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Essentially, all models are wrong,

but some are useful.

G������ B��, 1987
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Résumé en français

N���� ������� de thèse porte sur la détection et la modélisation de configura-

tions dynamiques dans des séquences d’images en recourant à des approches

statistiques locales sans apprentissage supervisé. Deux cas peuvent se présenter :

1. les objets étudiés n’interagissent pas, et les dynamiques individuelles peuvent

être analysées indépendamment ;

2. les objets étudiés interagissent, et la dynamique à analyser est celle du groupe

d’objets entier.

En ce qui concerne les dynamiques individuelles, nous nous intéressons à cer-

taines structures de la cellule, les vésicules, qui sont observées à la frontière de la

cellule – où elles jouent un rôle essentiel pour la vie et les échanges cellulaires – en

microscopie de fluorescence par réflexion totale interne (TIRF).

La dynamique de groupe est notamment rencontrée dans les mouvements de

tissus cellulaires, le développement embryonnaire ou les mouvements de foules.

Ces derniers sont particulièrement intéressants en termes d’évaluation car de nom-

breusesméthodes d’analyse demouvement de foule ont été proposées dans la littéra-

ture. Ce domaine d’application représente donc un excellent support expérimental.

Dans les deux cas d’étude, nous nous intéressons auxmouvements de collections

d’objets similaires – molécules, cellules ou piétons – évoluant sur un fond immobile,

et imagés par un dispositif statique. Du point de vue du traitement d’image, de nom-

breuses questions sont abordées, notamment la détection (spatio)temporelle d’objets

ou d’évènements, la caractérisation de dynamiques ou encore l’estimation de gran-

deurs physiques. Dans l’un ou l’autre cas d’étude, nous abordons les problématiques

selon une démarche commune, essentiellement dirigée par les données et mettant

en œuvre des tests statistiques. Par ailleurs, nous avons le souci de proposer des mé-

thodes nécessitant le réglage d’un faible nombre de paramètres, soit peu sensibles,

soit calibrés avec des règles statistiques.

Nous nous intéressons en premier lieu à l’analyse de dynamiques membranaires

de la cellule enmicroscopie optiquedefluorescence. Pour cause, la vie de la cellule est

sujette à un équilibre très précis des différents éléments chimiques qui la peuplent.

La régulation de cet équilibre passe nécessairement par des échanges avec le milieu

extérieur, donc par le franchissement de la membrane plasmique qui enceint la cel-
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lule. Notre objectif est de caractériser les dynamiques de vésicules évoluant dans la

cellule. Les vésicules sont des intermédiaires de transport véhiculant divers compo-

sants dans travers la cellule. Dans le cas de l’exocytose, les vésicules déplacent ces

composants à l’extérieur de la cellule. Pour ce faire, les composants sont transportés

jusqu’à la membrane plasmique de la cellule, puis la vésicule fusionne avec celle-ci

pour libérer son contenu.

Pour analyser ces dynamiques membranaires, un premier travail consiste à dé-

tecter les vésicules d’intérêt. Pour cela, nous proposons uneméthode de détection de

spots performante et simple à paramétrer. Une analyse, requérant des informations

plus biologiques et biophysiques, permet ensuite de détecter et reconnaître certains

évènements dynamiques dans la cellule, en particulier la fusion de la vésicule avec

lamembrane plasmique. Les paramètres biophysiques associés sont ensuite estimés.

Dans ce cadre, nous proposons des modèles de fusion, dont nous estimons les pa-

ramètres pour plusieurs conditions expérimentales. En particulier, nous mettons en

évidence les comportements différents de deux protéines d’intérêt : le récepteur à la

transferrine (TfR) et la Langérine.

Dans la troisième partie de la thèse, nous étudions la classification de mouve-

ments de groupes, la détection des chemins les plus empruntés dans la vidéo et la

détection de comportements anormaux rares, parfois suspects. Comme indiqué plus

haut, nous avons principalement évalué nos méthodes d’analyse de mouvements de

groupe sur des vidéos de foules. Aucune comparaison deméthode n’est actuellement

possible sur des images de biologie. En revanche, nos approches trouvent un inté-

rêt certain pour analyser des comportements collectifs souvent observés en imagerie

biologique.

La thèse comprend trois parties : la détection de spots, l’analyse de dynamiques

individuelles et l’analyse de dynamiques de groupes.

Partie I. Détection de spots

Dans le cadre de l’analyse d’images demicroscopie, la détection automatisée des élé-

ments à étudier constitue la plupart du temps une étape préliminaire essentielle qui

conditionne l’ensemble des analyses ultérieures, que ce soit le suivi de vésicules [Mei-

jering et al., 2012], la classification de mouvements [Sage et al., 2005] ou la caractéri-

sation de dynamiques membranaires [Mele et al., 2009]. Dans ce dernier cas, nous

cherchons à segmenter les vésicules imagées en microscopie de fluorescence à ré-

flexion totale interne (TIRF). Ces vésicules sont généralement de tailles semblables,

et il convient donc d’estimer l’échelle caractéristique de ces objets.

Des études comparatives [Smal et al., 2010, Rezatofighi et al., 2012] ont per-

mis d’évaluer les performances de nombreuses méthodes de détection non supervi-
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sées : produitmulti-échelle d’ondelettes (WMP [Olivo-Marin, 2002]), détectionmulti-

échelle après stabilisation de variance (MS-VST [Zhang et al., 2007]), détection de

« dômes » (HD [Smal et al., 2008], MPHD [Rezatofighi et al., 2012]), filtre de rehausse-

ment de contraste de spots (SEF [Sage et al., 2005], TH [Bright and Steel, 1987], MTH

[Soille, 2003]), extraction de points caractéristiques (IFD [ter Haar Romeny, 2003])...

La plupart de cesméthodesnécessitent un ajustementfindeplusieurs paramètres

pour obtenir de bons résultats [Rezatofighi et al., 2012,Smal et al., 2010]. Plus précisé-

ment, ces détecteurs ont en commun deux types de paramètres : l’échelle des objets

à détecter et le seuil de détection. Afin de réduire le nombre et la sensibilité des pa-

ramètres, nous développons une méthode de segmentation de vésicules avec sélec-

tion d’échelle automatique et seuillage adaptatif, dénommée ATLAS1. Elle s’appuie

sur un filtre laplacien de gaussienne (LoG), dont la variance est automatiquement sé-

lectionnée dans un ensemble fini de valeurs prédéfinies. Un seuillage adaptatif local

permet alors de décider si un pixel appartient ou non à une vésicule, même lorsque

l’arrière-plan est très complexe. Sous l’hypothèse d’unedistribution localement gaus-

sienne des intensités de l’image, le seuil est inféré, en chaque pixel, d’une probabilité

de fausse alarme choisie par l’utilisateur pour l’ensemble des images traitées.

Sélection automatique de l’échelle

La sélection d’échelle s’appuie sur une représentation multi-échelle de l’image I à

segmenter. La représentationmulti-échelle est une famille d’images
�

Ls

�
s ∈S obtenues

par convolution avec des noyauxGs d’échelles s croissantes prises dans un ensemble

de valeurs prédéfinies S ⊂ R
∗
+
:

∀ s ∈ S , Ls = Gs ∗ I ,

où ∗ désigne l’opération de convolution. Pour construire la représentation multi-

échelle d’un signal continu, on peut utiliser des noyaux gaussiens de variance s [Lin-

deberg, 1998]. Cependant, pour des signaux discrets comme les images, il est recom-

mandé d’utiliser des noyaux également discrets analogues au noyau gaussien, appe-

lés plus simplement noyaux gaussiens discrets. On les obtient à l’aide des fonctions de

Bessel Bn [Lindeberg, 1990] :

∀ s ∈ S , ∀n ∈ Z , Gs (n) = e
−s Bn(s ) .

On applique ensuite un opérateur laplacien normalisé noté α(s )∆ qui permet

d’augmenter le contraste des vésicules par rapport à l’arrière-plan [Sage et al., 2005].

Le scalaire α(s ) désigne un facteur de normalisation de Gs . Par associativité et com-

mutativité de l’opérationde convolution, le laplacienpeut être appliquéune seule fois

1Adaptive threshold of LoG with auto-selected scale
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directement sur I , et non pas à chaque échelle. On obtient ainsi le LoG multiéchelle

H :

∀ s ∈ S , Hs = α(s )Gs ∗ ∆I .

Nous cherchons ensuite, parmi les échelles deS, celle qui permet d’augmenter au

mieux le contraste des vésicules. Pour la déterminer, on s’intéresse auxminima locaux

de H dans l’espace S × ΩI , appelés blobs. Ces blobs sont principalement localisés en

deux lieux précis :

• au centre des spots gaussiens correspondant aux vésicules ;

• au niveau des pixels brillants induis par le bruit.

Nous cherchons l’échelle pour laquelle la plus grande proportion de blobs est issue

des vésicules, et nondubruit. La distributiondunombre deblobs par unité de surface

en fonction de l’échelle nous informe sur l’échelle optimale. En effet, on peut com-

parer cette distribution calculée sur l’image I à la distribution obtenue sur une image

g ne présentant que du bruit. Les courbes obtenues pour I et g se distinguent autour

d’une certaine échelle s�, caractéristique de l’image I , qui offrira les meilleurs résul-

tats de détection. Pour la détecter, nous proposons de maximiser le rapport entre les

deux distributions. Ceci revient à faire un compromis entre taux de bonnes détections

(spots) et taux de fausses détections (bruit).

Segmentation adaptative des spots

Une fois l’échelle optimale s� sélectionnée, nous nous concentrons sur le LoG cor-

respondant, H
s�
, que nous seuillons pour ne retenir que les valeurs les plus faibles,

correspondant principalement aux vésicules.

Lorsque l’arrière-plan est complexe et le contraste local variable, un seuil global ne

permet pas de segmenter correctement les vésicules. Il faut alors adapter la valeur du

seuil au contenu local de l’image. Pour cela, nous proposons de déterminer ce seuil,

en chaquepoint, en considérant l’histogramme local duLoG.Nous calculons d’abord,

en tout point p ∈ ΩI , la moyenne locale µ
�
p
�
et la variance locale σ2

�
p
�
deH

s�
sur une

fenêtreW :

µ
�
p
�
=

�

W ∗ H
s�

��
p
�
,

σ2
�
p
�
=

�

W ∗ H 2
s�

��
p
�
− µ2�p� .

En supposant que H
s�
a une distribution locale gaussienne, on peut alors déduire le

seuil local τ
�
p
�
:

τ
�
p
�
= Φ

−1�PFA�σ�p� + µ
�
p
�
,

où Φ est la fonction de répartition de la loi normale centrée réduite et PFA est une

probabilité de fausse alarme choisie par l’utilisateur.



P����� II. A������ ��� ���������� ������������� xi

Résultats expérimentaux

Nous utilisons différents bancs de test introduits dans [Smal et al., 2010, Pécot et al.,

2015,Ruusuvuori et al., 2012], et nous enproposons quatrième2, pour comparer notre

méthode aux détecteurs de l’état de l’art : WMP [Olivo-Marin, 2002], MS-VST [Zhang

et al., 2007], TH [Bright and Steel, 1987], MTH [Soille, 2003], HD [Smal et al., 2008],

MPHD[Rezatofighi et al., 2012], SEF [Sageet al., 2005], IDF [terHaarRomeny, 2003],C-

CRAFT [Pécot et al., 2015] et LR-MRF [Ruusuvuori et al., 2012]. Dans la quasi-totalité

des cas, nous obtenons unmeilleur score que la méthode la plus performante.

Qualitativement, nous mettons en évidence que la précision de la segmentation

des spots sur images réelles, en particulier en comparant nos cartes de détection à

celles de la méthode obtenant les meilleurs résultats sur simulations après ATLAS, à

savoir MS-VST.

Le logiciel ATLAS peut être testé en ligne sur le portail web de l’équipe-projet Ser-

pico3.

Partie II. Analyse des dynamiques individuelles

Cette partie de la thèse est menée en collaboration avec l’équipe de Jean Salamero à

l’Institut Curie, UMR 144 CNRS.

Nous étudions des complexes moléculaires impliqués dans les dernières étapes

de l’exocytose, à savoir la fin de la phase de transport par les vésicules (le long desmi-

crotubules, puis dans le réseau de filaments d’actine), l’arrimage à la membrane et la

fusionmembranaire. Nous nous intéressons à trois protéines associées aux vésicules :

Rab11, associée aux vésicules durant la phase de transport, et Langérine et TfR, deux

protéines transmembranaires transportées par des vésicules.

Pour imager la cellule vivante, on utilise généralement en microscopie optique

des techniques de microscopie de fluorescence. Un faisceau laser est émis en direc-

tion de la cellule pour exciter des marqueurs fluorescents qui ont été liés aux pro-

téines d’intérêt (pHluorine pour Langérine et TfR, mCherry pour Rab11). Dans notre

étude, nous utilisons la microscopie TIRF, qui permet de n’exciter qu’une épaisseur

très faible de la cellule au niveau de la membrane, et ainsi d’isoler la région où ont

lieu les dernières étapes de l’exocytose [Axelrod, 2008]. En pratique, le faisceau laser

est émis avec un angle d’incidence supérieur à l’angle limite de réfraction, de sorte

qu’il est totalement réfléchi par l’interface entre la lamelle de verre et la cellule. Ce-

pendant, une faible quantité d’énergie (l’onde évanescente) pénètre dans la cellule,

et son amplitude décroît exponentiellement avec la profondeur. Ainsi, seules les pro-

téines marquées proches de l’interface sont principalement excitées.

2serpico.rennes.inria.fr
3mobyle-serpico.rennes.inria.fr
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Classification des dynamiques membranaires de Rab11

Notre objectif est de caractériser le comportement dynamique des vésicules et des

molécules cargo, c’est-à-dire transportées par la vésicule, au moment de l’exocytose.

Dans un premier temps, il faut détecter le lieu et lemoment où se produit l’exocytose.

Nous proposons uneméthode de classification instantanée simple s’appuyant sur un

test statistique d’hypothèses. Ces hypothèses sont élaborées à partir d’une représen-

tation mathématique dumécanisme d’exocytose.

Avant d’atteindre la membrane puis de libérer leur contenu, les vésicules tran-

sitent sur le cytosquelette. Certaines vésicules s’amarrent alors à la membrane et

peuvent ensuite fusionner avec elle. Notons I la séquence d’images à analyser et

I
�
p, t

�
la valeur au point p dans la t -ième image. Nous proposons deux modèles dy-

namiques pour décrire l’évolution spatio-temporelle des vésicules :

• Translationpour les vésicules enphasede transport oud’amarrage, avec conser-

vation de l’intensité :
∂I

∂t

�
p, t

�
= −∇I

�
p, t

�
·w ,

où w =
�
u , v

�T est la translation de la vésicule segmentée, valable pour tous les

points de la vésicule, et ∇ désigne l’opérateur gradient ;
• Diffusion pour les vésicules fusionnant avec la membrane :

∂I

∂t

�
p, t

�
= D ∆I

�
p, t

�
,

où D est le coefficient de diffusion pour cette vésicule et ∆ désigne l’opérateur

laplacien 2D.

Ces modèles dynamiques ne sont valides que pour des vésicules présentant un

changement de fluorescence dans le temps. Une étape préalable à cette classification

consiste à détecter, parmi les vésicules segmentées par ATLAS, celles qui se déplacent

ou changent d’apparence, vésicules que nous qualifierons de dynamiques. Une vési-

cule segmentée à l’instant t est considérée comme dynamique si au moins un de ses

pixels subit un changement en t [Boulanger et al., 2010a].

Une fois les vésicules dynamiques détectées, nous estimons les paramètres des

modèles (respectivement, les deux composantes de translationu ,v et le coefficient de

diffusionD) par une technique demoindres carrés. Pour distinguer l’état dynamique

(translation ou diffusion) de chaque vésicule, nous procédons à un test de vraisem-

blancegénéralisépour comparer lesdeuxmodèles ainsi estimés et retenons lemodèle

qui a la meilleure vraisemblance.

Modèle de fusion pour TfR et Langérine

Pour comparer les comportementsdeTfRet Langérine, deuxprotéines transmembra-

naires, nous proposons un modèle de diffusion augmenté d’un paramètre, dit temps
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de résidence, τ, qui coïncide avec la durée nécessaire à une protéine pour quitter la

vésicule :

I
�
p, t

�
=

A0/τ

σ2PSF

exp���−
t

τ
−

�
p
�2
2

2σ2PSF

��
�

+

� t

0

A0/τ

2D (t − u) + σ2PSF

exp���−
u − t0

τ
−

�
p
�2
2

4D (t − u) + 2σ2PSF

��
�du ,

où A0 est l’amplitude initiale du spot et σ2PSF sa variance initiale.

Les évènements de fusion membranaire sont plus aisément détectés pour TfR et

Langérine que pour Rab11. Ces protéines transmembranaires sont en effet associées

à un marqueur pH-sensible. Comme le pH augmente subitement au moment de la

fusion, nous détectons fiablement les spots apparaissant au fil de la séquence, tou-

jours à l’aide d’ATLAS. Parmi les évènements de fusion, on observe que certains ne

donnent pas lieu à une diffusion. Pour éliminer ceux-ci, nous proposons un test sta-

tistique d’adéquation au modèle de fusion.

Une fois les évènements diffusifs détectés, les paramètres du modèle de diffu-

sion sont également estimés par une technique de moindre carrés, mais certaines

améliorations sont proposées pour obtenir des résultats performants. En particulier,

nous mettons en concurrence plusieurs estimations obtenues avec plusieurs initiali-

sations, et nous retenons celle qui minimise la somme des carrés des résidus.

Des expériences quantitatives sur simulation mettent en évidence les perfor-

mances de notre méthode d’estimation. Nous traitons par la suite un grand jeu de

séquences réelles, pour lesquelles est marquée la TfR ou la Langérine. Ceci nous per-

met finalement d’exhiber les différences de comportement de ces deux protéines au

moment de la fusion, en comparant les distributions du temps de résidence τ dans

ces deux cas.

Partie III. Analyse des dynamiques de groupes

Dans cette dernière partie, nous nous intéressons au mouvement collectif d’entités

mobiles similaires. Comme nous l’avons expliqué en introduction, même si les mé-

thodes sont applicables à des images biologiques, nous utilisons des vidéos de foule

comme support de validation expérimentale.

La vidéosurveillance génère d’énormes quantités de données, qui ne peuvent pas

être intégralement visionnées, et nécessitent donc des outils d’analyse automatisés

[Zhan et al., 2008]. En particulier, l’analyse des mouvements de foule dans les vidéos

est un domaine extrêmement vaste et en pleine expansion, qui englobe notamment

la sécurisation des évènements publiques, la surveillance des lieux des transports en

commun et l’analyse des comportements individuels au sein de groupes.
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Dans ce contexte, nous abordons trois aspects importants :

• la classification de mouvements de groupes [Garate et al., 2014, Solmaz et al.,

2012,Wang et al., 2011,Wu et al., 2014,Zhou et al., 2013],

• la recherche des chemins les plus empruntés [Wang et al., 2011, Zhou et al.,

2011],

• la détection de comportements anormaux [Benezeth et al., 2011,Kim andGrau-

man, 2009,Kratz and Nishino, 2009,Mehran et al., 2009].

Pour répondre à ces problématiques, nous proposons une nouvelle approche repo-

sant sur l’analyse d’une paire ou un triplet d’images seulement, alors que les mé-

thodes usuelles d’analyse de foules requièrent des intervalles de tempsbeaucoupplus

longs (aumoins unedizaine d’images, et parfoismêmedesminutes de vidéo). Ces ap-

proches exploitent en général des cuboïdes spatiotemporels [Feng et al., 2010, Kratz

and Nishino, 2009, Rodriguez et al., 2011], des « tracklets » [Garate et al., 2014, Zhou

et al., 2011] ou plus généralement des trajectoires [Cheriyadat and Radke, 2008, Ro-

driguez et al., 2009, Solmaz et al., 2012,Wang et al., 2011, Zhou et al., 2012]. Contrai-

rement à ces méthodes, les nôtres reposent sur la mesure de champs affines demou-

vement 2D entre images successives, calculées sur une collection de fenêtres : nous

parlerons d’approche instantanée. Nous évitons ainsi d’une étape coûteuse et sou-

vent difficile de suivi individuel des piétons [Baumgartner et al., 2013,Cupillard et al.,

2002,Hu et al., 2008,Idrees et al., 2014,Kratz andNishino, 2012,Rodriguez et al., 2009]

ou d’advection de particules à partir d’un flot optique [Solmaz et al., 2012,Wu et al.,

2010]. Dans nosméthodes, nous n’utilisons ni intégration temporelle, ni calcul de tra-

jectoire, ni phase d’apprentissage.

Sélection ponctuelle de types de mouvement 2D

Nous abordons les trois problématiques sus-citées avec un descripteur commun de

mouvement, basé sur une sélection ponctuelle de types de mouvements affines 2D.

Notre approchen’exploite pas demodèle de comportement humain, et peut s’étendre

à l’analyse de groupes d’entités en mouvement : véhicules, animaux, entités biolo-

giques...

SoitW =

�
W

i

�
i ∈N

une collection de fenêtres de tailles variées et se chevauchant.

Nous considérons trois types de mouvements affines 2D, respectivement translation

(T), divergence (D) et rotation (R). Nous notons θk, i les paramètres du modèle k ∈�
T, D, R

�
pour la fenêtreW

i
. En chaque point p =

�
x, y

�
deW

i
et pour chaque modèle

k ∈
�
T, D, R

�
, la vitessew

k, i
est donnée par les formules suivantes :

• Pour la translation :

wT, i =
��
�
0 0

0 0
��
�
��
�

x

y

��
� +

��
�

b1

b2

��
� avec θT, i = (b1, b2)

T ;
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• Pour la divergence :

wD, i =
��
�

a1 0

0 a1

��
�
��
�

x

y

��
� +

��
�

b1

b2

��
� avec θD, i = (a1, b1, b2)

T ;

• Pour la rotation :

wR, i =
��
�
0 −a2

a2 0
��
�
��
�

x

y

��
� +

��
�

b1

b2

��
� avec θR, i = (a2, b1, b2)

T
.

Cette façon de mesurer le mouvement permet d’éviter de calculer le flot optique,

et facilitera la classification ultérieure du mouvement.

Les paramètres des modèles sont estimés par une méthode robuste dans un

schéma d’estimation multirésolution [Odobez and Bouthemy, 1995] avec le logiciel

Motion2D4. Nous obtenons ainsi de l’ordre d’une centaine de vecteurs de vitesse can-

didats par point (trois par fenêtre dans une trentaine de fenêtres). Nous proposons de

sélectionner lemeilleur candidat selon un critère demaximumde vraisemblance pé-

nalisé basé sur l’hypothèse de conservation d’intensité. La conformité d’un point p

au modèle de vitesse de paramètre θk, i est représentée par la variable aléatoire εk, i

définie par :

εk, i

�
p
�
= I
�

p +w k, i, t + 1
�

− I
�
p, t

�
.

En supposant que chaque variable suit une loi gaussienne centrée, et qu’elles sont

indépendantes, onpeut calculer la vraisemblance jointe dansunpatch centré en p. Le

meilleur candidat en p est ensuite sélectionné selon le critère d’information d’Akaike

corrigé pour tenir compte du petit nombre d’observations fournies par le voisinage

local du point p [Burnham and Anderson, 2002].

Classification de mouvements d’ensemble

Des trois types demouvement affine considérés, nous déduisons huit classes demou-

vement de groupe en fonction des valeurs des paramètres estimés. Les mouvements

divergents correspondent au rapprochement du groupe (divergence positive) ou à son

éloignement (divergence négative). Nous distinguons par ailleurs les mouvements de

rotationdirecte et indirecte, et quatre directionsprincipales de translationpertinentes

dans le référentiel de l’image : nord, ouest, sud et est. Nous obtenons ainsi une carte

de classification préliminaire �c , forcément bruitée.

Pour obtenir la classificationfinale C desmouvements de foule, nous régularisons

�c par une méthode de votes majoritaires. De plus, on voit souvent apparaître côte-à-

côte dans �c des mouvements de divergences ou de rotations opposés. Pour contour-

ner cette difficulté, nous introduisons un processus de vote en deux tours. Au premier

4www.irisa.fr/vista/Motion2D
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tour, nous introduisons des interactions entre classes, appelées inhibition et renfor-

cement ; il permet de sélectionner le type de mouvement : translation, divergence ou

rotation. Le second tour permet d’affiner la classification pour obtenir la carte finale

régularisée avec huit classes de mouvement de foule.

Détection des chemins principaux

Connaissant le type de mouvement affine sélectionné en chaque point, nous dédui-

sons le vecteur de vitesse en chaque point. Nous obtenons ainsi une approximation

pertinente du flot optique. Nous estimons alors la vitesse moyenne dans chaque cel-

lule d’une grille régulière et sur un court intervalle de temps. Cettemesure supposeun

mouvement stationnaire dans la vidéo traitée, hypothèse cohérente avec la recherche

des chemins les plus empruntés dans la scène. Pour retrouver le chemin le plus em-

prunté, nous discrétisons les directions de ces vitesses moyennes (en huit secteurs)

de façon à pointer vers une cellule voisine.

Nous obtenons ainsi un graphe orienté où les nœuds correspondent aux cellules

de la grille et les arêtes sont définies par les directions locales du flot optique moyen.

Ce graphe est en fait réduit à un arbre, car de chaque nœud ne part qu’une arête au

plus. La recherche du plus long chemin dans ce graphe est donc très simple (il suffit

de vérifier qu’il n’existe pas de cycle). Sous l’hypothèse d’unmouvement stationnaire,

nous détectons ainsi les chemins les plus suivis dans la scène.

Détection de comportements anormaux

A partir de la carte de classification préliminaire �c , nous pouvons également détecter

et localiser les comportements localement anormaux. Un mouvement est considéré

comme anormal s’il diffère significativement du mouvement environnant.

Nous introduisons une comparaison d’histogrammes des classes locales demou-

vement de foule. En chaque point p, on mesure la distribution des huit classes de

mouvement dans un voisinage η
�
p
�
de ce point. Nous comparons cette distribution

empiriqueà celles dehuit patchs voisins η
i

�
p
�
répartis autourde p.Unemesurededis-

tance entre histogrammes est calculée, prenant en compte la spécificité des classes.

Les translations ont un caractère circulaire, tandis que les divergences, comme les ro-

tations, s’opposent entre elles.

Nous considérons qu’une anomalie, associée à unmouvement local, peut être ca-

ractérisée en chaque point p à travers la distance minimale entre l’histogramme des

classes dans le patch central η
�
p
�
et ceux dans les patchs voisins η

i

�
p
�
. Autrement dit,

unmouvement local est anormal s’il ne ressemble à aucunmouvement situé à proxi-

mité. Le minimum de ces distances est supposé suivre une distribution des valeurs

extrêmes généralisées [Embrechts et al., 1997], dont nous estimons les paramètres
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avec la méthode décrite dans [Boulanger et al., 2010a]. Nous déduisons ainsi un seuil

sur les distances à partir d’une probabilité de fausse alarme choisie par l’utilisateur,

qui contrôle précisément le taux de fausses détections.

Les expériences sur des séquences simulées et réelles mettent en évidence quan-

titativement l’efficacité de laméthode, tant en termes de détection quede localisation

des anomalies.
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1General introduction

I� ���� ������, we investigate statistical methods to detect, estimate and charac-

terize dynamical events in image sequences. There are two cases:

• Studied objects do not interact, and individual dynamics can be independently

analyzed;

• Studied objects interact, and group dynamics must be analyzed as a whole.

In the case of individual dynamics, our primary focus is on biological image se-

quences showing proteins evolving in a cell, and more precisely at the cell frontier

named plasma membrane. The images are acquired by the means of total internal

reflection fluorescence microscopy (TIRFM), an observation technique dedicated to

plasma membrane dynamics analysis. We model the protein dynamics and estimate

the biophysical parameters in TIRFM image sequences for further biological analysis.

We first propose a new spot detection method with automatic scale selection, aimed

at localizing dynamical events of interest.

Eventually, we focus on image sequences at lower magnifications, that is, depict-

ing groups of cells, for example cell tissues, instead of an isolated cell. Since they are

free of appearance model, the developed methods are quite general and extended to

other applications including crowdmotion analysis in videos.

Whether it is for spot detection, protein dynamics estimation or group motion

analysis, a common philosophy is ubiquitous, however. First, statistical arguments

are used to automatically infer the method parameters. Therefore, the method does

not need to be specified for every single image sequence, and themethod can be used

easily by neophytes in image processing. Secondly, we rely on local approacheswhich

have the advantage of being computationally efficient. Their complexity being typi-

cally proportional to the image sequence data volume, they are particularly recom-

mendable in a context of increasingly big data, for which global approaches cannot

provide reasonable computation time. Local modeling handles spatially varying im-
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age statistics muchmore easily andmore accurately than global modeling, for which

the complexity rapidly explodes if one wants to finelymodel the entire image. Indeed

inevitable stationarity assumptions of global approaches are much reduced in local

approaches. Moreover, the local characteristics of the approach is also true in the tem-

poral dimension when we process image sequences. Such instantaneous methods,

using only a couple of consecutive frames to estimate the dynamics, offer a lot of ad-

vantages, including thepossibility of ensuring real-time computation if needed. Local

approaches also allow neglecting low frequency variations such as spatially varying

background contrast or, in fluorescence microscopy, temporal fading known as pho-

tobleaching.

1.1 Context and motivation

Human body is composed of 1013 to 1014 cells, millions of which are renewed every

second. Correct cell functioning is an essential prerequisite to life, and a segment

of biology in which much remains to be discovered. A key actor of life understand-

ing, cell biology lies at the intersection of the very applied and fundamental life sci-

ences, for example as a cornerstone of evolution theory. As such, it also interacts with

many research fields, ranging from therapy-related fields (e.g., medicine, drug devel-

opment, epidemiology) to technology-related ones (e.g., optics, electronics, physics),

and relies more and more on computer sciences and applied mathematics, specifi-

cally image processing.

In order to detect variations between normal and pathological situations, intra-

and inter-cellular dynamics must be understood. This is done through the observa-

tion and the characterization of molecular processes, among others, which can be

tackled in various ways, from biochemistry tomicroscopy imaging. We are interested

in the latter, which encompasses microscope technology, genetics engineering and

processing tools. While optical and biological sciences are out of our reach, we are

developing image processing methods, which can profit the biology research.

1.1.1 A need for automatic methods

Joint research efforts in optics, electronics, chemistry and biology, among others,

came to tremendous advances in observation technologies, cornerstone of modern

biology research. Progress in microscopy imaging make possible the study of cell

mechanisms in vivo andat sub-microndimensions. Complexobservation techniques

can even go further in terms of resolution (e.g., super-resolution methods based on

multiple exposures or electron microscopy), but, for now, they do not provide a fine

temporal resolution, or do not even allow for acquiring temporal sequences or ob-

serving living cells. In contrast, conventional fluorescencemicroscopy features a very
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fast acquisition rate, thanks to a continuous improvement of the sensitivity of digital

camera sensors. This enables the use of fluorescent tags which themselves emit the

light acquired by the microscope when excited. Researchers in genetics engineering

developed protocols to tag the structures of interest, in order to locate and follow the

latter in living cells, a breakthrough in cell biology. Modern cameras are so sensitive

that sub-second exposure times are sufficient to detect and trackfluorescent tags, and

enable thefine recording of (intra)cellular dynamics. As an order ofmagnitude, in this

thesis, we typically consider 100-nanometer structures traveling 10 microns per sec-

ond, which represents a few pixels per frame at most.

However, advances in microscopy bring new challenges, both in terms of biolog-

ical queries and massive data handling. With the improvement of image resolution

and with the advances in cell biology knowledge come more specific and complex

questions. Expert visual analysis is no more sufficient to reliably answer new queries

in biology, while human annotation is not fine enough to deal with the required ac-

curacy. As an example, a classical way of characterizing the actors involved in a bi-

ological process is to inhibit the said actors one after the other and see if the pro-

cess has changed. Changes can be either qualitative – something new or different has

happened, or something does not occur anymore – or quantitative – some biologi-

cal parameter value has changed. While visual inspection is sometimes sufficient to

exhibit qualitative changes, parameter variations are generally impossible to assess

quantitatively without the help of image processing and statistical tools. Moreover,

dramatic improvement of spatial and temporal resolutions yields a so-fast increase of

the amount of data to process, and computing methods must now cope with emerg-

ing big big data at the petabyte scale. The challenge of confronting biological models

to such rich observations has yet to be faced. Hence, the need of automatic image

processing tools in support of cell biology.

For the three years of the thesis, we have collaborated with Jean Salamero’s team

at UMR 144 (CNRS, Institut Curie), a team interested in deciphering the dynamics

of intracellular transports by the means of spatiotemporal imaging. In response to

the need of digital tools, the purpose of the collaboration is to develop methods for

the fully automatic analysis of the dynamics of biological structures observed by the

means of optical microscopy imaging. To this end, dynamical models representing

biological processes are proposed and evaluated on numerousmicroscope image se-

quences.

1.1.2 Key role of proteins in the recycling process

Vital processes of the cell, from feeding tomotility and reproduction, are subject to the

precise equilibrium between the different chemical compounds present in the cell.

The equilibrium state is named homeostasis. While from Latin homeo, equilibrium,
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and stasis, static, the term refers to a very dynamical process, or more precisely a set

of interacting processes. Absolute and relative quantities of proteins, sugars, ions,

among others, are therefore continuously regulated by the cell. The control of the

total amountof a givencompound is carriedoutbygenerating incomingandoutgoing

flows. Hence, the processes occurring at the cell frontier, the plasma membrane, are

of utmost importance to the cell life.

Among various and complex dynamics taking place to ensure homeostasis, exo-

cytosis is the process by which compounds are expelled out of the cell, by crossing

the plasmamembrane. While smallest structures like ions can autonomously diffuse

through the membrane, larger ones rely on transport and exocytosis intermediates

called secretory vesicles, or recycling vesicles in our specific case study. To fulfill their

function, the vesicles are involved in a variety of processes, the latter being vesicle

fusion to plasma membrane, when their contents is effectively expelled. Numerous

actors are working to ensure the smooth functioning of exocytosis, most notably pro-

teins, which act and interact at every level of the process in a very strict order.

Proteins are large molecules made of amino acids playing a key role in almost ev-

ery cell functions. Modeling proteins dynamics and interactions is thus amajor com-

ponent of the cell biology understanding. In particular, proteins are at the heart of

every stage of the process, encompassing the vesicle formation, its transport, tether-

ing, docking and, ultimately, fusion.

In this thesis, we study the behavior of three of them: Rab11, Transferrin receptor

(TfR) and Langerin. Rab11 is known to be involved in numerous aspects of exocyto-

sis, but pieces of the puzzle are missing, especially regarding the vesicle fusion, and

diffusion of the protein. TfR dynamics are well established. As a transmembrane pro-

tein, it is constrained to stay in the membrane, thus reducing its degrees of freedom,

which facilitates its study. However, while Langerin is also a transmembrane protein,

a different behavior is observed in the image sequences, which raises questions about

the underlyingmechanics. To bring to light quantitative differences between TfR and

Langerin, dynamicalmodelsmust be proposed, estimated and compared. Character-

izing the dynamics and discovering the roles and interactions of Langerin or Rab11 is

a priority of UMR 144.

