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Résumé

Mots clés: Théorie des Jeux Évolutionnaires, Processus de Décision Markovien, Sys-

tèmes Dynamiques, Contrôle et Optimisation

La théorie des jeux évolutionnaires (EGT) constitue un cadre simple pour étudier le

comportement de populations larges dont les membres sont engagés en interactions

stratégiques. L’origine de l’EGT est due à Maynard Smith (Maynard Smith, 1972),

qui utilise les concepts de base de la Théorie des Jeux (GT) classique pour étudier

l’évolution des espèces en biologie. Tandis que la GT considère des agents rationnels

qui choisissent leurs actions pour maximiser leur propre utilité, dans l’EGT, au départ,

les joueurs sont censés être les membres d’une espèce, pour lesquels l’hypothèse de

rationalité ne peut pas être considérée. Les actions sont interprétées comme des traits

héréditaires et l’utilité correspond au fitness darwinien (ou succès reproductif). Après

la diffusion de l’EGT en biologie, les économistes comprennent que l’approche évolu-

tionnaire peut être très utile pour l’ étude des équilibres de la GT et que ses modèles

peuvent représenter des problèmes dans autres contextes que la biologie. De plus, les

modèles évolutionnaires ont l’avantage de ne pas nécessiter d’ hypothèse de rational-

ité, étant un concept très difficile à définir et caractériser (Weibull, 1998). Déjà Nash,

dans sa thèse, avait suggéré que son concept d’équilibre (l’équilibre de Nash) peut avoir

deux interprétations, une rationaliste et une autre qu’il appelle «action de masse»(Nash,

1950). L’EGT est désormais considérée comme un enrichissement important de la GT

et s’applique à un vaste éventail de problèmes dans des contextes différents, comme

l’économie, l’informatique, les télécommunications, les sciences sociales. En étant une

théorie assez récente, des nombreuses applications restent encore à identifier, ainsi que

plusieurs aspects théoriques à approfondir.
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Dans les jeux évolutionnaires standards, les individus d’une grande population sont

sélectionnés aléatoirement de façon répétitive pour jouer un jeu symétrique entre deux

joueurs. Le fitness d’un joueur est défini comme une fonction de son action ainsi que de

la distribution des actions au sein de la population. Les actions donnant un fitness plus

élevé, se diffusent dans la population. Le concept d’équilibre est la stratégie évolution-

airement stable (SES ou ESS), introduite par Maynard Smith et Price (Maynard Smith

and Price, 1973). Il s’agit d’une stratégie telle que, si elle est adoptée par l’ensemble de

la population, ne peut être envahie par une stratégie différente, et est donc stable par

rapport à la déviation d’une (petite) fraction de la population à une stratégie différente

(mutante). D’un point de vue biologique, l’ESS peut être vue comme une généralisation

du concept darwinien de «survie du plus apte», alors que d’un point de vue des jeux,

il s’agit d’un raffinement conceptuel de l’équilibre de Nash.

Tandis que l’ESS est un concept statique qui vise à expliquer les processus de mutation,

Taylor et Jonker (Taylor and Jonker, 1978) définissent des dynamiques qui permettent

de comprendre comment une population atteint une situation stable, la dynamique

du réplicateur, en mettant l’accent sur le processus de sélection. Ils formalisent ces

dynamiques à travers un système d’équations différentielles et montrent le lien entre les

points stationnaires de ce système et les équilibres du jeu. Dans les jeux évolutionnaires

standards le joueur est l’individu qui choisit ses actions pour maximiser son propre

fitness. Dans cette thèse nous proposons une nouvelle approche pour la modélisation

de l’ évolution, où le joueur est formé par un ensemble d’individus. Nous considérons

toujours des interactions entre individus mais nous supposons qu’ils maximisent le

fitness du group auquel ils appartiennent.

Une direction importante pour le développement de l’ EGT est celle des jeux stochas-

tiques. La notion de hasard est implicite dans la notion d’ ESS, en étant une stratégie

stable face à des mutations aléatoires. Même la dynamique du réplicateur peut être

vue comme l’approximation déterministe d’un processus stochastique, oú le hasard

disparaît quand la population est suffisamment large. Dans la deuxième partie de ce

manuscrit, nous introduisons une classe particulière de jeux évolutionnaires stochas-

tiques, les Jeux Evolutionnaires Markoviens (MDEG), défini par Altman et Hayel (Alt-

man and Hayel, 2010). Dans ce contexte, chaque joueur est associé à un état indi-

viduel qui évolue dans le temps selon un Processus de Décision Markovien (MDP).

Un joueur interagit à répétition avec d’autres joueurs, et il change d’ états. L’action

choisie détermine son fitness et aussi la probabilité de transition à l’état suivant. En

considérant des politiques stationnaires, Altman et Hayel montrent que, si la distri-

bution sur les états est stationnaire par rapport à la politique choisie, il est possible

de transformer le jeu MDEG dans un jeu évolutionnaire standard et calculer ses ESSs.
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Motivés par l’importance de comprendre les dynamiques qui amènent à une situation

stable, nous présentons ici une nouvelle approche dynamique des MDEG. À différence

de l’approche statique adopté par Altman et Hayel, en ce travail nous considérons les

dynamiques des états individuels et couplée avec les politiques et nous les décrivons à

travers des équations différentielles interdépendantes.

Dans la troisième partie du manuscrit, nous poursuivons l’étude des jeux stochastiques

dynamiques dans un contexte différent, la théorie du contrôle. Nous définissions un

système stochastique dynamique contrôlé simultanément par deux joueurs engagés

dans un jeu à somme non nulle (et non constante) et nous montrons que le problème

stochastique peut être approximé à travers un jeu dynamique déterministe.
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Introduction

”The word “model” sounds more scientific than “fable” or “fairy tale”
although I do not see much difference between them. [. . . ] The author of a
fable draws a parallel to a situation in real life. He has some moral he
wishes to impart to the reader. The fable is an imaginary situation that is
somewhere between fantasy and reality. Any fable can be dismissed as
being unrealistic or simplistic, but this is also the fable’s advantage. Being
something between fantasy and reality, a fable is free of extraneous details
and annoying diversions. In this unencumbered state, we can clearly
discern what cannot always be seen in the real world. On our return to
reality, we are in possession of some sound advice or a relevant argument
that can be used in the real world. We do exactly the same thing in
economic theory.”

Ariel Rubinstein, Dilemmas of an Economic Theorist, 2006

Evolutionary Game Theory (EGT) constitutes a simple framework to study the behav-

ior of large populations whose individuals are repeatedly engaged in pairwise strategic

interactions. The birth of EGT is marked by the pioneering work of Maynard Smith

(Maynard Smith, 1972), who uses classical Game Theory (GT) as a tool to explain and

to predict quantitative and qualitative aspects of biological evolution of species. While

GT considers rational agents choosing their actions in order to maximize their utility

function, originally in EGT the players are supposed to be the members of an animal

species, for which rationality can’t be assumed. Actions are interpreted as inheritable

traits and the utility corresponds to the Darwinian fitness (or reproductive success).

After the spread of EGT in biology, economists understand that the evolutionary ap-
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proach is useful to investigate the foundations of game theoretic solution concept (Fried-

man, 1991) and it can be adopted in social science contexts, to predict human behavior

with no need of rationality assumption, which may be complex to define and to inter-

pret (Weibull, 1998). It’s worth to mention that in his thesis, Nash already notes that

his solution concept (the Nash equilibrium) could have two interpretations, one ratio-

nalistic and one that he called the “mass action interpretation”: “We shall now take the

"mass-action" interpretation of equilibrium points. In this interpretation solutions have no

great significance. It is unnecessary to assume that the participants have full knowledge of the

total structure of the game, or the ability and inclination to go through any complex reasoning

processes. But the participants are supposed to cumulate empirical information on the relative

advantages of the various pure strategies at their disposal.” (Nash, 1950).

EGT is nowadays considered as an important enrichment of GT and it’s applied in a

wide variety of fields, spanning from economics to computer science. Evolutionary

models allow, for example, to explain and predict different aspects of human behavior,

as the evolution of language (Nowak et al., 1999), the spread of culture (Enquist and

Ghirlanda, 2007) and moral behavior (Harmsand and Skyrms, 2008), as well as to study

telecommunication networks dynamic problems, as the evolution of Internet Transport

Protocols (Altman et al., 2009), the formation of wireless networks (Shakkottai et al.,

2006), (Altman et al., 2008b), (Altman and Hayel, 2008) (Bonneau et al., 2005) and con-

gestion control problems (Menasche et al., 2005), (Zheng and Feng, 2001b), (Zheng and

Feng, 2001a). Being a relatively young mathematical theory, there still remain many

possible applications yet to be identified, and many interesting theoretical issues to be

addressed or deeper explored.

In standard evolutionary games, individuals in a large population are repeatedly and

randomly selected to play a symmetric two-person game. The fitness is defined as a

function of both the behavior of the individual as well as of the distribution of behav-

iors among the whole population. Actions with higher fitness are supposed to spread

within the population. The main solution concept, first introduced by Maynard Smith

and Price (Maynard Smith and Price, 1973), is the Evolutionarily Stable Strategy (ESS),

which is such that, if a population adopt it, it is uninvadable by any other strategy, which

means that it is robust against deviations of a (possibly small) fraction of the popula-

tion to a different strategy (mutations). From a biological point of view it can be seen

as a generalization of Darwin’s idea of survival of the fittest, while from a game theo-

retical perspective it constitutes a refinement of the Nash Equilibrium. Maynard Smith

equilibrium concept has been enriched with an explicit dynamic foundation by Taylor

and Jonker (Taylor and Jonker, 1978). In order to explain how a population reaches a

stable situation, they introduce the replicator dynamics, which highlights the role of se-
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lection. It is formalized by a system of ordinary differential equations and it establishes

that an action spreads if its fitness is larger than the averaged fitness in the population.

While in standard EGT, the interacting individual is the player, choosing the actions to

play in order to maximize its own fitness, in the first part of this dissertation we pro-

pose a new approach to model evolution, where the player is supposed to be a whole

group. We still consider pairwise interactions among individuals but we assume that

they maximize the fitness of the group they belong to, which is thus the actual player

of the game.

An interesting direction for future developments of EGT is towards stochastic games.

The notion of randomness is somehow implicitly carried in the concept of evolutionary

stability, as the mutations in the population are random events. The replicator equation

can also be derived as the deterministic approximation of a stochastic process, where

all randomness is averaged away when the population size is sufficiently large. Sand-

holm (Sandholm, 2010) defines the notion of revision protocol, which specifies the general

rule followed by players updating their actions in time, generating a continuous time

Markov process over the finite set of actions’ distributions (states of the system). He

rigorously proves that, when the population is sufficiently large, the stochastic process

converges in a finite-horizon to the deterministic mean dynamics, defined as the expected

motion. We present, in the second part of the manuscript, a particular class of stochastic

evolutionary games, that of Markov Decision Evolutionary Games (MDEG), introduced by

Altman and Hayel (Altman and Hayel, 2010). In this framework, each player is asso-

ciated with an individual state which evolves in time according to a Markov Decision

Process (MDP). During his finite life time a player repeatedly meets other users in ran-

dom pairwise interactions and it may move among different states; the actions played

by an individual determines his immediate fitness and the transition probabilities to

the next state. Restricting (without loss of generality) to stationary policies, Altman and

Hayel prove that, if the distribution over the individual states is assumed to be station-

ary with respect to the currently used policy, it is possible to transform the MDEG into

a standard evolutionary game and to compute its ESSs. Motivated by the importance

of understanding the dynamics leading to a stable situation, we present in this disser-

tation, our new dynamical approach to MDEG. In contrast with the static approach

adopted by Altman and Hayel, we study here the local dynamics of individual states

and the dynamics intrinsically related to the distribution of policies in the population,

describing them by interdependent differential equations.

In the third part of the manuscript we pursue the study of stochastic dynamics in a

different context, that of control theory. We define a hybrid stochastic dynamical system

jointly controlled by two players involved in a non-zero sum game and we prove that
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the problem can be approximated by an averaged deterministic differential game.

The manuscript is organized as follows.

Part I: Deterministic Evolutionary Games and Groups of Players

In Part I, we first briefly introduce Evolutionary Game Theory (EGT), pointing out the

main notions that will be used and developed in this work. After a hint of the history

of EGT, we provide the main equivalent definitions of the ESS. We then illustrate the

dynamic aspect of EGT through the replicator dynamics and the relation between the

rest points of the replicator equation and the equilibria of the game. We then describe

one of the most studied examples in evolutionary games, that of the Hawk-Dove.

In Chapter 2 we present our new approach to evolutionary games, in which the con-

cept of the player as a single individual is replaced by that of a player as a whole group.

Even if we still consider pairwise interactions among individuals, we suppose that in-

dividuals maximize the fitness of the group they belong to. In order to provide simple

but meaningful results, we analyze the Hawk-Dove game in this framework, consider-

ing the case of an infinite and that of a finite population of individuals. We obtain, in

both cases, a concave game. This allows us to prove the existence and the uniqueness

of a symmetric Nash equilibrium through Rosen’s results (Rosen, 1965). We explicitly

compute the equilibria as a function of the number of groups. We then define a gradi-

ent based dynamics as a counterpart of the replicator equation. We obtain that the fact

of teaming together makes individuals less aggressive at equilibrium. We deepen the

study of group-players in Chapter 3, where we consider groups with different relative

sizes and we introduce a new concept of equilibrium, the Group Fitness Evolutionarily

Stable Strategy (GFESS). The stability required by the GFESS is related to a notion of

deviation within a group, and thus of a fraction of the player (instead of a fraction of the

whole population). We first define the GFESS in a general case and we then character-

ize it for two-actions games. We illustrate our results through three classical examples,

the Hawk-Dove game, the Stag Hunt game and the Prisoner’s Dilemma. We then gen-

eralize the definition of group fitness in order to study an application in multiple access

control in slotted Aloha.

Part II: Individual State and policy Dynamics in Markov Decision Evolutionary Games

We begin the second part of the dissertation presenting MDEG as defined by Altman

and Hayel (Altman and Hayel, 2010), combining MDP and EGT. In Chapter 5 we

present our new dynamical approach to MDEG, in which players are associated with

xv



an individual state evolving according to a continuous time MDP. We first introduce

the concept of interdependent dynamics of states and policies in a general case, and we

then define the State Policy coupled Dynamics (SPcD) system in a particularly simple

scenario, with two states and two actions. We establish the relation between the equi-

libria of the defined system and the equilibria of the game, and we then find the closed-

form solutions of the system. The system is solved by assuming that the processes of

states and policies move with different velocities, which allows us to apply two differ-

ent approximation techniques: the singular perturbation method, and a matrix approx-

imation technique. In Chapter 6 we define a dynamic model for the Hawk-Dove game

in a MDEG type of framework, in order to study the impact of the aggressive behavior

of adults on the evolution of young individuals. As in MDEG models, players are as-

sociated with a MDP, but transitions probabilities here do not depend on the player’s

action but on the action of its opponent. By considering the stationary distribution over

the states, we transform the game into an equivalent standard evolutionary game, and

we compute the equilibria. We then combine the notion of group-players presented in

Chapter 2 and MDEG, studying the dynamic Hawk-Dove game for the case of group

players.

Part III: Stochastic Hybrid Dynamics

In the last part of the manuscript, we extend the theory of control for an hybrid stochas-

tic dynamical system to the case of two players non-zero sum games. The system

evolves in continuous time and it is subjected to abrupt changes of the parameters,

determined by two (discrete time) Markov decision processes, each of which is con-

trolled by a player that aims at minimizing its objective function. As we did in Chapter

5, we assume a two time scales behavior of the system: the lengths of the time intervals

between the “jumps" of the parameters are assumed to be small, which means that pa-

rameters evolve faster than the state of the system. This allows us to approximate the

hybrid game with a deterministic averaged dynamic game. We prove that an asymp-

totic Nash equilibrium of such hybrid game can be constructed on the basis of a Nash

equilibrium of a deterministic averaged dynamic game. We conclude the dissertation

with a last chapter resuming our main contributions and providing the possible future

developments of our work.

"Maybe needless to say, the discussion is limited by idiosyncratic limitations to my memory,

knowledge and understanding. I apologize for omissions and misrepresentations.", (Weibull,

1998).
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Notations

Lowercase letters are mostly used for real numbers, vectors of real numbers and func-
tions, while capital letters indicate matrices and sets. Bold lowercase letters are usually
used for vectors, non-bold one for real numbers. We will use the term ”action” and
”policy”, avoiding the term ”strategy” which may be misleading. In fact, in evolution-
ary game theory literature it is often used to refer to actions (pure or mixed), while in
Stochastic Games the same term refers to policy.
ẋ(t) indicates the derivative dx(t)/dt;
A: set of pure actions, with |A| = M;

∆(A) = {p ∈ R
K|

M

∑
i=1

pi = 1}: set of mixed actions;

S : set of individual states, with |S| = K;
U : set of general policies;
UM: set of Markov policies;
US: set of stationary policies;
UD: set of deterministic (stationary) policies;
F(·, ·): fitness function of an individual;
F̄(·): average fitness in the population;
Γi(·, ·): fitness function of a group player Gi;
αi: normalized size of a group i;
Q: set of transition probabilities;
Qs(s′, a) (homogeneous time) transition probability from state s′ ∈ S to state s ∈ S given action
a ∈ A;
R set of transition rates;
Rs(s′, a) transition rate from state s′ ∈ S to state s ∈ S given action a ∈ A;
Ts(u): average time that an individual playing deterministic policy u ∈ UD spends in state
s ∈ S ;
H: set of all observable state-action histories ht = {sl , al , l = 0, . . . , t}, t = 0, 1, 2, . . .;
W =

⋃

us∈US

ω(us): set of all vectors of steady state probabilities of state action pairs.

ANE: Asymptotic Nash Equilibrium
CT-MDP: Continuous Time Markov Decision Process
EGT: Evolutionary Game Theory
ESS: Evolutionarily Stable Strategy
GFESS: Group Fitness Evolutionarily Stable Strategy
GT: Game Theory
MAC: Multiple Access Control
MDP: Markov Decision Process
NE: Nash Equilibrium
SPcD: State Policy couple Dynamics
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Part I

Deterministic Evolutionary Games
and Group of Players
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Chapter 1

An Introduction to Evolutionary
Game Theory

”The relation between species, or among the whole assemblage of an
ecology, may be immensely complex; and at Dr. Cavalli’s invitation I
propose to suggest that one way of making this intricate system intelligible
to the human mind is by the analogy of games of skill, or to speak
somewhat more pretentiously, of the Theory of Games.”

R. Fisher, Polimorphism and Natural Selection, 1958

Summary
This chapter gives a brief introduction to evolutionary game theory, pointing out
the main notions that will be used and developed in this work. After a hint of
the history of EGT, we provide the main equivalent definitions of the equilibrium
concept, the ESS. We then study the dynamic aspect of EGT through the replicator
dynamics and we establish the relation between the rest points of the replicator
equation and the equilibria of the game. We conclude the chapter presenting one
of the most studied examples in evolutionary games, that of the Hawk-Dove.
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1.1. Origins of Evolutionary Game Theory and its Developments

1.1 Origins of Evolutionary Game Theory and its Developments

Evolutionary Game Theory (EGT) has originally developed to formally describe and

predict quantitative and qualitative aspects of biological evolution by using the mathe-

matical theory of games.

Before the birth of Game Theory (GT), Fisher (Fisher, 1930) analyzes the dynamics of

the sex ratio in a species as a competition between individuals. In order to explain the

stable sex ratio observed in most of mammal species, he supposes that each individual

maximizes its own fitness, defined as the expected number of grandchildren, depending

on the relative frequency of males and females in the population. Even if the formalism

he adopts is not the same, Fisher’s approach is conceptually very close to game theory.

The first explicit attempt to apply GT formalism in evolutionary biology is by Lewon-

tin (Lewontin, 1961), who describes the evolution of the genetic mechanism as a game

played between nature and a species, where the latter seek actions that minimize the

probability of extinction. The equilibrium is represented by a maxmin action, the species

doing the best against the worst of the nature; similar ideas have been developed a few

years later by Slobodkin and Rapoport (Slobodkin and Rapoport, 1974).

Hamilton (Hamilton, 1967) uses game theory terminology to study the sex ratio of

species, in situations where certain underlying assumptions of Fisher’s argument do

not hold. He models the choice of the sexes of offspring of an individual as the choice

of an action in a game and defines the concept of unbeatable strategy, which is very close

to the notion of evolutionarily stable strategy, the key equilibrium concept introduced

by Maynard Smith and Price, (Maynard Smith and Price, 1973) which marks the official

birth of EGT. The authors study animals’ conflicts as games, where actions are behav-

ioral phenotypes and the payoff represents the fitness, i.e. the number of offspring of an

individual. With his treatise Evolution and the Theory of Games (Maynard Smith, 1982),

Maynard Smith brings EGT into widespread circulation.

While Maynard Smith’s notion of ESS captures the mutation mechanism through a static

definition, Taylor and Jonker (Taylor and Jonker, 1978) focus on the selection mechanism

and model the dynamic process by which the distribution of actions in a population

evolves to a stable situation as a system of ordinary equations; Schuster and Sigmund

(Schuster and Sigmund, 1983) call this model the replicator dynamics.

Since the late 1980s, there is a growing interest in EGT by economists, who see the

value of the evolutionary approach to game theory in contexts other than biology, both

as a method of providing foundations for the equilibrium concepts of traditional game

theory, and as a tool for selecting among equilibria. Furthermore the evolutionary ap-

proach do not need the rationality assumption required by standard games. EGT mod-

3



Chapter 1. An Introduction to Evolutionary Game Theory

els start to be applied to study the behavior of populations of active decision makers

(Friedman, 1991), (Mailath, 1992), (Nachbar, 1990), (Selten, 1991). Even if the majority

of work in EGT has been undertaken by biologists and economists, closely related mod-

els have been applied in a wide range of disciplines, including sociology (Zhang, 2004),

(Bisin and Verdier, 2001), (Kuran and Sandholm, 2008), (Sandholm, 2005), computer sci-

ence (Shakkottai et al., 2006), (Zheng and Feng, 2001a), (Sandholm, 2001), (Sandholm,

2005), and transportation science (Sandholm, 2001).

1.2 A Static Approach to EGT

1.2.1 Normal Form Games

We briefly introduce here two players normal form symmetric games, which will be

considered to model pairwise interactions involved in EGT models. Suppose that each

of the two players disposes of a finite set of pure actions, A, with |A| = M. Let ∆(A) =

{p ∈ R
M
+ | ∑

i∈A
pi = 1} be the set of mixed actions, that are probability measures over

the action space. Note that a pure action i ∈ A can be represented through the unit

vector ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ ∆(A) with all elements equals to zero except for

the element in position i, which equals 1. The payoff can be described by a matrix

A = (aij) ∈ R
M × R

M, where the entry aij corresponds to the payoff that a player gets

using pure action i ∈ A in an interaction with a player using j ∈ A. If mixed actions are

considered, the expected payoff of an individual playing p against an opponent using

q, with p, q ∈ ∆(A), is given by:

pT
Aq = ∑

i∈A
∑
j∈A

piaijqj (1.1)

An action q∗ ∈ ∆(A) is a (symmetric) Nash equilibrium of the two players-symmetric

normal form game if:

q∗T
Aq∗ ≥ pT

Aq∗ ∀p ∈ ∆(A). (1.2)

If (1.2) holds with strict inequality, q∗ is a strict Nash equilibrium.
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1.2. A Static Approach to EGT

1.2.2 Evolutionarily Stable Strategy (ESS)

Consider a large population of players, where individuals are repeatedly matched at

random in a two-players normal form game, as described in the previous section.

Maynard Smith’s ESS is defined as an action that, if adopted by the whole population,

is robust against invasions by a small group of individuals playing a different (mutant)

action. Suppose that the whole population is programmed to play an (incumbent) action

q ∈ ∆(A) , and that a fraction ǫ of mutants deviate to an action p ∈ ∆(A).

Definition 1. The mixed action q is an ESS if ∀p 6= q, there exists some ǫp > 0 such that:

∀ǫ ∈ (0, ǫp) qT
A(ǫp + (1 − ǫ)q) > pT

A(ǫp + (1 − ǫ)q). (1.3)

Equation 1.3 requires that, if the size of the invading group is sufficiently small, the in-

cumbent’s expected payoff from a random match in the post-entry population exceeds

that of any mutant.

The stable population is said to be monomorphic if all individuals are assumed to adopt

the same action, polymorphic if it individuals are allowed to take different actions (May-

nard Smith, 1982).

It can be easily proved (see e.g. (Weibull, 1995)) that the following conditions are equiv-

alent to Definition 1.

Proposition 1. q ∈ ∆(A) is an ESS if and only if it satisfy:

• Nash Condition:

qT
Aq ≥ pAq ∀p ∈ ∆(A), (1.4)

• Stability Condition:

qT
Aq = pAq ⇒ qAp ≥ pAp ∀p ∈ ∆(A), p 6= q. (1.5)

The inequality 1.4 corresponds to the definition of the Nash equilibrium, while the

second condition requires that, if the mutant action p is an alternative best reply to the

incumbent action q, then the payoff of the incumbent action against the mutant one is

higher then the one of the mutant action against itself. This definition can be interpreted

from a biologic perspective: q is an ESS if an arbitrary rare mutant p does no better than

q in its most frequent contests against q. If it does as well in these, then it does worse

than q in its rare contests against another mutant. It immediately follows from (1.4)

that a symmetric strict Nash equilibrium is an ESS (while the converse is not true).
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Chapter 1. An Introduction to Evolutionary Game Theory

Another equivalent definition of the ESS which is often used, is due to Hofbauer and

Sigmund.

Theorem 1. [Theorem 6.4.1 (Hofbauer and Sigmund, 1998)] The action q ∈ ∆(A) is an ESS

if and only if

qT
Ap > pT

Ap

for all p 6= q in some neighbourhood of q in ∆(A).

Other equivalent definitions of ESS can be found in the literature. The evolutionary

stability can be characterized, for example, by introducing the concept of invasion bar-

rier, which is useful in the case of a finite population (Weibull, 1995). An important

distinction to be made is that among ESS and evolutionarily stable state (see the next

subsection for the definition of the latter): an analysis of the relation between these two

notions can be found in (Thomas, 1984). Some weakening criteria for evolutionary sta-

bility are the concept of neutral stability (Weibull, 1995) and that of local stability (Pohley

and Thomas, 1983), while an important refinement of the ESS is the regular ESS (Taylor

and Jonker, 1978). Maynard Smith and Parker (Maynard Smith et al., 1976) extend the

study of the ESS to the case of asymmetric games and Selten (Selten, 1980) proves that,

for these games, no mixed action can be evolutionarily stable. Taylor (Taylor, 1979) and

Cressman (Cressman, 1992) study the evolutionary stability in the case of two types

of players (see Chapter 2). In Chapter 3 we briefly present the different existing defi-

nitions of N-species ESS, first introduced by Garay and Varga (Garay and Varga, 2000),

and we define our new notion of Group Fitness Evolutionary Stable Strategy. Cressman

(Cressman, 1992) devotes a text to the development of static ESS conditions in diverse

theoretical models of evolutionary biology, providing a wide overview of the differ-

ent definitions of the evolutionary stability notion. Evolutionary stability can also be

defined adopting a dynamical point of view: see e.g. (Hofbauer and Sigmund, 2003),

where the authors state a necessary and sufficient condition for an action to be evolu-

tionarily stable, which is related to the replicator equation. Also Pholey and Thomas’

local stability has been defined in order to find a static concept in better agreement with

the dynamical aspects of the process of natural selection. Cressman et al. (Cressman

et al., 2001) focused on a dynamical approach to the ESS in the case of N species. An

application driven approach leads to a setwise generalization of the ESS, the Evolutionarily

Stable Set (ES): see (Thomas, 1985), (Cressman, 1992), (Weibull, 1995).
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1.3. A Dynamic Approach to EGT

1.2.3 Population Games and Evolutionarily Stable State

Population games study strategic interactions within a large polymorphic populations

of individuals playing pure actions (Sandholm, 2009). In this scenario, the notion of

evolutionary stability is associated with the state of the population instead that to a

mixed action (see e.g. (Taylor and Jonker, 1978), (Hofbauer and Sigmund, 1998) and

(Sandholm, 2009)). More precisely, a population state (also called profile), is defined by

a vector x = (x1, . . . , xM), with
M

∑
i=1

xi = 1, where xi is the proportion of individuals in

the population playing pure action i ∈ A. Note that x ∈ ∆(A), so it is formally equiv-

alent to a mixed action in ∆(A). A population game is identified by the continuous

vector valued payoff function F : ∆(A) → R
M, depending on the state of the popu-

lation. Let Fi(x) denote the payoff of pure action i in a population in state x. If mixed

actions are considered, the payoff of mixed action q ∈ ∆(A), denoted by F(q, x), can

be thought as the average fitness of a group of individuals such that a proportion qi of

the group uses pure action i, against a population in state x, i.e:

F(q, x) =
M

∑
i=1

qiFi(x).

Definition 2. A population state q is a (symmetric) Nash equilibrium profile if:

F(q, q) ≥ F(x, q),

for all population states x ∈ ∆(A).

Definition 3. A population state q is evolutionarily stable if:

F(q, x) > F(x, x),

for all x 6= q in a neighborhood of q.

Remark 1. If the payoff function F is linear in the population state, then evolutionarily stable

state and ESS coincide.

1.3 A Dynamic Approach to EGT

The notion of dynamics has been introduced into evolutionary games by Taylor and

Jonker (Taylor and Jonker, 1978), in order to provide a dynamic foundation of May-

nard Smith’s static concept of evolutionary stability. Through a system of differential

equations, the authors describe the evolution of the distribution of actions within a pop-
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ulation, where the share of individuals playing a certain action is supposed to change

according to the actions’ success (represented by the fitness function). They then show

the relation between the stable points of their dynamics and the ESSs of the game. The

model has been named the replicator dynamics by Schuster and Sigmund (Schuster and

Sigmund, 1983).

The need for a dynamical approach to games is already felt at the earliest stages of

classical game theory, when Neumann and Morgenstern, in the introduction of their

treatise (Neumann and Morgenstern, 1947), suggest the idea of completing their static

solution concept with some notion of dynamics. The first dynamic models are due to

Brown and Von Neumann, who defined the Brown-Von Neumann-Nash dynamics, as a

tool for computing the equilibria in zero-sum games (Brown and Neumann, 1950). In

the last decades, a large number of dynamics has been introduced in GT framework: see

e.g. gradient-based dynamics (Rosen, 1965), fictitious play (Gilboa and Matsui, 1991), pro-

jection dynamics, best response dynamics (Fudenberg and Tirole, 1991), Boltzman dynamics

and logit dynamics (Fudenberg and Levine, 1998).

