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”Essentially, all models are wrong, but some are useful.”

George E. P. Box
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Introduction

The actors in any financial market are exposed to a myriad of risks. Derivative con-
tracts allow the transfer of a specific risk from a party that wishes to cover that risk to
a party willing to be exposed to it. For example, a call option covers its buyer from the
rise of the underlying price. The rapid growth of the derivatives market during the
last century generated an extensive interest in several associated financial risks, e.g.
the market risk, the counterparty credit risk, the liquidity risk etc.

Historically, the market risk was the first which was taken into account. It denotes
the risk that the price variations of the underlying financial assets impact the party’s
portfolio composed of multiple positions in derivatives contracts. The seminal work
of Merton [1973] and Black and Scholes [1973] postulated the geometric Brownian
motion as a stochastic model for the underlying price dynamics and constructed pric-
ing and hedging strategies for basic derivative contracts. Since then, the (derivative-
related) market risk has been managed by proposing a long stream of models (stochas-
tic volatility, local volatility, jump-diffusion etc.), which were supposed to correctly
describe the dynamics of the option underlying, such as interest rates, equities, infla-
tion, currencies etc.

In addition to market risk, derivatives contracts carry other financial risks, as coun-
terparty credit risk and liquidity risk. The recent subprime crisis stressed the importance
of the counterparty credit risk when managing derivatives. This constitutes the risk
that a counterparty may not be able to fulfill its engagements in a derivative contract,
for example in the case of bankruptcy. This risk is generally mitigated through the
clearing houses for the exchange traded derivatives or through tailored collateral ar-
rangements for over-the-counter products. Typical instruments for risk reduction are
credit derivatives as CDS. Additionally to the uncertainty on the counterparty credit
worthiness, the liquidity risk is also a critical risk for derivatives dealers. It represents
the risk that the strategies that a company decides to implement may become inappli-
cable because of a lack of liquidity of the underlying. For instance, a hedging strategy
of an exotic option may become too expensive and inefficient, because the trading in
the underlying asset and/or the vanilla instruments may suffer from an unexpected
reduced market liquidity, producing a bid/ask spread widening.

The quantification of all the three financial risks described above requires the pos-
tulation of a complex dynamic model, which for instance, involves the volatility mod-
eling for the market risk or the default probability modeling for the counterparty credit
risk. Assuming the validity of that model, the specification of a pricing and hedging
strategy ensures, theoretically, that the market risk is managed and quantified. How-
ever, as pointed out by Hobson [2011], “although market risk (the known unknown)
is eliminated, model risk (the unknown unknown) remains”. Indeed, the initial and
subjective choice of the model and its practical use may become a source of ambi-
guity and give rise to a new risk concept, i.e. the model uncertainty. Quoting the
European Directive (2013/36/EU), “model risk means the potential loss an institution
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2 INTRODUCTION

may incur, as a consequence of decisions that could be principally based on the out-
put of internal models, due to errors in the development, implementation or use of
such models”. The new regulations demand the assessment of the model risk for the
derivatives market participants. For instance, the European Regulation No 575/2013
states that, “with regard to complex products, [...] institutions shall explicitly assess
the need for valuation adjustments to reflect the model risk associated with using a
possibly incorrect valuation methodology and the model risk associated with using
unobservable (and possibly incorrect) calibration parameters in the valuation model.”

Model risk has being the subject of early interest, starting with Merton et al. [1978,
1982] which quantifies the performance of the celebrated Black-Scholes model. As
mentioned by Hénaff and Martini [2011], the model risk can be highlighted by two
means. The first one is the ambiguity entailed by the pricing of a fixed exotic option,
using various models that fit the market standard option data. The second aspect is
the hedging quality of the exotic option, using dynamic (and possibly static) strategies.

In regard to the first aspect, i.e. the pricing ambiguity, Schoutens et al. [2003] (c.f.
also Hirsa et al. [2003]) produce a thorough empirical comparison of several models
that match almost identically a given implied volatility surface. In spite of the fact that
all those models fit accurately the market standard options prices, they give a large
window of prices for the exotic option. This highlights the model uncertainty that
arises when pricing an exotic option, using only the vanilla options prices informa-
tion. We mention also the work of Eberlein and Madan [2009] which concentrates on
the variance option with a long maturity. In many models, the average realized vari-
ance, that defines the payoff of this option, converges to a constant when the maturity
goes to infinity. Consequently, if one chooses such a model, the out-of-the-money op-
tion price would be negligible. The authors show that the underlying models based
on the so-called Sato processes overcome this drawback and generate a value for long
dated out-of-the-money option on variance.

From a hedging point of view (which concerns the second aspect) many authors
used the simulation framework to quantify the impact of model misspecification on
the hedging strategies, c.f. for example Bakshi et al. [1997], Hull and Suo [2002], An
and Suo [2009], Poulsen et al. [2009], Branger et al. [2012], Schroter et al. [2012] and
references therein. The underlying methodology consists in choosing a rich model
which takes into account most of the features justified by empirical observations, for
instance stochastic volatility, jumps and stochastic interest rates. This will constitute
the benchmark generated market for the analysis, i.e. a true model, from which the
market data are simulated. The idea consists in comparing the hedging strategies
inherent to that market to the ones resulting for models including less features. Two
important questions are then raised and formulated as follows.

1. What do we gain from the involvement of each feature from a pricing and repli-
cation point of view ?

2. Does the possible benefit of including a given feature balances the additional
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INTRODUCTION 3

complexity or implementational costs?

According to many studies, while models including many features allow for a bet-
ter fit to the standard market data, models with less complexity yield better hedging
performances. For example, the quantitative results of Bakshi et al. [1997] conclude
that incorporating stochastic volatility and jumps allows for a better pricing and in-
ternal consistency. On the other hand, modeling stochastic volatility alone yields the
best performance for the hedging of an exotic option. The considerations above about
the pricing and hedging ambiguity lead naturally to the problem of the quantification
of the range of possible prices for an exotic option and the specification of hedging
strategies, which are robust towards model risk.

In that direction, the Uncertain Volatility Model (UVM) introduced by Lyons
[1995] and Avellaneda et al. [1995] goes beyond the plain empirical studies and solves
the theoretical problem of finding the no-arbitrage bound option prices, for a Euro-
pean payoff h paid at a maturity date T , when the volatility is uncertain and bounded
by two constants σmin ≤ σt ≤ σmax. We consider a fixed probability Q and W a Q-
Brownian motion. The no-arbitrage UVM bound option prices appear as follows.

P (σmin, σmax) = sup
σmin≤σt≤σmax

EQ[h(SσT )],

P (σmin, σmax) = inf
σmin≤σt≤σmax

EQ[h(SσT )],

where
dSσt = σtS

σ
t dWt.

The motivation behind the restriction of the volatility range σmin ≤ σt ≤ σmax is to
avoid trivial bounds for the option price. Indeed, Frey and Sin [1999] (and similarly
Cvitanić et al. [1999]) give conditions, so that the option supremum (resp. infimum)
value over a set of equivalent martingale measures is given by trivial super-hedging
(resp. sub-hedging) strategy. In many popular stochastic volatility models (as for in-
stance Heston), the super-hedging strategy for the seller of a call option consists in
buying the stock and holding it until the maturity. So the concept of super- or sub-
replication, without the volatility bounds constraints, is often of little practical use
for the pricing and hedging of derivative securities. Lyons [1995] and Avellaneda
et al. [1995] characterize the upper and lower prices and their corresponding hedg-
ing strategies through a nonlinear PDE, called the Black-Scholes-Barenblatt equation,
yielding hedging strategies that are robust to the uncertainty on the volatility level.
For instance, if the upper bound price P (σmin, σmax) and the associated hedging strat-
egy are used by an option seller, then he is fully covered with respect to the model
risk induced by the uncertainty on the volatility level. In some sense, the distance
P (σmin, σmax)− P (σmin, σmax) between the upper and lower bounds constitutes a rea-
sonable measure of the model risk for the considered option. Another model risk
measure, in a similar spirit, was proposed by Cont [2006]. We stress that all the model
risk measures in the literature are strongly associated with the given exotic option h,
as it is also discussed in the numerical experiments of Cont [2006].
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4 INTRODUCTION

Coming back to the UVM model, when h is a convex payoff, the work of El Karoui
et al. [1998] implies that the upper (resp. lower) bound for the option price is attained
for σt ≡ σmax (resp. σt ≡ σmin) and the extreme prices are the Black-Scholes prices
related to σmax and σmin. The authors consider the case when a stock S follows a
stochastic volatility model with an unknown (true) volatility process σt, and an in-
vestor uses a misspecified model with local volatility (γ(t, St)), with γ being some real
function, to hedge the payoff h. The key result of El Karoui et al. [1998] is a quantifi-
cation of the hedging error (between the misspecified and the true model), in terms of
the difference of the squared misspecified volatility and the true volatility. Concern-
ing the hedging strategies, they focus a significant monotonicity property: when the
misspecified volatility (γ(t, St)) is larger (resp. lower) than the true volatility (σt), the
final value of the hedging portfolio implied by the misspecified model is larger (resp.
lower) than the payoff h. Moreover, the initial price in the misspecified model is larger
(resp. lower) than the true option price. Consequently, when the payoff is convex and
σmin ≤ σt ≤ σmax, the possible prices lie between the Black-Scholes price with volatil-
ity σmin and the Black-Scholes price with volatility σmax. Note that this result does not
hold in general for non-convex payoffs.

UVM model has been a subject of extensive interest. For instance, Romagnoli
and Vargiolu [2000] considered UVM in a multidimensional setting where the interval
value for the volatility [σmin, σmax] is replaced by a compact subset where the volatil-
ity matrix takes values. They also treated the case of known volatility and uncertain
correlation and found the optimal bounds for exchange options and geometrical mean
options. Mykland [2000] defines the model uncertainty through bounds on integrals of
the squared volatility. The UVM was further developed in Denis and Martini [2006],
who also considered path-dependent contingent claims. More recently, Fouque and
Ren [2014] have studied the asymptotic behavior of the option bounds prices when
the model ambiguity vanishes, i.e. as the volatility interval [σmin, σmax] degenerates to
a single point. They have provided an approximation that works well even for non
small uncertainty intervals.

The main criticism to UVM concerns the fact that the computation of the price
bounds requires a difficult numerical resolution of a fully non linear PDE (c.f. Poo-
ley et al. [2003]) and the obtained values may be prohibitively too extreme to be used
for trading purposes, due to the prudent formulation of the problem. This is essen-
tially due to the small number of parameters, i.e. the two bounds σmin, σmax. As we
have already mentioned, the growing derivatives market made available the prices of
a large set of vanilla instruments. The inclusion of this market information into the
model constraints, rather than a simple bounds on the volatility process, is then likely
to give tighter and more concrete meaningful option price bounds. The knowledge
of call/put market prices has a direct consequence on the underlying price dynamics,
more particularly on its marginals. Indeed, the original work of Breeden and Litzen-
berger [1978] states that if a risk-neutral model Q on a asset S, fits the market call
prices C(T,K), for a fixed maturity T and all strikes K, then the (marginal) distribu-
tion of ST is given by Q(ST > K) = erT

∣∣ ∂
∂K C(T,K)

∣∣. Moreover, Carr and Madan
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INTRODUCTION 5

[2001] showed that

g(S) = g(F0)+(S−F0)g′(F0)+

∫ F0

0
g′′(K)(K−S)+dK+

∫ ∞
F0

g′′(K)(S−K)+dK,∀S ≥ 0,

(0.1)
where g is a twice differentiable function and F0 is an arbitrary positive constant. So
the knowledge of the call and put prices (which are essentially expectations under a
risk-neutral probability) for all strikes K determines the price of the contingent claim
g(ST ).

In the limiting case where the call/put prices for all maturities and strikes are
known, all the marginals distribution of the process S are known. The set of non-
arbitrage models that match the market data is then the set of probability measures
that make the discounted price process a martingale and that have fixed prescribed
marginals. Those considerations lead to consider an uncertainty model, whose range
of option prices is related to all the underlying models with given marginals, instead
of prices corresponding to volatility bounds. Interestingly, if one adds some supple-
mentary assumptions, then the model risk can be even eliminated: for instance, the
pioneer work of Dupire [1994] shows that under the additional assumption that the
set of acceptable models is restrained to diffusion processes, the market prices of vanil-
las options specify completely (under some regularity conditions) the process distri-
bution, so that the price of any exotic option is uniquely determined (inside this re-
stricted class of diffusion processes). This result is related to the work of Krylov [1985]
and Gyöngy [1986], and more particularly, it states that there exists a unique diffusion
of the form

dSt = rStdt+ Stσ(t, St)dWt,

such that
E
[
e−rT (ST −K)+

]
= C(T,K), ∀T,K > 0.

In particular, σ verifies

1

2
K2σ2(T, S)∂KKC(T,K) = rK∂KC(T,K) + ∂TC(T,K).

This local volatility model seems to solve the modeling problem, since it matches
exactly the law marginals, as induced by the vanilla options prices. In this case, the
price of an exotic option is known without ambiguity. Nevertheless, it was docu-
mented (see e.g. Dumas et al. [1998] and Hagan et al. [2002]) that the volatility surface
dynamics predicted by the local volatility model is inconsistent with some market ob-
served ones. This entails that if, supposedly, the market dynamics results from some
model, the local volatility model does not reproduce some of its features even though
it matches exactly the given marginals. One should then look into the set of all models
M that make the discounted price process a martingale and that have the same (mar-
ket implied) marginals; the exotic option price will vary between the supremum and
infimum of the option prices over the setM.
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6 INTRODUCTION

This idea gave place to the notion of model-independent hedging (or equivalently
robust hedging), within a class of models having fixed marginal laws. Logically the
robustness of the corresponding hedging strategy is with respect to all non-arbitrage
models that are compliant with the market vanilla prices. In other words, the model-
independent (super or sub)-hedging strategy, if it exists, is supposed to (super or sub)-
hedge the contingent claim for all such models. Since the late 90thies, the problem of
model-independent hedging has been formulated in different settings, and its rela-
tion to the optimal bound prices has been established. For instance, consider the case
where S represents the stock price, whose only marginal law at the maturity time
T = 1 is known and denoted µ. The problem of model-independent super-hedging of
an exotic option paying Φ(S) at maturity can be written as

D := inf
g,γ

{
Eµ[g(S1)] | ∃ γ such that g(S1) +

∫ 1

0
γ(S)udSu ≥ Φ(S),

for every continuous function S : [0, 1]→ R?+
}
,

(0.2)

where g(S1) represents a vanilla option and γ(S) defines a time-continuous (bounded
variation) dynamic strategy with respect to the stock price path S. For a rigorous state-
ment of the problem, see for example Dolinsky and Soner [2014]. Note that, while the
robust hedging in the setup (0.2) is stated path-wise, other formulations using quasi-
sure definition of the super-replication exist, c.f. Galichon et al. [2014] for example.
Finally, we mention that Dolinsky and Soner [2014] proved the equivalence of the two
latter formulations.

The model-independent super-hedging problem (0.2) is closely linked to the upper
bound price of the option Φ, over the set M(µ) of all martingale measures with the
specified marginal µ. Indeed, [Dolinsky and Soner, 2014, Theorem 2.7] proved that

D = P , where P := sup
Q∈M(µ)

EQ
[
Φ(S)

]
. (0.3)

Similarly, one defines the lower bound P (which corresponds to the sub-hedging cost
D), and the price range P −P can be interpreted as the model risk associated with the
option Φ.

The problem of computing the option bounds P and P , when one marginal µ is
known, i.e. when the call prices are known for all strikes K and only one maturity
T , was firstly approached using the Skorokhod embedding problem (SEP) results. Given
a probability measure µ, the SEP consists in looking for a Brownian motion B and a
stopping time τ such that Bτ ∼ µ and the stopped process (Bτ∧t)t is uniformly inte-
grable. This problem has been extensively studied and many solutions were found,
see for example Obłój [2004] for a survey. The SEP can be linked to the problem of
constructing a martingale M such that MT ∼ µ, via the Dambis, Dubins-Schwarz the-
orem, see [Revuz and Yor, 1991, Chapter V, Theorem 1.6]. This relation was exploited
for obtaining the price optimal bounds in the seminal work of Hobson [1998]. The
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INTRODUCTION 7

author supposes the availability of the market prices of call options (equivalent to the
prices of call options, see Equation (0.1)) and characterizes the upper optimal bound
among the prices of an exotic option, in particular a Lookback option, whose payoff is
the maximum of the underlying prices during the time interval [0, T ]. The mentioned
upper bound price for this option was expressed through the Azema-Yor solution of
the SEP (c.f. Azéma and Yor [1979]). The SEP approach was also applied by Brown
et al. [2001] to get optimal lower and upper bounds for Digital and Barrier options,
and Cox and Obłój [2011b,a] made use of it for obtaining optimal upper and lower
bounds for Double-Touch and Double-No-Touch barrier options and the correspond-
ing super and sub-hedging strategies. Hobson and Neuberger [2012] used the SEP
approach to study the form of the optimal martingale measure that realizes the upper
bound price for the forward start straddle.

A recent breakthrough in the study of the model-independent pricing and hedging
is the use of the optimal transport theory for the computation of the option bounds un-
der marginals constraints. The original optimal transport problem, as formulated by
Monge [1784], is the minimization of the cost, denoted c, of transporting a mass from
an initial distribution µ to a target distribution ν. This can be stated as the following
minimization problem

inf
T∈T (µ,ν)

∫
Rn
c(x, T (x))dν(x), (0.4)

where

T (µ, ν) =
{
T : Rn → Rn, such that

∫
ϕ(T (x))dν(x) =

∫
ϕ(x)dµ(x)

}
.

The maps T of this kind are classically called transport (or transference) plans. We
observe that Problem (0.4) is equivalent to

inf
P∈ΠT (µ,ν)

EP

[
c(X,Y )

]
, (0.5)

where ΠT (µ, ν) is the set of probabilities P on Rn×Rn of the type P(dx, dy) = µ(dx)δT (x)(dy),
for some T ∈ T (µ, ν). We remark that the marginal laws of any P ∈ ΠT (µ, ν) are µ and
ν.

Problem (0.5) was relaxed by Kantorovich [1942, 1948] by replacing the set ΠT (µ, ν)

of transport plans by the set Π(µ, ν) of probability measures on Rn×Rn which have the
specified marginals µ and ν. The so-called Monge-Kantorovich (MK) problem writes

PMK := inf
P∈Π(µ,ν)

EP[c(X,Y )], (0.6)

where

Π(µ, ν) = {P: probability measure on Rn × Rn with marginals µ and ν}. (0.7)
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The dual formulation of Problem (0.6) is

DMK := sup
(ϕ,ψ)∈D(µ,ν)

∫
ϕ(x)µ(dx) +

∫
ψ(y)ν(dy),

where

D(µ, ν) = { (ϕ,ψ) : ϕ is µ− integrable, ψ is ν − integrable and ϕ(x) + ψ(y) ≤ c(x, y)}.

The optimal transport theory has been the subject of extensive studies, we refer e.g.
to Villani [2003, 2009] and to the references therein. For instance, for a large set of
functions c that verify the so-called Spence-Mirrlees condition cxy := ∂2c

∂x∂y (x, y) > 0,
the Monge problem (0.5) and the Monge-Kantorovich problem (0.6) are shown to be
equivalent. Indeed, for such cost functions, the primal problem (0.6) is attained by
the so-called Fréchet-Hoeffding probability measure P?(dx, dy) := µ(dx)δT ?(x)(dy) ∈
ΠT (µ, ν), where

T ?(x) := F−1
ν (Fµ(x)), (0.8)

and Fµ (resp. Fν) is the cumulative distribution function (c.d.f) of the probability mea-
sure µ (resp. ν) and F−1

ν denotes the right-continuous inverse of Fν . Moreover, there
is no duality gap, i.e. PMK = DMK . Of course, analogous results exist for the profit
maximization problem

sup
P∈Π(µ,ν)

EP[c(X,Y )], (0.9)

which is symmetric with respect to the cost minimization problem (0.6).

The maximization problem (0.9) (resp. minimization problem (0.6)) is closely re-
lated to the financial problem of computing the no-arbitrage upper (resp. lower) price
bound. In this context, X (resp. Y ) represents the price S1 (resp. S2) of a stock at time
1 (resp. 2) and the function c denotes the payoff of an exotic option that depends on
the stock price at dates 1 and 2. The price bounds for this option can be expressed as
the optimal values of the problems

P (µ, ν, c) = inf
Q∈M(µ,ν)

EQ
[
c(S1, S2)

]
and P (µ, ν, c) = sup

Q∈M(µ,ν)
EQ
[
c(S1, S2)

]
, (0.10)

whereM(µ, ν) is the subset of Π(µ, ν) of measures Q verifying the martingale prop-
erty EQ[S2|S1] = S1, EQ[S1|S0] = S0. The maximization problem in (0.10) is similar
to the one in (0.9) with a restricted class of probability measures. Generally (0.6) and
(0.9) are called (Monge-Kantorovich) optimal transport problems and (0.10) is called
optimal martingale transport problem.

Subsequently, a new stream of works has considered the martingale optimal trans-
port and its applications to model-independent pricing and hedging in various set-
tings (discrete, continuous time, one ore more marginals etc.). Indeed, Galichon et al.
[2014] has shown that the dual formulation of the time-continuous martingale opti-
mal transport problem (0.3) yields the super-hedging problem (0.2). Using this result,
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they recover the optimality of the Azéma-Yor solution for the Lookback option, al-
ready established using the SEP techniques by Hobson [1998]. On the other hand,
Beiglböck et al. [2013] consider, in a pure time-discrete setup, a finite set of dates
0 < t1 < t2 < · · · < tn, assuming as Hobson [1998] the availability of all call options
maturing at those dates. In Beiglböck et al. [2013], the admissible strategies allow
to dynamically trade the stock (buy/sell the quantity ∆(S1, · · · , Si) at date ti, where
S1, · · · , Sn are the stock price) at the given set of dates and to take static positions
on vanilla options (of payoffs u1(S1), · · · , un(Sn)) at the initial date 0. Similarly as for
(0.2), the model-independent super-hedging of an option paying Φ(S1, · · · , Sn) is then
written as

D := inf
u,∆

{ n∑
i=1

Eµi [ui(Si)] | ∃∆ = (∆1, · · ·∆n) such that

n∑
i=1

ui(Si) +
n−1∑
i=1

∆i(S1, · · · , Si)(Si+1 − Si) ≥ Φ(S1, · · · , Sn)
}
.

(0.11)

We recall again, taking into account (0.1), that any vanilla option is equivalent to a
portfolio of call options of same maturity. As we have mentioned for the case of one
maturity, the availability of vanilla option prices having maturities t1 < t2 < · · · <
tn, specifies the stock marginals at these dates, denoted µ1, · · · , µn. In particular the
expressions Eµi [ui(Si)], which represents the initial price of the vanilla option ui(Si),
are completely determined by the marginals µi.

Beiglböck et al. [2013] show that the model-independent super-hedging problem
(0.11) is a dual formulation of the following primal problem, which consists in looking
for the upper bound of the option price

P := sup
Q∈M(µ1,··· ,µn)

EQ
[
Φ
]
, (0.12)

whereM(µ1, · · · , µn) is the set of martingale measures with specified marginals µ1, · · · , µn.

Similarly as for the continuous time case (0.3), Beiglböck et al. [2013] show that,
under suitable conditions, there is no duality gap, i.e. P = D. Moreover, the primal
value P is attained, i.e. there exists a martingale measure Q? ∈ M(µ1, · · · , µn) such
that

P = EQ?
[
Φ
]
.

Close attention was devoted to the two marginals optimal martingale transport
problem (0.10). For instance, Hobson and Neuberger [2012] and Hobson and Klim-
mek [2015] studied the model-free lower and upper bound price for an option paying
C1
II(S1, S2) := |S2 − S1|. This type of option is called, in the literature, the type II

forward start straddle with the strike α = 1, or at-the-money (ATM). Other type II
forward start straddle with coefficient α > 0 are defined via the payoff

CαII(x, y) = |y − αx| , ∀x, y > 0. (0.13)
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On the other hand, the payoff of the so-called type I forward start straddle is given by

CαI (x, y) =
∣∣∣y
x
− α

∣∣∣ , ∀x, y > 0. (0.14)

Indeed, Hobson and Neuberger [2012] give explicit information on the optimal mar-
tingale measure realizing the upper bound price of the ATM type II forward starting
straddle C1

II and show the existence of a super-replication strategy that realizes the
infimum D. As a byproduct, they have established the same no-duality gap result,
P = D. Moreover, Hobson and Klimmek [2015] derive an explicit expression for
an optimal martingale measure (also called coupling), denoted by QHK , that realizes
the lower bound price of C1

II and they determine the form of the dual sub-hedging
strategy. The probability QHK is indeed concentrated on a three points transition
{p(x), x, q(x)}, in the following sense

QHK(dx, dy) = µ(dx)
[
δx(dy)1x≤a + δx(dy)1x≥b

+
(
l(x)δp(x)(dy) + u(x)δq(x)(dy) + (1− l(x)− u(x))δx(dy)

)
1a<x<b

]
,

(0.15)

where p and q are two decreasing functions, a < b are two positive reals and 0 ≤ u, l ≤
1 are two functions.