1.1.3 Group motion is more than a collection of individual motions

In biological images with smallermagnification than in Part II, several cells move col-

lectively as a single population. As an example, during embryo development, a group

of cells divide,move together and interact. Also, in image sequences depicting cell tis-

sues, cells move and deform, thus imposing constraints to their neighbors. In these

cases and many others, the motion of single cells is embedded in a higher-level co-

herent groupmotion, that of the whole embryo or tissue.
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In biology, groupmotion analysis is generally tackled by estimating the dynamics

of each cell individually. Actually, manymethods were proposed to study the dynam-

ics of embryos or tissues by detecting and tracking individually each cell. The tracking

of individual cells is then performed in order to further derive the relevant informa-

tion at the group level. However, it is not straightforward to take into account the

interactions in individual dynamical models without globally estimating the whole

group dynamics. Therefore, it is natural to directly study the dynamics of the whole

group, that is, not to differentiate the individual cells.

While not used in biology so far, the latter approach is very common to analyze

pedestrian groupmotions or vehicle traffic, among others. For this reason, we extend

the scope of the last part of the thesis to crowdmotion analysis, a very activefield from

where approaches can be adapted to analyze the motion of cell groups.

1.2 Objectives and contributions

1.2.1 Detection of individual spatiotemporal events

As statedearlier, we target two typesofdynamics, namely that of independent individ-

uals and that of groups. We first investigate the modeling of a cell regulation process

named exocytosis and related control parameters estimation frommicroscopy image

sequences. We specifically focus on the last stage of the process: diffusion. This in-

vestigationencompasses thedetectionof the exocytosis in the image sequence,which

itself relies on spot detection because vesicles appear in the images as small spots. To

this end, we design a spot detection method with very few parameters which takes

advantage of a specificity of the image used for exocytosis characterization, that is,

spots to detect have similar sizes in TIRFM image sequences. As opposed to classical

spot detectors, we propose an approach for automatically selecting the best detec-

tion scale. Then, the detection amounts to a local thresholding which automatically

adapts to the local image statistics. The detection sensitivity only depends on a user-

specified probability of false alarm, which is set for the whole sequence (or set of se-

quences) to be processed. For the thresholding to be efficient, the spots in the input

image have to be enhanced with a filter at a particular scale, whose choice is critical

and is explicitly handled as aforementioned.

1.2.2 Modeling and estimation of fusion dynamics

As for the vesicle fusion characterization, we propose new diffusion models suited

to Rab11, TfR and Langerin, which are more realistic than the classically used point

source model. Indeed, in the latter, it is assumed that the vesicle size is smaller than

the pixel pitch, and that its content is instantaneously released. We relax those hy-
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potheses, enabling a spatial extent for the vesicle, and a continuous release, thus bet-

ter fitting the data. Moreover, in the case of Rab11, it is not known if diffusion occurs

in two and/or three dimensions. Therefore, we investigate both possibilities. Once

detected, the fusion events with the aforementioned spot detector, themodel param-

etersmust be estimated. We rely on an estimationmethod able to copewith the com-

plexity of the data. Actually, the number of data points is quite low with respect to

the noise level, so classical diffusion coefficient estimation methods behave poorly

for vesicle fusion dynamics. Furthermore, the biochemical parameters are then com-

pared for different experimental conditions. Parameter statistics are extracted from

the whole set of detected fusion events in sequence collections.

This leads us to the last part of the thesis. In most biological applications, the be-

havior of a single sample (e.g., the dynamics of one fusion event in the cell) is not the

critical issue. Instead, it has to be compared to the mean, normal or dominant be-

havior (e.g., the average diffusion coefficient estimated on a set of sequences). Some-

times, the behavior is expected to be similar for all samples, so that coherent or con-

sistent dynamics can be expected. This knowledge can be exploited to improvemod-

eling and estimation, as done to select the optimal scale for spot detection. Therefore,

the group properties (velocity statistics, commonbehavior, count...) are central in the

study under concern.

1.2.3 Characterization of group dynamics

To capitalize on the strength of crowdmotion analysis methods, we propose to adopt

the philosophy in biological image sequence analysis. Specifically, we aim at charac-

terizing the cell crowd dynamics without distinguishing individual cells. However, we

do not simply transpose crowd motion analysis methods to biology: to study human

crowds or road traffic, existingmethods generally use hundreds of frames, or even the

whole image sequence, which comes with a very high computation cost. In contrast,

we develop instantaneous methods for group dynamics analysis in the remaining of

the thesis, that is, methods using only a couple of consecutive frames to characterize

the crowd dynamics.

Moreover, in order to gather more information onmotion than classical methods

based on optical flow, we design a method which provides quantitative and qualita-

tivemotion information at the same time. Themotion is estimated as a labeled affine

flow, which is a map conveying both a velocity vector and motion type information.

Statistical arguments are used to select a relevant affine motion model at each point

of the image, which can be classified owing to simple rules on the affine parameters.

Then, the estimates are used to characterize the group motion, or to detect and seg-

ment local anomalous dynamics inside the group. To validate the methods, we rely
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onavailable benchmarks, which generally gather crowdandvehicle traffic videos, and

on biological images showing groups of cells.

1.3 Organization of the thesis

After an introduction to basic knowledge on the cell and microscopy, the thesis is or-

ganized in three parts. Spot detection is handled in Part I, where we focus on fluores-

cence microscopy images. Then, proteins behaviors after vesicle fusion are modeled

and estimated in Part II. Group motions are analyzed in Part III, spanning from mi-

croscopy to crowd analysis in videos.

In Part I, an overview of existing spot detection methods is given in Chapter 3.

The proposed two-step method is presented in the two following chapters: the scale

selection is described in Chapter 4, and the spot segmentation in Chapter 5.

Part II splits into three chapters. A presentation of the exocytosis process is given

in Chapter 6, where we provide an overview of existing diffusion models in biology,

and present the proposed fusion models. The exocytosis detection is presented in

Chapter 7, and the issue of estimating biological parameters is tackled in Chapter 8.

As for Part III, after introducing group motion analysis and related methods, the

proposed labeled affine flow is presented in Chapter 9. and motion descriptors for

the group motion characterization are introduced. Anomaly detection is addressed

in Chapter 10.

Thesis contributions are summarized and possible future works are proposed in

Chapter 11. In particular, limits of the acquisition setups and methods designed in

this thesis are pointed out, and improvements are proposed.

The thesis organization is synthetically presented below.

Chapter 2. On the cell and its observation 13

The cell organization and components are described to introduce the thesis.

The observation model is formulated while we describe the microscopy tech-

nique used throughout the thesis, namely TIRFM.

Part I. Spot detection

Chapter 3. The landscape of spot detection 29

Before analyzing dynamics, objects of interest and space-time events must be

detected. The (very active) domain of spot detection is introduced and exist-

ing spot detection methods are presented. The scale parameters of the existing

detectors are outlined.
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Chapter 4. Automatic selection of the detection scale 37

We propose a method for automatically selecting the optimal detection scale,

which is related to the spot size. Efficiency of the scale selection is shown, and

an extension to multiscale detection is proposed.

Chapter 5. Spot segmentation 47

The spots are segmented by thresholding an enhanced image. A local adaptive

method is proposed to cope with complex backgrounds. It is thoroughly com-

pared to state-of-the-art spot detectors.

Part II. Individual dynamics

Chapter 6. Modeling of the vesicle fusion dynamics 71

The biological context of Part II is introduced. We describe the exocytosis pro-

cess with a focus on vesicle fusion and protein diffusion. Classical diffusion

models inbiology arepresentedanddiscussed. The fusiondynamicsof different

proteins, namely Rab11, TfR and Langerin, are mathematically modeled.

Chapter 7. Detection of diffusion dynamics 95

In order to further investigate biological parameters of the vesicle fusion, the

lattermust be detected. We propose detectionmethods for the three proteins of

interest, which exploit the methodology presented in Part I.

Chapter 8. Estimation of the biological parameters 109

After presenting existing methods for estimating diffusion in microscopy im-

ages, we propose an estimationmethod for the proposed vesicle fusionmodels.

Quantitative evaluations and comparisons demonstrate the efficiency and ro-

bustness of the method. Real TIRFM images are analyzed to exhibit the differ-

ences between TfR and Langerin dynamics.

Part III. Group dynamics

Chapter 9. Labeled affine flow for group motion characterization 127

Labeled affine flow is proposed as an augmentedmotion data for groupmotion

analysis. At each point, themotionmeasurement conveys two types of informa-

tion: a quantitative motion vector and a qualitative motion type. As a proof of

concept, we rely on the proposed labeled affine flow to characterize the group

motion, and to recover the dominant paths followed by the group.

Chapter 10. Anomaly detection and localization 147

The proposed labeled affine flow is also used to detect local abnormal events. A

patch-based approach allows us to detect and locate anomalies, by comparing

local motion class histograms in a center-surround setting.
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Chapter 11. General conclusion 163

Main results are summarized. We discuss the contributions of the thesis with

a critical analysis of all the developed methods. This leads us to envisage im-

provements and foresee future work.
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2On the cell and its observation

T� ������� image sequences showing cellular dynamics, a basic knowledge of

the cell and imaging system is required. We shall not plunge into an exhaustive

enumeration of the cell components, but some primary structuresmust be presented

to understand the context of our work, as well as the microscopy technique, which

actually relies on genetic processes.

Indeed, numerous biological processes and associated cell compartments take

care of parsing genetic information, contained in the cell, to infer which proteins, vi-

tal compounds of the cell, should be synthesized. Proteins are precisely at the heart

of both the project and observation system.

Along with nucleic acids, lipids and sugars, proteins are the very basic organic

components of the cell. They are involved in a wide variety of intra- and inter-

cellular processes, where they carry out numerous functions: they generate mechan-

ical forces, transport chemical materials, are key actors of homeostasis and cell de-

fense, catalyze chemical reactions... Regarding the researchproject, threeproteins are

studied in particular, namely Transferrin receptor (TfR), Langerin and Rab11. More

precisely, we will focus on their dynamics in the so-called exocytosis-recycling pro-

cess, which is part of the homeostasis regulation process.

To be observed in total internal reflection fluorescencemicroscopy (TIRFM), pro-

teins we are interested in are genetically associated to fluorescent tags. When excited,

they emit light detected by themicroscopy setup, thus allowing us to locate and track

the proteins.

The chapter is composed of three sections. A quick overview of the cell biology

chronology is given in Section 2.1, thus briefly introducing vital processes of the cell.

Biological processes involved in protein synthesis and in exocytosis are then detailed

in Section 2.2. Finally, the process of fluorescent tagging and TIRFM are presented in

Section 2.3.



14 C������ 2. O� ��� ���� ��� ��� �����������

©Engraving by Robert Hooke [Hooke, 1665]

Figure 2.1 – Sections of a cork bark showing cells

2.1 A bit of history

Today’s cell biology knowledge is the result of a 350-year research. Back in the XVIIth

century, Robert Hooke – an architect, philosopher, mathematician, physicist, and an

optical engineer in his spare time – builds one of the first microscopes ever made to

study the porosity of various materials [Magner, 2002]. Analyzing cork bark among

other surfaces, he observes a tessellation made of tiles he terms cells [Hooke, 1665]

by analogy to honeycomb cells (Figure 2.1). A few years later, specifically studying liv-

ing beings, Antonie van Leeuwenhoek observes cells in various organisms: bacteria,

algae, muscle tissues... [Hoole, 1800] But no generalization is made yet.

It will be two centuries before Matthias Jakob Schleiden draws the basement of

modern cell theory, defining every plant as a set of cells [Schleiden, 1838]. The follow-

ing year, Theodor Schwann shows that the theory also applies to animals [Schwann,

1839]. Cell theory basements are completed in 1852 by Robert Remak, who demon-

strates that every cell originates from the division of a preexisting cell [Remak, 1852].

In turn, not only is cell a component of every living being, but also a living being itself:

cell autonomously carries out the functions necessary to live and reproduce. Among

others, it contains the genetic information, synthesizes complex vital molecules from

basic compounds, and regulates its content to stay in homeostasis, that is the equi-

librium state of its content: sugars, lipids, proteins, ions...

In the second half of the century, genetic sciences emerges, pioneered by Gregor

Mendel, who formalizes discrete traits inheritance in 1865 by identifying dominant

and recessive traits [Mendel, 1866], and later Friedrich Miescher, who discovers de-

oxyribonucleic acid (DNA) in 1869 [Miescher, 1871]. The link between both, however,
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Figure 2.2 – Some components of the cell

was made in the XXth century. In 1902, Theodor Boveri and Walter Sutton advance

that the genetic information is contained in the chromosomes. The proof is given

in 1915 by Thomas Hunt Morgan [Morgan et al., 1915], a discovery for which he is

awarded the Nobel Prize in Physiology or Medicine. In 1944, Oswald Avery finally lo-

cates the genetic information in DNA [Avery et al., 1944].

Genetics understanding eventually leads to fluorescence microscopy, which will

be described in more details hereafter. In 2008, Osamu Shimomura, Martin Chalfie

and Roger Tsien receive the Nobel Prize in Chemistry for the discovery of the green

fluorescent protein (GFP) and its application to cell biology [Chalfie et al., 1994]. True

to its name, the GFP is a protein which emits green light when excited, e.g., by an

incident laser beam. By synthesizing a DNA fragment, they managed to bind GFP to

another protein naturally present in the cell, and follow the latter in the living cell

using an optical microscope.

The number of discoveries owing to fluorescence microscopy is phenomenal and

continues growing fast. Ground-breaking technologies now allow combining the dy-

namical acquisition of lightmicroscopewith the resolution advantage of electronmi-

croscopy by freezing the cell during the experiment. In the meantime, the envelope

of opticalmicroscopy is expanded every year usingmultiple-exposure techniques like

structured illuminationmicroscopy (SIM) [Neil et al., 1997,Barlow andGuerin, 2007],

which shall approach electron microscopy resolution in the near future, while still

enabling dynamical recording.
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Figure 2.3 – Protein biosynthesis example

2.2 Organization and processes of the cell

Let us now briefly describe the cell and its organization, by focusing on the relevant

biological processes for the thesis. In Figure 2.2, the cell is represented along with

some organelles which will be presented below. Cells can be either prokaryotic or eu-

karyotic. Eukaryotic cells (fromGreek eu, true, and karyon, nucleus), which we study,

contain a nucleus and cytoplasm enclosed within a plasma membrane. In contrast,

prokaryotic cells (frompro, before) lack nucleous. The cytoplasm itself ismainly com-

posed of an aqueous solution named cytosol, inwhich numerous organelles carry out

specific functions.

Additionally, the cell is supportedby the cytoskeleton, a set ofmolecular structures

which give its shape and rigidity to the cell. Cytoskeleton is also an actor of numerous

dynamical process, some of which will be presented in Section 2.2.3.

2.2.1 From nucleus to cytosol: From genetic information to proteins

Nucleus is the host of most of the genetic material of the cell. A nuclear envelope sur-

rounds the nucleolus and nucleoplasm, the latter containing DNA. Essentially, DNA

is a long string of nucleotides, the atomic bricks of genetic information, which can be

of four types: Adenine (A), Thymine (T), Cytosine (C) or Guanine (G). Fragments of

DNA, genes are sequences of nucleotides that define which proteins are synthesized

by the cell, as explained hereafter.

The predominant component of the cell in volume, cytosol is the fluid in which

nucleus, organelles and cytoskeleton lie, and the place where proteins are synthe-

sized. The so-called protein biosynthesis process is illustrated in Figure 2.3. To pro-

duce a protein, DNA is first transcripted to ribonucleic acid (RNA), amolecular struc-

ture similar to DNA that can leave the nucleus to convey genetic information to the

cytosol. In RNA, Thymine is replaced with Uracil (U), as shown in Figure 2.3. RNA is

then translated by ribosomes, either bound to the endoplasmic reticulum (Figure 2.2)

or free in the cytosol. Ribosomes read the genetic information contained in RNA and

associate corresponding amino acids which will constitute the protein. Specifically,

each amino acid is specified by a group of three RNA bases called codon; translation

ends when ribosomes reach a specific stop condon.
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Figure 2.4 – Plasmamembrane lipid bilayer

As a consequence, altering a gene, that is, modifying DNA, can yield a change in

the set of proteins present in the cell. It is taken advantage of this phenomenon to

tag proteins, in order to observe them in fluorescence microscopy, as explained in

Section 2.3.1.

2.2.2 The plasma membrane, a place of exchange

Far frombeing a simple frontier, theplasmamembrane is involved indifferent aspects

of the cell life, frommechanical structure tomotility and throughchemical regulation,

which we are mostly interested in.

As schematized in Figure 2.4, the membrane is composed of phospholipids,

molecules with a hydrophilic-lipophobic head and hydrophobic-lipophilic tails.

Phospholipids are arranged in two layers where the hydrophilic head points toward

the aqueous cytosol or in the aqueous medium outside the cell, which isolates the

hydrophobic tails inside the membrane.

Every chemical flow entering or leaving the cell must pass through the plasma

membrane. Thus, the membrane is of first importance in the protection from extra-

cellular attack and regulationof the cell homeostasis. Theplasmamembrane is said to

be selectively permeable, because only specificmaterial canpass through, sometimes

in limited quantity. While small molecules can move across the membrane, either by

passing between phospholipids, or by specific biological gates, a more complex pro-

cess is required to absorb or secrete bigger structures. The latter process, studied in

Part II, relies on transport intermediates named vesicles. They will be presented in

more details in the next subsection, and later in Part II.

2.2.3 The cytoskeleton and intracellular transport

Apart from the plasma membrane, the cell mechanical properties are due to the cy-

toskeleton, mainly composed of microtubules and Actin filaments, depicted in Fig-

ure 2.5, and of intermediate filaments.

Microtubules are long tubular structures, essentially made of proteins named

Tubulin, running froma so-calledmicrotubule organization center extending around
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Figure 2.5 – The cell cytoskeleton

centrioles (Figure 2.2) to the peripheral layers of the cell, where they meet Actin

through intermediate filaments. As for Actin filaments, they are mainly observed at

the plasmamembrane, where they form a densemeshwork, and are involved in vari-

ous cellular processes.

Indeed, functions of the cytoskeleton are not restricted to structural properties.

For example, dynamics of the cytoskeleton are involved in the cell motility and cell

division in themitosis process. However, we are particularly interested in the convey-

ing functions of the microtubules and Actin filaments, and more precisely in vesicle-

mediated exocytosis.

In the second part of the thesis, we study the dynamics of vesicles during exocyto-

sis. A vesicle is a closed bag formed by a lipid bilayermembrane similar to the plasma

membrane, as depicted in Figure 2.6. Cargo molecules are the ones which are trans-

©Adapted from an illustration

by Mariana Ruiz Villarreal,

Wikimedia Commons

Figure 2.6 – Vesicle section showing the lipid bilayer
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ported by the vesicle, from a donor compartment, or from the extracellular space in

the case of endocytosis, to a target compartment, or to the extracellular space in the

case of exocytosis. To this end, the vesicle forms from the membrane of donor or-

ganelle at the beginning of the transport, and fuses to the targetmembrane at the end

of the transport. In between, the vesicles is moved bymolecular motors alongmicro-

tubules, which act as highways in the cell. Then, in the case of exocytosis transport,

in order to reach the plasma membrane for expelling its content, the vesicle has to

make its way through the Actin meshwork, before fusing to the membrane to release

its content.

Furthermore, several types of structures travel with the vesicle, including:

• Transmembrane proteins, which span across the vesicle membrane during

transport and are released in the target membrane after fusion;

• Vesicular motors, which pull the vesicle along the cytoskeleton.

Vesicular transport will be described in more details in Chapter 6, as it is a fun-

damental component of exocytosis, that is the subject of Part II. Specifically, we will

focus on two transmembrane proteins, TfR and Langerin, and on Rab11, a protein

which is associated to the vesicular motor during transport.

2.3 TIRFM for imaging membrane dynamics

2.3.1 Fluorescence microscopy

As thename implies, total internal reflectionfluorescencemicroscopy (TIRFM) is part

of the fluorescence microscopy acquisition techniques. The latter is a type of mi-

croscopy where the structure of interest, some protein in the frame of the thesis, is

taggedwith a fluorescent compound called fluorophore. By tagged, wemean that the

fluorophore, herefluorescent proteins, bounds to theprotein of interest, so that locat-

ing the fluorophore roughly corresponds to locating the protein itself. As mentioned

in Section 2.1, fluorophores emit photons when excited by incident light. Thus, in

fluorescencemicroscopy, the tag itself emits the light which is collected by themicro-

scope sensor. Structures of interest can hence be selectively observed, while all other

structures remain invisible to the microscope sensor.

As for the imaging device, the principle of the fluorescent microscope is schema-

tized in Figure 2.7, which represents an inverted microscope, meaning that the ob-

jective points upward. The objective top is immersed in some optical oil that has the

same refractive index n as the front lens element and cover slip, about 1.5. This en-

sures that the contact surface between the cell and cover slip is the sole optical inter-

face between the microscope objective and the cell itself.
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Figure 2.7 – Principle of fluorescence microscopy

In order to illuminate the fluorophores, an excitation laser beam (or other sources

of illumination), represented in blue in Figure 2.7, passes through the microscope

objective and reaches the cell. Fluorophores which are illuminated by the beam get

excited and then emit photons. A portion of the light emitted by the fluorophores,

represented in red, points toward the microscope sensor. A fundamental property of

the fluorophore is that the emitted beam has a longer wavelength than the excitation

beam. Thanks to this, a dichroicmirror allows separating the excitation and emission

wavelengths, in order to prevent the excitation beam to hit the sensor after some re-

flection. In the end, only the photons emitted by the fluorophore are acquired by the

sensor, corresponding to tagged structures.

Nevertheless, fluorescence has drawbacks as well, principally phototoxicity and

photobleaching, which are closely related to the laser beam power. Phototoxicity is

the killing of certain cellular structures due to the relatively high-energy photons hit-

ting them, which affects cell functioning and eventually leads to its death. In order to

preserve the functions of the cell during the image sequence acquisition, a compro-

mise must be made between the signal-to-noise ratio (SNR) and toxicity, that is, the

laser power must be carefully set.

Photobleaching is thephenomenonbywhich excitedfluorophores caneither emit

a photon or enter a chemical reaction which eventually kills its fluorescence ability.

Over time, more andmore fluorophores are bleached and do not emit light anymore.

Therefore, bleaching is visible in the images as a slow fading of global intensity. Hope-

fully, we will see that it is mostly negligible in TIRFM.
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Figure 2.8 – Principle of total internal reflection generating the evanescent wave

2.3.2 Total internal reflection

In TIRFM, the fluorophores are excited by a so-called evanescent wave [Axelrod,

2008]. The latter forms inside the cell when the incident light beam is totally reflected

at the interface between the cover slip and the cell itself. Total reflection occurs when

the incident angle of the laser beam exceeds a critical angle. This is illustrated in Fig-

ure 2.8. Energy of the evanescent wave decreases exponentially with the distance to

the cover slip, so that practically no energy is transmitted above a certain distance

called penetration depth; its order of magnitude is 102 nm [Steyer and Almers, 2001].

Therefore, in TIRFM, only fluorophores close to the coverslip are illuminated and

excited. This allows to make visible only the molecules that are inside or very close

to the plasma membrane – approximately up to the penetration depth. As a con-

sequence, TIRFM is particularly well suited to study the dynamics occuring at the

plasma membrane, such as vesicle fusion studied in Part II [Reichert and Truskey,

1990,Deng et al., 2009,Letinic et al., 2010,Burchfield et al., 2010].

Yet, TIRFM scores a better spatial and temporal resolution than classical optical

microscopy techniques. Moreover, as the light energy transmitted to the cell is con-

fined to a very thin region, the power of the incident laser beam can be quite low to

get a sufficient intensity at theplasmamembrane. Compared to classicalfluorescence

microscopy, the energy transmitted to the plasma membrane can be higher without

being toxic, so TIRFM features a very high SNR among fluorescencemicroscopy tech-

niques. For the same reason, photobleaching is much reduced, so that when using

local approaches which rely on few consecutive frames, it can merely be neglected.

To acquire a color image (e.g., Figure 2.5), fluorophores with different emission

wavelengths can be used to tag different proteins. Using a color splitting technique

named Dual view [Gidon et al., 2012], the wavelengths are then projected side-by-

side on the sensor using a set of mirrors or prisms. This technique can be employed

to compare the localization of different structures, or to use one structure property to

ease working on another structure, as done in Chapter 7.
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2.3.3 Point spread function

Point spread function (PSF) is the optical transfer function. Even for an ideal micro-

scope, the image of a point in focus by the optical system is not a point but rather

a blurred spot. The more out-of-focus the point, the wider the spot. Theoretically,

a point in focus is projected through a pinhole or diaphragm as an Airy disc [Airy,

1835, Marian et al., 2007]. Naturally, the model becomes more complex with more

complex optical formulas.

Moreover, evenwith a theoretical, ideal lens, a PSFmodel should take into account

the discrete nature of themicroscope sensor. Indeed, the photons collected at a given

pixel are spread over the photosite area. While small in absolute terms, the photosite

area is not negligible compared to the PSF width. Therefore, instead of considering

a sampled Airy function to model the amount of light gathered by a photosite, the

function should be spatially integrated over the pixel surface [Small and Stahlheber,

2014].

Then come optical aberrations introduced by the lens, such as astigmatism and

coma. Not only are these aberrations hard to infer from optical specifications, but

they also vary spatially [Aguet, 2009]. The variation theoretically only depend on the

distance from the optical center, but real optics are not precisely enough manufac-

tured to stick to this assumption. Therefore, in order to precisely model the PSF over

the whole image, classical methods consist in fitting parametric models over the im-

age domain, and then interpolating the parameter field in order to get a continuous

PSF map [Aguet, 2009].

In practice, apart from very specific applications as deconvolution [Sibarita, 2005,

Sarder and Nehorai, 2006] or super-resolution [Carrington et al., 1995, Zhang et al.,

2006], a Gaussian approximation is often adequate tomodel the PSF in TIRFM images

[Small and Stahlheber, 2014], so we rely on this approximation throughout the thesis.

Furthermore, in TIRFM, objects at positive heights are out of reach for the evanes-

cent wave. Therefore, they do not appear in the image and all visible objects are in

focus; if not, they are at about the same distance from the focus plane. Therefore,

objects of similar size in the cell are projected as spots of similar size in the TIRFM

image.

2.3.4 Digital image model

Notation and units

The image sequence, denoted I , is a succession of digital photographs termed frames.

Frame at time t will be denoted as I (t ). When not otherwise stated, temporal unit will
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Table 2.1 – Biological and microscope orders of magnitude

Description Dimension Weight* Duration

Cell (diameter) ≈ 102 µm ≈ 1ng
Nucleus (diameter) ≈ 101 µm
Vesicle (diameter) ≈ 102 nm
Actin filament (diameter) 7 to 8nm

Microtubule (diameter) 15 to 25nm

Membrane (thickness) 4 to 5nm

Membrane phospholipid < 1 kDa

Rab11 24 kDa

Langerin 37 kDa

TfR 85 kDa

mCherry 29 kDa

pHluorin 27 kDa

Spatial optical resolution 200nm

Physical pixel side 16µm

Pixel side in the image 160nm

Penetration depth ≈ 102 nm
Exposure time 100ms

Frame rate 10 f/s

Sequence length 30 to 120 s

1 kDa ≈ 1.66 × 10−21 g
*Source: PhosphoSitePlus (www.phosphosite.org)

be the frame period (f), or frame in short, in the remaining of the thesis, such that I (0)

is the first frame of the sequence and I (t + 1) is the frame following that of time t .

The photosites collect photons and convert them into electrons. Photosites are ar-

ranged in a grid, and are represented by their Cartesian coordinates x and y . The dis-

tance between horizontally and vertically adjacent pixels is the pixel pitch, denoted

px, which is the natural distance unit in the image. This way, pixels have integer co-

ordinates. The set of pixel locations, called domain, is denoted ΩI and is therefore a

subset of Z2.

The intensity of a pixel p =
�
x, y

�
∈ ΩI in frame I (t ) is denoted I

�
p, t

�
. It is a func-

tion of the number of photons n
�
p, t

�
received by the associated photosite from time

t to time t + ∆t , where ∆t is the exposure time. In the images we deal with, there is

a negligible time interval between consecutive exposures, so ∆t is approximately the

frame period: ∆t ≈ 1 frame.
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Mixed Poisson-Gaussian process noise model

A mixed Poisson-Gaussian (MPG) model is often proposed to account for noise in

fluorescence microscopy images [Zhang et al., 2007]. Actually, this model is not re-

stricted to fluorescencemicroscopy, and is generally assumed in digital images when

the following two random components are taken into account:

• Photon noise, which results from the stochastic process of photon emission and

conversion;

• Electronic noise, which is generated by the sensor and electronics.

In addition to those components, quantification noise owes to the storage of the

intensity signal as a digital image where each pixel only takes discrete values. As we

are dealing with image sequences scoring high bit depth (the intensity is quantified

over 216 levels), this component is negligible.

In fluorescence microscopy, photons are emitted when an excited fluorophore

goes back to its fundamental state. The time before photon emission, or lifetime, is a

stochastic process, in which the remaining time before emission does not depend on

the elapsed time from excitation. However, when a group of fluorophores are excited,

the number of excited atoms at a certain time is expected to decay exponentially. As

a result, the number n
�
p, t

�
of photons emitted toward pixel p during time interval�

t , t + ∆t
�
obeys a Poisson statistic. This accounts for the Poisson component of the

noise model, which is hence signal-dependent.

As for electronicnoise, it results fromdifferent sources, yielding the followingmain

components:

• Dark-current noise reflects the generation of electrons by the sensor even in the

absence of photons, due to the non-null electron excitation in the sensor and

electronics;

• Similar to photon noise, electronic shot noise accounts for the quantization of

the electric potential levels, as the electric charge representing the pixel signal

is quantified as the number of electrons;

• Flicker noise, which depends on the signal frequency, arises from direct current

passing through the photosite.

Generally, as it is extremely difficult to tell apart the different intermingled compo-

nents, the whole electronic noise ismodeled as a Gaussian process [Boulanger, 2007].

Finally, the signal is amplified by amultiplicative gain g0. As a result, the intensity

I
�
p, t

�
of a pixel p at time t is modeled as [Boulanger, 2007]:

I
�
p, t

�
= g0 n

�
p, t

�
+ ε

�
p, t

�
, (2.1)

where g0 is the system gain, n
�
p, t

�
is the number of photons received at pixel p be-

tween times t and t + ∆t , which follows a Poisson law, and ε
�
p, t

�
is the sample of a

Gaussian distribution of spatially constant mean µε and variance σ2ε .
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Variance stabilization

Most image processing methods assume a white Gaussian noise. Therefore, they are

not well suited to the MPG model. To deal with fluorescence microscopy images, an

intensity transform is often used, which gives a white Gaussian noise in the trans-

formed images [Zhang et al., 2007].

In the remaining of the thesis, wewill rely on the generalized Anscombe transform

(GAT) T , defined as [Boulanger et al., 2010b]:

∀ p ∈ ΩI , ∀ t ∈ N , T
�

I
�
p, t

��
=

2
g0

�

g0 I
�
p, t

�
+

3
8

g0 + σ
2
ε − g0 µε . (2.2)

Parameters g0, µε and σ2ε will be estimated with a patch-based method proposed in

[Boulanger et al., 2010a].

Other variance stabilization methods exist, as the multiscale variance stabilizing

transform (MS-VST) proposed in [Zhang et al., 2007], but the GAT is computationally

lighter, and is sufficient in the situations we encounter in the thesis, as demonstrated

by the experimental results reported in the remaining of the thesis.
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3The landscape of spot detection

S���� ��� ����� ���� of protein tagging with green fluorescent protein (GFP)

[Chalfie et al., 1994], microscopy investigations at the single cell level have been

faced with the problem of determining the location and behavior in space and time

of spots, such as microtubule end tips, adhesion molecular complexes, or vesicles

as illustrated in Figure 3.1. Detecting such subcellular particles in fluorescence

microscopy is indeed of central interest for further quantitative analysis as parti-

cle counting [Byun et al., 2006], particle pattern recognition [Jackson et al., 2011],

particle tracking [Sbalzarini and Koumoutsakos, 2005, Miura, 2005, Jaqaman et al.,

2008,Chenouard et al., 2014] or dynamics classification [Sage et al., 2005, Boulanger

et al., 2010a, Sironi et al., 2011, Basset et al., 2014b]. All these subcellular analyses

(a)M10 cell: Rab11-mCherry (b)M10 cell: TfR-pHluorin

Figure 3.1 – Cell images depicting particles of similar scale. (a,b) Tagged vesicles (bright spots)

are of almost constant size over the image. Rab11 is tagged with mCherry in (a), (b) TfR is

tagged with pHluorin in (b).
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start with a reliable, accurate and efficient detection of particles in fluorescence mi-

croscopy images.

Our goal is to segment exocytotic vesicles in cell images acquired in total internal

reflection fluorescencemicroscopy (TIRFM). Among fluorescencemicroscopy image

modalities, TIRFM is the perfect tool to investigate processes occurring close to or at

the cell surface such as endocytosis and exocytosis processes [Reichert and Truskey,

1990, Deng et al., 2009, Letinic et al., 2010, Burchfield et al., 2010]. The physical size

of exocytotic vesicles spans across a limited range. Given the limited depth of field

(DOF) of TIRFM, the variation of the scale of these fluorescently labeled objects in the

2D images is also limited. In this part, we will focus on M10 cells showing the cargo

proteins Langerin and Transferrin receptor (TfR) tagged with pHluorin, or the Rab11

GTPase tagged with mCherry. These proteins are associated to transport intermedi-

ates such as vesicles recycling to the cell surface and appearing as bright spots, which

can be round or elongated, as depicted in Figure 3.1. Another application of the pre-

sented method could be the identification, detection and quantification of adhesion

molecular complexes, in cells migrating or not. These biological architectures are rel-

atively small and regular at the single cell, composed of multiple molecular partners.

As a consequence, it is worth developing a spot detection method able to auto-

matically find the average object size or the most frequent one. We propose a seg-

mentation framework with automatic scale selection and local adaptive threshold-

ing. Our method exploits the Laplacian of Gaussian (LoG) of the intensity image and

automatically detects the characteristic scale of the objects of interest. To cope with

inhomogeneous background, thresholding is adapted to local statistics, while a sin-

gle probability of false alarm (PFA) is set for the whole image or even the collection

of images to be processed. In short, we will automatically infer from image data the

optimal parameters usually left to the user guidance in other methods, that is, LoG

scale and detection threshold. We name adaptive thresholding of LoG images with

auto-selected scale (ATLAS) the method described in this part.

