur dur dans ζ dans le spectre de la matrice aléatoire invariant
peut être calculé en ajoutant un δ(x− ζ) contribution à l’équation intégrale utilisée
pour obtenir la densité moyenne. Ce résultat est largement utilisé dans les problèmes
suivants
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– Le problème de l’index, en mettant un mur fort à la place zéro, voir chapitre
6.

– Au calcul des fluctuations du nombre de valeurs propres de l’ensemble Gaussien
qui tombent dans un intervalle I = [−L,L], voir chapitre 7.

– Au calcul des fluctuations du nombre de valeurs propres des ensembles de
Wishart et Cauchy qui tombent dans un intervalle générique I = [a, b], voir
chapitre 8.

• La variation du nombre de valeurs propres positives dans l’ensemble de Cauchy est
deux fois plus grande que la variance de valeurs propres positives de l’ensemble
de Gauss. Cette différence est due à l’absence d’une densité moyenne à support
compacte de valeurs propres pour l’ensemble de Cauchy, et est présenté dans le
chapitre 6.

• La densité moyenne des valeurs propres pour l’ensemble de Cauchy possède comme
support toute la ligne réelle, mais la densité moyenne contraint, obtenu quand nous
imposons une fraction k de valeurs propres à être positif et k 6= 1/2, est supportée
dans deux intervalles disjoints, dont l’un est compact (voir figure 6.7).

• La variance du nombre NL de valeurs propres d’une matrice de Gauss à l’intérieur
d’un intervalle I = [−L,L] dépend fortement de L. Résultats précédents étaient
seulement en mesure de fournir des résultats pour L ∼ 1

N
ou L ∼

√
2. Nous avons

fourni au chapitre 7 la fonction de densité de probabilité complète deNL pour grande
N et nous avons obtenu le comportement asymptotique de sa variance pour toutes
les valeurs de L. Les nouveaux résultats que nous avons obtenus sont la variance
de NL pour des valeurs de L dans le “extended bulk” régime, qui sont des valeurs
de L l’intérieur du support, et “ tail ” régime, qui sont des valeurs de L loin du
support. Cette fonction qui lie la variance du bulk au edge régime a une importance
remarquable dans le contexte d’atomes froids, et des études antérieures a essayé
sans succès d’obtenir son comportement dominant pour les grands N [137].

Les résultats présentés dans cette thèse ont produit 3 publications, et il y a des résultats
non publiés dans cette thèse couvrant les résultats de deux articles en phase finale de
préparation.

• Rodríguez-Pérez, S., Marino, R., Novaes, M., and Vivo, P. Statistics of quantum
transport in weakly nonideal chaotic cavities. Phys. Rev. E 88 (2013), 052912.

• Marino, R., Majumdar, S. N., Schehr, G., and Vivo, P. Index distribution of Cauchy
random matrices. J. Phys. A: Math. Theor. 47 (2014), 055001.

• Marino, R., Majumdar, S. N., Schehr, G., and Vivo, P. Phase transitions and edge
scaling of number variance in gaussian random matrices. Phys. Rev. Lett. 112
(2014), 254101.
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Introduction

Every science begins as philosophy
and ends as art; it arises in hypoth-
esis and flows into achievement.

Will Durant

2.1 A very brief overview of random matrix theory
In the heart of statistical physics lies the idea of abandoning specific knowledge of mi-
croscopic details of the system to gain insight into its statistical behavior. In 1947, this
idea guided Wigner [150, 146] to consider ignoring the details of the strong interaction
of protons and neutrons to propose a statistical approach to nuclear physics. The com-
pound nature of the nucleus prevents any calculation of energy levels from the dynamics,
so investigations on the statistics of energy levels brought Wigner to consider random
matrices as a major tool to treat this scenario [147, 149]. Wigner was strongly motivated
by universality, an expectation that the main features of the spectrum should not depend
on microscopic details of the model, but rather on its general properties and symmetries
[148].

One of the main problems studied by Wigner was the energy level spacing of the
atomic nucleus. If the energy values were statistically independent, their spacing would
be a random variable whose statistics is given by the Poisson distribution. Experimentally,
this was not observed, energy levels exhibit level repulsion and should be described by
another statistics. This repulsion, and the universality expected by Wigner, are captured
by replacing the Hamiltonian with a random matrix [147], and Wigner set out to explore
this domain both physically and mathematically. In a series of papers (reprinted in [118]),
he laid the foundations of randommatrix theory, a field whose reach would go much further
than the initial ideas about nuclear spectra and energy levels.

A major development in random matrix theory (RMT) was performed by Dyson a few
years later by exploring the role of symmetries in matrix ensembles [43]. Dyson introduced
his general random matrix classification, the “threefold way” (see section 3.1.1), and at
the same time there were breakthroughs on the mathematical side by Gaudin, Mehta,
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Figure 2.1 — Data for 108 nearest neighbor spacing of energy levels in the nucleus of
166Er compared to the same quantity for a Poisson process and eigenvalues of a Gaussian
Orthogonal random matrix. Graphic reproduced from [100], data is taken from [85].

Porter and Rosenzweig [119, 100]. This work is briefly reviewed in chapter 3, as it is
the foundation of any work in RMT. Despite the mathematical richness, the interesting
interpretation of the subject in nuclear physics and some experimental evidence, shown in
figure 2.1, there was not enough data to support RMT as the fundamental tool to analyze
the nuclear spectra. According to Dyson [42]

All of our struggles were in vain. 82 levels were too few to give a statistically
significant test of the model. As a contribution to the understanding of nuclear
physics, random matrix theory was a dismal failure.

Random matrix theory remained dormant until the seventies, when H. L. Montgomery
conjectured a strong connection between RMT and the zeros of the Zeta function [105,
106], arguing that the pair correlation between the zeros of the Riemann Zeta function
is the same as the pair correlation function of eigenvalues of random Hermitian matrices,
which is given by the sine kernel (see section 4.4.1). This conjecture remains unproven
after 40 years, but has collected a significant amount of numerical data corroborating it.

The applications of RMT in nuclear physics led to the development of tools to deal
with statistics of many-body physics and scattering, which proved to be fundamental
to understand classical and quantum chaos in the following decade. By exploring the
Sinai’s billiard problem, a strongly chaotic system, Bohigas, Giannoni and Schmit [17]
conjectured that level fluctuations of the quantum Sinai’s billiard are consistent with
the fluctuations of eigenvalues of the Gaussian orthogonal ensemble of random matrices,
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shown in figure 2.2 1. This result is particularly interesting because it represents a powerful
application of RMT for a case of high complexity, but low particle number. As the authors
mentioned [17]

Is this a surprising result? With a few inconclusive exceptions (see a discussion
on small metallic particles, for instance in Ref. 2), the basic hypotheses leading
to RMT have always been put forward by invoking the complexity of as essen-
tial that one is dealing with a many-particle system (system with many degrees
of freedom). Our results indicate that this is by no means a necessary condi-
tion. Indeed, the quantum chaotic system with two degrees of freedom studied
here (a one-particle system in two dimensions) shows also GOE [Gaussian Or-
thogonal Ensemble] fluctuations. [...] In summary, the question at issue is to
prove or disprove the following conjecture: Spectra of time-reversal-invariant
systems whose classical analogs are K [strongly chaotic] systems show the same
fluctuation properties as predicted by GOE.

Once again, we see the unifying point of random matrix theory: the argument that in
a very complicated system, symmetries should play a more fundamental role than details
about the microscopic nature of the model.
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Figure 2.2 — Data for 720 nearest neighbor spacing of energy levels for desymmetrized
Sinai’s billiard. Graphic reproduced from [17].

After that, a vast number of applications of random matrix theory emerged, in fields
such as cosmology [131, 40], quantum transport [14], wireless communications [78], cold

1Oriol Bohigas was a dear member of our laboratory and the result in this figure is present in the logo
of the LPTMS, in the upper-right corner of the cover of this thesis.
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atoms [31, 137, 97, 28], finance [117, 82] and many others. There has been a large increase
in interest in RMT in the last decade and the number of applications has become too large
to mention individually. I refer to [2] for a very complete overview of the state of the field
in 2011.

Random matrix theory, in an exaggerated reduction, is about answering one question:
given a matrix whose entries are random variables, what can be said about its eigenvalues
and eigenvectors? This question will surely be followed by many others, such as: can we
obtain results for all matrix sizes? What happens when the matrix size becomes very
large? Can we obtain the joint probability density function (j.p.d.f.) for the eigenvalues?
Is there an equivalent of the central limit theorem for random matrices? Great mathe-
matical and physical progress has been made towards answering these questions, and we
present a brief overview of classical results in chapters 3 to 5.

Among these problems, the question about matrix size is of fundamental importance.
Naturally, a random matrix problem grows in complexity as we increase the matrix size;
however, once the matrix size becomes very large, we can apply techniques from statistical
mechanics to gain insight into the leading behavior of the quantities we want to study.
For very large N × N matrices, the leading N behavior of spectral properties yields
defining features of the model, and statistical physics is a fundamental tool to obtain
these results. As noted by Wigner [148], after introducing the j.p.d.f. P (λ) for the
eigenvalues λ = (λ1, . . . , λN) of a N ×N Gaussian real matrix (equation (3.17)):

P (λ) = 1
ZN,β

e−
1
2
∑N

i=1 λ
2
i

∏
i<j

|λi − λj|. (2.1)

You see again this characteristic factor which shows that the probability of two
roots coinciding is 0. If you want to calculate from this formula, the probability
that two successive roots have a distance X, then you have to integrate over all
of them except two. This is very easy to do for the first integration, possible
to do for the second integration, but when you get to the third, fourth and
fifth, etc., integrations you have the same problem as in statistical mechanics,
and presumably the solution of the problem will be accomplished by one of the
methods of statistical mechanics.

It is therefore natural to dispose of several tools emerging from statistical mechanics
to solve problems that could otherwise be considered pure exercises in algebra of random
variables. As an example, we can manipulate the j.p.d.f. of the eigenvalues of a Gaussian
random matrix to show that their statistics is equivalent of that of charged particles in
two dimensions confined to the real line and submitted to a harmonic potential. This new
framework, called the Coulomb-gas method (described in section 4.1), transforms a purely
mathematical problem, computing moments and observables of eigenvalues of a Gaussian
matrix, into an electrostatic problem. Using this connection, the limit of large matrix
size becomes the familiar thermodynamical limit, when charges are too numerous and we
may replace their individual positions by a charge density. We can then import many
techniques and physical intuition from electrostatics to solve problems in random matrix
theory. This equivalence between different approaches that share the same statistics is
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of central importance to this thesis, and it is one of the core features of random matrix
theory.

2.2 Applications to cold fermions
I centered my thesis around a specific connection between statistical physics and RMT:
the fact that the statistics of one-dimensional cold fermions submitted to a harmonic
potential is equivalent to that of eigenvalues of a Gaussian Hermitian random matrix.
This correspondence allows us to exchange a complicated many-body quantum problem
into the calculation of observables of the Gaussian unitary ensemble, and there are many
tools provided by RMT available to tackle several questions that might be complicated
in the framework of many-body quantum systems.

One of the most fundamental of these questions is the problem of fluctuations of
cold fermions. After the achievement of cooling trapped fermions to the point where
Fermi statistics becomes dominant [95], experiments were able to explore this remark-
able property of Fermi gases [116, 60, 16]. Non-interacting fermions exhibit non-trivial
quantum effects, arising from Pauli exclusion principle, and even one-dimensional fermion
exhibit complicated behavior emerging from the strong correlation brought by the Pauli
repulsion. While confined bosons may collapse to the lowest level of the trap, low tem-
perature fermions experience an effective repulsion of quantum nature, regardless of their
original interaction. This induces a Fermi motion, a forced, which is a purely quantum
phenomenon from the repulsion of the Pauli principle and is the main factor for the di-
luteness, suppressing the role of individual interactions among the fermions, which can
be, in many cases, neglected or treated as a small perturbation. These properties are in
reach of current experiments in one-dimensional cold fermions, and much progress has
been done in this area in the last decade [80, 130, 114]. This turns the ideal Fermi gas
into the first natural step to discuss the properties of Fermi gases.

We will explore this phenomenon by analyzing the number statistics of trapped fermions.
This means counting the number NI of fermions inside an interval and study how this
number evolves as the interval grows in size. For the ideal bosonic case at zero temper-
ature, all particles are concentrated on the ground state, centered at the minimum of
the trap. They are uncorrelated and their number statistics can be easily determined.
The fermionic case, due to the role of Fermi motion and quantum repulsion, leads to the
natural and more complicated question of how many fermions NI fall inside the interval
I.

Surprisingly, the observable NI has a rich and highly non-trivial dependence on the
interval size. Consider one of the simplest possible cases, the harmonically trapped one
dimensional ideal gas of fermions at zero temperature, and we consider the symmetric
interval I = [−L,L]. It is known [137, 28] that the average density of harmonically
trapped fermions, for a large number N of particles, has a leading behavior given by
Wigner’s semicircle law (see figure 2.3 and section 4.2). The quantity Var(NI), which
represents the stiffness of the subsystem, grows logarithmically with L when the interval
is small, but presents a sharp drop [137, 31, 8, 46] near the semicircle edge L ∼

√
2N . The
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reasons of the drop are clear: if L is much larger than the semicircle edge, all eigenvalues
will lie inside the interval and fluctuations are exponentially rare, hence the variance is
effectively zero.

−
√

2N
√

2Nx

ρ
(x

)

Figure 2.3 — Wigner’s semicircle law, given by equation (3.22), which is the leading
behavior of the average density of harmonically trapped cold fermions.

This striking behavior of the fluctuations of cold fermions when system size increases
is a purely quantum phenomenon, dictated by Pauli exclusion principle, and represents
an interesting way to probe the effects of fluctuations in many-body systems. Number
variance has been studied for several lattice models of fermions [48, 47] and, recently, it
was shown that the entanglement entropy in the ground state of a confined Fermi gas is
exactly proportional to its number variance when fluctuations are Gaussian around its
mean [28].

This problem will be explored in chapter 7, where I present the correspondence between
Gaussian random matrix eigenvalues and confined cold fermions. The observable NI , the
number of fermions inside an interval, translates into counting Gaussian eigenvalues inside
an interval, and we dispose of many tools to deal with this problem. In other words, we
translate a cold atoms problem into a random matrix problem, to again write it as an
electrostatic problem and solve it using classical statistical mechanics tools.

2.3 Thesis overview
While centered around its applications in cold fermions, this thesis treats the counting
problem more generally. In a nutshell, the main question this work approaches is: given a
random matrix with real eigenvalues, what is the chance of finding k eigenvalues between
a and b? This counting problem is at the center of many applications of RMT, and
it has motivated most of the work presented in this thesis. For confined fermions, it
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represents the full counting statistics of a general interval, including intervals whose size
is comparable to the system size. Most of the previous work about counting eigenvalues
has approached this question in localized regimes, either confining the interval to a very
narrow strip of the spectrum or considering interval ranging from one point to infinity.
Results for a general interval [a, b] were almost inexistent, and they represent the core of
this work.

I begin by recalling a large number of classical results and techniques in random matrix
theory (chapters 3 to 5). A general presentation of RMT is given in chapter 3, where I
introduce Dyson’s threefold way. Rotationally invariant random matrices are discussed in
detail, and I present classical results, such as that their eigenvalues j.p.d.f. share a similar
structure, and I introduce three classical random matrix ensembles that we will explore
in detail in their work: Gaussian, Wishart and Cauchy ensembles.

Following this introducing chapter, I present in chapter 4 two techniques to analyze
random matrix problems, namely orthogonal polynomials theory and the Coulomb gas
method. Orthogonal polynomials are a powerful algebraic tool to deal with determinantal
point processes, a class of random process that includes the eigenvalues of a large class of
matrices. Although very powerful, it is not evident how to derive the behavior for large N
systems from orthogonal polynomials. To this end, I introduce the Coulomb gas method.
These techniques will be used in conjunction to obtain results in different regions of the
spectrum, which together with their scaling are discussed in section 4.4.

I also must recall some classical results in counting statistics of eigenvalues, and I
do so in chapter 5. I compare the counting problem for independent variables with the
case of Gaussian eigenvalues, and present the classical result of Dyson and Mehta for
the number variance of small intervals, as well as the number variance for the edge of
the average density. The number variance is the variance of the number of eigenvalues
inside an interval. I also introduce important definitions, such as the moment generating
function, the overlap matrix and the Fredholm determinant, and I exemplify the use of
these objects in the classical derivation of the Tracy-Widom distribution.

During my PhD, I explored the question of the index distribution, the statistics of
the number of positive eigenvalues in a random matrix. Previous results were available
for the Gaussian and Wishart ensembles, I obtained the full probability density function
of this variable for the Cauchy ensemble and was able to derive its number variance
for typical fluctuations [96]. These results are reviewed in chapter 6, where I also present
calculations for a simpler case, the Gaussian ensemble, whose index statistics was obtained
in [89, 90]. The Cauchy ensemble presents a fundamental difference with respect to the
Gaussian ensemble. While the latter presents a compact support for its average density
of eigenvalues, seen above in figure 2.3, the average density for the Cauchy eigenvalues
is supported on the whole real line. This difference changes the behavior of the variance
of the index, and represents a fascinating comparison with previously known results for
other ensembles.

These results required deeper investigation, and I was naturally led to consider the
case of the symmetrical interval [−L,L]. Increasing the value of L implies a transition
from small to large intervals, exploring the mesoscopic scale, when intervals are of the
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order of the system size. This regime was rarely explored in the literature, and is of great
importance in the context of cold fermions. By calculating the full counting statistics
of eigenvalues for intervals whose size is comparable to the whole system, I was able to
determine the full p.d.f. of the number of Gaussian eigenvalues inside an interval [−L,L]
and, in particular, to obtain its variance for typical fluctuations around the mean [97].
This variance is connected to the calculation of the entanglement entropy of trapped cold
fermions [46, 28], and the calculation of the full probability of this number statistics is
described in chapter 7.

The method used to obtain the previous results, the Coulomb gas method, can be
greatly generalized. This is done is chapter 8, where I apply the same calculation to
Wishart and Cauchy ensembles. Each ensemble presents particularities that justify its
study, and the comparison between results in three ensembles, Gaussian Wishart and
Cauchy, reveals many general properties of number statistics in eigenvalues of random
matrices.

Finally, I mention one more interesting application of random matrix theory in chapter
9, in the context of quantum transport of electrons. This model requires a different
ensemble, the Jacobi ensemble, and statistics of the transmission and reflection eigenvalues
of the scattering problem in quantum chaotic cavities are well known for the case of an
ideal coupling between the cavity and its leads. The presence of a non ideal coupling, or
impurities, changes the statistical behavior of these transmission eigenvalues. During my
PhD I was able to show that the presence of impurities in the transmission channels can be
calculated by expanding the j.p.d.f. of transmission eigenvalues into Schur polynomials.
This allows us to write moments calculated in the model with impurities in terms of
moments of the ideal case, which are well known. Conclusions and perspectives are left to
chapter 10, where I detail this overview with results and a substantial number of questions
that emerged from this work.
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Invariant random matrix ensembles

— What is jazz, Mr. Armstrong?
— My dear lady, as long as you have to ask
this question, you will never understand it.

3.1 Classification of random matrices

3.1.1 Invariant and independent matrices
A matrix whose entries are random variables is a random matrix. This very general
definition covers a large number of mathematical objects, and we shall restrict our study
to a more specific type: N × N random matrices with real spectrum. This category
contains three cases:

• Real symmetric matricesX = X t, which are defined by N(N+1)
2 real random variables

and are diagonalizable by an orthogonal matrix O, which is a real matrix such that:
OOt = OtO = 1.

• Complex Hermitian matrices H = H†, which are defined by N2 real random vari-
ables and are diagonalizable by a unitary matrix U , which is a complex matrix such
that: UU † = U †U = 1.

• Quaternionic self-dual matrices Q = Q?, which are defined by 2N2−N real random
variables and are diagonalizable by a symplectic matrix S, which is a quarternionic
matrix such that SS? = S?S = 1.

As mentioned in the introduction, one of the most important aspects of a random
matrix ensemble is its symmetry class. When deciding for a random matrix model to a
Hamiltonian with no particular symmetries, its description should be given by a complex
Hermitian random matrix. If the system is invariant under time reversal, there are two
possibilities: if the system has odd-spin, it is described by a quaternionic self-dual matrix;
if it has even spin, it is described by a real symmetric matrix. These three options, called
Dyson’s threefold way [44], are a cornerstone in random matrix theory and represent the
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classical general classification of random matrices. It is worth mentioning that general-
izations of Dyson’s threefold way have been an important subject of study, and other
symmetry classes are obtained by replacing the Hilbert space by the structure of a Fock
space [153, 64]. The threefold way is described in more detail in the next section.

Among these three cases, two classes of random matrices are usually considered: ma-
trices with independent entries and invariant matrices.

• A random matrix whose entries are independent random variables. In the case of
real matrices, their probability density can be written as

P (X) =
∏
i≤j

pij(xij). (3.1)

This class of matrices is known as Wigner matrices [149].

• A random matrix X is said to be invariant (or rotationally invariant) when another
matrix X ′ obtained by a similarity transformation by an orthogonal, unitary or
symplectic matrix has the same probability.

P (X) = P (X ′) if X ′ = U †XU, (3.2)

and U is an orthogonal matrix if X is real symmetric, unitary if X is complex
Hermitian and symplectic if X is quaternionic self-dual.

Random matrices with independent entries are a vast field of research whose applica-
tions are ubiquitous, but there are very few tools available to analyze spectral properties
of this class of random matrices. There are few results for these ensembles of matrices,
universal properties are rare and results for finite-N are virtually non-existent.

We note that condition (3.2), the invariance of the probability density of a matrix,
implies that the probability is rotationally invariant. In other words, given two matrices
connected by a similarity transformation H ′ = UHU †, where U is orthogonal, unitary or
symplectic, then the probability of both matrices is the same, which means

P (H ′)dH ′ = P (H)dH. (3.3)

Condition (3.2) only imposes that the densities should be the same, but the probabili-
ties coincide because the flat measure dH is invariant under orthogonal (or unitary, or
symplectic) transformations. This invariance dH = dH ′ is not a trivial result. When a
measure is invariant under the action of a group, it is called the Haar measure associated
with this group. In this case, the flat measure is the Haar measure of RN under the action
of the orthogonal group.

3.1.2 The j.p.d.f. of eigenvalues
As mentioned before, one of the main questions in random matrix theory is: given a ran-
dom matrix ensemble, what can be said about its eigenvalues? The rotational invariance
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property is very valuable to explore this question, as it allows us to derive a the j.p.d.f.
of the eigenvalues of the ensemble.

Using the fact that the probability is invariant under a unitary transformation (in the
complex case), we can change the coordinates of the probability to obtain the statistics
of its eigenvalues. The main goal of this section is to derive the j.p.d.f. of the eigenvalues
of invariant random matrices with real spectrum. One way to do it is start from the
probability of the matrix P (X)dX and change coordinates to write the probability as a
function of eigenvalues and eigenvectors. This means {xij} → (U,Λ), where U = {Uij}
is the orthogonal, unitary or symplectic matrix that diagonalizes X and Λ = {λi} are its
eigenvalues.

The rotationally invariant property (3.2) restricts P (X) to depend only on traces of
the powers of X, since they are the invariants of the matrix. Indeed, all invariants of
X under a non-singular similarity transformation H → H ′ = AHA−1 can be written in
terms of traces of the first N powers of X [100, 145]. Using this fact, we write

P (X)dX = P ({TrXn}1≤n≤N)dX = P

(∑
i

λi,
∑
i

λ2
i , . . . ,

∑
i

λNi

)
J [U,Λ]

∏
i

dλidµ(U).

(3.4)
To obtain the j.p.d.f. of eigenvalues, we need the Jacobian J [U,Λ] of the transformation

{xij} → (U,Λ). This Jacobian turns out to be a power of the Vandermonde determinant
of the eigenvalues

dX =
∏
i<j

|λi − λj|β
N∏
i=1

dλidµ(U), (3.5)

where dµ(U) is the Haar measure of the orthogonal, unitary or symplectic group under
its own action. This exponent β is a defining feature of the ensemble and takes only three
possible values. We denote it β, and β = 1, 2, 4 represents its symmetry class, as prescribed
by Dyson’s threefold way. We name the ensemble according to its invariance group, and
we attribute its correspondent value of β. An ensemble of real symmetric random matrices
takes β = 1 and its probability is invariant under transformations by an orthogonal matrix,
it is hence called an orthogonal ensemble. For complex Hermitian random matrices, we
find β = 2 and we denote them unitary ensembles. Self-dual quaternionic matrices take
β = 4 and are known as symplectic ensemble.

One particularly interesting case of invariant random ensemble are matrices whose
j.p.d.f. is given by

P (X) ∝ e−βTrV (X), (3.6)
where V is an analytic function. These ensembles, by the cyclicity of the trace, are
rotationally invariant. Using the results provided above, we can immediately write the
j.p.d.f. of their eigenvalues

P (λ1, . . . , λN) ∝ e−β
∑N

i=1 V (λi)
∏
i<j

|λi − λj|βdλi, (3.7)

where we note that, given the fact that neither the probability nor the Jacobian depend
on the eigenvectors, we can integrate them out and obtain the full j.p.d.f. of the eigenval-
ues. We consider in this thesis the ensembles whose probability that can be written like
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equation (3.6), and they will differ only on the function V (λ). This function is named the
potential of the ensemble, and the reason for this naming convention will become clear
when the Coulomb gas analogy is presented (section 4.1).

The Jacobian of the transformation {xij} → (U,Λ) is highly non-trivial, and we present
a demonstration of the β = 2 case that follows closely the introduction [58]. In this
case, there is an interesting geometrical derivation that can be performed to obtain the
coordinate substitution and its associated Jacobian.

3.1.3 The invariant integration measure
The length element of the flat measure ds, which is invariant by unitary transformations,
is given by the trace (ds)2 = Tr (dMdM?). This metric yields the integration measure we
need to define the probability space of our matrix ensemble. When the length element is
given by (ds)2 = ∑N

i,j gijdqidqj, the integration measure can be calculated as

dµ =
√
|det(gij)|dq11 . . . dqNN . (3.8)

As an example, let us take the space of N × N Hermitian matrices H = {zij} =
{xij + iyij}. The imposition xij = xji, yij = −yji yields the following expression for the
length element

(ds)2 = Tr(dHdH†) =
∑
i

(dxii)2 + 2
∑
i<j

[
(dxij)2 + (dyij)2

]
, (3.9)

from which we may extract the integration measure

dµ(H) = 2
N(N−1)

2
∏
i

dxii
∏
i<j

dxijdyij. (3.10)

While writing the integration measure as a function of the differential of the entries
is straightforward, it is not very practical when exploring statistical properties of the
spectrum. Let us change coordinates to best suit our needs. The spectral theorem states
that the N ×N Hermitian matrix H = {xij} is diagonalizable by a unitary matrix U and
has N real eigenvalues Λ = diag({λi}). We seek to change coordinates {xij} → (U,Λ) and
evaluate the integration measure in these new coordinates1. Using the unitary property,
we write d(U †U) = dU †U + U †dU = 0. Noting δU = U †dU , we see that the unitary
condition implies the anti-Hermicity condition δU † = −δU . Since H = UΛU †, we find

dH = U [dΛ + δUΛ− ΛδU ]U †, (3.11)

from which we can calculate the length element (ds)2 = Tr(dHdH†)

(ds)2 = Tr
[
(dΛ)2 + 2dΛ(δUΛ− ΛδU) + (δUΛ)2 + (ΛδU)2 − 2δUΛ2δU

]
. (3.12)

1This correspondence is not unique, but this can be solved by considering the coset U(N)/U(1)N .
This detail is not important for the following, as we will see.
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Because Λ is diagonal and the diagonal elements of the commutator δUΛ − ΛδU are
zero, we find 2Tr [dΛ(δUΛ− ΛδU)] = 0. We may add up the remaining terms using the
cyclicity of the trace. The third, forth and fifth elements of (3.12) added up yield

2Tr
[
δUδUΛ− δU2Λ2

]
= 2

∑
i,j

[
δUijλjδUjiλi − λ2

i δUijδUji
]

= −
∑
i,j

(λi − λj)2δUjiδUij.

(3.13)
We write the length element using this result

(ds)2 =
∑
i

dλ2
i +

∑
i<j

(λi − λj)2 ¯δUijδUij. (3.14)

From (3.14), we calculate the integration measure using eigenvalues and eigenvectors
as coordinates

dµ(H) =
∏
i<j

(λi − λj)2∏
i

dλidµ(U), (3.15)

where dM(U) is the part of the measure that depends exclusively on the U variables.
Analyzing it carefully, this measure turns out to be, up to a constant factor, the Haar
measure of the unitary group under its own action. This measure is obtained by repeating
the previous procedure using the length element (ds)2 = Tr(dUdU †) with U a unitary
matrix and extracting the integration measure associated to it.

The integration measure (3.15) depends only on the fact that H is Hermitian. The
Jacobian of the transformation {xij} → (U,Λ) is∏i<j(λi−λj)2, which is the Vandermonde
determinant of the eigenvalues. This term will strongly couple all eigenvalues and will be
present in all j.p.d.f. of eigenvalues we will encounter during this work. It is the source
of many interesting phenomena we will observe, and plays a role in creating a “repulsive”
interaction among the eigenvalues.

3.2 Examples of β-ensembles
As discussed in section 3.1.3, we are interested in ensembles whose j.p.d.f. of eigenvalues
can be written as (3.7). The statistical properties of the spectrum of an ensemble will be
then defined by the potential V (λ), and, in the following, we will describe three classical
examples of invariant ensembles and obtain the potential for each case.

3.2.1 Gaussian ensemble
The Gaussian ensemble is composed of square self-adjoint matrices X whose probability
density function is given by P (X) = e−TrQ(X), and Q(x) = ax2 + bx+ c. Without loss of
generality, we will make a wise choice of normalization and origin to write a more compact
version of the probability:

P (X) ∝ e−
β
2 TrX2

, (3.16)

where β is the Dyson index of the ensemble.
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To obtain the j.p.d.f. for the eigenvalues, we follow the recipe provided in section 3.1.3
to obtain

P (λ) = 1
ZN,β

e−
β
2
∑N

i=1 λ
2
i

∏
i<j

|λi − λj|β. (3.17)

Naturally, we identify the potential of the Gaussian ensemble V (x) = x2/2.
This ensemble has so many applications that it is hard to overstate its importance.

One of the reasons of its omnipresence in physics and mathematics is inherited from the
Gaussian distribution. Suppose we are trying to find a matrix “as random as it can be”. In
other words, we want to find the ensemble that maximizes the Shannon entropy given its
constraints. Most applications require the average of the trace of the matrix to be finite,
as well as the average of the trace of its square, so we restrict our study to distribution
with thin tails. Given those constraints, we want to maximize the functional

I[P (H)] = −
∫

dµ(H)P (H)
[
logP (H)− ξ1TrH − ξ2TrH2

]
. (3.18)

Differentiating it functionally wields

δI

δP
= 1 + logP (H)− ξ1TrH − ξ2TrH2 = 0, (3.19)

whose solution is
P (H) = 1

ZN
e−ξ1TrH−ξ2TrH2

. (3.20)

The Gaussian ensemble is, therefore, the ideal candidate to model a random system
whose averages of the trace of first and second powers are fixed. This ensemble is also rel-
evant as a fixed point in renormalization group techniques introduced in [21]. This means
that the correlation between eigenvalues of a large class of random matrices, properly
scaled, is equivalent to Gaussian statistics [20].