Elsewhere, Beiglböck and Juillet [2012] used the optimal transport theory for the
study of the primal problem (0.12), for a large class of payoffs Φ(S1, S2). Inspired by
the results about the Fréchet-Hoeffding probability measure (0.8) in the classical opti-
mal transport theory, they introduce the notion of left-monotone martingale measure,
and show that it constitutes a solution for (0.12). Its form is given by

QL(µ, ν)(dx, dy) = µ(dx)
[
δx(dy)1x≤a + (q(x)δLu(x)(dy) + (1− q(x))δLd(x)(dy))1x≥a

]
,

(0.16)
where a ∈ R and Lu (resp. Ld) is an increasing (resp. decreasing) function such that
Ld(x) ≤ x ≤ Lu(x) and q(x) := x−Ld(x)

Lu(x)−Ld(x) . Henry-Labordère and Touzi [2013] ob-
tained explicit expressions for the two maps Lu, Ld and the transition probability q;
they also show that QL(µ, ν) realizes the upper bound P for a set of payoff Φ verify-
ing the generalized Spence-Mirrlees type condition Φxyy := ∂3Φ

∂x∂2y
> 0, which includes

the ones discussed in Beiglböck and Juillet [2012]. Similarly Henry-Labordère and
Touzi [2013] characterized the so-called right-monotone martingale measure, denoted
QR(µ, ν), which realizes the upper bound price for payoffs verifying Φxyy < 0. This
was done via a mirror change of variable of the type x 7→ −x. Moreover, Henry-
Labordère and Touzi [2013] give the explicit form of the corresponding super and
sub-hedging strategies. Finally, we mention that Henry-Labordère et al. [2014] have
studied the continuous time analogue of the problem treated of Henry-Labordère and
Touzi [2013].

In this thesis, we are interested in the model risk problem from the empirical
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and theoretical point of views. Chapter 1 continues the martingale optimal trans-
port approach as described above, for computing the model-free prices of a given
path-dependent contingent claim Φ in a two-periods model. We are interested in the
two-marginals maximization martingale problem (0.10), i.e.

P (µ, ν,Φ) = sup
Q∈M(µ,ν)

EQ
[
Φ(S1, S2)

]
, (0.17)

where we recall thatM(µ, ν) is the set of the laws of all two-period martingales with
marginals µ, ν. By assumption we suppose that the marginals µ and ν are supported
by the positive real half-line: in that case the corresponding processes are positive
martingales as in the usual context of finance. We also suppose that the difference of
c.d.f. Fµ − Fν admits a single maximizer. Under these assumptions, which do not
restrict too much the scope of the financial applications, it has been possible to give
a simple and instructive construction of the optimal martingale measures (0.15) and
(0.16).

Our expression of (0.16) and (0.15) reveals to be more suitable for studying the ef-
fect of the change of numeraire transformation, which associates to a (strictly) positive
martingale M the process 1

M . We consider the operator S that, to every Q ∈ M(µ, ν),
associates a measure S(Q) defined by

ES(Q)[f(S1, S2)] = EQ
[
S2f

(
1

S1
,

1

S2

)]
, for every bounded measurable function f.

We remark that S(Q) belongs to M(S(µ),S(ν)), where S is an operator which asso-
ciates to µ with density pµ a measure S(µ) with density pS(µ) defined by

pS(µ)(x) =
pµ( 1

x)

x3
, x > 0.

We observe that the setM(µ, ν) is non-empty if and only ifM(S(µ),S(ν)) is non-
empty. If we define the payoff S∗(Φ)(x, y) := yΦ( 1

x ,
1
y ) for x, y > 0, then, by Proposi-

tion 1.3.3 of Chapter 1, the symmetry property

P (S(µ),S(ν),S∗(Φ)) = P (µ, ν,Φ), (0.18)

holds. We remind that P has been defined in (0.17). Using the definition of S∗(Φ),
it is clear that the generalized Spence-Mirrlees condition Φxyy > 0 holds true if and
only if S∗(Φ)xyy < 0. This elementary remark allows to find the upper bound price for
payoffs verifying Φxyy < 0, passing by the symmetry S, which defines the so called
mirror transference plan. This approach gives similar results to the ones related to the
mirror coupling x 7→ −x in [Henry-Labordère and Touzi, 2013, Remark 3.14], where
the martingale measures marginals have support on R. The symmetry operator S
permits, similarly to the mirror coupling above, to reproduce analogue properties for
the case of measures whose marginals are supported by R∗+, and allows to construct,
from the left-monotone martingale measure QL(µ, ν), the right-monotone martingale
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measure QR(µ, ν), which again realizes the upper bound price for payoffs Φ verifying
Φxyy < 0. We apply the same analysis in the case of positive martingales to retrieve
the three points martingale measure QHK(µ, ν) introduced in Hobson and Klimmek
[2015], see (0.15).

Furthermore, we show that the martingale measures QL(µ, ν), QR(µ, ν) and QHK(µ, ν)

are extremal points of the convex setM(µ, ν) and that they verify the symmetry rela-
tions

S
(
QL(S(µ),S(ν))

)
= QR(µ, ν)

S
(
QHK(S(µ),S(ν))

)
= QHK(µ, ν).

Interestingly, there is a symmetry relation between type I and type II forward start
straddles, which is given by

S∗(CαII) = αC
1
α
I , (0.19)

which implies, taking into account (0.18), that the lower bound price of the type I
forward start C1

I is also attained by the 3-point martingale measure QHK .
Finally, in Section 1.6 of Chapter 1, we introduce a new martingale measure which

is also extremal in the convex setM(µ, ν) and we characterize some of the payoff func-
tions Φ for which this measure is optimal.

In Chapter 2, we approach the model risk problem from an empirical point of view.
We conduct a quantitative study of the impact of the model risk, in the context of the
commodities market. More precisely, we are interested in the valuation and hedging
of a natural gas storage and the related model risk impact. The owner of a natural gas
storage has the possibility, at each date ti, to make a decision ui: either inject, with-
draw gas or take no action. Each decision yields a profit/cost φui(Sti) resulting from
selling/buying the gas at the Spot price Sti . In parallel with this Spot strategy, one can
buy/sell Futures contracts, that allows to reduce the variance of the final profit. All
these decisions have to be made under many operational constraints, such as maximal
and minimal volume of the storage and limited injection and withdrawal rates. For
a fixed probability parametrized by a vector θ, the gas storage value is given by the
profit expectation maximization

J(θ) = max
(ui)i=0...n−1

Eθ
[ n−1∑
i=0

φui(Sti)
]
. (0.20)

In the first step of our work, we highlight important stylized facts about natural
gas markets, which are the price seasonality and the presence of spikes. These features
are the two main sources of value for a gas storage unit, since the ownership of a stor-
age facility enables one to take advantage from seasonality and price spikes. Then, we
propose a model that unifies the dynamics of the Futures curve and Spot price, and
involves the seasonality and the presence of price spikes.

The second aspect of Chapter 2 is related to the quantification of model uncertainty
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related to the Spot dynamics. In order to quantify the stability of the storage valuation
with respect to model uncertainty, we define two model risk measures, inspired by the
work of Cont [2006]. Our context is however different from Cont’s one, in the sense
that our models are estimated on historical data, and not on derivative market data.
The first model risk measure is defined by

π1 = max
θi∈Γ

J?(θi)−min
θi∈Γ

J?(θi), (0.21)

where Γ is a set of statistically acceptable models, with respect to historical data. The
second model risk measure π2 has been defined in a similar spirit, but using the his-
torically realized profits instead of profit expectations, see (2.7.3) of Chapter 2. Using
those risk measures, we observe the great sensitivity of gas storage value to the model-
ing assumptions. Indeed the model uncertainty, as measured by the size of price range
(0.21), represents a large proportion of the storage value. This puts into perspective
the concentration of all the effort on the numerical resolution of problem (0.20) de-
scribed in the literature. We conclude that much more attention should probably be
devoted to the discussion of modeling assumptions.

In Chapter 2, we remind that the optimal trading strategy is based on the natural
gas Spot physical prices, while the variance reduction hedging strategy uses financial
Futures contracts. The two prices, Spot (physical) and Future (financial) are not per-
fectly correlated. Consequently, the use of these Futures, as hedging instruments of
the Spot strategy profit, gives rise to an additional risk, commonly called basis risk. In
Chapter 3, we consider a pair of processes (X,S) where X is a non traded or illiquid,
but observable asset and S is a traded asset, correlated to X . Our starting point is the
problem of the hedging of a contingent claim of the type h := g(XT , ST ), using only a
trading strategy on the available asset S.

At least two approaches were used to define a hedging strategy in the presence
of basis risk. The first one uses the utility function as a risk aversion criterion, see
for example Davis [2006], Henderson and Hobson [2002], Monoyios [2004], Monoyios
[2007], Ceci and Gerardi [2009, 2011]. Another approach is based on the quadratic
hedging error criterion: it follows the idea of the seminal work of Föllmer and Schweizer
[1991] that introduces the theoretical bases of quadratic hedging in incomplete mar-
kets. In particular, they show the close relation between the quadratic hedging prob-
lem with a special semimartingale decomposition, known as the Föllmer-Schweizer
(F-S) decomposition. A triplet (h0, Z

h, Oh) is said to be an F-S decomposition of the
random variable h = g(XT , ST ) if

g(XT , ST ) = h0 +

∫ T

0
Zhs dSs +OhT , (0.22)

where Oh is a martingale which is strongly orthogonal to the martingale part of the
hedging asset process S. This problem was studied by Hulley and McWalter [2008] in
the simple two-dimensional Black-Scholes model for the non-traded (but observable
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asset) X and the hedging asset S, described by

dXt = µXXtdt+ σXXtdW
X
t ,

dSt = µSStdt+ σSStdW
S
t ,

(0.23)

where (WX ,WS) is a standard correlated two-dimensional Brownian motion. The
authors characterize the F-S decomposition (0.22) through a PDE terminal-value prob-
lem. Extensions of those results to the case of stochastic correlation between the two
assets X and S have been performed by Ankirchner and Heyne [2012].

Note that the F-S decomposition (0.22) can be seen as a special case of the well-
known backward stochastic differential equations (BSDEs), where we look for a triplet
of processes (Y, Z,O) being solution of an equation of the form

Yt = h+

∫ T

t
f̂(ω, s, Ys−, Zs)dV

S
s −

∫ T

t
ZsdM

S
s − (OT −Ot), (0.24)

where MS (resp. V S) is the local martingale (resp. the bounded variation process)
appearing in the semimartingale decomposition of S, O is a strongly orthogonal mar-
tingale to MS and f̂(ω, s, y, z) = −z. It is well-known that the forward-backward
SDEs driven by Brownian motion are closely related with semilinear parabolic PDEs.
The first motivation of this Chapter is to introduce a formalism which extends this an-
alytical tool to to the case of forward-backward SDEs driven by a càdlàg martingale.

In this Chapter we consider a forward-backward SDE, issued from (0.24), where
the forward process solves a sort of martingale problem, instead of the usual stochas-
tic differential equation (0.23) appearing in the Brownian case. More particularly we
suppose the existence of an operator a : D(a) ⊂ C([0, T ] × R2) → L, where L is a
suitable space of functions [0, T ]× R2 → C2, such that (X,S) verifies the following:

∀y ∈ D(a),

(
y(t,Xt, St)−

∫ t

0
a(y)(u,Xu−, Su−)dAu

)
0≤t≤T

is an Ft-local martingale,

and A is some fixed predictable bounded variation process. With a we associate the
operator ã defined by

ã(y) := a(ỹ)− ya(id)− ida(y),

where id(t, x, s) = s, ỹ = y × id. In the elementary case when X ≡ 0 and S is a Brow-
nian motion, At = t, a(y) = ∂t + 1

2∂
2
ssy and ã(y) = ∂sy. This justifies that the operator

ã can be considered as a generalized derivative.

In the forward-backward SDE we are interested in, the driver f̂ verifies

a(id)(t,Xt−(ω), St−(ω))f̂(ω, t, y, z) = f(t,Xt−(ω), St−(ω), y, z), (t, y, z) ∈ [0, T ]×C2, ω ∈ Ω,

(0.25)
for some f : [0, T ]× R2 × C2 → C.

The object of this chapter is threefold.
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1) As already mentioned, to provide a general methodology for solving forward-
backward SDEs (0.24) driven by a càdlàg martingale, via the solution of a deter-
ministic problem generalizing the classical partial differential problem appear-
ing in the case of Brownian martingales.

2) To give applications to the hedging problem in the case of basis risk via the F-S
decomposition. In particular we revisit the case when (X,S) is a diffusion pro-
cess whose particular case of Black-Scholes was treated by Hulley and McWalter
[2008], discussing some analysis related to a corresponding PDE.

3) To furnish a quasi-explicit solution when the pair of processes (X,S) is an expo-
nential of additive processes, which constitutes a generalization of the results of
Goutte et al. [2014] and Hubalek et al. [2006], established in the absence of basis
risk. This yields a characterization of the hedging strategy in terms of Fourier-
Laplace transform and the moment generating function.

We formulate the deterministic problem which consists in looking for a pair of
functions (y, z) which solves

a(y)(t, x, s) = −f(t, x, s, y(t, x, s), z(t, x, s)),

ã(y)(t, x, s) = z(t, x, s)ã(id)(t, x, s),
(0.26)

for all t ∈ [0, T ] and (x, s) ∈ R2, with the terminal condition y(T, ., .) = g(., .). This
is related to the BSDE (0.24) with final condition h = g(XT , ST ), under the condition
(0.25). Indeed, Theorem 3.3.2 shows that any solution to the deterministic problem
(0.26) will provide a solution (Y, Z,O) to the BSDE mentioned above, setting

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−).

As we have pointed out before, a significant application concerns the hedging
problem under basis risk of a contingent claim g(XT , ST ) via the F-S decomposition.
According to Corollary 3.4.7 and Remark 3.4.8, if a couple of functions (y, z) (fulfilling
some integrability conditions) solves the problem

a(y)(t, x, s) = a(id)(t, x, s)z(t, x, s),

ã(y)(t, x, s) = ã(id)(t, x, s)z(t, x, s),

with terminal condition y(T, ., .) = g(., .), then the triplet (Y0, Z,O), where

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−), Ot = Yt − Y0 −
∫ t

0
ZsdSs,

is an F-S decomposition of the random variable g(XT , ST ).

Special interest was devoted to the case when (X,S) is a couple of additive pro-
cesses. In this context, Theorem 3.4.15 provides the quasi-explicit F-S decomposition
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of a random variable of the form

g(XT , ST ) =

∫
C2

dΠ(z1, z2)Xz1
T S

z2
T ,

where Π is a finite complex Borel measure on C2, in terms of the moment generating
function. This yields as a byproduct a characterization of the variance optimal hedging
strategy. This extends the results of Goutte et al. [2014] and Hubalek et al. [2006],
established in the absence of basis risk.
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Change of numeraire in the two-marginals

martingale transport problem.

This chapter is the object of Campi et al. [2014].

Abstract

In this paper we consider the optimal transport approach for computing the model-
free prices of a given path-dependent contingent claim in a two periods model. More
precisely, we first specialize the optimal transport plan introduced in Beiglböck and
Juillet [2012], following the construction of Henry-Labordère and Touzi [2013], as well
as the one in Hobson and Klimmek [2015], to the case of positive martingales and a
single maximizer for the difference between the c.d.f.’s of the two marginals. These
characterizations allow us to study the effect of the change of numeraire on the cor-
responding super and subhedging model-free prices. It turns out that, for Henry-
Labordère and Touzi [2013]’s construction, the change of numeraire can be viewed
as a mirror coupling for positive martingales, while for Hobson and Klimmek [2015]
it exchanges forward start straddles of type I and type II giving also that the optimal
transport plan in the subhedging problems is the same for both types of options. Some
numerical applications are provided.

1.1 Introduction

Let µ and ν be two probability measures on R∗+ such that µ 4 ν in the sense of convex
ordering, that is

∫
fdµ ≤

∫
fdν for all convex functions f : R∗+ → R. In particular, µ

and ν have the same mean. The classical theorem by Strassen [1965] proves the exis-
tence of a discrete martingale {Mi : i = 0, 1, 2} with M0 = 1 such that, if X := M1 and
Y = M2, then X ∼ µ and Y ∼ ν.

LetM(µ, ν) be the set of the laws of all such discrete martingales with marginals
µ, ν. For functions C : (R∗+)2 → R with linear growth, Beiglböck and Juillet [2012]
study the two-marginals martingale problem:

P (µ, ν, C) = sup
Q∈M(µ,ν)

EQC(X,Y ). (1.1)

17
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Similarly, the inf-problem can be defined by:

P (µ, ν, C) = inf
Q∈M(µ,ν)

EQC(X,Y ). (1.2)

Using these two bounds, we can define a range of price measure, we denote its width
by R

R(µ, ν, C) = P (µ, ν, C)− P (µ, ν, C). (1.3)

The primal problems (1.1) and (1.2) have the following dual formulation

D(µ, ν, C) = inf
(ϕ,ψ,h)∈H

µ(ϕ) + ν(ψ), (1.4)

D(µ, ν, C) = sup
(ϕ,ψ,h)∈H

µ(ϕ) + ν(ψ), (1.5)

with

H =
{

(ϕ,ψ, h) ∈ L1(µ)×L1(ν)×L0 : ϕ(x)+ψ(y)+h(x)(y−x) ≥ C(x, y), ∀x, y ∈ R∗+
}
,

H =
{

(ϕ,ψ, h) ∈ L1(µ)×L1(ν)×L0 : ϕ(x)+ψ(y)+h(x)(y−x) ≤ C(x, y), ∀x, y ∈ R∗+
}
.

Under suitable conditions, Beiglböck et al. [2013] show that there is no duality gap, i.e.

P (µ, ν, C) = D(µ, ν, C),

P (µ, ν, C) = D(µ, ν, C).

and that the primal problems (1.1) and (1.2) are attained. Beiglböck and Juillet [2012]
prove that these optimal probabilities are of special type, called the left-monotone
and right-monotone transference plans which realize the extremum in (1.1) and (1.2),
for a certain class of payoffs. On the other hand, Henry-Labordère and Touzi [2013]
provide an explicit construction of the optimal transference plan for a more general
class of payoffs C that satisfy the so-called generalized Spence-Mirrlees condition:

Cxyy > 0. (1.6)

The construction is relatively easy when the difference of the cumulative distribution
functions δF := Fν − Fµ has a single maximizer, and much trickier otherwise. Finally,
Hobson and Klimmek [2015] construct an optimal transference plan giving a model-
free sub-replicating price of a forward start straddle of type II, whose payoff |X − Y |
does not satisfy the generalized Spence-Mirrlees condition above.

In this work, we want to study the effect of a change of numeraire on those opti-
mal transference plans. To do so, we start with revisiting the construction of Henry-
Labordère and Touzi [2013] and Hobson and Klimmek [2015] in a way which is more
suited to our study. Unlike these authors, we consider the case of positive martingales.
Our motivation is to give a simple and instructive construction of the optimal transfer-
ence plan, assuming additional properties on the marginals which considerably sim-
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plify the proofs without restricting too much the scope of the financial applications.
In particular, we specialize both constructions to the case of a single maximizer for the
difference between the two cumulative distributions functions δF .1

We restate a characterization of the optimal two-point conditional distributions
which reveals to be more suitable for studying the effect of a change of numeraire
transformation, which associates to a positive martingale M the martingale 1

M un-
der the change of probability with density M2. In particular, it turns out that, for
Beiglböck and Juillet [2012] and Henry-Labordère and Touzi [2013] optimal transport
plan the change of numeraire can be viewed as a mirror coupling for positive martin-
gales, while, for Hobson and Klimmek [2015], it exchanges forward start straddles of
type I and type II giving also that the optimal transport plan in the subhedging prob-
lems is the same for two types of options.

The paper is organised as follows. In Section 1.2, we provide a self-contained ex-
plicit construction of the left-monotone transference plan for positive martingales in
the single maximizer case. We define and study in Section 1.3 the change of numeraire
and the transformation of the two-marginals problem by change of numeraire. In
Section 1.4 we characterize the right-monotone transference plan and show that the
change of numeraire operates like a mirror-coupling for positive martingales. We
study in Section 1.5 the transference plan introduced by Hobson and Klimmek [2015],
we characterize its existence and uniqueness and give some symmetry properties. In
the last Section 1.7, we study the symmetric case where µ and ν are invariant by change
of numeraire. This covers the case of the Black-Scholes model and of the stochastic
volatility models with no correlation between the volatility and the spot (c.f. Renault
and Touzi [1996]).

Notations.

1. Let P1 = P(R∗+) denote the set of probability measures µ on R∗+ with a positive
density pµ with respect to the Lebesgue measure, such that∫ ∞

0
xpµ(x)dx = 1. (1.7)

2. If µ, ν ∈ P1, then pµ, pν will denote the densities of µ, ν, and Fµ, Fν their cumu-
lative distribution functions. We also introduce the function δF defined by

δF = Fν − Fµ.

3. id will denote the identity function.

We will work under the following assumption in the rest of the paper.

Assumption 1.1.1. We suppose that the two measures µ and ν do not agree on any interval.
1The case of a single maximizer for the construction in Henry-Labordère and Touzi [2013] is also

treated in forthcoming Lecture Notes on Martingale Optimal Transport by Nizar Touzi, with no emphasis
on the symmetry yet. To keep this article self-contained and to emphasize the role of symmetry we
decided to keep this part.
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This assumption is fulfilled in most classical diffusions and stochastic volatility
models. Note however that this excludes the case of marginals with bounded support.

1.2 Basic left-monotone transference plan: existence and unique-
ness

In this section, we consider two measures µ, ν ∈ P1 such that µ 4 ν. The maximization
problem (1.1) is strongly related to the concept of left and right monotone transference
plans. The latter was introduced in Beiglböck and Juillet [2012], who show its existence
and uniqueness for convex ordered marginals and that it realizes the optimum in the
problem (1.1) for a specific set of payoffs. On the other hand, Henry-Labordère and
Touzi [2013] extended these results to a wider set of payoffs, and more importantly
give an explicit construction of the left-monotone transference plan. In this paper, we
will use a more convenient notion that we call a basic left-monotone transference plan,
motivated by the form of the optimal transference plan found by Henry-Labordère
and Touzi [2013], and we study its properties.

Definition 1.2.1 (Basic left-monotone transference plan). A basic left-monotone trans-
ference plan is a triplet (x?, Ld, Lu), where x? ∈ R∗+ and Ld, Lu are positive continuous
functions on ]0,∞[, such that:

i) Ld(x) = Lu(x) = x, for x ≤ x?;

ii) Ld(x) < x < Lu(x), for x > x?;

iii) on the interval ]x?,∞[, Ld is decreasing, Lu is increasing;

iv) Lµ = ν where the transition kernel L is defined by

L(x, dy) = δx1x≤x? + (qL(x)δLu(x) + (1− qL(x))δLd(x))1x>x?

where qL(x) := x−Ld(x)
Lu(x)−Ld(x) .

For the rest of the article, we will work under the following assumption:

Assumption 1.2.2. δF has a single maximizer m.

In order to prove the existence of the basic left-monotone transference plan, we
first look for necessary conditions on (x?, Ld, Lu) which ensure that the resulting law
is ν i.e. property (iv)). For convenience we shall denote 1− qL by qL.

1.2.1 Necessary conditions

In this section, we give some necessary conditions for a given triplet (x?, Ld, Lu) to be
a left-monotone transference plan. First, we show that it verifies an ODE.

Lemma 1.2.3. If (x?, Ld, Lu) is a basic left-monotone transference plan, then the pair (Ld, Lu)

verifies the following ODE:

pν(Lu)dLu = qLpµdy, ∀y > x?, (2.8)
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(pν(Ld)− pµ(Ld))dLd = −qLpµdy, ∀y > x?. (2.9)

Proof. C.f. Appendix 1.A.

Using these ODEs, we get the following necessary conditions on the triplet (x?, Ld, Lu).

Proposition 1.2.4. If (x?, Ld, Lu) is a basic left-monotone transference plan, then we have the
following properties:

1. x? must be the unique maximizer of δF ;

2. Ld verifies the equation

F−1
ν (Fµ(x) + δF (Ld(x))) = G−1

ν (Gµ(x) + δG(Ld(x))), ∀x > x?, (2.10)

where Gµ(x) =
∫ x

0 ypµ(y)dy, Gν(x) =
∫ x

0 ypν(y)dy and δG = Gν −Gµ.

3. Lu is related to Ld throughout the equation

Fν(Lu(x)) = Fµ(x) + δF (Ld(x)), ∀x > x?. (2.11)

Proof. We postpone a detailed proof of these three properties to Appendix 1.B

Remark 1.2.5. Equation (2.10) defines Ld(x), at least formally (the uniqueness will be proven
in Lemma 1.2.6), for x > x?, and Lu(x) follows from Equation (2.11). This equation is well
defined if it has a unique solution Ld(x) for all x > x?. This will be proved in the next section.

1.2.2 Sufficient conditions

Observe first that the single maximizer Assumption 1.2.2 implies, by item 1 in Propo-
sition 1.2.4, that if (x?, Ld, Lu) is a basic left transference plan, one necessarily has
x? = m. Now, we want to prove that equation (2.10) has a unique solution Ld(x) < m

for any x > m.
We can state the following preliminary lemma:

Lemma 1.2.6. Given x > m, let tF (x) be defined by:

1. tF (x) = m if Fµ(x) + δF (m) < 1;

2. tF (x) solves Fµ(x) + δF (tF (x)) = 1 in ]0,m[ otherwise.

Then, Equation (2.10) has a unique solution, denoted Ld(x), taking value in the interval
]0, tF (x)[. Moreover, Lu(x), given by Equation (2.11), is well defined.

Proof. C.f. Appendix 1.C.

Remark 1.2.7. Note that if Fµ(x) + δF (m) ≥ 1, then the equation Fµ(x) + δF (tF (x)) = 1

in ]0,m[ has a unique solution. This is due to the fact that µ 4 ν and to Assumption 1.1.1.

To complete the construction, we will prove that the graphs of Ld and Lu, defined
as solutions of (2.10) and (2.11) have the following properties:
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Proposition 1.2.8 (Properties of Ld and Lu). On (m,∞), we have:

1. Ld and Lu are C1 functions,

2. Lu(x) > x > Ld(x),

3. Ld is decreasing and Lu is increasing.

Proof.