When a dynamic approach is adopted, a player is supposed to occasionally reconsider

its choice of action, adjusting its action in response to several information, like its own

current payoff, the average current payoff, the historical actions of the others, etc. In

(Sandholm, 2010), the author introduces, in population games framework, the notion of

revision protocols, which specify the general rule followed by players updating their ac-

tions in time (see e.g. imitative protocol, natural selection protocol, evaluative protocol). A re-

vision protocol generates a continuous time Markov process over the finite set of states

of the system. For large populations of players and finite time games, this stochastic

process can be approximated by its expected motion, given by the deterministic mean

dynamics. Then, each revision protocol can be viewed as defining a map, called deter-

ministic evolutionary dynamic, from population games to mean dynamics. On the basis

of the revision protocols which induce them, it is possible to identify different fam-

ilies of deterministic evolutionary dynamics. Sandholm defines four main classes of

deterministic dynamics for population games: imitation (which includes the replicator

dynamics), excess payoff, pairwise comparison and perturbed pairwise comparison dynamics.

In the following subsection, we give the formal definition of the standard replicator

dynamics in EGT. In Section 2.3.2 we use Rosen’s gradient-based dynamics in our new

framework of group-players evolutionary games. In Chapter 5 we study the replicator

dynamics of policies coupled with the dynamics of individual states in a particular

Markov decision evolutionary game (see Chapter 4 for an introduction to MDEG). In

Chapter 7 we deal with a different kind of dynamical system, a hybrid stochastic system
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1.3. A Dynamic Approach to EGT

for a two players non-zero sum game.

1.3.1 Replicator Equation

While the ESS notion is related to the mutation mechanism in a population, the replicator

dynamics focuses on the selection mechanism, that favors some behavioral phenotypes

over others.Consider a large population of haploid individuals programmed to play the

same action during their entire lifetime and suppose that offspring inherit the parent’s

action. In the standard setup for replicator dynamics, only pure actions are allowed

and thus a vector q ∈ ∆(A) is interpreted as a population state and not as a mixed

action. This means that qi represents the share of the population adopting pure action i

(instead of representing the probability that an individual plays i); in our mathematical

treatment, we do not distinguish between the two interpretations.

The replicator dynamics consists in a system of differential equations describing how

the frequencies of pure actions evolve in time depending on their success. The evolu-

tion of qi, with i ∈ A, is expressed as:

q̇i(t) = qi(t)(Fi(q(t))− F̄(q(t))), (1.6)

where Fi(q) denotes the immediate fitness of an individual playing pure action i in a

population whose state is q and F̄(q) =
M

∑
i=1

piFi(q) is the average immediate fitness in

the population (in state q). The growth rate q̇i(t)/qi(t) of the fraction of the population

using action i is thus equal to the difference between the immediate fitness of that action

and the current average fitness in the population.

In a two-action game, with A = {1, 2}, if p indicates the share of the population playing

action 1, we have that F̄(q) = qF1(q) + (1 − q)F2(q), and thus, by substituting this into

(1.6) we obtain:

q̇(t) = q(t)(1 − q(t))(F1(q(t))− F2(q(t)). (1.7)

1.3.2 Convergence and Stability: the Folk Theorem of EGT

It is easy to see that any Nash equilibrium is a rest point of the replicator dynamics,

that is an equilibrium of the ODE (1.6). In fact, if an action in ∆(A) is a NE, all pure

strategies in its support earn the same maximal payoff against that strategy, and thus

they all earn the population average payoff. This implies that the right side of (1.6) is

zero for that action.
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Chapter 1. An Introduction to Evolutionary Game Theory

The folk theorem of evolutionary game theory (Cressman, 2003), (Hofbauer and Sig-

mund, 2003) establishes the relation between the rest points of the replicator dynamics,

and the Nash equilibria of the symmetric game. Before stating the folk theorem, we

define the following notions:

• an orbit is interior if it is such that x(t) ∈ int∆ := {x ∈ ∆|xi > 0, ∀i = 1, . . . , M},

∀t ≥ 0;

• a rest point x∗ is Lyapunov stable if, for every neighborhood Ux∗ of x∗ there exists

a neighborhood Vx∗ of x∗ such that x(0) ∈ Vx∗ implies x(t) ∈ Ux∗ , ∀t ≥ 0;

• a rest point x∗ is attracting if it has a neighborhood Ux∗ such that x(t) → x∗ for

t → ∞ holds for ∀x ∈ Ux∗ ;

• a rest point x∗ is asymptotically stable (or an attractor) if it is both stable and

attracting.

Theorem 2. [Theorem 2.5.3 (Cressman, 2003)]

i. any strict Nash equilibrium is asymptotically stable;

ii. if a rest point is the limit of an interior trajectory, then it is a Nash equilibrium;

iii. if a rest point is Lyapunov stable, then it is a Nash equilibrium,

Any ESS is asymptotically stable (Hofbauer et al., 1979), but the converse does not hold

in general; only in the special case of two-actions games, we have that dynamic stability

is equivalent to evolutionary stability. More precisely, the following result holds.

Theorem 3. [Theorem 2.5.4 (Cressman, 2003)] Every interior trajectory that is not initially at

rest, converges to an ESS. Furthermore, for the replicator dynamics, the following three state-

ments are equivalent:

i. q ∈ ∆(A) is stable.

ii. q is asymptotically stable.

iii. q is an ESS.

1.4 The Hawk-Dove Game

One of the most studied examples of evolutionary games, is the Hawk-Dove game, first

introduced by Maynard Smith to study the level of aggressiveness in a population of

animals competing for a natural resource (Maynard Smith, 1972). It has been later used
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in a wide variety of fields, spanning from biology to economics, where the notion of ag-

gressive behavior can be translated into a short-term oriented maximization of “selfish”

individuals (see e.g. (Tomassini et al., 2010), (Hanauske et al., 2010)). In engineering,

for example, it is used in (Altman et al., 2009) to study competition of congestion con-

trol algorithms in communication networks, while in (Altman et al., 2008a) it serves

to study the interactions between mobile phones that can choose which power to use

when transmitting packets.

The standard model has been reformulated in many different ways and a large number

of revisited versions of the Hawk-Dove game can be found in the literature. Houston

and McNamara (Houston and McNamara, 1988), for example, study a repeated ver-

sion of the Hawk-Dove model, including a state variable representing animal’s level

of energy resources and they define an ESS which depends on that variable. Cress-

man (Cressman, 1992) defines a density dependent Hawk-Dove game, where he modifies

the payoff matrix including in the individual’s fitness a term that is independent of

its strategy, to reflect the biological intuition that population growth rates decrease as

density increases (”background fitness”). Crowley (Crowley, 2000) defines a generalized

Hawk-Dove game, modeling interactions between individuals that may differ in size,

where size represents "resource holding power". He considers three different situa-

tions, based on the amount of information that interacting individuals have about their

sizes: the symmetric case, in which no information about sizes is used, the asymmetric

case, in which the individuals know their relative sizes, and a mixed-symmetry case, in

which each individual only knows its own size.

In Chapter 2 we define a Hawk-Dove model in a new framework, where players are

supposed to be (symmetric) groups of interacting individuals. In Chapter 3 we define

the notion of GFESS and we compute such equilibrium as a function of the size of the

groups for the group-players Hawk-Dove game. In Chapter 6 we study a particular

example of a dynamic version of the game, where players are characterized by an in-

dividual state and transition probabilities between two states depend on the action of

player’s opponent.

The Standard Hawk-Dove Game

Suppose that two animals contest for a resource (food, territory,. . . ) of value V. They

dispose of two possible pure actions, Hawk (H) and Dove (D), where the first corre-

spond to an aggressive behavior, the second to a passive one. The game is played as

follows:
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Chapter 1. An Introduction to Evolutionary Game Theory

• if two Hawks meet, they fight and each of them has equal probability to win the

fight and to be injured. The fight has a cost C;

• if two Doves meet, there is no fight and they equally share the resource;

• if an Hawk meets a Dove, the Hawk gets the resource and the Dove retreats with-

out being injured.

The payoff matrix associated with the game is:

(

H D

H (V − C)/2 V

D 0 V/2

)

(1.8)

There are three possible outcomes, depending on the values of V and C.

• If V > C, the game admits a unique pure strict Nash equilibrium, which is also

evolutionarily stable (H, H).

• If V = C, the symmetric pure actions pair (H, H) is still the unique Nash equilib-

rium; in this case it’s not strict (as FH(H) = FD(H)) but it is an ESS.

• If C > V, it’s an anti-coordination game, which admits three Nash equilibria:

the two non-symmetric pure actions pair (H, D), (D, H) and a mixed NE (q∗, q∗),

with q∗ = V/C, where q∗ is the probability of playing H. The only ESS is (q∗, q∗):

being a random matching game, a non-symmetric Nash equilibrium can’t be an

ESS.

The replicator equation of the game is:

q̇ = q(1 − q)(FH(q)− FD(q))

= q(1 − q)(
1
2
(V − C)q + V(1 − q)− V

2
(1 − q))

q(1 − q)
2

(V − Cq), q ∈ [0, 1].

It’s easy to verify the folk theorem statements and that, for the Hawk-Dove game the

interior orbit of the replicator equation converges to the ESS (q∗, q∗).
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Chapter 2

Group Players

”A society of ants, bees, or termites achieves a kind of individuality at a
higher level. Food is shared to such an extent that one may speak of a
communal stomach. Information is shared so efficiently by chemical signals
and by the famous ’dance’ of the bees that the community behaves almost
as if it were a unit with a nervous system and sense of organs of its own.”

Richard Dawkins, The Selfish Gene, 1976

Summary
In this chapter we present a new model for evolutionary games, in which the con-
cept of the player as a single individual is substituted by that of a player as a whole
group. We still consider pairwise interactions among these individuals, but we sup-
pose that the fitness they maximize is that of their group. We analyze a Hawk-Dove
game with group players and, as it results to be concave, we prove the existence of
a symmetric Nash equilibrium through Rosen’s conditions. We explicitly compute
it and we obtain that the fact of teaming together makes individuals less aggressive
at equilibrium. We finally define a gradient based dynamics as a counterpart of the
replicator equation, such the equilibrium of the game is asymptotically stable for
such dynamics.

13
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2.1 Introduction

We introduce in this chapter a new scenario for evolutionary games, where the notion

of the player as a single individual is replaced by that of a player as a whole group. We

still consider pairwise interactions among individuals but we assume that they maxi-

mize the fitness of the group they belong to. We suppose that the number of groups

is finite and we consider two different scenarii: the case of an infinite and that of a fi-

nite population of individuals. We allow pairwise interactions within members of the

same group and between individuals of different groups. Groups are supposed to be

monomorphic, that is, all individuals in a group play the same (possibly mixed) action.

As individuals are indistinguishable, the behavior of an individual is fixed and does

not depend on the individual it encounters.

Figure 2.1: Individuals are divided into a finite number of symmetric groups. Each individual can
interact with a member of its own group or of a different one.

In order to provide simple but meaningful results, we analyze the Hawk-Dove game

in this framework, and we characterize its equilibria. We adopt the Nash equilibrium

as solution concept, rather than the ESS. As a matter of facts, in our game, even if the

population of individuals may be infinitely large, the number of players is finite, and,

as the Nash equilibrium requires stability against the deviation of one player, in our

framework this implies stability against the deviation of a whole group of individuals.

In the next chapter we present the GFESS, a new concept of equilibrium for group-

players games, which considers local deviations within a group. We show here that we

obtain a concave game and we thus apply Rosen’s results (Rosen, 1965) to prove that the

14
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game admits a unique Nash equilibrium. We finally define a gradient-base dynamics,

which converges to the considered equilibrium.

Motivations

In standard EGT, each interacting individual is the player of the game and it chooses

its actions in order to maximize its own utility. Many example showing the modeling

weaknesses of this assumption can be found. Since in evolutionary games the fitness is

defined as related to the reproduction rate, the classical evolutionary game paradigm

cannot represent those situations in which only one selected member of a group is re-

sponsible for reproduction: in a beehive, for example, the fitness is related to the entire

swarm and not to a single bee. Furthermore, in many species, we find altruistic behav-

iors, which may hurt the individual adopting it, favoring instead the group it belongs

to. Altruistic behaviors are typical of parents toward their children: they may incubate

them, feed them or protect them from predators at a high cost for themselves. An-

other example can be found in flock of birds: when a bird sees a predator it gives an

"alarm call" to warn the rest of the flock, attracting the predator’s attention to itself.

Also the stinging behavior of bees is an altruistic one: it serves to protect the hive, but

it’s lethal for the bees which strives. Other examples can be found also different con-

texts. Ass already mentioned, in engineering applications to wireless communication,

power control games have frequently been studied in the framework of standard EGT

(see e.g. (Altman and Hayel, 2008)). Papers that consider these games usually assume

that each mobile can control selfishly its power. In practice however the protocols for

power control are not determined by the users of the terminal but by the equipment

constructors; this implies that the real competition is among a final number of equip-

ment constructors.

State of Art

The notion of group is not new in evolutionary game theory and different models con-

sidering the presence of a finite number of sub-populations have been developed. In

those cases, however, the group has a different connotation from the one we intro-

duce here, since it mainly serves to distinguish players with different characteristics

and thus to represent asymmetric contexts between individuals. The first evolution-

ary model considering groups has been introduced by Taylor (Taylor, 1979), who de-

scribes a population composed of two types of individuals, I and J, with inter-group

and intra-groups interactions. The state of the population as a whole is described by

15



Chapter 2. Group Players

the pair of vectors (p, q), which are the distributions over the pure actions of a player

of type I and J respectively, with p = (p1, . . . , pm) and q = (q1, . . . , qn). If the popu-

lation is in state (p, q) and a sub-population is in state (r, s), the average fitness of a

player of type I is given by: F(r|p, q) =
m

∑
i=1

F(i|p, q) and the average fitness of type J

is: G(s|p, q) =
n

∑
j=1

G(j|p, q). The ESS for the two populations model is defined as a pair

of actions (p∗, q∗) which is stable against simultaneous small deviations of p and q,

which means that, for all (r, s) with r 6= p or s 6= q:

F(r|p̄, q̄) + G(s|p̄, q̄) < F(p∗|p̄, q̄) + G(q∗|p̄, q̄),

where p̄ = ǫr + (1 − ǫ)p∗, and q̄ = ǫs + (1 − ǫ)q∗. If the fitness functions are lin-

ear in (p, q), with F(r|p̄, q̄) = r(Ap̄ + Bq̄), G(s|p̄, q̄) = s(Cp̄ + Dq̄), then the ESS

condition translates into the conditions: r(Ap̄ + Bq̄) + s(Cp̄ + Dq̄) ≤ p∗(Ap̄ + Bq̄) +

q∗(Cp̄ + Dq̄), where, if the equality holds, then r(Ar + Bs) + s(Cp + Ds) < p∗(Ar +

Bs) + q∗(Cr + Ds). Cressman studied (Cressman, 1992) the same scenario but he gives

a weaker definition of the ESS: while Taylor’s ESS performs better in both groups than

any other mutant action pair, he requires jut that (p∗, q∗) performs better for (at least)

one of the two groups, and thus, either:

r(Ap̄ + Bq̄) < p∗(Ap̄ + Bq̄)

or

s(Cp̄ + Dq̄) < q∗(Cp̄ + Dq̄).

Cressman provides different equivalent definitions of this ESS in the two-species con-

text. Both Taylor’s and Cressman’s definitions have been later extended to a multipop-

ulation scenario: see the following chapter for an introduction to the N-species ESS.

Our framework is closer to multipopulation games as defined by Sandholm (Sandholm,

2010). He considers a society composed of p populations, each with mass mi and a set of

strategies Si, i = 1, . . . , p. The population state xi of population i is given by a distribution

over the set of strategies Si, while a social state x describes the behavior in all p popula-

tions. The game is defined by the payoff function F, which assigns to each social state a

vector of payoffs, one for each strategy in each population. By F̄i(x), Sandholm denotes

the average payoff function in population i. He thus also considers the payoff associ-

ated with a whole group of interacting individuals, but, while Sandholm focuses on the

different dynamics in this kind of games, introducing the notion of revision protocol,

we mainly adopt here a static approach and we consider different solution concepts. In
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particular, we study here the Nash equilibrium for a group-player Hawk-Dove game,

while in the following chapter we define and we characterize a new equilibrium, the

GFESS, in a general framework.

The chapter is structured as follows: in the next section we describe our framework

and we define the fitness of a group-player in two different cases: that of an infinite

population of individuals and that of a finite one. In Section 2.3 we study the Hawk-

Dove game in both contexts: we first prove, in Subsection 2.3.1 the existence and the

uniqueness of the equilibrium and we then explicitly compute it. We finally define a

gradient based dynamics in Section 2.3.2.

2.2 The General Model

We consider a population of individuals divided into N groups, G1, . . . , GN with N ≥ 2;

for simplicity of presentation we will consider symmetric groups of the same size. Let

A = {a1, a2 . . . aM} be the set of pure actions and ∆(A) be the corresponding set of

mixed actions. We suppose that the sub-population in each group is monomorphic, that

is all individuals in the same group adopt the same action. Individuals are indistin-

guishable and their behavior is fixed. We thus associate to each group Gi the mixed

action (or state vector) pi = (pi
1, . . . , pi

M) ∈ ∆(A), with
M

∑
l=1

pi
l = 1. We define a multiac-

tion as the vector of all N group’s actions, denoted by p = (pi, . . . , pN) ∈ ∆(A)N . Let

πij be the probability that an individual in group Gi meets an individual in group Gj.

The expected fitness of a (group) player Gi playing pi ∈ ∆(A) in a population whose

multiaction is p is defined by:

Γi(pi, p−i) = πii(pi, pi) +
N

∑
j=1,j 6=i

πijF(pi, pj), pi, pj ∈ ∆(A), (2.1)

where p−i = (p1, . . . , pi−1, pi+1, . . . , pN), and F(pi, pj) (resp. F(pi, pi)) denotes the im-

mediate fitness of an individual playing mixed action pi against an opponent playing

pj (resp.pi). The function Γi is linear in p−i. Note that, as the groups are symmetric,

the expected fitness only depend on the strategy used by the player and by the popu-

lation, i.e. Γi(pi, p−i) = Γ(pi, p−i), ∀i = 1, . . . , N. The probabilities πij depend on the

size of the population. In what follows we see the case of an infinite and that of a finite

population of individuals.
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The Case of an Infinite Population of Individuals

If the population of individuals is infinitely large, we can assume that the probability

of an interaction among two individuals of the same group equals the probability of an

interaction among actors of different groups. We thus have that:

πii = πij = 1/N ∀i, j = 1, . . . , N.

The resulting expected fitness of a (group) player Gi playing pi ∈ ∆(A) in a population

whose multiaction is p is given by:

Γ(pi, p−i) =
1
N

F(pi, pi) +
1
N

N

∑
j=1,j 6=i

F(pi, pj), pi, pj ∈ ∆(A). (2.2)

2.2.1 The Case of a Finite Population of Individuals

In order to study the impact of the size of groups on the equilibrium, we now consider

a finite population of individuals, with size NK, which is thus divided into N groups

of size K. The probability that an individual in group Gi meets an individual in group

Gj is given by:

πij =



















K − 1
NK − 1

if i = j

K
NK − 1

if i 6= j

i, j = 1, . . . , N

The expected fitness of a group playing action pi ∈ ∆(A) in a population whose multi-

action is p can be rewritten as:

Γ(pi, p−i) =
K − 1

NK − 1
F(pi, pi) +

K(N − 1)
NK − 1

N

∑
j=1,j 6=i

F(pipj), pi, pj ∈ ∆(A) (2.3)

2.3 Hawk-Dove Game with Group Players

We study here the Hawk-Dove game in the framework of group players. Let A =

{H, D}; the payoff associated with actors’ pairwise interactions is given by the follow-
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ing matrix:

(

H D

H 1/2 − δ 1

D 0 1/2

)

, (2.4)

which is obtained from (1.8) with V = 1 and C = 2δ. With some abuse of notation,

since a mixed action is given by p = (pH, pD) with pD = 1 − pH, the action of a group i

is represented simply by the probability of being aggressive, pi ∈ [0, 1], i = 1, . . . , N.

2.3.1 Existence and Uniqueness of the Equilibrium

As in our model the number of player is finite and each player corresponds to a group,

we adopt the Nash equilibrium as solution concept rather than the ESS. This choice is

also justified by the fact that, as the Nash equilibrium is stable against the deviation of

on player, in our model this implies the stability against the deviation of a whole group

of individuals, as the player is the group.

The existence and the uniqueness of the equilibrium for concave games have been proved

by Rosen (Rosen, 1965). He considers N players games where each player disposes of a

set of mixed actions ∆i, i = 1, . . . , N, and where player’s i payoff function Fi(p) depends

on the vector of actions of all the the N players, p = (p1, . . . , pN) ∈ ∆ := ∆1 × . . . × ∆N .

The game is said to be concave if the product space of actions ∆ is convex, closed and

bounded ∀p ∈ ∆, and Fi(p) is continuous in p and concave in pi (for fixed p−i). Then,

every concave game admits a Nash equilibrium. Rosen also introduces the weighted

sum of payoffs σ(p, r) =
N

∑
i=1

riFi(p), with ri ∈ R+ and its pseudogradient:

g(p, r) =













r1∇1F1(p)

r2∇2F2(p)
...

r1∇N FN(p)













. (2.5)

The equilibrium point of the game p ∈ ∆ is proved to be unique when σ(p, r) is diago-

nally strictly concave for a positive r, which means that for a fixed non-negative vector

r ≥ 0 and every vector q 6= p:

(p − q)′g(q, r) + (q − p)′g(p, r) > 0.

Hofbauer and Sandholm (Hofbauer and Sandholm, 2008) establish the connection be-
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tween diagonally strictly concave games and stable population games. They define a

p−players game and a p unit masses population game, proving that the diagonal con-

cavity of the first one is equivalent to the stability of the latter.

In what follows we prove that the infinite and the finite-population models are concave

games and they both satisfy the diagonal concavity condition, which prove the exis-

tence and the uniqueness of the equilibrium. In (Brunetti and Altman, 2013) we present

this model also in a third case, where the population of individuals is finite and the

number of groups is random, but it does not satisfy the diagonally concavity condition.

Infinite Population

From the definition of ∆(A), it trivially follows that the product space ∆ = ∆(A)N =

[0, 1]N is convex, closed and bounded. When considering an infinite population and

the Hawk-Dove payoff matrix (2.4), the fitness of a (group) player adopting action pi ∈
[0, 1] in a population whose multiaction is p = (p1, . . . , pN) ∈ [0, 1]N (2.2) equals

Γ(pi, p−i) =
1
N

F(pi, pi) +
1
N

N

∑
j=1,j 6=i

F(pi, pj)

=
1
N

[

(

(−δ)(pi)2 +
1
2

)

+
N

∑
j=1,j 6=i

(

(−δpj +
1
2
)pi +

1 − pj

2

)

]

.

(2.6)

Function Γ in (2.6) is continuous in p and it’s easy to verify that it’s also concave in pi,

i.e.

Γ(ǫpi + (1 − ǫ)qi, p−i) > ǫΓ(pi, p−i) + (1 − ǫ)Γ(qi, p−i),

with qi ∈ [0, 1]. From Theorem 1 in (Rosen, 1965), it follows that there exists an equilib-

rium point p∗ for our game. We verify that it is also unique. Let σ(p, r) :=
N

∑
i=1

riΓ(p),

ri ≥ 0 and its pseudogradient (Rosen, 1965):

g(p, r) :=













r1∇1Γ(p1, p−1)

r2∇2Γ(p2, p−2)
...

r1∇NΓ(pN , p−N)













. (2.7)

To prove that σ(p, r) is diagonally strictly concave for a positive r ≥ 0, we need to prove

that the inequality (p − q)′g(q, r) + (q − p)′g(p, r) > 0 holds for all q = (q1, . . . , qN) 6=
p. A sufficient condition for this inequality to hold is given in Theorem 6 in (Rosen,
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1965). It states that, if the symmetric matrix:

[G(p, r) + G′(p, r)],

is negative definite, where G(p, r) is the Jacobian with respect to p of g(p, r):

G(p, 1) =
∂g(p, r)

∂p
=















∂g(p, r)
∂p

. . .
∂g(p, r)

∂p
...

. . .
...

∂g(p, r)
∂p

. . .
∂g(p, r)

∂p















,

then σ(p, r) is diagonally strictly concave. We fix r = (1, . . . , 1); the pseudogradient of

our game is:

g(p, 1) =



























−2δp1

N
+

1
N ∑

j 6=1
(−δpj +

1
2
)

−2δp2

N
+

1
N ∑

j 6=2
(−δpj +

1
2
)

. . .
−2δpN

N
+

1
N ∑

j 6=N

(−δpj +
1
2
)



























. (2.8)

We thus obtain that:

G(p, 1) = − δ

N
(1̄ + I),

where 1̄ is the N × N matrix with all the elements equal to 1 and I is the identity matrix.

The sum (1̄ + I) has N − 1 eigenvectors of the form (1, 0,−1, 0, . . .)′ with a correspond-

ing eigenvalue 1 and one eigenvector (1, 1, . . . , 1)′ with eigenvalue N + 1, which means

that G(p, 1) has strictly negative eigenvalues and thus it is strictly negative definite.

From theorem 2 in (Rosen, 1965), this proves the uniqueness of the Nash equilibrium of

our game. We explicitly compute it and we resume our results in the following propo-

sition.

Proposition 2. The group-players Hawk-Dove game with an infinite population of individuals

admits a unique symmetric Nash equilibrium which is given by

p∗ =
N − 1
N + 1

1
2δ

. (2.9)

Proof. We have already proved the existence and the uniqueness of the equilbrium

through Rosen’s conditions. We thus compute the symmetric equilibrium value p∗ by
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maximizing the group fitness function. We have that:

∂Γ(pi, p−i)

∂pi =
−2δ

N
pi +

1
N

N

∑
j=1,j 6=i

(
1
2
− δpj).

By imposing
∂Γ(pi, p−i)

∂pi = 0, we get:

pi =
1

2δN

N

∑
j=1,j 6=i

(−δpj +
1
2
).

To obtain the symmetric Nash equilibrium of the game, we set pi = pj = p∗, which

leads to:

p∗ =
N − 1
N + 1

1
2δ

.

It is interesting to study the two extreme cases N → ∞ and N = 2.

• When the number of groups is infinite, i.e. N → ∞, we obtain:

p∗ =
1
2δ

which is the value of the equilibrium of the corresponding standard Hawk-Dove

game. This is consistent with a similar result in (Haurie and Marcotte, 1985),

that shows the convergence of Nash equilibrium to Wardrop equilibrium as the

number of players goes to infinity.

• When we have only two players (formed by an infinity of individuals), i.e. N = 2

, we obtain:

p∗ =
1
6δ

which means that two groups are less aggressive then two standard players.

Figure 2.2 shows the probability of being aggressive p∗ at the equilibrium, as a function

of the number of players N in an infinite population of individuals, plotted for three

different values of the cost δ (involved in an encounter between two aggressive individ-

uals). We can observe that the equilibrium p∗ is an increasing function of the number of

groups. Note that when N increases, the probability of meeting a member of a different

group also increases: we thus obtain that the level of aggressiveness is higher when the

probability of interactions among individuals of different groups increases. Hence, if

an individual is aggressive, it causes less damage to its group. This can explain the fact
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that the equilibrium probability of being aggressive is increasing in N. As one may ex-

pect, we also observe that when the cost δ increases, at the equilibrium, the probability

p∗ of being aggressive decreases.

2 4 6 8 10 12 14 16 18 20
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δ=4

Figure 2.2: The value of p∗ as a function of the number of groups 2 ≤ N ≤ 20 for three different
values of δ. The upper dashed curve is obtained with δ = 0.6, the middle curve with δ = 1 and the
lower dotted one with δ = 4.

Finite Population of Individuals

If the population of individuals has finite size NK, with payoff matrix (2.4). The fitness

defined in (2.3) becomes:

Γ(pi, p−i) =
K − 1

NK − 1

[

(−δ)(pi)2 +
1
2

]

+
K

NK − 1

N

∑
j=1,j 6=i

[

(−δpj +
1
2
)pi +

1 − pj

2

]

.

Proposition 3. The Hawk-Dove game with a finite population divided into N groups admits a

unique symmetric Nash equilibrium which is given by

p∗ =
K(N − 1)

K(1 + N)− 2
1
2δ

. (2.10)

Proof. It is easy to verify that, as in the infinite population case, Rosen’s conditions for

the existence and the uniqueness of the equilibrium introduced in (Rosen, 1965) are
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satisfied. We thus compute the symmetric equilibrium:

∂Γ(pi, p−i)

∂pi = −2
K − 1

NK − 1
δpi +

K
NK − 1

N

∑
j=1,j 6=i

(
1
2
− δpj)

and, by imposing
∂Γ(pi, p−i)

∂pi = 0, we obtain:

pi =
K

2(K − 1)

N

∑
j=1,j 6=i

(−pj +
1
2δ

).

If pi = pj = p, then:

p =
K(N − 1)
2(K − 1)

(
1
2δ

− p).

The symmetric Nash equilibrium is thus given by:

p∗ =
K(N − 1)

K(1 + N)− 2
1
2δ

.

In Figure 2.3 we plotted the value of the equilibrium p∗ as a function of N, with 2 ≤
N ≤ 20, for three different values of K and a fixed δ = 2. As in the previous case, we

can observe that p∗ is an increasing function of N. In Figure (2.4) we plotted p∗ as a

function of the size of the groups. We can note that p∗ rapidly decreases for small K;

when K > 10, p∗ stabilizes and it is very slowly decreasing. The explanation for this

behavior is that when K is small, then the probability of meeting an individual of one’s

own group is quite sensitive to K, which is not the case when K is large.
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Figure 2.3: The value of p∗ as a function of the number of groups 0 ≤ N ≤ 20 for three different
values of K and δ = 2. Upper dashed line is obtained with K = 2, middle line with K = 10 and
lower dotted line with K = 70.
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Figure 2.4: The value of p∗ as a function of the size of groups 1 ≤ K ≤ 50 for three different values
of N. Upper dashed line is obtained with N = 2, middle line with N = 10, lower dotted line with
N = 70.
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2.3.2 Convergence to the Equilibrium

In evolutionary games, instead of interpreting the equilibrium as a static notion, it’s

preferable to suppose that individual agents can gradually adjust their choices to their

current strategic environment, and to study whether the induced distribution of actions

converges to a stable situation. To provide a dynamic foundation of the equilibrium of

our game, we introduce actions’ dynamics in our model, such that the Nash equilibria

computed above are asymptotically stable for these dynamics.

We assume that each group-player changes its action in order to increase the payoff of

the group. By following Rosen’s approach (Rosen, 1965), we can describe the interval

∆(A) = [0, 1] through the mapping hi(pi) = (pi, 1 − pi)′, so that [0, 1] = {p|hi(p) ≥ 0}.