For Wigner matrices, we mention briefly that some results equivalent to a central limit
theorem for random matrices are available [88, 125, 49, 10].

Gaussian ensembles are named after their symmetry group associated.

• Real symmetric Gaussian matrices are described by a probability that is invariant
under similarity transformations by orthogonal matrices, they compose the Gaus-
sian Orthogonal Ensemble (GOE) and the j.p.d.f. of their eigenvalues is given
by (3.17) with β = 1.

• Complex Hermitian Gaussian matrices are described by a probability that is in-
variant under similarity transformations by unitary matrices and are named the
Gaussian Unitary Ensemble (GUE), their eigenvalues are distributed accord-
ing to equation (3.17) with β = 2.

• Quaternionic self-dual Gaussian matrices are described by a probability that is in-
variant under similarity transformations by symplectic matrices and are named the
Gaussian Symplectic Ensemble (GSE), their eigenvalues are distributed ac-
cording to equation (3.17) with β = 4.
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Gaussian random ensembles occupy a unique position among random matrix ensem-
bles. When we described two classes of random matrix, those with independent entries
and those whose probability is rotationally invariant, we did not explore the possibility
of imposing these two conditions simultaneously. It turns out that these conditions are
extremely restrictive, and only one ensemble, the Gaussian ensemble, is able to fulfill them
both. This result is a theorem due to Porter and Rosenzweig [119], and is represented in
figure 3.1.

Figure 3.1 — Diagram representing Porter-Rosenzweig theorem.

One fundamental quantity of a random matrix ensemble is the average distribution of
eigenvalues ρ(λ). To obtain it, we integrate the j.p.d.f. of the eigenvalues in all variables
but one.

ρN(λ) =
∫
· · ·

∫
dλ2 . . . dλNP (λ, λ2, . . . , λN). (3.21)

Although the eigenvalues are strongly all-in-all correlated, the average density of eigen-
values for the Gaussian ensemble has a surprisingly simple limit when N is large. This
result was first obtained by Wigner for a specific class of matrices, arising from quantum
mechanical investigations [147], and then generalized to a much larger class [149], which
includes the Gaussian Orthogonal ensemble.

The average density of eigenvalues for the Gaussian ensemble when N is large is given
by

ρN(λ) large N−−−−→ 1√
N
ρsc

(
λ√
N

)
, ρsc(x) = 1

π

√
2− x2, (3.22)

where ρsc(x) is named Wigner’s semicircle law and is represented in figure 3.2a. Wigner
was able to determine the average distribution of eigenvalues of the Gaussian ensemble
using results due to Wishart found, according to Wigner, by accident in a statistics book
by S. S. Wilks [151].

Equation (3.22) clearly reveals the scaling of the eigenvalues of a Gaussian random
matrix with

√
N . It is convenient to rescale the eigenvalues by

√
N to make the average

density independent of the size of the matrix.
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Figure 3.2 — (a) Semicircle law, (b) Marčenko Pastur law, (c) Cauchy distribution.

3.2.2 Wishart ensemble
Let X be a M × N matrix whose entries are Gaussian i.i.d. random variables (real,
complex or quaternions). We define a Wishart matrix W as the N ×N covariance matrix
W = X†X of the Gaussian data matrix X. This ensemble is also know as the Laguerre
ensemble, due to the class of orthogonal polynomials associated to it. Wishart matrices
are positive semi-definite and symmetric. This ensemble has been introduced by Wishart
in 1928 [152] and extensively studied by statisticians [66, 53] long before the official birth
of RMT in physics.

The importance of this ensemble is clear. Covariance matrices are ubiquitous is statis-
tical analysis, and the Wishart ensemble represents the set of covariance matrices emerging
from random normally-distributed data.

The j.p.d.f. of its eigenvalues is given by [72]

P (λ) = 1
ZN

e−
β
2
∑N

i=1 x
N∏
i=1

λβαi
∏
j<k

|λk − λj|β, (3.23)

where the constant α is given by α = β(1 + M −N)/2− 1/β. We identify the potential
V (x) = x

2 − α ln x. When N is large and N/M is kept fixed, the logarithm term of the
potential becomes sub-dominant with respect to the linear term and may be neglected.

The average spectral density in the large-N,M limit (with N/M = c ≤ 1 fixed) for
Wishart matrices was obtained by Marčenko and Pastur [98] (see Fig. 3.2b for the N = M
case) and given by

ρN(λ)→ 1
N
ρmp

(
λ

N

)
ρmp(x) = 1

2πx
√

(x− x−)(x+ − x), (3.24)

where x± = (1± 1/
√
c)2. In this thesis, for simplicity, we will only deal with the symmet-

rical case of Wishart (c = 1), although a general treatment is certainly possible.
We note that Wishart eigenvalues scale as N , and its maximum eigenvalue has an

average position N(1+1/
√
c)2. The eigenvalues of the correlation matrix are fundamental

to a technique named Principal Component Analysis (PCA). This technique consists in
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reducing the dimension of a sample size while keeping intact the information it contains.
Let X = {Xi}1≤i≤N be a random variable of dimension N that we sample M times. We
obtain the empirical data matrix whose row j is the j-th realization of variable X

A =


X11 · · · X1N
... . . . ...

XM1 · · · XMN

 . (3.25)

We define W = ATA the covariance matrix. It is a fact that the direction of the
eigenvector associated with the largest eigenvalue yields the direction of largest fluctuation
of the sample A, we call this a principal direction. If the smallest eigenvalue is negligible
with respect to the largest, this means that fluctuations of data on the direction of the
eigenvector associated to the smallest eigenvalue are negligible with respect to fluctuations
on the direction of the eigenvector associated to the largest eigenvalue. Without entering
in the details of the technique [107], we may say that projecting the data in the P principal
directions is the optimal way to reduce the dimension from N to P while preserving most
of the information, which in this case is given by the correlations. Wishart matrices are
a very natural “null” model for covariance matrices, as they represent the covariance of
uncorrelated, Gaussian distributed data, which is noise. This comparison is fundamental
to create a good criterion of selection of directions to neglect and directions to keep in
the PCA technique.

3.2.3 Cauchy ensemble
We consider N × N matrices which might be symmetric (β = 1), Hermitian (β = 2) or
self-dual (β = 4) drawn from the distribution

P (H) ∝
[
det

(
1N + H2

)]−β(N−1)/2−1
, (3.26)

where 1N is the identity matrix N ×N .
Originally devised as a suitable replacement for the Gaussian ensemble in the context

of quantum transport [22], the Cauchy ensemble has also found use in the context of free
probability [23, 24, 59]. This probability can also be written in the form (3.6), and we
can find its eigenvalues j.p.d.f. using the procedure described above:

P (λ1, · · · , λN) = 1
ZN

N∏
j=1

1
(1 + λ2

j)β(N−1)/2+1

∏
i<k

|λi − λk|β . (3.27)

The Cauchy ensemble is also one of the few exactly solvable ensembles whose average
spectral density has fat tails extending over the full real axis, and given by (see Fig. 3.2c)

ρN(λ) = 1
π

1
1 + λ2 . (3.28)

Remarkably, the average density does not depend on N (it is the same for any N).
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The main feature that lead us to consider this ensemble is the fat tail in the average
density. Many features of the number statistics change drastically once an “edge” is
reached, once the considered interval for counting eigenvalues crosses the edge of the
average density if this density has a compact support. In the absence of a compact support,
we expect to obtain a different behavior, and we were able to compare it with results in
the other ensembles. Wigner matrices whose probability have fat tails were studied by [15]
and the Cauchy ensemble represents an interesting equivalent in the invariant domain.
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— 4 —
Two complementary methods

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Robert Frost

4.1 The Coulomb gas method

In the following, we will describe the main method applied to solve the problems treated in
this thesis. This procedure is called the Coulomb-gas method. It was introduced by Dyson
and Mehta on the founding papers of the subject [43, 45], and has since found numerous
applications, such as the study principal component analysis in random sets of data [94],
the evaluation of resistance, conductance and shot noise power in chaotic mesoscopic
cavities [61, 140, 142], the study of mutual information and data transmission in multiple
input multiple output (MIMO) channels [78], bipartite entanglement of quantum systems
[28, 51, 108, 109], on the top eigenvalue of Gaussian and Wishart matrices [91, 37] and
many others.

We will explore this method in a very general framework. All the ensembles presented
above share the same form (equation (3.7)) for the j.p.d.f. of their eigenvalues, so the
method applies for any sufficiently confining potential V (x). .

4.1.1 Physical interpretation, density and scaling

Probability as a Boltzmann weight

We take a random matrix ensemble whose eigenvalue j.p.d.f. is given by

P (x) = 1
ZN,β

e−βN
∑N

i=1 V (xi)
∏
j<k

|xk − xj|β. (4.1)
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We can rewrite this probability by inserting the Vandermonde determinant into the ex-
ponential

P (x) = 1
ZN,β

e−βN
∑N

i=1 V (xi)+β
∑

k<j
log |xk−xj |. (4.2)

Note that we rescaled the potential V (x) by a factor N . This is a more convenient scaling,
because the potential term and the logarithmic term will be comparable, both will be of
order N2. This yields eigenvalues {xi} of the order of unity, which are more convenient
to work with. In the case of the Gaussian ensemble, this is equivalent to scaling the
eigenvalues by a factor: xi = λi/

√
N , where λi are the eigenvalues of a matrix whose

probability is given by P (X) ∝ e−
β
2 TrX2 . We can find many different choices of scaling

in the random matrix literature, and we choose the one described by equation (4.1). It
yields eigenvalues of the order of unity and average distribution of eigenvalues that are
independent of both N and β.

Probability (4.2) can be interpreted as the Boltzmann weight of an associated electro-
static system. Take N charges in a 2-dimensional gas confined to a line and submitted to
a potential N.V (x). The 2-d electrostatic repulsion is logarithmic, and the probability of
finding the charges at positions x = (x1, . . . , xN) will be given by

P (x) = 1
ZN,β

e−βE[x] E[x] = N
N∑
i=1

V (xi)−
∑
j<k

log |xj − xk|. (4.3)

Written like this, the statistics of eigenvalues in randommatrix ensembles whose j.p.d.f.
is written as (4.1) is equivalent to the Boltzmann weight of a physical system of charges
placed in positions x whose energy is E[x] and ZN,β is the partition function of the sys-
tem. This fundamental correspondence between charged particles and random eigenvalues
allows us to import many techniques from statistical mechanics to treat this problem. A
system described by the energy E[x] is called a Coulomb gas, or log-gas.

Density of eigenvalues

We are interested in matrices of large size. In the language of statistical mechanics for
the associated physical system, we study charges in the thermodynamical limit. A large
number of eigenvalues will translate into a large number of charges, and, as it is customary
in electrostatics, we may treat a large number of charges by defining a density of charges.

Let x = {xi}1≤i≤N be the eigenvalues of a random matrix. We denote the empirical
density of eigenvalues ρ̂(x) and the average density of eigenvalues ρ(x) as

ρ̂(x) = 1
N

N∑
i=1

δ(xi − x) ρ(x) = 〈ρ̂(x)〉 = 1
N

N∑
i=1
〈δ(xi − x)〉 . (4.4)

ρ̂(x) is a distribution defined by random variables, effectively a “counting function” for
the eigenvalues. ρ(x) is a real function, the same function defined in (3.21). We also
denote the two-point density

ρ̂2(x, x′) = 1
N(N − 1)

∑
i 6=j

δ(xi − x)δ(xj − x′). (4.5)
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One very important property of the empirical density is that it is a self-averaging
function in the sense of distribution. This means that, for all test function φ(x) and a
fixed domain A, we have

lim
N→∞

∫
A
φ(x)ρ̂(x)dx =

∫
A
φ(x) 〈ρ̂(x)〉 dx =

∫
A
φ(x)ρ(x)dx. (4.6)

This limit is what we mean when writing that, in the large N limit, we find ρ̂ ∼ ρ. It
is tempting to write limN→∞ |ρ̂(x) − ρ(x)| = 0,∀x, but not only this is mathematically
inaccurate, it is also not true for all values of x. If the integration domain A on equation
(4.6) scales with N , the convergence is compromised. In particular, if ρ(x) is a function
whose support is compact and presents an edge, the convergence from ρ̂(x) to ρ(x) is
not uniform around the edge and the Coulomb gas method cannot be applied to evaluate
quantities around the edge of the distribution. This fact will force us to resort to other
techniques to evaluate this “edge regime”, which is responsible for a rich transitional
behavior for many quantities studies in this thesis. This self-averaging property is also
true for the 2-point density function.

This convergence represents a macroscopic behavior for the charges and cannot incor-
porate fluctuations of the order of the microscopic level of the ensemble. This is one of the
main limitations of the Coulomb gas method. Further in this chapter, we will introduce
another method able to probe into the microscopic details of the ensemble.

4.1.2 From discrete to continuum
Our aim is to show how to relate the integral on the eigenvalues

∫
dx1 . . . dxN to a func-

tional integral on the average density. For this purpose, we use the self-averaging property
of the density and the large N limit to exchange the sums of random variables xi in E[x]
in equation (4.3) into integrals of an average density ρ(x). This passage is intuitive from
the electrostatic point of view, we exchange a treatment dealing with a large number
of point charges to a treatment of the charge density. I reproduce in the following the
necessary steps of this exchange, following closely the accounts in [107, 38, 43]. Our steps
are the following:

1. We first write the potential and the repulsive elements of the energy as integrals on
the empirical densities.

2. We explore the large N limit to exchange the empirical densities with average den-
sities.

3. We write the integration measure as a functional integral with respect to ρ.

4. We complete by enforcing the normalization of ρ.

These steps are in the core of all the results of this thesis, and in this section I intend
to present them with a sufficient level of detail. For a more mathematical treatment, we
refer to [50].
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4.1. The Coulomb gas method

Empirical densities to average densities

Using the empirical density ρ̂(x), we can write a functional ∑i V (xi) as an integral on the
empirical density and apply the large N limit to obtain it as an integral on the average
density.

N
N∑
i=1

V (xi) = N2
∫
ρ̂(x)V (x)dx large N−−−−→ N2

∫
ρ(x)V (x)dx. (4.7)

The repulsion term should be expressed using the 2-point density

∑
i<j

log |xi − xj| =
1
2
∑
i 6=j

log |xi − xj| =
N(N − 1)

2

∫
dx
∫

dx′ρ̂2(x, x′) log |x− x′|. (4.8)

We note that
ρ̂2(x, x′) = N

N − 1 ρ̂(x)ρ̂(x′)− 1
N − 1 ρ̂(x)δ(x− x′), (4.9)

where the last term is the self interaction. In the large N limit, the product of empirical
densities converges in the sense of distribution to the product of average densities. The
self-interacting term can be dealt with considering the following argument by Dyson
[43, 38]. In the large N limit we may write∫

dx
∫

dx′ρ̂(x)δ(x− x′) log |x− x′| ∼
∫

dxρ(x) log |l(x)|, (4.10)

where l(x) represents a position-dependent cutoff. Dyson’s argument consists in taking
the cutoff as the average distance between eigenvalues at the point x, which is simply the
inverse of the average density ρ(x). In the large N limit, we may write the interaction
term as
∑
i<j

log |xi − xj|
large N−−−−→ N2

2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′|+ N

2

∫
ρ(x) log ρ(x)dx. (4.11)

And the energy can then be written as

E[x] large N−−−−→N2
∫
ρ(x)V (x)dx

− N2

2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′|

− N

2

∫
ρ(x) log ρ(x)dx. (4.12)

Calculating the integration measure

The final step to complete the transition from discrete to continuum is to determine the
Jacobian of the transformation {xi} → ρ(x). Physically, we expect this Jacobian to take
into account the entropy associated with the transformation, since the points {xi} are
ordered and distinguishable while the average density is a single variable real function.
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4.1. The Coulomb gas method

We calculate the Jacobian

J [ρ] = CN

∫ N∏
i=1

dxiδ
[
Nρ(x)−

N∑
i=1

δ(x− xi)
]
, (4.13)

where CN is a constant. We write the delta function as a functional Fourier transform
with parameter g(x)

J [ρ] = C ′N

∫ N∏
i=1

dxiDg e
∫

dxg(x)[Nρ(x)−
∑N

i=1 δ(x−xi)]. (4.14)

The integral on xi can be performed

J [ρ] = C ′N

∫
Dg eN

∫
dxg(x)ρ(x)+N log[

∫
dx exp[−g(x)]] =

∫
Dg e−NZ[g,ρ], (4.15)

where
Z[g, ρ] = −

∫
dxg(x)ρ(x)− log

[∫
dxe−g(x)

]
. (4.16)

This integral can be evaluated for large N by the saddle point method. We differentiate
it functionally with respect to g to obtain

δZ

δg

∣∣∣∣∣
g?

= 0 = −ρ(x) + e−g
?(x)∫

dxe−g?(x) . (4.17)

whose solution g?(x) can be given implicitly by

ρ(x) = e−g
?(x)∫

dx′e−g?(x′) . (4.18)

Replacing this result in the functional Z[g, ρ] yields

Z[g?, ρ] =
∫

dxρ(x) log ρ(x) +
∫

dxρ(x)︸ ︷︷ ︸
=1

log
[∫

dx′e−g?(x′)
]
− log

[∫
dx′e−g?(x′)

]
(4.19)

=
∫

dxρ(x) log ρ(x). (4.20)

And we obtain the Jacobian

J [ρ] = C ′Ne
−N
∫

dxρ(x) log ρ(x). (4.21)

Indeed, this term matches the entropy of the average density ρ, as expected. The
energy written as a functional of the average density becomes

E[x] large N−−−−→ N2
[
Σ[ρ]− 1

N

(
1
2 −

1
β

)∫
ρ(x) log ρ(x)dx

]
, (4.22)
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where
Σ[ρ] =

∫
ρ(x)V (x)dx− 1

2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′|. (4.23)

The functional form of the energy contains a sub-dominant term, which is composed by
the entropic term and the self-interacting part of the repulsion. Interestingly, this term
cancels out in the case of β = 2, when the ensemble is considered for complex matrices.
For other values of β, this term can be neglected when N is large. From this point on,
we consider this term to be negligible.

We note a special case in which β can scale with N (β ∼ 1/N). It is possible to
construct such ensembles, deriving them from Brownian motion investigations [4]. This
scaling will turn the entropic term into a relevant contribution for the energy and the
behavior of the β-ensemble will change drastically (see [5]).

Enforcing normalization

We recall the j.p.d.f. of the eigenvalues

P (x)
N∏
i=1

dxi ∝
N∏
i=1

dxie−βE[x] large N−−−−→ Dρ e−βN2Σ[ρ]δ
(∫

ρ(x)dx− 1
)
, (4.24)

where we introduced a supplementary δ to enforce normalization, since all integrals of
this probability must be performed in the space of normalized densities. This condition
can be incorporated into the exponent by writing it in its exponential representation.

P (x)
N∏
i=1

dxi
large N−−−−→ 1

ZN,β
Dρ

∫
dηe−βN2S[ρ], (4.25)

where

S[ρ] =
∫
ρ(x)V (x)dx− 1

2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′|+ η

(∫
ρ(x)dx− 1

)
(4.26)

is called the action. This functional replaces the role of the energy and allows us to
calculate many observables using a saddle-point approximation. We now illustrate this
method on the computation of the Wigner semi-circle law.

4.2 An example: calculating the semi-circle law
We want to calculate the average density of eigenvalues of the Gaussian ensemble. By
the self-averaging property in the large N limit, we know that the average density of
eigenvalues will also be the density whose probability is the highest. We recall the j.p.d.f.
of the eigenvalues of the Gaussian ensemble.

P (x) = 1
ZN,β

e−
βN

2
∑N

i=1 x
2
i

∏
i<j

|xi − xj|β. (4.27)
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We apply the formalism described above, using the potential V (x) = x2/2. This proba-
bility becomes

P (x) large N−−−−→ 1
ZN,β

e−βN
2S[ρ,η], (4.28)

where

S[ρ, η] =
∫
ρ(x)x

2

2 dx− 1
2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′|+ η

(∫
ρ(x)dx− 1

)
. (4.29)

We want to obtain the density ρ? that contributes the most to the probability, and this
is obtained by minimizing the functional S. We find

δS

δρ

∣∣∣∣∣
ρ?

= 0 = x2

2 −
∫

dx′ρ?(x′) log |x− x′|+ η, x ∈ supp ρ? (4.30)

Equation (4.30) has a clear physical interpretation. In the electrostatic context, it
means that for each point in the average density, potential and repulsion are balanced.
This is of course expected as the system is in equilibrium. We differentiate this relation
with respect to x to obtain

x = −
∫ ρ?(x′)
x− x′

dx′, x ∈ supp ρ?, (4.31)

where −
∫
represent the Cauchy principal value of the integral. Solving equation (4.31) and

inserting the result into the action S[ρ] is the main technical challenge of the Coulomb
gas method. For this simpler case, we shall provide a detailed solution. We propose two
methods: the Tricomi formula and the resolvent method.

4.2.1 Tricomi formula
Assuming that the support of ρ?(x) is A = [a, b], a compact simply connected support
where a and b will be found afterwards, we can solve equation (4.31) directly using a
formula due to Tricomi [136]. Given a sufficiently smooth real function g(x) that satisfies

g(x) = −
∫ ρ(x′)
x− x′

dx′, x ∈ [a, b], (4.32)

when ρ(x) is a function whose support is a single interval [a, b], then this relation can be
inverted and yields

ρ(x) = 1
π
√
x− a

√
b− x

[
C −−

∫ b

a

dx′
π

√
x′ − a

√
b− x′

x− x′
g(x′)

]
, (4.33)

where
C =

∫ b

a
ρ(x)dx. (4.34)
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To apply this theorem directly in order to find the solution of (4.31), we need some
information about the support of the average density. Let us suppose that the average
density of eigenvalues for the Gaussian ensemble has indeed a compact support [−a, a],
where the symmetry arises from the symmetry of the j.p.d.f. with respect to xi → −xi
transformations. The constant C, by definition, is equal to 1. We solve the following
integral

IA(x) = −
∫ a

−a

dx′
π

√
x′ + a

√
a− x′

x− x′
x′ = x2 − a2

2 . (4.35)

And we obtain the density

ρ?(x) = 1
π
√
a2 − x2

[1− IA(x)] = 1 + a2/2− x2

π
√
a2 − x2

. (4.36)

The support of the distribution is [−a, a], which means that ρ(a) = 0. This imposes
a =
√

2, and we find the final formula for ρ(x)

ρ?(x) =
√

2− x2

π
, (4.37)

which is, as expected, Wigner’s semi circle law.
In general, we can guess by physical intuition or numerical analysis when the support

is a single compact interval. When this is not the case, Tricomi’s formula cannot be
applied directly. When dealing with a two-interval support, A = [a, b]∪ [c, d], we may use
Tricomi’s formula twice, one on each support, splitting the integral and bootstrapping
the result from one equation to the other. This increases the complexity of the integrals
performed, but it is possible and it is done in [107, 90, 89]. For more complex supports,
we should resort to other tools to solve integral equation (4.31).

4.2.2 Resolvent method
Let G(z) be a holomorphic function, called the resolvent (or Green’s function), defined as

G(z) =
∫ ρ?(y)
z − y

dy, z ∈ C \ supp ρ?. (4.38)

Normalization of ρ? to 1 implies that G(z) behaves as 1/z when |z| is large. We recall a
standard identity involving the Dirac delta

lim
ε→0+

G(x+ iε) = lim
ε→0+

∫ b

a

ρ?(y)
x+ iε− y

dy = −iπρ?(x) +−
∫ b

a

ρ?(y)
x− y

dy. (4.39)

We notice that, having G(z), we obtain ρ?(x) by performing

ρ?(x) = − 1
π

lim
ε→0+

[ImG(x+ iε)] . (4.40)
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We illustrate this method on the determination of the semicircle law. To find an
equation for G(z) in this case, we multiply equation (4.31) by ρ?(x)

z−x and integrate it over
x. This yields ∫

x
ρ?(x)
z − x

dx =
∫∫ ρ?(x)

z − x
ρ?(y)
x− y

dydx. (4.41)

The RHS of equation (4.41) can be expressed in terms of G(z) with the following manip-
ulation. We use the identity

1
(z − x)(x− y) =

(
1

z − x
+ 1
x− y

)
1

z − y
, (4.42)

to write the RHS as∫∫ ρ?(x)
z − x

ρ?(y)
x− y

dxdy =
∫∫ ρ?(x)ρ?(y)

(z − x)(z − y)dxdy −
∫∫ ρ?(x)

z − x
ρ?(y)
x− y

dxdy. (4.43)

Since the first term of the RHS of equation (4.41) is G2(z) and the second is the RHS
of equation (4.41) with the sign changed, this implies that the RHS of equation (4.41) is
G2(z)/2.

The manipulations required to express the LHS in terms of G(z) are straightforward
in the Gaussian case. The LHS of equation (4.41) reads∫

x
ρ?(x)
z − x

dx =
∫

(x− z + z)ρ
?(x)
z − x

dx = −1 + zG(z). (4.44)

The final equation for the resolvent thus reads

− 1 + zG(z)+ = 1
2G

2(z). (4.45)

And its solution is evident
G(z) = z ±

√
z2 − 2. (4.46)

The sign of the resolvent is chosen according to the normalization condition G(z) →
1/z when |z| → ∞. We note that the resolvent is well defined on the real line outside of
the support of ρ?(x), and the sign choice for points in the real line is given by

G(x) =

G−(x) for x >
√

2
G+(x) for x <

√
2

(4.47)

We apply the identity (4.39) to obtain

− 1
π

lim
ε→0+

ImG(x+ iε) =
√

2− x2

π
. (4.48)

As expected, we obtain Wigner semicircular law for the average density of eigenvalues of
Gaussian random matrices. For other ensembles, equation (4.31) takes a different form,
and resolution of this equation by the resolvent method is not always as simple.
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4.3 Orthogonal polynomials
A second technique we introduce to tackle calculations of quantities involving eigenvalues
of an invariant random matrix is due to Mehta and Gaudin [100], named the orthogonal
polynomial technique. It is a very powerful tool arising from a brilliant insight in manip-
ulating the j.p.d.f. (3.7). While elements of this technique can be developed for β = 1
and β = 4 with the use of pfaffians, we present only the simpler β = 2 version. In this
entire section, we consider only the complex-valued matrix case with Dyson index β = 2.

The Coulomb gas method is very powerful, but has its limitations. As discussed in
section 4.1.2, the empirical densities converges to the average, but not uniformly. There
are scales in which the convergence of the average density of eigenvalues is problematic,
and the Coulomb gas is not suitable to deal with these regimes. The orthogonal polynomi-
als technique works in all regimes and scales, but large-N results are very hard to obtain
if we do not restrict our interest to specific regimes in which the asymptotic behavior
of fundamental quantities of the ensemble are known. Loosely speaking, the orthogonal
polynomial technique is well suited to study local fluctuations. Major results such as the
sine kernel or the Airy kernel cannot be obtained via Coulomb gas. To deal with local
regimes, we must resort to the orthogonal polynomials.

4.3.1 Correlation functions
In the section above, we defined the average and 2-point density functions of a random
matrix ensemble. This definition is of course not restricted to 2, and we have great interest
in generalizing it. Let H be a Hermitian random matrix whose eigenvalues are given by
{xi}. We define the empirical n-point density ρ̂n : Rn → R

ρ̂n(y1, . . . , yn) = (N − n)!
N !

∑
i1 6=... 6=in

δ(y1 − xi1) . . . δ(yn − xin). (4.49)

The average of this random distribution is naturally given by the average n-point density

ρn(y1, . . . , yn) = 〈ρ̂n(y1, . . . , yn)〉 (4.50)

=
∫

dyn+1 . . .
∫

dyNP (y1, . . . , yN), (4.51)

where P is the j.p.d.f. of the eigenvalues.
We note that densities are always normalized to 1 when integrated over all their vari-

ables. A similar definition, but more convenient to our purposes, is the n-point correlation
function Rn

Rn(y1, . . . , yn) = N !
(N − n)!ρn(y1, . . . , yn) (4.52)

=
∑

i1 6=... 6=in
〈δ(y1 − xi1) . . . δ(yn − xin)〉 (4.53)
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= N !
(N − n)!

∫
dyn+1 . . .

∫
dyNP (y1, . . . , yN). (4.54)

In particular, R1(x) = Nρ(x) and R2(x, x′) = N(N − 1)ρ2(x, x′).
Correlation functions are fundamental quantities for point processes, and in particular

to the analysis of the spectrum of the random matrix ensembles we described. They rep-
resent the probability density of finding an eigenvalue around each of the points y1 . . . , yn,
the position of the remaining levels being unobserved. They allow us to express averages
of symmetric sums as a convenient integral, a procedure already used in the Coulomb gas
method with the first and second n-point densities in section 4.1.2. Let f : Rk → R be a
test function, we may write〈 ∑

i1,...,ik
i’s distinct

f(xi1 , . . . , xik)
〉

=
∫
Rk
f(y1, . . . , yk)Rk(y1, . . . , yk)dy1 . . . dyk. (4.55)

The LHS is summed over all k-tuples of eigenvalues. We write the first two cases of this
sum 〈

N∑
i=1

f(xi)
〉

=
∫
f(y)R1(y)dy (4.56)〈∑

i 6=j
f(xi, xj)

〉
=
∫
f(y, y′)R2(y, y′)dydy′. (4.57)

4.3.2 Orthogonal polynomials
We will introduce the building blocks of the powerful theory of orthogonal polynomials.
We emphasize that we consider only the case for complex matrices, which implies a Dyson
index β = 2. It is possible to generalize many of these results to other values of β [100],
but these generalizations are not straightforward and lie outside the interest of this work.

We are interested in ensembles whose eigenvalues are described by a j.p.d.f. of the
form (4.1) with β = 2, which we recall here

P (x1, . . . , xN) = 1
ZN

e−2N
∑N

i=1 V (xi) det
[
xj−1
i

]2
, (4.58)

where we wrote the Vandermonde determinant in its determinantal form for future con-
venience.

One special type of point process that has correlation functions is the determinantal
point process. Let KN : R2 → R. We define a determinantal point process as a N point
process whose n-point correlation functions exist and are written as

Rn(x1, . . . , xn) = det [KN(xi, xj)]1≤i,j≤n , (4.59)

In particular, R1(x) = KN(x, x) and R2(x, y) = KN(x, x)KN(y, y)−KN(x, y)KN(y, x).
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We are going to show that a process defined by the probability law (4.58) is actually
a determinantal point process, and we can write its kernel explicitly.

