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ABSTRACT

ABSTRACT

Components of nuclear safety systems are in gehigifally reliable, which leads to a difficulty

in modeling their degradation and failure behavdrs to the limited amount of data available.
Besides, the complexity of such modeling task seased by the fact that these systems are
often subject to multiple competing degradationcpsses and that these can be dependent
under certain circumstances, and influenced byralbyen of external factors (e.g. temperature,

stress, mechanical shocks, etc.).

In this complicated problem setting, this PhD warks to develop a holistic framework of

models and computational methods for the religbbiised analysis and maintenance
optimization of nuclear safety systems taking iatwount the available knowledge on the
systems, degradation and failure behaviors, thegeddencies, the external influencing factors

and the associated uncertainties.
The original scientific contributions of the workea

(1) For single components, we integrate random lshatto multi-state physics models for
component reliability analysis, considering gendieglendencies between the degradation and

two types of random shocks.
(2) For multi-component systems (with a limited raenof components):

(a) a piecewise-deterministic Markov process modeliramework is developed to treat
degradation dependency in a system whose degradatocesses are modeled by physics-

based models and multi-state models;

(b) epistemic uncertainty due to incomplete or iegse knowledge is considered and a finite-

volume scheme is extended to assess the (fuzagnsysliability;

(c) the mean absolute deviation importance measaresextended for components with

multiple dependent competing degradation procemsesubject to maintenance;

(d) the optimal maintenance policy considering &pmsc uncertainty and degradation
dependency is derived by combining finite-voluméesue, differential evolution and non-

dominated sorting differential evolution;

(e) the modeling framework of (a) is extended bgiuding the impacts of random shocks on
the dependent degradation processes.

(3) For multi-component systems (with a large nundé&€omponents), a reliability assessment
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method is proposed considering degradation depemddsyy combining binary decision

diagrams and Monte Carlo simulation to reduce cdatmnal costs.

Key words: Reliability analysis, multiple competing degradatiprocesses, degradation
dependency, piecewise-deterministic Markov processaulti-state models, physics-based
models, random shocks, epistemic uncertainty, M@atdo simulation, finite-volume method,

importance measures, maintenance optimizationrputecision diagrams



RESUME

RESUME

Composants de systemes de sdreté nucléaire sgéneénal trés fiable, ce qui conduit a une
difficulté de modéliser leurs comportements de dégtion et d'échec en raison de la quantité
limitée de données disponibles. Par ailleurs, lapexité de cette tdche de modélisation est
augmentée par le fait que ces systémes sont sollokget de multiples processus concurrents
de dégradation et que ceux-ci peut étre dépendants certaines circonstances, et influence
par un certain nombre de facteurs externes (pangbela température, le stress, les chocs

mécaniques, etc.).

Dans ce cadre de probléme compliqué, ce travdii@e vise a développer un cadre holistique
de modéles et de méthodes de calcul pour I'andlgsée sur la fiabilité et la maintenance
d'optimisation des systémes de sdreté nucléaitenamt compte des connaissances disponibles
sur les systemes, les comportements de dégraddtitndéfaillance, de leurs dépendances, les
facteurs influencant externes et les incertitudsseiées.

Les contributions scientifiques originales danthkse sont:

(1) Pour les composants simples, nous intégronschdess aléatoires dans les modeles de
physique multi-états pour l'analyse de la fiabitigs composants qui envisagent dépendances
générales entre la dégradation et de deux typebalss aléatoires.

(2) Pour les systémes multi-composants (avec urbroiimité de composants):

(a) un cadre de modélisation de processus de Mal&@rministes par morceaux est développé
pour traiter la dépendance de dégradation dangsiarse dont les processus de dégradation
sont modélisées par des modeéles basés sur la phystigles modeles multi-états;

(b) l'incertitude épistémique a cause de la cosaase incompléte ou imprécise est considéré

et une méthode volumes finis est prolongée pouuévia fiabilité (floue) du systeme;

(c) les mesures d'importance de I'écart moyen alsmit étendues pour les composants avec
multiples processus concurrents dépendants dediégna et soumis a l'entretien;

(d) la politigue optimale de maintenance compteutele l'incertitude épistémique et la
dépendance de dégradation est dérivé en combirdrma volumes finis, évolution

différentielle et non-dominée de tri évolution diféntielle;

(e) le cadre de la modélisation de (a) est étendoctuant les impacts des chocs aléatoires sur
les processus dépendants de dégradation.
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(3) Pour les systemes multi-composants (avec umdgnambre de composants), une méthode
d'évaluation de la fiabilité est proposé considéiadépendance dégradation en combinant des

diagrammes de décision binaires et simulation datM€arlo pour réduire le colt de calcul.

Mots Clés Analyse de fiabilité, multiples processus conents de dégradation, dépendance
de dégradation, processus de Markov déterministeypeceaux, modeles multi-états, modeles
basés sur la physique, chocs aléatoires, incegtifquistémique, simulation de Monte Carlo,

méthode volumes finis, mesures d'importance, opétitin de la maintenance, diagrammes de

décision binaires

vi
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INTRODUCTION

1. INTRODUCTION

The focus of the present PhD thesis is on the dpwetnt of a holistic framework of models
and computational methods for the reliability-baaedlysis and maintenance optimization of
nuclear safety systems, taking into account thelabta knowledge about the component
degradation and failure behaviors, their depen@snthe external influencing factors and the
associated uncertainties. This introductory chapgeorganized as follows. Section 1.1
describes the background of the work and discuss&esnportance of degradation modeling.
Section 1.2 reviews different types of degradatimuels. Section 1.3 presents the issues to be
addressed in degradation modeling. Section 1.dssthe research motivations and objectives.
Section 1.5 presents the structure of the thesis.

1.1 Background

Safety-critical plants, like the nuclear power pdamre designed not to fail, i.e. with very high
reliability, because of the potentially catastrapbonsequences of their failures. Traditional
data-based reliability analysis, based on faillagadis, then, unsuitable. On the other hand,
most failure mechanisms can be traced to underlgegyadation processes (e.g. wear, stress

corrosion, shocks, cracking, fatigue, etc.) [1t,idnich models exist.

In general, the reliability of a system decreasdta degradation processes develop, eventually
leading to failure [2]. In reliability engineerindegradation processes have been widely studied
and different degradation models have been devel@gpeeview of degradation models is given
in the following chapter.

1.2 Degradation modeling

The existing degradation models can mainly be iladsnto the following categories:

» statistical models of time to failure, based on rddgtion data (e.g. Bernstein
distribution [3], Weibull distribution [4]).

» stochastic process models (e.g. Gamma processem\bise Gaussian process [6])

describing the evolution of one or more degradaparameters by gradual degradation
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increments over time, and the failure occurs whendegradation parameter values

reach predefined thresholds.

» physics-based models (PBMs), based on the knowlefltiee physics of degradation,
which is translated into equations to give a quative description (e.g. the physics
functions based on critical environmental stresseg, amplitude and frequency of
mechanical loads, used to model the pitting andros@n-fatigue degradation
mechanisms [7]).

* multi-state models (MSMs) describing by finite dadgition states of the underlying
degradation process (e.g. semi-Markov models ferditerioration of infrastructure
systems [8]).

The recent literature on degradation modeling @arfganized under the above taxonomy. For
statistical models, Let al. [9] have combined random regression coefficients @ standard
deviation function for analyzing linear degradatiata for statistical inference of a time-to-
failure distribution. Lu and Meeker [4] have deymd methods using degradation measures to
estimate a time-to-failure distribution for a bradass of degradation models and demonstrated
some special cases for which it is possible to iobtdosed-form expressions of the
distributions. Yang and Yang [10] have estimatedghrameters of lifetime distributions using
a random-coefficient-based approach that usegfdiaries of failed devices, combined with

degradation information from operating devices.

For stochastic models, Whitmore [11] has estimdted degradation process by a Wiener
diffusion process subject to measurement errordairaperfect instruments, procedures and
environments. Lawless and Crowder [5] have contdtlia tractable Gamma-process model
incorporating a random effect for taking into aaacbulifferent degradation rates of the

individual components. Cheet al. [6] have employed the inverse Gaussian proceds wit
random-drift mode, in which the random drifts asedi to represent heterogeneities commonly
observed across the product population. Note Heatorementioned degradation models are

always built on sufficient degradation/failure data

PBMs [12-14] and MSMs [15-17] can be used to descthe evolution of degradation in
structures, systems and components, for which sstai degradation/failure data are
insufficient, e.g. the highly reliable devices iethuclear and aerospace industries. For PBMs,

Daigle and Goebel [12] have developed a physicsetnoida pneumatic valve, based on mass
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and energy balances in which the damages depesiciorg velocity. Reggiargt al.[13] have
developed a physics-based analytical expressithredinear drain current for hot-carrier stress
degradation in transistors. Keedy and Feng [14Ehaoposed a probabilistic reliability and
maintenance modeling framework for stent deployn@rt operation, based on physics-of-
failure mechanisms, e.g. delayed failure due tigdiat crack and instantaneous failure due to

overload fracture.

For MSMs, Moghaddass and Zuo [15] have employechttimhomogeneous continuous-time
hidden semi-Markov process to model the degradatmhobservation processes associated
with the device. Giorgiet al.[18] have developed an age- and state-dependehkbManodel

for the wear process of cylinder liners of identibeavy-duty diesel engines for marine
propulsion. Unwinet al. [19] have proposed a multi-state physics model PM$ for the
cracking process in an dissimilar metal weld inrianpry coolant system of a nuclear power

plant.

1.3 Factors considered in degradation modeling

There are several factors, which can influence afiggion evolution and, thus, need to be

accounted for in degradation modeling.

1.3.1 Degradation dependency

In reality, components and systems are often stuligganultiple competing degradation
processes and any of them may cause failure [28§.dependencies among these processes
within one component (e.g. the wear of rubbingaes influenced by the environmental stress
shock within a micro-engine [21]), or/and amondetiént components (e.g. the degradation of
the pre-filtrations stations leading to a lowerfpanance level of the sand filter in a water
treatment plant [22]) need to be considered, unddain circumstances. Components can be
dependent due to functional dependence, wherailued of a trigger component causes other
components to become inaccessible or unusable2fd3Failure isolation effects can induce
degradation dependency among different componsirise failure of one component may
cause other components within the same systenctnieisolated from the system due to the
failure isolation actions [25, 26]. This renderalnging the analysis and prediction of the
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components and systems reliability [27]. Wang anan® [20] applied time-varying copulas for
describing the dependencies between the degradatiocesses modeled by statistical
distributions. Straub [28] used a dynamic Bayesiatwork to represent the dependencies
between degradation processes modeled by mulg-staidels. However, no studies have
considered degradation dependency in a system wieggadation processes are modeled by
PBMs and MSMs.

1.3.2 Random shocks

Components may also suddenly fail due to randorotying events of excessive loading or
temperature [29]. For example, thermal and meclhsitocks (e.g. internal thermal shocks
and water hammers) [30, 31] onto power plant coraptsican lead to intense increases in
temperatures and stresses, respectively. Thesé&sevweferred to as random shocks, need to be
accounted for on top of the underlying degradagimtesses, because they can contribute to
accelerating the degradation processes. In thatlitee, random shocks are typically modeled
by Poisson processes [17], distinguishing two nges, extreme shock and cumulative shock
processes [32], according to the severity of theatge. The former could directly lead the
component to immediate failure [33], whereas thteilancreases the degree of damage in a
cumulative way [34]. Esargt al. [35] have considered extreme shocks in a component
reliability model, whereas Wareg al.[29], Klutke and Yang [36] and Wortmat al.[37] have
modeled the influences of cumulative shocks on gratiation process. Both extreme and
cumulative random shocks have been considered landiPham [17], and Wang and Pham
[20]. Additionally, Yeet al. [38] and Faret al. [39] have considered that a high severity of
degradation can lead to a high probability thataadom shock causes extreme damage.
However, the fact that the effects of cumulativecis can vary according to the severity of

degradation has also to be considered.

Besides, previous research has focused on the depen between continuous/multi-state
degradation processes and random shocks. For aonosmdegradation processes, Pengl.

[27] considered systems with one linear degradatiaim where shocks can bring additional
abrupt degradation damage if the shock loads dceroted the maximum strength of the
material. Multi-component systems subject to midtinear degradation paths have been
further considered by Somg al.[40]. Jianget al.[21] studied changes in the maximal strength

of the material when systems are deteriorating uddéerent situations. Beckeat al. [41]
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extended the theory of dynamic reliability to ingorate random changes of the degradation
variables due to random shocks. Rafeeal. [42] proposed reliability models for systems for
which the degradation path has a changing degmadadite according to particular random
shock patterns. Sorgg al.[43] studied random shocks with specific sizesumrctions, which
can selectively affect the degradation processes@®r more components (not necessarily all
components) in one system. For multi-state degi@d@arocesses, Yargf al [44] combined
random shocks with Markov degradation models wkboeks can lead the systems to further
degraded states. However, few studies have explicansidered both the dependencies
between degradation processes and the random stamekemong the degradation processes

themselves.

1.3.3 Maintenance policy

Maintenance contributes to ensuring the safe dialesit operation of industrial systems [45].
The degradation processes can be interrupted bytenaince tasks (e.g. one component can be
restored to its initial state by preventive maiatece if any of its degradations exceed the
respective critical level [46] and by corrective imanance upon its failure [21]). The
interactions among components complicate the magldhr maintenance planning, which
becomes a big challenge [47]. Thomas [48] has oatsf these interactions in the
maintenance modeling into three groups: econontioctsiral and stochastic dependences.
Economic dependence exists when the maintenantefcesveral components is not equal to
the sum of their individual maintenance costs. Egample, Castanieet al. [49] have
considered a condition-based maintenance policg fato-unit deteriorating system, where the
set-up cost of inspection is charged only oncehd &ctions on the two components are
combined. Van Dijkhuizen [50] has investigated tloeg-term grouping of preventive
maintenance jobs in a multi-setup, multi-componprdduction system where the set-up
activities can be combined when several comporaetsiaintained at the same time. Structural
dependence occurs if some working components reke teplaced or dismantled in order to
execute the maintenance of the failed ones. Fanpbea Dekkeret al. [51] have studied the
maintenance policy for asphalt roads, where thebauraf maintenance services is limited by
integrating neighboring segments into a homogenseuaton which is completely repaired.
Stochastic dependence, also referred to as pradiebdependence, applies when the state of

one component can affect those of other comporweritseir failure rates. Failure interactions
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have been the most discussed cases for stochapgadence [22] and imply that the failure of
one component may lead to the failure of other comepts with certain probabilities, and/or
influence their failure rates [52]. For examplej &ad Chen [53] have presented an economic
periodic replacement model for a two-unit systenesghthe failure of unit 1 can increase the
failure rate of unit 2, while the failure of uniti@duces unit 1 into instantaneous failure.
Zequeira and Bérenguer [54] have studied the ingpepolicies for a two-component standby
system, where the failure of one component can fyaké conditional failure probability of
the component still in operation with probabiljpyand does not modify it with probability —

p. Barroset al.[55] have optimized the maintenance policy for a-umit parallel system where

the failure of a component increases the failute oathe surviving one.

Dependency among degradation mechanisms or predesseeceived less attention within the
framework of maintenance modeling and optimizatdmulti-component systems, although
they are of real concern in practice (e.g. thaifailbf a pump due to oxidation of contacts and
bear wearing). Pengt al.[27] have developed a maintenance policy with gkciinspections
when two dependent or correlated failure processeesonsidered. Jiamg al.[21] have further
compared two preventive maintenance (PM) policege replacement policy and block
replacement policy, combining immediate correcti@placement in consideration of shifting
failure thresholds. Ozekici [56] has considereceridépendent aging processes between
components due to continuous wear and shocks,rapoged an optimal periodic replacement
policy. Rasmekomen and Parlikad [22] have cons@lélegradation dependency in terms of
output performance between one critical componedtaher parallel components based on
aging processes, and the optimal age-based mantemlicy for this case was also studied.
Yang et al. [57] have proposed a general statistical religbilitodel for repairable multi-
component systems considering dependent compeaskg, under a partially perfect repair
assumption which considers that only the failed ponent, rather than the whole system, is
replaced. Hongt al.[58] have used copulas to model degradation depeydemong all the
components of a system and obtained the optimahteraance policy including condition-
based maintenance with periodic inspections artdntesneous corrective maintenance (CM).
Van Horenbeek and Pintelon [59] have proposed amjapredictive maintenance policy that
minimizes the long-term mean maintenance cost pértime while considering different
component dependencies (i.e. economic, structach$eochastic dependence). Sehgl.[40]
have applied age replacement policy and inspedtas®ed maintenance policy for systems
whose components hagedependent failure times, and the optimal replacemserval or
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inspection times are determined. Note that maimesaptimization for multi-component
systems with multiple dependent competing degradatprocesses within individual
components has not been considered and only thechexluled periods for inspection or

maintenance are considered as the decision vasiablée optimization problem.

1.4 Research objectives

This PhD work aims to develop a holistic framewofknodels and computational methods for
the reliability analysis and maintenance optimmatiof nuclear safety components and
systems, taking into account the available knowdealy the degradation and failure behaviors,

their dependencies, the external influencing facémd the associated uncertainties.

The availability of such modeling framework woul@ Istrongly beneficial for the asset
management of nuclear power plants, because it dvealable to successfully predict

component and degradation behaviors and optimély fhe necessary maintenance activities.

The research objectives, which also derive the mamributions of this PhD work, addressing

the challenging issues presented in Chapter le3jigided into the following three groups:
* For single components:

- Degradation dependency: to study the dependenayebat random shock and

degradation processes, both can lead componefaiuice.

- Random shocks: to establish a general random shodkl, where the impacts of a
random shock are dependent on the current compaegnadation condition (the

component degradation state and residence tinteiatate).

- Maintenance policy: to extend the MSPM frameworkirtolude semi-Markov
modeling, where the time of transition to a state depend on the residence time

in the current state, and hence is more suitableéuding maintenance.
* For multi-component systems (with a limited numblcomponents):

- Degradation dependency: to develop a modeling fweorie for systems whose
degradation processes are modeled by PBMs and M®Mseat degradation
dependencies between the degradation processes witlk component or/and
among components; to account for epistemic uncgytadue to incomplete or

imprecise knowledge on dependent degradation pseseand assess the (fuzzy)

-7-
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system reliability; to evaluate the dynamic crilityeof components over time.

- Random shocks: to consider the impacts of randaokshon PBMs and MSMs at
the same time, which have to be characterizedffierdnt ways due to the different

nature of the two types of degradation models.

- Maintenance policy: to derive the optimal maintezeanpolicy considering
degradation dependency and epistemic uncertaimy, @esign an efficient

optimization method.
* For multi-component systems (with a large numberashponents):

- To develop an efficient reliability assessment rodtittonsidering degradation

dependency.

1.5 Structure of the thesis

The thesis is composed of two parts. Part |, mdderoChapters, presents, in synthesis, the
motivations, contents and conclusions of the Phitkwiart Il, contains a collection of seven
journal papers, reporting each research work peddrduring the PhD. The readers may refer

to them for detailed information about the research
The Chapters in Part | are summarized as follows.

Chapter | (current Chapter) introduces the issuek challenges in reliability analysis and
maintenance optimization of nuclear safety comptsiand systems, taking into account the
available knowledge on the system functionalitidegradation and failure behaviors,
dependencies, external influencing factors andcestsal uncertainties. It also describes the

research objectives of the work.

Chapter 2 (Paper |) first includes semi-Markov nmsde the original MSPM framework for
component reliability assessment and, then, incatps the generalized random shock models
where the probability of a random shock resultimgextreme or cumulative damage, and the
cumulative damages, are batdependent on the current component degradatioditcam

Chapter 3 (Paper I1l) firstly introduces PBMs and N&Sfor degradation processes. The
piecewise-deterministic Markov processes (PDMP% #ren employed to handle the

dependencies between PBMs, between MSMs and betivess two types of models.
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Chapter 4 (Paper lll) deals with the epistemic utadaty in the degradation processes. To
account for this, the parameters of the PDMP madeldescribed by fuzzy numbers. The
extension of the finite-volume (FV) method to quignthe (fuzzy) reliability of the systems is

proposed.

Chapter 5 (Paper 1V) focuses on the component itapoe measures (IMs). The extended
mean absolute deviation (MAD) IMs for componentthwvdegradation dependency and subject
to maintenance are proposed. The quantificatiain@fextended component IM is developed
based on the FV method.

Chapter 6 (Paper V) focuses on the maintenancenizatiion for systems considering epistemic
uncertainty and degradation dependency. The predsibéd period for inspection tasks and the
thresholds for PM are considered as the decisiotablas in the optimization problem
formulation. A new optimization method integratimpn-dominated sorting differential
evolution (NSDE) [60], differential evolution (DE§1] and the FV method for solving PDMP
[62] is proposed to derive the optimal maintengpaiecy.

Chapter 7 (Paper VI) extends the modeling framevpoelsented in Chapter 2 by including the
impacts of random shocks on the dependent degoadatocesses. The dependencies between
degradation processes and random shocks, and adegngdation processes are explicitly
modelled.

Chapter 8 (Paper VII) proposes a reliability assesg method for multi-component systems
(with a large number of components) consideringraldation dependency. Binary decision

diagrams (BDDs) and MC simulation are combinecetiuce computational cost.

Chapter 9 summarizes the applications of the preghosodels and methodologies to real cases

related to nuclear safety components and systems.

Chapter 10 draws the conclusions of this PhD warit presents relevant open issues and

perspectives for future research.

Fig. 1-1 provides a pictorial view of the issuedr@dsed in the PhD work.
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Fig. 1-1. A pictorial view of the issues addressethe PhD work.
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2. MULTI-STATE PHYSICS MODEL (MSPM) FRAMEWORK FOR
COMPONENT RELIAIBLITY ASSESSMENT INCLUDING SEMI-
MARKOV AND RANDOM SHOCK PROCESSES

MSPM framework is proposed by Unwiet al. [19] for modeling nuclear component
degradation, also accounting for the effects ofiremmental factors (e.g. temperature and
stress) within certain predetermined ranges [6ahd®m shocks need to be accounted for on
top of the underlying degradation processes bectugsecan bring variations to influencing
environmental factors, even outside their preddatethboundaries [64] that can accelerate the
degradation processes. For example, thermal, amthaneal shocks (e.g. internal thermal
shocks and water hammers) [30, 31] onto power giamponents can lead to intense increases
In temperatures, and stresses, respectively; uhdse extreme conditions, the original physics
functions in MSPM might be insufficient to characze the influences of random shocks onto
the degradation processes, and must, thereformdafied. In this Chapter, we extend the
MSPM framework for component reliability assessnignihcluding semi-Markov and random
shock processes, where the probability of a ransleotck resulting in extreme or cumulative
shock, and the cumulative damages, are $atpendent on the current component degradation

condition.

2.1 Extended MSPM framework

A continuous-time stochastic process is callednai-d¢arkov process if the embedded jump
chain is a Markov Chain and the times between ifians may be random variables with any
distribution [65]. It more generally describes thet that the time of transition to a state can
depend on the residence time in the current staug, hence is more suitable for including
maintenance [66]. The following assumptions are enfad the extended MSPM framework

based on semi-Markov processes:

» The degradation process has a finite number cgssgat= {0,1, ..., M} where states,
andM represent the complete failure state, and pefigwitioning state, respectively.
The generic intermediate degradation sta{@si<M ) are established according to the
degradation development and condition, wherein dbmponent is functioning or

partially functioning.
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* The degradation follows a continuous-time semi-Narkrocess; the transition rate
between staté and statg, denoted byl ;(7;,8), is a function ofr; which is the
residence time of the component being in the ctistel since the last transition, and
6 whichrepresents the external influencing factors (iniclgghysical factors).

* The initial state (at time= 0) of the component isl.

* Maintenance can be carried out from any degradaiate, except for the complete
failure state (in other words, there is no repaint failure).

Fig. 2-1 presents the diagram of the semi-Markaonmonent degradation process.

Ayo(r, 0)

Aym1(T.0)

/1M—1,1(T: 9)

\

Aua (r,0) )ll,M—l (r,9)

)lM—l,M (z,0)

Fig. 2-1. The diagram of the semi-Markov process.

The probability that the continuous time semi-Marlaocess will step to stajan the next
infinitesimal time interval f, t + At), given that it has arrived at statat timeT,, aftern

transitions and remained stabld ifinom Tn until timet , is defined as
) -1 ,
PWXns1 = J, Taer € [0+ AT 1K, Ticfy o) (K = 1,13, Ty S £ < Ty, 6]
= P[Xn+1 =J,Ths1 € [t't + At] | (Xn = i'Tn) yTh <t < Tn+1'0]
= Ai‘j(Tl'=t—Tn,0)At, Vl,] € S,l¢] (21)

whereX, denotes the state of the component &fteansitions. The degradation transition rates

can be obtained from the structural reliability lgges of the degradation processes (e.g. the
crack propagation process [67], whereas the tiangites related to maintenance tasks can be
estimated from the frequencies of maintenance iie8y. For example, the authors of [63]
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divided the degradation process of the alloy metald into six states dependent on the
underlying physics phenomenon, and some degrad&tmsition rates are represented by
corresponding physics equations.

The solution to the semi-Markov process model ie #ttate probability vectoP(t) =
{pm (), pu-1(t), ..., po(t)}. Because no maintenance is carried out from thgpooent failure
state, and the component is regarded as functioniatj other intermediate alternative states,

its reliability can be expressed as

R(£) = 1 - po(0)- (2.2)

Analytically solving the continuous time semi-Markenodel with state residence time-
dependent transition rates is a difficult or somes impossible task, and the Monte Carlo

simulation method is usually applied to obt#i(t) [68, 69].

2.2 Generalized random shock models

The following assumptions are made on the randaroksprocess.

e The arrivals of random shocks follow a homogend®aisson process\{(t),t = 0}
[32] with constant arrival rate. The random shocks aseéndependent of the
degradation process, but they can influence theadatjon process (see Fig. 2-2).

* The damages of random shocks are divided into ypest extreme, and cumulative.

* Extreme shock and cumulative shock are mutuallyuskee.

* The component fails immediately upon occurrencextfeme shocks.

* The probability of a random shock resulting in erte or cumulative damagess
dependent on the current component degradation.

» The damage of cumulative shocks can only influetiee degradation transition
departing from the current state, and its impacttioe degradation process 3$s
dependent on the current component degradation.
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Amo . ®

Am—10 (z.6)

Degradation
process

Apm-1(z.0) Ap-11(z,0)

Random
shocks

Fig. 2-2. Degradation and random shock processes.

The first five assumptions are taken from [20]. Bgh assumption reflects the aging effects
addressed in Faet al's shock model [39], where the random shocks areenfatal to the
component (i.e. more likely lead to extreme dampgésen the component is in severe
degradation states. However, the influences of ¢atme shocks under aging effects have not
been considered in Faat al’s model. In addition, the random shock damagessimed to
depend on the current degradation, characterizélatbg parameters: 1) the current degradation
statei, 2) the number of cumulative shocksthat occurred while in the current degradation

state since the last degradation state transaiw3) the residence time; ,,, of the component

in the current degradation statafterm cumulative shocks; ,,>0.

Let p;m(7,,) denote the probability that one shock resultsireene damage (the cumulative
damage probability is theh — p; ,,(7{,,,)). In the case of cumulative shock, the degradation

transition rates for the current state change etntloment of the occurrence of the shock,

m)

whereas the other transition rates are not affetmdlg i

(7{m, @) denote the transition rates

after m cumulative random shocks, Wheﬁé’(})(rlﬁo, 0) holds the same expression as the

transition rate)ll-,j(rl-’,o,e) in the pure degradation model, and the other ittansrates (i.e.

m>0) depend on the degradation and the externalandling factors. Because the influences of
random shocks can render invalid the original pts/§iinctions, we propose a general model

which allows the formulation of physics functionspgndent on the effects of shocks. The
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modified transition rates can be obtained by matedience knowledge, and data from shock
tests [70]. These quantities will be used as thelik&ing elements in the integration work of

the next section.

2.3 Proposed modeling framework

Based on the first and second assumptions on ramstiocks, the new model that integrates
random shocks into MSPM is shown in Fig 2-3. Intiedel, the states of the component are
represented by pair,if), wherei is the degradation state, amds the number of cumulative
shocks that occurred during the residence timearcurrent state. For all the degradation states
of the component except for stéiethe number of cumulative shocks could range fota
positive infinity. If the transition to a new dedeation state occurs, the number of cumulative
shocks is set t0, coherently with the last assumption on randontksiol he state space of the
new integrated model is denoted hy = {(M,0),(M,1),(M,2),..,(M —1,0),(M —
1,1),...,(0,0)}. The component is failed whenever the model reah6). The transition rate
denoted byA(;m) jn) (r{‘m, 0) is residence time-dependent, thus rendering tlogegs a

continuous time semi-Markov process.
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Fig. 2-3. Degradation and random shock processes.

Suppose that the component is in a non-failure §tat); then, we have three types of outgoing

transition rates:
Aim,0,0) (Tims 8) = 1 D (i), (2.3)
the rate of occurrence of an extreme shock whidlhcauise the component to go to st&t@)
Ao, iman)(Tims 0) = 1 (1 = Dy (Tim)), (2.4)

the rate of occurrence of a cumulative shock whwhcause the component to go to state

(i,m+1); and

Aim),(j.0) (Tims ) = l(m) (ti;,0), (2.5)

the rate of transition (i.e. degradation or maiatexe) which will cause the component to make

the transition to statg,Q).

The effect of random shocks on the degradationgzses is shown in eq. (2.5) by using the
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superscript(m), wherem is the number of cumulative shocks occurring dythe residence
time in the current state. It means that the ttemmsrate functions depend on the number of

cumulative shocks. This is a general formulation.

The first two types egs. (2.3) and (2.4) dependhenprobability of a random shock resulting
in extreme damage, and in cumulative damage, ragplg the last type of transition rates eq.
(2.5) depends on the cumulative damage of randawoksh In this model, we do not directly
associate a failure threshold to the cumulativekfidoecause the damage of cumulative shocks
can only influence the degradation transition diépgufrom the current state, and its impact on
the degradation processsislependent on the current component degradaticactlimulative
shocks can only aggravate the degradation cond@iadhe component instead of leading it
suddenly to failure (which is the role of extrenm®sks). The effect of the cumulative shocks
Is reflected in the change of transition rates. prabability of a shock becoming an extreme
one depends on the degradation condition of thgpooent. The extreme shocks immediately
lead the component to failure, whereas the damdgeumulative shocks accelerates the

degradation processes of the component.

The proposed model is based on a semi-Markov psaasrandom shocks. Under this general
structure, as explained in the paragraph abovehhsics lies in the transition rates of the semi-
Markov process. We refer to it as a physics moeéehhbse the stressors (e.g. the crack in the
case study) that cause the component degradatoexalicitly modeled, differently from the
conventional way of estimating the transition rdtes historical failure and degradation data,
which are relatively rare for the critical compotserMore information about MSPM can be
found in [9]. In addition, the random shocks aregmnated into the MSPM in a way that they

may change the physics functions of the transitaes, within a general formulation.

Similarly to what was said for the semi-Markov pgss presented in Section 2.2, the state
probabilities of the new integrated model can kaioled by MC simulation, and the expression

of component reliability is

R(t) =1 =p(,0) (D). (2.6)
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2.4 Component reliability estimation method

2.4.1 Basics of Monte Carlo simulation

The key theoretical construct upon which MC simuolais based is the transition probability

density functionf(; m) (jn) (Ti m | t, 0), defined as

fam),in) (Tim | t,0)dT; ,, = the probability that, given that the system asiaéthe state
(i,m) attimet, with physical factor®, the next transition
will occur in the infinitesimal time intervat ¢+ 7; ,,, t +
T, m +d7; ), and will be to the stat&j,n) [68]
(2.7)
By using the previously introduced transition ragxg (2.7) can be expressed as
fiim, ) Tim | £,0)AT] 1y = Piim) (Tiom | £ O Am) ) (Tim O)d Tl (2.8)
Pim(tim | t,0) is the probability that, given that the comporemives at the staté, m) at
time t with physical factorsd, no transition will occur in the time intervat, ¢ + 7;,,). It

satisfies

dP (i m)(Tim | £.0) . , ,
Pl (TL{,m ) = A(l,m) (Ti,m' e)dTi,m (29)

Aim) (Tl m, @)d7] , is the conditional probability that, given thae ttomponent is in the state
(i,m) at timet, having arrived there at time— 7; ,,,, with physical factorsd, it will depart
from (i,m) during ¢, t + dt},.). Aim)(Tim @) is obtained as

A(i.m) (Tl{,m' 0) = Z(i/,m/) A(i,m),(i/,m/) (Tlf,m; 9) (210)

Taking the integral of both sides of eq. (2.9) wik initial conditionP ;,,,)(0] ¢,8) = 1, we

obtain

Py (Tim | £,8) = exp[— [7*™ Agim)(s, 0)ds] (2.11)

Substituting eg. (2.11) into eqg. (2.8), we obtain

FimGim) Thm 1 6.0) = Agmy, ) (Tims 0)€XPI— [ ™ Agimy (s, 0)ds]  (2.12)

To derive a Monte Carlo simulation procedure, 8dL%) is rewritten as
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Agi,m),(j,m) (TL{,m'e)
)‘(i,m) (‘L'l{‘m,e)

= T(im),Gm) (Thm | 0) * Wiimy (Tim | 9). (13)

fam)Gm)Tim 1 ,6) =  Aim) (T > ©)exp[— ™ A(i.my (s, 0)ds]

Yim) (r{,m | 0) is the probability density function for the holditime 7; ,,, in the state(i, m),

given the physical factor8. It satisfies

lp(i,m) (Tl{,m | 0) = A(i,m) (Tlf,m' B)exp[— fori'm A(i,m) (5' e)ds]- (2-14)

, _ Aam),Gm) (Tim0)
7 (im),Gm) (Tim | 8) = W, (2.15)

is regarded as the conditional probability thattfie transition out of staté, m) after holding

time t;,,, with the physical factor®, the transition arrival state will b§, n).

In the Monte Carlo simulation, for the componemiving at any non-failure staté, m)
at any timet, the process at first samples the holding timstate (i, m) corresponding to eq.
(2.14), and then determines the transition arstate (j,n) from state(i, m) according to eq.
(2.15). This procedure is repeated until the acdataed holding time reaches the predefined

time horizon, or the component reaches the fastate (0,0).

2.4.2 The simulation procedure

To generate the holding timg,,, and the next stat§,n) for the component arriving in any
non-failure state(i,m) at any timet, one proceeds as follows. Two uniformly distrilglite

random numbers: anduz are sampled in the interval [0, 1]; then,, is chosen so that

J3 ™ Ay my (s, @) ds = In(1/uy) (2.16)
and (j,n) = a* that satisfies

Zz*:_()l A(i,m),k (T{,m' 0) < uZA(i,m) (Tl{,m' 0) < Z%LO A(i,m),k (T{,m' 0) (2-17)

wherea* represents one state in the ordered sequence mdsalible outgoing states of state
(i,m). The statea® is determined by going through the ordered sequericall possible
outgoing states of stat@, m) until eq. (2.17) is satisfied. The algorithm of Me Carlo
simulation for solving the integrated MSPM on adirhorizon [0, t,;,..] IS presented as

follows.

-19-



MULTI-STATE PHYSICS MODEL (MSPM) FRAMEWORK FOR COMPNENT RELIAIBLITY ASSESSMENT
INCLUDING SEMI-MARKOV AND RANDOM SHOCK PROCESSES

Set N,,4, (the maximum number of replications), akd= 0.
While k < N,,,,, do the following.

Initialize the system by setting = (M, 0) (initial state of perfect performance), setting th

time t = 0 (initial time).
Sett’ = 0 (state holding time).
While t < t,,4, do the following.
Calculate (10).
Sample at’ by using eq. (2.16).
Sample an arrival statg,n) by using eq. (2.17).
Sett =t +t'.
Sets = (j,n).
If s=(0,0),
then break.
End if.
End While.
Setk =k+1.

End While. o

The estimation of the state probability vecRit) = {py (t), Payr—1(t), ..., o (t)} at timet is
P(6) = 57— (0, tug 1 (0), ., 0 (6)) (2.18)

where{n;(t)|i = M, ...,0,t < t,,qx} IS the total number of visits to staiat timet, with sample

variance [71] defined as

vars = BEA = Bi0)/(Nmax — 1) (2.19)
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3. DYNAMIC RELIABILITY MODELS FOR SYSTEMS WITH
DEGRADATION DEPENDENCY

For highly reliable systems, such as nuclear safgesyems, it is relatively difficult to model

their degradation and failure behaviors due tolithéed amount of data available. In these
cases, PBMs and MSMs are two modeling frameworks ¢an be used for describing the
evolution of degradation in systems. Systems atenofubject to multiple competing

degradation processes and any of them may causeefairhe dependences among these
processes need to be considered under certaimstances. In this chapter, a PDMP modeling
framework is developed to treat degradation depsrnden a system whose degradation

processes are modeled by PBMs and MSMs.
3.1 Degradation models

We consider a multi-component system madé& cfomponents denoted by = {0,, O0,, ...,
Oo}. Each component may be affected by multiple desfrad mechanisms or processes,

possibly dependent. The degradation processesecaedarated into two groups: ()= {L,,
Ly, ... ,Ly} modeled byM PBMs; (2)K = {K;, K,, ... , Ky} modeled byN MSMs, where

L,m=1,2,..,M andK,,n=1,2,..,N are the indexes of the degradation processes.

3.1.1 Physics-based models (PBMs)

The following assumptions on PBMs are made:

* A degradation procesX,; (t),L,, €L in the first group, hag, time-dependent
continuous variableX; (t) = (x}m(t),xfm(t), ...,xf;m (t)) € R%m. A system of

first-order  differential equations (i.e. physics uatjons) Xim(t) =
fu (X, (©,t|6, ), are used to characterize its evolution, wh@fe are the
environmental factors influential té,, (e.g. temperature and pressure) and the
parameters used ifi, . This assumption is made in [72] and widely usegdractice

[12, 73]. Note that higher-order differential eqaas can be converted into a system
of a large number of first-order differential eqoas by introducing extra variables
[74].
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X, (t) can be divided into two groups of varaiblég (t) = (X7 (t),X] (t)): (1)
X‘L’m(t) are the non-decreasing degradation variables idexgrthe degradation
process (e.g. leak area of the piston of the v@§l&}]), where D is the set of
degradation variables indices; (X)fm(t) are the physical variables influencing
X?m(t) (e.g. velocity and force [73]), whel is the set of physical variable indices.
For example, the friction-induced wear of the begsi is considered as one
degradation process in [73]. It is representedhyimcrease in friction coefficients.
The two friction coefficients associated with gligiand rolling friction are considered
as the degradation variables. The rotational vlaxfithe pump is considered as the
physical variable since it influences the incresséhe coefficients of friction. The
evolution of physical variables can be characteribg physics equations. If the
variables can be modeled by physics equations afhgence certain degradation

variables, then, they are considered as physiag#&#htas. As long as oneim(t) €
X‘L’m(t) reaches or exceeds its corresponding failure hbtdsx{m*, the generic
degradation process,, fails. Let¥, denote the failure state set bf, andxj

denote the set of all the failure thresholds’@n(t). An example ofL; is shown in

Fig. 3-1.

XP (t)
Failure x% *
F threshold ™
g
4
&
(@]
P t ‘
X1, (©)
Q
2
4]
a
t
t

Fig. 3-1. An illustration ofL,.
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3.1.2 Multi-state models (MSMs)

The following assumptions on MSMs are made:

« Adegradation process$y (t),K, € K in the second group, takes values from a finite
state set denoted 8, = {0, 1, ..., dy, }, where dy ' is the perfect functioning state
and 0’ is the complete failure state. The transitioresat;(j | 0k ),V i,j € Sk, i > j
characterize the degradation transition probaddifrom state to statej, where@y

is the set of the environmental factorskip and the related parameters used,in\We

follow the assumption of Markov property which iglely used in practice to describe
components degradation processes [18]. The transitates between different
degradation states are estimated from the degosdaind/or failure data from

historical field collection. LetF, = {0} denote the failure state set &f,. An

example ofK; is shown in Fig. 3-2.

Yk, ()
2k, ——ee——_____Initial state
) S S S
1) M) AN SO Failure state

Fig. 3-2. An illustration ofK; .

3.2 Degradation model of the system considering depenuiey

The dependencies between degradation mechanispneaasses may exist within each group
and between the two groups. The evolution trajextasf the continuous variables in the first
group may be influenced by the degradation statélseosecond group. The transition times
and transition directions of the degradation preesf the second group may depend on the
degradation levels of the components in the firesug [75]. PDMPs [76], which are a family
of Markov processes involving deterministic evatatipunctuated by random jumps, can be

employed to model this type of dependency (theildetdormulations are shown in eqgs. (3.2)
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X, (©)
and (3.3)). LetX(t) = : denote the degradation processes of the firstpgend
X, ®)
Y, (t)
Y(t) = : denote the degradation processes of the secongp.gibthe overall
Yieu (0

degradation process of the system is presented as

Z(t) = ();8) €E=RLxS 3.1)

where E is a space combinin®R? (d, = ¥y-,d;, ) and § ={0,1,..,ds} denotes the
state set of procesE(t). The evolution ofZ(t) has two parts: (1) the stochastic behavior of
Y(t) and (2) the deterministic behavior &f(t) between two consecutive jumps Bft),
given Y(t). The former is governed by the transition rate¥ ¢f), which depend on the states

of the degradation processesXiit) and also inY(t), as follows:

Lim P(Y(t+A6) = X(),Y(t) =0k = U=y 0,) /At

=4 |1 X(t),0,),Vt=0,i,jES,i#] (3.2)

The latter is described by the deterministic phgsivhich depends on the states of the

degradation processes K(t) and also inX(t), as follows:

| X, (©) f1,"0x@®),c18,,)
X)) = : = :
X, ®/) \f,"°x®,tle,,)
=", t10,=UN_0,,) (3:3)

Let F denote the system failure state set, which dependbe structure of the system: then,

the system reliability at mission timg,,;;; can be obtained as follows:
R(Tmiss) =P[Z(s) € F, Vs < Tiss | (34)

The system failure state set is dependent on systiercture. To determine this set, reliability
analysis tools such as fault tree [77] can be tsédentify the combination of primary failure
events leading to system failure.
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3.3 System reliability estimation method

Analytically solving the PDMP is a difficult taskud to the complex behavior of the system
[78], which contains the stochasticities in the poments modeled by MSMs and the time-
dependent evolutions of the components modeledd¥s? On the other hand, MC simulation

methods are suited for the reliability estimatidnhe system.

X(Ti)
Y(Ti)
T, denotes the time of thle-th transition ofY(t) from the beginning. ThedZ;, Ty }kso IS @

Refer to the system presented in Section 3.22Z.et Z(T),) = ( ) € E,k € N, where

Markov renewal process defined on the spBce R* [76], which is characterized as follows:
P[Zyy1 € B, Tyy1 € [T, T + At]|1Z) = 1,0 = O U 0, ]
= ffB*[O‘AﬂN(i, dz,ds|0),Vk>0,At >0,i€ E,BE¢ (3.5)

where ¢ is acg-algebra ofE and N(i,dz, ds|0) is a semi-Markov kernel oF, which verifies

that ffE*[O’A qN(i dz,ds|0) <1,VAt > 0,i € E. It can be further developed as:

N(i,dz,ds|@) = dF;(s|0)B(i,dz|s, 8) (3.6)
where
dF;(s|0) (3.7)
is the probability density function df, ., — T, givenZ, =i and
B(i,dz|s, 0) (3.8)

is the conditional probability distribution of stak,,, starting fromZ, =i given T, —

Tk =S.

The simulation procedure consists of sampling thasition time from (3.7) and the arrival
state from (3.8) for¥Y(t), then, calculatingX(t) within the transition times, by using the
physics equation eq. (3.3) until the time of syst&volution reaches a certain mission time

Tmiss Or the system enters the failure spa€e

To calculate the system reliability, the procedufrthe MC simulation is presented as follows:

Set N,,,,, (the maximum number of replications) akd= 0 (index of replication)

Set k' = 0 (number of trials that end in the failure state)
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While k < N,

X(0)

Initialize the system by setting’ = (Y(O)

) (initial state), and the tim& = 0 (initial
system time)
Sett’ = 0 (state holding time)
While T < Tpiss
Sampleat’ by using the probability density function (3.7)

Samplean arrival statey’ for stochastic procesk(t) from all the possible states by

using the conditional probability distribution (3.8
SetT=T+t
Calculate X(T) by using the physics eq. (3.3)
Setz' = (XIST))
If T < Tpiss
If Z’eF
Setk' =k'+1
Break
End if
Else(whenT > T,,;ss)
Calculate Z(Ty;ss)

If Z(Tyiss) €EF

Setk' =k'+1
Break
End if
End if
End While
Setk=k+1
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End While o

The estimated probability of occurrence of one pattime T,,;c can be obtained by
ﬁ(Tmiss) =1—k'/Nnax (3.9)

with the sample variance [71] as follows:

VAT B(Tiss) = ﬁ(Tmiss)(l - ﬁ(Tmiss))/(Nmax -1) (3.10)
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4. SYSTEMS RELIABILITY ASSESSMENT CONSIDERING
DEGRADATION DEPENDENCY AND EPISTEMIC UNCERTAINTY

Epistemic (subjective) uncertainty [79] can affda system reliability assessment due to the
incomplete or imprecise knowledge about the dedi@ugprocesses of the components [80,
81]. For PBMs, the parameters (e.g. wear coeffitiand influencing factors (e.g. temperature
and pressure) may be unknown [82] and elicited fexpert judgment [83]; for MSMs, the
state performances may be poorly defined due tortpeecise discretization of the underlying
continuous degradation processes [84] and theitiansates between states may be difficult
to estimate statistically due to insufficient dagapecially for those highly reliable critical
components (e.g. valves and pumps in nuclear pplaeats or aircrafts, etc.) [85].

4.1 State of the art

In literature, fuzzy reliability has been studigdrbany researchers to account for imprecision
and uncertainty in the system model parametersakeet al. [86] have proposed the fuzzy
fault tree for the fuzzy reliability assessmentbafary-state systems and Singer [87] has
assigned fuzzy probabilities to the basic evenimyket al.[88] have proposed another fuzzy
extension to assign fuzzy probability to all eventhich is consistent with the calculations
from fuzzy fault trees. Ding edl. [80] have developed fuzzy multi-state systems (BMS
models by considering the steady state probalsi/ibeand steady state performance levels of
a component as fuzzy numbers. Ding and Lisniar&®j have proposed the fuzzy universal
generating function (FUGF) for the quantificatidrtlee fuzzy reliability of FMSS. Later, lat

al. [90] have developed a random fuzzy extension efithiversal generating function and
Sallak et al. [91] have employed Dempster—Shafeorthto quantify the fuzzy reliability of
MSS. Liuet al.[84] have proposed a fuzzy Markov model with fusansition rates for FMSS
when the steady fuzzy state probabilities are nail@ble.

In this Chapter, the influence of epistemic undetyato PDMP system degradation models

proposed in Chapter 3 is analyzed.
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4.2 Piecewise-deterministic Markov process (PDMP) modelg framework under

epistemic uncertainty

Fuzzy set theories and techniques introduced byelZd82, 93] have been employed in
reliability models under epistemic uncertainty whiee crisp values are insufficient to capture
the actual behavior of components. In this sectibs, following assumptions are made to
extend the previous PDMP model presented in Se8tdnvith the consideration of epistemic

uncertainty:

e The values of 8; , the environmental factors and the parameters used i

fLY(t) (X(t),t | 6;) for degradation process&t), can be fuzzy numbers, denoted by

_—

9,.

» The values of@, the environmental factors and the parameters usé#tkitransition
rates A;(j | X(t),0x) for the degradation process&{t), can be fuzzy numbers,

denoted by8y.

Let p.(dz = (dx,y) | @) denote the probability distribution d@(t), the system reliability at

time t can be defined as follows:
R(t) = P[Z(s) ¢ Fvs < t] = [ ,.p.(dz|6) (4.1)

Due to the epistemic uncertainpy(dz | @) and reliability functionR(t) have, therefore,
changed from crisp values to fuzzy numbers, denbied,(dz |8 = 8, U 8) and R(t)

respectively.

4.3 Solution methodology

In this section, we extend a FV method to assesqftlzzy) system reliability. Analytical
solution of p,(dz | 8) is difficult to to obtain due to the complex belwaof the processes [78,
94]. MC simulation methods can be applied for soamerical computations, but the major
shortcoming is that they are typically time-consognj95]. FV methods is an alternative that
can lead to comparable results as MC simulationwthin a more acceptable computing time
[95].
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4.3.1 Finite-volume (FV) for solving PDMP

Here, we employ an explicit FV method to PDMP, deped by Cocozza-Thiveet al.[62].