1. It follows from the implicit function theorem.

2. Let x > m. By definition, we have Ld(x) < x, since Ld(x) < m. Moreover,
Lu(x) > Ld(x) is equivalent to Fµ(x) > Fµ(Ld(x)), which follows from Ld(x) <

m < x. Now, we prove that Lu(x) > x. Using the definition of Lu, one has

Lu(x) > x⇔ δF (Ld(x)) > δF (x).

Now, note that because of the convex ordering of µ and ν we know that δF has
at least one zero, otherwise δF would have a constant sign, which contradicts
the convex ordering. If it had one more zero, this last property would imply that
δF has at least two local maximizers. We denote this unique zero by zδF . Let
us distinguish two cases. If x ≥ zδF , then δF (x) ≤ 0, and since δF (Ld(x)) > 0,
Lu(x) > x follows. On the other hand, if x ≤ zδF , then by continuity, there exists
x < m such that δF (x) = δF (x). Let us introduce the function

Zx(t) := Gµ(x) + δG(t)−Gν
[
F−1
ν (Fµ(x) + δF (t))

]
.

We have

Zx(x) = Gµ(x) + δG(x)−Gν(x)

= −
∫ x

x
yδF ′(y)dy

= −δF (x)(x− x) +

∫ x

x
δF (y)dy

=

∫ x

x
(δF (y)− δF (x))dy.

Finally, since δF (y) > δF (x) for all y ∈ (x, x), we get Zx(x) > 0.
By Lemma 1.2.6, Ld(x) is the unique zero of Zx in the interval ]0, tF (x)[. There-
fore Ld(x) will be in (x, x), and we get our desired result δF (Ld(x)) > δF (x).

3. If we differentiate the equation (2.10) with respect to x, we get δF ′(Ld(x))L′d(x) =

−qL(x)pµ(x) where qL(x) = Lu(x)−x
Lu(x)−Ld(x) is well defined and positive, and δF ′(Ld(x))

is also positive since the function δF is increasing on (0,m). This implies that Ld
is decreasing.
To prove that Lu is increasing, recall that Lu is defined via Fν(Lu(x)) = Fµ(x) +

δF (Ld(x)). Differentiating this equation with respect to x gives

L′u(x)pν(Lu(x)) = pµ(x) + L′d(x)δF ′(Ld(x)) = qL(x)pµ(x)

Quantification of the model risk in finance and related problems Ismail Laachir 2015



CHANGE OF NUMERAIRE 23

where the function qL(x) = x−Ld(x)
Lu(x)−Ld(x) is well defined and positive.

Now, we can give the main result of this section, stating the existence and unique-
ness of the basic left-monotone transference plan.

Theorem 1.2.9. Assume that δF has a single maximizer m. Then there is a unique basic
left-monotone transference plan (m,Ld, Lu) where Ld is the unique solution of (2.10) and Lu
is given by the relation (2.11).

Having proved the existence and uniqueness of the basic left-monotone transfer-
ence plan, we can introduce similarly the basic right-monotone transference plan. Be-
fore that, let us introduce the change of numeraire transformation and study some
symmetry properties of the maximization problem (1.1).

1.3 Change of numeraire

Let X be a positive random variable with law µ ∈ P1. The change of numeraire with
respect to X amounts to define a new probability measure Xdµ and to look at the law
of 1

X under Xdµ. Its density q satisfies for any measurable bounded function f :

∫
f(y)q(y)dy = E

[
Xf

(
1

X

)]
=

∫
xf

(
1

x

)
p(x)dx =

∫
f(y)

p( 1
y )

y3
dy.

This motivates the introduction of a symmetry operator, denoted S.

1.3.1 The symmetry operator S

We associate to µ ∈ P1 with density pµ a measure S(µ) with density pS(µ) defined by:

pS(µ)(x) =
pµ( 1

x)

x3
, x > 0. (3.12)

It is straightforward to verify that the function pS(µ) is indeed a density defining a
measure in P1. Let us also observe that S is an involution, i.e. S ◦ S = id. Indeed, we
have

pS(µ)(
1
x)

x3
=
x3pµ(x)

x3
= pµ(x).

We summarize our findings in the following lemma.

Lemma 1.3.1. pS(µ) is the density of a measure S(µ) ∈ P1. Moreover the operator S is an
involution, preserving the convex order in the set of measures P1, i.e. if µ, ν ∈ P1 satisfy
µ 4 ν, then S(µ) 4 S(ν).

Proof. Let µ, ν ∈ P1 such that for any convex function f ,
∫
fdµ ≤

∫
fdν. Since S(µ)

and S(ν) have the same (unit) mass and first moment, it is enough to show that for
any positive constant K,L we have∫

(Kx− L)+dS(µ) ≤
∫

(Kx− L)+dS(ν).
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Now
∫

(Kx−L)+dS(µ) =
∫

(Kx−L)+
p( 1
x

)

x3
dx = −

∫
(K− L

x )+p(
1
x)d 1

x =
∫

(K−Ly)+dµ,
the same for ν. Since y 7→ (K − Ly)+ is a convex function, the result follows.

It is easy to show the following properties for the image of µ by the operator S. Its
proof is therefore omitted.

Proposition 1.3.2. If µ ∈ P1, then for all y > 0 we have

FS(µ)(y) = 1−Gµ(1/y) and GS(µ)(y) = 1− Fµ(1/y).

1.3.2 The symmetric two-marginals martingale problem

For µ, ν in P1, with µ 4 ν, we recall thatM(µ, ν) denotes the set of all discrete mar-
tingales with marginals µ, ν. By the classical theorem of Strassen [1965], we know that
there exists a discrete martingale {Mi : i = 0, 1, 2} with M0 = 1 such that, if X := M1

and Y = M2, then X ∼ µ and Y ∼ ν. We also recall the problem (1.1), for functions
C(x, y) with linear growth:

C 7→ P (µ, ν, C) = sup
Q∈M(µ,ν)

EQ[C(X,Y )].

Then, we introduce the symmetric two-marginals martingale problem, defined as
C 7→ P (S(µ), S(ν), C). We start a study of its properties with the following proposi-
tion:

Proposition 1.3.3. Let S be the operator that to every Q ∈ M(µ, ν) associates a measure
S(Q) defined by

ES(Q)[f(X,Y )] = EQ
[
Y f

(
1

X
,

1

Y

)]
, for every bounded measurable function f.

Then, we have the following properties:

1. S(Q) defines a probability inM(S(µ), S(ν)), and the symmetry S is an involution, i.e.
S ◦ S = id.

2. S (M(µ, ν)) =M(S(µ), S(ν)).

3. Let us define the payoff S∗(C)(x, y) := yC( 1
x ,

1
y ) for x, y ≥ 0. Then

P (S(µ), S(ν),S∗(C)) = P (µ, ν, C). (3.13)

Proof. 1. First, let us prove that S(Q) ∈ M(S(µ), S(ν)) for Q ∈ M(µ, ν). The fact
that Y has law S(ν) under S(Q) amounts to the definition of S on P1. Regarding
X , by the martingale property under Q, for functions f that depend only on the
x-variable:

ES(Q)[f(X)] = EQ
[
Y f

(
1

X

)]
= EQ

[
Xf

(
1

X

)]
,
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and we conclude since X has law µ under Q. It remains to show the martingale
property:

ES(Q)[Y f(X)] = EQ
[
Y

1

Y
f

(
1

X

)]
= EQ

[
f

(
1

X

)]
= EQ

[
X

1

X
f

(
1

X

)]
.

Now by the martingale property underQ this is alsoEQ[Y 1
X f( 1

X )] = ES(Q)[Xf(X)],
which implies ES(Q)[Y |X] = X .

2. In order to prove that S (M(µ, ν)) = M(S(µ), S(ν)), we note that one inclusion
is implied by the property 1. in this proposition. The other inclusion is a conse-
quence of the fact that the symmetry operator S is an involution.

3. It is an easy consequence of the previous property 2.

In the rest of this section, we will study the effect of change of numeraire on the
generalized Spence-Mirrless condition and how the symmetry operator S∗ introduced
in Proposition 1.3.3 acts on the space of hedgeable claims.

1.3.3 Relation to the generalized Spence-Mirrlees condition

The model-free bounds P and P are linked to the left and right monotone transfer-
ence plans, under a generalized Spence-Mirrlees type condition on C: Cxyy > 0 (or
Cxyy < 0). In fact, Henry-Labordère and Touzi [2013] show that for payoffsC verifying
this condition, the optimal problem (1.1) is attained by the left-monotone transference
plan, extending the results of Beiglböck and Juillet [2012].

Using the definition of S∗(C), it is clear that

S∗(C)xyy(x, y) = − 1

x2y3
Cxyy

(
1

x
,

1

y

)
, ∀x, y > 0. (3.14)

Hence, we have that Cxyy > 0 holds true if and only if S∗(C)xyy < 0. This elementary
remark allows to find the bound price for payoffs verifying Cxyy < 0, passing by the
symmetry S, which defines the mirror transference plan Rd, Ru. This is similar to the
change of variables of the mirror coupling in Henry-Labordère and Touzi [2013], Re-
mark 3.14, where the martingale measures have support on R. The symmetry operator
S permits to handle this case for R∗+-supported measures.

Definition 1.3.4. We say that a payoff function C is symmetric if it satisfies S∗(C) = C.

If the payoffC is symmetric and verifies the generalized Spence-Mirrlees condition
i.e. S∗(C) = C and Cxyy ≥ 0, then using (3.14), we have Cxyy(x, y) = − 1

x2y3
Cxyy(

1
x ,

1
y ),

hence Cxyy = 0. Integrating with respect to y twice and with respect to x, we see that
C is necessarily of the form C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x), for some functions
ϕ,ψ and h.

Remark 1.3.5. Since a symmetric payoff verifies C(x, y) = yC(1/x, 1/y), ∀x, y > 0, a way
of constructing it could go as follows: it suffices to choose its value on [0, 1] × R∗+, then for
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(x, y) ∈ (1,∞)×R∗+, define the payoff value by C(x, y) = yC(1/x, 1/y), since (1/x, 1/y) ∈
[0, 1]× R∗+. One may easily check that C satisfies the symmetry relation S∗(C) = C.

1.3.4 Symmetry and model risk

The quantityR(µ, ν, C) = P (µ, ν, C)−P (µ, ν, C) is a natural indicator of the model risk
associated with a given payoff C. Obviously, model-risk free payoffs include payoffs
which can be written like C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x), since R(C) = 0 in this
case. What about the converse?

Proposition 1.3.6. Let C be a payoff such that R(C) = 0 and such that the dual problem D

in (1.5) is attained and that there is no dual gap. Then, there exist functions ϕ ∈ L1(µ), ψ ∈
L1(ν), h ∈ L0 such that

C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x), Q− a.e. ∀Q ∈M(µ, ν). (3.15)

Proof. Let C be a payoff such that R(C) = 0 and the dual problem D (c.f. the equation
(1.5)) ofP (µ, ν, C) is attained. The first condition,R(C) = 0, implies thatEQ[C(X,Y )] =

P (µ, ν, C), ∀Q ∈M(µ, ν). The second condition means that there exist dual functions
ϕ,ψ, h such that

µ(ϕ) + ν(ψ) = P (µ, ν, C)

and
C(x, y) ≥ ϕ(x) + ψ(y) + h(x)(y − x), ∀x, y > 0.

Since all Q ∈ M(µ, ν) have marginals µ and ν and verify the martingale property, we
have

P (µ, ν, C) = EQ[C(X,Y )] = EQ[ϕ(X) + ψ(Y ) + h(X)(Y −X)], ∀Q ∈M(µ, ν).

Consequently, we have the two equations

C(x, y)− ϕ(x)− ψ(y)− h(x)(y − x) ≥ 0, ∀x, y > 0,

EQ [C(X,Y )− ϕ(X)− ψ(Y )− h(X)(Y −X)] = 0, ∀Q ∈M(µ, ν).

This gives C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x), Q-a.e. for all Q ∈M(µ, ν).

We denoteH(µ, ν) the set of payoffs that can be represented as in (3.15), i.e.

H(µ, ν) =
{

C : (R∗+)2 → R| there exist functions ϕ ∈ L1(µ), ψ ∈ L1(ν), h ∈ L0

C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x) Q− a.e. ∀Q ∈M(µ, ν)
}

This set contains all the payoffs that can be replicated by investing in the stock and
in European options. An interesting property of this set is that it is invariant by the
symmetry operator S∗.

Proposition 1.3.7. The setH(µ, ν) is invariant by S∗, i.e. S∗(H(µ, ν)) = H(S(µ), S(ν)).
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Proof. Let C ∈ H(µ, ν), i.e. there exist functions ϕ ∈ L1(µ), ψ ∈ L1(ν), h ∈ L0 such
that

C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x) Q− a.e. ∀Q ∈M(µ, ν).

Let x0, y0 > 0 such that C(x0, y0) = ϕ(x0) + ψ(y0) + h(x0)(y0 − x0), then

S∗(C)(x0, y0) := y0C(1/x0, 1/y0)

= y0ϕ(1/x0) + y0ψ(1/y0) + y0h(1/x0)(1/y0 − 1/x0)

= ϕ̃(x0) + ψ̃(y0) + h̃(x0)(y0 − x0),

where we define the functions ϕ̃, ψ̃ and h̃ by

ϕ̃(x) = xϕ(1/x), ψ̃(y) = yψ(1/y), h̃(x) = (ϕ(1/x)− 1/xh(1/x)) , ∀x, y > 0.

These functions verify ϕ̃ ∈ L1(S(µ)), ψ̃ ∈ L1(S(ν)), h̃ ∈ L0. We have the following
equivalences, since S(M(µ, ν)) =M(S(µ), S(ν))

∀Q ∈M(µ, ν), EQ [|C(X,Y )− ϕ(X)− ψ(Y )− h(X)(Y −X)|] = 0

⇔ ∀Q ∈M(µ, ν), ES(Q)
[∣∣∣S∗(C)(X,Y )− ϕ̃(X)− ψ̃(Y )− h̃(X)(Y −X)

∣∣∣] = 0

⇔ ∀Q ∈M(S(µ), S(ν)), EQ
[∣∣∣S∗(C)(X,Y )− ϕ̃(X)− ψ̃(Y )− h̃(X)(Y −X)

∣∣∣] = 0.

So,

S∗(C)(x, y) = ϕ̃(x) + ψ̃(y) + h̃(x)(y − x), Q− a.e. ∀Q ∈M(S(µ), S(ν)),

i.e. S∗(C) ∈ H(S(µ), S(ν)).

1.4 Construction of the basic right-monotone transference map
via change of numeraire

The goal of this section is to use the symmetry operator and our previous results on
the basic left-monotone transport plan to provide a simple construction of the basic
right-monotone transport plan. We suppose given two measures µ and ν verifying
the same conditions as in the previous section, i.e. µ, ν ∈ P1 such that µ, ν are convex
ordered (µ 4 ν).

Definition 1.4.1 (Basic right-monotone transference plan). A basic right-monotone trans-
ference plan is a triplet (x?, Rd, Ru), where Rd, Ru are positive continuous functions on
]0,∞[, such that:

i) Rd(x) = Ru(x) = x, for x ≥ x?;

ii) Rd(x) < x < Ru(x), for x < x?;

iii) On the interval ]0, x?[, Rd is increasing, Ru is decreasing,
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iv) Lµ = ν where the transition kernel L is defined by

L(x, dy) = δx1x≤x? + (qR(x)δRu(x) + (1− qR(x))δRd(x))1x>x?

where qR(x) := x−Rd(x)
Ru(x)−Rd(x) .

As we have proved in the previous section, if µ, ν ∈ P1 satisfy µ 4 ν, then their
images by the symmetry operator S verify the same conditions, i.e : S(µ), S(ν) ∈ P1

such that S(µ) ≤ S(ν). We know from Theorem 1.2.9 that there exists a basic left-
monotone transference plan (xS? , L

S
d , L

S
u) for (S(µ), S(ν)), under the condition that δFS

admits a single maximizer. Note that

FS(µ)(y) =

∫ y

0

pµ( 1
x)

x3
dx = 1−

∫ 1/y

0
xpµ(x)dx,

so that

δFS(y) = −
∫ 1/y

0
x∂x(δF )(x)dx.

Hence, δFS has a single maximizer xS? if and only if δF has a single minimizer x?, such
that x? = 1

xS?
.

Let us now proceed to the construction of a right-monotone transport plan based
on the symmetric left-monotone transport plan (xS? , L

S
d , L

S
u). Denote

Rd(x) :=
1

LSu(1/x)
, Ru(x) :=

1

LSd (1/x)
, x? := 1/xS? . (4.16)

Then, by definition of the left-monotone transference plan, we have

1. 0 < Rd(x) < x < Ru(x), for all x < x?,

2. Rd is increasing and Ru is decreasing.

At this point, it suffices to prove that (Rd, Ru) transports µ to ν. To this end, we let
g : R∗+ → R be any measurable bounded function. By definition of (xS? , L

S
d , L

S
u), we

have ∫ ∞
0

g(y)pS(ν)(y)dy =

∫ xS?

0
g(y)pS(µ)(y)dy +

∫ ∞
xS?

g(LSu(x))qSL(x)pS(µ)(x)dx

+

∫ ∞
xS?

g(LSd (x))(1− qSL(x))pS(µ)(x)dx,
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where qSL(x) =
x− LSd (x)

LSu(x)− LSd (x)
. Performing a change of variable, we get

∫ ∞
0

g(1/y)pS(ν)(1/y)
dy

y2
=

∫ ∞
x?

g(1/y)pS(µ)(1/y)
dy

y2
+

∫ x?

0
g(LSu(1/x))qSL(1/x)pS(µ)(1/x)

dx

x2

+

∫ x?

0
g(LSd (1/x))(1− qSL(1/x))pS(µ)(1/x)

dx

x2
,∫ ∞

0
ĝ(y)pν(y)dy =

∫ ∞
x?

ĝ(y)pµ(y)dy +

∫ x?

0
ĝ(Ru(x))qR(x)pµ(x)dx

+

∫ x?

0
ĝ(Rd(x))(1− qR(x))pµ(x)dx,

where ĝ(y) = yg(1/y), pS(µ)(x) = pµ(1/x)/x3, pS(ν)(x) = pν(1/x)/x3 and qR(x) =
x−Rd(x)

Ru(x)−Rd(x) . Hence, (x?, Rd, Ru) transports µ to ν. We have just proved the following

Theorem 1.4.2. Assume that δF has a single maximizer. Then there exists a basic right-
monotone transference plan, which is defined in (4.16).

The left-monotone transference plan (xS? , L
S
d , L

S
u) verifies the equations

F−1
S(ν)

(
FS(µ)(x) + δFS(LSd (x))

)
= G−1

S(ν)

(
GS(µ)(x) + δGS(LSd (x))

)
FS(ν)(L

S
u(x)) = FS(µ)(x) + δFS(LSd (x)).

We substitute the following expressions in the two equations above:

LSd (x) =
1

Ru(1/x)
, LSu(x) =

1

Rd(1/x)
,

FS(µ)(y) =1−Gµ(1/y), FS(ν)(y) = 1−Gν(1/y), δFS(y) = −δG(1/y),

GS(µ)(y) =1− Fν(1/y), GS(ν)(y) = 1− Fν(1/y), δGS(y) = −δF (1/y),

and we get the following proposition.

Proposition 1.4.3. The basic right-monotone transference plan (x?, Rd, Ru) is characterized
by the fact that x? is the unique minimizer of δF , and by the two equations.

F−1
ν

(
Fµ(x) + δF (Ru(x))

)
= G−1

ν

(
Gµ(x) + δG(Ru(x))

)
(4.17)

Gν(Rd) = Gµ(x) + (Gν(Ru(x))−Gµ(Ru(x))).

Moreover, the transition probabilities corresponding to the left and right transference plans are
related by

qL(x) = 1− qSR(1/x)
x

Ld(x)
, qR(x) =

x

Ru(x)
(1− qSL(1/x)).

Note that the equations (2.10) and (4.17) defining Ld and Ru are actually the same
equation, but with different domains. This equation, where the unknown is denoted
z, can be written as

F−1
ν (Fµ(x) + (Fν(z)− Fµ(z))) = G−1

ν (Gµ(x) + (Gν(z)−Gµ(z))), with x > 0. (4.18)
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Denote by m and m̃, respectively, the maximizer and the minimizer of δF , with m <

m̃. Thus we have

1. for x > m, Ld(x) is the unique solution of (4.18) on the interval (0,m);

2. for x < m̃, Ru(x) is the unique solution of (4.18) on the interval (m̃,∞).

Hence, Equation (4.18) has three solutions in the interval (m, m̃), obviously x,
Ld(x) in the interval (0,m) and Ru(x) in the interval (m̃,∞). This may be impor-
tant when going to numerically solving Equation (4.18) that gives the basic left and
right-monotone transference plans.

Remark 1.4.4. Note that by construction of the basic right-monotone transference plan, we
have the symmetry relation

S
(
QL(S(µ), S(ν))

)
= QR(µ, ν), (4.19)

i.e. the basic right-monotone transference plan is the symmetric of the left-monotone transfer-
ence plan related to the symmetric of the marginals. One could use this equality to prove the
optimality results in Henry-Labordère and Touzi [2013] when the marginals µ and ν have sup-
ports in R∗+. Indeed, recall first that using Lagrangian techniques, Henry-Labordère and Touzi
[2013] show that QL(µ, ν) attains the upper bound (1.1) for payoffs verifying the generalized
Spence-Mirrlees condition (1.6) Cxyy > 0. Now, assume that the payoff satisfies Cxyy < 0

instead. By item 3. of Proposition 1.3.3 and that Cxyy < 0 if and only if S∗(C)xyy > 0, we
have

P (µ, ν, C) = P (S(µ), S(ν),S∗(C))

= EQL(S(µ),S(ν)) [S∗(C)(X,Y )]

= ES(QL(S(µ),S(ν))) [C(X,Y )] .

Hence, P (µ, ν, C) is attained by S (QL(S(µ), S(ν))), which is equal to QR(µ, ν), by the sym-
metry equation (4.19). One can prove in a similar way that if Cxyy > 0 (resp. Cxyy < 0), the
lower bound (1.2) is attained by QR(µ, ν) (resp. QL(µ, ν)).

Now, we end this part with the interesting remark that the measures induced
by the left and right transference plans (Ld, Lu) and (Rd, Ru) are extremal points of
M(µ, ν).

Proposition 1.4.5. We denote by QL(µ, ν) and QR(µ, ν) the martingale measures inM(µ, ν)

entailed by the two transference plans (Ld, Lu) and (Rd, Ru).
The probability measures QL(µ, ν) and QR(µ, ν) are extremal points ofM(µ, ν).

Proof. Suppose that there exist two probabilities Q1 and Q2 and a real number 0 ≤
α ≤ 1 such that QL(µ, ν) = αQ1 + (1 − α)Q2. Since QL(µ, ν)

(
Y = Ld(X) or Y =

Lu(X)
)

= 1, then Qi(Y = Ld(X) or Y = Lu(X)) = 1 for i = 1, 2. Hence, Q1

and Q2 are concentrated on the two graphs Lu, Ld. Since, the two measures (Qi)i=1,2

preserve the marginals µ and ν, they are characterized by their transition probabilities
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qi(X) = Qi

(
Y = Lu(X)

∣∣X). On the other hand, (Qi)i=1,2 are martingale measures,

i.e. EQi [Y |X] = X , which implies that

qi(x)Lu(x) + (1− qi(x))Ld(x) = x, ∀x > m.

Hence, for x > m, qi(x) = x−Ld(x)
Lu(x)−Ld(x) , which is equal to qL(x), the transition proba-

bility of QL. In conclusion, Q1 and Q2 are equal to QL. We get similarly that QR is an
extremal point ofM(µ, ν).

1.5 Symmetry: Hobson and Klimmek [2015] revisited

Another important result in the optimal bound price literature is the work of Hobson
and Klimmek [2015] on the model-free lower bound price for an option paying |Y −X|.
This type of option is called, in the literature, the Type II forward start straddle, with
the strike α > 0 and the payoff

CαII(x, y) = |y − αx| , ∀x, y > 0, (5.20)

while the Type I forward start straddle is given by

CαI (x, y) =
∣∣∣y
x
− α

∣∣∣ , ∀x, y > 0, (5.21)

c.f. Lucic [2003] and Jacquier and Roome [2012]. Hobson and Klimmek [2015] derive
explicit expressions for the coupling which minimizes the price of the at-the-money
(ATM) Type II forward starting straddleC1

II and for the form of the dual strategy. Note
that this payoff does not satisfy the generalized Spence-Mirrlees condition (1.6). Their
main result is that an optimal martingale coupling for the forward starting straddle is
concentrated on a three point transition {p(x), x, q(x)}where p and q are two decreas-
ing functions.

This result was obtained under a dispersion assumption [Hobson and Klimmek,
2015, Assumption 2.1] on the supports of the marginal laws: assume that the sup-
port of (µ − ν)+ is contained in a finite interval E and the support of (ν − µ)+ is
contained in Ec. One important preliminary remark is the equivalence of the disper-
sion assumption 2.1 in Hobson and Klimmek [2015] and the Assumption 1.2.2 of a
single maximizer of δF .

Lemma 1.5.1. Let µ, ν ∈ P1 with µ 4 ν. Then the Assumption 2.1 in Hobson and Klimmek
[2015] is equivalent to the single maximizer Assumption 1.2.2.

Proof. Let µ, ν ∈ P1 with µ 4 ν. Observe that Supp(µ−ν)+ = {x ≥ 0, pµ(x)−pν(x) >

0}.