We want to calculate n-point correlation functions of this process, which are integrals
of the probability (4.58) for N − n variables. These integrals of determinants can be
performed immediately using a powerful “integrating-out” lemma due to Dyson, Mehta
and Gaudin [100]. This lemma states

• Let Jn = (Jij)1≤i,j≤n be an n× n matrix whose entries are defined by a real vector
x = (x1, . . . , xn) and given by a function of the form KN(xi, xj). Suppose this
function KN(x, y) satisfies a reproducing kernel property, which is∫

KN(x, y)KN(y, z)dy = KN(x, z), (4.60)

then ∫
det Jn(x)dµ(xn) = [q − (n− 1)] det Jn−1, (4.61)

where q =
∫
KN(x, x)dµ(x).

To apply this lemma, we need only to write the j.p.d.f. of eigenvalues (4.58) as the
determinant of a kernel KN(x, y) that satisfies the reproducing property. This probability
can be manipulated to be written as a determinant of a reproducing kernel using the
fact that adding or subtracting rows from a determinant only changes its prefactor. The
idea is to add and subtract rows from the Vandermonde matrix to build a matrix whose
entries are polynomials orthogonal to the weight e−2NV (x). In other words, let πi(x) be a
polynomial of degree i such that∫

πi(x)πj(x)e−2NV (x)dx = ciδij, (4.62)

where ci is a constant. This defines the family of polynomials orthogonal to the weight
e−2NV (x). We add and subtract rows from the Vandermonde matrix to obtain a propor-
tional determinant of a matrix composed of orthogonal polynomials.

det
[
xj−1
i

]
=

∣∣∣∣∣∣∣∣∣∣
1 · · · 1
x1 · · · xN
... . . . ...

xN−1
1 · · · xN−1

N

∣∣∣∣∣∣∣∣∣∣
∝

∣∣∣∣∣∣∣∣∣∣
π0(x1) · · · π0(xN)
π1(x1) · · · π1(xN)

... . . . ...
πN−1(x1) · · · πN−1(xN)

∣∣∣∣∣∣∣∣∣∣
= det [πj−1(xi)] . (4.63)

This allows us to write the j.p.d.f. of eigenvalues as

P (x1, . . . , xN) ∝ det [KN(xi, xj)] , (4.64)

where
KN(x, y) = e−N(V (x)+V (y))

N−1∑
k=0

πk(x)πk(y) =
N−1∑
k=0

φk(x)φk(y). (4.65)

is called the kernel, where we defined the function φk(x), given by e−NV (x)πk(x). This
kernel satisfies the reproducing property, and we may apply the integrating-out lemma to
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obtain the n-point correlation functions as the determinant of this same kernel. Indeed,
we obtain∫

· · ·
∫

det [KN(xi, xj)]1≤i,j≤N dxk+1 . . . dxN = (N − k)! det [KN(xi, xj)]1≤i,j≤k . (4.66)

Recalling equation (4.54), we can write a direct relation between the correlation func-
tion and the kernel

Rn(x1, . . . , xn) = det [KN(xi, xj)]1≤i,j≤n , (4.67)
which proves that the eigenvalues of a complex rotationally invariant random matrix
whose eigenvalues j.p.d.f. is given by (4.1) form a determinantal point process whose
statistics is completely described by a kernel KN(x, y).

4.3.3 Gaussian Unitary Ensemble
The ideas presented in the previous section are very general, and we detail the special case
of the Gaussian Unitary Ensemble. The potential of GUE is given by V (x) = x2/2, and
the family of polynomials orthogonal with respect to this weight is the family of Hermite
polynomials Hn

(
x
√
N
)
, defined as

Hn(x) = ex
2
(
− d

dx

)n
e−x

2 = n!
[n/2]∑
i=0

(−1)i (2x)n−2i

i!(n− 2i)! . (4.68)

These polynomials are orthogonal with respect to the measure e−Nx2 , yielding∫ ∞
−∞

Hn

(
x
√
N
)
Hm

(
x
√
N
)
e−Nx

2dx = 2n n!√
N

√
πδmn. (4.69)

This calls for the definition of the function φn(x)

φn(x) =
(

2n n!√
N

√
π

)− 1
2

e−N
x2
2 Hn

(
x
√
N
)
. (4.70)

Due to the similarity with the wave function of the quantum harmonic oscillator, these
function are named oscillator wave functions. This similarity will play a crucial role in
chapter 7. From its definition, it is clear that the oscillator wave functions are orthonormal
and the kernel reads

KN(x, y) =
N−1∑
k=0

e−N
(x2+y2)

2
Hk

(
x
√
N
)
Hk

(
y
√
N
)

2kk!
√
π/N

=
N−1∑
k=0

φk(x)φk(y). (4.71)

In particular the average density of eigenvalues is given by

Nρ(x) = R1(x) = KN(x, x) =
N−1∑
k=0

φk(x)2. (4.72)

— 61 —



4.4. Scaling regimes in invariant random matrices

If we want to explore the large N limit of the random matrix ensemble, we need to
study the asymptotics of its orthogonal polynomials. This is simplified by the fact that
orthogonal polynomials satisfy a three-term recurrence relation, which implies a formula
involving the sums of products of orthogonal polynomials, named the Christoffel-Darboux
formula.

• Let Pn(x) be a family of orthogonal polynomials whose leading coefficient is kn. We
denote ‖Pk‖L2 = hk the square integral norm. Then

N−1∑
k=0

Pk(x)Pk(y)
hk

= kN−1

kNhN−1

PN(x)PN−1(y)− PN(y)PN−1(x)
x− y

. (4.73)

The LHS of the formula is precisely the sum required to obtain the kernel. This theo-
rem exchanges the asymptotic of the sum of N terms with a single asymptotic evaluation
on Hermite polynomials to obtain the behavior of the kernel at large N .

The orthogonal polynomials method and the Coulomb gas method have advantages
and limitations. Coulomb gas can easily provide results in leading order in N for many
observables, but it is unable to explore local fluctuations. The orthogonal polynomials
method is valid for β = 2 only and calculations for large N are usually difficult, but it is
able to probe into local fluctuations. For these reasons, we decided to split the spectrum
of eigenvalues of a random matrix into different interval, or regimes, and treat each part
with a different method. These techniques complement each other and the matching of the
calculated quantities in the cross-over between the regimes is a good test of consistency
of our results.

4.4 Scaling regimes in invariant random matrices
Using the orthogonal polynomials method, we can write all observables of a complex
invariant random matrix ensemble in terms of the kernel KN(x, y). This is a very powerful
result, as it simplifies many calculations into the computation of the behavior of a single
two-variable function. This function, however, is not simple. We recall its general form

KN(x, y) = e−N(V (x)+V (y))
N−1∑
k=0

πk(x)πk(y), (4.74)

where πk(x) are a family of polynomials orthogonal to the weight e−2NV (x). This sum
becomes very difficult for large values of N , even using Christoffel-Darboux’s formula,
but there are two particular scaling regimes for the variables x and y in which the kernel
has a simple limit. We present both regimes for the GUE case, but the generalization is
straightforward.

• Bulk Regime: |x−y| ∼ 1/N . This is the situation in which x and y are very close,
their distance is of the order of the average distance between the eigenvalues. Since
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the eigenvalues in this regime are so close, the potential does not play an important
role in its statistics and we are “zooming in” on the spectrum to obtain only the
contribution of the logarithmic repulsion.

• Edge Regime: |x−
√

2| . N−2/3, and the symmetric correspondent. This regime
is obtained by “zooming in” at the edge of the average distribution of eigenvalues.
The width of the edge regime was introduced by Tracy and Widom in their seminal
paper [134] calculating for the first time statistics for the largest eigenvalue of a
Gaussian random matrix, the so-called Tracy-Widom distribution.

edgebulkedge

Figure 4.1 — Representation of bulk and edge regimes for the Gaussian ensemble.
The representation of the bulk is placed at an arbitrary location, since it is translational
invariant inside the support.

These regimes are summarized in picture 4.1. Both regimes are local and their width
decreases as N becomes large. Their scaling is crucial to ignore the form of the potential
and reveal properties arising only from the logarithmic repulsion of the eigenvalues.

Loosely speaking, the bulk and edge regime are “zoomed in” regions of different parts
of the spectrum. Inside the support of the average density and away from the edges,
we find the bulk regime when we change our scale to the interparticle distance. In this
“zoomed in” situation, distances are so small that the potential, a smooth function on the
real line, can be treated as a constant, and analysis on this regime cannot see the specific
form of the potential. In the edge regime, the average density presents a singularity,
which changes completely the asymptotic behavior of the kernel. In the appropriate scale
around the edge, the potential can be linearized and once again we find local universality
for the kernel.

We describe the classical results for the asymptotics of the kernel in the bulk and edge
regime.
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4.4.1 Bulk regime and the sine kernel
Our goal is to obtain a more useful expression for the kernel on the bulk of GUE than
the sum of products of orthogonal polynomials (4.71). The standard procedure to do so
is to write the Christoffel-Darboux formula (4.73) applied to the oscillator wave functions
φk(x) (4.70) and use asymptotics of Hermite polynomials (those can be found in [12])
in the bulk regime to obtain the asymptotic behavior of the kernel. The calculations
required to do so, however, are complicated and not particularly interesting to reveal the
universal character of the sine kernel. So instead of going through the usual route, we will
use some results of functional analysis to explore the limiting behavior of KN(x, y) when
N is large and when the variables are scaled according to the bulk limit. This approach
follows [132].

We recall the formula of the kernel as a sum of products of its oscillator wave functions

KN(x, y) =
N−1∑
k=0

φk(x)φk(y). (4.75)

As their name suggests, these functions are eigenfunctions of the harmonic oscillator
operator

L = − 1
2N

d2

dx2 + Nx2

2 , (4.76)

whose eigenvalues are
L φk =

(
k + 1

2

)
φk. (4.77)

The role played by the kernelKN is, hence, the integral kernel of the spectral projection
P into the eigenfunctions of the operator L . To make this clear, we notice how its action
on a test function φ is given by

Pφ(x) =
∫
KN(x, y)φ(y)dy =

∫ N−1∑
k=0

φk(x)φk(y)φ(y)dy =
N−1∑
k=0
〈φ, φk〉φk(x). (4.78)

So KN is an integral kernel responsible for projecting the test function in the space of
eigenfunctions of the operator L , with a caveat: it only projects it in the eigenfunctions
associated with the first N eigenvalues. We note this region by L ≤ N − 1/2, which
means that the projection only takes into account eigenfunctions φk such that L φk ≤
(N − 1/2)φk.

We now place ourselves in the bulk limit. We chose a fixed point inside the bulk, x0,
where x0 ∈]−

√
2,
√

2[. We pick small fluctuations around this value, of the order of the
interparticle distance, which is given by 1/(NρN(x0)), where ρ(x) =

√
2− x2/π.

x = x0 + u√
2Nρ(x0)

. (4.79)

This transformation is also named the unfolding of the spectrum. In these coordinates,
the operator L becomes

L = −Nρ(x0)2

2
d2

du2 + N

2

(
x0 + u√

2Nρ(x0)

)2

. (4.80)
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Since the kernel is responsible for projecting functions in the spectral region of eigenvalues
smaller than N − 1/2, which we denote by L ≤ N − 1/2, we then write

− Nρ(x0)2

2
d2

du2 + N

2

(
x0 + u√

2Nρ(x0)

)2

≤ N − 1
2 . (4.81)

This inequality only denotes the region of the spectrum where the kernel projects the
functions to, and we may apply the large N limit on both sides to determine what is the
limit of this projection region. Taking the large N limit yields

− d2

du2 ≤ π2 (4.82)

It is clear that we just need to find the integral kernel of the projection into the spectral
functions of the operator − d2

du2 in its spectral region of eigenvalues smaller that π2. To do
so, we send our problem to Fourier space. Confining the projection to eigenvalues smaller
than π2 is equivalent to confining the frequency variable in Fourier space to a certain
interval. Indeed, we may use a semiclassical argument to write the region described above
as: F [− d2

du2 ] = |ξ|24π2 ≤ π2, which yields the following region for the frequency variable

|ξ|2 ≤ 1
4 . (4.83)

Going back to physical space we obtain

Pφ(u) =
∫ 1

2

− 1
2

e2πiξuφ̂(ξ)dξ =
∫ ∞
−∞

∫ 1
2

− 1
2

e2πiξue−2πiξvφ(v)dξdv (4.84)

=
∫ ∞
−∞

sin(π(u− v))
π(u− v) φ(v)dv. (4.85)

Where we recognize the sine kernel as playing the role of the integral kernel of the spectral
projection of this operator. We have, therefore, that the GUE kernel converges, in the
bulk limit for large values of N , to the sine kernel. In summary, we have that, given the
scaling

x = x0 + u√
2Nρ(x0)

and y = x0 + v√
2Nρ(x0)

, (4.86)

with x0, y0 ∈]−
√

2,
√

2[, the kernel has the limit

lim
N→∞

1√
2Nρ(x0)

KN (x, y) = sin (π(u− v))
π(u− v) = Ksk(u− v), (4.87)

where Ksk known as the sine kernel.
This method of obtaining the asymptotic behavior for the sine kernel reveals part of the

universality of this asymptotic behavior. All orthogonal polynomials are associated with
a second order differential operator and this scaling is responsible for neglecting the role of
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the potential into calculations. This means that this procedure can be reproduced for all
ensembles presented above, as the potential associated with the ensemble does not play a
role once the correct scaling is applied. Hence, the sine kernel described the asymptotic
of the kernel in the bulk of Gaussian, Wishart, Cauchy and many other ensembles for
β = 2.

Physically, we use the charged particle analogy to note that in the interparticle distance
scale, the potential, as a smooth function, can be treated as constant. The universality
arises from the fact that the potential is negligible in this scale and log repulsion is
responsible for correlations. Hence, this scaling limit of the kernel is universal for all
ensembles whose j.p.d.f. of eigenvalues is described by (4.1) for β = 2.

4.4.2 Edge regime and the Airy kernel
Hermite polynomials may also be scaled in the edge of the average density. Our goal is
to expand the Hermite polynomials around the average value of the largest eigenvalue
of GUE,

√
2, and scale this variable by the typical fluctuation of the largest eigenvalue.

Heuristically, we can argue that this scale of fluctuations of the largest eigenvalue xmax
is given by saying that between the point xmax and

√
2 there is only one eigenvalue. In

other words, ∫ √2

xmax

√√
2− xdx ∼ 1

N
, (4.88)

from which we deduce
√

2 − xmax ∼ O(N− 2
3 ). While the bulk scaling was expected, it

corresponds to the interparticle distance, the scaling for the edge regime is not intuitive.
This edge width is related to the typical fluctuations of the largest eigenvalue, the so-called
Tracy-Widom distribution. The p.d.f. for the maximum eigenvalue was first obtained by
Tracy andWidom for GUE [134], generalized to GOE and GSE [135] and proven extremely
resilient to changes in the ensemble, representing a true universal property emerging from
the presence of an edge in strongly correlated systems [91].

We set
x =
√

2 + ξ1√
2N 2

3
and y =

√
2 + ξ2√

2N 2
3
, (4.89)

Using this normalization, we find the following asymptotic behavior for the Hermite poly-
nomials [56]

e−N
x2
2 HN

(
x
√
N
)

= π
1
4 2N

2 + 1
4

√
N !

N
1

12

[
Ai(ξ1) +O(N−2/3)

]
(4.90)

Using the fact that N is large, we can Taylor expand the Airy function and apply the
result to Christoffel-Darboux formula [115]. We obtain

KN(x, y)dy large N−−−−→ Ai(ξ1)Ai′(ξ2)− Ai(ξ2)Ai′(ξ1)
ξ1 − ξ2

dξ2 = KAi(ξ1, ξ2)dξ2, (4.91)

where KAi is known as the Airy kernel and Ai(x) is the Airy function, the solution of the
differential equation

Ai′′(x) = xAi(x), Ai(x) x→∞−−−→ 0. (4.92)
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Counting statistics

Man is fond of counting his troubles,
but he does not count his joys.

Fyodor Dostoyevsky

The problem of counting eigenvalues is an old, rich and fundamental subject in random
matrix theory. Many problems can be transformed into a counting problem of the number
of eigenvalues of a random matrix ensemble inside an interval. Several previous results
have explored this observable in many different ways, and we discuss some of them in this
chapter.

We are interested in the observable NI , the number of eigenvalues {xi} inside an
interval I = [a, b]. By definition

NI =
N∑
i=1

1I(xi), (5.1)

where 1I(x) is the characteristic function whose value is 1 if x ∈ I and zero otherwise.
We recall that we consider only eigenvalues xi distributed according to the j.p.d.f. (4.1)

P (x) = 1
ZN,β

e−βN
∑N

i=1 V (xi)
∏
j<k

|xk − xi|β. (5.2)

NI is a random variable. One of the main questions during my PhD was the following:
what is the statistics of NI for invariant self-adjoint random matrices? In other words,
how many eigenvalues from an invariant ensemble lie between a and b? This study is
named number statistics, or full counting statistics. In this chapter, we present the
classical results for the statistics of the variable NI . These results are both powerful
and necessary, as they will be the reference to compare with new results we obtained in
chapters 6, 7 and 8.
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5.1 Counting uncorrelated variables
The j.p.d.f. of eigenvalues of an invariant random matrix contains a Vandermonde deter-
minant coupling all eigenvalues. The presence of the Vandermonde will greatly impact
the behavior of the number statistics, and this impact becomes clear when we compare
to the case of uncorrelated variables.

We begin by exploring this case, when points are distributed on a line according to
independent probabilities. We consider the i.i.d. variables {x1, . . . , xn}. We set

P (x1, . . . , xn) = p(x1) . . . p(xn) (5.3)

We recall the definition of empiric density and average density of points

ρ̂(x) = 1
N

N∑
i=1

δ(x− xi) ρ(x) = 1
N

〈
N∑
i=1

δ(x− xi)
〉
. (5.4)

We introduce the moment generating function

χI(z) =
∑
NI

(1− z)NIP (NI) =
〈
(1− z)NI

〉
. (5.5)

Using the statistical independence of the points with definition (5.1), we may write χI(z)
as

χI(z) =
〈∏

i

(1− z)1I(xi)
〉

=
∏
i

〈1− z1I(xi)〉 =
[
1− z

∫
I
ρ(x)dx

]N
. (5.6)

We write qI =
∫
I ρ(x)dx the average number of points inside I. We set 1 − z = s, and

this last term becomes (1− qI + sqI)N . Comparing the second term in (5.5) and this last
term yields

N∑
k=0

skP (NI = k) = (1− qI + sqI)N =
N∑
k=0

(
N

k

)
qkI(1− qI)N−ksk. (5.7)

By simple comparison we find

P (NI = k) =
(
N

k

)
qkI(1− qI)N−k. (5.8)

The probability law for NI in uncorrelated variables is given by the binomial distribution.
The average number of points inside the interval I will be given by 〈NI〉 = NqI and the
variance of NI will be given by 〈N2

I〉 − 〈NI〉
2 = NqI(1− qI).

If we consider the interval I to be very small (and hence qI small), N to be very
large and NqI = λ to be fixed, we obtain the standard Poisson limit to the binomial
distribution.

lim
N→∞
λ fixed

P (NI = k) = λk

k! e
−λ, (5.9)
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whose average and variance are given by 〈NI〉 = λ and Var(NI) = λ.
This result shows that the variance of an i.i.d. particles process grows linearly with

λ, which is given by N
∫
I ρ(λ)dλ. We consider a very small interval I = [a, b]. We can

then write λ ' Nρ(a)(b− a), and we note that, in this scale, the variance grows linearly
with the system size. This scale is ideal to compare to the equivalent bulk limit case for
strongly correlated variables such as the eigenvalues of a Gaussian random matrix.

5.2 Kernel formulas for counting statistics
Since NI and all its powers are symmetric sums of functions of the eigenvalues, we may
write all moments of NI in terms of the correlation functions of the ensemble, according
to equation (4.55). The correlation functions, as seen in the last chapter, can be expressed
as a combination of the kernel of the ensemble. The average is the simplest moment, and
it is given by

〈NI〉 =
∫ (

N∑
i=1

1I(xi)
)
P (x)dx = N

∫
I
ρ(x)dx =

∫
I
KN(x, x)dx. (5.10)

The variance of NI is a more complicated object. To obtain it, we recall the 1 and 2-point
correlation functions

R1(x) =N
∫
· · ·

∫
dx2 . . . dxNP (x, x2, . . . , xN) (5.11)

R2(x, x′) =N(N − 1)
∫
· · ·

∫
dx3 . . . dxNP (x, x′, x2, . . . , xN). (5.12)

Our goal is to express the variance in terms of correlation functions, and finally to express
them as combinations of the kernel KN(x, y). We rewrite the second moment as

〈
N2
I

〉
=
∫ (

N∑
i=1

1I(xi)
)2

P (x)
N∏
i=1

dxi =
∫ N∑

i,j

1I(xi)1I(xj)P (x)
N∏
i=1

dxi. (5.13)

We recall equation (4.55) and we specify the cases for R1 and R2.〈
N∑
i=1

f(xi)
〉

=
∫
f(x)R1(x)dx (5.14)〈∑

i 6=j
f(xi, xj)

〉
=
∫
f(x, y)R2(x, y)dxdy. (5.15)

By expanding the sums of equation (5.13) and separating the i = j and i 6= j, we obtain

〈N2
I〉 =

∫
dxR1(x)1I(x) +

∫∫
dxdy1I(x)1I(y)R2(x, y).

=
∫
I
R1(x)dx+

∫
I

∫
I
R2(x, y)dxdy (5.16)
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We note how the variancecan be written in terms of integrals of the correlation functions.

Var(NI) =
〈
N2
I

〉
− 〈NI〉2

=
∫
I
R1(x)dx+

∫
I

∫
I
R2(x, y)dxdy −

(∫
I
R1(x)dx

)2
(5.17)

As discussed in the previous chapter, for β = 2 we can define a kernel KN(x, y)
that contains all the information about the statistics of the eigenvalues. The correlation
functions can be written as a determinant of KN , and the variance has a direct expression
as a function of it. We need only to replace R1 and R2 in (5.17) by their expressions in
terms of the kernel to obtain

Var(NI) =
∫
I
KN(x, x)dx−

∫
I

∫
I
KN(x, y)2dxdy (5.18)

5.3 Number variance in edge and bulk regimes
If we know the kernel, we can find the fluctuations of eigenvalues inside the interval I.
We consider the case of GUE, where the kernel is given by equation (4.71). Our goal is to
use the known asymptotic behavior of the GUE kernel in both the bulk and edge regime,
presented in section 4.4, to obtain the variance of the number of eigenvalues inside an
interval I in these regimes. We begin by the simpler case, the number variance in the
bulk regime.

5.3.1 Number variance in the bulk limit
While the average of NI is simply the integral of the average density in the interval I,
the full probability density function for the counting statistics is a much more complex
object. This problem was originally studied by Dyson [43] in 1963 for the Gaussian
ensemble. Dyson considered a small interval around the origin whose size is of the order
of the mean spacing between the eigenvalues, the so-called bulk regime (see figure 4.1).

As described in 4.4.1, the GUE kernel can be evaluated in the asymptotic limit of the
bulk, when distances are comparable to the interparticle distance (which is ∼ N−1). This
limit, equation (4.86), allows us to evaluate the variance of the random variable NI when
we apply it to the formula (5.18).

We recall the asymptotic limit of the GUE kernel when evaluated in the bulk. We
consider values around the origin scaled according to the interparticle distance at the
origin: 1/(Nρ(0)) = π/

√
2N . We denote this scaled variable as x = uπ/

√
2N . We find

lim
N→∞

π√
2N

K

(
uπ√
2N

,
u′π√
2N

)
= sin(πv)

πv
, (5.19)

where v = u− u′.
We evaluate expression (5.18) in the bulk limit, taking the interval I as [−L,L] and

considering values of L of the order of 1/N . We define the scaled interval size s =
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L
√

2N/π, so s is the interval size measured in units of the interparticle distance. Noting
that KN(x, x) = Nρ(x) = N

√
2− x2/π, we write

Var(N[−L,L]) =
〈
N2

[−L,L]

〉
−
〈
N[−L,L]

〉2

=
∫ L

−L
KN(x, x)dx−

∫ L

−L

∫ L

−L
KN(x, y)2dxdy (5.20)

=
∫ s

−s

√√√√1−
(

uπ√
2N

)2

du−
∫ s

−s

∫ s

−s

π2

2N2K

(
uπ√
2N

,
u′π√
2N

)2

dudu′ (5.21)

N→∞−−−→ 2s−
∫ s

−s

∫ s

−s

(
sin(π(u− u′))
π(u− u′)

)2

dudu′ (5.22)

=2s− 2
∫ 2s

0
(2s− v)

(
sin(πv)
πv

)2

dv (5.23)

This integral can be analyzed in two different limits. When s → 0, we obtain the limit
when the interval is small even compared to the average interparticle distance. When
s → ∞, we are observing the behavior for an interval small with respect to the whole
spectrum and large with respect to the interparticle distance. This latter limit was studied
by Dyson and Mehta, and both limits yield

2s− 2
∫ 2s

0
(2s− v)

(
sin(πv)
πv

)2

dv =


1
π2 (log s+ 1 + γ + log(4π)) , for s→∞
2s(1− s) for s→ 0

(5.24)

Replacing the value of s for GUE we obtain for s large, i.e. L� 1/N

Var(N[−L,L]) = 1
π2 log (NL) + 1

π2

(5
2 log 2 + 1 + γ

)
︸ ︷︷ ︸

=B2

. (5.25)

Dyson and Mehta calculated this variance for values of β = 1, 2 and 4, and found that,
in the bulk limit, we have

〈
(NI − 〈NI〉)2

〉
∼ 2
βπ2 log(NL) +Bβ, (5.26)

where Bβ is a constant determined depending on β (see Appendix A.38 of [100]).
The comparison of equation (5.26) with the variance with independent variables, whose

variance behaves linearly with the size of the interval in the bulk limit, reveals that the
all-in-all correlations brought by the Vandermonde determinant reduce the fluctuations of
eigenvalues inside the interval. This result depends only on the behavior of the eigenvalues
around the origin, the so-called sine kernel in the bulk limit (equation (4.87)). Since
Gaussian, Wishart and Cauchy all share the sine kernel in this limit, this result holds for
all three ensembles when considering the interval I to have dimensions of the order of the
interparticle distance.
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After Dyson and Mehta, interest in the variable NI re-emerged as this quantity was
studied in different contexts, such as quantum chaos [9] and statistics of unitary matrices
[39]. These references contain conjectures and results that foreshadow a greater theorem,
proven by Costin and Lebowitz [33], which states

Theorem 1 Let N(L) be the number of eigenvalues, in an interval of length L, of a N×N
matrix chosen at random from the Gaussian ensemble. We consider the case N →∞ and
L→∞ in the bulk-limit. Then all cumulants of the variable ζ = [N(L)−〈N(L)〉]/

√
logL

approach those of a Gaussian distribution.

While this is the original statement of the theorem, further work has shown that this
result is much more general. Generalizations of this theorem can be found in [73, 74, 127].
Historically, Wigner calculated the first moment of NI , Dyson and Mehta calculated the
second moment forNI when |I| is small and Costin and Lebowitz proved that the following
moments of NI in this limit tend to zero.

Parallel to Costin and Lebowitz’s result, and closely related to the work presented in
this thesis, Fogler and Shklovskii [54] showed that the probability density of the quantity
NI for any invariant random matrix, in Dyson’s bulk limit, is given asymptotically and
for typical fluctuations (small values of δN) around the average by

P (NI) ≈ exp
(
−π

2β

4
δN2

log(〈NI〉/δN) +B

)
, (5.27)

where δN = NI−〈NI〉 and B depends weakly on δN . This result was obtained by taking
the Coulomb-gas analogy further and transforming the spectral statistics problem into
the calculation of the average charge density for a two-dimensional semi infinite split-gate
device.

5.3.2 Number variance in the edge limit
We proceed to calculate the number variance for the interval I = [−L,L] when L is very
close to the soft edge of the distribution and β = 2. We take the case of GUE, where the
edge is

√
2. This calculation is valid for every ensemble with a soft edge, in particular

the Wishart ensemble can be calculated using the same procedure. This is possible due
to the universality of the Airy kernel in the edge regime.

For Gaussian unitary matrices, with β = 2, we recall equation (5.18):

Var(NI) =
∫
I
KN(x, x)dx−

∫
I

∫
I
KN(x, y)2dxdy, (5.28)

where KN(x, y) is the Christoffel-Darboux kernel

KN(x, y) =
√
N

π

1
2N(N − 1)!e

−N x2+y2
2

HN(x
√
N)HN−1(y

√
N)−HN(y

√
N)HN−1(x

√
N)√

N(x− y)
,

(5.29)
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and HN(x) are Hermite polynomials. The kernel satisfies the property∫ ∞
−∞

dzKN(x, z)KN(z, y) = KN(x, y) (5.30)

as well as the symmetry relation

KN(−x,−y) = KN(x, y), (5.31)

and the average density may be written asKN(x, x) = Nρsc(x), where ρsc(x) =
√

2− x2/π
is the semicircle.

In the L-box case, we have I = [−L,L]. We split the integral (5.28) in three contri-
butions∫ L

−L
dx
(∫ −L
−∞

dy +
∫ ∞
L

dy
)
KN(x, y)2 =

∫ ∞
−L

dx
∫ −L
−∞

dyKN(x, y)2 +
∫ ∞
L

dx
∫ L

−∞
dyKN(x, y)2

− 2
∫ ∞
L

dx
∫ −L
−∞

dyKN(x, y)2. (5.32)

We notice that the first two terms of the RHS of equation (5.32) are Var(N(−∞,L]) and
Var(N[L,∞]), respectively. It remains to show that, when L is near

√
2, the last term of

the RHS vanish when N is large. We place ourselves in the edge regime, where the value
of L is close to

√
2 and we define the scaled variable s = (L−

√
2)
√

2N2/3. When s is of
order 1, this is the region in which the kernel behaves asymptotically as the Airy kernel
[134, 135]

KN

(√
2 + u√

2N2/3
,
√

2 + v√
2N2/3

)
large N∼

√
2N2/3KAi(u, v) , (5.33)

KAi(u, v) = Ai(u)Ai′(v)− Ai(v)Ai′(u)
u− v

, (5.34)

where Ai(x) is the Airy function. We study the last term of the RHS of (5.32) in this
regime. By changing variables x =

√
2 + u√

2N2/3 , y =
√

2 + v√
2N2/3 and applying the large

N limit we find

2
∫ ∞
L

dx
∫ −L
−∞

dyKN(x, y)2 large N−→ 2
∫ ∞
s

du
∫ −4N2/3−s

−∞
dvKAi(u, v)2 → 0. (5.35)

Since the integrand is finite and the domain on integration shrinks to zero as N increases,
this term is negligible for any s in this scaling and, using the box symmetry, we may write

Var
(
N[−L,L]

) large N∼ Var
(
N(−∞,−L]

)
+ Var

(
N[L,∞)

)
= 2 Var

(
N[L,∞)

)
, for L ∼

√
2,
(5.36)

which is expected, since, for large N and when L is around the edge, the intervals
(−∞,−L] and [L,∞) are sufficiently far apart and the variables N(−∞,−L] and N[L,∞)
can be treated as independent variables when fluctuating around their average values.
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Writing Var(N[−L,L]) as the sum (5.36) is convenient because asymptotics of Var(N[L,∞))
are known, they were obtained in [62] using asymptotics of the Airy kernel. Using the
scaling s = (L−

√
2)
√

2N2/3 we find

2 Var
(
N[L,∞)

)
= Ṽ2(s) = 2

∫ ∞
s

du
∫ s

−∞
dvK2

Ai(u, v). (5.37)

The variance of the number of eigenvalues inside the L-box is, in the edge regime for
β = 2, given by

Var(N[−L,L]) = Ṽ2(s), for L =
√

2 + s√
2N2/3

. (5.38)

Asymptotics of Ṽ2(s) on the scaling variable s, studied by [62], are given by

Ṽ2(s) ∼


3

2π2 ln |s|, for s→ −∞
1

8πs3/2 exp
(
−4

3s
3/2
)
, for s→∞

. (5.39)

The asymptotic behavior of the number variance at the edge is not a trivial result, and
involves a series of long calculations and we refer to [62] for the complete derivation of
this result.