ATLAS comprises several significant improvements and extensions compared to

the preliminary method SLT-LoG we introduced in [Basset et al., 2014a]:

• We now resort to a discrete filter for the scale-space representation and we can

deal with any arbitrary scale, i.e., with scales of any precision;

• We have designed four original scale selection criteria;

• We have produced and made publicly available a new benchmark dataset for

spot detection methods;

• We have conducted an extended comparative evaluation with existingmethods

on several datasets, and we have evaluated our method on a larger range of real

images.
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While our primary goal is to detect exocytic vesicles in two-dimensional TIRFM im-

ages, the ATLAS method can be applied to other types of images as well, provided

objects to be detected are of similar size in the image or of a couple of sizes at most.

Comparisons of spot detection methods were reported in [Smal et al., 2010, Ru-

usuvuori et al., 2010], providing with a broad overview of state-of-the-art methods.

However, the dataset used in these previous experiments remains limited in terms of

content and challenges. Indeed, real TIRFM images are far more complex than im-

ages of this dataset, specifically, the signal-to-noise ratio (SNR) is generally lower in

real images and objects to be detected are smaller and often darker. We have then

constructed amore realistic andmore challenging dataset with ground truth to quan-

titatively evaluate and compare methods. In addition, we have used images supplied

by the simulators designed in [Rezatofighi et al., 2013,Boulanger et al., 2009].

Part I is organized as follow. The present chapter gives an overview of existing

spot detection methods in fluorescence microscopy, and compares the different ap-

proaches for setting the detection scale(s). Our automatic scale selection is presented

in Chapter 4, and the actual adaptive detection is described in Chapter 5, where we

also compare our detection results with those of state-of-the-art methods.

Existing spot detectors

In [Smal et al., 2010], the authors provide a broad panorama of spot detection meth-

ods, and thoroughly evaluate the performance of a dozen methods. As explained by

Smal et al. [Smal et al., 2010], the common detection framework consists in first de-

noising the image and enhancing the spots to be detected. Then, highest or lowest

values of the enhanced signal, corresponding to spots, are extracted.

The simplest way of detecting spots in a gray level image is to threshold the im-

age intensities from the intensity histogram. The threshold value can be automati-

cally selected by techniques such as Otsu’smethod [Otsu, 1979] or entropyminimiza-

tion [Kapur et al., 1985,Sahoo et al., 1997]. However, a single global threshold cannot

tackle complex imageswhere variation in background intensitiesmay exceed spot in-

tensity magnitude. Therefore, numerous space-varying thresholding methods were

proposed [Sahoo et al., 1988, Sezgin and Sankur, 2004]. In particular, local threshold

values arededuced from local statistics todetect cell nuclei in [Phansalkar et al., 2011].

More advanced methods, such as detectors based on top hat filter (TH) [Bright

and Steel, 1987, Breen et al., 1991] or LoG filter as in the spot enhancing filter (SEF)

method [Sage et al., 2005], not only smooth the image, but also enhance the underly-

ing signal. More specifically, the LoG filter (which we will rely on) is a band-pass filter

which enhances objects of a particular size, reduces noise and lowers low-frequency

background structures. Sage et al. [Sage et al., 2005] empirically observed that the
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LoG filter is close to the optimal whitened matched filter for Gaussian spots in flu-

orescence microscopy images, that is, the SNR of the filtered image is maximized at

the spot center. Yet, the choice of the LoG variance is critical and highly dependent

on the spot size. Similarly, the bandwidth of the TH filter is adjusted with two critical

parameters, the top and brim radii. Ideally, they should correspond to the spot size

anddistance betweenneighboring spots, respectively. In the so-calledmorphological

top hat filter (MTH) version of TH [Soille, 2003], the image background is estimated

by anopening operationwhich removes objects smaller than the structuring element.

In order to reduce noise, a Gaussian blur is initially performed. The background esti-

mate is then subtracted to the image to detect spots by thresholding.

In [Olivo-Marin, 2002, Zhang et al., 2007], an iteratively undecimated wavelet

transform (IUWT) [Mallat, 1989] of the image is exploited to detect objects of various

sizes. A wavelet multiscale product (WMP) operation is performed in [Olivo-Marin,

2002], which consists, for every point, in multiplying the wavelet coefficients of dif-

ferent scales to reveal correlations across the scales. Indeed, from a given wavelet

scale, spots respond more strongly to IUWT than uncorrelated noise. However, for

low SNRs, noise has a higher response than spots at smallest scales, inducing wrong

detections. Hence, smallest scales – up to a characteristic scale –must be discarded to

lower the false detection rate. Finally, the WMP map is thresholded to get the binary

detection map. The multiscale variance stabilizing transform (MS-VST) method re-

lies on variance stabilization to rule out insignificant coefficients of the IUWT [Zhang

et al., 2007]. Then, the image is reconstructedwithout taking into account the coarsest

scale, corresponding to the background structures, nor the smallest ones correspond-

ing to noise. The spots are finally detected by thresholding the reconstructed image.

Therefore, with both IUWT-based methods, the set of wavelet scales must be chosen

accordingly to the spot size.

Finally, h-dome (HD) methods [Smal et al., 2008,Rezatofighi et al., 2012,Vincent,

1993] detect local maxima, called domes, in a LoG- or Gaussian-filtered image. The

kernel must be chosen smaller than the spots. Peaks of the filtered image with an

amplitude greater than a given height h (hence, the name of the method) are ex-

tracted. The so-built “dome map” comprises small domes corresponding to noise,

domes corresponding to spots, and large domes corresponding to background struc-

tures. Todiscard irrelevant large and small domes, samples are generatedaccording to

the domesmap seen as an importance sampling function. Domes containing too few

samples are removed since they probably correspond to noise. Domeswhere samples

are too scattered are also removed, because they probably correspond to large back-

ground structures. Thus, the maximum dome size must be carefully set. However,

the objects to detect do not often have the same magnitude h, so that the method

sometimes merges very bright neighboring spots, and sometimes misses dark spots.
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Table 3.1 – Main parameters of state-of-the-art spot detection methods (see main text for

acronymmeaning)

Method Main parameters

TH

[Bright and Steel, 1987]

Top-hat radius*

Distance between spots

Intensity threshold

HD

[Smal et al., 2008]

Gaussian variance*

Maximum dome radius

Dome height

WMP

[Olivo-Marin, 2002]

Minimum andmaximum scales*

Intensity threshold

IFD

[ter Haar Romeny, 2003]

Gaussian variance*

Intensity threshold

MTH

[Soille, 2003]

Smoothing scale*

Structuring element radius*

Distance between spots

Intensity threshold

SEF

[Sage et al., 2005]

Gaussian variance*

LoG threshold

MS-VST

[Zhang et al., 2007]

Minimum andmaximum scales*

False discovery rate

Intensity threshold

MPHD

[Rezatofighi et al., 2012]

Gaussian variance*

Maximum dome radius

Gradient norm threshold

AB

[Jiang et al., 2007]

Feature set

Feature parameters

Size threshold

FDA

[Smal et al., 2010]

Patch size*

Size threshold

LR-MRF

[Ruusuvuori et al., 2012]

Feature set

Feature scales*

Sparsity parameter

Regularization parameter

*Equivalent to scale parameter

To tackle this problem, Rezatofighi et al. [Rezatofighi et al., 2012] proposed a method

called maximum possible height dome (MPHD) for locally detecting the best height

threshold h. Then, the norm of the spatial image gradient is thresholded, which is

more robust to strong background variations than directly thresholding intensity.

Table 3.1 collects the main parameters of the aforementioned methods to be set

by the user. All these methods have in common one or two critical scale parameters
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whose optimal value is closely related to the size of the objects to detect. If the detec-

tion scale is chosen too small, overdetection occurs due to noise. If it is set too high,

objects are smoothed out or merged when close to each other. Fortunately, the scale

parameter, whatever it is, can often be inferred from image data. We will address this

issue in Chapter 4. Moreover, let us point out that our characteristic scale detection

method is not limited to our detection framework. Indeed, it could be applied as a

preprocessing step to most of the aforementioned methods involving a scale-related

parameter.

Most methods end up delivering a binary detection map after thresholding a fil-

tered or reconstructed image. However, when processing fluorescence microscopy

sequences, the statistics of the imagemay vary in timedue tophoto-bleaching, so that

one threshold should be set for each frame according to the current image intensity

range. Obviously, this approach is not applicable to sequences containing hundreds

of frames, or to a large datasets containing images of various dynamic range. In con-

trast, as described in Chapter 5, we propose a locally adapted threshold automatically

inferred from local intensity statistics. The user on his/her side only fixes once for all

a PFA value which can be used for all the images of the conducted experiment.
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4Automatic selection of the detection scale

T�� ������ ����� selection step consists in determining the most represented

scale in the input image I , that is the scale that most spots share. To this end,

we rely on the framework developed by Lindeberg for scale-space analysis [Linde-

berg, 1993]. In the remaining of the thesis, I will denote a 2-dimensional image, that

is I : ΩI ⊂ Z
2 → R, where ΩI is the image domain. In this thesis, we have focused on

2D TIRFM images, but the proposed spot detectionmethod can be straightforwardly

extended to three dimensions.

4.1 Scale-space representations

Definition 1. The scale-space representation L of an image I is a 3-dimension map

defined in [Lindeberg, 1993] as:

L : ΩI × S → R�
p, s

�
�→

�
Gs ∗ I

��
p
�
, (4.1)

where p is a point in ΩI ,
�
Gs

�
s ∈S is a family of convolution kernels of scale s , and the

set S of scales is a subset of R∗
+
.

Gaussian kernels are often proposed to build the scale-space representation. As

a matter of fact, they are the best kernels for representing continuous signals [Linde-

berg, 1993]. However, in the case of discrete signals such as digital images, sampled

Gaussian kernels are not optimal, because they fulfill the scale-space representation

for restrictive conditions on S only.

Proposition1 (from [Lindeberg, 1990]). If
�
Gs

�
s ∈S is a family of sampledGaussian ker-

nels of variance s , L is a scale-space representation of I if and only if S =
�

s0r n
�
n ∈ N

�
where s0 is a strictly positive real number and r an odd integer.
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Thus, the smallest possible ratio r between two consecutive scales is 3 when us-

ing sampled Gaussian kernels. We first adopted this approach in a preliminary work

described in [Basset et al., 2014a] with S =
�
1, 3, 9, 27, 81

�
. However, since vesicles

are usually under-resolved in TIRFM images, small scales (say, between 1 and 3) are

of primary interest. Hence, we must be able to deal with scale sampling finer than

in [Basset et al., 2014a] to further improve detection results. As a consequence, we

prefer to employ a non-Gaussian kernel, called discrete analogous of the Gaussian

kernel or discrete Gaussian in short. It will allow us to introduce scales of arbitrary

precision. It is a separable filter, based on the family of modified Bessel functions of

integer order
�
Bn

�
n∈N

1. When exploiting this filter family, the scale-space representa-

tion holds with scales arbitrarily close to each other [Lindeberg, 1990]. Precisely, we

will consider the scale set S =
�

s0r n
�
n ∈ N

�
, where the scale ratio r is a strictly positive

real number and s0 = 1. In our TIRFM images, the pixel size (about 160nm) is smaller

than the optical resolution (about 200nm), so that no objects of scale smaller than 1

canbe found, thus the choice of s0 = 1. Theone-dimensional discreteGaussian kernel

Gs of scale s is given by:

∀n ∈ Z , Gs (n) = e
−s Bn(s ) . (4.2)

The two-dimensional kernel is obtained by convolution, resulting in the following

scale-space formulation:

∀
�
p, s

�
∈ ΩI × S , L

�
p, s

�
= Gs ∗ Gs

T ∗ I
�
p
�
, (4.3)

where T denotes the transposition operation. This formula straightforwardly extends

to higher dimension.

The Bessel functions have no closed form and Bn is defined as the canonical solu-

tion of the following differential equation [Abramowitz and Stegun, 1972]:

∀ z ∈ C , z2
∂
2Bn

∂z2
(z ) + z

∂Bn

∂z
(z ) +

�

z2 − n2
�

Bn(z ) = 0 . (4.4)

In practice, recursive approximations of the Bessel functions (such as the one pro-

posed in [Abramowitz and Stegun, 1972]) are precise enough to cope with our prob-

lem.

ThediscreteGaussianfilter is a low-passfilterwhich smoothsout a certainamount

of noise depending on thefilter scale. In order to enhance the objects to detect, we ap-

ply the Laplacian operator ∆. For two-dimensional images, we use themost isotropic

Laplacian kernel [Lindeberg, 1990] defined as:

∆ =

������
�

1/6 2/3 1/6

2/3 −10/3 2/3

1/6 2/3 1/6

������
�
. (4.5)

1The Bessel functions are historically denoted In but we want to avoid confusions with the image
sequence I
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To save computation time and owing to convolution commutativity, we apply the

Laplacian operator once for all to the input image, before applying the scale-space

operator. Moreover, the contrast of the LoG map decreases when scale increases. A

normalization operation is performed to countervail this effect, which gives the fol-

lowing normalized discrete LoG filter H :

∀
�
p, s

�
∈ ΩI × S , H

�
p, s

�
= α(s )∆L

�
p, s

�
= α(s )

�

Gs ∗ Gs
T ∗ ∆I

��
p
�
, (4.6)

where α is the normalization function. Lindeberg proposed to normalize the discrete

LoG kernel with its L1-norm [Lindeberg, 1990], which gives:

α−1(s ) =
+∞�

n=−∞

�
∆Gs (n)

�
. (4.7)

Due to the presence of absolute values, the normalization function (4.7) is not deriv-

able at some particular points of the Bessel functions. Instead, we normalize with the

L2-norm of the discrete Gaussian kernel.

Proposition 2. The proposed normalization function is given by:

α−1(s ) =
+∞�

n=−∞

�
Gs (n)

�2
= e−2sB0(2s ) . (4.8)

Proof. The discrete Fourier transform (DFT) ofG is defined as [Lindeberg, 1990]:

F
�
G
�
(θ) = es(cos θ−1) .

Using Parseval’s theorem, we get:

α−1(s ) =
1
2π

� π

−π

�

es(cos θ−1)
�2
dθ =

1
2π

� π

−π
e2s(cos θ−1) dθ

=

1
e2s

1
2π

� π

−π
e2s cos θ dθ .

Then, we conclude using the integral representation of B0 [Abramowitz and Stegun,

1972]:

B0(2s ) =
1
2π

� π

−π
e2s cos θ dθ .

�

We will use this expression in the remainder of the thesis. The scale-space repre-

sentation is illustrated in Figure 4.1 for a TIRFM image.
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(a) Input image I (b) LoG L
�
1
�
at scale 1 (c) LoG L

�
2
�
at scale 2

(d) LoG L
�
4
�
at scale 4 (e) LoG L

�
8
�
at scale 8 (f) LoG L

�
16

�
at scale 16

Figure 4.1 – Scale-space LoG-transform L of a real TIRFM image I ofM10 cell (Rab11-mCherry)

4.2 Blob distribution and scale selection

Since the LoG filter is negative and spots are bright in the input image, we focus on

the negative extreme values of H , which leads us to the concept of (negative) blob as

defined in [Lindeberg, 1998].

Definition 2. A blob b =
�
pb, sb

�
∈ ΩI × S is a local minimum of H :

∀
�
p, s

�
∈ νp , H

�
pb, sb

�
� H

�
p, s

�
, (4.9)

where νp is a 3N+1 neighborhood of b in ΩI × S for an image of N dimensions.

The set of blobs (resp. blobs at scale s ) of an image I is denotedasB
�
I
�
(resp. Bs

�
I
�
).

Proposition 3. The set of blobs B
�
I
�
of an image I is unchanged when adding a con-

stant a0 and/or multiplying I by a positive constant a1:

∀ a0 ∈ R , ∀ a1 ∈ R∗+ , B
�
a1I + a0

�
= B

�
I
�
. (4.10)

Proof. Let b =
�
pb, sb

�
∈ B

�
I
�
be a blob of I and take

�
p, s

�
∈ νp . Definition 2 gives:

H
�
pb, sb

�
� H

�
p, s

�
.
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Since a1 > 0, and by linearity of the convolution operation,

Ha1I +a0

�
pb, sb

�
� Ha1I +a0

�
p, s

�
.

Therefore, b is also a blob of a1I + a0, so B
�
I
�
⊂ B

�
a1I + a0

�
. Analogously, we get

B
�
a1I + a0

�
⊂ B

�
I
�
and we conclude that B

�
a1I + a0

�
= B

�
I
�
. �

As we showed in [Basset et al., 2014a], the blob detection itself is not sufficient to

satisfyingly extract spots from noisy images. Instead, blob detection will be used to

select the LoG scale. In order to select the optimal scale s�, likely to correspond to the

average size of the spots of interest, wehave tofind the scale atwhich theblobnumber

is the highest, while discarding blobs due to noise. Precisely, we take into account the

number of blobs normalized by the image area, that is, the empirical blob density.

The empirical blob density in I at scale s is then given by:

∀ s ∈ S , ρI (s ) =

���Bs

�
I
����

|ΩI |
, (4.11)

where |ΩI | is the area of I evaluated in square pixels (px2).

If the image I was noise-free, the maximum of ρI (s ) would be attained close to

themost frequent spot scale. However, due to noise, some detected blobs do not cor-

respond to real spots. As explained in Section 2.3.4, we suppose that the image is

corrupted by an additive Gaussian noise (possibly, after noise variance stabilization).

Then, I decomposes into a noise-free image I0 containing only structures (including

spots) and an additive Gaussian noise component g :

I = I0 + g . (4.12)

Should I exhibit no structure, the density of blobs detected at each scale s would be

ρg (s ). Therefore, we aim at selecting the scale s� at which the dissimilarity between

ρI (s ) and ρg (s ) is the largest.

We first propose four possible scale selection criteria while motivating their for-

mulation. Then, we will compare them to retain one criterion.

First, we can take the difference or the ratio of the densities, which leads to the two

following selection criteria, respectively:

CD : s� = argmax
s ∈S

�

ρI (s ) − ρg (s )
�

; (4.13)

CR : s� = argmax
s ∈S

ρI (s )

ρg (s )
. (4.14)

Since we are dealing with a white Gaussian noise, pixel intensities in the noise im-

age g are assumed to be independent, and all the pixels have the same probability of

being blobs at scale s , which preciselymeans that the number of blobs follows a bino-

mial distribution [Kingman, 1992]. Then, if the number of blobs is high enough, the
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binomial distribution leads to a Poisson distribution (which is the limiting case of the

binomial distribution [Kingman, 1992]) for the counting variable ���Bs

�
g
����. Therefore,

we can also resort to the symmetric Pearson distance [Pearson, 1900,Belongie et al.,

2002] and Kullback-Leibler divergence [Hannig and Lee, 2006] to evaluate the dissim-

ilarity between the two densities. Twomore selection criteria can then be formulated:

CP : s� = argmax
s ∈S

�

ρI (s ) − ρg (s )
�2

2
�

ρI (s ) + ρg (s )
� ; (4.15)

CKL : s� = argmax
s ∈S

�
�ρI (s ) − ρg (s ) + ρI (s ) log

ρg (s )

ρI (s )
�
� . (4.16)

While exact for ���Bs

�
g
����, the independence assumption is only an approximation for���Bs

�
I
����, which is precisely the reason why the proposed scale selection criteria work:

we are looking for the scale at which the independence hypothesis does not hold, that

is, spots lie at this scale.

To evaluate ρg (s ), we prefer to avoid a time-consuming denoising step, which

could also introduce artifacts. Instead, we simulate g by generating an image �g con-

taining only white Gaussian noise.

According to Proposition 3, it is unnecessary to estimate the mean and variance

of g , so that we merely sample �g from the standard normal distribution. Therefore,

we can estimate once for all ρg (s ) ≈ ρ�g (s ) with ρ�g (s ) = ���Bs

��g ����/|Ω�g |, instead of gen-
erating one noise image per input image. To limit quantification noise in the blob

counting, it is preferable to generate a large image �g . In practice, we use an image of

size 4096 x 4096. In our experiments, using an even larger noise image did not impact

the scale selection results.

As shown in Figure 4.2b, blob densities in I and �g are close to each other except in

the vicinity of the spot characteristic scale s�. Thus, the optimal scale is in general cor-

rectly determined by all the criteria. We have studied the sensitivity of the method to

the ratio r between consecutive tested scales. Results on a real TIRFM image are pre-

sented in Figure 4.2c-f for the four criteria. The sensitivity of the scale ratio parameter

r is very low. Nevertheless, using an extremely small ratio value such as 1.1 can give

bad results due to the limited global amount of blobs. To achieve a precise enough

while reliable scale selection, we fix the scale ratio r to 1.2 in all the experiments and

we take S =
�
1, 1.2, 1.44, ..., 18.49, 22.19

�
.

To evaluate the scale selection precision of the different criteria, we have gener-

ated synthetic images with the ImageJ plugin presented in [Smal et al., 2010]. They

contain Gaussian spots of various sizes and are corrupted by a Poisson noise for dif-

ferent SNRs, as illustrated in Figure 4.3. Table 4.1 demonstrates the strong correla-

tion between the size of the spots (defined by the Gaussian variance) and the selected

scale. When SNR is high enough (greater than 3), the same scale is selected by all the
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(a) Input TIRFM image I
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Figure 4.2 – Statistics on thenumber of blobs andbehavior of the scale selection criteria. (a) In-

put TIRFM image. (b) Distribution of the number of blobs with respect to scale for the TIRFM

image and a noise image. (c,f) Output of the four scale selection criteria. In all cases, the

maximum is reached for s� ≈ 2 in this example.
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(a) Spot variance: 16 px2;

SNR: 2

(b) Spot variance: 4 px2;

SNR: 2

(c) Spot variance: 4 px2;

SNR: 1

Figure 4.3 – Synthetic images with Gaussian spots corrupted by a Poisson noise

proposed criteria. The selected scale is different however, when objects are small and

noise level high. In this case, CD, CP and CKL tend to underestimate the characteristic

scale, while CR tends to overestimate it. If a scale lower than the spot variance is se-

lected, the image is less filtered and less irrelevant structures are smoothed out, then,

more false detections arise. On the contrary, a scale slightly higher than the spot vari-

ance is selected byCR, so that a larger kernel further reduces noise, resulting in fewer

false detections. As a consequence, for detection purpose, wewill preferCR for higher

precision. However, if a post-processing step is affordable to eliminate erroneous de-

tections as in [Basset et al., 2014b], CD and CKL may be preferable for higher recall,

since less spots will be smoothed out.

Table 4.1 – Scale selected by five criteria on synthetic images

Spot Selection criterion

SNR variance SLT-LoG CD CR CP CKL

1 4.00 3.00 2.99 6.19 1.00 2.99

2 4.00 3.00 3.58 5.16 1.00 3.58

3 4.00 3.00 4.30 4.30 4.30 4.30

4 4.00 3.00 4.30 4.30 4.30 4.30

5 4.00 3.00 4.30 4.30 4.30 4.30

5 1.00 3.00 1.44 1.44 1.73 1.44

5 2.25 3.00 2.49 2.99 2.49 2.49

5 4.00 3.00 4.30 4.30 4.30 4.30

5 9.00 9.00 8.92 8.92 8.92 8.92

5 16.00 9.00 15.41 15.41 15.41 15.41

5 25.00 27.00 22.19 22.19 22.19 22.19

5 36.00 27.00 31.95 31.95 31.95 31.95
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In the approach we proposed in [Basset et al., 2014a], the scale ratio between suc-

cessive scales was constrained to be an odd integer (3 in practice). In [Basset et al.,

2014a], we also set s0 = 1 as the finest scale. Choosing another value for s0 could have

helped obtaining a scale closer to the true spot variance for some variance, but the

overall accuracy of the scale selection would not be increased. Really getting an arbi-

trary accuracy, as with the proposed method ATLAS, would have required to first au-

tomatically select the optimal s0 value, which depends on the processed image, thus

being an open issue by itself. For example it would be impossible to get an accurate

scale both for an image containing spots of variance 9 and for an image containing

spots of variance 16, with the same s0. In contrast, as shown in Table 4.1, with our

new scale selection method and still with s0 = 1, the first image would be correctly

processed at scale 8.92, and the second image at scale 15.41.
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5Spot segmentation

O��� ��� ������ ����� �� ����������, we can proceed to actual spot segmen-

tation. Since the scale selection step relies on LoG, it is natural to detect vesicles

basedon thisparticularfilter. Furthermore, it hasbeen shown in [Sageet al., 2005] that

LoG is close to the optimalfilter in applications like ours, that is detecting subresolved

objects in fluorescence microscopy images.

5.1 Adaptive thresholding

As explained in Section 4.2, our goal is to extract the lowest values of the selected LoG

map H
�
·, s�

�
. When the background is complex or the image exhibits large contrast

variations, the use of a global threshold τH is not satisfactory, as illustrated in Fig-

ure 5.1. Instead, we propose to locally infer a threshold τH
�
p
�
for every point p ∈ ΩI

(a) Input image (b) Global thresholding (c) Local thresholding

Figure 5.1 – Segmentation maps obtained with global and local thresholding. (a) Gaussian

spots are added to a varying background so that contrast increases from left to right. (b) With

a global threshold, segmentation maps contain both false positives (red) and false negatives

(yellow). (c) With a locally adapted threshold, far better performance is achieved.
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from local image statistics. To this end, we assume that the distribution of the im-

age background is smooth and corrupted by white Gaussian noise. It holds because

low frequencybackground structures are locally constant if theneighborhood is small

enough, while noise is supposed to benormally distributed. Then,H is obtainedbyfi-

nite convolution of I , so that this assumption also holds forH . For every point p ∈ ΩI ,

the local mean µH and variance σ2H are estimated over a windowWp centered in p.

Then, we can infer the likelihood ψ
�
p
�
of the background model N

�

µH , σH

�

given

H
�
p, s�

�
:

ψ
�
p
�
= Φ��

H
�
p, s�

�
− µH

σH

�
� , (5.1)

where Φ is the Gaussian probability cumulative density function.

Equation equation (5.1) can be inverted to get a threshold value below which a

point is detected, according to a user-selected probability of false alarm PFA , or p-

value:

τH : ΩI → R

p �→ σHΦ
−1�PFA� + µH . (5.2)

Let us point out that we need to compute Φ−1 only once.

The local thresholding can thus automatically adapt to the local image statistics,

while the PFA setting does not depend on the image intensity range. As a conse-

quence, the spot detection is not affected by photobleaching when processing flu-

orescence microscopy image sequences. Indeed, the PFA is a parameter which is not

directly related to the image properties but to the desired performance of the algo-

rithm. Thus, it can be set once for all for a whole set of images in a given experiment.

In contrast, most aforementioned detection methods have at least one threshold pa-

rameter, which directly depends on the image characteristics and has to bemanually

set.

5.2 Estimation window

Generally, a square window of given radius rW centered at point p ∈ ΩI is used [Kapur

et al., 1985, Sahoo et al., 1988, Sahoo et al., 1997, Phansalkar et al., 2011, Sezgin and

Sankur, 2004,Wilkinson and Schut, 1998]. However, while simple and fast, this type

of window presents several drawbacks. First, the choice of the window size is critical

due to the discontinuity at the window border; increasing or reducing the window

radius by one pixel only can affect the estimated mean and variance. For the same

reason, the resulting thresholdmap τ canbe spoiled, exhibiting strongblockyartifacts

as illustrated inFigure 5.2b. Also, the squarewindow isnot invariant to image rotation.
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(a) Input image (b) Threshold map obtained

with a square window

(c) Threshold map obtained

with a Gaussian window

Figure 5.2 – Threshold maps with different windows. (a) Input image. (b) Use of a square

window. (c) Use of a Gaussian window. Bright areas of the input image should correspond to

low thresholds as the LoG is a negative filter. Strong blocky artifacts appear with the square

window and background statistics are better estimated with the Gaussian window.

To cope with these undesirable effects, we prefer to utilize a Gaussian weighted

windowWp with a bandwidth σW :

∀q ∈ ΩI ,Wp

�
q
�
=

1
�

2πσ2W

exp���−
�

q − p
�2
2

2σ2W

��
� . (5.3)

To speed up the statistics estimation, we rely on the recursive Deriche filter [Deriche,

1990]. The goodproperties of theGaussianwindoware kept even if thewindowprofile

is not strictly Gaussian. As reported in the next section, the smooth weight decrease

allows for a very low sensitivity of the window size parameter. Furthermore, giving

more importance to central points naturally yields a better estimation of local statis-

tics. Figure 5.2 demonstrates the advantage of such a smoothwindowing compared to

the square one. Thebright background structures of the input image arewell reflected

in the threshold map of Figure 5.2c, while large errors are encountered in Figure 5.2b

for the square window.

The computation load with Gaussian windows will obviously be higher than with

square patches, but not dramatically. Tests were performed on a laptop with 2.3 GHz

Intel i7 processor. For 512× 512 images, the computation time is 50msper imagewith

a quasi-Gaussian window, and 15 ms with a square one relying on a moving average

algorithm [Kenney and Keeping, 1947,Crow, 1984, Shafait et al., 2008]. For both win-

dows, the numerical complexity is linear with the size of the image.

Finally, in an image sequence, frames are segmented independently, so that the

program could even be sped up by processing the frames in parallel. Let us also stress

that, if the image background is stationary, the estimation window could be extended
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to a spatiotemporal window in order to estimate the background statistics still more

robustly.

5.3 Experimental results

We have compared ATLAS to state-of-the-art spot detection methods in a wide vari-

ety of cases. Comparative quantitative evaluation was carried out on several datasets

with ground-truth. The first dataset is generated with the Synthetic Data Genera-

tor ImageJ plugin introduced in [Smal et al., 2010] and later used in [Basset et al.,

2014a,Rezatofighi et al., 2012]. Twelvemethodswere compared on this dataset, which

is (to our knowledge) the most complete comparison of spot detection methods to

date, but the images remain somewhat too artificial and too simple.

As mentioned in the Introduction section, we have conducted comparative ex-

periments on three other datasets involving more complex contents with the most

competitive detection methods, namely MS-VST, MPHD, HD and conditional ran-

dom fields for protein transport carriers segmentation (C-CRAFT). First, Boulanger

et al. [Boulanger et al., 2009] and Rezatofighi et al. [Rezatofighi et al., 2013] proposed

particle dynamics simulators, referred in the sequel as Traffic simulator and TIRFM

simulator, respectively. The Traffic simulator was used in [Pécot et al., 2015] to eval-

uate the performance of several methods. Secondly, we have constructed another

image dataset named Spot in M10 where image backgrounds are extracted from real

TIRFM images.

As stated in Section 2.3.4, all the images processed in this section are first stabi-

lized using the generalized Anscombe transform (GAT)-based variance stabilization

method described in [Boulanger et al., 2010b].

5.3.1 Performance measures

ATLAS delivers a binary detection map. In order to evaluate the performance of the

method and compare it to other ones, we compute the centroid of every segmented

connected component, resulting in a set of locations {δ}. Then, following [Smal et al.,

2010], an objectω of the ground-truth is correctly detected if andonly if: (1) its nearest

neighbor δ in the set of detected centroids is closer than 4 pixels away, and (2)ω is also

the nearest neighbor of δ in the ground-truth set of locations. Let us denote NTP the

number of true positives, NFP the number of false positives and NFN the number of

false negatives.

We can evaluate different scores for every image and parameter setting. As in

[Basset et al., 2014a, Rezatofighi et al., 2012, Smal et al., 2010], we compute the true

positive ratio TPR = NTP/(NTP + NFN) and the modified false positive ratio FPR* =

NFP/(NTP + NFN). The value of TPR when FPR* = 0.01 is denoted TPR* and is used



5.3. E����������� ������� 51

R
o
u
n
d
o
b
je
ct
s

E
lo
n
ga
te
d
o
b
je
ct
s

(a) Type A (b) Type B (c) Type C

Figure 5.3 – Sample images from the Synthetic Data Generator benchmark for SNR = 2. Types

are defined in the main text.

to compare methods in [Basset et al., 2014a,Rezatofighi et al., 2012,Smal et al., 2010].

Moreover, to compare ATLASwith the detectionmethods tested in [Pécot et al., 2015],

namely HD,MS-VST and C-CRAFT, we compute the precision Prec = NTP/(NTP+NFP)

and recall Rec = NTP/(NTP + NFN). Varying the threshold parameter for the existing

methods or the PFA value for ATLAS, we can plot the free receiver-operator character-

istic (FROC), that is the TPR-versus-FPR* curve, and the precision-versus-recall curve.

That way, the behaviors of the methods can be evaluatedmore thoroughly. Addition-

ally, we compute the area under the FROC curve as a performance score over a wide

range of thresholds or PFA values. We also resort to the F-measure defined by the har-

monic mean of precision and recall F = 2Prec . Rec/(Prec + Rec), and more precisely

to the best reachable F-measure F*.

5.3.2 Synthetic Data Generator

In [Basset et al., 2014a,Rezatofighi et al., 2012, Smal et al., 2010], twelve methods are

evaluated over six image sets of 16 images each. They are depicted in Figure 5.3. Two

object shapes are considered: isotropic Gaussian spots of standard deviation 2 pixels,

and elliptic Gaussian spots of standard deviations 5 and 2 pixels along the two prin-

cipal axes, respectively. Three types of background are generated: uniform intensity

(type A), horizontal intensity gradient (type B), and large random structures (type C).
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Table 5.1 – Comparison of TPR* values with state-of-the-art methods on the Synthetic Data

Generator dataset for SNR = 2

Object shape Round Elongated

Background type A B C A B C

TPR*s of supervised detection methods

AB [Jiang et al., 2007] 0.99 0.94 0.94 0.99 0.99 0.99

FDA [McLachlan, 1992] 0.99 0.99 0.96 0.99 0.99 0.99

TPR*s of unsupervised detection methods

TH [Bright and Steel, 1987] 0.99 0.88 0.48 0.99 0.96 0.56

HD [Smal et al., 2008] 0.99 0.97 0.90 0.99 0.99 0.97

WMP [Olivo-Marin, 2002] 0.81 0.37 0.30 0.31 0.17 0.18

IFD1 [ter Haar Romeny, 2003] 0.98 0.67 0.89 0.53 0.31 0.31

IFD2 [ter Haar Romeny, 2003] 0.99 0.46 0.71 0.59 0.23 0.19

MTH [Soille, 2003] 0.99 0.87 0.88 0.99 0.98 0.91

SEF [Sage et al., 2005] 0.99 0.91 0.95 0.99 0.99 0.95

MS-VST [Zhang et al., 2007] 0.99 0.99 0.93 0.99 0.99 0.96

MPHD [Rezatofighi et al., 2012] 0.99 0.97 0.94 0.99 0.99 0.95

SLT-LoG [Basset et al., 2014a] 1.00 0.99 0.98 1.00 1.00 1.00

ATLAS 1.00 1.00 0.99 1† 1† 1.00

†1 means that every spot is correctly detected, while 1.00 corresponds to a rounded value

A Poisson noise is added to obtain a SNR of 2. Table 5.1 summarizes the TPR* values

obtained by the detection methods on this benchmark. Number 1.00 corresponds to

rounded values, while 1 means that every spot is correctly detected. In the later case,

the 4096 spots of the sequence are all recovered even for a FPR* value lower than 0.01.