Let h(p) = (p1, 1 − p1, p2, 1 − p2, . . . , pN , 1 − pN) be the function representing all the

2N constraints, such that [0, 1]N = {p|h(p) ≥ 0}. We suppose that a group changes

its action at a rate proportional to the gradient of its payoff function with respect to its

action and subject to the 2N constraints. This leads to the action dynamics:

ṗi = ri∇iΓ(pi, p−i) +
2N

∑
j=1

uj∇ihj(p), (2.11)

where Γ(pi, p−i) is the fitness of Gi and the vector u lies in a bounded subset U(p) ⊂
R

2N . The sum on the right hand of (2.11) serves to assure that pi remains in [0, 1]. More

precisely, define the N × 2N matrix H = [∇1h(p) ∇2h(p), . . . ,∇h2N(p)], which is

independent of p:

H =



















1 −1 0 0 0 . . . . . .

0 0 1 −1 0 0 . . .

0 0 0 0 1 −1 0
...

...
...

...
...

...
...

0 0 . . . . . . . . . 1 −1



















(2.12)

Define the function:

f (p, u, r) = g(p, r) + H(p)u.

From the definition of the pseudogradient, the system of N dynamic equations can be

written as:

ṗ = f (p, u, r), u ∈ U(p),
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where the set U(p) is given by:

U(p) = {u|‖ f (p, u, r)‖ = min
vj ≥ 0, j ∈ J,
vj = 0 otherwise

‖ f (p, u, r)‖}

and:

J = J(p) = {j ∈ {1, . . . , 2N}|hj(p) ≤ 0}.

According to Rosen’s theorem, the negative definiteness of the Jacobian G(p, r) guar-

antees the global asymptotic stability of the equilibrium for the system (2.11). We thus

use equations (2.11) as a counterpart of replicator dynamics in our groups evolution-

ary game. The global stability of the equilibrium point permits to determine the equi-

librium point for any concave game by appropriate mathematical programming com-

putational methods. In particular, gradient methods for a concave nonlinear program-

ming problem (Rosen, 1965) can be modified to find the equilibrium point for a concave

game.

2.4 Conclusion

In this chapter we proposed a new approach to evolutionary games, modeling those

situations in which the player is not the individual involved in the interactions, as the

fitness is associated with a whole group rather than to the single interacting individual.

We studied the Hawk-Dove game, in this group-players framework in two different

cases: for an infinite population of individuals and for a finite one. We verified that the

obtained Hawk-Dove group-players game is convex, which allowed us to prove the

existence and the uniqueness of the Nash equilibrium through Rosen’s results (Rosen,

1965). We then explicitly computed it as a function of the number of groups. We finally

defined a gradient-based dynamics, such that the equilibrium obtained is asymptoti-

cally stable for this dynamics. In the following chapter we define a different concept of

equilibrium, related to a notion of local deviation within a group.
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Chapter 3

A New Equilibrium Concept: Group
Fitness Evolutionarily Stable Strategy

”Imagination is more important than knowledge. For knowledge is limited
to all we now know and understand, while imagination embraces the entire
world, and all there ever will be to know and understand.”

Albert Einstein, 1929

Summary
Following the idea of group players presented in the previous chapter, we intro-
duce here a new concept of equilibrium, the Group Fitness Evolutionarily Stable
Strategy, based on the group fitness function and related to a notion of deviation
within groups. We compare the GFESS to the standard ESS and we characterize
it in the case of two pure actions games. We illustrate our results through some
classical examples and we show a possible application in multiple access control
framework.
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3.1 Introduction

We pursue here the line of research presented in Chapter 2, studying a large population

in which pairwise interactions among randomly selected individuals occur, but where

the actual player of the game is the whole group. While in Chapter 2 we restrain to

symmetric groups of the same size and we study the symmetric Nash equilibria of the

game, we now consider groups with different sizes and we introduce a new concept of

equilibrium, the Group Fitness Evolutionarily Stable Strategy (GFESS). The stability

required by the GFESS is related to a notion of deviation within a group, and thus of a

“fraction” of the player (instead of a fraction of a population). We thus do not attempt

to simply extend the standard definitions of EGT to a multipopulation setting, but we

provide a new modeling framework, where the player is the group but the interactions

occur among individuals.

We explore the relationship between GFESS and standard ESS and, for the particular

case of two strategies games, we provide a characterization of the equilibria. We then

extend the definition of group’s fitness to the case in which the payoff matrix associated

with intragroup interactions is different from that associated with intergroups interac-

tions, and we apply this model to study a problem of multiple access control.

State of Art

Garay and Varga (Garay and Varga, 2000) first define the N-populations strict ESS for

multipopulation games with symmetric conflicts within the species (populations) and

asymmetric conflicts between them. The player is the individual and the fitness is

defined through a system of payoff matrices {Aij} where A
ij represents the payoff of

species i in its conflict with species j. Then p∗ = (p1∗, . . . , pN∗) is a N-populations strict

ESS if, for all p 6= p∗ and for i ∈ {1, . . . , N} with pi 6= pi∗, there exists 0 < ǫi
p < 1 such

that, for all 0 < ǫi
< ǫi

p we have:

pi

(

N

∑
i=1

A
ijp̄j

)

< pi∗
(

N

∑
i=1

A
ijp̄j

)

,

where p̄j = ǫjpj + (1 − ǫj)pj∗. The authors prove that this is equivalent to require that

pi

(

N

∑
i=1

A
ijpj

)

< pi∗
(

N

∑
i=1

A
ijpj

)

,
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for all p 6= p∗ in some neighborhood of p∗.

The static definition of strict N-populations ESS extends Maynard Smith’s standard

definition of evolutionary stability and that given by Hofbauer and Sigmund for asym-

metric matrix games (J.Hofbauer and K.Sigmund, 1988). The authors also introduce

a weaker notion of stability, the evolutionary dynamical stability: a state p∗ is said to be

evolutionarily dynamically stable if, ∀p 6= p∗, the vector (1, 1, . . . , 1) ∈ R
N is an asymp-

totically stable rest point of the system

ǫ̇i = ǫi[pi∗ − p̄i]
[

A
ijp̄j
]

, i = 1, . . . , N.

A evolutionarily dynamically stable state is equivalent to the standard ESS for N = 1

and to the Cressman definition of two-species ESS for N = 2 (Cressman, 1992). In

an analogous setting, Cressman et al. (Cressman et al., 2001) focuses on a dynamical

approach to the ESS, assuming that selection acts much faster than mutation and thus

the incumbent population has enough time between mutations to eliminate the less

fit ones. They define a dynamics for the game and they provide a definition of a N-

populations ESS related to a property of local asymptotically stability for the dynamics

introduced. Their ESS is equivalent to the dynamically stable state in (Garay and Varga,

2000), and it is such that at least one of the species earns more that any mutant strategy.

While in (Garay and Varga, 2000) and (Cressman et al., 2001) it is assumed that all pop-

ulations have the same number of individuals and thus the size of the populations is

not considered, in our model the GFESS is defined as a function of the groups’ (nor-

malized) sizes, which allows us to study the impact of groups sizes on the equilibrium

output.

Sandholm (Sandholm, 2010) compares the two rather different ways of extending the

standard definition of ESS to multipopulation games. The Taylor’s condition (see Chap-

ter 2) for a N-populations state x = (x1, . . . , xN) to be an the ESS requires that, for any

multipopulation incumbent state y = (y1, . . . , yN) 6= x in a neighborhood of x, the ag-

gregate payoff, i.e. the payoff of the society as a whole, of the invading society in state

x, exceeds the aggregate payoff of the society in state y, and thus (y − x)′F(y) < 0.

For Cressman ESS, it is enough that for one population i in the society composed of

N populations, action xi earns a higher average payoff than the corresponding yi and

thus (yi − xi)′Fi(yi) < 0, where Fi(yi) denotes the average payoff of population i. The

more appropriate extension of the evolutionary stability studied by Maynard Smith and

Price, with monomorphic populations of mixed strategists, is the ESS concept defined

by Cressman, while Taylor ESS is more useful to understand the dynamics of behavior

in polymorphic populations of pure strategists.
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3.2. Group Fitness Evolutionarily Stable Strategy

Note that for N = 1 these N-population games reduces to the standard EGT models

whereas in our framework, if there’s only one group, there’s no game but an optimiza-

tion problem, since the player is the group.

The chapter is structured as follows. We first introduce in Section 3.2 the definition of

the GFESS and we analyze the relationship between GFESS standard ESS. In Section 3.3

we provide the characterization of the GFESS in the case of two actions game. Section

3.4 gives some numerical illustration through three classical examples, the Hawk-Dove

game, the Stag Hunt game and the Prisoner’s Dilemma. In section 3.5 we study an

application in multiple access control in slotted Aloha.

3.2 Group Fitness Evolutionarily Stable Strategy

Consider a large population divided into N groups, denoted by Gi, i = 1, 2, .., N where

the normalized size of Gi is αi, with
N

∑
j=1

αj = 1. Suppose that each individual in group Gi

interacts with a member of Gj with probability αj, i, j = 1, . . . , N. Let A = {a1, a2, .., aM}
be the finite set of pure actions and ∆(A) the corresponding set of mixed actions; as we

did in the previous chapter, we suppose that all individuals in the same group adopt

the same (mixed) action and thus, we associate to each Gi a vector qi = (qi
1, qi

2, .., qi
M) ∈

∆(A), where qi
k is the probability that an individual in group Gi chooses an action ak ∈

A,
M

∑
l=1

qi
l = 1. Let q = (q1, . . . , qN) ∈ ∆(A)N denote the multiaction of the population.

The expected fitness of a group-player Gi is:

Γi(qi, q−i) =
N

∑
j=1

αjF(qi, qj), (3.1)

where q−i = (q1, . . . , qi−1, qi+1, . . . , qN) ∈ ∆(A)N−1 and F(qi, qj) denotes the imme-

diate expected fitness of an individual adopting action qi against an opponent playing

qj. F(·, ·) is assumed to be bilinear. Γi is thus a weighted sum of the possible individual

fitness, where the weights are given by the normalized sizes of the players.

The definition of the GFESS is related to a robustness property against local deviations
in a group. While in Chapter 2 we consider symmetric Nash equilibria among groups,
which are stable against the deviation of one group-player, here we consider deviations
of a ’fraction of the player’, i.e. of a share of individuals in a group, and we define and
characterize the equilibria (not necessarily symmetric) which are robust against these
deviations. More precisely, an ǫ− deviation in group Gi consists in a (possibly) large
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Figure 3.1: The population of individuals is divided into a finite number of groups Gi, i = 1, . . . , N.
Each individual can interact with a member of its group or of a different one. All individuals in Gi
adopts the same strategy qi (no matter which individual they encounter).

deviation of a small fraction ǫ of individuals of the group from the incumbent action qi

to a different (mutant) action pi. From the definition of the group fitness function 3.1,
this is mathematically equivalent to a small deviation in the action by all members of
Gi to the mixed action p̄i := ǫpi + (1 − ǫqi) ∈ ∆(A). The population’s state after the
deviation becomes (q1, . . . , qi−1, ǫpi + (1 − ǫ)qi, qi+1, . . . qN) and the average payoff of
the mutant group is given by:

Γi(p̄
i, q−i) =

N

∑
j=1

αjF(p̄
i, qj) = Γi(q

i, q−i) + ǫ(−αiΩ(pi, qi) + Γi(p
i, q−i)− Γi(q

i, q−i))

+ ǫ2αiΩ(pi, qi)

= Γi(q
i, q−i) + ǫ

(

αi(F(pi, qi) + F(qi, pi)− 2F(qi, qi)) + ∑
j 6=i

αj(F(pi, qj)− F(qi, qj)
)

+ ǫ2αiΩ(pi, qi),

(3.2)

where Ω(pi, qi) := F(pi, pi)− F(pi, qi)− F(qi, pi)) + F(qi, qi).

Definition 4. A multiaction q = (q1, q2, .., qN) is a Group Fitness Evolutionarily Stable

Strategy (GFESS) if for all i = 1, . . . , N and for all pi 6= qi ∈ ∆(A), there exists some

ǫpi ∈ (0, 1), which may depend on pi, such that for all ǫ ∈ (0, ǫpi)

Γi(p̄i, q−i) < Γi(qi, q−i), (3.3)
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3.2. Group Fitness Evolutionarily Stable Strategy

where p̄i = ǫpi + (1 − ǫ)qi.

Note that a GFESS is stable against local deviations in one group, i.e., we suppose that

only one mutant group can be present in the population at the same time. We define:

Ψi(pi, q) := Ω(pi, qi)− Γi(pi, q−i) + Γi(qi, q−i), (3.4)

and we provide, in the following proposition, a characterization of the GFESS, which is

equivalent to Definition (4).

Proposition 4. A multiaction q = (q1, q2, .., qN) is a GFESS iff it satisfies the two following

conditions:

i. ∀pi ∈ ∆(A)

Ψi(pi, q) ≥ 0, (3.5)

ii. if ∃pi 6= qi such that:

Ψi(pi, q) = 0 ⇒ Ω(pi, qi) < 0 (3.6)

Proof. It follows from the definition that multiaction q is a GFESS iff ∀ǫ ∈ (0, ǫpi) the
difference Γi(p̄i, q−i)− Γi(qi, q−i) is strictly negative; if we explicit this difference we
get:

ǫ2αiΩ + ǫ[αi(F(pi, qi) + F(qi, pi)− 2F(qi, qi)) + ∑
j 6=i

αj(F(pi, qj)− F(qi, qj))] < 0

⇔ −ǫ[αi(F(pi, qi) + F(qi, pi)− 2F(qi, qi)) + ∑
j 6=i

αj(F(pi, qj)− F(qi, qj))]− ǫ2αiΩ > 0.

As ǫ is small, this is true if either the coefficient of ǫ is strictly positive or if it is null and

the coefficient of ǫ2 is strictly positive. As the coefficient of ǫ is:

− [αi(F(pi, qi) + F(qi, pi)− 2F(qi, qi)) + ∑
j 6=i

αj(F(pi, qj)− F(qi, qj))]

= αi(Ω(pi, qi)− F(qi, qi) + F(pi, pi)) + ∑
j 6=i

αj(F(pi, qj)− F(qi, qj))

= αiΩ(pi, qi)− Γi(pi, q−i) + Γi(qi, q−i) = Ψ(pi, q),

conditions (i) and (ii) straightforwardly follow.
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3.2.1 Nash Equilibrium and Group-Players

Definition 5. The multiaction q = (q1, q2, .., qN) is a Nash Equilibrium of the N groups

game if ∀i ∈ {1, . . . , N}

Γi(qi, q−i) ≥ Γi(pi, q−i), pi 6= qi. (3.7)

If it holds with strict inequality, then q is a strict Nash equilibrium.

It trivially follows that any strict Nash (multiaction) equilibrium is a GFESS. Note that,

if multiaction q satisfies condition (3.6), it implies that there exists an action pi 6= qi ∈
∆(A) such that:

{

αiΩ(pi, qi) = Γi(qi, q−i)− Γi(pi, q−i)

Ω(pi, qi) < 0
,

and thus:

Γi(qi, q−i) > Γi(pi, q−i).

It follows that, if ∀i = 1, . . . , N, condition (3.6) is satisfied ∀pi 6= qi ∈ ∆(A), then

multiaction q is a strict Nash equilibrium. The GFESS we defined can be interpreted as

a local strict Nash equilibium in the groups game.

3.2.2 GFESS and Standard ESS

Since we consider pairwise interactions among individuals and the fitness of a group is

defined as a weighted sum of individual fitness, we study here the relationship between

the ESS in a standard game (with individual players) and GFESS in a group-players

game.

Proposition 5. Suppose that the fitness function F related to pairwise interactions among

individuals is symmetric, i.e. F(p, q) = F(q, p). Then, if q∗ ∈ ∆(A) is an ESS in the

standard game, multiaction q = (q∗, . . . , q∗) ∈ ∆(A)N is a GFESS in the N group-players

game.

Proof. Let q∗ ∈ ∆(A) be an ESS in a standard evolutionary game and let q = (q∗, .., q∗) ∈
∆(A)N be a multiaction for the N group-players game. From the symmetry of the fit-
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ness function:

Ψi(pi, q∗) = −
(

αi(F(pi, q∗) + F(q∗, pi)− 2F(q∗, q∗) + ∑
j 6=i

αj(F(pi, q∗)− F(q∗, q∗)
)

= −2αi(F(pi, q∗)− F(q∗, q∗))− (1 − αi)(F(pi, q∗)− F(q∗, q∗))

= −(1 + αi)(F(pi, q∗)− F(q∗, q∗)).∗

From the definition of ESS, we obtain that Ψi(pi, q∗) ≥ 0, which means that multiaction

q satisfies the first condition (3.5). If there exists a pi 6= q∗ such that Ψi(pi, q∗) = 0,

then F(pi, q∗) = F(q∗, q∗) and Ω(pi, q) = F(pi, p) − F(pi, pi). Since q∗ is an ESS,

F(pi, q∗) = F(q∗, q∗), implies that F(pi, pi) < F(q∗, pi), and thus condition (3.5) is

satisfied. This completes the proof.

In order to provide a characterization of the GFESSs, for simplicity of presentation, in

the next section, we consider the case of two pure actions games.

3.3 Analysis of N Groups Games with Two Pure Actions

In this section we study the group-players game when the set of pure actions is given

by A = {X, Y}. The payoff matrix associated with pairwise interactions among indi-

viduals is:

A =

(

X Y

X a b

Y c d

)

, (3.8)

where the entries of the matrix A
ij, i, j ∈ {X, Y} give the payoff of the first (row) indi-

vidual if it plays pure action i against the second (column) individual playing action

j. The payoffs of the column (individual) player are given by the transposed of A. A

mixed strategy qi ∈ ∆(A) is given by qi = (qi
X, qi

Y), where qi
Y = 1 − qi

X. With some

abuse of notation, in the following we identify a strategy simply as the probability of

playing strategy A, i.e. qi = qi
X ∈ [0, 1].

Conditions (3.5)-(3.6) can be rewritten as follows:

• ∀pi ∈ [0, 1], i = 1, .., N:

Ψi(pi, q) = (qi − pi)
(

αi(F(qi, 1)− F(qi, 0)) +
N

∑
j=1

αj(F(1, qj)− F(0, qj))
)

≥ 0.

(3.9)
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• If Ψi(pi, q) = 0 for some pi 6= qi, then:

∆ < 0, where ∆ = a − b − c + d. (3.10)

We now give a characterization of the possible GFESS for two pure actions games, de-

pending of the values of the payoff matrix and on the size of the groups. We distinguish

between pure, mixed and fully mixed GEES. Without loss of generality, we reorder the

groups according to their size, to have α1 ≤ α2 ≤ . . . ≤ αN .

Pure GFESS

We identify a pure multiaction with a number NX ∈ {0, ..., N}, which indicates that the

NX first groups use pure action X and the remaining N − NX groups play pure action

Y. For example, NX = N (resp. NX = 0) stands for the multiaction (X, . . . , X) (resp.

(Y, . . . , Y)), where all groups choose pure action X (resp. Y).

Proposition 6. For the two pure actions game, we have the following characterization of the

pure GFESS.

i. If ∀i = 1, . . . , N:

a − c > αi(b − a) or

{

a − c ≥ αi(b − a)

∆ < 0

then NX = N is a GFESS;

ii. If ∀i = 1, . . . , N:

b − d < αi(d − c) or

{

b − d ≤ αi(d − c)

∆ < 0

then NX = 0 is a GFESS;

iii. Let 1 ≤ NX ≤ N − 1 and define H(NX) :=
NX

∑
j=1

αj(a − c) +
N

∑
j=NX+1

αj(b − d). If:

{

H(NX) > αi(b − a) i = 1, . . . , NX

H(NX) < αi(d − c) i = NX + 1, . . . , N
or











H(NX) ≥ αi(b − a) i = 1, . . . , NX

H(NX) ≤ αi(d − c) i = NX + 1, . . . , N
∆ < 0

then NX is a GFESS.

Proof.
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i. The pure multiaction NX = N (corresponding to (X, . . . , X)) is a GFESS in the

two actions game if, either it satisfies condition (3.9) with strict inequality for all

i, or, if the inequality is not strict, if for some i it holds with equality, for these,

the condition (3.10) is verified. Note that NX = N means that qi = 1 for all

i = 1, . . . , N. We can then rewrite condition (3.9) as:

(1 − pi)
(

αi(a − b) +
N

∑
j=1

αj(a − c)
)

= (1 − pi)
(

αi(a − b) + a − c)
)

≥ 0

∀pi 6= 1, ∀i = 1, . . . , N. Since (1 − pi) > 0, the latter inequality is satisfied iff:

a − c ≥ αi(b − a) ∀i. We thus have that, either condition (3.9) is satisfied with

strict inequality for all i, or, if the equality holds for some i ∈ {1, . . . , N}, then

condition (3.10) needs to be satisfied, i.e. ∆ < 0, which completes the proof of (i).

ii. Following the same line of the proof of (i), for the pure multiaction NX = 0 (cor-

responding to qi = 0 for all i = 1, . . . , N) condition (3.9) can be rewritten as:

−pi
(

αi(c − d) +
N

∑
j=1

αj(b − d)
)

= −pi
(

αi(c − d) + b − d)
)

≥ 0

∀pi 6= 0, ∀i = 1, . . . , N, which leads to:

αi(c − d) + b − d ≤ 0 ∀i = 1, . . . , N,

and thus, either b − d < αi(c − d) for all i or αi(c − d) + b − d ≤ 0 and ∆ < 0.

iii. We now consider the pure multiaction NX, with NX ∈ {1, . . . , N − 1}, (i.e. of the

kind (X, . . . , X, Y, . . . , Y)). Following the line of (i) and (ii), for NX, condition (3.9)

becomes























(αi(a − b) +
NX

∑
j=1

αj(a − c) +
N

∑
j=NX+1

(b − d) ≥ 0 i = 1, . . . , NX

(αi(c − d) +
NX

∑
j=1

αj(a − c) +
N

∑
j=NX+1

(b − d) ≥ 0 i = NX + 1, . . . , N.

By defining H(NX) :=
NX

∑
j=1

αj(a − c) +
N

∑
j=NX+1

αj(b − d), from the considerations in

(i) and (ii), we obtain (iii), which completes the proof.
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Fully Mixed GFESS

We say that a multiaction q is fully mixed if each group i uses a mixed action qi =

(qi
1, . . . , qi

M) ∈ ∆(A) which assigns positive probability to each pure action, i.e., 0 <

qi
l < 1 for l = 1, . . . , M, i = 1, . . . , N.

Proposition 7. Define, for i = 1, . . . , N :

qi∗ :=
d − b +

(

(1 + N)αi − 1
)

(d − c)
(N + 1)αi∆

. (3.11)

If ∆ < 0 and 0 < qi∗
< 1, ∀i = 1, . . . , N, then the multiaction q∗ = (q1∗, . . . , qN∗) is the

unique fully mixed GFESS equilibrium of the N group-players two pure actions game.

Proof. From the definition of the GFESS for the two actions game, we can observe that

a fully mixed multiaction q = (q1, . . . , qN) ∈]0, 1[N can satisfy condition (3.9) only with

equality, i.e.:

αi(F(qi, 1)− F(qi, 0)) +
N

∑
j=1

αj(F(1, qj)− F(0, qj)) = 0 ∀i = 1, . . . , N,

This leads to

αi∆qi + b − d + αi(c − d) + ∆
N

∑
j=1

αjq
j = 0.

By imposing it for all i = 1, . . . , N, we get:

qi∗ =
d − b +

(

(1 + N)αi − 1
)

(d − c)
(N + 1)αi∆

.

q = (q1∗, . . . , qN∗) is an admissible fully mixed multiaction if qi∗ ∈]0, 1[ and, if ∆ < 0 it

is a GFESS.

Remark 2. Note that every fully mixed GFESS is a strict Nash equilibrium since the condition

(3.10) is satisfied for all pi and all i (see Subsection 3.2.1).

Mixed GFESS

We now look for equilibria with both mixed and pure actions. We represent a mixed

multiaction by (NX, NY, q), where group i for i = 1.., NX (resp. i = NX + 1, .., NX + NY)

uses pure action A (resp. B) and the remaining N − (NX + NY) groups adopt a strictly

mixed action qi ∈]0, 1[.

38



3.4. Some Examples

Proposition 8. Mixed multiaction in the form (NX, NY, q) is a GFESS iff:



























∆ < 0

αi∆ + d − b + αi(c − d) + ∆(αNX + y) ≥ 0, i = 1, .., NX

d − b + αi(c − d) + ∆(αNX + y) ≤ 0, i = NX + 1, .., NX + NY

qi =
d − b + αi(d − c)− y∆

∆αi
, i = NX + NY + 1, .., N

(3.12)

where y =
(N − NX − NY)(d − b) + ∆αNX + (d − c)∑

N
j=NX+NY+1 αj

∆(N − NX − NY + 1)
.

Proof. Let us consider mixed multiaction (NX, NY, q). From the condition (3.9), it is a

GFESS iff:











αi∆ + b − d + αi(c − d) + ∆y > 0, i = 1, .., NX

b − d + αi(c − d) + ∆y < 0, i = NX + 1, .., NX + NY

αi∆qi + b − d + αi(c − d) + ∆y = 0, i = NX + NY + 1, .., N

(3.13)

where y =
N

∑
i=1

αjq
j. To compute qi, i = NX + NY + 1, .., N, we add together the N −

NX − NY last equations’ left hand sides in (3.13), which gives:

∆y − ∆αNX + (N − NX − NY)(b − d) + (c − d) ·
N

∑
j=NX+NY+1

αj + ∆(N − NX − NY)y = 0,

(3.14)

and thus we obtain:

y =
(N − NX − NY)(d − b) + ∆αNX + (d − c)∑

N
j=NX+NY+1 αj

∆(N − NX − NY + 1)
(3.15)

This agrees with (3.12), completing the proof of the proposition.

3.4 Some Examples

In this section we study some examples of games with two group-players and two

pure actions. The normalized sizes of the two groups are α1 = α and α2 = 1 − α,

with 0 < α ≤ 0.5. We define three different games, where the payoff associated with

a pairwise interaction among individuals belongs, respectively, to the anticoordination

class, coordination class and pure dominance class of (standard) games. We compute
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the equilibria as a function of α, in order to understand the impact of the relative size

of groups at the equilibrium.

3.4.1 Hawk-Dove Game

We first consider the Hawk-Dove game, defined in (1.8), which belongs to the anticoor-

dination class. We fix the values of the parameters V = 1 and C = 2 and we compute

the GFESSs as a function of α ∈ [0, 0.5]. Note that, as ∆ = −1 < 0, the second condition

(3.10) is always satisfied, and thus GFESSs and strict NEs coincide. We find that:

• the asymmetric pure multiaction (H, D) is a GFESS for 0 < α < 0.2;

• the asymmetric mixed multiaction (H, q2∗) is a GFESS for 0 < α < 0.3;

• the fully mixed (q1∗(α), q2∗(α)) is a GFESS for 0.3 < α < 0.5 where, from (3.11):

q1∗(α) =
2 − 3α

6α
,

q2∗(α) =
3α − 1

6α
.

For α ∈ [0, 0.2] the game thus admits two equilibria (H, D) and (H, q2∗), whereas, for

the other values of α the equilibrium is unique. When α = 0.5, we have q1∗(α) =

q2∗(α) = 1/6, which corresponds to the symmetric Nash equilibrium obtained in the

previous chapter (with δ = 1).
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Figure 3.2: The fully mixed equilibrium actions q1∗ (upper line) and q2∗ (lower line), respectively
of the first and the second group for 0.3 < α < 0.5 for the two group-players Hawk-Dove game.

3.4.2 Stag Hunt Game

We now consider a well-known example in classical GT, the Stag Hunt game, which

belongs to the coordination class. The story behind has been described by Rousseau.

Two individuals go out on a hunt; if they cooperate they can hunt a stag, otherwise,

hunting alone, a hunter can only get a hare. The game represents those situations in

which collaboration is rewarding for the players and social cooperation is in conflict

with safely one. The general payoff matrix of this game is:

(

S H

S a b

H c d

)

, with a > c ≥ d > b,

where S and H stand respectively for Stag and Hare. In standard game theory, co-

ordination games admit two strict pure action NEs (which are thus also ESSs), and a

non-strict symmetric mixed NE. For the Stag Hunt game theses are, respectively, the

risk dominant equilibrium (H, H), the payoff dominant one (S, S)and the mixed NE,

q1∗ = q2∗ =
d − b

a − b − c + d
, which is not evolutionarily stable.

To study the two group-players game with the above payoff matrix associated with

pairwise interactions, we set a = 2, b = 0, c = 1, d = 1. Since ∆ = 2 > 0 the
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second condition (3.10) for the GFESS is never satisfied, and thus condition (3.9) must

be satisfied with strict inequality. This implies that the group-players Stag Hunt game

do not admit the fully mixed GFESS. We obtain the following GFESSs:

• the pure symmetric (S, S) and (H, H), for all values of α;

• the pure non-symmetric (S, H) for 0.25 < α < 0.5;

We observe that the ESSs of the standard game are GFESSs of the group-players Stag

Hunt game for any value of α, while, in a specific interval of values of α, our game also

admits the non symmetric pure GFESS (S, H).

3.4.3 Prisoner’s Dilemma

We consider another classical example in game theory, the Prisoner’s Dilemma, which

belongs to the pure dominance class. The story beyond the game is the following: two

criminals are arrested and separately interrogated. They can either accuse the other,

either remain silent. If both of them accuse the other (defect), they will be both impris-

oned for two years. If only one accuse the other, the accused is imprisoned for three

years while the other is free. If both remain silent (cooperate), each of them will serve

one year in jail. The general payoff matrix is the following:

(

C D

C a b

D c d

)

, with c > a > d > b,

where C and D stand respectively for cooperation and defection. In standard GT, pure

dominance class games admit a unique pure, strict and symmetric NE, which is also the

unique ESS. For the Prisoner’s Dilemma this equilibrium is (D, D). We set a = 2, b = 0,

c = 3, d = 1 and we compute the corresponding GFESSs. As in the previous example,

condition (3.10) is never satisfied, since ∆ = 0. We obtain that the non-symmetric pure

multiaction (D, C) is the only GFESSs for all values of α ∈ [0, 0.5], which means that the

smaller group defects and the bigger cooperates.

3.5 GFESSs in a Multiple Access Control Game

In this section we introduce a refinement of our model and we apply it to a MAC

problem. We modify the group fitness function defined in (3.1) by supposing that

the immediate payoff matrix differs if the interacting individuals belong to the same
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group or to two different ones. The expected fitness function of group Gi playing

(possibly mixed) action qi ∈ ∆(A) in a population of N groups playing multiaction

q = (q1, . . . , qN) ∈ ∆(A)N , is defined as follows:

Γ′
i(q

i, q−i) := αi J(qi, qi) + ∑
j 6=i

αiF(qi, qj), (3.16)

where J(·, ·) indicates the immediate expected fitness related to an interaction within a

group and F(·, ·) is the immediate expected fitness associated with interactions among

individuals of different groups. After an ǫ−deviation of group i to action pi the fitness

of player Gi can be expressed as follows:

Γ′
i(p̄

i, q−i) = Γ′
i(q

i, qj) + αiǫ
2Ω(pi, qi) + ǫ[αi(J(pi, qi) + J(qi, pi)− 2Ki(qi, qi))

+ ∑
j 6=i

αj(Ji(pi, qj)− Ji(qi, qj))],

where p̄i = ǫpi + (1− ǫ)qi and Ω′(pi, qi) := J(pi, pi)− J(pi, qi)− J(qi, pi)) + J(qi, qi).