This approach can be applied under the followirsyagptions:

* Thetransitionrated;(j | -, 0k),Vi,j € S are continuous and bounded functions from
R to R*.

« The physics equationg,‘ (- | 8,),Vi € § are continuous functions froR% x R*
to R% and locally Lipschitz continuous.

« The physics equationg,’ (-, t | 8,), Vi € S are sub-linear, i.e. there are soifje> 0
andV, > 0 such that

Vx € R%,t € R*|f, (e, t | 0] < Vi(llxll + [¢]) + Vs

« The functionsdiv(fLi (+16,)),Vi € S are almost everywhere bounded in absolute

value by some real value > 0 (independent of).
For the ease of notation, first we lgt(-,"): R% x R — R% denote the solution of
29t t18)=f,' (g'xt16,),t]6,)VieSxeRULLER  (42)
with
g'(x,0]10,) =x,Vi€ S, x € RL (4.3)

and gi(x,t | @,) is the result of the deterministic behaviorXft) after timet, starting from

the pointx and while the process&¥t) hold on statd.

The state spac®? of continuous variableX(t) is divided into an admissible mesW,
which is a family of measurable subsetsR$t (M is a partition ofR%) such that:

(1) Userc A = RO,

(2)VABEM,A+#B=>ANB =0¢.

(3) my = [, dx > 0,vA € M, wherem, is the volume of gridA.

(4) supyepcdiam(A) < +oo wherediam(A) = supyyyealx — yI.

Additionally, the time spac®™ is divided into small intervalR* = U, 1. [nAt, (n +

1)At[, by setting the time stept > 0 (the length of each interval).

The numerical scheme aims at constructing an appetg value p.(x,i|@)dx for
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p:(dx,i| @), such thatp,(x,i | @) is constant forvx € A,t € [nAt, (n + 1)At[,VA € M:
p:(x,i]10)=P,(A,i|0),VieS x€AtEe|[nAt, (n+ 1At] (4.4)
Py(4,i| 6),Vi €S, A e M is defined as follows:
Po(4,i10) = [,po(dx,i|8) /m, (4.5)

Then, P,.,(A4,i|0),Vie S,A e M,n €N can be calculated considering the deterministic
evaluation of X(t) and the stochastic evolution &(t) based onP,(M,i|0) by the

Chapman-Kolmogorov forward equation, as follows:

Jji

, 1 s . ' a, .
Pn+1(A:l | 0) - 1+Atb};1 Pn+1(A;l | 0) + AtZ}ES 1+Atb£ Pn+1(A'] I 9) (46)
where
ay = [, 4G, x| 8)dx/m,, Vi € S,A € M (4.7)

is the average transition rate from stgtéo statei for grid A,
bi=Y,.ia) VieSAeM (4.8)
Is the average transition rate out of statéor grid A,
Poi1(Ai]|0)=Ygecrrmh P(B,i|0)/my, ViES,AEM (4.9)

is the approximate value of probability densitydtion on A x {i} x [(n + 1)At, (n + 2)At]

according to the deterministic evaluation X€t),

mlBA:f{yEB|gi(y,At|0L)eA}dy’ViES’A'BEM (4.10)

is the volume of the part of gri@ which will enter gridA after time At according to the

deterministic evaluation oX(t).

The first term of the right-hand parts of eq. (Aa6gounts for the situation that proces¥&s)

hold on statei during time [nAt, (n + 1)At], represented by “1” in an illustrated example in

R? (Fig. 4-1), whereﬁ,\ﬁ € S,A € M isthe approximated probability that no transition
A

happens from staté for grid A and the second term of the right-hand parts of(4®)

accounts for the situation that proces$&s) step to state from another statg at time

(n + 1)At, represented by “2” in an illustrated exampleRA (Fig. 4-1), WhereajiAt,Vi,j €
S,A € M is the transition probability from staeto statei for grid A (B4, B,, B; and B,
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are the grids of which some parts will enter gddaccording to the deterministic evaluation
of X(t) attime (n + 1)At).

Fig. 4-1. The evolution of degradation processesdu[nAt, (n + 1)At].

The approximated solutiom,(x,- | @)dx weakly converges towardg,(dx,- | 8) when
At - 0 and |[M|/At - 0 where | M| = supyepcdiam(A4) [62].

4.3.2 Quantification of fuzzy system reliability

Let [d], = [aq a, ] denote thex-cut of a fuzzy numbeé, wherea, anda, are the bounds;

then, thea-cut of p;(dx, i | 8),vi € S,% € R%,t € R can be obtained based on the extension

principle [93] as follows:
[p:(dx,119) ] = [minee[g]a p(dx,i|0), maxgef pe(dx,i| 0)] (4.11)

The approximate solution fofp;(dx,i | @) ]a,Vi € S,x € A,t € [nAt, (n + 1)At[ denoted

by B,(A,i|8) can be obtained by varying in 8 as follows:

[B.(A4,i]8) ]a = [minee[g]a Pi(A,1]8"),maxgefs Fu(A,i] e')] (4.12)
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where P,(4,i | 8') is obtained by using eq. (4.6) through the FV métfThen, the parametric
programming algorithms [84] can be applied to find fuzzy probability in eq. (4.12).

The approximate solution for the-cut of fuzzy reliability R(t) of the system at time €

[nAt, (n + 1)At[ can, then, be obtained as follows:
[R(t)]a = Z(A,l)g_T[P;.(A' l | a)]a f{xEA I(x,i) ¢ g:} dx (413)

In many cases, the origin&l(t) is monotonic with@; then, we can directly obtain that instead
of using eq. (4.13):

[ﬁ (t)]a = [Z(A,i);t_f' Pn(Ar i I Qa) f{xEA |(x,0) & F} dx, Z(A,i)SEJ-' Pn(A' L | 50{) f{xeA |(x,0) & F} dx]

(4.14)
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5. IMPORTANCE MEASURES (IMS) FOR COMPONENTS WITH
DEGRADATION DEPENDENCY AND SUBJECT TO
MAINTENANCE

In reliability engineering, component IMs are ugedquantify and rank the importance of
different components within a system. By deternunthe criticalities of the components,
limited resources can be allocated according to pmorants prioritization for reliability

improvement during the system design and maintenplanning phases [96].

The criticality of a component changes over timee do the evolution of its underlying
degradation processes [97]. The dependency amangldfradation processes within one
component and of different components have to bsidered in the calculation of component
IMs. Moreover, the degradation processes can leerupgted by maintenance tasks (e.g. one
component can be restored to its initial state bgventive maintenance if any of its
degradations exceed the respective critical leA®] &nd by corrective maintenance upon its
failure [21]).

Neglecting the factors that influence the statbeahg of components can result in inaccurate
estimation of component IMs and, thus, misleadsifstem designers, operators and managers
in the assignment of priorities to component caiiiees. In this Chapter, we investigate the
criticality of components taking into account thegcadation dependency and maintenance

tasks.

5.1 State of the art

A literature review on component IMs is presentetbl, to position our contribution within
the existing works. Component IMs were first inmodd mathematically by Birnbaum [98] in
1969, in a binary setting (i.e. the system andda®ponents are either functioning or faulty).
The Birnbaum IM (BIM) allows ranking componentslbgking at what happens to the system
reliability when the reliabilities of the componsrdre changed, one at a time. Afterwards,
various IMs have been developed for binary comptmeancluding reliability achievement
worth (RAW), reliability reduction worth (RRW), Fsel-Vesely and Barlow-Proschan IMs [99-
101]. Other concepts of IMs have been proposed foiths to different aspects of the system,

such as structure IMs, lifetime IMs, differentidd and joint IMs [102].
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For components whose description requires more tivanstates, e.g. to describe different
degrees of functionalities or levels of degradataefinition of the component IMs have been
extended in two directions: (1) metrics for compusemodeled by MSMs; (2) metrics for

components modeled by continuous processes.

For the first type, Armstrong [103] proposed IMs foulti-state systems (MSSs) with dual-
mode failure components. For MSSs with multi-staaeponents, Griffith [104] formalized
the concept of system performance based on expetigyg and generalized the BIM to
evaluate the effect of component improvement opstesn performance. Wu and Chan [105]
improved the Griffith IM by proposing a new utilitgnportance of a state of a component to
measure which component or which state of a cectaimponent contributes the most to system
performance. Set al.[106] proposed the integrated IM, based on Ghifftl, to incorporate
the probability distributions and transition rat@sthe component states, and the changes in
system performance. Integrated IM can be used atuate how the transition of component
states affects the system performance from uné tordifferent life stages, to system lifetime,
and provide useful information for preventive anfio(such as monitoring enhancement,
construction improvement etc.) [107, 108]. The ivstihite generalized forms of classically
binary IMs have been proposed by Zio and Podoifiilia9] and Levitinet al.[110]: these IMs
guantify the importance of a multi-state comporfenaichieving a given level of performance.
Ramirez-Marquez and Coit [111] developed two typésomposite IMs: (1) the general
composite IMs considering only the possible composgates; (2) the alternative composite

IMs considering both the possible component statelsthe associated probabilities.

For the second type, Gebraeel [112] proposed anpsiigs-based ranking algorithm to rank
the identical components based on their residuakliLiuet al. [113] extended the BIM for
components with multi-dimensional degradation psses under dynamic environments. Note
that no IM has been developed for components wlasgradation) states are determined by
both discrete and continuous processes, and aemdept upon other components, as it is often

the case in practice [114].

To include dependency, lyer [115] extended the &aifProschan IM for components whose
lifetimes are jointly absolutely continuous andsibly dependent, and Peagal.[97] adapted

the mean absolute deviation (MAD) IM (one of thieadative composite IMs) for statistically
correlated (s-correlated) components subject tona-dimension continuous degradation
process; this enables to measure the expectedutdsigviation in the reliability of a system
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with s-correlated degrading components, causedffgreht degrading performance levels of
a particular component and the associated probabiliTo the knowledge of the authors,
component IMs taking into account the dependenayutiple degradation processes within
one component and among different components, tivhinclusion of maintenance activities,
have not been investigated in the literature (stwidif IMs for repairable systems wigh

independent components can be found in [108, 116]).

5.2 PDMP modeling framework considering maintenance

In this section, the following assumptions are m&wextend the previous PDMP model
presented in Section 3.2 with the consideratiorcaidition-based preventive maintenance

(PM) via periodic inspections and corrective maiaiece (CM):

» Fordegradation process= L U K, the inspection task; of PM is performed with fixed
period T; and brings the related component back to itsaingiate when is found in
the predefined state Séf;.

» The degradation state of a componégte 0,9 = 1,2,...,Q, is determined by its
degradation processdx, S LUK and the component fails either when one of the
degradation processes evolves beyond a threshdhilafe in PBMs or reaches the
discrete failure state in MSMs .

* The component is restored to its initial state Y, @s soon as it fails.

* The inspection tasks and all maintenance actiomsl@ane instantaneously and without

errors.

An illustration of two component®; and0, is shown in Fig. 5-1, wherB, = {L;} and
D,, = {Ki}. PM is performed for, if X? (t) exceeds its thresholg, P at the time of

inspection and fok; if Yy (t) isin state 1 at the time of inspection.
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0 _ Failure state
t
7-miss

Fig. 5-1. An illustration of two components.

To extend the previous PDMP modeling frameworkrmiuding the maintenance policy, the
difficulty is the discontinuity ofX(t) due to the instantaneous change caused by the
maintenance task. To solve this problem, a setDNIPs Z, (t),k = 1,2, ...is employed to
model the system degradation processes, where BR8P is established once a maintenance
task is performed. LeV,, denote the total number of maintenance tasks (RMGM) the
system has experienced till the mission tifyg,,, thenZ, (t),k = 1,2, ..., N, is defined on

[Tk-1,Tk], whereTX, k = 1,2, ..., N,, denotes the execution time of #é&h maintenance task
andTy, = 0. Zy_,1(t) is defined on[T,’,\l"”, Tmiss]. This treatment is only for formulating the

problem within the settings of PDMP and it doesingiact the computational complexity. Fig.

5-2 shows this for the degradation processes ing-ig
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Fig. 5-2. An illustration of two components, modkley a set of PDMPs.

Z,(Tk~1) (the initial states ofZ,(t),k =2,..,N, +1) can be obtained according to
Z,_,(Tk=1) and the K-1)-th maintenance task. The degradation staté@seaystem tillT,,,;

can be represented by
Z(t) =y L e () - Zy (8) + 1[Tn1~11m,Tmiss] ()" Zy,,+1(t) (5.1)

Since maintenance is performed instantaneouslyiaihee states of the system are infinitely
approachable byZ(t), instead of being truly reached. We, then, us¢hemmstochastic process

Z'(t), which can record the failure of the system a®¥d:
Z'(6) = o) (6)  Z0(0) + Xy Vpgeon i) Ze(O) + Lo 7 1(6) - Zyia () (5:2)

Let F denote the system failure state set: then, themsyeeliability atT,,,;;; can be defined

as follows:

R(Tpiss) = PIZ'(s) & F,Vs < Topiss] = PNy (Z(TK) & F) 0 (Zyy, 41 (Tmiss) & F)]
(5.3)

Since the component is restored to its initialeskat corrective maintenance as soon as it fails,
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the failure states of the system can only be rehtlyeZ’'(t) at the execution time of the

maintenance taskgk,k = 1,2,...,N,, or at the mission tim&,,;.;. Therefore, the event

Z'(s) & F, Vs < Tpys €an be represented BY™ (Z, (TX) & F) 0 (Zy,, +1(Tmiss) € F).

5.3 Component IMs

Ramirez-Marquez and Coit [111] proposed the MAD Igr MSSs with multi-state
components, which evaluates the components ciiticaking into account all the possible
states and associated probabilities. Penh@l. [97] adapted it for binary systems with

correlated components subject to one continuousadation process.

For components whose (degradation) states arendett by both discrete and continuous
processes, we propose an extension of MAD to peotiidely feedbacks of the criticality of
component0, with multiple dependent competing degradation sses modeled by MSMs

and PBMs, and giving consideration to PM and CMe Tdrmulation is presented as follows:
Clo,(t) = E||P (2'(s) & F,¥s < t|D,, (1)) - R(1)|| (5.4)

where Do (t) = (X, (t) = (XLpl(t), ...,XLpn(t)), Yi, (t) = (Yqu(t), ...,Yqu(t))) and
Do, ={Ly ={Lp,, -, Lp,} Kq={Kq,,...Kq, }}. It accounts for the expected absolute

deviation in the system reliability caused by cremngf all degradation processes of component

n
0,. Let R% = R*='%» and Sk, denote the state space (Xpr(t) and YKq(t),

q -

respectively; eq. (5.4) can, then, be expressed as
Clog(® = Zyy,e56, Jy, cqo foog@ (431, 7k,)
IP(Z'(s) & F,¥s < t| X, (6) = x1,, Y, (©) = yi) = R(D)| (5.5)
WherefDOq(t) (dep,qu) is the probability distribution oDoq (1).

Let Nt > 1 denote the number of maintenance tasks that tsterayhas experienced il

According to eqg. (5.3), we can obtain that:

R(Tiss) = P [N (Z(T) € ) 0 (Zygaa () € 7)) (5.6)

and
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P(Z'(s) & F,Vs < t|X,, (8) = x, Vi, () = yi,) =

P (N (Z(T) € F)) n

fDOq(t)(dep'qu)
Zye"., (61X, (©) = 21, Vi, ) = yi,) € PILf fog 0 (dnvg,) 0 7
0,if fpo, @ (dep'qu) =0

Do
where 2% (£1X,,(©) = x1,, Yie, (6) = Y, ) = (K1, (0,0, X0, (©) = 1 ) X, (0),

Vi, (), 0, Yi (&) = Yk oos Yiey ()T

5.4 Quantification of Component IMs

Let ptz" (dz = (dx, i) | @) denote the probability distribution @, (t), it can be approximated

by PnZ"(A,i | @)dx, x € A,t € [nAt, (n + 1)At[ by using the explicit FV method, developed
by Cocozza-Thivergt al.[62], presented in Section 4.2.1.

Given the initial probability distributiorpgl(dx,i | @) of the system,Pozl(A,i | @),Vi €

S, A € M, can be obtained as:
PF(4,110) = [,pr (dx,i|0) /m, %.8)

[Tl/At](A i|09),VieSs AeM can,then, be calculated through the FV method.

To calculate eq. (5.6) and’[( m(Z(TX) ¢ :F)) N (ZNt ) (t|XLp(t) = pr,YKq(t) =

qu) ¢ F)] ineq. (5.7), we are only interested in the sitmthat the system is functioning

till ¢; thus, P[ 1 /0] (4,i10),VieS,Ae M,k =2,3,..Nt + 1 isinitiated as follows:
( PZk b (A L |0) +Z(A’ ’)e{(Ak 1 k= 1)} k 1 (A' i’ | 3)
At AiNeF At l
P[i%-ll (4,i10) = {if ((4,i) ¢ F) and (AB € M,j € S: (4,1) € {(B*"1,j*"1)}) (5.9)
“ac 0,

if ((A4,0) € F)or @B eM,j€S:(4,0) € {(B*Lj*HD

where {(4%~1,ik=1)}, is the set containing all the states that stefheécstate 4, i) caused by

the (k — 1)-th maintenance task. Then, we can obtain that
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P [(ngim1(zk(Trlr(l) ¢ 7'1)) N (Zys41(0) € T)] = Z(A,i)efmAP[ZLA]%H(A,i |8) (5.10)
P(Nih @) € P) 0 (2,0 (€1 X0, (O = 20, Vi, ® = i,) € F)| =
zZ

Z 4,)eF P[LI\]I%IJr1 (A, i | 0) fA/(pr,qu) dx 5.11)
(pr,YKq)E(A.i) At

where A/ (pr,qu) is the mesh by fixing)oq(t) to (pr,qu).

To calculatefp,, 1 (dx; ,yk. ) in egs. (5.5) and (5.7), we are interested instia¢e of the
Oq( ) 1 q

system att no matter whether the system is functioning til or not; thus,

Pﬁ_l} (4,i10),VieS,Ae M,k =2,3,..Nt, + 1 isinitiated as follows:
Tm

At

Zi ) 70 L
(P[T]:lgl—i} (4,i]10) + Z(A"i’)e{(Ak—l’ik—l)} P[T]z‘n_—ll} Aa',i'| 9),

At

At
Zy

P[Tﬂ (4,i]10) = if 3B € M,j € S: (,61, i) € {(B¥1, jk1)} (5.12)
At
[ if 3B € M,j € S: (4,0) € {(B*1,j*1)}
We can obtain that
zZ

NG +1

fDoq(t) (dep' qu) = dep Z AEMIES P[L (A, [ | 0) fA/(pr,qu) dx (513)

(x1pvKq)cCan) '8¢
CIOq (t) can, then, be obtained by using egs. (5.5)-(5.13).
The pseudo-code for the quantification of compoehtCly, (t) is presented as follows:
Settime t, length of each intervaAt and admissible mesht
Setthe initial probability distributionpg1 (dx,i|8)
Initialize the probability distribution ofZ, (0) by using eq. (5.8)
For j =1 to N}, do
Calculate the probability distribution cﬁj(T,{;) by using FV method
Calculate the initial probability distribution (ﬂ‘j+1(T,£) by using eq. (5.9)

End
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Calculate the probability distribution @y ., (t) by using FV method
Calculate the system reliability at timteby using eq. (5.10)
Calculate the conditional system reliability atéim by using eq. (5.11)
For j =1 to N}, do
Calculate the probability distribution (Z‘]-(T,{l) by using FV method
Calculate the initial probability distribution (Z‘jﬂ(T,{L) by using eq. (5.12)
End

Calculate the probability distribution @y ., (¢) by using FV method
Calculate the probability distribution dd,, (t) by using eq. (5.13)
Calculate the component IMI, (t) by using egs. (5.5)-(5.7)

O
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6. MAINTENANCE OPTIMIZATION FOR SYSTEMS CONSDERING
EPISTEMIC UNCERTAINTY AND DEGRADATION DEPENDENCY

Maintenance contributes to the safe and efficigraration of industrial systems [45]. The
contribution to safety especially is in highly hedaus industries, such as the nuclear and
aerospace ones. In this Chapter, a modeling anchiaption framework for the maintenance

of systems considering epistemic uncertainty amptatiation dependency is proposed.

6.1 Maintenance policy

We refer to the system presented in Section 3.8, fatlow the assumptions on actual
maintenance activities performed in industrial pfracmade in Section 3.2, the associated costs

are further considered as follows:

* The PM involves condition-based maintenance taskssh recommend maintenance
actions according to the information collected tlgio condition inspections [117].
The inspection task;, Vi € L U K related to one degradation procéss carried out
with fixed period and a cost is associated witthaaspection.

» If the state of one degradation procéssL U K, reported by condition inspection,
enters the predefined state set for PM denote#f hithen the component containing
this degradation process is restored to its ingiate and a PM cost is incurred
depending on the component type. Otherwise, noteramce action is performed.

 Component failure can be detected immediately haddiled component is restored
to its initial state by the CM [21], and a CM castincurred depending on the
component type.

* The duration of inspection tasks is negligible atidmaintenance actions are done
instantaneously, compared with the lifetime of ¢dbenponents [27].

The PDMP modeling framework including maintenanckcy presented in Section 5.2 can be
employed to model degradation processes of systensdering degradation dependency and

subject to maintenance.

In reality, the two major issues for the maintereapolicy are to determine (1) the period
T;,Vi € LUK for each inspection task and (2) the state set for PHl,,Vi € L U K for
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each degradation process

6.2 Maintenance optimization under uncertainty

6.2.1 Maintenance optimization objective function

In order to optimize the maintenance policy, thé&edon considered is the expected
maintenance cost over the system mission timeC it denote the maintenance coHt=
Uvierok H; and T = Uy jerux Ti, 0 = 0, U Ok, x; = U%zlxzm for the system functioning

until time t, we can write:
* t 0 0
E(C(LH,T16,x)) = Zierow G, 7| + Zo,e0 G - EWV, " (&, H,T 1 6)
0 0 " "
+ZOqEO CDq ) ]E(NDq(t, H,T | 9, xL)) + CF b ]E(Np(t, H,T | 0, xL)) (61)

where C;, is the cost of the inspection tagk [TLJ is the number of times the inspection task

I; has been performed until time, Cg" is the cost of PM to componeni, ,

N:,)"(t, H,T | 6) is the number of PM tasks to componéjt until time ¢, Ng"(t, H,T|6,x;)
is the number of CM tasks to compone®} until time t, Cr is the penalty cost of
experiencing a system failure an (¢, H,T | 6, x;) is the number of system failures until

time t.
Let ptZ"(dz | @) denote the probability distribution @, (t); we, then, obtain that
0
E(N, " (t, H,T | 8)) = Zken Zieroq Joo, etio, Pt (2 | 0) (6.2)

where Zo, denotes the degradation state of the compoiignin z, Hy, = UieDoq H;
denotes the state set for PM of the comporignaind T denotes the set of inspection time
of the componen®,,. The functionpié‘(dz | @) is the probability distribution of, (t) at the

inspection timeT*,
0 . t z
]E(NDq(t' H, T | 0' xL)) = ZkEN* fo fzoqefFOq psk(dz | B)ds (63)

Where}"oq = UiEDOq F; denotes the failure state set of the compoidgnt
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E(Np(t, H,T | 6,x})) = Sien Ji J,op P7*(dz | B)ds (6.4)

6.2.2 Epistemic uncertainty

Due to the incomplete or imprecise knowledge alibatdegradation processes, epistemic

uncertainty may exist:

 For PBMs: (1) the parameters (e.g. wear coeffigiamd influencing factors (e.g.
temperature and pressur@) may be poorly known and elicited from expert judgine
[82]; (2) the failure thresholds; may be uncertain due to imperfect information 118

 For MSMs: (1) the state performances may be vagdelyed due to the imprecise
discretization of the underlying continuous degtexta processes [119]; (2) the
transition rates between states may be difficultestimate statistically due to
insufficient data, especially for highly reliableraponents (e.g. valves and pumps in
nuclear power plants, etc.) [120].

This uncertainty must be reflected in the modelamgl accounted for in the maintenance
optimization that rests on it. Fuzzy sets have bemployed to mathematically represent
epistemic uncertainty in some works [87, 121, 1&#hted to degradation modeling and
maintenance. However, determining appropriate meshigefunctions may be a difficult task
in practice. The experts in many cases can onljircoran interval of the possible minimum
and maximum values of the uncertain transition.r@ae practical way of dealing with
epistemic uncertainty is to use intervals of valtegsthe uncertain parameters [123]. In this
respect, the following assumptions are made (a symith an underbar indicates the left limit

of that interval, while a symbol with an overbadicates the right limit of that interval):

e« The value ofve; € 8, is represented by an intervid;] = [@9_1] Let [0] =

Ueiee[ei]-

« The value ofvx} "€ x; .V Ly €L, is represented by an intervgk! | =
[xf,, x| et [x, ] = Uyt ey I, ] and i) = Utioi[xi, |
E(C(t,H,T | 0,x})), then, is also an interval, denoted by
[E(C(t.H,T|[6][xiD)] =
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min geje) E(C(t,H,T | 6,x})),max gejq) E(C(t, H,T | 6,x7))

x;€lx;] x1Elxp]

= |E(c(e, T | (6], [x;]), E(C(t, H,T|[6],[x;D)] (6.5)

6.2.3 Optimization problem definition

Based on the models presented above, the problemanfitenance optimization under

uncertainty, on a mission time horiz@h,;,;, can be defined as:
Min [E(C(Tmiss, H, T | [6], [x;]))]
SubjecttoH; € W;, Vie LUK
0<T; <Tpiss, ViELUK (6.6)

R%,if i €L

whereW; = {S- if icK
i

For its solution, it can be reformulated as a muftilective optimization problem:

Min E(C(Tmiss, H, T | [6], [x1]))

Min E(C(Tmiss, H, T | [6], [x1]))
SubjecttoH; < W;, Vie LUK
0<T; <Tpiss VIELUK (6.7)

di i
whereW; = {}i i’flf iléEII;"

This formulation optimizes the lower and upper kasiof interval simultaneously. Due to the
limit of data, no probability distribution or menms&ip function is assumed on the interval.
The order relation between intervals which requinesinformation about distribution or
membership function [124] (Definitions 3.1 and 3c@n be used in this situation (lét=
[a,,ag] and B =[b,,bg] denote two intervals, according to these defingjod <
Biff a;, < b, and ag < bg). This leads to the definition of a multi-obje@iwptimization

problem with respect to the lower and upper bouafishe expected maintenance cost
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(E(C(Tmiss, H, T | [6],[x;])) and E(C(Tpuss, H, T | [0],[x}]))). It also covers the minimax

type of robust optimization based on worst-casdyaiza which may generate conservative
decisions under some situations [125]. Note thatdlder relation is a partial order so that the

solutions of eq. (6.7) obtained are Pareto optsoaltions.

Finding the Pareto optimal maintenance policy @hallenging problem, due to the complex
behavior of the system involving the stochastisitid MSMs, time-dependent evolutions of

PBMs and effects of the two types of maintenance.

6.3 Solution methodology

In order to solve the multi-objective optimizatiproblem defined in eq. (6.7), we employ (1)
FV method to caIcuIatE(C(Tmiss, H,T |6, xz)); (2) two DEs to compute the upper and lower
bounds of the interva[E(C(Tyiss, H, T | [6],[x;]))], using the FV method for fitness
evaluation; (3) NSDE to find the Pareto-optimal manance policy foH andT, aiming at
optimizing the interval produced by the two DEseTheta-heuristic algorithm DE is chosen
as the solution approach because 1) PDMP modeihdyicomplex and non-linear and 2) DE

is fit to optimizing continuous decision variables.

6.3.1 FV method

To obtainE(C(t, H,T | 8,x})), the probability distribution of PDMPg’*(dz = (dx, i) | 6)
need to be calculated at first. We employ the ekghV method to estimate it, developed by

Cocozza-Thivenet al.[62], presented in Section 4.2.1.

6.3.2 DE approach

DE is a simple and efficient heuristic approach $imgle-objective global optimization,
originally developed by Store and Price [61] fonttouous problems. It often shows better
performance than alternative optimization algorishm.g. genetic algorithms. The procedure

of DE is briefly presented as follows:
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Step 1: Initialize randomly the populatidh of N, > 4 target individuals over the

variables space.

Step 2: Generate the mutant individuals througHdhewing mutation equation:
Vige1 = X6 + F (X6 — X3 6), Vi € (1,2, ..., N} (21)

where G is the current iteration number,, r,, 3 € {1,2,...,N.} are random indices
satisfyingr, #r, # 3 #i andF € [0, 2], determined by the user, is a constant factor

controlling the amplification ofx,, ¢ — x,3¢)-
Step 3: Generate each trial individual throughftilewing crossover equation:

j lG+1' if (rand < CR) or j = lrand(D)

' =12,..0  (22)
v X} if (rand > CR) and j # lrand(D)

whereulcﬂ, {:GH and xl’G are thej-th parameters of the vectong;.,, v; 41 and
x;c, respectively;rand € [0,1] is a uniform random numbe€R € [0,1] is the
crossover constant, determined by the uBers the dimension of the individual vector;

irand (i) is a uniform discrete random number in the{d¢Z, ..., D}.

Step 4: Evaluate the target individual and itd individual; select the best one as the

target individual for the next generation.

Step 5: Go back to step 2, if the termination dote is not met; otherwise, stop the
algorithm.

The maximum iteration numbewg,,,), maximum fitness evaluation numbéf,(,) and

minimum fitness errorefps) are typically employed individually or jointly dee termination

criterion.

We use two DE algorithms (DE1 and DEZ2) using the de¥ieme for the fitness function

evaluation to obtain E(C(Tpss, H, T | [0],[x;])) and E(C(Tmiss H,T|[6][x;])) ,

respectively: DE1 selects the one with smallestevads the target individual for the next

generation at step 4 whereas DE2 selects the dhdargest value.
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6.3.3 NSDE

For solving the multi-objective problem formulatedeq. (11), the non-dominated sorting
mechanisms are incorporated into the single oljeddE, similar to the work [60] where the
non-dominated sorting mechanisms are combinedawmtiodified binary DE (MBDE). For the

details about this approach, please kindly ref¢6@g.

6.3.4 Integration of methods

These methods are integrated by using (1) FV schientbe fithess evaluation in DE and (2)
DE for the fitness evaluation in NSDE; the solutroethods are integrated, for the first time,
for maintenance optimization. The flowchart of tletire optimization methodology that

integrates the methods mentioned above is shoWwigiré-1.
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Set initial parameters for NSDE, DE1 and DE2.
Initialize the initial population P; of N} > 4 target individuals for H, T.

condition
DE1: DE2 Yes

condition

Initialize the initial population P, of Initialize the initial population P of
i | N? > 4 target individuals for @ and xj. | NZ > 4 target individuals for @ and x;.
n ¥ v

Generate the population P; of Generate the population P3 of

i trial individuals of Ps. trial individuals of P3.

;: L2 L2

Given each individual in Py, calculate [| Given each individualin Py, calculate
| E(C(Tyiss,H,T | 8,x1)) for each E(C(Tmiss, H, T | 8,x})) for each
individual in P, and P, by FV scheme. || individual in P; and P3 by FV scheme.
‘|| Selectthe one with smaller value as Select the one with bigger value as
the individual of P, for the next the individual of P3 for the next
generation. generation.

Termination Termination

| obtain [E(C(Tyiss, H, T | [8], [x}]))] for each individual in P;.
v

Rank the population P; by performing fast non-dominated sorting.
Identify the ranked ngn—dominated fronts.

Apply binary tournament selection to P; to
generate intermediate population Q.
v

‘ Generate the offspring population P; through crossover and mutation.
¥

Obtain[E(C(Tpiss, H, T | [8], [x;]))] for each individual in P by DE1 and DE2.
v

Rank the population R; = P; U P; by performing fast non-dominated sorting.
Identify the ranked nf)n-dominated fronts.

| Select the N} best solutions from the sorted union population to update P;.

Termination
_Return P;. ..
1 condition

Fig. 6-1. Flowchart of the proposed optimizatiortimeelology.

In Fig. 6-1, N} is the size of the populatioP, of NSDE, which contains the target individuals
for H andT; N? and N} are respectively the sizes of populatiénof DE1 and population
P; of DE2, which contain the target individuals fér, P/,i =1,2,3 is the population
generated fromP;. The method starts with the random generationVgf individuals (i.e.

candidate solutions) off andT in the initial populationP; in NSDE. Then, DE1 and DE2
are executed in parallel to calculd®(C(Tyss, H, T | [0], [x;]))] for each individual inP;
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as follows: (1) randomly generaté?/N2 individuals of@ and xj, as the initial population
P,/P; in DE1/DEZ2; (2) generate the trial populatiabgP; for P,/P; through mutation and
crossover; (3) given the individual inP; , use FV scheme to -calculate
E (C(Tmiss» H, T |6, x})) for the paired individuals it?, and P;/(P; and P3), and select the
one with smaller/bigger value as the individualPfP; for the next generation; (4) go back to
step (2), if the termination criterion is not metherwise,[IE(C(Tmiss,H,T| [0], [x,f]))] is
obtained for each individual i®; . Afterwards, the method returns to NSDE: (5) rank
population P, by performing fast non-dominated sorting f8(C(Tyiss, H, T | [0], [x;]))]
and the ranked non-dominated fronts are, then(ifteh (6) select the offspring population
P{ based on the intermediate populat@n generated by crossover and mutation; (7) use DE1
and DE2 to obtaifE(C (Tyss, H, T | [6], [x;]))] for each individual inP;; (8) identify the
ranked non-dominated fronts by performing fast dominated sorting on the population union
R, = P, U P;; (9) select the bed¥! solutions from the sorted union as the updatgd(10)

go back to the step (6), if the termination craaris not met; otherwise, the Pareto optimal

maintenance policies are obtained.
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7. RELIABILITY ASSESSMENT OF SYSTEMS SUBJECT TO
DEPENDENT DEGRADATION PROCESSESA DN RANDOM
SHOCKS

System failures can be induced by internal degranlahechanisms (e.g. wear, fatigue and
erosion) or by external causes (e.g. thermal anchamecal shocks) [126]. The reliability of
systems experiencing both degradation and randackshs a problem that has been widely
studied [20, 21, 27, 40-44, 127]. The dependenayrgnthese processes leading to failure has
posed some challenges to reliability modeling. Piev research has focused on the
dependency between continuous/multi-state deg@adapirocesses and random shocks.
However, few studies have explicitly consideredhbibie dependencies between degradation
processes and random shocks, and among the degnag@bcesses themselves. In this
Chapter, we extend the PDMP modeling frameworksj@tem reliability assessment by these

two types of dependencies.

7.1 Dependency between degradation processes and randshmocks

We refer to the system presented in Section 3.@,tha following assumptions on random

shocks are made, similarly to various previous W&, 27, 42-44]:

* Random shocks occur in time according to a homagenPoisson process
{N(t),t = 0} with constant arrival ratg, where the random variablé(t) denotes
the number of random shocks occurred until time

» The damages of random shocks are divided into ypest extreme and cumulative.

* Extreme and cumulative shocks are mutually exctusiv

» Extreme shocks immediately lead the componentailaré, whereas cumulative

shocks gradually deteriorate the components.

Due to the different nature of PBMs and MSMs, timpacts of random shocks on the two

groups of components are characterized in diffeneyts.
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7.1.1 Impacts on MSMs

In the generic degradation procdss € K, random shocks can cause the process variable
Yi (t) to step from staté to a further degraded statewith probability p;;,i > j [44], with

p;o denoting the probability that the random shockxtreme, i.e. leading to failure state 0
upon occurrence from staig (t) = i. By combining the original degradation and thediam
shock processes, the resulting process is a horaogsrtontinuous-time Markov chain of the
kind depicted in Fig. 7-1. The state of the proceseepresented by (¢) = (Y, (¢), k),
wherek € N is the number of shocks experienced up to time the proces,,. The state
space of the new process is denotedspy = {(a, b),Va € Sk, b € N} and the space of the
failure states of,, is denoted byFy = {(0,b), Vb € N}. Note that the component fails when

it reaches the degradation state 0, no matter hamyrshocks it has experienced.

d UPaa-1 UPaa—1 Transition due to
@ """"" '@'” * degradation

A tPaa-1 JUUP p— ,  Transitiondue to
dd-1| “UPgo dd-1 random shocks
d-1 X HUPa-1d-12HPd-1d-1

0 ikt 1 “Pe o o

ﬂd—m—zl Ad—1d-2
. \MPao
« HPa-10
Aol |10

Fig. 7-1. Degradation proced§, and random shocks.

7.1.2 Impacts on PBMs

In the generic degradation procdss € L, the i-th shock becomes extreme if the shock load

W, exceeds the maximal material stren@thotherwise, it can bring an instantaneous random
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increaseH; to X, (t) [40]. Let Xfm(t) denote the cumulative changeXg (t) caused by
random shocks until time as follows:

SVOH, if N'(E) #0

0, ifN'(t)=0 (1)

P ROE {

where N'(t) is the number of cumulative shocks occurred in degelopingL,, process
before the extreme shock occurs. The overall degiad level of L,, is expressed as
D, (t) =XLm(t)+Xfm(t). The processL,, leads to failure ifD, (t) reaches the
predefined failure state s, or a shock with load larger thah occurs. An example of
degradation procesk,, considering random shocks is shown in Fig. 7-2enet; is the
shock load of the-th shock occurred at timg, i = 1,2,3. The first two shocks are cumulative
which cause instantaneous random changeb r(t), the last shock is extreme which lead

D, (t) to failure.

1 * Failure

XL ’//( threshold

\

D, ()

1
|
|
|
|
1
1
1
|
1
1
1
1
1
1
1
|

:

S

W(t)

o~
[y

o
N

t3

Fig. 7-2. An example of degradation procdss with random shocks. Top Figure: degradation végiab
Center Figure: physical variable; Bottom Figurgidam shock process.
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7.2 PDMP modeling framework for systems subject to degdation dependency and

random shocks

Let Z(t)denote the overall degradation process of the syste
Z(t) = (X'(®) = (D, (8), ., D, (1), ¥'(6) = (Y (), N(1))) € E=R% x §' (7.2)

where E is a space combinin®R?: and §’ =S x N. Let T}, k € N denote thek-th jump
time in Y'(t) and Z, = Z(Ty) = (X' (Ty),Y'(Ty)) = (X}, Y}) . The evolution of Z(t)
between two consecutive jumps Bf(t), between which no shock occurs to the system and

the degradation state does not change, can benva# follows:

Z) =X, Y®) =(£,"O%@®) | 86)),(0,0) fort € [Ty, Tesa[  (7.3)

According to the definition in [128]Z(t) is a PDMP since (1) it can be written 2&) =
o(Zy,t —Ty), fort € [Ty, Tyl and ¢ satisfies o(y,t+s) = p(e(y,t),s), Vt,s =
0,ye E, and t - ¢(y,t),Vt =0,y € E is right continuous with left limits and (2)
{Z,, T, }.=0iS @ Markov renewal process defined on the spceR*. The probability that
Z(t) will step to statg from stateZ,, in the time interval Ty, T, + t], given{Z;,T;},<x is as

follows:
PlZyy1 = J, Ty € [T, Te + t]1 [ {Zy, Ti}ick] = PlZyy1 = J, Tes1 € [The, T + t] | Zy],
VKEN,j € E,j#Z, (7.4)

{Z,,Ty}nso is characterized by the semi-Markov kern®(i = (x;,¥,), (dx,y;), dt) =
P[Xiy1 €, x+dx], Yy =¥, Ty1 —Tx € [t,t +dt] | Z, = i|, Yk EN,y;,y; €

S, x;,dx € R%,dx - 0,dt — 0, which can be reformulated as follows:
N(i = (x;, ;). (dx, y;), dt)
= P[X}41 € [x,x +dx], Y}y = ¥; | Teyr — Tx € [t, ¢ + dt], Z), = i]
“P[Tys1 — Ty € [t,t +dt] | Z), = i]
= Q. 1), (dx,y)))dF;(¢) (7.5)

where Q(¢(i, t), (dx,y,)) is the probability distribution of staté,, given Ty, — Ty =t
and Z, =i and dF;(t) is the probability distribution ofT,,; — T, given Z, =1i.

Q(¢(i,t), (dx,y;)) can be reformulated as follows:
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Q(e(i = (x;,¥),0),(dx, y)))
= P[X}41 € [x,x+dx], Y}y = ¥; | Teyr — Ti € [t, ¢ + dt], Z), = i]
= P[X}11 € [x,x + dx] |Viy1 =¥}, Tisr — Ti € [t, £ + dt], Z), = i]
“P|Yis1 =¥ | Tewr — Ty € [6, ¢ + dt], Z), = i (7.6)

Let p,(dz = (dx,y;)) denote the probability distribution @¢(t), which obeys the Chapman-

Kolmogorov equation [129] as follows:

fot Yyes' Jpar Yyjes' Ay,y; (x| 01) Upa, V(¥ ¥)u(yi v, x)(dy) —
Y(yi, x))ps(dx, y;)ds +

Jy Syiest Joar £171(x | 8)div (i, 1) )ps(dx, y)ds —
Syies' Jpar W00 ) pe(d2,Y) + ytesr fra, WD 0 poldx,y) =0 (7.7)

where 4,,,.(x | 8x) is the transition rate o¥’'(t) from statey; to y;, ¥(,) is any
continuously differentiable function fromS’ x R% to R with a compact support and
u(y:, ¥, x)(dy) is the probability ofX’ (¢) € [y, y + dy] after jumping fromx when¥’(¢)

steps to statg; from statey;.
The reliability of the system at time is defined as follows:

R(t) = P[Z(s) ¢ F,Vs <t] = [, p.(d2) (7.8)
where F is the space of the failure states of the system.

The parameters in the proposed model can be megplgrated into three groups: (1) transition
rates in multi-state models; (2) parameters in isysquations of physics-based models and
(3) parameters charactering random shock proceBsedirst group can be estimated, by using
degradation and/or failure data from historicaldfieollection or degradation tests, trough
maximum likelihood estimation for complete or inqaete data [130, 131], it can also be
estimated by using material science knowledge (audti-state physics model [127]) instead
of degradation and/or failure data. The valueshefsecond group are given by the existing
physics knowledge on the underlying degradationhaeisms (e.g. fatigue, wear, corrosion,
etc.) [12]. The third group can be estimated byhgiginaterial science knowledge on the
influence of random shocks and related informatibtained from historical field collection or
shock tests [70].
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7.3 Solution methodology

The analytical solution oRR(t) is difficult to obtain due to the complex behavimi the
dependent degradation and random shock procestadiraf the system [94]. The MC
simulation method [78] based on the semi-Markownkkof {Z,,, T, },,s0 (€g. (7.5)) and the FV
method [62] based on the Chapman-Kolmogorov egudtg. (7.7)) can be used to solve
PDMPs like the ones describing the dependent psesaed interest here.

7.3.1 MC simulation method

The MC simulation method to compute the systenabélty at timet consists of replicating
several times the life process of the system bgatgully sampling its holding time and arrival
state from the corresponding probability distribn8. Each replication continues until the time
of system evolution reaches or until the system enters a state in the faikgeF. The

procedure of the MC simulation method is as follows

Set N,,q, (the maximum number of replications) akd= 0 (index of replication)
Set k' = 0 (number of replications that end in a system failstate)

While k < N,y

Initialize the system by setting = (X' (0),Y’ (0)) (initial system state), and the tinfe= 0

(initial system time)
Sett’ = 0 (state holding time)
While T <t
Sample at’ by using the probability distributiod F,(t)

Sample an arrival statg for stochastic procesg’'(t) and an arrival state for

processX'(t) by using eq. (7.6)
SetT=T+t
If T<t

SetZ = (x,y)
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If Ze F
Setk'=k"+1
Break
End if
Else(whenT > t)

If p(Z,t+t'—-T)EF

Setk' =k'+1
Break
End if
End if
End While
Setk=k+1
End While o

The estimated system reliability at tinnecan be obtained by
R/I\;C(t) =1- kI/Nmax (79)

wherek' represents the number of trials that end inafiare state of the system, and the sample

variance [71] is:

varggee) = Ruc(®) (1 = Ry )/ Nz — 1) (7.10)

7.3.2 FV method

We employ the explicit FV method, developed by CaesThiventet al. [62], presented in
Section 4.2.1. It approximatqu"(dz = (dx, i) | 8), the probability distribution of, (t), by

PnZ"(A,i | @)dx, x € A,t € [nAt, (n + 1)At[. P,41(4,y;) can be calculated considering the
deterministic evaluation oX(t) and the stochastic evolution & (t) based onB,(M,y;)

by the Chapman-Kolmogorov forward equation, aofed:

Pn+1(AJ yl)
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.VJyl
1 ag
- 1+Atby‘ Pura(A,y) + AtZBEMZ}’]ES, 1+ Atby] n+1(B y]) (7.11)
where
YiYi _
g = A;{J’j'}’i(x | 0x) fB l‘(}’j»}’i»x)(d}’)x/m,q (7.12)

is the average transition rate from statg and grid B to statey; and grid 4,
bzi = fA ZijS' Ayi,yj(x | GK)dx /mA (713)
is the average transition rate out of statefor grid A,

n+1(A yl) - ZBE]V[m Ig (B yl)/mA (7-14)

is the approximate value of probability densitydtion on [(n + 1)At, (n + 2)At[x A X {y;}

according to the deterministic evolution ¥{(t),

Yi

Mpa = f{yEB | g%i(y.At | 6,)€A} dy (7.15)

is the volume of the part of gri@ which will enter gridA after time At, according to the

deterministic evolution ofX (t).

The approximated solutiop,(x,- )dx weakly converges towardg,(dx,) when At — 0
and |M|/At - 0 where |M| = supyepcdiam(A).

The estimated system reliability at timmethen, can be calculated as follows:

R/I:V(t) = fzef}:pt(z)dz (716)
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8. RELIABILITY ASSESSMENT METHOD FOR SYSTEMS WITH A
LARGE NUMBER OF COMPONENTS CONSIDERING
DEGRADATION DEPENDENCY

In previous Chapters, we have employed the PDMPetimagl framework to integrate PBMs
and MSMs for treating the dependencies among daticedprocesses [75] for a system with
a small number of components, where the whole sysenodeled by one PDMP. For systems
of larger size, the high dimension of its PDMP tzad to very heavy computational burdens,
because solving the PDMP of a small system is dyre@me consuming due to the
combinatorial nature of MSMs and the need to siteulae trajectory between any two system
states [75]. In addition, the dependencies may erigt within certain groups of components
and leave different groups being independent [d48f the causes to systems failure are not
easy to be identified. Fault tree analysis (FTABZLis typically used to identify the
combinations of events leading to system failureg @mpute its probability by using minimal
cut sets found from the fault tree structure. Femal rsystems, this can be computationally
intensive, when the tree structure is large ange@ally, if it contains repeated basic events
[133]. In addition, all basic events are usuallyswased statistically independent. The
dependencies of the degradation processes leatlifagure of different components need to
be considered which render certain basic eventerutifferent gates being dependent. In this
Chapter, a system reliability assessment methograposed considering degradation
dependency by combining BDDs and MC simulation méto reduce computational cost.

8.1 Methodology

We refer to the system presented in Section 3.2.fatlt tree of the system is available and
containsQ basic events denoted lyy= {e,, e,, ... , eg} which include the failures of
components and other events such as erroneoustiopecaused by human errors. The

component-failure type of events are determinethbyr underlying degradation processes.

8.1.1 Binary decision diagrams (BDDs)
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A BDD is a directed acyclic graph encoding Shansa®composition of a formula. A BDD

has two terminal vertices labeled 1 and O to indi¢he failure and operation of the system,
respectively. Each non-terminal vertex is labeletth & variable and has two outgoing edges:
1-edge and 0-edge which indicate the occurrencenandoccurrence of the corresponding

basic event, respectively.

A BDD is employed to encode the fault tree of tiistem according to the given ordering of
the indicator variable&X; used to denote the occurrence or non-occurrentteediasic event

(X; = 1 indicating the occurrence of the basic evemind X; = 0 indicating the opposite).
The size of the BDD largely depends on the givaeteonng and the problem of finding the
global optimal ordering is an intractable task [1B35]. Several ordering heuristics have been
developed, whose performances may vary on diffggestilems. In this work, we employ the
weighting depth-first left-most (WDFLM) orderingdenique proposed in [136], which leads
to satisfactory results according to the testslBi[ 138]. WDFLM first assigns weight 1 to
each basic event. Then, it traverses the faulttoti®|m-up to calculate the weight of each gate
by adding the weights of all its inputs, i.e. gadesl basic events. Fig. 8-1 shows an example

of a fault tree where the weights of the gatesoatained through WDFLM.

2 1 1 1
() (4
(2) (o)
Fig. 8-1. An illustration of fault tree labeled titveights.
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Then, the inputs of a gate are rearranged in ttheraf increasing weights as shown in Fig. 8-

2.

1 1
Fig. 8-2. An illustration of fault tree with reanmged inputs of gates.