In [Rezatofighi et al., 2012, Smal et al., 2010], in order to perform a fair compari-

son, all the methods were run with various parameter settings and, for each method,

the setting yielding the best performance was selected, that is the highest TPR for

FPR* = 0.01. Therefore, reported results reflect the best possible performance of the

comparedmethods. As forATLAS,wehavefixed the sizeof thebackgroundestimation

window σW once for all to 15 pixels, that is all the sequences were segmented using

the same window parameter. Notwithstanding, as demonstrated in Table 5.1, ATLAS

performs better than any other method described in [Basset et al., 2014a,Rezatofighi

et al., 2012,Smal et al., 2010] on every image subset of the benchmark dataset.

Finally, wehave conducted a complementary experiment to demonstrate the abil-

ity of the method to detect two different scales in an image. While not relevant in our

study, the ability to deal with images containing objects of different sizes could be

appealing in some other applications. Therefore, a series of 16 synthetic images con-

taining 2048 spots of variance 4 px2 and 2048 spots of variance 16 px2 was generated.

A Poisson noise was added to get a SNR of 2 (which converts to 6 dB). TheCR criterion
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(a) Input image
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(b)Output of criterionCR

Spot variance

4px2 16px2

TPR FPR*

ŝ1 = 4.29 0.98 0.58 0.01

ŝ2 = 15.41 0.14 0.97 0.00

Maps union† 0.98 0.98 0.01

†The maps union is obtained by combining

the two segmentation maps (a point is de-

tected in the union if it is detected in the first

or in the secondmap).

(c) Two-scale segmentation results: map and number of spots detected

Figure 5.4 –Case of images containing spots of twodifferent sizes. (a) Input imagewith spots of

two different sizes (resp. 4 and 16px2). (b) Two local maxima are located byCR at about 4 and

16px2, corresponding to the spots variances. (c) Segmentationmap when the LoG filter scale

is set to the first local maximum in CR, that is ŝ1 = 4.29, then to the second local maximum

ŝ2 = 15.41.

output is plotted in Figure 5.4. It is computed over the 16 images. It exhibits two local

maxima at scales ŝ1 = 4.29 and ŝ2 = 15.41, so that two characteristic scales could be

detected as well if specified by the user. We have computed the segmentation maps

for the two maximal scales. As shown in Figure 5.4, most spots of variance 4 are de-

tected at scale 4.29, while most spots of variance 16 are detected at scale 15.41. Also,

the union of both segmentation maps yields convincing detection results for such a

multiscale case, that is TPR = 0.98 for FPR* = 0.01. The detection of spots of different

sizes is not an objective of the thesis, but this experiment shows that our method can

be amenable to detect spots of several sizes. Besides, this experiment demonstrates

the necessity of finding the right LoG scale. Indeed, the scale 4.29 is not adequate to

detect the spots of variance 16 (with a TPR* of 0.58) and the same holds for detecting

spots of variance 4 at scale 15.41 (TPR* = 0.14).
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Table 5.2 – Comparison with LR-MRF on the Subcell dataset

Prec Rec F-score

LR-MRF 0.876 0.858 0.867

ATLAS 0.994 0.957 0.969

As for the supervised method logistic regression with Markov random field (LR-

MRF) described in [Ruusuvuori et al., 2012], the authors reported better results than

those of 11 unsupervised methods on a synthetic dataset of 20 images named Sub-

cell [Ruusuvuori et al., 2010]. In addition, we have evaluated our method on the

same synthetic dataset. We give the results in Table 5.2, which demonstrates that

our method ATLAS also outperforms the 12 supervised method of [Ruusuvuori et al.,

2012].

5.3.3 Spot in M10 dataset

To further challenge spot detection methods, we have generated another synthetic

image dataset to carry out comparative objective evaluation. The so-called Spot in

M10 dataset was constructed by mixing real background images and synthetic spots,

as illustrated in Figure 5.5. To obtain realistic backgrounds, the rolling-ball extraction

method [Sternberg, 1983] was first applied to one hundred real TIRFM images. Other

background extraction methods could have been used as well. Actually, we do not

need a very precise estimation of the background to construct the dataset. Further-

more, in order to ensure a fair comparative evaluation, it is preferable to use a back-

ground extractionmethodwhich is not part of any spot detectionmethods. Then, for

each background image, 45 to 80 vesicles, modeled as Gaussian spots, were randomly

added inside the cell region. Two spot variance values were tested: 1 px2 and 1.44px2.

Finally, the resulting images are corruptedbyvariousPoisson-Gaussiannoises to form

images very similar to real ones.

We prefer to rely on the peak signal-to-noise ratio (PSNR) instead of SNR to eval-

uate the noise level in fluorescence microscopy images. Indeed, it is more straight-

forward and easier to compute PSNR in real images. After stabilizing the variance,

the PSNR can be estimated as the difference between the minimum and maximum

intensities, since the noise variance after stabilization is supposed to equal 1. The

estimated PSNR of the real TIRFM images we are dealing with ranges from 23 to

31dB. In order to evaluate the robustness to noise of the methods, we have gener-

ated even noisier images, down to PSNR = 18dB. Note that PSNRs are higher than

aforementioned SNRs since we are considering the brightest spot in the sequence. As

shown in Figure 5.5, we end up with a set of six image collections, each containing
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(a)M10-1.44-30 (b)M10-1-30

(c)M10-1-25 (d)M10-1-23

(e)M10-1-21 (f)M10-1-18

Figure 5.5 – (a) Constructed image containing spots of variance 1.44 px2; estimated PSNR:

30dB. (b-f)Constructed images containing spotsof variance1px2; PSNRdecreases from30dB

(b) to 18 dB (f).
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Table 5.3 – Comparison with MS-VST andMPHD on the Spot in M10 dataset

Spot variance 1.44 1 1 1 1 1

PSNR 30 30 25 23 21 18

TPR at FPR* = 0.01

MS-VST 0.69 0.71 0.46 0.40 0.29 0.13

MPHD 0.64 0.66 0.50 0.44 0.35 0.18

ATLAS 0.70 0.71 0.50 0.45 0.34 0.18

Area under FROC curve

MS-VST 0.79 0.80 0.65 0.60 0.52 0.36

MPHD 0.77 0.78 0.66 0.61 0.53 0.39

ATLAS 0.80 0.80 0.69 0.64 0.55 0.44

Maximum F-score F*

MS-VST 0.82 0.83 0.68 0.64 0.56 0.41

MPHD 0.80 0.81 0.70 0.66 0.58 0.44

ATLAS 0.83 0.83 0.71 0.67 0.58 0.48

one hundred images and more than six thousand spots. The dataset is available at

https://serpico.rennes.inria.fr.

FROC curves are plotted in Figure 5.6 for each image collection. MS-VST per-

formed better than MPHD at high PSNR, while the opposite holds for noisier im-

ages. Our method ATLAS is on par or slightly better than MS-VST at high PSNR, and

demonstrates better robustness to noise. Therefore, FROC curves obtained with AT-

LAS nearly always dominate others. Table 5.3 summarizes TPR* scores, areas under

FROC curves and best F-scores F* of the three methods. Our method always ranks

first, except in one case, whereMPHD is slightly better around FPR* = 0.01. Whatever

the evaluation measure, the best overall performance is achieved by ATLAS.

The sensitivity of the parameters involved in MS-VST and ATLAS was low enough

to keep the same setting for the whole dataset. For MS-VST, scale levels 2 and 3 were

used. For ATLAS, the window radius σW was set to 60 pixels. Moreover, as illustrated

in Figure 5.7, this window size is not critical. To achieve the best performance with

MPHD, we varied the LoG standard deviation from 0.83 pixel for highest PSNR to 1

pixel for lowest PSNR. Results were unchanged when varying the maximum dome

radius (Table 3.1) from 5 to 20 pixels.

To further investigate the behavior of ATLAS when varying the parameters, we

have conducted additional experiments. First, Figure 5.7 demonstrates the extremely

low sensitivity of the estimation window size. FROC curves are indistinguishable

when doubling σW from 40 to 80 pixels. Secondly, we evaluated the precision of the

scale selection as reported in Figure 5.8. In the M10-1-30 image subset, spots have a

variance of 1 px2, so that one might think that best results would be achieved with a

matched LoG filter of variance 1px2. Yet, the scale selectedwith criterionCR is higher,
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(a) Spot variance: 1.44; PSNR: 30 dB
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(b) Spot variance: 1; PSNR: 30 dB
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(c) Spot variance: 1; PSNR: 25 dB
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(d) Spot variance: 1; PSNR: 23 dB
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(e) Spot variance: 1; PSNR: 21 dB
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(f) Spot variance: 1; PSNR: 18 dB

Figure 5.6 – Comparison of FROC curves obtained with ATLAS, MPHD and MS-VST on the

proposed Spot in M10 dataset
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Figure 5.7 – Sensitivity of the window parameter of ATLAS on the M10-1-30 image collection.

Doubling the Gaussian window size does not impact performance.
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Figure 5.8 – Precision of the scale selection illustrated on the M10-1-30 image collection. Per-

formance was evaluated by taking different scales in the LoG filter. Best results are obtained

with the automatically selected scale s� = 1.44.
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namely 1.44px2. In order to check the relevance of the selected scale, we run ATLAS

with several LoG variances s taken in
�
1, 1.2, 1.44, 1.73, 2

�
. For the sake of visibility, we

only plotted results with s ∈
�
1, 1.44, 2

�
in Figure 5.8. The FROC curve obtained with

the scale 1.44px2 corresponding to s� dominates others, which demonstrates the ac-

tual relevance of the selected scale and the efficiency of ATLAS. Besides, this shows

the benefit of applying the LoG at the appropriate scale, and justifies the proposed

method.

5.3.4 TIRFM simulator

In [Rezatofighi et al., 2013], the authors propose a method for simulating realistic

TIRFM images containing spots undergoing a Brownian motion. The background of

a real TIRFM image is first extracted using the h-dome method MPHD [Rezatofighi

et al., 2012]. Then, objects are randomly spread inside the cell and aPoisson-Gaussian

noise is added. We have evaluated the performance of our method on two sequences

providedby the authors (Figure 5.9a-d), and compared it to the twobest rankedmeth-

ods in [Rezatofighi et al., 2012, Smal et al., 2010], namely MS-VST and MPHD. FROC

curves are plotted in Figure 5.9e,f for both sequences. While negligible in the first

sequence, photobleaching is strong in the second one, so that all the methods per-

formed worse in the latter case. ATLAS obtained better results than MS-VST on both

sequences, and than MPHD on the second sequence. However, MPHD performed

significantly better than ATLAS andMS-VST on the first sequence for low FPR*. Let us

nevertheless remind that the backgrounds were extracted using MPHD.

5.3.5 Traffic simulator

We can also compare our method to a robust patch-based method named C-CRAFT,

which jointly estimates background and segments vesicles in 2D or 3D fluorescence

image sequences, in the framework of conditional random fields [Pécot et al., 2015].

Vesicle segmentation and background estimation are formulated as a global energy

minimization problem.

Even if spot detection is only one of the goals of C-CRAFT, the authors also com-

pared theirmethod to several spot detectors, includingHDandMS-VST, on image se-

quences generated with the vesicle traffic simulationmethod [Boulanger et al., 2009].

Therefore, we can compare the spot detection results of ATLAS on the dataset used

in [Pécot et al., 2015]. It is composed of four sequences of 120 frames. Two real back-

grounds were extracted for Circle- and Crossbow-shaped micropatterned cells. Vesi-

cle motions are then simulated, and both sequences are corrupted with two differ-

ent Poisson-Gaussian noises. Since no FROC curves were given in [Pécot et al., 2015],
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(a) First frame of the EstBack1 sequence (b) Last frame of the EstBack1 sequence

(c) First frame of the EstBack2DS sequence (d) Last frame of the EstBack2DS sequence
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(f) Results on the EstBack2DS sequence

Figure 5.9 – Comparison of FROC curves obtained with ATLAS, MPHD and MS-VST on the

TIRFM simulator dataset
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(a) First frame of the Crossbow sequence

(PSNR: 31 dB)

(b) First frame of the Circle sequence

(PSNR: 33 dB)
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(c) Crossbow sequence; PSNR: 31 dB
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(d) Crossbow sequence; PSNR: 25 dB
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(e) Circle sequence; PSNR: 33 dB
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(f) Circle sequence; PSNR: 31 dB

Figure 5.10 – Comparison of precision-recall curves obtained with ATLAS, C-CRAFT, HD and

MS-VST on the Traffic simulator dataset.
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precision-recall curves of ATLASareplotted inFigure 5.10 and compared to the results

provided in [Pécot et al., 2015] for C-CRAFT, HD andMS-VST.

On the two Crossbow sequences, ATLAS outperforms the three methods. On the

Circle sequence, which exhibits extremely contrasted background, ATLAS and C-

CRAFT are on par for the highest PSNR (33dB), but C-CRAFT performs better when

noise level is high and ATLAS ranks second. This can be explained by the temporal

integration used by C-CRAFT to jointly estimate background and detect vesicles.

5.3.6 Real images

Finally, we have conducted experiments on real images. As in most experiments on

microscope images, it is not possible to extract the full ground-truth, but only to get an

expert annotation, which is not perfect by nature. As a consequence, a quantitative

comparison would not be completely reliable. Therefore, qualitative comments are

given to analyze results on real data.

We have processed two real sequences of M10 cells expressing various fluores-

cently tagged proteins, namely Langerin and TfR tagged with pHluorin, and Rab11

tagged with mCherry.

The first 300-frame sequence was acquired with the Dual View optical beam-

splitting technique [Gidon et al., 2012]. As explained inChapter 2, with this technique,

several fluorescence channels are simultaneously acquired side-by-side on the sen-

sor, resulting in images including two parts with very different intensity ranges, as

shown in Figure 5.11a. The upper half of the image shows Rab11 GTPase. Overall,

it is much brighter than the lowest half showing Langerin. Even in that complicated

case, the adaptive thresholding approach produces very satisfactory results in both

parts of the image. In the lower part, spots even darker than the upper part cell back-

ground are detected, while no false detection appears even in the brightest region of

the upper part.

As stated in the introduction, various images fulfill the characteristic scale as-

sumption. To show the ability of the method to cope with a very different type of im-

ages, ATLAS was also successfully applied to tissuemicro-array (TMA) images, where

the cores must be first detected, before being individually analyzed. In these images,

the difficulty mainly comes from the high variability of the cores intensity. Indeed,

as illustrated in Figure 5.12, spurious bright dots have a much higher intensity than

most cores. To smooth out these dotswhile still detecting low-intensity cores, the LoG

scale must be precisely set. Cores are correctly detected by ATLAS, and only one false

positive arises corresponding to a broken but intense core. However, this kind of error

can be easily discarded by post-processing [Nguyen et al., 2015].

We have also compared the binary segmentation maps supplied by ATLAS and

MS-VSTon a secondTIRFM image sequence of 300 images. Weonly comparedATLAS
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(a) Input TIRFM image (b) Segmentation map

Figure 5.11 – Segmentation results supplied by ATLAS on a real two-channel TIRFM image

sequence. (a) First frame of the sequence. The two channels are displayed one above the

other, Rab11-mCherry channel on top, Langerin-pHluorinbelow. (b) Segmentationof vesicles

by ATLAS.

to MS-VST because the latter was assessed to be the best competitor. As for MPHD,

it only provides spot center coordinates. As shown in Figure 5.13a, elongated ob-

jects present in Rab11-mCherry sequences are better recovered by our method. This

demonstrates the ability of the LoG filter to detect elongated structures, providing

one dimension of the elongated structures nearly corresponds to the selected scale.

The thresholding step is performed pixelwise, so that the elongated structures can be

segmented by successively detecting neighboring pixels forming the elongated con-

nected component. In this case, the accurate scale selection of ATLAS yields better

segmentation results than MS-VST, in which the ratio between consecutive scales is

too high (and it cannot be reduced) to correctly handle the sequence characteristic

scale. It results in elongated objects of Figure 5.13a being split in the segmentation

map delivered byMS-VST (Figure 5.13b), while elongated connected components are

correctly recovered by ATLAS (Figure 5.13c).
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(a) TMA cores (b) Segmentation map

Figure 5.12 – Segmentation of cores with ATLAS. (a) Input TMA 16-bit image (courtesy of

Innopsys Company). The brightest core is 76 times brighter than the darkest one. Some spu-

rious spots are 36 times brighter than the darkest spot. (b) Segmentation results supplied by

ATLAS. Only one error is made (in red), by detecting a broken core of small spatial extent.

5.4 Discussion

We have proposed a novel and efficient vesicle segmentation method called ATLAS

which involves an automatic scale selection and a local threshold setting. It is dedi-

cated to situations where most of the visible structures share about the same size in

the image. The selected scale can be of any arbitrary precision. After determining the

optimal scale, a LoG operator is applied on the images. The segmentation threshold

is automatically and locally set according to a given PFA value. Overall, ATLAS out-

performs state-of-the-art methods on various datasets, including a new one we have

constructed and made publicly available for further comparison. Satisfactory seg-

mentation results on several challenging real TIRFM images have been reported. We

have shown that ATLAS is not sensitive to the Gaussian window size in the segmenta-

tion step. Moreover, the PFA value is a user-friendly parameter which allows the user

to adapt themethod to the targeted detection sensitivity according to the application

needs and the further exploitation of the detection results. Thus, no specific knowl-

edge is required on the algorithm itself, that is, themethod can be used as a black box

by someone non-expert in image processing. We have shown that ATLAS can be suc-

cessfully applied to different kinds of images. We have also demonstrated that ATLAS



5.4. D��������� 65

(a) Input TIRFM images

(b) Segmentation results with MS-VST

(c) Segmentation results with ATLAS

Figure 5.13 – Comparison of segmentation results on a real 300-frame TIRFM sequence pre-

senting elongated objects. (a) Two input TIRFM images (Rab11-mCherry) out of the 300-

frame sequence at time instants 93 and 300. (b) Segmentation results with MS-VST for the

two frames of (a). A total of 24,481 objects are detected over the sequence. Some elongated

objects of (a) are split (red) byMS-VST. (c) Segmentation resultswith ATLAS for the two frames

of (a). A total of 24,195 objects are detected over the sequence. Few very close objects of (a)

are merged (marked in yellow) by ATLAS, and the elongated objects are well recovered.
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candealwith a couple of scales if needed. Wewill further investigate thedetectionand

exploitation of a wider set of scales if one or two scales are not sufficient to accurately

describe the structures of interest. We also plan to apply ATLAS to three-dimensional

images.
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6Modeling of the vesicle fusion dynamics

R���������� dynamic protein behaviors in live cell fluorescence microscopy is

of paramount importance to understand cell mechanisms. In the case of mem-

brane traffic, cargo molecules are transferred from a donor to an acceptor compart-

ment [Prydz et al., 2013]. During the exocytosis process, a vesicle conveys cargo

molecules to the plasma membrane, and then opens to expel them from the cell. At

each step, dedicatedmolecular platforms are acting to transport, steer and deliver se-

lected proteins. In microscopy imaging, this sequence of processes leads to a series

of different dynamics which need to be untangled in order to understand the spa-

tiotemporal coordination of the molecular actors. Total internal reflection fluores-

cence microscopy (TIRFM) is particularly well suited for focusing on the late steps of

exocytosis, which occur at the plasmamembrane [Brown, 2006]. However, even with

this modality, it is still a challenging task to classify dynamics of vesicular movements

and protein diffusion.

In this part, we investigate the dynamics of three proteins associated with vesicles

during the exocytosis process of vesicle recycling: Rab11, Transferrin receptor (TfR)

and Langerin.

Rab11 is a so-calledGTPaseprotein. Amongothers, it is requiredduring the vesicle

transport. However, Rab11 is also known to be associated with many other actors

(see, e.g., [Schwartz et al., 2007,Hutagalung and Novick, 2011]), and one objective is

to decipher its dynamics in order to better understand the recycling process.

TfR and Langerin are transmembrane proteins, that is, they are inserted in biolog-

ical membranes, including the plasmamembrane, where they are involved in several

biological processes. After they have completed a process in the cell, TfR and Lan-

gerin are recycled by a recycling endosome [Uzan-Gafsou et al., 2007], which means

that they are sent to another place, where they have to carry out some function. If sent

to the plasma membrane, they are transported by a recycling vesicle, which eventu-
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ally fuses to the plasmamembrane. At this point, the transmembrane proteins diffuse

in the plasmamembrane and it can be reused for the following endocytosis.

To the best of our knowledge, apart from this thesis, the issue of diffusion after

vesicle fusion was only addressed in [Mele et al., 2009, Burchfield et al., 2010] with a

simplemodel and estimationmethod. In these papers, very restrictive hypotheses are

assumed, yielding non-realistic results. Moreover, the estimation method, which we

recall later, does not exploit all the available information and lacks accuracy. There-

fore, we propose to go further both in terms ofmodeling and estimation of the vesicle

fusion dynamics.

In this chapter, we present the biological processes taking place during exocytosis

in Section 6.1, before and after the vesicle fusion to plasmamembrane. After present-

ing existing diffusion models in biology in Section 6.2, dynamical models for vesicle

fusion dynamics are proposed in Section 6.4 for Rab11, TfR and Langerin. Strengths

and limitations of the proposedmodels are discussed in Section 6.5. Fusion dynamics

will then be detected and estimated in Chapter 7 and Chapter 8, respectively.

6.1 Exocytosis process

6.1.1 Sequence until vesicle fusion

Let usfirst present very briefly the successive steps constituting theprocess, which are

represented in Figure 6.1. The selected material being secreted is initially contained

in a donor organelle. In order to leave the latter, a vesicle forms by invagination of the

organellemembrane (Figure 6.1b). Thematerial is enclosedwhen the nascent vesicle

closes and detaches from the donor membrane.

As illustrated in Figure 6.1c, a vesicular motor then pulls the vesicle along the cy-

toskeleton,which allows the vesicle and its contents tomove toward theplasmamem-

brane. Let us mention that the Rab11 protein is bound to the vesicle and most prob-

ably to a molecular motor during the transport step, and stays with the vesicle for a

while after transport, as explained in Section 6.1.2.

The overall process follows a docking-tethering-fusion sequence. While the vesi-

cle approaches the plasmamembrane, specific receptors in the latter, target SNAREs

or t-SNAREs in short, bind with the vesicle own receptors, v-SNAREs, constituting a

SNARE complex represented in Figure 6.1d. Then, the complex pulls the vesicle to-

ward the plasmamembrane until fusion.

Fusion consists in melting the vesicle and plasma membranes. Specifically, after

docking at the plasma membrane, the vesicle opens while its membrane becomes

part of the plasma membrane. As depicted in Figure 6.1e, the interior of the vesicle

therefore becomes the exterior of the plasmamembrane, and thematerial which was
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Figure 6.1 – Main steps of exocytosis

initially in the donor organelle, and then in the vesicle, is thus released outside the

cell, concluding the exocytosis process. In the meantime, transmembrane proteins,

which are in the vesicle membrane before fusion, are released in the plasma mem-

brane (Figure 6.1f). The behavior of Rab11 is not easy to establish: it could be that (i)

Rab11 diffuses along the plasmamembrane and later dissociates from themembrane

to the cytosol; or (ii) it dissociates and diffuses in the cytosol immediately after fusion.

We will focus on this final step in the remaining of Part II.

As mentioned above, the behavior of TfR and Langerin on the one hand, and of

Rab11 on the other hand, are very different. Specifically, TfR and Langerin are two

transmembrane proteins spanning across the vesicle membrane, while Rab11 binds
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at the outer side the vesicle membrane, as depicted in Figure 6.1. We shall now de-

scribe the behavior and specificity of those proteins.

6.1.2 Diffusion of Rab11 after vesicle fusion

The exact sequence of events followed by Rab11 and the associated dynamics are not

well established. However, the interaction of Rab11withmany proteins during exocy-

tosis has been demonstrated [Lindsay andMcCaffrey, 2002,Hales et al., 2001,Lapierre

and Goldenring, 2005, Gidon et al., 2012, Boulanger et al., 2014, Novick et al., 2006],

suggesting that Rab11 is required for the successive steps of exocytosis to be com-

pleted from transport to fusion, and shows that Rab11 lies in the vicinity of the vesicle

at least until fusion.

As opposed to transmembrane proteins, Rab11 can leave the membrane for the

cytosol, an event named dissociation. While it is known that Rab11 dissociates from

the plasma membrane, at some time point of the exocytosis or later, it is unclear if

Rab11 dissociates before, during, or after vesicle fusion. For example, Rab11may first

move along the plasma membrane before leaving to the cytosol, that is, diffusing in

two dimensions before dissociating and diffusing in three dimensions, or on the con-

trary, itmayonly diffuse in three dimensions. In both cases, deciphering the sequence

of consecutive steps during and after vesicle fusion remains an open question.

Owing to thermal agitation in the membrane or cytosol, Rab11 proteins are as-

sumed toundergo aBrownianmotion [Einstein, 1905]. Thismodel holds if theplasma

membrane and cytosol are isotropic homogeneous, and free of obstacles. Moreover

themembrane is supposed to be flat in the thesis. However the hypothesesmust only

be valid in a small region around the vesicle fusion location, as we will rely on very

local estimation methods.

Furthermore, we focus on image sequences depictingmicropatterned cells, which

means that they are “glued” on the coverslip. This ensures that the cell does not drift

during the acquisition and the membrane itself is supposed to be immobile.

Proteins undergoing a Brownian motion may go away from the location where

vesicle fusion occurred, and we will see that the group motion of the proteins is a

lateral diffusion process, that is, a process by which the protein concentration tends

to homogenize in the membrane or cytosol [Einstein, 1956].

To select a dynamical model for Rab11, different candidates must be proposed.

We are principally interested in the dissociation process, i.e., we aim at distinguishing

membrane and cytosol dynamics. For example, the following models are plausible,

but others can be considered:

• When the vesicle fuses to the plasmamembrane, Rab11 dissociates to diffuse in

the cytosol;
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©Adapted from an illustration by Mariana Ruiz Villarreal, Wikimedia Commons

Figure 6.2 – Diffusion of a transmembrane protein (in green) in the plasmamembrane

• When the vesicle fuses to the plasma membrane, Rab11 starts dissociating and

diffusing in the cytosol, while adecreasingportionof theRab11proteinsdiffuses

along the membrane;

In the first case, we will see that a simple image model can be inferred, with only one

biophysical parameter: the diffusion coefficient. In the other case, however, two con-

centration components superimpose in the image: (i) a component diffusing in two

dimensions in the membrane; and (ii) a component diffusing in three dimensions in

the cytosol. In addition, a flow model should be proposed to account for dissocia-

tion. We end up with two diffusion coefficients plus one or several parameters for the

dissociation model.

6.1.3 Diffusion of TfR and Langerin after vesicle fusion

Transmembrane proteins span across themembrane, which they never leave. There-

fore, theirmotion is constrained by the two-dimensional surface formedby themem-

brane they belong to. More precisely, transmembrane proteins move in the mem-

brane by sliding between phospholipids, as illustrated in Figure 6.2. In the frame of

exocytosis, TfR and Langerin either belong to the vesicle membrane or to the plasma

membrane, but never dissociate to the cytosol.

Like for Rab11, the typeof dynamics undergoneby transmembraneproteins in the

plasmamembrane is assumed to be a Brownianmotion [Clegg and Vaz, 1985], which

holds under the aforementioned hypotheses (isotropic, homogeneous, obstacle-free

membrane). More complex models have been proposed to take into account inter-

actions between proteins and membrane structures [Sako and Kusumi, 1994, Schuss

et al., 2007,Rehfeldt andStichlmair, 2007] or toallow for rotation [Cherry, 1979,Swami-

nathan et al., 1997]. However, the rotational component has been shown to be negli-

gible with respect to the lateral component [Almeida and Vaz, 1995]. For an extensive

survey on the diffusion in plasma membrane, we refer the reader to [Clegg and Vaz,

1985,Almeida and Vaz, 1995].
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Figure 6.3 – Break-down of the intensity model

6.2 Existing diffusion models

For thirty years, numerous biological studies focused on membrane diffusion [Vaz

et al., 1984, Clegg and Vaz, 1985, Jacobson et al., 1987, Almeida and Vaz, 1995, Chen

et al., 2006,Guo et al., 2008, Ramadurai et al., 2009]. Different models correspond to

different applications, observed objects or microscopy techniques. Before proposing

a new diffusion model for vesicle fusion, let us comment three widely-used diffusion

models, namely the stationary model, the point source model and the fluorescence

recovery after photobleaching (FRAP) model.

Generally, themodels were proposed to analyze 2D diffusion in the plasmamem-

brane, as considered in what follows. The extension to three dimensions is generally

straightforward. If this is not the case, the three-dimensional model will be explicitly

given.

6.2.1 Intensity model break-down

As represented in Figure 6.3, the mathematical model of I
�
p, t

�
for each point p ∈ ΩI

and time t ∈ R+ is fully determined by three components:

• The source particle distribution;

• The evolution model;

• The observation model.

The source distribution characterizes the way particles are spread over space be-

fore they start diffusing. The source distribution defines both the spatial distribution

of the particles before they start diffusing, and the law governing their release time to
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the plasma membrane or cytosol. This will be thoroughly explored in the remaining

of the chapter.

The particle evolutionmodel is themathematical description of themotion of the

proteins after fusion. As explained above, it is assumed to be Brownian. Then, result-

ing from Brownianmotion of each individual particle, lateral diffusion is the dynam-

ical model governing the evolution of the whole particle population.

As for the observation model, we have explained in Chapter 1 that it is itself sub-

divided into components, including different noises and the optical transfer function

or point spread function (PSF). In this chapter, we will first consider a noise-free ob-

servation model to derive the intensity model.

Since the evolution and observation models are fixed once for all, we investigate

in this chapter the source distribution modeling, that is the distribution of the light-

emitting particles before they start diffusing.

6.2.2 From Brownian motion to lateral diffusion1

As a fundamental stochastic process, involved for instance in fluid dynamics [Fick,

1855,Maxwell, 1867, Philibert, 2005], heat transfer [Fourier, 1822, Carslaw and Eger,

1959] or stellar dynamics [Reid and Brunthaler, 2004, Merritt, 2013], Brownian mo-

tion was extensively studied by mathematicians and physicists. While named after

botanist Robert Brown, who observed such motion without a mathematical descrip-

tion [Brown, 1828],mostmathematics of Brownianmotionwere formulated by Albert

Einstein in the second of the Annus mirabilis papers [Einstein, 1905]. More recently,

biophysicists and biologists introduced Brownian motion to model various dynamic

structures inside the cell [Hellriegel andGratton, 2009,Schuss, 2012],most extensively

focusing on lipid and protein motion in the plasma membrane [Vaz et al., 1984, Ja-

cobson et al., 1987, Almeida and Vaz, 1995, Saxton and Jacobson, 1997, Chen et al.,

2006,Guo et al., 2008,Ramadurai et al., 2009].

Mathematically, a given particle i undergoes a Brownian motion if and only if its

position over time k i (t ) follows aWiener stochastic process [Wiener, 1966]. This char-

acterization shows that the particle displacement between arbitrary times t1 and t2

follows a normal distribution of mean 0 and variance 2D
�
t2 − t1

�
:

∀ t1, t2 ∈ R+ , k i (t2) − k i (t1) ∼ N
�

0, 2D
�
t2 − t1

�
I
�

, (6.1)

where I denoted the 2 × 2 or 3 × 3 identity matrix depending on the diffusion space

dimension.

For the problem to be well-posed, some constraints must be added. To this end,

we assume that particle i is static and located at point k 0i from t = 0 to a given release

1Probabilistic formulation of lateral diffusion was derived with Vincent Briane during his PhD with
the Serpico team at Inria.
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time t0i . At t0i , particle i starts moving following a Wiener process:

∀ t � t0i , k i (t ) = k 0i , (6.2)

∀ t > t0i , k i (t ) ∼ N
�

k 0i, 2D
�
t − t0i

�
I
�

. (6.3)

Local concentration

WhileBrownianmotiondescribes thedynamics of individual particles, thedynamical

model of a population of such particles is named lateral diffusion [Einstein, 1956].

To cross the bridge from Brownian motion to lateral diffusion, let us now introduce

the concept of local concentration. In the vesicle, and later in the cytosol or plasma

membrane, proteins of interest are numerous, so that, in TIRFM image sequences,

we do not observe a single particle, but a population of N particles. Concentration

is generally defined as the number of particles in a given region. Let νp be a region

around any point p. We define the local concentration C
�
p, t

�
by reducing the region

area ���νp
��� to zero, that is, reducing the region νp to point p:

C
�
p, t

�
= lim���νp

���→0
�

1�i�N

1νp

�

k i (t )
�

���νp
��� (6.4)

where 1 is the indicator function.

If theparticles arenumerous enough, independent and identically distributed, the

law of large numbers yields:

C
�
p, t

�
≈ N f

K (t )

�
p
�
, (6.5)

whereK (t ) is the random variable associated to the k i (t )’s, and f
K (t )

denotes the prob-

ability density function (PDF) of K (t ). f
K (t )

can be expressed as a function of the con-

ditional PDF f
K (t )|K 0=p0

, termed transition PDF, and the source PDF f
K 0
:

f
K (t )

�
p
�
=

�
R+

�
R2

f
K (t )|K 0=p0

�
p
�

f
K 0

�
p0

�
fT0

�
t0
�
dp0 dt0 , (6.6)

where theWiener characterization equation (6.3) shows that f
K (t )|K 0=p0

is theGaussian

PDF of mean p0 and variance 2D
�
t − t0

�
I. This transition PDF is specific to Brownian

motion. Therefore, the whole dynamical model is only dependent on the source dis-

tribution f
K 0
.

Source and diffusive concentrations

The total concentrationC results from the sumof the source concentrationCs and the

diffusive concentrationCd:

C = Cs +Cd , (6.7)
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where, by definition, the particles considered forCs do not move, while those consid-

ered forCd undergo a Brownian motion. Specifically,Cs is defined as:

Cs(p, t ) = lim���νp
���→0
�

1�i�N

1νp

�

k 0i (t )
�

1
[0,T0i ]

(t )

���νp
��� (6.8)

and the law of large numbers gives:

Cs(p, t ) ≈ N f
K (t )

�
p
� �
1 − FT0

(t )
�

, (6.9)

where FT0
is the cumulative density function (CDF) of the release time.

On the other hand, the diffusive concentrationCd is defined as:

Cd(p, t ) ≈ N f
K (t )

�
p
�

FT0
(t ) . (6.10)

Diffusion equation

Now that local concentration has been introduced, let us present the lateral diffusion

model which governs evolution over time of the diffusive concentration.

If we assume that t0i is identical for all the particles, we merely get, with t0 = t0i :

C
�
p, t

�
=


Cs(p, t ) for 0 � t � t0 ,

Cd(p, t ) for t > t0 .
(6.11)

In this case, the Fick’s second law gives the evolution over time and space of the local

concentration as a function of the diffusion coefficient D [Fick, 1855]:

∂Cd

∂t
= D ∆Cd , (6.12)

where ∆ = ∂2/∂x2 + ∂2/∂y 2 (∂2/∂x2 + ∂2/∂y 2 + ∂2/∂z2 in three dimensions) denotes the

Laplace operator. Based on the law of large numbers, equation (6.12) is the macro-

scopic counterpart of the single particle description of Brownian motion (6.1) in the

sense that it characterizes the evolution of a population of such particles observed at

a higher scale.