We define

Ψ′
i(p

i, q) := αi(2J(qi, qi)− J(pi, qi)− J(qi, pi))− ∑
j 6=i

αj(F(pi, qj)− F(qi, qj))

= αiΩ
′(pi, qi)− Γ′

i(p
i, q−i) + Γ′

i(q
i, q−i),

(3.17)

and, as in Proposition 4, we determine the general conditions for a multiaction q =

(q1, . . . , qN) to be a GFESS:

• ∀pi ∈ ∆(A):

Ψ′
i(p

i, q) ≥ 0,

• If ∃pi 6= qi ∈ ∆(A) such that:

Ψ′
i(p

i, q) = 0 ⇒ Ω′(pi, qi) < 0

3.5.1 A MAC Game

We now apply this group-players model to a particular MAC problem. We consider a

population of mobiles forming a sparse ad-hoc network, where mobiles compete with

their neighbors on the access to a radio channel. We suppose that mobiles are randomly

placed over a plane, and that they are divided into a finite number N of groups Gi,

with normalized size αi, i = 1, . . . , N. Mobiles are matched through (both inter-groups

and intra-groups) pairwise interactions, where each mobile decides either to transmit
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(T) or to not transmit (S) a packet to a receiver when they are within transmission

range of each other. Interferences occur as in the Aloha protocol: if more than one

neighbor of a receiver transmits a packet at the same time then collision occurs and

the transmission fails. The channel is ideal for transmission and all errors are due to

collisions. Let µ be the probability that a mobile k has its receiver R(k) within its range.

When a mobile k transmits, all mobiles within a circle of radius R centered at node R(k)

cause interference to k for its transmission to R(k), so that more than one transmission

within a distance R of the receiver in the same slot causes a collision and the loss of

mobile’s k packet at R(k). All mobiles in group Gi transmits with probability pi ∈ [0, 1],

i = 1, . . . , N. If a mobile transmits a packet, it occurs a transmission cost of δ.

R(k) 

k 

G1 

G2 G3 

G4 

p3 

p4 

Figure 3.3: When a mobile k transmits, all mobiles within a circle of radius R centered at node R(k)
cause interference to k for its transmission to R(k), so that more than one transmission within a
distance R of the receiver in the same slot causes a collision and the loss of mobile’s k packet at R(k).
A transmitter in group Gi transmits with probability pi ∈ [0, 1], i = 1, . . . , N.

The packet transmission is successful if the other users do not transmit (stay quiet) in

that given time slot. If a mobile transmits successfully a packet, it gets a reward of V.

We suppose that the payoff V is greater than the cost of transmission, i.e., δ < V. We

denote by γ the probability that a mobile is alone in a given local interaction; the tagged

mobile does not know whether there is another transmitting mobile within its range of

transmission. Let P1 (resp. P2) be the matrix representing the immediate fitness of a

group when two mobiles belonging to the same group (resp. of two different ones)

interact:

P1 ≡
(

T S

T −2δ 1 − δ

S 1 − δ 0

)

, P2 ≡
(

T S

T −δ 1 − δ

S 0 0

)

.
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The definition of P1 implies that when two mobiles of the same group Gi interact, any

successful transmission is equally rewarding for group i. When two of mobiles in group

Gi interact and play qi ∈ [0, 1], the expected fitness of Gi is:

J(qi, qi) = µ
(

qi[γ(1 − δ) + (1 − γ)((1 − δ)(1 − qi)− 2δqi)] + (1 − γ)(1 − δ)(1 − qi)qi
)

= µqi[(1 − δ)(2 − γ)− 2(1 − γ)qi].

(3.18)

If a mobile in Gi interacts with a mobile in a different group Gj playing qj ∈ [0, 1], its

expected payoff is the following:

F(qi, qj) = µqi[γ(1 − δ) + (1 − γ)((1 − δ)(1 − qj)− δqj]

= µqi[1 − δ − (1 − γ)qj]
(3.19)

The total expected payoff of Gi is then given by:

Γ′
i(q

i, q−i) = µqi[1 − δ + (1 − γ)(αi(1 − δ − qi)−
N

∑
j=1

αjq
j)] (3.20)

The multiaction q is a GFESS of the group-players MAC game if ∀i = 1, . . . N:

Ψ′
i(pi, q) ≡ (qi − pi)[1 − δ + (1 − γ)(αi(1 − δ − 2qi)−

N

∑
j=1

αjq
j)] ≥ 0.

Note that, in this game, the condition Ω′(pi, qi) < 0 reduces to (pi − qi)2(1 − γ)αi >

0. Since the latter inequality is always true, the second condition is always satisfied

and thus the first condition is sufficient to guarantee the existence of a GFESS. In the

following proposition we give a characterization of the GFESSs of the presented MAC

game. Without loss of generality, we reorder the groups so that α1 ≤ α2 . . . ≤ αN .

Proposition 9. We find that:

i. The pure symmetric multiaction (S, . . . , S) is never a GFESS.

ii. If a fixed group Gi adopts pure action T, then if i < N, at the equilibrium all smaller

groups transmit. If i = N, i.e. the bigger group GN uses action T at the equilibrium, then

(T, . . . , T) is an equilibrium iff γ > γ̄.

iii. If a fixed group Gi adopts pure action S, then at the equilibrium, all smaller groups also

use S.
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iv. The game admits a unique fully mixed GFESS q∗ = (q1∗ , . . . , qN∗
), given by:

qi∗ =
(1 − δ)(1 + γ + (1 − γ)(2 + N)αi)

2(N + 2)(1 − γ)αi
(3.21)

under the condition: γ < γ.

v. If a fixed group Gi adopts a mixed action qi ∈]0, 1[, then if qi
>

1 − δ

2
, at the equilibrium

all smaller groups may use pure action T, whereas if qi
<

1 − δ

2
, smaller groups may

play S.

The thresholds γ and γ̄ are defined as follows:

γ ≡ min
αi

αi(N + 2)(1 + δ)− (1 − δ)

αi(N + 2)(1 + δ) + (1 + δ)
,

γ̄ ≡ max
αi

(

1 − 1 − δ

αi(δ + 1) + 1

)

.

Proof. The multiaction q = (q1, . . . , qN) ∈ [0, 1]N is a GFESS if ∀i = 1, . . . , N, the condi-

tion Ψ′
i(p

i, q) ≥ 0 is verified ∀pi ∈ [0, 1].

i. If, ∀i = 1, . . . , N qi = 0, then

Ψ′
i(p

i, 0) = −pi[1 − δ + (1 − γ)(1 − δ)αi < 0 ∀pi ∈ [0, 1],

which proves that (S, . . . , S) is never a GFESS.

ii. Let q be a GFESS such that qi = 1 for a fixed i. This implies that

1 − δ − (1 − γ)(αi(1 + δ) + Y] ≥ 0,

with Y =
N

∑
j=1

αjq
j). Then, if αj < αi we have that

1 − δ − (1 − γ)(αj(1 + δ) + Y] ≥ 1 − δ − (1 − γ)(αi(1 + δ) + Y] ≥ 0

and thus qj = 1 satisfy the GFESS condition. If all the groups transmit, then the

condition for the GFESS is satisfied iff:

1 − δ − (1 − γ)((1 + δ)αi − 1) ≥ 0 ∀i = 1, . . . , N

and thus γ ≥ 1 − 1 − δ

αi(δ + 1) + 1
, ∀i.
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iii. Let q be a GFESS such that qi = 0 for a fixed i. This implies that

1 − δ + (1 − γ)(αi(1 − δ)− Y] ≤ 0.

If αj < αi, then:

1 − δ + (1 − γ)(αj(1 − δ)− Y] ≤ 1 − δ + (1 − γ)(αj(1 − δ)− Y] ≤ 0

and thus Ψ′
j(p

i, q) ≥ 0.

iv. Let q be a fully mixed GFESS. Then, ∀i: 1 − δ + (1 − γ)(αi(1 − δ − 2qi)− Y) = 0.

After some algebra we thus obtain that Y =
(1 − δ)(N + 1 − γ)

(1 − γ)(N + 2)
, and by substi-

tuting it in the previous equations we obtain the expressions of qi. By imposing

that 0 < qi
< 1 ∀i we obtain the condition γ < γ.

v. Let q be a GFESS such that qi ∈]0, 1[ for a fixed i. Then, if for a j < i, qj = 0 (resp.

1), Ψ′
j(p

i, q) ≥ 0 iff qi
>

1 − δ

2
(resp. qi

>
1 − δ

2
).

As an example, we consider a two groups MAC game, in which we fix a low value

of the cost of transmission, δ = 0.2, and we study the equilibria as a function of the

value of the parameter γ, which is the probability that the transmitter is alone. We

first set α = 0.5 and we obtain that, for γ < γ = 0.35 the game admits a fully mixed

symmetric GFESS (q∗, q∗). In figure 3.4 we compare q∗ to the value of the equilibrium in

the corresponding individual-players game: q∗std := min(1,
1

1 − γ
− ∆), and we observe

that q∗ is lower than q∗std. Let pS(q) be the probability of a successful transmissions in a

population under profile q. For N = 2, it equals:

pS(q) := µ[γ(αq1 + (1 − α)q2)] + (1 − γ)(2α2q1(1 − q1)+

+ α(1 − α)((1 − q2)q1 + (1 − q1)q2) + 2(1 − α)2q2(1 − q2))].

In figure 3.5 we plot the probability p∗S = pS(q∗) of a successful transmission in a pop-

ulation under the equilibrium (q∗, q∗) as a function of γ for α = 0.5. We note that the

probaility to transmit successfully is higher for the two group players game than in the

standard case.
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Figure 3.4: The value of the equilibrium strategy q∗ in a two symmetric groups MAC game as a
function of γ for α = 0.4, compared to the ESS q∗std of the standard game.
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Figure 3.5: The probability pS(q
∗) of a successful transmission at the equilibrium for the fully

mixed GFESS in a two symmetric groups MAC game and in the standard game, as a function of γ.

We then set α = 0.4, to consider an asymmetric case, where the two groups have dif-

ferent sizes. For γ < γ = 0.3 the game admits a fully mixed GFESS (q1∗ , q2∗), and for

γ = γ̄ > 0.53, the game admits a pure symmetric equilibrium (T, T). These equilibria

are plotted in 3.6. In the interval 0 ≤ γ < 0.4 we also have a GFESS in the form (T, qT∗).

In figure 3.7 we plot the equilibrium actions of the second group qT∗ and q2∗ , and we
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observe that the latter is lower than qT∗, i.e. the probability that the second (bigger)

group transmits at the equilibrium is higher if the first group plays pure action T than

if it plays mixed action q1∗ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 ≤ γ ≤ 1

E
q
u
ili

b
ri
a

 

 
Group 1

Group 2

Figure 3.6: The value of the equilibria of the two groups in a two groups MAC game as a function
of γ for α = 0.4
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Figure 3.7: The value of the equilibrium strategy of the second group in the fully mixed equilibrium
(q1∗ , q2∗) and in the mixed equilibrium (T, qT∗) as a function of γ for α = 0.4.
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3.6 Conclusion

In this chapter we presented a new concept of evolutionary stability in the group-

players framework, the GFESS, implying stability against local deviations within each

group. While the ESS in standard EGT is a refinement of the Nash equilibrium, the

GFESS can be seen as a strict local Nash (in the group context), which is stable against

local deviations within a group. For the particular case of two pure actions games, we

provided a characterization of the GFESSs, distinguishing between pure, fully mixed

and mixed GFESS, and we studied three classical examples considering group players:

the Hawk-Dove game, the Stag Hunt game and the Prisoner’s Dilemma. By computing

the equilibria as functions of the size of the groups, we saw how the presence of groups

impacts the equilibrium output. We then introduced a slightly different situation by

redefining the fitness of a group, where the immediate payoff associated with the pair-

wise interactions among individuals in the same group differs from that of inter-group

interactions and we applied this model to a MAC problem.
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Individual State and Policy
Dynamics in Evolutionary Games
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Chapter 4

Markov Decision Evolutionary
Games

”A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made with
ideas. A painter makes patterns with shapes and colours, a poet with
words. [. . . ] A mathematician, on the other hand, has no material to work
with but ideas, and so his patterns are likely to last longer, since ideas wear
less with time than words. The mathematician’s patterns, like the painter’s
or the poet’s must be beautiful; the ideas like the colours or the words, must
fit together in a harmonious way. Beauty is the first test: there is no
permanent place in the world for ugly mathematics.”

G.H. Hardy, A Mathematician’s Apology, 1940

Summary
In this chapter we briefly introduce Markov Decision Evolutionary Games
(MDEG), which combine Markov Decision Processes and Evolutionary Game The-
ory. These games involve a large population of players characterized by an in-
dividual state and randomly matched in pairwise interactions. The fitness of an
individual depends on the actions played in the interaction and on the distribu-
tion of the individual states in the population. The action taken by a player also
determines the transition probabilities to its next individual state. Players aim at
maximizing the average sum of their immediate expected fitness during their finite
life time. Under certain assumptions, it is possible to transform this game into a
standard evolutionary game and find its equilibria.

52



4.1. Introduction

4.1 Introduction

In this chapter we present a particular class of stochastic evolutionary games, Markov

Decision Evolutionary Games (MDEG), as defined by Altman and Hayel (Altman and

Hayel, 2010). In MDEG games, each player belonging to a large population is associ-

ated with an individual state. During its finite life time the player meets several times

other users through random pairwise interactions and it may move among different

states. The actions played by an individual determine not only its immediate fitness

but also the transition probabilities to its next state. The objective of a player is the

maximization of its expected immediate fitness during its life time, which depends also

on the distribution of individual states in the populations. Following a method similar

to that used in (Filar and Raghavan, 1984) for one controller, the authors transform this

game into an equivalent standard evolutionary game and they study its ESSs.

State of Art

Stochastic games have been first introduced by Lloyd Shapley (Shapley, 1953). He mod-

els a play which proceeds by steps from "position" to "position" (state to state), accord-

ing to transition probabilities jointly controlled by two players. Each state (or position)

corresponds to a specific matrix game and the transition probabilities from one posi-

tion to the other are determined by the current matrix game and by the actions used by

the two players. The transition function considered is time homogeneous and players’

evaluation of sequences of payoffs have a stationary structure. The author proves the

existence of optimal stationary strategies.

Stochastic games belongs to the wider class of sequential games, which are processes

generating a sequence of one-shot, non-cooperative games played by the same set of

players. The transition probabilities which determine the game to be played at any time

t + 1 are functions of t, the game played at t, and the actions chosen at t. A stochastic

game is thus a sequential game where these transition functions are stationary and the

players’ evaluations of the sequences of payoffs have a stationary structure. Jovanovic

and Rosenthal (Jovanovic and Rosenthal, 1988) define anonymous sequential games as

processes of one-shot, non-cooperative games with a continuum of players, where in-

dividuals affect their opponents only when aggregated, ad not at an individual level.

While in stochastic games the notion of state is associated with the system, Jovanovic

and Rosental relate it to individuals. Furthermore, they look at equilibria composed of

"distributional strategies" (which are sequences of state-action distributions) and there-

fore they do not restrain to the stationary state of the system. After proving that every
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anonymous sequential game admits an equilibrium, they also consider the stationary

case, where the utility and the transition probabilities do not depend on time.

Flesch et al. (Flesch et al., 2013) unify stochastic games as defined by Lloyd Shapley

and EGT into stochastic evolutionary games, which are described as irreducible two-person

stochastic games with symmetric payoff matrices and symmetric transition probabili-

ties. At each stage of the game, two players belonging to a large population interact

with each other in one of finitely many environments. The transition probabilities be-

tween the environments determine the impact of each of these environments on the

fitness of the individuals. Under the irreducible transition law assumption, the authors

extend the notion of evolutionary stability in terms of stationary strategies and define

the replicator dynamics in this multi-state framework. In contrast with (Flesch et al.,

2013), the notion of state in MDEG has an individual connotation, as in (Jovanovic and

Rosenthal, 1988), but transition probabilities and policies are assumed to be stationary.

Stochastic games and Markov Decision Processes (MDP), are both two suitable math-

ematical structures for the classes of dynamic, stochastic, decision models. Filar and

Vrieze (Filar and Vrieze, 1997) present the theories of stochastic games and MDP in a

complete unified fashion, and by defining Competitive Markov Decision Processes, they

emphasize the importance of the link between these two topics extensively studied by

mathematicians, engineers and economists.

The mutations in a population modeled by standard EGT are random deviations, which

means that the notion of randomness is somehow implied by the requirement of evo-

lutionary stability. However, since the population considered is large, evolutionary

games can be thought as continuous deterministic approximations of discrete stochas-

tic games, where a finite set of players may take random actions.

Tembine et al. (Tembine et al., 2009) analyze the connection between stochastic and de-

terministic evolutionary games, studying the mean-field asymptotic of MDEG. More pre-

cisely, they define a finite population game, called mean field interaction, in which, at each

stage, each individual interacts with other randomly selected players, and thus interac-

tions may involve more than two individuals. The states and the actions of each player

in an interaction determine the instantaneous payoff for all the players involved. Ac-

tions also determine the transition probabilities to the next state of the players involved

in the interactions. The authors provide a rigorous derivation of the asymptotic behav-

ior of this system when the size of the population grows to infinity and they show that

the large population asymptotic of the mean field interaction is equivalent to a MDEG

in which a local interaction is described by a single player against a population profile.
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Applications

MDEG can find a wide range of applications in different fields. Altman and Hayel

present a simple application of MDEG to mobile communications in (Altman and Hayel,

2008), where mobile terminals transmit packets occasionally and their destination may

occasionally receive simultaneously a transmission from another terminal which results

in a collision. When packets collide, one of the packets can still be received correctly

if transmitted at a higher power. Successful transmissions is rewarded, but energy

consumption is penalizing. The action corresponds to the choice of power transmis-

sion level, and the set of available actions depend on the individual state of the player,

which consists in the level of the battery. The state can be either full, in which case there

are two transmitting power levels available, or almost empty in which only the weak

power level is available. Transmission at high power is costly in terms of energy con-

sumption and thus it results in a higher probability of moving to the lower energy level.

The authors define the fitness of a terminal as the total number of packets successfully

transmitted during its lifetime and characterize the ESS in this context.

Figure 4.1: Each mobile can be in full or in almost empty battery state. In state full, it can choose to
transmit ah high power or at at low power, while, if the battery is almost empty, it can only transmit
at low power. If a destination receives simultaneously a transmission from two terminal, packets
collide, but one of the packets can still be received correctly if transmitted at a higher power.

In Chapter 5 we’ll develop the dynamical aspect related to MDEG theory, studying the

interdependent dynamics of individual states and policies, where players are supposed

to control a continuous time MDP and we illustrate other possible application fields. In

Chapter 6 we’ll see a particular dynamic version of the Hawk-Dove game in a MDEG

kind of framework.
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In what follows, we first give some basic notions of Markov Decision Process (MDP)

and we then introduce MDEG as presented in (Altman and Hayel, 2010), focusing on

the notion of occupation measure and that of equivalence between policies.

4.2 Markov Decision Process

A Markov Decision Process (MDP) can be identified by the tuple {S ,A,Q}, where:

• S is the finite set of individual states, with |S| = K;

• A is the set of available actions. For each state s ∈ S , As ⊆ A is the subset of

available actions for a player in state s.

• Q is the set of transition probabilities . Given the individual states s, s′ ∈ S and

the actions a, a′ ∈ A, Qt
s′(s, a, a′) denotes the probability to move from state s to

state s′ taking action a when interacting with an individual that takes action a′ at

time t.

In what follows we restrain to time homogeneous transition probabilities, which do not

depend on t, and we also suppose that they only depend on the player’s action (a) and

not on that of its opponent (a′). A policy u = {u0, u1, u2, . . .} of a player is a sequence

of probability measures on A chosen as functions of the present state of the player and

on the history of its previous states and actions. That is, u0 = u0(η), where η is the

initial state and ut+1 = ut+1(ht, st+1, ), where st+1 is the state at time t + 1 and ht is the

state-action history of the player until time t:

ht := (sl , al , l = 0, . . . , t) t = 0, 1, 2, . . . (4.1)

Let H be the set of all possible states-actions histories which can be observed, and U the

set of all policies. We further define the following particular classes of policies:

• UM is the set of Markov policies of a player such that, at every moment t of

decision making, the probability measure ut on A is chosen as a function of the

current moment of time and the current state of the player (ad not on the past

history);

• US is the set of stationary policies, which are such that at any moment t, the

probability measure ut on A is chosen only as a function of the current state of the

player (and not of the current moment of time);

• UD is the set of deterministic policies , (also called pure stationary policies) which
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4.2. Markov Decision Process

assign an action to each state.

4.2.1 Occupation measures

In MDEG each player belonging to a large population is associated with a MDP and the

actions played are supposed to determine the fraction of time the player spends in each

state. This implies that the share of the population at a given state may depend on the

distribution of strategies in the population. In order to model this dependence, we need

to define the concept of occupation measure, which describes the expected amount of

time that an individual spends in a given state under a given policy.

Denote by fη,u(s, a) the expected number of time units during which a player is in state

s and chooses action a under policy u, given the initial distribution η. The occupation

measure corresponding to policy u is the quantity:

fη,u := { fη,u(s, a)}.

Let us now define the probability that an individual is in state s using action a under

policy u at local time t, given the initial state probability distribution η:

pt(η, u; s, a) := P
u
η(Xt = s, At = A).

Note that, since the population is supposed to be totally symmetric, this initial distri-

bution, at local time 0, is the same for all individuals. Define:

pt(η, u; s) := ∑
a∈A

pt(η, u; s, a).

Note that it’s a sub-probability measure, as ∑
s

pt(η, u; s) may be smaller than one. We

have that:

fη,u(s, a) =
∞

∑
t=0

pt(η, u; s, a), fη,u(s) =
∞

∑
t=0

pt(η, u; s). (4.2)

The lifetime of an individual is identified as the time interval before Xt leaves S; the

expected life-time (corresponding to initial state η and policy u) is thus defined as:

Tη,u = ∑
s

fη,u(s).

For a given initial state η, sup
u∈U

Tη,u is assumed to be finite. From (Kallenberg, 1983),
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sup
u∈U

Tη,u = max
u∈UD

Tη,u, which means that this assumption is equivalent to requesting that

the expected lifetime is finite for all deterministic policies.

From the theory of MDP, if all players use an equilibrium stationary policy us ∈ US, then

no player can benefit by a unilateral deviation to any policy, including non-stationary

ones. Hence us is an equilibrium among all policies and, with no loss of generality, it is

possible to restrain to the set US.

4.3 Markov Decision Evolutionary Games

MDEG combine MDP and EGT into a new game theoretic framework. Consider, as

in standard EGT, a large population of players, randomly matched in pairwise inter-

actions. Each player is characterized by an individual state, such that the fitness of a

player does not depend only on the actions chosen in the interactions, but also on this

individual state. The action taken by a player determines the transition probability to

its next individual state. Each player is thus associated with a MDP, where the transi-

tion probabilities Q are time homogeneous and depend only on the action of the player

(and not on the action chosen by its opponent).

Let r(s, a, s′, a′) be the immediate fitness that a player receives when it is in state s and

uses action a in an interaction with a player who is in state s′ and uses action a′. When

the whole population uses a stationary policy u ∈ US, then at any time t (which is

either fixed or is an individual time of an arbitrary player) the state of the system is

independent of t. For all (s, a) ∈ S × AS, the fraction of the population in stationary

regime in individual state s, that uses action a when all the population uses stationary

policy u is given by:

α(u; s, a) =
fη,u(s, a)

Tη,u
. (4.3)

Then, the stationary system state is:

α(u) = {α(u; s, a)}. (4.4)

Denote by r(u; s, a) the immediate reward that a player receives when it is in state s

and it uses action a while interacting with a player whose policy is u. We have that:

r(u; s, a) = ∑
(s′,a′)

α(u; s′, a′)r(s, a, s′, a′).

Consider an arbitrary tagged player and let Xt and At be respectively its state and
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action at time t (as measured on its individual clock). Then its expected immediate

reward at that time is given by

Rt(u) = r(u; Xt, At).

Assume now that a player arrives in the system at time 0. The global expected fitness

of a player choosing a policy v in a population whose policy is u is then:

Fη(v, u) =
∞

∑
t=0

Eη,v[Rt(u)]

When η is concentrated on state s we write with some abuse of notation Fη(v, u) =

Fs(v, u), and when η is fixed, the index is omitted. When the system is in its stationary

state, the global expected fitness simplifies to:

Fη(v, u) =
∞

∑
t=0

Eη,v[Rt(u)] = ∑
(s,a)

fη,v(s, a)
Tη,u

∑
(s′,a′)

fη,u(s′, a′)r(s, a, s′, a′) (4.5)

Remark 3. Equation (4.5) would not hold if the policy of a player could depend on the absolute

time or on the behavior (i.e. on the actions) of other players. On the other hand, since players

are not distinguishable, and since the lifetime distribution of a mobile depends only on its local

time, we may expect equation (4.5) to hold.

Two policies v and v′ are said to be equivalent if the corresponding occupation mea-

sures coincide. We shall write v =e v′. Note that if v and v′ are equivalent policies

for a given player, then for any policy u used by the rest of the population, the fitness

expressed by equation (4.5) under v and under v′ are the same. Indeed, the fitness

depends only of the policy used through the occupation measures.

By considering the expression (4.5) for the fitness, Altman and Hayel (Altman and

Hayel, 2010) define the ESS in a MDEG framework. The authors further define the

modified global expected fitness function:

F̃η(v, u) = ∑
(s,a)

fη,v(s, a) ∑
(s′,a′)

fη,u(s′, a′)r(s, a, s′, a′),

which is bilinear in the occupation measures. They then define the weak ESS, related

to the notion of equivalent class in terms of occupation measure. They show how to

transform a MDEG into a standard evolutionary game and to compute the equilibria.

While Altman and Hayel focus on a static definition of the ESS in MDEG framework,

in the next chapter we consider MDEG from a dynamical point of view. We associate
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each player to continuous time MDP and we model the interdependent dynamics of

individual states and policies.

In Chapter 6 we study a simple Hawk-Dove game in MDEG framework, where, in

contrast to what we presented here, the transition probabilities of a player may depend

on the action of the opponent it interacts with and not on its action.
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Chapter 5

State Policy Couple Dynamics

“We repeat most emphatically that our theory is thoroughly static. A
dynamic theory would unquestionably be more complete and preferable.”

Von Neumann and Morgenstern, Theory of Games and Economic Behavior,
1953

Summary
In this chapter, we present a new dynamical approach to MDEG, where individ-
ual states are supposed to evolve in time according to a continuous time MDP. We
introduce the concept of interdependent dynamics of states and policies in a gen-
eral framework, and we then define the State Policy coupled Dynamics (SPcD) in
a simple case, in order to find closed-form solutions and to establish the relation
between the equilibria of the defined system of differential equations and the equi-
libria of the game. These solutions are obtained by assuming that the processes of
states and policies move with different velocities, which allows us to apply two dif-
ferent approximation techniques: the singular perturbation method, and a matrix
approach.
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5.1 Introduction

In the previous chapter we presented MDEG models, introduced by Altman and Hayel

(Altman and Hayel, 2010), where each player is associated with an individual state.

During its finite life time the player meets several times other users through random

pairwise interactions and it may move among different states. The actions played by an

individual determine its immediate fitness and the transition probabilities to the next

state. The evolution of states is thus described by a discrete time MDP. In contrast with

Altman and Hayel, who transform the problem into an equivalent standard evolution-

ary game and look for its ESS, we study here the dynamics involved in the game. We

consider both the local dynamics of individual states and the dynamics intrinsically

related to the global evolution of the distribution of policies in the population, which

are described by interdependent differential equations. Individuals are thus assumed

to control a CT-MDP instead of a discrete time one. We give some general results about

the convergence of the coupled dynamical system to an equilibrium of the population

game. We deepen the analysis of the convergence of the coupled dynamics in a particu-

lar case with two states and two actions, for which we propose two different approaches

to the problem.

State of Art

Evolutionary games can be interpreted as a branch of dynamical systems through the

replicator equations (see e.g. (Hofbauer and Sigmund, 1998)), which represents an im-

portant foundations for understanding individuals’ behaviors in a population. In the

last years the relationship between evolutionary dynamics and learning algorithms has

been investigated. In (Borgers and Sarin, 1997), for example, the authors analyze the

“Cross’ learning process”, which is a simple learning model where a player updates

its action only on the basis of its own action and on the fitness it gets (and not on the

others’ actions). They prove that, in a particular case, this dynamics converges to the

replicator dynamics. The authors also provide a discussion on the relation between

learning and evolution, comparing the interpretation of the stochastic game underly-

ing Cross’ learning process model, and the deterministic population game underlying

the replicator dynamics. In (Beggs, 2005), the author investigates the convergence of

fitness and strategies in another similar model of reinforcement learning, the “Erev and

Roth’s model”. The author shows that in a two-person constant-sum game, when both

players learn according to Erev and Roth’s rule, the long-run behavior of the system is

related to a system of equation similar to the ‘adjusted replicator dynamic’ introduced
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in (Maynard Smith, 1982).

In general, a learning procedure describes how each individual adapts its action based

on the information it has, like its own fitness, average fitness, historical actions of the

others, probabilistic beliefs on the other actions, etc. An analysis of level of informa-

tion under learning processes in games is given in (Fudenberg and Levine, 1998). As

already mentioned in Section 1.3, many different learning algorithms/dynamics have

been proposed in the game theory literature, like Brown-Nash-Von Neumann, logit dy-

namics, etc. All these dynamics can be generalized to the notion of revision protocols

(Sandholm, 2010) which define a general rule (“compare and innovate”, “target and

innovate”, “compare and non-innovate”, etc.) followed by individuals (see Section 1.3

for more details).

Motivations and Applications

Our model finds its first motivation in the study of optimal power control policies in

wireless networks (Altman and Hayel, 2008) (see the Introduction to the previous chap-

ter). In Information and Communications Technology, it can be used to study social

networks applications, crowd sourcing and Internet of Things (IoT). Emerging appli-

cations in engineering such as crowd-sourcing and (mis)information propagation, for

example, involve a large population in a complex network of heterogeneous users or

agents, who strategically make dynamic decisions. These agents interact with each

other in a complex environment, in which each individual takes strategic and dynamic

decisions in response to the agents it interacts with. In all these applications, the ac-

tion set of each agent depends on a local state. In social networks, for example, each

agent may decide to add/remove friends/news based on its own current status. Its

decision impacts its own status dynamics but also the interaction with other agents.