5.4 The moment generating function
The average and variance of NI are not the only moments that can be expressed as inte-
grals of the kernel, all moments of NI can be written as a sum of integrals of KN(x, y).
One very important result of determinantal point processes is the relation between mo-
ment generating function, kernel and probability, which we will explore in this section.
We present a systematic procedure to obtain all moments of NI in terms of the kernel
and introduce elements, such as the overlap matrix and the Fredholm determinant, that
are fundamental for the analysis of the counting problem. A more complete presentation
of these techniques can be found in [56, 100].

5.4.1 Definition
We recall the definition of the moment generating function.

χB(z) =
〈
(1− z)NB

〉
=
∑
NB

(1− z)NBP (NB), (5.40)

where P (NB) is the p.d.f. of the variable NB. The expansion of χB(z) around z = 0
provides all moments of the distribution of NB, and this object yields information about
many properties of the counting statistics of a process, as we will see. Using the fact that
that 1B(x) can only take values zero and one, we may write

χB(z) =
〈
(1− z)NB

〉
=
〈

(1− z)
∑N

i=1 1B(xi)
〉

=
〈

N∏
i=1

(1− z)1B(xi)
〉

(5.41)
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=
〈

N∏
i=1

[1− z1B(xi)]
〉

=
∫ N∏

i=1
[1− z1B(xi)]P (x)dx1 . . . dxN . (5.42)

The expected value of the polynomial ∏N
i=1 [1− z1B(xi)] is our main object of interest.

We may expand its first few terms to observe its general form. For N = 2 we obtain

[1− z1B(x1)] [1− z1B(x2)] = 1− z [1B(x1) + 1B(x2)] + z21B(x1)1B(x2). (5.43)

For N = 3 we obtain
3∏
i=1

[1− z1B(xi)] =1− z [1B(x1) + 1B(x2) + 1B(x3)]

+ z2 [1B(x1)1B(x2) + 1B(x2)1B(x3) + 1B(x3)1B(x1)]
− z31B(x1)1B(x2)1B(x3). (5.44)

We deduce that the general form of the k-th coefficient ck of this polynomial is

N∏
i=1

[1− z1B(xi)] =
N∑
k=0

ckz
k, ck = (−1)k

∑
σ

[
1B(xσ(1)) . . .1B(xσ(k))

]
, (5.45)

where σ represents the
(
N
k

)
permutations of N index in groups of k.

The expected value of each product of 1B(x1) . . .1B(xk) can be written in terms of
correlation functions. We recall the correlation function Rk.

Rk(x1, . . . , xk) = N !
(N − k)!

∫
P (x)dxk+1 . . . dxN (5.46)

It follows from this definition that∫
1B(x1) . . .1B(xk)P (x)dx1 . . . dxN =

∫
B

dx1 . . . dxk
∫
P (x)dxk+1 . . . dxN (5.47)

=(N − k)!
N !

∫
B
Rk(x1, . . . , xk)dx1 . . . dxk. (5.48)

We recall that all correlation functions of a determinantal point process can be written
as a determinant of its kernel KN(x, y) (equation (4.59)).

Rn(x1, . . . , xn) = det [KN(xi, xj)]1≤i,j≤n , (5.49)

and the moment generating function can then be written as

χB(z) =
N∑
k=0

(−1)kzk
k!

∫
B
Rk(z1, . . . , xk)dx1 . . . dxk (5.50)

=
N∑
k=0

(−z)k
k!

∫
B

det [KN(xi, xj)]1≤i,j≤k dx1 . . . dxk =
N∑

NB=0
(1− z)NBP (NB). (5.51)

— 75 —



5.4. The moment generating function

This means that if we know the kernel, in principle, we can determine χB(z) and,
therefore, P (NB). One particular limit of the moment generating function is its value
when z → 1. Since the polynomial (1− z)NB is null for all powers of NB except NB = 0,
the moment generating function in this limit corresponds to the hole probability, the
probability of finding zero eigenvalues inside the interval B.

lim
z→1

χB(z) = P (NB = 0). (5.52)

As discussed above, the kernel of a determinantal point process can be expressed as a
sum of products of orthogonal functions. We take β = 2. We write

P (x) = 1
N ! det[φi(xj)] det[φi(xj)]. (5.53)

And the moment generating function will be written as

χB(z) =
〈

N∏
i=1

(1− z1B(xi))
〉

= 1
N !

∫ N∏
i=1

(1− z1B(xi)) det[φi(xj)] det[φi(xj)]
∏
i

dxi.

(5.54)
This integral of determinants can be refolded into the determinant of a single integral,
using a powerful identity proven by Andréief [7].

Theorem 2 (Andréief’s (or Cauchy-Binet) identity) Let f and g be integrable real
functions. Then∫

· · ·
∫
Rn

det [fi(xj)] det [gi(xj)]
n∏
i=1

dµ(xi) = n! det
[∫

R
fi(x)gj(x)dµ(x)

]
. (5.55)

This powerful algebraic identity allows us to exchange the multiple integral of de-
terminants by the determinant of a single integral. This result can be easily proven by
expanding the determinants as a sum of permutations and folding the result back into
a single determinant (see appendix B of [120]). We may incorporate the polynomial∏N
i=1(1− z1B(xi)) into the measure dx:

(1− z1B(xi))dxi = dµ(xi). (5.56)

And χB(z) can be refolded using Andréief’s identity (5.55)

χB(z) = det
[∫

(1− z1B(x))φi(x)φj(x)dx
]

= det
[∫

φi(x)φj(x)dx− z
∫
1B(x)φi(x)φj(x)dx

]
(5.57)

= det
[
δij − z

∫
B
φi(x)φj(x)dx

]
. (5.58)

The moment generating function can thus be fully determined by
∫
B φi(x)φj(x)dx.

This is a very special object, named the overlap matrix, and it is the key to connect the
moment generating function, kernel and number statistics. We explore this connection in
the next section.
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5.4.2 The overlap matrix
We take a determinantal point process whose orthogonal functions are given by the family
{φi(x)}. We define the overlap matrix A = {Aij} for the counting statistics of the interval
B such that

Aij =
∫
B
φi(x)φj(x)dx. (5.59)

Naturally, if B = R, the overlap matrix is the identity, by orthogonality of the family of
functions {φi(x)}. We denote the eigenvalues of the overlap matrix by {ai}. According
to equation (5.58), we have

χB(z) =
〈
(1− z)NB

〉
=
∑
NB

(1− z)NBP (NB) = det[1− zA] =
N∏
i=1

(1− zai). (5.60)

This shows that the knowledge of the eigenvalues of the overlap matrix is enough to
obtain the moment generating function. The hole probability can also be cast in terms
of eigenvalues of the overlap matrix.

χB(z = 1) = lim
z→1

∑
NB

(1− z)NBP (NB) = P [NB = 0] = det[1− A] =
N∏
i=1

(1− ai). (5.61)

So far, we have not used the kernel. The connection between the overlap matrix and
the kernel can be obtained by exploring the eigenvectors of A. Let∑

j

AijC
(a)
j = aC

(a)
i , (5.62)

where C(a)
j are the eigenvectors of the overlap matrix associated with the eigenvalue a.

We recall the definition of the kernel in terms of the orthogonal functions {φi}

KN(x, y) =
N∑
k=1

φk(x)φk(y). (5.63)

We define the function
ψ(a)(x) =

N∑
j=1

C
(a)
j φj(x). (5.64)

We will show that the function ψ(a)(x) is in fact an eigenfunction of the Fredholm operator
of kernel KN(x, y) associated with the eigenvalue a. We consider the following integral

∫
B
KN(x, y)ψ(a)(y)dy =

∫
B

[
N∑
k=1

φk(x)φk(y)
]  N∑

j=1
C

(a)
j φj(y)

 dy (5.65)

=
∑
k,j

φk(x)C(a)
j

∫
B
φk(y)φj(y)dy︸ ︷︷ ︸

Akj

(5.66)
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=
∑
k,j

φk(x)AkjC(a)
j (5.67)

=
∑
k,j

φk(x) aC(a)
j = aψ(a)(x). (5.68)

So we can find the eigenvalues of the overlap matrix, and hence the moment generating
function, by solving the Fredholm integral equation∫

B
KN(x, y)ψ(a)(y)dy = aψ(a)(x). (5.69)

We note that KN(x, y) is a trace-class operator in which the integral

TrBK =
∫
B
KN(x, x)dx, (5.70)

is well defined. This implies that the determinant det(1 − K) is also well defined and
yields

det(1−K) = e−
∑∞

n=1
TrKn
n , (5.71)

where
TrKn =

∫
dx1 . . . dxnKN(x1, x2)KN(x2, x3) . . . KN(xn, x1). (5.72)

Using this fact, we may write the moment generating function as

χB(z) = det(1− zA) =
N∏
i=1

(1− zai) = det[1− zPBKPB] = e−
∑∞

n=1
zn

n
TrB(Kn

N ), (5.73)

where PB restricts the integration to the interval B, transforming the trace into a partial
trace on B. Equation (5.73) is a Fredholm determinant of the kernel K. From this
equation, we may also write the hole probability as a function of the kernel.

P (NB = 0) = lim
z→1

χB(z) = det [1− PBKPB] = e−
∑∞

n=1
1
n

TrBKn

. (5.74)

And we also remark that the overlap matrix A and the restricted kernel PBKPB have the
same eigenvalues, and, as a consequences, TrBKn = TrAn, ∀n.

Finally, we want to write the third moment of NB as integrals of the kernel. We first
expand the LHS of equation (5.73) to obtain the coefficient of z3 term

χB(z) =
〈
(1− z)NB

〉
= 1−〈NB〉 z+ 〈NB(NB − 1)〉

2! z2− 〈NB(NB − 1)(NB − 2)〉
3! z3 +O(z4)

(5.75)
And we expand the RHS to retrieve the matching coefficient of z3

e−
∑∞

n=1
zn

n
TrB(Kn

N ) = exp
[
−zTrB(KN)− z2

2 TrB(K2
N)− z3

3 TrB(K3
N) +O(z4)

]
(5.76)

=1− zTrB(KN) + TrB(KN)2 − TrB(K2
N)

2 z2
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−
[
TrB(KN)3 − 3TrB(KN)TrB(K2

N) + 2TrB(K3
N)
] z3

6 +O(z4).
(5.77)

We compare the z3 coefficients to obtain

〈NB(NB − 1)(NB − 2)〉 = TrB(KN)3 − 3TrB(KN)TrB(K2
N) + 2TrB(K3

N). (5.78)

Since we know the expression of 〈N2
B〉 and 〈NB〉 in terms of integrals of the kernel, we

can show that

µ3 =
〈
(NB − 〈NB〉)3

〉
= TrB(KN)− 3TrB(K2

N) + 2TrB(K3
N) (5.79)

=
∫
B
KN(x, x)dx− 3

∫
B

∫
B
KN(x, y)2dxdy

+ 2
∫
B

∫
B

∫
B
KN(x, y)KN(y, z)KN(z, x)dxdydz. (5.80)

The third moment is very different from the variance, and we see coefficients for the inte-
grals of the kernel that are not evident. This shows the interest of obtaining a systematic
approach to calculation of higher moments of counting statistics.

5.5 An example: statistics of the maximum eigen-
value

We will apply the techniques presented above to a specific example: the probability dis-
tribution of the largest eigenvalue of a Gaussian random matrix. We define B = [M,∞),
and we note that the hole probability of B is equivalent to the cumulative distribution of
the largest eigenvalue

P (NB = 0) = P (interval [M,∞) is empty) = P (all eigenvalues ≤M) = P (xmax ≤M) .
(5.81)

We place ourselves in the edge regime

x =
√

2 + u
√

2N 2
3

and y =
√

2 + v
√

2N 2
3
. (5.82)

Let P (xmax ≤M) = Q(M) be the cumulative distribution of the largest eigenvalue of
GUE. Then

Q(M) = e−
∑∞

n=1
1
n

TrBKn

. (5.83)

As we discussed before, the GUE kernel converges to the Airy kernel in this regime,
as in equation (4.91). The traces of the powers of the kernel become

TrBK =
∫ ∞
M

KN(x, x)dx =
∫ ∞
M−
√

2√
2N2/3

KAi(u, u)du (5.84)
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TrBK2 =
∫ ∞
M

KN(x, y)2dxdy =
∫ ∞
M−
√

2√
2N2/3

∫ ∞
M−
√

2√
2N2/3

KAi(u, v)2dudv, (5.85)

where
KAi(x, y) = Ai(x)Ai′(y)− Ai(y)Ai′(x)

x− y
. (5.86)

Hence, in the edge regime we find

Q(M) M→
√

2−−−−→ F2

[
M −

√
2√

2N2/3

]
= e−

∑∞
n=1

1
n

TrBKn
Ai . (5.87)

It is remarkable that we can deduce that the probability of the largest eigenvalue
of GUE, for typical deviations, will depend on this scaling variable (M −

√
2)/
√

2N2/3

and can be calculated by the exponential of traces of powers of the Airy kernel. This
exponential, however, is not simple. In 1994, Tracy and Widom [134] were able to show
that this scaling function F2(z) can be expressed in a more direct form, as

F2(z) = e−
∫∞
z

(u−z)q2(u)du, (5.88)

where q(u) is the solution of a Painlevé II equation

q′′(u) = 2q3(u) + uq(u), q(u) u→∞−−−→ Ai(u). (5.89)

The elements we introduced in this chapter, the moment generating function, overlap
matrix and Fredholm determinant, form the pillars of the standard approach to num-
ber statistics and the Tracy-Widom distribution is only one of the major breakthroughs
obtained by this method. Due to the use of the kernel, this approach is most useful in
regions where the behavior of the kernel is known, namely the bulk and edge regime. To
deal with larger scales, the mesoscopic bulk or the whole positive semi-line, the Coulomb
gas method is a powerful tool; and the results presented here for bulk and edge should
match larger scales when the correct limit is taken.
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Index distribution of random

matrices

Positive anything is better
than negative nothing.

Elbert Hubbard

6.1 The index function
It is important to note that most results presented in the previous chapter take place in
a very small interval with respect to the size of the support of the density distribution,
and only typical fluctuations are considered for the asymptotic analysis. First efforts to
overcome this limitation focused on the behavior around the edge of the average density
distribution [128, 47]. Interest in the edge behavior coincided with the study of NI for
a much larger interval, the positive semi-axis I = [0,+∞). The number of eigenvalues
larger than a certain threshold ζ is called the ζ-index, and is simply noted index when
ζ = 0. The index effectively counts the number of positive eigenvalues and we note it
NI = N+.

The importance of the index was first noted by May [99], in the field of theoretical
ecology. In his work, May studied a complex system of the form dx

dt = Ax where the
elements aij of N × N matrix A were taken from a random distribution of variance α
and average zero. He determined that the system was almost surely stable if α < N−1/2

and almost surely unstable if α > N−1/2, the transition between both regime being sharp,
its width scaling as N−2/3. When the variance is kept fixed, the system will be almost
surely be unstable, the probability of having all eigenvalues negative decreases very fast
when the size of the system increases. Although this regime transition obtained by May
foreshadowed a much deeper development in random matrix theory, the question of how
exactly this probability decreases with N remained unanswered until 2006 [37].

First calculations of this probability for Gaussian matrices were performed by Cavagna
et al. [32] in the context of multidimensional potential landscapes, the so-called random
Hessian model. The set {xi} represents a configuration of the system and V ({xi}) is the
potential landscape, the system is described by an equation dxi

dt = ∇xiV . The Hessian
matrix Hij = d2V/dxidxj defines the nature of the stationary point, and the number of
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positive eigenvalues (hence the index) provides information about the typical stability
pattern of the system [144].

In absence of more information about the system, a sensible choice for a random
Hessian in GOE. This random Gaussian Hessian model was studied in many different
contexts and has found use in string theory [131] and cosmology [1].

In [32], the authors were able to show that N+ has typical fluctuations of O(logN)
for large N around its mean value, and that the distribution of these typical fluctuations
is given by a Gaussian distribution whose variance is modulated by logN , i.e., VarN+ ∼
logN/π2 for β = 1.

The Gaussian behavior for typical fluctuations of N+ is contrasted with the atypical
case where all eigenvalues are positive, N+ = N . This extreme case was considered for
the evaluation of the number of stationary points in a Gaussian energy landscape [40].
The asymptotic behavior for large N of the probability density in this case was computed
by Dean and Majumdar [37]

P (N+ = N) ≈ e−β
log 3

4 N2
. (6.1)

This stark difference in behavior between the Gaussian typical fluctuations and (6.1)
was addressed in [89, 90], where the authors obtained by the Coulomb-gas method the
full probability density of the index for the Gaussian ensemble.

During my PhD, I was able to obtain the statistics of the index for the Cauchy en-
semble. This case differs from the Gaussian due to the absence of compact support for
the average density of eigenvalues. This changes drastically the asymptotic behavior of
Var(N+), as we will see.

Before describing our results for the Cauchy ensemble, it is instructive to re-derive
the result for the Gaussian ensemble using the Coulomb gas technique. This was done
in [89, 90] using a slightly different technique that the one presented here. The authors
applied Tricomi theorem to solve the main integral equation and also used the resolvent
method by guessing the resolvent function, while we present a clear derivation of the
resolvent.

6.2 Positive eigenvalues of a Gaussian randommatrix

6.2.1 The Coulomb gas
We want to calculate the full probability density function of the index of a N×N Gaussian
random matrix. We recall the j.p.d.f. of the eigenvalues is given by

P (x) = 1
ZN,β

e−
βN

2
∑N

i=1 x
2
i

∏
j<k

|xk − xj|β. (6.2)

The variable N+ has a p.d.f. that reads, by definition

P (N+ = kN) = 1
ZN,β

∫ ∏
i

dxiP (x)δ
(∑

i

1[0,∞)(xi)− kN
)
. (6.3)
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As presented in section 4.1, we apply the Coulomb gas method to obtain the large de-
viation function for the variable N+. The key is to write the p.d.f. (6.3) as the Gibbs-
Boltzmann weight of an associated physical system, use the large-N hypothesis to apply
a saddle-point method and derive the large deviation function for N+. We begin by using
the exponential representation of the delta to write

P (N+ = kN) = 1
ZN,β

∫ ∏
i

dxi
∫

dµe−
βN

2
∑

i
x2
i+β

∑
k>j

log |xk−xj |+βµ(
∑

i
1[0,∞)(xi)−kN) (6.4)

= 1
ZN,β

∫ ∏
i

dxi
∫

dµe−βE(x,µ), (6.5)

where
E(x, µ) = N

N∑
i=1

x2
i

2 −
1
2
∑
i 6=j

log |xi − xj|+ µ

(
N∑
i=1

1[0,∞)(xi)− kN
)

(6.6)

is said the energy of the configuration {xi}. In section 4.1.1 we mentioned the analogy
between the p.d.f. of the eigenvalues of the Gaussian ensemble and an associated system
of 2-dimensional charges confined to a line submitted to a harmonic potential. This result
still applies to the index case, the p.d.f. (6.5) is also the Gibbs-Boltzmann weight of the
same electrostatic system, with a small shift in the potential, a jump of height µ. (see
figure 6.1).

0
x

0

µ

V
ef
f(
x
)

Figure 6.1 — Sketch of the harmonic potential to which the associated system of equa-
tion (6.5) is submitted, for the case µ < 0.

The Lagrange multiplier µ has the role of ensuring the condition N+ = kN . In the
electrostatic analogy, this shift in the potential will ensure that the fraction of positive
eigenvalues is indeed k. This quantity will be compared to the average fraction of positive
eigenvalues, k? = 1/2, and we expect an abrupt change in the behavior of the system
when k goes from < 1/2 to > 1/2.

To analyze the probability function (6.5), we will transform the discrete approach on
the position of the eigenvalues to a continuum functional integral over the density ρ, as
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described before in section 4.1.2. Re-scaling µ→ N2µ we find

E[x, µ] N large−−−−→ N2S[ρ], (6.7)

where

S[ρ] =
∫ x2

2 ρ(x)dx− 1
2

∫∫
ρ(x)ρ(x′) log |x− x′|dxdx′

+ µ
(∫ ∞

0
ρ(x)dx− k

)
+ η

(∫ ∞
−∞

ρ(x)dx− 1
)

(6.8)

is the action.
As in the example in section 4.1.2, we added a supplemental Lagrange multiplier η

to enforce the normalization of the density ρ. Using the large-N hypothesis, we apply a
saddle-point approximation to the probability function (6.5).

1
ZN,β

∫ ∏
i

dxi
∫

dµe−βN2S[ρ] = 1
ZN,β

e−βN2S[ρ?], (6.9)

where ρ? minimizes the functional S[ρ].
To obtain it, we differentiate (6.8) functionally with respect to ρ.

δS

δρ

∣∣∣∣∣
ρ?

= 0 = x2

2 −
∫
ρ?(x′) log |x− x′|dx′ + µ1[0,∞) + η, x ∈ supp(ρ?). (6.10)

And we differentiate it with respect to x to obtain

x+ µδ(x) = −
∫ ρ?(x′)
x− x′

dx′, x ∈ supp(ρ?), (6.11)

where −
∫
represents the principal part of the integral.

The integral equation (6.11) is very similar to the equation (4.41) solved in section
4.2.2, the only difference being the extra delta factor. We mentioned that equation (6.10)
is a balance of energy for the Coulomb gas problem, ensuring that repulsion and potential
are balanced in every point of the support of the average density. The calculation of the
index adds the Lagrange multiplier µ, which can be interpreted as a chemical potential
added to the interval [0,∞). In other words, we are either adding or reducing the energy
cost to place a charge on the positive side to force the system to obey the condition
N+ = kN .

This interpretation is important to estimate the shape of the average density distri-
bution that will emerge from equation (6.11). In the case k > 1

2 , we are forcing more
eigenvalues to be positive than the average value. This is equivalent to add a negative
chemical potential. The discontinuity of this potential will create a divergence of charge
in zero. Charges on the positive side will stack up at the origin, while charges on the
negative side will be repelled by this stacking. This is indeed the image we observe when
solving equation (6.11), as we will see.
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By this description, it is clear that we expect the support to have multiple disjoint
compact parts. This turns the Tricomi theorem into an unfavorable option. Although this
was the method used to first calculate this quantity in [89], we prefer using the resolvent
option both for convenience and for uniformity with the rest of calculations in this thesis.
Some results in this thesis involve a three-cut support, Tricomi’s theorem would require
extensive calculation that can be more easily performed with the resolvent method.

6.2.2 The resolvent method
We recall the resolvent function

G(z) =
∫ ρ?(x)
z − x

dx. (6.12)

Following the recipe provided in 4.2.2, we multiply both sides of the equation by ρ?(x)
z−x

and we integrate it over x. Our goal is to write equation (6.11) as an algebraic equation
on the resolvent, obtain the resolvent and use relation (4.40) to obtain the constrained
average density ρ?(x), which is the average density submitted to the constraint of having
a fraction k of eigenvalues on its positive side.

∫
x
ρ?(x)
z − x

dx+ µ
∫
δ(x)ρ

?(x)
z − x

dx =
∫∫ ρ?(x′)

x− x′
ρ?(x)
z − x

dx′dx, x ∈ supp(ρ?), (6.13)

Some regularization is required to perform the integral on the delta, as simply setting
x = 0 in the integrand is not possible because the density ρ(x) diverges at zero. We may
regularize this integral by setting x→ 0 + ε and taking ε→ 0. This procedure converges,
and the integral is finite and independent of the regularization used. This shows that the
contribution of the hard wall to the algebraic equation of the resolvent is simply the pole
A/z. This is one of the main results of this work, as it is independent of ensemble and
position of the wall. As we will see, we can apply this procedure to more general intervals,
other ensembles and in all cases the algebraic equation of the resolvent can be adapted
by adding an extra term of the order of z−1.

Integrating equation (6.11), repeating the same steps described in section 4.2.2, yields

− 1 +G(z) + A

z
= 1

2G(z)2, (6.14)

whose solution is straightforward

G(z) = z ±
√

2A− 2z + z3

z
= z ±

√
(z − b1)(z − b2)(z − a)

z
. (6.15)

The extra term in the algebraic equation A/z brought by the imposition of a hard wall in
zero yields, in the resolvent, a square-root convergence in a and a square-root divergence
in zero. These pairs of convergence-divergence will appear in all cases of imposition of

— 85 —



6.2. Positive eigenvalues of a Gaussian random matrix

hard walls in the spectra, and can be understood in the context of Coulomb gas. The
density of charged particles, when confined in excess in a region by a hard wall, will
diverge at the wall at will repel the charges on the other side of this wall, creating the
square-root convergence. This can be clearly seen in figure 6.2.

While G has only one parameter to be calculated using the fraction k, it is convenient
to write the resolvent in terms of the roots of the polynomial on the numerator of the
square root, as presented in equation (6.15). These roots can be obtained by equating
the coefficient of both polynomials.

a+ b1 + b2 =0 (6.16)
ab1 + ab2 + b1b2 =− 2 (6.17)

And to the final variable we determine it directly using the condition
∫∞
0 ρ?(x)dx = k.

Using the identity (4.39), we calculate the average density constrained to the condition
of having a fraction k of positive eigenvalues.

− 1
π
Im

[
lim
ε→0+

G(x+ iε)
]

= 1
π

√
(b1 − x)(x− b2)(x− a)

x
= ρ?(x). (6.18)

We notice how the roots of the polynomial become the edges of the constrained average
density, whose support is [b1, 0[∪[a, b2] for the k < 1

2 case and [b1, a]∪]0, b2] for the k > 1
2

case. We plot two cases of this density, when a > 0 and when a < 0. There is a drastic
change in behavior on the point a = 0, which corresponds to the k = 1

2 situation, its
average value. Naturally, when the fraction of positive eigenvalues is its average value we
obtain the non-constrained average density, Wigner’s semicircle law. This can be seen
clearly in figure 6.2.

b1 a b20
x

ρ
(x

)

Constrained k> 1
2

Semicircle law

(a)

b1 a b20
x

ρ
(x

)

Constrained k< 1
2

Semicircle law

(b)

Figure 6.2 — Constrained average density (blue, two support line) and comparison with
Wigner’s semicircle (orange, single support line) for the index of the Gaussian ensemble
in the cases (a) k > 1

2 and (b) k < 1
2 (equation (6.18)).
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Indeed, we observe the expected divergence at the origin caused by the non-optimal
constraint k 6= k? = 1/2. The eigenvalues diverge at the most populated side of the wall
and converge on the opposite side, repelled by the excess of eigenvalues, and the compact
single support breaks into two disjoint supports.

6.2.3 Obtaining the rate function
Armed with the constrained average density ρ?(x), we calculate the full rate function.
The p.d.f. of N+ is given by equation (6.9). The partition function ZN,β can be easily
calculated using the saddle-point method

ZN,β =
∫
P (x)dx =

∫
Dρe−βN2S[ρ] ≈ e−βN

2S[ρsc] (6.19)

Since ρsc is the density that minimizes the functional S without any constraints, it is
clear that it is Wigner’s semicircle, as calculated in section 4.2. The p.d.f. for N+ becomes

P (N+ = kN) = 1
ZN,β

e−βN
2S[ρ?] = e−βN

2ψ(k), (6.20)

where ψ(k) = S[ρ?] − S[ρsc] is called the rate function. By its definition, it is clear that
ψ(k) reaches its minimum when k = 1

2 .
We recall that the action S calculated in ρ? is given by equation (6.8)

S[ρ?] =
∫ x2

2 ρ
?(x)dx− 1

2

∫∫
ρ?(x)ρ?(x′) log |x− x′|dxdx′ (6.21)

+ µ
(∫ ∞

0
ρ?(x)dx− k

)
︸ ︷︷ ︸

=0

+η
(∫ ∞
−∞

ρ?(x)dx− 1
)

︸ ︷︷ ︸
=0

, (6.22)

where we note the null terms, since ρ? satisfies both conditions by definition. The remain-
ing terms are one single integral on the quadratic potential and one double integral with
a logarithm term. This double integral is problematic, and we can replace it with other
terms easier to calculate. We make use of the energy balance equation (6.10) applied to
ρ? by multiplying it by ρ?(x) and integrating it over x. This yields∫

ρ?(x)x
2

2 dx−
∫∫

ρ?(x)ρ?(x′) log |x−x′|dxdx′+η
∫
ρ?(x)dx︸ ︷︷ ︸

=1

+µ
∫ ∞

0
ρ?(x)dx︸ ︷︷ ︸
=k

= 0, (6.23)

which can be rewritten as∫∫
ρ?(x)ρ?(x′) log |x− x′|dxdx′ =

∫
ρ?(x)x

2

2 dx− η − µk. (6.24)

This shows that, for the case of ρ?, the energy balance equation allows us to exchange
the double integral by a simple integral summed to the Lagrange multipliers. The final
form of the action S calculated for ρ? becomes

S[ρ?] = 1
4

∫
ρ?(x)x2dx− µk

2 −
η

2 . (6.25)
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The calculation of the Lagrange multipliers µ and η is still necessary. To perform it,
we explore once again the energy balance equation (6.10). This equation is valid in any
point of the support, so we calculate it on the points a and 0. These are edges of the
support, and we take the limit in the correct direction to obtain these equation while
staying inside the support of ρ?. For simplicity, we take the case where k < 1

2 , which
implies a > 0. This yields

a2

2 −H(a) + µ+ η = 0 (6.26)

−H(0) + η = 0, (6.27)

where we defined the function H(x) =
∫
ρ(x′) log |x− x′|dx′.

From (6.27), we obtain η = H(0). While the integral H(0) can be treated directly, we
want to avoid dealing with the integral of ρ(x′) log |x − x′|. Instead, we replace it in the
first equation as it is, and we obtain the value of µ.