On the other hand, in the general case where t0i is different for all particles, as in

the proposed “small-extent source with exponential decay release” (SSED) model, a

flow is introduced fromCs toCd:

∂Cd

∂t
= D ∆Cd −

∂Cs

∂t
. (6.13)

To our knowledge, we are introducing this flow in the study of membrane dynamics.

Fick’s second law (6.12) can be solved by Fourier analysis, which yields the follow-

ing closed form Green’s function Φ [Fourier, 1822]:

∀ t > t0 , ∀ p ∈ R2 , Φ
�
p, t

�
=

1

4πD
�
t − t0

� exp���−
�

p − p0
�2
2

4D
�
t − t0

���� . (6.14)
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Equation (6.14) can also be interpreted from the stochastic point of view as re-

flecting the probability of finding particles at position p and time t , if they undergo a

Brownianmotion of diffusion coefficientD and are initially concentrated at p0. Actu-

ally, instead of relying on the Fick’s second law equation (6.12), the Green’s function

can also be viewed as a transition PDF:

∀ t > t0 , ∀ p ∈ R2 , f
K (t )|K 0=p0

�
p
�
=

1

4πD
�
t − t0

� exp���−
�

p − p0
�2
2

4D
�
t − t0

���� . (6.15)

This shows the equivalence of the microscopic, stochastic process and the macro-

scopic, deterministic partial differential equation (PDE).

6.2.3 Stationary model

In the stationary model [Sergeev, 2004], particles are initially spread with a uniform

distribution, and start moving at t0:

∀ t ∈ R+ , ∀ p ∈ R2 , Cs(p, t ) =


C0 for 0 � t � t0

0 for t > t0

(6.16)

and ∀ p ∈ R2 , Cd(p, t0) = C0 . (6.17)

The Fick’s second law then gives the temporal evolution ofCd:

∀ t > t0 , ∀ p ∈ R2 , Cd(p, t ) = C0 , (6.18)

which yields:

∀ t ∈ R+ , ∀ p ∈ R2 , C
�
p, t

�
= C0 . (6.19)

In turn, the stationary model is the multi-particle extension of the Brownian mo-

tion model, where particles themselves undergo a Brownian motion, but the lo-

cal concentration C is expected not to vary in space and time, thus the stationary

moniker.

When the particle number N is high, and the law of large numbers holds, the in-

tensity I is thus expected to be constant, as illustrated in Figure 6.4a.

In contrast, when the particle density is low, intensity is not constant. Indeed, in

this case, the microscope PSF gives the particles a Gaussian-like profile in the image,

resulting in a sum of Gaussian spots, whose center positions are sampled from the

uniform distribution (Figure 6.4b). Parameters of the model are C0, the diffusion co-

efficient D and the radius σPSF of the PSF.

As presented in Chapter 8, many papers dealt with the problem of estimating the

diffusion coefficient D under the stationary model, but it can only be used for low

enough particle densities; otherwise, the intensitymodel does not even depend onD .
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(a)Uniform concentration (left) and resulting intensity (right)
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(b) Sampled particle positions (left) and resulting intensity (right)

Figure 6.4 – Stationary model at three time steps for C0 = 1, D = 1, σPSF = 1. Arrows represent

the Dirac distribution.

6.2.4 Point source model

In the point source model, we assume that all the particles are initially concentrated

at p0 and that they all start diffusing at time t0, that is, the source distribution is pro-

portional to a spatiotemporal Dirac distribution:

∀ t ∈ R+ , ∀ p ∈ R2 , Cs(p, t ) = C0 δ
�
p − p0

�
δ
�
t − t0

�
. (6.20)

TheGreen’s function (6.14) is the solution of the Fick’s second law for a space-time

Dirac source distribution. Then, by linearity of the Fick’s second law, the concentra-

tion dynamics is merely obtained by multiplying the Green’s function byC0:

∀ t > t0 , ∀ p ∈ R2 , C
�
p, t

�
=

C0

4πD
�
t − t0

� exp���−
�

p − p0
�2
2

4D
�
t − t0

���� . (6.21)

Then, to derive the intensity model, we need to incorporate the observation

model, reduced to the PSF and gain of the microscope. In two dimensions, that is,

formembrane diffusion, the PSF ismodeled as a two-dimensional Gaussian function

of variance σ2PSF [Small and Stahlheber, 2014], so I is obtained by convolving the con-
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Figure 6.5 – Point source model at three time steps for C0 = 1, D = 1, p0 = 0, σPSF = 1. Arrow

represents the Dirac distribution.

centration (6.14) with a Gaussian kernel of variance σ2PSF, which gives:

∀ t � t0 , ∀ p ∈ R2 , I
�
p, t

�
∝

C0

4πD
�
t − t0

�
+ 2πσ2PSF

exp���−
�

p − p0
�2
2

4D
�
t − t0

�
+ 2σ2PSF

��
� . (6.22)

For the sake of simplicity, we introduce constant A0 such that:

∀ t � t0 , ∀ p ∈ R2 , I
�
p, t

�
=

A0

2D
�
t − t0

�
+ σ2PSF

exp���−
�

p − p0
�2
2

4D
�
t − t0

�
+ 2σ2PSF

��
� . (6.23)

The source distribution and expected concentration of the point sourcemodel are

plotted in Figure 6.5.

Since it is very practical for computation and estimation purposes, the point

sourcemodel was used in [Mele et al., 2009,Burchfield et al., 2010] to estimate the dy-

namics of vesicle fusion. To this end, two supplementary hypotheses were assumed:

H1 The vesicle is pointwise;

H2 The whole transmembrane protein material is released instantaneously at t0.

However, we will see that these hypotheses are not always justified, which will lead us

to relax them and propose a more elaborated model.

To our knowledge, the extension of [Mele et al., 2009, Burchfield et al., 2010] to

the 3D diffusion has not been done yet, but it will be proposed in Section 6.3.3 as an

ingredient of the Rab11 dynamics modeling.

6.2.5 FRAP model2

In FRAP experiments, transmembrane proteins are supposed to be uniformly dis-

tributed with an average concentration denoted C0. At time t0, a leaser beam locally

kills fluorescence by photobleaching [Axelrod et al., 1976, Cherry, 1979, Kapitza and

Jacobson, 1986, Seiffert and Oppermann, 2005]. Bleached transmembrane proteins

then stop emitting photons, so that they do not appear anymore inC or I .

2FRAP theory and tools were presented to us by François Waharte at UMR 144.
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Figure 6.6 – FRAPmodel at three time steps forC0 = 1, D = 1, pbeam = 0, σbeam = 2

To ease computation, the beam profile is often approximated by a Gaussian func-

tion of center pbeam and radius σbeam [Seiffert and Oppermann, 2005]. After t0, fluo-

rescent (resp. bleached) particles, which undergo a Brownianmotion, repopulate the

bleached (resp. fluorescent) region, until both bleached and fluorescent particles are

uniformly spread. Then, the intensity becomes uniform again. Some extended mod-

els were proposed, e.g., to account for uniformly distributed static particles. We refer

the reader to [Carrero et al., 2003] for more details on extended FRAPmodels.

Owing to the superposition principle, the solution of the Fick’s second law (6.12)

for an arbitrary source profile s : R2 → R+ is obtained by convolving theGreen’s func-

tion with the profile. In FRAP experiments, the laser beam is generally assumed to

have a Gaussian profile, resulting in a Gaussian “hole” fluorescence profile presented

in Figure 6.6:

s
�
p
�
=

1
2πσbeam

−
1

2πσbeam
exp���−

�
p − pbeam

�2
2

2σ2beam

��
� . (6.24)

The intensity model is straightforwardly deduced by convolution with the PSF, as

the convolution of two Gaussian functions is the Gaussian function whose variance

is the sum of the original variances:

I
�
p, t

�
=

A0

σ2PSF + σ
2
beam

−
A0

2D
�
t − t0

�
+ σ2PSF + σ

2
beam

exp���−
�

p − p0
�2
2

4D
�
t − t0

�
+ 2σ2PSF + 2σ

2
beam

��
� .

(6.25)

Since this solution is analogous to the point source model solution, any method for

estimating the point source model can be used in FRAP experiments.

A three-dimensional extension is generally proposed in the form of the so-called

diffusion-dissociationmodel. As the name implies, particles leave themembrane and

disappear out of reach for the TIRFM evanescent wave. Dissociation is generally in-

troduced in themodel bymultiplying equation (6.25) with a spatially constant, expo-
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Figure 6.7 – Particle evolution meta-model for the Rab11 dynamics

nential decay function:

I
�
p, t

�
= exp

�

−
t

τ

�

×


A0

σ2PSF + σ
2
beam

−
A0

2D
�
t − t0

�
+ σ2PSF + σ

2
beam

exp���−
�

p − p0
�2
2

4D
�
t − t0

�
+ 2σ2PSF + 2σ

2
beam

��
�

.

(6.26)

6.3 Proposed fusion models for Rab11

While the sequence of events of Rab11 is not totally established yet, we propose a

meta-model to encompass different hypotheticalmodels. It is illustrated in Figure 6.7.

Numerousmodels compatible with current biological knowledge can be instantiated

from it by defining flows between a stationary state (which accounts for the proteins

remaining in the vesicle after fusion) and three dynamical states, namely translation

(from transport to docking), membrane diffusion and cytosol diffusion. We consider

the following flows:

• Fusion specifies the beginning of the diffusion(s);

• Release characterizes the flow between static concentration and concentration

diffusing in the plasmamembrane;

• Dissociation is the process by which Rab11 leaves the membrane, regardless of

its previous state; as explained in [Carrero et al., 2003,Michelman-Ribeiro et al.,

2009,Im et al., 2013], it is modeled as an exponential decay of the observed con-

centration.
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Let us detail the dynamical models for translation and the two diffusions.

6.3.1 Vesicle motion before fusion

We assume that the frame rate (10 frames/s in the processed sequence) is sufficient to

neglect rotation and deformation of the vesicle. Hence, the vesicle is supposed to un-

dergo a translational motion between two successive time points t and t +1. LetV �
i
(t )

denote the spatial support at time t of such a vesicle. By definition of the translation

model, all the pixels of the connected componentV �
i
(t ) formed by the vesicle at time

t share the same displacementw
i
:

∀ p ∈ V �i (t ) , w i

�
p, t

�
= w i (t ) , (6.27)

wherew
i

�
p, t

�
denotes the displacement of p ∈ V �

i
(t ) between t and t + 1.

6.3.2 Two-dimensional diffusion along the plasma membrane

In [Mele et al., 2009], the point source model was used to model the diffusion in the

plasma membrane after vesicle fusion. In contrast, in order to take into account the

size of the vesicle, we consider a finite spatial support (e.g., a spherical vesicle) of di-

ameter 2r , that is, the spatial source profile s : R2 → R is null outside a disc Br ⊂ R
2

of radius r . Without loss of generality, let us assume that
�
R2 s = 1, and that Br is cen-

tered in (0, 0). Let Ir (resp. I
δ
) be the solution of the Fick’s second law for the source of

profile s (resp. for the point source case).

Proposition 4. The difference between Ir and I
δ
is small when r is small. More pre-

cisely:

���Ir − Iδ
��� = O

�

r

σPSF

�

, (6.28)

by introducing the Landau O notation.

Proof. Let us up-bound the absolute difference between Ir and I
δ
:

Ir

�
p, t

�
− Iδ

�
p, t

�
=

�
R2

A0

2πσ2(t )
exp���−

�
p − q

�2
2

2σ2(t )
��
� s

�
q
�
dq −

A0

2πσ2(t )
exp���−

�
p
�2
2

2σ2(t )
��
� ,

with σ2(t ) = 2D
�

t − t0 + σ
2
PSF

�

.

Since
�
R2 s = 1, we get:

Ir

�
p, t

�
− Iδ

�
p, t

�
=

A0

2πσ2(t )

�
R2


exp���−

�
p − q

�2
2

2σ2(t )
��
� − exp

��
�−

�
p
�2
2

2σ2(t )
��
�


s
�
q
�
dq .
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And since s
�
q
�
= 0 when q � Br , the integration is made over Br :

Ir

�
p, t

�
− Iδ

�
p, t

�
=

A0

2πσ2(t )

�
Br


exp���−

�
p − q

�2
2

2σ2(t )
��
� − exp

��
�−

�
p
�2
2

2σ2(t )
��
�


s
�
q
�
dq .

We will now exhibit an upper bound of the bracket. To this end, let us introduce

the following auxiliary function:

h : R+ → R+

x �→ exp��−
x2

2σ2(t )
�
� .

From the mean value theorem, we get:

����h
��

p − q
�
2

�

− h
��

p
�
2

� ���� � ����p − q
�
2 −

�
p
�
2
��� max

�
h �
�

�
�

q
�
2 max

�
h �
�
,

with

����h �
��

p
�
2

� ���� =
�

p
�
2

σ2(t )
exp���−

�
p
�2
2

2σ2(t )
��
�

<
1
σ(t )

.

Thus:

���Ir

�
p, t

�
− Iδ

�
p, t

���� = A0

2πσ2(t )

�
Br

����h
��

p − q
�
2

�

− h
��

q
�
2

� ���� s
�
q
�
dq

<
A0

2πσ2(t )

�
Br

�
q
�
2

σ(t )
s
�
q
�
dq

<
A0

2πσ2(t )
r

σ(t )

�
Br

s
�
q
�
dq

<
A0

2πσ2(t )
r

σ(t )

<
A0

2πσ2(t )
r

σPSF
.

�

This shows that, whatever the vesicle profile, if its diameter is small enough with

respect to the PSF width, the point source model remains accurate. Otherwise, the

model becomes accurate only after a given time interval, when σ(t ) is high enough

with respect to the vesicle diameter.
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6.3.3 Three dimensional diffusion in the cytosol for Rab11

Proteins diffusing in the cytosol also follow the Fick’s second law (6.12), but the Lapla-

cian operator now acts in a 3D space, that is:

∂Cd

∂t
= D ∆Cd = D

��
�
∂
2Cd

∂x2
+

∂
2Cd

∂y 2
+

∂
2Cd

∂z2
��
� . (6.29)

This yields a Green’s function analogous to (6.14):

Φ
�
p, t

�
=

1
�

4πD
�
t − t0

��3/2 exp���−
�

p − p0
�2
2

4D
�
t − t0

���� , (6.30)

where p =
�
x, y, z

�T.
However, asfluorophores are present at z > 0, the PSF cannot be reduced to a sim-

ple two-dimensional Gaussian profile, as done for diffusion along the plasma mem-

brane. Let us derive the intensity model for the point source in three dimensions ob-

served with TIRFM.

The exponential decay of the excitation field of TIRFMmust be integrated, which

gives, with d the penetration depth:

Cd(x, y, t ) =

� ∞

0
Cd(x, y, z, t ) exp

�

−
z

d

�

dz

=

C0
�

4πD
�
t − t0

��3/2 exp���−
�
x − x0

�2
+

�
y − y0

�2
4D

�
t − t0

� ��
�
� ∞

0
exp��−

z2

4D
�
t − t0

� − z

d
�
�dz

=

C0
�

4πD
�
t − t0

��3/2 exp���−
�
x − x0

�2
+

�
y − y0

�2
4D

�
t − t0

� ��
�

×

�

πD
�
t − t0

�
exp��

D
�
t − t0

�
d2

�
�

1 − erf

����
�

�

D
�
t − t0

�
d

����
�


=

C0

8πD
�
t − t0

� exp���−
�
x − x0

�2
+

�
y − y0

�2
4D

�
t − t0

� ��
� exp

�
�

D
�
t − t0

�
d2

�
�

1 − erf

����
�

�

D
�
t − t0

�
d

����
�


.

(6.31)

This equation could be integrated numerically, so that parameters could be es-

timated, but an approximation will exhibit the issue of studying the 3D+t model in

2D+t image sequences. Let us rely on the following exponential approximation of the

error function [Chiani et al., 2003]:

erf
�√

x
�

≈ 1 −
1
2
exp(−x) . (6.32)
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Figure 6.8 – Approximation of the error function

As plotted in Figure 6.8, the approximation is precisewhen x � 1. For x = D
�
t − t0

�
/d2,

this condition corresponds to t − t0 � d2/D , which rapidly holds after t0; orders of

magnitude of d and D are 1px and 1px2/frame so that t − t0 � d2/D at t = t0 + 1

already. In this case, we get:

erf
����
�

�

D
�
t − t0

�
d

����
�
≈ 1 −

1
2
exp��−

D
�
t − t0

�
d2

�
� . (6.33)

This yields:

Cd(p, t ) ≈
C0

16πD
�
t − t0

� exp���−
�
x − x0

�2
+

�
y − y0

�2
4D

�
t − t0

� ��
� , (6.34)

that is, we get the same solution as for the point source problem in two dimensions,

up to a factor. While this means that we can apply the same estimation procedure to

get the diffusion coefficient of Rab11 for this model, this raises an issue. Actually, we

are not precisely interested in the diffusion coefficient estimation, but in the selection

of a dynamicalmodel. Therefore, as two- and three-dimension diffusionmodels have

very close forms, 2D TIRFM it not sufficient to reliably discriminate the models, even

for the simplest two- and three-dimensional point sourcemodels. Naturally, the situ-

ation would be even more complex and intractable if we would have also considered

a continuous release and dissociation models.

For now, we have no 3D+time TIRFM images with a frame rate sufficient to study

sub-second dynamics. However, we are confident that the technology will be ready

in a fewmonths [Boulanger et al., 2014], thus allowing to conduct the study of Rab11

dynamical behavior in the near future.

6.4 Proposed SSED model for TfR and Langerin

In order to take into account the non-instantaneous release of the proteins at fusion,

we propose a new fusion model for TfR and Langerin.
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Table 6.1 – Characterization of the diffusion models

Source distribution

Model Spatial distribution Temporal distribution Parameters*

Stationary Uniform Dirac C0, D , σPSF

Point source Dirac Dirac C0, D , p0, σPSF

FRAP Gaussian hole Dirac C0, D , pbeam, σbeam
SSED Arbitrary

(with small support)

Exponential decay C0, τ, D , p0, σPSF

*C0: initial local concentration;D : diffusion coefficient; σPSF: radius of the PSF; pbeam: center

of the laser beam; σbeam: radius of the laser beam; p0: position of the vesicle; τ: residence

time.

The proposed “small-extent sourcewith exponential decay release” (SSED)model

is briefly compared to the aforementioned existing models in Table 6.1. The SSED

model consists in relaxing both the pointwise source (H1) and instantaneous release

(H2) hypotheses of the point source model.

6.4.1 Continuous release of the concentration

In Figure 6.9, we compare the evolution of concentration over time in true and sim-

ulated diffusion image sequences. Precisely, fusion events in sequences showing TfR

and Langerin are represented by the means of kymographs. A kymograph gives the

evolution in time of a given image line, by appending its successive profiles. Namely,

in Figure 6.9b, the line x = 136 is used to display two TfR fusion events. The evolu-

tion of line x = 161 in the second sequence shows another fusion event, for Langerin

this time. Then, simulated kymographs are presented, both for the point source and

SSEDmodels. Apart from quantitative aspects, we observe that the respective inten-

sity profiles are very different, especially long after vesicle fusion. In particular, the

central intensity peak observed after t0 in real image sequences (mainly for Langerin)

cannot be obtained with the point source model.

As we have shown that the pointwise source hypothesis is indeed valid, the other

hypothesis, the instantaneous release,must bewrong. Therefore, insteadof assuming

that all the particles start diffusing at t0, we now consider a continuous release of the

particles, where each particle is expected to stay at p0 during a certain amount of time

τ called residence time:

∂Cs

∂t
= −

1
τ

Cs . (6.35)

This yields an exponential decay of the source concentration:

∀ t � t0 , ∀ p ∈ R2 , Cs(p, t ) = C0 δ
�
p − p0

�
exp
�

−
t − t0

τ

�

. (6.36)
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Section line: x = 136px

(a) TIRFM sequence (TfR-pHluorin)

Time

Fusion events

(b) Kymograph of (a) at x = 136px

Section line: x = 161px

(c) TIRFM sequence (Langerin-pHluorin)

Time

Fusion event

(d) Kymograph of (c) at x = 161px

(e) Simulated point source kymograph

(D = 0.5px2/f)

(f) Simulated SSED kymographs

(D = 0.5px2/f; left: τ = 5 f; right: τ = 100 f)

Figure 6.9 – Comparison of real image sequences with simulations of the point source and

SSEDmodels
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Figure 6.10 – SSEDmodel at three time steps for C0 = 1; τ = 2. D = 1; p0 = 0; σPSF = 1. Arrows

represent the Dirac distribution.

This model is illustrated in Figure 6.10. Different underlying dynamics can yield such

an exponential decay release, e.g., a narrow escape [Schuss et al., 2007, Singer et al.,

2008,Schuss, 2012], corresponding to the release of proteins through a small aperture,

or dissociation-like process [Carrero et al., 2003,Michelman-Ribeiro et al., 2009, Im

et al., 2013]. Other hypotheses could yield other continuous release models, but the

exponential decay has the advantage of being easy to handle fromanestimationpoint

of view. Actually, another (maybe even simpler) model is the constant flow model,

where a constant amount of concentration is released at each time instant. However,

this linear decrease has to stop when all the material is released, resulting in non dif-

ferentiable functions. We are aware that the exponential decay is a simplemodel, but

it is both a plausible and practical choice.

The proteins which leave the source compartment diffuse in the plasma mem-

brane. Thus, the flow between both compartments acts as a source in the diffusion

equation (6.13), which yields:

∀ t > t0 , ∀ p ∈ R2 ,
∂Cd

∂t

�
p, t

�
−D ∆Cd

�
p, t

�
= −
∂Cs

∂t

�
p, t

�
=

C0

τ
δ
�
p − p0

�
exp
�

−
t − t0

τ

�

. (6.37)

Still owing to the superposition principle, the solution of this equation is obtained

by convolving the Green’s function (6.14) with the source function (6.36):

∀ t > t0 , ∀ p ∈ R2 , Cd(p, t ) =

� t

t0

C0/τ

4πD (t − u)
exp���−

u − t0

τ
−

�
p − p0

�2
2

4D (t − u)

��
�du . (6.38)

Finally, the observed concentration is the sum of both components:

C = Cs +Cd , (6.39)
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and the intensitymodel, illustrated in Figure 6.10, is obtained after convolution by the

PSF:

∀ t � t0 , ∀ p ∈ R2 , I
�
p, t

�
=

A0/τ

σ2PSF

exp���−
t

τ
−
�

p − p0
�2
2

2σ2PSF

��
�

+

� t

t0

A0

2D (t − u) + σ2PSF

exp���−
u − t0

τ
−

�
p − p0

�2
2

4D (t − u) + 2σ2PSF

��
�du .

(6.40)

6.4.2 Arbitrary spatial source distribution

Interestingly, the proof of Section 6.4.2 holds for the SSEDmodel, so that a pointwise

source is not required either for equation (6.40) to be valid. The vesicle only needs to

be small enough with no assumption on its shape.

This way, we have relaxed both the pointwise and instantaneous release hypothe-

ses of the point source model used in [Mele et al., 2009].

6.5 Discussion

In this chapter, wehave constructednewdiffusionmodels for vesicle fusion toplasma

membrane. Both for Rab11 and transmembrane proteins, we have shown that a small

vesicle model is equivalent to a pointwise model, which relaxes this generally as-

sumed hypothesis, and enables the use of the point source model with fewer con-

straints than in the literature.

Unfortunately, we have also shown that 2D and 3D diffusion models observed by

the means of 2D TIRFM are barely distinguishable. Therefore, future experiments

should rely on the nascent 3D TIRFM [Boulanger et al., 2014], which should provide

superior data quality to allow for better dynamics classification. When such image se-

quences will show up, estimation methods will be extended to the depth dimension.

In the meanwhile, the diffusion coefficient can still be estimated in 2D TIRFM image

sequences (see Chapter 8).

As for the continuous release introduced for transmembrane proteins, we have

proposed an exponential decay model. While more complex by one parameter than

the point source model, the so-built SSED better corresponds to observed dynamics,

and can still be estimated, as proposed in Chapter 8.

Further extensions to the SSEDmodel could target the so-called kiss-and-run dy-

namics [Rizzoli and Jahn, 2007,Miklavc et al., ], assuming that the vesicle onlypartially

empties before reforming and leaving the membrane.
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7Detection of diffusion dynamics

B����� ���������� the parameters of the models representing the membrane

fusion, the events of interest, which we name fusion events, must be detected.

Fusion events are defined by the space-time point at which a vesicle fusion starts,

that is, the location and time at which the protein of interest is released to the plasma

membrane or cytosol.

Depending on the protein observed in the image sequence, there are three cases:

• Rab11 is tagged with mCherry;

• TfR or Langerin is tagged with pHluorin;

• Dual View is used to observe both Rab11-mCherry and TfR-pHluorin or both

Rab11-mCherry and Langerin-pHluorin.

In the first case, the vesicle is observed while moving before diffusing, while in

the second case, owing to the pH-sensitivity of pHluorin, the fluorescence intensity is

very low before fusion. This imposes different strategies to detect fusion events.

In the case of Rab11-mCherry, we propose a likelihood test to distinguish trans-

lation from diffusion dynamics. For transmembrane proteins tagged with pHlurin,

fusion events start with a spot appearance, so a simple spot detection can be applied

to the temporal frame difference sequence. This method can also be employed to

study events in Rab11 images when Dual View with TfR or Langerin is available.

The chapter is composed of two sections. The detection of fusion events in image

sequences depicting only Rab11 is addressed in Section 7.1. In Section 7.2, the prop-

erties of pHluorin are exploited to detect the events in image sequences depicting

transmembrane proteins.
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7.1 Detection based on Rab11 dynamics classification

In order to detect Rab11 fusion events, we propose a method based on a likelihood

test to select themost appropriate dynamical model representing the vesicle dynam-

ics in each frame. Specifically, we test the translation model, valid for the transport

to docking steps, against the diffusionmodel, valid from fusion onward. For each de-

tected vesicle, the transition frame, that is the first frame when the diffusionmodel is

selected, merely corresponds to t0. The fusion location p0 corresponds to the vesicle

location at t0.

Let us assume for now that the parameters for the translation and diffusion mod-

els have been estimated – this will be presented in the next chapter. Then, we will

merely select the most likely model. We have thus developed a three-step detection

method. First, spots are detected relying on the spot detector proposed in Part I. Sec-

ondly, static spots are discarded owing to a statistical argument; onlymoving and dif-

fusing spots then remain. Dynamics are finally classified as either translation or dif-

fusion. The fusion event begins when the spot dynamics changes from the former to

the latter.

The whole classification process only relies on three consecutive frames used to

detect time-varying vesicles and evaluate temporal gradients.

7.1.1 Segmentation of time-varying vesicles

We first need to extract the vesicles that apparently change over time, or time-varying

vesicles, in theTIRFMimage sequence, that is, the vesicleswhicharemovingordiffus-

ing. The segmentation of the time-varying vesicles combines the detection of spatial

spots and of significant temporal changes.

Spatial spot segmentation

We naturally use our adaptive thresholding of LoG images with auto-selected scale

(ATLAS) detector (see Part I) which provides a binary vesicle presence map. In each

frame I (t ) of the sequence, we end up with a set of connected components V(t ) =�
Vi (t )

�
.

Detection of temporal changes

In order to handle the temporal dimension of the segmentation of the time-varying

vesicles, we examine the evolution of the segmentation map over time by using the

change detection algorithm introduced in [Boulanger et al., 2010a]. At each space-

time location
�
p, t

�
in the TIRFM image sequence, we consider a 2D block η

�
p, t

�
cen-

tered at that location and we compute the minimum of the intensity similarity dis-
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Figure 7.1 – Illustration of the temporal block neighborhood

tance (sum of square difference) of this block to neighboring blocks taken in the pre-

vious frame and in the next frame. Nine neighboring blocks η
i

�
p, t − 1

�
are considered

in the previous frame, and nine neighboring blocks η
i

�
p, t + 1

�
are considered in the

next frame, as represented in Figure 7.1.

The minimum distance dmin for all the pixels in the image sequence is assumed

to follow a generalized extreme value (GEV) distribution [Boulanger et al., 2010a], de-

fined by its CDF as:

F
�

dmin
�
p, t

�
, α, β, κ

�

= exp


−��1 − κ

dmin
�
p, t

�
− β

α
�
�
1/κ
, (7.1)

where α, β and κ are respectively thewidth, location and shape parameters of theGEV

distribution. The parameters are estimated by using a mixed L-moments/maximum

likelihood method [Boulanger et al., 2010a].

We set a probability of false alarm (PFA) in order to derive a threshold ( quantile

of the GEV distribution) able to detect the significant temporal changes in the image

between two time points. The resulting significant change map is denoted E (t ) (see

[Boulanger et al., 2010a] for more details).

Map of time-varying vesicles

Finally, to obtain the setV�(t ) =
�
V �

i
(t )

�
of time-varying vesicles, we simply discard

every vesicle ofV(t )whose intersection with E (t ) is empty:

V�(t ) =
�
Vi (t ) ∈ V(t )

���∃q ∈ Vi (t ) , E
�
p, t

�
= 1

�
. (7.2)

The spatiotemporal segmentation workflow is illustrated in Figure 7.2. To save

computation time, we evaluate the complete similarity distance map, estimate the

associatedGEVparameters, and deduce the change detection threshold from thefirst

three frames of the sequence only. Afterwards, we evaluate the similarity distance

only for points belonging to the vesicles Vi (t ) in the subsequent images. Moreover,

since the threshold has already been evaluated, not all distances must be evaluated

for each vesicle.

Finally, only translating and diffusing vesicles belong toV�(t ).
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(a) Input TIRFM image (Rab11-mCherry) (b) Segmented vesiclesV(t )

(c) Significant change map E (t ) (d) Time-varying vesiclesV�(t )

Figure 7.2 – Segmentation of the time varying vesicles
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7.1.2 Classification of dynamical events

As explained above, we have to decide for a given vesicleV �
i
(t ) at time point t , whether

it undergoes a translationalmotion or a diffusion. The two competing hypotheses are

the following ones:

• H0: the vesicleV �
i
(t ) is undergoing a translation with displacementw

i
,

• H1: the vesicleV �
i
(t ) is undergoing a diffusion with coefficient Di .

We consider statistical image models to derive the corresponding likelihood func-

tions.

To assess local motion, we use the displaced frame difference (DFD) given by:

ε0
�

p, w i, t
�

= I
�

p +w i

�
p, t

�
, t + 1

�

− I
�
p, t

�
. (7.3)

For diffusion modeling, we can straightforwardly infer the random variable ε1

from the Fick’s second law, which yields:

ε1
�
p, t

�
= It

�
p, t

�
−Di ∆I

�
p, t

�
, (7.4)

where It denotes the temporal gradient of I .

We assume that both variables ε0 and ε1 are independent and identically dis-

tributed, and follow a zero-mean Gaussian distribution. As a consequence, the likeli-

hood functions are defined as the product of Gaussian densities over the vesicle con-

nected component V �
i
(t ). Then, the decision relies on the following log-likelihood

ratio test:

log
���
�
ψ1

�

V �
i
(t ), Di

�

ψ0

�

V �
i
(t ), w

i

�

���
�
> τ . (7.5)

If the ratio is greater than τ , H1 is selected and H0 otherwise.

7.1.3 Experimental results

Synthetic image sequences1

In order to validate our approach, simple but realistic image sequences were sim-

ulated. The microtubules and cortical Actin are modeled with a set of 3D random

splines. While one extremity of each microtubule is connected to a centrosome, the

other one is located near the plasma membrane. The Actin lies mostly in the first

100nm slice of the cell. Finally, the vesicles are modeled by a set of points whose

evolution is governed by interactions with the cytoskeleton. The action of molecu-

lar motors such as myosin and kinesin is represented by an elastic force between the

particle and the second nearest point to the cytoskeleton. The module of the force

1Synthetic sequences were generated by Jérôme Boulanger at UMR 144.
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(a) PSNR: 19.9 (b) PSNR: 23.3 (c) PSNR: 26.6 (d) PSNR: 31.5

Figure 7.3 – Classification results for several synthetic sequences. Top row: First frame of the

sequence for different PSNRs. Wide spots are vesicles that have already diffused. Bottom row:

Vesicles classified as diffusing are in red, vesicles classified as translating are in green. In all

these examples, classification is performed with no error, except for the lowest noise level (a),

where two vesicles are misclassified.

depends on the type of interaction between the particle and the cytoskeleton to ac-

count for the diversity of the molecular motors involved during vesicle traffic. The

spatial confinement is handled with a dedicated potential and we consider an addi-

tional viscosity term in the evolution model. Let us note that only the vesicles evolve

while the cytoskeleton remains still, which is true for this time scale. Finally, when a

vesicle reaches the plasmamembrane, a finite difference scheme is used tomodel the

diffusion process by the Fick’s second law.

To get a realistic amount of noise, we have estimated the peak signal-to-noise ratio

(PSNR) over 12 real TIRFM sequences depictingM10 cells where Rab11 is taggedwith

mCherry. The PSNR of these TIRFM sequences ranges from 28.3 to 31.5. According to

the above describedmodel, we have generated several synthetic sequences corrupted

with different levels of Poisson-Gaussian noise. The estimated PSNR of the synthetic

sequences ranges from 19.9 to 31.5 (we have used the same procedure to estimate the

noise of the real sequences and fix the noise level in the synthetic sequences).

For all the sequences, we have used the same segmentation parameters: estima-

tion windows of radius 50px, Gaussian p-value for the segmentation of 1 × 10−3 and

GEV p-value for the event detection of 5 × 10−3. Each sequence contains about 1500

vesicles distributed in 300 frames of size 256 × 256 pixels. The first frame of a few se-

quences and the associated classification map are depicted in Figure 7.3 for various

noise levels.
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Figure 7.4 – FROC curves of the translation class for different noise levels. The curves are ob-

tained by varying τ . Since only two classes are considered, the FROC curve for the diffusion

class can be deduced from this one.

As reported in Figure 7.4, the classification results are improved if the PSNR values

are high. However, for a low PSNR as 23.3 (that is much lower than that of the real

TIRFM image sequences), true positive rate (TPR) is already higher than 0.99 for a

false positive rate (FPR) lower than 0.2.

(a) Input TIRFM image (Rab11-mCherry)

(b) A translating vesicle cluster

(c) Two diffusing vesicles

Figure 7.5 –Examples of translating anddiffusing vesicles in a real TIRFMsequencedepicting a

M10cell. (a) First frameof the sequence. (b) Patch in successive framesdepicting anelongated

translating vesicle cluster. (c) Patches in successive frames depicting two diffusing vesicles.



102 C������ 7. D�������� �� ��ff����� ��������

(a) Input TIRFM image (Rab11-mCherry) (b) Classification results

Figure 7.6 –Classification results for a real TIRFMsequence, whose estimatedPSNR is 28.6. Re-

sults aredisplayed for a representative frame. Theonly classification error – framed in cyan – is

a diffusion classified as translation. However, this vesicle has a very low intensity and changes

its shape while diffusing. Two vesicles framed in green are detected as a single connected

component. The diffusing vesicle framed in red corresponds to the upper one of Figure 7.5c.