Suppose that Assumption 2.1 in Hobson and Klimmek [2015] holds, i.e. there exist
a, b ≥ 0 such that

∀x ∈ (a, b), pµ(x)− pν(x) ≥ 0

∀x ∈ (a, b)c, pµ(x)− pν(x) ≤ 0
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Consequently, δF is decreasing on [a, b] and increasing on (0, a) and (b,∞). Hence it
admits a global maximizer on a and a global minimizer on b. So the single maximizer
Assumption 1.2.2.

Conversely, suppose that the single maximizer Assumption 1.2.2 holds. Then δF

admits a global maximum in m > 0. Moreover, by the convex order of µ and ν, δF
admits a global minimum at m̃ > m. Hence, ∀x ∈ (m, m̃), pµ(x) − pν(x) > 0. and
∀x ∈ (m, m̃)c, pµ(x)−pν(x) ≤ 0, and finally the dispersion Assumption 2.1 in Hobson
and Klimmek [2015] is fulfilled.

Starting from the optimal coupling found in Hobson and Klimmek [2015], we in-
troduce the following transference plan definition. Note that contrary to the left and
right-monotone transference plans which are concentrated on a two point band, the
following definition have a 3-points structure.

Definition 1.5.2 (Basic 3-points band transference plan). A basic 3-points band transfer-
ence plan is a tuple (a, b, p, q, l, u), where 0 < a < b are real numbers and

i) p : [a, b]→ [0, a] and q : [a, b]→ [b,∞] are continuous decreasing functions.

ii) p(x) < x < q(x), for all x ∈ (a, b).

iii) l, u : (a, b)→ [0, 1] satisfy 0 ≤ l(x) + u(x) ≤ 1.

iv) Lµ = ν where the transition kernel L is defined by

L(x, dy) = δx1x≤a + (l(x)δp(x) + u(x)δq(x) + (1− l(x)− u(x))δx)1a<x<b + δx1x≥b.

(5.22)

Using the same ideas as in Section 1.2, we write down necessary conditions for
such a tuple to exist. Suppose there exists a tuple (a, b, p, q, l, u) as in Definition 1.5.2,
with the additional conditions p(a) = a, p(b) = 0 and lima+ q(x) =∞, q(b) = b.

The condition that L transports µ into ν implies that for any bounded measurable
function g we have∫ a

0
g(y)pν(y)dy =

∫ b

a
g(p(x))l(x)pµ(x)dx+

∫ a

0
g(y)pµ(y)dy,∫ ∞

b
g(y)pν(y)dy =

∫ b

a
g(q(x))u(x)pµ(x)dx+

∫ ∞
b

g(y)pµ(y)dy,∫ b

a
g(y)pν(y)dy =

∫ b

a
g(x)(1− l(x)− u(x))pµ(x)dx.

(5.23)

Suppose moreover that p and q are differentiable, then a change of variables gives∫ b

a
g(p(x))pν(p(x))p′(x)dx = −

∫ b

a
g(p(x))l(x)pµ(x)dx+

∫ b

a
g(p(x))pµ(p(x))p′(x)dx,∫ b

a
g(q(x))pν(q(x))q′(x)dx = −

∫ b

a
g(q(x))u(x)pµ(x)dx+

∫ b

a
g(q(x))pµ(q(x))q′(x)dx,∫ b

a
g(x)pν(x)dx =

∫ b

a
g(x)(1− l(x)− u(x))pµ(x)dx.
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On the other hand, the martingale condition gives

l(x)p(x) + u(x)q(x) + (1− l(x)− u(x))x = x, ∀x ∈ (a, b).

Consequently, we get for x ∈ (a, b)

pν(p(x))p′(x) = −l(x)pµ(x) + pµ(p(x))p′(x),

pν(q(x))q′(x) = −u(x)pµ(x) + pµ(q(x))q′(x),

l(x) + u(x) =
pµ(x)− pν(x)

pµ(x)
,

l(x)(x− p(x)) = u(x)(q(x)− x).

(5.24)

Remark 1.5.3. Interestingly, a (resp. b) is necessarily a global maximum (resp. minimum)
of δF . Indeed, the condition 0 ≤ l(x) + u(x) ≤ 1 implies that pµ(x)−pν(x)

pµ(x) ≥ 0, hence
δF ′(x) = pν(x) − pµ(x) ≤ 0 for all x ∈ (a, b). Consequently, δF is decreasing in (a,b).
Moreover

p′(x) (pµ(p(x))− pν(p(x))) = l(x)pµ(x)

and since p is decreasing, then pµ(p(x))− pν(p(x)) ≤ 0. So δF ′(y) = pν(y)− pµ(y) ≥ 0 for
all y ∈ (0, a). Similarly, we show that δF ′(y) = pν(y) − pµ(y) ≥ 0 for all y ∈ (b,∞). In
conclusion, δF is increasing on (0, a), then decreases on (a, b) and finally increases on (b,∞).
As a corollary, a (resp. b) is a global maximum (resp. minimum) of δF .

Rearranging the terms in the equations (5.24), we recover the equations (3.3) and
(3.4) in Hobson and Klimmek [2015] , ∀x ∈ (a, b)

p′(x) =
q(x)− x
q(x)− p(x)

pµ(x)− pν(x)

pµ(p(x))− pν(p(x))
,

q′(x) =
x− p(x)

q(x)− p(x)

pµ(x)− pν(x)

pµ(q(x))− pν(q(x))
,

u(x) =
x− p(x)

q(x)− p(x)

pµ(x)− pν(x)

pµ(x)
,

l(x) =
q(x)− x
q(x)− p(x)

pµ(x)− pν(x)

pµ(x)
.

(5.25)

Combining the first two equations above, we get for all x ∈ (a, b)

p′(x)(pµ(p(x))− pν(p(x))) + q′(x)(pµ(q(x))− pν(q(x))) = pµ(x)− pν(x)

p(x)p′(x)(pµ(p(x))− pν(p(x))) + q(x)q′(x)(pµ(q(x))− pν(q(x))) = x(pµ(x)− pν(x)).

Integrating gives us the following relation between p and q, for all x ∈ (a, b),

δF (q(x)) + δF (p(x)) = δF (x),

δG(q(x)) + δG(p(x)) = δG(x).
(5.26)

This equations correspond to (6.1) to (6.2) in Hobson and Klimmek [2015].
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1.5.1 Sufficient conditions

Now, we prove the well-posedness of equations (5.26), under the single maximizer
Assumption 1.2.2. Recall that Lemma 1.5.1 states that this is equivalent to Assumption
2.1 in Hobson and Klimmek [2015].

Lemma 1.5.4. Suppose that the single maximizer Assumption 1.2.2 is verified, so δF has a
single maximizer a and a single minimizer b > a. For a given x ∈ (a, b), let t1F (x) t2F (x) be
defined by:

1. t1F (x) = 0 if δF (x) ≤ 0;

2. t1F (x) solves δF (t1F (x)) = δF (x) in (0, a) otherwise,

and

1. t2F (x) = a if δF (x)− δF (b) ≥ δF (a);

2. t2F (x) solves δF (y) = δF (x)− δF (b) in (0, a) otherwise.

Then the equations (5.26) admit a unique solution p(x), q(x), such that p(x) ∈ [t1F (x), t2F (x)],
p(x) ∈ [0, a] and q(x) ∈ [b,∞).

Proof. C.f. the proof in Appendix 1.D.

Remark 1.5.5. 1. Note that t1F (x) and t2F (x) are well defined, by the intermediate values
theorem and the continuity of δF .

2. Recall that, by the convex ordering of µ and ν, the single maximizer Assumption 1.2.2
implies that δF has a single minimizer b, such that a < b and also, δF (a) > 0, δF (b) <

0 and δF is increasing on (0, a), decreasing on (a, b) then increasing (b,∞).

Now, we prove that this unique pair (p, q) has the following properties:

Proposition 1.5.6 (Properties of p and q). Let (p, q) be the unique pair in Lemma 1.5.4,
then the following properties hold:

1. p and q are C1 functions;

2. p(x) < x < q(x), for all x ∈ (a, b);

3. they are both decreasing;

4. They satisfies the following boundary conditions:

lim
x→a+

p(x) = a, lim
x→b−

p(x) = 0

lim
x→a+

q(x) =∞, lim
x→b−

q(x) = b.

Proof. 1. It follows from the implicit function theorem.

2. Obvious since for x ∈ (a, b), p(x) < a and q(x) > b.
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3. Let x ∈ (a, b), then p(x) is the unique solution of

δG
[
δF−1

(
δF (x)− δF (p(x))

)]
+ δG(p(x))− δG(x) = 0.

Differentiating this equation gives

p′(x)δF ′(p(x))
(
p(x)− δF−1 (δF (x)− δF (p(x)))

)
= δF ′(x)

(
x− δF−1 (δF (x)− δF (p(x)))

)
.

(5.27)
Since x ∈ (a, b) and p(x) ∈ (0, a), then

δF ′(p(x)) > 0

p(x) < a < b < δF−1 (δF (x)− δF (p(x)))

δF ′(x) < 0

x < b < δF−1 (δF (x)− δF (p(x))) .

Hence, p′(x) < 0, so that p is decreasing.

On the other hand q(x) is given by q(x) = δF−1
(
δF (x)− δF (p(x))

)
. Hence

q′(x) =
δF ′(x)− p′(x)δF ′(p(x))

δF ′(q(x))
.

Rewriting equation (5.27) gives p′(x)δF ′(p(x)) = δF ′(x) x−q(x)
p(x)−q(x) , consequently

q′(x) =
δF ′(x)

δF ′(q(x))

x− p(x)

q(x)− p(x)
.

Since x ∈ (a, b), p(x) ∈ (0, a) and q(x) ∈ (b,∞), then

δF ′(q(x)) > 0, δF ′(x) < 0,
x− p(x)

q(x)− p(x)
> 0.

In conclusion q′(x) < 0 and q is also decreasing.

4. We have for x ∈ (a, b)

t1F (x) ≤ p(x) ≤ t2F (x).

Using the definition of t1F (x) and t2F (x) we obtain

lim
x→a+

t1F (x) = a, lim
x→b−

t1F (x) = a,

lim
x→a+

t2F (x) = 0, lim
x→b−

t2F (x) = 0.

Consequently
lim
x→a+

p(x) = a, lim
x→b−

p(x) = 0.

On the other hand, q is defined by q(x) = δF−1 (δF (x)− δF (p(x))), for x ∈ (a, b).

Quantification of the model risk in finance and related problems Ismail Laachir 2015



36 CHANGE OF NUMERAIRE IN THE TWO-MARGINALS MARTINGALE TRANSPORT PROBLEM.

Using the limits of p, we get

lim
x→a+

q(x) =∞, lim
x→b−

q(x) = b.

A direct consequence of Lemma 1.5.4 and Proposition 1.5.6 is the following exis-
tence and uniqueness theorem:

Theorem 1.5.7. Assume that δF has a single maximizer m. Then there is a unique basic
3-points band transference plan (a, b, p, q, l, u) where a (resp. b) is the global maximizer (resp.
minimizer) of δF , (p, q) are given by Equations (5.26) and the transition probabilities (l, u)

are given by Equations (5.25).

We conclude this section with a discussion on the extremality and symmetry prop-
erties of the Hobson-Klimmek measure denoted by QHK(µ, ν), which is the martingale
measure inM(µ, ν) entailed by the pair (p, q) (c.f. the transition equation (5.22)). In
particular, using change of numeraire techniques we will show that QHK(µ, ν) attains
the lower bound price for the type I forward start straddleC1

I . This result complement
the result in Hobson and Klimmek [2015] about type II forward start straddle C1

II .

Proposition 1.5.8. The measure QHK(µ, ν) is an extremal point ofM(µ, ν).

Proof. Suppose that there exist two probabilities Q1 and Q2 and a real number 0 ≤
α ≤ 1 such that QHK(µ, ν) = αQ1 + (1 − α)Q2. Since QHK(µ, ν)

(
Y = p(X), Y =

q(X) or Y = X
)

= 1, then Qi

(
Y = p(X), Y = q(X) or Y = X

)
= 1 for i = 1, 2.

Hence, Q1 and Q2 are concentrated on the three band graph
{
p(x), x, q(x)

}
. Since, the

two measures (Qi)i=1,2 preserve the marginals µ and ν, they are characterized by their
transition probabilities li and ui:

ui(X) = Qi

(
Y = q(X)

∣∣X), li(X) = Qi

(
Y = p(X)

∣∣X).
The fact that (Qi)i=1,2 are martingale measures and has marginals µ and ν implies

that, for any bounded measurable function g∫ b

a
g(x)(1− li(x)− ui(x))pµ(x)dx =

∫ b

a
g(x)pν(x)dx

li(x)p(x) + ui(x)q(x) + (1− li(x)− ui(x))x = x, ∀x ∈ (a, b).

This has a unique solution given by

ui(x) =
x− p(x)

q(x)− p(x)

pµ(x)− pν(x)

pµ(x)

li(x) =
q(x)− x
q(x)− p(x)

pµ(x)− pν(x)

pµ(x)
, ∀x ∈ (a, b),

which are equal to the transition probabilities of QHK(µ, ν). In conclusion, Q1 and Q2

are equal to QHK(µ, ν), which is then an extremal point ofM(µ, ν).
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Proposition 1.5.9. The martingale measure QHK(µ, ν) verifies the symmetry relation

S
(
QHK(S(µ), S(ν))

)
= QHK(µ, ν)

where the symmetry operator S has been defined in Proposition 1.3.3.

Proof. Let the pair (pS , qS) define the measure QHK(S(µ), S(ν)).
Then, a simple computation shows that the symmetric of QHK(S(µ), S(ν)) is con-

centrated on
{

1/pS(1/x), 1/x, 1/qS(1/x)
}

. Let use write the equations satisfied by this
three-band graph.

First, recall the symmetry relations

δFS(y) = −δG(1/y), δGS(y) = −δF (1/y).

By definition, (pS , qS) is characterized by the two equations

δFS(qS(x)) + δFS(pS(x)) = δFS(x),

δGS(qS(x)) + δGS(pS(x)) = δGS(x).

Hence

δF (1/qS(1/x)) + δF (1/pS(1/x)) = δF (x),

δG(1/qS(1/x)) + δG(1/pS(1/x)) = δG(x).

These two equations are the same as the ones that characterize the pair (p, q), and by
uniqueness we get our desired result.

Hobson and Klimmek [2015] prove that lower bound price of the type II forward
start straddle paying C1

II(x, y) = |y − x| is attained by QHK(µ, ν), i.e.

P (µ, ν, C1
II) := inf

Q∈M(µ,ν)
EQ [|Y −X|] = EQHK(µ,ν)

[
|Y −X|

]
(5.28)

Interestingly, there is a symmetry relation between Type I and Type II forward start
straddles, which is given by

S∗(CαII)(X,Y ) = Y

∣∣∣∣ 1

Y
− α

X

∣∣∣∣ = α

∣∣∣∣YX − 1

α

∣∣∣∣ = αC
1
α
I . (5.29)

In particular, the ATM straddles are related by S∗(C1
II)(X,Y ) = C1

I (X,Y ). This rela-
tion can be exploited to obtain the following proposition, that concludes this section.
Its proof is straightforward.

Proposition 1.5.10. The lower bound price of the Type I forward start is also attained by a
basic 3-points band transference plan, i.e.

P (µ, ν, C1
I ) := inf

Q∈M(µ,ν)
EQ
[∣∣∣∣YX − 1

∣∣∣∣] = EQHK(µ,ν)
[
C1
I

]
. (5.30)

Proof.
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Using point 3. of Proposition 1.3.3 and Equation 5.29, we have

P (µ, ν, C1
I ) = P (S(µ), S(ν),S∗(C1

I ))

= P (S(µ), S(ν), C1
II)

= EQHK(S(µ),S(ν))
[
C1
II

]
= EQHK(µ,ν)

[
C1
I

]
.

1.6 Two new transference plans

In this Section, we characterize two new transference plans and some of their proper-
ties. For the rest of the article, we will work under the classical assumption that δF has
a single maximizer m. Under this assumption, we show the following proposition.

Proposition 1.6.1. Suppose that µ 4 ν and that δF has a single maximizer m. Then

1. δF admits a single zero, denoted z?F , δF is positive on (0, z?F ) and negative on (z?F ,∞).

2. For all x > 0, we have 0 < Fν(z?F )− δF (x) < 1.

3. δG admits a single zero, denoted z?G, δG is positive on (0, z?G) and negative on (z?G,∞).

4. For all x > 0, we have 0 < Gν(z?G)− δG(x) < 1.

Proof. Item 1) was proved in the previous Sections.
For Item 2), let x > 0. If x > z?F , then, by Item 1), Fµ(x) − Fν(x) > 0; So Fµ(x) −

Fν(x) + Fν(z?F ) > 0. Moreover, since Fν is increasing, Fν(z?F ) < Fν(x). So Fµ(x) −
Fν(x) + Fν(z?F ) < Fµ(x) < 1.

Otherwise, if x < z?F , then Fν(x) < Fν(z?F ) so that again Fµ(x)−Fν(x)+Fν(z?F ) > 0.
Moreover, by Item 1), Fµ(x)− Fν(x) < 0. So Fµ(x)− Fν(x) + Fν(z?F ) < Fν(z?F ) < 1.

Items 3) and 4) can be proved similarly, because δG verifies the same properties as
δF , i.e. δG is increasing and bounded by 0 and 1.

We introduce the following two special transference plans.

Definition 1.6.2 (F -Increasing transference plan). We say that a pair of functions (f, g) is
a F -increasing transference plan if the following conditions are fulfilled

1. f and g are increasing.

2. f(x) < x < g(x) for all x > 0.

3. f(0) = 0, lim∞ f(x) = z?F and g(0) = z?F .

4. Lµ = ν, where the transition kernel L is defined by

L(x, dy) = qF (x)δf(x) + (1− qF (x))δg(x),

where qF (x) := g(x)−x
g(x)−f(x) .
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Definition 1.6.3 (G-Increasing transference plan). We say that a pair of functions (f̃ , g̃)

is a G-increasing transference plan if the following conditions are fulfilled

1. f̃ and g̃ are increasing.

2. f̃(x) < x < g̃(x) for all x > 0.

3. f̃(0) = 0, lim∞ f̃(x) = z?G and g̃(0) = z?G.

4. Lµ = ν, where the transition kernel L is defined by

L(x, dy) = qG(x)δf̃(x) + (1− qG(x))δg̃(x),

where qG(x) := g̃(x)−x
g̃(x)−f̃(x)

.

In the following, we will show the existence and uniqueness of the F -increasing
transference plan. The same results for the G-increasing transference plan follow sim-
ilarly. Note that condition 1) and 3) of the two definitions imply that

1) f(x) < z?F , g(x) > z?F , f̃(x) < z?G, g̃(x) > z?G for all x > 0.

2) lim∞ g(x) =∞, lim∞ g̃(x) =∞.

Following the same steps as in Section 1.2, we start by writing the necessary con-
ditions for the existence of such a pair (f, g). The fact that L transfers µ to ν gives that,
for every bounded measurable function h∫ z?

0
h(y)pν(y)dy =

∫ ∞
0

h(f(x))qF (x)pµ(x)dx∫ ∞
z?

h(y)pν(y)dy =

∫ ∞
0

h(g(x))(1− qF (x))pµ(x)dx

Assume moreover that f and g are differentiable, then the two equations above
translate into

pν(f(x))f ′(x) = qF (x)pµ(x)

pν(g(x))g′(x) = (1− qF (x))pµ(x), ∀x > 0.

We get then the following necessary conditions

Proposition 1.6.4. Let (f, g) be an F -increasing transference plan and suppose moreover that
f and g are differentiable. Then, ∀x > 0

Fν(g(x)) + Fν(f(x))− Fν(z?F ) = Fµ(x)

Gν(g(x)) +Gν(f(x))−Gν(z?F ) = Gµ(x)

Having obtained these equations, we show now their well-posedness for every
x > 0. We introduce the bounds t1F (x), t2F (x) for every x > 0 by
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1) If Fν(z?F ) + Fµ(x) ≤ 1, then t1F (x) = 0..

2) Else t1F (x) is the solution of Fν(t1F (x)) = Fµ(x)+Fν(z?F )−1 on (0, z?F ), i.e. t1F (x) =

F−1
ν (Fµ(x) + Fν(z?F )− 1).

and

1) If x ≥ z?F , then t2F (x) = z?F .

2) Else, t2F (x) is the solution of Fν(t2F (x)) = Fµ(x) on (0, x), i.e. t2F (x) = F−1
ν (Fµ(x)).

Remark 1.6.5.
1) If x < z?F , then δF (x) = Fν(x)−Fµ(x) > 0. So Fν(x) > Fµ(x) and Fν(0) = 0, so the

intermediate values theorem ensure the existence of t2F (x). Moreover, since Fν is increasing,
we have also

∀y ∈ (0, t2F (x)), Fν(y) < Fµ(x).

2) By definition of the interval (t1F (x), t2F (x)), we have

Fν(z?F ) < Fµ(x)− Fν(y) + Fν(z?F ) < 1, ∀y ∈ (t1F (x), t2F (x)), (6.31)

so that F−1
ν (Fµ(x)− Fν(y) + Fν(z?F )) is well-defined and is greater that z?F .

3) We have t2F (x) ≤ x for all x > 0.

Proposition 1.6.6. For every x > 0, the equation

Gν
[
F−1
ν (Fµ(x)− Fν(y) + Fν(z?F ))

]
+Gν(y)−Gν(z?F ) = Gµ(x) (6.32)

admits a unique solution on the interval (t1F (x), t2F (x)).

Proof. For every x > 0, we introduce the function φ, defined on (t1F (x), t2F (x)) by

φx(y) = Gν
[
F−1
ν (Fµ(x)− Fν(y) + Fν(z?F ))

]
+Gν(y)−Gν(z?F )−Gµ(x), ∀y ∈ (t1F (x), t2F (x)).

We show that φx has a unique zero on (t1F (x), t2F (x)). For this goal we will prove
that

1. φx is decreasing.

2. φx(t1F (x)) > 0.

3. φx(t2F (x)) < 0.

We have, for x > 0 and y ∈ (t1F (x), t2F (x)) ⊂ (0, z?F ).

φ′x(y) = F ′ν(y)
[
y − F−1

ν (Fµ(x)− Fν(y) + Fν(z?F ))
]
.

By Remark 1.6.5, we have Fν(y) − Fµ(x) + Fν(y) − Fν(z?F ) < Fν(y) − Fν(z?F ). The
right-hand side is negative, since y < z?F . Hence Fν(y)− Fµ(x) + Fν(y)− Fν(z?F ) < 0,
which implies that y − F−1

ν (Fµ(x)− Fν(y) + Fν(z?F )) < 0. Consequently, φ′x(y) < 0,
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i.e. φx is decreasing on (t1F (x), t2F (x)), so Item 1) is established.

We denote by ϕ1 the function defined by ϕ1(x) = φx(t1F (x)), ∀x > 0. Let x > 0. If
x ∈ (0, F−1

ν (1− Fν(z?F ))), then Fν(z?F ) + Fµ(x) ≤ 1. So, t1F (x) = 0 and ϕ1(x) = φx(0) =

Gν ◦ F−1
ν (Fµ(x) + Fν(z?F ))−Gµ(x)−Gν(z?F ). We have

ϕ′1(x) = F ′µ(x)
[
F−1
ν (Fµ(x) + Fν(z?F ))− x

]
.

By item 2) of Proposition 1.6.1, we haveFµ(x)+Fν(z?F ) > Fν(x), soF−1
ν (Fµ(x) + Fν(z?F )) >

x. Hence ϕ′1(x) > 0 i.e. ϕ1 is increasing on the interval (0, F−1
ν (1−Fν(z?F ))). Moreover,

ϕ1(0) = 0, so that ϕ1 > 0 on (0, F−1
ν (1− Fν(z?F ))).

Otherwise, if x > F−1
ν (1−Fν(z?F )), i.e. Fν(z?F )+Fµ(x) > 1, then t1F (x) = F−1

ν (Fν(z?F )+

Fµ(x)− 1) and ϕ1(x) = 1−Gν(z?F )−Gµ(x) +Gν ◦ F−1
ν (Fµ(x) + Fν(z?F )− 1) .

We have
ϕ′1(x) = F ′µ(x)

[
F−1
ν (Fµ(x) + Fν(z?F )− 1)− x

]
.

By item 2) of Proposition 1.6.1, we haveFµ(x)+Fν(z?F )−1 < Fν(x), soF−1
ν (Fµ(x) + Fν(z?F )− 1) <

x. Hence ϕ′1(x) < 0 i.e. ϕ1 is decreasing on the interval (F−1
ν (1 − Fν(z?F )),∞). More-

over, lim∞ ϕ1(x) = 0, so that ϕ1 > 0 on (F−1
ν (1 − Fν(z?F )),∞). Thus ϕ1(x) is positive

for all x > 0, which yields Item 2): φx(t1F (x)) < 0.

Finally, we establish Item 3). A simple computation yields that for all x > 0,
φx(t2F (x)) = Gν ◦ F−1

ν (Fµ(x)) − Gµ(x). We denote this function by ϕ2, i.e. ϕ2(x) =

Gν ◦ F−1
ν (Fµ(x))−Gµ(x), ∀x > 0. Then

ϕ′2(x) = F ′µ(x)
[
F−1
ν (Fµ(x))− x

]
, ∀x > 0.

Hence, using Proposition 1.6.1, we get that ϕ2 is decreasing on (0, z?F ) and increasing
on (z?F ,∞). Moreover, ϕ2(0) = 0 and lim∞ ϕ2(x) = 0. Thus ϕ2(x) is negative for all
x > 0, which yields point 3): φx(t2F (x)) < 0.