µ = H(a)−H(0)− a2

2 . (6.28)

Remarkably, since H is the primitive of G, the difference H(a)−H(0) can be written as∫ a
0 G(x)dx. The final formula for the first Lagrange multiplier is

µ =
∫ a

0
G(x)dx− a2

2 . (6.29)

Integrals of the resolvent are much easier to calculate than the value of H in any point,
so we perform a small manipulation to also obtain η as an integral of the resolvent. We
note that b1 is the lower edge of the average density. We expand log |b1 − x| on x. We
obtain∫

ρ?(x) log |b1 − x|dx = log |b1| −
∫ ∞∑

n=1

xn

bn1
ρ?(x)dx = log |b1| −

∫ −∞
b1

(
G(x)− 1

x

)
dx.

(6.30)
Using this relation and applying equation (6.10) to b1 yields

η = log |b1| −
b2

1
2 −

∫ −∞
b1

(
G(x)− 1

x

)
dx. (6.31)

The final formula for the action becomes

S[ρ?] =1
4

∫
ρ?(x)x2dx− 1

2

(∫ a

0
G(x)dx− a2

2

)
k

− 1
2

(
log |b1| −

b2
1
2 −

∫ −∞
b1

(
G(x)− 1

x

)
dx
)
. (6.32)

The value of the action calculated in the semi-circle can be easily performed. The
edges of the support collapse into b1 = −

√
2, b2 =

√
2 and a = 0 for the semicircle, so
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the resolvent assumes the form G(z) = z ±
√
z2 − 2. We obtain µ = 0 and the remaining

integrals are straightforward. They yield

S[ρsc] = 1
4π

∫
x2√2− x2dx− log 2

4 + 1
2 + 1

2

∫ −∞
−
√

2

(
x+
√
x2 − 2− 1

x

)
dx = 3

8 + log 2
4 .

(6.33)
One last simplification worth mentioning is the integral

∫
x2ρ?(x)dx. This is the

computation of the second moment of the average density, which can also be given by the
expansion of the resolvent in orders of z

G(z) =
∫ ρ?(x)
z − x

dx = 1
z

+ 1
z2

∫
xρ?(x)dx+ 1

z3

∫
x2ρ?(x)dx+O(z−4). (6.34)

Expanding the resolvent (6.15) and applying the normalization conditions (6.16) and
(6.17) yields

G(z) = 1
z

+ a(a2 − 2)
2z2 + 1

2z3 +O(z−4). (6.35)

Which implies a result that is surprisingly edge independent
1
4

∫
x2ρ?(x)dx = 1

8 . (6.36)

The final formula of the rate function is, then

ψ(k) =− 1
2

(∫ a

0
G(x)dx− a2

2

)
k − 1

2

(
log |b1| −

b2
1
2 −

∫ −∞
b1

(
G(x)− 1

x

)
dx
)
− 1

4 −
log 2

4 .

(6.37)

The final formula for the action involves integrals that are analytically complicated, but
represent no challenge numerically. We plot the numerical results of this formula in figure
6.3. Indeed, we observe the minimum at k? = 1/2 and the symmetry, consequence of the
reflection invariance of the problem.

6.2.4 Variance of the index
The rate function, when plotted with respect to k, shows a clear symmetric minimum
around k = 1/2. This invites us to study typical fluctuations of k around its average, and
to explore the variance of the variable N+. Our goal is to expand ψ(k) around k = 1

2 + δ
for leading terms in small δ, up to δ2. This expansion is not straightforward, and we
proceed in the following way.

We know that when k = k? = 1/2, the edges a, b1 and b2 collapse to 0, −
√

2 and
√

2
respectively. We perturb the edges by a small parameter. We set

a = ε, b1 = −
√

2− ε2, b2 =
√

2− ε3. (6.38)

The normalization condition implies equations (6.16) and (6.17), this yields a relation
between the perturbations

ε− ε2 − ε3 = 0 (6.39)
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Figure 6.3 — Rate function ψ(k) for the index of the Gaussian ensemble (equation
(6.37)).

ε2 − ε3 = 0 (6.40)

Which implies ε = 2ε2 = 2ε3. The relation between ε and δ will be given by the final
condition

∫∞
0 ρ?(x)dx = k = 1

2 + δ. We replace the edges by the perturbed values and we
expand the resolvent in powers of ε, to perform the integrations required.

Since the cases k > 1
2 and k < 1

2 are symmetrical, we focus our attention to the latter,
which implies ε > 0. This will only play a minor roll when expressing the value of k in
terms of ε, and both cases provide equivalent results.

Calculation of µ

We recall the formula for µ and we replace the edges

µ =
∫ a

0
G(x)dx− a2

2 =
∫ ε

0

√
(x−

√
2 + 2ε)(x+

√
2 + 2ε)(x− ε)

x
dx. (6.41)

We will repeat this kind of integration many times in this thesis, and the technique
is the same. Since the integrating interval is very small, we split the slow variating and
the fast variating parts of the integral and we treat them separately. The slow variating
parts can just be evaluated taking x = 0 and the perturbation associated to it to be zero,
while the fast variating are integrated. The procedure goes as follows

µ =
∫ ε

0

√
(x−

√
2 + ε/2)(x+

√
2 + ε/2)(x− ε)

x
dx =

√
2
∫ ε

0

√
ε− x
x

dx+o(ε) = π√
2
ε+o(ε).
(6.42)
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Calculation of η

First, we calculate the integral I =
∫−∞
b1

(
G(x)− 1

x

)
dx by splitting the domain of inte-

gration into two parts:

I =
∫ −√2

b1

(
G(x)− 1

x

)
dx︸ ︷︷ ︸

I1

+
∫ −∞
−
√

2

(
G(x)− 1

x

)
dx︸ ︷︷ ︸

I2

. (6.43)

For I1, we proceed as equation (6.42).

I1 =
∫ −√2

b1

(
x− 1

x

)
dx+

∫ −√2

b1

√
(x−

√
2 + ε/2)(x+

√
2 + ε/2)(x− ε)

x
dx (6.44)

=− ε

2
√

2
+ 2 3

4

∫ −√2

b1

√
x+
√

2 + ε

2dx+ o(ε) (6.45)

=− ε

2
√

2
+ o(ε). (6.46)

For I2, we expand the integrand in powers of ε and we integrate it term by term from
−
√

2 to −∞. The splitting of the domain was important to ensure the convergence of
this procedure

I2 =
∫ −∞
−
√

2

(
x+
√
x2 − 2− 1

x

)
dx+

∫ −∞
−
√

2

ε

x
√
x2 − 2

dx+ o(ε) (6.47)

=− 1
2 + log 2 + πε

2
√

2
. (6.48)

We add the expansion of log |b1| − b2
1/2 to obtain the final result

η = −1
2 −

log 2
2 − πε

2
√

2
. (6.49)

Calculation of k

We expand the average density in powers of ε

ρ?(x) = 1
π

√
(x−

√
2 + ε/2)(x+

√
2 + ε/2)(x− ε)

x
= 1
π

√
2− x2 − ε

πx
√

2− x2
+ o(ε).

(6.50)
The value of k can be easily calculated. We focus our attention to the case k < 1

2 and
ε > 0. As they are symmetrical, we will just calculate this case. The value of k is the
integral between a and b2, and we calculate each term of the RHS of equation (6.50).

∫ b2

a

√
2− x2

π
dx = 1

2 −
√

2
π
ε+ o(ε), (6.51)
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∫ b2

a

ε

πx
√

2− x2
dx = 3 log 2

2
√

2π
ε− 1

π
√

2
ε log ε+ o(ε). (6.52)

We keep only the first two dominant orders, so we may write

k = 1
2 + 1

π
√

2
ε log ε+ o(ε log ε). (6.53)

Where we easily recognize the relation between ε, the perturbation of the edges, and δ
the perturbation on the fraction of positive eigenvalues k

δ = 1
π
√

2
ε log ε. (6.54)

Final expression for ψ
(

1
2 + δ

)
We sum the terms calculated above and, after an impressive sequence of simplifications,
we obtain

ψ
(1

2 + δ
)

= −µk2 −
η

2 −
1
4 −

log 2
4 = − π

2
√

2
εδ + o(εδ). (6.55)

As expected, the constant term was compensated by the normalization constant S[ρsc]
and the linear term vanished when expanding around the minimum. The remaining term
is of quadratic order, but it remains to express ε in terms of δ to be able to read the
variance from it. We use equation (6.54). The inverse cannot be expressed by simple
functions, but we may use the fact that both ε and δ are small to provide the following
ansatz, correct to leading order in ε and δ

ε = π
√

2 δ

log δ . (6.56)

This relation can be verified by inserting it in (6.54) and checking that it holds for leading
order in δ. The rate function becomes

ψ
(1

2 + δ
)

= −π
2

2
δ2

log δ + o

(
δ2

log δ

)
. (6.57)

As we are interested in typical fluctuations of N+ around its mean N/2, we assume
N+ −N/2� N . This result allows us to write

log δ = log
(
N+ − N

2
N

)
≈ − logN. (6.58)

The rate function for typical fluctuations the variable N+ becomes

ψ(N+) ≈ π2

2N2
(N+ − N

2 )2

logN . (6.59)
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The p.d.f. for typical fluctuations of N+ is, therefore

P (N+) = e−βN
2ψ(N+) ≈ e−β

π2
2

(N+−
N
2 )2

logN , (6.60)

which yields the leading behavior of the variance for typical fluctuations

VarN+ = 1
βπ2 logN + cte + o(1). (6.61)

Agreeing with results found in [32] for β = 1 and with the full result found in [89, 90].
The constant term is very difficult to be determined using the Coulomb gas method, but
it was found in [90] for β = 2 and is given by cte = γ+1+3 log 2

2π2 ≈ 0.1852....

6.2.5 Comparison with numerics
We compare the slope of formula (6.61) and numerical simulations from eigenvalues of
GOE (β = 1) in figure 6.4.

102 103
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Va
r(
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+
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1

π2
logN+O(1)

Numerics

Figure 6.4 — Comparison between the leading behavior of the variance and numerical
simulations for GOE (β = 1).

6.3 Positive eigenvalues of a Cauchy random matrix
During my PhD, I was able to calculate the index distribution for the Cauchy ensemble
[96]. This ensemble presents the remarkable property of having an average density of
eigenvalues supported on the whole real line, without soft edges like the Gaussian and
Wishart cases. A natural question would be: how the fact that eigenvalues can get
arbitrarily large affects the fluctuations of the positive eigenvalues? To determine the
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behavior of the variance of the index for this ensemble, we proceed with very similar
calculations to those performed above for the Gaussian case. The procedure will be
similar, but the result presents a fundamental difference emerging from the non-compact
support of the average density of eigenvalues in the Cauchy ensemble, as we will see. The
technical parts of this session are taken almost verbatim from our calculations in [96].

6.3.1 The Coulomb gas
Let N+ be the number of eigenvalues of a Cauchy random matrix larger than zero. The
probability density of N+ is by definition

P (N+) =
∫ ∏

i

dxiP (x)δ
N+ −

N∑
j=1

θ(xj)
 , (6.62)

where θ is the Heaviside step function and P (x) is defined in (3.27).
We start by writing the j.p.d.f. P (x) in exponential form,

P (x) ∝ e−βE[x], (6.63)

where:
E[x] =

(
N − 1

2 + 1
β

)
N∑
j=1

(1 + x2
j)−

∑
i>j

log |xi − xj|. (6.64)

In the continuum limit, according to the recipe provided in 4.2.2, the multiple integral
(6.62) becomes

P (N+, N) = 1
ZN,β

∫
D[ρ]

∫
dη
∫
dµe−βN

2S[ρ], (6.65)

where the action S is given by

S[ρ] =1
2

∫ +∞

-∞
dxρ(x) log(1 + x2)− 1

2

∫ ∫ +∞

-∞
dxdx′ρ(x)ρ(x′) log |x− x′| (6.66)

+ η
(∫ +∞

-∞
dxρ(x)− 1

)
+ µ

(∫ +∞

0
dxρ(x)− k

)
. (6.67)

and η, µ are Lagrange multipliers, introduced to enforce the overall normalization of the
density, and a fraction k of positive eigenvalues.

6.3.2 The resolvent method
As mentioned earlier, the integral (6.65), where we neglected terms of O(N), can be
calculated using a saddle point method for largeN . The constrained density of eigenvalues
ρ?(x) is determined by the variational condition

δS

δρ
= log(1 + x2)

2 −
∫ +∞

−∞
dx′ρ?(x′) log |x− x′|+ η + µθ(x) = 0, (6.68)
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Equation (6.68), valid for x inside the support of ρ?(x), can be differentiated once with
respect to x to give the following singular integral equation

x

1 + x2 + µδ(x) = −
∫ ∞
−∞

ρ?(y)
x− y

dy. (6.69)

where −
∫
stands for Cauchy principal part. Solving (6.69) with the constraint

∫∞
0 dxρ?(x) =

k is again the main technical challenge. The physical intuition is not enough to predict the
form of the constrained average density. As before, we expect a divergence-convergence
pair around the origin, but the behavior at infinity is not evident. The unconstrained
average density, Cauchy’s distribution, goes on both sides to infinity, but we cannot tell
if this behavior is preserved when the constraint is applied. We expect the side with
extra eigenvalues to continue its asymptotic behavior to infinity, but the side with less
eigenvalues might collapse to a compact support. Indeed, this is the real behavior of the
constrained average density, as we will prove it by solving the integral equation (6.69).

Again, we introduce the resolvent

G(z) =
∫ ρ?(x)
z − x

dx , (6.70)

for the Cauchy case. It is an analytic function in the complex plane outside the support
of the density. From the resolvent, the density can be computed in the standard way as

− 1
π

lim
ε→0+

Im G(x+ iε) = ρ?(x) , (6.71)

where Im stands for the imaginary part.
Writing equation (6.69) as a function of the resolvent is a more complicated problem

then the Gaussian case, as the derivative of the potential is not a polynomial, but a
rational function. As a warm-up exercise, we first derive the resolvent equation for the
unconstrained case (corresponding to (6.69) when µ = 0), where we expect to recover
the density in equation (3.28). As before, we multiply both sides in (6.69) (dropping the
principal value) by ρ?(x)/(z − x) and we integrate it over x, obtaining

∫ x

1 + x2
ρ?(x)
z − x

dx =
∫∫ ρ?(x)ρ?(y)

(x− y)(z − x)dxdy . (6.72)

Our goal is to express both sides in terms of G(z) and, by doing so, obtain an algebraic
equation for G(z). The RHS is the same as in the Gaussian case, and we refer to equation
(4.43) for the details that show that it is simply G(z)2/2.

The LHS of (6.72) requires a little more algebraic manipulation to be expressed in
terms of G(z). We manipulate this expression in two different ways and exploit the
equality between the results to get rid of one integral. Using the identity

x

1 + x2 = 1
x
− 1
x(1 + x2) (6.73)
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one has ∫ x

1 + x2
ρ?(x)
z − x

dx =
∫ 1
x

ρ?(x)
z − x

dx−
∫ 1
x(1 + x2)

ρ?(x)
z − x

dx . (6.74)

Using the relation (4.42), we may express the first term of the sum in (6.74) as∫ 1
x

ρ?(x)
z − x

dx =
∫ (1

x
+ 1
z − x

)
ρ?(x)
z

dx = 1
z

∫ ρ?(x)
x

dx︸ ︷︷ ︸
a0

+1
z

∫ ρ?(x)
z − x

dx︸ ︷︷ ︸
G(z)

= a0

z
+ G(z)

z
.

(6.75)

The second term of the sum in (6.74) will not be calculated for now, and will be called
−α(z). Using this manipulation (6.75), we have:∫ x

1 + x2
ρ?(x)
z − x

dx = a0

z
+ G(z)

z
− α(z). (6.76)

Now, we use a different strategy, using the identity x/(1 + x2) = (x − z)/(1 + x2) +
z/(1 + x2), to obtain∫ x

1 + x2
ρ?(x)
z − x

dx =
∫ x+ z − z

1 + x2
ρ?(x)
z − x

dx

=−
∫ ρ?(x)

1 + x2dx︸ ︷︷ ︸
a1

+z
∫ 1

1 + x2
ρ?(x)
z − x

dx. (6.77)

The first term in the sum (6.77) is a constant, which we call a1. Now we proceed to
manipulate the second term in (6.77) to obtain

z
∫ 1

1 + x2
ρ?(x)
z − x

dx =z
∫ x− z + z

x(1 + x2)
ρ?(x)
z − x

dx (6.78)

=− z
∫ ρ?(x)
x(1 + x2)dx︸ ︷︷ ︸

a2

+z2
∫ 1
x(1 + x2)

ρ?(x)
z − x

dx︸ ︷︷ ︸
α(z)

. (6.79)

Therefore, the LHS of (6.72) can also be written as −a1 − za2 + z2α(z). We have then
two distinct ways of writing the LHS, and we can use them both to cancel α(z).

a0

z
+ G(z)

z
− α(z) = (RHS)

−a1 − za2 + z2α(z) = (RHS)
−1− a1 + z(a0 − a2) + zG(z) = (RHS)(1 + z2).

(6.80)

where we have multiplied the first equation by z2 and then summed the two. Since the
RHS is equal to (1/2)G(z)2, we find the algebraic equation for G(z)

− a1 + z(a0 − a2) + zG(z) = (1 + z2)
2 G(z)2. (6.81)
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We proceed to determine constants a0, a1 and a2 using the normalization condition of
the density ρ?(x). From (6.70) (setting |z| → ∞), it implies that G(z) should asymptot-
ically go as G(z) ∼ 1/z. Taking the limit |z| → ∞ in equation (6.81), we find equations
for the coefficients

− a1 + +z(a0 − a2) + z
(1
z

+O(z−2)
)

= z2

2

(1
z

+O(z−2)
)2
. (6.82)

which implies a0 = a2 and a1 = 1
2 . Our algebraic equation, finally, becomes:

(1 + z2)G(z)2 − 2zG(z) + 1 = 0. (6.83)

The two solutions read

G(z) =
2z ±

√
4z2 − 4(1 + z2)
2(1 + z2) = z ± i

1 + z2 . (6.84)

Using (6.71), the density comes out as expected

− 1
π

lim
ε→0+

Im G(x+ iε) = 1
π

1
1 + x2 = ρ?(x), (6.85)

Now, we consider the full index problem, i.e. with an extra term in the potential as
in (6.69),

x

1 + x2 + µδ(x) = −
∫ ∞
−∞

ρ?(y)
x− y

dy, (6.86)

where the constant µ will be determined by the normalization condition of the rightmost
blob

∫∞
0 ρ?(x)dx = k. We repeat the same steps as for the unconstrained integral equation,

multiplying (6.69) (without the principal value) by ρ?(x)
z−x and integrating in x. We get an

extra term from it in (6.72), arising from the Lagrange multiplier∫ x

1 + x2
ρ?(x)
z − x

dx =
∫∫ ρ?(x)ρ?(y)

(x− y)(z − y)dxdy − µ

z
. (6.87)

We absorb this new term into the RHS and proceed to express, as before, all integrals
in terms of G(z). Our new algebraic equation will then be:

− a1 + z(a0 − a2) + zG(z) = (1 + z2)
(
G(z)2

2 − A

z

)
. (6.88)

Imposing the condition that G(z) ∼ 1/z for |z| → ∞, we get the two conditions a1 = 1/2
and a0 − a2 + A = 0. Calling A = B/2 we find the equation

B

2 z +G(z)z − 1
2 =

(
z2 + 1

)(B/2
z

+ G(z)2

2

)
, (6.89)

whose solutions are
G(z) = z2 ±

√
−Bz3 −Bz − z2

z3 + z
(6.90)
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Using (6.71), it is then easy to derive that the constrained density is:

ρ?(x) = 1
π

√
B(x3 + x) + x2

|x3 + x|
, (6.91)

which is of the form

ρ?(x) =
√

1
π(1 + x2)

√
B(x− a)(x− b)

x
, (6.92)

where the edge points of the leftmost blob (for k > 1/2) a, b are determined as a function
of B

a = − 1
2B (1−

√
1− 4B2) , (6.93)

b = − 1
2B (1 +

√
1− 4B2) , (6.94)

In particular, we note ab = 1 and a+ b = −1/B. B can be found as a function of k∫ ∞
0

dx
1

π(1 + x2)

√
B(x− a)(x− b)

x
= k (6.95)

0b a
x

ρ
(x

)

Constrained k> 1
2

Cauchy Dist.

(a)

0 ba
x

ρ
(x

)

Constrained k< 1
2

Cauchy Dist.

(b)

Figure 6.5 — Constrained average density (blue line) and comparison with Cauchy’s
distribution (orange line) for the index of the Cauchy ensemble in the cases (a) k > 1

2 and
(b) k < 1

2 (equation (6.92)).

Note that, using
√
B
√

(x− a)(x− b) →
√
x for B → 0, we have that ρ?(x) → ρ(x)

the Cauchy distribution (see equation (6.91)) for k → 1/2 as it should. This means that
we recover the unconstrained Cauchy case if we impose a number of positive eigenvalues
exactly equal to N/2, and this unconstrained case materializes when B → 0. We have
found the constrained average density, and we confirmed that one of the sides of the
average density collapses into a compact support when there is an excess of eigenvalues
in the other side.
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6.3.3 Obtaining the rate function
We proceed to calculate the rate function ψ(k). The procedure is extremely similar to
the Gaussian case, and it is not hard to see that the only significant difference is the form
of the potential V (x). We take, without loss of generality, the case k > 1/2, described in
figure (6.5a). We obtain

ψ(k) =S[ρ?]− S[ρca(x)] (6.96)

=1
4

∫
ρ?(x) log(1 + x2)dx− µk

2 −
η

2 − S[ρca(x)], (6.97)

where
µ =

∫ a

0
G(x)dx− log(1 + a2)

2 , (6.98)

and
η = log |b| − log(1 + b2)

2 −
∫ −∞
b

(
G(x)− 1

x

)
dx. (6.99)

We calculate the action on the Cauchy distribution, where we find a = B = 0 and b→∞.
This implies µ = 0 and η = 0, and the remaining integral is evaluated directly

1
4π

∫ log(1 + x2)
1 + x2 dx = log 2

2 . (6.100)

The rate function then reads

ψ(k) = 1
4

∫
ρ?(x) log(1 + x2)dx− µk

2 −
η

2 −
log 2

2 . (6.101)

And we obtain the decay of the probability of the index for large N as

P (N+ = kN) ≈ e−βN
2ψ(k) (6.102)

Again, we expressed the rate function as integrals of the resolvent. These integrals cannot
be easily evaluated analytically, although numerically they represent no challenge. We
plot the numerical evaluation of ψ(k) in figure 6.6 and we confirm that k = 1

2 is indeed
its minimum.

6.3.4 Variance of the index
We perform a careful asymptotic analysis of the rate function ψ(k) around its minimum
k = 1/2. It turns out that this calculation is highly nontrivial, as several cancellations
occur in the leading and next-to-leading terms of each contribution. The a, b and B
parameters for the unconstrained Cauchy distribution are a = B = 0 and b = −∞. We
perturb a by a small factor ε, this yields

a = −ε b = −1
ε

B = ε. (6.103)
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Figure 6.6 — Rate function ψ(k) for the index of the Cauchy ensemble (equation
(6.101)).

The average density becomes

ρ?(x) =
√
ε

π(1 + x2)

√
(x+ ε)(x+ 1/ε)

x
= 1
π

√
ε(x3 + x) + x2

x(x2 + 1) . (6.104)

And we proceed to expand the integrals for the computation of the rate function to leading
order of ε.

Integral for the potential

While in the Gaussian case we needed only to calculate the second moment of the average
distribution, the first integral of the rate function is much more complicated. We want to
integrate

I = 1
2

∫ +∞

-∞
ρ?(x) log(1 + x2)dx. (6.105)

This integral calculation represents a tour de force and we omit most of the tedious details
of this long calculation.

First, we separate the integral as

I1 = IL1 + IR1 IL1 = 1
2

∫ a

b
dxρ?(x) log(1 + x2) IR1 = 1

2

∫ +∞

0
dxρ?(x) log(1 + x2). (6.106)

Writing IR1 explicitly,

IR1 = 1
2π

∫ +∞

0
dx

√
ε(x3 + x) + x2

x(x2 + 1) log(1 + x2). (6.107)
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To compute the asymptotic behavior when ε → 0, we split this integral into two parts,
one integral from 0 to ε and one from ε to ∞,

IR1 = 1
2π

∫ ε

0
dx

√
ε(x3 + x) + x2

x(x2 + 1) log(1 + x2) +
∫ ∞
ε

dx

√
ε(x3 + x) + x2

x(x2 + 1) log(1 + x2)
 .
(6.108)

Now we can expand the integrands in series around ε = 0 and integrate term by term
to obtain (to order ε)

IR1 −−→ε→0

log 2
2 + ε

log2(ε)
4π − ε log(ε)

2π (1 + log 4) + ε

4π

(
2 + 4 log 2(1 + log 2) + 3π2

4

)
+ o(ε).

(6.109)
We now turn our attention to IL1 , calculating the asymptotic behavior when ε→ 0 of

the integral:

IL1 = 1
2π

∫ a

b
dx

√
ε(x3 + x) + x2

|x(x2 + 1)| log(1 + x2). (6.110)

To proceed, it is more convenient to express IL1 in terms of its edge points

IL1 =
√
ε

2π

∫ a

b
dx

√
(b− x)(x− a)√
|x|(x2 + 1)

log(1 + x2), (6.111)

which is equivalent to (6.110). We proceed with the following change of variables: y = b−x
a−b ,

we have:

IL1 =
√
ε

2π

∫ 1

0

(a− b)dy
1 + [(a− b)y + b]2

(a− b)
√
y(1− y)√

|(a− b)y + b|
log

[
1 + [(a− b)y + b]2

]
. (6.112)

We replace the asymptotic behaviors for a and b in (6.112), keeping only the leading
orders for small ε. The resulting integral can be computed explicitly and we can then
extract its asymptotic behavior when ε→ 0

IL1 −−→ε→0

log 2
2 − ε log2 ε

4π + (1 + log 4)(ε log ε)
2π + ε

4π

(
π2

4 − 2− 4 log 2(1 + log 2)
)

+ o(ε).

(6.113)
Note an impressive series of cancellations in the sum IL1 + IR1 , resulting in

I1 −−→
ε→0

log 2 + π

4 ε+ o(ε). (6.114)

Calculation of µ

Fortunately, the calculation of µ is much simpler as the integral on the potential, as we
were able to express it in terms of a single integral on the resolvent, which is an algebraic
function.
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Also, as in the Gaussian case, the integral necessary to calculate µ is performed in
only a very short interval, so many approximations are available.

µ =
∫ 0

a
G(x)dx− log(1 + a2)

2 =
∫ 0

a

√
−ε(x3 + x)− x2

x(x2 + 1) dx = π

2 ε+ 0(ε). (6.115)

Calculation of η

We begin by calculating the integral of the resolvent. Since the domain of integration are
values of x with very high absolute value, we have enough simplifications to evaluate the
integral for leading order in ε.∫ ∞

b

(
G(x)− 1

x

)
dx = −π2 ε+ o(ε). (6.116)

The other terms of η compensate each other: log b− 1
2 log(1 + b2)→ 0, so the value of η is

η = −π2 ε+ o(ε). (6.117)

Calculation of k

We recall that
∫∞

0 ρ?(x)dx = k = 1
2 +δ. As k multiplies µ in the action and µ is of order ε,

we do not need to go deep into next-to-leading terms for the expansion of k. By applying
similar techniques to those applied in the previous integrals we obtain

k =
∫ ∞

0
ρ?(x)dx = 1

2 −
ε log ε
π

. (6.118)

Which yields δ = − ε log ε
π

, whose inverse can be written to leading order in δ as

ε ∼ −π δ

log δ . (6.119)

Calculation of the rate function

Adding all factors we obtain

ψ(k) = 1
4

∫
ρ?(x) log(1 + x2)dx− µk

2 −
η

2 − ψ
(1

2

)
= −π4 εδ + o(εδ). (6.120)

Using the inverse relation (6.119) we obtain

ψ(k) = π2

4
δ2

log δ . (6.121)

We apply the saddle point in equation (6.65), we then have (for N+ close to N/2)

P
(
N+ =

(1
2 + δ

)
N
)
≈ e

βN2
2

π2δ2
2 log |δ| . (6.122)
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Restoring δ = (N+ − N/2)/N in the RHS of (6.122), we obtain the Gaussian behavior
modulated by a logarithmic singularity

P (N+) ≈ e
− (N+−N/2)2

2 Var(N+) for N+ → N/2, (6.123)

with
Var(N+) ∼ 2

βπ2 logN +O(1). (6.124)

Remarkably, it scales twice as fast with the size of the matrix as the Cauchy ensemble.
Since Cauchy and Gaussian ensembles have the same behavior in the bulk regime, this
difference is emerging from the absence of compact support in the Cauchy case. Loosely
speaking, the absence of edge allows for fluctuations to be larger, although the precise
factor two could not be predicted from physical intuition.

6.3.5 Finite N expansion
The Coulomb gas method is very powerful to explore large N asymptotics of the index,
but the orthogonal polynomial method is also available for Cauchy. We will briefly discuss
how it could be applied, and we will use it for small values of N to verify that, when N
increases, the slope of the variance indeed becomes close to the result calculated by the
Coulomb gas (6.124).

In section 5.2, we derived a general formula for the variance of any linear statistics at
finite N and β = 2. Specializing it to the index case, we deduce that

Var(N+) = N

2 −
∫∫ ∞

0
dxdx′[KN(x, x′)]2, (6.125)

where KN(x, x′) is the kernel of the ensemble, built upon suitable orthogonal polynomials.
It turns out the in the Cauchy case, the orthogonal polynomials πn(x) satisfying∫ ∞

−∞
dxπn(x)πm(x)

(1 + x2)N = δmn (6.126)

are

πn(x) = in2N
[
n!(N − n− 1

2)Γ2(N − n)
2πΓ(2N − n)

]1/2

P (−N,−N)
n (ix), (6.127)

where P (−N,−N)
n (x) are Jacobi polynomials. The kernel then reads

KN(x, x′) = 1
(1 + x2)N/2

1
(1 + x′2)N/2

N−1∑
j=0

πj(x)πj(x′) (6.128)

and inserting (6.128) into (6.125) we obtain after simple algebra

Var(N+) = N

2 −
N−1∑
n,m=0

(∫ ∞
0

dxπn(x)πm(x)
(1 + x2)N

)2

. (6.129)
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This integral form is suitable for numerical verifications for small values of N . We can
continue the analysis of this formula to convince the reader of the power and limitations
of the orthogonal polynomial method.