Finally, the depth-first left-most (DFLM) orderirtgchnique [139] is applied to the fault tree to
get the variable ordering. In this technique, thsib events are placed in the ordered list as
soon as they are encountered during the DFLM tsavesf the fault tree. Le& be a total
ordering of variables, for the fault tree in Figl& is X; < X, < X; < X,.

Based on the variable ordering, the related BDD lganconstructed using the bottom-up
procedure. Firstly, all basic events € e are associated with the if-then-else (ite) struectur
[140] ite(X;, 1,0), whereite(X;, f1, f2) = (XiAfi)V(=X;Af,), which means if the basic event
i occurs then consider functigf) else consider functiof,. Then, work from the bottom to
the top of the fault tree and obtain the ite sticeetor each gate by using the following principle:
let us consider two variableX, < X, and four functionsf,, f5, f5, f4, let <> be any logic

operation AND or OR, then:
ite(Xa'flle) <> ite(Xa'fS'ﬁl-) = ite(Xaffl <> f3!f2 <> f4-) (81)
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and
ite(Xq, f1, f2) <> ite(Xy, f3, fu) = ite(Xq, fi <> ite(Xy, f3, fa), f <> ite(Xy, f3,f2)) (8.2)

The ite structure of the top event of the faulteti@ Fig. 8-1 can be obtained as
ite(X3,1,ite(X,,1,ite(X4,1,0))). The associated BDD shown in Fig. 8-3 can be cocsd
by breaking down each ite structure into its leff aght branches, and eliminating the vertexes
that are not useful (a vertex is not useful whernvito outgoing edges point to the same vertex

or it is equivalent to another vertex) [141].

Fig. 8-3. BDD for fault tree in Fig. 8-1.

Finally, all the paths leading to system failure t& obtained aé1)X; = 1,(2)X; = 0,X, =
1,(3)X;=0,X, =0,X; =1 and the path leading to system operationXis=0,X, =
0,X; = 0. The exact system reliability is equal to the safnthe probability of occurrence of
the paths leading to system operatiorier the sum of the probability of occurrence of the

paths leading to system failure.

8.1.2 MC simulation method

To derive the probability of occurrence of one patth the PDMPs containing the variables
involved in that path need to be solved. SincePb&1Ps are independent from each other, the

product of the probabilities of PDMPs being in #tates indicated by the path equals the
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probability of occurrence of that path. AnalytigaBolving the PDMPs is a difficult task,

whereas MC simulation method is well suited.

We employ the MC simulation method for solving BMPs developed in Chapter 3.3. It
consists of sampling the transition time and thvalrstate for the MSMs and, then, calculating

the behavior of the PBMs within the transition tsnesing the physics equation.

Let us consider one group of interdependent degoadprocessed.,, = {L,, ... , L, } and

P’

K, ={Ky,, ..., Kg,,}, which have no dependencies with the other degoadprocesses. Their

1!

degradation states are represented by

XL,,1 )
: =X, (t)\

X, (t)
i ;%U IEEmfﬂWWXSMNtZO (8.3)
q1

: =Y,(t)
v, ® /

where E, , is the space combinin@®*» (dy, = ﬁzldek) and Sk, ={0,1,..,dg.}

Z,,) =

denotes the state set of procdsgt).

To calculate the probability of occurrence of oathp(let Z;, , indicate the state space, which
contains all the states d, ,(t) that are consistent with the state of the pattg),grocedure

of the MCS is presented as follows.
Set N,,,,, (the maximum number of replications) akd= 0 (index of replication)
Set k' = 0 (number of trials that end in the state indicdtgdhe path)

While & < N,

YI

X, (0
Initialize the system by setting,, ,(0) = < p )> (initial state), and the tim& =0
q

(initial system time)
Sett' = 0 (state holding time)
While T < Thuiss
Samplea holding timet’ for current degradation state

Samplean arrival state’;; for stochastic procesg, (¢t) from all the possible states
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Calculate X,,(s),Vs € [T, T + t']

1 _ Xp(S) !
SetZ),,(s) = Y, ,Vs € [T, T +t'[

_ ’ r _ XP(T) d 1 _ oyl
SetT =T +t, Z,,(T) = v andY, =Yy

End While

It Z,, (Tpniss) € Zy,
Setk' =k'+1
End if

Setk=k+1

End While o

The estimated probability of occurrence of one attime T,,;;c can be obtained by

ﬁ(Tmiss) =1- k’/Nmax (84)

with the sample variance [71] as follows:

Varp(Tiss) — p(Tmiss)(l - P(Tmiss))/(Nmax -1) (8.5)

8.1.3 Flowchart of the proposed method

The flowchart of the whole proposed computationathod combining BDDs and MC

simulation method is shown in Fig. 8-4.
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Determine the ordering of variables through WDFLM.

v

Construct the BDD encoding the fault tree of the system.

v

Obtain all the paths leading to system failure or operation.

v

Divide the degradation processes involved in the paths into groups
that are independent from each other.

v

Select the PDMPs for each group of the degradation processes.

v
Calculate the probabilities of PDMPs being in the states indicated by

the paths through MCS.
¥

Calculate the probability of occurrence of each path by multiplying the
probabilities of PDMPs being in the states indicated by the path.

v

Calculate the system reliability by summing the probabilities of
occurrence of the paths leading to system operation or 1- the sum of
the probabilities of occurrence of the paths leading to system failure.

Fig. 8-4. The flowchart of the computational method
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9. APPLICATIONS

This Chapter reports the results of the applicatiohthe developed models and proposed
methodologies within the holistic framework for tlediability-based analysis and maintenance
optimization of nuclear safety systems. Case ssualienuclear safety systems related to single
components, multi-components systems (with a lidnitember of components) and multi-
components systems (with a large number of comgshare illustrated. For further details the

interested reader is referred to the corresporidaypers (1)-(VII) of Part II.

9.1 Single components

9.1.1 Reliability assessment of a dissimilar me#tald in a primary coolant system

In this Section, we illustrate the MSPM framewodt Eomponent reliability assessment by
including semi-Markov and random shock processepgsed in Chapter 2, on a case study
slightly modified from an Alloy 82/182 dissimilaretal weld in a primary coolant system of a
nuclear power plant in [63]. The MSPM of the oraicrack growth is shown in Fig. 9-1.

Initial state

Micro Crack

Radial Crack
Circumferential crack
Leak State

Ruptured state

erNWwWRARWY

Fig. 9-1. MSPM of crack development in Alloy 82/1@i8similar metal welds.

where ¢;, andw; represent the degradation transition rate, anchter@nce transition rate,
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respectively. Except fops,p,, ¢, and g3, all the other transition rates are assumed to be

constant. The expressions of the variable tramsittes are

os= () (=) 9.1)

T T

acPc . .
Pa = {"‘Muz(l—Pc(l—ac/(uaM)))’ if T > ac/au (9.2)
0, else;
pPp if T, > ap/a
0, = {aMr42(1—PD(1—aD/(uaM)))' 47 UbIEM (9.3)
0, else;
1 . .
0s = {_ f 75 > (@ = ap)/ay (9.4)
0, else.

The random shocks correspond to the thermal andvanemal shocks (e.g. internal thermal
shocks and water hammers) [30, 31] applied to teksirdilar metal welds. The damage of
random shocks can accelerate the degradation pex;eand hence increase the rate of

component degradation. We set the probability @ralom shock becoming an extreme shock
aspim(tim) =1—exp [—6m(6 — ) (2 — e‘Tam)], taking the exponential formulation from

Fanet al’s work [39]. In this formula, we use1(6 — i) (2 — e‘T{.m) to quantify the component

degradation. It is noted that the quanty- e Tim ranges froml to 2, representing the
relatively small effect of;,, onto the degradation situation in comparison withother two
parametersn andi, andé is a predetermined constant which controls thkuénice of the

degradation onto the probabilityi,m(r{,m). In addition, we assume the corresponding

degradation transition rates aften cumulative shocks to beﬂﬁj}”(rgm,e):(u

€)™2; j(tim 0), Wheree is the relative increment of transition rates afiee cumulative
shock happens, and the formulatibh+ €)™ is used to characterize the accumulated effect of
such shocks. To characterize the increase ofdinsition rates, in the case study we have used
the parameter to represent the relative increment of degradatiiansition rate after one
cumulative shock occurs. For the sake of simplidiyt without loss of generality in the
framework for integration, we assume that the \@hfes for each cumulative shock are equal.

But the model can handle differeatfor different stages of the crack process.

The Monte Carlo simulation over a time horizontgf,, = 80 years is runN,,,, = 10°
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times. The results are collected and analyzedaridtiowing sections.

The estimated state probabilities without, and wathdom shocks throughout the time horizon

are shown in Figs. 9-2, and 9-3, respectively.

10°6 —
>< —— initial
/ ——microcrack
-1/
10 ¢/ \ — circumferential
-~ ~radial
1020 \ ——leak
—_— rupture
E‘ _— — — — -
3
c 10 - A+ - I=——
5 PR T
o // - R e >
10°F /4 DA - B
/ ‘w“ \\,,‘ N*\"\A”‘\*—N_** "”W
Jq“ g 4/\4\ A A S
10°) || N N Y
1
10° ! ! ! ! ! ! ! |
0 10 20 30 40 50 60 70 80
Time
Fig. 9-2. State probabilities obtained without ramdshocks.
100 §></,,,
10-1?/ \
10°F \ . =
> PSR
= L S - — - - P A A A
_‘E 10-357 */?P+++*+4\F4—4:4~44—*—N/4&4—*+ A o
e] E -
a F/
10,4? / —ini_tial
E ——microcrack
— circumferential
10°L -~ radial
——leak
10° rupture
0 10 20 30 40 50 60 70 80

Time

Fig. 9-3. State probabilities obtained with randgimcks.

Comparing the above two figures, it can be obsetivatlas expected the random shocks drive

the component to higher degradation states thanntlwo-crack state. The numerical
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comparisons on the state probabilities with/with@ridom shocks at year 80 are reported in
Table 9-1. It is seen that, except for the micraekr state probability, all the other state
probabilities at year 80 have increased due tordn€lom shocks, with the increase in leak

probability being the most significant.

Table 9-1 Comparison of state probabilities withieout random shocks (at year 80).

State Probability Probability Relative
without random| with random difference
shocks shocks
Initial 3.52e-3 9.82e-3 180.00%
Micro-crack 0.9959 0.9661 -2.99%
Circumferential crack 3.05e-4 7.28e-3 2286.89%
Radial crack 1.00e-4 7.75e-3 7650.00%
Leak 1.30e-5 2.59e-3 19823.08%
Rupture state 2.06e-4 7.00e-3 3298.06%

The fact that the probability of the initial stdtmmpared with no random shocks) at 80 years
has increased is attributed to the maintenances.task the maintenance tasks lead the

component to the initial state, and the repairsratamn radial macro-crack state, circumferential

macro-crack state, and leak state are higher thanfrtom the micro-crack state. The shocks

generally increase the component degradation speedender the component step to further

degradation states (other than micro-crack statsfef than the case without shocks. The
transitions to initial state occur more frequefitym further degradation states (other than from

the micro-crack state) due to their higher maimeearates. In summary, this phenomenon is
due to the combined effects of shocks.
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The estimated component reliabilities with/withoabhdom shocks and with only cumulative
shocks throughout the time horizon are shown in &ig. At year 80, the estimated component
reliability with random shocks is 0.9930, with sdenpariance equal to 6.95e-9. Compared
with the case without random shocks (reliabilityigig to 0.9998, with sample variance 2.00e-
10), the component reliability has decreased bg%.6The estimated component reliability
with only cumulative shocks is 0.9973, and the damgriance equals 2.69e-9. Compared with

the case without random shocks, the componenbiityahas decreased by 0.26%.

o

©

©

o
T

Component reliability
o
o
©
=

0.992+ —— without random shocks

——with random shocks
-~ ~with cumulative shocks

0.99 . !

0 10 20 30 40 50 60 70 80
Time

Fig. 9-4. Component reliability with/without randahocks, and with only cumulative shocks.

9.2 Multi-component systems (with a limited number of omponents)

9.2.1 Subsystem of the residual heat removal syRetRS)

In this Section, we illustrate the models and meétihagies for multi-component systems (with
a limited number of components), proposed in Chra8€7, on a case study of one subsystem
of the RHRS of a nuclear power plant of ElectricigéFrance (EDF). The system consists of a
centrifugal pump and a pneumatic valve in seriegeGthe series configuration, the failure of
anyone of the two components can lead the subsyettiture. Dependency in the degradation
processes of the two components has been indibgtéte experts: the pump vibrates due to
degradation [142] which, in turn, leads the valwevibrate, aggravating its own degradation

processes [143].

The pump is modeled by a MSM, modified from the oniginally supplied by EDF upon
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discussion with the experts. It is a continuousetinomogeneous Markov chain as shown in
Fig. 9-5:

a : ‘ : ‘ : °

Fig. 9-5. Degradation process of the pump.

S, =1{0,1,2,3} denotes its degradation states set, widergthe perfect functioning state and
0 is the complete failure state. The parametgts A,; and 1,, are the transition rates

between the degradation states. Due to degraddhienpump vibrates when it reaches the
degradation statez and 1. The intensity of the vibration of the pump ontet®2 and1 is

evaluated as by the experts ‘smooth’ and ‘rougspectively.

The simplified scheme of the pneumatic valve issghn Fig. 9-6. It is a normally-closed, gas-

actuated valve with a linear cylinder actuator.

Top
e pneumatic port
Top chambef--—-{> ——— Return Spring
L —
i Piston
Bottom  __, <-}------ Bottom chamber

pneumatic port

Fig. 9-6. Simplified scheme of the pneumatic vdii/2.

By regulating the pressure of the pneumatic pastdilt or evacuate the top and bottom
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chambers, the position of the piston can be cdetioR return spring is linked with the piston

to ensure the closure of the valve, when pressutest. The external leak at the actuator
connections to the bottom pneumatic port due toosawn and other environmental factors is
chosen as the degradation mechanism of the valehws much more significant than the

other degradation mechanisms according to thetsesiubwn in [12].

Let D,(t) denote the area of the leak hole at the bottonumpaéc port at timet, the
development of the leak size is described by:

Dy(8) = 0y (1 + By ) (9.5)

where w,, is the original wear coefficient and Whaﬁgp(t) is the relative increment of the

developing rate of the external leak at the bofm@umatic port caused by the vibration of the

pump at degradation sta or ‘1'.

The leak will lead the valve to be more difficdtdpen but easier to close. The threshold of the
area of leak hole,; is defined as the value above whiéh (t) > D;) the valve cannot reach
the fully open position within the 15s time limibf the fully closed position, after an opening

command is executed.

9.2.1.1 Reliability assessment under degradatiqgreddency
The degradation of the valvie= {L,} is described by PBM and the degradation of thegum
K = {K;} is described by MSM. The degradation processeiseotvhole system are modeled
by PDMP as follows:

Z(t) = (g;’((g) € R* xS, (9.6)

whereY, (t) denotes the degradation state of the pump at tiaed D, (t) denotes the area
of the leak hole at the bottom pneumatic port ef ¥hlve at timet. The space of the failure
states ofZ(t) is F = [0,+) x {0’} U [D;, +) x {1,2,3}. The development of the leak

size is described by:
Dy (t) = wp(1 + ﬁyp(t)) (9.7)

where w,, is the original wear coefficient and whqﬂ?@p(t) IS the relative increment of the

developing rate of the external leak caused byitiration of the pump at the degradation state
Y, =2orl.
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The initial state of the system is assumed asviaio

D, (0)
Zo = (Y:(O)) = (g) (9:8)

which means that the two components are both im gezfect state. The initial probability
distribution of the processe®,,(t), Y, (t)) =0, Po(dz | 8), hence, equals t6, (dz), wheres

is the Dirac delta function.
The system reliability at time can be calculated as follows:
R(t) = P[(Dy(s) < Dj) N (Y,(s) # 0),Vs < t] (9.9)

We consider MC simulations with0°® trials for the estimation of the system reliapilitver a

time horizon ofT,,;sc = 1000 s. The results are shown in Fig. 9-7.

o
o)

o
o))

Reliability
o
e

0.2¢

0 200 400 600 800 1000
Tims (s)

Fig. 9-7. Estimated system reliability.

The system reliability decreases more rapidly ateund 885 s, because at that time the valve
could falil, corresponding to the situation when plenp steps to the state very quickly and

stays there until the valve fails.
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9.2.1.2 Fuzzy reliability assessment

We have@, = (a)b,Byp(t)) and 6y = (135, 1,1, 110) Which are the uncertain parameters due

to the fact that their values are estimated frosufiicient degradation data or elicited from
expert judgment. Epistemic uncertainty associatedhem, hence, needs to be taken into
account and a proper mathematical representatiamoértainty of this nature is by fuzzy
numbers. We choose triangular fuzzy numbers [1d4iepresent the uncertain parameters
because their boundary values and most probabh@stradvisable values are considered easier
to be elicited from experts than other FN types thieg are widely used to represent uncertain
parameters in reliability engineering [80, 84, 884]. The fuzzy numbers are assigned by
considering a relative uncertainty #f10% of the original parameters values. However, the
proposed framework is generally suitable for fumeynbers with other types of membership

functions.

The results of the fuzzy reliability of the systamncut levelsa = 0 and a = 1 over a time
horizon 1000 s obtained by MC simulation with® trials and FV method are shown in Fig 9-
8. The lower bound of the fuzzy reliability of tkgstem at cut levelr = 0 decreases more
sharply after around 790 s, earlier than the fuekgbility at « = 1. It is seen that the system
fails after around 964 s, because at that timeahee is completely failed. The upper bound of
the fuzzy reliability ata = 0 does not experience a rapid decrease becausaltteds mostly

functioning over the time horizon.
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1
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Fig 9-8. Fuzzy reliability at cut levela = 0 and @ = 1 obtained by MC and FV.

The membership function of fuzzy reliability(t) at mission timet = 800 s at different cut
levels @ € [0,1] obtained by MC simulation and FV method are iHatd in Fig. 9-9 (we
have uniformly chosen 51 points if9, 1] with a step equal to 0.02 assignedd®. The
average computation time of MC simulation is 201s94vhile that of FV scheme is 15.91 s.
The results show that the FV method achieves coabparesults as MC simulation, with less

computational burden.
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Fig. 9-9. Membership function of fuzzy reliabilit# (t) at mission timet = 800 s obtained by MC
simulation and FV method.

9.2.1.3 Computation of component IMs
The component IMs for the valve and the pump withdition-based preventive maintenance
by periodic inspections and corrective maintenaace given in the following equations,

respectively, as follows:
Cly(t) = [gu fo,([P[(Dy(s) < D) N (Y (s) # 0),¥s < t[Dy(£) = x)] — R(t)|dx
(9.10)
CIp(t) = Xi-o P[Yp(8) = i]|P[(Dy(s) < Dy) N (Yp(s) # 0),Vs < t]Y,(t) = )] = R(D)|
(9.11)

Then, by using the proposed numerical method inired in Chapter 5.4, the values of the

above equations can be calculated.

The reliabilities of the whole system and of theotaomponents over a time horizon of

Tmiss =2000s, regarded as the mission time under acoetecainditions, are shown in Fig. 9-
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10. We can see from the figure that before arourf@s§point A), the system reliability is
basically determined by the pump reliability, sinhe valve is highly reliable. After that, the
sharp decrease of the reliability of the valve dmelegradation drives that of the system
reliability, until the execution of the inspectitasks for the two components at 1000s. Because

of the preventive maintenance, the failures ofstygtem, the valve and the pump are mitigated.

0.8r

Reliability
o
®

©
N

0.2+

0 500 1000 1500 2000
Time

Fig. 9-10. The reliabilities of the system, theweahnd the pump.

The components IMs are shown in Fig. 9-11. Befooeirad 400s (point B), the IMs of the two
components are relatively close. Although the systeiability is dominated by the reliability
of the pump, the probability of the pump at statever the time horizon is limited to a very
small value due to the corrective maintenance showfig. 9-12, which can limit the
component IM. After around 870s (point C), the puidpexperiences a sharp decrease while
that of the valve experiences a sharp increase1@@0s, due to the evolution shown in Fig. 9-
10. After the preventive maintenance is implementieel difference between the components
IMs begins to reduce. Then, one can conclude tit@nteon should be focused on the pump

before 1000s and on the valve afterwards, to aetigyher levels of system reliability.
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Fig. 9-11. The valve and pump IMs.
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Fig. 9-12. The probability of the pump at state(failure).

9.2.1.4 Maintenance optimization

The proposed method has been run 150 generatiomigdm the Pareto optimal maintenance
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policies. The obtained Pareto front in the plan¢éheftwo objective functions, i.e. lower and

upper bounds of the maintenance cost, is showigiroFL3.

1200

1000+ ]

+ 4

800+ .
600+ .
400 . 8

2001 8
a* w@b * * + + * *

| | | | | |
54 55 56 57 58 59 60 61
Lower bound of maintenance cost (k€)

Upper bound of maintenance cost (k€)

o
W

Fig. 9-13. The obtained Pareto front.

It is observed that the upper bounds cover a vadge whereas the lower bounds show much
less variability. The solutions aboae= (53.30, 108.45) k€ have big increments with resfe

the upper bound, but they have nearly no differémt¢lee lower bound compared with those of
a. The solutions to the right &f = (53.49, 72.75) k€ show nearly no difference in dipper
bound value, compared with thatlmfThe small differences between lower bounds aestdu
the fact that the failure of the components ohefdystem rarely occurs under these situations,
so that the total cost is mainly composed of the ¢lgts and the inspections costs; on the
contrary, the big differences between upper bouads mainly due to the failures of
components, which lead to the system failure dngs,tcarry a high penalty cost. It also implies
the fact that if the frequencies of inspections BMlexceed some value, then, the high penalty
cost may be largely avoided. In practice, the smhstwith very high upper bounds might not

be appropriate for decision makers (DMs).

In case that the DMs intend to conduct a searchinva certain budget, the method proposed

is also capable of dealing with this situation. Fstance, we can focus on the solutions within
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the region [0,100] k€ x [0,100] k€. The proposed method is run with the previous
configurations plus a penalty d00 k€ to be added to one objective of a solution, velver

the other objective exceed®0 k€. The newly obtained Pareto front is shown ig. Bi14.
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S 75/ . .
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%3 54 55 56 57 58 59

Lower bound of maintenance cost (k€)

Fig. 9-14. The Pareto front obtained within theiwag[0, 100] k€ x [0,100] k€.

Given the Pareto front, the DMs need eventuallyoskahe maintenance policy according to
their preferences since the solutions do not domaieach other. To simulate those common
preferences of the DMs, we choose three soluti§nite solution selected by the ‘Min-Max’
method, which selects the representative centiredPareto front, and is among the most used
ones [145]A (corresponding to a selection by decision makérs are optimistic and pay more
attention to the lower bound of the cost objectaator) andB (corresponding to a selection by
decision makers who are conservative and pay ntteati@on to the upper bound of the cost
objective factor), the solutions with the minimuower bound and minimum upper bound
values, respectively. Solutiols B and S represent three different preferences of the DMs.
Detailed information oig, A andB is reported in Table 9-2.

Table 9-2 Solutions S, A and B.
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Solution S A B
Lower bound 53.74 k€ 53.73 k€ 58.69 k€
Upper bound 74.17 k€ 96.69 k€ 70.46 k€
T, 773.47s 808.55 s 563.00 s
Ty, 66.77 s 66.77 s 66.77 s
Hy, [7.28 e-6,D;) n? | [7.66 e-6,D;) m? | [4.91 e-6,D;) m2
Hy, (1,2} (1,2} (1, 2)

It can be observed th&andA have nearly the same lower bound value, whekdas a much
higher upper bound. For the DMSmight be more appropriate thanf the small difference
0.01 can be considered negligiBandA both contairB: the DMs may choosB as the result
of minimax robust optimization, whereas if they pagre attention to the lower bour&lcan

be the choice.

9.2.1.5 Reliability assessment under degradatiggeddency and random shocks
According to the experts of EDF, random shocks ikaer hammers and internal thermal
shocks [31] can worsen the degradation conditiorb@th components of the subsystem

considered or even immediately lead them to faglure

Random shocks can deteriorate the pump from iteotstatei to a degraded stajeasp;; =

9x(0.1)(—j+1)
1_(0.1)(i+1) 4

i > j, wherep,;, denotes the probability of an extreme random shea#ting the
pump from state directly to failure state 0. The formulation ikéa from Yanget al's work
[44], which satisfies thaZ}’zi pij = 1. By combining the degradation process of the puitip
the random shock process, the resulting process take form shown in Fig. 9-15. The state of
the process is represented Bft) = (Yp(t),m),m € N, wherem is the number of shocks
experienced by the pump. The state space of the pegess is denoted by =

{(a,b),Va € §,,b € N} and the set of failure states of the pum@Fjs= {(0,b), Vb € N}.
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Fig. 9-15. Degradation and random shock procedsie pump.

For the valve, the-th shock becomes extreme if the shock ldtgdexceeds the maximal
material strengthD, otherwise, it can bring an instantaneous randwreaseH; to the total
external leak size [40W; and H; are assumed to be i.i.d. random variables follgvioided

normal distributions; = |a| and H; = |b|, wherea~N (i, ) and b~N (i, 6.2).

An illustration of the composite degradation pracegthe valve considering random shocks
and the degradation state of the pump is showngn%16, where the system experienced a
random shock at time;, with the shock loadV;, i = 1,3,4. The first two shocks cause
instantaneous random increasesn), the last shock lead the valve to failure. Theation

of the pump accelerates the degradation procdbe eflve at time, andt;, when the pump

stepped to a further degraded state.
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Fig. 9-16. An illustration of the degradation oéthalve considering random shocks and the degoadati
state of the pump. (Top Figure: degradation prooésise valve; Center Figure: random shock processe
Bottom Figure: degradation process of the pump.)

The reliability values of the valve, the pump ahe system with/without random shocks,
obtained by MC3, are shown in Fig. 9-17. The nuoarcomparisons on the reliability of the
system, the valve and the pump with/without randdmacks at the final time of 1000 s are

presented in Table 9-3.
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Fig. 9-17. The reliability of the system, the vabred the pump with/without random shocks.

When random shocks are ignored, the system ratiatsi basically determined by the pump
before around 870 s, since the valve is highhabddi. After that, the sharp decrease of the valve
reliability due to degradation leads to the santebmr in the system reliability. When random
shocks are considered, the system reliability isrd@ned by both the pump reliability and the
valve reliability from the beginning until aroun&®s, since the valve is no longer as highly
reliable as before. Then, the valve reliability @eses sharply due to the joint effects of random
shocks and degradation, and this drives also g stecrease of the system reliability. We can
see from the results that neglecting random sheoeksresult in an underestimation of the

reliability of the system and of the components.

Table 9-3 Comparison of reliability with/withoutrmdom shocks at 1000 s.

Reliability without Reliability with Relative
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random shocks random shocks change
System 0.18 0.033 81.67%
Valve 0.50 0.099 80.20%
Pump 0.43 0.32 25.58%

9.3 Multi-component systems (with a large number of components)

9.3.1 Reliability assessment of one branch of éis&lual heat removal system

In this Section, we illustrate the reliability assment method for multi-component systems

(with a large number of components) with degracdatiependency, proposed in Chapter 2, on

a illustrative case refers to one branch of the BHRI6] of a nuclear
Fig. 9-18. The fault tree is shown in Fig. 9-19.
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Fig. 9-18. The diagram of one branch of the RHRS.
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Fig. 9-19. The fault tree of one branch of the RHRS

By knowledge and experience of the field expehs,degradation dependency is described as
follows: the degradation of the pump can lead itibmate [142], which will, in turn, cause the
vibration of the other neighboring components (¢hg. valve) and therefore aggravate the
degradation process of the latters [143]. The degecy exists between basic events 1,2,3,4
and 6, as indicated in Fig. 9-19.

Applying the WDFLM ordering heuristic [136], thenable ordering obtained i8sx < Xg <

X < X; < X3 <X, <Xg <Xy <X,. The corresponding BDD is shown in Fig. 9-20. Eher
are two paths leading to system operation:Xd) = 0,X, =0,X; =0,X, =0,X; =0,X, =
0,Xg=0,X=0 and (2) Xs4 =0,X,=0,X, =0,X,=0,X=0,X,=0,X3=0,Xo =
1,X, = 0.
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Fig. 9-20. The BDD corresponding to the fault tseewn in Fig. 9-19.

The degradation processes are divided into fiveuggp {K,},{L,},{K-},{Ks} and
{Ki,K,, K3, K4, Ks, L1 }. Each of the first four groups has only one degtiad model. The last
group is modeled by one PDMP.

MCS over a time horizon d8 years has been rur0® times to solve the PDMPs and, then,
estimate the probability of occurrence of each pahe estimated system reliability with and
without dependency throughout the time horizon auradtcelerated conditions, is shown in Fig.
9-21. The average computation time is 34.3 s. Wesee from the Figure that neglecting
dependency can lead to overestimation of the systdiability. The system reliability with
dependency has experienced one rapid decreasaadtard 6.2 year (point A), which is due
to the valve failure in some simulation trials cadiby the vibration of the pump. This sharp
decrease in system reliability relates to the slacpease in the system failure time density
function, as shown in Fig. 9-22.
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Fig. 9-22. The system failure time density functwith/without dependency.
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10. CONCLUSIONS

This dissertation aims to develop a holistic framngwof models and computational methods
for the reliability analysis and maintenance optiation of nuclear safety components and
systems, taking into account the available knowdealythe system functionalities, degradation
and failure behaviors, their dependencies, thereakenfluencing factors and the associated

uncertainties.
10.1  Original contributions

The original contributions of the PhD work are:
» For single components:

Firstly, the MSPM framework is extended to semi-karmodeling to describe the fact
that the time of transition to a state can depentthe residence time in the current state;
this makes the framework more suitable to consigemaintenance. Then, a general
random shock model is proposed, where the probabilia random shock resulting in
extreme or cumulative damage, and the cumulativeadges, are both s-dependent on
the current component degradation condition (thepmnent degradation state and
residence time in that state). Finally, the randsimack model is integrated into the
MSPM framework to describe the influence of theckiscon the degradation processes.
The results show that the proposed model is ableh&racterize the influences of
different types of random shocks onto the comporstate probabilities and the

reliability estimates.
* For multi-component systems (with a limited numbicomponents):

a. A PDMP modeling framework is proposed to model ipldt dependent
competing degradation processes. The significahtteegroposed method lies
in its capability to describe the degradation deljgeicy between PBMs, between

MSMs and between the two types of models.

b. Epistemic uncertainty due to the incomplete or meme knowledge about the
degradation processes is included in the PDMP nmagldramework by
describing the model parameters as fuzzy numbedstla® FV method is
extended to calculate the system (fuzzy) religbilihe results show that the FV

method can lead to comparable results as MC simalabut with reduced
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computation time.

c. MAD IM is extended to provide timely feedback oretleriticality of a
component in the PDMP modeling framework. The exéehlM can effectively
estimate the criticality of different componentdjgat to multiple dependent
discrete and continuous degradation processesitmmmbdased PM via periodic

inspections and CM.

d. The Pareto optimal maintenance policies considepigtemic uncertainty and
degradation dependency are derived by combining BNSDE and FV.
Epistemic uncertainty in the parameters of the rmad&aken into account by
interval values, this leads to the formulation ahalti-objective optimization
problem whose objectives are the lower and uppendt® of the expected
maintenance cost. Given the Pareto front, the DMs eventually choose the

maintenance policy according to their preferences.

e. The PDMP modeling framework of (a) is extended $ystem reliability
assessment, by considering the impacts of randamksh The impacts of
random shocks on the PBMs and MSMs at the samedamde characterized
in different ways, due to the different naturewsb ttypes of degradation models.
The dependencies between degradation processesaaddm shocks, and

among degradation processes are addressed.
For multi-component systems (with a large numbezashponents):

A computational method combining BDDs and MCS isaleped for the reliability
assessment of systems with degradation dependencgduce computational costs.
Firstly, a fault tree is transformed to a BDD frevhich all paths leading to the system
failure or operation can be efficiently obtaineéc8&ndly, MCS is used to estimate the
probability of each path to compute the systemabdity taking into account the
dependencies between basic events. The results gtadwnstead of modeling the
degradation of the whole system by one PDMP, tb@gsed method can identify the
groups of components being dependent and decontip@seiginal PDMP into a group
of smaller ones, which are independent from edobrand easier to be solved. Besides,

the states of these PDMPs leading to system fatlamnebe easily obtained.
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10.2

Future research

Further developments can be sought in the followdingctions:

For single components: the extended MSPM frameworisiders only one type of
random shock models. The other types of randomksimaclels can be studied, such as
(a) run shock models, where failure of one compbpoeaurs when there is a run &f
shocks exceeding a critical magnitude and {blghock models, where failure of one
component occurs when the time lag between twoessoge shocks is shorter than a
thresholdé [21].

For multi-component systems (with a limited numbecomponents): firstly, only the
influence of epistemic (subjective) uncertaintyPdMP system degradation models is
investigated. The aleatory uncertainty associatétl whe parameters, such as the
friction coefficients in physics equations of PBMs,the PDMP system degradation
models have to be studied. Additionally, the uraiarparameters in PDMP system
degradation models can also influence the proposeghonent IMs. Global Sensitivity
Analysis (GSA) has been employed to produce inditatsassess the importance of the
uncertain factors in the models, taking into ac¢onteractions among them [147]. It
would be interesting to study how the sensitivibdices of the parameters of a
component relate to the importance indices of tbamponent, within a GSA
framework. Moreover, the limitations of the propodssptimization method lie in the
computational burden and the memory requiremertiepvapplied to high-dimensional
problems, due to the FV method which discretizesdtate space of the continuous
variables of PDMP. The computational expenses a@chany requirement of the FV
method increase almost linearly as the number ahe® partitioning the state space
increases, which is a choice of the analysts. r-tdimensional problems, the optimal
number of meshes has to be found to compromisedimputational burden. Besides,
sparse matrices can be employed to reduce the ambon@mory required. Finally, the
proposed PDMP models for systems subject to dejoaddependency and random
shocks consider only constant thresholds of shoa#td, for shocks becoming extreme.
In some cases, the components are deteriorating witestanding shocks, and their
resistance to failure is weakening [21]. In thisesahey become more sensitive to shock

loads. The changes in thresholds for shock loads ttabe considered in the models.

For multi-component systems (with a large numbercainponents): the proposed
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system reliability assessment methods are solvéd®gimulation, which is relatively
time consuming. MC simulation acceleration techagjmneed to be developed to

improve computation efficiency, thus, enabling xtead the applications to systems of
larger sizes.
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Integrating Random Shocks into Multi-State Physicslels of
Degradation Processes for Component Reliabilityedssent

Yan-Hui Lin, Yan-Fu Limember IEEEEnrico Ziosenior member IEEE

Index Terms —Component Degradation, Random shocks, Multi-statesips model, Semi-
Markov process, Monte Carlo simulation.

Abstract - We extend a multi-state physics model (MSPM) framwfor component
reliability assessment by including semi-Markov aaddom shock processes. Two mutually
exclusive types of random shocks are considerdderae and cumulative. The former leads
the component to immediate failure, whereas therlafluences the component degradation
rates. General dependences between the degradatiotie two types of random shocks are
considered. A Monte Carlo simulation algorithmngplemented to compute component state
probabilities. An illustrative example is presenge a sensitivity analysis is conducted on the
model parameters. The results show that our extemdedel is able to characterize the
influences of different types of random shocks dh#component state probabilities and the
reliability estimates.

Acronyms
MSPM Multi-state physics model

Notations
S The states set of component degradation progesse
T; The residence time of component being in thie stsince the last
transition
(7] The external influencing factors

A;;(t;,0) The transition rate between stand statg
t Time
(t, t + At) Infinitesimal time interval

X The state of the component aftdransitions

T The time of arrival ak;,, of component

P(t) The state probability vector

p;(t) The probability of component being in statd timet
R(t) The component reliability
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N(t) The number of random shocks occurred until time
u The constant Arrival rate of random shocks
Tim The residence time of the component in the atidegradation staie

afterm cumulative shocks

Pim(Tim) The probability that one shock results in extrefamage

/15"].” (t/m 0) The transition rates after cumulative random shocks

s’ The state space of the integrated model

Aam,Gim(Tim @)  The transition rate between stdiem) and state(j, n)

fiim),in)(Tim | £, @) The transition probability density function

Pimy(Tim |1, 0) The probability that, given that the componenivas at the
state(i,m) attand @, no transition will occur int(t + 7;,,)

Aim) (Tims 0) The conditional probability that, given that t@mponent is in
the state(i,m) at timet, having arrived there at time— t; ,,
and @, it will depart from (i, m) during ¢, t + dzt; ,,)

Yim) (r{,m |6) The probability density function for; ., in the state(i, m),
given 6

Tim,Gim (Tim | @) The conditional probability that, for the transitiout of state
(i,m) after holding timer; ,, and @, the transition arrival

state will be(j, n)

Noax The maximum number of replications
P(t) = (P (), P2 (1), ..., Do ()} The estimation of the state probability
vector

Varg ) The sample variance of estimated state probaklity)
é The predetermined constant which controls tHeence of the

degradation onto the probabilipy ., (z/,,)

£ The relative increment of transition ratesraftee cumulative shock
happens
1. INTRODUCTION

Failures of components generally occur in two modegradation failures due to physical
deterioration in the form of wear, erosion, fatigete, and catastrophic failures due to damages
caused by sudden shocks in the form of jolts, bj@tcs[1]-[2].
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In the past decades, a number of degradation mbdets been proposed in the field of
reliability engineering [3]-[9]. They can be growpiato the following categories [9]: statistical
distributions (e.g. Bernstein distribution [3])pshastic processes (e.g. Gamma process and
Wiener process) [4]-[5], and multi-state models|[#]

Most of the existing models are typically built alegradation data from historical
collection [3], [5]-[7] or degradation tests [4]hwh however are suited for components of
relatively low cost or/and high failure rates (eetpctronic devices and vehicle components)
[10]-[12]. In industrial systems, there are a numbkcritical components (e.g. valves and
pumps in nuclear power plants or aircraft [13]-[1&hgines of airplanes, etc.) designed to be
highly reliable to ensure system operation andtgalfeit for which degradation experiments
are costly. In practice, it is then often diffictdt collect sufficient degradation/failure samples
to calibrate the degradation models mentioned above

An alternative is to resort to failure physics astductural reliability, to incorporate
knowledge on the physics of failure of the pareuidomponent (passive and active) [13-17].
Recently, Unwiret al.[16] have proposed a multi-state physics model PM$ for modeling
nuclear component degradation, also accountinghioeffects of environmental factors (e.qg.
temperature and stress) within certain predetemintaeges [17]. In a previous work by the
authors [9], the model has been formulated undefrdtmework of inhomogeneous continuous
time Markov chain and solved by Monte Carlo simolat

Random shocks need to be accounted for on topeafinderlying degradation processes,
because they can bring variations to influencingirenmental factors, even outside their
predetermined boundaries [18], that can acceldhstedegradation processes. For example,
thermal and mechanical shocks (e.g. internal thiesimacks and water hammers) [17], [19]-
[20] onto power plant components can lead to irgensreases in temperatures and stresses,
respectively; under these extreme conditions, tlggnal physics functions in MSPM might be
insufficient to characterize the influences of ramdshocks onto the degradation processes and
must, therefore, be modified. In the literatur@yd@m shocks are typically modeled by Poisson
processes [1], [18], [21]-[23], distinguishing twaain types, extreme shock and cumulative
shock processes [21], according to the severith@fdamage. The former could directly lead
the component to immediate failure [24]-[25], whrees¢he latter increases the degree of damage
in a cumulative way [26]-[27].

Random shocks have been intensively studied [1]F22]-[23], [28]-[33]. Esanet al.[23]
have considered extreme shocks in a componenbitglianodel, whereas Wanet al. [2],
Klutke and Yang [30], and Wortmaet al. [31] have modeled the influences of cumulative
shocks onto a degradation process. Both extremecamdlative random shocks have been
considered by Li and Pham [1], Wang and Pham E&dlitionally, Yeet al.[28] and Faret al.
[29] have considered that high severity of degliadatan lead to high probability that a random
shock causes extreme damage. However, the fadhthaffects of cumulative shocks can vary
according to the severity of degradation has aldwetconsidered.

Among the models mixing the multi-state degradatradels and random shocks, Li and
Pham [1] divided the underlining continuous and otonically increasing degradation
processes into a finite number of states and casabihem with independent random shocks.
Wang and Pham [22], further considered the depearedeamong the continuous and monotone
(increasing or decreasing) degradation processdsbatween degradation processes and
random shocks. Yang et al. [33] integrated randbatlss into a Markov degradation model.
Becker et al. [32] combined semi-Markov degradatmodel, which is more general than
Markov model, with random shocks in a dynamic keliey formulation, where the influence
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of random shocks is characterized by the changeonfinuous degradation variables (e.g.
structure strength). To the best knowledge of tithas, this is the first work of semi-Markov
degradation modeling that represents the influeficendom shocks by changing the transition
rates, which might also be physics functions.

The contribution of the paper is that it generaligtee MSPM framework to handle both
degradation and random shocks, which have not pemnously considered by the existing
MSPMs. More specifically: first, we extend our piws MSPM framework [9] to semi-
Markov modeling, which more generally describesft#u that the time of transition to a state
can depend on the residence time in the curret®, €tad hence is more suitable for including
maintenance [34]; then, we propose a general rarsfmok model, where the probability of a
random shock resulting in extreme or cumulative agen and the cumulative damages, are
both dependent on the current component degradetindition (the component degradation
state and residence time in the state); finally,integrate the random shock model into the
MSPM framework to describe the influence of randgimocks on the degradation processes.
The rest of this paper is organized as followstiSe@ introduces the semi-Markov scheme
into the MSPM framework. Section 3 presents theloam shock model; in Section 4, its
integration into MSPM is presented. Monte Carlowgation procedures to solve the integrated
model are presented in Section 5. Section 6 usamarical example regarding a case study of
literature, to illustrate the proposed model. Secil concludes the work.

2. MSPM OF COMPONENT DEGRADATION PROCESSES

A continuous-time stochastic process is callednai-déarkov process if the embedded jump
chain is a Markov Chain and the times between ifians may be random variables with any
distribution [35]. The following assumptions aredador the extended MSPM framework [9]
based on semi-Markov processes:

» The degradation process has a finite number d#ssat {0,1, ..., M} where state
and M’ represent the complete failure state and pefteuttioning state, respectively;
The generic intermediate degradation sta{@si<M ) are established according to the
degradation development and condition, wherein dbeponent is functioning or
partially functioning.

* The degradation follows a continuous-time semi-Markrocess; the transition rate
between staté and statg, denoted bya; ;(z;,8), is a function ofr;, which is the
residence time of the component being in the ctistatel since the last transition, and
6, whichrepresents the external influencing factors (iniclggbhysical factors).

* The initial state (at time= 0) of the component isl.

* Maintenance can be carried out from any degradatiate, except the complete failure
state (in other words, there is no repair fronmufa).

Fig. 1 presents the diagram of the semi-Markov camept degradation process.
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AM,() (T; 0 )

/1M—1,1(T: 9)

Aym1(T.0)

\

11,M(T; 9)

Ay (z.0)

Fig 1. The diagram of the semi-Markov process

The probability that the continuous time semi-Markoocess will step to stajén the next
infinitesimal time interval f, t + At), given that it has arrived at stdtat timeT,, aftern
transitions and remained stabld inom Tn until timet , is defined as follows,

] n-1 ,
P[Xpi1 =, Tnsr € [t + AT {Xy, Ti}, _ o K = LT), Ty S £ < Tyq, 6]

=P[Xpn41 =, Tns1 €6+ AL | (X = 0 T) , Ty St < Tpyy, 0]
= Aj(t;=t—T,0)At, Vi,j € S,i+j Q)

whereX, denotes the state of the component dftaansitions and’, denotes the time of
arrival atX,. The degradation transition rates can be obtaireed the structural reliability
analysis of the degradation processes (e.g. thoi prapagation process ([15], [17]), whereas
the transition rates related to maintenance tasksbe estimated from the frequencies of
maintenance activities). For example, the authbfsA divided the degradation process of the
alloy metal weld into six states dependent on thdedying physics phenomenon, and some
degradation transition rates are represented bggmonding physics equations.

The solution to the semi-Markov process model & shate probability vectoP(t) =
Py (), Py-1(t), ..., o (1)}, Wherep;(t) is the probability of the component being in stadé
timet. Since no maintenance is carried out from the @orapt failure state and the component
Is regarded as functioning in all other intermegliatternative states, its reliability can be
expressed as

R(t) =1 —p,(t) (2)

wherep,(t) is the probability of the complete failure statdime t. Analytically solving the
continuous time semi-Markov model with state resadetime-dependent transition rates is a
difficult or sometimes impossible task, and the koarlo simulation method is usually
applied to obtainP(t) [36]-[37].

3. RANDOM SHOCKS
The following assumptions are made on the randauksprocess:
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* The arrivals of random shocks follow a homogend®aisson process\{(t),t = 0}
[21] with constant arrival rate, where the random variablé(t) denotes the
number of random shocks occurred until tim&he random shocks are independent
of the degradation process, but they can influeéhealegradation process (see Fig.
2).

» The damages of random shocks are divided into ypest extreme and cumulative.

» Extreme shock and cumulative shock are mutuallyuskee.

* The component fails immediately upon occurrencextferne shocks.

* The probability of a random shock resulting in erte or cumulative damage is
dependent on the current component degradation.

« The damage of cumulative shocks can only influetiee degradation transition
departing from the current state and its impadherdegradation process is dependent
on the current component degradation.

Amo . ®

Am—10 (z.6)

Degradation
process

Ap-11(z,0)

Ampm-1 (r,0)

Random
shocks

Fig 2. Degradation and random shock processes

The first five assumptions are taken from [22]. Beh assumption reflects the aging effects
addressed in Faet al's shock model [29], where the random shocks areenfatal to the
component (i.e. more likely lead to extreme dampgdsen the component is in severe
degradation states. However, the influences of tatime shocks under aging effects have not
been considered in Fa al’s model, as in the last assumption. In additibe,trandom shock
damage is assumed to depend on the current deigraddtaracterized by three parameters: 1)
the current degradation state2) the number of cumulative shocksoccurred while in the
current degradation state since the last degradatade transitior3) the residence time; ,,

of the component in the current degradation stafterm cumulative shocks;,,>0.

Let p; () denote the probability that one shock results treene damage (the
cumulative damage probability is then—p;,,(z;,,)). In case of cumulative shock, the
degradation transition rates for the current stai@nge at the moment of occurrence of the

shock, whereas the other transition rates are ffettad. Let AEZ‘)(T{,W 6) denote the
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transition rates aftem cumulative random shocks, Whel?é_oj)(r{_o, 0) holds the same

expression as the transition ra?(g,j(r{,o,e) in the pure degradation model, and the other
transition rates (i.em>0) depend on the degradation and the externalendling factors.
Because the influences of random shocks can rémekid the original physics functions, we
propose a general model which allows the formutatib'physics’ functions dependent on the
effects of shocks. The modified transition rates loa obtained by material science knowledge
and/or data from shock tests [38]. These quantitiéde used as the key linking elements in
the integration work of next section.

4. INTEGRATION OF RANDOM SHOCKS IN THE MSPM

Based on the first and second assumptions on ramstiocks, the new model that integrates
random shocks into MSPM is shown in Fig 3. In thedel, the states of the component are
represented by pair, i), wherei is the degradation state amdis the number of cumulative
shocks occurred during the residence time in tmeentistate. For all the degradation states of
component except for the stat®, ‘the number of cumulative shocks could range fl@ho
positive infinity. If the transition to a new dedeation state occurs, the number of cumulative
shocks is set t0, coherently with the last assumption on randontk&iol he state space of the
new integrated model is denoted hy = {(M,0),(M,1),(M,2),..,(M —1,0),(M —
1,1),...,(0,0)}. The component is failed whenever it react®eg) (The transition rate denoted
by )l(i,m),(j,n)(T{,m, 9) is residence time-dependent, thus rendering theegs a continuous
time semi-Markov process.
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Fig 3. Degradation and random shock processes

Suppose that the component is in a non-failures gta); then, we have three types of
outgoing transition rates:

Aim),0.0) (Tims 8) = 1+ @i (i) 3)
the rate of occurrence of an extreme shock whidlhcaiise the component to go to st&xg)
A(i,m),(i,m+1) (T{,m' 0) =pu-(1- pi,m(T{,m)) (4)

the rate of occurrence of a cumulative shock whwlhcause the component to go to state
(i,m+1) and

A .oy (Thms 0) = AP (1}, 6) (5)

the rate of transition (i.e. degradation or maiatexe) which will cause the component to make
the transition to state (j,0).

The effect of random shocks on the degradationgs®es is shown in equation (5) by using
the superscriptim) where m is the number of cumulative shocks occurred dutimg
residence time in the current state. It means tti@tiransition rate functions depend on the
number of cumulative shocks. This is a general tdaton.