In IoT, a sensor has to determine when to upload its information to the fusion center.

This decision impacts its battery level but also the communication quality as collisions

may occur for example. As pointed out in several references cited above, the replicator

dynamics equations are related to several learning algorithms that can be implemented

in such sensors or actuators in IoT. Then, by studying these equations, we can under-

stand the convergence behavior of decentralized algorithms that can be used in such

applications.
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This chapter is organized as follows: in Section 5.2 we introduce our evolutionary game

model that takes into account an individual state dynamics coupled to the policies ones.

A complete characterization of the coupled dynamical system is performed in Section

5.3, for a particular two states and two pure actions game. By assuming that the two

dynamic processes evolve with different velocities, in Subsection 5.3.6 and 5.3.7 we find

the equilibria of the game through two different techniques: the singular perturbation

method and by rewriting the problem as a matrix game. We then compare the two

solutions obtained and we prove that they are equivalent in terms of fitness and average

sojourn time. Some applications in network systems are proposed in Section 5.3.9.

5.2 General Model

5.2.1 The Individual State Dynamical Model

We consider here a population game in which each individual controls a Continuous

Time Markov Decision Process (CT-MDP) (Guo and Hernandez-Lerma, 2009). Let S
be the finite individual state space of players, with |S| = K. We suppose that each

player disposes of the same finite set of actions, A, with |A| = M. CT-MDP are defined

through the set of transition rates R, which describe the rate of the process’ transitions

from one state to another. More precisely, we denote by Rs(s′, a) the transition rate

from state s′ to state s given action a, which satisfies Rs(s′, a) ≥ 0 for all s′ ∈ S , s′ 6= s,

and a ∈ A. These quantities are conservative, i.e.

∀s′ ∈ S , ∀a ∈ A, ∑
s
Rs(s′, a) = 0.
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Also the transition rates are stable, i.e.

sup
a∈A

Rs′(a) < ∞, ∀s′ ∈ S

with Rs′(a) := −Rs′(s
′, a) ≥ 0. Since the set of actions is finite, the stability of the

transition rates is guaranteed. Note that the transition rates of a player only depend on

its actions, and not on the others’ ones.

In standard evolutionary games, each individual plays a pure action, whereas in our

framework, individuals choose a deterministic policy in the finite set UD = {u1, . . . , uD}
(see the definition in Section 4.2 for the definition of UD).

The choice of a policy determines the time spent by each individual in each state. In-

deed, for any state s′ and action a, the sojourn time in state s′ is a random variable

which follows an exponential distribution with parameter Rs′(a) = ∑
s 6=s′

Rs(s′, a). Then,

under a given deterministic policy uj ∈ UD, as there is a unique action a = uj(s
′) as-

sociated with each state s′, such that uj(a|s′) = 1, the time spent in any state s′ for

any individual choosing this policy, follows an exponential distribution with parame-

ter Rs′(a) = Rs′(uj(s
′)). This implies that the fraction of individuals in a given state

depends on the distribution of policies over the population. This fraction is important

to define the fitness obtained for each individual at each pairwise interaction. Given a

deterministic policy uj ∈ UD and a state s ∈ S , we denote by Ts(uj) the average sojourn

time that an individual playing policy uj spends in state s, which is given by:

Ts(uj) =
1

Rs(uj(s))
.

Note that a general sojourn time distribution could also be considered, but we consider

the exponential distribution, in order to obtain closed-form solutions of the equilibrium

Markovian policy of the defined game.

5.2.2 Population of Players

Let us consider a fixed population of N players, where each one controls a CT-MDP,

with S , A and R respectively the finite set of states, actions, and transition rates. Let

∆(A) be the set of distributions over A. We define the proportion of individuals (deci-

sion makers) that are in state s ∈ S at time t as wN
s (t) :=

1
N

N

∑
l=1

1{sl(t)=s}, where 1 is the

indicator function, i.e. 1{sl(t)=s} = 1 if the state of player l at time t is s, and it equals
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zero otherwise. For each state s, we denote by Yl
s(t) the probability that an individual

l is in state s at time t under a deterministic policy u ∈ UD, i.e. Yl
s(t) = P

u
s0
(sl(t) = s),

where s0 is the initial state. Then, from Assumption 1, P
u
s0

does not depend on s0 and,

from the law of large numbers, when the size of the population grows to infinity, then

Yl
s(t) can be approximated by the proportion of individuals in state s at time t, given

by ws(t) = lim
N→∞

wN
s (t). This means that the individual state dynamics, corresponds to

the dynamics of the proportion of individuals in state s in the global population. Let

S = {s1, . . . , sK} and wi = wsi . We further suppose that the individual dynamics also

depends on the policies and that, for any state si ∈ S , there exists a Lipschitz function

hi which describes the dynamics of wi as follows:

ẇi(t) = hi(w(t), q(t)), ∀si ∈ S , (5.1)

where w(t) = (w1(t) . . . , wK(t)) is the vector of state probabilities and q(t)=(q1(t) . . . , qD(t))

is the vector of distribution over the deterministic policies in the population, such that

qj(t) indicates the proportion of individuals playing deterministic policy uj ∈ UD =

{u1, u2, . . . , uD} at time t. Indeed, we have seen previously that the choice of a such

policy has an impact on the state dynamics of this individual.

5.2.3 Policies Dynamics

We assume that the proportion of individuals choosing each deterministic policy is

evolving over time as a dynamical process. Without specifying any revision protocol,

we define the dynamics of policies through a set of Lipschitz continuous functions G :=

{g1, . . . , gD}, such that:

q̇j(t) = gj(w(t), q(t)) ∀uj ∈ UD. (5.2)

Then, the dynamical evolution of states and policies distributions in the population is

represented by a system of K + D equations:















































ẇ1 = h1(w(t), q(t))
...

ẇK(t) = hK(w(t), w(t))

q̇1(t) = g1(w(t), q(t))
...

q̇D(t) = gD(w(t), q(t))

(5.3)
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5.2.4 Two Time-Scales Behavior

We assume that the state and the policy dynamics move with different velocities. By

supposing that the individual state dynamics move much faster then the slow updating

policies processes, we can consider the singular perturbation model (Kokotovic et al.,

1986), briefly presented in what follows, to find the rest points of the system (5.3). We

first introduce Assumption 1, which assures that, under any deterministic policy, there

exists a stationary distribution over the individual states which does not depend on the

initial state.

Assumption 1. Under any deterministic policy, the stochastic process of the individual states

forms an ergodic Markov chain.

Singular Perturbation Method

The singular perturbation model of finite dimensional systems has been extensively

studied in mathematical literature (see e.g. (Levinson, 1950) (Hoppensteadt, 1967) (O’Malley,

1971)) and it was the first method used in control theory as a tool to simplify dynamic

models. Following Kokotovic’s approach (Kokotovic et al., 1986), we provide here the

basic concepts of singular perturbation asymptotics and time-scale modeling that will

be used in the next section. Consider the interdependent dynamics:

ẋ = g(x, z, u, ǫ, t), x(t0) = x0, x ∈ R
n, (5.4)

ǫż = h(x, z, u, ǫ, t), z(t0) = z0, z ∈ R
m, (5.5)

where u is the control vector, ǫ is a small scalar and g and h are sufficiently many times

continuously differentiable functions of their arguments. To reduce the order of the

system (5.4)-(5.5), the parameter ǫ is perturbed: when ǫ equals zero, the order of the

system reduces from n + m to n, since equation (5.5) degenerates into the trascendental

equation

0 = g(x̄, z̄, ū, 0, t). (5.6)

The system is said to be in normal or standard form if and only if the following assump-

tion is satisfied:

Assumption 2. In a domain of interest, equation (5.6) has k ≥ 1 distinct roots:

z̄ = ϕi(x̄, ū, t), i = 1, 2, . . . , k (5.7)
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This assumption assures that a well defined (n-dimensional) model correspond to each

root. To obtain the i reduced model, one need to substitute z̄ into (5.4) to get the quasi-

steady-state model:
˙̄x = g(x̄, ϕi(x̄, ū, t), ū, 0, t) = g(x̄, ū, t). (5.8)

The velocity of z, given by g/ǫ, is large when ǫ is small and thus z may rapidly con-

verge to a root of (5.6), which is the quasi-steady-state of (5.5). Singular perturbation

thus generates a two time-scale behavior of the dynamic system (5.4)-(5.5): the slow

process is approximated by the reduced model (5.8), while the discrepancy between

the original system and (5.8) is the fast transient. We now investigate the relation be-

tween the original variable z and z̄. Note that the initial value of z̄ may be far from z0,

as it is given by

z̄(t0) = ϕ(x̄(t0), ū(t0), t0) 6= z0.

We can expect that z is well approximated by z̄ in a sub-interval [t1, T], where t1 > t0,

i.e.:

z = z̄(t) + O(ǫ), ∀t ∈ [t1, T]. (5.9)

However, it is possible to constrain the quasi-steady state x̄ to start from x0 to have:

x = x̄(t) + O(ǫ), ∀t ∈ [t0, T]. (5.10)

We introduce a new time variable to study the behavior of the variable z. Let

ǫ
dz
dt

=
dz
dτ

⇒ dτ

dt
=

1
ǫ

,

and τ = 0 when t = t0. The new time variable

τ =
t − t0

ǫ
, τ = 0 at t = t0

is stretched, that is, τ goes to infinity when ǫ goes to zero. We define the boundary layer

system which describes z as a function of τ:

dẑ
dτ

= g(x0, ẑ(τ), u, 0, t0), ẑ(0) = z0, (5.11)

where x0 and t0 are fixed parameters. We thus obtain that:

z = z̄(t) + ẑ(τ)− z̄(t0) + O(ǫ), (5.12)

where z̄(t) is the slow and ẑ(τ) − z̄(t0) the fast transient of z. Two assumptions are

needed to guarantees the validity of the approximations (5.9) and (5.12).
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Assumption 3. The equilibrium z̄(t0) of (5.11) is asymptotically stable uniformly in x0 and

t0, and z0 belongs to its domain of attraction, so ẑ(τ) exists for τ ≥ 0.

This implies that lim
τ→∞

ẑ(τ) = z̄(t0) uniformly in x0 and t0 and thus z is close to its quasi-

steady-state z̄ for t1 > t0. The interval [t0, t1] can be made arbitrarily short my making

ǫ sufficiently small.

Assumption 4. The eigenvalues of ∂g/∂z evaluated along x̄(t), z̄(t), ū(t) for all t ∈ [t0, T]

have real parts smaller than a fixed negative number, i.e.:

ℜλ

{

∂g
∂z

}

≤ −c < 0.

Note that, if z0 is assumed to be sufficiently close to z̄(t0), then Assumption 4 is stronger

than Assumption 3. Furthermore, Assumption 4 implies that the root z̄(t) is distinct as

required by Assumptios 2. We can now state the main result, often called Tikhonov

theorem.

Theorem 4. [Theorem 3.1 (Kokotovic et al., 1986)] If Assumptions 3 and 4 are satisfied, then

the approximations (5.10) and (5.12) are valid for all t ∈ [t0, T], and there exists a t1 such that

(5.9) is valid for all t ∈ [t1, T].

For the proof of this result, see e.g. (Levinson, 1950), (Hoppensteadt, 1967).

Fast state and slow policy processes

In order to describe the two time-scales behavior of the system (5.3), we introduce the

small positive parameter ǫ > 0:















































ǫẇ1 = h1(w(t), q(t))
...

ǫẇK(t) = hK(w(t), q(t))

q̇1(t) = g1(w(t), q(t))
...

q̇D(t) = gD(w(t), q(t))

(5.13)

Then, the velocity of the state process, ẇi = hi(w, q)/ǫ, is fast when ǫ is small, which

means that the states dynamics may rapidly converge to its steady-state. From the

singular perturbation theory, if the assumptions introduced above are satisfied, one

can solve the reduced model and easily find a good approximation of the solution of the

original system (5.3). When supposing the two time-scales behavior of the states and
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policies dynamic system, an alternative technique to find a solution of (5.3) consists in

considering the stationary distribution of states and then solve the policies dynamics.

Let r(s, a; s′, a′) be the immediate fitness that a player gets when it is in state s and plays

action a against an individual in state s′ using action a′. When the distribution of the

individual states is stationary, we denote by F(ui, uj) the immediate expected fitness of

a player using deterministic policy ui ∈ UD against a population playing uj ∈ UD. It

can be defined as a function of the average sojourn times as follows:

F(ui, uj) = ∑
s,s′∈S

Ts(ui)

∑s′ Ts′(ui)
r(s, ui(s); s′, uj(s

′))
Ts′(uj)

∑s′ Ts′(uj)
. (5.14)

Remark 4. In discrete time MDEG (see Chapter 4) introduced in (Altman and Hayel, 2010),

stationary distributions can be computed considering occupation measures (see Section 4.2.1),

whereas in our continuous time setting we deal with average sojourn time expressions. It is

possible to establish a relation between discrete and continuous time MDEG by transforming

the CT-MDP into an equivalent discrete time MDP through the uniformization technique (see

e.g. (Puterman, 1994) (Ibe, 2008)), which makes the total transition rate from a state the same

for all states and allows to consider the discrete time MDP embedded at transition epochs of each

event. But, since we focus here on the replicator dynamics and not on the equilibria of the game,

we study the MDEG in continuous time, where each individuals control their transition rates.

Once we have defined the expected fitness function, we assume that each individual

chooses its deterministic policy in order to maximize its immediate expected fitness

and we then define a stationary equilibrium u∗ policy for our continuous-time MDEG

problem.

Definition 6. Under the Assumption 1 and assuming that the distribution over the states is

time homogeneous, a policy u∗ ∈ UD is a deterministic equilibrium policy if, ∀ uj ∈ UD:

F(u∗, u∗) ≥ F(uj, u∗).

Note that, from Assumption 1, if a deterministic policy u∗ is optimal, than no player

can benefit from unilateral deviations to any policy, including non deterministic ones.

Hence , if all population uses an equilibrium among stationary policy, then no player

can benefit by a unilateral deviation to any policy. We have seen in Section 1.3.2 that, in

standard evolutionary game theory, there is a relation between equilibria of a game and

rest points of the replicator dynamics. We can establish a similar relationship in our

setting. Given the vector of policies distributions at time t, q(t) = (q1(t), . . . , qD(t)),

we denote by F(uk, q) := ∑
uj∈UD

F(uk, uj)qj(t) the immediate expected fitness of an
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individual using policy uk ∈ UD against a populations in state q, and by F̄(q) :=

∑
i,j∈UD

qi(t)F(ui, uj)qj(t) the average expected fitness of the population.

Based on the expression (5.14), we can define the dynamics of the evolution of qk(t)

over time, where uk ∈ UD:

q̇k(t)
qk(t)

= (F(uk(t), q(t))− F̄(q(t))) . (5.15)

Every interior rest point of the replicator dynamics (5.15) is a stationary equilibrium

policy for the game we defined. Note that the dynamics proposed in equation (5.15)

assumes that the distribution over the individual states is already stationary, as the

state dynamics update very quickly compared to the policy dynamics. Getting results

about equilibrium policies in the general case may be complicated, as the number of

deterministic policies UD explodes and it becomes very difficult to properly write a

clear mathematical analysis to obtain closed-form solutions of the equilibrium. In the

next section, we present a complete analysis and characterization of the equilibrium

policy for a particular game with two states and two strategies, considering the coupled

dynamical system.

5.3 Complete Characterization of the Game with Two States

and Two Actions

5.3.1 Individual State and Its Dynamics

In this section we study a particular case of the state-policy coupled dynamics model.

We suppose that each player can be in one of two possible states, with S = {1, 0}. Every

individual goes through a cycle that starts in state 1 and moves to states 0 after some

random time, at a rate that depends on its policy. After some exponentially distributed

time it returns to state 1 and so on. At each pairwise interaction, the set of available

actions of a player depends on its state: in state 1, A1 = {x, y}, whereas in state 0 an

individual can only use y. We consider the set of deterministic policies UD := {ux, uy},

where ux (resp. uy) is the deterministic policy which consists in always playing action

x (resp. y) in state 1. Under both policies, in state 0 an individual plays y. Each player

chooses one deterministic policy and we denote by qi(t) the proportion of individuals in

the population that play the deterministic policy ui at time t. Note that qy(t) = 1− qx(t).

We suppose that the policy chosen impacts the fitness of the player interacting with
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another individual and also the time it spends in state 1. We define by µi the rate of

decay from state 1 to state 0 when using policy ui, i ∈ {x, y}, where µx > µy, and by µ

the rate of change from state 0 to state 1.

µ µ µx 

POLICY ux POLICY uy 

µy 

1 1 

0 0 

Figure 5.1: A player can choose between policy ux and uy. Accordingly with this choice, in state 1
the individual plays, respectively x or y and move to state 0, at a rate µx or µy. In state 0, under
both policies, the only available action is y and the rate at which the player returns to state 1 is µ.

As stated in Section 5.2.2, since the population considered is large, from the law of large

numbers, the individual state dynamics can be approximated by the population state

dynamics. Let w1(t) denote the share of individuals in state 1, which is equivalent to

the probability that an individual in the population is in state 1 at time t. We define the

dynamics of w1(t) as follows:

ẇ1(t) = −µxw1(t)qx(t)− µyw1(t)(1 − qx(t)) + µ(1 − w1(t)). (5.16)

The first (resp. the second) term on the right side of the equation indicates that the

share of individuals in state 1 which choose policy ux (resp. uy) at time t, given by

µxw1(t) (resp. w1(t)(1 − qx(t))), leaves state 1 at a rate µx (resp.µy), whereas the third

term indicates that individuals in state 0 move to state 1 at rate µ (independently on the

policy chosen).

5.3.2 Individual Fitness

At each pairwise interaction, the immediate fitness obtained by an individual, which

depends on its current action and the current action of its opponent, is given by the
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following fitness bimatrix:

A :=

(

x y

x (a, a) (b, c)

y (c, b) (d, d)

)

, (5.17)

where x and y are the available actions and the matrix entry Aij indicates the payoff
respectively of the first (row) and the second (column) player. The expected fitness of a
player interacting at time t, depends on the population profile at time t, which is now
expressed by the couple ξ(t) := (w1(t), qx(t)). We denote by rx(ξ(t)) (resp. ry(ξ(t)))
the expected fitness of an individual playing pure action x ∈ A, against a population
whose profile is ξ(t). By considering payoff matrix (5.17), we obtain the following
expressions:

rx(ξ(t)) := w1(t)(qx(t)a + (1 − qx(t))b) + (1 − w1(t))b,

ry(ξ(t)) := w1(t)(qx(t)c + (1 − qx(t))d) + (1 − w1(t))d.

We can now define the fitness of an individual choosing deterministic policy ui ∈ UD

at time t, denoted by Fi(ξ(t)), i = x, y. The fitness Fi(ξ(t)) depends on the population

profile ξ(t). As we are dealing with a large system, from the law of large numbers, we

can assume that the probability that any individual is in state 1 at time t equals w1(t)

and it is the same for all players, as explained in Section 5.2.2. Then, an individual

choosing policy ux will be in state 1 (resp. 0) at time t with probability w1(t) (resp.

1 − w1(t)), and it will get an immediate fitness rx(ξ(t)) (resp. ry(ξ(t))). The expected

immediate fitness of an individual choosing policy ux at time t is thus given by

Fx(ξ(t)) = w1(t)rx(ξ(t)) + (1 − w1(t)))ry(ξ(t)).

If an individual plays policy uy, whatever its state is, it plays pure action y, which leads

to:

Fy(ξ(t)) = w1(t)ry(ξ(t)) + (1 − w1(t)))ry(ξ(t)) = ry(ξ(t)).

The average expected fitness of a population whose profile at time t is ξ(t) = (w1(t), qx(t))

is

F̄(ξ(t)) = qx(t)Fx(ξ(t)) + (1 − qx(t))Fy(ξ(t)). (5.18)

5.3.3 Equilibrium Profile

We study the properties of stability of the population profile, supposing that individ-

uals play deterministic policies in UD. Let q∗ = (q∗x, q∗y) and define supp(q∗) = {ui ∈
UD|q∗i > 0, given ξ∗}.
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Definition 7. A population profile ξ∗ = (w∗
1 , q∗x) is an equilibrium profile iff ∀ui ∈ supp(q∗)

we have that:

Fi(ξ
∗) ≥ Fj(ξ

∗) ∀j 6= i, i, j ∈ {x, y}

An equilibrium profile is a particular population profile ξ∗ = (w∗
1 , q∗x) which is stable in

the sense of robustness against a deviation of the proportion of individuals playing the

deterministic policy ux. In other words, this definition says that no individual has an

interest in changing its deterministic policy, considering this population profile. Note

that an equilibrium policy, if adopted by the whole population, determines a stationary

individual state.

Remark 5. It can be easily proved that if the population profile ξ∗ = (p∗1 , q∗x) satisfies the

indifference principle, i.e.:

Fx(ξ
∗) = Fy(ξ

∗),

then it is an equilibrium profile.

5.3.4 Policy Based Replicator Dynamics

As we consider here policies instead of actions, we introduce a policy based replicator

dynamics (PbRD), to study the evolution of the share of individuals using deterministic

policy ux at time t, represented by qx(t). The PbRD is given by the following equation:

q̇x(t) := qx(t)(Fx(ξ(t))− F̄(ξ(t))). (5.19)

Then, the growth rate of the population share using the deterministic policy ux at time

t is:
q̇x(t)
qx(t)

= Fx(ξ(t))− F̄(ξ(t)), (5.20)

By substituting (5.18) into (5.19):

q̇x(t) = qx(t)[Fx(ξ(t))− qx(t)Fx(ξ(t)− (1 − qx(t))Fy(ξ(t))]

= qx(t)(1 − qx(t))(Fx(ξ(t))− Fy(ξ(t))),

= g(w1(t), qx(t)).

We can investigate the dynamics of actions in this framework, where the fitness is a

function of the population profile depending on policies and states and establish its

relation with the dynamics of policies. If we pick one random individual in the popu-

lation at time t, the probability that it plays pure action x, denoted by q(t), is given by
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the product qx(t)w1(t). From this and from definition (5.19), we obtain:

q̇(t) = q̇x(t)w1(t) + qx(t)ẇ1(t) = qx(t)[w1(t)(Fx(ξ(t))− F̄(ξ(t))) + ẇ1(t)]

=
q(t)

w1(t)
[w1(t)(Fx(ξ(t))− F̄(ξ(t))) + ẇ1(t)],

which leads to the following equation for the growth rate of the proportion of individ-

uals playing pure action x in the population at time t:

q̇(t)
q(t)

= (Fx(ξ(t))− F̄(ξ(t))) +
ẇ1(t)
w1(t)

. (5.21)

Equation (5.21) shows how the evolution of states impacts the dynamics of actions in

our context. The growth rate of action x is increasing in the growth rate of state 1. We

observe that a sufficiently high growth rate of state 1 can lead to a growing rate of action

x even if policy ux is non-optimal.

5.3.5 State-Policy Coupled Dynamics

We define the system of State-Policy Coupled Dynamics (SPcD) which combines the

dynamics of the individual state and the dynamics of the policies used in the popula-

tion:

(S)

{

ẇ1 = h(w1(t), qx(t))

q̇x = g(w1(t), qx(t))

where ξ(t) = (w1(t), qx(t)) is the population profile at time t. Note that, since h and

g are continuously differentiable functions of ξ, (i.e. the partial derivatives ∂h/∂w1,

∂h/∂qx, ∂g/∂w1, ∂g/∂qx are continuous) they are locally Lipschitz continuous func-

tions with respect to ξ in the compact space [0, 1]2, which guarantees the existence of a

solution of the system (S).

The rest point of the SPcD is ξ∗ = (w∗
1 , q∗x) satisfying:

{

h(ξ∗) = 0

g(ξ∗) = 0.
(5.22)

Lemma 1. Any interior rest point of the SPcD (S) is an equilibrium profile of the state-policy

game.

Proof. Trivially, if ξ∗ is internal, it satisfies the indifference principle Fx(ξ
∗) = Fy(ξ

∗), so

ξ∗ is an equilibrium profile.
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Remark 6. Note that the converse does not necessarily hold. Any equilibrium profile is a rest

point of the PbRD in (5.19), but it’s not necessarily a rest point of the individual state dynamics.

Lemma 2. Any Lyapunov stable rest point of the SPcD (S) is an equilibrium profile of the

state-policy game.

Proof. Suppose that ξ∗ = (w∗
1 , q∗x) is a stable rest point. If supp(q∗) = {ux, uy} then, ξ∗ is

an interior rest point and by Lemma 1, ξ∗ is an equilibrium profile. Let supp(q∗) = {ux}
and let us suppose that ξ∗ is not an equilibrium. This implies that Fy(ξ

∗) > F̄(ξ∗), and,

from the continuity of the fitness function, there exists a neighborhood Uξ∗ of ξ∗ such

that ∀ξ ∈ Uξ∗ , ξ 6= ξ∗, Fy(ξ) > F̄(ξ). This implies that, for this profile, the component

qy increases exponentially, which contradicts the Lyapunov stability of ξ∗. The proof is

analogous if supp(q∗) = {uy}, which complete the proof of the lemma.

5.3.6 Singular Perturbations Approximation Method

As introduced in Section 5.2, we consider the existence of a small parameter ǫ > 0, such

that:

ǫẇ1 := h(w1, qx).

We then rewrite the system of the two coupled differential equations as follows:

(Sǫ)

{

ǫẇ1 = h(w1, qx),

q̇x = g(w1, qx).

We can thus approximate the solution of (Sǫ) using the standard singular Perturbation

Model (Kokotovic et al., 1986) introduced in the previous section. The quasi-steady-

state-model is obtained by first solving in w1 the transcendental equation 0 = h(w1, qx)

and then rewriting the differential equation q̇ as a function of the obtained roots. As the

transcendental equation has a unique real solution w̄1 := π1(qx), our system satisfies

Assumption 2 and we can thus solve the quasi-steady-state equation:

q̇x = g(π1(qx), qx). (5.23)

If the Assumption 4 is satisfied, the reduced model is a good approximation of the

original system. In our case, this assumption simplifies to the following condition:
∂h

∂w1
(w1, qx) < 0. Since

∂h
∂w1

(w1, qx) = −µxqx − µy(1 − qx)− µ < 0, we can apply the

singular perturbation method to solve (Sǫ).

The two-time-scale behavior of w1(t) and qx(t) also has a geometric interpretation, as
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trajectories in R
2. If we define the manifold sets Mǫ := {ϕ s.t. w1 = ϕ(qx, ǫ) & ǫ =

h(qx, ϕ(qx, ǫ))}, it is possible to rewrite the problem in terms of invariant manifolds.

When the parameter ǫ = 0, then M0 is an equilibrium manifold which corresponds to

the quasi steady state model. As Assumption 4 is satisfied, the equilibrium manifold

M0 is stable (attractive) (Kokotovic et al., 1986). An important result states that the

existence of a conditionally stable manifold M0 for ǫ = 0 guarantees the existence of an

invariant manifold Mǫ satisfying the following convergence for all ǫ ∈ [0, ǫ∗]:

ϕ(ǫ, qx) → ϕ(0, qx), and Mǫ → M0 as ǫ → 0.

The positive constant ǫ∗ is determined by imposing the manifold condition:

ǫ
∂ϕ

∂x
g(ϕ(qx, ǫ), qx) = h(ϕ(qx, ǫ), qx),

for all qx and ǫ ∈ [0, ǫ∗]. We illustrate in Figure 5.2 the attractiveness of the slow mani-

fold M0 for a numerical example.

Let us now compute the solution of the system (S0), i.e. the system obtained with

ǫ = 0. We suppose that the distribution of individual states is stationary (expressed

by Equation (5.16)). By imposing ẇ1 = 0, we obtain the following slow manifold

M0 := {ϕ s.t. w1 = ϕ(qx, 0) & 0 = h(qx, ϕ(qx, 0))}:

ϕ(qx, 0) =
µ

µ + µxqx + µy(1 − qx)
:= ϕ1(qx). (5.24)

We can now rewrite the PbRE (5.19) as:

q̇x(t) = qx(t)(1 − qx(t))
[

Fx(π1(qx(t)), qx(t))− Fy(π1(qx(t)), qx(t))
]

.

Proposition 10. For ǫ sufficiently small, the solution of the system (Sǫ) can be approximated

by the solution of S0. This is given by the population profile ξ∗ = (w∗
1 , q∗x), such that:

w∗
1 =

µ − s∗(µx − µy)

µ + µy
and q∗x =

s∗(µ + µy)

µ − s∗(µx − µy)
, (5.25)

where s∗ is the equilibrium of the replicator dynamics (1.6) for the standard evolutionary game

whit payoff matrix given by (5.17):

s∗ =
d − b

∆
with ∆ = a − b − c + d.

Proof. Let us first study the equation q̇x = 0 before substituting the stationary equation

of the state dynamics. To solve this equation is equivalent to find the population profile
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ξ = (π1, qx) such that:

Fx(π1, qx) = Fy(π1, qx).

By replacing the expressions of the fitness (5.18) and (5.3.2) in the latter equality we get

π1 [π1(qxa + (1 − qx)b) + (1 − π1)b] + (1 − π1)− [π1(qxc + (1 − qx)d) + (1 − π1)d]

= π1(qxc + (1 − qx)d) + (1 − π1)d.

After some manipulations,

π1aπ1qx + π1b(1 − π1qx) + (1 − π1)cπ1qx + (1 − π1)d(1 − π1qx) = cπ1qx + d(1 − π1qx).

This equality corresponds to

π1qx [π1a − π1b + (1 − π1)c − (1 − π1)d − c + d)] = d − π1b − (1 − π1)d.

Thus

π1qx [π1a − π1b − π1c + π1d] = π1d − π1b.

We finally obtain

π1qx =
d − b

∆
:= s∗.

The stationary condition of the first differential equation (5.16) leads to the following

relation between w1 and qx:

w1 = π1(qx) =
µ

µ + µxqx + µy(1 − qx)
,

then we have to solve now: π1(qx)qx = s∗. The latter equation is equivalent to:

µqx

µ + µxqx + µy(1 − qx)
= s∗.

After some simple manipulations we obtain

qx =
s∗(µ + µy)

µ − s∗(µx − µy)
:= q∗x.

Finally, as we have π1(qx)qx = s∗ then w∗
1 := π1(q∗x) =

s∗

q∗x
which leads to

w∗
1 =

µ − s∗(µx − µy)

µ + µy
.
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Note that the rest point q∗x of the PbRE (5.19) verifies the following relation:

q∗xπ1(q∗x) = s∗.

This result says that the equilibrium probability that any individual picked out ran-

domly in the population is playing action x, is equal to s∗. This value is the mixed equi-

librium of the standard matrix game given by matrix A. It means that, if we consider a

state dependent action game, the equilibrium is obtained under conditional probability

over the state.