Real TIRFM image sequences

Wehave applied themethod to real TIRFM sequences depictingM10 cells transfected

with fluorescently labeled Rab11. The sequences are composed of 300 frames of size

256 × 256 pixels. The lowest estimated PSNR is 28.6, but the background is far more

complicated than those of the synthetic sequences. Examples of translating and dif-

fusing vesicles in one of these sequences are displayed in Figure 7.5.

Segmentation results for this sequence are shown in Figure 7.2, and the classifica-

tion obtained for this frame is displayed and commented in Figure 7.6. Classification

errors mostly correspond to unstable behavior over the time for the diffusion case,

based on the instantaneous classification approach.

Globally, the results on these challenging sequences are promising, but we will

see that a more efficient and much simpler approach allows to reliably detect fusion

events relying on Dual View system and pH-sensitivity of pHluorin.

7.2 Event detection using fluorophore pH-sensitivity

When TfR and Langerin are tagged with pHluorin, fluorescence increases with pH.

This tag is actually employed because the pH of the vesicle is about 5.5, while that

of extracellular medium is expected to be 7. Acidic pH inside the vesicle before t0

leads to very low pHluorin photon emission. When the vesicle fuses to the plasma
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(a) Fusing vesicle (framed in red) in frame

325 of a TIRFM sequence (TfR-pHluorin)

t = 323 t = 324 t = 325

t = 326 t = 327 t = 328

(b) Zoom-in view of the temporal evolution

of the fusing vesicle

Figure 7.7 – Temporal evolution of the region around a fusion event

membrane, thepHluorin gets exposed to theneutral extracellularmedium, so that the

fluorescence suddenly increases, as shown in Figure 7.7. This means that the pHlu-

orin emits very few photons while inside the vesicle, but the intensity dramatically

increases when the vesicle opens, i.e., precisely at fusion time and location. There-

fore, starting of fusion coincides with the sudden appearance of a spot in the image

sequence.

7.2.1 Fusion event detection

Hence, we aim at detecting localized rapid fluorescence increases of intensity in I . To

this end, we rely on the temporal backward difference I
δt
defined as:

∀ p ∈ ΩI , ∀ t ∈ N∗ , Iδt
�
p, t

�
= I

�
p, t

�
− I

�
p, t − 1

�
. (7.6)

A fusion event e i =
�
p0i, t0i

�
corresponds to a bright spot centered at p0i in themap

I
δt

�
t0i

�
. To detect events, we rely on an adapted version of the spot detection method

ATLAS (see Part I).

First, the scale of the vesicles s� is automatically selected in a multiscale repre-

sentation of the images I (t ). We use the first ten frames of the input sequence I , as

it contains more spots than ten frames of I
δt
, and ten frames is more than enough to

observe hundreds of spots.

In fact, scale selection in I (instead of I
δt
) is appropriate, because numerous static

spots are present, aside the few fusing vesicles. Therefore, the scale of the static spots

is selected, which also correspond to the scale of diffusing spots, at the time they ap-

pear and start diffusing. The found scale corresponds to the scale of the spots we aim

at detecting in I
δt
.
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(a)Detected events (b) Estimated foreground

Figure 7.8 – Background subtraction in the neighborhood ofmembrane events detected in the

TIRFM sequence of Figure 7.7

Secondly, appearing spots related to a fusion event are detected by thresholding

the Laplacian of Gaussian (LoG) of scale s� of every I
δt
(t ), t ∈ N

∗. As described in

Part I, the threshold automatically adapts to local LoG statistics estimated in a sliding

Gaussian window, whose size is not critical. Its radius is set to 60 px, which is a trade-

off on background structure sizes in the processed images. The detection threshold

is inferred pointwise from a PFA fixed to 1 × 10−6. We end up with a set of N fusion

events
��e i

�
i=1..N detected over the image sequence.

Let νi be a spatiotemporal neighborhood of e i and let I
i
denote the restriction of I

to νi . From observation of real TIRFM images and quantitative evaluation on simula-

tions, we have chosen a spatial neighborhood of 21 × 21 pixels centered at �p0i , and a

temporal range of 5 frames from �t0i to �t0i +4 for the point sourcemodel, and 20 frames

from �t0i to �t0i + 19 for the SSEDmodel. Background structures and static vesicles may

exist close to the fusing spot, and then constitute outliers of the Gaussian spotmodel.

To get rid of them, we need to subtract the image background as follows. The back-

ground intensity b
i

�
q
�
at image point q ∈ νi is estimated as themedian of the intensity

values at q over the twenty frames acquired before �t0i :

�bi

�
q
�
= median

t0i−20�t<t0i

Ii

�
q, t

�
. (7.7)

Then, subtracting �bi

�
q
�
for q ∈ νi merely gives us the estimated foreground subse-

quence �zi = I
i
− �bi . As shown in Figure 7.8, most background structures are removed.

7.2.2 Prior selection of diffusion processes under the point source model

Nevertheless, we observe that detected fusion events are not always followed by a

point source diffusion process. Actually, some detections correspond to spots which
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apparently only fade out without spreading. As shown in the previous chapter (Fig-

ure 6.9f), this case possibly corresponds to events with long residence time under the

SSED model. However, to estimate the point source model parameters, we need to

retain only spots which really satisfy it.

While classical goodness-of-fit tests can be employed after the model parameters

have been estimated, we propose a method to select diffusing events before estimat-

ing all the parameters, which reduces computation time, as the diffusion coefficient

will be estimated only for actual diffusion processes.

Let us focus on a given event e i detected at �p0i in frame �t0i . If e i corresponds to a

point source diffusion process, equation (6.23) holds in z
i
. Let us subscript with i the

parameters associated to the diffusion process in νi .

• t0i is the fusion event beginning;

• p0i is the fusion event location;

• A
i
is the initial spot amplitude;

• Di is the diffusion coefficient.

According to equation (6.14), the protein concentration is Gaussian-distributed in

every frameafter t0. LetA
i
(t ) andσ2

i
(t ) respectively denote the amplitude andvariance

of the observed Gaussian spot at time instant t . They are supposed to vary during the

diffusion process. Wewill use �t0i as an approximation of t0i – as shown below, �t0i could

even be chosen arbitrarily higher than t0i to estimate Di . Then, A
i

��t0i

�

and σ2
i

��t0i

�

are

the “initial” spot amplitude and variance, and equation (6.23) yields:

zi

�
p, t

�
= Ai (t ) exp

��
�−

�
p − p0i

�2
2

2σ2
i
(t )

��
� , (7.8)

where Ai (t ) =
A0i

2Di

�
t − t0i

�
+ σ20i

(7.9)

and σ2i (t ) = 2Di

�
t − t0i

�
+ σ20i . (7.10)

Thus, we get:

σ2i (t ) =
A0i

A
i
(t )
. (7.11)

In this case, the series
�
σ2

i
(t )

�
t�t0i

and
�

A−1
i
(t )

�
t�t0i

are proportional and, a fortiori, cor-

related. Therefore, we discard every detected fusion event for which the (empirical)

correlation is insufficient, by hypothesis testing. To estimate σ2
i
(t ) and A

i
(t ), we resort

to a Gauss-Newton algorithm to fit a Gaussian spot in each frame of �zi . Then, to rec-

ognize diffusion processes, we rely on the Spearman’s rank correlation coefficient ρ,

which ismore robust to outliers than Pearson’s test [McDonald, 2014]. The competing

hypotheses are:

• H0: σ2i and A
i
are not correlated;

• H1: σ2i and A
i
are correlated.
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Algorithm 1Detection and estimation procedure for the point source model

� Fusion event detection

Select detection scale s� in I

Detect spots e i in I
δt
at scale s�

for each e i do

Estimate foreground �zi

� Non-diffusing event discarding

for each t ∈
�
t0i, t0i + 4

�
do

Fit a Gaussian spot model to �zi (t )

if
�
σ2

i
(t )

�
t�t0i

and A
i
(t ) are not correlated then

Discard e i

� Fusion model estimation

Estimate model parameters p0i , A
i
, σ

i
and Di in �zi

�
t0i

�

The test statistics for the correlation is ts =
�

3ρ2/
�

1 − ρ2, which is t-distributed with
three degrees of freedomunderH0 [McDonald, 2014]. Hence, we can infer a threshold

on ρ from a given rate of type I error α. As mentioned above, we use 5 consecutive

frames to estimate the diffusion coefficient. This results in a threshold on ρ of −0.9
for a rate of type I error of α = 5% [McDonald, 2014], which we have chosen. We

obtained better results with this correlation test than with the variance increase test

proposed in [Cortes and Amit, 2008].

The whole proposed detection procedure is summarized in Algorithm 1.

7.2.3 Quantitative evaluation of the diffusive event detection

To evaluate the ability of themethod to only retain diffusion events, experimentswere

conducted on the TIRFM sequence introduced in Figure 7.7. 90 fusion events were

detected and then manually labeled as diffusion, non-diffusion, or debatable if the

class was unclear.

Table 7.1 – Diffusive event detection performance

α N #deb #diff #n-diff #miss #err

1% 90 6/90 13/34 49/50 21/34 1/50

5% 90 6/90 18/34 48/50 16/34 2/50

10% 90 6/90 20/34 47/50 14/34 3/50

α: rate of type I error; N : detected fusion events; #deb: debatable events; #diff: diffusion

events (found/ground-truth); #n-diff: non-diffusion events (found/ground-truth); #miss:

missed diffusion events; #err: non-diffusion events erroneously labeled as diffusion.
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As summarized in Table 7.1, very satisfactory precision results are obtained (pre-

cision ranges from 87% to 92%depending on α). To estimate the diffusion coefficient,

it is important to obtain as few erroneous detections as possible, in order to limit the

number of irrelevant measurements. Recall is not crucial here. The few classification

errors are due to a second spot moving inside νi , thus affecting the Gaussian fit. As a

tradeoff between precision and recall, we will fix the error rate to α = 5%. However, as

shown in the next chapter, the choice of α is not critical.

7.2.4 Detection from pH-sensitivity for Rab11 with Dual View

When both Rab11 and a pHluorin-tagged protein are imaged using Dual View, an-

other detection method than the translation/diffusion classification can be em-

ployed. Indeed, when detecting an event e i in the pHluorin channel, we directly ob-

tain the space-time coordinates e i =
�
p0i, t0i

�
, which are indeed valid in the Rab11-

mCherry channel as well.

Also, this method does not rely on any particular dynamical model, so it is com-

patible with any diffusion model for both imaged proteins, while the classification

proposed in Section 7.1 does not handle Rab11 dissociation, for example.

7.3 Discussion

Wehave proposed twomainways of detecting diffusion dynamics. Thefirst approach

consists in classifying vesicle dynamics into translation or diffusion, so the fusion

event starts at the first frame where the vesicle dynamics are classified as diffusion.

While well suited to Rab11 under the point source model, this solution is not ade-

quate for proteins observed with pH-sensitive tags, since the translation is not visible

in that case. Also, as it is specific to the point source model, another approach must

be used for the SSEDmodel.

Fortunately, fusion event detection is much easier for TfR and Langerin thanks to

the properties of pHluorin, since a fusion event corresponds to a spot appearance in

the image sequence. Hence, our spot detector ATLAS is applied to the sequence of

temporal differences to locate fusing vesicles.

Whenworkingwith the point sourcemodel instead of the SSEDmodel, a selection

is performed among the detected spot appearance events, relying on a statistical test.

This allows to discard non-point source events to later obtain reliable estimates of the

diffusion coefficient.

Finally, using Dual View, this simple method enables the study of Rab11 diffusion

after detecting the fusion events in the TfR or Langerin channel.
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8Estimation of the biological parameters

I� ���� �������, we proposemethods to estimate the biological parameters of the

previously introduced translation, point source and SSEDmodels.

First, in order to classify Rab11 dynamics with the method presented in Sec-

tion 7.1, we propose an estimationmethod for the translation and point sourcemod-

els which can be performed over a short temporal interval. As explained in the previ-

ous chapter, using only three consecutive frames, the method enables to decide the

type of dynamics undergone by the vesicles on a frame-by-frame basis.

Then, methods requiring a small temporal integration (5 frames) are presented to

estimate the parameters of the point source model. In addition to existing estima-

tion methods, we propose new ones and compare them, in order to select the best

method. Quantitative results for the point source model show the superiority of the

intensity fitting method, which will then be extended to the SSED model. Since the

model is more complex, several improvements are introduced to better fit the data.

Wewill employ thismethod to compare the dynamical behaviors of TfR and Langerin

in real TIRFM image sequences. Specifically, distributions of the residence time τ and

diffusion coefficient D will be compared for the two transmembrane proteins.

The chapter organization is the following. Existing methods for estimating the

diffusion coefficient are presented in Section 8.1. We propose a method to estimate

vesicle drift (translation) in Section 8.2, and to estimate the point source model in

Section 8.3. Experimental results show that our method performs best. As for trans-

membrane dynamics tackled in Section 8.4, the best estimationmethod for the point

source model is improved to cope with the increased complexity. Then, we carry out

several experiments which allow us to exhibit differences in the dynamical behaviors

of TfR and Langerin. Finally, estimation methods are discussed in Section 8.5, where

we also propose improvements for future experiments.
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Table 8.1 – Requirements of the diffusion estimation methods

Method Observed quantity Source distribution

Particle tracking Particle trajectory Sparse

Correlation fitting Local concentration Uniform

Intensity fitting Local concentration Known

8.1 Existing diffusion estimation methods

Numerousmethods were proposed to estimate the diffusion coefficient for all the ex-

isting models presented in Chapter 6. Nevertheless, three classes of methods can be

distinguished:

• Methods based on single particle tracking (SPT);

• Fluorescence correlation spectroscopy (FCS), which relies on the spatial and/or

temporal intensity correlationbetween spatially and/or temporally neighboring

pixels;

• Intensity fitting methods in which an intensity model is formulated and esti-

mated in a space-time volume of the microscopy image sequence.

Hypotheses on the diffusion models required by those methods are summarized

in Table 8.1. Let us briefly describe each type of method to enlighten the limitations

when applied to the modeling of vesicle fusion.

8.1.1 Single particle tracking methods

Here, we present the basic mean square displacement (MSD) approach to show SPT

methods are inappropriate to study vesicle fusion. Nevertheless, more complex SPT

models were proposed in the literature and were successfully applied to real images

undermore realistic hypotheses, although not at vesicle fusion. In particular, authors

of [Schuss et al., 2007, Singer et al., 2008] propose to relax the planar membrane as-

sumption, and to address the narrow escape issue introduced in the previous chap-

ter. To our knowledge, however, it was never applied to vesicle fusion, because the

followed protein cannot be selectively located in a fusing vesicle. As opposed to SPT

methods, we will see that our SSED model relies on higher-level hypotheses to cope

with this issue in the context of vesicle fusion, by incorporating a continuous release

rate.

SPT-based methods require images where particles can be individually detected.

Bydetectingand trackingmovingparticles, thediffusioncoefficient is generally recov-

ered from the so-calledMSD [Sako andKusumi, 1994,Saxton and Jacobson, 1997,Kim

et al., 2011]. MSD is a function of a time step∆t , defined as the expected displacement
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of a particle i in an interval step ∆t :

MSD
�
∆t

�
=

�
�

k i (t ) − k i

�
t + ∆t

��2�
t

, (8.1)

where �·�t denotes the temporal averaging.

From the Wiener characterization of Brownian motion (6.1), it is established that

the MSD linearly increases with time step:

MSD
�
∆t

�
= 4D∆t , (8.2)

where D denotes the diffusion coefficient. Hence, if individual proteins are tracked

over time, the diffusion coefficient can be straightforwardly estimated from empirical

MSDmeasurements.

More recently, Hozé et al. [Hozé et al., 2012] proposed amethod for estimating the

diffusion coefficient with a Eulerian approach. After tracking particles, statistical ar-

guments areproposed to characterize thedynamical properties owing to aprobability

of passing at each position of a grid. This way, local properties are extracted instead

of particle motion parameters.

However, in the imageswe deal with, single proteins cannot be resolved since they

are too close from each other compared to the microscope resolution. MSD cannot

be computed as a consequence. Other SPT-basedmethods are ruled out for the same

reason.

8.1.2 Correlation fitting methods1

Temporal image correlation spectroscopy (TICS) can be employed to estimate the

diffusion coefficient of the lateral diffusion model even when single particles are

not separated. They were successfully applied to images depicting to the stationary

model, where a set of Gaussian spots undergo Brownianmotion and/or drift [Ohsugi

et al., 2006,García-Sáez and Schwille, 2008,Macháň and Hof, 2010,García-Sáez et al.,

2010,Kolin andWiseman, 2007,Di Rienzo et al., 2014].

In TICS, the following correlation functionG is introduced [Sergeev, 2004]:

G : R
2 → R

�
t , ∆t

�
�→

�

I
�
p, t

�
I
�
p, t + ∆t

��
p

�

I
�
p, t

��2
p

, (8.3)

where �·�p denotes the spatial averaging.

1Correlationmethods were investigated with Anca Caranfil during her Master internship in the Ser-
pico team at Inria Rennes.
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In the stationary model, following the Wiener characterization of the Brownian

motion (6.1),G does not depend on t , id est :

G : N→ R

∆t �→

�

I
�
p, t

�
I
�
p, t + ∆t

��
�

I
�
p, t

��2 , (8.4)

where �·� is now the spatiotemporal averaging. However, while valid in classicalmem-

brane diffusion experiments [Sergeev, 2004, Kolin and Wiseman, 2007], we will now

show that the time independence assumption does not hold for the point source

model and, a fortiori, for our vesicle fusion SSEDmodel.

To our knowledge, the correlation function (8.3) has never been derived for the

point source model. To simplify equations, denote σ2(t ) = 2Dt + σ20. The numerator

of (8.3) writes:

�

I
�
p, t

�
I
�
p, t + ∆t

��
p
=

1
|ΩI |

�
ΩI

A0

σ2(t )
exp���−

�
p − p0

�2
2

2σ2(t )
��
� ×

A0

σ2
�
t + ∆t

� exp���−
�

p − p0
�2
2

2σ2
�
t + ∆t

����dp

=

A2
0

|ΩI | σ2(t )σ2
�
t + ∆t

� �
ΩI

exp���−
�

p − p0
�2
2

2σ2(t )
−

�
p − p0

�2
2

2σ2
�
t + ∆t

����dp

=

A2
0

|ΩI | σ2(t )σ2
�
t + ∆t

� �
ΩI

exp��−
σ2(t ) + σ2

�
t + ∆t

�
2σ2(t )σ2

�
t + ∆t

� �
p − p0

�2
2
�
�dp

The exponential is negligible when p is not close to p0. Thus, the integral over ΩI is

approximately the integral over R2, which is a Gauss integral, and we get:

�

I
�
p, t

�
I
�
p, ∆t

��
p
≈

πA2
0

|ΩI |
�
D∆t + σ2(t )

� .
Analogously, the denominator of G

�
t , ∆t

�
is a squared Gauss integral when inte-

grating over R2 instead of ΩI . Then, the following result is straightforward:

�

I
�
p, t

��
p
≈
2πA0

|ΩI |
.

We finally obtain:

G
�
t , ∆t

�
≈

|ΩI |

4π
�

D∆t + 2Dt + σ20

� , (8.5)

which depends on t . In the point source model, non stationarity comes from the

pointwise initial particle distribution, which implies that a particle is expected to

reach apoint p � p0 only after a given timewhich increaseswith
�

p − p0
�
2, thus break-

ing the stationary assumption for the correlation. The same argument holds for spa-

tiotemporal image correlation spectroscopy (STICS)methods, which include a spatial

component in the correlation function (8.3) [Hebert et al., 2005,Kolin and Wiseman,

2007,Di Rienzo et al., 2014].
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Therefore, classical FCS methods cannot be applied to estimate the diffusion co-

efficient for vesicle fusion. However, a new correlation-based estimationmethod will

be proposed in Section 8.3.2 and evaluated in Section 8.3.4.

8.1.3 Intensity fitting method

Intensity fitting was investigated in a few papers to estimate the diffusion coefficient

of the stationary [Fortun et al., 2013], point source [Mele et al., 2009] andFRAPmodels

[Seiffert and Oppermann, 2005].

In [Fortun et al., 2013], an optical flow estimation method was proposed to esti-

mate the diffusion coefficient in the stationary model. A global variational approach

is used, where a regularization term penalizes high gradients, and a data fidelity term

is derived from theFick’s second law. As opposed to correlationfittingwhich assumea

spatially and temporally constant diffusion coefficient, themethod proposed in [For-

tun et al., 2013] is able to estimate pointwise a varying diffusion coefficient.

Seiffert andOppermann [Seiffert andOppermann, 2005] proposed a diffusion co-

efficient estimation method for the FRAP model, based on frame-by-frame Gaussian

fitting. As presented in Section 6.2.5, in the FRAP model, the fluorescence hole has a

Gaussian profile of linearly increasing variance σ2(t ) and decreasing amplitude A(t ):

I
�
p, t

�
= A(0) − A(t ) exp���−

�
p − p0

�2
2

2σ2(t )
��
� (8.6)

with A(t ) =
A0

2D
�
t − t0

�
+ σ2PSF + σ

2
beam

(8.7)

and σ2(t ) = 2D
�
t − t0

�
+ σ2PSF + σ

2
beam . (8.8)

After fitting a Gaussian spot model in each frame I (t ), the amplitude model (8.7) and

variancemodel (8.8) are fitted to recover the diffusion coefficientD , that ismerely the

slope of A−1 and σ2. We will see later that best estimation results are obtained with

our estimation method.

Finally, Mele et al. [Mele et al., 2009] proposed an approach for estimating the

diffusion coefficient for vesicle fusion. Intensity is spatially averaged around fusion

events to get a 1D+time signal whose decay can be fitted. Specifically, the averaging is

performed in a region whose size depends on σ2PSF, which must be estimated before-

hand. The final estimate of D hence depends on two complex fitting steps. It turns

out that much information is lost and the two-step estimator is lacking accuracy.

In the remaining of this chapter, we propose and evaluate a method which can

be used in any situations where an intensity model can be derived. In particular, the

proposed SSED model will be estimated to better analyze membrane diffusion after

vesicle fusion in real TIRFM sequences.
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8.2 Proposed estimation method for the translation

Vesicle motion is quite slow – a few pixels per frame at most. Moreover, since we

observe only the membrane region, the spatial density of vesicles is low enough to

neglect about potential crossings of vesicles. Therefore, instead of using complex

methods such as particle tracking (for a survey, see [Chenouard et al., 2014]), it is suf-

ficient to rely on local techniques of optical flow estimation to recover their frame-

by-frame displacement. Namely, after detecting the vesicles, we merely estimate the

displacement with a least squares method, exploiting the brightness constancy con-

straint equation (BCCE), which is valid since photobleaching is negligible in the short

time interval considered (the frame period). BCCE leads to the well-known motion

equation [Lucas and Kanade, 1981]:

It

�
p, t

�
+ Ix

�
p, t

�
ui + Iy

�
p, t

�
vi = 0 , (8.9)

where It , Ix and Iy are the temporal and spatial derivatives, andu
i
and v

i
represent the

x and y components of the displacementw
i
of every point of the vesicle, respectively.

The temporal and spatial derivatives of the image intensitiesmust be estimated at

each point of the vesicle support. While simple, the finite difference approach is very

noise-sensitive. Therefore, we first apply a low-pass filtering with a Gaussian kernel,

whose variance is the previously selected scale s� (see Part I).

The velocity vector w
i
=

�

u
i
, v

i

�T
of the vesicle of spatial support V �

i
(t ) is easily

obtained [Lucas and Kanade, 1981]:

w i = −
��
�
�

q ∈V �
i
(t ) Ixx

�
q, t

� �

q ∈V �
i
(t ) Ix

�
q, t

�
Iy

�
q, t

�
�

q ∈V �
i
(t ) Ix

�
q, t

�
Iy

�
q, t

� �

q ∈V �
i
(t ) Iy y

�
q, t

� ��
�
−1 ��

�
�

q ∈V �
i
(t ) Ix

�
q, t

�
It

�
q, t

�
�

q ∈V �
i
(t ) Iy

�
q, t

�
It

�
q, t

���� ,
(8.10)

where Ixx and Iy y are the second spatial derivatives of the image intensity.

8.3 Proposed estimation method for the point source model

8.3.1 Frame-by-frame estimation by exploiting the Fick’s second law

The diffusion coefficient Di of the vesicle of support V �
i
(t ) can straightforwardly be

estimated from the Fick’s second law (6.12), with a linear least square fitting. In order

to estimateDi more robustly, we do not only consider the points ofV �
i
(t ) at time t , but

also their corresponding points in the previous and next frames, respectively at times

t − 1 and t + 1:

Di =

�

q ∈V �
i
(t )

�t+1
τ=t−1 ∆I

�
q, τ

�
It

�
q, τ

�
�

q ∈V �
i
(t )

�t+1
τ=t−1

�

∆I
�
q, τ

��2 . (8.11)
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Wealso apply beforehand the aforementioned low-passGaussianfilter of variance

s� to smooth theLaplacianfield,which is very sensitive tonoise. Thisfilteringdoesnot

impact the estimation, as the Fick’s second law is invariant to Gaussian convolution.

8.3.2 Correlation fitting method

We have shown in Section 8.1.2 that classical STICS methods cannot be applied to

estimate the diffusion coefficient of vesicle fusion models. However, we propose a

simple correlation-basedmethod to estimate thediffusion coefficient under thepoint

source model. From (8.5), we can infer thatG−1 is a linear function of D and σ20 as:

G−1
�
t , ∆t

�
≈

8π
|ΩI |

Dt +
4π
|ΩI |

D∆t +
4π
|ΩI |
σ20 . (8.12)

Interestingly, the result is independent of A0 and p0, so thatD andσ20 can be estimated

with a standard two-dimensional linear regression. This method will be evaluated in

Section 8.4.1.

Unfortunately, we were not able to extend this method to the SSEDmodel, whose

correlation function is much more complex. Indeed, non-stationarity is even rein-

forced in the SSED model by the time-varying source, which introduces another de-

pendence on t . Moreover, those correlation-based methods make the assumption

that everyparticle undergoes aBrownianmotion. This hypothesis cannotbe assumed

in the SSED model because a stationary component is introduced, which prevents

FCS from correctly estimating the related parameters. Wemust resort to intensity fit-

ting methods.

8.3.3 Intensity fitting method

Since we have already estimated A
i
(t ) and σ2

i
(t ), as explained in Chapter 7, to detect

fusion events,Di could be straightforwardly deduced from (7.9) or (7.10), as proposed

in [Seiffert and Oppermann, 2005] for FRAP experiments. However, as demonstrated

in the next section, better results are obtained by directly fitting the diffusion model

equation (6.23) to the estimated foreground �zi in the space-time cuboid νi (see Chap-

ter 7). Specifically, the parameter vector θi =

�

p0i, A0i
, σ0i
, Di

�T
is estimated by using

a Gauss-Newton algorithm initialized with θ(init)
i
=

��p0i, s�maxνi �zi ,
√

s�, 0
�T
:

�θi = argmin
θi

�

(q,t )∈νi

r 2i
�
q, t

�
(8.13)

with ri

�
q, t

�
= �zi

�
q, t

�
− Ai (t ) exp

��
�−

�
q − p0i

�2
2

2σ2
i
(t )

��
� .
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8.3.4 Quantitative comparison of estimation methods2

To carry out an objective and comparative evaluation, we have simulated a collection

of 300 image sequences containing a single diffusing spot. Each sequence is made of

five images of size 21×21 pixels tomimic real spatiotemporal patches νi . As explained

in Chapter 2, the noise in real TIRFM images is supposed to be Poisson-Gaussian, so

the noise variance can be stabilized to end up with a Gaussian noise. We can work

with simulated sequences corrupted by Gaussian noise. We create sequences with a

random signal-to-noise ratio (SNR) between 1 and 10. The diffusion coefficient and

the initial spot variance are randomly varied from 0.1 to 10px2/frame, and from 0.5 to

1.5px2, respectively. As shown in Section 8.4.2, diffusion coefficients are of the order

of magnitude of 1 px2/frame in TIRFM image sequences we are dealing with.

We have compared our results with the aforementioned diffusion coefficient esti-

mation methods, namely:

• Direct use of Fick’s second law presented in Section 8.3;

• Amplitude decay fitting based on (7.9);

• Variance increase fitting based on (7.10);

• Correlation fitting presented in Section 8.3.2.

Comparative results are reported in Figure 8.1. This clearly demonstrate that our new

method outperforms the others. Overall, the estimation of the diffusion coefficient

was improved, especially for fast diffusion processes (D � 1px2/frame). This order

of magnitude corresponds to real situations, as shown in Section 8.3.4. The mean

absolute logarithmic errors (MALEs) of the five methods are respectively:

• 0.24 for the direct least-square estimation,

• 0.22 for the amplitude fitting,

• 0.06 for the variance fitting,

• 0.07 for the correlation fitting,

• 0.03 for our intensity fitting method.

Quantitative evaluation on real TIRFM image sequences

We report now results obtained in real sequences. Six TIRFM image sequences were

acquired, depicting micropatterned M10 cells, as in Figure 7.6. TfR was tagged with

pHluorin. For each sequence, 600 images of size 256×256were acquired at 10 f/s. The

overall processing time is less than 0.1 s/f on a 2.3GHz 4-core laptop.

As reported in Figure 8.2a, varying the rate of type I error does not impact sig-

nificantly the estimated diffusion coefficient statistics. For α = 5%, 124 diffusion

events where detected through the six real sequences. The average diffusion coeffi-

2Correlation fitting was evaluated with Anca Caranfil during her Master internship in the Serpico
team at Inria Rennes.
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Figure 8.1 –Comparisonof theperformanceof several estimationmethods for thepoint source

model. The residuals log10 �D − log10 D are plotted, where D and �D are the true and estimated

diffusion coefficients, respectively.
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Figure 8.2 – Mean (dot) and standard deviation (bar) of the diffusion coefficient estimated in

six real TIRFM sequences

cient equals 1.1px2/f. It converts to 0.28µm2 s−1, which is coherent with related stud-

ies [Ohsugi et al., 2006,Sako and Kusumi, 1994].

Finally, in order to estimate the robustness of the method, we have artificially re-

duced the frame rate by using only one frame over two. We use the same parameters

(detection parameters, size of νi , and α) as before. Estimation results are presented in

Figure 8.2b. Again, the averagediffusioncoefficient is hardlymodified, demonstrating

the robustness of the proposed method.

However, themethod is only valid for the point sourcemodel. Indeed, events with

long residence time τ are discarded from the estimation, as explained in the previous

chapter. In order to obtain statistics of D including fusion events with large τ, we will

propose an extension of this estimation method to the SSEDmodel.

8.4 Proposed estimation method for the SSED model

Let us now focus on the estimation of the SSEDmodel parameters. The model is de-

fined by (6.40), which has no closed form, but can be numerically solved, so that stan-

dard optimization algorithms could be used. However, the SSEDmodel has onemore

parameter than the point sourcemodel, and wewere not able to satisfyingly estimate

the SSED model parameters in simulated sequences using the estimation procedure

presented in Section 8.3.3. We need to design a more elaborate algorithm, described

below..

First, a good approach is to estimate κ = τ−1 instead of τ, as it “reduces non-

linearity” in (6.40). Since the Gauss-Newton algorithm does not always converge to

the global minimum, we adopt the Levenberg-Marquardt algorithm and the update

scheme of [Nielsen, 1999].
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Algorithm 2Detection and estimation procedure for the SSEDmodel

for each e i do

Estimate foreground z

Estimate Gaussian spot parameters p0i , A
i
and σ

i
in �zi

�
t0i

�
Estimate κi and Di with various θ

(init)
i

in �zi

Retain best fit parameters

if goodness-of-fit is too low then

Discard e i

Moreover, as the intensity model at t = t0 is a Gaussian spot, we can reliably esti-

mate p0, A0 and σ0 by fitting a Gaussian spot model in frame I
�
t0
�
. This way, κ and D

can be estimated with a regression operating in two dimensions only.

Finally, the initialization of the parameters, and in particular the initialization of κ ,

is crucial. Quantitative results show that the estimation of all parameters is accurate

when κ is correctly initialized. Therefore, we propose another extension to the esti-

mation procedure. Instead of estimating the parameters only once for each detected

event, we start with different initialization vectors, and after running the optimiza-

tion algorithm, we compare the associated residuals. To obtain the best estimation

of κ and D , we select the run which minimizes the sum of squared residuals. In prac-

tice, as a tradeoff between accuracy and computation time, we have chosen the set�
0.1, 0.31, 1, 3.1, 10

�
of initial values for κ(init) and

�
0.1, 10

�
for D (init).

The overall estimation algorithm is given in Algorithm 2.

8.4.1 Quantitative evaluation on simulated sequences

The same procedure as for the point source model evaluation is used to evaluate the

proposed estimation method for the SSED model. 300 synthetic image sequences of

size 21 × 21 pixels and length 20 frames were generated with different parameters to

mimic real �zi ’s. Like for the point source model, we have randomly set the diffusion

coefficient between 0.1 and 10px2/f, and the PSF variance from 0.5 to 1.5px2. As for

the residence time τ, it varies between 0.1 and 10 frames. The SNR still ranges from 1

to 10.

Logarithmic errors on the estimation of both κ andD are reported in Figure 8.3 for

each sequence. As plotted in Figure 8.3a, the estimation of κ is less accurate than that

of D , but we will see in the next subsection that the accuracy is largely sufficient to

extract relevant information from real TIRFM images. Moreover, large errors are very

rare. Over the 300 generated sequences, only 5 have an absolute logarithmic error

higher than 0.5, and the MALE is quite low at 0.12.



120 C������ 8. E��������� �� ��� ���������� ����������

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log10 κ

lo
g 1

0
� κ−

lo
g 1

0
κ

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log10 D

lo
g 1

0
� κ−

lo
g 1

0
κ

(a) Accuracy of the estimation of κ versus the true parameter values

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log10 κ

lo
g 1

0
� D−

lo
g 1

0
D

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log10 D

lo
g 1

0
� D−

lo
g 1

0
D
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Figure 8.3 – Results obtained for the SSEDmodel on simulated sequences

As for the estimation of D , results reported in Figure 8.3b are very good when κ is

high enough. Indeed, this behavior is not a surprise, since, for low κ , the flowbetween

Cs and Cd is very small. Consequently, few particles are available to estimate D (pre-

cisely the one undergoing a Brownian motion). On the contrary, when increasing κ ,

the SSED model tends to the point source model, and the estimation becomes more

and more accurate as the amount of signal available to estimate D increases. When

κ > 0.25, estimation of D is as precise as for the point source model with a MALE of

0.03. Including the worst estimates, the overall MALE for the diffusion coefficient is

still very low at 0.06.
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8.4.2 Comparison of TfR and Langerin behaviors

The behaviors of TfR and Langerin after fusion have been compared in [Cinquin,

2011], but no biophysical model was proposed. Instead, a simple 1D+time intensity

signal was used to classify fusion events as slow or fast in collections of sequences

depicting either TfR or Langerin. It was reported that the number of slow events in

Langerin image sequences is much higher than in TfR images [Cinquin, 2011].