To simplify expression (6.129), we define:

Im,n,N =
∫ ∞

0
dxπn(x)πm(x)

(1 + x2)N . (6.130)

Using (6.127) we write:

Im,n,N =
∫ ∞

0
dxπn(x)πm(x)

(1 + x2)N (6.131)

=im+n22N
[
n!(N − n− 1

2)Γ2(N − n)
2πΓ(2N − n)

] 1
2
[
m!(N −m− 1

2)Γ2(N −m)
2πΓ(2N −m)

] 1
2

×
∫ ∞

0
dxP

(−N,−N)
n (ix)P (−N,−N)

m (ix)
(1 + x2)N . (6.132)

Next we use the definition of Jacobi polynomials as

P (−N,−N)
n (ix) =

n∑
k=0

c
(N)
k,n (1− ix)k (6.133)

where
c

(N)
l,τ = 1

τ !
(−τ)l(−2N + τ + 1)l(−N + l + 1)τ−l

l!2l , (6.134)
to write:∫ ∞

0
dxP

(−N,−N)
n (ix)P (−N,−N)

m (ix)
(1 + x2)N =

m∑
k=0

n∑
r=0

c
(N)
k,mc

(N)
r,n

k+r∑
s=0

(
k + r

s

)
(−i)s1

2B
(1 + s

2 , N − 1 + s

2

)
,

(6.135)
where

c
(N)
l,τ = 1

τ !
(−τ)l(−2N + τ + 1)l(−N + l + 1)τ−l

l!2l , (6.136)

and B(x, y) is Euler’s Beta function.
Finally, we may write the variance of index for the Cauchy ensemble as:

Var(N+) = N

2 − 2
N−1∑
n<m

n+m odd

I2
m,n,N , (6.137)

where

Im,n,N = im+n22N
[
n!(N − n− 1

2)Γ2(N − n)
2πΓ(2N − n)

] 1
2
[
m!(N −m− 1

2)Γ2(N −m)
2πΓ(2N −m)

] 1
2

×
m∑
k=0

n∑
r=0

k+r∑
s=0

c
(N)
k,mc

(N)
r,n

(
k + r

s

)
(−i)s1

2B
(1 + s

2 , N − 1 + s

2

)
. (6.138)

This expression can be numerically evaluated more easily than equation (6.129) and is
ideal for more powerful and precise finite N computations of the index.
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6.3.6 Comparison with numerics
Since this is a new result, we are also interested in numerical confirmation of the con-
strained average density of eigenvalues, equation (6.92). In figure 6.7, we show a plot of
the density (6.92) for k = 0.7 together with Monte-Carlo simulations for N = 300 and
106 samples. We observe a nice agreement between our exact formula and the numerics.
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)
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Numerics

Figure 6.7 — 1.000.000 Monte-Carlo iterations for a matrix with size N = 300 forcing
70% of the eigenvalues to be positive and the correspondent expected theoretical curve.
Theory is equation (6.92).

To verify the variance of the index, we use formula (6.138) for various values of N
and we verify in figure 6.8 that the slope converges to the expected value, which implies
a matching at leading order of N . We also plot the results for the Gaussian ensemble,
obtaining the points by the same procedure described above with the use of Hermite
polynomials. We verify that the variance of the Cauchy index grows twice as fast as the
variance of the Gaussian index, confirming our prediction.

6.4 Summary of results
We conclude this chapter by recalling the results obtained on the subject. It was previously
known [89, 90] that the variance of the number of positive eigenvalues of a Gaussian
random matrix NG

+ is given by

Var(NG
+ ) = 1

βπ2 logN +O(1). (6.139)
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Figure 6.8 — Numerical evaluation of the variance of the index using β = 2 for Cauchy
ensemble (denoted NC

+ , top line and points) and the Gaussian ensemble (denoted NG
+ ,

bottom line and points).

Interested in the same question for the Cauchy ensemble, I was able to obtain the full
probability distribution for the number of positive eigenvalues in the Cauchy ensemble
NC

+ and, in particular, derive the variance of this random variable

Var(NC
+ ) = 2

βπ2 logN +O(1), (6.140)

and we confirmed this behavior numerically comparing it with the finite N calculation
using orthogonal polynomials.

While we expected a larger value for the variance of the Cauchy ensemble, the precise
factor two was not expected. As mentioned before, the reason for a larger variance is
the absence of edge, and the role of the edge on the behavior of this variance should be
explored to confirm this.

We performed some preliminary calculations for the Gaussian ensemble, to study how
the edge affects the variance of the number of eigenvalues inside an interval, and the
results were interesting enough to be explored fully. To see the effect of the edge on the
variance, one should start analyzing the variance of the number statistics in an interval
[−L,L] and see how this variance evolves when L increases. When L approaches the
edge, the behavior of the variance should change, and this study of the variance from
small values of L to values larger than the edge has not been performed.

In the domain of cold atoms, this variance is related to an important observable, the
entanglement entropy of the system. This observable, and the behavior of the number
variance for different sizes of interval, are discussed in the following chapter.
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Number statistics of cold fermions

It is as easy to count atomies as to resolve the
propositions of a lover;
William Shakespeare – As You Like It, III, ii.

7.1 Confined cold fermions and GUE

7.1.1 Correspondence with GUE
As mentioned in the introduction, at section 2.2, there is a direct correspondence between
harmonically confined cold fermions and the eigenvalues of GUE. We argued that the
number statistics of fermions, also called the full counting statistics, is a fundamental
property of the system that yields information about fluctuations, correlations and other
observables, such as the entanglement entropy. In this chapter, we shall explore this
problem deeply, starting by explaining the connection between cold fermions and RMT.

Computing the full counting statistics was possible by using the connection between
the statistics of one dimensional Fermi gases and random matrix theory [97]. Remarkably,
as the presence of Wigner’s semicircle indicated, the statistics of fermions trapped by a
harmonic potential at zero temperature can be mapped to the statistics of eigenvalues
of a certain random matrix ensemble [46]. The ground state many-body wave function
of such system is given by the Slater determinant Ψ(~x) = det[φi(xj)]/

√
N !, where φi(xj)

is the wave function of a single harmonic oscillator φn(x) ∝ e−x2/2Hn(x), and Hn(x) are
Hermite polynomials. By manipulating the determinant, we may cast the probability
density of the ground state as

|Ψ(~x)|2 = 1
ZN

e−
∑N

i=1 x
2
i

∏
j<k

(xk − xj)2, (7.1)

where ZN is the normalization constant. Written in this form, we notice that the joint
probability density function of the position of such fermions on their ground state is
equivalent to the distribution of eigenvalues of an N × N Gaussian hermitian matrix.
The statistics of a fundamental property of Fermi gases, the number of fermions inside an
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interval at ground state, is, therefore, equivalent to counting eigenvalues from a Gaussian
random matrix inside the interval.

Recent work has been done to generalize and expand this correspondence. In partic-
ular, we mention [36] for a generalization of the correspondence of random matrix and
finite temperature fermions and [35] for a generalization of this correspondence for cold
atoms in d-dimensional traps.

During my PhD, I was able to determine the full behavior of the number variance of
such systems for all interval sizes by exploring this correspondence. We identify three
regimes, highlighted in figures 7.3, 7.4 and 7.5: an extended bulk regime, an edge regime
and a tail regime. The behavior of the variance changes drastically when the interval
consider different regions, yields a rich behavior of this observable for such systems. In
addition, this observable yields information about a fundamental physical quantity, the
entanglement entropy, as we discuss it on the next section.

7.2 Calculating the number statistics

7.2.1 Coulomb gas
We define NI as the number of eigenvalues inside the interval I = [a, b]. The probability
distribution of NL can be written as

P (NI) = 1
ZN,β

∫ N∏
i=1

dλie−βE[λ]δ

(
NI −

N∑
i=1

1[a,b](λi)
)
, (7.2)

where 1I(x) is the indicator function equal to 1 if x ∈ I and zero otherwise. Here we
used the j.p.d.f. of the eigenvalues (3.17). Introducing now an integral representation for
the delta function, we obtain

P (NI) ∝
∫ N∏

i=1
dλi

∫ dµ
2π exp (−βE[λ;µ,NI ]) , (7.3)

where
E[λ;µ,NI ] = E[λ] + µ

2

(
NL −

N∑
i=1

1[a,b](λi)
)
. (7.4)

Following the recipe of passage from discrete to continuous described in section 4.1,
we obtain that the probability of having a fraction kI = NI/N of eigenvalues inside a box
[a, b] is given by

P (NI) ∝
∫
D[ρ]dµdη exp

(
−βN2S[ρ]

)
, (7.5)

where we have neglected O(N) (entropic) contributions in the exponent and the action
S is given by

S[ρ] =1
2

∫
dxx2ρ(x)− 1

2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′| (7.6)

+ η
(∫

dxρ(x)− 1
)

+ µ

(∫ b

a
dxρ(x)− kL

)
. (7.7)
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7.2.2 Resolvent method
We apply the resolvent method to the action in order to calculate the average density
of eigenvalues submitted to the condition that a fraction kI of them should lie in the
interval I = [a, b]. Applying the saddle-point method into (7.7) yields the density ρ?(x)
that minimizes the action. We may write for large N

P (NI = kIN) = 1
ZN,β

∫
Dρdµdηe−βN2S[ρ] = e−βN2(S[ρ?]−S[ρsc]) = e−βN2ψ(kI) . (7.8)

We note the rate function

ψ(kI) = SkI [ρ?]− Sk?I [ρsc]. (7.9)

ZN,β is a normalization constant, incorporated into the rate function when we subtract
S[ρsc], the action calculated when kI is its average value k?I and the average density is
Wigner’s semicircle. To obtain ρ?(x), we differentiate S[ρ] functionally with respect to ρ

δS

δρ

∣∣∣∣∣
ρ?

= 0 = x2

2 −
∫

dx′ρ?(x′) log |x− x′|+ µ1I(x) + η, x ∈ supp ρ?. (7.10)

We differentiate it with respect to x to obtain

x+ µ (δ(x− b)− δ(x− a)) = −
∫ ρ?(x′)
x− x′

dx′, x ∈ supp ρ?, (7.11)

which is the integral equation that, combined with the constraints
∫
ρ?(x)dx = 1 and∫

I ρ
?(x)dx = kI , defines ρ?.
Solving equation (7.11) is the main technical challenge of our problem. We can solve it

adapting the standard resolvent (or Green’s function) method. Let G(z) be a holomorphic
function, called the resolvent, defined as

G(z) =
∫ ρ?(x)
z − x

dx, z ∈ C \ supp ρ?. (7.12)

Normalization of ρ? to 1 implies that G(z) behaves as 1/z when |z| is large. Using the
identity (4.39), the density ρ?(x) can be reconstructed from the imaginary part of the
resolvent

− 1
π

lim
ε→0+

ImG(x+ iε) = ρ?(x) . (7.13)

To find an equation for G(z), we multiply equation (7.11) by ρ?(x)
z−x and integrate over x.

If either a or b are outside the support of ρ?, their contribution is zero. If a and b belong
to the support of ρ?, this procedure yields∫

x
ρ?(x)
z − x

dx+ A

z − a
+ B

z − b
=
∫∫ ρ?(x)

z − x
ρ?(y)
x− y

dydx, (7.14)

where A and B are constants resulting from the integration of each delta function. Some
regularization is required to perform the integrals on the deltas, as simply setting x = a
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and x = b in the two integrands is not possible. We set x→ a− ε and x→ b+ ε, and we
take ε→ 0. This procedure converges, and the integrals are both finite and independent
of the regularization used. More details can be found at the supplemental material of
[97].

The RHS of equation (7.14) can be cast in terms of G(z) with the following manipu-
lation. We use the identity

1
(z − x)(x− y) =

(
1

z − x
+ 1
x− y

)
1

z − y
, (7.15)

to write the RHS as∫∫ ρ?(x)
z − x

ρ?(y)
x− y

dxdy =
∫∫ ρ?(x)ρ?(y)

(z − x)(z − y)dxdy −
∫∫ ρ?(x)

z − x
ρ?(y)
x− y

dxdy. (7.16)

Since the first term of the RHS of equation (7.14) is G2(z) and the second is the original
RHS of equation (7.14) with the sign changed, this implies that the original RHS of
equation (7.14) is (1/2)G2(z).

The manipulations required to express the LHS in terms of G(z) depend on the specific
form of the potential, but are straightforward in the Gaussian case. The integral over the
derivative of the potential in the LHS reads∫

x
ρ?(x)
z − x

dx =
∫

(x− z + z)ρ
?(x)
z − x

dx = −1 + zG(z). (7.17)

The final equation for the resolvent thus reads

− 1 + zG(z) + A

z − a
+ B

z − b
= 1

2G
2(z). (7.18)

where A and B are constants that may be determined by the conditions
∫
I ρ

?(x)dx = kI
and by a supplementary condition we describe below. The solution to (7.18) reads

G±(z) = z ±
√
z2 − 2 + 2A

z − a
+ 2B
z − b

= z ±

√√√√(z − a1)(z − a2)(z − b1)(z − b2)
(z − a)(z − b) , (7.19)

where a1, a2, b1 and b2 are the roots of the polynomial (z2−2)(z−a)(z− b) + 2A(z− b) +
2B(z − a) (we chose b1 < a1 < a2 < b2) and the sign of the resolvent is chosen according
to the normalization condition G(z) → 1/z when |z| → ∞. We note that the resolvent
is well defined on the real line outside on the support of ρ?(x), and the sign choice for
points in the real line is given by

G(x) =



G−(x) for x > b2

G+(x) for x < b1

G+(x) for kI > k?I and b < x < a2

G+(x) for kI < k?I and a < x < a1

G−(x) otherwise ,

(7.20)
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b1 a1 b2a2a b
x

ρ
(x

)

Constrained kI<kI
Semicircle law

(a) kI < k?I .

b1 a1 b2a2a b
x

ρ
(x

)

Constrained kI>kI
Semicircle law

(b) kI > k?I .

Figure 7.1 — Sketch of the expected behavior of ρ?(x) for the Gaussian ensemble when
−
√

2 < a < b <
√

2, compared to the semicircle law (kL = k?L).

these regions are either “gaps” in the spectrum or the semi-lines (−∞, b1], [b2,∞). They
become clear in figure 7.1.

The average density can then be extracted straightforwardly from the resolvent

ρ?(x) = − 1
π

lim
ε→0+

ImG(x+ iε) = 1
π

√√√√(a1 − x)(x− a2)(x− b1)(x− b2)
(x− a)(x− b) . (7.21)

We note that the constants a1, a2, b1 and b2 define the edges of the support of ρ? (see
figure 7.1). They need four equations to be determined. Two equations are provided by
the normalization constant, which is equivalent to identify the edges as the solutions of
the polynomial (z2 − 2)(z − a)(z − b) + 2A(z − b) + 2B(z − a). A simple comparison on
the coefficients of these polynomials yields

a1 + a2 + b1 + b2 = a+ b (7.22)
a1a2 + a1b1 + a1b2 + a2b1 + a2b2 + b1b2 = − 2 + ab (7.23)

The remaining two equations are given by the number of eigenvalues inside the interval,∫ b
a ρ

?(x)dx = kI , and a supplementary condition described below (equation (7.28)).
The average density of eigenvalues ρ?(x) depends only on the fraction kI of eigenvalues

constrained to be inside the interval. We can see from figure 7.1 that ρ?(x) changes
drastically when kI = k?I , where k?I =

∫ b
a ρsc(x)dx is the average number of eigenvalues

inside I for the Gaussian ensemble.
The shape of the average density shown in figures 7.1 shows patterns of divergence

at the edges of the interval in either case. As an example, let us take kI > k?I (figure
7.1b). This means that the number of eigenvalues inside the interval I is larger than
their expected value. Physically, since more charges are stacked inside the box than the
expected value, they will tend to repel and accumulate towards the box walls, while the
charges outside the box will be pushed further out by this excess of charge around the
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walls. The reverse case, kI < k?I (figure 7.1a), causes more charges to be outside the box
than their expected value, and they accumulate towards the box walls on the other side,
pushing those inside to a compact blob. When kI = k?I , there are no more divergences or
convergences around the interval and the density is Wigner’s semicircle (3.22).

7.2.3 Obtaining the rate function
Having obtained the average density ρ?(x), we proceed to calculate the rate function ψ(kI).
We must insert ρ? into equation (7.7) and perform the necessary integrals to compute the
full probability density of the random variable NI . There integrals are difficult, specially
the double integral with the logarithm. We may rewrite the action in a more convenient
form using equation (7.10).

We first insert ρ? into (7.10), multiply the equation by ρ?(x) and integrate it with
respect to x to obtain

∫
ρ?(x)x

2

2 dx+ µ
∫ b

a
ρ?(x)dx︸ ︷︷ ︸
=kI

+η
∫
ρ?(x)dx︸ ︷︷ ︸

=1

=
∫∫

dxdx′ρ?(x)ρ?(x′) log |x− x′|. (7.24)

The RHS is exactly the double integral present in the original action (7.7). Therefore we
can replace it with single integrals in the action evaluated at the saddle point ρ?, obtaining
eventually

S[ρ?] = 1
2

∫ x2

2 ρ
?(x)dx− µ

2kI −
η

2 . (7.25)

What remains to be determined are the multipliers µ and η. Equations for these pa-
rameters will arise from (7.10), once specialized to certain points within the domain of
ρ?(x).

Let us consider the case kI > k?I (figure 7.1b). We call now H(x) =
∫
ρ?(x′) log |x −

x′|dx′. Evaluating (7.10) at x = b and x = a2 we obtain

H(a2) = a2
2

2 + η (7.26)

H(b) = b2

2 + µ+ η. (7.27)

Which allows us to write µ = H(b) − H(a2) + a2
2
2 −

b2

2 . Using the definition of the
resolvent in equation (7.12), we note that H(b) − H(a2) =

∫ b
a2
G(x)dx. The resolvent is

well-defined between a2 and b, since this interval does not belong to the support of ρ?(x).
This same reasoning may be applied to the other edge of the box, and we would obtain a
similar equation with a and a1 (see figure 7.1b). These equalities allow us to calculate µ
in terms of the edges and an integral on the resolvent.

µ = −
∫ a2

b
G(x)dx+ a2

2
2 −

b2

2 =
∫ a

a1
G(x)dx+ a2

1
2 −

a2

2 . (7.28)
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Equation (7.28) is named the chemical equilibrium condition. Its physical interpreta-
tion in the context of the Coulomb gas is the following. The integral on the resolvent
from b to a2 (see figure 7.1b) represents the variation of the intensity of the repulsion felt
by a test charge at positions b and a2, while µ represents the balance between repulsion
and potential, i.e. the amount of energy required to move one charge from inside the box
to outside the box. The imposition of boundaries and constraints creates a pressure on
the edges of the interval and equation (7.28) expresses the fact that such pressure is the
same at both sides of the interval.

This equation is equivalent to apply equation (7.10) to a point in the support of the
average density. When differentiating with respect to x from equation (7.10) to (7.11),
we lost some information, and we retrieve it by evaluating equation (7.10) at a point.
Since the integral on the logarithm can be complicated, equation (7.28) is presented as a
simpler alternative, since it involves only an integral on the resolvent.

To obtain η, we use (7.10) for values of x inside the support of ρ?, but outside the
box: H(x) = x2

2 + η. One can show that, if b2 is the upper edge of the support ρ? (see
figure 7.1), we may expand H(x) around b2 to obtain

H(b2) = log b2 −
∫ ∞
b2

(
G(x)− 1

x

)
dx = b2

2
2 + η. (7.29)

We then obtain the following expression for η

η = log b2 −
b2

2
2 −

∫ ∞
b2

(
G(x)− 1

x

)
dx. (7.30)

It remains only to calculate the normalization constant, given by the action S calcu-
lated on Wigner’s semi circle (3.22). All integrals simplify greatly and we easily compute
S[ρsc] = 3

8 + log 2
4 . The final formula for the rate function of the probability of finding

NI = NkI eigenvalues inside interval I = [a, b] is

ψ(kI) =1
2

∫ x2

2 ρ
?(x)dx− µ

2kI −
η

2 − S[ρsc]

= 1
2

∫ +∞

-∞
ρ?(x)x

2

2 dx− 1
2

(∫ a2

b
G(x)dx− a2

2
2 + b2

2

)
kI

− 1
2

(
log b2 −

b2
2
2 −

∫ ∞
b2

(
G(x)− 1

x

)
dx
)
− 3

8 −
log 2

4 . (7.31)

The resolvent G(x) is given by equation (7.19), the average density ρ?(x) given by
equation (7.21) and the edges of its support are given by equations (7.22), (7.23), (7.28)
and

∫ b
a ρ

?(x)dx = kI .

7.2.4 Number variance
We turn our attention to a more specific problem: calculate the fluctuations of eigenvalues
inside an interval, the number variance for the Gaussian ensemble. For simplicity, we take
the interval I = [−L,L] and we determine the variance of the variable N[−L,L] = NL.
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(i) Bulk regime (ii) Extended bulk regime
edgeedge

(iii) Edge regime (iv) Tail regime

Figure 7.2 — Regimes of behavior of the number variance for the Gaussian ensemble.

Usually one can read off the variance of a random variable satisfying a large deviation
principle directly from the quadratic behavior of the rate function around its minimum:
this implies indeed that small fluctuations around the minimum are Gaussian (so mean
and variance are automatically determined). In our case, though, the rate function is not
simply quadratic around the minimum [90, 89] and so more effort is needed to extract the
variance.

We shall perturb the parameters of (7.21) and expand perturbatively the rate function
ψ(kI) around the unconstrained case k[−L,L] = kL = k?L + δ, where k?L represents its
minimum, preserving only the leading terms in the perturbation and reading the variance
from the quadratic term that remains. Depending on the value of L, however, we must
consider three different regimes: (i) an extended bulk N−1 < L <

√
2 − N−2/3, (ii) an

edge regime |L −
√

2| ∼ N−2/3 and (iii) a tail regime L >
√

2 + N−2/3 (see figure 7.2).
There is a strong change in behavior when L crosses the edge of the semicircle

√
2. We

shall describe the analysis of each regime separately

Extended bulk regime

The Gaussian potential and the interval I = [−L,L] are symmetrical, so all properties
of the average density will be symmetrical: a1 = −a2 and b1 = −b2. This reduces
the number of parameters that we must determine, and trivially satisfies the chemical
equilibrium condition (7.28).

The unconstrained case, when µ = 0 and the number of eigenvalues inside the interval
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Figure 7.3 — Extended bulk regime for the Gaussian ensemble. An interval is considered
to be on the extended bulk regime when its endpoints lie inside the support, but sufficiently
far from the edges.

is their expected value, is: a1 = −L, a2 = L, b1 = −
√

2, b2 =
√

2, which turns ρ? into
Wigner’s semicircle. We perturb the parameter a1 of a small shift ε: a1 = −L − ε. The
perturbation is negative because we expect a modification on the edges according to figure
7.1b, and we compute the consequent perturbation applied to the other parameters using
equation (7.23).

We write

a2 = L+ ε, b1 = −
√

2 + ε2, b2 =
√

2− ε2 . (7.32)

From the normalization condition (7.23) we find
√

2ε2 = Lε (7.33)

Having calculated the perturbation on each parameter of the resolvent and average density,
we proceed to expand the rate function (7.31) around its minimum by expanding each
of the integrals involved in its calculation. This procedure is technical and we omit the
details of calculations, as they are very similar to the previous integrals performed in the
index case. We eventually obtain

ψ(kL) = 1
4

∫
x2ρ?(x)dx− η

2 −
µ

2kI −
3
8 −

log 2
4 = π

4
√

2− L2εδ + o(ε2 log ε), (7.34)

where we denote kL = k?L + δ. The value of δ as a function of ε is given by

δ ≈ ε

√
2− L2

π

[
log

((
2− L2

)
L
)
− log ε

]
. (7.35)

We now have to find ε as a function of δ, inverting (7.35). We propose the following
ansatz, correct to leading orders of δ and ε

ε ≈ π√
2− L2

δ

log
(
(2− L2)

3
2 L
)
− log δ

. (7.36)
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We conclude that, for small fluctuations of kL around its average value k?L we have

ψ(kL = k?L + δ) ≈ π2

4
δ2

log
(
(2− L2)

3
2 L
)
− log δ

(7.37)

Replacing the asymptotic expansion of the rate function around its minimum we obtain,
for small δ > 0

P (NL = (k?L + δ)N) ≈ exp

−βN2π
2

4
δ2

log
(
(2− L2)

3
2 L
)
− log δ

 . (7.38)

We replace δ → (NL −N?
L)/N , obtaining for small deviations of NL from N?

L

P (NL) ≈ exp

−βπ2

4
(NL −N?

L)2

log
[
(2− L2)

3
2 LN

]
 . (7.39)

Hence for small fluctuations around the average, NL has a Gaussian distribution mod-
ulated by a logarithmic dependence on N . From (7.39), we may directly read off the
number variance Var(NL)

Var(NL) = 2
βπ2 log

[
NL

(
2− L2

)3/2
]

+O(1). (7.40)

The variance for the number of eigenvalues initially grows logarithmically with the size
of the box, reaches a peak at 1/

√
2 and decreases due to the presence of the edge of the

semicircle at
√

2 (see fig 7.7). This is one of the main results of this work. This remarkably
simple function describes the evolution of the number variance for very different interval
sizes, from the bulk, where we retrieve the classical logarithmic dependence discovered by
Dyson and Mehta, to the edge of the semicircle law. The critical value L = 1/

√
2 for the

[−L,L] box, where the fluctuations are maximal, is a new result found by this method.

Edge regime

When the interval reaches the edge of the support, most of the approximations used in
the last section are no longer valid and, as we mentioned before, the Coulomb gas method
fails to provide a meaningful result at this regime. We then resort to the technique of
orthogonal polynomials to investigate the scaling region around the semicircle edge. This
calculation was performed in 5.3.2, and it applies fully to our case. We recall the main
result. The variance of the number of eigenvalues inside the L-box is, in the edge regime
for β = 2, given by

Var(N[−L,L]) = Ṽ2(s), for L =
√

2 + s√
2N2/3

. (7.41)

where the function Ṽ2(s) is

2 Var(N[L,∞)) = Ṽ2(s) = 2
∫ ∞
s

du
∫ s

−∞
dvK2

Ai(u, v). (7.42)
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edgeedge

Figure 7.4 — Edge regime for the normalized Gaussian ensemble. An interval is con-
sidered to be on the edge regime when its endpoints lie inside the colored area.

Asymptotics of Ṽ2(s) on the scaling variable s, studied by [62], are given in chapter 5 and
we recall them

Ṽ2(s) =


3

2π2 log |s|, for s→ −∞
1

8πs3/2 exp
(
−4

3s
3/2
)
, for s→∞

. (7.43)

We expect a matching between the limit L →
√

2 from the extended bulk regime
N−1 < L <

√
2 and the limit s → −∞ in the edge regime. Indeed, replacing L =√

2 + s√
2N2/3 in equation (7.40) for β = 2 and taking the large N limit yields

1
π2 log

(
NL(2− L2)3/2

) large N−→ 3
2π2 log(−s), for L =

√
2 + s√

2N2/3
. (7.44)

In agreement with the limit of equation (5.38) when s→ −∞. Assuming this matching
holds for all values of β, we expect the following asymptotic behaviors

Ṽβ(s) =


3
βπ2 log |s|, for s→ −∞

1
cβs3/2 exp

(
−2β

3 s
3/2
)
, for s→∞

, (7.45)

where cβ is a constant that may depend on β.

Tail regime

While it is certainly possible to use the Coulomb gas technique for the tail regime, where
L >
√

2 (or L <
√

2) and |L−
√

2| � N−2/3, it is more convenient to obtain its variance
by recalling a few properties of the statistics of atypical fluctuations of the spectrum. We
note that equation (5.36) may be also applied for any value of L larger than

√
2, we need

only only to determine Var(N[L,∞)) when L >
√

2.
For values of L larger than the edge of the semi-circle, the probability of finding one

eigenvalue on the interval [L,∞) is equivalent to the probability of having the largest
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Figure 7.5 — Tail regime for the normalized Gaussian ensemble. An interval is consid-
ered to be on the tail regime when its endpoints lie outside the support of the average
distribution and far away from the edges.

eigenvalue at position x ≥ L. This is an extreme atypical configuration whose statistics
was first computed in [93]. Outside the edge regime, keeping only leading order terms for
large N , the p.d.f. of the largest eigenvalue λmax for the normalized Gaussian ensemble
is given by P (λmax = L) ≈ exp (−βNφ(L)), where

φ(L) = 1
2L
√
L2 − 2 + log

[
L−
√
L2 − 2√
2

]
. (7.46)

−
√

2
√

2 L

∆E=Nφ(L)

Figure 7.6 — Energy required to take one eigenvalue from the semi-circle and place it
at L >

√
2.

In the Coulomb gas framework, we identify Nφ(L) as the energy required to pull
one charge from the Wigner’s sea and bring it to L (see figure 7.6). For small values
of k, the probability of finding k eigenvalues in the interval [L,∞) becomes P (k, L) =
A exp (−βNkφ(L)), where A is a normalization constant. For large values of N , A may
be approximated by (∑∞k=0 P (k, L))−1 = 1 − exp (−βNφ(L)). The number variance on
[L,∞) may then be calculated directly as

Var(N[L,∞)) =
〈
k2
〉
−〈k〉2 =

∞∑
k=1

k2P (k, L)−
( ∞∑
k=1

kP (k, L)
)2

≈ e−βNφ(L)

(1− e−βNφ(L))2 , (7.47)
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to leading order in N . Therefore, the variance for the number of eigenvalues between −L
and L, when L >

√
2 and N is large, reads

Var(N[−L,L]) = 2 Var(N[L,∞)) ≈
e−βNφ(L)

(1− e−βNφ(L))2 (7.48)

Replacing L =
√

2 + s√
2N2/3 and taking s → ∞ on equation (7.47) will retrieve the

leading order in s of equation (7.43). We also note that Var(N[L,∞)) decays exponentially
with L, so we retrieve the expected result that fluctuations of eigenvalues inside an interval
larger than their support are exponentially small as the interval increases.

7.2.5 Comparison with numerics

We are able to simulate eigenvalues from Gaussian random matrices with little compu-
tational effort using the equivalence between the spectrum of the Gaussian ensemble and
the eigenvalues of a certain tri-diagonal matrix found by Dumitriu and Edelman [41].
Results for the extended bulk and edge regimes are found in figure 7.7. We are not able
to perform simulations for the tail regime due to the extreme small probability of finding
an eigenvalue above

√
2.
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Figure 7.7 — Results for the variance of NI for the Gaussian ensemble when I = [−L,L]
and L <

√
2. Theory is equation (7.40). Inset: results for the edge regime, where

s = (L−
√

2)
√

2N2/3 and theory is equation (5.38).

Equation (7.31) is complicated to analyze directly, but represents no challenge nu-
merically. Since the rate function depends on kL and L, we calculate this two variable
function for two values of L and we plot it in figure 7.8.
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Figure 7.8 — Behavior of the rate function ψ(kL) as a function of kL ∈ [0, 1] for two
different values of L: L = 0.6 <

√
2 and L = 1.6 >

√
2. The solid gray line in the plane

(L, kL) is the critical line k?L, where ψ(kL) has a minimum (zero).