We have the following necessary and sufficient condition under which the solution

obtained is a strict interior point.

Lemma 3. The solution q∗x obtained in proposition (10) is a strict interior point if and only if:

µ > µx
s∗

1 − s∗
.

Proof. The solution obtained in proposition (10) is:

q∗x =
s∗(µ + µy)

µ − s∗(µx − µy)
.

This solution is a strict interior point if and only if:

0 < q∗x < 1.

First, let’s look at the positivity condition q∗x > 0. This is equivalent to:

0 < q∗x ⇐⇒ µ > s∗(µx − µy).

After some basic algebras, the second condition is:

q∗x < 1 ⇐⇒ µ > µx
s∗

1 − s∗
.

We have clearly that for all s∗ ∈]0, 1[, µx and µy:

s∗

1 − s∗
µx > s∗µx > s∗(µx − µy).

Then if µ > µx
s∗

1 − s∗
the solution is a strict interior point, and the converse is true. This
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concludes the proof.

Note that this condition does not depend on the rate µy.

Numerical Illustration

We illustrate the theoretical results obtained in this section through a numerical exam-

ple. We fix the values of the transition rates, µ = 10, µx = 1.5 and µy = 1, and the

payoffs of the matrix game: a = −0.3, c = 0, b = 1 and d = 0.5. These values yield to

the following equilibrium of the standard evolutionary game: s∗ =
5
8
= 0.625.

In figure 5.2 we plot the trajectories of the system (Sǫ) of the coupled differential equa-

tions for different initial conditions and for ǫ = 0.01. We simulate a discrete time ver-

sion of the differential equations. We plot also the invariant manifold M0 and we ob-

serve that it is an attractor of the trajectories.

Proposition (10) gives the following solution of the system (S0):

q∗x = 0.7097, and w∗
1 = 0.8807.

This couple corresponds exactly to the attractor of the trajectories on figure 5.2 and then

our simulation validates the result of this proposition.
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Figure 5.2: Trajectories of the system (Sǫ) from different starting points and the slow manifold M0
for ǫ = 0.01.

In the next section, we present an alternative method based on rewriting our game into

a matrix game considering only pure policies.
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5.3.7 Matrix Game Approximation Technique

In alternative to the singular perturbation method, when assuming the two time-scales

behavior of the SPcD system, one can consider the distribution over individual states

to be stationary and then solve the obtained standard normal form game. In particular,

by following the approach used in (Altman and Hayel, 2010), we can rewrite the two

states and two actions model as a matrix game, where individuals play deterministic

policies instead of actions. We get the following payoff bimatrix:

(

uy ux

uy (F(uy, uy), F(uy, uy)) (F(uy, ux), F(ux, uy))

ux (F(ux, uy), F(uy, ux)) (F(ux, ux), F(ux, ux))

)

(5.26)

where F(ui, uj) is the expected fitness of an individual playing pure policy ui against

an individual using uj, with i, j ∈ {x, y}. Note that, as showed in (Altman and Hayel,

2010), it is possible to apply this matrix game approach to the general model with M

actions and K states but, in this case, the size of the matrix would be of dimension

D × D, where D is the number of deterministic policies. We restrict here our analysis to

the two actions/states case in order to compare the equilibrium obtained with the two

approaches.

The stationary distributions in states 1 and 0 are given respectively by the following

average sojourn times:

T1(i) =
1
µi

1
µ + 1

µi

=
µ

µ + µi
,

T0(i) =
1
µ

1
µ + 1

µi

=
µi

µ + µi
,

where i ∈ A denotes the choice of policy ui. The expected fitness F(ui, uj) can be

expressed as a function of these average sojourn times as follows:

F(ui, uj) = ∑
s,s′∈S

∑
a,a′∈A

Ts(a)Ts′(a′)r(a, a′),
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where r(a, a′) is the immediate fitness of a player using action a against an opponent

playing a′. From the payoffs matrix (5.17), we obtain:

F(uy, uy) = d,

F(ux, uy) = T1(x)b + T0(x)d,

F(uy, ux) = T1(x)c + T0(x)d,

F(ux, ux) = T1(x) [T1(x)a + T0(x)b] + T0(x) [T1(x)c + T0(x)d] .

(5.27)

By considering this matrix game as a representation of a standard evolutionary game,

we can write the replicator equation. Let δx(t) ∈ [0, 1] be the probability that a player

plays ux at time t. We have that:

δ̇x(t) = δx(t)(1 − δx(t))(F(ux, δx(t))− F(uy, δx(t)))

= δx(t)(1 − δx(t))
[

F(ux, uy)− F(uy, uy)

+δx(t)(F(ux, ux)− F(uy, ux) + F(uy, uy)− F(ux, uy))
]

.

(5.28)

We can compute the mixed equilibrium δ∗x by solving the indifference principle equa-

tion F(uy, δ∗x) = F(ux, δ∗x), with F(ui, q) = (1 − q)F(ui, uy) + qF(ui, ux) with i ∈ A. We

obtain:

δ∗x =
F(uy, uy)− F(ux, uy)

F(ux, ux)− F(uy, ux) + F(uy, uy)− F(ux, uy)
.

If 0 ≤ δ∗x ≤ 1, then it is an admissible equilibrium for the matrix game and it corre-

sponds to a rest point of the replicator dynamics (5.28). We resume our result in the

following proposition.

Proposition 11. If the distribution of the individual states is stationary, the equilibrium policy

of the game can be computed by applying the matrix game approximation technique, which leads

to the equilibrium

δ∗x =
s∗

T1(x)
. (5.29)

under the condition 0 ≤ s∗ ≤ T1(x).

Proof. As we have mentioned above, the equilibrium can be computed by imposing the

indifference principle, which leads to:

δ∗x =
F(uy, uy)− F(ux, uy)

F(ux, ux)− F(uy, ux) + F(uy, uy)− F(ux, uy)
.

By substituting the values of the fitnesses (5.27) into the latter equation and by carrying

82



5.3. Complete Characterization of the Game with Two States and Two Actions

out the values of the time ratios T1(x) and T0(x), we get:

δ∗x =

µ(d−b)
µ+µx

µ2a+µµxb+µxµc+µ2
xd

(µ+µx)2 + d − µb+2µxd+µc
(µ+µx)

=

µ(d−b)
µ+µx

µ2a+µµxb+µxµc+µ2
xd+d(µ+µx)2−(µ+µx)(µb+2µxd+µc)

(µ+µx)2

.

After some algebra:

δ∗x =
µ(d − b)
µ + µx

· (µ + µx)2

µ2(a + d − b − c)
=

s∗

T1(x)
.

In order for δ∗x to be an admissible equilibrium, it must satisfy δ∗x ∈ [0, 1], which com-

pletes the proof.

In figure 5.3 we illustrate the convergence of the replicator equation (5.28 ) to the equi-

librium δ∗x = 0.71875, which is obtained by setting, as in the previous numerical exam-

ple, µ = 10, µx = 1.5 and µy = 1, and a = −0.3, c = 0, b = 1 and d = 0.5, starting from

qx(0) = 0.2 and qx(0) = 0.9.
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Figure 5.3: Convergence of the replicator dynamics to the equilibrium δ∗x = 0.71875, obtained by
setting µ = 10, µx = 1.5 and µy = 1, and a = −0.3, c = 0, b = 1 and d = 0.5, starting from
qx(0) = 0.2 and qx(0) = 0.9.

5.3.8 Relation Between the Equilibria

In section 5.3.6, we suppose that each individual plays a deterministic policy ui ∈ UD,

which consists in always choosing action i in state 1 and action y otherwise and, by

applying the singular perturbation method, we determine the equilibrium profile ξ∗ =
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(w∗
1 , q∗x) of such game. In section 5.3.7, we assume that the distribution of individual

states is already stationary which allows us to rewrite the game as a standard evolu-

tionary game and to compute its mixed equilibrium δ∗. While q∗x represents the share

of the population choosing policy ux at the equilibrium, δ∗ represents the probability of

choosing the deterministic policy ux. This means that, in the first case, the population

considered is polymorphic (with a fraction q∗ of the population choosing policy ux and

the remaining 1 − q∗x choosing uy), while in the latter case we have a monomorphic pop-

ulation, where all individuals play the same mixed action (which consists in choosing

ux with probability δ∗x). We can compare the equilibria q∗x and δ∗x obtained with these

two different approaches.

Proposition 12. The relation between the equilibrium δ∗x and the equilibrium q∗x is the follow-

ing:

q∗x < δ∗x .

Proof. We evaluate the difference between the equilibria δ∗x , obtained by solving our
model as a matrix game in (5.29) with the value of the equilibrium obtained through
the singular perturbation method, and q∗x in (10):

δ∗x − q∗x =
s∗(µ + µx)

µ
− s∗(µ + µy)

µ − s∗(µx − µy)

= s∗
(µx − µy)(µ − s∗(µ + µx)

µ(µ − s∗(µx − µy))
.

If we consider the same values of the parameters chosen for the previous numerical

example, the matrix game approach gives the following equilibrium:

δ∗x =
s∗(µ + µx)

µ
= 0.71875 > q∗x = 0.7097,

which verifies the proposition 12.

We now compare the two equilibria in terms of the average fitness fitness of the pop-

ulation, i.e. F̄(δ∗x) and F̄(ξ∗), with ξ∗ = (w∗
1 , q∗x), and we verify that, as expected, the

fitnesses are equal.

Proposition 13. The average fitness of the population at the equilibria points obtained with the

two approaches are equals, i.e. F̄(ξ∗) = F̄(δ∗x).

Proof. Considering the first approach, based on the singular perturbations method, we
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have:

F̄(ξ∗) = q∗xFx(ξ
∗) + (1 − q∗x)Fy(ξ

∗)

= Fy(ξ
∗) + q∗x(Fx(ξ

∗)− Fy(ξ
∗)),

with ξ∗ = (w∗
1 , q∗x). At the equilibrium state, we have Fx(ξ

∗) = Fy(ξ
∗) and thus F̄(ξ∗) =

Fy(ξ
∗) = ry(ξ

∗) = w∗
1(q

∗
xc+(1− q∗x)d)+ (1−w∗

1)d. Knowing that q∗xw∗
1 = s∗, we obtain:

F̄(ξ∗) = s∗c + (1 − s∗)d.

By rewriting the game into a matrix game, we obtain the following equilibrium profile:

δ∗x =
s∗

T1(x)
. The average fitness of the population in this case is:

F̄(δ∗x) = δ∗x F(ux, δ∗x) + (1 − δ∗x)F(uy, δ∗x)

= F(uy, δ∗x) + δ∗x(F(ux, δ∗x)− F(uy, δ∗x)).

At the equilibrium, we have the following equality F(ux, δ∗x) = F(uy, δ∗x) and then the

average fitness of the population becomes simply:

F̄(δ∗x) = F(uy, δ∗x) = δ∗x F(uy, ux) + (1 − δ∗x)F(uy, uy).

The average fitness of the population is: F̄(δ∗x) = δ∗x(T1(x)c + T0(x)d) + (1− δ∗x)d. Since

δ∗x T1(x) = s∗,

F̄(δ∗x) = s∗c + (1 − s∗)d,

which completes the proof.

Finally, we prove that the two equilibria obtained with the two approaches are in the

same equivalent class in terms of average sojourn times. Let T1(q) be the average so-

journ time in state 1 for an individual in a polymorphic population whose profile is ξ∗,

and let T1(δ
∗
x) be the average sojourn time in state 1 for an individual in a monomophic

population playing mixed action δ∗. For the monomorphic population case, we obtain:

T1(δ
∗
x) = δ∗x T1(x) + (1 − δ∗x)T1(y) = δ∗x

µ

µ + µx
+ (1 − δ∗x)

µ

µ + µy
. (5.30)

For the case of the polymorphic population:

T1(q∗x) = π1(q∗x) =
µ

µ + µxq∗x + µy(1 − q∗x)
. (5.31)

The equivalence between these average sojourn times is proved in the following propo-
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sition.

Proposition 14. The mixed equilibrium δ∗x and the equilibrium obtained by the singular per-

turbation approach yield to the same average sojourn times, i.e.

T1(δ
∗
x) = T1(q∗x).

Proof. We first rewrite δ∗x as a function of the immediate payoffs in matrix (5.17):

δ∗x =
(µx + µ)(d − b)

µ∆
.

where ∆ := a − b − c + d. We substitute it in (5.30), and we get:

T1(δ
∗
x) =

µ∆ + (µx + µy)

µ∆(µ + µy)
.

Analogously, we substitute the expression of s∗ in q∗x in proposition(10), and we rewrite
it in (5.31), which leads to:

T1(q
∗
x) =

µ∆ + (µx + µy)

µ∆(µ + µy)
.

which proves that T1(q∗x) = T1(δ
∗
x).

The previous results show that we can define two equivalent classes for deterministic

policies that yield same average fitness and average sojourn times.

5.3.9 Applications in Network Systems

Energy Control in Wireless Network

The two-states two pure actions model can be applied to describe a particular problem

that arises in dynamic power control in mobile networks, which has been presented in

(Altman and Hayel, 2008). The underlying idea is based on the fact that battery life is a

very critical issue in wireless systems, and then, defining optimal transmission policies

based on battery levels is very important. Moreover, this energy management problem

is even more important when interactions occurs between the devices, complicating

the analysis of such control systems. We then consider a system in which the action

of each device impacts the lifetime of its battery or its battery level, and also impacts

its transmission rate. A large number of mobiles transmit packets occasionally. Each

transmitter can be in Full (F) or Almost empty (A) battery state. When a mobile is in

F state it can choose to transmit packets using high (h) or low (l) power, whereas if it

is in state A, it can only transmit packets using l power. In general, several mobiles
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try to join a common receiver at the same time and interferences occur between the

received signals. We suppose that transmissions are sparse so that the probability that

more than two mobiles transmit simultaneously is negligible. We also assume that

a transmission is successful either if the mobile is the only transmitter during a slot

or if it transmits at higher power than the other transmitter. The time spent in state F

depends on the action chosen by the mobile. Then the state of the mobile changes to the

lower battery state A. After an exponentially distributed time, its battery state becomes

empty. We assume that the battery is immediately recharged, so that the mobile goes

back to state F. When transmitting at high power, the mobile’s battery is consumed

faster, and thus the transition rate from F to A is faster. Then, in this framework, the

state space corresponds to S := {A, F}, the action space is A := {h, l} = AF and

the restricted action space for state A is AA := {l}. The set of deterministic policies

UD := {uh, ul} is composed of the policy uh such that uh(A) = l and uh(F) = h; the

policy ul such that ul(A) = l and ul(F) = l. Then, the system (S) of coupled dynamics

describes the time evolution of the proportion of mobiles in each state A and F, and

at the same time the proportion of mobiles using policy uh and ul . By assuming that

the state dynamic is highly faster than the policy dynamics (the change of policy has

to be reimplemented into the mobiles by manufacturer or designers), then our analysis

describes the equilibrium situation which corresponds to the long term evolution of

this system.
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Figure 5.4: Energy control in wireless networks. Each mobile continuously moves from full battery
state (F) to almost empty battery state (A) and then back to F. If the mobile chooses policy uh (left
side), in state F it transmits at high power (h), otherwise, if it chooses policy ul it transmits at low
power (l) (right side). In state A, it always transmits at low power. Since high power transmission
is costly in terms of energy consumption, when transmitting at high power, the transition rate to
state A is faster, and thus the time spent in state F is shorter.

Network Formation Games

Another application of the proposed model can be found in network formation games

(Jackson, 2005). We consider a large number of nodes where each node is in one of two

possible states: Infected or Susceptible, so that S = {I, S}. Nodes interact through pair-

wise interactions, during which both nodes exchange contents. If a node is in state S, it

determines the type of unidirectional link to the node it is interacting with. The type of

link can be charged at a price (p) or for free ( f ); if a node is in the infected state (state

I), it can only create free links. Pay connection is safer, so that when a link is not a free

one, the probability for a node to be infected is lower, independently of the choice of

the other node to pay or not and also independent of the state of the other node. After

some random time in I state, a node becomes susceptible again. This application into

networks formation games could ask more assumptions on the model, especially if the

transition rate depends on the state of the opponent. In this case we should define a

more general game framework considering interactive MDPs, like anonymous sequen-
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tial games (Wiecek and Altman, 2014). This generalized framework has a highly more

complicated internal structure. We thus let its analysis as an extension for future works.

It has to be noted that the singular perturbation approach, proposed in Subsection 5.3.6

is valid for this application, by considering a more complicated dynamics of individual

state, which depends on the action also of the opponent.

5.4 Conclusion

In this chapter we considered a particular type of evolutionary game in which the action

of the individual not only determines its immediate fitness but it also impacts the transi-

tion rates of the Markov process of the individual state. We defined the interdependent

dynamics of the individual state and of the policy, where the evolution of policies dis-

tribution in the population dynamics is assumed to follow the well-known replicator

dynamics. After introducing these combined dynamics in a general framework, we an-

alyzed a particular case for which we proved the correspondence between stable rest

points of the dynamics and the equilibrium profiles of the evolutionary game. Under

the assumption that the two dynamics evolve with different timescales, we proposed

two methods to obtain the rest points. We gave a complete characterization of these

equilibrium profiles and we showed that these equilibria are equivalent in terms of av-

erage sojourn times and expected fitness. Finally, we illustrated our framework with

two application scenarii in network systems.
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Chapter 6

A Dynamic Approach for the Study
of a Hawk-Dove Problem

“Mathematics without natural history is sterile, but natural history without
mathematics is muddled.”

J.Maynard Smith, Games, Sex and Evolution, 1987

Summary
We develop in this chapter a dynamic model for the Hawk-Dove game in order to
study the impact of the aggressive behavior of adults on the evolution of young
individuals. As in MDEG presented in Chapter 4, players are associated with a
MDP, but transition probability here do dot depend on the player’s action but on
the action of the individual it meets. We define a Hawk-Dove game with four
possible individual states, where the individual state determines the set of available
actions. By considering the stationary distribution over the states, we transform
the game into a standard evolutionary game, and we compute its equilibria. We
then consider this Hawk-Dove dynamic game with group players as presented in
Chapter 2.
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6.1 Introduction

In this chapter we present a simple example of a Hawk-Dove game in a MDEG type

of framework, where, in contrast with the theory presented in Chapter 4, we assume

that transition probabilities do not depend on the action of the player but may depend

on the action taken by those it encounters. The Hawk-Dove game is one of the most

studied example to model the level of aggressiveness in a population and it finds many

applications in different fields (see Section 1.4). The aim of our MDEG version of the

game is to study the impact of the aggressive behavior of adults on the evolution of

young individuals.

State of Art

Dynamical models of the Hawk-Dove game can be found in EGT literature. Houston

and McNamara (Houston and McNamara, 1988) (Houston and McNamara, 1991) study

a repeated version of the Hawk-Dove game, where each bird is associated with a state

variable representing animal’s level of energy evolving in time as a Markov Process.

The action played by an animal depends on its reserve of energy and the fitness function

depends on the average level of aggressiveness in the population. Birds are supposed

to choose their policy in order to minimize the probability of dying during a period of

time, and the ESS is in the form: ”play Hawk if and only if reserves are below a critical level

of the energy resources c∗(t)”. McNamara et al. (McNamara et al., 1991) give an analytic

justification of the computations performed in (Houston and McNamara, 1988) in a

simpler setting, where they obtain interesting structural properties of the equilibrium

using dynamic programming tools.

Some of the features considered in the Hawk-Dove model that we define can be found

in (Altman and Hayel, 2008) (see the Introduction to the previous chapter), where the

authors present a simple application of MDEG to mobile communications. As in our

case, individuals can choose among an aggressive and a non-aggressive action only in

one of the possible individual states, while in the others, only non-aggressive one is

allowed.

In what follows, we consider a Hawk-Dove game where players are associated with

one of four possible states, representing the age and the strength of the individual, and

we suppose that the aggressive behavior is possible only in one of these states. Players

aim at maximizing their expected immediate fitness during their lifetime. The system is

assumed to be in its stationary state, which means that the distribution over the individ-

91



Chapter 6. A Dynamic Approach for the Study of a Hawk-Dove Problem

ual states is stationary, and the game is then transformed into a standard evolutionary

game. We identify the stationary equilibrium of the game and we compute its value.

In Section 6.3 we consider the case of group players presented in Chapter 2, for this

Hawk-Dove MDEG.

6.2 The Model

Let us consider an infinitely large population of players matched in pairwise random

interactions. We define a four state model, such that each individual is born ’young’

(Y) and after each interaction with another randomly selected individual can become an

adult or remain in young state. Adults can be aggressive (play Hawk) or non-aggressive

(play Dove). If a young meets an aggressive adult either it evolves as a ’weak adult’

(AW) or it becomes a ’weak young’ (YW). A weak young, when evolving, can only

become a weak adult, whereas a young who has never been attacked may evolve into

a ’strong adult’ (AS). The tuple {S ,A,Q} describing our game is defined as follows:

• The set of states is S = {Y, YW , AS, AW}, where Y, YW correspond to ’young’ and

’weak young’, AS to ’strong adult’ and AW to ’weak adult’.

• The set of actions is A = {H, D}, with AAS = A, and AAW = AY = AYW = {D}.

Players can choose weather to behave aggressively (H) or not (D) only in AS state,

while in all the other states, players can only play D.

• We define the probability of remaining in the young state (either weak or not)

for a young individual by y ∈ [0, 1]. Consequently, the probability for a young

individual to evolve into an adult one is 1 − y. Analogously, the probability for

an adult to stay in adult state (either weak or strong) is denoted by x ∈ [0, 1],

while with probability 1 − x an adult dies and is replaced by a young individual.

We assume that the transition probabilities Qt
s′(s, a, a′) (defined in Section 4.2) are

time homogeneous and do not depend on the action of the player (a), but they

may depend on that of its opponent (a′). We describe the set Q as follows.

– If a young individual meets an adult one, the transition probabilities de-
pend on the action of the player it meets (and not on its action):

QY(Y, ·, D) = y QY(Y, ·, H) = 0
QYW

(Y, ·, D) = 0 QYW
(Y, ·, H) = y

QAW
(Y, ·, D) = 0 QAW

(Y, ·, H) = 1 − y
QAS

(Y, ·, D) = 1 − y QAS
(Y, ·, H) = 0
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– If a weak young individual meets an adult one, the transition probabilities
only depend on its state (and not on the adult’s action):

QY(YW , ·, ·) = 0
QYW

(YW , ·, ·)y
QAW

(YW , ·, ·) = 1 − y
QAS

(YW , ·, ·) = 0

– Analogously, when an adult individual of type i meets another adult, the
transition probabilities only depend on the player state:

QAj
(Ai, ·, ·) =

{

x i = j
0 i 6= j

QY(Ai, ·, ·) = 0 QYW
(Ai, ·, ·) = 0

Without loss of generality, we restrict to the set of stationary policies US. We assume

that if the population uses some common (mixed) stationary policy (except for a tagged

player) then the global state process before the tagged user is born forms a time-homogeneous

Markov chain; when the tagged player is born, it finds the Markov chain in steady state.

Since the choice of an action in A is limited to state AS, we can identify a (mixed) sta-

tionary policy u ∈ US with the rule "play action H with probability qu when in state AS, D

otherwise", i.e. u(H|AS) = qu, u(D|AS) = 1− qu and u(D|AW) = u(D|Y) = u(D|YW) =

1. Let uH and uD be the deterministic policies corresponding respectively to qu = 1 and

qu = 0. Let v ∈ US be the common policy adopted by the population . The fraction of

adults of type Ai ∈ {AW , AS} in such a population is defined as:

αi(v) := P(Ai|v)

The total proportion of adults in the population, denoted by P(A), does not depend on

the policy v, and it corresponds to the expected lifetime spent in adult state over the

total expected lifetime of an individual:

P(A) =
1

1−x
1

1−x + 1
1−y

. (6.1)

The probability of being attacked when young is αS(v)qv, which corresponds to the

probability of finding a strong adult playing aggressively. Consequently αW(v) =

P(A)(αS(v)qv) and αS(v) = P(A)(1 − αS(v)qv). We can then explicit the fraction of
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strong and weak adults in the population as a function of P(A):

αS(v) =
P(A)

1 + P(A)qv
, αW(v) =

qvP(A)2

1 + P(A)qv
. (6.2)

Since in classical EGT the fitness function is related to the rate of reproduction of an

individual, we suppose that only adults reproduce and thus the fitness of a young in-

dividual is assumed to be zero. The immediate payoff matrix, describing the fitness of

the row player when meeting the column player, is the following:

AS(H) AS(D) AW Y YW

AS(H)
1
2
− δ 1 1 1 1

AS(D) 0
1
2

1
2

1
2

1
2

AW −∆
1
2
− ∆

1
2
− ∆

1
2
− ∆

1
2
− ∆

where δ, ∆ >
1
2

. The parameter δ represents the cost of the fight, whereas ∆ reflects

the loss of fitness for individuals who have been attacked when young. We omitted the

null rows for Y and YW .

The expected immediate fitness for an adult of type i ∈ {AS, AW}, choosing policy

u ∈ US against a population playing v ∈ US is F(i, u, v) := Eu,v[r(i, s, s′, a′)], where

r(i, a, s′, a′) is the immediate fitness of an adult of type i ∈ {AS, AW} playing a ∈ Ai

against an individual in state s′ ∈ S playing a′ ∈ As′ . As each player is born in young

state, F(i, u, v) does not depend on the initial state.

6.2.1 Deriving the Expected Fitness and the Equilibria

We suppose that a tagged individual chooses stationary policy u against a population

playing stationary policy v. The total expected fitness of the tagged player during its

lifetime is given by:

F(u, v) =
1

1 − x
(αS(v)F(S, u, v) + αW(v)F(W, u, v)) , (6.3)

where
1

1 − x
is the expected lifetime in adult state. F(S, u, v) denotes the immediate

expected fitness of an adult strong (AS) playing u against a population playing v, with:
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F(S, u, v) =
[

qu

(

(1 − P(A)) + αS(v)(1 − (
1
2
+ δ)qv) + αW(v)

)

+(1 − qu)

(

1 − P(A)

2
+

1 − qv

2
αS(v) +

αW(v)
2

)]

,
(6.4)

and F(W, u, v) is the immediate expected fitness of a weak adult (AW):

F(W, u, v) =
[

(1 − P(A))(
1
2
− ∆)− αS(v)(

1
2
− ∆ − qv

2
) + (

1
2
− ∆)αW(v)

]

= F(W, v). (6.5)

Note that the fitness of a weak adult F(W, v) does not depend on the policy u, as a weak
adult always plays D. By substituting the expressions (6.4) and (6.5) in (6.3) we obtain:

F(u, v) =
αS(v)
1 − x

[

qu

(

(1 − P(A)) + αS(v)(1 − (
1
2
+ δ)qv) + αW(v)

)

+

+(1 − qu)

(

1 − P(A)

2
+

1 − qv

2
αS(v) +

αW(v)
2

)]

+
αW(v)
1 − x

[

(1 − P(A))(
1
2
− ∆)− αS(v)(

1
2
− ∆ − qv

2
) + (

1
2
− ∆)αW(v)

]

,

(6.6)

where αS(v) =
P(A)

1 + P(A)qv
and αW(v) =

P(A)2qv

1 + P(A)qv
. By definition we have that

αS(v) + αW(v) = P(A), which leads to:

F(u, v) =
αS(v)
1 − x

[

qu

(

1 − P(A) + P(A)− αS(v)(
1
2
+ δ)qv

)

+

+(1 − qu)

(

1 − P(A)

2
+

P(A)

2
− qvαS(v)

2

)]

+
αW(v)
1 − x

[

1
2
− ∆ − αS(v)

qv

2

]

=
1

1 − x

[

αS(v)
(

1
2
− δqvαS(v)

)

qu − ∆αW(v) + P(A)

(

1
2
− qv

2
αS(v)

)]

.

(6.7)

In the following theorem we present the symmetric equilibrium of the game, which

depends on the value of the cost of the fight δ. We obtain that, if the the cost of the fight

is below a certain threshold δ∗ the deterministic symmetric equilibrium policy is uH. If

the cost is strictly higher than δ∗, the symmetric equilibrium is given by a mixed policy

v∗.

Theorem 5. Given the game described in Section 6.2 we have that:

i. if δ ≤ δ∗ the unique symmetric equilibrium is the deterministic policy uH;

ii. if δ > δ∗ the unique symmetric equilibrium is the stationary policy v∗ such that

qv∗ =
1

P(A)(2δ − 1)
, (6.8)
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where:

δ∗ =
1 + P(A)

2P(A)
.

Proof. We first look for the equilibrium in pure actions. If the population’s policy is

v = uD (i.e. all individuals in the population plays pure action D in state AS), we

obtain that:

αS(uD) = P(A) and αW(uD) = 0.

By substituting these values and qv = 0 in equation (6.7) we get:

F(u, uD) =
P(A)(qu + 1)

2(1 − x)
. (6.9)

Note that F(u, uD) is increasing in qu, and thus uD (corresponding to qu = 0) is never

an equilibrium.

We consider the case v = uH. We have that:

αS(uH) =
P(A)

1 + P(A)
and αW(uH) =

P(A)2

1 + P(A)
.

By substituting these values, qv = 1 and, respectively qu = 0 and qu = 1 in 6.7 we get:

F(uD, uH) = − P(A)(2∆P(A)− 1)
2(1 + P(A))(1 − x)

,

F(uH , uH) =
P(A)(1 + P(A)− δP(A)− ∆P(A)− ∆P(A)2)

(1 − x)(1 + P(A))2 .

The aggressive deterministic policy uH is an equilibrium only if the inequality F(uH, uH) ≥
F(uD, uH) holds. We have that:

F(uH , uH)− F(uD, uH) ≥ 0 ⇔ −P(A)(2δP(A)− 1 − P(A))

2(1 + P(A))2(1 − x)
≥ 0.

The latter inequality is satisfied if and only if

1 + P(A)− 2δP(A) ≥ 0.

We thus obtain that the aggressive behavior uH is an equilibrium in deterministic poli-

cies if and only if δ ≤ 1 + P(A)

2P(A)
, which proofs the first statement of the theorem.

We now apply the indifference principle to find the equilibrium in mixed policies. By
substituting qu = 0 in (6.7) we obtain:

F(uD, v) =
1

1 − x

[

P(A)

(

1
2
− qvαS(v)

2

)

− ∆αW(v)
]

=
1

1 − x

[

P(A)(1 − 2∆P(A)qv)

2(1 + P(A)qv)

]

.
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For policy uH, equation (6.7) becomes:

F(uH , v) =
1

1 − x

[

αS(v)
(

1
2
− δqvαS(v)

)

− ∆αW(v) + P(A)

(

1
2
− qv

2
αS(v)

)]

.

We impose the indifference among the two possible pure policies of the first player, i.e.

F(uD, v) = F(uH, v) and we find the following value:

qv∗ =
1

P(A)(2δ − 1)
.

If 0 < qv∗ < 1, then the policy v∗ s.t. v∗(H|AS) = qv∗ is an admissible mixed policy.