The first two types (equation (3) and equation @pend on the probability of a random
shock resulting in extreme damage and in cumulates@age, respectively; the last type of
transition rates (equation (5)) depends on the tathma damage of random shocks. In this
model, we do not directly associate a failure thoés to the cumulative shocks, since the
damage of cumulative shocks can only influencedgradation transition departing from the
current state and its impact on the degradationga®is dependent on the current component
degradation. The cumulative shocks can only aggeattee degradation condition of the
component instead of leading it suddenly to failjyvlich is the role of extreme shocks). The
effect of the cumulative shocks is reflected in¢hange of transition rates. The probability of
a shock becoming an extreme one depends on thaddgmgmn condition of the component. The
extreme shocks immediately lead the componentilioréa whereas the damage of cumulative
shocks aggravates the degradation processes cbtimgonent.

The proposed model is based on semi-Markov proaedsrandom shocks. Under this
general structure, as explained in the paragraptealthe physics lies in the transition rates of
the semi-Markov process. We name it a ‘physics’ ehbdecause the stressors (e.g. the crack in
the case study) that cause the component degradatoexplicitly modeled, differently from
the conventional way of estimating the transitiates from historical failure/degradation data,
which are relatively rare for the critical compotserMore information about MSPM can be
found in [9]. In addition, the random shocks aregmnated into the MSPM in a way that they
may change the ‘physics’ functions of the transitiates, within a general formulation.

Similarly to what was said for the semi-Markov pges presented in Section 2, the state
probabilities of the new integrated model can beioled by Monte Carlo simulation and the
expression of component reliability is:

R(t) =1 —p(o,0(t) (6)

5. RELIABILITY ESTIMATION
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5.1Basics of Monte Carlo simulation

The key theoretical construct upon which Monte aiinulation is based is the transition
probability density functiorf(; my ;) (tim | t, 0), defined as follows

fim).(im) (Tim | £, 8)dT],, = probability that, given that the system arrivethatstate
(i,m) at timet and physical factor®, the next transition
will occur in the infinitesimal time intervat ¢+ t/,,, t +
T, m T d7; ) and will be to the statéj,n) [36].

(7)
By using the previously introduced transition ratguation (7) can be expressed as
f(i,m),(j,n) (Tl{,m |t, e)dTL{,m = P(i,m) (Tl{,m |t G)A(i,m),(j,n) (Tl{,m' g)drl{.m (8)

whereP; (i, | t,0) is the probability that, given that the componamives at the state
(i,m) attimet and physical factor®, no transition will occur in the time interval { + 7; ,,,)
and it satisfies:

dpP; m)(TL{m [t,0) / 1
—" - =4 T;.,0)dT; 9
P(i.m)(T{,m [t,6) (L,m)( im ) im ( )

where

A(i,m) (TL{,m' 0) = Z(il,ml) A(i,m),(ir,ml) (Tl{,m’ 0) (10)

and A ;my (t{ m, 8)d7] ,, is the conditional probability that, given thaetbomponent is in the
state (i, m) at timet, having arrived there at time— 7; ,,, and physical factor$, it will depart
from (i,m) during ¢, t + dz; ).

Taking the integral at both sides of equationaf@i the initial conditionP; ,,y(0] ¢, 8) =
1, we obtain

Pim) (Tim | £,8) = exp[= [ A¢im) (5, 0)dis] (11)
Substituting equation (11) into equation (8), vistain
famnGm) Tim 1 60) = Ay, i) (Ti s ) exp[— fori‘m Aimy(s,0)ds] (12)
To derive a Monte Carlo simulation procedure, ¢éigna12) is rewritten as
] A im),(jn (Tl{,m’e) /; {m
famy,Gay Wi | £,0) = IR 3 (T s @) exp[— fOT' Aim) (s, 0)ds]

Am) (T 0)
= TmyGm) (Tim 10) * Wim) (Tim 1 6) (13)
where
l:b(i,m) (TL{,m | 0) = /1(i,m) (Tl{,m' a)exp[_ fo‘[i'm A(i,m) (5' O)dS] (14)

is the probability density function for the holditime z;,, in the state(i, m), given the
physical factors9, and

At (i) (Tim ) (15)
/‘l(i,m) (Tl{,m'o)

is regarded as the conditional probability thattfie transition out of staté, m) after holding
time 7;,, and the physical factor, the transition arrival state will bg,n).

)Gy (Tim 1 0) =
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In the Monte Carlo simulation, for the componemiving at any non-failure staté, m)
at any timet, the process at first samples the holding timetatte (i, m) corresponding to
equation (14), and then determines the transitioivad state (j,n) from state (i, m)
according to equation (15). This procedure is reggantil the accumulated holding time
reaches the predefined time horizon or the compmeaches the failure staf@,0).

5.2 The simulation procedure
To generate the holding timg,, and the next stat§,n) for the component arriving in
any non-failure statéi,m) at any timet, one proceeds as follows: two uniformly distrilzlite
random numbers: anduz are sampled in the interval [0, 1]; ther,, is chosen so that
Jo ™ Ay my (s, @) ds = In(1/uy) (16)
and (j,n) = a* that satisfies
Z%*:_Ol A(i,m),k (Tl{,m’ 0) < uz/l(i,m) (Tl{,m' 0) < Z%*:O A(i,m),k (Tl{,m’ 0) (17)

wherea* represents one state in the ordered sequencemdsalible outgoing states of state
(i,m).The statea® is determined by going through the ordered sequeicall possible
outgoing states of staig, m) until the equation (17) is satisfied. The algaritbf Monte Carlo
simulation for solving the integrated MSPM on adirhorizon [0, t,,,.] IS presented as
follows:

Set N,,,,, (the maximum number of replications) akd= 0
While k < Npyax

Initialize the system by setting = (M, 0) (initial state of perfect performance), setting th
time t = 0 (initial time)

Sett’ = 0 (state holding time)
While t < tux
Calculate the equation (10)
Sample at’ by using equation (16)
Sample an arrival statg,n) by using equation (17)

Sett =t+t
Sets = (j,n)
If s=(00)
then break
End if
End While
Setk=k+1
End While o
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The estimation of the state probability vecRit) = {py(t), Py—1(t), ..., Do(t)} at timet is
done as,

P(t) = 5 (8), Ty (0), -, 0 ()} (18)

where{n;(t)|i = M, ...,0,t < t,,qx} IS the total number of visits to staia timet, with sample
variance [39] defined as follows

varg = BEA = Bi(6)/(Nmax — 1) (19)

6. CASE STUDY AND RESULTS
6.1 Case study

We illustrate the proposed modeling framework aase study slightly modified from an
Alloy 82/182 dissimilar metal weld in a primary dant system of a nuclear power plant in
[17]. The MSPM of the original crack growth is showm Fig. 4.

: Initial state

: Micro Crack

: Radial Crack

: Circumferential crack
. Leak State

: Ruptured state

O FRLr N WR~WUM

Fig 4. MSPM of crack development in Alloy 82/182slmilar metal welds

where ¢; and w; represent the degradation transition rate and tetr@amce transition rate,
respectively. Except fops,p,, @, and @5, all the other transition rates are assumed to be
constant. The expressions of the variable tramsities are as follows:

b b—-1
vs=(3) (%) (20)
acPc . .
04 = {aMr42(1—Pc(1—ac/(uaM)))' Y Ta > ac/au (21)
0, else
apPp : :
0, = {er4z(1—PD(1—aD/(uaM)))’ if T4 > ap/an (22)
0, else
1 . .
03 = {_ F 7> (@ =) tu (23)
0, else.
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The other transition rates and the parameters sartegeepresented in Table | below.

Table | Parameters and constant transition raf8s [1

b —Weibull shape parameter for crack initiation node 2.0

7 — Weibull scale parameter for crack initiation rabd 4 years

ap — Crack length threshold for radial macro-crack 10 mm

P;, — Probability that micro-crack evolves as radialogr 0.009

ay — Maximum credible crack growth rate 9.46 mm/yr
ac — Crack length threshold for circumferential macraek 10 mm

P — Probability that micrarack evolves as circumferential crag 0.001

a; — Crack length threshold for leak 20 mm

w, —Repair transition rate from micro-crack 1 x10-3 /yr
w3 —Repair transition rate from radial macro-crack 2 x10-2 lyr
w, —Repair transition rate from circumferential macraek 2 x10-2 lyr
w1 —Repair transition rate from leak 8 x10-1 /yr
¢, — Leak to rupture transition rate 2x10-2 lyr
@, — Macro-crack to rupture transition rate 1x10-5 /yr

The random shocks correspond to the thermal actianecal shocks (e.qg. internal thermal
shocks and water hammers) [17], [19]-[20] to thssuinilar metal welds. The damage of
random shocks can accelerate the degradation pesxeand hence, increase the rate of
component degradation. Note that Yaa al [33] have related random shocks to the
degradation rates in their work. To assess thesgagjrimpact of shocks, we may use 1) physics
functions for the influence of random shocks thitouataterial science knowledge; 2) transition
times, speed of cracking development and othete@liaformation obtained from shock tests
[38]. We set the occurrence rate= 1/15y~! and the probability of a random shock

becoming extreme shoclp; ,,(ti,,) =1 — exp [—6m(6 — ) (2 — e‘Tl{'m)] , taking the
exponential formulation from Faet al's work [29]. In this formula, we use1(6 —i)(2 —

e"t{-m) to quantify the component degradation. It is ndted the quantity2 — e Tim ranges
from 1 to 2, representing the relatively small effectwjf, onto the degradation situation in
comparison with the other two parametetsandi, and§ is a predetermined constant which
controls the influence of the degradation ontoghrabability pi,m(T{,m). In this study, we set
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6 = 0.0001. The value of6 was set considering the balance between showmgrthact of
extreme shocks and reflecting the high reliabigfythe critical component. In addition, we
assume the corresponding degradation transitioes rafterm cumulative shocks to be

A (1, 8) = (1 + €)™ ;(t/ . 8), wheree = 0.3 is the relative increment of transition
rates after one cumulative shock happens, anethaifation (1 + €)™ is used to characterize
the accumulated effect of such shocks. In ordetharacterize the increase of the transition
rates, in the case study we have used the paramaterepresent the relative increment of
degradation transition rate after one cumulativeckhoccurs. For the sake of simplicity, but
without loss of generality in the framework foregtation, we assume that the valueg dor
each cumulative shock are equal. But the modeheaudle differentss for different stages of

the crack process.

6.2 Results and analysis

The Monte Carlo simulation over a time horizontgf,, = 80 years is runN,,,, = 10°
times. The results are collected and analyzeddrdhowing sections.

6.2.1 Results of state probabilities

The estimated state probabilities without and wahdom shocks throughout the time
horizon are shown in Figs. 5 and 6, respectively.

0
10 ¢ —
O —— initial
,1: / ——microcrack
10 ¢/ \ — circumferential
£ \ -~ ~radial
2f ——leak
l E
0 E — rupture
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4 / e . - .
10 = /+ ok A B
“ \‘“ \***"' g g -
| A" : .
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10° ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80
Time

Fig 5. State probabilities obtained without randgimcks

- 116 -



PAPER I: Y.-H. Lin, Y.-F. Li, E. Zio. Integratingadom Shocks into Multi-State Physics Models of iladgtion Processes

for Component Reliability Assessment. ReliabillgEEE Transactions on, vol.64, no.1, pp.154-1665201

0

e
10 \
4\
10 E - S - — = . L.
g E ****** [ — — — i - L LN -
§ 10»3? /riy,+++,‘_+++4_*\.»*+_:_*++‘*_*/‘\%++N++HHA—+H++*/H+++*—*+—%HH%+*—*—H/H
e E / /~
a v _
10/ — ml.tlal
it ——microcrack
— circumferential
10°:, | - radial
F 4 ——leak
10° i ! ! ! ! ! ! rupture |
0 10 20 30 40 50 60 70 80
Time

Fig 6. State probabilities obtained with randomc$iso

Comparing the above two Figures, it can be obseihvatths expected the random shocks drive
the component to higher degradation states thanntlweo-crack state. The numerical
comparisons on the state probabilities w/o randootlss at year 80 are reported in Table Il. It
is seen that except for the micro-crack state foitiba all the other state probabilities at year
80 have increased due to the random shocks, wéthnttrease in leak probability being the

most significant.

Table Il Comparison of state probabilities w/o ramdshocks

(at year 80)
State Probability without| Probability with Relative
random shocks random shocks | difference
Initial 3.52e-3 9.82e-3 180.00%
Micro-crack 0.9959 0.9661 -2.99%
Circumferential crack 3.05e-4 7.28e-3 2286.89%
Radial crack 1.00e-4 7.75e-3 7650.00%
Leak 1.30e-5 2.59%e-3 19823.08%
Rupture state 2.06e-4 7.00e-3 3298.06%

The fact that the probability of the initial stdtmmpared with no random shocks) at 80 years
has increased is attributed to the maintenances.tadk the maintenance tasks lead the
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component to the initial state and the repair rixtes radial macro-crack state, circumferential
macro-crack state and leak state are higher thanftbm micro-crack state. The shocks
generally increase the speed of the componenefolsck to further degradation states from
where it steps to the initial state more quickly.summary, this phenomenon is due to the
combined effects of shocks.

6.2.2 Results of component reliability

The estimated component reliabilities with and withrandom shocks throughout the time
horizon are shown in Fig. 7, respectively. At y8@y the estimated component reliability with
random shocks is 0.9930, with sample variance etyu&él.95e-9. Compared with the case
without random shocks (reliability equals to 0.9998th sample variance 2.00e-10), the
component reliability has decreased by 0.68%.

0.998 T~
2 T~
3 09961 S
S 0.994- .
Q. ) N
: I
O
0.992(-
—— without random shocks
——with random shocks
099 T T | | | | | |
0 10 20 30 40 50 60 70 80

Time

Fig 7. Component reliability estimation w/o randshocks.

6.2.3 Analysis of the extreme shocks

Table 1l presents the frequencies of different bens of random shocks occurred per
simulation trial. The most likely number is arousidvhich is consistent with our assumption
on the value of the occurrence rate<{ 1/15y~1) of random shocks.

Table 11l Frequency of the number of random shameurred per trial
(mission timet = 80 years)

Nb of random
shockst/trial

Percentage (% 0.63| 3.14| 8.00| 1358 17.15 17.56 14.91 10/83 6.87 3.90.453
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In total, 6973 trials ended in failure, among wh#&b31 trials (64.98%) are caused by
extreme shocks. Table IV reports the number ofsteading with extreme shocks, for different
numbers of cumulative shocks occurred per trial.

Table IV Number of trials ended with extreme shockddifferent numbers of
cumulative shocks (mission tinbe 80 years)

Nb of Nb of Nb of trials
cumulative trials ending with
shocks per trial extreme shock
0 6345 0
1 31739 367
2 80292 633
3 135676 812
4 171526 809
5 175569 743
6 148844 500
7 108101 332
8 68579 172
9 38964 90
10 19569 43
11 8998 19
>11 5798 11

The influence of the number of cumulative shocksuo@d per trial on the probability of the
next random shock being extreme is shown in Figas8expected, the larger the number of
cumulative shocks the higher the probability ofrexte shock.
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Fig 8. Probability of the next random shock beirgeme as a function of the number of
cumulative shocks occurred per trial.

The influence of the degradation state on the pitibaof the next random shock being
extreme is shown in Fig. 9: as expected, the hield of extreme shocks is higher when the
component degradation state is closer to the &astate.

Probability
o o o
2

o
o
\

| | |
5 4 3 2 1
Degradation state

Fig 9. Probability of the next random shock beirtteame as a function of the
degradation state of the component.

6.2.4 Influence of cumulative shocks on degradation

In order to characterize the influence of cumulathocks on the degradation processes,
we set td) the probability of a random shock being extreneethsit all random shocks will be
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cumulative. The estimated state probabilities e in Fig. 10.
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Fig 10. State probabilities obtained with cumulatshocks only.

The state probabilities with cumulative shocks bihgimilar patterns as those in Fig. 6; only
the rupture state probability has decreased duketdack of extreme shocks. The numerical
comparisons on the state probabilities without eamdhocks and with cumulative shocks at
year 80 are reported in Table V.

Table V Comparison of state probabilities withaanndom shocks and with cumulative

shocks
(at year 80)
State Probability without Probability with Relative difference
random shocks cumulative shocks
Initial 3.52e-3 9.94e-3 184.11%
Micro-crack 0.9959 0.9704 -2.56%
Circumferential crack 3.05e-4 7.05e-3 2210.16%
Radial crack 1.00e-4 7.52e-3 7419.00%
Leak 1.30e-5 2.76e-3 21161.54%
Rupture 2.06e-4 2.70e-3 1212.62%
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As for the case with random shocks, cumulative kfid@ave a similar influence on the state
probabilities. In Fig. 11, we compare the estimatechponent reliability with cumulative
shocks with the other two estimated probabilitiesig. 7. At year 80, the estimated component
reliability with cumulative shocks is 0.9973 andetBample variance equals to 2.69e-9.
Considering cumulative shocks only, the componelmbility has decreased by 0.26%.
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Fig 11. Component reliability w/o random shocks ariith only cumulative shocks.

6.3 Sensitivity analysis

With the model specifications of Section 6.1, ttwgportant parameters are: the const@ant

in pim(7im) and the relative incremeatin A7 (t;,,,8). To analyze the sensitivity of the
component reliability estimates to these two patansewe take values & within the range

[0.0001, 0.0002] ana@ within the range [0.2, 0.4].

Fig. 12 shows the estimated component reliabilitrél different combinations of the two
parameters. In general, the component reliabiliéggrdases when any of the parameters
increases. In fact, highér in pi,m(Ti,,m) leads to higher probability of the random shodkge
extreme, which is more critical to the componemgd &iigher relative increment in

/15?) (T{,m, ) results in larger degradation transition rates céfealso see from the Figure that

in this situation, when the same percentage oétian applies to the two parametessis more
influential thand on the component reliability. The correspondingareces of the estimated
component reliability computed using equation @& shown in Fig. 13, where it is seen that
the high reliability estimates have low varianceels.
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Fig 13.Variance of component reliability estimaseaafunction ofe and § (at year 80).

7. CONCLUSIONS

An original, general model of a degradation procegzendent on random shocks has been
proposed and integrated into a MSPM framework sgmi-Markov processes, which also
considers two types of random shocks: extreme amilative. General dependences between
the degradation and the effects of shocks can heidered.

A literature case study has been illustrated towslioe effectiveness and modeling
capabilities of the proposal, and a crude sensiti@halysis has been applied to a pair of
characteristic parameters newly introduced. Theifsogince of the findings in the case study
considered is that our extended model is able aoadhterize the influences of different types of
random shocks onto the component state probabikinel the reliability estimates.
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Abstract —A modeling framework for the treatment of systemgjsct to dependent
degradation processes is adopted, based on pieedetisrministic Markov process (PDMP).
Due to the complexity of PDMP, analytical soluticare difficult to obtain. In this paper, we,
then, consider the Monte Carlo simulation method é&nite-volume scheme for system
reliability assessment, and provide the guidelioegheir implementation. To examine their
properties, a comparative study of the two appreadls conducted on two case studies
regarding a subsystem of the residual heat rensysa¢m of a nuclear power plant.

Keywords: dependent degradation processes, piecewise-deistimiMarkov process, multi-
state model, physics-based model, Monte Carlo sitiul method, finite-volume scheme.

1. INTRODUCTION

In the field of reliability engineering, a numbdrdegradation models have been proposed,
which can mainly be classified into the followingtegories: statistical distributions (e.g.
Bernstein distribution [1]), stochastic processeg.(Gamma process [2]), multi-state models
(e.g. semi-Markov models [3]) and physics-based at®de.g. probabilistic superposition
model [4]). In practice, appropriate degradatiordels have to be chosen based on the available
information/data. For some highly reliable compde&ystems (e.g. pumps and valves in
nuclear power plants), their degradation and/duffaidata are often limited and do not allow
building their lifetime distributions or assignitige values to the parameters of the stochastic
degradation processes. Physics-based models (HBM§and multi-state models (MSMs) [9-
14] are two widely used modeling frameworks. A PBiilns at developing an integrated
mechanistic description of the component/system dibnsistent with the underlying real
degradation mechanisms (e.g. wear, corrosion, trgc&tc.) by using physics knowledge and
equations [4], whereas a MSM describes the degaadptocess in a discrete way, supported
by material science knowledge [15], degradation@niilure data [10] from historical field
collection or degradation tests.
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In reality, systems are often subject to multipbgihdation processes. These degradation
processes can be dependent under certain circurastagg. when the degradation dynamics
of some components depend on the degradationadtatber components [16], or the various
degradation processes share the same influencitgrda[17]. This renders the system
reliability analysis and prediction a challenginglgem.

Peng et al. [18] considered two dependent failure processesleted as stochastic
processes. Wang and Pham [19] applied time-vargamyilas for describing the dependence
between the degradation processes modeled bytistt@istributions. Yangt al.[20] modeled
the components dependence through the joint disioitb of failure time. Straub [21] used a
dynamic Bayesian network to represent the depemddretween degradation processes
modeled by multi-state models. The dependencendléd in different ways according to the
types of degradation models involved.

Piecewise-deterministic Markov process (PDMP) carimployed to integrate PBMs and
MSMs for dealing with the degradation dependencerantifferent components, as shown in
our previous preliminary study [22]. The PDMP, tliysintroduced by Davis in [23, 24], and
further studied by Jacobsen [25] and Cocozza-Thi{28] is a general model that includes
many other models (e.g. semi-Markov process, Margoscess, etc.) as special cases.
Marseguerra and Zio [27] have applied the PDMP @gghr to the dynamic reliability
assessment of a heated hold-up tank system, whéheasetet al. [28] used PDMP to model
fatigue crack in a structural component. Howeveie tb the complex behavior of PDMP,
analytical solutions are difficult to obtain [27].

The Monte Carlo (MC) simulation method and finitelsme (FV) approach are two widely
used approaches for solving PDMP models to evahefitebility quantities. Zhangt al. [29]
have used the MC simulation method to assess fieéysand production availability of an
offshore oil production system. Laét al. [30] have developed a FV scheme to optimize the
preventive maintenance of air-conditioning systessed in trains. Cocozza-Thivesttal. [31]
have proposed an explicit FV scheme for dynami@léity assessment. An implicit FV
scheme has been proposed by Eynedial.[32] to assess the marginal distribution of a pssce
describing the time evolution of a hybrid system.

In this paper, we develop the MC simulation methad the FV scheme to solve a model
for system reliability analysis considering degtamtadependence, proposed in our previous
study [22]. A comparative analysis of the two melhas offered, considering the following
evaluation criteria: accuracy, computation time,mogy consumption, efficiency, scope of
application and ease of implementation. Guideliftesimplementing the two methods are
developed, based upon the findings of the comparatudy.

The reminder of this article is organized as fokowection 2 introduces the PDMP for
systems with degradation dependence. The procedidr84C simulation method and FV
scheme to solve the model are presented in SektiBaction 4 presents the evaluation criteria,
the case study and the comparison of the two meti®ettion 5 concludes the work.

2. PDMP MODELING OF DEGRADATION WITH DEPENDENCE

Based on the available information/data, two mgie$ of models can be used to represent
the degradation processes of components: PBMs &MdVIWe consider a multi-component
system consisting of two groups @mponents. There artd components in the first group
L={LL,, .., Ly}, whose degradation processes are described PBNes far each
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component) antN components in the second grolp= {K;, K, ..., K);}, whose degradation
processes are described by MSMs (one for each aoenppo

2.1PBMs

For componentL,, € L, the vectorm(t) containingd,,  time-dependent continuous
variables is used to describe its degradation |eviebse evolution in time is characterized by

a system of first-order differential equatioas (t) = f, (X, (t),t|6, ), i.e. physics
equations, wherd, are the parameters Erepresenting the environmental influencing

factors.m(t) contains degradation variables such as crackhdi@geand wear area [6], and
physical variables such as velocity and force [Bhich influence the evolution of the
degradation variables. The generic componédnt fails when m(t) exceeds the

*

. * dp. *
degradation threshold;, ~ = (xg JXE X, T )
m m m

Lm

2.2MSMs

For componentX,, € K, the vectorY (t) is used to describe its degradation level, taking
values from a finite state set denoted $y ={0,1,...,dy }, wheredy is the perfect
functioning state an® is the complete failure state. The component isglly functioning in
all generic intermediate states. Markov process@gdnd semi-Markov processes [9, 33] are
widely used in practice as MSMs. The transitioresa&ti(j | BKn),v i, € Sk,,i>j are used
to describe the speed of degradation from state statej, where 6, represents the

environmental influencing factors and the relateefficients. The generic componeRt,
fails whenYy (t) reaches the state.

2.3PDMP for systems with dependence

The degradation levels of one component may inftaghe degradation dynamics of the
others (e,g, the degradation levels of the compsnenthe first group may influence the
transition rates of the degradation processeseo$d¢icond group, and the degradation states of
the second group may influence the evolution ttejges of the continuous degradation
variables in the first group). PDMP can be employ@adnodel this type of interdependence
[22]. The overall degradation processes of theesysire presented as

/ Es(t) =7(t)\
X (@) |

Z_) =
© Y, (6)

EE=R% XS (1)
=Y ()
Y (®)
where E is the space combininR? (d, =¥n_,d;, ) and §=1{0,1,..,ds} (S=
[17=1Sk,). The evolution ofZ(t) has two parts: (1) the stochastic behavio¥ 6f) and (2)
the deterministic behavior o (t) between two consecutive jumps 6t), given Y (¢). The
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first process is governed by the transition rafe¥ &), which depend on the degradation states
of all the components as follows:

im P(Y(t+At) =7 | X (6),Y(t) =70, = [1N-, 0x,) /At
=4 1X(t),05),Vt=0T]€Si#] (2)

The second process is described by the deterndgimbiisic equations, which depend on the
degradation states of all the components as follows

. X0\ [£LCE©]6,)
X(t) = : = :
X1, @® fLM?(t) (x'®.¢t|6,,)
= TOX @)t |0, =TT, 0, ) 3)

Let T) denote thek-th transition time of the proces&(t). {Z, Ty}, is, then, a Markov
renewal process [26] defined on the sp#@ce R™, since the probability that the whole system
will step to statg/ from state? in the time intervalT,, T, + At], given {Z,, Ty}, ., is:

P|Zui =, Tusn € [T T + 881 | {Zi, T, (20 = 1, To)]
= P[m=ﬁTn+1 € [Tn'Tn + At] |Z: = i)]
vn=>0,5] € El#] (4)

The processZ(¢t) that takes values it is a Piecewise-Deterministic Process (PDP), since
can be written as follows [26]:

Z) = ¢(Zi,t = T), fort € [Ty, Tesal Yk € N (5)
and Z(t) is a PDMP on the condition that satisfies the following [26]:

e, t+s)=pl@ey,t),s), Vt,s=0,y € E (6)

This is especially true in our case, @sis the solution of a first-order ordinary diffeteh
equations system [34].

Let F denote the space of the failure stateSZ(JtD: then, the reliability of the system at
time t is defined as follows:

R(t) = P[Z(s) & F,Vs < t] 7)

3. METHODS FOR RELIABILITY ASSESSMENT

Analytically solving the PDMP is a difficult taskud to the complexity in the system
behavior[27], with stochastic state transitionsusdag in the components modeled by MSMs
and time-dependent evolutions of the charactenaitables in the components modeled by
PBMs. In this section, the procedures of the MCusttion method and FV scheme to solve
the model are presented.
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3.1 MC simulation method for solving PDMP
To apply the MC simulation method, eq. (4) is verittas follows:

P|Zyi1 € B, Tpsy € [Ty, Ty + At] | Z, =T, 0]

= ff N(i dz ds | 6)
]

B*[0,At
Vn>0At>0,1€ E,B€E¢ (8)
where € is a g-algebra of E [26] and N(?,d_z’, ds | OK) is a semi-Markov kernel oiE,

which verifies that ffE*[ ]N(T,d_z), ds|0g) <1,YvAt>0,1€ E. It can be further
developed as:

0At

N(i,dz,ds | 8x) = dF;(s | 0x)B (i, s, dz | B) (9)
where
dFi(s | 0k) (10)
is the probability density function df,,,; — T,, given ZTL =7 and
B(is,dz | 0k) (11)
is the conditional probability of staté,,, given T, — T, = .

Then, the MC simulation method can be used to estirthe reliability of the system within a

certain mission timeT,,,;.;, given the initial system sta‘r?’0 at time T, = 0. The method to
simulate the behavior of the system consists inpfiamthe transition time from eq. (10) and
the arrival state from eq. (11) for the componentghe second group and, then, using the
physics eq. (3) to calculate the evolution of tllenponents in the first group within the
transition times. Each simulation trial continuetiluthe time of system evolution reaches
Tmiss Or until the system enters the failure sp&eevent whose occurrence is recorded for
the statistical estimation of the system reliailit

3.1.1 The simulation procedure

The procedure of the MC simulation method is aova:
Set N4 (the maximum number of replications) akd= 0 (index of MC trials)
Set k' = 0 (number of MC trials that end in failure state)
While k < Nyax

X(0)

Initialize the system by settinE; = (
Y

) (initial system state) and the tinfe= 0
(initial system time)

Sett’ = 0 (state holding time)

While T < T,uiss

Sample at’ by using the probability density function (10)
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Sample an arrival staté’ for stochastic procesﬁ(t) from all possible states, by
using the conditional probability function (11)

SetT =T+t

CalculateX (¢) in the interval[T — t', T] by using the physics equations eq. (3)

Set? = (XLT)>
YI

If T < Tmiss

If 3t e [T —t',T],Z(t) = <Yg)> €EF

Setk' =k’ +1
Break
End if
Else(WhenT > T,iss)

If 3t € [T —t', Tyiss] , Z(t) = (th)> €F
Y

Setk' =k’ +1
Break
End if
End if
SetY =Y’
End While
Setk=k+1
End While o

To calculate the value o?(t), Runge-Kutta methods can be applied for the nuraksblution
of the ordinary differential equations [35, 36].€lbstimated component reliability at time
Tmiss can be obtained by

ﬁ(Tmiss) =1- k,/Nmax (12)

wherek' represents the number of trials that end indlilare state of the system and the sample
variance is [37]:

VAT R(Tpiss) = ﬁ(Tmiss)(l - R\(Tmiss))/(Nmax - 1) (13)

3.2FV scheme for solving PDMP

The MC simulation method is conceptually easy folapnd without particular restrictions on
the dimension of PDMP. On the contrary, it can léefgtime-consuming because of the
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repetition of many trials in order to get a satsbay accuracy in the system reliability estimate.

An FV scheme discretizing the state space of tlimaous variables and the time space of
PDMP is an alternative that in certain cases cauhie results comparable to the MC simulation
method, but in significantly shorter computing tenelere, we employ an explicit FV scheme
for system reliability estimation [31].

3.2.1 Assumptions
This approach can be applied under the followirsyagtions:

» The transition rated;(j'| -, 0k),Vi,J € S are continuous and bounded functions from
R% to R*.

e The physic equationﬁf(-,- | 8,),Vvi € § are continuous functions froR? x R*
to R% and locally Lipschitz continuous.

e The physic equationﬁf (t]0,),Vi €S are sub-linear, i.e. there are soifje> 0
andV, > 0 such that

vx € R, t € RY

G tle| < vidlxl + 1) + v,

« The functionsdiv(ff (-160.)),Vi € S are almost everywhere bounded in absolute
value by some real value > 0 (independent of).

3.2.2 Solution approach
For ease of notation, first we I@(-,-): R x R —» R% denote the solution of
2 giz,t16,) = j?)(gf(a_c’,t 18,).t|6,), vieSieRLteER (14)
with
gi(%,016,) =% Vi€ S,% € R (15)
and E()_C),t | 6,) represents the deierministic evolution%(t) at timet, starting from the
condition ¥ and while the processé&qt) hold in stater.

The state spac®% of continuous variable;’(t) is divided into an admissible mesit,
which is a family of measurable subsetsR$t (M is a partition ofR%.) such that:

(5) Usenr A = R,

(6) VALBEM,A+B=ANB =0.

(7)my = fAE > 0,VA € M, where m, is the volume of gridA.

(8) supseprdiam(A) < +oo wherediam(A) = supyz yealX — Jl.
Additionally, the time spac&®™ is divided into small interval®R* = U, 1, . [nAt, (n +
1)At[, by setting the time stept > 0 (the length of each interval).

Let p,(dZ|6 = 60, U B,) denote the probability distribution df(¢t). The numerical
scheme aims at constructing an approximate vale’, | 8)dx for p.(dx’,; | @), such that
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p:(x’; | @) is constant on eacl x {i} x [nAt, (n + 1)At[,VA € M,T€ S:
p:(x, U] 0) =P, (A,T]0),Vie S, X €Ate [nAt,(n+ 1)At] (16)
Py(A,1]10),Vie S, A e M is defined as follows:
Po(A,7] 8) = [,po(dx’,V | 8) /my 17)

Then, P,,,(4,7]0),vie S, A€ M,n €N can be calculated considering the deterministic

evaluation of X (¢) and the stochastic evolution af (t) based onP,(M,7|6) by the
Chapman-Kolmogorov forward equation, as follows:

PTL+1(A'i> | 9)

ji

— 1 I - . a, —— N
- 1+Atb?4 Pn+1(A’ l | 0) + AtZ]ES 1+Atb174 Pn+1(A,] | 9) (18)

where
af = [ 4@ %] 0,)dx/m, V€S, AEM (19)

is the average transition rate from statéo state? for grid A,
by =Y;.iai ViES,AEM (20)
is the average transition rate out of statéor grid A,
Poi(AT]0) = Speremha P(B,7| 8)/my, VIES, A€M (21)

is the approximate value of probability densitydtion on {i} X [(n + 1)At, (n + 2)At[x A
according to the deterministic evolution f(¢),

>

L

mb, = f{?EB S open D TTES A B EM (22)

is the volume of the part of gri@ which will enter gridA after time At, according to the
deterministic evolution oft ().

The approximated solutiop,(x’; | 8)dx’ weakly converges towardg,(dx,- | @) when
At - 0 and |[M|/At - 0 where |M| = supyepcdiam(A).

The reliability of the system can, then, be calmdaas follows:

The shortcomings of the FV scheme is that it saffer high dimensional problems and it is
relatively more difficult to develop than the MQrsilation method.

4, Comparative Study
4 .1. Evaluation criteria

The evaluation criteria for the comparative study @curacy, computation time, memory
consumption, scope of application and ease of imetgation. The first three attributes are
guantitative and the rests are qualitative.

To compute accuracy, we use the results obtaingdeolC simulation with10> trials as
reference values,.rerence @nd compute the relative change of the resulisbtained by
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another methodRelative change(x, Xyeference) = (X — Xreference)/Xreference» Wherex is
the obtained system reliability.

The efficiency is also an important measure ofgenaince. A method is more efficient if
it can produce results comparable with the othé@mhith less computation time (here measured
in seconds).

The memory consumption refers to the amount otaligiformation stored in the computer
during the calculation and is measured in kilobykd3).

For the scope of application, we consider two dsdies: one with high dimension and
the other with low dimension, since the two methodsnly differ in their capacity of treating
different dimensions of the problem.

The ease of implementation describes how easyatiraplement a method in practice.

4.2. Numerica experiment design

All the numerical experiments are carried out inMLAB on a PC with an Intel Core 2
Duo CPU at 3.06 GHz and a RAM of 3.07 GB.

We consider MC simulations with03, 10* and 10> trials (for ease of reference,
hereafter named MC1, MC2 and MC3, respectivelye Parameters of the FV scheme are
problem-dependent. Their tuning can be achievedrhgually decreasing the space step and
the time step. To compare the two methods, thenpetex setting of FV scheme is first assigned
such that it can lead to similar results as MC3ictigives the most accurate results that are
used for reference. Then, we consider several paearaettings around it.

4.3. Test cases and results

We consider an important subsystem of a residuatl teenoval system of a nuclear power
plant [38], consisting of a pneumatic valve and emtdfugal pump, which are used in
conjunction in a variety of domains for fluid dedry [5, 39]. The degradation model of the
pump is the one originally considered in [22] whitat of the valve is the physics-based model
presented in [5]. Dependence is considered, assatref discussions with experts: the
degradation of the pump can lead it to vibrate ,[88jich will, in turn, cause the vibration of
the valve and, therefore, aggravate the degradptmeess of the latter [40].

The degradation process of the centrifugal pumpnadeled by a continuous-time
homogeneous Markov chain with constant transitagas as shown in Fig. 1:

a . ‘ : ‘ : °

Fig. 1. Degradation process of the pump [22].

The perfect functioning state is denoted with #igel 3’ and ‘0’ is the label of the complete
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failure state. The vibration of the pump causeddbgradation is classified into two levels:
‘smooth’ and ‘rough’ [41], corresponding to the dadgtion state’ and ‘1’, respectively. Let
Y, (t) denote the degradation state of the pump at tinend S, = {0,1,2,3} denote the
degradation states set. The values of the degoadaéinsition rates are presented in Table I.

Table | Values of the degradation transition ratethe pump

Parameter | Value

Az 6.00e-3 /s
A1 6.00e-3 /s
Ao 6.00e-3 /s

The pneumatic valve refers to a normally-closed gad-actuated valve with a linear
cylinder actuator, which has been studied in [5, &® [34] by physics-based modeling. A
simplified scheme of the valve is shown in Fig. 2.

Top
e pneumatic port
Top chamber-——{>_ ——"""" Return Spring
< Piston
Bottom .., D Bottom chamber

pneumatic port

Fluid -—>

Fig. 2. Simplified scheme of the pneumatic valve][4

Two case studies considering two different degradanechanisms of the valve will be
carried out in the following section.

43.1. Case 1
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A common degradation mechanism of the valve isitibernal leakage from the seal
surrounding the piston [34]. Owing to this, the pmatic gas can flow between the two
chambers therefore influencing the response tingeb@havior of the valve. The degradation
variable of the valve is the equivalent orificeaacd the internal leakage of the piston, denoted
by L(t), and the degradation process of the valve at tingeedescribed by the following vector:

L(t)
x(t)
X, ()= | v@® 24
0= (24)
my(t)
t
where x(t) is the position of the valvey(t) is the velocity of the valven,(t) is the mass of
the gas in the top chamben, (t) is the mass of the gas in the bottom chambertaisdthe
running time of the valve. The derivatives of theagables are represented by:

L)
v(t)

X_-’v _ | a(®) o5
(®) £ (25)
fo(8)
1

wherea(t) is the valve acceleratiorf;(t) and f;,(t) are the mass flows going into the top
and bottom chambers, respectively. The detailsephysic functions governing the evolutions
of the above variables are as follows:

L(t) = wrv(t)? (26)
where w is the wear coefficient,

a()) = — [(po(®) ~ pe() (4, ~ LO) ~mg +

—k(x(t) + xo) — rv(t) + F(x(1))] (27)
where
mp()RgT
pp(t) = Voo tAnx(®) (28)

is the gas pressure on the bottom of the piston,

me(t)RgT
pe(t) = Vot Ay (Ly—(0) (29)
is the gas pressure on the top of the piston,
ke (—x(0)), if x(t) <0
F.(x(t)) =4 0, if 0<x(t) <L (30)
—k (x(t) — Ly), if x(t) > Lg
is the contact force,
fe(@®) = faue(8), pe(6), As) + £ (0 (8), pe (), L(D)) (31)
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fo () = foup(2), pp(£), As) + f5 (e (6), pp (), L(1)) (32)

where u,(t) and u,(t) are the pressures on the top and bottom pneupwti, respectively,
alternating betweer®,,,, and P,.,, depending onthe command (opening commandt) =

Pyem and uy(t) = Py, ; closing command:u,(t) = Py, and uy,(t) = Pgyy ), and fy
defines the gas flow through an orifice as follows:

) 2
if 6 < (m)y_l

fo(@1,02,4) = 1 (33)

y+1

ePCA |=——=(=)(6r—67), if 6 > (m)v-l
\

ZR4T “y-1

P = max(p,, p2)
5 = min(py,b2)
max(p1,02)

e = sgn(p; — p2)

The parameters definitions and numerical valuededlto the internal leakage degradation are
presented in Table Il below.

where

Table Il Parameter Definitions and Values of Intginreakage variables [5]

Parameter — Definition Value

g — acceleration due to gravity 9.8 m/s
Py, — supply pressure 5.27e6 Pa
P,+m — atmospheric pressure 1.01le5 Pa
m — mass of the moving parts of the valve 50 kg

r — coefficient of kinetic friction 6.00e3 Ns/m
k — spring constant 4.80e4 N/s
k. — large spring constant associated with the flexdeals 1.00e8 N/s
Xo —amount of spring compression when the valvéoised 0.254 m

Ly — fully open position of the valve 0.1m

A, —surface area of the piston 8.10e-3 m
Vio — minimum gas volume of the top chamber 8.11e-4 m
Vpo — minimum gas volume of the bottom chamber 8.11e-4m
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R4 — gas constant for the pneumatic gas 296 J/K/kg
T —ideal gas temperature 293 K
y — ration of specific heats 1.4
z — gas compressibility factor 1
A, — orifice area of the pneumatic port 1.00e-5 M
w — wear coefficient 6e-9 m/N
C, — flow coefficient 0.1

At the initial stage, the valve is set to the fullpsed position with the values:

/ L%O) \

Psup (LsAp + VtO)
Rg4T

PaemVpo
0

The thresholdL* for the internal leakage of the pistéGt) is defined as the value above
which (L(0) > L*) the valve cannot reach the fully open positiothimithe 15s time limit after
an opening command is executed at time 0s. The size of the internal leakage is assumed
to be constant during the opening procedui€t] =0, 0 <t < 15) [34] to obtain a

conservative threshold af* = 3.20e — 6 m? in this case. The behavior of the valve within
15s with different values of.(0) is shown in Fig. 3.

X,(0) = (34)
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0.12

—L(0)=0
——L(0) = 1/2L*

0.1—77—|_(0) = L*
-e-L(0) = 3/2L* /

0.08}

0.06

0.04

valve position (m)

0.02¢

0 5 10 15

Fig. 3. Valve position for different sizes of thedrnal leakage.

4.3.1.1.PDMP for the degradation processes of thgstem considering dependence

The degradation processes of the whole system adelsd by PDMP as follows:

L(t)
x(t)
v(t)

Z(t) (z(t)) =|mt) | € R®xS, (35)
WO @)
t
\1for/
and
L' (t,Y,(1))
s
2 Vv t
Z(t) = (Xv(gt)> = | ;l-t((t)) I (36)

B,

where L' (t, Y, (t)) is the derivative of the internal leakage of tlaéve, with consideration of

the degradation dependence between the valve arulthp whereas the development of the
internal leakage of the valve is dependent on dggatiation state of the pump,

I (6Y,(6)) = w(L + By, 0)rv(t)? (37)
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Whereﬁyp(t) is the relative increment of the developing rdtéhe internal leakage caused by
the vibration of the pump (if we ignore the degtamia dependence, thq@yp(t) = 0). For

illustrative purposes, we assume thigt= g, =0, B, = 10% and B; = 20%. The times
between two consequent jumps of PDMP follow theoagmtial distribution with constant

degradation transition rates of the pump. The spatee failure states of (t) is F = R® x
{0} U [L*, +%0) X R® X §,,.

4.3.1.2. Results and analysis

Due to the large dimension of the PDMP and the dexformulation of the physic
equations, the MC simulation method is adopteateesthe model.

The initial state of the system is as follows:

L(0) =0
0
0

~ (T Peup(Lshy Vi)

7 = (Xv(0)> — RyT (38)
Yp(O) PaemVbo

RgT

0

3

which means that the two components are both ifegpiestate and the valve is in the fully
closed position. The command of the valve is af#r#adic-signal and the valve is commanded

to open in the first half-period and to close ia #econd half. The pump is functioning until it
reaches the failure stat@'

MC1, MC2 and MC3 are applied for the system religbestimation over a time horizon
of T,,;sc = 700 s. The results are shown in Fig. 4. In order to epjate the differences in the
curves plotted in Fig. 4, the results between 480560 s are presented in Fig. 5.
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Fig. 4. System reliability obtained by MC1, MC2 avi3.
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Fig. 5. System reliability with common degradat@ause and degradation dependence
obtained by MC1, MC2 and MC3 between 460 s ands60

In Fig. 6, we compare the system reliability witith@wut dependence, obtained by MC3.
From the Figure, we can see that before 465.60ist(B) the two curves coincide and the
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system reliability is equal to the reliability dfe pump. After that time, valve failures begin to
occur in some simulation trials, correspondingg@alizations in which the pump jumps to state
‘1’ very soon and stays there until the valve fdilse system reliability, then, experiences three
sharp decreases at around 497.39 s (point B), B26.(point C) and 556.45 s (point D)
respectively, and the system is definitely fail@ravards. The longest failure time of the valve
IS at point D, corresponding to the situation wttenpump stays in the initial sta® from the
beginning until the failure of the valve. It is sebat neglecting degradation dependence might
underestimate the system reliability.

_ ,[32 = Bl =0
——B, = 10%, B, = 20%
0.8-
206
%
8
©
004+
0.2r

0 100 200 300 400 500 D 600 700

Time (s)
Fig. 6. System reliability with/without dependence.

4.3.2. Case 2

In this case study, the external leakage at theastmt connections to the bottom pneumatic
port due to corrosion and other environmental facte considered as relevant degradation
mechanism, [5].

Let D, (t) denote the area of the leakage hole at the bgiteeamatic port at timg the
development of the leakage size is described by:

Dy(t) = wp (39)

wherew, = 1le —8m2/s is the original wear coefficient. The thresholdtbé area of the
leakage hole can be calculated s= 1.06e — 5 m? by using the same criteria given in
Section 4.1.

4.3.2.1. PDMP for the degradation processes of tlsgstem considering
dependence

The degradation processes of the whole system adeled by PDMP as follows:
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Z() = (1}),;’((3) € R* xS, (40)
and
At = (D’;, O(t)) _ (wb(1 +O aypm)) (41)

where Ay, (1) is the relative increment of the developing ratéhe external leakage at the

bottom pneumatic port caused by the vibration efgihmp at the degradation sta2édr ‘1’
(if we ignore the degradation dependence, th%r@t) = 0). We assume that; = a;, = 0,

a, = 10% anda; = 20%. The times between two consequent jumps of PDMIBwothe
exponential distribution with constant degradati@nsition rates of the pump. The space of

the failure states of (t) is F = R* x {0} U [Dj, +) X S,,.

The initial state of the system is assumed asv@io

. /D,(0)
%= (nw)=6) (42)

which means that the two components are both in pleefect state.

4.3.2.2.Results and analysis

MC simulation method and FV scheme are appliedtlier estimation of the system
reliability over a time horizon of,;;;c = 1000 s. The results obtained by MC1, MC2 and MC3
are shown in Fig. 7.

0.8-

Reliability
o
o

o
~

0.2¢

0 200 400 600 800 1000
Time (s)

Fig. 7. System reliability obtained by MC1, MC2 avid3.

- 145 -



PAPER II: Y.-H. Lin, Y.-F. Li, E. Zio. ReliabilitAssessment of Systems Subject to Dependent Degradbcesses: A
Comparison between Monte Carlo Simulation and &iN@lume Scheme. Reliability Engineering & Systeafiedy. (Under

review)

For the FV scheme, the state sp&& of D,(t) has been divided into an admissible
meshM = Uy,—¢1,,. [nAx, (n + 1)Ax[ and the time spac®* has been divided into small
intervals R* = Up-g12,..[nAt, (n + 1)At[. The values of space stefx and time stepAt
can influence the accuracy of the results. We lcansidered 7 different parameter settings: (1)
FV1: Ax = le — 8,At = 1; (2) FV2: Ax = 5e — 8,At = 1; (3) FV2a: Ax = 10e — 8,At =
1; (4) FV3: Ax = 1e — 8,At =5, (5) FV3a: Ax = 1e — 8,At = 10, (6) FV4: Ax = 5e —
8,At =5 and (7) FV5:Ax = 10e — 8,At = 10. Their results are shown in Fig. 8-11.

We compare the results obtained by FV1 and MC3ign & where it is shown that FV
scheme can lead to results comparable to thodeedMC simulation method. The effect of
variations inAx is studied in Fig. 9, where it can be seen th&drbearound 730 s (point A)
the three curves match. Up to that time, the systdability is equal to the reliability of the
pump. After that time D, (t) approaches the threshaly and valve failure begins to occur,
so that the effect of variations ifix becomes more distinct since smallex leads to more
accurate estimation @b, (t) and, thus, more accurate estimation of the systéability. The
effect of variation inAt is studied in Fig. 10, where we can see that fieeteof variations in
At is visible from the beginning, sinc&t can influence the estimation of boih,(t) and
Y, (t) and, thus, influence the estimation of the systmbility from the beginning. The joint

effect of variations inAx and At is shown in Fig. 11.
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Fig. 8. System reliability obtained by FV1 and MC3.
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Fig. 9. System reliability obtained by FV1, FV2 aRd2a.
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Fig. 10. System reliability obtained by FV1, FV3ldfV3a.
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Fig. 11. System reliability obtained by FV1, FVAJaRVS.