Similar results can be expectedwhen estimating the SSEDmodelwith ourmethod

in similar image sequences. In the SSEDmodel, slow events correspond to long resi-

dence times (i.e., small κ), while fast events correspond to short residence times (high

κ).

We have applied the proposed detection and estimation procedure to sixteen real

TIRFM image sequences, half of which depict TfR, and half of which depict Langerin.

As explained in Chapter 7, in order to only take into account reliable estimates, a chi-

square goodness-of-fit test is performed [McDonald, 2014]. Like for the point source

model inprevious chapter, wefix the rateof type I errorα to 5%. In the set of sequences

depicting TfR, 3,147 diffusive events are detected, versus 4,223 for Langerin.

The results are gathered in Figure 8.4 in the form of four histograms of�κ and �D es-

timated in the sequences depicting TfR or Langerin. There are twomain conclusions

to be drawn. First, the histogram of�κ exhibit a strong peak around 102 for TfR which
does not exist for Langerin. In contrast, muchmore slow events are found in Langerin

sequences, around�κ ≈ 10−1. Regarding the release rate, our results are therefore con-
sistent with those reported in [Cinquin, 2011], but supply a more precise description

of the biophysical model with a quantified biophysical parameter.

The second conclusion concerns the diffusion coefficient statistics. Indeed, Lan-

gerin shows a much higher dispersion of the estimates than TfR. Various hypothe-

ses could explain such different behaviors, related, for example, to structures present

around the vesicle fusion location, interactions between proteins...

These preliminary results demonstrate the relevance of our approach. Statements

on κ and D raise biological questions, answers of which could lead to a better under-

standing of the structures and interactions involved in the recycling process.

8.5 Discussion and perspectives

We have designed methods to estimate three types of membrane dynamics using

TIRFM, namely translation, 2D and 3D diffusions. First, we developedmethods using

only three frames to estimate the translation of the vesicle and its diffusion dynamics.

While simple and fast, the diffusion coefficient estimation is not sufficiently accurate

to draw reliable conclusions on real TIRFM image sequences.
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Figure 8.4 – Comparison of the histograms of the biophysical parameters �κ and �D estimated

in 16 TIRFM image sequences depicting TfR or Langerin

As a consequence, we investigated a more efficient approach for the point source

and SSEDmodels, relying on a longer temporal integration (5 and 20 frames, respec-

tively). After demonstrating the efficiency of themethod on simulated sequences, we

successfully applied it to real TIRFM images depicting TfR and Langerin.

The experiments demonstrated that the residence time and diffusion coefficient

distributions of the two transmembrane proteins exhibit clear differences. A biologi-

cal model to explain it remains to be elaborated. In collaboration with UMR 144, fur-

ther work could focus on the design and validation of biological models which could

explain the behavior differences. The estimation of the SSED model should also be

carried out in sequences showing mutant and wild-type cells.
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9Labeled affine flow

for groupmotion characterization

G���� �������� can be encountered in biological image sequences, for exam-

ple images of cell tissues as depicted in Figure 9.1, embryogenesis, cell migra-

tion, and inmany other types of image sequences, ranging from urban traffic surveil-

lance to crowd motion monitoring. The latter is particularly interesting in terms of

evaluation becausemany crowdmotion analysismethods have been proposed in the

literature. Therefore, this scope represents an excellent experimental support.

Analyzing videos of crowded scenes is of interest inmany applications [Zhan et al.,

2008,Chandola et al., 2009,Thida et al., 2013]. Needs can encompass crowd safety in

big social events, exhibitions, sports events ormusical shows, surveillance andmoni-

toring in public transportation areas like subways, airports or railway stations, people

behavior understanding in commercial venues. The huge amount of daily acquired

videos urges to define automatic tools for processing the available data and/or assist-

ing human operators depending upon the targeted applications. Goals can comprise

classifying dynamic behaviors [Hu et al., 2008, Rodriguez et al., 2011, Solmaz et al.,

2012, Zhou et al., 2013], identifying main followed paths [Jodoin et al., 2013, Wang

et al., 2011, Zhou et al., 2011], preventing critical situations [Solmaz et al., 2012],

and detecting abnormal behaviors or events [Cong et al., 2013, Kim and Grauman,

2009,Kratz and Nishino, 2009,Wu et al., 2014].

A similar image analysis process can be envisaged as well for other sets of moving

elements such as urban traffic, animal flocks or groups of cells like those depicted in

Figure 9.1. However, in contrast to most existing methods, our methods are said in-

stantaneous, that is, they rely on short-term analysis and do not require any prior

learning stage. More precisely, the proposed methods are based on simple affine

motion models estimated from only two consecutive images. They do not involve

long temporal integration or trajectory computation. Furthermore, in order to create

methods as generic and reusable as possible, we do not introduce any individual ap-
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(a) First frame I
�
0
�
of the sequence (b) Last frame I

�
199

�
of the sequence

Figure 9.1 – Tissue sequence depicting cells whose plasma membranes are fluorescently la-

beled

pearance or interactionmodel. While applicable to biological images showing groups

of cells, the proposed methods do not rely on hypotheses specific to biology, so that

they can be applied to any kind of microscopy images, and many other application

domains.

In this chapter, we are introducing labeled affine flow (LAF), a map incorporat-

ing both a quantitativemotion information, in the form of displacement vectors, and

a qualitative motion label, in the form of motion classes. The term affine flow indi-

cates that the motion is estimated with affine motion models. Indeed, we assume

that the apparent motion of a group can locally be represented by one of the three

following 2Dmotionmodels: translation, scaling or rotation, which are three specific

cases of the affine motion. Scaling motions correspond to gathering (Convergence)

or dispersing (Divergence) when viewed by the camera. Rotation motions are subdi-

vided into Clockwise and Counterclockwise classes. Since our classification scheme

is view-based, we choose to distinguish four image-related translation directions:

North,West, South, East. A finer subdivision could be handled as well if required.

These eight group motion classes can be related to the behaviors introduced in

[Solmaz et al., 2012], as summarized in Table 9.1. However, let us mention that our

scheme is applicable to any point in the image, not only around few critical points as

in [Solmaz et al., 2012].

Our motion estimation method is divided into three main steps:

1. Detection of moving areas in the image;

2. Estimation of three affinemotionmodels (translation, rotation, scaling) in each

window of a collection of windows of different sizes;



9.1. R������ ���� 129

Table 9.1 – Groupmotion classes compared to behaviors from [Solmaz et al., 2012]

Motion Motion class Behavior from

type direction [Solmaz et al., 2012]

T

North

Lane
West

South

East

S
Convergence Bottleneck

Divergence Fountainhead

R
Clockwise

Ring
Counterclockwise

3. Pointwise selection of the optimal motion models.

The first step is achieved with the motion detection algorithm [Crivelli et al., 2011],

which follows a background subtraction approach and involves a mixed-state condi-

tional random field (see [Crivelli et al., 2011], for details). The set of detected moving

areas is denoted Ω�I with Ω
�

I ⊂ ΩI , where ΩI is the image domain. The motion detec-

tion algorithm is tuned by two parameters that we have kept fixed for all processed

sequences, and their setting was not critical for our classification task. With step 2,

we end up with a set of motion model candidates at every point p ∈ Ω�I . Step 3 al-
lows us to select at every point p ∈ Ω�I the most relevant motion model among these

candidates with an information criterion.

The outline of the chapter is the following. After giving a brief overview of crowd

motion analysis methods in Section 9.1, the proposed LAF map is introduced in Sec-

tion 9.2. Two applications are then proposed to demonstrate the relevance of the LAF

motion map: motion patterns recognition in Section 9.3 and recovery of dominant

paths in Section 9.4. We finally discuss the methods in Section 9.5.

9.1 Related work

Important research efforts have been devoted to crowd analysis for several years

[Thida et al., 2013, Li et al., 2015]. Specialized descriptors have been designed to

capture the dynamics of crowds motion from videos and have been used for a num-

ber of inference tasks in crowd analysis, such as pedestrian tracking [Hu et al.,

2008,Rodriguez et al., 2009], groupmotion pattern or path classification [Wang et al.,

2011, Zhou et al., 2011, Solmaz et al., 2012], or anomaly detection [Basharat et al.,

2008,Kratz and Nishino, 2009,Feng et al., 2010,Ryan et al., 2011,Chockalingam et al.,

2013].

Existing crowd analysismethods usually exploitmotion-based features computed

on extended time intervals: spatio-temporal cuboids [Feng et al., 2010, Kratz and
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Nishino, 2009,Rodriguez et al., 2011], tracklets [Zhou et al., 2011] andmostly trajecto-

ries [Cheriyadat andRadke, 2008,Rodriguez et al., 2009,Solmaz et al., 2012,Wanget al.,

2011,Zhou et al., 2012]. Moreover, most crowd analysismethods rely on dense optical

flows [Chockalingam et al., 2013,Cong et al., 2013, Kim and Grauman, 2009,Mehran

et al., 2009, Ryan et al., 2011, Solmaz et al., 2012, Zhou et al., 2013], temporal or

spatiotemporal gradients [Benezeth et al., 2011, Boiman and Irani, 2007, Kratz and

Nishino, 2009,Roshtkhari and Levine, 2013].

The recognition of prominent paths in the scene is investigated in [Wang et al.,

2011]within the frameworkof hierarchicalDirichlet processes and latent topics, while

in [Zhou et al., 2011] random field topic models are introduced which account for

spatial and temporal coherence between tracklets. The authors of [Zhou et al., 2013]

have proposed a collectiveness measure based on trajectories and local velocities.

Tracking pedestrians in dense crowds may require specific approaches. Idrees et

al. [Idrees et al., 2014] made the assumption that neighboring pedestrians have com-

parable trajectories to track individuals in dense crowds. In [Rodriguez et al., 2011],

a dense optical flow is first computed to deduce words, composed of quantized posi-

tions anddirections. Correlated topicmodels (CTM)are exploited to learnwordpriors

on a large video database. Thesemodels are then exploited for tracking individuals in

a dense crowd.

As for crowdbehavior classification, [Zhouet al., 2012] and [Cheriyadat andRadke,

2008] studied coherent and dominant crowd motions. Zhou et al. [Zhou et al., 2012]

proposed to group moving points according to the so-called coherent neighbor in-

variance. The latter provides information both on the spatial proximity of data points

and on the correlation over time of their velocity vectors. In [Cheriyadat and Radke,

2008], the trajectories are organized into clusters according to a longest common sub-

sequence (LCSS) criterion. In [Wang et al., 2011], amethod is developed for the recog-

nition of semantic regions (prominent paths in the scene) within the framework of hi-

erarchical Dirichlet processes and latent topics, while [Zhou et al., 2011] introduced

the so-called random field topic model for semantic region analysis to account for

spatial and temporal coherence between tracklets.

To our knowledge, only [Hu et al., 2008] and [Solmaz et al., 2012] have focused

on classifying structured groupmotions. The former determined motion patterns by

clustering 4D flow vectors (2D position and velocity of points) in each frame accord-

ing to proximity and similarity rules. The latter proposed to extract trajectories and

accumulation points from the advection of flow fields over video sequences.
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9.2 Labeled affine flow

9.2.1 Motion model candidates

As aforementioned, to propose motion candidates, we only consider 2D parametric

motion models. Specifically, at any point p =
�
x, y

�
∈ Ω�I , the optical flow vectorw

�
p
�

is approximated by an affine flow vectorw
θ

�
p
�
defined by:

w
θ

�
p
�
=
��
�

a1 a2

a3 a4

��
�

��������������
A

��
�

x

y

��
� +

��
�

b1

b2

��
�

����

B

, (9.1)

with θ =
�
a1, a2, a3, a4, b1, b2

�
the model parameter vector.

Inorder to characterize the eightpreviously introducedgroupmotionclasses, only

three specific affine motion models are necessary: translation (denoted T), scaling

(S), and rotation (R)motions. They respectively correspond to the following 2× 2ma-

trices A , as explained in [François and Bouthemy, 1990]:

AT =
��
�
0 0

0 0
��
� AS =

��
�

a1 0

0 a1

��
� AR =

��
�
0 a2

−a2 0
��
� . (9.2)

The vectorB is considered in any case, since it corresponds to the displacement of

the origin of the coordinate system. Hence, for each motion model, only two (trans-

lation case) or three coefficients (scaling and rotation cases) have to be estimated,

respectively:

θT = (b1, b2) θS = (b1, b2, a1) θR = (b1, b2, a2) . (9.3)

Since we do not know in advance the appropriate spatial support to estimate the

motion models, we consider a collectionW =

�
W

i

���1 � i �
�
W

��
of overlapping win-

dows of various sizes – typically, 25%, 50%, and 100% of the image dimensions. For a

given size, the overlap rate is 50%, so that a given point p belongs to four windows of

that size (apart from border effects). An example is given in Figure 9.2.

We estimate the three motion models defined in (9.2) in every window, using the

robust method [Odobez and Bouthemy, 1995] based on a multiresolution and incre-

mental scheme, which is available as an open-source software1. The robust estima-

tion allows us to capture the dominant motion if several motions are present inside

the window, and to tolerate errors of themotion detection stage. Since theminimiza-

tion of the robust penalty function amounts to an iteratively reweighted least squares

(IRLS) procedure [Odobez andBouthemy, 1995], each point p is assigned at the end of

the estimation process a weight representing its influence in the robust estimation. A

1Motion2D: http://www.irisa.fr/vista/Motion2D/



132 C������ 9. L������ �ffi����� ��� ����� ������ ����������������

(a) Sample windows ofW (b)Motion map Ω�I (t )

(c) Local class map �c (t ) (d) Affine flowmap F (t )

u

v

(e)OF color code

Figure 9.2 – Overview of the motion estimation method applied to the Marathon bend se-

quence, where runners follow a ‘U’ from the upper left corner to the upper right corner.

(a) Sample windows fromW are plotted over the first frame of the sequence (red: large win-

dows; green: medium ones; blue: small ones). (b) Map of the moving points detected in the

first frame. (c) Motion models are estimated in each window, and candidates are pointwise

selected (class color code in Table 9.2). (d) Optical flow deduced from the affine parameters

of selected candidates. (e) Color code of (d).

point whoseweight is close to 1 (namely greater than 0.5) is called an inlier. Let θi,k be

the parameters of the motion model k ∈
�
T, S, R

�
, estimated in the windowW

i
∈W .

The set of inliers for the model of parameter vector θi,k is denoted by Xi,k .

The conformity evaluation of a point p to a givenmotionmodel of parameters θi,k

is based on the displaced frame difference (DFD) and is defined by:

εi,k

�
p, t

�
= I
�

p +w i,k

�
p, t

�
, t + 1

�

− I
�
p, t

�
, (9.4)

wherew
i,k

�
p, t

�
is the displacement of p between frames t and t +1 deduced from θi,k

according to (9.1). Conformity corresponds to ε
i,k
close to 0.

For every motion model k , in every windowW
i
, we estimate both the motion pa-

rameters θi,k and the empirical variance σ2
i,k
computed over the inliers, given by:

σ2i,k =
1�
Xi,k

� �
q ∈Xi,k

ε2i,k
�
q
�
, (9.5)

where
�
Xi,k

�
denotes the number of inliers.

LetW
�
p
�
⊂ W be the subset of windows containing a given point p,M

�
p
�
the

set ofmotionmodel candidates for p, andΘ
�
p
�
the set of estimated parameters of the

candidates. In our experiments, using the previously mentioned windows collection,
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33 motion model candidates are available for each pixel (only 30 for pixels lying on

the image borders).

9.2.2 Candidate selection

The optimal motion model at p should best fit the real (unknown) local motion at p

while being of the lowest possible complexity. We consider a local patch η
�
p
�
centered

in p andweexploit thefitting variable (9.4)which is likely tobeclose to0 for the correct

velocity vector. Let us assume that the ε
i,k

�
q, t

�
’s are i.i.d. variables overpointsq ∈ η

�
p
�

and follow a zero-mean Gaussian law of variance σ2
i,k
. Then, we can write the joint

likelihood in the patch η
�
p
�
:

ψ
�
p, θi,k

�
=

1
�

2πσ2
i,k

����η(p)∩Ω�I
����
�

q ∈η(p)∩Ω�I

exp���−
ε2

i,k

�
q
�

2σ2
i,k

��
� . (9.6)

To penalize the complexity of the motionmodel, we resort to the Akaike informa-

tion criterion corrected for small sample size (AICc) [Burnham and Anderson, 2002].

The correction is especially useful when the sample size is small, which is our case

here. The criterion is given by:

AICc
�
p, θi,k

�
= −2 ln

�

ψ
�
p, θi,k

��
+ 2nk +

2nk (nk + 1)����η
�
p
�
∩Ω�I

���� − nk − 1
, (9.7)

where nk is the dimension of the motion model k , that is nk = 2 for T-motion model

and nk = 3 for S- and R-motion models. Finally, we select the optimal motion model�k at p by minimizing the criterion:

θ
i,�k = argmin

θi,k ∈Θ(p)
AICc

�
p, θi,k

�
. (9.8)

9.2.3 From motion candidates to motion classes

At every point p ∈ Ω�I , we have selected the motion model candidate, which is repre-

sented by:

• a motion type �k ∈ �T, S, R�,
• a parameter vector θ

i,�k and, consequently, an affine flow vectorw
i,�k
�
p
�
.

The selected candidates are further classified into eightmotionclasses, represented in

Table 9.2 by colors, depending on the sign of the parameters and some combinations

of them. Namely, the translation motion type is subdivided into four classes defined

from view-based directions:

Translation towards the top of the frame, or Northward translation (denoted

TN);

Westward translation (TW);
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Table 9.2 – Motion classes definition

Motion Motion Class Class

type class color direction Criterion

T

TN North b1 + b2 > 0 & b1 − b2 < 0

TW West b1 + b2 < 0 & b1 − b2 < 0

TS South b1 + b2 < 0 & b1 − b2 > 0

TE East b1 + b2 > 0 & b1 − b2 > 0

S
SN Convergence a1 < 0

SP Divergence a1 > 0

R
RN Clockwise a2 < 0

RP Counterclockwise a2 > 0

Southward translation (TS);

Eastward translation (TE).

The scaling motion type corresponds to two classes:

Convergence, or negative scaling (SN);

Divergence (SP).

And the rotation motion type naturally yields two classes:

Clockwise rotation, or negative rotation (RN);

Counterclockwise rotation (RP).

The different classes are characterized by criteria summarized in Table 9.2. The set

of classes is denoted Γ =
�
TN, TW, TS, TE, SN, SP, RN, RP

�
, and we finally obtain the

local classification map �c , as depicted in Figure 9.2c.
In themeantime, we also obtain an estimatew

i,�k
�
p
�
of the velocity vector at every

point p. The flow map will be denoted by F (t ). We term LAF the combination of

Algorithm 3 Label affine flow estimation

� Motion detection

Determine the moving regions Ω�I
� Motion estimation

for eachW
i
∈W do

Estimate the motion parameters θi,k, k ∈
�
T, S, R

�
� Model selection

for each p ∈ Ω�I do
for each θi,k do

Evaluate the variable ε
i,k

�
p
�
.

Evaluate the likelihood ψ
�
p, θi,k

�
.

Select the best model according to the AICc.
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the affine flow and motion class maps. The steps for obtaining it are summed up in

Algorithm 3.

9.3 Motion patterns recognition

The initial classificationmap�c is noisy, due to the pixelwise selection process, as illus-
trated in Figure 9.2c. In order to characterize groupmotions, we propose to regularize

�c . As we will see in the subsequent subsections, by regularizing the map with simple

weighted votes, we also directly obtain themotion patterns at the desired scale. While

the voting procedure is lighter than classical regularization approaches, based for ex-

ample on Markov fields or morphological operations, very good results are reported

below. Moreover, the regularization algorithmcomplexity is linearwith the image size

and does not depend on the regularization scale.

9.3.1 Local class histograms

For each point p ∈ Ω�I , we first compute a local class histogram H
�
p
�
=

�

Hc

�
p
��

c ∈Γ
counting the number of points of each class in a neighborhood of p. To avoid block

artifacts induced by square neighborhoods, and to put more weight on the pixels q

closer to p, we rely on a window function gr of radius r . Hence, the bin Hc of class

c ∈ Γ is evaluated as:

Hc

�
p
�
=

�

q ∈Ω�I

gr

��
q − p

�
2

�

δc

��c �q�� , (9.9)

where δc

��c �q�� =

1 if �c �q� = c

0 otherwise.

Typically, we use a Gaussian window of standard deviation r for gr , and the compu-

tation time can be reduced by relying on recursive approximations of the Gaussian

filter, such as the Deriche separable filter [Deriche, 1990]. Using this approximation,

the computation of the histograms is proportional to the image size, ormore precisely

the areaofΩ�I . It is about three times longer thanusing anunweighted squarewindow.

9.3.2 Class map regularization with inhibition

We propose a two-step method to regularize the local class map �c . We first build a
regularized motion type mapK from the local type map e st imk , before inferring the

regularized class map C . This is accomplished with a two-round voting procedure.

The notation of the types and classes, and of the associated maps, is summarized in

Table 9.3.
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Table 9.3 – Classification notation

Regularized

Local map map Possible values

Motion type �k K T S R

Motion class �c C TN TW TS TE SN SP RN RP

To obtain K , accumulating votes of the same motion type regardless of the un-

derlying motion class is unavailing and even counterproductive in some situations.

As a consequence, points inV(p) locally assigned with classes clockwise rotation and

counterclockwise rotation, are not considered as bearing corroborating information

on rotation but rather contradictory information. The same holds for class pairs di-

vergence and convergence. Therefore, we introduce the notion of inhibition and rein-

forcement in the regularization procedure.

The algorithm proceeds as follows. In a givenV(p) at time instant t , we compute

the occurrences of the eight group motion classes of Γ from the values �c �q, t �, q ∈
V(p). From the computed occurrences, we build the signed histogramH

�
p, t

�
where

bins corresponding to opposite classes (the pairs listed above) have opposite signs,

that is, we implement the inhibition factor.

As for translations, the inhibition could be added to the pair of North transla-

tion and South translation classes, andWest translation and East translation classes,

respectively. However, in contrast to scaling- and rotation-motion type classes, we

rarely observeneighboring opposite directions of the translation-type classes. Adding

the inhibition factor to themwouldbepossible butmore complex than for scaling and

rotation types. Moreover, it would not be very useful as this case is very rare in prac-

tice. Conversely, classes of the T-motion type benefit from the reinforcement factor.

Nevertheless, non-coherent translations will be tackled in the next chapter.

Thefirst round of the voting procedure consists in selecting themotion typeK
�
p
�
,

as illustrated in Figure 9.3. Threemotion type scoresHT,HS andHR are computed as

follows:

HT

�
p
�
= HTN

�
p
�
+HTW

�
p
�
+HTS

�
p
�
+HTE

�
p
�
, (9.10)

HS

�
p
�
=
���HSN

�
p
�
−HSP

�
p
���� , (9.11)

and HR

�
p
�
=
���HRN

�
p
�
−HRP

�
p
���� . (9.12)

The regularized motion typeK
�
p
�
∈
�
T, S, R

�
of maximum score is finally assigned to

p:

K
�
p
�
= argmax

k ∈{T,S,R}
Hk

�
p
�
. (9.13)

The second round of the regularization procedure consists in assigning the group

motion class C
�
p
�
which is the most represented among the classes associated to the
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K
�
p
�

max

HT

�
p
�

+

HTN

�
p
�
HTW

�
p
�
HTS

�
p
�
HTE

�
p
�

HS

�
p
�

| − |

HSN

�
p
�
HSP

�
p
�

HR

�
p
�

| − |

HRN

�
p
�
HRP

�
p
�

| − | represents the absolute difference operator, i.e., the L1 distance

Figure 9.3 – Classification regularization with reinforcement and inhibition factors

selected motion typeK
�
p
�
:

C
�
p
�
= argmax

c ∈Γ
s.t. k (c )=K (p)

Hc

�
p
�
. (9.14)

In turn, we are able to recover the motion patterns of the group behavior on a

frame-by-frame basis without any prior learning stage and without any critical pa-

rameter setting. Indeed, for an image sequence of τ images, we end up with τ − 1
instantaneous maps C(t ) of groupmotion classes.

9.3.3 Experimental results

We have carried out experiments on real image sequences to validate our new group

motion pattern recognition method. Figure 9.4 demonstrates the advantage of pe-

nalizing the complexity of the motion models and inhibiting local opposite motion

classes. In that example, people do not run perfectly straight ahead from the left to

the right of the image, resulting in local irrelevant rotation or scaling decisions.

Classification errors are avoided by using both the AICc (instead of the maximum

likelihood (ML) criterion used in our preliminarymethod [Basset et al., 2013]) and the

inhibition procedure. Irrelevant local motions generally comprise opposite motions

in that case. As an example, if a runner goes away from someone, he/she comes closer

to another neighbor. The tendency would be to classify those neighboring points of

�c as Convergence andDivergence. In such a case, the inhibition factor helps reducing
the score of the scaling motion type, and recovering the correct translation type.

In Figure 9.5, we investigate the impact of the size of the regularizationwindow. Its

radius r is varied from40 to 80pixels for theMarathonbend sequence, where different

types of motion can be distinguished.
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(a)Original frame (b) �c (t )with AICc

(c) C(t ) from (b) without inhibition (d) C(t ) from (b) with inhibition

Figure 9.4 –Classification results on theMarathon lane sequencewhere runnersmove roughly

toward the right ( ). Class color code is given in Table 9.2.

(a) Initial class map �c (t ) (b) Regularized class map

C(t )with r = 40

(c) Regularized class map

C(t )with r = 50

(d) Regularized class map

C(t )with r = 60

(e) Regularized class map

C(t )with r = 70

(f) Regularized class map C(t )

with r = 80

Figure 9.5 – Impact of the radius r of the window function gr on the regularization
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With the lowest values of r , the left branch is segmented in two different motions,

due to the perspective effect. Using biggerwindows allows us to smooth out this effect

and obtain the three main motion patterns, namely Southward translation, counter-

clockwise rotation and thenNorthward translation. Most local patterns, like the small

Eastward translations, are also removed. Only a convergence zone remains, which

corresponds to shadows in the scene. The latter are visible because of the low local

runner density. The convergence class over the runners and their shadow is another

perspective effect.

To sum up, the window size affects the classification in the sense that motions

smaller than the window size are smoothed out, so that this parameter must be set

according to the desired classification “granularity”.

Finally, let us present the classification results of the proposedmethod for the Tis-

sue sequence introduced in Figure 9.1. It shows a group of cells, whose membrane

is fluorescently labeled, evolving as a group. The membranes appear in the image as

moving edges with similar apparent widths. Since the Laplacian of Gaussian (LoG)

filter is also an edge enhancer, we have used our ATLAS method to detect the mem-

branes.

The regularization radius for the classification was set to 50 pixels, which is the

scale at which interesting behaviors (e.g., cell divisions) are found. As shown in Fig-

ure 9.6, the cells are evolving over time. Globally, the whole cell group is moving to-

ward the lower left corner of the frame. This motion is well recovered as a predomi-

nant translation class, divided in both Southward ( ) andWestward ( ) translations.

From the 60th frame to the end of the sequence, there are large deformations of

the cell tissue on top of the tissue translation. Particularly visible is a large stretch of

the tissue in themiddle of the image (Figure 9.6d,e), which iswell recovered as a group

divergence ( ). Conversely, in the upper part, contracting cells are recovered ( ). The

large deformation also induces other types of motion around the central stretching.

In addition, smaller events are found over the sequence, such as cell divisions, as

shown in Figure 9.6g,h. While not directly detected, due to the very low intensity of

the nascent membranes, cell divisions deform the neighboring cells. This results in

localized detection of divergence ( ) and rotation classes ( ).

9.4 Recovery of principal paths

9.4.1 Local path map

In this section, we investigate the recovery of the principal paths followed by the

group, with a Eulerian approach. It involves the introduction of local paths deter-

mined, in each cell of a grid superimposed on the image, from the space-time average
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(a) I
�
0
�

(b) I
�
30

�
(c) C

�
0
�

(d) I
�
60

�
(e) I

�
90

�
(f) C

�
75

�

(g) I
�
150

�
(h) I

�
180

�
(i) C

�
165

�
Figure 9.6 –Classification results on theTissue sequence of Figure 9.1. (d) The arrow represents

the approximate stretch direction. (h) Regions where cell divisions occur are framed in red.

(c,f,i) Class color code is given in Table 9.2.
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of the affineflowoverfive frames. Wemake the assumption that themotion is station-

ary, meaning that the paths followed by the group do not vary over the sequence. This

is a natural assumption in the frame of the recovery of the principal paths defined as

the most followed paths.

Principal paths are simply recovered by accumulating the local paths, and the

longest principal path is the dominant one. Thus, as opposed to classical methods,

the whole path recovery procedure only relies on local estimates obtained without

tracking or advection, and using only five consecutive frames.

Let us first introduce the local pathmap P . At each position β of P will be associ-

ated a local path πi . The set of local paths Π =
�
πi

�
i=1 .. 8 corresponds to eight oriented

translations: North, Northeast, East, Southeast, South, Southwest, West, Northwest.

Indeed, the definition of the πi ’s precisely allows for a 8-connectivity walk in the grid.

The resolution of P is coarser than the pixelwise resolution of �c . Since we seek
the principal paths in the observed scene, such a spatial integration is required, and it

also permits to getmore reliable local paths. We generally take blocks β of size 31×31,

but the sensitivity of this parameter is very low, as shown below.

We consider the motion subfields formed at each time instant t by the ve-

locity vectors w
i,�k
�
p, t

�
given by the motion models selected at time t at each

point p ∈ β according to equation (9.8). Then, we compute in each block

β the mean velocity vector w
�
β, t

�
in space ant time from the motion subfields

�

w
i,�k
�
p, u

������p ∈ β, t − 2 � u � t + 2
�

over the video sequence:

w
�
β, t

�
=

t+2�

u=t−2

�

p∈β
w

i,�k
�
p, u

�
. (9.15)

The short temporal integration is necessary to ensure that the dominant motion is

recovered, as some frames may locally exhibit an “outlier” motion which we do not

want to take into account in this section.

Finally, we assign to β the local path label πi ∈ Π which is the closest to the orien-
tation of vector w

�
β, t

�
. Under our stationarity assumption, the local path labels do

not depend on time, which will be verified below. Indeed, the eight-quantization of

local paths smooths out the slight variations in time of w
�
β, t

�
. The local path then

expresses the space-time stationary information on the dominant orientation of the

local displacement observed in the block β .

9.4.2 Principal and dominant paths

The principal paths followed by the group in the observed scene are then retrieved

from the local path map P . Starting from one given block in the image, we straight-

forwardly reconstruct a global path by concatenating the local paths from block to
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(a) Affine flowmap (b) Blocks β (c) Plot of global paths

Figure 9.7 – Dominant path recovery on theMarathon bend sequence (color code is given in

Figure 9.2e). (a) The velocity flow is deduced from the selectedmotionmodels. (b) The image

is divided into small blocks, where the mean velocity vector in space and time is computed.

(c) The global paths are recovered from Pl and the dominant path is outlined in red.

block following at each step the direction given by each local path among the eight

possible ones (N, NW, W, SW, S, SE, E, NE). Then, we cluster all these trajectories and

the main clusters supply the principal paths in the observed scene. In particular, the

dominant path followed by the group is simply the longest global path.

Let us stress that our approach does not require any tracking of moving points

which is a difficult issue in videos of densely crowded scenes. It does not rely on an

advection stage from optical flow vectors estimated on a regular grid and on a subse-

quent trajectory clustering. We can recover thewhole set of global paths by starting in

turn from every block in the image. Then, the longest path is automatically selected

as the dominant one.

The method is illustrated in Figure 9.7.

9.4.3 Experimental results

We have tested our dominant path recovery approach on a wide range of video se-

quences. Results on a synthetic sequence (Obstacles) and several real sequences are

presented in Figures 9.7 and 9.8. The accuracy of the detected global path is con-

strained by the connectivity of P (8 neighbors) and its resolution, which can be in-

creased by simply reducing the size of the blocks β at the cost of higher computation

time.

Figure 9.8 highlights the performance of the method in very different situations.

The effect of the block resolution can be observed in the Marathon lane sequence,

where the true motion direction (East-Northeast) lies between two elements of Π.

The processing of the sequence results in the piecewise linear curve for the recovered

dominant path (Figure 9.8e), but the dominant path is very close to a straight line for

9 × 9 blocks (Figure 9.8f). In the other sequences (Marathon bend, Obstacles, Tissue

and Shoal), the paths are very well recovered, regardless of the block size.
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(a) Obstacles sequence (b) Paths of (a) with

31 × 31-pixel blocks

(c) Paths of (a) with

9 × 9-pixel blocks

(d)Marathon lane sequence (e) Paths of (d) with

31 × 31-pixel blocks

(f) Paths of (d) with

9 × 9-pixel blocks

(g) Tissue sequence (h) Paths of (j) with

31 × 31-pixel blocks

(i) Paths of (j) with 9 × 9-pixel

blocks

(j) Shoal sequence (k) Paths of (g) with

31 × 31-pixel blocks

(l) Paths of (g) with

1 × 1-pixel blocs

Figure 9.8 – Dominant path recovery (red) in several examples. (a-c) The Obstacles sequence,

where pedestrians slalom between walls. (d-f) TheMarathon lane sequence. (g-i) Cells of the

Tissue sequence. (j-l) Fishes swirling in the Shoal sequence.
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Computing �c (t ) and global paths takes about 10 seconds per frame (on the other

hand, computing C(t ) from �c (t ) takes less than 1 second) on a 4-core 2.3GHz laptop,
and could be easily parallelized both in space and time.

9.5 Discussion and perspectives

We have proposed a new data-driven overall approach for group motion analysis,

which in that context is original both in terms ofmotionmeasurements used (LAF, lo-

cal paths) and in terms ofmotion classification and path recovery criteria. In contrast

to most existing methods which are based on trajectories or tracklets, our approach

provides a groupmotion classification on a frame-by-frame and pixelwise basis. Can-

didate motion models are estimated in a collection of overlapping windows for each

pair of images. An information criterion then allows us to select the best motion can-

didate in eachpoint of the imagedomain, allowing to jointly extract the velocity vector

and classify the local motion type.

We have then proposed an original method to classify coherent group motions

in videos on a frame basis. The group motion classification is achieved with a deci-

sion tree regularized with majority votes and involving inhibition between opposed

classes. Moreover, since the whole classification process only requires two consec-

utive frames, even short events can be captured. The algorithm is fast and does not

require any learning stage, no fine parameter tuning, and no trajectories computa-

tion. The experiments we have carried out demonstrate the accuracy and efficiency

of our approach in various real situations.

Finally, we have proposed a method to extract principal paths in a Eulerian way.

Local paths are easily obtained by averaging the velocity information of the LAF in

small blocks. The principal paths followed by the group can be straightforwardly in-

ferred from the space-time stationary local paths, without any tracking, clustering or

learning stage.

Only three parameters are involved in thewholemethod: the sizes of the windows

η
�
p
�
andV

�
p
�
, and of the blocks β. The parameter sensitivity is low in practice, except

for the regularization size r , which can be set to attain a user-selected classification

granularity.