By imposing these constraints on (6.8), we get δ >
1 + P(A)

2P(A)
, which completes the

proof.

In figure 6.1 we plot the equilibrium probability qv∗ , i.e. the probability of being aggres-

sive in state AS at the equilibrium defined in (6.8), as a function of the proportion P(A)

of adults in the population, for three different values of δ. The continuous higher line is

obtained with δ = 4, the dotted line with δ = 6, the continuous lower one with δ = 10.

As expected we can observe that qv∗ is a decreasing function of P(A): this means that

the higher the proportion of adults in the population is, the lower is the probability of

being aggressive. As a matter of fact, the aggressive behavior of strong adults is re-

warding only when adopted against a non-aggressive individual, while it is costly if

adopted against another aggressive adult. In figure 6.2, qv∗ is plotted as a function of

the threshold δ∗. The continuous higher line is obtained with P(A) = 0.15, the dotted

line with P(A) = 0.5, the continuous lower one with P(A) = 0.88. As the value of δ∗
represents the cost of the fight between two aggressive adults, as expected, we can see

that qv∗ is decreasing in δ∗.

Remark 7. We observe that the equilibrium value qv∗ , corresponding to the probability of play-

ing aggressively in state AS, does not coincide with the mixed Nash equilibrium q∗ =
1
2δ

of the

standard Hawk-Dove game, even when x → 1, so that P(A) ≃ 1. As a matter of fact, even if

there are almost only adult individuals in the population, the fraction of weak adults may not be

negligible, and thus we still may have a populations with two types of adults.

6.3 The Dynamic Hawk-Dove Game and Group Players

We now reformulate this Hawk-Dove game, considering groups players, as presented

in Chapter 2. States are associated with individuals within a group, which are ran-

domly matched in pairwise interactions, but the rules that determine their policy are
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Figure 6.1: The equilibrium qv∗ plotted as a function of the proportion P(A) of adults in the popu-
lation for different values of δ. The higher line is obtained with δ = 4, the middle line with δ = 6,
the lower one with δ = 10.
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Figure 6.2: The equilibrium qv∗ as a function of the value of δ for different values of P(A). The
higher line is obtained with P(A) = 0.15, the middle line with P(A) = 0.5, the lower one with
P(A) = 0.88.

chosen in order to maximize the fitness of the group they belong to. We suppose that

the large population of individuals is divided into N symmetric groups of the same size

and that all players within a group choose the same policy. We further suppose that the

probability of being a strong (or a weak) adult does not depend on the group the player

belongs to, but it depends only on the average quantity q̄u :=
∑

N
l=1 qul

N
, which is the av-
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erage probability of being aggressive in state AS in the population. These probabilities

are given, respectively by:

αS(ū) := P(AS|ū) = P(A) (1 − αS(ū)q̄u) ,

αW(ū) := P(AW |ū) = P(A) (αS(ū)q̄u) .

where ū is the mixed policy such that u(H|AS) = q̄u. These quantities can be rewritten

as:

αS(ū) =
P(A)

1 + P(A)q̄u
, (6.10)

αW(ū) =
q̄uP(A)2

1 + P(A)q̄u
. (6.11)

We suppose that the entire population chooses the same stationary policy u ∈ US, ex-

cept for a fixed group i playing ui ∈ US. We have that:

q̄u =
qui + (N − 1)qu

N
.

6.3.1 Group Fitness and Equilibria

We associate to pairwise interactions among individuals the payoff matrix defined in

Section 6.2. The expected fitness during the lifetime of a group-player i choosing policy

ui ∈ US, in a population adopting policy u ∈ US is given by:

Γ(ui, u) =
1

1 − x

[

αS(ū)
(

1
N

F(S, ui, ui) +
N − 1

N
F(S, ui, u)

)

+αW(ū)
(

1
N

F(W, ·, ui) +
N − 1

N
F(W, ·, u)

)]

,
(6.12)

where:

F(S, ui, u) = qui

(

(1 − P(A)) + αS(ū)(1 − (
1
2
+ δ)qu) + αW(ū)

)

+ (1 − qu)

(

1 − P(A)

2
+

1 − qv

2
αS(ū) +

αW(ū)
2

)

= qui

(

1 − P(A)

2
+ αS(ū)(

1
2
+ δ)qu) + αW(ū)

)

+

(

1 − P(A)

2
+

1 − qui

2
αS(ū) +

αW(ū)
2

)

,
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is the expected immediate fitness of a strong adult in group i, playing policy ui against
a population playing u and

F(W, ·, u) = (1 − P(A))(
1
2
− ∆ − αS(ū)(

1
2
− ∆ − qu

2
) + (

1
2
− ∆)αW(ū)),

is the expected immediate fitness of a weak adult in a population whose policy is u.

Quantities αS(ū) and αS(ū) are defined in (6.10) and (6.11) with q̄u =
qui + (N − 1)qu

N
,

while 1/N and N − 1/N are, respectively, the probability for a player of meeting an

opponent in the same group and in a different group.

In order to obtain insight on the impact of the groups on the equilibrium, we shall

focus on some particular values of the parameters. We consider the case of two groups

(N = 2) and we further fix ∆ = 1 and P(A) = 0.5, which means that there’s an equal

share of young and adult individuals in the population. We first look at symmetric

equilibria in deterministic policies and we obtain that, if the cost of the fight is higher

than a certain threshold, the deterministic policy uD is an equilibrium, while, if the cost

is low enough, the deterministic equilibrium policy is uH. This result is presented in

the following theorem.

Theorem 6. Given the group-players dynamic Hawk-Dove model, with N = 2, P(A) = 0.5

and ∆ = 1, the equilibrium in deterministic policy is:

• uH for δ < 1.05;

• uD for δ > 1.333.

Proof. Let us first consider a non aggressive population, i.e. u = uD. We substitute
qu = 0 in (6.12) and we compare the results obtained for the two possible response of
the tagged group i, ui = uD and ui = uH.

Γ(uD, uD) =
−1

2P(A)(x − 1)
,

Γ(uH , uD) =
−P(A)(4 + 2P(A)− 2P(A)δ − P(A)2 − 2P(A)∆

(x − 1)(2 + P(A))2 + 3P(A)2∆ + P(A)3∆ − P(A)3δ)

We compute the difference:

Γ(uD, uD)−Γ(uH , uD) =
−P(A)(−4 + 3P(A)2 + 4P(A)δ + 4P(A)∆ − 6P(A)2∆ − 2P(A)3∆ + 2P(A)3δ)

2((x − 1)(2 + P(A))2)
(6.13)

If the population is aggressive, i.e. if u = 1, we have that:

Γ(uD, uH) =
P(A)(−2 − P(A) + P(A)2 + 2P(A)∆ − 3P(A)2∆ − P(A)3∆ + P(A)3δ)

(x − 1)(2 + P(A))2
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Γ(uH , uH) =
P(A)(−1 − P(A) + P(A)δ + P(A)∆ − P(A)3∆ − P(A)2∆ + P(A)3δ)

(x − 1)(1 + P(A))2

In this case:

Γ(uH , uH)− Γ(uD, uH) =
P(A)(−2 − 3P(A)− 2P(A)2 + 4P(A)δ + 2P(A)∆ − A2∆)

((x − 1)(1 + P(A))2(2 + P(A))2

+
P(A)(4P(A)2δ − 2P(A)3∆ + 4P(A)3δ − 2P(A)3 + 2P(A)4δ − P(A)4)

((x − 1)(1 + P(A))2(2 + P(A))2)

(6.14)

By substituting ∆ = 1 and P(A) = 0.5in (6.13) and in (6.14), we obtain respectively:

Γ(uD, uD)− Γ(uH , uD) = −3(−4 + 3δ)

100(x − 1)
> 0 ⇔ δ >

4
3
= 1.333

Γ(uH , uH)− Γ(uD, uH) =
(−61 + 58δ)

450(x − 1)
> 0 ⇔ δ <

61
58

≃ 1.05

We now consider also symmetric mixed policies. We obtain that, if the cost is higher

that a certain value, the group-players Hawk-Dove dynamic game admits a symmet-

ric mixed (stationary) policy equilibrium u∗. We resume our results in the following

theorem.

Theorem 7. The group-players dynamic Hawk-Dove model, for the fixed values of the param-

eters N = 2, P(A) = 0.5, ∆ = 1, admits the following equilibria:

i. the deterministic policy uH for 0.5 < δ < 1.05 ;

ii. the stationary policy u∗ for δ ≥ 0.8125, with:

qu∗ = −−4 + 7δ −
√

12 − 48δ + 49δ2

(−1 + 2δ)
;

iii. the deterministic equilibrium policy uD for δ ≥ 1.333.

Proof. By substituting the values of N = 2, P(A) = 0.5 and ∆ = 1 in 6.12, we obtain:

Γ(ui, u) =
(−16qui − 5q2

ui
− 6qui qu + 9δq2

ui
− 16 + 10qui δqu − q2

u + δq2
u)

4((−1 + p)(4 + qui + qu)2)
.

We compute the derivative:

∂Γ(ui, u)
∂ui

=
(−8 − 6qui − 10qu − qui qu − q2

u + 18δqui + 2qui δqu + 10δqu + 2δq2
u)

((x − 1)(4 + qui + qu)3)
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and, by imposing
∂Γ(ui, u)

∂ui
= 0, we find:

qui =
−8 − 10qu − q2

u + 10δqu + 2δq2
u

−6 − qu + 18δ + 2δqu

We now impose the symmetry qui = qu and we obtain the two solutions:

qu1 := −−4 + 7δ −
√

12 − 48δ + 49δ2

(−1 + 2δ)

qu2 :=
−(−4 + 7δ +

√
12 − 48δ + 49δ2

(−1 + 2δ)

The second solution qu2 is always negative and thus it is not acceptable, while the first

solution satisfies 0 < qu1 < 1 iff δ > 0.8125. We set qu∗ = qu1 and we define by u∗
the policy corresponding to play H with probability qu∗ in state AS. This completes the

proof.

From Theorem 7, we can observe that it is possible to determine two intervals of the

values of the cost δ (involved in a fight between two aggressive strong adults), in which

we have two equilibria. More precisely, we can observe that:

• for 0.5 < δ ≤ 0.8125 the game admits one deterministic equilibrium policy uH;

• for 0.8125 < δ ≤ 1.05 the game admits two equilibria, the deterministic uH and

the mixed u∗;

• for 1.05 < δ < 1.333 the game admits one mixed equilibrium u∗;

• for δ ≥ 1.333 the game admits one deterministic equilibrium policy uD.

In figure 6.3 we plot the probability of being aggressive in state AS at the equilibrium,

as a function of the cost δ. In figure 6.4 we compare the mixed equilibrium policies

obtained for the dynamic Hawk-Dove game, respectively for group-players and for

individual-players. We can observe that the probability of being aggressive (in state

AS) at the equilibrium is lower for group-players. This is coherent with what we found

in chapter 2.

6.4 Conclusion

We revisited in this chapter the Hawk-Dove game in a MDEG framework. In this con-

text an individual may be in one of several states, and the actions played by individuals
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Figure 6.3: The probability of being aggressive in state AS at the equilibria, obtained with N = 2,
P(A) = 0.5 and ∆ = 1, as a function of the cost δ.
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Figure 6.4: The equilibrium value qu∗ as a function of the value of δ

involved in pairwise interactions determine not only the immediate fitness but also the

transition probabilities of the players’ individual state. We found that the described

game has a unique symmetric equilibrium, which can be the pure aggressive policy

uH or a mixed equilibrium policy v∗, depending on the value of the cost of the fight

between two aggressive individuals δ. We then further extended our dynamic Hawk-

Dove game, by considering group-players as presented in Chapter 2. We fixed the

number of groups N = 2, the share of adults P(A) = 0.5 and ∆ = 1, to compute the

equilibria as a function of the cost of the fight δ. If the cost is very low, the aggres-
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sive deterministic policy uH is an equilibrium, otherwise, above certain values of the

cost, we have a mixed equilibrium policy u∗ and the deterministic policy uH. In par-

ticular, for δ ∈ [0.8125, 1.05] the game admits the two equilibria uH and u∗ and, for

δ ≥ 1.333 the equilibria uD and u∗. The presence of groups in the dynamic Hawk-Dove

game thus brings novel features with respect to the individual player game: the fact

the non-aggressive policy uD can an equilibrium and the fact of having more than one

equilibrium (for some values of δ). We also compared the mixed equilibria obtained

respectively for the individual-players and the group-players games and we obtained

that the probability of being aggressive in strong adult state is higher for individual-

players. This is coherent with the results obtained in Chapter 2, where we showed that

the presence of groups lowers the level of aggressiveness.
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Part III

Stochastic Hybrid Dynamics
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Chapter 7

Hybrid Stochastic Systems

”Nature almost surely operates by combining chance with necessity,
randomness with determinism...”

Eric Chaisson, Epic of Evolution: Seven Ages of the Cosmos, 2007

Summary
In this chapter we extend the theory of control of an hybrid stochastic dynamical
system to the case of a two players non-zero sum game. The system evolves in con-
tinuous time and it is subjected to abrupt changes of the parameters, determined
by two (discrete time) Markov decision processes, each of which is controlled by a
player that aims at minimizing its objective function. As we did in Chapter 5, we
assume a two time scale behavior of the system: the lengths of the time intervals
between the “jumps" of the parameters are assumed to be small, which means that
parameters evolve faster than the state of the system. This allows us to approxi-
mate the hybrid game with a deterministic averaged dynamic game. We prove that
an asymptotic Nash equilibrium of such hybrid game can be constructed on the
basis of a Nash equilibrium of a deterministic averaged dynamic game.
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7.1 Introduction

In this chapter, we study a non-zero sum dynamic game whose state is described as

a hybrid dynamical system that evolves in continuous time and that is subjected to

abrupt changes of the parameters. These changes are determined by two Markov de-

cision processes, each of which is controlled by a player that aims at minimizing its

objective function. The lengths of the time intervals between the “jumps” of the pa-

rameters are assumed to be equal to a small positive parameter ǫ, which means that

parameters change their values frequently (the smaller is the parameter ǫ, the higher

is the frequency). The MDPs are thus supposed to move faster than the state of the

system. We then define an averaged dynamic game which allows us to approximate

the hybrid system. More precisely, the main result of this chapter establishes that an

asymptotic Nash equilibrium of the game defined by the solutions of the hybrid sys-

tem (see Definition 1 in Section 7.2 below) can be constructed on the basis of a Nash

equilibrium of the game defined by the solutions of the deterministic averaged system.

The principal difference of our result from those obtained in the aforementioned works

is in that the information structures of the hybrid and the averaged games need to be

adjusted. In fact, we show that an asymptotic Nash equilibrium of the hybrid game,

in which each of the players chooses its actions on the basis of the full information of

its states/actions histories can be constructed on the basis of an open loop Nash equi-

librium of the averaged game, where players have no information about their previous

state/action history (nor about the state of the system).

State of Art

Hybrid dynamics control problems, with stochastic control and two time scales behav-

ior, have been first introduced by Altman and Gaitsgory (Altman and Gaitsgory, 1993),

in the case of one controller and linear dynamics and then extended to a two players

zero-sum game (Altman and Gaitsgory, 1995). In (Altman and Gaitsgory, 1997) and

(Nguyen et al., 2001) these models are generalized to non linear dynamics, respectively

for one controller and for the zero-sum game.

The problem of optimization of a nonlinear hybrid system governed by a Markov de-

cision process is close in nature to stochastic singular perturbed control problems in-

tensively studied in the literature (see, for example, (Abbad and Filar, 1992), (Bensous-

san and Blankenship, 1987), (Bensoussan, 1989), (Bielecki and Filar, 1991), (Delebecque

and Quadrat, 1978), (Kokotovic et al., 1986), (Kushner, 1990), (Philips and Kokotovic,

1981), (Pervozvansky and Gaitsgory, 1988) and references therein). The main idea in
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dealing with this category of problems is to optimize slow motions, assuming that the

fast ones are approximated by their quasi stationary distributions of states obtained

with “frozen” slow variables and controls, (see (Kokotovic et al., 1986), (Bensoussan,

1989), (O’Malley, 1974), (Kokotovic, 1984)). A common approach is an application of

singular perturbations or averaging techniques to the Hamilton-Jacobi-Bellman (HJB)

equation for problems in continuous time (as in (Bensoussan and Blankenship, 1987),

(Bensoussan, 1989)) or to the dynamic programming equation for singularly perturbed

discrete time MDPs (Abbad and Filar, 1992), (Bielecki and Filar, 1991), (Delebecque and

Quadrat, 1978), (Philips and Kokotovic, 1981), (Pervozvansky and Gaitsgory, 1988). In

contrast to this approach, here we continue the line of research started in (Altman and

Gaitsgory, 1997) and (Nguyen et al., 2001), where an averaging method is applied di-

rectly to the “slow” stochastic equation.

Such type of systems arise in modeling admission control in telecommunication net-

works, in which the dynamics of the state variables (representing information packets

transmission times at different nodes) is determined by MDPs describing the changes

of the routes, their numbers and the type of sessions that are present in the networks

(see e.g. (Shi et al., 1998)).

The chapter is organized as follows. In Sections 7.2 and 7.3, the hybrid and, respectively,

averaged deterministic games are introduced. In Section 7.4, the main results are stated

(see Propositions 15 and 16), and in Section 7.4.1, these are proved.

7.2 Hybrid Game

Let the dynamics of the state vector Z(t) ∈ R
N be described by the equation

Ż(t) = f 1(Z(t), Y1(t)) + f 2(Z(t), Y2(t)), Z(0) = z0, t ∈ [0, 1], (7.1)

where f i(·, ·) : R
N × R

Ni → R
N , i = 1, 2, are continuous functions satisfying Lipschitz

conditions in z (see Assumption 6 below). The functions Yi(t) ∈ R
Ni , i = 1, 2, are

“controls" defined by two players. These controls are not chosen directly by the players.

They are obtained as the result of the players controlling the transition probabilities of

two associated stochastic discrete event systems described as follows.

The system i (i = 1, 2) has a finite state space S i and it changes its states at discrete mo-

ments of time tj = jǫ, j = 0, 1, . . . , ⌊ǫ−1⌋, where ǫ > 0 is a small parameter representing

the time unit and ⌊b⌋ stands for the greatest integer which is smaller then or equal to

b. The player i has a finite action space Ai, and if it chooses an action a ∈ Ai, then,
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provided that the current state of system i is s ∈ S i, its next state will be s′ ∈ S i with

the probability Qi
s′(s, a) ≥ 0 ( ∑

s′∈S i

Qi
s′(s, a) = 1).

A policy ui = {ui
0, ui

1, . . . , ui
j, . . . , ui

⌊ǫ−1⌋} of the player i is a sequence of probability mea-

sures on Ai chosen as functions of the present state of the player and of its states/actions

history. That is, ui
0 = ui

0(s
i
0) and ui

j+1 = ui
j+1(h

j,i
0 , si

j+1), where hj,i
0 is the states/actions

history of the ith system/player from time 0 to time t:

hj,i
0 := (si

l , ai
l , l = 0, ..., j), j = 1, ..., ⌊ǫ−1⌋, i = 1, 2. (7.2)

Let Ui stand for the set of all such policies and let F i be the discrete σ−algebra of all

subsets of Hi, which is the set of all possible states-actions histories of player i that can

be observed until time ǫ−1. Each initial distribution β of the initial states (s1
0, s2

0) and a

policies pair (u1, u2) ∈ U1 × U2 uniquely define a probability measure P
(u1,u2)
β over the

space of samples H := H1 × H2 equipped with the discrete σ−algebra F := F 1 ⊗F 2.

Denote by E
(u1,u2)
β the corresponding expectation operator. When the distribution of

the initial states is concentrated on a single states pair ζ = (ζ1, ζ2), we shall denote

the corresponding probability measure and the mathematical expectation operator as

P
(u1,u2)
ζ and E

(u1,u2)
ζ .

Let gi : S i × Ai → R
Ni be a given vector function and let Si

j and Ai
j, j = 0, 1, . . . , ⌊ǫ−1⌋,

be the state-action processes of the system/player i. Then Yi(t) in (7.1) are defined by

the equations

Yi(t) = gi(Si
⌊t/ǫ⌋, Ai

⌊t/ǫ⌋), i = 1, 2. (7.3)

Note that the dynamics of the state vector Z(t) is fully determined by the states/actions

realizations {Si
j, Ai

j}, i = 1, 2. For convenience, Z(t) will be referred to as a “macro

state" vector of the system and {Si
j} will be referred to as “micro states" of the players

i = 1, 2.

Along with the class of policies U := U1 × U2 described above, we will be dealing with

two other classes of policies UM := UM1 ×UM2 and US := US1 ×US2 , where UMi and USi

(i = 1, 2) are defined as follows:

• UMi is the set of Markov policies of the player i such that, at every moment tj = jǫ

of decision making, the probability measure ui
j on Ai is chosen as a function of

two arguments, one being the current moment of time and the other being the

current micro state of the player i.

• USi is the set of stationary policies of the player i. That is, it is the set of policies
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such that at any moment tj = jǫ, the probability measure ui
j on Ai is chosen as a

function of the current micro state of the player i.

Note that, as follows from the definitions above, US ⊂ UM ⊂ U .

Assumption 5. Under any stationary policy, the state space of the stochastic processes {Si
j, Ai

j}
(i = 1, 2) forms an aperiodic Markov chain such that all states communicate (regular Markov

chain).

As mentioned above, we make the following assumption about the functions f 1 and f 2.

Assumption 6. The functions fi(·, ·), i = 1, 2 are continuous and satisfy Lipschitz conditions

in the first argument. That is, there exist positive constants C1, C2 such that

‖ f i(z, yi)− f i(z̃, yi)‖ ≤ Ci‖z − z̃‖, i = 1, 2 (7.4)

for arbitrary z and z̃ from a sufficiently large subset of R
N .

Remark 8. According to their definitions, the processes Y1(t) and Y2(t) take values in some

finite subsets D1 and D2 of R
N1 and R

N2 , that is, Yi(t) ∈ Di, i = 1, 2 . Due to (7.4), it implies

that Z(t) ∈ D ∀t ∈ [0, 1], where D is a compact subset of R
N . Note that, since fi(·, ·), i = 1, 2

are continuous, there exist positive constants Mi, i = 1, 2, such that

‖ f i(z, yi)‖ ≤ Mi, ∀(z, yi) ∈ D × Di, i = 1, 2. (7.5)

Assume that the player i wishes to minimize its cost that only depends on the final value

of the macro state, Gi(·) : R
N → R, i = 1, 2. To simplify the presentation, we assume

that the cost functions Gi(·) i = 1, 2, satisfy Lipschitz conditions on D (although the

continuity of these functions would suffice our purposes). Thus, we make the following

assumption.

Assumption 7. There exist positive constants Ci
G, i = 1, 2, such that

|Gi(z)− Gi(z̃)| ≤ Ci
G‖z − z̃‖ ∀ Z, Z̃ ∈ D, i = 1, 2. (7.6)

Definition 8. A pair of policies u∗
ǫ = (u1∗

ǫ , u2∗
ǫ ) ∈ U is an Asymptotic Nash Equilibrium

(ANE) of the hybrid game if











lim
ǫ→0

E
(u1∗

ǫ ,u2∗
ǫ )

ζ [G1(Z(1))] ≤ lim
ǫ→0

E
(u1

ǫ ,u2∗
ǫ )

ζ {G1(Z(1))}, ∀u1
ǫ ∈ U1

lim
ǫ→0

E
(u1∗

ǫ ,u2∗
ǫ )

ζ {G2(Z(1))} ≤ lim
ǫ→0

E
(u1∗

ǫ ,u2
ǫ)

ζ {G2(Z(1))}, ∀u2
ǫ ∈ U2

(7.7)

where limits in the left-hand-sides are assumed to exist and the initial micro states ζ = (ζ1, ζ2)

are fixed (and known to the players).
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The fact that the changes of the micro states/actions occur frequently (every moment

tj = jǫ) means that the processes Y1(t) and Y2(t) change their values on a much faster

scale than does the macro state Z(t). This allows one to approximate the solutions of

the hybrid system (7.1) with the solutions of the deterministic averaged control sys-

tem introduced in the next section. Our main result is the construction of ANE of the

stochastic hybrid game on the basis of the Nash equilibrium of the deterministic dy-

namic game considered on the trajectories of the averaged system (see Sections 3-5

below).

7.3 Averaged Dynamic Game

Let ωi(u
i
s) = ωi(u

i
s; s, a) be the vector of steady state probabilities of the micro state-

action pair (s, a) of the player i when it uses a stationary policy ui
s ∈ USi . That is,

ωi(ui
s; s, a) := lim

j→∞
P

ui
s

ζ (Si
j = s, Ai

j = a), ωi(ui
s) = {ωi(ui

s; s, a)}. (7.8)

Due to the Assumption 5, the limit value ωi(ui
s; s, a) is independent of the initial condi-

tions. Define the sets Wi by the equations

Wi =
⋃

ui
s∈USi

{ωi(ui
s)}, i = 1, 2. (7.9)

Note that the sets Wi are polyhedrons (see, e.g., (Derman, 1970), pp. 93-95).

Consider a deterministic system, in which the dynamics of the state vector z(t) is de-

scribed by the equation

ż(t) = f̂ 1(z(t), ω1(t)) + f̂ 2(z(t), ω2(t)), z(0) = z0 t ∈ [0, 1], (7.10)

where

f̂ i(z, ωi) := ∑
s,a

f i(z, gi(s, a))ωi(s, a) ∀ ωi ∈ Wi, i = 1, 2. (7.11)

The functions ωi(·), i = 1, 2, are controls chosen by the players. These are assumed to

be measurable functions of t that satisfy the inclusions ωi(t) ∈ Wi ∀t ∈ [0, 1], i = 1, 2.

As one can readily see, from Assumption 6 it follows that

‖ f̂ i(z, ωi)− f̂ i(z̃, ωi)‖ ≤ Ci‖z − z̃‖, ∀z, z̃ ∈ D, ∀ωi ∈ Wi, (7.12)
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and from Remark 8 it follows that

‖ f̂ i(z, ωi)‖ ≤ Mi, ∀(z, ωi) ∈ D × Wi. (7.13)

Note that from (7.12) it follows that the solution of (7.10) exists and is unique with any

choice of controls ωi(·), i = 1, 2.

Assume that the player i wishes to minimize the terminal cost function Gi(z(1)), where

Gi(·) is the same as in the previous section (i = 1, 2). Given a pair of controls (ω1(t), ω2(t)),

let Ji(ω
1, ω2) stand for the cost function of the payer i obtained with the players adopt-

ing these controls. That is,

Ji(ω
1, ω2) := Gi(z(1)), (7.14)

where z(t) is the solution of (7.10) obtained applying (ω1(t), ω2(t)).

Definition 9. A pair of controls (ω1∗(·), ω2∗(·)) is a Nash equilibrium of the averaged

game if
{

J1(ω
1∗, ω2∗) ≤ J1(ω

1, ω2∗),

J2(ω
1∗, ω2∗) ≤ J2(ω

1∗, ω2),
(7.15)

for any ω1(·) (resp. ω2(·)).

Note that the Nash equilibrium of the averaged game is defined in the loop setting,

which means that the players have no information about their own past state/action

history, nor about the state of the system. In the next section, we will show how ANE

policies of the hybrid game can be constructed on the basis of a Nash equilibrium pair

of the averaged game.

7.4 Construction of ANE Policies - Main Results

Let ωi(·) be a control of the player i in the averaged game. Partition the time interval

[0, 1] by the points

τl := l∆(ǫ), l = 0, 1, 2, . . . , ℓ(ǫ), ℓ(ǫ) := ⌊∆(ǫ)−1⌋, τℓ(ǫ)+1 = 1, (7.16)

where ∆(ǫ) > 0 is a function of ǫ such that

lim
ǫ→∞

∆(ǫ) = 0, lim
ǫ→0

∆(ǫ)

ǫ
= ∞. (7.17)
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On each interval [τl , τl+1] (l = 0, 1, . . . , ⌊∆(ǫ)−1⌋ − 1), define the time averages ωi
l ,

ωi
l :=

1
∆(ǫ)

∫ τl+1

τl

ωi(t)dt ∈ Wi, i = 1, 2, (7.18)

(the validity of the last inclusions follows from the convexity of Wi, i = 1, 2). Note that,

from the fact that ωi
l ∈ Wi, it follows that there exists a stationary policy ui

s ∈ USi of the

player i such that

ωi
l = ωi

l(s
i
l)

(see (7.8) and (7.9)). Let us define a policy of the player i in the hybrid game that consists

of:

i. Applying, at each j = ⌊τl/ǫ⌋, ⌊τl/ǫ⌋+ 1, . . . , ⌊τl+1/ǫ⌋ − 1, the policy si
l , for any

l = 0, 1, 2, . . . , ℓ(ǫ)− 1;

ii. Applying an arbitrary stationary policy for ⌊τℓ(ǫ)/ǫ⌋, ⌊τℓ(ǫ)/ǫ⌋+ 1, . . . , ⌊ǫ−1⌋.

Let us denote this policy as ui
ǫ(ω

i). Note that, by construction, ui
ǫ(ω

i) ∈ UMi , i = 1, 2.

The main results of the paper are Propositions 15 and 16 stated below.

Proposition 15. Let ω(t) = (ω1(t), ω2(t)) be a pair of controls and let z(t) be the corre-

sponding solution of (7.10). Let also uǫ(ω) = (u1
ǫ(ω

1), u2
ǫ(ω

2)) be the pair of policies defined

above and let Z(t) be the random trajectory of system (7.1) obtained with the players using these

policies. Then

max
t∈[0,1]

E
uǫ(ω)
ζ ‖Z(t)− z(t)‖ ≤ γ(ǫ), (7.19)

where lim
ǫ→0

γ(ǫ) = 0. Also,

lim
ǫ→ 0

E
uǫ(ω)
ζ Gi(Z(1)) = Ji(ω1, ω2), i = 1, 2. (7.20)

Proposition 16. Let ω∗(t) := (ω1∗(t), ω2∗(t)) be a Nash equilibrium of the averaged game.

Let also u∗
ǫ(ω

∗) = (u1∗
ǫ (ω1∗), u2∗

ǫ (ω2∗)) be defined as above (considering ω(t) = ω∗(t)).

Then u∗
ǫ(ω

∗) is an asymptotic Nash equilibrium of the hybrid game.

The proofs of Propositions 15 and 16 are given in the next section.

7.4.1 Proofs of Propositions 15 and 16

Let us first recall some results from the MDP theory that are needed for the proofs of the

main results. Let hi stand for the full micro states-actions history of the player i (that is,

hi = h⌊ǫ−1⌋,i
0 ; see (7.2)) and let hK,i

m be a part of this history corresponding to the interval
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[tm, tm+K],

hK,i
m := {si

m, ai
m, . . . , si

m+K, ai
m+K}.