4.4. Comparisons

The numerical comparisons of the two methods grerted in Table Ill. With reference to
the results obtained by MC3, as expected thatdlative change of the other MC simulation
settings decrease as the number of replicationsrieased and that of FV scheme decreases as
the space stepx and/or the time stept is reduced. The average computation time of the
two methods shows that the FV scheme is more effi@and less memory demanding than MC
simulation for simple and low dimensional problerigwever, it should be noted that the
memory requirement of the FV scheme is much higfear that of MC simulation method and
the FV scheme is sensitive to the space step areddiep. The computational expenses of the
MC simulation method increase linearly as the nunalbeeplications increases and that of FV
scheme is almost linear withi - At.

Table 11l Comparisons of the system reliabilityuks obtained by MC simulation method and

FV scheme
Methods System | Relative Average Memory
reliability change | computation consumption
at 1000 s with time (s) (KB)
respect to
MC3
MC MC3 0.0197 1.41 8.17
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simulation| ,~5 00175 | 11.17% 0.14 8.17
method
MC1 0.023 16.75% 0.014 8.17
Fv1 0.0199 1.02% 017 33.62
FV2 0.0237 | 20.30% 0.042 13.26
FV2a 00253 | 28.43% 0.021 10.72
FV FV3 0.0212 7.61% 0.033 27.22
scheme
FV3a 00231 | 17.26% 0.017 26.41
FV4 0.0218 | 10.66% 0.0058 6.86
FV5 00241 | 22.34%|  0.00027 3.51

4.5. Guidelines for the use of the MC simulation metho@&nd FV scheme

Table IV summarizes the qualitative insights drdsem the comparative studies of the two
numerical approaches.

Table IV Comparisons of the two numerical approache

MC simulation method FV scheme
Parameters Number of replicationSpace step, Time step
Accuracy Medium High
Computation time Long Short
Memory consumption Low High
Efficiency Low High
Scope of application Large Small
Ease of Implementation Yes Generally no

The MC simulation method requires a number of ogpidons to achieve a desired level of
accuracy, whereas the FV scheme needs to disctleéizene space and state space by properly
choosing the corresponding step sizes. Due toiteeatization, the memory consumption of
FV scheme is typically larger than that of the M@udation method. The MC simulation
method is easy to be implemented by the practiteonéthout restrictions on the dimension of
the problem, like for PDMP. In reverse, the pricgay is that the MC simulation method can
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be quiet time-consuming. The FV scheme is an ates that appears to be efficient and lead
to results comparable to those of the MC simulati@ihod with acceptable computing time.
However, it is unsuited for high-dimensional prob&or problems with complex equations
describing the deterministic evolution, and itlsoaelatively difficult to implement and deploy.

Given the above observations, the following gurtkdifor utilization may be helpful:

* For high dimensional problems or problems with clampequations describing the
deterministic evolution, the MC simulation methsdreferred.

* For low dimensional problems or problems with sienglquations describing the
deterministic evolution, the FV scheme is preferfddte that in some cases the high
dimensional problem can be decomposed into sel@tatiimensional ones mutually
independent on each other. Then, the FV schemedeann on low dimensional
problems in parallel.

5. CONCLUSIONS

We employ the PDMP approach to model degradatiacgsses of systems subject to
degradation dependence. The significance of théaddies in the possibility that it offers to
describe the degradation dependence between PBisedn MSMs and between the two
types of models. The MC simulation method and Fyéste have been designed for the system
reliability assessment based on the PDMP. Two shgbes based on a real industrial system
have been solved to illustrate the advantagesiaritiions of the two numerical approaches.
A comparative study has been carried out to stuwir taccuracy, efficiency, memory
requirement, scope of application and ease of imeigation. Results show that the MC
simulation method is easy to be implemented andwids applicability, since it has no
restriction on the dimension of the underlying PDM@&deling the degradation processes. The
FV scheme, although relatively difficult to handled more demanding in terms of computer
memory, is computationally more efficient and caad to results comparable to those of the
MC simulation method for simple and low dimensiopadblems.

As future research, we plan to study acceleragohriiques for the MC simulation method,
to relieve the computational burden.
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Abstract — Components are often subject to multiple competiegradation processes. For
multi-component systems, the degradation dependefstbyn one component or/and among
components need to be considered. Physics-basedlsn@@BMs) and multi-state models
(MSMs) are often used for component degradationgsees, particularly when statistical data
are limited. In this paper, we treat dependenciesvéen degradation processes within a
piecewise-deterministic Markov process (PDMP) mimdelramework. Epistemic (subjective)
uncertainty can arise due to the incomplete or @anige knowledge about the degradation
processes and the governing parameters: to takeatbunt this, we describe the parameters
of the PDMP model as fuzzy numbers. Then, we extbedfinite-volume (FV) method to
guantify the (fuzzy) reliability of the system. Theoposed method is tested on one subsystem
of the residual heat removal system (RHRS) of deaugower plant, and a comparison is
offered with a Monte Carlo (MC) simulation solutidhe results show that our method can be
most efficient.

Keywords — Multiple dependent competing degradation processesewise-deterministic
Markov process (PDMP), epistemic uncertainty, fuzey theory, fuzzy reliability, finite-
volume (FV) method.

1. INTRODUCTION

Industrial components are often subject to multiptempeting degradation processes,
whereby any of them may cause failure [1]. For medimponent systems, the dependency
between degradation processes within one compofeegt the wear of rubbing surfaces
influenced by the environmental stress shock wighinicro-engine [2]), or/and the degradation
dependency among components (e.g. the degraddtiba pre-filtrations stations leading to a
lower performance level of the sand filter in aevdteatment plant [3]) need to be considered.

Physics-based models (PBMs) [4-7] and multi-statedeis (MSMs) [8-11] are two
modeling frameworks that can be used for descritiiegevolution of degradation in structures
and components. The former uses physics knowldugjeid implemented into mathematical
equations for an integrated mechanistic descriptibrthe component behavior given the
underlying degradation mechanisms (e.g. shockgyuiat wear, corrosion, etc.). The latter
generally uses degradation and/or failure data finestorical field collection or degradation
tests, or material science knowledge (e.g. mudtiesipphysics model [12]) to describe the
degradation processes by a finite number of stdtdsgradation severity and a set of transition
rates (estimated from historical data) betweerdifierent degradation states.
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To treat degradation dependencies in a system wtmsponents are modeled by these
two types of models, a piecewise-deterministic Markprocess (PDMP) approach was
employed in our previous work [13]. Monte Carlo (M&mulation methods [14, 15] can be
used to solve PDMP, since the analytical solut®wlifficult to obtain due to the complex
behavior of the system, resulting in the stochaigicof MSMs and time-dependent evolutions
of PBMs. However, the major shortcoming is that BHD be quiet time-consuming [16]. The
finite-volume (FV) scheme studied by Cocozza-Thivenhal. [17] and Eymardet al. [18]
appears to be more efficient, leading to comparedsalts as MC simulation with acceptable
computing time [16].

Epistemic (subjective) uncertainty [19] can affdo¢ analysis due to the incomplete or
imprecise knowledge about the degradation procedsb® components [20, 21]. For PBMs,
the parameters (e.g. wear coefficient) and influiepéactors (e.g. temperature and pressure)
may be unknown [22] and elicited from expert judging23]; for MSMs, the state
performances may be poorly defined due to the impeediscretization of the underlying
continuous degradation processes [24] and theiti@nsates between states may be difficult
to estimate statistically due to insufficient dagapecially for those highly reliable critical
components (e.g. valves and pumps in nuclear pplaeats or aircrafts, etc.) [25].

In literature, fuzzy reliability has been studieg many researchers to account for
imprecision and uncertainty in the system modeapeters. Tanaket al.[26] have proposed
the fuzzy fault tree for the fuzzy reliability assenent of binary-state systems and Singer [27]
has assigned fuzzy probabilities to the basic evéhinyaket al.[28] have proposed another
fuzzy extension to assign fuzzy probability to allents, which is consistent with the
calculations from fuzzy fault trees. Dirg al.[20] have developed fuzzy multi-state systems
(FMSS) models by considering the steady state jibti@s, or/and steady state performance
levels of a component as fuzzy numbers. Ding arsthiinski [29] have proposed the fuzzy
universal generating function (FUGF) for the quiacdtion of the fuzzy reliability of FMSS.
Later, Li et al. [30] have developed a random fuzzy extension ofuhiersal generating
function and Sallalet al. [31] have employed Dempster—Shafer theory to giyathte fuzzy
reliability of MSS. Liuet al.[24] have proposed a fuzzy Markov model with fuzgnsition
rates for FMSS when the steady fuzzy state praliabilare not available. To the knowledge
of the authors, none of the previous studies hasidered epistemic uncertainty in PDMP
system models.

The contributions of the paper are twofold. Five¢, employ fuzzy numbers to represent
various epistemic uncertainties in multiple dependeompeting degradation processes
modeled by PDMP. Second, we extend the FV schemidoquantification of PDMP under
epistemic uncertainty instead of using time-consigIC simulation methods [32, 33]. The
reminder of the paper is structured as follows.tiSec2 introduces the PDMP for multiple
dependent competing degradation processes. S&trsents the FV scheme for PDMP.
Section 4 presents the PDMP under uncertainty aedektended FV scheme for system
reliability quantification. Section 5 presents ae&atudy on one subsystem of the residual heat
removal system (RHRS) [34] of a nuclear power pl8ettion 6 presents numerical results and
analysis. Section 7 concludes the work.

2. PDMP FOR SYSTEMS DEGRADATION CONSIDERING DEPENDENCY

The following assumptions are made on the multgépendent competing degradation
processes of a system [13]:
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» The system consists of two groups of components: fitst group containsv
componentsz = (L1, Ly, ... , Ly), whose degradation processes are modeled by

PBMs; the second group contaihlscomponents,{? = (Ky, K5, ... , Ky), whose
degradation processes are modeled by MSMs includ®BM.

* All degradation processes of the system follow REMP, taking into account the
degradation dependency of components within eamipgand between the groups.

« For ageneric componeitt,, m = 1,2,..., M, of the first groupd,  time-dependent
continuous variables are used to describe the datjoa process; the variables vector

m(t)=(a(t),a(t)) contains (1) non-decreasing degradation variables

m(t) (e.g. crack length) and (2) physical variabE%(t) (e.g. velocity and force),
whose evolution in time is described by a set oftforder differential equations
mathematically representing the underlying physjralcesses. The compondnj}

fails when one variable of the first typt—im(t) € Xfm(t) reaches or exceeds its

corresponding failure threshold, denotedxtm*; the set of failure states @f,, is
denoted byF, .

« For a generic compone{,,n=1,2,..,N, in the second group, its discrete
degradation state space is denotedspy= {0y, 1 , ..., dg, }, ranging from perfect
functioning stated, ' to complete failure stateéd’. The component is functioning or

partially functioning in all generic intermediateates. The transition rates between
two different degradation states are used to desdhe speed of reaching another
degradation state. The performance level of onegpom@nt (e.g. vibration of the valve
due to degradation) at each degradation statehenidipact on the other components
are considered as deterministic. The failure statef K,, is denoted byF, = {0, }.

The degradation condition of the whole systemhient represented as follows:

X1, (©)
%0 | =¥ ()

X (©
\(Yxl (6), Yigy (£), -, Yigy () = ¥ () /

where Yy (t),n =1,2,.. ,N denotes the degradation state of comporgntat timet, E is
a hybrid space oR% (d, =d,, +d;,, + .. +dy,,)and S (S = Sk, X Sk, ... X Sk,).

Z(t) = EE=R¥%™L XS (1)

The evolution of the degradation procesiefs) involves the stochastic behavior?)(t)
and the deterministic behavior &f (t), between two consecutive jumpsot), given Y (¢).

Let YT( € S,k € N denote the state of tiNecomponents in the second group altéransitions
(a transition occurs as long as any one ofNletemponents changes its state) dhce R*, k €

N denote the time of arrival at statg. ¥ (¢) is written as follows:
Y (t) =Yy, Vt € [T, Tl (2)

The probability that? (£) will step to statg’ from state? in the next infinitesimal time interval
[T,, T,, + At], given (7(t))ostgn, is as follows:

P[Yn41 =], Tns1 € [T, Ty + At] | (Z (©))osesr,, Ok |
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= P[Vs1 =], T € [T, Ty + AL] | Z/(To) = (X (Tw), D), O]
= (7, X (T,) | 6 )At
Vn=0,,7€EST+] (3)
where@) represents the external influencing factors ofdbenponents in the second group

and the related coefficients to the transition sraté;(f,)?(TnHE{) represents the

corresponding transition rate. The evolution f(t), when t € [Ty, Tesi[Lk €N, is
deterministically described by a set of differehgéiquations as follows:

X, (6) ( leﬁ(7<t),t|9_h’)\’
X0 =] %0 || £, XOt]6,) fﬁ(ﬂt),t@ (4)

K (0 kﬁﬁ(ﬂt),t |92,0)
where fLmy",m =1,2,..,M are the set of physics equations, given the infleeof the

degradation state?k of the second group componenﬁ,m =1,2,..,M represents the
external influencing factors of the compondnt and the physical parameters used in the
physics equations. Mathematically, the dependenttymeach group and between two groups
Is treated in the framework of a piecewise-deteisticyMarkov process (PDMP) modeling,
where the physics equations in the first groupptishby fLT"(Y(t), t | 97) are dependent on
the statesK) of the components in the second group and thesitran rates in the second
group, denoted bylf(f, X' () |E§) are dependent on the evolution of the variabTé@tI) in

the first group.

The reliability of the system at times defined as follows:
R(t) = P[Z(s) & F,Vs < t] (5)

whereF = F; x Fy G E denotes the space of the failure stateg @), where F; denotes
the sub-space of the states)Bqt) and Fy denotes the sub-space of the state¥ @b. Let
p.(%,7]6,,6x),% € Ri,7€S denote the probability density function (PDF) abgesses
(X (£),Y (£))so being in state(’,7) at timet, which satisfies:

f]RdL Zfespt(f»“ 97.@)619? =1 (6)
The reliability of the system can be calculated as:
R(t) = ffgg:‘YZTQT?pt(f,?le_L’,E{))df (7)

The PDF pt(a?,?| 67 EQ) obeys the Chapman-Kolmogorov equation [35] a9zt
a 5o, o =
&pt(x'l | HL'GK) =
—2:( %1 0)pe(%,71 6, 0x) — div (f;oa £l 6,)pe (%7161, ﬁ)) (8)
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where 4;( % | 6x) = Xj.:4:(J, % | ) is the transition rate departing from the statémong

the right-hand parts of equation (8), the first tigams are due to the stochastic behavior of
processed (¢) : the first term accounts for the transition obgessesZ(t) into state (7, %),

the second term accounts for the transition ofeprssesf (t) out of state(7, X); the last term

is due to the deterministic behavior of procesﬁés), which represents the volume density of
the outward flux of the probability field aroundetipoint (7, ¥). Given the initial probability
distribution of the systerrpo(a?,ﬂei,ﬂ)), its evolution in time and that of the system
reliability can be obtained solving equations (83l &7), respectively.

A challenging problem is to calculate the prob#pitensity functionpt(y'c’,ﬂ Q_L’ H_K))
because the analytical solution is difficult toahtdue to the complex behavior of the processes
[14, 15]. MC simulation methods can be appliedstach numerical computations, but the major
shortcoming is that they are typically time-consognj16]. FV methods is an alternative that
can lead to comparable results as MC simulationwithin a more acceptable computing time
[16].

3. FINITE-VOLUME SCHEME FOR PDMP

Instead of directly solving the probability densftynction pt(f,ﬂ B_L)Q) through the
Chapman-Kolmogorov equation (8), an approximateitgoi can be obtained by the FV
scheme by discretizing the state space of theraamiis variables and the time space of PDMP.
The approximated solution converges towards therate solution under certain conditions.
Here, we employ an explicit FV scheme to PDMP, tied by Cocozza-Thiveset al.[17].

3.1 Assumptions

This approach can be applied under the followirsyagptions [17]:

«  The transition rated;(J, | E{’),vfj € S are continuous and bounded functions from
R? to RY.

e The physics equationﬁf Gl H_L)),v? € S are continuous functions froR%: x R*
to R% and locally Lipschitz continuous.

* The physics equationﬁf(-, t| e_L’),v? € S are sub-linear, i.e. there are soife> 0
andV, > 0 such that

vZ e Rt € R |f," (% ¢16,)| < Vi(IIZI + It]) + V,

« The functionsdiv(ff(-,- IH_L))),VTE S are almost everywhere bounded in absolute
value by some real value > 0 (independent af).

3.2Numerical scheme

For the ease of notation, first we lgt(-,"): R% x R - R4 denote the solution of

%E(m@) =]?)(E(f,t|6_£),t| H_L’),v?es,a? € R, t € R (9)
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with
g (%,016,) =% Vies¥eRL (10)
and E(ft | H_L)) is the result of the deterministic behaviorXoft) after timet, starting from
the pointx while the processeg(t) hold on state.

The state spac®? of continuous variable?(t) is divided into an admissible me3if,
which is a family of measurable subsetsRst (M is a partition ofR%) such that [17]:

(9) Useac A = R,

(10)VA,BeM,A+B=ANB =0.

1) m, = an > 0,VA € M, wherem, is the volume of gridA.

(12) supseardiam(A) < +oo wherediam(A) = supyzjealX — yl.
Additionally, the time spaceRis divided into small intervalR"™ = U, 1., [nAt, (n +
1)At[ by setting the time steppt > 0 (the length of each interval).

The numerical scheme aims at giving an approximmatee for the probability density
function p(%,7|6,,6x) on each{i} x [nAt, (n + 1)At[x A, Vi € S,n € N,A € M denoted
by pn(A,7]6,,8x), by assuming that:

p(%,716.,0x) = p(A,1]6;,0¢), VI € S, % € A t € [nAt, (n + 1)At] (11)
Given the initial probability density functiopo(f,ﬂ H_L) E;) of the system at time =
0, po(A,7]6,,8¢), Vi €S,A €M can be obtained as:
PO(A’NQ_L):E{)) = pro(f,?IH_L),ﬁ)dx/mA (12)

Then, pn.1(4,7]6,,6x),Vi€ES, A€ M,n€N can be calculated considering the
deterministic evaluation ofX (¢t) and the stochastic evolution of (¢) based on
pn(M,?| 97 @) by the Chapman-Kolmogorov forward equation [36]f@lows:

Pn+1 (A' ? | H_L)l E())

1
= 1+Atbl pn+1(A U HL'GK) + AtZ,is T ilPn+1(A | HL, 9;{) (13)
VEX!
where
afl = [, 2(1,% | 0)dx/my, VI € S, A € M (14)

is the average transition rate from statéo state? for grid A4,
ZlijaA,V]ESAEM (15)
is the average transition rate out of statéor grid A,
Prri(AT10.,0k) = Zpere mbapn(B.T16,,65)/my, VIES,AEM (16)

is the approximate value for probability densitpdtion on {i} X [(n + 1)At, (n + 2)At[x A
according to the deterministic evaluation{(t),

>

meA:f

= . dy,Vi€ES,ABEM 17
es | giaca)ea YVt (17)
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is the volume of the part of gri@, which will enter gridA after time At according to the
deterministic evaluation ok (¢).

The first term of the right-hand parts of equatid@3) accounts for the situation that
processes?(t) hold on statel during time [nAt, (n + 1)At], represented by “1” in an

illustrated example inR? (Fig 1), where ﬁ,v?es,AeM is the approximated
A

probability that no transition happens from statéor grid A and the second term of the right-

hand parts of equation (13) accounts for the sanahat processe?(t) step to state@ from
another statg’ at time (n + 1)At, represented by “2” in an illustrated exampleRA (Fig 1),

where afAt, Vi,j € S,A € M is the transition probability from stafe to state? for grid A
(B;1,B3,B; and B, are the grids of which some parts will enter gddaccording to the
deterministic evaluation ok (t) attime (n + 1)At).

j T

=~
-
o

Fig 1. The evolution of degradation processes dupiri\t, (n + 1)At].

The approximated solutiorpn(A,?|9_L),§) weakly converges towards the unique

solution of equation (8) whe\t - 0 and |[M|/At — Owhere | M| = supyepcdiam(A)
[17].

4. PDMP UNDER UNCERTAINTY

Fuzzy set theories and techniques introduced belZ§87, 38] have been employed in
reliability models under epistemic uncertainty whiee crisp values are insufficient to capture
the actual behavior of components. In this work,ftillowing assumptions are made to extend
the previous PDMP model with the considerationm$tmic uncertainty:
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 The values of the jxternal influencing factors guinysical parameteréT in the
physics equationsf,'(%,t | 6,),Vi € S,% € R% and equationsgf(ic’,t 16,),Vi €
S, x € R4, t € R for the deterministic processéfit) can be fuzzy numbers, denoted
by B_L’

* The values of the external influencing factors #mel related coefﬁcient§ in the
transition rates for the stochastic procesg’eés) between two different states

4(,%|6x), vVt €RY, ¥ €RYL,TjEST+] can be fuzzy numbers, denoted y.

The values of the probability density functiqxxﬁt, X1 H_L)ﬁ) and reliability function
R(t) have, therefore, changed from crisp values to yfuzmmbers, denoted by

ﬁ(t,f,?w_i,@’) and R(t) respectively. In the next section, we extend tpppraach

presented in Section 2 to quantify the dependegtadiation processes modeled by PDMP
under uncertainty.

4.1 Quantification of PDMP under uncertainty
Let [d@], = [aq @, ] denote thex-cut of a fuzzy numbefi, where a, and a, are the

bounds; then, ther-cut of § (t, %716, E{),v? €S, € R%,t € R can be obtained based
on the extension principle [38] as:

p(17.7), -

mineje[ezi]a p(t,%,7] HL'BK)'maxe_L’e[G;Z]a p(t,%,7]6,,0x) (18)
ocelon), oelon),
The approximate solution fo[ﬁ (t, X1 5_2 ﬁ) ] ,VIE S, X € At € [nAt, (n+ 1)At]
a

denoted byp;, (A,T| 5_;’ 9_~K)) can be obtained by varyin@) in [’B;Z] and EQ in [9:,{)] as
[24 a
follows

e (117.7), -

ming 5] pn(4,716.,6x) Mg . pn(4,716,,6x) (19)
oxe[ox] oxe[ox]

where pn(A,T| 6_[ E{)) is obtained by eq. (13) through the FV schemenTH®e parametric
programming algorithms [24] can be applied to fihd fuzzy probability in eq. (19).

The approximate solution for the-cut of fuzzy reliability R(t) of the system at time €
[nAt, (n + 1)At[ can, then, be obtained as follows:
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[R(O)]a = Saeoe Ziery[Pn (4710006 )l figen s ey O (20)

In most cases, the origind(t) is monotonic WithG_L) and 67,(; then, we can directly obtain
that instead of using eq. (19):

ROL=Y > p(aile )| @,
AEM LEFy —a —a {XeA | ¢ Fz)

ZAEM Zie Fy Pn <A' [ | H_L)a' E()a> f{feA |2 ¢ Fx} dx] (21)

5. ILLUSTRATIVE CASE

The illustrative case refers to one important satesy of a residual heat removal system
(RHRS) consisting of a centrifugal pump and a pregiswvalve. The definition of the system
has been provided by Electricité de France (EDRg @legradation model of the pump is a
modified MSM from the one originally supplied by EDwhile that of the valve is a PBM
developed by Daigle and Goebel [4]. Upon discussioth the experts, a degradation
dependency between the two components has beenlemts as follows: the degradation of
the pump will cause it to vibrate [39] which, intuwill lead the valve to vibrate and therefore
aggravate the degradation processes of the ldfdgr [

Given its series logic structure, the subsysterpissidered failed when one of the two
components is failed.

5.1 Centrifugal pump

The multi-state model of the degradation procesbt®e centrifugal pump is a continuous-
time homogeneous Markov chain with constant traorsitates as shown in Fig 2:

}\32 ‘ . ‘ : °

Fig 2. Degradation processes of the pump.

There are four degradation states for the pumpn fitee perfect functioning stat8’‘to the
complete failure state)’. Due to the degradation, the pump can vibraterwibheeaches the
degradation state®”and ‘1’. The intensity of the vibration of the stat2’ is assigned as
‘smooth’ and that of the staté’‘is assigned as ‘rough’ by the experts. Ig{t) denote the
degradation state of the pump at timeand S, = {‘0’,1’,2,'3’} denote the degradation
states set. The pump is functioning until it reactiee complete failure stat@’; 1;,, 4,; and
A1 are the transition rates of the degradation psoces

5.2Pneumatic valve
The simplified scheme of the pneumatic valve issshn Fig 3.
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Top
pneumatic port

—
-
-
-

Top chamber Return Spring

Piston

Bottom ____ Bottom chamber
pneumatic port

Fluid >

Fig 3. Simplified scheme of the pneumatic valve [4]

The pneumatic valve is a normally-closed and gasased valve with a linear cylinder
actuator. Top chamber and bottom chamber are geddrg the piston, and are connected to a
top pneumatic port and a bottom pneumatic porfpaetsvely. The position of the piston
between fully closed positiof®*and fully open positionx,’ can be controlled by regulating
the pressure of the pneumatic ports to fill or exze the two chambers. A return spring is
linked with the piston to ensure that the valvd alidbse when pressure is lost, due to the spring
force.

There are several common degradation mechanisthe ehlve (e.g. sliding wear, internal
leaks, external leaks, etc.). In this case stuslyeggradation mechanism we have chosen the
external leak at the actuator connections to theolopneumatic port due to corrosion and
other environmental factors, for two reasons: [ mhore significant than the other degradation
mechanisms according to the results shown in [AHh& uncertainty associated with the wear
coefficient estimated from a limited amount of dsit@uld be taken into account. The leak will
lead the valve to be more difficult to open butiea® close. The threshold of the area of leak
hole D; is defined as the value above whidh,(t) > D;) the valve cannot reach the fully
open position within the 15s time limit from thelljuclosed position, after an opening
command is executed.

Let D,(t) denote the area of the leak hole at the bottonumpaéc port at time, the
development of the leak size is described by:

Dy (t) = wp(1 + By, ) (22)

where w,, is the original wear coefficient and whqﬂ?@p(t) IS the relative increment of the

developing rate of the external leak at the botm@umatic port caused by the vibration of the
pump at the degradation sta2édr ‘1’ (if we ignore the degradation dependency, tW@th) =

0).
The function command of the valve cycle is a 30sepkéc-signal and the valve is
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commanded to open in the first half-period andltse in the second half by changing the
pressure of the top bottom pneumatic poytt) and that of the bottom pneumatic pam}(t)
(opening commandu,(t) = Py, and u, (t) = Py, closing commandu, (t) = P, and
u,(t) = P,y)- At the beginning, the valve is set to the fudlgsed position.

Let x(t) denote the position of the valve at timewhose evolution in time is described
by the following equations:

x(t) = a(t) (23)

where

a(t) = [(po(®) ~ pe(D)A, —mg +

—k(x(t) + x0) — v (t) + Fo(x(6))] (24)
is the valve acceleration, where
_ mp()RgT
po(t) = 2 s (25)

is the gas pressure of the bottom of the piston,
pe(t) =

is the gas pressure of the top of the piston arefevh

mt(t)RgT
Veo+Ap (xs—x(t))

(26)

me(t) = me(0) + j £, e(0), pe(0), Ay
0

sup(L A +Vt0)
with m,(0) = —RgT

(27)

and
myp(t) = mp(0) + f foup (), pp(£), Ag) + f3(Parm, 0y (£), Dp(t))dt
0

with my(0) = “2mrbe (28)
g

are respectively the masses of the gas in thetliapber and bottom chamber at timeand
where

(epcoa | 2y 8 yl
Y- < Y-
fg(plipbA) = <
2 2 r+1 ¥
ePCSA\/ 57), if 8> G
\
P = max(py,p2)
. __ min(py,pz)
with 16 = max(p1,p2) (29)

£ = sgn(p, — p2)
defines the gas flow through an orifice, and
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ke(—x(1)), if x(t) <0
F.(x(®) =<0, if 0 <x(t) <L (30)
_kc(x(t) - xs)r if x(t) > L

is the contact force exerted on the piston by léralile seals.

The parameters definitions and values (exceptfgrand ﬁyp(t)) of the valve are presented in
Table | below.

Table | Valve Parameter Definitions and Values

Parameter Definition Value

g —acceleration due to gravity 9.8 m/s
Py, —supply pressure 5.27e6 Pa
P,:m —atmospheric pressure 1.01e5 Pa
m —mass of the moving parts of the valve 50 kg

r —coefficient of kinetic friction 6.00e3 Ns/m
k —spring constant 4.80e4 N/s
k. —large spring constant associated with the flexéglals | 1.00e8 N/s
x, —amount of spring compression when the valveased 0.254 m

xs; — fully open position of the valve 0.1m

A, —surface area of the piston 8.10e-3 M
V.o —minimum gas volume of the top chamber 8.11e-4 m
Vyo —Mminimum gas volume of the bottom chamber 8.11e-4 M
R, —gas constant for the pneumatic gas 296 J/K/kg
T —ideal gas temperature 293 K

y — ratio of specific heats 1.4

z — gas compressibility factor 1

A, — orifice area of the pneumatic port 1.00e-5 M
C; — flow coefficient 0.1
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With the given values, the threshold of the areteak holeD; = 1.06e — 5 m? (maximum

damage) can be calculated: once exceeded, the walveot reach the fully open position
within the 15s limit, as shown in Fig 4.

0.12

— Maximum Damage
---------- No Damage

0.1

o
o
3]

Valve Postion (m)
o
o
(o))

-0. 2 | | | | | ]
0.0 0 5 10 15 20 25 30

Time (S)

Fig 4. Valve behavior with different sizes of théexnal leak.

5.3PDMP for the system under uncertainty
The degradation processes of the whole system adeled by PDMP as follows:

Z() = (1;;,((5)) ) € R* xS, (31)

The space of the failure states &ft) is F = Fp, X Fy, = [Dj, +0) x {'0’}. We haveH_L) =

(Wb, Br, (1)) and B, = (133, 4,1, 10) Which are the uncertain parameters due to thetfiatt
their values are estimated from insufficient degtemh data or elicited from expert judgment.
Epistemic uncertainty associated to them, henceds& be taken into account and a proper
mathematical representation of uncertainty ofthitire is by fuzzy numbers (FNs). We choose
triangular fuzzy numbers (TFNs) [41] to represdm uncertain parameters because their
boundary values and most probable or most advisalles are considered easier to be elicited
from experts than other FN types and they are widséd to represent uncertain parameters in
reliability engineering [20, 24, 29, 41]. Howevire proposed framework is generally suitable
for fuzzy numbers with other types of membershipctions. The values aby,, E/;E), .

1,1 and A, are shown in Table II. The fuzzy numbers are assidy considering a relative
uncertainty of+10% of the original parameters values.

Table Il The values of the fuzzy parameters in PDMP
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Parameter | Value

oy, (9e-9, 1e-8, 1.1e-8) s
Z (9%, 10%, 11%)

B: (18%, 20%, 22%)

Nzs (2.7e-3, 3e-3, 3.3e-3)'s
. (2.7e-3, 3e-3, 3.3e-3)'s
1o (2.7e-3, 3e-3, 3.3e-3)'s

The initial state of the system is assumed asvialio

— _(Dp(0)y /0
Zo = (yp(O)) =(.3)
which means that the two components are both im gegfect state. The initial PDF of the

processeg Dy, (1), Y, (t))e0, Po (x,i | ’G\_Zi) hence equals td if (x,i) = (0,‘3") and to0
otherwise.

6. RESULTS

A MC-based approach [33] can also be used to gyaifie epistemic uncertainty, in
alternative to the fuzzy arithmetic operations iy parameter programming procedure. The
comparisons between the results of the reliabilitthe system at cut level = 1, i.e. without
fuzziness in the parameters values, over a timedoA000s calculated by MC simulation and
the FV scheme are shown in Fig 5 and Fig 6. In rotdebetter understand the differences
presented in Fig 5 and Fig 6, we have added bebxh eriginal Figure one extra Figure,
zooming on the time horizon between 800 s and 9@®) iBustrate the results obtained by
different methods. For the FV scheme, the stateesfiid of D, (t) has been divided into an
admissible mestM = U= 1. [nAx, (n + 1)Ax[ where Ax = 1e — 8 m?/s and the time
space R* into small intervalsR* = U, -1, [nAt, (n 4+ 1)At[ by setting the time step
At = 1 s. All the experiments were carried out in MATLAB arPC with an Intel Core 2 Duo
CPU at 1.97 GHz and a RAM of 1.95 GB. The MC sirtiata method with 19 and 16
replications (named MC1 and MC2, respectively), tnedproposed FV scheme are applied for
the fuzzy reliability assessment of the system. ayerage computation time of MC1 and MC2
is respectively 0.94 s and 9.40 s, while that effV scheme is 0.20 s. The system reliability
decreases more rapidly after around 885 s, becatigbat time the valve could fail,
corresponding to the situation when the pump dtefise statel’ very quickly and stays there
until the valve fails.

The quantitative comparison of the results ovama horizon 1000 s is shown in Table 1.
Compared with the results of MC2, the mean abso&l#ive difference (MARD) of the results
of MC1 is 0.40%, while that of the results of thé scheme is 0.17%. It is observed that the
results of the FV scheme are closer to those of M@ich is more accurate than that of MC1
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because of the larger number of simulations.

0.9

0.8
0.7

y
o
o

0.5

Reliabilit

0.4
0.3

0.2

0.1

L L L L L L L L L |
0 100 200 300 400 500 600 700 800 900 1000
Time (8)

Fig 5. Fuzzy reliability at cut levet = 1 (no fuzziness) obtained by MC1 and MC2.

0.9r —FV Scheme
0.8-

0.7r

y
o
=

0.5F

Reliabilit

0.4

0.2
0.1

1 1 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Fig 6. Fuzzy reliability at cut levet = 1 (no fuzziness) obtained by MC2 and FV
scheme.
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Fig 7. Fuzzy reliability at cut levet = 1 (no fuzziness) obtained by MC1, MC2 and FV
scheme of time horizon between 800 s and 900 s.

Table Ill Comparison of the fuzzy reliability ofd@rsystem at cut levet = 1 (no fuzziness)
between MC simulation methods and FV scheme agréffit times

Method MC2 MC1 Relative FV Relative
Time difference scheme difference
100s 0.9965 | 0.9966 0.01% 0.9964 -0.01%
200s 0.9769 0.9766 -0.03% 0.9773 0.04%
300s 0.9372 0.9364 -0.09% 0.9379 0.07%
400s 0.8799 0.8780 -0.22% 0.8805 0.07%
500s 0.8094 0.8063 -0.38% 0.8102 0.10%
600s 0.7305 0.7283 -0.30% 0.7321 0.22%
700s 0.6496 0.6469 -0.42% 0.6513 0.26%
800s 0.5696 0.5664 -0.56% 0.5714 0.32%
900s 0.4873 0.4839 -0.70% 0.4874 0.02%
1000s 0.1801 0.1778 -1.28% 0.1811 0.56%
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The results of the fuzzy reliability of the systattut levelse = 0 anda = 1 over atime
horizon 1000 s obtained by MC2 and FV scheme awe/shin Fig 8. The lower bound of the
fuzzy reliability of the system at cut level= 0 decreases more sharply after around 790 s,
earlier than the fuzzy reliability at = 1. It is seen that the system fails after around £64
because at that time the valve is completely failéwe upper bound of the fuzzy reliability at

a = 0 does not experience a rapid decrease becausaltleeis mostly functioning over the
time horizon.

—FV Scheme

—

0.8r cutlevela =0

NN

cut levela = 1

Reliability
o
e

o
~
T

0.2-

| 1 | | | | 1 | 1 J
0 100 200 300 400 500 600 700 800 900 1000
Tims (s)

Fig 8. Fuzzy reliability at cut levels = 0 anda = 1 obtained by MC2 and FV scheme.

The membership function of fuzzy reliabilit® (t) at mission timet = 800 s at different
cutlevelsa € [0,1] obtained by MC simulation methods and FV scheraéllaistrated in Fig
9 and Fig 10 (we have uniformly chosen 51 point0jri] with a step equal to 0.02 assigned

to a). The average computation times of MC1 and MC228ré&9 s and 201.94 s respectively,
while that of FV scheme is 15.91 s.
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e | | | I | RN J
8.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
Reliability

Fig 9. Membership function of fuzzy reliabilitg§(t) at mission timet = 800 s obtained
by MC1 and MC2.

0.9r —FV Scheme

- I I I I ) ]
8.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
Reliability

Fig 10. Membership function of fuzzy reliability(t) at mission timet = 800 s
obtained by MC2 and FV scheme.

The quantitative comparison of the results of tleemnership functions obtained by the MC
simulation methods and FV scheme is shown in TRblI€ompared with the results of MC2,
the MARD of the results of MC1 is 0.38% while tlvdithe FV scheme is 0.27%.

Table IV Comparison of the results of the membegréinction obtained by MC simulation
methods and FV scheme
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Method MC2 MC1 Relative difference FV Relative difference
Cut level (Minimum/Maximum) scheme (Minimum/Maximum)
a=0 [0.5062, 0.6330]| [0.5086, 0.6340] (0.47% / 0.16% | [0.5057,0.6350] -0.10% / 0.32%

=01 | [05137,0.6271]| [0.5111,0.6260]| -0.51% / 0.18%| [0-5148,0.6285] (.21% / 0.22%

@=02 | [0.5209, 0.6203] [0.5181,0.6218] -0.54% / 0.24%)| [0.5220,0.6221] (.21% / 0.29%

@=03 | [0.5266,0.6141] [0.5249, 0.6095] -().320%% / -0.75%] [0-5283,0.6157] (.32% / 0.26%

@=04 |[0.5329,0.6088] [0.5348,0.6071] (.36% /-0.28%)| [0.5344,0.6093] (.28% / 0.08%

@«=05 | [0.5386,0.6015]| [0.5413, 0.6001] (.500% / -0.23%| [0-5405, 0.6030] (.35% / 0.25%

@=06 | [0.5440, 0.5955]| [0.5476,0.5976] (.66% / 0.35% | [0-5466,0.5966] (.48% / 0.18%

@=07 | [0.5513,0.5892] [0.5529,0.5880] (.290% / -0.20%)| [0.5528,0.5903] (.27% / 0.19%

«=08 | [0.5577,0.5825] [0.5559, 0.5808] -().320% / -0.29%] [0.5590, 0.5840] (.23% / 0.26%

=09 | [0.5626,0.5756]| [0.5643,0.5797] (.30%/ 0.71% | [0-5652,0.5777] 0.46% / 0.36%

The above results show that the FV scheme achamparable results as MC2, with less
computational burden.

7. CONCLUSIONS

In system reliability modeling, it is important bz able to describe multiple dependent
degradation processes, while including the unagstan their quantitative evaluation. In this
work, we have considered the degradation depeneleaonong different system components
and within one component in the framework of PDM&deling. Both PBMs and MSMs are
used to describe the components degradation behd&pistemic Uncertainty due to the
incomplete or imprecise knowledge about the dedi@ugprocesses and the governing
parameters is included by describing the model maters as fuzzy numbers. For the
calculation of the system (fuzzy) reliability, tR& method has been extended and shown to
lead to comparable results as MC simulation, bttt veaduced computing time.

In future research, it will be interesting to coles the situation when aleatory uncertainty
is associated with the parameters in the PDMP model
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Component Importance Measures for Components wiihilie
Dependent Competing Degradation Processes andchtje
Maintenance

Yan-Hui Lin, Yan-Fu Lisenior member IEEEEnrico Ziosenior member IEEE

Index Terms —Degradation dependency, importance measures, heultgpendent competing
degradation processes, piecewise-deterministic darkrocess (PDMP), finite-volume
approach, residual heat removal system, nucleaepplant.

Abstract - Component importance measures (IMs) are widely usednk the importance of
different component within a system and guide alfimn of resources. The criticality of a
component may vary over time, under the influenéemultiple dependent competing
degradation processes and maintenance tasks. lMegldts may lead to inaccurate estimation
of the component IMs and inefficient related demisi (e.g. maintenance, replacement, etc.).
The work presented in this paper addresses the igsextending the mean absolute deviation
IM by taking into account: (1) the dependency ofitiple degradation processes within one
component and among different components; (2) efiscand continuous degradation
processes; (3) two types of maintenance tasks:ittmmdbased preventive maintenance via
periodic inspections and corrective maintenanaxd®ise-deterministic Markov processes are
employed to describe the stochastic process ofadagon of the component under these
factors. A method for the quantification of the quonent IM is developed based on the finite-
volume approach. A case study on one section afesidual heat removal system of a nuclear
power plant is considered as an example for numlegicantification.

Acronyms
IMs Importance measures
PBMs Physics-based models
MSMs Multi-state models
GSA Global sensitivity analysis
BIM Birnbaum IM
MAD Mean absolute deviation
MSSs Multi-state systems
PM Preventive maintenance
CM Corrective maintenance
FV Finite-volume
RHRS Residual heat removal system
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Notations
Q Number of components in the system
L Group of degradation processes modeled by PBMs
K Group of degradation processes modeled by MSMs
Dy, Degradation state of componed)y
ﬁ(t) Time-dependent continuous variables of degradatrocesd.,,
m(t) Non-decreasing degradation variables vector
a(t) Physical variables vector
FL Set of failure states of degradation prockss
Y, (£) State variable of degradation procéss
Sk, Finite state set of degradation proc&ss
Fy, Set of failure states of degradation prockss
H; Predefined state set of PM for degradation m®ce
T; Fixed period of PM for degradation process
Z(t) Degradation state of the system
N, Number of maintenance tasks experienced byytters
Toniss System mission time
Tk Execution time of thi-th maintenance task
Ze(t) Degradation state of the system defined Bk, TX]
Ok Environmental and operational factorskn

A;(flf(t), 0x) Transition rate from statgto ;
0, Environmental and operational factorslin
fi(Z:(t),t|6,) Deterministic physics equations In

Z(t) Stochastic process recording the failure of trstesn
F System failure state set
Clo, (t) Component IM of componerd,, at timet

Foazo (dx_Lp’, qu) Probability distribution oDy, (t)
p?’é (dx’, 7| 6) Probability distribution of processé (t)

PnZT‘(A, 110) Approximate value forptz—’g(-,- |8) on {i} x [(n + 1)At, (n + 2)At[x A
{(A"‘HF)} Set containing all the states that step to the 4, 1) after the

(k — 1)-th maintenance task
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A/ (x_Lp’ y_’Kq) Mesh by fixingD—Oq)(t) to (X1, Yk )-

1. INTRODUCTION

In reliability engineering, component importanceasiges (IMs) are used to quantify and
rank the importance of different components withigystem. By determining the criticalities
of the components, limited resources can be akacatcording to components prioritization
for reliability improvement during the system desand maintenance planning phases [1].

The criticality of a component changes over timgg ¢b the evolution of its underlying
degradation processes [2]. Also, in practice, campts are often subject to multiple
competing degradation processes and any of themmdaydually lead to component failure
[3]. The dependency among the degradation proceg@a one component (e.g. in a micro-
engine, the shock process can enhance the weassro€ rubbing surfaces and each process
can lead to failure [4]) and of different comporsefd.g. in a water treatment plant, the decaying
pre-filtrations often lower the performance of sditgkr [5]) have to be considered in the
calculation of component IMs. Moreover, the degtimaprocesses can be interrupted by
maintenance tasks (e.g. one component can be edstorits initial state by preventive
maintenance if any of its degradations exceeddbpactive critical level [6] and by corrective
maintenance upon its failure [7]).

Neglecting the factors that influence the statebeing of components can result in
inaccurate estimation of component IMs and, thuslead the system designers, operators and
managers in the assignment of priorities to compbasticalities. In this paper, we investigate
the criticality of components taking into accourd tnfluence of multiple dependent competing
degradation processes and maintenance tasks.

Physics-based models (PBMs) [8] and multi-stateeteo(MSMs) [9] are used to describe
the component degradation processes considerear iwark. The former translates physics
knowledge into mathematical equations that desdhbeunderlying continuous degradation
processes associated to a specific mechanisnweag, corrosion and cracking [10]; the latter
approximates the development of continuous deg@dby a process of transitions between a
finite number of discrete states [11]. Recentlye #uthors have employed the piecewise-
deterministic Markov process (PDMP) modeling frarogwto incorporate PBMs and MSMs
and to treat the dependency of degradation prosdd2¢ In the present work, the authors
introduce a set of PDMPs to incorporate also maaree policies.

PBMs and MSMs are two widely used approaches, edpedor highly reliable
components, whose degradation/failure data ardficiemt to build their lifetime distributions
[12]. The effects of uncertain parameters in theMdShave been considered in [13]. Global
Sensitivity Analysis (GSA) has been employed tadpae indices that assess the importance of
the uncertain factors in the models, taking intocat interactions among them. Such paper
focuses on the importance indices of uncertairofact

In this paper, we consider importance indices ahgonents within multi-component
systems taking into account the influence of midtipompeting degradation processes,
degradation dependency and maintenance tasks. $&58A employed for such task, since it is
not the uncertainty in the parameters that is camed. A literature review on component IMs
is presented below, to position our contributiothiv the existing works. Component IMs were
first introduced mathematically by Birnbaum [14]1869, in a binary setting (i.e. the system
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and its components are either functioning or fguliyre Birnbaum IM (BIM) allows ranking
components by looking at what happens to the systéiability when the reliabilities of the
components are changed, one at a time. Afterwamiipus IMs have been developed for
binary components, including reliability achievernewnrth (RAW), reliability reduction worth
(RRW), Fussel-Vesely and Barlow-Proschan IMs [1h-Other concepts of IMs have been
proposed with focus to different aspects of thdesys such as structure IMs, lifetime IMs,
differential IMs and joint IMs [18].

For components whose description requires moretilarstates, e.g. to describe different
degrees of functionalities or levels of degradataefinition of the component IMs have been
extended in two directions: (1) metrics for compasemodeled by MSMs; (2) metrics for
components modeled by continuous processes. Féirghype, Armstrong [19] proposed IMs
for multi-state systems (MSSs) with dual-mode falocomponents. For MSSs with multi-state
components, Griffith [20] formalized the conceptsystem performance based on expected
utility and generalized the BIM to evaluate theseffof component improvement on system
performance. Wu and Chan [21] improved the GriffiM by proposing a new utility
importance of a state of a component to measurehndomponent or which state of a certain
component contributes the most to system performadiet al. [22] proposed the integrated
IM, based on Griffith IM, to incorporate the prolial distributions and transition rates of the
component states, and the changes in system penfioen Integrated IM can be used to
evaluate how the transition of component statectdfthe system performance from unit time
to different life stages, to system lifetime, amdjide useful information for preventive actions
(such as monitoring enhancement, construction ivgrment etc.) [23, 24]. The multi-state
generalized forms of classically binary IMs haverbproposed by Zio and Podofillini [25] and
Levitin et al.[26]: these IMs quantify the importance of a msttite component for achieving
a given level of performance. Ramirez-Marquez arait (27] developed two types of
composite IMs: (1) the general composite IMs cossid) only the possible component states;
(2) the alternative composite IMs considering btite possible component states and the
associated probabilities. For the second type, &sdbr[28] proposed a prognostics-based
ranking algorithm to rank the identical compondrdsed on their residual lives. Letial.[29]
extended the BIM for components with multi-dimemsib degradation processes under
dynamic environments. Note that no IM has been ldpeel for components whose
(degradation) states are determined by both descaed continuous processes, and are
dependent upon other components, as it is oftenabke in practice [30].

To include dependency, lyer [31] extended the Bafyoschan IM for components whose
lifetimes are jointly absolutely continuous and ibky dependent, and Pepgal. [2] adapted
the mean absolute deviation (MAD) IM (one of theealative composite IMs) for statistically
correlated (s-correlated) components subject tone-dimension continuous degradation
process; this enables to measure the expectedusdsiaviation in the reliability of a system
with s-correlated degrading components, causedftgreht degrading performance levels of
a particular component and the associated probabiliTo the knowledge of the authors,
component IMs taking into account the dependenayutiple degradation processes within
one component and among different components, tiwghnclusion of maintenance activities,
have not been investigated in the literature (stidif IMs for repairable systems wigh
independent components can be found in [24, 32]).

In this work, we extend the MAD to a more genegdtisg of modeling by PDMP [33], to
provide timely feedback on the criticality of a qgooment with respect to the system reliability.
The extension considers: (1) the dependency ofipheiltlegradation processes within one
component and different components; (2) discrete @mtinuous degradation processes; (3)
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two types of maintenance tasks, condition-basedentere maintenance (PM) via periodic
inspections and corrective maintenance (CM).Themmethod for the quantification of
component IM is designed based on the finite-vol(M& approach [34].