Conclusion: we have that φx is decreasing, φx(t1F (x)) > 0 and φx(t2F (x)) < 0.
Consequently, for every x > 0, Equation 6.32 admits a unique solution on the interval
(t1F (x), t2F (x)).

Now, we prove the existence of the F -increasing transference plan in the following
proposition.

Proposition 1.6.7. We denote by f : (0,∞) → R the function such that, for every x > 0,
f(x) is the unique solution of Equation 6.32 given in Proposition 1.6.6.

We define the function g : (0,∞)→ R by g(x) = F−1
ν (Fµ(x)− Fν(f(x)) + Fν(z?F )) , ∀x >

0.

Then the pair (f, g) is an F -increasing transference plan. Moreover, f and g are differen-
tiable.

Proof. First, note that by Inequality 6.31, g is well-defined. By implicit theorem, we
have that f is differentiable, and so g is also differentiable. By definition, f and g
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verify the system of equations

Fν(g(x)) + Fν(f(x))− Fν(z?F ) = Fµ(x),

Gν(g(x)) +Gν(f(x))−Gν(z?F ) = Gµ(x).

This ensures that Condition 4) of the F -increasing transference plan definition 1.6.2
is fulfilled. It remains to show items 1,2,3) of this definition. First, we show that
f(x) < x < g(x), ∀x > 0.

Let x > 0. By definition, we have f(x) < t2F (x), and item 3) of Remark 1.6.5
states that t2F (x) ≤ x, so that f(x) < x. If x ≤ z?F , then by Inequality 6.31, we have
F−1
ν (Fµ(x)− Fν(f(x)) + Fν(z?F )) ≥ z?F > x. Hence g(x) > x. Now, if x > z?F , then by

Item 1) of Proposition 1.6.1, Fµ(x) > Fν(x). Moreover, Fν(z?F )−Fν(f(x)) > 0 because
f(x) < z?F . So Fµ(x)−Fν(f(x)) +Fν(z?F ) > Fν(x), i.e. g(x) > x. Consequently, Item 2)
of Definition 1.6.2 is verified.

By definition of the two bounds t1F and t2F we get directly t1F (0) = t2F (0) = 0 and
lim∞ t

1
F (x) = lim∞ t

2
F (x) = z?F . Hence, f(0) = 0, lim∞ f(x) = z?F , and g(0) = 0.

It remains to show that f and g are increasing. We know that f verify the equation,
for all x > 0

Gν
[
F−1
ν (Fµ(x)− Fν(f(x)) + Fν(z?F ))

]
+Gν(f(x))−Gν(z?F ) = Gµ(x).

Differentiating this equation, we get

F ′µ(x){F−1
ν [Fµ(x)− Fν(f(x)) + Fν(z?F )]− x} = f ′(x)F ′ν(f(x))×

{F−1
ν [Fµ(x)− Fν(f(x)) + Fν(z?F )]− f(x)}

which is equivalent to F ′µ(x){g(x) − x} = f ′(x)F ′ν(f(x)){g(x) − f(x)}. Since, f(x) <

x < g(x), then f ′(x) > 0 i.e. f is increasing. Similarly, we get F ′µ(x){x − f(x)} =

g′(x)F ′ν(g(x)){g(x)− f(x)}which implies g′(x) > 0 i.e. g is increasing.

Remark 1.6.8. Using the same methodology we prove the existence and uniqueness of the
G-increasing transference plan.

We denote by QF (µ, ν) (resp. QG(µ, ν)) the martingale measure entailed by the F -
increasing (resp. G-increasing) transference plan given by the marginals (µ, ν). More
precisely,

QF (µ, ν)(dx, dy) = µ(dx)
[
qF (x)δf(x)(dy) + (1− qF (x))δg(x)(dy)

]
, (6.33)

where we recall that qF (x) := g(x)−x
g(x)−f(x) .

QG(µ, ν)(dx, dy) = µ(dx)
[
qG(x)δf̃(x)(dy) + (1− qG(x))δg̃(x)(dy)

]
, (6.34)

where we recall that qG(x) := g̃(x)−x
g̃(x)−f̃(x)

.

We have the following symmetry property
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Proposition 1.6.9. QF (µ, ν) and QG(µ, ν) verify

S(QF (µ, ν)) = QG(S(µ), S(ν))

Proof. Let φ be a bounded measurable function on R?+. We have

ES(QF (µ,ν)) [φ(X,Y )] = EQF (µ,ν) [Y φ(1/X, 1/Y )]

= Eµ
[

g(X)−X
g(X)− f(X)

f(X)φ(
1

X
,

1

f(X)
) +

X − f(X)

g(X)− g(X)
f(X)φ(

1

X
,

1

g(X)
)

]
= ES(µ)

[
X − f̃(X)

g̃(X)− f̃(X)
φ(X, g̃(X)) +

g̃(X)−X
g̃(X)− f̃(X)

φ(X, f̃(X))

]
,

where g̃ and f̃ are defined by g̃(x) = 1/f(1/x) and f̃(x) = 1/g(1/x).
By definition, f and g verify, for x > 0

Fν(g(x)) + Fν(f(x))− Fν(z?F ) = Fµ(x)

Gν(g(x)) +Gν(f(x))−Gν(z?F ) = Gµ(x)

Using the fact that, for every τ ∈ P1, FS(τ)(x) = 1−Gτ (1/x), we get

FS(ν)(f̃(x)) + FS(ν)(g̃(x))− FS(ν)(1/z
?
F ) = FS(µ)(x)

GS(ν)(f̃(x)) +GS(ν)(g̃(x))−GS(ν)(1/z
?
F ) = GS(µ)(x)

and, obviously

1. g̃ and f̃ are increasing.

2. f̃(x) < x < g̃(x) for all x > 0.

3. f̃(0) = 0, lim∞ f̃(x) = 1
z?F

and g̃(0) = 1
z?F

.

Note that since δF (z?F ) = 0 and δGS(x) = δF (1/x), then z?G := 1/z?F is a zero of
δGS . Hence (f̃ , g̃) is theG-increasing transference plan corresponding to the marginals
(S(µ), S(ν)), so that

ES(QF (µ,ν)) [φ(X,Y )] = EQG(S(µ),S(ν)) [φ(X,Y )] ,

i.e. S(QF (µ, ν)) = QG(S(µ), S(ν)).

1.6.1 What are the payoffs for which this transference plan is optimal ?

Let u be a C2 function, we look for conditions such that the F -increasing transference
plan realizes its maximum. For this goal, we look for a triplet of functions (α, β, θ)

such that the Lagrangian function Lα,β,θ defined by

Lα,β,θ(x, y) = u(x, y)− α(y)− β(x)− θ(x)(x− y), ∀x, y > 0

verifies the equations Lα,β,θ(x, f(x)) = 0, Lα,β,θ(x, g(x)) = 0 and Lα,β,θ(x, y) ≤ 0

for all x, y > 0. Hence, we get the four equations
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Lα,β,θ(x, f(x)) = Lα,β,θ(x, g(x)) = 0

Lα,β,θy (x, f(x)) = Lα,β,θy (x, g(x)) = 0.

They lead to the following system

u(x, f(x))− α(f(x))− β(x)− θ(x)(x− f(x)) = 0

u(x, g(x))− α(g(x))− β(x)− θ(x)(x− g(x)) = 0

uy(x, f(x))− α′(f(x)) + θ(x) = 0

uy(x, g(x))− α′(g(x)) + θ(x) = 0.

Differentiating the first two equations, and combining them with the two others, we
get, for all x > 0

θ′(x) = −ux(x, g(x))− ux(x, f(x))

g(x)− f(x)
, ∀x > 0

α′(y) = uy(f
−1(y), y) + θ(f−1(y)), ∀y ∈ (0, z?)

α′(y) = uy(g
−1(y), y) + θ(g−1(y)), ∀y ∈ (z?,∞)

β(x) = u(x, f(x))− α(f(x))− θ(x)(x− f(x)) = u(x, g(x))− α(g(x))− θ(x)(x− g(x)), ∀x > 0.

Hence

Lα,β,θ(x, y) = [u(x, y)− u(x, f(x))]− [α(y)− α(f(x))]− θ(x)(f(x)− y)

= [u(x, y)− u(x, g(x))]− [α(y)− α(g(x))]− θ(x)(g(x)− y), ∀x, y > 0

By integration by parts, we get

Lα,β,θ(x, y) =

∫ f(x)

y

[
uy(f

−1(t), t)− uy(x, t) + γ(f−1(t))(y − t)f−1(t)′
]
dt, ∀y < f(x)

Lα,β,θ(x, y) = −
∫ y

f(x)

[
uy(f

−1(t), t)− uy(x, t) + γ(f−1(t))(y − t)f−1(t)′
]
dt, ∀f(x) < y < z?

Lα,β,θ(x, y) =

∫ g(x)

y

[
uy(g

−1(t), t)− uy(x, t) + γ(g−1(t))(y − t)g−1(t)′
]
dt, ∀z? < y < g(x)

Lα,β,θ(x, y) = −
∫ y

g(x)

[
uy(g

−1(t), t)− uy(x, t) + γ(g−1(t))(y − t)g−1(t)′
]
dt, ∀y > g(x).

where γ(x) = −ux(x, g(x))− ux(x, f(x))

g(x)− f(x)
.

Proposition 1.6.10. Let u be a C2 function such that Lα,β,θ(x, y) ≤ 0,∀x, y > 0, where
Lα,β,θ is defined above, then QF (µ, ν) is optimal for u.
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1.7 Applications

The symmetric case denotes the fact that S(µ) = µ and S(ν) = ν, we will say then that
µ and ν are symmetric. Note that the use of the word ‘symmetry’ in this context comes
from the fact that the corresponding volatility smiles at each maturity are symmetric
in log-forward moneyness. Symmetric models have been further studied e.g. by Carr
and Lee [2009] and Tehranchi [2009]. In Carr and Lee [2009], this concept is called
put-call symmetry (PCS). They give many examples of symmetric models, c.f. [Carr
and Lee, 2009, Section 3 and 4].

The stochastic volatility models with zero correlation between the volatility and
the spot is a classical example of symmetric model. If µ and ν are induced by a stochas-
tic volatility model of the type

dSt = St
√
VtdW

1
t , S0 = 1

dVt = α(t, Vt)dt+ β(t, Vt)dW
2
t

where W 1 and W 2 are two independent Brownian motions, then a simple application
of Girsanov’s theorem yields S(µ) = µ and S(ν) = ν (c.f. [Renault and Touzi, 1996,
Proposition 3.1]). This includes as a special case the Black-Scholes model.

Remark 1.7.1. The stochastic volatility model above verifies actually a seemingly “stronger”
version of symmetry. By Girsanov’s theorem, we know that there exists a martingale probabil-
ity Q, which is symmetric, i.e.

S(Q) = Q.

Such a “stronger” notion of symmetry is actually equivalent to the weaker symmetry of the
marginals µ and ν. To see this, let us consider an element P inM(µ, ν) and let us define the
probability measure

Q :=
P + S(P )

2
.

Then, Q is clearly an element ofM(µ, ν) and it is a symmetric measure, i.e. S(Q) = Q.

Assumption 1.7.2. We suppose in the rest of this section that the marginals µ and ν are
symmetric.

The symmetric models have some additional properties. For example:

Proposition 1.7.3. If δF has a single maximizer m, then its unique minimizer m̃ satisfies
m̃ > m and is given by m̃ = 1

m . As a consequence m < 1.

Proof. Let m be the single maximizer of δFµ,ν and m̃ its minimizer, the existence of
which is ensured by the convex order of µ and ν.

We know from the previous section (c.f. the equation (4.16)) that the minimizer
m̃S of δFS(µ),S(ν) verifies the relation m = 1

m̃S
. Since µ and ν are symmetric, then

m = 1/m̃. Since µ 4 ν, we know that m < m̃, and consequently we get m < 1.

1.7.1 Symmetrized payoffs have a lower model risk

We show in this subsection how the symmetry property can be used to reduce the
model risk. By Proposition 1.3.3, we have for any payoff C (with linear growth) and
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any symmetric model that

P (µ, ν, C) = P (µ, ν,S∗(C)), P (µ, ν, C) = P (µ, ν,S∗(C)),

implying
R(µ, ν, C) = R(µ, ν,S∗(C)).

We define the family of payoffs Cα = αC + (1− α)S∗(C), for α ∈ [0, 1]. Then R(Cα) ≤
R(C).

In financial terms, this means that the new payoff Cα reduces the model risk. Note
that R(C0) = R(C1) = R(C). Moreover, we have R(S∗(Cα)) = R(Cα), and since S is
an involution, we get R(C1−α) = R(Cα).

On the other hand, C1/2 = (C + S∗(C))/2 = (Cα + C1−α)/2, and because of the
symmetry of R(Cα) around 1/2 we get

R(C1/2) = R

(
Cα + C1−α

2

)
≤ 1

2
R(Cα) +

1

2
R(C1−α)

=
1

2
R(Cα) +

1

2
R(Cα) = R(Cα).

Hence, α = 1
2 realizes the minimum model risk for the portfolio Cα.

1.7.2 Example: the symmetric log normal case

We give an example of symmetric model, where the laws µ and ν are log-normal

µ ∼ lnN (−
σ2
µ

2
, σ2

µ), ν ∼ lnN (−σ
2
ν

2
, σ2

ν) with σµ < σν .

Their probability densities and cumulative distribution functions are given by

pi(x) =
1

x
√

2πσi
exp

[
−

(ln(x) + 1
2σ

2
i )

2

2σ2
i

]
and Fi(x) =

1

2

[
1 + erf

(
ln(x) + 1

2σ
2
i√

2σi

)]
,

where i = µ, ν and erf is the error function defined by erf(x) = 2√
π

∫ x
0 e
− t

2

2 dt, ∀x ∈ R.
In this case, the maximum m and minimum m̃ of δF := Fν − Fµ can be computed

explicitly. They are solutions of:

ln(y)2 = 2
σ2
µσ

2
ν

σ2
ν − σ2

µ

ln

(
σν
σµ

)
+
σ2
µσ

2
ν

4
,

so that we have

m = exp

−
(

2
σ2
µσ

2
ν

σ2
ν − σ2

µ

ln(
σν
σµ

) +
σ2
µσ

2
ν

4

)1/2
 and m̃ =

1

m
.

Note that m < 1 < m̃.
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Figure 1.1: δF

Figure 1.2: Zx

We recall that the left and the right-monotone transference plan components Ld(x)

and Ru(x) are defined as zeros of the function Z(.;x) (c.f. the proof of Lemma 1.2.6)

y 7→ Z(y;x) := Gν
[
F−1
ν (Fµ(x) + δF (y))

]
−Gν(x)− δG(y).

If Fµ(x) + δF (m) ≥ 1, then there exist t1F (x) < m such that Fµ(x) + δF (t1F (x)) = 1

and t2F (x) > m such that Fµ(x) + δF (t2F (x)) = 1. Similarly, if Fµ(x) + δF (m̃) ≤ 0

then there exist t̃1F (x) < m̃ such that Fµ(x) + δF (t̃1F (x)) = 0 and t̃2F (x) > m̃ such
that Fµ(x) + δF (t̃2F (x)) = 0. Hence, the function Z(y;x) is defined on the set R+

∗ \
((t1F (x), t2F (x)) ∪ (t̃1F (x), t̃2F (x))).

Moreover, for y ∈ I , we have ∂Z
∂y (y;x) = δF ′(y)

(
F−1
ν (Fµ(x) + δF (y))− y

)
, which

implies the following:

• Ld(x) is defined, for x > m, as the zero of Z(.;x) on the interval (0,m);

• Ru(x) is defined, for x < m̃, as the zero of Z(.;x) on the interval (m̃,∞).
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Figure 1.3: Left and right-monotone transference plan

Figure 1.4: 3-band transference plan

Moreover one can show that Z(.;x), for x ∈ (m, m̃), has three zeros x, Ld(x) ∈ (0,m)

and Ru(x) ∈ (m̃,∞).

We give a numerical example below, where we plot in Figure 1.1 the function δF
with a special mention of the maximum and minimumm and m̃. Figure 1.2 represents
the function Z(.;x) whose zeros yield the left and right-monotone transference plans.

The two figures 1.3 and 1.4 represent the basic left and right-monotone transference
plans (Ld, Lu) and (Rd, Lu), and the basic H-K decreasing transference plan.

1.8 Conclusion

In this work we revisit the explicit construction of Henry-Labordère and Touzi [2013]
of the optimal transference plan in the two-marginals martingale problem introduced
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by Beiglböck and Juillet [2012], in the particular but important case of positive mar-
tingales and of a single maximizer for the difference between the two cumulative dis-
tribution functions. We show that the change of numeraire transformation exchanges
the left- and the right-monotone transference plans, so that the change of numeraire
may be viewed has a mirror coupling acting on positive martingales with pre-specified
marginals. We repeat our analysis for another important transference plan, which has
been introduced by Hobson and Klimmek [2015]. We study some of its symmetry
properties and we show in particular that the change of numeraire exchanges type
I with type II forward start straddle, so that the lower bound prices are attained for
both options by the same probability measure, the one associated with the Hobson-
Klimmek transference plan. Moreover, we show the extremality of these transference
plans. We conclude this paper with some numerical illustrations. We leave the multi-
maximizer case for further research.
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Appendix 1.A Proof of Lemma 1.2.3

First of all, notice that the third condition in the definition of a basic left-monotone
transference plan is equivalent to the following equation, for any bounded measurable
function g:∫ ∞

0
g(y)pν(y)dy =

∫ x?

0
g(y)pµ(y)dy+

∫ ∞
x?

g(Lu(x))qL(x)pµ(x)dx+

∫ ∞
x?

g(Ld(x))qL(x)pµ(x)dx.

A simple change of variable gives∫ ∞
0

g(y)pν(y)dy =

∫ x?

0
g(y)pµ(y)dy +

∫ ∞
x?

g(y)qL(L−1
u (y))pµ(L−1

u (y))dL−1
u (y)

−
∫ x?

0
g(y)qL(L−1

d (y))pµ(L−1
d (y))dL−1

d (y),

(1.A.1)

where we have used the fact that Lu(x) → ∞ as x → ∞, which follows from Lu(x) >

x, andLd(x)→ 0 as x→∞. This latter is due the assumption that µ and ν do not agree
on any interval. Indeed, if Ld(x) → d? > 0, then µ and ν would necessarily agree on
]0, d?[, by definition of Ld (u ∈]0, d?[ can only be reached by the points where Lu = Ld).

Using (1.A.1), we get that:

• On y > x?, pν(y)dy = qL(L−1
u (y))pµ(L−1

u (y))dL−1
u (y),

• On y < x?, pν(y)dy = pµ(y)dy − qL(L−1
d (y))pµ(L−1

d (y))dL−1
d (y).

The two ODEs (2.8) and (2.9) follows by a change of variable x = L−1
u (y) in the two

ODEs before stating the present Lemma, together with the observation that, Ld being
decreasing, the inequality y < x? in the second ODE turns to y > x?.

Appendix 1.B Proof of Proposition 1.2.4

First, we show Equation (2.11). Subtracting the two relations (2.8) and (2.9), we get:

pν(Lu)dLu − (pν(Ld)− pµ(Ld))dLd = pµdy. (1.B.1)

Integrating between x? and some x ≥ x? we get

Fν(Lu)− Fν(x?)− Fν(Ld) + Fν(x?) + Fµ(Ld)− Fµ(x?) = Fµ(x)− Fµ(x?),

which gives Equation (2.11).

Now we prove that x? must be the unique maximizer of δF . Note that the equation
(2.9) and the fact that Ld is decreasing entail that pν − pµ > 0 on the support of the
image of Ld, which is equal to ]0, x?[, since we have Ld(x)→ 0 as x→∞. This means
that δF ′ = pν − pµ > 0 on ]0, x?[. Hence, δF is increasing on ]0, x?[. In other words, if
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x?? denotes any maximizer of δF , we have

x? ≤ x??.

On the other hand, using the equation (2.11) that relates Lu and Ld, one can show
that the point x? is necessarily a maximizer of δF . In fact, we have by definition,
∀x > x?, Ld(x) < x < Lu(x), which is equivalent to ∀x > x?, Fν(Lu(x)) > Fν(x).
Hence, the equation (2.11) implies that

∀x > x?, Fν(Ld(x))− Fµ(Ld(x)) > Fν(x)− Fµ(x). (1.B.2)

So, if x?? denotes any maximizer of δF , we have that

x?? ≤ x?.

Otherwise, if x?? > x?, then by (1.B.2), δF (Ld(x??)) > δF (x??), which contradicts the
fact that x?? is a maximizer of δF . In conclusion, we get x? = x??.

Finally, we show that Ld verifies Equation (2.10). For that, let us rewrite equation
(2.8) above by replacing the explicit expression for qL:

(Lu − Ld)pν(Lu)dLu = (y − Ld)pµdy

or equivalently

Lupν(Lu)dLu − Ld(pν(Lu)dLu − pµdy) = ypµdy,

so that eventually, after using equation (1.B.1), we obtain

Lupν(Lu)dLu − Ld(pν(Ld)− pµ(Ld))dLd = ypµdy. (1.B.3)

Let us introduce the cumulated expectations Gµ, Gν where G(b) =
∫ b

0 ap(a)da for p ∈
{pµ, pν}. Integrating (1.B.3) between x? and some x > x? we get

Gν(Lu(x))−Gν(x?)−Gν(Ld(x)) +Gν(x?) +Gµ(Ld(x))−Gµ(x?) = Gµ(x)−Gµ(x?),

giving
Gν(Lu(x))−Gν(Ld(x)) +Gµ(Ld(x)) = Gµ(x),

so that, using (2.11), we have that Ld(x) is solution to

Gν(F−1
ν (Fµ(x) + (Fν(Ld(x))− Fµ(Ld(x)))))−Gν(Ld(x)) +Gµ(Ld(x)) = Gµ(x).

Appendix 1.C Proof of Lemma 1.2.6

Let f(t) = F−1
ν (Fµ(x) + δF (t)) and g(t) = G−1

ν (Gµ(x) + δG(t)). We already know
from the previous section that Ld(x) is solution to equation (2.10). Thus, it remains to
show the uniqueness of the solution for the equation f(t) = g(t). Since Gν is strictly
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increasing and continuous, this equation is equivalent to Gν(g(t)) − Gν(f(t)) = 0. So
let us introduce

Zx(t) := Gν(g(t))−Gν(f(t)) = Gµ(x) + δG(t)−Gν(f(t)),

which is defined on ]0, tF (x)[. We want to prove that Zx has a unique zero on the
interval ]0, tF (x)[. We split the rest of the proof into three steps.

Step 1. First we prove that Zx is decreasing. Let t < tF (x). We have Z ′x(t) =

δG′(t)− (GνF
−1
ν )′(Fµ(x) + δF (t))δF ′(t). Observe now that:

i) δG′(t) = tδF ′(t),

ii) G′µ(t) = tF ′µ(t) = tpµ(t) and (GµF
−1
µ )′(t) = F−1

µ (t). The same equalities hold for
the measure ν.

so that:
Z ′x(t) = (t− f(t))δF ′(t).

Now t < f(t) if and only if x > t, which holds on ]0,m[ since we assumed x > m.

Step 2. Now we prove that Zx(0+) > 0. Indeed, let:

z(x) := Zx(0+) = Gµ(x)−Gν(F−1
ν )(Fµ(x)).

Then z(0+) = 0 and z′(x) = (x − F−1
ν (Fµ(x)))pµ(x) is positive on the set {δF > 0}.

Therefore z(x) = z(0+) +
∫ x

0 z
′(y)dy is positive on the set {δF > 0}. Now thanks to

our assumption pµ > 0, we see that the extrema of z are the zeros of δF . Because of
the convex ordering, we know that δF has at least one zero, otherwise δF would have
a constant sign, which contradicts the convex ordering. If it had one more zero, this
last property would imply that δF has at least two local maximizers.

Step 3. To end the proof, we show that Zx(tF (x)) < 0. This can be done by looking
at possible values of tF (x). We distinguish between two cases.

i) Zx(m) < 0 (case tF (x) = m).

Let us denote y(x) = Zx(m). Then y(m) = Gν(m) − Gν(m) = 0 and y′(x) =

pµ(x)(x− f(m)). Now x < f(m) if and only if δF (x) < δF (m), which is always
true by definition of m. Therefore y is decreasing and Zx(m) = y(x) < 0.

ii) Zx(tF (x)) < 0 (case tF (x) < m).

Let u(x) = Zx(tF (x)) = Gµ(x) + δG(tF (x)) − 1. Note that tF (x) → 0 as x → ∞,
so that u(x) → 1 + 0 − 1 = 0. Therefore it suffices to show that u is increasing.
Now u′(x) = xpµ(x) + t′F (x)tF (x)(pν(tF (x)) − pµ(tF (x))) and by the equation
defining tF (x), pµ(x) + t′F (x)(pν(tF (x)) − pµ(tF (x))) = 0. Therefore u′(x) =

pµ(x)(x− tF (x)) with x > m > tF (x).

Appendix 1.D Proof of Lemma 1.5.4

Proof. First, we denote by δF−1 the function mapping y ∈ (δF (b), 0) to the unique
z ∈ (b,∞) solving δF (z) = y.
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For each x ∈ (a, b), we introduce the following continuous function Zx given by

Zx(y) = δG
[
δF−1

(
δF (x)− δF (y)

)]
+ δG(y)− δG(x).

Such a function is well defined on the interval [t1F (x), t2F (x)], since for any y in that
interval we have

δF (b) ≤ δF (x)− δF (y) ≤ 0.

Note that (p(x), q(x)) such that p(x) ∈ [0, a], q(x) ∈ [b,∞) is a solution of (5.26) if and
only if p(x) ∈ [t1F (x), t2F (x)], Zx(p(x)) = 0 and q(x) = δF−1

(
δF (x)− δF (p(x))

)
.