Denote by φK,i
m (hi; s, a) the frequency of appearance of the micro state-action pair (s, a) ∈

S i × Ai on the interval [tm, tm+K],

φK,i
m (hi; s, a) :=

1
K + 1

m+K

∑
j=m

1{si
j=s,ai

j=a}, φK,i
m (hi) = {φK,i

m (hi, s, a)}, (7.21)

where 1{si
n=s,ai

n=a} is the indicator function. If Hi is a random realization of hi, we de-

note:

φK,i
m (s, a) = φK,i

m (Hi, s, a), φK,i
m = {φK,i

m (s, a)}. (7.22)

Lemma 4. The following relationships are valid:

lim
K→∞

sup
ζ

sup
ui

s∈USi

E
ui

s
ζ ‖φK,i

0 − ωi(ui
s)‖ = 0, (7.23)

and also

lim
K→∞

sup
ζ

sup
ui∈Ui

E
ui

ζ dK,i
0 = 0, (7.24)

where

dK,i
0 := dist(φK,i

0 , Wi) = inf
ωi∈Wi

‖φK,i
0 − ωi‖.

Proof. For a proof of the lemma, see Theorem 4.1 in (Altman and Gaitsgory, 1997).

Proof of Proposition 15. Let ω(t) = (ω1(t), ω2(t)) be as in the statement of Proposition

15 and let z(t) be the corresponding solution of (7.10). Define the sequence of vectors

ξl , l = 0, . . . , ℓ(ǫ), as the solution of the following difference equation

ξl+1 = ξl + ∆(ǫ)
[

f̂ 1(z(τl), ω1
l ) + f̂ 2(z(τl), ω2

l )
]

, ξ0 := z0. (7.25)

By definition

z(τl+1) = z(τl) +
∫ τl+1

τl

f̂ 1(z(t), ω1(t))dt +
∫ τl+1

τl

f̂ 2(z(t), ω2(t))dt. (7.26)

Hence,

‖z(τl+1)− ξl+1‖ ≤ ‖z(τl)− ξl‖+∆(ǫ)
2

∑
i=1

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f̂ i(z(t), ωi(t))dt − f̂ i(z(τl), ωi
l))

∥

∥

∥

∥

.
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The function f̂ i(z, ωi) is linear in ωi and Lipschitz continuous in z. Consequently, there

exists an appropriately chosen positive constant M̃ such that

‖z(τl+1)− ξl+1‖ ≤ ‖z(τl)− ξl‖+ ∆(ǫ)2M̃,

which implies that, for any l = 1, . . . , ℓ(ǫ),

‖z(τl)− ξl‖ ≤ ℓ(ǫ)∆(ǫ)2M̃ ≤ ∆(ǫ)M̃. (7.27)

Let Zl , l = 0, 1 . . . , ℓ(ǫ), be the sequence of random vectors defined by the equation

Zl+1 = Zl +
∫ τl+1

τl

f 1(Zl , Y1(t))dt+
∫ τl+1

τl

f 2(Zl , Y2(t))dt, l = 0, 1, . . . , ℓ(ǫ)− 1. (7.28)

By subtracting the latter from (7.25) and taking the expectation over the probability
measure corresponding to the policies uǫ(ω) = (u1

ǫ(ω
1), u2

ǫ(ω
2)), we obtain

E
uǫ(ω)
ζ ‖ξl+1 − Zl+1‖ ≤ E

uǫ(ω)
ζ ‖ξl − Zl‖+ ∆(ǫ)

2

∑
i=1

E
uǫ(ω)
ζ

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(Zl , Yi(t))dt − f̂ i(z(τl), ωi
l)

∥

∥

∥

∥

≤ E
uǫ(ω)
ζ ‖ξl − Zl‖+ ∆(ǫ)

2

∑
i=1

E
uǫ(ω)
ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(Zl , Yi(t))dt − 1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt
∥

∥

∥

∥

+

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt − f̂ i(z(τl), ωi
l))

∥

∥

∥

∥

}

.

(7.29)

Using the Lipschitz continuity of f i(z, ωi) in z and the estimate (7.27), one can obtain
that
∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(Zl , Yi(t))dt − 1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt
∥

∥

∥

∥

≤ 1
∆(ǫ)

∫ τl+1

τl

Ci‖Zl − z(τl)‖dt

≤ Ci(‖Zl − ξl‖+ ‖ξl − z(τl))‖ ≤ Ci(‖Zl − ξl‖+ M̃∆(ǫ)).

(7.30)

By substituting the latter inequality in (7.29), one obtains

E
uǫ(ω)
ζ ‖ξl+1 − Zl+1‖ ≤ E

uǫ(ω)
ζ ‖ξl − Zl‖+ (C1 + C2)M̃∆(ǫ)2 + ∆(ǫ)E

uǫ(ω)
ζ

{

2

∑
i=1

Ci‖Zl − ξl‖

+

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt − f̂ i(z(τl), ωi
l))

∥

∥

∥

∥

}

.

(7.31)

Let K(ǫ) = min
l=0,1,...,l(ǫ)−1

(⌊τl+1/ǫ⌋ − ⌊τl/ǫ⌋). Note that the following estimates are valid
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(see (Shi et al., 1998))

2 ≥ ⌊τl+1/ǫ⌋ − ⌊τl/ǫ⌋ − K(ǫ),
∣

∣

∣

∣

K(ǫ)− ∆(ǫ)

ǫ

∣

∣

∣

∣

≤ 1

⇒
∣

∣

∣

∣

K(ǫ)−1 − ǫ

∆(ǫ)

∣

∣

∣

∣

≤ ǫ2

∆(ǫ)2

(

1
1 − ǫ/∆(ǫ)

)

. (7.32)

From (7.32) it follows that there exist positive constants Li
1, Li

2 such that, for i = 1, 2,
and l = 1, . . . , ℓ(ǫ),

∥

∥

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt − ǫ

∆(ǫ)

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n))

∥

∥

∥

∥

∥

∥

≤ Li
1

ǫ

∆(ǫ)
, (7.33)

∥

∥

∥

∥

∥

∥

ǫ

∆(ǫ)

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n))−
1

K(ǫ) + 1

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n)

∥

∥

∥

∥

∥

∥

≤ Li
2

ǫ

∆(ǫ)
.

(7.34)

Let (as above) φK,i
m = {φK,i

m (s, a)} stand for the state-action frequencies of the controller

i that corresponds to a random realization of the history Hi (see (7.22). Then

1
K(ǫ) + 1

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n)) = ∑
(s,a)∈S i×Ai

φ
K(ǫ),i
⌊τl/ǫ⌋(s, a) f i(z(τl), gi(s, a)).

Note that from (7.23) (see Lemma 4) it follows that there exists a function µi : N → R,

with lim
K→∞

µi(K) = 0 (implying lim
ǫ→0

µi(K(ǫ)) = 0 ) such that

E
ui

s

Si
⌊τl /ǫ⌋

{

max
(s,a)

|φK(ǫ),i
⌊τl/ǫ⌋(s, a)− ωi

l(s, a)|
}

≤ µi(K(ǫ)). (7.35)

Since

2

∑
i=1

E
uǫ(ω)
ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt − f̂ i(z(τl), ωi
l))

∥

∥

∥

∥

}

≤
2

∑
i=1

E
uǫ(ω)
ζ







∥

∥

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt − ǫ

∆(ǫ)

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n))

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

ǫ

∆(ǫ)

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n))−
1

K(ǫ) + 1

⌊τl+1/ǫ⌋+K(ǫ)

∑
n=⌊τl/ǫ⌋

f i(z(τl), gi(Si
n, Ai

n))

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑
s,a

φ
K(ǫ)
⌊τl/ǫ⌋,i(Hi; s, a) f i(z(τl), gi(s, a))− f̂ i(z(τl), ωi

l)

∥

∥

∥

∥

∥

}
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and since, by definition, f̂ i(z(τl), ωi
l) := ∑

s,a
ωi

l(s, a) f i(z(τl), gi(s, a)), one can obtain,

using (7.35), (7.33), (7.34),

2

∑
i=1

E
uǫ(ω)
ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f i(z(τl), Yi(t))dt − f̂ i(z(τl), ωi
l)

∥

∥

∥

∥

}

≤ (L̃1 + L̃2)
ǫ

∆(ǫ)

+
2

∑
i=1

E
uǫ(ω)
ζ

{

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,i(Hi; s, a)− ωi

l(s, a)
∣

∣

∣
‖ f i(z(τl), gi(s, a))‖

}

≤ (L̃1 + L̃2)
ǫ

∆(ǫ)
+

2

∑
i=1

MiE
ui

ǫ(ω)
ζ

{

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,i(Hi; s, a)− ωi

l(s, a)
∣

∣

∣

}

≤ (L̃1 + L̃2)
ǫ

∆(ǫ)
+

2

∑
i=1

MiE
ui

ǫ(ω)
ζ

{

E
si

l
Si
⌊τl /ǫ⌋

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,i(Hi; s, a)− ωi

l(s, a)
∣

∣

∣

}

≤ (L̃1 + L̃2)
ǫ

∆(ǫ)
+

2

∑
i=1

Miµi(K(ǫ))

(7.36)

where L̃i = Li
1 + Li

2 (Li
j, j = 1, 2, being the constants from (7.33) and (7.34)) and Mi, i =

1, 2, are the constants from (7.5). The substitution of the latter into (7.31) leads to

E
uǫ(ω)
ζ [‖ξl+1 − Zl+1‖] ≤ E

uǫ(ω)
ζ [‖ξl − Zl‖] + M̃∆(ǫ)E

uǫ(ω)
ζ [‖ξl − Zl‖] + ∆(ǫ)κ(ǫ),

(7.37)

where lim
ǫ→0

κ(ǫ) = 0 and M̃ is an appropriately chosen constant. This implies (see Propo-

sition 5.1 in (Gaitsgory, 1992)) that

E
uǫ(ω)
ζ [‖ξl − Zl‖] ≤ ν(ǫ), l = 1, . . . , ℓ(ǫ), (7.38)

with lim
ǫ→0

ν(ǫ) = 0. By definition, for l = 1, . . . , ℓ(ǫ)− 1:

Z(τl+1) = Z(τl) +
∫ τl+1

τl

f 1(Z(t), Y1(t))dt +
∫ τl+1

τl

f 2(Z(t), Y2(t))dt (7.39)

By subtracting (7.28) from (7.39), one obtains

E
uǫ(ω)
ζ ‖Z(τl+1)− Zl+1‖ ≤ E

uǫ(ω)
ζ

[

‖Z(τl)− Zl‖+ (C1 + C2)
∫ τl+1

τl

‖Z(t)− Zl‖dt
]

.

(7.40)

Note that, due to (7.5),

‖Z(t)− Z(τl)‖ ≤ (M1 + M2)∆(ǫ) ∀t ∈ [τl , τl+1], (7.41)
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Hence,

E
uǫ(ω)
ζ ‖Z(τl+1)− Zl+1‖ ≤ E

uǫ(ω)
ζ [‖Z(τl)− Zl‖+ C∆(ǫ)‖Z(τl)− Zl‖] + C(M1 + M2)∆(ǫ)

2.
(7.42)

Due to Proposition 5.1 from (Gaitsgory, 1992), the latter implies that there exists an

appropriately chosen positive constant M̃ such that

E
uǫ(ω)
ζ ‖Z(τl)− Zl‖ ≤ M̃∆(ǫ), l = 0, 1, . . . , ℓ(ǫ). (7.43)

By combining (7.27), (7.38), (7.43), we may conclude that

E
uǫ(ω)
ζ ‖z(τl)− Z(τl)‖ ≤ E

uǫ(ω)
ζ {‖z(τl)− ξl‖+ ‖ξl − Zl‖+ ‖Zl − Z(τl)‖}

≤ ν(ǫ) + ∆(ǫ)M̃, l = 0, 1, . . . , ℓ(ǫ).
(7.44)

This and the fact that ‖z(t)− z(τl)‖ ≤ M∆(ǫ) ∀t ∈ [τl , τl+1] imply the validity of (7.19)

with some γ(ǫ) such that lim
ǫ→0

γ(ǫ) = 0. The validity of (7.20) follows from (7.19) since

(see (7.6))

|Euǫ(ω)
ζ Gi(Z(1))− Gi(z(1))| ≤ Ci

GE
uǫ(ω)
ζ ‖Z(1)− z(1)‖ ≤ Ci

Gγ(ǫ).

Thus, the proof of the proposition is completed.

Proof of Proposition 16. Let h1 = h⌊ǫ−1⌋,1
0 = (s1

0, a1
0, . . . , s1

⌊ǫ−1⌋, a1
⌊ǫ−1⌋) be a realization of a

state-action trajectory of player 1 and let

y1(t, h1) := g1(s1
⌊t/ǫ⌋, a1

⌊t/ǫ⌋). (7.45)

Define the projection of the vector of the state action frequencies φ
K(ǫ),1
⌊τl/ǫ⌋(h

1) (see (7.21))

onto W1 by the equation:

ω1
l (h

1) := arg min
ω1∈W1

∥

∥

∥
φ

K(ǫ),1
⌊τl/ǫ⌋ (h

1)− ω1
∥

∥

∥
. (7.46)

where K(ǫ) is as in the proof of Proposition 15. Define the function

ω1(t, h1) := {ω1
l (h

1) for t ∈ [τl , τl+1], l = 1, . . . , ℓ(ǫ)},

and denote by z(t, h1) the solution of the differential equation

ż(t, h1) = f̂1(z(t, h1), ω1(t, h1)) + f̂2(z(t, h1), ω2∗(t)). (7.47)
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Define the piecewise constant function

ω̃2∗(t) = {ω2∗
l for t ∈ [τl , τl+1], l = 1, . . . , ℓ(ǫ)},

where ω2∗
l :=

1
∆(ǫ)

∫ τl+1

τl

ω2∗(t)dt. Let z̃(t, h1) be the solution of the following differen-

tial equation

˙̃z(t, h1) = f̂1(z̃(t, h1), ω1(t, h1)) + f̂2(z̃(t, h1), ω̃2∗(t)). (7.48)

By subtracting (7.47) from (7.48) (and having in mind linearity of f̂ 2(z, ω2) in ω2)), one

obtains

‖z̃(τl+1, h1)− z(τl+1, h1)‖ ≤ ‖z̃(τl , h1)− z(τl , h1)‖+ M̃∆‖z̃(t, h1)− z(t, h1)‖+ M̃∆2(ǫ),

where M̃ is an appropriate positive constant. Due to Proposition 5.1 in (Gaitsgory,

1992), the latter implies that

‖z̃(τl , h1)− z(τl , h1)‖ ≤ M̃∆(ǫ) ∀l = 1 . . . , ℓ(ǫ), (7.49)

which, in turn, implies that

max
t∈[0,1]

‖z̃(t, h1)− z(t, h1)‖ ≤ M̃∆(ǫ), (7.50)

and, by (7.6),

‖G1(z̃(1, h1))− G1(z(1, h1))‖ ≤ C1
G‖z̃(1, h1)− z(1, h1)‖ ≤ C1

G M̃∆(ǫ). (7.51)

Due to the Definition 9 of the Nash equilibrium ,

G1(z(1, h1)) ≥ G1∗. (7.52)

Consequently,

G1(z̃(1, h1)) ≥ G1∗ − C1
G M̃∆(ǫ). (7.53)

Let H1 be a random realization of h1. Using the fact that f̂ i(z, ωi) (i = 1, 2) are Lipschitz
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continuous in z and linear in ωi, one can obtain

z̃(τl+1, H1) = z̃(τl , H1) +
∫ τl+1

τl

f̂ 1(z̃(t, H1), ω1(t, H1))dt +
∫ τl+1

τl

f̂ 2(z̃(t, H1), ω̃∗
2(t))dt

= z̃(τl , H1) + ∆(ǫ) f̂ 1(z̃(τl , H1), ω1
l (H1)) + ∆(ǫ) f̂ 2(z̃(τl , H1), ω2∗

l )) + O(∆(ǫ)2).

(7.54)

By subtracting (7.54) from (7.39), one obtains

‖Z(τl+1)− z̃(τl+1, H1)‖ ≤ ‖Z(τl)− z̃(τl , H1)‖

+ ∆(ǫ)

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(Z(t), Y1(t)dt − f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

+ ∆(ǫ)

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(Z(t), Y2(t)dt − f̂ 2(z̃(τl , H1), ω2∗
l )

∥

∥

∥

∥

+ O(∆(ǫ)2)

(7.55)

By (7.4),

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(Z(t), Y1(t))dt − f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

≤
∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(Z(t), Y1(t))dt − 1
∆(ǫ)

∫ τl+1

τl

f 1(z̃(τl , H1), Y1(t))
∥

∥

∥

∥

+

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(z̃(τl , H1), Y1(t))− f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

≤
∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(z̃(τl , H1), Y1(t))dt − f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

+ C1∆(ǫ)
∥

∥

∥
Z(τl)− z̃(τl , H1)

∥

∥

∥
+ O(∆(ǫ)2)

(7.56)

Analogously,

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(Z(t), Y2(t))dt − f̂ 2(z̃(τl , H1), ω2∗
l )

∥

∥

∥

∥

≤
∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(Z(t), Y2(t))dt − 1
∆(ǫ)

∫ τl+1

τl

f 2(z̃(τl , H1), Y2(t))dt
∥

∥

∥

∥

+

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(z̃(τl , H1), Y2(t))dt − f̂ 2(z̃(τl , H1), ω2∗
l )

∥

∥

∥

∥

≤
∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(z̃(τl , H1), Y2(t))− f̂ 2(z̃(τl , H1), ω2∗
l )

∥

∥

∥

∥

+ C2∆(ǫ)
∥

∥

∥
Z(τl)− z̃(τl , H1)

∥

∥

∥
+ O(∆(ǫ)2).

(7.57)

For brevity, let us re-denote ui∗
ǫ (ω

i∗) as ui∗
ǫ (i = 1, 2). From (7.55), (7.56) and (7.57) it
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follows that, for any u1
ǫ ∈ U1,

E
u1

ǫ ,u2∗
ǫ

ζ ‖Z(τl+1)− z̃(τl+1, H1)‖ ≤ E
u1

ǫ ,u2∗
ǫ

ζ

{

‖Z(τl)− z̃(τl , H1)‖(1 + (C1 + C2)∆(ǫ))
}

+ ∆(ǫ)E
u1

ǫ ,u2∗
ǫ

ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(z̃(τl , H1), Y1(t))dt − f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

+

∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(z̃(τl , H1), Y2(t))dt − f̂ 2(z̃(τl , H1), ω2∗
l )

∥

∥

∥

∥

}

+ O(∆(ǫ)2).

(7.58)

Similarly to (7.36), one can obtain

E
u1

ǫ ,u2∗
ǫ

ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 2(z̃(τl , H1), Y2(t))dt − f̂ 2(z̃(τl , H1), ω2∗
l )

∥

∥

∥

∥

}

≤ L̃2
ǫ

∆(ǫ)
+ M2E

u2∗
ǫ

ζ

{

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,2(H2; s, a)− ω2∗

l (s, a))
∣

∣

∣

}

≤ L̃2
ǫ

∆(ǫ)
+ M2E

u2∗
ǫ

ζ

{

E
s2

l
S2
⌊τl /ǫ⌋

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,2(H2; s, a)− ω2∗

l (s, a))
∣

∣

∣

}

≤ L̃2
ǫ

∆(ǫ)
+ M2µ2(K(ǫ)),

(7.59)

where L̃2 and M2 are the same constants as in (7.36). In an analogous way,

E
u1

ǫ ,u2∗
ǫ

ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(z̃(τl , H1), Y1(t))dt − f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

}

≤ L̃1
ǫ

∆(ǫ)
+ M1E

u1
ǫ

ζ

{

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,1(H1; s, a)− ω1

l (s, a; H1)
∣

∣

∣

} (7.60)

where M1 is the constant from (7.5). From the definition of ω1
l (H1) = {ω1

l (s, a; H1)}
as argmin in (7.46) and from (7.24) (see Lemma 4) it follows that there exists a function

µ̃1 : N → R, with lim
K→∞

µ̃1(K) = 0 (implying lim
ǫ→0

µ̃1(K(ǫ)) = 0) such that

E
u1

ǫ
ζ

{

∑
s,a

∣

∣

∣
φ

K(ǫ)
⌊τl/ǫ⌋,1(H1; s, a)− ω1

l (s, a; H1))
∣

∣

∣

}

≤ µ̃1(K(ǫ)). (7.61)

Hence, by (7.60),

E
u1

ǫ ,u2∗
ǫ

ζ

{∥

∥

∥

∥

1
∆(ǫ)

∫ τl+1

τl

f 1(z̃(τl , H1), Y1(t))dt − f̂ 1(z̃(τl , H1), ω1
l (H1))

∥

∥

∥

∥

}

≤ L̃1
ǫ

∆(ǫ)
+ M1µ̃1(K(ǫ)).

(7.62)
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By substituting (7.59) and (7.62) into (7.58), one obtains

E
u1

ǫ ,u2∗
ǫ

ζ ‖Z(τl+1)− z̃(τl+1, H1)‖ ≤ (1 + C∆(ǫ))E
u1

ǫ ,u2∗
ǫ

ζ

{

‖Z(τl)− z̃(τl , H1)‖
}

+ ∆(ǫ)ν̃(ǫ),
(7.63)

with lim
ǫ→0

ν̃(ǫ) = 0. By virtue of Proposition 5.1 in (Gaitsgory, 1992), the latter implies

that there exists a function η(ǫ), with η(ǫ) → 0, such that ∀l = 1, . . . , ℓ(ǫ),

E
u1

ǫ ,u2∗
ǫ

ζ ‖Z(τl)− z̃(τl , H1)‖ ≤ η(ǫ). (7.64)

Thus,

∣

∣

∣
E

u1
ǫ ,u2∗

ǫ
ζ {G1(Z(1))} − E

u1
ǫ ,u2∗

ǫ
ζ {G1(z̃(1, H1))}

∣

∣

∣
≤ C1

Gη(ǫ) ∀u1
ǫ ∈ U1. (7.65)

By (7.53),

E
u1

ǫ ,u2∗
ǫ

ζ

{

G1(z̃(1, H1))
}

≥ G1∗ + O(∆(ǫ)),

and from (7.65) it follows that

lim
ǫ→0

E
u1

ǫ ,u2∗
ǫ

ζ {G1(Z(1))} ≥ G1∗ ∀u1
ǫ ∈ U1.

A similar procedure can be applied to show that

lim
ǫ→0

E
u1∗

ǫ ,u2
ǫ

ζ {G2(Z(1))} ≥ G2∗.

Since, by Proposition (15),

G∗
i = lim

ǫ→0
E

u1∗
ǫ ,u2∗

ǫ
s {Gi(Z(1))}, i = 1, 2,

the proposition is proved.

7.5 Conclusion

In this chapter we presented a non-zero sum dynamic game whose state is described

by a hybrid dynamical system that evolves in continuous time and that is subjected to

abrupt changes of the parameters. By supposing that the MDPs associated to the jumps

of the parameters and the macro state of the system evolve with different velocities,
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we proved that the state trajectory of the hybrid system can be approximated by the

solutions of a certain deterministic averaged control system. We showed how to con-

struct an asymptotic Nash equilibrium Markov policy of the game obtained solving the

hybrid system, on the basis of a Nash equilibrium of the game obtained solving the

deterministic averaged system.
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Chapter 8

Conclusions and Future Perspectives

8.1 Summary of Contributions

In this dissertation we investigated different theoretical aspects of EGT, with a particu-

lar focus on the notion and the characterization of the player. We followed two major

directions: we first revisited the classical idea of individual-selfish players, defining a

model for group-players, and we then focused on games combining standard EGT and

MDP, which allows one to characterize players through an individual state evolving in

time, beside the action used. We also suggested various scenarii which provide useful

applications for our models, particularly in telecommunication networks.

More precisely, in Part I we proposed our new approach to evolutionary games to repre-

sent those situations in which individuals interact, maximizing the fitness of the group

they belong to. Therefore, the actual players of a game are not the interacting individu-

als but the groups. We studied a simple but meaningful example with two pure actions,

the Hawk-Dove game, in two cases, respectively a finite and an infinite population of

individuals, divided into a finite number N of symmetric groups of the same size. As

the number of players is finite, we considered the Nash equilibrium as solution con-

cept (rather than the ESS). Moreover, since the Nash equilibrium is a multiaction such

that no player can profit by deviating, in our group-players context, it is stable against

deviations of a share of individuals, since the player consists in a whole group of indi-

viduals. We verified that the Hawk-Dove group-players game (in both the finite and

the infinite population case) is convex, which allowed us to prove the existence and the

uniqueness of the equilibrium through Rosen’s conditions (Rosen, 1965). We then ex-

plicitly computed the symmetric mixed Nash equilibra, showing how the presence of
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groups plays an important role for the equilibrium structure. In particular, we showed

that, for the two group-players game, the level of aggressiveness at the equilibrium

is lower than in the standard Hawk-Dove game. We finally defined a gradient-based

dynamics, such that the equilibria obtained are asymptotically stable for this dynamics.

We then extended the group players model to a more general framework, where the

N groups have different sizes and dispose of a finite set of pure actions. We presented

a new solution concept, the GFESS, implying stability against local deviations within

each group. For the particular case of two pure actions games, we provided a detailed

characterization of the GFESSs and we illustrated our results studying three classical

examples considering group-players, the Hawk-Dove game, the Stag Hunt game and

the Prisoner’s Dilemma, through which we showed that the presence of groups im-

pacts the equilibrium output. We then further generalized our model by redefining the

fitness of a group, assuming that the immediate payoff associated with the pairwise

interactions among individuals in the same group differs from that of inter-group in-

teractions. We applied this model to a MAC problem, where we studied the impact of

groups on mobiles behavior.

In the second part of the dissertation, we considered a particular class of evolution-

ary games, the MDEG, where each (individual) player is characterized by a state. The

action played by an individual not only determines its immediate fitness but it also

impacts the transition probabilities to the individual’s next state. Furthermore, the fit-

ness of a player does not only depend on its action and on the distribution of actions

in the population, but also on the distribution of individual states. We proposed a new

dynamical approach to this type of games, focusing on the dynamics involved. We

defined the interdependent dynamics of the policies distribution and of the individ-

ual states, where the first is assumed to follow the well-known replicator dynamics.

For a particular game with two states and two pure actions, we proved the correspon-

dence between stable rest points of the dynamics and the equilibrium profiles of the

evolutionary game. Under the assumption that the two dynamics evolve with different

timescales, we proposed two methods to obtain the rest points. We gave a complete

characterization of these equilibrium profiles and we showed that these equilibria are

equivalent in terms of average sojourn times and expected fitnesses. Finally, we illus-

trated our model through two application scenarii in network systems.

We then defined a particular Hawk-Dove game in a MDEG type of framework, where

an individual may be in one of four possible states, representing its age and its strength.

In contrast with standard MDEG, in this particular example, we supposed that the tran-

sition probabilities of a player do not depend on its action but on the action chosen by
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its opponent. By considering stationary policies and supposing that the distribution

of the individual states is stationary, we transformed the dynamic Hawk-Dove into a

standard evolutionary game and we computed its Nash equilibria. We then further ex-

tended our dynamic Hawk-Dove game, by considering group-players as presented in

Chapter 2. We showed that, for a two groups game with fixed values of the parame-

ters, the presence of groups in the dynamic Hawk-Dove game brings important novel

features with respect to the individual-player game, as the fact that the non-aggressive

pure policy can be an equilibrium. We also compared the mixed equilibria obtained

respectively for the individual-players and group-players games and we obtained that,

also in this case, the probability of being aggressive in strong adult state is lower for

group-players.

Finally, we presented a different problem which is not directly related to evolutionary

games but which is connected to the dynamic approach adopted for MDEG problems.

In particular, we studied a non-zero sum dynamic game whose state is described by

a hybrid dynamical system that evolves in continuous time and that is subjected to

abrupt changes of the parameters. By supposing that the MDPs associated with the

jumps of the parameters and the macro state of the system evolve with different veloc-

ities, we proved that the state trajectory of the hybrid system can be approximated by

the solutions of a certain deterministic averaged control system. in particular, we show

that an asymptotic Nash equilibrium of such hybrid game can be constructed on the

basis of a Nash equilibrium of the deterministic averaged dynamic game.

8.2 Perspectives

Group-players evolutionary games leave many issues open for future studies. We have

introduced a gradient based dynamics for the Hawk-Dove group-players game. We

may define a dynamics in the general group-players framework, comparing different

possible dynamics (gradient based, replicator, etc.). Following the folk theorem ap-

proach for standard evolutionary games, we could then establish the relation between

rest points and equilibria. We may also unify the two lines of research presented here by

considering group-players in a MDEG framework, as we did in Chapter 6 for a partic-

ular Hawk-Dove dynamic game. The notion of the player can be further investigated.

We may consider the case of a population of individuals divided into groups, where the

interacting individuals maximize a fitness function which considers both an individual

and a group component. It would be interesting also to consider a population which is

composed, at the same time, by group-players and individual players, i.e. where some
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individuals maximize the fitness of the group they belong to, while others maximize

their own fitness, and then to define a suitable notion of equilibrium in this context.

Also the SPcD and, more generally, MDEG problems offer various possible direction

for forthcoming developments. In standard MDEG and in our dynamical model we

supposed that, respectively, transition probabilities and transition rates only depend

on the action of the player. In future works we propose to relax this assumption, letting

these functions depend on the actions of both individuals involved in an interaction.

Moreover, we may extend our results concerning SPcD to a more general framework,

characterizing the states and policies interdependent dynamics for games with more

than two states and two pure actions. A major effort should be done in unifying the

different classes of stochastic games into a comprehensive theory. As a matter of fact,

as we have already mentioned, different classes of games dealing with stochastic pro-

cesses have been defined in the literature, as stochastic (evolutionary) games (Shap-

ley, 1953) (Flesch et al., 2013), anonymous sequential games (Jovanovic and Rosenthal,

1988) , mean-field stochastic games (Weintraub et al., 2005) (Tembine, 2011), mean-field

stochastic differential games (Lasry and Lions, 2007) (Guéant et al., 2010). It would be

interesting and useful to deeper explore the relation between these types of games and

see whether they can all be thought as different subclasses of a more general class of

games.

As regards the hybrid stochastic system, in this dissertation we analyzed the open loop

information structure case, which means that the player has no information about the

state of the system, but only on its state and (eventually) its history. We are currently

working to extend this model to the feedback information structure case, where, at each

instant of time both players know exactly to which (macro) state the game has evolved

and policies are determined as functions of this information. In order to generalize our

results to the closed-loop case, we need to prove that the results in Lemma 4 still hold.

Another direction that we would like to investigate in future works is the study of a

hybrid stochastic system where the parameters evolve according to CT-MDPs, instead

of discrete time processes. This would lead to a framework very close in nature to the

one presented in Chapter 5, where we study the interdependent dynamics of individual

states and policies distributions and we assume a two timescale behavior of the system.

We may thus be able to combine hybrid stochastic dynamical system and EGT.
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