The rest of this paper is organized as follows.tiBec2 presents the assumptions and
degradation models under dependency and mainten&ection 3 describes the proposed
component IM. Section 4 introduces the proposedhiifiGation method. Section 5 provides a
numerical example referred to one subsystem afsidual heat removal system (RHRS) [35],
to demonstrate the application of the proposed corpt IM and feasibility of the
guantification method. Finally, Section 6 concluttes work.

2. MODELING DEGRDATION OF UNDER DEPENDENCY  AND
MAINTENANCE PDMP
2.1. General assumptions

» Consider a multi-component system, made&otomponents coded in the veci@r=
{01, 0;, ..., Op}, each one with multiple degradation processessiplysdependent.
The degradation processes can be separated ingronps: (1)L = {L,, Ly, ... , Ly}
modeled byM PBMs; (2) K ={K;, K, ... , Ky} modeled byN MSMs, where
L,m=12,..,M and K,,n=1,2,..,N are the indices of the degradation
processes.

« The degradation state of a componégte 0,q = 1,2,...,Q, is determined by its
degradation processdx, S LUK and the component fails either when one of the
degradation processes evolves beyond a threshdigilofe in the continuous state
stochastic process or reaches the discrete fadtate in the multi-state stochastic
transition process.

* Adegradation process,, € L in the first group is described hy;,  time-dependent

continuous variablesm (t) = (E(t),)?”m) (t)) € R%m |, whose evolutions are
described by a set of first-order differential eifuas (physics equations) in terms of:
(1) the non-decreasing degradation variables ve@n[(t) (e.g. crack length)
representing the component degradation conditidpthe physical variables vector
E(t) (e.g. velocity) influencing@) (t) and vice versa. Due to degradation process

L,,, the component fails when any degradation variadgf),Ine(t) € E(t) exceeds its
corresponding failure threshold denoted b,‘yn* The set of failure states of the

degradation variablem(t) is denoted byF, .

* A degradation procesk, € K in the second group is described by the state baria
Yg, (£), which takes values from a finite state §gt = {0y, 1, ..., dg, }, Where dy ’
is the perfect functioning state ari;'’ is the complete failure state. All intermediate
states are functioning or partially functioning.€lévolution of the degradation process
is characterized by the transition rates betwestest The failure state set of the multi-
state stochastic transition process of degradatjo(t) is described byF, = {0, }.

* Dependencies between degradation processes maly bais within and between
groupsL and K. The detailed formulations are given in egs. (1-3)
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» Fordegradation process= L U K, the inspection task; of PM is performed with fixed
period T; and brings the related component back to itsaingiate when is found in
the predefined state s#t;.

* The component is restored to its initial state ¥, @s soon as it fails.

* The inspection tasks and all maintenance actionsl@ne instantaneously and without
errors.

An illustration of two component®; and 0, is shown in Fig. 1, wher®, = {L;} and

Dy, = {K;}. PM is performed forL, if XT’l(t) exceeds its thresholg, P at the time of
inspection and fok; if Yy (t) isin state 1 at the time of inspection.

(X2 = x.(©®

Failure
threshold
L S O L . PM
; i / threshold
: H i t
01 = TLl ZTLI 3TL1 T'mss

XP () =X2(®)

/_w/hgfﬂfﬁ t

- TL 27‘1‘1 3TL1 T
Vi, (£) : L
_ Initial state

AT
0,4 gl L:LLLQ ______ PM state

0._ ._.._.E_.._ _iv_.._.._;. —_ _I_,._.._ ...............

TK ZTKl 3TK1 4TK1 Tm/ss

1 miss

~

1

Fig. 1. An illustration of two components.

2.2. Degradation model of the system

The degradation state of the system is represasted

(57)-50)
X, (t

EE=R“XS,Vt>0 (1)
Yy, (6)

Z(t) =

=Y (t)
Yieu (®)
whereE is the space combininB% (d, = Yy, d; ) andS (S = [I5-; Sk,)-
A set of PDMPsZ_k’(t), k = 1,2, ...is employed to model the system degradation presess

where a new PDMP is established once a maintertaskas performed. LeV,, denote the
total number of maintenance tasks (PM and CM) yistesn has experienced till the mission

time Tyy;es, thenZ, (), k = 1,2, ..., N,, is defined on[TX~!, TX], whereTk k = 1,2, ..., N,,
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denotes the execution time of tkéh maintenance task arfef, = 0. Zy, +1(t) is defined on
[T Triss]- Fig. 2 shows this for the degradation processég. 1.

XO=X,00 7 7 L Lz
R P Failure
threshold
L S i T e s PM
threshold
0 t
17 —» . miss
XE (&) = X (®)
f t
- 124 Ly Tmiss
Yk, (©)
2 _Initial state
0, — bl b PM state
0 i1 L . Failure state
t
TKl ZTKI 3TK1 4TK1 Trmss

Fig. 2. An illustration of two components, modeladPDMPs.

The evolution of the element, (t),k = 1,2, ..., N,, + 1, of the system state vectd(t)
involves (1) the stochastic transition process}7 @f) and (2) the deterministic progression of
Y(t), between successive transitions?c(t), given ?(t). The first process is governed by the
transition rates off (¢):

Lim P(Y(¢+A6) = J|Z,(6) = X (©), Y (¢) = D", 6k)
= 4(IX (t),0x)At, VLT €S T#] ()

where the parameter vectg represents environmental and operational factdhseincing
the degradation processesKn and Ag(ﬂf(t), k) is the transition rate from staieto ;. The
second evolution process is described by the detestic physics equations as follows:

. [%0) [(fEoOde,)\
xo=| )= =11 (Zi®),t|o, = (8,,.6,,, ,6.,,))
X1 () fiu(Z(©), £]61,,)

3
wherethe parameter vectod, ,m =1,2,..,M represents environmental and operational

factors influencing the degradation processels,in Z;(T,L‘l‘l) (the initial states oZ_,;(t), k=

2,...,N,, + 1) can be obtained according #a_,(Tk~1) and the K-1)-th maintenance task.
The degradation states of the systemTij|l,. can be represented by
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Z(6) = I Yo rg (O Ze(®) + v 7 1(6) + Zy, 12 (0) @)

Since maintenance is performed instantaneouslyfaihee states of the system are infinitely
approachable b)f (t), instead of being truly reached. We, then, useremstochastic process
T(t), which can record the failure of the system a®ve:

Z(6) = o) () Z2(0) + T Vg g Ze(O) + Lppoom . 1(8) - Zi 1 (6) (5)

Let F denote the system failure state set: then, theemsyseliability atT,,;; can be
defined as follows:
R(Tmiss) = P[?)(S) e T: Vs < Tmiss] = P[nlng1(Z_k)(Trlr(1) e T) n (ZNm+1(Tmiss) $ T)]
(6)
Since the component is restored to its initialeskat corrective maintenance as soon as it fails,

the failure states of the system can only be re:hd:iye?(t) at the execution time of the
maintenance taskgk,k = 1,2,...,N,, or at the mission tim&,,;.. Therefore, the event

Z'(s) & F,Vs < Tpss can be represented Wy,™ (Z,(TX) & F) N (Zy, 11 Tniss) & F).

3. COMPONENT IM

Ramirez-Marquez and Coit [27] proposed the MAD Igr fMSSs with multi-state
components, which evaluates the components ciitidaking into account all the possible
states and associated probabilities. Rerad.[2] adapted it for binary systems wattorrelated
components subject to one continuous degradatmreps.

For components whose (degradation) states arawiett by both discrete and continuous
processes, we propose an extension of MAD to peotiidely feedbacks of the criticality of
component0, with multiple dependent competing degradation gsses modeled by MSMs
and PBMs, and giving consideration to PM and CMe Tdrmulation is presented as follows:

Clo,(t) = E||P(Z7(s) & F,¥s < t|D, (1)) — R(1)|| 7)
where Do, () = (X, (1) = (Xu,,, (©), .., X, (), Yic, (8) = (Y, (©), ., Vi, () and

Do, ={Ly ={Lp,, -, Lp,} Kq={Kq,, ... Kq, }}. It accounts for the expected absolute

deviation in the system reliability caused by clemngf all degradation processes of component

0y Let R = RE“1 %01 and Sy, = [112, S, denote the state space’®f (¢) and i, (1),

respectively; eq. (7) can, then, be expressed as
Clog () = Lyiggesi, fx—Lp’eRdLP fBog0) (dx—Lz; y—Kq))
P(Z(s) & F,¥s < t[X,, (6) = g, Vi, (O) = ¥ic)) — R(D)] ®)
WherefD—oq»(t) (dx_Lp’ qu) is the probability distribution oD—oq)(t).

Let Nf, > 1 denote the number of maintenance tasks that tterayhas experienced till
t. According to eq. (6), we can obtain that:

R(Tiss ) = P[(Ny2(Ze(T) € F)) 0 (Zygn (8) € 7)) )
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and
P(Z'(s) & F,¥s < t|Xy (1) =X, Vg, (1) = Vi) =
( X1y N (77 (ke
—P[(N,(Z,(Tr) &€ F))N
fm(t)(d“p'y"q) ( i 1( fm ))
@y, (e, (0 = 70, Ve () = Vi) € PILIF Figo (€, 9;) 20 )
L 0,if Frgre (4%, Vx;) = 0
DOq — -, T _ R ——

where Zpet, (t1%0, (©) = 77, Vi, (©) = Vi, ) = K, (0, ., X () =

XL, i X1y (), Yie, (0, ...,ﬁq’(t) = Vg - Yiey ().

4. FV SCHEME FOR COMPONENT IM QUANTIFICATION

Let pfz(d?,? |0 =0,U60k),vx € RY%, T €S denote the probability distribution of

processeﬁ_k)(t). Due to the complex behavior of the PDMP, the wiel solution for the
probability distribution is difficult to obtain [36The FV approach developed in [34] can be
used to obtain the approximated solution by disiref the time space and the state space of
the continuous variables, achieving accurate resuithin an admissible computing time, as
shown in [37].

4.1.FV scheme for PDMP
4.1.1. Assumptions

This approach can be applied under the followirsyiagptions:

o ;G 10k),VT,] €S are continuous and bounded functions frRft to R*.

e f£,i(--|@,), Vi€ S are continuous functions fromk% x R* to R% and locally
Lipschitz continuous.

. fLZ (-, t|0.),Vi €S are sub-linear,_i.’e. there are soije> 0 andV, > 0 such that
Vi € RU,t € R* |f,' (%, t10,)| < Vi (IIZ]] + [t]) + V2

. div(fLi (-+181)), VT € S are almost everywhere bounded in absolute valusonye
real valueD > 0 (independent of).

4.1.2. Solution approach

The time spaceR*is divided into small interval®R* = U,—g 1., [nAt, (n + 1)At[ by
setting the length of each intervat > 0 and the state spadg? of X (t) is divided into an
admissible meskiV which satisfies that:

(13) Uperr A = R,

(14)VALBEM,A+#B=ANB = Q.
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(15) my = an > 0,VA € M, wherem, is the volume of gridA.
(16) superrdiam(A) < +oo wherediam(A) = supyzjealX — yl.

The numerical scheme aims at constructing an apped& valuepf"(?,- |@)dx” for

ptZ"(dx |8), such thatpt"(x |@) is constant on eacH x {i} x [nAt, (n + 1)At[,VA €
M,T € S, [nAt, (n + 1)At[€ [Tk, TX]:

pZe(x,710) = PP<(A,110),YI € S, % € A, t € [nAt, (n + 1)AL[ (11)
PF(A, 710),vi € S,A € M is defined as follows:
P7%(4,110) = [, pZ(dx’,T10) /my (12)

Then, P7 (4,71 6),vi€ S,A€ M,n € N can be calculated considering the deterministic

evaluation off(t) and the stochastic evolution of (t) based onPnﬁ(M, 710) by the
Chapman-Kolmogorov forward equation [38], as fokow

n+1(A 16)
1 ﬁ
= Teaml n+1(A 110) +At21es ) n+1(A 716) (13)
where
= [, @, %0 )dx/m,, Vi € S,A € M (14)

is the average transition rate from statéo state? for grid A,
by =Y;.;a) ViES,AEM (15)

is the average transition rate out of statéor grid A,

n+1(A 110) = ZBeMmBAP "(B 110)/my, VIES,AEM (16)

is the approximate value of probability densitydtion on {i} X [(n + 1)At, (n + 2)At[x A
according to the deterministic evaluation{(t),

dy Vi€eS,ABEM (17)

i) — —_
Mba f{ies | g'(3,At16.)€A)
is the volume of the part of gri@ which will enter gridA after time At according to the

deterministic evaluation oX (¢t), where g'¢,): R% x R » R% s the solution of

d 3., (3
=9'5,t16,) = £ (9'5,t16,),¢] 6,) (18)
with
g'3,016,) = 5 (19)

g'(y,At|0,) gives the state of the deterministic behavioKdft) after timeAt, starting from
the statey while the processeB(t) stay in statd.
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4.2. Quantification of component IM

Given the initial probability distributiorp?(dx_’,?w) of the systemPOZ(A, 110),v1 €
S,A € M, can be obtained as:

P7i(4,116) = [, pZ(dx,T]6) /my (20)

[Tl/At (A4,7)0),Vi € S,A € M can, then, be calculated through the FV scheme.

t — DO e —_— T
To calculate eq. (9) and’[(ﬂ,fﬁl(zk(T,’,‘l) ¢ :7-‘)) N (Zl\%q+1 (t|XLp(t) =Xy, Yk, (t) =
qu) ¢ T)] in eq. (10), we are only interested in the sitwrathat the system is functioning till
t; thus, P[Tk 1ae] (A4,110),Vie S, Ae M,k =2,3,..N5 + 1 is initiated as follows:

( Zk 1.(4,710) +Z(A, ,) {(Ak—lllk—l)} Fk 1}(/1, . |0)
. E (a1 )eF o
PFT';;—W (418) = {if (A7) ¢ F) and (2B € M€ S: (A1) € (B, D)) (D)
At 0’

\ if ((A,?) € T) or (EIB € M,f € S: (A,f) € {(Bk—l']k_—l))})

where {(Ak‘l, Lk—l)},v? € S,A € M, is the set containing all the states that stepdcstate
(A4,7) caused by th€k — 1)-th maintenance task. Then, we can obtain that

P (N2 (ZeTE) € 7)) 0 (Zygaa (D) € F)| = Sanes mAP[Z;]'%l“(A, 70) (22)

[ )0 (2 (70 -5 0 - 55 )

Y aner [’T’“%A |e)fA/(ﬁ_q,)Ec’ (23)
(Fipiq)ean

where A/ (x_Lp’ qu) is the mesh by fixianq(t) to (x_Lp’, qu).
To calculatefD—>(t) (dx_Lp’ W) in eq. (8), (10), we are interested in the stath® system at

t no matter whether the system is functioningtilbr not; thus, P[ (A,7]0),Vie S A€

M,k =2,3,..N5 + 1 isinitiated as follows:

rpzk 1 (4,70) + Z(A,;,)E{(Ak_l‘lk_l)} FTI;C 11}(,4/ 16),

At At

T /At]

T U _—
P[T'icn—ll (400 =14 if3BeM,j€S: (A7) € (B 1,51 (24)
At O,
\ if 3B € M,T € S: (4,1) € {(B¥1, k1))

We can obtain that
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SN N Y — ZN$n+1 - o
fﬁ’(t) (dep: qu) = dep Y Aemjes P (4,116) fA/(W Vig) dx (25)
q (g )can o

CIOq (t) can, then, be obtained by using egs. (8)-(10)-(2b).
The pseudo-code for the quantification of compomlb!htCIOq (t) is presented as follows:
Settime t, length of each intervaAt and admissible mesht
Setthe initial probability distributionp?(df’,ﬂ@)
Initialize the probability distribution 0171(0) by using eq. (20)
For j =1 to N}, do
Calculate the probability distribution (f;(TT{L) by using FV scheme
Calculate the initial probability distribution (ﬁ(T,{;) by using eq. (21)
End
Calculate the probability distribution M(t) by using FV scheme
Calculate the system reliability at timteby using eq. (22)
Calculate the conditional system reliability atéim by using eq. (23)
For j =1 to N}, do
Calculate the probability distribution Ej’(T,{l) by using FV scheme
Calculate the initial probability distribution ﬂ(T,{L) by using eq. (24)
End
Calculate the probability distribution M(t) by using FV scheme

Calculate the probability distribution d¥,_(¢) by using eq. (25)
Calculate the component IMIp, (t) by using eq. (8)

O

5. ILLUSTRATIVE CASE

The system consists of a centrifugal pump and aipaéc valve in series, and is a
subsystem of the residual heat removal system (RI6R& nuclear power plant of Electricité
de France (EDF). Given the series configuratioa,féiure of anyone of the two components
can lead the subsystem to failure. A dependencthéndegradation processes of the two
components has been indicated by the expertsuting pibrates due to degradation [39] which,
in turn, leads the valve to vibrate, aggravatisgivn degradation processes [40].

5.1. Centrifugal pump

The pump is modeled by a MSM, modified from the onginally supplied by EDF upon
discussion with the experts. It is a continuousetinomogeneous Markov chain as shown in
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a : ‘ : ‘ : °

Fig. 3. Degradation process of the pump.

Fig. 3:

S, =1{0,1,2,3} denotes its degradation states set, widere the perfect functioning state
and 0 is the complete failure state. The parame#gss 1,;, and 1,, are the transition rates
between the degradation states. Due to degraddhienpump vibrates when it reaches the
degradation state3 and 1. The intensity of the vibration of the pump ontet®2 and1 is
evaluated as by the experts ‘smooth’ and ‘rougspectively.

5.2. Pneumatic valve

The simplified scheme of the pneumatic valve issshan Fig. 4. It is a normally-closed,
gas-actuated valve with a linear cylinder actuator.

Top
e pneumatic port
Top chambef--—{> ——— Return Spring
L —
i Piston
Bottom  __, <-}------ Bottom chamber

pneumatic port

Fig. 4. Simplified scheme of the pneumatic valvE][4

The position of the piston is controlled by regulgtthe pressure of the pneumatic ports to
fill or evacuate the top and bottom chambers. Tégradation mechanism of the valve is
considered as the external leak at the actuataremions to the bottom pneumatic port due to
corrosion, and is modeled by a PBM. It is much negaificant than the other degradation
mechanisms according to the results shown in [Bii¢ valve is considered failed when the
size of the external leak exceeds a predefibgd The PBM is used by EDF experts for
degradation modeling, due to limited statisticajrdelation data on the valve behavior.
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5.3. PDMP for the system

The degradation of the valMe= {L,} is described by PBM and the degradation of the
pump K = {K,} is described by MSM. The degradation processebefwvhole system are
modeled by PDMP as follows:

Z() = (];Z((g) € R* x5, (26)

whereY, (t) denotes the degradation state of the pump at tiraed D, (t) denotes the area
of the leak hole at the bottom pneumatic port ef thlve at timet. The space of the failure

states ofZ(¢) is F = [0, +) X {'0'} U [D;, +0) x {1,2,3}. The development of the leak
size is described by:

Dy(8) = 0y (1 + By ) (27)

where w,, is the original wear coefficient and whqﬂ?@p(t) IS the relative increment of the
developing rate of the external leak caused byitiration of the pump at the degradation state
Y,=2o0r1l. The parameter values related to the system dagoa processes under

accelerated aging conditions and to the maintenaaskes are presented in Table I. For
confidentiality reasons, the values presented bel@afictitious.

Table | Parameter values related to PDMP and thetarance tasks

Parameter Value
W) 1e-8 nils
B, 10%
By 20%
A3y 3e-3s-1
A1 3e-3s-1
A0 3e-3s-1
D; 1.06e-5 M
T,, 1000 s
Ty, 1000 s
H,, [8e-6, Dj) n?
Hy, {12

The system reliability at time can be calculated as follows:
R(t) = P[(Dy(s) < Dj) N (Yp(s) # 0),Vs < t] (28)

The component IMs for the valve and the pump axergiin eq. (29) and eq. (30),
respectively, as follows:
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Cly(®) = [y oy @|PID,(8) < D}) N (¥ () # 0),Vs < ¢]D,(8) = 2)] — R(©)|dx
(29)
Clp() = T3 PY, () = ]|P[(Ds(s) < D3) N (Yp(s) # 0),¥s < t|1,(8) = D] = R(®))|
(30)

Then, by using the proposed numerical method inited in section 4, the values of the
above equations can be calculated.

5.4.Results

The reliabilities of the whole system and the twamponents over a time horizon of
Tmiss =2000s, regarded as the mission time under accetecanditions, are shown in Fig. 5.
We can see from the figure that before around §7@isit A), the system reliability is basically
determined by the pump reliability, since the vaisehighly reliable. After that, the sharp
decrease of the reliability of the valve due tordegtion drives that of the system reliability,
until the execution of the inspection tasks for twe components at 1000s. Because of the
preventive maintenance, the failures of the systeeyalve and the pump are mitigated.

0.8r

Reliability
o
o

©
N

0.2r

0 500 1000 1500 2000
Time

Fig. 5. The reliabilities of the system, the vahrel the pump

The components IMs are shown in Fig. 6. Before maalat00s (point B), the IMs of the two
components are relatively close. Although the systeiability is dominated by the reliability
of the pump, the probability of the pump at statever the time horizon is limited to a very
small value due to the corrective maintenance shiaw#ig. 7, which can limit the component
IM. After around 870s (point C), the pump IM exgartes a sharp decrease while that of the
valve experiences a sharp increase until 1000stadthe evolution shown in Fig. 5. After the
preventive maintenance is implemented, the diffeedretween the components IMs begins to
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reduce. Then, one can conclude that attention dhmufocused on the pump before 1000s and
on the valve afterwards, to achieve higher levéls/stem reliability.

0.25; ﬁ
" ---Valve
! \\ — Pump
0.2 Cc
> BRI
£ 0.15/ | \ .
© / v
c ! )|
(@) - - v/‘
£ 01 “?
g B K L
© 2 \
005 '
///’ ‘ —~ \
S/ \
O - | \L — 1 ]
0 500 1000 1500 2000

Time

Fig. 6. The valve and pump IMs

Probability

'l —Without maintenance
'I---With maintenance

0 500 1000 1500 2000
Time

Fig. 7. The probability of the pump at stdte(failure)

The reliabilities of the whole system and the twamponents over a time horizon of
Tmiss =2000s without maintenance are shown in Fig. 8. Bei®00s, the situations are the
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same as with maintenance (Fig. 5). The sharp deerefthe reliability of the valve, then
continues due to the lack of preventive maintenaaid the valve reaches failure after around

1060s, and the system fails too.

1
—System
---Valve
0.8l — Pump
2 0.6
E
o
o
X 0.4
0.2t
0 I I I |
0 500 1000 1500 2000

Time

Fig. 8. The reliabilities of the system, valve gounp without maintenance

The related component IMs are shown in Fig. 9. Ftbenfigure, we can see that the
criticality of the pump is higher than that of thedve most of the time until around 1015s (point
E). Due to the absence of preventive maintenaheesystem reliability quickly decreases to
zero afterwards, which leads the components IMgitckly decrease to zero. The gap between
the two curves is due to the difference betweernré¢hiabilities of the two components, and
reaches its maximum value at around 875s (pointbgn the valve starts to contribute to the

system failure.
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Fig. 9. The valve and pump IMs without maintenance

Finally, the reliabilities of the whole system ahé two components over a time horizon of
Tmiss =2000s, without degradation dependency, are showiginl0. The system reliability is
determined by the reliability of the pump since ¥adve is highly reliable. The IMs of the two

components are shown in Fig. 11. The IM of the pexyperiences a sudden change due to the
preventive maintenance at 1000s, while that ofvilee is always equal to zero.

[}

Reliability

— Pump

05 500 1000 1500 2000
Time
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Fig. 10. The reliabilities of the system, the vahral the pump without degradation

dependency
0.2/
. ---Valve
7 | — Pump
0.15 |
= /
= [ ‘
Q |
(@) 01’ J{ ‘
o ‘ |
€ /‘ | PR
8 “/ ‘ //
0.05} /
‘ ’
‘ %
O s - L,,{’ ,,,,,, - |
0 500 1000 1500 2000
Time

Fig. 11. The valve and pump IMs without degradatiependency

To investigate the impacts of the periods of thepattion tasks, the IMs of the two
components with different inspection periods a@shin Fig. 12. We have tested two settings
T,, =Tk, = 500s andT, = Tx, = 250s. From the figure, we can see that the IM of tHeeva

is always equal to zero since it is highly reliadotel that the increase of the inspection frequency
can reduce the IM of the pump.
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0.14; —
—Valve (T, = T,, = 500s)
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Fig. 12. The valve and pump IMs with different iespon periods

6. CONCLUSION

In this paper, we consider components with multipdenpeting degradation processes
modeled by PBMs and MSMs. The PDMP modeling frant&w® employed to incorporate
multiple dependent competing degradation procemsgsnaintenance policies. To quantify the
importance of different components within a systeWbAD IM has been extended to
accommodate components whose (degradation) stegedetermined by both discrete and
continuous processes. The extended IM can proundelyt feedbacks on the criticality of a
component with respect to the system reliabilithe Tdegradation dependencies within one
component and among different components, and ypestof maintenance tasks (condition-
based preventive maintenance by periodic inspextima corrective maintenance) have been
taken into account. A quantification method basedhe FV approach has been developed and
illustrated in the application to a case study pbaion of an emergency system (the RHRS)
from real-world nuclear power plants. The illustratexample shows that the extended IM can
effectively estimate the criticality of differenbimponents under the conditions of interest.

As future work, it would be interesting to studywhdhe sensitivity indices of the
parameters of a component relate to the importariees of that component, within a GSA

framework.
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Abstract — This paper presents a modeling and optimizatioméuwsork for the maintenance of
systems under epistemic uncertainty. The degradatependencies among different
components and within one component are considéretlcomponent degradation processes,
the condition-based preventive maintenance andctineective maintenance are described
through a piecewise-deterministic Markov processli@liog approach. Epistemic uncertainty,
due to incomplete or imprecise knowledge aboutitgradation processes of the components,
Is treated by considering interval-valued paranset€his leads to the formulation of a multi-
objective optimization problem whose objectives #re lower and upper bounds of the
expected maintenance cost, and whose decisiorblesiare the periods of inspections and the
thresholds for preventive maintenance. A solutiethod to derive the optimal maintenance
policy is proposed by combining finite-volume scleefar calculation, differential evolution
and non-dominated sorting differential evolutiom éptimization. A case study pertaining to
one subsystem of the residual heat removal systenmoclear power plant is presented.

Index Terms — Maintenance optimization, epistemic uncertaintygrddation dependency,
multi-objective optimization, piecewise-determimgd¥larkov process.

Acronyms
PBMs Physics-based models
MSMs Multi-state models
PDMP Piecewise-deterministic Markov process
PM Preventive maintenance
CM Corrective maintenance
DE Differential evolution
NSDE Non-dominated sorting differential evolutio
FV Finite-volume
RHRS Residual heat removal system
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DMs Decision makers
Notations
Q Number of components in the system
L Group of degradation processes modeled by PBMs
K Group of degradation processes modeled by MSMs

Do, Degradation sate of componed

X, (t) Time-dependent continuous variables of degradatiocesd.,,
X?m (t) Non-decreasing degradation variables vector

X7 (0 Physical variables vector

Fr, Set of failure states of degradation prockss

Yi (£) State variable of degradation procéss

Sk, Finite state set of degradation proc&ss

Fk, Set of failure states of degradation procEss

Ok Environmental and operational factorskn

A:(j|1X(t),0) Transition rate from stateto j
o, Environmental and operational factorslin
f1.(Z,(t),t|0,) Deterministic physics equations In

Z(t) Degradation state of the system

F System failure state set

H; Predefined state set of PM for degradation m®ce

T; Fixed period of PM for degradation process

N, Number of maintenance tasks experienced byytters
Toniss System mission time

Tk Execution time of thi-th maintenance task

Z,(t) Degradation state of the system defined Bk, TX]
C(t) Maintenance cost

Cy, Cost of the inspection tasl;

C,? Cost of PM to componen®,
N;,)" (t,H,T|06) Number of PM tasks to componefj until time ¢

Ngq(t, H,T | 6,x;) Number of CM tasks to compone@} until time ¢
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Cr Penalty cost of experiencing a system failure
Ne(t,H,T|0,x;) Number of system failures until time until tinte

p?*(dz | 6) Probability distribution ofZ, ()
Zo, Degradation state of the componéntin z
H,, State set for PM of the componed

y i State set for PM of the componedy

1. INTRODUCTION

Maintenance contributes to ensuring the safe afntlezft operation of industrial systems
[1]. The contribution to safety especially is ighly hazardous industries, such as the nuclear
and aerospace ones. The interactions among comigomemplicate the modeling for
maintenance planning, which becomes a big chall§Zlgd’homas [3] has categorized these
interactions into three groups: economic, strudtarad stochastic dependences. Economic
dependence exists when the maintenance cost abdeeeponents is not equal to the sum of
their individual maintenance costs. For examplest&@aeret al. [4] have considered a
condition-based maintenance policy for a two-ueiiedorating system, where the set-up cost
of inspection is charged only once if the actionstlee two components are combined. Van
Dijkhuizen [5] has investigated the long-term grimgpof preventive maintenance jobs in a
multi-setup, multi-component production system vehiire set-up activities can be combined
when several components are maintained at the Semae Structural dependence occurs if
some working components need to be replaced oratided in order to execute the
maintenance of the failed ones. For example, De&kat. [6] have studied the maintenance
policy for asphalt roads where the number of maiatee services is limited by integrating
neighboring segments into a homogeneous sectioohwhicompletely repaired. Stochastic
dependence, also referred to as probabilistic dépere, applies when the state of one
component can affect those of other componentseir failure rates. Failure interactions have
been the most discussed cases for stochastic dapsn{l’] and imply that the failure of one
component may lead to the failure of other comptmavith certain probabilities, and/or
influence their failure rates [8]. For example, lasd Chen [9] have presented an economic
periodic replacement model for a two-unit systenesghthe failure of unit 1 can increase the
failure rate of unit 2, while the failure of uniti@duces unit 1 into instantaneous failure.
Zequeira and Bérenguer [10] have studied the ingpepolicies for a two-component standby
system, where the failure of one component can tyalé conditional failure probability of
the component still alive with probability and do not modify it with probabilitd — p.
Barroset al.[11], have optimized the maintenance policy fowa-unit parallel system where
the failure of a component increases the failute oathe surviving one.

In practice, the failure of industrial componerg®ften the result of multiple and possibly
competing mechanisms (e.g. friction-induced wedhefbearings and impeller wear caused by
cavitation and erosion by the flow, can both leadéntrifugal pump failure [12]). For multi-
component systems, the dependencies among thesemsas within one component (e.g.
the wear of rubbing surfaces influenced by the remvnental stress shock within a micro-
engine [13]), or/and among different componentg.(the degradation of the pre-filtrations
stations leading to a lower performance level ef$hnd filter in a water treatment plant [7])
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need to be considered. Dependency among degrada¢ionanisms or processes has received
less attention within the framework of maintenameedeling and optimization of multi-
component systems, although they are of real canogaractice (e.g. the failure of a pump due
to oxidation of contacts and bear wearing). Peha@l. [14] have developed a maintenance
policy with periodic inspections when two dependentcorrelated failure processes are
considered. Jianet al.[13] have further compared two preventive mainteeai®M) policies:
age replacement policy and block replacement polemymbining immediate corrective
replacement in consideration of shifting failureregholds. Ozekici [15] has considered
interdependent aging processes between componaat® dontinuous wear and shocks, and
proposed an optimal periodic replacement policysmekomen and Parlikad [7] have
considered degradation dependency in terms of byiptformance between one critical
component and other parallel components baseding pgpcesses, and the optimal age-based
maintenance policy for this case was also studiedg et al.[16] have proposed a general
statistical reliability model for repairable muttdmponent systems considering dependent
competing risks, under a partially perfect repaguanption which considers that only the failed
component, rather than the whole system, is regladenget al.[17] have used copulas to
model degradation dependency among all the compepéa system and obtained the optimal
maintenance policy including condition-based PMhweriodic inspections and instantaneous
corrective maintenance (CM). Van Horenbeek andeRint[18] have proposed a dynamic
predictive maintenance policy that minimizes thegkderm mean maintenance cost per unit
time while considering different component depemieEn (i.e. economic, structural and
stochastic dependence). Saztcal. [19] have applied age replacement policy and insmec
based maintenance policy for systems whose comp®harnes-dependent failure times, and
the optimal replacement interval or inspection snage determined. Note that maintenance
optimization for multi-component systems with mplé degradation processes within
individual components has not been considered arig the pre-scheduled periods for
inspection or maintenance are considered as theiolevariables of the optimization problem.

To describe the component degradation mechanispr®oesses, a number of models have
been proposed in the field of reliability enginegti These models differ depending on the
available information/data, and can be mainly dfeskinto the following groups: statistical
distributions (e.g. Bernstein distribution [20Jjpshastic processes (e.g. Gamma process [21]),
multi-state models (MSMs) (e.g. Markov model [221)d physics-based models (PBMs) (e.g.
physics model of the valve based on mass and ermigynces [23]). Among the existing
degradation models, physics-based models (PBM$)di2d multi-state models (MSMs) [25]
are two frequently used approaches, in the fieldetibility engineering to describe the
degradation of components, particularly when deafiad/failure data are not sufficiently
available to allow resorting to statistical or $tastic modeling, e.g. for highly reliable devices
like those used in the nuclear and aerospace inelsistRecently, a modeling approach
employing a piecewise-deterministic Markov procd®OMP) has been proposed and
developed in [26] to integrate PBMs and MSMs faaldey with the degradation dependencies
among components and within one component.

An issue that arises in degradation modeling istepiic uncertainty, due to the incomplete
or imprecise knowledge of the degradation proces$d¢ke components, especially for the
highly reliable ones. The values of the parametdrghe physics equations (e.g. wear
coefficients), influencing factors (e.g. temperatuand pressures) or transition rates between
degradation states may be poorly known and infefin@d the scarce data available and from
elicited expert judgment [27]. This uncertainty s reflected in the modeling and accounted
for in the maintenance optimization that rests bnFuzzy sets have been employed to
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mathematically represent epistemic uncertaintyoimes works [28-30] related to degradation
modeling and maintenance. However, determining@pjate membership functions may be

a difficult task in practice. In these cases, ve#s can be used as a more general and less
knowledge and information demanding representaifamcertainty than fuzzy sets [31].

To the knowledge of the authors, no study has densd epistemic uncertainty in
maintenance modeling and optimization for multi-pament systems with degradation
dependency. In this paper, we do this by employitgrval values to represent epistemic
uncertainty in the parameters of the model. Towdethe optimal maintenance policy, the
maintenance cost is set as the objective functidinch also takes an interval representation
instead of a crisp value. Then, the objective isasdahe interval-valued expected maintenance
cost and its optimization is done within a bi-oljge scheme considering lower and upper
bounds values [32].

The main contribution of the paper is that it gatizes the existing maintenance models
for multi-component systems by taking into accdamth degradation dependency among the
components and epistemic uncertainty in the degradanodels. More specific technical
contributions are: for maintenance optimization: t{fie pre-scheduled period for inspection
tasks and the thresholds for PM are consideretiesi@cision variables in the optimization
problem formulation; (2) a new optimization methodegrating non-dominated sorting
differential evolution (NSDE) [33], differential elution (DE) [34] and finite-volume (FV)
scheme for solving PDMP [35] is proposed to detive optimal maintenance policy; for
maintenance modeling: (1) epistemic uncertaintthanparameters of the model is taken into
account by interval values; (2) the modeling appihgareviously proposed in [26] is extended
by including condition-based PM with periodic inspens and CM.

The rest of the paper is structured as followsti&e provides the assumptions and model
descriptions. Section 3 presents the formulatich@maintenance optimization problem under
uncertainty. Section 4 introduces the proposedtisollapproach for optimization. Section 5
demonstrates a case study on one subsystem addiseial heat removal system (RHRS) [36]
of a nuclear power plant. Section 6 presents thmenigal results and analysis. Section 7
concludes the work.

2. PROBLEM AND MODEL DESCRIPTION
2.1. Problem description

We consider a multi-component system madeQotomponents denoted by = {0,,
O, ... , Og}. Each component may be affected by multiple demraad mechanisms or
processes, possibly dependent. The degradatioegses can be separated into two groups: (1)
L={L Ly, ...,Ly} modeled b\ PBMs; (2)K = {K;, K;, ... , Ky} modeled byN MSMs,
where L, m=1,2,..,M and K,,n=1,2,..,N are the indexes of the degradation
processes. The degradation state of a compalgat0,q = 1,2, ..., Q, is determined by its
degradation processdd, < LUK and the component fails when one of its degradatio

processes becomes failure. A maintenance polictacong both CM and PM is considered.

2.2.Degradation models

In this section, PBMs, MSMs and PDMP modeling framek for systems considering
degradation dependencies will be introduced, whrehthe basis of the problem and have been
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proposed in [37].

2.21. PBMs

The following assumptions on PBMs are made [37]:

A degradation procesk; (t),L, €L in the first group, hag, time-dependent
continuous variableX, (t) = (x}m(t),xin(t), ...,xf;m (t)) € R%m. A system of

first-order  differential equations (i.e. physics uatjons) Xim(t) =
fu, (X, (©),¢]|6, ), are used to characterize its evolution, whéfe are the
parameters of the physics equatiofis, (e.g. temperature and pressure). This
assumption is made in [38] and widely used in pcadil2, 23]. Note that higher-order
differential equations can be converted into aesysdf a large number of first-order
differential equations by introducing extra vargg[39].

X, (t) can be divided into two groups of varaiblés _(t) = (X7 (t), X} _(£)): (1)
X?m(t) are the non-decreasing degradation variables ibasgrthe degradation
process (e.g. leak area of the piston of the v§Rha}), where D is the set of
degradation variables indices; (M’L’m(t) are the physical variables influencing
X?m(t) (e.g. velocity and force [12]), whel is the set of physical variable indices.
For example, the friction-induced wear of the begsi is considered as one
degradation process in [12]. It is representedhigyincrease in friction coefficients.
The two friction coefficients associated with ghigiand rolling friction are considered
as the degradation variables. The rotational vlaxfithe pump is considered as the
physical variable since it influences the increaséhe coefficients of friction. The
evolution of physical variables can be characteribg physics equations. If the
variables can be modeled by physics equations afiwence certain degradation
variables, then, they are considered as physicéhtas. As long as on;e{m(t) €

X{’m(t) reaches or exceeds its corresponding failure h\btdsx{m*, the generic
degradation process,, fails. Let¥, denote the failure state set bf, andxj
denote the set of all the failure thresholdskﬁfm(t).

2.2.2. MSMs

The following assumptions on MSMs are made [37]:

A degradation proces$y (t), K, € K inthe second group, takes values from a finite
state set denoted 8, = {0, 1, ..., dy, }, where dy ' is the perfect functioning state
and 0’ is the complete failure state. The transitioresat;(j | 0k ),V i,j € Sk, i > j
characterize the degradation transition probagdiffom state to statej, where@,,

is the set of the environmental factorskip and the related parameters used,in\We
follow the assumption of Markov property which iglely used in practice to describe
components degradation processes [25]. The transitates between different
degradation states are estimated from the degosdaind/or failure data from
historical field collection. LetF, = {0} denote the failure state setigf.
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2.2.3. Degradation model of the system

The dependencies between degradation mechanisp®a@sses may exist within each
group and between the two groups. The evolutigadtaries of the continuous variables in the
first group may be influenced by the degradatiaiest of the second group. The transition
times and transition directions of the degradapimtesses of the second group may depend on
the degradation levels of the components in tisediroup [26]. PDMPs [40], which are a family
of Markov processes involving deterministic evatatipunctuated by random jumps, can be
employed to model this type of dependency (thelléetformulations are shown in egs. (2) and

X, ()
(3)). LetX(t) = ) denote the degradation processes of the firstpgamd Y (t) =
X, (0
Y, (®)
) denote the degradation processes of the secongp.gitne overall degradation
Y (®)
process of the system is presented as
X(t)

Z®) = (Y(t)

where E is a space combininR (d, =¥M_, d, ) and $={0,1,..,ds} denotes the

state set of procesfé(t). The evolution of Z(t) has two parts: (1) the stochastic behavior of
Y(t) and (2) the deterministic behavior &f(t) between two consecutive jumps Bft),
given Y (t). The former is governed by the transition rate¥ ¢f), which depend on the states
of the degradation processesXiit) and also inY(t), as follows:

AltimOP(Y(t + A1) = j | X(0),Y(t) =i,0 = Un, O, ) /At

)eE:Rdes (1)

=40 |X(),0k),Vt=0,i,jE€Si+]j 2)

The latter is described by the deterministic phgsiwhich depends on the states of the
degradation processes K(t) and also inX(t), as follows:

| X, (©) f.,"9x@,t106,,)
X(t) = : = :
X, ®/) \f,"°x®,tle,,)
= £,"OX@),t16,=U¥_,06, ) (3)

Let F denote the system failure state set, which dependbe structure of the system:
then, the system reliability at mission tinfg,;;c can be obtained as follows:

R(Tyss ) = P[Z(s) € F,Vs < Tmiss | (4)

The system failure state set is dependent on systemsture. To determine this set,
reliability analysis tools such as fault tree [4Hn be used to identify the combination of
primary failure events leading to system failure.

2.3. Maintenance policy
The following assumptions are made based on aotaaltenance activities performed in
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industrial practice:

The PM involves condition-based maintenance task&h recommend maintenance
actions according to the information collected tigio condition inspections [42]. The
inspection task;, Vi € L U K related to one degradation procéss carried out with
fixed period and a cost is associated with eagbeicison.

If the state of one degradation procéssL U K, reported by condition inspection,
enters the predefined state set for PM denotef hythen the component containing
this degradation process is restored to its ingiate and a PM cost is incurred
depending on the component type. Otherwise, noter@mce action is performed.
Component failure can be detected immediately badailed component is restored
to its initial state by the CM [13], and a CM castincurred depending on the
component type.

The duration of inspection tasks is negligible atidmaintenance actions are done
instantaneously, compared with the lifetime of ¢tbenponents [14].

The degradation processes and the maintenancg pblén example system are shown in
Fig 1, considering a mission tin¥&,;;. It consists of two componen®, and0,. Dy, = {L,}
and Dy, ={K;}. T, and T, are the periods of the inspection tasks fgr and I,
respectively. Fol.;, PM is carried out whenever its degradation véeia!lfl(t) reaches or
exceeds its PM threshold, P at the time of inspection. The physical variaﬂl,’él(t) is also

initialized immediately after PM is performed. F&y, PM is carried out when it is in state *
at the time of inspection.

XD (6) = X1, ()
Failure

! ' ; threshold
P | S, R R e — PM

t / threshold

T, 2T, 3T, T
SHOED HO! C

miss

Ty, miss
Yg, () : . . :
2 i ; ——r - Initial state
P TN 0 O I . L, _____ i._._PMstate
| IO G| Failurestate

miss

2Ty, 3Ty, 4Tk, T,

Fig. 1. An illustration of the degradation procesggth maintenance policy, for an
example system.
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A CM is carried out instantaneously once any conepbffails and the failed component is
restored to its initial state at the time of faduThus, the failure states of the degradation
processes are infinitely approachable instead ioigbieuly reached, because the maintenance
tasks are assumed to be done instantaneouslg @dhas a unique value fro at any time
t.

To extend the PDMP to model the degradation preseaad the maintenance policy, the
difficulty is the discontinuity ofX(t) due to the instantaneous change caused by the
maintenance task. To solve this problem, we chaosdivide the entire mission time into
multiple intervals. In each interval, one new PDMR(t),k = 1,2, ...,N,, + 1, is defined,
where N,,, is the number of maintenance tasks the systerexpsienced till the mission time.
Let Tk, k = 1,2, ..., N,, denote the execution time of tke¢h maintenance task, thefy (t) is
defined on[0, T,L], Zy, +1(t) is ON [To™, Triss] @nd Zy(¢),k = 2, ..., Ny, is on [T, TK],
respectively. In this way, the failure states & ttegradation processes can be reached by the
processZ,(t). The initial state<Z,(t),k = 2,...,N,, + 1 are dependent on the maintenance
task carried out at tim&X~1 and Z,,_, (TX~1). Fig 2 shows this for the degradation processes
in Fig 1.

X2 () = XL, (0 z, .
ailure
threshold

Xy Dl i_ _;._,i ................. PR IRROS SEP R o | L1

t / threshold

ZTLl §3TL1 Tmiss

XP () = X7 (t)

miss

Initial state

oF —-— R 4.4.._.pralure state

TK 2 TKl 3 TKl 4 TKl

1

7-miss

Fig. 2. An illustration of system maintenance, teelavia PDMP.

This treatment is only for formulating the problerthin the settings of PDMP and it does
not impact the computational complexity. As we kkak later, we employ a FV scheme to
solve the PDMP, which efficiently gives an approatmsolution by discretizing the state space
of the continuous variables and the time spaceDiP. The entire mission is, thus, divided
into much smaller intervals to ensure the convargesf the approximated solutiont(— 0
and |M|/At — 0). The computational complexity depends on the ramab small intervals
defined in FV scheme, which has no relation with tlumber of multiple intervals defined in
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the problem formulation.

In reality, the two major issues for the mainterepolicy are to determine (1) the period
T;,Vi€e LUK for each inspection task and (2) the state set for PHl;,Vi € L U K for
each degradation proceas

3. MAINTENANCE OPTIMIZATION UNDER UNCERTAINTY
3.1. Maintenance optimization criterion

In order to optimize the maintenance policy, thgedon considered is the expected
maintenance cost over the system mission timeC it denote the maintenance coHt=
Uvierok H; and T = Uy jerux Ti, 0 = 0, U Ok, x; = U%=1xzm for the system functioning
until time t, we can write:

* (0] (0]
]E(C(tr HIT I ele)) = ZiELUK CI,: ’ Ij%J + ZOqEO Cpq ' ]E(Npq(ti HIT I 0))
(0] o % *
+ZOqEO CDq h ]E(NDq(t, H,T | e,xL)) + CF - ]E(Np(t, H,T | B,xL)) (5)

where C;, is the cost of the inspection tagk [TLJ is the number of times the inspection task

I; has been performed until time, C;,)" is the cost of PM to componend, ,

N:,)"(t, H,T | 6) is the number of PM tasks to componéjt until time ¢, Ng"(t, H,T|6,x;)
is the number of CM tasks to compone®j until time t, Cr is the penalty cost of

experiencing a system failure an (¢, H,T | 6, x;) is the number of system failures until
time t.

Let pfk(dz | @) denote the probability distribution @, (t); we, then, obtain that
0
E(N,"(t,H,T0)) = Zken- Zpieroa fuo, eo, Pre (421 6) ©)

where Zp, denotes the degradation state of the compoiignin z, Hy, = UieDoq H;
denotes the state set for PM of the comporignaind T denotes the set of inspection time

of the componen®,.. The functionpiﬁ‘(dz | @) is the probability distribution of, (t) at the
inspection timeT*,
O *
E(N, (6, H, T 16,x)) = Sien: Jy foy, ero, 5 “(d2 | B)ds (7)
WhereTOq = UieDoq F; denotes the failure state set of the compoidgnt
VA

E(Np(t, H,T | 6,x})) = Sien Ji [,.p P7*(dz | 8)ds (8)

3.2. Epistemic uncertainty
Due to the incomplete or imprecise knowledge alloeitdegradation processes, epistemic
uncertainty may exist:

 For PBMs: (1) the parameters (e.g. wear coeffigiamd influencing factors (e.g.
temperature and pressu@) may be poorly known and elicited from expert judgine
[27]; (2) the failure thresholds; may be uncertain due to imperfect information [43]
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« For MSMs: (1) the state performances may be vagdelyed due to the imprecise
discretization of the underlying continuous degteha processes [44]; (2) the
transition rates between states may be difficultestimate statistically due to
insufficient data, especially for highly reliableraponents (e.g. valves and pumps in
nuclear power plants, etc.) [45].