We show now that for any x ∈ (a, b), Zx admits a unique zero on (t1F (x), t2F (x)).
This will be done in three steps: first we show that Zx is decreasing in (t1F (x), t2F (x)),
then prove that Zx(t1F (x)) > 0 and finally Zx(t2F (x)) < 0.

First, recall that for z ≥ 0, δG′(z) = zδF ′(z), hence

dδG
(
δF−1(z)

)
dz

=
1

δF ′(δF−1(z))
δF−1(z)δF ′(δF−1(z))) = δF−1(z), ∀z ∈ (δF (b), 0).

Then, for x ∈ (a, b) and y ∈ [t1F (x), t2F (x)]

Z ′x(y) = −δF ′(y)δF−1(δF (x)− δF (y)) + yδF ′(y)

= δF ′(y)
[
y − δF−1(δF (x)− δF (y))

]
.

(1.D.1)

Since δF is increasing on (0, a) then δF ′(y) ≥ 0 for all y ∈ (t1F (x), t2F (x)) ⊂ (0, a). Also,
by definition of δF−1, δF−1(δF (x)− δF (y)) ≥ b, so that y ≤ δF−1(δF (x)− δF (y)) for
all y ∈ (t1F (x), t2F (x)). Consequently, Zx is decreasing. In order to conclude, we need
to show that Zx(t1F (x)) > 0 and Zx(t2F (x)) < 0.

Let x ∈ (a, b), we compute Zx(t1F (x)).

1. If δF (x) ≤ 0 then t1F (x) = 0. Let η(x) = δF−1(δF (x)) ≥ b, i.e. δF (η(x)) = δF (x).
Thus

Zx(0) = δG
[
δF−1

(
δF (x)

)]
− δG(x)

= δG(η(x))− δG(x)

= η(x)δF (η(x))−
∫ η(x)

0
δF (y)dy − xδF (x) +

∫ x

0
δF (y)dy

= (η(x)− x)δF (x)−
∫ η(x)

x
δF (y)dy

=

∫ η(x)

x
(δF (x)− δF (y))dy.

Since δF is decreasing on (x, b) and increasing on (b, η(x)) we have δF (x) ≥
δF (y) ∀y ∈ (x, η(x)). Consequently, Zx(0) > 0.
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2. If δF (x) > 0, t1F (x) is the solution of δF (z) = δF (x) on (0, a). Then

Zx(t1F (x)+) = δG(t1F (x))− δG(x)

=

∫ x

t1F (x)
(δF (y)− δF (x))dy.

Since δF is increasing on (t1F (x), a) and decreasing on (a, x) then δF (x) ≤ δF (y)

∀y ∈ (t1F (x), x). Consequently, Zx(t1F (x)+) > 0.

Finally, we show that Zx(t2F (x)) < 0. Let us denote by f : (a, b)→ R defined by f(y) =

δF (y) − δF (a) − δF (b). We have f ′(y) = δF ′(y) < 0, ∀y ∈ (a, b), f(a) = −δF (b) > 0

and f(b) = −δF (a) < 0. Hence, there exist a unique z∗ ∈ (a, b) such that f(z∗) = 0.
Hence ∀y ∈ (a, z∗], δF (y)−δF (a) ≥ δF (b) and ∀y ∈ (z∗, b), δF (y)−δF (a) < δF (b).

1. If x ∈ (a, z∗], then δF (x) − δF (b) ≥ δF (a) and t2F (x) = a. We introduce the
function z defined on (a, z∗).

z(y) := Zy(a) = δG
[
δF−1

(
δF (y)− δF (a)

)]
+ δG(a)− δG(y), ∀y ∈ (a, z∗).

Let y ∈ (a, z∗), then z′(y) = δF ′(y)
[
δF−1

(
δF (y) − δF (a)

)
− y
]
. Since y ∈ (a, b)

and δF (y)−δF (b) ≥ δF (a), we have δF ′(y) < 0 and δF−1
(
δF (y)−δF (a)

)
≥ b >

y. Hence z is decreasing on (a, z∗). Moreover, z(a+) = lim
u→∞

δG(u) = 1 − 1 = 0,

consequently, z(y) < z(a+) = 0, ∀y ∈ (a, z∗). In particular, Zx(a) = z(x) < 0.

2. The second case is x ∈ (z∗, b). This implies that δF (x) − δF (b) < δF (a) and
t2F (x) is solution of the equation δF (z) = δF (x) − δF (b) on (0, a). We evaluate
Zx(t2F (x)).

Zx(t2F (x)) = δG
[
δF−1

(
δF (x)− δF (t2F (x))

)]
+ δG(t2F (x))− δG(x)

= δG(b) + δG(t2F (x))− δG(x).

We consider the function z defined on (z∗, b) as

z(y) := Zy(t
2
F (y)) = δG(b) + δG(t2F (y))− δG(y), ∀y ∈ (z∗, b).

Similarly to the computation of the derivative in (1.D.1), we get for all y ∈ (z∗, b)

z′(y) := δF ′(y)
[
t2F (y)− y

]
< 0,

since δF is decreasing in (a, b) and by definition t2F (y) < a < y. On the other
hand, t2F (b) = 0, so that z(b) = δG(b) + δG(0) − δG(b) = 0. Consequently,
z(y) < 0, ∀y ∈ (z∗, b) and in particular

z(x) = Zx(t2F (x)) < 0.
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2
Gas storage valuation and hedging. A

quantification of model risk.

This chapter is the object of Hénaff et al. [2013].

Abstract

This paper focuses on the valuation and hedging of gas storage facilities, using a spot-
based valuation framework coupled with a financial hedging strategy implemented
with futures contracts. The contributions of this paper are two-fold. Firstly, we pro-
pose a model that unifies the dynamics of the futures curve and spot price, and ac-
counts for the main stylized facts of the US natural gas market such as seasonality
and the presence of price spikes. Secondly, we evaluate the associated model risk, and
show that the valuation is strongly dependent upon the dynamics of the spot price.

2.1 Introduction

Natural gas storage units are used to reconcile the variable seasonal demand for gas
with the more constant rate of natural gas production. These gas storage facilities
are mainly owned by distribution companies which use them for system supply reg-
ulation, and for reducing the risk of shortages. In fact, regulation requires that local
distribution companies own storage units, in order to secure their gas supply and
to be able to meet any sudden increase in demand or any disruption in the pipeline
transportation system.

Several techniques may be used to value a gas storage facility. They can be broadly
classified in two categories: the intrinsic and the extrinsic valuation methods.

Traditionally, the demand for natural gas is seasonal, with winter peaks and sum-
mer lows. This motivates the intrinsic valuation methodology, which exploits the sea-
sonal shape of the natural gas futures curve. Following this strategy, the storage man-
ager observes the futures curve at the beginning of the storage contract and buys/sell
futures contracts, thereby determining once and for all the complete schedule of in-
jection and withdrawals. In order to determine the optimal futures positions, a linear
optimization problem is solved, with constraints defined by the physical and finan-
cial particulars of the storage contract (see Annexe 2.B which refers to Eydeland and
Krzysztof [2002]). We emphasize that the storage manager keeps the optimal futures
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positions for the entire duration of the storage contract. This strategy does not take
advantage of possible profitable movements of the futures curve.

This static methodology is extended by Gray and Khandelwal [2004] to the rolling
intrinsic valuation, to take advantage of the changing dynamics of the futures curve.
According to this variant, optimal futures positions are chosen at the beginning of
the storage contract, but when the futures curve moves away from its initial shape,
new optimal futures positions are recalculated, and the portfolio is rebalanced if this
is found to be profitable.

These two futures-based approaches capture the predictable seasonal pattern of
natural gas prices: they lead to buying cheap summer futures and selling expensive
winter futures. The corresponding storage value greatly depends on the summer-
winter spread. The intrinsic valuation methodology has been popular in the storage
industry, especially during periods where seasonal patterns were very pronounced.
During the last few years, the seasonal spreads have been reduced, and this puts into
question the futures-based methodology. The 2011 State of the Markets report, issued
by the US Federal Energy Regulatory Commission (FERC) FERC [2012], noticed the
following: “We have also seen a decline in the seasonal difference between winter and
summer natural gas prices. Falling seasonal spreads reflect increased production and
storage capacity, as well as greater year-round use of natural gas by power generators.
This decline has developed over the past several years and we expect the trend to
continue.”

The narrowing winter/summer spread, mentioned earlier, is mainly due to two
factors that put a downward pressure on winter gas prices and an upward pressure
on summer prices. The first factor is the recent surge in non conventional shale gas
supply, with geographical locations that are closer to gas consumption areas. The
main result of this new abundant source of gas is a downward pressure on winter
prices. The second factor is related to power consumption by cooling systems during
summer periods and the growing use of natural gas as a fuel for electricity generation.
This puts an upward pressure on summer gas prices.

The combination of these two factors has the logical consequence of narrowing the
seasonal spreads between winter and summer prices, diminishing the intrinsic value
of gas storage units. Static strategies based on futures contracts are no longer ade-
quate to monetize the value of gas storage facilities; they sometimes fail to recover
the operating expenses. This motivates the interest in dynamic strategies that take ad-
vantage of the real options embedded in gas storage facilities. This so-called extrinsic
valuation method still takes advantage of the remaining price seasonality, but, more
importantly, monetizes the high volatility of natural gas spot price.

The first contribution of this paper is to present a new modeling framework that
unifies the dynamics of the futures curve and spot price, and is consistent with the two
stylized facts that are essential to the gas storage valuation problem: price seasonality
and spot price spikes. The second aspect of the paper is related to the quantifica-
tion of model uncertainty related to the spot dynamics. We highlight in particular
the significant sensitivity of gas storage value to the specification and estimation of
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the spot model. This result puts into perspective the extensive literature on gas stor-
age valuation, and calls for a more careful assessment of the model risk inherent to
these valuations. We believe that it is crucial to devote more attention to the choice of
the spot-futures modeling framework, rather than to concentrate all the efforts on the
specification of an optimal trading strategy.

The rest of the paper is organized as follows. In Section 2.2 we describe the im-
portant stylized facts related to the natural gas market. In Section 2.3 we present the
characteristics of typical gas storage unit and the valuation method, using an optimal
spot strategy and a futures-based hedging scheme. Section 2.4 is devoted to a review
of the modeling approaches in the gas storage literature. In Section 2.5 we introduce
the modeling framework combining futures and spot dynamics and in Section 2.6 we
perform several numerical tests. In Section 2.7 we introduce two natural model risk
measures to quantify the sensitivity of a class of models with respect to the parame-
ters; those risk measures are computed in several test cases.

2.2 Natural gas stylized facts

In this section, we highlight important stylized facts about natural gas markets that
influence the value of a storage unit. These properties are related to the demand and
use of natural gas. In fact, the demand for natural gas for heating in cold periods of
the year produces a seasonal price pattern, while unpredictable changes in weather
can cause sudden shifts in gas prices. These facts are the two main sources of value
for a gas storage unit, since the ownership of a storage facility enables one to take
advantage from seasonality and price spikes.

As for all other commodities, the price of natural gas (NG) is influenced by its
point of delivery. In this study, we will be interested in the United States market,
specifically in a storage location near Henry Hub (Louisiana), which justifies the use
of gas daily spot prices and the Nymex natural gas futures as hedge instruments. One
can buy natural gas in the spot market for next-day delivery, or in the futures market
for rated delivery over a future period of one calendar month. The NYMEX futures
market provides quotes for the next 72 monthly futures contracts, but only the first 24
or so are liquidly traded.

In what follows, St will denote the spot price of natural gas at date t, and (F (t, Ti))i
represent the futures contracts price at t, for a set {Ti} of maturities. We consider
monthly spaced maturities, so every futures contract is related to a delivery month.
Also, we denote by Pt the price of prompt contract, i.e. the futures contract with the
closest maturity to current time t. Natural gas prices are quoted in U.S. dollars per
million British thermal units (MMBtu).

As mentioned above, the first main feature of natural gas prices is constituted by
the presence of a seasonal component. We plot the NG futures curve for several dates
in Figure 2.1 and observe a periodic winter increase in price, which are clearly due
to the demand for heating during cold periods of the year. In addition to this tradi-
tional seasonal feature, the use of natural gas for electricity generation has created a
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Figure 2.1: Futures curve for Nymex NG at different observation dates

second smaller increase during the summer period, related to the increasing demand
for cooling. These expected patterns in natural gas prices are the first source of value
for a storage unit. In the futures market, buy gas for summer delivery and simultane-
ously sell gas for winter delivery. Store it in between, and you have locked a certain
profit which is the summer-winter spread less the storage cost. This is the essence of
the so-called ”intrinsic strategy,” which is based only on futures contracts and exploits
the calendar spreads in the futures curve (see Appendix 2.B for more details about the
intrinsic value of a storage unit.)

The second important aspect of natural gas prices, is the presence of sudden moves
due to unexpected imbalances between supply and demand, caused by such factors
as unpredicted weather changes, disruptions in the supply chain, or poor anticipa-
tions of the global amount of gas in storage. Such events are almost instantaneously
reflected in the spot dynamics, giving rise to large shifts in prices, rapidly absorbed
by the storage capacities available in the market. These large and quickly absorbed
jumps, commonly called spikes, can be viewed in Figure 2.2, which shows many sud-
den dislocations between spot and prompt prices. 1 For example, we can notice a large
spike in the spot price during late February 2003, when the natural gas price jumped
by almost 78.00% and 54.26% in two successive days, then went down by−43.34% and
−19.58% during the two following days. As noted by the US Federal Energy Regula-
tory Commission (FERC) by FERC [2003], this spike in gas price was due to “physical
market conditions leading to low supply and high demand for a short time.” FERC
[2003] also observed that “similar natural gas price spikes are possible when episodes
of cold weather occur at times when storage inventories are limited.”

1We use a 1997-2013 historical data of spot and prompt price, published by the U.S. Energy Informa-
tion Administration. cf http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm

Quantification of the model risk in finance and related problems Ismail Laachir 2015

http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm


NATURAL GAS STYLIZED FACTS 59

12-1995 09-1998 05-2001 02-2004 11-2006 08-2009 05-2012 02-2015
0

5

10

15

20

Spot
Prompt

Figure 2.2: Spot and prompt historical prices

The appearance of the spikes is related to the spot and prompt prices spread. While
the prompt contract is a good proxy for the spot price, it does not suffer from sudden
shocks of the same amplitude as spot prices, because of time-to-maturity factor. The
spikes provoke ’unusual’ gaps between the two contracts

In our study, we detect spikes by identifying the outliers from the time series (xt) of
the spread between the spot price St and the prompt price Pt given by xt := St−Pt

Pt
; we

study separately the positive and negative spikes, since they reflect different market
conditions. Positive spikes are often caused by unpredicted weather changes, such as
a cold front or a heat wave. On the other hand, negative spikes are generally due to a
poor anticipation of market-wide gas storage levels. In Figure 2.3 we plot the number
of occurrences of negative and positive spikes during each month. We remark that the
distribution of spikes is clearly dependent on their sign: most of the positive spikes
happen during the winter months of January and February and the summer month of
June, which can be explained by the occurrence of an unpredicted cold front or heat
wave. On the other hand, negative spikes appear during the Fall. One plausible ex-
planation is given by Mastrangelo [2007], which states: “October is the last month of
the refill season. There may be increased competition from storage facilities looking to
meet end-of-season refill goals as well as increased anticipation regarding the upcom-
ing heating season.”

In order to take into account the stylized facts mentioned above, our futures model
incorporates seasonality in the futures curve, and the spot model describes the exis-
tence of spikes and takes into account the correlation between spot and futures prices,
through the prompt contract. To the best of our knowledge, these two facts have not
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Figure 2.3: Occurrences of spikes

yet been taken into account in the literature related to gas storage valuation, although,
in our opinion, they constitute the two main sources of storage value.

Before discussing modeling issues, we formalize the gas storage valuation and
hedging problem, and recall numerical simulation algorithms.

2.3 Valuation and hedging of a gas storage utility

The problem of valuing gas storage units has been discussed from many angles in
the literature, yielding different approaches and numerical methods. Leasing a gas
storage unit is equivalent to paying for the right, but not the obligation, to inject or
withdraw gas from the unit. Hence the goal of the owner is to optimize the use of
the gas storage facility, by injecting or withdrawing gas from the unit and, at the same
time, trading gas on the spot and/or futures market. All these decisions have to be
made under many operational constraints, such as maximal and minimal volume of
the storage, and limited injection and withdrawal rates. This forces the resolution of a
constrained stochastic control problem.

The gas spot price is modeled by a process, denoted by S. We suppose that this
process is given as a function of a Markov process X in term of which the optimal
control problem will be expressed. For example, in the framework (2.4.1), used by
Boogert and De Jong [2008], the spot process is a Markov process, so we take obviously
X = S.

Warin [2012] takes the futures curve as the underlying process, such that

F (t, T ) = F (0, T ) exp

[
−1

2
V (t, T ) +

n∑
i=1

e−ai(T−t)W i
t

]
, (2.3.1)
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with W i
t =

∫ t
0 σi(u)e−ai(T−u)dZiu, Zi being standard Wiener processes, and V (t, T ) =

var(

n∑
i=1

e−ai(T−t)W i
t ). Indeed, the Markov process X can be chosen to be equal to the

random sources X = (W 1, ...,Wn).
In fact the futures prices modeled in (2.3.1) are martingales. In particular Warin

[2012] supposes that the underlying probability is risk-neutral probability, and not
necessarily unique.

Remark 2.3.1. For simplicity, in the rest of this article, we suppose the discount interest rate
to vanish, and consider the problem specification in a time discrete setting.

We next present the specification of the gas storage valuation problem, using the
notations of Warin [2012].

2.3.1 Gas storage specification

We consider a gas storage facility with technical constraints (either physical or regula-
tory) on the volume of stored gas, Vmin and Vmax i.e. at all time, the volume of stored
gas V should verify Vmin ≤ V ≤ Vmax.

We assume a discrete set of dates ti = i∆t for i = 0, ..., n − 1 with ∆t = T/n. At
each date ti and starting from a volume Vti , the user has the possibility to make one
of three decisions: either inject gas at rate of ainj , or withdraw gas at rate of awith or
take no action. We denote by ui the decision at time ti, and write ui = inj (resp. with,
no) if the decision is injecting gas at rate ainj (resp. withdrawing gas at rate awith, no
action).

If the user follows a strategy (ui)i=0...n−1, then the volume of gas in storage (Vti)i
is given by the iteration

V0 = v, (2.3.2)

Vti+1(u) =


min(Vti(u) + ainj∆t, Vmax) if ui = ing

max(Vti(u)− awith∆t, Vmin) if ui = with

Vti(u) if ui = no,

(2.3.3)

for i = 0, ..., n− 2. The generated cash flow (positive when withdrawing gas, negative
when injecting) is given by

φui(Sti) := Sti(Vti+1(u)− Vti(u)).

In general the maximum injection and withdrawal rates (ainj and awith) are func-
tions of the amount of gas in storage. However, without loss of generality, we assume
for simplicity that these rates are constant. In Table 2.1 we summarize the possible
decisions and their consequences on gas volume and generated cash flow. We recall
that ainj indicates the injection rate per time unit ∆t and awith the withdrawal rate per
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Decision u Next volume Cash flow
Injection:
ui = inj

Vti+1(u) = min(Vmax, Vti(u) + ainj∆t) φinj = Sti(Vti(u)− Vti+1(u))

Withdrawal:
ui = with

Vti+1(u) = max(Vmin, Vti(u)− awith∆t) φwith = Sti(Vti(u)−Vti+1(u))

No Action:
ui = no

Vti+1(u) = Vti(u) φno = 0

Table 2.1: Possible decisions

time unit ∆t. Consequently, the wealth generated by following a strategy u is given
by

Wealthspot(u) =

n−1∑
i=0

φui(Sti). (2.3.4)

Finally, we are interested in the expectation of this cumulative cash flows, which
we denote by J . More precisely we set

J(t0, x0, v0;u) := E
[
Wealthspot

]
(2.3.5)

= E

[
n−1∑
i=0

φui(Sti)

]
,

J is a function that depends on the initial time t0, the value of the Markov process
X0 = x0, the initial volume in storage v0 and the strategy u.

The goal of the storage operator is to find a strategy u maximizing the expected
cumulative cash flows. We denote this optimal value by J?. So the problem to solve is
the following:

J?(t0, x0, v0) = max
(ui)i=0...n−1

J(t0, x0, v0;u) = max
(ui)i=0...n−1

E

[
n−1∑
i=0

φui(Sti)

]
(2.3.6)

= J(t0, x0, v0;u?).

A priori, the underlying probability is the historical probability measure, at least if the
futures do not intervene in the spot model. This quantity constitutes an objective for
the manager. However, it is not a “fair” price in the sense of “absence of arbitrage,”
since the spot is not traded as a financial asset; in that case the price would be an ex-
pectation with respect to a risk-neutral probability. On the other hand, J? constitutes
a price indicator; practitioners lease gas storage units at a proportion of this price.

In our proposed framework (see Section 2.5) the spot and the futures are jointly
modeled on a product space Ω = (Ωs,Ωf ) equipped with a probability Q. The futures
are first directly described as martingales on Ωf with respect to their corresponding
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risk-neutral probability P∗ and they are extended trivially to Ω. Formally Q is defined
by Q(dωs, dωf ) = Qωf (dωs)P

∗(dωf ), where Qωf (dωs) is a random probability kernel
(historically considered), describing the random behavior of S for each realization ωf
of the futures asset. The expectation of the optimal cumulative cash flows with respect
toQwill then be a price indicator, compatible with classic financial principles, as far as
futures assets are concerned. Indeed, we will also estimate the volatility parameters
for the diffusion describing the futures assets F using historical data, that is under
some historical probability P and not P∗ as we would need. However, the probability
P∗ is equivalent to P and this justifies the coherence of the estimation.

2.3.2 Dynamic programming equation

From Table 2.1, we recall that Vti+1(u) only depends on Vti(u) and ui. To emphasize
this fact, if Vti = v, we also express Vti+1(u) by V̂ui(v).

At time t, for Xt = x and with current volume level v, the (optimal) value for gas
storage will be of course denoted by J?(t, x, v). The dynamic programming principle
implies

J?(ti, x, v) = max
ui∈{inj, no, with}

{
φui + E

[
J?(ti+1, Xti+1 , V̂ui(v))|Xti = x, Vti = v

] }
.(2.3.7)

The classic way to solve this problem numerically is to use Monte Carlo simula-
tions, combined with the Longstaff and Schwartz [2001] algorithm, which approxi-
mates the above conditional expectation, using a regression technique. This backward
algorithm yields an estimate of the optimal strategy. As noted by Boogert and De Jong
[2008], the main difficulty comes from the fact that the value function also depends on
volume level, which in turn depends on the optimal strategy.

To circumvent this difficulty, Boogert and De Jong [2008] suggest discretizing the
volume into a finite grid, vl = Vmin + lδ, l = 0, ..., L = (Vmax − Vmin)/δ where L is
the number of volume subintervals. However, the fact that the time grid is discrete
and that at each time the storage unit manager has only three possible actions implies
that the number of attainable volumes for any strategy is finite. In fact, at each time ti,
the set V(i) of possible volumes is given by

V(i) = {Vi = v0+kainj∆t+lawith∆t , such that Vmin ≤ Vi ≤ Vmax and k, l ∈ N , k+l ≤ i};

consequently, it is possible to solve the dynamic programming equation (2.3.7) for all
volumes in V(i). The only motivation to use a restricted volume grid would be the
reduction of computation time.

We then get the following equation at time ti, for each path simulation Xm, where
m = 1, . . . ,M , M being the total number of paths, and each volume level vl ∈ V(i):
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J?(ti, X
m
ti , vl) = max

ui∈{inj, no, with}

{
φui +E

[
J?(ti+1, Xti+1 , V̂ui(vl))|Xti = Xm

ti , Vti = vl

] }
.

(2.3.8)
The conditional expectation above is estimated using the Longstaff-Schwartz re-

gression algorithm, at each volume grid point vl.

This will give us an estimation of the optimal strategy, denoted u?, and the initial
value of the gas storage unit J?(t0, Xt0 , v0) = J(t0, Xt0 , v0;u?). The numerical reso-
lution of problem (2.3.7) is done in two phases. The first stage consists in estimating
the optimal strategy u?, by performing the backward iterations of equation (2.3.8).
The second phase consists in estimating the value function J? through the forward
iterations of (2.3.8), along a new set of simulated paths, where we apply the optimal
strategy given by the backward algorithm.

One important remark about problem (2.3.7) is that the maximization is carried
out for the expected wealth generated by the spot-trading strategy. Consequently, a
manager who follows the optimal strategy on a single path is not assured to recover
the initial storage value J?. There will certainly be a discrepancy between the realized
cumulative cash flows on a given path and the expected value J?. Hence, it is crucial
for the storage manager to reduce the variance of the cumulative cash flows, which
is a random variable. As we will explain in the next section, this will be achieved by
conducting a financial hedging strategy, based on futures contracts on natural gas.