7.3 Entanglement entropy of confined fermions

The number of fermions NI inside an interval I has a direct correspondence to the entan-
glement entropy of the sub-system I. To explore this relation, we follow the account of
[28]. We recall the definition of the entanglement entropy in terms of the reduced density
matrix ρI = TrICρ of a sub-system I, where IC is the complementary of I

Sq = 1
1− q log TrρqI . (7.49)

The entanglement entropy can be calculated [30, 29] using the eigenvalues {ai} of the
overlap matrix A, which coincide with the eigenvalues of the projected kernel PIKPI (see
section 5.4.2)

Sq = 1
1− q

N∑
i=1

log [aqi + (1− ai)q] . (7.50)

Using the fact that the kernel K is the same for cold fermions and GUE, we can apply
results from random matrix directly to the calculation of the entanglement entropy of this
quantum system. We define the the resolvent

G(z) = Tr 1
z1− A

=
N∑
i=1

1
z − ai

. (7.51)
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And it is clear that taking a path C around the interval ]0, 1[, where lie the eigenvalues of
A (represented in figure 7.9), we may obtain the entanglement entropy by the following
integral

Sq =
∮
C

dz
2πi log [zq + (1− z)q]G(z). (7.52)

0 1

a plane

ai

Figure 7.9 — Representation of the integration path C

As shown in [28], the resolvent can be cast in terms of the number of fermions inside
the interval I

G(z) = N

z
+ 1
z(z − 1)

〈
NI

(
1− 1

z

)NI〉
(
1− 1

z

)NI . (7.53)

Inserting this expression into (7.52) we obtain

Sq = 1
1− q

1
2πi

∮
C

dz
z(z − 1) log[zq + (1− z)q]

〈
NI

(
1− 1

z

)NI〉
(
1− 1

z

)NI , (7.54)

which connects number statistics and entanglement entropy. This shows that, for cold
fermions, the entanglement entropy is completely determined given the statistics of the
number of particles inside the sub-system. For the particular case of a number statistics
that is Gaussian distributed, integral (7.54) can be performed exactly and yields the result
[28]

Sq = π2

6

(
1 + 1

q

)
Var (NI) , forNI Gaussian. (7.55)

In the case of cold fermions, in the bulk regime, for an interval of the order of the
interparticle distance, the number statistics can be considered Gaussian (see section 5.3.1).
For intervals larger than the interparticle distance, equation (7.55) is not necessarily true.
The leading term, however, is correct; and we may obtain the leading behavior of the
entanglement entropy of an interval of mesoscopic size from the number variance of the
Gaussian unitary ensemble.
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The entanglement entropy in the extended bulk regime for a symmetric interval was
conjectured [137] to be approximated by

Var
(
N[−L,L]

) ?= 1
π2 log

[
sin

(
NL√

2

)]
+O(1), (7.56)

which was obtained replacing the soft edge at x =
√

2 by a hard edge. As noted in [47],
even though it is a numerically convincing approximation, this is not a very accurate one
as the transition between hard edge and soft edge is, in some way, singular. During my
PhD, I was able to show that the real function for the number variance for GUE of an
interval of size 1/N < L <

√
2−N−2/3 is given in the large N limit by

Var
(
N[−L,L]

)
= 1
π2 log

[
NL(2− L2)3/2

]
+O(1), (7.57)

which yields the correct matching with bulk and edge regimes. This results yields the
leading behavior for the entanglement entropy of cold fermions for interval of mesoscopic
size, and it is one of the main results of this work.

7.4 Summary of results
In this chapter, I presented the correspondence between cold fermions on a line confined
to a harmonic potential and eigenvalues of the Gaussian unitary ensemble. Using the
Coulomb gas technique, I was able, during my PhD, to explore the macroscopic region
of the spectrum and determine, for the first time, the number variance of the interval
[−L,L] as a function of L for the whole spectrum, given by equation (7.58) for general β.

Var(N[−L,L]) ≈


2
βπ2 log

(
NL(2− L2)3/2

)
, N−1 < L <

√
2−N−2/3

Vβ(s), L =
√

2 + s√
2N
−2/3

exp[−βNφ(L)], L >
√

2 +N−2/3,

(7.58)

and we confirmed it with numerical calculations of the variance of the number of Gaussian
unitary eigenvalues inside an interval (figure 7.7).

Previous results [100, 43] pointed to a logarithmic dependence on L of this variance
in the interparticle distance scaling (equation (5.26)), and we obtain such results when
applying the limit of small L in our results. The matching between the three regions
was verified, and has been studied previously in the context of cold fermions [46, 137].
This work, published in [97], reveals for the first time the full behavior of the number
variance with system size, spanning values from the bulk to infinite, describing the sharp
fall around the edge and the matching behavior between the identified regimes.
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Number statistics of other ensembles

Mathematicians are like French-
men: whatever you say to them they
translate into their own language
and then it is immediately some-
thing quite different.

Johann Wolfgang von Goethe

The Coulomb gas method used to derive the number variance for the extended bulk
and the tail regime is very general and changes little when applied to other invariant
ensembles. Since their main difference is the potential V (x), we may explore their number
statistics and remark the differences in behavior between Gaussian, Wishart and Cauchy
matrices.

The choice of these two ensembles is made based on their unique differences from
the Gaussian case. We explored the symmetric interval on the Gaussian ensemble in
the previous chapter, and the Wishart ensemble presents no evident symmetry. It is
interesting to see the effects of this asymmetry in the behavior of the number variance
for an interval of size L, and compare it to the Gaussian case. The Cauchy ensemble, on
the other hand, presents no soft edge on its average density. Since the number variance
changes dramatically when the interval crosses the edge, our natural interest is consider
what happens to this quantity for the Cauchy case when the size of the considered interval
grows.

8.1 Wishart ensemble
We begin by analyzing the number statistics of the Wishart ensemble. In the Gaussian
case, we chose the symmetrical interval [−L,L], but the Wishart case does not present
the same symmetry. Instead, we decided to evaluate the interval I = [1, L], and we recall
that 1 is the average value of the Wishart matrix when M = N . All this study does not
depend on the values chosen for the interval I, we take 1 as the lower bound for simplicity.

This study should yield a different result than the Gaussian case, because the limit
when L → ∞ is no longer zero. This distribution was originally studied in [94] in the
context of Principal Component Analysis, and the techniques we use are similar.
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8.1.1 The Coulomb gas
Using the Wishart potential neglecting the logarithm term V (x) = x/2, we write the
p.d.f. of NI

P (NI = kIN) = 1
ZN,β

∫ N∏
k=1

dλke−βN
∑N

k=1
λk
2
∏
i>j

|λi − λj|βδ
(
kIN −

N∑
l=1

1I(λl)
)
. (8.1)

From (8.1), it is easy to see that most of the approach taken on the Gaussian case
applies to the Wishart ensemble. We repeat the Coulomb gas method defining analogous
functions to the Gaussian case. We write (8.1) as the Gibbs-Boltzmann weight of an
associated thermodynamical system and we introduce the continuum density to convert
multiple integrals into functional integrals over the densities. In the large-N limit we find

P (NI = kIN) = 1
ZN

∫
Dρdµdηe−βN2S[ρ] = e−βN2(S[ρ?]−S[ρmp]) = e−βN2ψ(kI), (8.2)

where

S[ρ] =
∫ x

2ρ(x)dx− 1
2

∫∫
dxdx′ρ(x)ρ(x′) log |x− x′|

+ µ

(∫ L

1
ρ(x)− kI

)
+ η

(∫ ∞
0

ρ(x)dx− 1
)
, (8.3)

we note the extra Lagrange multiplier η introduced to enforce normalization of the average
density and positivity of the eigenvalues.

8.1.2 The resolvent method
Since N is large, we may apply the saddle-point method to obtain the constrained average
density of eigenvalues ρ?(x). The functional derivative of the action reads

δS

δρ

∣∣∣∣∣
ρ?

= 0 = x

2 −
∫

dx′ρ?(x′) log |x− x′|+ µ1I(x) + η1[0,∞)(x), x ∈ supp ρ?. (8.4)

And its derivative with respect to x yields

1
2 + ηδ(x) + µ (δ(x− L)− δ(x− 1)) = −

∫ ρ?(x′)
x− x′

dx′, x ∈ supp ρ?. (8.5)

We note how the hard wall at 0 is responsible for an extra term on η at the integral
equation (8.5). Repeating the technique used for the Gaussian ensemble, we multiply
both sides by ρ?(x)

z−x and integrate over x. If L is outside the support of ρ?, its contribution
is zero. If L belongs to the support of ρ?, this procedure yields

1
2

∫ ρ?(x)
z − x

dx+ A

z − 1 + B

z − L
+ C

z
=
∫∫ ρ?(x)

z − x
ρ?(y)
x− y

dydx. (8.6)
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(a) Sketch of the expected behavior of
ρ?(x) for the Wishart ensemble when kL <
k?L.
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ρ
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Constrained kI>kI
Marcenko-Pastur law

(b) Sketch of the expected behavior of
ρ?(x) for the Wishart ensemble when kL >
k?L.

Figure 8.1

We define once again the resolvent function G(z). The RHS of integral equation (8.6)
is again G(z)2/2, while the LHS can be trivially written in terms of G(z). We obtain

1
2G(z) + A

z − 1 + B

z − L
+ C

z
= 1

2G
2(z). (8.7)

with solution

G(z) = 1
2 ±

√
1
4 + 2A

z − 1 + 2B
z − L

+ 2C
z

= 1
2 ±

1
2

√√√√(z − a1)(z − a2)(z − b2)
z(z − 1)(z − L) . (8.8)

The constrained spectral density (when a prescribed fraction of eigenvalues is assigned
to the interval I) can be directly read off from G(z)

ρ?(x) = 1
2π

√√√√(a1 − x)(a2 − x)(b2 − x)
x(1− x)(L− x) , (8.9)

where the constants a1, a2 and b2 are the edges of the support (see figure 8.1) and should
be determined by the normalization condition |z| → ∞ =⇒ G(z)→ 1/z and the number
of eigenvalues inside I. Explicitly, these conditions are

a1 + a2 + b2 = 5 + L,
∫ L

1
ρ?(x)dx = kI . (8.10)

We have two equations for three coordinates, we need one more equation to determine
the remaining edge of the average distribution. This problem is particularly interesting
and has not emerged in the previous studies, it is only present due to the asymmetry of
the interval.
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8.1. Wishart ensemble

The root of this problem is the passage from the energy balance equation (8.4) to
the force balance equation (8.5). When differentiating with respect to x, we lost some
information, and the missing equation could be obtained by evaluating the energy balance
equation in any point.

This equation, however, presents an integral of the average density multiplied by the
logarithm, and we would rather deal with integrals without the logarithm. As we men-
tioned in the Gaussian case, the solution we propose is the use of the chemical equilibrium
condition (7.28). For the Wishart case it reads

−
∫ a2

L
G(x)dx+ a2

2 −
L

2 =
∫ 1

a1
G(x)dx+ a1

2 −
1
2 = µ. (8.11)

This condition was absent from previous cases because it is trivially satisfied when the
interval is symmetrical. We mentioned it briefly when considering a general interval for the
Gaussian case, but it was not needed to calculate the number variance of the symmetrical
interval. This condition, together with the normalization and the imposition of a fraction
kL of eigenvalues inside the interval (equation (8.10)), determines the edges a1, a2 and b2
of the support (8.9).

8.1.3 Obtaining the rate function
To calculate the rate function, we notice that all steps taken in the Gaussian case may
be applied if we replace the Gaussian potential by the Wishart potential. Using (8.4), we
may write the action as

S[ρ?] = 1
2

∫ x

2ρ
?(x)dx− µ

2kI −
η

2 . (8.12)

The Lagrange multipliers µ and η will be calculated in precisely the same way as the
Gaussian case, their formulas will only differ on the potential.

µ = −
∫ a2

L
G(x)dx+ a2

2 −
L

2 , η = log b2 −
b2

2 −
∫ ∞
b2

(
G(x)− 1

x

)
dx. (8.13)

And the action can be easily computed for the unconstrained case, when kI = k?I and the
average density is the Marčenko-Pastur distribution (3.24). We find S[ρmp] = 3/4.

The final formula for the rate function of NI in the Wishart ensemble reads

ψ(kI) =1
2

∫ ∞
0

x

2ρ
?(x)dx− µ

2kI −
η

2 − S[ρmp]

= 1
2

∫ ∞
0

x

2ρ
?(x)dx− 1

2

(∫ a2

L
G(x)dx− a2

2
2 + L2

2

)
kI

− 1
2

(
log b2 −

b2
2
2 −

∫ ∞
b2

(
G(x)− 1

x

)
dx
)
− 3

4 , (8.14)

where G(x) is equation (8.8) with the proper sign choice and ρ?(x) is (8.9).
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8.1.4 Number variance

As in the Gaussian case, equation (8.14) is too general to be analyzed directly. We turn
our attention to a more specific case, the interval [1, L]. We choose the lower value as 1
for simplicity, we could have taken any value from the support and calculations would be
similar. As we will see, the main variables for the number variance are the interval size
and the edge of the Marčenko-Pastur distribution, not the starting point of the interval.
We perturb the rate function around its minimum and we read the variance of NL from
the quadratic term remaining.

41
(a) Bulk regime

41
(b) Extended bulk regime

41

edge

(c) Edge regime
41

(d) Tail regime

Figure 8.2 — Regimes of behavior of the number variance for the Wishart ensemble.

The perturbative approach is similar, and we once more find three separate regimes
for the number variance: an extended bulk, an edge and a tail regime, described in figure
8.2. We describe the calculation of the number variance in these regimes separately.
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8.1. Wishart ensemble

Extended bulk regime

We define the variable l = L − 1 as the size of the interval, and perform very similar
calculations to the Gaussian case. Integrals are performed in exactly the same way and
we refer to the Gaussian ensemble (section 7.2.4) for the details of the calculations of µ
and η. Denoting the number of eigenvalues inside [1, 1 + l] as Nl, we obtain its variance,
to leading orders of N and for 1/N < l < 3,

VarNl = 2
βπ2 log (Nl(3− l)3/4) +O(1), (8.15)

where l = 3 is a special point, corresponding to L = 4, the soft edge.
As expected, the behavior on the extended bulk is extremely similar to the Gaussian

case. The variance reaches its maximum at a point, l =
√

6/5 for this ensemble, and
decreases when the soft edge approaches.

Edge regime

Results in the edge regime are similar to the Gaussian case, since both ensembles are
governed by the Airy kernel near their soft edges. For the Wishart ensemble, we may
write an equivalent of equation (5.36),

Var(N[1,L])
large N∼ Var(N[0,1]) + Var(N[L,∞)), for L ∼ 4 . (8.16)

Since [0, 1] and [1,∞) are complementary sets on the positive semi-axis, Var(N[0,1]) =
Var(N[1,∞)) and the first term of the RHS of equation (8.16) is in fact the variance of the
index of the Wishart ensemble. This result was obtained in [94].

Var(N[0,1]) = Var(N[1,∞)) = 1
βπ2 lnN. (8.17)

To obtain Var(N[L,∞)), we consider the β = 2 case. Equation (5.35) applies if we use the
scaling u = (N/4)2/3(4− x) [129, 75]

KN

(
4 + u

(N/4)2/3 , 4 + v

(N/4)2/3

)
N�1∼ (N/4)2/3KAi(u, v) , (8.18)

KAi(u, v) = Ai(u)Ai′(v)− Ai(v)Ai′(u)
u− v

. (8.19)

Using the scaling variable s = (L− 4)(N/4)2/3, we find

Var(N[L,∞)) = 1
2V2(s) =

∫ ∞
s

du
∫ s

−∞
dvK2

Ai(u, v). (8.20)

The variance becomes, for β = 2

Var(N[1,L]) = 1
2π2 lnN + 1

2V2(s), for L = 4 + s

(N/4)2/3 . (8.21)
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Asymptotics of V2(s) for s→ ±∞ were studied by [62] and are given by equation (7.43).
We notice a fundamental difference between this case and the Gaussian case, the presence
of the lnN term. This contribution arises from fluctuations on the left side on the interval,
on the x = 1 point. The other contribution, V2(s), represents fluctuations on the right
side on the interval, and increasing L decreases the probability of having an eigenvalues
to the right of the interval and hence decreases fluctuations on this side.

We notice that, as in the Gaussian case, we can explore the limits s→ ±∞ to obtain
the matching between the edge regime and the extended bulk and tail regimes. For β = 2
we confirm that this matching holds, and we can conjecture that it holds for all values of
β. If we take L = 4 + s

(N/4)2/3 in equation (8.15), we obtain, for large values of N :

2
βπ2 ln

[
Nl(3− l)3/4

]
N�1−−−→ 1

βπ2 lnN + 3
2βπ2 ln |s|+O(1), for L = 4 + s

(N/4)2/3 . (8.22)

If we assume that this matching holds for all values of β, we can write a general
expression for the variance of the edge regime

Var(N[1,L]) = 1
βπ2 lnN + 1

2Vβ(s), for L = 4 + s

(N/4)2/3 . (8.23)

and its asymptotic behavior, to match its neighboring regions, should be

Vβ(s) ∼


3
βπ2 ln |s|, for s→ −∞

1
Cβ(s) exp

(
−2β

3 s
3/2
)
, for s→∞

, (8.24)

where Cβ(s) is a power of s dependent on β whose value for β = 2 is given by C2(s) =
8πs3/2. The asymptotic behavior for s→∞ for general β is obtained using the matching
with the tail regime, presented in the next section.

Tail regime

As the kernel KN(x, y) of both Gaussian and Wishart ensembles is described by the Airy
kernel (5.33) on the correct scaling limit, the statistics of their largest eigenvalue is equally
described by the Tracy-Widom distribution. This implies that the probability of finding
the largest eigenvalue far away from the support edge can be derived in an equivalent way
for both ensembles, and we find a similar result for the variance of NI when L is larger
than the soft edge x = 4. The only difference is the form of the large deviation function
φ. For the Wishart ensemble [93, 109], the probability of finding the largest eigenvalue to
be much larger than its average value is given by

P (λmax > w) ∼ e−βNΦ(w), w > 4, (8.25)

where

Φ(w) =
√
w(w − 4)

4 + ln
w − 2−

√
w(w − 4)

2

 . (8.26)
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We denote by P (k, L) the probability of finding k eigenvalues at positions larger than
L, and L > 4. Since the energy required to move one eigenvalue to position L is NΦ(L),
we obtain

Var(N[L,∞)) =
〈
k2
〉
− 〈k〉2 =

∞∑
k=1

k2P (k, L)−
( ∞∑
k=1

kP (k, L)
)2

≈ e−βNΦ(L) , (8.27)

to leading order in N . Since equation (5.36) applies also to the Wishart ensemble, we
find, for L > 4

Var(N[1,L]) = 1
βπ2 lnN + Tβ(L), (8.28)

where Tβ(L) ≈ e−βNΦ(L).
As above, replacing L = 4 + s

(N/4)2/3 and taking the leading order in N on equation
(8.27) will retrieve

Tβ

(
4 + s

(N/4)2/3

)
= e−βNΦ

(
4+ s

(N/4)2/3

)
N�1−−−→ e−

2β
3 s

3/2
, (8.29)

which is the leading order in s of equation (8.23) for s → ∞. This confirms, as in the
Gaussian case, the matching between the right limit of the edge regime and the tail regime.

8.1.5 Comparison with numerics
Numerical calculations in the Wishart ensemble are similar to the Gaussian ensemble. A
tridiagonal ensemble with equivalent statistics was also found by Dumitriu and Edelman
[41] and its diagonalization is less costly than taking Gaussian matrices, multiplying them
by their conjugate and diagonalizing the Wishart matrix. Results obtained are in figure
8.3.

8.2 Cauchy ensemble

8.2.1 The Coulomb gas
We consider the case of the Cauchy ensemble. We note that the average density is already
N -independent, so no rescaling is needed. Since the potential is of the same order as the
repulsion between charges in the Coulomb gas, V (x) is not strong enough to confine the
eigenvalues into a compact region and the average density extends to infinity. We define
the interval I = [a, b] and we repeat the previous derivation of the Coulomb gas method.

The Cauchy potential is given by

Vc(x) = β

(
N − 1

2 + 1
β

)
log(1 + x2). (8.30)
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Figure 8.3 — Results for the variance of NI for the Wishart Unitary ensemble when
I = [1, 1 + l] and l < 3. Theory is equation (8.15). Inset: results for the edge regime,
where s = (l − 3)(N/4)2/3 and theory is equation (5.38).

When taken in the large-N limit, this potential can be written as simply βN log(1 +
x2)/2. Using this potential, we write the p.d.f. of NI

P (NI = kIN) = 1
ZN,β

∫ N∏
k=1

dλke−βN
∑N

k=1
1
2 log(1+λ2

i )
∏
i>j

|λi − λj|βδ
(
kIN −

N∑
l=1

1I(λl)
)
.

(8.31)
Again, we apply the Coulomb-gas method using the continuum approximation to the

average density and the saddle-point approximation to probability (8.31).

P (NI = kIN) = 1
ZN

∫
Dρdµdηe−βN2S[ρ] = e−βN2(S[ρ?]−S[ρmp]) = e−βN2ψ(kI), (8.32)

where

S[ρ] =1
2

∫ +∞

-∞
log(1 + x2)ρ(x)dx− 1

2

∫∫ +∞

−∞
dxdx′ρ(x)ρ(x′) log |x− x′|

+ µ

(∫ b

a
ρ(x)− kI

)
+ η

(∫ +∞

-∞
ρ(x)dx− 1

)
. (8.33)

8.2.2 The resolvent method
We obtain the average density ρ?(x) by differentiating (8.33) functionally with respect to
ρ

δS

δρ

∣∣∣∣∣
ρ?

= 0 = log(1 + x2)
2 −

∫
dx′ρ?(x′) log |x− x′|+ µ1I(x) + η, x ∈ supp ρ?. (8.34)
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And its derivative with respect to x yields

x

1 + x2 + µ (δ(x− b)− δ(x− a)) = −
∫ ρ?(y)
x− y

dy. (8.35)

Once again, we multiply both sides of equation (8.35) by ρ?(x)/(z−x) and we integrate
both sides with respect to x. We wish to express both sides as algebraic expressions of the
resolvent function G(z), equation (7.12), and while the RHS is the same as the previous
examples, the LHS is not polynomial and the technique used in the Gaussian and Wishart
ensembles needs to be modified. This procedure is analogous to the case described in [96].
The algebraic equation for the resolvent is

aA+ bB − 1
2 + z(A+B) + zG(z) = (1 + z2)

(1
2G

2(z) + A

z − a
+ B

z − b

)
, (8.36)

where A and B are constants to be determined by the chemical equilibrium condition and
the fraction of eigenvalues inside [a, b]. The solution of (8.36) is lengthy, but straightfor-
ward

G(z) = z

1 + z2 ±
1

1 + z2

√√√√P (A,B, a, b, z)
(z − a)(z − b) , (8.37)

where P (A,B, a, b, z) = ab − 2Ab − 2a2Ab − 2aB − 2ab2B + (−a + 2A + 2a2A + 2B +
b(−1 + 2bB))z + (1− 2Ab− 2a2Ab− 2aB − 2ab2B)z2 + (2A(1 + a2) + 2(1 + b2)B)z3 is a
third-degree polynomial in z. As it has three roots, the edges of the support of ρ?(x), we
write an alternate form for the Cauchy resolvent

G(z) = z

1 + z2 ±
1

1 + z2

√√√√(z − a1)(z − a2)(z − b2)
K(z − a)(z − b) , (8.38)

where K, a1, a2 and b2 are determined by equating (z − a1)(z − a2)(z − b2)/K =
P (A,B, a, b, z). The average density is obtained directly

ρ?(x) = 1
π

1
1 + x2

√√√√(a1 − x)(x− a2)(x− b2)
K(x− a)(x− b) . (8.39)

8.2.3 Analysis for [−L,L]
We write I = [−L,L]. Equation (8.36) simplifies greatly due to the symmetries of this
case, we find a = −b = L and A = −B. The resolvent becomes

G(z) = z

1 + z2 −
1

1 + z2

√
a2

1 − z2

z2 − L2 . (8.40)

We may read directly the average density ρ?(x) (see figure 8.4)

ρ?(x) = 1
π

1
1 + x2

√
x2 − a2

1
x2 − L2 , (8.41)
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(a) Sketch of the expected behavior of
ρ?(x) for the Cauchy ensemble when I =
[−L,L] and kL < k?L.
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(b) Sketch of the expected behavior of
ρ?(x) for the Cauchy ensemble when I =
[−L,L] and kL > k?L.

Figure 8.4

where the only variable to determine is a1, which is found by imposing
∫ L
−L ρ

? = kL.
We recall once more our simplified equation for the action (7.25)

S[ρ?] = 1
2

∫
log(1 + x2)ρ?(x)dx− µ

2kI −
η

2 . (8.42)

The Lagrange multipliers are obtained in a similar way as the other two cases, with a
small difference. The formula for µ is precisely the same, changing the potential to the
Cauchy potential, but for η we cannot apply the simplification (7.29), as there is no “upper
bound” on the Cauchy regime. This forces us to write η as a slightly more complicated
integral as previous cases. Applying equation (8.34) in a point p inside the support of ρ?
but outside the interval [−L,L] yields an expression for η in terms of integrals of ρ?. For
the Lagrange multipliers we find

µ = −
∫ a1

L
G(x)dx+ 1

2 log
(

1 + a2
1

1 + L2

)
, η =

∫
ρ?(x) log |p− x|dx− log(1 + p2), (8.43)

where p is a point inside the support of ρ? but outside the interval [−L,L].
Calculating the action for the unconstrained case is, once again, straightforward and

yields S[ρca] = log 2. The final formula for the rate function for the number statistics of
the Cauchy ensemble when the interval is symmetrical is

ψc(kI) = 1
2

∫ +∞

-∞
ρ?(x) log(1 + x2)

2 dx− 1
2

(∫ a1

L
G(x)dx− 1

2 log
(

1 + a2
1

1 + L2

))
kI

− 1
2

(
H(p)− log(1 + p2)

2

)
− log 2

2 , (8.44)

where H(x) =
∫
ρ?(x′) log |x− x′|dx′ and p ∈ supp ρ? \ I.
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8.2.4 Number variance
To obtain the variance of N[−L,L] = NL for typical fluctuations, we repeat the asymptotic
method applied above for Gaussian and Wishart ensembles. Since the Cauchy distribution
has no edge, we expect no sharp decline on the variance. However, our method is not
capable of describing the variance for the full range of L. Again, we find three different
regimes: an extended bulk regime 1/N < L < N , an effective edge regime L ∼ N and a tail
regime L > N , represented in figure 8.5. This is surprising, since the Cauchy distribution
has no edge, but indeed in terms of the behavior of the variance we find that the average
position of the largest eigenvalue (see [92] and equation (6.127)), which is of order N ,
behaves as an effective edge for the Cauchy distribution.

(a) Bulk regime (b) Extended bulk regime
effective edge

(c) Effective edge regime (d) Tail regime

Figure 8.5 — Regimes of behavior of the number variance for the Cauchy ensemble.

Even in this simplified symmetric case, the number variance for the Cauchy regime is
extremely difficult to obtain for all identified regimes, and we are only able to compute
it for the extended bulk regime. The edge regime is problematic because our orthogonal
polynomial technique has no simple asymptotics for the Cauchy case, the polynomials
involved in the treatment of this ensemble are complicated (see [92]) and their analysis
represents a challenge we leave for future work. The tail regime also presents problems,
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since calculations for a finite number of eigenvalues beyond the effective edge N , similar
to (7.47) and (8.27), have divergences in 〈k2〉 and 〈k〉2. Although their difference is finite,
we are not able to compute the tail number variance using this method.

Extended bulk regime

Once again, we want to calculate the asymptotics for small δ for the action (8.42). Calcu-
lations are performed in a very similar way to the previous ensembles, and we omit them
for brevity. For values of L such as 1/N < L < N we find

Var(NL) = 2
βπ2 log

(
NL

1 + L2

)
+O(1). (8.45)

We notice how the value L ∼ N behaves just as L ∼
√

2 for the Gaussian ensemble
or L ∼ 4 for the Wishart ensemble.

8.2.5 Comparison with numerics

We are able to simulate Cauchy eigenvalues by using the correspondence between the
Cauchy ensemble and the circular ensemble [96]. Comparing our prediction for the ex-
tended bulk regime in the Cauchy ensemble with numerical results for three different
values of N , figure 8.6, we see perfect agreement within the prescribed bounds, which re-
inforces the idea of the presence of an effective edge at the average position of the highest
eigenvalue.

Note in figure 8.6 how our calculations for the extended bulk no longer correspond to
the numerical result when L > N for three different values of N . Even though we always
assume a large N limit, this result is fairly accurate when N = 10 and we can see how
formula (8.45) is only valid for 10−1 < L < 10.

8.3 Summary of results

In this chapter, I applied the Coulomb gas method to obtain the full probability density
function of the number of eigenvalues inside an interval I for the Wishart and Cauchy
regime. The choice of ensemble was given by their particular properties: Wishart presents
a natural asymmetry and Cauchy has no soft edge on its average eigenvalue density.

The asymmetry in the Wishart ensemble brought a new technical difficulty, an extra
equation is needed to set the edges of the constrained density. The equation used (8.11)
was inspired in the thermodynamical interpretation of the Coulomb gas, and named the
chemical equilibrium condition, as it imposes that the Lagrange multiplier of the condition
on the number of eigenvalues inside the interval is the same when calculated on different
edges of the interval.
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Figure 8.6 — Results for the variance of NI for the Cauchy ensemble when I = [−L,L].
Solid lines are equation (8.45) for values of N = 10, 50, 500.

The interval studied for the Wishart ensemble was [1, 1 + l], and l is the interval size.
The value for the number variance obtained for large N was

Var(N[1,1+l]) ≈


2
βπ2 ln

(
Nl(3− l)3/4

)
, N−1 < l < 3−N−2/3,

1
βπ2 lnN + 1

2Vβ(s), l = 3 + s
4N
−2/3,

1
βπ2 lnN + Tβ(l), l > 3,

(8.46)

where Tβ(l) ∝ e−βNΦ(l−3), Φ(x) is given by (8.26) and Vβ(s) is determined for β = 2 in
equation (8.21).

As expected, this variance converges to the variance of the index obtained in [94] when
l > 3. Since the Wishart ensemble is also described by the sine kernel in the bulk regime,
for distances of the order of 1/N , we expect to retrieve Dyson and Mehta’s result for the
number variance (section 5.3.1) when l→ 0, and indeed we recover it taking this limit in
the first case of equation (8.46).

The absence of edge in the Cauchy ensemble revealed interesting aspects of this set
of matrices. While the average density does not have an edge, we found that the average
position of the largest eigenvalue, at position N , behaves as an effective edge for the
purpose of calculating the number variance. The Coulomb gas technique cannot provide
the full behavior of the number variance for the interval [−L,L] for all values of L, and
we still obtain the structure of extended bulk – edge – tail regimes; the edge is an interval
or the order of unity around N . Our method does not allow for calculations of edge and
tail regimes, and we present the number variance for the extended bulk

Var
(
N[−L,L]

)
≈ 2
βπ2 log

(
NL

1 + L2

)
, −N < L < N. (8.47)

— 136 —



8.3. Summary of results

The results presented in this chapters were not yet published, and are part of a longer
paper in final stages of preparation.
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— 9 —
Quantum transport of electrons in
weakly non-ideal chaotic cavities.