The experts in many cases can only confirm anvateof the possible minimum and
maximum values of the uncertain transition ratee @ractical way of dealing with epistemic
uncertainty is to use intervals of values for tineartain parameters [31]. In this respect, the
following assumptions are made (a symbol with adembar indicates the left limit of that
interval, while a symbol with an overbar indicaties right limit of that interval):

e« The value ofve; € 8, is represented by an interv@d;] = [&(9_1] Let [0] =

Ueiee[ei]-
» The value ofvxl ~€xj ,VL,€L, is represented by an intervdk} '|=

ek vl et b ] = Uy o ek T and il = Uil )

E(C(t,H,T | 8,x})), then, is also an interval, denoted by
[E(C(t,H, T |[6],[x;])] =

min geje) E(C(t,H, T | 0,x})),max gejq) E(C(t, H,T | 6,x7))

x1€lx;] x1€[x1]

= [E(ct. 17| [6) [xiD), E(C(t H,T|[6] [x;D)] 9)

3.3. Optimization problem

Based on the models presented above, the problemawoftenance optimization under
uncertainty, on a mission time horiz@h,;.,, can be defined as:

Min [E(C(Tpniss, H,T | [6], [x7]))]
SubjecttoH; € W;, Vie LUK
0<T; <Tpiss» VIELUK (10)
R%,if i €L
S, if IeEK
For its solution, it can be reformulated as a maftilective optimization problem:
Min E(C(Tyniss, H, T | [6], [x;]))

whereW; = {

Min E(C(Tyniss, H, T | [6], [x;]))
SubjecttoH; € W;, Vie LUK
0<T; <Tpiss» VIELUK (12)
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R%,if i €L

S, if IEK

This formulation optimizes the lower and upper kaaiof interval simultaneously. Due to the
limit of data, no probability distribution or menms&ip function is assumed on the interval.
The order relation between intervals which requinesinformation about distribution or
membership function [32] (Definitions 3.1 and 3c¢3n be used in this situation (ldt=
[a,,agr] and B =[b,,bg] denote two intervals, according to these defingjod <
Biff a;, < b, and ag < bg). This leads to the definition of a multi-obje@iwptimization
problem with respect to the lower and upper bouafithe expected maintenance cost

(E(C(Tmiss, H, T | [6], [x1])) and E(C(Tpss, H, T | [6], [x;]))). It also covers the minimax

type of robust optimization based on worst-casdyaiza which may generate conservative
decisions under some situations [46]. Note that dinder relation is a partial order so that the
solutions of (11) obtained are Pareto optimal smhst

whereW; = {

Finding the Pareto optimal maintenance policydeallenging problem, due to the complex
behavior of the system involving the stochastisitid MSMs, time-dependent evolutions of
PBMs and effects of the two types of maintenance.

4. SOLUTION APPROACH

In order to solve the multi-objective optimizatiproblem defined in eq.(11), we employ
(1) FV scheme to calculaﬂE(C(Tml-ss, H,T |6, xi)); (2) two DEs to compute the upper and
lower bounds of the intervdE(C(Tyss, H, T | [0], [x;]))], using the FV scheme for fitness
evaluation; (3) NSDE to find the Pareto-optimal manance policy foH andT, aiming at
optimizing the interval produced by the two DEsheTmeta-heuristic algorithm DE is chosen
as the solution approach because 1) PDMP modéilidylcomplex and non-linear and 2) DE
is fit to optimizing continuous decision variables.

4.1.FV for solving PDMP

To obtainE(C(t, H, T | 8,x})), p *(dz = (dx,i) | ) of PDMPs need to be calculated at
first. Monte Carlo (MC) simulation methods can beed to solve it: however, the major
shortcoming is the high computational burden. Fifesge is an alternative that can lead to
results comparable to MC simulation, but in sigrafitly shorter computing times [35]. FV
scheme gives an approximate solution by discrefittie state space of the continuous variables
and the time space of PDMP. Here, we employ an@xpV scheme to PDMP, developed by
Cocozza-Thivenet al.[35].

4.1.1. Assumptions
This approach can be applied under the followirsyiagptions:
* Thetransition rated;(j | -,0k),Vi,j € § are continuous and bounded functions from
R% to R*.

« The physics equationg,’ (- | 8,),Vi € § are continuous functions froR% x R*
to R4 and locally Lipschitz continuous.
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« The physics equationg,’ (-t | 8,,),Vi € S are sub-linear, i.e. there are some>
0 andV, > 0 such that

Vx € R, t € RY|f, (x,t 10| < Vi(llxll + ) + V;

«  The functionsdiv(f," (-+ | 8,)),Vi € S are almost everywhere bounded in absolute
value by some real valuB > 0 (independent of).

4.1.2. Solution approach

For the ease of notation, first we lgt(:,"): R% x R — R% denote the solution of
%gi(x.t 10,) =f," (g'(x,t10,),t]|0,),vieS,xeR:tER (12)
with
g'(x,0]0,) =x,Vi€S, x € R% (13)

and gi(x,t | @,) is the result of the deterministic behaviorXft) after timet, starting from
the pointx and while the processd4t) hold on statd.

The state spac®% of continuous variableX(t) is divided into an admissible mes¥,
which is a family of measurable subsetsR$t (M is a partition ofR%.) such that:

(17) Ugenc A = R,

(18)VA,BEM,A#B=>ANB=0.

A9)my, = fA dx > 0,VA € M, where m, is the volume of gridA.

(20) supyepcdiam(A) < +oo wherediam(A4) = supyyyealx — yl.
Additionally, the time spac&®™ is divided into small intervalR" = U, 1, [nAt, (n +
1)At[, by setting the time stept > 0 (the length of each interval).

The numerical scheme aims at constructing an appedg valueptZ"(x,- | 8)dx for
ptZ"(dx,- | @), such thatptz"(x,- | @) is constant on eacH x {i} x [nAt, (n + 1)At[,VA €
M,i € S,[nAt, (n + 1)At[€ [TE1, TX]:

p?¥(x,i|0) = P7*(A,i]0),Vi € S,x € A,t € [nAt, (n + 1)At] (14)
POZ"(A,i | 8),Vi € S,A € M is defined as follows:
Py“(A,i]8) = [,po*(dx,i | 8) /m, (15)

Then, Pn+1(A i|0),vieSs,Ae M,neN can be calculated considering the deterministic

evaluation of X(t) and the stochastic evolution &f(t) based onPn"(J\/[,l | @) by the
Chapman-Kolmogorov forward equation, as follows:

n+1(A i|0)
1 ii
- " 1+AtbY n+1(A 1] 6)+At ZJES th n+1(A j16) (16)
where
= fAlj(i,x | 0x)dx/m, ,ViE S, AeEM (17)
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is the average transition rate from stgtéo statei for grid A,

bA—ZHlaA,VlESAEM (18)
is the average transition rate out of statéor grid A4,
P%k (4,1 6) = Ypercmsa PF¥(B,i| 0)/my, Vi€ S,A€M (19)

is the approximate value of probability densitydtion on {i} x [(n + 1)At, (n + 2)At[x A
according to the deterministic evaluation Xft),

Mpa = Jiyen | gicpac) open Y- Vi €S, A B €M (20)

is the volume of the part of gri@ which will enter gridA after time At according to the
deterministic evaluation oX(t).

The approximated solutiopf"(x,- | 8)dx weakly converges towardptz"(dx,- | @) when
At > 0 and |[M|/At > 0 where |M| = supyepcdiam(A) [35]. E(C(Tyuss, H, T | 6,x})),
then, can be obtained through egs. (5)-(8).

4.2.DE approach

DE is a simple and efficient heuristic approach gungle-objective global optimization,
originally developed by Store and Price [34] fontiouous problems. It often shows better
performance than alternative optimization algorshm.g. genetic algorithms. The procedure
of DE is briefly presented as follows:

Step 1: Initialize randomly the populatiagh of N, > 4 target individuals over the
variables space.

Step 2: Generate the mutant individuals througHdhewing mutation equation:
Vigr1 = Xr16 + F (%26 — Xr36), Vi € (1,2, ..., N} (21)

where G is the current iteration numbet,, r,, 13 € {1,2,...,N.} are random indices
satisfyingr, #r, # 3 #i andF € [0, 2], determined by the user, is a constant factor
controlling the amplification ofx,, ¢ — x,5¢)-

Step 3: Generate each trial individual throughftilewing crossover equation:
V] if (rand < CR) or j = lrand(D)
lG,lf (rand > CR) and j # lrand(D)

J
Uicgr1 =

=12,..,D (22)
WhereulGH, vZG+1 and xi'G are thej-th parameters of the vectoug; 1, v;g+1 and
x; g, respectively;rand € [0,1] is a uniform random numbe€R € [0,1] is the

crossover constant, determined by the uBers the dimension of the individual vector;
irand (i) is a uniform discrete random number in the{de?, ..., D}.

Step 4. Evaluate the target individual and itd irdividual; select the best one as the
target individual for the next generation.

Step 5: Go back to step 2, if the termination dote is not met; otherwise, stop the
algorithm.
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The maximum iteration numbewVg,,,), maximum fitness evaluation numbéf,(,) and

minimum fitness errorefps) are typically employed individually or jointly dee termination
criterion.

We use two DE algorithms (DE1 and DEZ2) using theseieme for the fitness function
evaluation to obtain E(C(Tyss, H, T |[6],[x;])) and E(C(Tpss, H,T|[0],[x;]) ,

respectively: DE1 selects the one with smallesteas the target individual for the next
generation at step 4 whereas DE2 selects the dhdasgest value.

4.3.NSDE

For solving the multi-objective problem formulatedeq. (11), the non-dominated sorting
mechanisms are incorporated into the single olweddE, similar to the work [33] where the
non-dominated sorting mechanisms are combinedawittodified binary DE (MBDE). For the
details about this approach, please kindly ref¢83g.

4.4.Integration of methods

These methods are integrated by using (1) FV sclentie fitness evaluation in DE and
(2) DE for the fitness evaluation in NSDE; the $iola methods are integrated, for the first
time, for maintenance optimization. The flowchdrthe entire optimization methodology that
integrates the methods mentioned above is shoWwigir8.
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Set initial parameters for NSDE, DE1 and DE2.
Initialize the initial population P; of N} > 4 target individuals for H,T.

N ]
v A 4 "
]

Initialize the initial population P, of Initialize the initial population P53 of
NZ > 4 target individuals for @ and xj. | N2 > 4 target individuals for 8 and xj.
27 v

Generate the population P3 of |
trial individuals of Ps.
v

| Generate the population P, of
trial individuals of P,.
v

Given each individual in P;, calculate
E(C(Tpiss, H, T | 8,x})) for each
individual in P, and P, by FV scheme.
Select the one with smaller value as
! the individual of P, for the next

generation.

Given each individual in P;, calculate
IE(C(Tmiss, H,T|®6, xi)) for each
individual in P3 and P35 by FV scheme.
Select the one with bigger value as f

the individual of P for the next
generation.

Termination
condition

Termination
condition

obtain [E(C(Tmiss, H, T | [6], [x}]))] for each individual in P;.
v

Rank the population P; by performing fast non-dominated sorting.
Identify the ranked nfm—dominated fronts.

Apply binary tournament selection to P; to
generate intermediate population Q.
v

‘ Generate the offspring population P; through crossover and mutation.
¥

Obtain[IE(C(Tmiss,H, T | [6], [xz]))] for each individual in P; by DE1 and DE2.
v

Rank the population R; = P; U P; by performing fast non-dominated sorting.
Identify the ranked nfn-dominated fronts.

‘ Select the N} best solutions from the sorted union population to update P;. ‘

: @ Return Py. K Termination

condition

Fig. 3. Flowchart of the proposed optimization noglblogy.

In Fig. 3, N} is the size of the populatioP, of NSDE, which contains the target individuals
for H andT; N? and N} are respectively the sizes of populatiénof DE1 and population
P; of DE2, which contain the target individuals fér, P/,i =1,2,3 is the population
generated fromP;. The method starts with the random generationVgf individuals (i.e.
candidate solutions) off and T in the initial population?; in NSDE. Then, DE1 and DE2
are executed in parallel to calculd®(C (T, H, T | [0], [x;]))] for each individual inP;
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as follows: (1) randomly generaté?/N2 individuals of@ and x;, as the initial population
P,/P; in DE1/DEZ2; (2) generate the trial populatiab§P; for P,/P; through mutation and
crossover; (3) given the individual inP; , use FV scheme to -calculate

E (C(Tml-ss, H T|o, xi)) for the paired individuals i, and P;/(P; and P3), and select the

one with smaller/bigger value as the individualfP; for the next generation; (4) go back to
step (2), if the termination criterion is not metherwise,[IE(C(Tmiss,H,T| [0], [x,f]))] is
obtained for each individual i®; . Afterwards, the method returns to NSDE: (5) rank
population P, by performing fast non-dominated sorting FB(C (Tyniss, H, T | [6], [x;]))]
and the ranked non-dominated fronts are, thentiftgh (6) select the offspring population
P based on the intermediate populat@n generated by crossover and mutation; (7) use DE1
and DE2 to obtaifE(C (Tpss, H, T | [6], [x;]))] for each individual inP;; (8) identify the
ranked non-dominated fronts by performing fast dominated sorting on the population union
R, = P, U P;; (9) select the bed¥! solutions from the sorted union as the updatgd(10)

go back to the step (6), if the termination criaris not met; otherwise, the Pareto optimal
maintenance policies are obtained.

5. ILLUSTRATIVE CASE

The illustrative case refers to one subsystem estingi of a centrifugal pump and a
pneumatic valve in series, which is part of theches heat removal system (RHRS) of a nuclear
power plant. Given the series configuration, thbsgstem is failed when one of the two
components is failed. A degradation dependency dmtwthe two components has been
considered upon discussion with experts of Eldtéride France (EDF): the degradation of the
pump will cause it to vibrate [47] which, in turwjll lead the valve to vibrate and therefore
aggravate the degradation processes of the |a@r For confidentiality, the values of the
model parameters and the costs of the maintenaioy presented below are altered so as to
render them fictitious.

5.1. Centrifugal pump

The pump has one degradation process, relatec textiernal leakage, which is modeled
by a MSM modified from the one originally supplidty EDF. It is a continuous-time
homogeneous Markov chain with constant transitedes as shown in Fig 4.

G : ‘ : ‘ : °

Fig. 4. Degradation process of the pump.

Let Y,(¢t) denote the degradation state of the pump at tinaed S, = {'0’,'1",2",3’}
denote the degradation states set of the pumpewBias the perfect functioning state andl *
is the complete failure state. The pump is funétigruntil it reaches the stat@’. The pump
can vibrate when it reaches the degradation statesd ‘1’ due to degradation. The intensity
of the vibration of the stat”is assigned as ‘smooth’ and that of the states' assigned as
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‘rough’ by the experts. The parametdrs, 1,; and4,, are the transition rates of the model
of the degradation process.

5.2.Pneumatic valve

The pneumatic valve is a normally-closed, gas-aetbaalve with a linear cylinder
actuator. Its simplified scheme is shown in Fig 5.

Top
pneumatic port

-
-
-
—
(-

Top chamber-—{> ——""" Return Spring

\
<-}------ Piston
Bottom ____J e Bottom chamber
pneumatic port
Fluid -—-->

Fig. 5. Simplified scheme of the pneumatic valve][2

By regulating the pressure of the pneumatic partllitor evacuate the top and bottom
chambers, the position of the piston can be cdetioR return spring is linked with the piston
to ensure the closure of the valve, when pressutest. The external leak at the actuator
connections to the bottom pneumatic port due toosayn and other environmental factors is
chosen as the degradation mechanism of the valiehvis much more significant than the
other degradation mechanisms according to thetsesiubwn in [23].

Let D,(t) denote the area of the leak hole at the bottonurpaéc port at timet, the
development of the leak size is described by:

Dy(t) = wp(1 + ,Byp(t)) (23)

where w,, is the original wear coefficient and Whaiigzp(t) is the relative increment of the

developing rate of the external leak at the bofm@umatic port caused by the vibration of the
pump at degradation sta or ‘1'.

The leak will lead the valve to be more difficudt@pen but easier to close. The threshold
of the area of leak hol®;, is defined as the value above whi¢i (t) > Dj;) the valve cannot
reach the fully open position within the 15s tinmail from the fully closed position, after an
opening command is executed.
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5.3. PDMP for the system under uncertainty

The degradation of the valMe= {L,} is described by PBM and the degradation of the

pump K = {K;} is described by MSM. The degradation processebefvhole system are
modeled by PDMP as follows:

D, (t)
Y, (®)

The space of the failure states &) is F = [0, +0) X {'0'} U [Dy, +00) x {1’,°2",°3'}.
0, = {wp} X {B2} X {B1}, Ok = {232} X {41} X {110} and x] = {D;} are the uncertain
parameters. As an example, a relative uncertaihty X% of the original parameters values

has been considered to assign their interval vallesir interval values are shown in Table I,
under accelerated aging conditions.

0 =( ) € R* xS, (24)

Table | The interval values of the uncertain paramsin PDMP

Parameter Interval value
wy, [w,] = [9e-9, 1.1e-8] ifis
B2 [B2] = [9%, 11%)]
B [B1] = [18%, 22%)]
Asz [A5,] = [2.7e-3, 3.3e-3] s-1
Asq [A,1] = [2.7e-3, 3.3e-3] s-1
A0 [A10] = [2.7€-3, 3.3e-3] s-1
D, [D;] = [9.54e-6, 1.166e-5] f

The initial state of the system is assumed asviaio

_(Dp(0)\ _ (0
Zo = (Yp(0)> =(3) (25)
which means that the two components are both im gesfect state. The initial probability

distribution of the processe®,,(t), Y, (t)) =0, Po(dz | @), hence, equals t6, (dz), wheres
is the Dirac delta function.

5.4. Maintenance optimization

The problem of maintenance optimization under waggy on the horizon of the mission
time T,,;ss can, then, be formulated as:

Min E(C(Tmiss, H, T | [6], [x;]))

Min E(C(Tmiss, H, T | 6], [x;])
Subject toH,, €10, D;[
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HK1 g {IOI’ lll’ 1211 43)}
0<T;<Thiss, Vi€{L, K} (26)
The related costs affecting the maintenance palieyshown in Table II.

Table Il The related costs of the maintenance polic

Task Cost (k€)
Inspection of pump 2
PM of pump 5
CM of pump 10
Inspection of valve
PM of valve 5
CM of valve 10
Penalty 1000

6. RESULTS

At first, the proposed method has been run 150 rgéinas to obtain the Pareto optimal
maintenance policies, with the following parametaiues: N} is set t020; N2 and N2 are
set to 10;T,,;ss is set t01000 s following the accelerated aging condition expldine our
previous work [26];CR is set t00.7 for DE1 and DE2, and is set @8 for NSDE; F is set
to 0.5 for DE1 and DE2, and is set fiofor NSDE. The values oV}, N? and N2 are chosen
with respect to the computational complexity of FMéscheme and the limited computational
resources. The parameters of DE1 and DE2 are deestrafter trials on different values. The
parameters of NSDE are chosen similarly, exceptttteafitness functions (i.e. DE1 and DE2)

are replaced by the computationally much cheapeogatesE (C (Tmiss, H,T|®6, ﬂ)) and

E (C(Tmiss, H,T|6, x_z)) respectively. The reasons of using such surregate 1) the system
degradation speed reaches the maximum by talg, and the minimum by taking, x7} ; 2)
DE1 and DEZ2 are relatively time consuming.

All the experiments have been carried out by rugtie MATLAB algorithm on a PC with
an Intel Core 2 Duo CPU at 1.97 GHz and a RAM 6b1GB. The average computation time
for one generation of NSDE is about 3.23 hrs. Titaioed Pareto front in the plane of the two
objective functions, i.e. lower and upper boundthefmaintenance cost, is shown in Fig. 6.
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Fig. 6. The obtained Pareto front.

It is observed that the upper bounds cover a wathge whereas the lower bounds show
much less variability. The solutions aboae (53.30, 108.45) k€ have big increments with
respect to the upper bound, but they have nearlgifference in the lower bound compared
with those ofa. The solutions to the right of= (53.49, 72.75) k€ show nearly no difference in
the upper bound value, compared with thab.ofhe small differences between lower bounds
are due to the fact that the failure of the comptsmer of the system rarely occurs under these
situations, so that the total cost is mainly conaglosf the PM costs and the inspections costs;
on the contrary, the big differences between ufgoemds are mainly due to the failures of
components, which lead to the system failure dngs,tcarry a high penalty cost. It also implies
the fact that if the frequencies of inspections BMlexceed some value, then, the high penalty
cost may be largely avoided. In practice, the smhstwith very high upper bounds might not
be appropriate for decision makers (DMs).

In case that the DMs intend to conduct a seardtimét certain budget, the method proposed
Is also capable of dealing with this situation. Fagtance, we can focus on the solutions within
the region [0,100] k€ x [0,100] k€. The proposed method is run with the previous
configurations plus a penalty d00 k€ to be added to one objective of a solution, velver
the other objective exceed90 k€. The newly obtained Pareto front is shown i FA
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Fig. 7. The Pareto front obtained within the regfén100] k€ x [0, 100] k€.

Given the Pareto front, the DMs need eventuallyoskahe maintenance policy according
to their preferences since the solutions do notidata each other. To simulate those common
preferences of the DMs, we choose three soluti§nite solution selected by the ‘Min-Max’
method, which selects the representative centdreoPareto front, and is among the most used
ones [49]A (corresponding to a selection by decision makdrs are optimistic and pay more
attention to the lower bound of the cost objectaator) andB (corresponding to a selection by
decision makers who are conservative and pay ntteation to the upper bound of the cost
objective factor), the solutions with the minimuowker bound and minimum upper bound
values, respectively. Solutiods B and S represent three different preferences of the DMs.
Detailed information oig, A andB is reported in Table lIl.

Table Il SolutionsS, A andB

Solution S A B
Lower bound 53.74 k€ 53.73 k€ 58.69 k€
Upper bound 74.17 k€ 96.69 k€ 70.46 k€
T, 773.47 s 808.55 s 563.00 s
Tk, 66.77 s 66.77 s 66.77 s
Hp, [7.28 e-6,D;) m? | [7.66 e-6, D;) n? | [4.91 e-6,D;) n¥
H, (1,2} (1,2} {1, 2}
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The comparisons of the three solutions are donedbas the illustrations in Fig. 8. It can
be observed th&andA have nearly the same lower bound value, whekdas a much higher
upper bound. For the DM§might be more appropriate thanf the small difference 0.01 can
be considered negligiblé& and A both containB: the DMs may choosB as the result of
minimax robust optimization, whereas if they payrenattention to the lower bounél,can be
the choice.

53.74 7417

53.73 96.69

58.69 70.46

Fig. 8. The three selected solutions.

1
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Fig. 9. The system reliability under the maintenpokcy S.

Since the valve is highly reliable, the systematality is basically determined by the pump
reliability. The failures of the system are mitigdtat each execution of the preventive
maintenance.

To illustrate the convergence of the proposed ntettiee hypervolume indicator [50] with
a point of reference defined €300, 100) and the generational distance [51] between the bes
Pareto fronts obtained at two consecutive genersitire used. Fig. 10 shows their trajectories
during the evolution of NSDE without penalty. FId. shows the trajectories of NSDE with
penalty. It is seen that NSDE generally converdies about 60 generations in both cases.

0.15¢

0.1

0.05n

Hypervolume

0 50 100 150
Generation
600+

400

2001

Generational distance

0 50 100 150
Generation

Fig. 10. The convergence plots for NSDE withoutgdgn
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Fig. 11. The convergence plots for NSDE with pgnalt

7. CONCLUSIONS AND FUTURE WORKS

In this work, we have considered the problem ofmeaiance modeling and optimization
of multi-component systems, with degradation depeny and epistemic uncertainty. The
component degradation processes, the conditiordifalkand the CM are described through
a PDMP modeling approach. Intervals are used teesent the uncertain parameters. Both the
pre-scheduled periods for inspection tasks andthiihesholds for PM are regarded as the
decision variables in the maintenance optimizapovblem. Optimization is formulated in a
multi-objective scheme aiming at minimizing the Evand upper bounds of the interval-valued
maintenance cost. To derive the optimal maintenguudiey, a solution method is proposed
combing FV scheme, DE approach and NSDE approaegul® on a realistic case study show
the feasibility of the procedure.

The main contribution of the paper is that it gatizes the existing maintenance models
for multi-component systems by taking into accdamth degradation dependency among the
components and epistemic uncertainty in the degjaadenodels. As the future work, we plan
to extend the proposed framework taking into acttheneconomic and structural dependences
between different components.

Limitations of the proposed solution approach lieghe computational burden and the
memory requirements, when applied in high dimeradigmoblems, due to the FV method
which discretizes the state space of the continvaugbles of PDMP. The computational
expenses and memory requirement of the FV metlodase almost linearly as the number of
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meshes partitioning the state space increases,hwhichosen by the users. For higher
dimensional problems, we can limit the number ofhes to relieve computational burden.
Note that in some cases the high dimensional proldan be decomposed into several low
dimensional ones mutually independent on each.cthen, the FV schemes can be run on low
dimensional problems in parallel. Besides, the aaajon time can be reduced via reducing
the number of meshes set in FV schemes and therdrabmemory required can be reduced
via using sparse matrices. Improvement of theseswill be sought in future research.
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Reliability Assessment of Systems Subject to Depahbegradation
Processes and Random Shocks

Abstract — System failures can be induced by internal degi@danechanisms or by external
causes. In this paper, we consider the relialolitgystems experiencing both degradation and
random shock processes. The dependencies betwgemdion processes and random shocks,
and among degradation processes are explicitly head@ he degradation processes of system
components are modeled by multi-state models (MSsg) physics-based models (PBMs).
The piecewise-deterministic Markov process modefriagnework is employed to combine
MSMs and PBMs, and for incorporating degradatiod eandom shocks dependencies. The
Monte Carlo simulation and finite-volume methods ased to compute the system reliability.
A subsystem of a residual heat removal system mu@ear power plant is considered as
illustrative case.

Key Words — multi-state system, system reliability assessmigyradation, random shocks,
dependency, piecewise-deterministic Markov prockimte Carlo simulation, residual heat
removal system.

Acronyms
PBMs Physics-based models
MSMs Multi-state models
PDMP Piecewise-deterministic Markov process
MCS Monte Carlo simulation
FV Finite-volume
RHRS Residual heat removal system
Notations
K Group of degradation processes modeled by MSMs
L Group of degradation processes modeled by PBMs
Sk Finite state set of degradation procéss

n

Y (£) State variable of degradation procegs
2;(j 1 6x,) Transition rate from staté to j

Fx

n

Set of failure states of degradation proc&ss
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X, ()
X? ()
X7.(@®)
Frm
N(t)
u

Y (0

!
Fk,

Z(¢)
Y'(t)
X'(t)

T

Time-dependent continuous variables of degradatrocessL,,
Non-decreasing degradation variables vector

Physical variables vector

Set of failure states of degradation procéss

Number of random shocks occurred until time

Arrival rate of random shock process

Degradation level of,, considering random shocks

Set of failure states dfy (t)

Shock load of the-th shock

Maximal material strength

Instantaneous random increase caused by-theeumulative shock
Number of cumulative shocks occurred until time

Degradation level of.,,, considering random shocks

Degradation state of the processes ofi§et

Degradation state of the processes oflset

Environmental and operational factors kh

Environmental and operational factorsin

Degradation process of the system

Degradation state of the processes ofi§etonsidering random shocks
Degradation state of the processes ofIsatonsidering random shocks

k-th jump time inY'(t)

Z, = (X}, Yy,) State ofZ(t),X'(t),Y'(t) after k-th jump of Y'(t)

fLY'(t)(X(t) | 6,) Deterministic physics equations &f(t)

Ay.y; (x| Ok) Transition rate ofY’(¢t) from statey; to y;

N(i, (dx,y;),dt)  Semi-Markov kernel of(Z,, T, },s0

dF;(t)

Probability distribution of holding time givef;, = i

1. INTRODUCTION
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System failures can be induced by internal degiraalatechanisms (e.g. wear, fatigue and
erosion) or by external causes (e.g. thermal andharecal shocks) [1]. The interactions
between these factors need to be considered uaedairccircumstances, e.g. when degradation
processes and random shocks stependent (e.g. single-event overloads with shéels
magnitudes can influence the fatigue crack grovtstents by causing instantaneous increase
on the crack propagation [2]), or the degradatiatesof some components in one system can
influence the degradation dynamics or the remainisgful life of the others (e.g. the
degradation of the pre-filtration stations leadio@ lower performance level of the sand filter
in a water treatment plant [3]). Neglecting thesgets may result in overestimation of system
reliability [4]. The evaluation of the system rddility over time can be an important and critical
task. For example, the reliabilities of safety eyss in nuclear power plants, such as reactor
shutdown, emergency core cooling and other safatiti-component systems in nuclear
industry, need to meet the requirements imposaedpyiator to ensure their operational safety
[5]. The instants when the requirements are nasfsad can be identified according to the
reliability evaluation over time. Afterwards, theliability improvement actions can be
performed, such as maintenance, to avoid possibteah and economic loss. In this paper, we
investigate reliability assessment of multi-comparsystems subject to dependent degradation
processes influenced by random shocks. The depeiedepresent challenging issues in
system reliability modeling and assessment [6].(éh@ micro-electromechanical systems
which are complex design systems experiencing abgegrcomponent failure processes and
multiple dependent competing failure processegémh component [7]).

In industrial systems, many critical componentg.(ealves and pumps in the nuclear and
aerospace industries) are designed to be high@bte] for which statistical degradation/failure
data are often limited. In this case, multi-statelgis (MSMs) [8-10] and physics-based models
(PBMs) [11-13] can be used to describe the evatutd degradation in components and
systems. A MSM describes the degradation processdiscrete way, supported by material
science knowledge [14] and/or available but limiteyradation/failure historical data from
field collection or degradation tests [9]. On tloatrary, a PBM gives an integrated mechanistic
description of the component life consistent wita tinderlying real degradation mechanisms
under operating conditions [15], by using physicewledge modeled by corresponding
mathematical equations [11]. In practice, degradathodels of different nature have to be
applied depending on the available informatiorhefdegradation processes. Recently [16], the
piecewise-deterministic Markov process (PDMP) miodeframework has been employed to
incorporate PBMs and MSMs, and to treat the depaside among degradation processes but
without considering the influences of random sho€ks the other hand, random shocks can
accelerate the degradation processes (e.g. intdreahal shocks and water hammers onto
power plant components [17]).

The reliability of systems experiencing both degtamh and random shocks is a problem
that has been widely studied [4, 7, 14, 18-23]. épendency among these processes leading
to failure has posed some challenges to reliahifideling. A literature review is presented
below, to position our contributions within the stkng works. Previous research has focused
on the dependency between one type of degradattmegses (continuous or multi-state) and
random shocks. For continuous degradation proceBsesget al.[20] considered systems with
one linear degradation path where shocks can addgional abrupt degradation damage if the
shock loads do not exceed the maximum strengtheohtaterial; multi-component systems
subject to multiple linear degradation paths hasenbfurther considered by Soagal. [7];
Jianget al.[19] considered changes in the maximal strengtth@fimaterial when systems are
deteriorating under different situations; Becle¢ral. [18] extended the theory of dynamic
reliability to incorporate random changes of thgrdeation variables due to random shocks;
Ye et al. [24] considered the destructive power of a shagethding not only on the shock’s
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magnitude but also on the state of the system; Varad. [25] considered two types of the
effects of shocks: a sudden increase in the farhateeafter a shock, and a direct random change
in the degradation after the occurrence of a shitekipeet al.[21] proposed reliability models
for systems for which the degradation path has angimg degradation rate according to
particular random shock patterns; Sat@l.[22] studied random shocks with specific sizes or
functions, which can selectively affect the degttaprocesses of one or more components
(not necessarily all components) in one systemnidti-state degradation processes, Yahg

al. [23] combined random shocks with Markov degramfatnodels where shocks can lead the
systems to further degraded states; &iral [14] integrated random shocks into multi-state
physics models of degradation processes wherenfluemces of shocks are dependent on the
current degradation condition; Ruiz-Castro [26] sidered external shocks which could
produce several effects; extreme failure, cumutattamage and when the damage reaches a
threshold state, a non-repairable failure occurd,@anges in the internal performance of the
device. Note that no work has considered systents toth continuous and multi-state
degradation processes and subject to random shadkigw studies have explicitly considered
both the dependencies between degradation procasdeandom shocks, and that among the
degradation processes themselves. Wang and Phampldyed copulas to handle these two
types of dependencies; however, sufficient degranlddilure data is required to determine the
copula functions through statistical inference.

In this paper, we extend the PDMP modeling framévior system reliability assessment,
considering not only the dependencies among degadarocesses but also the impacts of
random shocks. To the best knowledge of the auttiosss the first work investigating systems
with both continuous and multi-state degradatioacpsses, subject to random shocks and
considering the dependencies between degradatimegses and random shocks, and among
degradation processes are considered. Since thaiealasolution is difficult to obtain due to
the complexity of the system being considered, mpley two numerical approaches to assess
system reliability: the Monte Carlo (MC) simulati¢a7] and the finite-volume (FV) [28]
methods.

The remainder of this article is organized as feioSection 2 provides the assumptions
and descriptions of the degradation processes amdom shocks. Section 3 presents the
extended model for systems with degradation andamnshock processes, considering their
dependencies. The proposed MC simulation and F¥iodstare presented in Section 4. Section
5 presents an illustrative an illustrative studyetafrom the real-world residual heat removal
system (RHRS) operated by Electricité de FranceFEMD is one important subsystem
consisting of a pneumatic valve and a centrifugahp in series, and is widely used in a variety
of domains for fluid delivery (from water supply $pacecraft fueling systems) [12, 29]. The
RHRS is used for cooling the reactor during antbfainhg shutdown, contributing to safety by
removing heat from the core and transferring ithe environment. Numerical results and
analysis are presented in Section 6. Section 7ledes the work.

2. ASSUMPTIONS AND MODEL DESCRIPTIONS

We consider a multi-component system. Each compgomay be affected by multiple
degradation mechanisms or processes, possibly depermhe degradation processes can be
separated into two groups: (K consists of processes fit to be modeled by MSM};L(
consists of processes fit to be modeled by PBMs.

2.1. Degradation models

2.1.1. MSMs
We follow the assumptions on MSMs made in [16]:
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« A degradation processy (t),K, € K of group (1), takes values from a finite state
set denoted by, = {0, 1, ...,d}, where d is the perfect functioning state aiidis
the complete failure state. The component is fonatg or partially functioning in the
intermediate degradation states. The transitioesrag(j | BKn),v L,j ESk,i>]
characterize the degradation transition probaeditirom statei to statej, where
0y, represents the environmental factors relevank,foand the related parameters
of Ak,. We follow the assumption of Markov property man¢9, 30, 31]. Markov
processes are widely used in practice to descobgonents degradation processes.
The transition rates between different degradastates are estimated from the
degradation and/or failure data from historicaldfieollection. The failure state set of
the processK,, is denoted byF, = {0}.

2.1.2. PBMs

We follow the assumptions on PBMs made in [16]:

* A degradation procesX; (t),L, €L of group (2), hasd, time-dependent
continuous variables, whose evolution is charaoteriby a system of first-order
differential equationsx, (©) = f, (X, (t),t| 6, ), i.e. physics equations, where
0, represents the environmental factors influentallf, (e.g. temperature and
pressure) and the parameters usefi;in. This assumption is made in [32] and widely
used in practice [12, 29]. Note that higher-ord#etential equations can be converted
into a system of first-order differential equatidnsintroducing extra variables [33].

. X, ()= (X{’m(t),Xfm(t)) contains: (1) the non-decreasing degradation biasa
X‘L’m(t) (e.g. leak area) describing the degradation psyogkereD is the set of
degradation variables indices (the same assumipéisieen widely used in practical
studies [2, 12, 29)]); (2) the physical variabllésm(t) (e.g. velocity and force), which
influence X{’m(t), where P is the set of physical variable indices. The gener
degradation proces$,, reaches failure when one{m(t) eXEm(t) reaches or

exceeds its corresponding failure threshold denbj,edi'm*. The failure state set of
the procesd.,,, is denoted byF, .

2.2.Random shocks
Random shocks can influence the degradation presedthe components. The following
assumptions are made, similarly to various previeoks [19-23].

* Random shocks occur in time according to a homamenPoisson process
{N(t),t = 0} with constant arrival ratg (Fig. 1), where the random variabM(t)
denotes the number of random shocks occurredtimél t.

» The damages of random shocks are divided into ypest extreme and cumulative.

* Extreme and cumulative shocks are mutually exctusiv

» Extreme shocks immediately lead the componentsilioré, whereas cumulative
shocks gradually deteriorate the components.

Fig. 1. Random shock process

-234 -



PAPER VI: Y.-H. Lin, Y.-F. Li, E. Zio. ReliabilitAssessment of Systems Subject to Dependent Degrad&bcesses and

Random Shock. IIE Transactions. (Under review)

3. DEPENDENT DEGRADATION PROCESSES AND RANDOM SHOCKS

3.1. Dependency between degradation processes and randshiocks
Due to the different nature of PBMs and MSMs, tin@acts of random shocks on the two
groups of components are characterized in diffenayts.

3.1.1. Impacts on MSMs
In the generic degradation proceks € K, random shocks can cause the process variable

Y (t) to step from staté to a further degraded stajewith probability p;;,i > j [23], with

p;o denoting the probability that the random shockxeme, i.e. leading to failure state 0
upon occurrence from statg_(t) = i. By combining the original degradation and thediam
shock processes, the resulting proc#s(t) is a homogeneous continuous-time Markov
chain of the type depicted in Fig. 2. Each layelidates one degradation statelf (t), and

the numbers in each layer indicate the numbershoéks experienced up to time in the
processk,,, denoted byk. The state ofY . (t) is, then, represented by pe(iYKn(t), k). The
transitions represented by solid lines are dueaitgnal degradation process, characterized by
the original transition rates, which do not inflgerthe value ofk. The transitions represented
by dotted lines are due to random shocks, whiclse&uto be increased by on@p;;,i > j

is the rate of occurrence of a shock which willsmthe process stepping to tih layer from
the i-th layer. Note that,, fails wheneverYy (t) reaches the degradation state 0, no matter

how many shocks it has experienced. Thereforespaee of the failure states &, (t) is
denoted by Fj = {(0,b),vb € N}. The state space ofj (t) is denoted bySy =
{(a, b),vYa € Sy ,b € N}.

d UPaa UPaa Transition due to
0 —————————— 1 -re o _— .
Q degradation

N tDaa-1 YU p— Transition due to
dd-1| \Upgo dd-1 random shocks
d-l/C'} l‘*Pd—m—"@MPd—ld/
O st “>e o o
Aa-ta-2| NN lﬂd—w—z
‘\deo_
HPa-10\" -
/110| T

Fig. 2. Degradation proceds, and random shocks.

3.1.2. Impacts on PBMs
In the generic degradation procelks € L, the i-th shock becomes extreme if the shock
load W; exceeds the maximal material strendthotherwise, it can bring an instantaneous
random increased; to X, (t) [7]. The overall degradation level df,, is expressed as
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follows:

D, =¥ * 2 Hi, i V(0 %0 ®
" X, @©, ifN(@®=0

where N¢(t) is the number of cumulative shocks occurred in dbeelopingL,, process
before the extreme shock occurs until timeThe process.,, leads to failure ifD, (t)
reaches the predefined failure state Fgt or a shock with load larger thal occurs. An
example of degradation process, considering random shocks is shown in Fig. 3, @eHé&f
is the shock load of thé-th shock occurred at time, i = 1,2,3. The center figure in Fig. 3
represents the evolution of the physical variablg.(velocity and force), which can influence

the degradation variable (top figure) and may &lsanfluenced by random shocks (bottom
figure).

1% . Failure
X i ’/_/< threshold
E f f t
D, ()
—
e -
' Wy
D —————d———————————i— —————————————————
1%
W
t
5] ty t3

Fig. 3. An example of degradation procdss with random shocks. Top Figure:
degradation variable; Center Figure: physical \d&iaBottom Figure: random shock process.

3.2. Dependency among degradation processes

Dependencies may exist among degradation processes each group and between the
two groups. The degradation states of the procedssst K may influence the evolution of
the continuous variables of the degradation preses$ setL, and the degradation levels of
the latter may influence the transition times aadgition directions of the former (the detailed
formulations are shown in egs. (2) and (3)) [16].

Let Y(t) = (Y, (©), ... Y, (£)) €5 ={0,1, ..., ds} and X(t) =
(XLl(t), ...,XLM(t)) € R% . The evolution ofY(t) is governed by the transition rates which

depend on the states of the degradation procestesfirst groupX(t) and also in the second
group Y(t), as follows:

AltimOP(Y(t +At) =j | X(0),Y(t) = i,0 = UN_, 0 ) /At
=G| X(),0,),Vt=0,i,jESi+] (2)
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The evolution ofX(t) is described by mathematical equations represggntia underlying
physics and depends on the states of the degradatieesses in the second groYift) and
also in the first groupX(t), as follows:
X() = (X0, (®), .. X1, (©) = (£,YOX(@), t16,,), . f1,, /O XD, £ 6,,))
= fL"OX@©, 10, =UN-106,,) (3)

3.3. PDMPs for systems subject to degradation dependeneynd random shocks
Let Z(t)denote the overall degradation process of the syste

Z(t) = (x'(t) = (D, (®), .. D, (1), Y'(®) = (X (), N(t)) EE=RA xS (4)
where E is a space combininR. and S’ =S x N. Let T,k € N denote thek-th jump
time in Y'(t) and Z, = Z(Ty) = (X' (Ty), Y'(Ty)) = (X}, Y;) . The evolution of Z(t)
between two consecutive jumps Bf(t), between which no shock occurs to the system and
the degradation state does not change, can benva# follows:

Z(t) = (X'(t),Y'(t)
= £V Ox) | 6)),(0,0)), for t € [Ty, Tsal (5)
According to the definition in [34]Z(t) is a PDMP since (1) it can be written &¢t) =
o(Zy,t —Ty), fort € [Ty, Tyl and ¢ satisfies @y, t+s) = p(e(y,t),s), Vt,s =
0,ye E, and t -» ¢(y,t),Vt 20,y € E is right continuous with left limits and (2)
{Z,, T, }.=0iS @ Markov renewal process defined on the spceR*. The probability that
Z(t) will step to statej from stateZ, in the time interval[Ty, T}, + t], given {Z;, T;},< IS
as follows:
P[Zyy1 =J Tir1 € [T Te + t1 | {Z, Tiick] = PlZisr = J, Tiewr € [The, T + t] | Zi],
vkeN,j € E,j#Z, (6)
{Z,, Ty}nso is characterized by the semi-Markov kernNgl = (x;,y,),(dx,y,),dt) =
P[Xjy1 €[x,x+dx],Y}yy =¥, Tes1 — T €[t 6+ dt] | Z, = i|,VkEN,y,,y; €
S, x;,dx € R%,dx - 0,dt — 0, which can be reformulated as follows:
N(l = (xi' yi)' (dx' y])' dt)
= P[X}y1 € [x,x+dx], Y}y = ¥; | Teyr — T € [t, ¢ + dt], Z), = i]
“P[Typ1 — Ty € [t,t +dt] | Z}, = i]
= Q¢ 1), (dx,y)))dF(t) (7)
where Q(¢(i, t), (dx,y,)) is the probability distribution of staté,, given Ty, — Ty =t
and Z, =i and dF;(t) is the probability distribution ofT,,, — T, given Z, =1i.
Q(¢(i, 1), (dx,y;)) can be reformulated as follows:
Qi = (x;,¥).0),(dx, y)))
=P|Xjp1 €, x+dx], Yy =¥ | Tewr — T € [t + dt], Z), = ]
=P[Xjp1 €, x+dx] |Yiyy =¥, Tesr — Tx € [, + dt], Z), = i
P[Yir1 = ¥ | Tiewr = Tic € [t + dt], Zy = i (8)
Let p;(dz = (dx,y;)) denote the probability distribution aZ(t), which obeys the
Chapman-Kolmogorov equation [35] as follows:

fot Zyies’ fRdL Zyjes’ )lyi,yj (x | OK) (fRdL l/)(yj' y)u(yi, yj’x) (dy) -
Y, x))ps(dx, y)ds +
Iy Zyiest Jgay 11 (x| 8)div( (i, 2))ps (dx, y)ds —
Yyes’ fRdL Y, x)p.(dx,y;) + Zyges’ fRdL Y, x) po(dx,y;) =0 9)
where Ayi,yj(x | 6k) is the transition rate o¥’(t) from statey; to y;, ¥(,) is any
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continuously differentiable function from$’ x R% to R with a compact support and
u(yi,yj,x)(dy) is the probability ofX' (¢t) € [y,y +dy] after jumping fromx when
Y'(t) stepsto statgy; from statey;.

The reliability of the system at time is defined as follows:

R(t)=P[Z(s) ¢ F Vs < t] = fzefpt(dz) (20)
where F is the space of the failure states of the system.

The parameters in the proposed model are mainlgetivinto three groups: (1) transition
rates in multi-state models; (2) parameters in f@sysquations of physics-based models and
(3) parameters charactering random shock proce$$esvalues of the first group can be
estimated, using degradation and/or failure datan fhistorical field collection or degradation
tests, through maximum likelihood estimation fomgdete or incomplete data [36, 37], it can
also be estimated by domain experts using physiowledge (e.g. the values of the transition
rates in multi-state physics model [14]) are dématiby physics equations). For the second
group, the laws of physics are used to build theaggns describing the development of the
underlying degradation mechanisms (e.g. fatiguearweorrosion, etc.) [12]. The related
parameter values can be estimated through regnessidels using degradation and/or failure
data. For example, the physics equations of thguatcracking of the seal are built according
to Paris-Erdogan law in [38], which relates thress intensity factor range to the crack growth
under a fatigue stress regime. Their values anenasd through least squares regression
methods by using data on crack length and cycles. Values of the third group can be
estimated using related degradation and/or fadata obtained from historical field collection
or shock tests [39] based on likelihood based @nfee or regression models [24]. For example,
the Brown-Proschan model is employed to model vaear shock processes of tire treads in
[24], the likelihood function can be derived baswd cumulative hazard function and the
parameter values are estimated through maximurihdad estimation.

4. SYSTEM RELIABILITY ASSESSMENT UNDER DEPENDENT DEGRA DATION

AND RANDOM SHOCK PROCESSES

The analytical solution oR(t) is difficult to obtain mainly due to the comple©MPs
used to model the dependent degradation and ramsthock processes [40]. Therefore, we
consider the following two approximate methods: M@ simulation method [27] based on the
semi-Markov kernel ofZ,, T, },,=0 (€. (7)) and the FV method [28] based on the Glzap
Kolmogorov equation (eq. (9)). They are two widaked approaches for solving PDMPs to
evaluate reliability quantities. FV method approates the probability density function of
PDMPs by discretizing the state space of the cootis variables and the time space. It is a
method that can lead to comparable results as Mlation, using less computing time for
low dimensional problems [41]. However, it is tygliy unsuited for high-dimensional
problems or problems with complex equations desugyithe deterministic evolution. Besides,
it is relatively more difficult to implement than®Isimulation method.

4.1. MC simulation method

The MC simulation method to compute the systemabdlty at time t consists of
replicating several times the life process of ty&em by repeatedly sampling its holding time
and arrival state from the corresponding probabdistributions. Each replication continues
until the time of system evolution reachesor until the system enters a state in the faibate
F. The procedure of the MC simulation method iscdeWs:
Set N, (the maximum number of replications) akd= 0 (index of replication)
Set k' = 0 (number of replications that end in a system failstate)
While k < Ny
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Initialize the system by setting = (X’ (0),Y’ (0)) (initial system state), and the tinfe=
0 (initial system time)
Set t' = 0 (state holding time)
While T <t
Sample at’ by using the probability distributiod F,(t)
Sample an arrival statg for stochastic proces®¥’(t) and an arrival statec for
processX'(t) by using eq. (8)

SetT =T+t
If T<t
SetZ =(x,y)
If Ze F
Setk'=k'+1
Break
End if

Else(whenT > t)
If op(Z,t+t'—-T)€EF

Setk' =k’ +1
Break
End if
End if
End While
Setk=k+1
End While o
The estimated system reliability at timtecan be obtained by
R/A;C(t) =1- kI/Nmax (11)

wherek' represents the number of trials that end inafiare state of the system, and the sample
variance [42] is:
VAT gyc) = R/II/I\C(t)(]- - R/I\;C(t))/(Nmax - 1) (12)

MC simulation method is widely used in practicest@luate system reliability [43]. It is
based on the strong law of large numbers and titeatdimit theorem and provides an unbiased
estimator. The error on the estimate can be cdatrolithin a confidence interval built based
on the sample variance given in eq. (12), whichguaarantee the consistency of the estimate.
The accuracy of MC simulation method increasesi@ntimber of replications increases. MC
simulation method is more efficient to solve highdenensional problems, since the sample
variance does not depend on the number of dimesiSidrere are certain techniques to improve
the efficiency of MC simulation method (such as artpnce sampling, sequential MC, etc.)
[43], which have to be designed according to thecdig problems and have not been
considered in our general reliability assessmeméwork.

4.2.FV method

The FV method is an alternative for the approximatelution of the system reliability,
based on a discretization of the state space ofdah&énuous variables and time space [41].
Here, we employ an explicit FV scheme developedCmgozza-Thiventet al. [28]. The
numerical scheme aims at constructing an approgiveltie p.(x, y;)dx for p.(dx,y;). The
estimated system reliability at time then, can be calculated as follows:

R’;V(t) = fze}'pt(z)dz (13)

See Appendix A for detailed descriptions of FV neethDue to the complexity of the Chapman-
Kolmogorov equation (eg. (9)), there is no expkoipressions about the variance or uncertainty
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associated with the estimation. However, the caemee of the method is proven in [28] under
the condition thatAt —» 0 and |M'|/At — 0 where | M| is the space step ankt is the time
step. The efficiency and the accuracy of the methee been shown through the numerical
example in [28].