2.3.3 Financial hedging strategy

After estimating the optimal strategy, the storage unit manager will follow these op-
timal decisions on the sample path revealed by the market. But one should keep in
mind that, if one follows this optimal strategy u?, the cumulative wealth is only the
realization of a random variable whose expectation equals the initial price J? of the
gas storage unit. This motivates the interest in hedging strategies that can reduce the
variance of this random variable. This can be done by combining the optimal oper-
ating strategy with additional financial trades, so that the expectation of the related
cumulative wealth generated by both physical and financial operations is still J?, but
its variance (or some other risk criterion) is reduced. Analogously to Bjerksund et al.
[2011], who treats the intrinsic value case, this additional financial hedging strategy
plays a role analogous to control variates in the variance reduction of Monte Carlo
simulations, as it preserves the expected cumulative cash flows and reduces its vari-
ance. In order to reduce the variance of a Monte Carlo estimator of a r.v. Y , one adds
to it a mean zero control variate, which is highly (negatively) correlated to Y . Since
futures contracts are the most liquid assets in the natural gas market, and are strongly
correlated to the spot price, they form an ideal hedging instrument. In fact, although
a futures contract price F (t, T ) does not converge to the spot price, when the time to
maturity T − t goes to zero, the correlation between the prompt contract (for example)
and the spot price is very high, and often the two contracts move in the same direction.
The basic idea of a financial hedging strategy is to add to the physical spot trading,
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a strategy of buying and selling, at a trading date ti, a quantity ∆(ti, Tj) of futures
contracts F (., Tj) for 1 ≤ j ≤ m. Logically, those quantities will depend on the spot
and futures prices, S and {F (., Tj)}1≤j≤m, but also on the current volume level.

If the gas storage manager follows such a hedging strategy, in addition to the spot
physical trading, then the cumulative cash flows of the combined strategies is:

Wealthspot+futures =

n−1∑
i=0

φu?i (Sti) +

n−1∑
i=0

m∑
j=1

∆(ti, Tj)(F (ti+1, Tj)− F (ti, Tj)). (2.3.9)

Because the futures contract F (., Tj) stops trading after its expiration date Tj , we use
the convention ∆(t, Tj) = 0, for t ≥ Tj .

Since the futures price process is a martingale under the risk neutral probability,
we have Eti

[
F (ti+1, Tj)

]
= F (ti, Tj). Hence, the expectation of this hedging strategy

is null i.e.

E

n−1∑
i=0

m∑
j=1

∆(ti, Tj)(F (ti+1, Tj)− F (ti, Tj))

 = 0.

Consequently, following the optimal spot strategy in parallel with a futures hedging
portfolio gives the same cash flows in expectation, but very likely with lower variance.

E
[
Wealthspot+futures

]
= E

[
Wealthspot

]
= E

[
n−1∑
i=0

φu?i (Sti)

]
= J?.

The specification of such a hedging strategy will of course depend on the nature of the
relation between the spot price and the futures curve.

A heuristic strategy that is widely used in the industry is to take the quantity
∆1(ti, Tj) of futures F (., Tj) to be equal to the conditional expectation of volume to
be exercised during the delivery period of the futures contract, conditional on the
information at ti. More precisely, the heuristic delta is equal to the ti-conditional ex-
pectation

∆1(ti, Tj) = Eti [
∑

Tj−1≤tl<Tj

Vl+1(u?)− Vl(u?)]. (2.3.10)

We also propose a modification of this heuristic delta, where we use the concept of
tangent process (Warin [2012]). If we assume that the prompt converges towards the
spot, then we can write
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Wealthspot =

n−1∑
i=0

(Vi+1(u?)− Vi(u?))Sti

'
n−1∑
i=0

(Vi+1(u?)− Vi(u?))Pti

=
∑
j

∑
Tj−1≤tl<Tj

(Vl+1(u?)− Vl(u?))F (tl, Tj).

which yields another heuristic delta ∆2:

∆2(ti, Tj) = Eti [
∑

Tj−1≤tl<Tj

(Vl+1(u?)− Vl(u?))
F (tl, Tj)

F (ti, Tj)
] (2.3.11)

We emphasize that the definition of these two hedging strategies is based on heuristic
reasoning. Therefore, the hedging will not be perfect and a residual risk will still
remain.

As we will see in the numerical experiments, this financial hedging strategy yields
a significant reduction in the cash flows uncertainty of the spot trading strategy. This
will be illustrated later by an out-of-sample test applied over a 10 years price history.

In the next section, we present several modeling approaches for the spot and fu-
tures prices processes, and study the consequences of various model choices.

2.4 Literature on price processes

Generally, the problem of gas storage unit valuation has been studied from the angle
of numerical methods, and not much interest has been paid to the modeling itself and
its effects on the final outcome of the calculation. Two modeling approaches may be
found in he literature. The first approach consists in modeling the spot price by itself,
with classical mean-reverting models, as proposed by Boogert and De Jong [2008]. We
refer to Lautier [2005] for a review on the commodities spot models.

This approach does not offer the possibility of a hedging strategy based on futures
and does not take into account the price spikes. The second approach is based on a
model of the futures curve by multi-factor log-normal dynamics, and assumes that
the spot price is the limit of the futures price, when time to maturity goes to zero.
We note, however, that this assumption does not conform to reality in NG market.
This assumption, however, enables the definition of a delta hedging strategy based on
futures contracts.

We now describe in some details these two approaches.

2.4.1 Spot price processes

A very common framework consists in modeling the spot price as a mean-reverting
process. For instance, Boogert and De Jong [2008] developed a Monte Carlo method
for storage valuation, using the Least Square Monte Carlo method, as proposed by
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Longstaff and Schwartz [2001] for American options. They consider one factor model
for the spot price, which is calibrated to the initial futures curve. The price process S
is given by

dSt
St

= κ[µ(t)− log(St)]dt+ σdWt, (2.4.1)

where W is a standard Brownian motion, µ is a time-dependent parameter, calibrated
to the initial futures curve (F (0, T ))T≥0, provided by the market; the mean reversion
parameter κ and the volatility σ are two positive constants.

As pointed out by Bjerksund et al. [2011], this framework has several drawbacks
with respect to the goal of capturing the value of the gas storage. The calibration of
the time-varying function µ(t) is, as expected, quite unstable and gives unrealistic sen-
sitivity of the spot dynamics, and hence of the gas storage value with respect to the
initial futures curve. More importantly, this spot modeling does not take into account
the futures market and the possibility of trading strategies on futures contracts. The
futures curve is only used as an initial input to calibrate the parameter µ, but no dy-
namics for the futures curve is assumed. Modeling the futures curve is indispensable
in order to formulate the hedging strategies based on futures contracts. Finally, (2.4.1)
does not account for price spikes, which is an important source of storage value.

An enhancement of this model is proposed by Parsons [2013], who considers the
following two-factor mean-reverting model:

dSt
St

= a[µ(t) + log(Lt)− log(St)]dt+ σS,tdWt, (2.4.2)

dLt
Lt

= b[log(L)− log(Lt)]dt+ σL,tdZt, (2.4.3)

where the spot price S follows a mean-reverting process, with a long-run mean which
is itself a stochastic process reverting to a deterministic value L.

While this model is more realistic than the one factor model, it still suffers from
the instability of the deterministic function µ, and still does not include the possibility
of spikes in the spot price. The author defines the futures contract price as the expec-
tation of the spot price at maturity date T . We emphasize that this definition implies
that natural gas is delivered at the futures expiration T ; in reality, however, the deliv-
ery period spans an entire calendar month.

A second way to model the spot process is to consider it as the limit of the futures
contract price as time to maturity goes to zero; in particular we have St = lim

T↓t
F (t, T ).

This approach was adopted by Warin [2012]; the author considers a n-factor log-
normal dynamics for the futures curve:

dF (t, T )

F (t, T )
=

n∑
i=1

σi(t)e
−ai(T−t)dZit , (2.4.4)

and by continuity the spot is given by St = F (t, t). In this framework, the author
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presented a similar algorithm to Boogert and De Jong [2008] to estimate the optimal
strategy for the spot; moreover he gives formulae for the sensitivities of storage value
with respect to futures contracts. This provides a hedging strategy based on futures
in parallel to the spot optimal trading strategy, aimed at reducing the uncertainty on
the realized cash flows. This futures-based hedging strategy presents a big advantage,
compared to the first approach, since it increases the manager’s chances of recovering
the storage value and consequently the price paid to rent the storage unit.

To summarize, the available research on storage valuation is based on models for
the price processes that either do not capture important features of the spot process,
or assume a convergence of the futures to the spot price that does not conform to
reality. In contrast, we present next a joint, multi-factor model for the futures curve
and the spot process. It captures the seasonality of the natural gas futures prices and
the correlation between the spot and prompt prices. It also accounts for the presence
of spikes in the spot price.

2.5 Our modeling framework

In Section 2.2 we discussed the main stylized facts of natural gas prices, which are
seasonality and spikes. We believe that the incorporation of these two features is es-
sential in order to monetize these two sources of value. Also, we emphasize that it is
crucial to use a modeling framework that combines spot and futures curve dynamics,
and that accounts for the presence of a basis between the spot and prompt prices.

In Section 2.5.1, we introduce a two-factors model for the futures curve, with a
seasonal component for instantaneous volatility. This parsimonious model has easy-
to-interpret parameters and can be efficiently calibrated using futures curve historical
data.

In Section 2.5.2, we discuss the spot price model: we consider two formulations,
with a clear relation to the prompt contract. We also include spikes by means of a fast-
reverting jump process, similar to a model by Hambly et al. [2009], which was applied
to the electricity market.

2.5.1 Modeling the futures curve

Early models of commodities futures prices F (t, T ) were obtained through conditional
expectations of ST with respect to the current information at time t, where S is the spot
price process. c.f. for example the classical approaches by Gibson and Schwartz [1990]
and Schwartz [1997] and. This process was linked to futures prices through additional,
possibly stochastic, quantities such as convenience yield and interest rates.

This approach has several drawbacks such as the difficulty of observing or esti-
mating those quantities and the problem of fitting the initial curve F (0, T ).

Hence a second generation of models was proposed to directly describe the futures
curve, using multi-factor log-normal dynamics. For instance, Clewlow and Strickland
[1999b] proposes a one-factor model for the futures curve; this was then extended by
Clewlow and Strickland [1999a] to a multi-factor setting. A two-factor version of this

Quantification of the model risk in finance and related problems Ismail Laachir 2015



OUR MODELING FRAMEWORK 69

model can be expressed as

dF (t, T )

F (t, T )
= e−λ(T−t)σSTdW

S
t + σLTdW

L
t ,

where λ, σST and σLT are positive constants, and WS and WL are two correlated
Brownian motions. This model has the advantage of exactly fitting the initial futures
curve, and the dependence of the volatility on the maturity parameter, i.e. it is of term-
structure type; however it does not take into account the essential seasonality feature.
Note that this model is an adaptation of the well-known Gabillon [1991] model, orig-
inally proposed for spot prices. Our framework slightly modifies previous models,
adding a seasonality component and introducing parameters that have an economical
significance.

We will call it the Seasonal Gabillon two-factor model. It is formulated as

dF (t, T )

F (t, T )
= e−λ(T−t)φ(t)σSdW

S
t + (1− e−λ(T−t))σLdW

L
t , (2.5.1)

where WS and WL are two correlated Brownian motions, with d〈WL,WS〉t = ρdt.
The letters L and S stand respectively for Long term and Short term; λ, σS and σL
are positive constants. The function φ(t) = 1 + µ1cos(2π(t − t1)) + µ2cos(4π(t − t2))

weights instantaneous volatility with a periodic behaviour. It takes into account the
winter seasonal peaks (resp. the secondary summer peak) by taking for example t1
equal to January (resp. t2 equal to August). There exist alternative ways to model
price seasonality, e.g. in Nowotarski et al. [2013], in the context of electricity markets.
The coefficients µ1 and µ2 quantify the winter and summer seasonal contribution to
volatility: we expect the winter parameter µ1 to be larger, in absolute value, than the
summer parameter µ2.

This model constitutes an efficient framework, whose parameters are economically
meaningful. Indeed, the parameters σL and σS can be interpreted as ’long-term’ and
’short term’ volatility. Note that even if the model is expressed with a continuous set
of maturities, in the real world we only have access to a finite number of maturities,
for example, monthly spaced futures contracts.

In the next section we give more details about the meaning of each parameter and
their estimation, using historical data of futures prices.

Model estimation

Many of the model parameters are almost observable, if we have sufficient histori-
cal data of futures curves at hand. In fact, σS and σL could be approximated by the
volatility of short and long-dated continuous futures contracts, and ρ by their empiri-
cal correlation.
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For T → ∞, we can formally write
dF (t, T )

F (t, T )
' σLdW

L
t , so a good approximation

for the long-term volatility is

σ2
L '

1

m− 1

m∑
i=1

(
zLti√
∆ti
− µ̄L)2,

where zLt is the log-return of a constant maturity long-dated contract, four years for

example, and µ̄L =
1

m

m∑
i=1

zLti√
∆ti

.

Similarly, for small times to maturity, i.e. T − t → 0, we can ignore the long-term

noise effect, and write
dF (t, T )

F (t, T )
' σSdWS

t , so that a good proxy for the spot volatility is

the volatility of the rolling prompt contract, i.e. the contract with the nearest maturity

σ2
S '

1

m− 1

m∑
i=1

(
zPti√
∆ti
− µ̄P )2,

where zPt is the log-return of a prompt futures contracts and µ̄P =
1

m

m∑
i=1

zPti√
∆ti

.

We can also give an initial estimate for the correlation parameter ρ as

ρ ' 1

m− 1

m∑
i=1

(
zPti√
∆ti
− µ̄P )(

zLti√
∆ti
− µ̄L)

σSσL
.

These rough estimates could be used directly, or as input parameters for a more
rigorous statistical estimation procedure. For example, we can use the maximum like-
lihood method. For that, suppose we have a time series over dates t1, . . . , tm of futures
prices maturing at T1, ..., Tn. We denote zt, t = ti, i ∈ {0, . . . , tm−1} the vector of price
returns, ∆t being the corresponding step ti+1−ti and θ is the model parameters vector
θ = (λ, µ1, µ2, σS , σL, ρ), we have

zt =



∆F (t, T1)

F (t, T1)
.

.

.
∆F (t, Tn)

F (t, Tn)


, Ht =

√
∆t


e−λ(T1−t)φ(t)σS , (1− e−λ(T1−t))σL

. .

. .

. .

e−λ(Tn−t)φ(t)σS , (1− e−λ(Tn−t))σL

 ,

where ∆F (t, T1) = F (t + ∆t, T1) − F (t, T1). Then an Euler discretization of the SDE
(2.5.1) gives the equation

zt = Htxt, t ∈ {t1, . . . , tm},
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where (xti) are independents Gaussian 2-d vectors such that

xti ∼ N (0,Σ), 1 ≤ i ≤ m,

where

Σ =

(
1 ρ

ρ 1

)
.

The likelihood maximization could then be written as the minimization of the function

L(xt1 , xt2 , ..., xtm |θ) =
1

m

m∑
i=1

log(det(Σ)) + xTtiΣ
−1xti ,

and the xt, t ∈ {t1, . . . , tm} are given by zt = Htxt, i.e.

xt = (HT
t Ht)

−1HT
t zt.

So, the model estimation procedure is equivalent to the following minimization prob-
lem  min L(xt1 , xt2 , ..., xtm |θ) = log(det(Σ)) +

1

m

m∑
i=1

xTtiΣ
−1xti

θ = (λ, µ1, µ2, σS , σL, ρ).

(2.5.2)

To illustrate, we apply this estimation procedure, using daily futures curves from
1997 to 2007. As mentioned, the estimation problem (2.5.2) is solved using an opti-
mization algorithm, with the rough estimates of σS , σL and ρ as initial point for the
algorithm. We report in Table 2.2 the estimated parameters of the futures curve model.

Parameter Value Confidence interval
σS 0.4580 [0.4462,0.4698]
σL 0.1655 [0.1617,0.1694]
λ 0.7896 [0.7518,0.8274]
µ1 0.0246 [-0.0015,0.0507]
µ2 0.0038 [-0.0218,0.0294]
ρ 0.4113 [0.3737,0.4488]

Table 2.2: Estimated parameters using 1997-2007 futures curves history.

As expected, the short-term volatility is larger than the long-term volatility, which
is a common feature in energy futures curve dynamics, and the winter contribution µ1

in the seasonality component is larger than summer contribution µ2.

2.5.2 Modeling spot price

We have argued in Section 2.4 that the spot price should be considered as a sepa-
rate stochastic process, correlated to the prompt price, but which not the limit of this
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prompt price when time to maturity tends to 0:

St 6= lim
T→t

F (t, T ).

A model in that sense was proposed by Gray and Palamarchuk [2010], where the
logarithm of the spot is a mean reverting process, whose mean-reversion level is a
stochastic process equal to the prompt price. For a family of maturities (Ti)i, the fu-
tures contract F (t, Ti) is a log-normal process fulfilling

dF (t, Ti)

F (t, Ti)
= σ(t, Ti)dWt

and the spot price St evolves according to

d log(St) = (θt + a log(Pt)− a log(St))dt+ σSt dBt, (2.5.3)

where B and W are two correlated Brownian motions, and for the current date t, Pt
denotes the prompt price, i.e.

Pt = F (t, Ti) for Ti−1 ≤ t < Ti.

In our opinion it is crucial to incorporate futures curve dynamics into the modeling
of the spot prices, for instance a dynamics relating the spot and prompt futures price.
Indeed, as shown by the historical paths of spot and prompt prices in Figure 2.2, the
two processes are closely related. In fact they seem to move very often in the same
direction, with some occasional dislocations of spot and prompt prices.

In what follows we will study two spot models, connected to our futures curve
model. They will be stated in discrete time.

Spot model 1

Our first spot model is similar to (2.5.3), which was introduced by Gray and Pala-
marchuk [2010]. Its dynamics, based on the spot log-return yt = log(St/St−1), is given
by

log(St/St−1) = a1 + a2 log(Pt−1/St−1) + a3 log(Pt/Pt−1) + εt (2.5.4)

where (εt) is a GARCH(p, q) process and again P is the prompt price.
Recall that a GARCH(p, q) process ε verifies an autoregressive moving-average

equation for its conditional variance σ:

εt = σtzt , where

σ2
t = κ+

p∑
i=1

γiσ
2
t−i +

q∑
i=1

αiε
2
t−i (2.5.5)

where zt is a white noise.

This model captures both the heteroscedasticity of the natural gas spot price and
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the correlation between the spot price and the prompt futures price. Similarly to
(2.5.3), the spot price dynamics described by (2.5.4) is mean reverting around a stochas-
tic level equal to the prompt price. In addition, the prompt log return is a supplemen-
tary explanatory variable of the spot log return. Recall that our futures model (2.5.1)
incorporates seasonality in the futures curve dynamics; this implies that the spot dy-
namics itself follows a seasonal pattern, transmitted by the prompt price.

Spot model 2

As an alternative, we model the spot process by modeling the return of the spot to
prompt spread: yt = St−Pt

Pt
, using the so-called front-back spread as independent vari-

able.
This alternate model is:

St − Pt
Pt

= a1 + a2
St−1 − Pt−1

Pt−1
+ a3

Pt−1 −Bt−1

Bt−1
+ εt, (2.5.6)

where Bt is the price of the second nearby futures (also known as the back contract)
and ε is a GARCH(p, q) process.

(2.5.6) has the advantage of directly handling the spread between the spot and the
prompt price, which is a key variable in gas storage management. Intuitively, a large
positive spread value will generally induce the decision to withdraw gas, while the
reverse is likely to motivate a gas injection. Also, as we pointed out in the introduc-
tion, the narrowing of the seasonal spread in the futures curve during last years has
diminished the intrinsic value of gas storage units. Consequently, almost all the stor-
age value is now concentrated in the extrinsic value, which is heavily dependent on
the spot-prompt spread.

Spikes modeling

In Section 2.2, we showed that natural gas prices have two distinct characteristics:
seasonality and presence of spikes. The first feature (seasonality), is captured by the
seasonal factor in the futures curve dyamics (2.5.1). This seasonal pattern is trans-
ferred to the spot process by means of models that include the prompt and/or the
back contract price as explanatory variables. There is no need to include a separate
seasonal element in the spot dynamics.

Price spikes are another matter. These large and rapidly absorbed jumps are an
essential feature of the spot process, since they can be source of value for gas storage
and they can be monetized if injection/withdrawal rates are high enough.

They are mostly observed in the spot market, and we account for them by includ-
ing a fast mean-reverting jump process in the spot model, in the same spirit as the
electricity price model of Hambly et al. [2009].

These authors propose a spot model for the power price that incorporates spikes
via a process Y , which is the solution of the equation

Quantification of the model risk in finance and related problems Ismail Laachir 2015



74 GAS STORAGE VALUATION AND HEDGING. A QUANTIFICATION OF MODEL RISK.

dYt = −βYt−dt+ dZt, Y0 = 0, (2.5.7)

where Z is a compound Poisson process of the type Zt =

Nt∑
i=1

Ji, (Nt) is a Poisson

process with intensity λ and (Ji)i∈N is a family of independent identically distributed
(iid) variables representing the jump size. Furthermore (Nt) and (Ji) are supposed to
be mutually independent. The process Y can be written explicitly as

Yt = Y0e
−βt +

Nt∑
i=1

e−β(t−τi)Ji. (2.5.8)

We recall that the spot model is directly expressed as a discrete time process, indexed
on the grid (ti) introduced in Section 2.3. For that reason Y will be restricted to the
same time grid.

Choosing a high value for the mean-reversion parameter β forces the jump process
Y to revert very quickly to zero after the jump times τi, which constitutes a desired
feature for natural gas spikes. In practice, the jumps in natural gas spot prices are
rapidly absorbed, precisely thanks to the existence of storage facilities.

Models (2.5.4) and (2.5.6) alone do not take into account the possibility of sudden
spikes in the spot price. In order to add a jump component, the dynamics in (2.5.4)
and (2.5.6) are multiplied by the process exp(Yt):

S̃t = exp(Yt)St.

As noted in Section 2.2, the natural gas spikes are clearly distinguished by their
signs. Positive spikes, due to unpredicted weather changes, occur exclusively during
the winter and summer months. Conversely, negative spikes, generally caused by
a poor market anticipation of the storage situation, happen mostly during ”shoulder
months” such as October and November. This motivates a separate modeling for these
two categories of spikes. We will consider two processes Y + and Y − for positive and
negative spikes, each one verifying a slightly modified version of equation (2.5.8):

Y +
t =

Nt∑
i=1

e−β(t−τi)Ji1τi∈I+ , (2.5.9)

where I+ (resp. I−) represents the time period where positive (resp. negative) spikes
are observed, i.e. winter and summer (resp. shoulder months), as we observed in
Section 2.2.

Putting the pieces together, the spot process that we consider for our gas storage
valuation is

S̃t = exp(Y +
t + Y −t )St. (2.5.10)

Finally (2.5.10) possesses all the desired properties: it includes seasonality in both
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futures and spot prices, and it features positive and negative spikes in the spot pro-
cess, each one generated by a separate jump process Y + and Y −.

Model estimation

As for the futures model, we estimate the spot models with historical data for spot and
futures prices. The parameters estimation for the two spot dynamics (2.5.4), (2.5.6)
is based on regression techniques and the classic estimation procedure for GARCH
processes. Following Hambly et al. [2009], we use the likelihood method to estimate
the spike process parameters, after filtering the underlying time series to extract the
jumps. Note that the coefficient β is heuristically fixed.

Regression parameters Value C.I.
a1 -0.0054 [-0.0082, -0.0026]
a2 0.2937 [0.2542, 0.3333]
a3 0.4606 [0.3920, 0.5293]

Garch(1,1) parameters Value C.I.
κ 2.5936e-5 [1.5121e-5, 3.6751e-5]
γ1 0.8458 [0.8225, 0.8691]
α1 0.1452 [0.1180 , 0.1724]

Spike process Y + Value C.I.
β 300
λ 0.249905 [0.11691, 0.3829]

Jump Law N (0.2499, 0.1169) [0.1824, 0.3174]
[0.0848, 0.1884]

Spike process Y − Value C.I.
β 300
λ 1.2131 [0.70655, 1.71965]

Jump Law N (−0.2295, 0.1124) [-0.3010, -0.1581]
[0.0797, 0.1909]

Table 2.3: Spot model 1 parameters using 1997-2007 data

An analysis of the spot and futures historical data shows that a GARCH(1, 1) pro-
cess is adequate. As mentioned before, we use a large value for the spike reversion
parameter β.

To illustrate, the estimation of spot model 1, using a GARCH(1,1) process and a
historical data from 1997 to 2007, yields the parameters summarized in Table 2.3.

2.6 Numerical results

In this section we use our futures-spot models to value various storage contracts, and
compare our results to the intrinsic value of storage units. We consider two types of
storage units, characterized by their maximum injection/withdrawal rates. A fast gas
storage can be filled in, say, one month, but it often has limited capacity: salt caverns

Quantification of the model risk in finance and related problems Ismail Laachir 2015



76 GAS STORAGE VALUATION AND HEDGING. A QUANTIFICATION OF MODEL RISK.

are a common example of high deliverability storage units. Depleted oil/gas fields,
or aquifers can also be used as storage facilities. They have very large capacities, but
they suffer from low injection/withdrawal rates (see Appendix 2.A for details).

We will consider fast and slow storage units whose characteristics are described
in Table 2.4. For simplicity, all the quantities are expressed in 106 MMBtu2, while the
storage values are expressed in million of US dollars. This means that the fast storage
unit can be filled in 25 days, and emptied in 17 days. The slow storage unit needs 125
days to be completely filled and 83 days to be completely emptied. In all calculations,
we ignore transaction costs.