Future work should include addressing the issue of perspective effects, which can

be undesirable in some applications, and focusing on a higher level analysis of the

dominant paths.
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10Anomaly detection and localization

I� ���� �������, we aim at demonstrating the potential of LAF by relying on it for

a much more demanding application than the two group motion analyses pre-

sented in the previous chapter. Indeed, we target the detection and precise localiza-

tion of so-called abnormal events. Themethodwill be evaluated on videos of crowded

sceneswhich represent very challenging application data, but forwhich ground-truth

can be built by hand. Moreover, apart from the interest we have for videos of crowded

scenes for the purpose of method validation, automatic anomaly detection is amuch

demanded tool in the world of videosurveillance.

Crowdanalysis usually requires intense human supervision. When the objective is

to analyze anomalies in the scene, sparse eventsmust be identified. This demands an

all-time extreme attention from thewatcher. Actually, to decide the necessary actions

to counteract those anomalies, one has to focus on special events for further analysis,

ignoring a vastmajority of normal occurrences. This task becomes evenmore difficult

in crowded scenes, where the behavioral complexity in different parts of the video can

cause confusion and distraction. Thus, the need for automatic systems that are able

to assist the monitoring process of crowded scenes has been growing steadily.

There is no unique definition of an abnormal event. It may depend on the con-

text and the application. As in [Chandola et al., 2009], we consider in this work that

anomalies are events that cannot be fit in a proper model obtained from a set of sur-

rounding data. Some samples are given in different situations in Figure 10.1. This

formulation is general enough to be of large practical interest. Anomaly is taken here

in a broad acceptance of a different behaviorwith respect to context. It does notmean

that the so-called abnormal behavior is necessarily malicious, dangerous, or forbid-

den. Specifically, we deal with pixel-based action detection and localization, which

is finer than frame-based anomaly detection. We want to determinewhere andwhen
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(a)Marathon

lane

(b)Wrong

way

(c) PETS’09

scene

(d)Musical show (e) Tunnel

Figure 10.1 – Normal scene and variety of local anomaly cases (framed in red) in groupmotion

scenes. (a) A normal situation where people run together. (b) A man is walking against the

crowd; abnormal behavior is localized on him. (c) The cyclist crossing a group of pedestrians

is the anomaly. (d) People starting a “circle pit” during a music festival form the abnormal

behavior. (e) The car driving into oncoming traffic is the anomaly, along with the onemaneu-

vering to avoid it.

anomalies occur in the successive images of the video sequence, and to be able to do

it at the pixel level.

The desired solution, however, has to comply with a number of requirements.

First, the devisedmodel has to be simple and generic enough so that it can be used in

a wide range of applications. Secondly, the algorithm has to be fast. Computational

performance is an important criterion looking towards real-time implementation [Lu

et al., 2013]. Finally, an anomalous event detection at the frame level does not pro-

vide enough information to a human supervisor in order to quickly take actions on

the possible anomaly, as pointed out in [Li et al., 2013]. This is even more glaring in

densely crowded scenes where it may be utterly difficult to quickly find the localiza-

tion of subtle anomalies even when it is known beforehand that a given frame con-

tains one. To tackle this problem, the method has to be able to localize anomalies

both temporally and spatially. Specifically, we target the pixelwise segmentation of

the anomalies, which has never been done as far as we know.

The common infrastructure for videosurveillance is a network of fixed cameras.

Thus,weaimatdesigning a general efficient solution for anomalydetectionand local-

ization in crowded scenes applicable to static cameras. Wewant it to be instantaneous

(or on-line) by delivering frame-by-frame output with a one-frame lag only. Indeed,

we use three successive frames to come to a decision at every pixel of every image. We

do not formulate any explicit modeling of what a normal situation is supposed to be

nor an abnormal one. We are only searching for local discrepancy configuration. As a

consequence, we donot need any prior supervised learning. Thus, ourmethod is self-

adaptive by being data-driven. It exploits a dense map of local crowd motion classes

obtainedbymaximizing a penalized likelihood criterion andusing affine velocity vec-

tors computed in a collection of overlappingwindows, as explained inChapter 9. This

chapter presents a novel method for detecting and localizing anomalies in videos of

crowded scenes. It is based on the extraction of local histograms of crowd motion
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classes over a dense set of patches. These motion class histograms, extracted from

LAF, can be seen as relevant motion descriptors. A dedicated distance histogramwill

be specified and modeled, so that a simple probability of false alarm (PFA) is set by

the user to fix the detection sensitivity.

The rest of the chapter is organized as follows. In Section 10.1, we review the

related literature and previous work on crowd anomaly detection. The ad-hoc his-

togram distance is proposed in Section 10.2. Then, in Section 10.3, we fully describe

our motion-based anomaly detection method and give insights about its main prop-

erties. In Section 10.4, we report a comparative andobjective evaluationonnumerous

generated and real images sequences. Finally, we offer concluding comments in Sec-

tion 10.5.

10.1 Related work

Several approaches have been investigated for anomaly detection in crowd videos.

Some methods target specific scenarios, or are specialized for certain types of video

data. For instance, escape behaviors can be considered as a specific case of anomaly

in surveillance videos [Wu et al., 2014]. However, this is a global type of anomaly since

the escape behavior is shared by all the people in the scene from a given starting time.

Here, we are interested in local anomaly detection, which means that only a (small)

part of the crowd behaves in a different way. Other works are able to detect anomalies

locally in videos andwithout an explicit definition of what the abnormality is. Among

these, two main classes are found: trajectory-based methods [Li et al., 2013,Piciarelli

et al., 2008,Stauffer andGrimson, 2000,Wu et al., 2010] and feature-based ones [Adam

et al., 2008,Antić and Ommer, 2011,Cong et al., 2013,Kim and Grauman, 2009,Kratz

and Nishino, 2009,Li et al., 2014].

Trajectory-basedmethodsmake use of the relevant information embedded in ob-

ject tracks [Porikli and Haga, 2004, Stauffer and Grimson, 2000]. Nevertheless, these

methods are usually constrained to scenes where it is possible to perform foreground

tracking, otherwise they are subject to a large amount of false positives, as pointed

out by [Adam et al., 2008]. In [Wu et al., 2010], representative trajectories are first ex-

tracted after particle advection and chaotic features are exploited. The normality is

modeled by a Gaussianmixturemodel. AML estimation with comparison to a prede-

fined threshold enables to determine normal and abnormal frames. Then, anomalies

are located within frames identified as abnormal. A different approach was inves-

tigated in [Mehran et al., 2009], still based on particle trajectories. Interaction forces

betweenparticles are introduced,which yield a forceflow in every frame. Recognizing

normal frames and abnormal ones in the video sequence is achieved using a bag-of-
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words approach involving a latent Dirichlet allocation (LDA) model. Anomalies are

delineated in abnormal frames as regions with high force flow.

Themethod described in [Cui et al., 2011] relied on tracked keypoints to calculate

interaction energy potentials, and to separate normal and abnormal crowd behaviors

with a support vector machine (SVM) classifier. A non parametric Bayesian frame-

work is designed in [Wang et al., 2011], which can be used to detect anomalous trajec-

tories. Trajectories are described as bags of words, composed of quantized positions

and directions. A dual hierarchical Dirichlet process (Dual-HDP) is defined to cluster

both words and trajectories. Unlikely trajectories are considered as anomalous ones.

On the other hand, feature-based approaches are less prone to depend on spe-

cific scenarios. In [Kratz and Nishino, 2009], spatiotemporal intensity gradients are

used, whose distribution over patches in normal situations is supposed to be Gaus-

sian. The Gaussian parameters are learned on the training set. In [Kim and Grau-

man, 2009], a mixture of probabilistic principal component analysis (MPPCA) aims

at modeling normal flow patterns, estimated over patches of the training video set.

Themethod [Chockalingamet al., 2013] relies on probabilistic latent sequentialmod-

els (PLSM) learned from 15 to 45 minutes of the sequence to analyze, where the user

knows that few anomalous events happen. The spatiotemporal compositions (STC)

method [Roshtkhari and Levine, 2013] requires about a hundred initialization frames

to start learning weights of so-called codewords representing normal behaviors. Af-

terwards, weights are updated on-line so that no other training sequences are re-

quired.

In [Benezeth et al., 2011], co-occurrence matrices for key pixels are embedded

in a Markov random field formulation to describe the probability of abnormalities.

Mixture of dynamic texture (MDT) are introduced in [Li et al., 2013] with conditional

random fields (CRF) to represent crowd behaviors and reported successful results on

several datasets, but at the cost of sophisticated models that require intensive learn-

ing and high computation time. Other authors focused on giving explicit inclusion

of spatial awareness, by subdividing the image in local regions or blocks, in order to

obtain a good detection performance with less learning requirements [Adam et al.,

2008,Boiman and Irani, 2007].

Another approachwasexplored in [AntićandOmmer, 2011]. Vectors of spatiotem-

poral derivativeswereutilized as input of a SVMclassifierwith linear kernel to support

the foreground separation process. The latter feeds a graphical probabilistic model.

It is interesting to note that suchmethod depends heavily on howwell the foreground

elements of a videodataset are separated, undermining apossible application for very

crowded scenes. Social force models based on optical flow of particles, as introduced

in [Mehran et al., 2009] is another example of descriptor used to detect anomalies.
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Sparse representations have been increasingly adopted for anomaly detection, as

the problem can be elegantly modeled with sparse linear combinations of represen-

tations in a training dataset [Cong et al., 2013, Zhao et al., 2011, Zhu et al., 2014]. Ex-

plicit image space subdivision can also benefit anomaly localization performance in

sparse representation-based methods [Biswas and Babu, 2014]. It is shown in [Mo

et al., 2014] that, by introducing nonlinearity into the sparse model, better data sep-

aration can be achieved. Also, some modifications can be made to the usual con-

struction of the sparsitymodels by introducing small-scale least-square optimization

steps [Lu et al., 2013], sacrificing accuracy for the benefit of a fast implementation.

However, although elegant and sound, sparse representation methods for anomaly

detection have not shown high performance in demanding videos.

To summarize, most methods need a large number of frames to perform anomaly

detection, which is often stated at the frame level first. They usually requiremanually

labeled sequences or frames to learn models of normal situations, anomalies being

defined as outliers of the normal behaviormodel. In contrast, we aimat detecting and

at the same time localizing anomalies directly on a pixelwise basis in every incoming

frame following a data-driven “agnostic” approach. We do not build anymodel of the

normal situation and rely on local statistical tests inspired from the center-surround

biological vision process [Cavanaugh et al., 2002,Tadin et al., 2006].

10.2 Histogram distance

From the local crowd motion classification maps presented in the previous chapter,

we will locate the abnormal behaviors at every pixel p and at every time instant t .

As we seek for local anomalies, the classification is not regularized, that is, we rely

on �c instead of C . The detection is based on simple statistics on the �c �p, t � values,
inspired from the center-surround interaction operating in biological visual motion

mechanisms [Cavanaugh et al., 2002,Gao et al., 2008,Tadin et al., 2006]. The center-

surround interaction has been recently exploited for action recognition [Escobar and

Kornprobst, 2012]. It was also influential in the anomaly detection method defined

in [Li et al., 2014], but in a different way than ours. We consider spatial surrounding

only, while it may be spatiotemporal in [Li et al., 2014] with an extended time interac-

tion. We only evaluate distances between histograms whereas elaborated models are

designed (and previously learned) and associated with a Markovian framework in [Li

et al., 2014].

For every point p, we compute the occurrences of the eight motion classes of Γ

in a patch ν
�
p
�
centered in p, that is, the histogramH

�
p
�
of the �c �q, t � values for q ∈

ν
�
p
�
. To increase the temporal stability of the method, we compute a spatiotemporal

histogram over three consecutive frames so that ν
�
p
�
is am ×m × 3 space-time patch.
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(a) Set of patches for
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�
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Figure 10.2 – Anomaly detection on theWrong way sequence, where a man is walking to the

bottom of the image (south translation ) against a crowd moving in the opposite direction

(north translation ). (a) The central patch ν
�
p
�
is plotted in red at p =

�
190, 140

�
, along with

the neighboring patches ν
i

�
p
�
, i = 1 .. 8. (b) Selected local motion classes at time 170 (class

color code of Table 9.2). (c) Map of histogram distances computed at every pixel represented

in grey levels (black: ζ
�
p
�
= 0; white: ζ

�
p
�
� 1). (d) Detected anomaly (in red) for a PFA of 1%.

(e) Histograms of motion classes for the central (red) and four neighboring patches (green) of

2a. HistogramHc

�
p
�
(red) is distant enough from theH

i

�
p
�
’s to detect an anomaly at p. (f ) GEV

parameters are estimated from the histogram of distance values of (c).

Then, we take eight neighboring patches ν
i

�
p
�
, i = 1 .. 8, of the same size m × m × 3,

around the patch ν
�
p
�
. Like for constant false alarm rate (CFAR) detection methods

[Scharf, 1990], we leave a guarding region around ν
�
p
�
(of width m), as illustrated in

Figure 10.2a.

We compute the histogramsH
i

�
p
�
, i = 1 .. 8 of the �c �q, t � values for q ∈ ν

i

�
p
�
in the

eight patches ν
i

�
p
�
. Running sumsare alsoused to compute all histograms in constant

time, i.e., independently of the patch size. We evaluate theminimum of the distances

between histogramsH
i

�
p
�
and histogramH

�
p
�
:

ζ(p) = min
i=1 .. 8

D
�

Hi

�
p
�
−H

�
p
��
. (10.1)

As a matter of fact, we separate the histograms into two sub-histograms, the first

sub-histogramH T involving the four translation classes only, theother oneH S,R com-
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prising scaling and rotation classes. They are actually of different kind as explained

below, andwe adopt two different distances for the two categories of sub-histograms.

For the translation class sub-histograms, we resort to the modulo distance intro-

duced in [Cha and Srihari, 2002] for sets of modulo measurements, that is, measure-

ment values forming a ring, which is typically the case for the translation classes and

their associated compass directions. It is expressed by:

Dmod

�

H T
i

�
p
�
, H T�p�� = min

Ui ,U

���
�

n�

l,l �=1

dmod

�

ui (l ), u
�
l �
�����
�
, (10.2)

whereU , resp.Ui , designates the set of translation class values in the patch ν
�
p
�
, resp.

in the patch ν
i

�
p
�
. u

�
l �
�
, resp. ui (l ), represents any value of the set U , resp. Ui , once

recorded as
�
0, 1, 2, 3

�
for

�
TN, TW, TS, TE

�
. n is thenumber of elements of bothU and

Ui . In case that thenumbers of elements of setsU andUi are different, a normalization

step is added [Cha and Srihari, 2002]. The distance dmod between elements is given

by:

dmod

�

ui (l ), u
�
l �
��
=


���ui (l ) − u

�
l �
���� if ���ui (l ) − u

�
l �
���� � |ΓT |

2 ,�
ΓT

�
− ���ui (l ) − u

�
l �
���� otherwise.

(10.3)

where ΓT is the subset of the four translation classes, and
�
ΓT

�
= 4. Since the distance

between two histograms can be expressed in terms of the distances of element mea-

surement values, criterion (10.2) allows us to find theminimum difference of pair as-

signments between setsU andUi .

The interest of themodulo distance is that the distance between opposite transla-

tion directions (e.g., North and South directions) will be higher than the one between

adjacent translation directions (e.g., North and West directions). Such a behavior is

recommendable in our case, all themore so aswe deal with a coarse direction quanti-

zation. Indeed, points undergoing a given slanted translation (e.g., North-West) could

be shared out among two adjacent translation classes (North and West translation

classes to continue our example).

After testing several usual histogram distances, we have retained the L1 distance

for comparing histogramsH S,R
i

andH S,R:

DL1

�

H
S,R

i

�
p
�
, H S,R�p�� = �

c ∈ΓS,R

����H S,R
i

�
p, c

�
−H S,R�p, c

����� , (10.4)

where ΓS,R =
�
SN, SP, RN, RP

�
is the subset of the four scaling and rotation motion

classes, and
�
ΓS,R

�
= 4.

Finally, we have:

D
�

Hi

�
p
�
−H

�
p
��
= Dmod

�

H T
i

�
p
�
, H T�p�� +DL1

�

H
S,R

i

�
p
�
, H S,R�p�� , (10.5)

with equally weighted distances, since the ranges of the modulo and L1 distances are

similar as explained in [Cha and Srihari, 2002].
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10.3 Pixel-level anomaly detection and localization

Since we have defined an abnormal behavior as revealed by an irregular motion pat-

tern with respect to the surroundingmotion patterns, an anomaly will be detected at

point p if and only if:

ζ
�
p
�
> λ , (10.6)

with variable ζ
�
p
�
defined in (10.1). The minimum distance ζ

�
p
�
for all the points p ∈

Ω
�

I follows a generalized extreme value (GEV) distribution [Embrechts et al., 1997],

which is defined by:

F
�

ζ
�
p
�
, α, β, κ

�

= exp


−��1 − κ

ζ
�
p
�
− β
α

�
�
1/κ
, (10.7)

where α, β and κ are respectively thewidth, location and shape parameters of theGEV

distribution. First, we have to estimate its parameters. We have adopted the mixed

L-moments/maximum likelihood method described in [Boulanger et al., 2010a]. An

example is given in Figure 10.2f. Then, we set a PFA to automatically set the threshold

value λ as a quantile of the GEV distribution, in order to detect the local abnormal

behaviors in the observed crowd. In practice, PFA will be set between 0.5 and 2%. As

explained later, this value can be seen as the expected false positive rate (FPR), so the

detection sensitivity can easily be set according to the targeted application.

10.4 Experimental results

To demonstrate the performance of our method, we need to show that it detects

anomalies in abnormal situations, the anomalies are well segmented, and it does not

detect anomalies in normal situations.

10.4.1 Simulated cases

We first deal with simulated cases to make an easy objective evaluation of different

aspects of our method. We have taken a sequence depicting a normal behavior of

a dense moving crowd (Figure 10.3a), and we have added a simulated anomaly (Fig-

ure 10.3b). Specifically, wehave cropped a rectangular small region from the synthetic

sequenceCorridor where pedestrians arewalking from left to right. Aftermirroring it,

we have inserted it again in the original sequence but with a translation from right to

left. Thus, one pedestrian is walking in the opposite direction of the whole group and

constitutes an anomaly in the resultingModified corridor sequence. The anomaly is

correctly detected (Figure 10.3c). Conversely, very few false detections occur in the

original Corridor sequence without anomaly. More precisely, as explained later, the

FPR is indeed really close to the user-selected PFA.
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(a) Corridor (b)Modified corridor (c) Anomaly map for (b)
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Figure 10.3 – Anomaly detection results and impact of the size of η
�
p
�
and the size (m×m×3) of

ν
�
p
�
for theModified corridor sequence. (a)OriginalCorridor sequence. (b)Modified corridor,

where the anomalous region is framed in red. (c) Anomaly map for PFA = 1%, m = 41 and���η �p���� = 9. (d,e) We vary the PFA value to plot the ROC curves (zooming is performed on a

portion of the curves). Best results are obtained with m = 41 and ���η �p���� = 9, and, in this case,
the area under the curve is equal to 0.99.

Wehave computed receiver-operator characteristic (ROC) curves, that is, the evo-

lution of true positive rate (TPR) versus FPR, for different sizes of local neighborhood

νp used to compute the AICc, and different sizes of patches ν
�
p
�
used to compute lo-

cal histograms, as reported in Figure 10.3d,e. Since our method supplies pixelwise

anomaly localization, TPR is the proportion of anomaly pixels that are correctly de-

tected, and FPR is the proportion of normal points that are detected as anomalies.

The optimal size for the affine model selection neighborhood νp is 3 × 3. The same

size will be adopted for all the processed sequences. Concerning square patches ν
�
p
�
,

best results are obtained with patch width between 31 and 51 pixels, which is close to

the cropped region size. For this patchwidth range, the area under ROC curve is equal

to 0.99.
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(a) t = 100 (b) t = 300 (c) Time-cumulated

anomaly map

128

0

Figure 10.4 –Temporal analysis of anomaly localizationover the syntheticEscape sequence. (a-

b) People are leaving the room toward the right through a single door. (c) Map of the number

of times an anomaly is detected at each point over 400 frames with PFA = 2% (color scale is

given on the right).

The temporal stability of our method is illustrated in Figure 10.4. In the Escape

sequence, individuals leave a room by a single door, resulting in a local congestion,

a potentially dangerous situation which must be classified as an abnormal behavior.

Since the location of the abnormal behavior regions are stationary throughout the

sequence, we have accumulated the successive binary detection maps. As expected,

themost frequent detections clearly lie on both sides of the door (Figure 10.4f) where

people are stuck.

(a) t = 120 (b) t = 170
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(c) ROC curves

Figure 10.5 – Results on theWrong way sequence. (a,b) Detection results on the first and last

labeled frames, with m = 61 and PFA = 1% (green: TP; blue: FN; yellow: FP). (c) ROC curves

for m = 41 and m = 61. Area under curve is equal to 0.97 for m = 61.
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10.4.2 Real scenes

To the best of our knowledge, there is no benchmark available for pixelwise anomaly

localization in dense crowds, and such an evaluation has not been attempted so far

because most existing methods are not designed for both detecting and localizing

anomalies on a pixel basis. The UMN dataset and the web dataset of [Mehran et al.,

2009] are concerned with globally abnormal crowd behaviors (as escape panics). The

UCSD dataset [Li et al., 2014] mainly involves very sparsely crowded scenes. Besides,

the pixel-level evaluation used in [Li et al., 2014] remains a frame-based evaluation

taking into account a sufficient recall (40%) of abnormal regions defined by bound-

ingboxes in the ground truth. Wepropose amoredemanding evaluation criterion: we

want to carry out a pixel-based objective evaluation. To that end, we have manually

determined the pixelwise anomaly ground truth for two real sequences: the Wrong

way sequence and one sequence from the PETS dataset. Thus, we are able to supply

a truly pixel-based objective evaluation for real anomaly cases.

In Figure 10.5, we report results of our anomaly localizationmethod on theWrong

way sequence (Figure 10.1b). In this crowd scene, one pedestrian is walking against

the crowd. As shown at four different time instants, respectively in Figure 10.1b, Fig-

ure 10.2d, and Figure 10.5a,b, theman heading to the bottom of the frame is well seg-

mented. ROC curves established for theWrong way video are very good. Area under

the curve for m = 61 is equal to 0.97 and equal to 0.96 for m = 41. The camera being

closer to the crowd than in previously processed sequences, pedestrians look bigger.

The bounding box of the man walking downward has a width of about 60 pixels all

over the sequence, while its height in the image varies between 50 and 100 pixels due

to partial occlusions. The best detection rate is obtained with square patches of 61-

pixel width. It is not possible to compare with [Mehran et al., 2009] since the authors

have only provided ROC curves for abnormal frame detection and color-coded force

flowmaps, they did not supply any binary detection maps.

In Figure 10.6, we demonstrate the robustness of ourmethod on a sequence of the

PETS’09 dataset1. In this sequence, we aim at detecting the only pedestrian walking

toward the left of the frame and passing behind a group of people going in the op-

posite direction. The task is particularly challenging here, because the group often

occludes the lonely pedestrian and the pedestrian is very small in the image. Yet, the

lonely pedestrian is accurately segmented and no false alarm occurs as displayed in

Figure 10.6a,b. The area under ROC curve is 0.93 with a patch size of 21 pixels, similar

results were obtained for a size of 31 pixels (Figure 10.6c).

Supplementary results obtained on other real sequences involving various behav-

iors (presented in Figure 10.1) are reported in Figure 10.7. They confirm the ability of

1http://www.cvg.rdg.ac.uk/PETS2009
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Figure 10.6 – Results on a sequence of the PETS’09 dataset. (a,b) Top row: Input frames (the

red arrow points to the pedestrian to be detected). Bottom row: Anomaly maps with m = 31

and PFA = 1% (green: TP; blue: FN; yellow: FP). (c) ROC curves for m = 21 and m = 31 (area

under curve is equal to 0.93 for both).

(a)Marathon

lane

(b)Wrong

way

(c) PETS’09

scene

(d)Musical show (e) Tunnel

Figure 10.7 – Anomaly detection for the samples presented in Figure 10.1. Top row: input im-

ages. Bottom row: Anomaly maps computed with our method with the same parameter set-

ting (PFA = 1% and m = 61) apart from (e) where m = 81. (a) No anomaly is detected in

this normal situation. (b) Theman who is walking against the crowd, (c) the cyclist crossing a

group of pedestrians, (d) people running in the crowd, and (e) the car driving into oncoming

traffic and the one maneuvering to avoid it are correctly detected.
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Figure 10.8 – Plots of the curves expressing the relationship between PFA and FPR for various

synthetic and real sequences with or without anomalies.

ourmethod to reliably segment regions with abnormal behaviors while not detecting

anomalies in normal situations.

10.4.3 FPR control, parameter setting and computation time

Figure 10.8 contains plots expressing the relationship between PFA and FPR for dif-

ferent sequences (synthetic and real ones, without and with anomalies) and for two

different sizes of patches ν
�
p
�
. Corridor and Modified corridor were introduced in

Figure 10.3a,b. In the Marathon lane sequence, people run from left to right, and

nothing anomalous happens (one image of the sequence is given in Figure 10.1a).

As expected, no anomalies were detected as shown in Figure 10.1a (apart from a few

spurious points isolated in space and time). Finally, the Wrong way sequence was

presented in Figure 10.5. In every case, the obtained FPR is close to the PFA param-

eter value since each plot in Figure 10.8 is close to the straight line of slope 1. The

same holds for all the other sequences we have analyzed. Thus, a clear advantage of

the proposedmethod is that the FPR can be easily controlled by the user through the

setting of PFA.

10.4.4 Parameter setting and computation time

Overall, the anomaly localization is accurate and stable over time. The method in-

volves two parameters only, easy to set: PFA value which can be seen as an expected

FPR, and dimensions of ν which must be close to those of the expected anomaly

bounding box – typically the size of the image projection of a pedestrian. It can be

deduced from the scene characteristics and the camera setting. Furthermore, as re-

ported in Figure 10.2e, Figure 10.5c and Figure 10.6c, the sensitivity of the patch size

is low, so that it does not need to be finely tuned.
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The computation time for the largest sequences we have processed (of image size

720 × 576) is of 6 to 10 seconds per frame on a laptop with a 4-core 2.3 GHz pro-

cessor. Let us notice that using running sums, the computation load of the criterion

AICc remains low and does not depend on the patch size. Even if our method is not

real-time so far, we have described it as on-line, since by construction it delivers the

anomaly map at each time instant with a one-frame lag only. It can be highly par-

allelized to eventually attain real-time processing. On-line detection is unreachable

with approaches somehow relying on temporal integration, regardless of the process-

ing power.

10.5 Discussion

We have developed an original data-driven method for anomaly detection in videos

of dense crowds. It yields a pixelwise anomaly localization map at every time instant

using only three successive frames. The method relies on the computation of para-

metric motion models, on the local selection of the crowd motion classes with the

AICcpenalized likelihood criterion, andon the bio-inspired evaluation, at every pixel,

of a distance between center-surround histograms of the local crowdmotion classes.

Themethod is simple to perform, there is no normal or abnormal behaviormodels to

learn and it is almost parameter-free. It can handle a large category of situations. We

have reported experimental results on both simulated and real cases. The objective

evaluation has demonstrated the accuracy and reliability of the method.

Further work should investigate the impact of different geometric center-

surround configuration of patches ν
�
p
�
and the weighting of the class histograms by

the velocity vectormagnitude, to fully take advantage of the LAFdata. The latter could

enable to discriminate not onlywith respect to themotion class, but also between dif-

ferent speeds in a same class.
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11General conclusion

T�� ������ aimed at detecting, estimating and characterizing dynamical events

in image sequences. Wehave focusedon two types of dynamics, namely individ-

ual and group dynamics. In each case, we have proposed automatic methods to cali-

brate algorithm parameters by using statistical arguments. Local approaches allowed

us to design computationally light and efficient methods able to cope with complex

image sequences. We havemainly been concernedwithfluorescencemicroscopy im-

age sequences and videos of crowded scenes.

Within the scope of fluorescence microscopy, we have principally focused on the

exocytosis, a dynamical process by which some molecules are transported from the

cell interior to the extracellularmedium. Specifically, we have studied the behavior of

three proteins, Transferrin receptor (TfR), Langerin and Rab11, during the late steps

of exocytosis. This includes transporting the molecules and passing through the cell

frontier (plasma membrane). Molecule transport is mediated by the so-called vesi-

cles, which enclose the molecules and then literally fuse to the plasma membrane to

free molecules outside the cell.

By using total internal reflection fluorescencemicroscopy (TIRFM), we have stud-

ied inparticular the vesicle fusiondynamics. In this analysisworkflow, vesicles and fu-

sion events, appearing as bright spots in the images,mustfirst be detected. Therefore,

we have developed a new spot detectionmethodATLAS based on adaptive threshold-

ing of LoG images with auto-selected scale. After detecting the fusion events, we have

proposed models and methods to estimate the motion of the proteins at the vesicle

fusion.

We have finally investigatedmethods for the study of dynamics involving interac-

tions between individuals. We have introduced a motion measurement data, labeled

affineflow (LAF),which involves both the pointwise velocity vectors and the localmo-

tion type, using only two consecutive frames. This hybrid data allowed us to target
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various applications, including the characterization of the motion of the group as a

whole, the recovery of main paths in the scene, and the detection and localization of

abnormal behaviors in the group.

11.1 Main contributions and results

11.1.1 Spot detection

First, we have investigated methods for the detection of spots in TIRFM images. In

such images sequences, vesicles appear as small bright spots of similar size. There-

fore, our spot detectionmethod relies on the similar size hypothesis as a prior knowl-

edge to improve the detection performance. Considering the Laplacian of Gaussian

(LoG) to enhance the spots, the best detection scores are obtained if the LoG scale

is accurately selected beforehand. The optimal filter scale is automatically selected

in a scale-space representation of the image. The spot detection then amounts to a

pointwise thresholding of the LoG image computed at this scale, and the threshold

adapts to the local image statistics. While designed in view of the exocytosis detec-

tion in TIRFM, the proposed adaptive thresholding of LoG images with auto-selected

scale (ATLAS)method canbe applied to awide variety of images anddelivers a leading

performance.

11.1.2 Individual dynamics analysis

In the frame of the exocytosis study, there are two cases depending on the tagged pro-

tein. As for Rab11, it undergoes a translational motion before the vesicle fusion to

plasma membrane, and then diffuses. Therefore, we have proposed a classification

method to distinguish between the two dynamic situations. On the other hand, when

observing a transmembrane protein tagged with pHluorin, vesicle fusion to plasma

membrane is visible in the image sequences as spot appearances. In this case, we

simply applied ATLAS to the sequence of temporal difference images to detect these

spots.

Given the detected space-time fusion events, the biological models for the pro-

teins diffusion can be explored. In particular, we have proposed a new fusion model,

termed “small-extent source with exponential decay release” (SSED). As opposed to

the existing point sourcemodel for which all the contents of the vesicle start diffusing

at a given time t0, the vesicle is supposed to slowly release the proteins after fusion in

the SSED model. This motivates the introduction of another biophysical parameter,

the residence time, in addition to the diffusion coefficient.

Furthermore, the new SSED vesicle fusionmodel is then estimated with amethod

which proved to perform better than existing estimation methods on the simpler
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point source model. Dynamical behaviors have been characterized in a set of image

sequences, with the use of the SSED model, to exhibit the different behaviors of the

two transmembrane proteins TfR and Langerin.

11.1.3 Group dynamics analysis

In the last part of the thesis, we have focused on the development of LAF, a newmo-

tionmeasurement, which ismore appropriate to group analysis than classical detect-

and-trackmethods, in the sense that it captures both the type and thenumerical value

of the local velocities without requiring any segmentation. Thus, LAF combines the

advantage of quantitative and qualitative motion descriptors.

As an application, we have shown the relevance of this motion descriptor to char-

acterize groupmotion by classifyingmotion patterns and by recovering the principal

paths followed by the group. We have finally proposed a new method to detect and

segment local anomalous behaviors, still building on LAF. All thesemethods only rely

on very short temporal integration, and are therefore suitable for on-line processing,

as opposed to most existing groupmotion analysis methods.

11.2 Ongoing and future work

Weare currentlyworking on amultiscale extension of our spot detector, relying on the

same scale-space representation, but with amore elaborated selection criterion. Pre-

liminary results were presented in Part I, but a more advanced method is envisaged.

It relies on a probabilistic formulation of the selection criterion, which allows us to set

a meaningfulness threshold. This way, the user does not need to specify the number

of scales. Preliminary results on the scale set selection itself are already promising,

but the adaptive thresholding must be extended to cope with multiple scales. Then,

detection performancemust be evaluated to verify that the automatic scale set selec-

tion behaves better than multiscale detectors like the multiscale variance stabilizing

transform (MS-VST).

The proposed SSEDmodel will be used in other experimental conditions to inves-

tigate possible differences between mutant and wild cells. In particular, the team of

Jean Salamero at Institut Curie aims at investigating the role and interactions of Actin

in the recycling process. Ultimately, the dynamics of Rab11 are targeted, since open

questions remain for this protein.

This leadsus to the futurework tobe accomplished regardingRab11. Thebehavior

of Rab11 should be modeled and estimated thoroughly in 3D+time image sequences

acquired with multi-angle TIRFM [Boulanger et al., 2014]. At this time, preliminary

results and discussions exposed in this thesis will constitute some basis for the devel-

opment of 3D+time estimation methods.
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It is already known that Rab11 finally returns to the cytosol at a given, but un-

known, time. Understanding the timeline of the membrane fusion process, and in

particular the position in time of Rab11’s dissociation, is of primary interest for cell

biology. Dissociation should therefore be modeled and estimated in 3D+time image

sequences, constituting the short-term target of the study. In particular, the differ-

ent Rab11 dynamical models presented in Part II should be challenged. Then, ef-

forts should beput in the identification of interactions betweenproteins, in particular

Rab11 with TfR and Rab11 with Langerin, in order to point out potential behavioral

differences.

At a low level modeling, other assumptions could be relaxed, for example the

membrane isotropy, homogeneity and planeity. These improvements would natu-

rally impact both the models and estimation procedures, and open up a large area of

possible studies to endupwith afinemodel, and reliable estimation andclassification

methods.

As for groupmotion analysis, we have presented interesting results for crowdmo-

tion analysis throughout Part III, and shown some qualitative examples of cell group

dynamics.

In video analysis, working on anomaly detection should be further investigated,

for example with the use of the magnitude of the velocity vectors in the histogram

descriptors or with another decision paradigm. This is currently investigated with

Juan-Manuel Pérez-Rúa, a PhD student in the Serpico team.

In addition, the group motion study is still a proof of concept which we think

could find a vast set of biological application domains. The agnostic approach we

have proposed is interesting from an image processing point of view, but better re-

sults would probably be obtained by adding specific priors to cope with a particular

issue. Anomaly detection is a classical topic in biology, found for example in tissue

genesis.

As pointed out by a reviewer of this thesis, an interesting application could be ac-

tive polar gels, where biological knowledge is available to enrich the affine models

and therefore improve the biological relevance of the method. Given the immensity

of the biological research landscape, we are confident that other applications could

find their way in PhD theses to come.
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