I find the great thing in this world is
not so much where we stand, as in
what direction we are moving.

Oliver Wendell Holmes

9.1 Introduction to quantum chaotic cavities

9.1.1 Ideal chaotic cavities
Another fundamental application of random matrix theory I explored during my PhD
is quantum transport of electrons. Random matrix theory has proven very successful in
describing the universal regime of electronic transport in mesoscopic cavities exhibiting
chaotic classical dynamics [14]. The cavities have electronic channels, leads, in the left
and right side; we refer to the number of left (right) leads as nL (nR), and N = nR + nL
is the total number of channels, as represented by figure 9.1.

At low temperatures and applied voltage, provided that the average electron dwell
time is well in excess of the Ehrenfest time, statistical universality emerges upon a suitable
energy or ensemble averaging procedure. A stochastic approach to the problem, pioneered
by Imry [69], Büttiker [25, 26] and Landauer [84], models the single-electron Hamiltonian
H as a M ×M (M →∞) random matrix with appropriate symmetries.

Classical scattering theory [3] allows to connect the scattering matrix of the cavity
to the Hamiltonian and the couplings to the leads. The distribution of the scattering
matrix S within the unitary group is given in full generality by the so-called Poisson
kernel [22, 101]:

Pβ(S) ∝
[
det(1N − S̄S†) det(1N − SS̄†)

]β/2−1−βN/2
(9.1)

where β = 1, 2, 4 is the Dyson index and encodes system symmetries: S is unitary and
symmetric for β = 1, just unitary for β = 2 and unitary self-dual for β = 4. The
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nL left leads

nR right leads

Figure 9.1 — Visual representation of a chaotic cavity.

microscopic details of the coupling between the cavity and the leads are all contained in a
single (sub-unitary) average scattering matrix S̄, whose singular values γi (i = 1, . . . , N)
will be called opacities as they are related via γi =

√
1− Γi to the tunnel probabilities Γi in

the leads. The ideal limit corresponding to Γi → 1 (γi → 0) implies that Pβ(S) = const.
in the unitary group, a simplification that turns out to be crucial for most analytical
developments of the theory. Indeed, the scattering matrix can be written in the block
form

S =
(
r t
t′ r′

)
, (9.2)

where r (nL × nL) and r′ (nR × nR) are reflection blocks connecting wave function coef-
ficients of electrons that come in and exit from the same lead, while t (nL × nR) and t′
(nR × nL) are transmission blocks across the leads.

Landauer-Büttiker theory [83, 52, 27] expresses most physical observables as linear
statistics on the eigenvalues {T1, . . . , Tn} (if n = min{nR, nL}) of the hermitian transmis-
sion matrix tt†, for example the conductance

G(T)
G0

=
n∑
i=i

Ti, (9.3)

where G0 = 2e2/h, the shot-noise (the time average of current fluctuations at zero tem-
perature)

P (T)
P0

=
n∑
i=i

Ti(1− Ti), (9.4)

where P0 = 2eV G0 (V being the voltage difference between the two leads), or again the
moments τm = ∑

i T
m
i , relevant for the statistics of transmitted charge.

Note that unitarity of S implies that Tj = 1 − Rj, where Rj are the eigenvalues
of rr†. The assumption that S is a random unitary matrix implies that the Tj’s (or
equivalently the Rj’s) are strongly correlated random variables characterized by a certain
joint probability density function (j.p.d.f) Pβ(T1, . . . , Tn). In the case of ideal leads, this
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j.p.d.f. is given [11, 55, 70] by the Jacobi ensemble of random matrices:

P (0)(T) ∝ |∆(T)|β
n∏
j=1

T
β/2−1+β|nL−nR|/2
j (9.5)

where ∆(T) = ∏
j<k(Tj − Tk).

Using the rather explicit expression (9.5), a number of analytical results on the statis-
tics of conductance and shot noise have been derived. In [11, 13, 68, 71] it was established
that the variance of conductance and shot noise (hereafter measured in dimensionless
units) become independent of n as n→∞, and depend only on the presence or absence
of time-reversal symmetry, i.e.

lim
n→∞

Var(G) = 1
8β lim

n→∞
Var(P ) = 1

64β , (9.6)

for symmetric cavities (nL = nR), a phenomenon that has been dubbed universal conduc-
tance fluctuations.

A semiclassical derivation of the average and variance of G as well as of the average
of P to all orders in 1/n was put forward [19, 65]. A fruitful approach to the same quan-
tities based on the theory of Selberg integral was first developed in [123] and afterwards
extended [126, 124] to compute the variance of P and the first four cumulants of G non-
perturbatively. The full distributions of G and P , known to be strongly non-Gaussian
for a small number of channels [81, 126, 79], were studied for any n and β = 2 using
integrability arguments and the machinery of Painlevé functions in [112, 113], while the
large n behavior for all β (including large deviation tails) was investigated in [141, 142].
Statistics of moments τm was studied in [110, 111, 143, 86] by RMT tools using semiclassi-
cal methods. Conductance cumulants and their asymptotics were thoroughly investigated
in [111, 79] and more general results have been discovered in [102, 103, 104]. The full
distribution of another quantum observable, such as Wigner’s time delay, has also been
recently computed[133].

9.1.2 Non-ideal chaotic cavities
Due to the complicated expression of the Poisson kernel (9.1), a systematic theoretical
investigation into the domain of non-ideal cavities has been undertaken only very recently,
whilst a tunable opacity in the leads is by now an established experimental protocol
[63]. Vidal and Kanzieper [138] were eventually able to evaluate the j.p.d.f. of reflection
eigenvalues for cavities with broken time-reversal symmetries (β = 2) in the case of
ideal leads on the right side and non-ideal leads (characterized by a set of opacities {γi},
i = 1, . . . , nL) on the left side (n = nL ≤ nR).

The exact j.p.d.f. of reflection eigenvalues in this case reads

P (γ)(R1, . . . , RnL) =CnR,nL det(1− γ)N ∆(R)
∆(γ) det [2F1(nR + 1, nR + 1; 1; γiRj)]
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×
nL∏
i=1

(1−Ri)nR−nL , (9.7)

the matrix γ being γ = diag(γ1, . . . , γnL), 2F1 a standard hypergeometric function and
CnR,nL a normalization constant

CnR,nL =
n−1∏
j=0

(nR − nL + n+ j)!
(nR − nL + j)!

1
j!(j + 1)! . (9.8)

Note that in the non-ideal case the eigenvalue repulsion is no longer logarithmic, and
(9.5) is recovered for γi → 0 (with Rj = 1− Tj) where the ratio detF

∆(γ) ingeniously restores
the standard Vandermonde determinant (see next section).

The expression (9.7) is however hardly operational, even though for nL = nR = 2 has
already proven effective in the context of entanglement production [139]. The purpose of
this study is to make two simplifying assumptions, ι) all opacities are the same γ1 = γ2 =
· · · = γ, and ιι) they are small, γ � 1. We develop the expression (9.7) to first order
in γ and compute (as an example) moments of conductance and its variance to the same
accuracy. In principle, the simple approximate formula we derive (see (9.20)) allows to
compute the first correction in γ for any linear or nonlinear statistics, such as pure or
mixed moments (see below). We find that the variance for symmetric cavities with a large
number of channels (n = nL = nR � 1) becomes asymptotically independent of n even at
first order in γ. The persistence of universal conductance fluctuations in the weakly non-
ideal case is a phenomenon that may be within reach of current experimental capabilities.
In general, we find that (at least for not too high moments of the conductance) the
approximate formulas for the cumulants are excellent approximations of the exact results
whenever available (see figure 9.2).

Following this study, we generalize our findings to higher orders in γ using Schur
polynomials. The results are less explicit, but provide a systematic method to obtain the
contributions of all orders of γ.

9.2 Small γ expansion

9.2.1 Expansion in first order

The crucial point is that in the limit when all γi’s are the same, the quantity detF
∆(γ) in

(9.31) reduces to a single determinant,

detF
∆(γ) → detM, (9.9)

whose elements are obtained from L’Hôpital’s rule and are given by

Mij = di−1

dxi−1 2F1(nR + 1, nR + 1; 1;xRj)
∣∣∣∣∣
x=γ

. (9.10)
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We shall expand each element of M up to first order in γ. Let

2F1(nR + 1, nR + 1; 1; γR) =
∞∑
n=0

Cn
(γR)n
n! (9.11)

be the expansion of the hypergeometric function. We know that

Cn = (nR + 1)2
n

n! = (nR + n)2

n
Cn−1. (9.12)

We must use (9.11) up to order i in γ to compute line i of matrix M . In the end, we
have M ≈ A+ γB where the elements of A are given by

Aij = Ci−1R
i−1
j (9.13)

and the elements of B are given by

Bij = CiR
i
j. (9.14)

Using the relation log det = Tr log, we have

det(A+ γB) ≈ [detA] (1 + γTr[A−1B]). (9.15)

We can show the relation

Tr[A−1B] = (nR + nL)2

nL

[
nL∑
i=1

Ri

]
. (9.16)

Moreover, it is easy to see that
detA ∝ ∆(R). (9.17)

The final result is that, when all γ’s are the same and small, the joint probability
density of transmission eigenvalues Ti = 1−Ri is approximately given by

P (γ�1)(T) ' CnR,nLdet(1− γ)N∆(T)2
nL∏
i=1

(Ti)nR−nL
[
1 + γ

(nR + nL)2

nL

(
nL∑
i=1

(1− Ti)
)]

.

(9.18)
This can be viewed as the sum of two contributions, namely the standard j.p.d.f. (9.5)
valid for the ideal case, and

P (0)(T)G(T) = CnR,nL∆(T)2
nL∏
i=1

(Ti)nR−nL
nL∑
j=1

Tj, (9.19)

where the notation G(T) is consistent with the standard definition (9.3) of dimensionless
conductance in quantum transport. Expanding detnR+nL(1− γ) for small values of γ we
get up to first order in γ

P (γ�1)(T) ' P (0)(T) + γ

(
nR(nR + nL)P (0)(T)− (nR + nL)2

nL
P (0)(T)G(T)

)
. (9.20)
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Equation (9.20) is the first of our main results. We note that the correction term is
simply a linear combination of the probability density for the ideal case γ = 0 and a
product of this probability and the conductance itself. Hereafter, we denote the average
taken with respect to P (0) as 〈·〉(0), while averages with respect to the total truncated
probability (9.20) as 〈·〉(γ�1).

The simplicity of our approximate expression (9.20) makes it now possible to explore
analytically (to first order in γ) the statistics of ι) conductance fluctuations, and ιι) any
linear or nonlinear statistics of the transmission eigenvalues, to first order in γ (weakly
non-ideal case). The former task is tackled in the next section. About the latter, we
observe the following formula for e.g. a general nonlinear statistics on the transmission
eigenvalues in the non-ideal case

〈T λ1
1 · · ·T λnn 〉(γ�1) '〈T λ1

1 · · ·T λnn 〉(0)

+ γ
(
nR(nR + n)〈T λ1

1 · · ·T λnn 〉(0) − (nR + n)2〈T λ1+1
1 · · ·T λnn 〉(0)

)
(9.21)

if n = nL ≤ nR. Equation (9.21) efficiently generates nonlinear statistics for the
weakly non-ideal case exploiting the known results in the ideal case [87, 124]. This is the
second main result of our paper.

9.2.2 Universal conductance fluctuations
Let us first consider the first two moments of the conductance through the cavity. In the
ideal case, they are given by [14, 110, 79]

〈G〉(0) = nLnR
nR + nL

(9.22)
〈
G2
〉

(0)
= n2

Ln
2
R

(nL + nR − 1)(nL + nR + 1) . (9.23)

while higher moments in the ideal case have been derived using a variety of analytical
methods (see e.g. [102, 103, 104]). Equation (9.20) directly yields the first-order correction
in γ for the n-th moment of the conductance: it suffices to multiply (9.20) by (∑i Ti)n
and integrate over the Ti’s.

This yields

〈Gn〉(γ�1) ' 〈G
n〉(0) + γ

[
nR(nR + nL) 〈Gn〉(0) −

(nR + nL)2

nL

〈
Gn+1

〉
(0)

]
, (9.24)

namely a general formula that expresses the n-th moment of conductance in the weakly
non-ideal case as a combination of the n-th and (n + 1)th moments in the ideal case.
Applied to the case of the average conductance itself, using (9.22) and (9.23), it produces

〈G〉(γ�1) '
nLnR
nR + nL
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− γ
[

nLn
2
R

(nL + nR − 1)(nL + nR + 1)

]
(9.25)

We note that the correction term is always negative, which implies that a larger opacity
γ lets the conductance decrease, as expected.

In figure 9.2 we compare the exact results for 〈G〉(γ) for the case nL = 1 (obtained by
multiplying equation (11) on [138] by G and integrating over G between 0 and nL = 1)
with our approximate formula (9.24) for n = 1. The approximation for small γ proves
to be excellent, with relative errors of the order of 10 − 15% for γ as large as 0.5 − 0.6.
However, the accuracy gets worse as one considers higher and higher moments.

Our general formula (9.24) eventually allows to compute the first correction in γ to
the variance of G,

Var(G)(γ�1) =
〈
G2
〉

(γ�1)
− 〈G〉2(γ�1) (9.26)

for any nL, nR and afterwards for a large number of propagating channels, where for γ → 0
we expect to recover the universal conductance fluctuation result (9.6) for β = 2.

In order to make the asymptotic limit more transparent, we set nL = n and nR = κn.
This gives

Var(G)(γ�1) '
κ2n2

(κ+ 1)2 (κ2n2 + 2κn2 + n2 − 1) (9.27)

+
(

2 (κ4 − 2κ3 + κ2)n4

(κ+ 1) (κ2n2 + 2κn2 + n2 − 4) (κ2n2 + 2κn2 + n2 − 1)

)
γ (9.28)

Setting n → ∞ and κ = 1 (symmetric cavities), the first term in (9.28) correctly
reproduces 1/16 from (9.6). It is interesting to notice that the correction term also
attains a finite limit 2(κ−1)2κ2

(κ+1)5 for n→∞, and that this correction vanishes for symmetric
cavities (κ = 1). The persistence of universal conductance fluctuations even in the case of
weakly non-ideal cavities is a new effect that may be within reach of current experimental
capabilities.

9.3 Higher orders of γ

9.3.1 Expansion in Schur polynomials
The previous argument can be generalized to obtain the following orders of γ. This
generalization is not straightforward, and it was one of the main results of the work I did
during my PhD on this subject [121].

Let (a)n = a(a+ 1) · · · (a+ n− 1) be the rising factorial and let

2F1(a, b; c;x) =
∑
n≥0

(a)n(b)n
(c)nn! x

n (9.29)

be the hypergeometric function. Let F be the N1 ×N1 matrix whose elements are

Fij = 2F1(N2 + 1, N2 + 1; 1; γiRj). (9.30)
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Figure 9.2 — Comparison between 〈G〉 in the general γ case and the linear approxima-
tion in γ, for nL = 1 and nR = 5.

We recall that when the non-ideal lead supports N1 channels, the j.p.d.f. of reflection
eigenvalues is given by [138]

P
(γ)
2 (R) = Z detN(1− γ)∆(R)

∆(γ) det(F)
N1∏
i=1

(1−Ri)N2−N1 , (9.31)

where Z is a normalization constant,

Z = N !
N1!N2!

N1∏
i=1

(N2)!2
(N2 + i)!(N2 − i)!

. (9.32)

Again, the expression (9.31) is hardly operational. We therefore start by writing it in a
perturbative way, i.e. as an infinite series in γ. This is the same procedure as before, but
we no longer assume that all values of γi are the same.

Let a non-increasing sequence of positive integers λ1, λ2, . . . be called a partition of
n if ∑i λi = n and let this be denoted by λ ` n. The number of parts in λ is `(λ) and
we assume λm = 0 if m > `(λ). Partitions can be used to label a very important set of
symmetric polynomials known as Schur polynomials, which are denoted by sλ. Assuming
N1 variables, they are defined by

sλ(x) = 1
∆(x) det

(
xλi−i+N1
j

)
. (9.33)

For example, the first few such polynomials are given by

s0(x) = 1, s1(x) =
N1∑
i=1

xi, (9.34)
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s11(x) =
N1∑
i<j

xixj, s2(x) = s11(x) +
N1∑
i=1

x2
i . (9.35)

If we define

αλ =
N1∏
i=1

(
N + λi − i

N2

)2

, (9.36)

the following expansion can be established:

det(F) = ∆(γ)∆(R)
∑
λ

αλsλ(γ)sλ(R), (9.37)

where the infinite sum is over all possible partitions. This follows from the nice structure
of Fij, which depends on the indexes ij only through the combination γiRj. An account
of this and similar identities can be found for example in the book by Hua [67].

In order to use (9.37) to express the j.p.d.f. of reflection eigenvalues, it is useful to
factor out the α0 term and notice that

αλ
α0

= [N ]2λ
[N1]2λ

, (9.38)

where

[N ]λ =
`(λ)∏
i=1

(N + λi − i)!
(N − i)! (9.39)

is a generalization of the rising factorial. The normalization constant then simplifies as

Z ′ = Z α0 =
N1∏
i=1

(N − i)!
(N1 − i)!(N2 − i)!i!

. (9.40)

This is precisely the normalization constant missing from (9.5). Finally, combining (9.5),
(9.31), (9.37) and (9.38) we get the final result,

P
(γ)
2 (R)
P

(0)
2 (R)

= Z ′det(1− γ)N
∑
λ

[N ]2λ
[N1]2λ

sλ(γ)sλ(R). (9.41)

This equation generalizes the fact that the j.p.d.f. (9.41) equals the j.p.d.f. of the ideal
case times a correction which can be systematically expanded in powers of γ.

9.3.2 Computing observables
Since any observable is a symmetric function of the reflection eigenvalues, it must be
expressible as a linear combination of Schur polynomials; hence it suffices to obtain the
average value of sµ(R) for an arbitrary partition µ. In this way we are led to consider the
multiple integral ∫ 1

0
∆2(R)sλ(R)sµ(R)

N1∏
i=1

(1−Ri)N2−N1dR, (9.42)
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(where dR ≡ ∏j dRj) which is a generalization of Selberg’s integral [57]. However, this is
difficult to evaluate directly. One way to proceed is to express the product of two Schur
polynomials again as a linear combination of Schur polynomials,

sλ(R)sµ(R) =
∑
ν

Cν
λµsν(R), (9.43)

where the constants Cν
λµ are known as Littlewood-Richardson coefficients [122]. There is

no explicit formula for them, but they can be computed using some recursive algorithms
and there are tables for the first ones. For instance, the coefficients with ν up to 4 are
given by

s0sλ = sλ, s1s1 = s2 + s11,

s2s1 = s3 + s21, s11s1 = s111 + s21,

s3s1 = s4 + s31, s21s1 = s31 + s22 + s211,

s2s2 = s4 + s31 + s22, s2s11 = s31 + s211,

s111s1 = s1111 + s211, s11s11 = s1111 + s211 + s22.

By means of the Littlewood-Richardson coefficients, we only need to consider the
simpler integral

Iν =
∫ 1

0
∆2(R)sν(R)

N1∏
i=1

(1−Ri)N2−N1dR, (9.44)

which is known to be given by [77, 76]

Iν = sν(1N1)
N1∏
i=1

i!(N1 + νi − i)!(N2 − i)!
(N + νi − i)!

, (9.45)

where sν(1N1) is the value of a Schur polynomial when all its arguments are equal to unity.
If we combine the above result with Z ′ we get a substantial simplification, which is

manifestly a rational function of N1 and N2, i.e. the variable N1 no longer appears as the
limit to products. The result is

Z ′Iν = [N1]2νχν(1)
[N ]ν |ν|!

, (9.46)

where ν ` |ν| and χ is the character function in the permutation group, so χν(1) is the
dimension of the irreducible representation of that group associated with partition ν (to
arrive at this result we have used that sν(1N1) = χν(1)[N1]ν/n!). The final result is that
the average value of sµ(R), with respect to the j.p.d.f. (9.41), is given by

〈sµ(R)〉γ = detN(1− γ)
∑
λ

Dµλsλ(γ), (9.47)

with
Dµλ = [N ]2λ

[N1]2λ

∑
ν

Cν
λ,µ

[N1]2νχν(1)
[N ]ν |ν|!

. (9.48)

— 148 —



9.4. Summary of results

9.3.3 The leading order
In this way any observable in the finite-γ regime can be expressed in terms of observables
computed in the ideal regime. For example, to leading order we have

P
(γ)
2 (R)
P

(0)
2 (R)

∝
[
1 + N

N1

(
N

N1
s1(R)−N1

)
Trγ

]
. (9.49)

As a first application, let 〈Gn〉γ be the average value of the n-th moment of the
conductance in the non-ideal case. Using (9.49) and the fact that s1(R) = N1 − G, it is
easy to see that the difference between the weakly non-ideal case and the ideal case is
given to leading order by

〈Gn〉γ − 〈G
n〉0 ≈

N

N1
Trγ

[
N2 〈Gn〉0 −

N

N1

〈
Gn+1

〉
0

]
. (9.50)

A similar estimate holds for other transport statistics.

9.4 Summary of results
In summary, combining the theory of symmetric functions and generalized Selberg inte-
grals we presented a systematic perturbation theory in the opacity matrix γ for the jpd
of reflection eigenvalues in chaotic cavities with β = 2 and supporting one ideal and one
non-ideal leads. This jpd is found to be given by the standard Jacobi ensemble (9.5),
valid for the ideal case, times a correction that can be systematically expanded in γ (see
(9.41)). Using this result, we computed the average and variance of conductance, as well
as average shot-noise, up to the second order in γ and moments of conductance to leading
order.

Our results are valid for arbitrary N1, N2, in contrast with previously available results
which are exact in γ but perturbative in N1, N2 and often limited to the leading order
term as N → ∞. Comparison with numerics for N1 = 1 showed that our perturbative
expressions are generally rather accurate for moderate γ, and have the advantage of
a complete analytical tractability. The formula obtained is then employed to find a
general expression connecting the moments of the conductance in the weakly non-ideal
case with those pertinent to the completely ideal case, and in particular to probe universal
conductance fluctuations even to first order in γ in the limit N →∞. This is a new effect
that might be within reach of current experimental capabilities.
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Conclusions

When the flush of a newborn sun fell first on Eden’s green and gold,
Our father Adam sat under the Tree and scratched with a stick in the mold;
And the first rude sketch that the world had seen was joy to his mighty heart,
Till the Devil whispered behind the leaves: “It’s pretty, but is it Art?”

Rudyard Kipling. – The Conundrum of the Workshops

This thesis puts together three years of work in random matrix theory, and it focuses
in one particular aspect of it: the counting of eigenvalues inside a given interval. While
this problem has been treated in the past in many occasions [43, 128, 54, 33], there were
very few results for number statistics outside of the classical bulk and edge regimes.

The beginning of my work was not on this exact subject. I started working in ap-
plications of random matrix theory to quantum transport, which is described in chapter
9. We were able to show that the effects of impurities in channels of a quantum dot can
be obtained in terms of quantities calculated in the ideal case, and we provided the tools
to perform this calculation. The full general case, although not trivial, was obtained in
terms of Schur polynomials, a natural setting for symmetric variables such as transmission
eigenvalues of a quantum transport.

From this interest we shifted to more general considerations about the Cauchy ensem-
ble, a class of matrices that emerges naturally from quantum transport whose average
density of eigenvalues has the remarkable property of being supported on the whole real
line. The statistics of the number of positive eigenvalues of a Gaussian matrix was ob-
tained in [89, 90], and we wanted to know if the same technique could be applied to a
different case, the Cauchy ensemble, where the average density of eigenvalues presents no
edge. To our surprise, the fluctuations of positive eigenvalues of the Cauchy ensemble
were precisely twice the size of the fluctuations of the Gaussian ensemble, as shown in
figure 10.1. For the variance of the index of the Cauchy ensemble we find

Var(NC
+ ) = 2

βπ2 logN +O(1), (10.1)

This result lead us to consider the role of the edge in fluctuations. Previous results for
fluctuations of Gaussian eigenvalues [43, 100] showed that, for small intervals, the number
variance grows logarithmically with the interval size. Taking a symmetric interval [−L,L],
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Figure 10.1 — Numerical evaluation of the variance of the index using β = 2 for Cauchy
unitary ensemble (denoted NC

+ , top line and points) and the Gaussian unitary ensemble
(denoted NG

+ , bottom line and points). See reference [96].

it is clear that this variance should go to zero if the interval contains the entire support of
the average distribution, as exponentially few eigenvalues would fall outside the interval
and fluctuations would not be produced. From logarithmic growth to zero a matching
function is required, and this change in behavior would happen in the mesoscopic scale.

Information about mesoscopic scales, when the interval considered was of the order of
the system size, were almost inexistent, and in collaboration with Majumdar, Schehr and
Vivo I obtained, for the first time, the full picture of the number statistics of GUE [97],
as we discussed in chapter 7. The results for the number variance matched numerical
simulations remarkably well, as shown in figure 10.2.

The method to obtain this result, the Coulomb gas method, proved to be very general
and yields results for a large class of random matrices, those whose eigenvalue distribution
can be written as equation (4.1). We explored this results for Wishart matrices and
Cauchy matrices in chapter 8, but the same study can be applied for the Circular ensemble
or the Jacobi ensemble, as they share the same structure for their eigenvalue distribution.

Applying this method to other ensembles showed interesting similarities for these very
different types of matrices. In particular, the structure of the number variance for the so
called extended bulk regime is similar. We find, for large values of N ,

Var(NI) ≈


2
βπ2 log

(
NL(2− L2) 3

2
)
, Gaussian and I = [−L,L]

2
βπ2 log

(
Nl(3− l) 3

4
)
, Wishart and I = [1, 1 + l]

2
βπ2 log

(
NL

1+L2

)
, Cauchy and I = [−L,L]

(10.2)
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This structure Var(NI) ≈ 2
βπ2 log ∆, where ∆ is a scaling variable, hints for a connec-

tion between ∆, the potential of the ensemble V (x) and the interval I, which still eludes
us. Numerical simulations, as displayed in figure 10.3, show that this variable seems to
be the correct scaling variable for the number variance. As noted in [28], this number
variance has most likely the expansion

Var(NL) = 2
βπ2 log ∆ + cte +O

( 1
∆

)
. (10.3)

This clarifies the “extended bulk regime” as the region in which ∆ is large, and we
notice that ∆ becomes small either when we approach the bulk regime (L→ 1

N
for GUE)

or when we approach the edge regime (L →
√

2 for GUE). Not surprisingly, ∆ matches,
in these regimes, their respective scaling variables.

Another important question raised by this scaling variable is its maximum. The result
we obtained for the number variance of GUE shows that the interval I = [−1/

√
2, 1/
√

2]
has the largest fluctuation of eigenvalues of all possible symmetrical intervals. This num-
ber L = 1/

√
2, which represents halfway through the semicircle, has no particular signifi-

cance in random matrix and its interpretation is not yet clear. This maximum is certainly
not universal, as the Cauchy ensemble, also considering a symmetric interval, reaches its
maximum variance at L = 1.

The method presented to tackle the number statistics problems can be easily adapted
to solve other types of linear statistics. The inclusion of Lagrange multipliers to force
constrains and their interpretation in the electrostatic context are very general tools that
can be applied to other observables of a random matrix ensemble.

We summarize the main new results presented in this work

• The imposition of a hard wall in ζ in the spectrum of invariant random matrix can
be calculated by adding a δ(x − ζ) contribution to the integral equation used to
obtain the average density. This result is used extensively in the problems

– The index problem, placing a hard wall in zero, for Gaussian and Cauchy
ensemble in chapter 6.

– In the calculation of fluctuations in the number of eigenvalues of the Gaussian
ensemble inside an interval I = [−L,L] by placing hard walls in L and −L in
chapter 7.

– In the calculation of fluctuations in the number of eigenvalues in the Wishart
and Cauchy ensembles for intervals [1, L] and [−L,L] respectively in chapter
8.

• The variance of the number of positive eigenvalues in the Cauchy ensemble is twice
as large as the variance for positive eigenvalues of the Gaussian ensemble. This
difference is caused by the absence of a compact average distribution of eigenvalues
for the Cauchy ensemble, and is presented in chapter 6.
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• The average density of eigenvalues for the Cauchy ensemble is supported on the
whole real line, but the constrained average density, obtained when we impose a
fraction k of eigenvalues to be positive and k 6= 1/2, is supported in two disjoint
intervals, one of which is compact (see figure 6.7).

• The variance of the number NL of eigenvalues of a Gaussian matrix inside an interval
I = [−L,L] depends strongly on L. Previous results were only able to provide
results for L ∼ 1

N
or L ∼

√
2, bulk and edge regime. We provided in chapter 7 the

full probability density function of NL for large N and we obtained the asymptotic
behavior of its variance for all values of L. The new results we obtained are for
values of L in the “extended bulk” regime, which are values of L inside the support,
and “tail” regime, which are values of L far away from the support. This matching
function of the variance from bulk to edge regime has remarkable importance in
the context of cold atoms, and previous studies tried without success to obtain its
leading behavior for large N [137].

• The same calculation of the statistics of the number of eigenvalues inside an interval
was performed for Wishart and Cauchy ensembles, and these results are discussed
in chapter 8.

– The asymmetric nature of the average density of Wishart eigenvalues brought
a new difficulty to calculations, we needed an extra equation to determine pa-
rameters that, in the symmetric case, would be determined by the symmetries
of the problem. We used an insight in the electrostatic equivalent problem, the
fact that the chemical potential of two disjoint parts of the spectrum should
be the same, to obtain the extra equation and calculate the number variance
for the Wishart case.

– The absence of edge in the Cauchy average density of eigenvalues generates
an interesting discussion on the asymptotic behavior of the number variance.
When we consider the symmetric interval [−L,L] for the number variance, the
Coulomb gas method can only provide results when 1/N < L < N , where N is
the matrix size. This indicates the presence of an effective edge at the average
position of the largest eigenvalue in the Cauchy matrix, and our classification of
extended bulk, edge and tail, surprisingly, also applies to the Cauchy ensemble.

• The j.p.d.f. of transmission eigenvalues in a quantum chaotic cavity with non-
deal leads can be written as an asymptotic expansion in the impurities γ whose
coefficients are related to the j.p.d.f. of the ideal case. This allows us to write the
moments of many interesting quantities of this problem, such as conductance and
shot noise, as expansions in γ whose coefficients are determined using the statistics
of the much simples ideal case, when γ = 0. These results are described in chapter
9.

The results presented in this thesis yielded 3 publications, and there are non published
results in this thesis spanning results from two articles in final stages of preparation.
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• Rodríguez-Pérez, S., Marino, R., Novaes, M., and Vivo, P. Statistics of quantum
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• Marino, R., Majumdar, S. N., Schehr, G., and Vivo, P. Index distribution of Cauchy
random matrices. J. Phys. A: Math. Theor. 47 (2014), 055001.
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