5. CASE STUDY
We consider a subsystem of a residual heat rensysiém (RHRS) in a nuclear power
plant, which consists of a pneumatic valve andrdrdagal pump in series shown in Fig. 4.
For the degradation model of the pump, we consad@&lSM modified from the one
originally supplied by EDF [16], while for the vawve take the PBM proposed in [12].

TS

Valve Pump

Fig. 4. Subsystem of RHRS, consisting of a cergafyppump and a pneumatic valve.

5.1. Centrifugal pump
The degradation process of the pump is modeled Hpuastate, continuous-time,
homogeneous Markov chain as shown in Fig. 5.

Fig. 5. Degradation process of the pump.

Among the four states of the pump, statas the perfect functioning state and statas
the complete failure state. Lé},(t) denote the degradation state of the pump at tineand
S, ={3,2,1,0} denote the degradation states set. The pump @idamg until Y, (t) = 0.
The parametersl;,, 4,; and 4,, are the transition rates between the degradatatess
estimated from the available degradation and/turadata. The pump vibrates when it reaches
the degradation states and 1; the intensity of the vibration of the pump onteta2 and 1
Is evaluated by the experts as ‘smooth’ and ‘rouggspectively. The set of the failure states
of the pump isF,, = {0}.

5.2.Pneumatic valve

The simplified scheme of the pneumatic valve isnshin Fig. 6. The degradation of the
valve is the external leak at the actuator conaosstito the bottom pneumatic port due to
corrosion, and is modeled by a PBM due to limitetistical degradation data on the valve
behavior. It is much more significant than the otthegradation mechanisms according to the
results shown in [12].
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Top
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pneumatic port

Fluid >

Fig. 6. Simplified scheme of the pneumatic valve][1

Let D,(t) denote the area of the leak hole at the bottorampaéc port of the valve at time
t. The development of the leak size is describedpgt) = w,, where w, is the original
wear coefficient. The valve is considered failedewlhe size of the external leak exceeds a
predefined threshold;. The set of the failure states of the valveHs = [Dj, +).

5.3. Dependency between degradation processes

Dependency in the degradation processes of theedmponents has been indicated as a
relevant problem by the experts of EDF: the punipates due to degradation [44] which, in
turn, leads the valve to vibrate, aggravating it8nodegradation processes [45]. The
development of the leak size of the valve is, tmefgrmulated as follows [16]:

Dy (1) = wp(1 + B(Yp(1))) (14)

where (Y, (t)) is the function indicating the relative incremarfitthe growth rate of the
external leak caused by the vibration of the pubrthexdegradation statg, (t).

5.4.Random shocks
According to the experts of EDF, random shocks Vieger hammers and internal thermal
shocks [17] can worsen the degradation conditiorbath components of the subsystem
considered or even immediately lead them to faglure
Random shocks can deteriorate the pump from it®otstatei to a degraded statg as
9x(0.1)(-=J+1)
ij = 15(0.1)(i+1) ’
leading the pump from state directly to failure state 0. The formulationa&kén from Yang
et al’'s work [23], which satisfies thaE?zipij = 1. By combining the degradation process of
the pump with the random shock process, the reguttiocess takes the form shown in Fig. 7.
The state of the process is represented’by) = (Y,(¢), m),m € N, wherem is the number
of shocks experienced by the pump. The state spiattee hew process is denoted By=
{(a,b),Va € §,,b € N} and the set of failure states of the pumgFis = {(0,b), Vb € N}.

i = j, where p;, denotes the probability of an extreme random shock
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Up33 Transitiondue to
PO OISR |
degradation
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As2 \ UPa1 A3z random shocks
JAO% O

Fig. 7. Degradation and random shock processdsgegiump.

For the valve, the-th shock becomes extreme if the shock Idd exceeds the maximal
material strengthD, otherwise, it can bring an instantaneous randamreaseH; to the total
external leak size [7]W; and H; are assumed to be i.i.d. random variables follgwWoided
normal distributions [46]W; = |a| and H; = |b|, where a~N(u,, o) and b~N(u,,, 6.2).

5.5. PDMP for the system considering dependency

An illustration of the composite degradation praces the valve considering random
shocks and the degradation state of the pump wrshoFig. 8, where the system experienced
a random shock at time;, with the shock loadV;, i = 1,3,4. The first two shocks cause
instantaneous random increasesdft), the last shock lead the valve to failure. Theation
of the pump accelerates the degradation procefiseofalve at timeg, and t;, when the
pump stepped to a further degraded state.
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Fig. 8. An illustration of the degradation of the&lwe considering random shocks and the
degradation state of the pump. Top Figure: degi@a@rocess of the valve; Center Figure:
random shock processes; Bottom Figure: degradptimeess of the pump.

The degradation processes of the whole systemeagpbesented by:
Z(t)=(D(),Y(t)) € Rt XS=E (15)
Let Ty, k € N denote thek -th jump time in Y(t) and Z, = (Dy,Yx) = Z(T}) . The
evolution of Z(t) between two consecutive jumps Bft), between which no shock occurs
to the system and the degradation state of the mlomp not change, can be written as follows:
Z(t) = (D®),Y(®)
= (wp(1 + B(¥,(1))), (0,0))
= (v(Y(£)),(0,0)), for t € [Ty, Tyesal (16)
where v(+) is used to denote the corresponding equation.
By integrating eq. (25), we can obtain that:
Z(t) = (D + (t — T)wp(1 + B(Yp(Ti))), Vi)
= (@1(Zy, t = T), Vi), for t € [Ty, Taal
= @(Zy, t —Ty), fort € [T, Trsal (17)
where ¢, () and ¢(*) are used to denote the corresponding equations.
Let p.(dx,y;) denote the probability distribution oZ(t). Given the series logic
configuration of the system considered, the systisiwhen one of the two components fails;
the reliability of the system at time is, then, defined as follows:
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R(t) = P[Z(s) g F,¥s<t] = [ eF, Zy.er, Pe(dx, ¥) (18)
where F = R* X F, U F, X § is the set of the failure states of the system.
The parameter values related to the system degwadatocesses and random shocks under
accelerated aging conditions are presented in Tablee first eight parameter values related
to the degradation processes are taken from [i€jvalues ofu,,, g,, and D are taken from
[20] and those ofu, u, and g, are assumed arbitrarily. The parameter valueseirepon
the discussion with the experts from EDF.

Table | Parameter values

Parameter Value
Asz 3e-3/s
At 3e-3 /s
Mo 3e-3/s
wp, 1e-8 ni/s

B(3) 0
B(2) 10%
B 20%
B(0) 0
Dy 1.06e-5 M
U 5e-3 /s
Uy 1.2 Gpa
Ow 0.2 Gpa
D 1.5 Gpa.
Uy, le-7
op 2e-8 nt

6. NUMERICAL RESULTS AND ANALYSIS

The MC simulation and the FV methods are emplogesstimate the system reliability. All
the experiments are carried out in MATLAB on a Pithvan Intel Core 2 Duo CPU at 3.06
GHz and a RAM of 3.07 GB. MC simulations wittD3, 10* and 10> replications (named
MC1, MC2 and MC3, respectively) are applied ovémnee horizon ofT,,;;c = 1000 s for the
system reliability estimation. System holding tinaetival state for stochastic procegst)
and arrival state for proced3(t) can be sampled by using the probability distritmuteg. (28),
the probability mass function eq. (30) and the pholity distribution eq. (31), respectively. See
Appendix B for detailed descriptions of these eigunest

The results are shown in Fig. 9. It is seen thaMIC simulation method requires a number
of replications to achieve the desired level olaacy. The average computation times of MC1,
MC2 and MC3 are 0.21 s, 2.17 s and 21.77 s, raspbct
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Fig. 9. System reliability estimated by MC1, MC2aviC3.

For the FV method, the state spaRé of D(t) has been divided into an admissible mesh
M = Up=o12,.. [mAx,(m+ 1)Ax[ and the time spac®* has been divided into small
intervals R* = Uy, [nAt, (n + 1)At[. See Appendix C for the application of FV method.
The system reliability estimated by the FV methedshown in Fig. 10 with the following
different parameter settings: (1) FVAx = 5e — 9,At = 0.5; (2) FV2: Ax = 1.5e — 8,At =
1.5 and (3) FV3:Ax = 4.5e — 8,At = 4.5. The accuracy of the FV scheme increases as the
space stepAx and the time ste@\t are reduced. The average computation times of FV2,
and FV3 are 0.19 s, 1.93 s and 26.39 s, respectivel
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Fig. 10. System reliability estimated by FV1, FRIaV3.

The quantitative comparison of the most accuraselt® obtained by MC3 with those
obtained by FV3 is shown in Table Il. The samplgaraces associated with system reliability
values estimated by MC3 are less than 2.5e-6 aicagptrol eq. (12), which means the results are
sufficiently consistent and accurate. The quamigatomparison of results obtained by MC3
and FV3 shown in Table Il is only used to show tdischeme can achieve comparable results
to the MC simulation method (relative error lesartt®.9%) in the illustrative case. Note that
FV3 gives deterministic results since the valuesAaf and At do not change, which
guarantees the accuracy and consistency of thetitpisse comparison. To provide more
information, we have added Fig. 11 to compare é¢isalts obtained by MC3 with that obtained
by FV3 over the time horizon. For this case stutlg, computational expense of the two
methods is similar.

Table Il Quantitative comparison of the resultsapied by MC3 and FV3

Method MC3 FVv3 Relative
Time error
100s 0.9611 0.9607 0.0438%
200s 0.9021 0.9011 0.1162%
300s 0.8230 0.8205 0.3027%
400s 0.7285 0.7263 0.2974%
500s 0.6284 0.6271 0.2109%
600s 0.5312 0.5300 0.2394%
700s 0.4395 0.4397 0.0365%
800s 0.3576 0.3591 0.4157%
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900s 0.2467 0.2459 0.3204%
1000s 0.0335 0.0332 0.8955%
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o
©
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N w N (62} [e2) ~ (o8]

o©
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0 200 400 600 800 1000
Time (s)

Fig. 11. Comparison of the results obtained by M@G8 FV3.
The reliability values of the valve, the pump ahd system with/without random shocks,
obtained by MC3, are shown in Fig. 12. The numégoanparisons on the reliability of the

system, the valve and the pump with/without randdracks at the final time of 1000 s are
presented in Table IlI.
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Fig. 12. The reliability of the system, the valvelahe pump with/without random shocks.

When random shocks are ignored, the system retiaisibasically determined by the pump
before around 870 s, since the valve is highhalad. After that, the sharp decrease of the valve
reliability due to degradation leads to the santek®r in the system reliability. When random
shocks are considered, the system reliability isrd@ned by both the pump reliability and the
valve reliability from the beginning until aroun&®s, since the valve is no longer as highly
reliable as before. Then, the valve reliability deses sharply due to the joint effects of random
shocks and degradation, and this drives also tgstecrease of the system reliability. We can
see from the results that neglecting random shoeksresult in an underestimation of the
reliability of the system and of the components.

Table Il Comparison of reliability with/without r@lom shocks at 1000 s

Reliability without Reliability with Relative

random shocks random shocks change
System 0.18 0.033 81.67%
Valve 0.50 0.099 80.20%
Pump 0.43 0.32 25.58%

Following one assumption of our work (i.e. limitetorical data), epistemic uncertainty
can arise due to the incomplete or imprecise kndgdeabout the degradation processes and
the governing parameters of the pump and the valich has been considered in [16] by
describing the degradation model parameters asvaige(or fuzzy numbers). In the revised
manuscript, we follow the settings in [16] whereehative deviation of +10% to the original
parameters values has been consideredifgr 4,1, 440, wp, F(3), B(2), B(1) and
B(0) upon the discussions with the domain experts f&#. The lower and upper bounds of
system reliability under uncertainty, and the arajivalues without uncertainty obtained by
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MC3 are shown in Fig. 13. The lower bound of systefiability with uncertainty decreases
more sharply after around 790 s, earlier thanwhidout uncertainty. It is seen that the system
fails after around 964 s, because at that timeahee is completely failed. The upper bound of
system reliability with uncertainty does not expade a rapid decrease because the valve is
mostly functioning over the time horizon.

— Without uncertainty
0.1— Upper bound under uncertainty
- --Lower bound under uncertainty

0 200 400 600 800 1000
Time (s)
Fig. 13. The lower and upper bounds of systemlygilia with uncertainty, and the original
values without uncertainty obtained by MC3.

7. CONCLUSIONS

In this paper, we presented reliability models $gstems experiencing both degradation
processes and random shocks. The degradation pescesolve both continuous and multi-
state processes, which are modeled by MSMs and PBadpectively. The dependencies
between degradation processes and random shocksmodg degradation processes are
addressed by PDMP modeling. The procedures of fiesivhulation and FV methods to solve
the model are developed. A subsystem of a RHRShuckear power plant, which consists of a
pneumatic valve and a centrifugal pump, is consideas the illustrative example to
demonstrate the effectiveness and modeling capebitif the proposed framework. As original
contribution and differently from our previous wofk6], this work is first in considering
system reliability under both continuous and msiéite degradation processes, random shocks
and their dependencies.

As future work, we will include maintenance in thedel and derive optimal maintenance
policies under the conditions considered.
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Appendix A: FV method
Assumptions

The FV method for determining the approximated tatuof the system reliability can be
developed under the following assumptions [28]:
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* The transition ratesi,, ,.(-|0k) ,Vy,y; € §' are continuous and bounded
functions fromR% to R*Y.

« The physics equationg,”!(- | 8,),Vy; € S’ are continuous functions fromR% to
R4 and locally Lipschitz continuous.

« The physics equationg,”'(- | 8,),Vy; € §' are sub-linear, i.e. there are soie>
0 andV, > 0 such that

Vx € R%,t € R*|f (x| 6,)] < Villxll +V,

« The functions div(f,”'(-|10,)),Vy; €S’ are almost everywhere bounded in
absolute value by some real valle> 0 (independent ofy;).

« If ¢() is a continuous and bounded function froRf: to R, then, x —
[ ¢ u(yi v, x)(dy) is continuous fromR% to R.

Solution approach
For ease of notation, we lg?i(;, - | 8,): R% x R - R4 denote the solution of
%g}’i(x’t | OL) = fLyi(gyi(xrt | BL) | GL)' vyi € S,rx € ]RdL't eR (19)
with
g%i(x,0|0,) =x,Vy;, €S’ ,x € RL (20)
and g”i(x,t | 8;) being the result of the deterministic behaviorXift) after timet, starting
from the pointx while the processe®’(t) hold on statey;.
The state spac®%. of continuous variableX’(t) is divided into an admissible mesit,
which is a family of measurable subsetsRfz, i.e., M is a partition of R such that:
(21) Upepr A = R%.
(22)VA,BeM, A+B=>ANB = 0.
(23) m, = [, dx > 0,vA € M, wherem, is the volume of gridA.
(24) supyepcdiam(A) < +oo where diam(A4) = supyyyealx — yl.
Additionally, the time spaceR™is divided into small intervalR* = U1, .. [nAt, (n +
1)At[ by setting the time steppt > 0 (the length of each interval).
The numerical scheme aims at constructing an apped® valuep;(x,- )dx for p.(dx, ),
such thatp,(x,-) is constant on eactnAt, (n + 1)At[x A X {y;},VAE M,y €S":

p:(x,y;,) = B,(4,y)),Vy;, €S, x € At € [nAt,(n + 1)At[ (21)
Py(A,y,),Vy, €S',A e M is defined as follows:
Py(Ay) = fAPO(dx’)’i) /My (22)

Then, P,,,(A4,y;) can be calculated considering the deterministduation of X(t) and the
stochastic evolution o¥’(t) based onB,(M,y;) by the Chapman-Kolmogorov forward
equation, as follows:

Pn+1(A yi)
1 YJ Yi
1+Atbyl Poi(Ay)+ AtZBeMZy,es’ A by] n+1(B y]) (23)
where
@y = [, 2y,5.(x | 05) [y (v, ¥ x)(dy)x/m, (24)
is the average transmon rate from state and grid B to statey; and grid 4,
byt = [, Zyjes Ayyy; (X | O0)dx fmy (25)
IS the average transition rate out of stagtefor grid A,
n+1(A yl) - ZBEMm I (B yt)/mA (26)

is the approximate value of probability densﬂycftmn on [(n+ 1)At, (n + 2)At[x A x {y;}
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according to the deterministic evolution Xf(t),
Yi _
Mpa = f{yEB | g”i(y.At | 81)€A} dy (27)
is the volume of the part of gri@ which will enter gridA after time At, according to the
deterministic evolution ofX(t).
The approximated solutiop,(x,- )Jdx weakly converges towards.(dx,) when At — 0

and |M|/At - 0 where |M| = supyepcdiam(A).
Appendix B: Equations for MC simulation method in case study

The semi-Markov  kernel  of {Z,, T,}nse is  N(i= (x, ) (dx,y)) dt) =
Q(p(i,t), (dx,y;)) dF(t),VkeN,y;,y; €S,x € R",dx - 0,dt - 0. According to the
degradation models of the system, we can obtain tha
AFiz () () = Ay,e it dt (28)
where 1, is the sum of the outgoing transition ratesrgt) from statey;, and
Qe(i, t), (dx,y:))
= P[Dyy1 € [x, x + dx] | Yiy1s = ¥, Tirr — Tx € [t t + dt], Z, = ]
‘PlYir1 = ¥j | s — Ty € [t,t + dt], Z) = i] (29)
where
P[Yiy1 =¥ | Tyyr — T € [t, t + dt], Z), = i]
= P|Yir1 =¥ | Ve = ¥i]

_ My
", =
where Ayi,yj is the transition rate of (t) from statey; to statey;, and
P[Dk+1 € [X,x + dX] | Yk+1 = }’j»Tk+1 - Tk S [t,t + dt],Zk = i]
( Plo (i, t) + H(Ty + t) € [x,x + dx]],
_Jif transition from y; to y; is due to random shock (31)
Swl(i,t) (dx)l
if transition fromy; toy; is due to degradation
where H(T, + t) is the instantaneous random increase caused bit ahome T, +t, § is
the Dirac delta function and

Plp,(i,t) + H(T, + ) € [x,x + dx]]

D—pywy 1 x=@1(L,8)—pp
P ) b, )dx,
_ if x <Dy 32
- (1- q)(D‘“W)) S . (dx) + q)(w) -id)(m))dx (32)
. @1 (1) +Dy Ow on oh ’
if x =Dy

where ®(-) and ¢(-) are the cumulative distribution function and thelability density
function of a folded normal distribution relatedhe standard normal distribution, respectively.
Here, since an extreme shock can directly lead/éive to failure, we assume each extreme
shock increase the total external leak sizelljyto formulate the problem within the settings
of PDMP. Note that this assumption will not chatige reliability of the valve.

Appendix C: Application of FV method in case study

The probability distribution ofZ(t), p.(dx,y;), obeys the Chapman-Kolmogorov
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equation [35] as follows:
Jy Zyies Jgr Zyjes Ayy; Upr 0 5 VI 5, %) (@) = (i 2))ps(dx, y))ds +

Iy Zyies e vV div (i, ))ps(dx, y)ds — Tyes for ¥ i %) pe(dx, y;) +

ZyiES fR+ l/)(yi' X) Po (dx' yl) =0 (33)
where Y (") is any continuously differentiable function frons x R* to R with a compact
support andu(yi,yj,x)(dy) is the probability ofD(t) € [y,y + dy] after jumping fromx
when Y (t) steps to statgy; from statey; as follows:

D—uy, 1 —xX—

( O(=2) (= )dy,
if transition from y; toy; is due to random shock and y < Dy,

_ D—piw~~ | . D—pw~ 1 Y—X—HUh
(v y )y =1 A= OCED) S (dy) + O - gty dy
if transition from y; toy; is due to random shock and y = Dy,

6.?6' (dy),
\ if transition fromy; toy; is due to degradation

(34)
P,(m,y;) is defined as follows:
A
Po(m, y) = [on ™ po(dx, y;) /Ax (35)
where p,(dx,y;) = 6o(dx) - 1¢y,=z0y; - Then, P,,.;(m,y;), n€N can be calculated

considering the deterministic evolution ff(t) and the stochastic evolution &f(t) based
on P,(:, -) by the Chapman-Kolmogorov forward equation, aleva:

Pn+1 (ml yl)
Yj¥i
1 D m'm 5 — '
= 1+4thy, Prpi(my) + At Ypren ZijS —1+At/1y]. Pn+1(m 'Yj) (36)
where
YjYi m'+1)Ax (m+1)Ax
@ =y fine e #(V5 Y x)(dy)dx/x (37)

is the average transition rate from state and grid [m'Ax, (m’ + 1)Ax[ to statey; and grid
[mAx, (m + 1)Ax|,
Prai(M,y) = Tmren vl Pa(m',y;) /Ax (38)
is the approximate value of probability density dtion on [mAx, (m + 1)Ax[X {y;}
according to the deterministic evolution Bf(t) between jumps ot’(t) and
i o _

Vit = Joeem? n(m! +1)8x[ | (01 (Goyi A efmax,(me1)ax) (39)
is the volume of the part of griftn'Ax, (m’' + 1)Ax[ which will enter grid [mAx, (m +
1)Ax[ after time At according to the deterministic evaluation@€t).
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A Reliability Assessment Framework for Systems vidggradation
Dependency by Combining Binary Decision Diagran sionte
Carlo simulation
Yan-Hui Lint, Yan-Fu Lt senior member IEEE, Enrico Zibsenior member IEEE

L Chair on Systems Science and the Energetic Chal|érandation EDF, aEcole Centrale
Paris- Supelec, France

2Politecnico di Milano, Italy

Abstract — Components are often subject to multiple competiegradation processes. This
paper presents a reliability assessment frameworkniulti-component systems whose
component degradation processes are modeled bystaitt and physics-based models with
limited statistical degradation/failure data. Thescpwise-deterministic Markov process
modeling approach is employed to treat dependebeiggeen the degradation processes within
one component or/and among components. A compo#tiethod combining binary decision
diagrams (BDDs) and Monte Carlo simulation (MCSjeseloped to solve the model. ABDD
Is used to encode the fault tree of the systemoatain all the paths leading to system failure
or operation. MCS is used to generate random edadizs of the model and compute the system
reliability. A case study is presented, with refere to one branch of the residual heat removal
system (RHRS) of a nuclear power plant.

Key Words — System reliability analysis, Degradatidependency, Piecewise-deterministic
Markov process, Binary decision diagrams, MontddCsimulation.

Acronyms
PBMs Physics-based models
MSMs Multi-state models
FTA Fault tree analysis
CCFs Common cause failures
BDDs Binary decision diagrams
MCS Monte Carlo simulation
RHRS Residual heat removal system
WDFLM Weighting depth-first left-most
DFLM Depth-first left-most
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ite if-then-else
Notations
C Number of components in the system
L Group of degradation processes modeled by PBMs
K Group of degradation processes modeled by MSMs
D, Degradation state of componeit
m(t) Time-dependent continuous variables of degradatiocesd.,,
m(t) Non-decreasing degradation variables vector
ﬁ(t) Physical variables vector
FL,. Set of failure states of degradation procegs
Yi (£) State variable of degradation procé&ss
Sk, Finite state set of degradation proc&ss
Fk, Set of failure states of degradation proc€ss
Z(t) Degradation state of the system
Ok Environmental and operational factorskin

2:(j16x,) Transition rate from state to j

0, Environmental and operational factorslin

fu. (X, (©),t] 6, ) Physics equations of degradation prockss

m(t) Stochastic process of one group of interdependisgradation

processes

N (?, dz, ds|0Kq)Semi-Markov kernel

1. INTRODUCTION

Most components undergo degradation processesebialiture. A number of degradation
models have been proposed in the field of religbéingineering based on the available
information/data, which can be mainly classifiedoirthe following groups: statistical
distributions (e.g. Bernstein distribution [1])pshastic processes (e.g. Gamma process [2]),
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multi-state models (MSMs) (e.g. semi-Markov mod) and physics-based models (PBMs)

(e.g. probabilistic superposition model [4]). Amahg existing degradation models, PBMs [5-

7] and MSMs [8-10] can be used to describe theutarl of degradation in structures, systems
and components, for which statistical degradat@luife data are insufficient, e.g. the highly

reliable devices in the nuclear and aerospace indsisA PBM gives an integrated mechanistic
description of the component life consistent wite tinderlying real degradation mechanisms
(e.g. wear, corrosion, fatigue, etc.) by using jpds/&nowledge and equations [4], whereas a
MSM describes the degradation process in a disavetg supported by material science

knowledge, degradation and/or failure data frontohnisal field collection or degradation tests

[11, 12].

In reality, components/systems are often subjectmidtiple competing degradation
processes. The dependencies among these procaetdsasowe component (e.g. the wear of
rubbing surfaces influenced by the environmentadsst shock within a micro-engine [13]),
or/and among different components (e.g. the degjaadaf the pre-filtrations stations leading
to a lower performance level of the sand filterairwater treatment plant [14]) need to be
considered. Components can be dependent due tociualcdependence, where the failure of
a trigger component causes other components tonte@aaccessible or unusable [15, 16].
Competing failure propagation and failure isolataffects have been studied in [17, 18], where
a failure not only causes outage to the componen fvhich the failure originates, but also
propagates through all other system componentsngatise entire system failure and failure
isolation occurs when the failure of one comporgentses other components within the same
system to become isolated from the system.

Recently, the authors have employed the pieced@serministic Markov process
(PDMP) modeling framework to integrate PBMs and MSHdr treating the dependencies
among degradation processes [19] for a systemanstinall number of components, where the
whole system is modeled by one PDMP. For systentargér size, the high dimension of its
PDMP can lead to very heavy computational burdbasause solving the PDMP of a small
system is already time consuming due to the comidnita nature of MSMs and the need to
simulate the trajectory between any two systenestdt9]. In addition, the dependencies may
only exist within certain groups of components &al/e different groups being independent
[20], and the causes to systems failure are ngttedse identified.

Fault tree analysis (FTA) [21] is typically used ittentify the combinations of events
leading to system failure and compute its probigbily using minimal cut sets found from the
fault tree structure. For real systems, this carcamaputationally intensive, when the tree
structure is large and, especially, if it contaiggeated basic events [22]. In addition, all basic
events are usually assumed statistically independen

Common cause failures (CCFs) of components have beesidered in [23-25]: implicit
and explicit methods have been developed to evalint system reliability. In binary-state
systems, components failures with dependent prajoagaffects have been studied[R6],
within a dynamic FTA framework. The statistical dedence of component states across
different phases of phased-mission systems hastbesed by using multiple-valued decision
diagrams to encode fault trees in [27, 28].

On the contrary, the dependencies of the degradpt@cesses leading to failure of different
components need to be considered which rendeticédaic events under different gates being
dependent. To the knowledge of the authors, tlsen® ipublished research work to tackle this
problem, of practical reference [29].

To take into account such dependencies at a relatiow computational cost for systems
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of larger size, a system reliability assessmenthaotkeis proposed combining binary decision
diagrams (BDDs) [30] and Monte Carlo simulation (8)C[31]. Instead of modeling the
degradation of the whole system by one PDMP a%dh fhe proposed method can identify the
groups of components being dependent and decontheseriginal PDMP into a group of
smaller ones which are independent from each atheeasier to be solved. Besides, the states
of these PDMPs leading to the systems failure @edsily obtained. Firstly, a fault tree is
transformed to a BDD from which all paths leadinghe system failure or operation can be
efficiently obtained. BDDs [30] are directed acgaraphs, encoding Shannon’s decomposition
of a formula, and have been implemented in manyaiiasn they possess the feature of sharing
equivalent subgraphs and hence can reduce the tatopal time and memory requirements
[32]. An algorithm based on BDD has been develdpectliability analysis of phased-mission
systems with multimode failures in [33] to imprawe efficiency and reduce the computational
complexity. BDD has also been employed for netwaliability and sensitivity analysis in
[34]. SecondlyMCS is used to estimate the probability of eacth patcompute the system
reliability taking into account the dependenciesvaen basic events, since analytically solving
the PDMPs is difficult, if not impossible, due teetlarge size and complex behavior of the
system [35].

The rest of this paper is organized as followstiBe@ provides the assumptions and model
descriptions. The proposed reliability assessmerthad is presented in Section 3. Section 4

presents one case study on one branch of a residaatemoval system (RHRS) of a nuclear
power plant. Section 5 concludes the work.

2. ASSUMPTIONS AND MODEL DESCRIPTION

2.1 General assumptions

We consider a multi-component system, mad&’ ofomponents denoted b§ = {0,,
0,, ..., 0c).

The following assumptions are made:

* The fault tree of the system is available and dost@ basic events denoted ley=
{e1, e2, ... ,eg} which include the failures of components and othegnts such as
erroneous operation caused by human errors. Thpauent-failure type of events are
determined by their underlying degradation processe

» Each component may be affected by multiple degi@anlatocesses, possibly dependent.
The degradation processes can be separated ingronps: (1)L = {L,, Ly, ... , Ly}
modeled byM PBMs; (2) K ={K;, K,, ... , Ky} modeled byN MSMs, where
L,m=12..,M and K,,n=1,2,..,N are the indexes of the degradation
processes. The degradation state of a companeato,c = 1, 2, ..., C, is determined
by its degradation processeB, S LUK and the component fails when its
degradation processes enter its failure state sfsmeethe two bullets below for its
definition).

» A degradation procesk,, € L in the first group is described ll; time-dependent

continuous variablesle(t) = (@(t),)?”m(t)) € R%m in terms of: (1) the non-

decreasing degradation variables ved@(t) (e.g. crack length) representing the

component degradation condition; (2) the physicmﬁablesa(t) (e.g. velocity)
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influencing Xfm(t) and vice versad,_ is the number of non-decreasing degradation
variables and physical variables for a degradapowcessL,,. Their evolution is

characterized by a system of first-order differ@ntiequations XL'm(t) =
fo. (X, (©),t]6, ), i.e. physics equations, whegh, _ represents the environmental

factors toL,, (e.g. temperature and pressure) and the paramESedsinE. The

evolution of physical variables can be charactérizyy physics equations. The
environmental factors are the parameters of theipyquations and their evolution is
not characterized by physics equations. If any remmental or operational factor is
modeled by physics equations and influencing thgratkation variables, then, it is

considered as one physical varialle, fails when onecLim(t) € Xfm(t) reaches or

exceeds its corresponding failure threshold derlmjzex:{m*. The failure state set df,,
is denoted byF; . An example ofL; is shown in Fig. 1.

* A degradation procesk, € K in the second group is described by the statabiari
Yi (t), which takes values from a finite state §gt = {Ox ,1x_, ..., dk, }, Where dy '’
is the perfect functioning state arij;'’ is the complete failure state. All intermediate
states are functioning or partially functioning.eTtnansition ratesii(j | BKn),v i,j €
Sk, 1 > j characterize the degradation transition probaislifrom state to statey,
where 8, represents the environmental factorskipand the related coefficients of
Ak,- The failure state set df,, is denoted byFy = {0y }. An example ofK; is
shown in Fig. 2.

Xp,(®) .
Failure ! *
< Ll
B threshold
g
4
g
(@]
. th t
P
X, (®)
Q
2
4]
&
t
2]

Fig. 1. An illustration ofL,.
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Yi, (t)
2k, ————————_______Initial state
o) R IS SO
O, |- mommm e L Failure state t

Fig. 2. An illustration ofK;.

Dependencies between degradation processes maybettiswithin and across grous
and K. The degradation levels of the components initsedgroup may influence the transition
times and transition directions of the degradatiwacesses of the second group and the
degradation states of the second group may infeiethe evolution trajectories of the
continuous variables in the first group [19]. PDMi#?*e employed to model this dependency,
the detailed formulations are shown in egs. (1) (@)d

2.2PDMPs for dependent degradation processes

Let us consider one group of interdependent degradprocessed., = {Lp,, ... , L, }
andK, ={K,,, ... , K, }, which have no dependencies with the other degmadprocesses.
Their degradation states are represented by

X, ®\
5 =X, (t)

_ X, (t
Zo = | ™ | € Epy = R x Si vt > 0 @)
| Y‘h (t) . |
: =Y, (t) /
YQm (t)

where E, , is the space combinin@&dLv (de =Zﬁ=1dek) and Sk, = {0, 1,...,qu}
denotes the state set of procégs(t).
The evolution of the vector of degradation stat@(t) involves (1) the stochastic

transition process oﬁ(t) and (2) the deterministic progressionfj (t), between successive

transitions of7q’(t) , given Fq’(t). The first process is governed by the transitadas of7q)(t),
which depend on the degradation levels of the corapts in the first group, as follows::

Lim P (Yo(t +40) = J|Z,4(6) = (%, (0, Y4 (®) = D7, 0, )
=27 (1%, (), 0k, ) AL,V 1] € S, T # ©)

where the parameter vect@,, represents environmental and operational factdseincing

the degradation processeskn . The second evolution process is described bgeterministic
physics equations which depend on the degradatidessof the second group as follows:
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B X, ©\ ([ fo, @pqt)tl6y,)
O=| + |= L
XL.Pn (3 fi,, (Zpq®, tleLpn)
= Foy Zpa(®).tl61, = (04, .01,,)) ®

wherethe parameter vectoBka,k =1,2,..,n represents environmental and operational
factors influencing the degradation processes,in It should be noted that the evolution of
one degradation processm(t) depends on the states of all the degradation gsesein
Z,q (1)

3. METHODOLOGY
In this section, a computational method combinim@PB and MCS is proposed.

3.1Binary decision diagrams

A BDD is a directed acyclic graph encoding Shansaecomposition of a formula. A
BDD has two terminal vertices labeled 1 and O widate the failure and operation of the
system, respectively. Each non-terminal vertealieled with a variable and has two outgoing
edges: l-edge and 0-edge which indicate the ocwmereand non-occurrence of the
corresponding basic event, respectively.

A BDD is employed to encode the fault tree of thstem according to the given ordering
of the indicator variabl&; used to denote the occurrence or non-occurrenite dfasic event
i (X; =1 indicating the occurrence of the basic everind X; = 0 indicating the opposite).
The size of the BDD largely depends on the givedeong and the problem of finding the
global optimal ordering is an intractable task [38]. Several ordering heuristics have been
developed, whose performances may vary on diffggestilems. In this work, we employ the
weighting depth-first left-most (WDFLM) orderingdenique proposed in [38], which leads to
satisfactory results according to the tests in {8y, WDFLM first assigns weight 1 to each
basic event. Then, it traverses the fault treeobottip to calculate the weight of each gate by
adding the weights of all its inputs, i.e. gated aasic events. Fig. 3 shows an example of a
fault tree where the weights of the gates are neththrough WDFLM.
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A

2 1 1 1
(%)
() (&)
Fig. 3. An illustration of fault tree labeled witteights.

Then, the inputs of a gate are rearranged in tther@f increasing weights as shown in Fig.
4.,

1 1
Fig. 4. An illustration of fault tree with rearragdjinputs of gates.

Finally, the depth-first left-most (DFLM) orderirtgchnique [41] is applied to the fault tree
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to get the variable ordering. In this technique, Itlasic events are placed in the ordered list as
soon as they are encountered during the DFLM tsaVesf the fault tree. Le& be a total
ordering of variables, for the fault tree in Figt & X; < X, < X; < X,.

Based on the variable ordering, the related BDD lmamronstructed using the bottom-up
procedure. Firstly, all basic evenis € e are associated with the if-then-else (ite) struetur
[42] ite(X;, 1,0), whereite(X;, f1, f2) = (X;Af1)V(=X;\f,), which means if the basic event
i occurs then consider functigfy else consider functiof,. Then, work from the bottom to
the top of the fault tree and obtain the ite stiteefor each gate by using the following principle:
let us consider two variableX, < X, and four functions,, f5, f5, f4, let <> be any logic
operation AND or OR, then:

ite(Xq, f1, f2) <> ite(Xy, f3, fa) = ite(Xg, f1 <> f3,f2 <> f4) (4)
and

ite(Xo, fu, f2) <> ite(Xp, f3, 1) = ite(Xo, fr <> ite(Xy, f3, f), fo <> ite(Xp, f,f2)) (5)

The ite structure of the top event of the faultetrim Fig. 3 can be obtained as
ite(X3, 1,ite(X,, 1,ite(X4, 1,0))). The associated BDD shown in Fig. 5 can be coastduby
breaking down each ite structure into its left aigtht branches, and eliminating the vertexes
that are not useful (a vertex is not useful whenvito outgoing edges point to the same vertex
or it is equivalent to another vertex) [43].

Fig. 5. BDD for fault tree in Fig. 3.

Finally, all the paths leading to system failuren d& obtained a$1)X; = 1,(2)X; =
0,X,=1,3)X;=0,X, =0,X;, =1 and the path leading to system operationXis=
0,X,=0,X; =0. The exact system reliability is equal to the samthe probability of
occurrence of the paths leading to system operaiioh— the sum of the probability of
occurrence of the paths leading to system failure.

3.2MCS for PDMPs

To derive the probability of occurrence of one paththe PDMPs containing the variables
involved in that path need to be solved. SincePD&IPs are independent from each other, the
product of the probabilities of PDMPs being in #tates indicated by the path equals the
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probability of occurrence of that path. AnalytigaBolving the PDMPs is a difficult task,
whereas MCS is well suited.

We develop a MCS algorithm for solving the PDMRgdnsists of sampling the transition
time and the arrival state for the MSMs and, tloahculating the behavior of the PBMs within
the transition times using the physics equation.

k
Yq

E,.k €N, WhereYjc € SKq,k € N denotes the state (VT(t) after k transitions from the
beginning (a transition occurs as long as any dribeoelements irﬂ(t) changes its state)
and T* denotes the time of arrival at stag. Then,{%,T"}k>0 is a Markov renewal
process defined on the spaEg, x R* [44]. We can obtain that

- X, (T%)
Refer to one PDMP presented in Section 2.2. Eft =Z, . (T*) =( P >E

P|zpit € B,T™ € [T, T + Atl|Z5, = 1.6y, |

= ff N (1, dz ds|6y, )
]

Bx*[0,At

vn=>0At>0,7€ E,,,BEc¢ (6)

p.q’

p.q’
]N(KE, ds|0Kq) <1,VAt>0,7€ E,,. It can be further

where ¢ is a g-algebra ofE, , andN(?,E, ds|0Kq) is a semi-Markov kernel o&

which verifies that /], A0t
r.q 4

developed as:

N (1. dz,ds\8y, ) = dF; (s, )  (i.dzls, 65, ) @)
where
dF; (s|6x,) (8)
is the probability density function g™t — T™ given m =17 and
g (2.dzls, 6x, ) 9)

is the conditional probability of stat&}#' givenT"** —T™ = s.

The simulation procedure consists of sampling ithesition time from (8) and the arrival state
from (9) for W(t), then, calculatingﬁ(t) within the transition times, by using the physics
equation eqg. (3) until the time of system evolutieaches a certain mission tinfg,; ..

To calculate the probability of occurrence of oreghp(let Z; , indicate the state space,

which contains all the states d, ,(t) that are consistent with the state of the patig, t
procedure of the MCS is presented as follows.

Set N,,,,, (the maximum number of replications) akd= 0 (index of replication)
Set k' = 0 (number of trials that end in the state indicdigdhe path)
While k < N,y
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. X, (0
Initialize the system by setting; ,(0) = < p?(/) )> (initial state), and the tim& = 0
q
(initial system time)

Sett’ = 0 (state holding time)
While T < Tpuiss
Sample at’ by using (8)
Sample an arrival sta@ for stochastic procesg (t) from all the possible states by
using (9)
Calculatez(s), Vs € [T,T + t'] by using eq. (3)
SetZj . (s) = (X”_(f)

!

),VSE [T, T +t'[
q

. X, (T) I
SetT =T +t', Z, ,(T) = P andY; =Y
q
End While
If m(Tmiss) € m
Setk' =k'+1
End if
Setk=k+1
End While o
The estimated probability of occurrence of one pattime T,,;;c can be obtained by
p(Tmiss) =1—k'/Nmax (10)
with the sample variance [45] as follows:
VAT B(T piss) = p(Tmiss)(l - P(Tmiss))/(Nmax -1 (11)

3.3Flowchart of the proposed method

The flowchart of the whole proposed computationatirad combining BDDs and MCS is
shown in Fig. 6.
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Determine the ordering of variables through WDFLM.
Construct the BDD encoding¢the fault tree of the system.
Obtain all the paths leading tt) system failure or operation.
Divide the degradation processe:involved in the paths into groups
that are independent from each other.

Select the PDMPs for each grou¢p of the degradation processes.

v
Calculate the probabilities of PDMPs being in the states indicated by
the paths through MCS.
¥

Calculate the probability of occurrence of each path by multiplying the

probabilities of PDMPs being in the states indicated by the path.
v

Calculate the system reliability by summing the probabilities of
occurrence of the paths leading to system operation or 1- the sum of
the probabilities of occurrence of the paths leading to system failure.

Fig. 6. The flowchart of the computational method.

4. CASE STUDY

The illustrative case refers to one branch of thiRR [46] of a nuclear power plant shown
in Fig. 7. The fault tree is shown in Fig. 8. Thediditions of the basic events are presented in
Table I.

ozve

I ) [

i 52 TR 82V 1l TIF 122VP
R P 5201 022RF

% ¥ 2

Fig. 7. The diagram of one branch of the RHRS.
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Branch A
Failure
G1
| |
Pump Valve 1 Valve 2
system system system

D @ () () s8] (o)
Degradation Dependency @ o

Fig. 8. The fault tree of one branch of the RHRS.

Table | Definitions of the basic events

Basic event Definition
1 Failure of the circuit breaker
2 Failure of the motor
3 Failure of the pump contactor
4 Failure of the pump
5# Closure due to human error
6 Failure of the valve
7 Failure of the diaphragm
8 Failure of the pneumatic valve VP
9 Failure of the pneumatic valve VP2
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By knowledge and experience of the field expehis,degradation dependency is described
as follows: the degradation of the pump can le&alvibrate [47], which will, in turn, cause the
vibration of the other neighboring components (¢hg. valve) and therefore aggravate the
degradation process of the latters [48]. The depecylexists between basic events 1,2,3,4 and
6, as indicated in Fig. 6.

The component degradation models provided by thperexcolleagues of Electricité de
France are presented below. Some degradation gexese modeled by PBMs if their
degradation data is unavailable and, thus, theighggfiuations have to be used, whereas the
others are modeled by MSMs supported by the detioedand/or failure data from historical
field collection.

The circuit breaker, motor and pump contactor deute one degradation process modeled
by MSMs K;, K, and K; respectively, as shown in Fig. 9.

Fig. 9. The representation of the degradation m®e® of the circuit breaker, motor and pump
contactor.

The pump has two degradation processes modeled3ak, and K5, as shown in Fig.
10. K, relates to the failure on demand akigl relates to the external leakage which can cause
the pump to vibrate whek, (t) reaches the statgy_.

- 269 -



PAPER VII: Y.-H. Lin, Y.-F. Li, E. Zio. A Reliabity Assessment Framework for Systems with MultipepBndent
Competing Degradation Processes. Systems, MarCynernetics: Systems, IEEE Transactions on. (Aezhpt

Fig. 10. The representation of the degradationgs®es of the pump.

Closure due to human error follows one M3, as shown in Fig. 11.

Fig. 11. The process of closure due to human error.

The valve has one degradation process modeled eyP&M L, related to the crack
propagation due to manufacturing defedts.is based on a deterministic crack growth model,
which follows Paris—Erdogan law [49]. For the phaserack propagation, the threshold is
defined as the number of cycles calculated asvisl|o

1@1+/a,(z)-170 G
¢ C(f (R)MaxY MaxVTAOMax)™
where the definition of the parameters can be faond[50]. The valve fails when the number

of solicitation exceedsV.. The equivalent number of solicitations executedygar is assumed
to be constant and equal tfy.

(12)

The diaphragm has one degradation process modgiezhéd PBM L, related to the
cavitation erosion mechanism, which can causehtic&rtess loss. The threshold is defined as
the thickness required to ensure pressure resestaich is calculated as follows,

tm = PDy/2(S + yP) (13)

where P is the estimated pressure for RHHE, is the outside diameter of the pipg,is a
coefficient andS is the allowable stress in the pipe. The diaphréagjla when the thickness
loss exceeds,,. The annual loss of thickness is assumed to bstaohand equal td,,.

The pneumatic valves VP1 and VP2 each have onadatjpn process modeled by MSMs
K, and Kg respectively, as shown in Fig. 12.

CanC

Fig. 12. The representation of the degradationgs®es of the pneumatic valves.
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Ks has impacts onk,, K,, K3, K, and L,. WhenY_(t) reaches the statg,_ the
transition rates oK;, K,, K; and K, will increase to 17, 15, 15 and 4,, respectively, and
d. in L; will change tod,’. All the parameter values in the degradation medet presented
in Table II. For confidentiality, we use artifichalscaled values; they are set in a way to simulate
the system under accelerated aging conditions.

Table Il Parameter values

Parameter Value
M 6.65e-8 /h
Ay 1.8e-6 /h
A3 4.4e-7 |h
A4 1.3e-5 /h
E 4.7e-5 /h
22 1.3e-5/h
Ae 1.5e-5 /h
A 1.95e-8 /h
Ag 1.95e-8 /h
m 4S.U.
a, 3.6 mm
ac 9.3 mm
C 1.8e-12 S.U.

F(R)wax 2s.U.

Yitax 1.18 S.U.
AGyax 0 MPa

d. 10 /yr
P 41 b
D, 273 mm
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S 101 Mpa
y 0.4 S.U.

dm 7 mm lyr

Yy 9.31e-8 /h
A, 2.52e-6 /h
A5 6.16e-7 /h
2, 1.82e-5 /h
d.' 15 /yr

Applying the WDFLM ordering heuristic [38], the vable ordering obtained &8sy <
Xe <X, <X, <X3<X,<Xg<Xy<X,. The corresponding BDD is shown in Fig. 13.
There are two paths leading to system operationX{l =0,X,=0,X;, =0,X, =0,X; =
0,X,=0,X¢=0Xo=0 and (2) Xs4 =0,X,=0,X,=0,X,=0,X;=0,X, =0,Xg =
0,Xo =1,X, =0.

Aouspuadaq uonepes3aq

Fig. 13. The BDD corresponding to the fault treeveh in fig. 8.

The degradation processes are divided into fiveups: {K,},{L.},{K-}, {Ks} and
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{Ki, K, K5, K4, Ks, L1 }. Each of the first four groups has only one degtiad model. The
PDMP related to the last group is presented asvisl]

N(t)
Y, ()
Yy, (£)
Yy, (6)
Yy, ()
Y (6)

Zis(t) = €Eys =RX[[5_; Sk, vVt =0 (14)

de, if Yi (t) = 2,
d.,if Yi () = 1k,
and YKq(t),q = 1,2,...,5 are characterized by the related transition rates.

where N(t) denotes the number of solicitations applied #jlIN(t) = {

MCS over a time horizon & years has been rurD® times to solve the PDMPs and, then,

estimate the probability of occurrence of each paltte numerical experiments are carried out

in MATLAB on a PC with an Intel Core 2 Duo CPU ab8 GHz and a RAM of 3.07 GB. The
estimated system reliability with and without degemcy throughout the time horizon, under

accelerated conditions, is shown in Fig. 14. Therage computation time is 34.3 s. We can see

from the Figure that neglecting dependency cantieaderestimation of the system reliability.

The system reliability with dependency has expegenone rapid decrease after around 6.2
year (point A), which is due to the valve failunesome simulation trials caused by the vibration
of the pump. This sharp decrease in system ratyabglates to the sharp increase in the system

failure time density function, as shown in Fig. 15.

— Wi ithout dependency
— —~With dependency

o o o
H o 0o

Reliability

o
N

Fig. 14. The estimated system reliability with/vath dependency.
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0.5r

—Without dependency
—-With dependency

o o o
N w &~

o
[EEY

Failure time density function

Year

Fig. 15. The system failure time density functioithwwithout dependency.

5. CONCLUSION

In this paper, we have proposed a framework forehability assessment of systems whose
components have dependent competing degradaticesses. The modeling framework rests
on MSMs and PBMs, and the PDMP modeling approaahmployed to treat dependencies
between the degradation processes within one coempam/and among components. The
numerical solution involves the translation of thgstem fault tree into a BDD, and the
estimation of the probabilities of the paths of mgeoccurrences by MCS. The case study
demonstrates the relevance of degradation proegsndencies for the system reliability.

It is interesting to include failure isolation agure research in our proposed model. Failure
detection and isolation can be used to mitigateratkgion dependency by performing
corresponding maintenance tasks or failure isoladictions.
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