Fast storage Slow storage
Total capacity 100 100

Injection rate 4 per day 0.8 per day
Withdrawal rate 6 per day 1.2 per day

Initial gas volume 0 0
Final gas volume 0 0
Lease duration 1 year 1 year

Table 2.4: Gas storage characteristics (fast and slow units)

The experiments were run using the Matlab software. We use 5000 simulations
for the Monte Carlo method, with independent paths for the backward and forward
phases of the Longstaff & Schwartz algorithm (see Section 2.3.2). First, we simu-
late a set of spot and futures paths, then we apply the dynamic programming algo-
rithm (2.3.8) to estimate the optimal spot strategy; in parallel we evaluate the hedging
strategy, based on futures contracts, according either to (2.3.10) or (2.3.11). We then
re-simulate a new set of spot and futures paths, independent from the paths used
in the preceding backward phase, and we apply the estimated optimal spot strategy,
combined with the futures hedging strategy, to the new trajectories. We store the cu-
mulative cash flows Wealthspot+futures(u

?) resulting from these physical and financial
operations for each sample path, and we compute the empirical mean and standard
deviations of those cash flows. The mean of the cumulative wealth gives an estimate
of the extrinsic value J? of the gas storage unit, given in (2.3.7), while the standard de-
viation is an indicator of the dispersion of the realized cash flows around the extrinsic
value. We emphasize that the empirical mean estimates the cash flow generated by
the optimal strategy, while the empirical standard deviation gives an indicator of the
variance reduction obtained through the financial hedging strategy. A lower standard
deviation means that the manager will face less uncertainty on a single realization
of the spot and futures prices. Numerical results confirm that the hedging strategy
provides a significant reduction in the variance of the cumulative cash flows. Sample
outputs from this valuation procedure are presented in Figure 2.4 (fast storage) and
2.5 (slow storage). In these figures, different colors correspond to different simulated
spot trajectories.

Note also that the analysis described above depends on the choice of the model,

2This energy unit can be naturally converted into a volume, under standard conditions for tempera-
ture and pressure.
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Figure 2.4: Valuation of a fast storage unit. For each simulated path (bottom panel),
we display (top panel) the storage level corresponding to the optimal policy. Because
of the fast injection/withdrawal speed, the storage level reacts quickly to changing
market conditions.

because the backward and forward phases are executed on the sample paths gener-
ated by the model itself. In order to make the comparison less model-dependent, we
calculate the cumulative cash flows of the estimated optimal strategy, based on spot
and futures historical paths. For this reason, we will consider a series of spot and fu-
tures curve data from 2003 to 2012, and split it into periods of one year: the storage
lease contracts specified in Table 2.4 start in April each year, for a one-year period.
We run the optimal strategy obtained in the backward phase (for the corresponding
storage duration) on the spot and futures historical paths for the related period. This
constitutes a real case test for the optimal strategy and corroborates the relevance of
the spot modeling, since it provides the profit that would have been accumulated by
the storage manager in a realized path.

Figures 2.6 and 2.7 represent the historical spot path realized during the contract
period (for both slow and fast units) from April 2007 to April 2008, and the natural
gas volumes resulting from the optimal strategy computed on simulated paths (see
Figures 2.4 and 2.5 for examples of these simulated paths).

We summarize the results of the valuation algorithm for each period in Tables 2.5
and 2.6, for the fast and slow storage units, when the spot paths are generated accord-
ing to spot model 2 (2.5.6). The tables report, for each period, the intrinsic value (IV)
(see (Ot) in Appendix 2.B), the estimated extrinsic value (EV) (computed on simulated
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Figure 2.5: Valuation of a slow storage unit. Because of the slow injection/withdrawal
rate, there is only one storage cycle per year, and the storage value is essentially func-
tion of the summer-winter spread.
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paths), and finally the actual cumulative cash flow obtained by applying the optimal
strategy on the historical path. The last two columns show the standard deviation of
the simulated cash flows under the optimal strategy.

We expect that the extrinsic spot-based strategy will give a larger value than the
intrinsic physical futures-based strategy, while our financial hedging strategy is sup-
posed to reduce the uncertainty of gas storage cash flows. For example, the fast storage
contract starting in April 2007 has an intrinsic value of $222.9689 106 while the spot-
based strategy gives an extrinsic value of $697.0003 106. As expected, the extrinsic
strategy allows better financial exploitation of the rights (without obligation) of injec-
tion/withdrawal natural gas compared to the conservative intrinsic strategy. In other
words, the extrinsic strategy allows better extraction of the optionality of storage. We
also note that the hedging strategy yields a significant empirical variance reduction of
the cumulative cash flows from $340.2193 106 to $190.8546 106. On the other hand, the
intrinsic value of slow storage is equal to $195.5517 106, while the spot-based strategy
captures a larger optionality value of $251.0064 106. Similarly to fast storage, the finan-
cial hedging strategy allows an important reduction in variance, from $232.7825 106

to $28.0414 106.

Previous observations about year 2007 remain valid for the other test periods; in-
deed the extrinsic spot-based strategy always out-performs the intrinsic futures-based
strategy, along both simulated and historical paths. The historical backtesting over the
period 2003-2012 shows that the extrinsic strategy allows for better extraction of stor-
age unit optionality, with a ratio of extrinsic value to intrinsic value as high as 500%

for a fast storage unit. This performance of the extrinsic strategy is less significant in
the case of slow storage unit, with a ratio up to 100%. This is due to limitations in the
deliverability of slow storage. The optimal strategy is not able to fully benefit from gas
price volatility, and cannot respond rapidly to favorable price movements. In all cases,
hedging with financial instruments provides a significant reduction in the cumulative
cash flows uncertainty. The last two columns of Tables 2.5 and 2.6 show a standard
deviation reduction factor of up to 10, with better performance for slow storage. This
gives the storage manager more insurance to recover a large percentage of the value
of the storage contract.

Remark 2.6.1. 1. In Section 2.3.3, we presented two heuristic hedging strategies, (2.3.10)
and (2.3.11), based on financial futures contracts. The numerical tests that we have
conducted show that the hedging strategy defined by (2.3.11) gives better results in the
variance reduction of the simulated cash flows under the optimal strategy; in addition,
in the historical backtesting, (2.3.11) yields a better cumulative wealth performance than
(2.3.10). We emphasize that we have only reported about the better performing hedging
strategy (2.3.11).

2. We also note that the historical intrinsic value of the gas storage attains a peak in 2006,
and shows a clear decline afterwards. This can be intuitively explained by observing the
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Figure 2.6: Historical spot path and optimal volumes (fast storage)

futures curve samples in Figure 2.1: in 2006, the seasonal spreads were very pronounced,
but have been shrinking steadily ever since.

Simulated paths test Historical path test Standard deviation
Starting Date IV EV IV EV Without hedge With hedge

2003-Apr 39.9542 337.7276 42.6441 184.1178 189.5820 119.3606
2004-Apr 63.0335 395.6198 63.6000 347.2736 213.1796 126.3763
2005-Apr 115.2008 592.0854 112.0473 528.6510 306.3232 179.4792
2006-Apr 371.1724 860.9714 416.3992 616.2357 390.0864 194.9693
2007-Apr 222.9689 697.0003 241.8000 399.7347 340.2193 190.8546
2008-Apr 119.5200 674.6745 129.6000 427.9652 359.7650 210.6817
2009-Apr 204.6539 459.5531 205.9000 302.6958 203.2847 100.9753
2010-Apr 144.1958 420.2250 153.7000 259.1776 202.1802 112.6989
2011-Apr 86.5488 352.7785 92.9000 134.7794 190.0749 102.9312
2012-Apr 125.8968 272.5376 130.2000 215.9591 118.0606 55.4645

Table 2.5: Fast gas storage valuation (under spot model 2 (2.5.6))
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Figure 2.7: Historical spot path and optimal volumes (slow storage)

Simulated paths test Historical paths test Standard deviation
Starting Date IV EV IV EV Without hedge With hedge

2003-Apr 24.6556 67.5795 26.0563 16.7890 83.9382 18.5218
2004-Apr 45.2183 91.1053 44.6833 53.8389 119.8064 20.1098
2005-Apr 93.6136 157.9486 92.2304 146.3097 189.6219 28.0376
2006-Apr 333.1988 386.4656 333.1972 356.0564 282.2993 29.6749
2007-Apr 195.5517 251.0064 195.3024 221.4466 232.7825 28.0414
2008-Apr 96.8824 169.6740 98.5936 141.5038 216.1477 32.6633
2009-Apr 180.5010 206.6439 180.4980 210.8117 148.3145 14.6222
2010-Apr 122.4013 152.9924 122.3784 128.1330 140.5389 16.5936
2011-Apr 68.5264 104.2509 68.1356 72.3083 118.2672 18.8294
2012-Apr 107.4493 122.5703 107.3928 110.0214 86.2897 8.4167

Table 2.6: Slow gas storage valuation (under spot model 2 (2.5.6))

We conclude from the numerical results presented above that the joint modeling
of the natural gas spot price and futures curve is a pertinent framework for the gas
storage valuation and hedging problem. It allows the unit manager to better exploit
storage optionality by monetizing the spot price volatility and seasonality. Indeed,
the historical backtesting shows that the extrinsic value under this modeling always
outperforms the classical intrinsic value, even in the case of slow storage. A joint
model for the futures curve with its own risk factors is a more realistic framework
for spot and futures markets, since it takes into account the seasonality of the futures
curve and the non-convergence of the futures price to the spot price, an unrealistic
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hypothesis that is often made in the literature. This also allows for a more relevant
hedging strategy based on futures contracts, and better tracking of the extrinsic value
of gas storage in real market conditions.

2.7 Model risk

As we showed in the introduction, seasonal spreads have become narrower these last
years, which leads to a concentration of almost all the value of gas storage in the extrin-
sic part, based on spot trading. Hence it is very important to look closely into the spot
modeling and its effect on storage valuation and hedging. We believe that the uncer-
tainty surrounding storage value is due more to the uncertainty of the spot modeling
than of the futures modeling, since only spot evolution determines the optimal strat-
egy even though the futures contract prices intervene in spot modeling, see (2.5.4) and
(2.5.6). In fact, the futures model mostly affects the quality of the hedge or variance
reduction, not the expected value of the storage unit. This section is divided in two
parts: we first compare the performances of the two spot models proposed in Section
2.5.2, using historical data. We focus on the effect of various modeling hypotheses,
and on the sensitivity of the storage estimated value with respect to the model param-
eters. We next define a model risk measure to quantify these uncertainties, following
Cont [2006].

2.7.1 Spot modeling

In Section 2.5.2, we proposed two discrete models for the spot price dynamics. The
first model, defined in (2.5.4), is a discrete version of a mean-reverting model, with a
stochastic mean-reversion level equal to the prompt price. The second model (2.5.6),
directly captures the spread between the spot and the prompt prices, which is a key
variable in the optimal management of a storage unit: one tends to buy and store gas
when the spot-prompt spread is negative and withdraw it in the opposite case. Since
the seasonality of gas prices has been getting weaker in recent years, the principal
source of value for the storage unit is the spot-prompt spread rather than the winter-
summer spread, so we expect the second model (2.5.6) to give good results in recent
years.

We run the valuation procedure explained in Section 2.6 for the two spot mod-
els, during the testing periods between 2003 and 2012, and compute the performance
of both models through historical spot and futures paths: in particular, we report in
Figures 2.8 and 2.9 the cumulative cash flows using the optimal spot strategy for his-
torical spot and futures trajectories. In the fast storage case, Figure 2.8 shows that
spot-prompt spread model 2 yields slightly better results than spot model 1 in all the
test cases, except for the year 2004. In the slow storage case, see Figure 2.9, the two
spot models give comparable results for all periods. In the fast storage case, other
tests, not reported in this article, show that with spot model 2, the cumulative cash
flows has a lower standard deviation than with spot model 1, which reinforces the
observation that spot model 2 is globally better suited for our purpose.
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Figure 2.8: Historical cash flows for spot models 1 and 2 (fast storage)
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Figure 2.9: Historical cash flows for spot models 1 and 2 (slow storage)
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Figure 2.10: Standard deviation of cash flows on simulated paths

Effect of spikes modeling

The presence of spikes in natural gas prices is an essential feature of the dynamics
of spot prices. As we noted in Section 2.2, these jumps are sudden dislocations be-
tween the cash and futures markets due to unexpected imbalances between supply
and demand, caused by such factors as unpredicted weather changes, disruptions in
the supply chain, or poor anticipations of the global amount of gas in storage.

These spikes can be a source of value for the storage manager, since a large gap
between spot and prompt prices can be monetized by buying gas during a negative
spike, and selling gas during a positive spike. Since these are rapidly absorbed by the
market, the value can only be captured by fast storage units.

Figure 2.11 represents the expected cumulative cash flows of a fast storage unit, on
simulated paths under spot model (2.5.6). All the test periods show that modeling the
spikes in the spot dynamics gives a larger extrinsic value for the storage unit, but at
the same time it introduces a larger standard deviation for the cumulative cash flows,
as illustrated in Figure 2.10.

A final test of the effect of the spikes modeling is performed on historical spot
paths for each test period, and results are shown in Figure 2.12.

The graph shows that modeling the spikes does not make a significant contribu-
tion to realized optimal value. This accords with the fact that the models with spikes
produce a large standard deviation. In conclusion, surprisingly, this historical back
test does not support the need for incorporating spikes in the spot model.

2.7.2 Model risk measure

In order to quantify the modeling uncertainty, we use an approach introduced by Cont
[2006] for measuring the model risk inherent in the pricing of exotic derivative prod-
ucts. The approach may be summarized as follows: Given a set of benchmark quotes
for vanilla options (or bid/ask intervals), model uncertainty for an exotic payoff H , is
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Figure 2.11: Expected cash flows on simulated paths
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Figure 2.12: Cash flows on historical paths
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quantified by computing the range of prices of this exotic product, using a set of risk
neutral models Γ calibrated to the benchmark vanilla prices, i.e.

π(H) = max
Q∈Γ

EQ[H]−min
Q∈Γ

EQ[H]. (2.7.1)

For our gas storage valuation problem, we will adapt this risk measure by using as
“calibration” data the historical prices of the futures and spot contracts. The constraint
of calibration on vanilla prices is replaced by the success of suitable statistical tests and
closeness to the optimal likelihood objective function value of the model.

The family Γ consists of a set of spot models, (2.5.4) or (2.5.6), which pass the sta-
tistical tests imposed by the modeling hypothesis for the noise (εt), which is assumed
to be GARCH(1,1). Moreover, the family Γ is restricted to the models that have a
likelihood function value close to the optimal one found during the model estimation.

This methodology for the generating the set Γ is broadly similar to the one pro-
posed by Dumont and Lunven [2006], and applied to multi-asset options. In this
study, the authors calibrate a multi-assets model to single-asset vanilla options, then
build the set Γ by perturbation of the correlation matrix. This yields a family of mod-
els that price the benchmark vanilla options perfectly, but differ by their correlation
matrix.

In our case, the statistical estimation of the spot model parameters, in (2.5.4) or
(2.5.6), is obtained by classical maximum likelihood methods. The estimation proce-
dure solves:

max
θ={a1,a2,a3,κ,γ1,α1}

L(θ),

where L(θ) is the likelihood function associated with the spot model (2.5.4) or (2.5.6).
This maximization yields an optimal parameters vector θ? = {a?1, a?2, a?3, κ?, γ?1 , α?1}, an
optimal likelihood function value L(θ?), and an empirical variance-covariance matrix
Σ? of the parameter estimates, from which confidence intervals may be computed.

In order to generate the family of spot models, we perturb the optimal parameters
θ? by adding a Gaussian noise with the specified covariance matrix Σ? to θ?. This
yields a set of perturbed parameters {θi}i∈I , from which we only retain those that sat-
isfy two constraints: first, the inferred GARCH white noise z(θi) in (2.5.5) must pass
a statistical test for normality 3; second, the corresponding likelihood function value
L(θi) has to be close to the optimal value L(θ?): L(θi) > (1−ε)L(θ?), where ε is a small
constant.

In the following discussion, Γ will be the set {θi, i ∈ I}, fulfilling the two conditions
above.

We can now define the associated model risk. The analogue risk measure to (2.7.1)
can be expressed using (2.3.7), with the value function now writtenJ?(θ) to empha-
size the dependence of this value function on the parameters θ. The normalized risk

3We use a Kolmogorov-Smirnov test for the normality test of the inferred noise z.
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measure is given by:

π1 =
maxθi∈Γ J

?(θi)−minθi∈Γ J
?(θi)

J?(θ?)
. (2.7.2)

In this risk measure evaluation, each J?(θi), is calculated using spot and futures paths
simulated under the perturbed model θi.

Moreover, we propose a second model risk measure based on the performance on
realized historical spot and futures paths. For this we define

π2 =
maxθi∈Γ Wealthspot+futures(θi)−minθi∈Γ Wealthspot+futures(θi)

Wealthspot+futures(θ?)
, (2.7.3)

where Wealthspot+futures represents the cumulative cash flows, computed on the histor-
ical path, as defined in (2.3.9).

The two risk measures π1 and π2 are computed for each of the test periods from
2003 to 2012, under the two spot models 1 and 2, using a set of 30 perturbed models.
The results reported in Table 2.7 again show a better performance for spot model 2. In
fact, this model seems to be less subject to model risk, since it gives a smaller range of
prices, compared to spot model 1.

Risk measure π1 Risk measure π2

Starting date Spot model 1 Spot model 2 Spot model 1 Spot model 2
2003-Apr 51.33 % 44.8085 % 70.8465 % 39.3852 %
2004-Apr 25.4987 % 23.6942 % 26.5597 % 22.3195 %
2005-Apr 26.0388 % 27.0318 % 50.7306 % 38.352 %
2006-Apr 14.9666 % 15.9873 % 10.6853 % 6.6954 %
2007-Apr 93.8336 % 14.7645 % 29.4626 % 18.6143 %
2008-Apr 37.9839 % 13.8195 % 16.6811 % 8.6166 %
2009-Apr 20.7969 % 10.1216 % 15.1415 % 8.1936 %
2010-Apr 26.7845 % 12.8976 % 33.0669 % 7.5285 %
2011-Apr 25.9442 % 12.3857 % 35.8704 % 30.9282 %
2012-Apr 16.7783 % 9.1489 % 13.1014 % 7.1694 %

Table 2.7: Model risk measure for spot models 1 and 2.

One observation that follows clearly from Table 2.7 is that the range of prices in-
duced by the model uncertainty and measured by π1 and π2 represents a large propor-
tion of the storage value. This shows that the dependence of gas storage valuation on
spot modeling is quite significant. While the literature has concentrated its efforts until
now on the specification of an optimal valuation strategy, we believe that one should
pay more attention to the choice of the spot-futures modeling framework. Referring
again to Table 2.7, model 2 appears to be less sensitive to the change of parameters
and is therefore more robust. Fortunately, this is in concordance with the better per-
formance of spot model 2 already observed in Section 2.7.1. Table 2.7 shows that the
spot-futures valuation framework is subject to a large model risk (average: 25%). For
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comparison, the model risk for a basket option has been evaluated to 3% (see Dumont
and Lunven [2006]).

2.8 Conclusion

In this paper we consider the problem of gas storage valuation. After restating the
main stylized facts of natural gas prices, specifically seasonality and spikes, we present
a joint modeling framework for the futures curve and the spot price, and introduce
two different models for the spot process. Using a Monte Carlo simulation method, we
determine the optimal spot trading strategy; in addition, for the purpose of variance
reduction of the cumulative cash flow, we set up a financial hedging strategy. We also
conduct extensive back testing using historical data of futures and spot prices over a
period of 10 years. This confirms the superior performance of the extrinsic strategy
compared to the classic intrinsic futures-based strategy.

More importantly, we study the model uncertainty associated with this valuation
method, concentrating on the risk associated with the spot model. After a quantitative
comparison of the two spot models, we conclude that the model based on the spot-
prompt spread performs better.

In order to quantify the stability of our valuation estimates with respect to model
uncertainty, we next define two model risk measures, inspired by the work of Cont
[2006]. Our context is however different from Cont’s, in the sense that our models are
estimated on historical data, and not on market data. This motivates a redefinition of
the notion of ”benchmark data”.

Using those risk measures, we observe the great sensitivity of gas storage value
to the modeling assumptions. In fact the model uncertainty, as measured by the size
of price range, represents a large proportion of the storage value. This puts into per-
spective the concentration of effort in the literature on the specification of an optimal
valuation strategy. Much more attention should probably be devoted to the discussion
of modeling assumptions.
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Appendix 2.A Different types of gas storage facilities

Natural gas storage units are underground facilities; as a result, their characteristics
essentially depend on the geological properties of the storage area. There are three
types of gas storage units: depleted gas/oil fields, aquifers and salt caverns. The main
characteristics that distinguish these gas storage units are their injection/withdrawal
rates, the total capacity and the so-called cushion volume and working volume. The
cushion volume is the quantity of gas that must remain in the storage unit to provide
the required pressurization, and the working volume is the volume of gas that can
be extracted. Using the notations in this article, the cushion volume corresponds to
the minimum volume Vmin, the total capacity corresponds to Vmax, and the working
volume is represented by the actual volume minus the cushion volume, i.e. Vt − Vmin.

These characteristics distinguish two different types of gas storage: base-load and
peak-load. Base-load units are used to meet seasonal demand (a more or less pre-
dictable phenomenon). In fact the demand for gas is highly concentrated in the winter
season, so in order to ensure sufficient supply, gas is bought and stored in the summer
season then withdrawn and sold in winter. The main characteristics of base-load units
are their large volume capacity and low deliverability rates.

On the other hand, peak-load units are used to mitigate the risk of unpredictable
increases in the gas demand, generally caused by weather changes or technical prob-
lems in the pipeline system. Hence, they have to be very reactive and have high deliv-
erability rates, higher injection/withdrawal rates, and in general they contain less gas
than base-load units. While the injection/withdrawal cycle of a base-load is in general
one year, peak-loads can have a turn-over period of a few weeks.

The depleted gas/oil fields and aquifers are of the base-load type, while salt cav-
erns are peak-load facility. We summarize here their main characteristics.

• Depleted gas and oil fields are the most commonly used underground stor-
age sites because of their wide availability. Besides their large capacities, they
benefit from the already available wells and injection/withdrawal equipments,
pipelines etc. Their main drawbacks are low deliverability rate and the large
cushion gas percentage (although part of this non-usable gas already exists in the
geological formation). Therefore, these depleted fields naturally belong to the
base-load category.

• Aquifers are underground, porous and permeable rock formations that act as
natural water reservoirs.

They are flexible units with small volume, but more expensive than depleted
fields since everything has to be built from scratch (wells, extraction equipments,
pipelines, etc). The construction of the required infrastructure can take up to four
years, which is more than twice the time needed to transform depleted reservoirs
into storage facilities.

Aquifers, however, require a greater percentage of cushion gas (up to 80% of the
total gas volume) than depleted reservoirs.
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Similar to depleted fields, aquifers operate on a single annual cycle, so they still
belong to the base-load category.

• Salt caverns are the third common choice for gas storage. They are created by
dissolving and extracting a certain amount of salt from the geological formation;
this process then leaves a cavern that can be used for natural gas storage.

A salt cavern offers storage with high deliverability, with low cushion gas re-
quirements (30% of cushion gas), but with lower capacities than depleted fields
and aquifers. They cannot be used to meet base-load storage requirements, but
they are well suited to rapid actions, which are distinctive features of the peak-
load category.

Table 2.8, compiled by the Federal Energy Regulatory Commission (FERC),4 sum-
marizes the three types of storage and their characteristics.

Type Cushion to working
gas ratio

Injection period
(days)

Withdrawal period
(days)

Aquifer 50% to 80% 200 to 250 100 to 150
Depleted oil/gas
reservoir

50% 200 to 250 100 to 150

Salt cavern 20% to 30% 20 to 40 10 to 20

Table 2.8: Types of natural gas storage.

Appendix 2.B Futures-based valuation methods

Futures-based valuation is still very commonly used in natural gas storage manage-
ment. This is mainly due to its simplicity and its low risk profile. It is based on trading
natural gas futures and using the storage facility to handle physical delivery.5 The op-
timal trading schedule is determined once and for all at the beginning of the lease,
based on the futures prices, thereby securing a certain profit.

In order to determine the optimal futures positions, a linear optimization problem
is solved, with constraints imposed by the specifics of the storage unit Eydeland and
Krzysztof [2002]. Assume that N futures contracts, expiring at times TJ , j = 1, . . . , N ,
are available for trading, and let F (t, Tj) be the price at t of a futures contract expir-
ing at time Tj . The optimization problem amounts to finding the number of futures
contracts αj(t) ≡ αj(t0) to buy or sell at the start of the lease, and can be expressed as
follows:

4Current State of and Issues Concerning Underground Natural Gas Storage, Federal Energy Regulatory
Commission (FERC), Staff Report, September 30, 2004. cf: http://www.ferc.gov/EventCalendar/
Files/20041020081349-final-gs-report.pdf

5For example, the Nymex NG futures have monthly spaced maturities, and the delivery period ex-
tends over the calendar month following each maturity date.
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IV (t) := max
(αj(t))j=1,...,N

−
∑
j

αj(t)F (t, Tj)

−awith ≤ αj(t) ≤ ainj , for j = 1, ..., N

Vmin ≤ V (t) +

n∑
j=1

αj(t) ≤ Vmax, for n = 1, ..., N,

(Ot)

where V (t) is the gas in storage at time t, Vmin/max are bounds on storage volume and
ainj/with are the maximum volumes that can be injected or withdrawn.

In its basic formulation, the storage manager solves (Ot) once and for all at time t =

t0, and IV (t0) represents a certain optimal profit, based on the information available
at that time.

It is called intrinsic value because it does not take advantage of the rebalancing
option available to the storage manager.

This static methodology was extended by Gray and Khandelwal [2004] to the
rolling intrinsic valuation, to take advantage of shifts in the futures curve. Consider
a set of trading dates t0 < t1 < ... < tn−1 < tn, where tn is the end of the storage lease,
and set ∆t = ti+1 − ti, i = 1, . . . , n− 1.

As before, the storage manager solves Ot at the beginning of the storage lease, and
builds his initial portfolio of futures contract. He also repeats this calculation at each
trading date ti, and rebalances his portfolio if this is profitable.

More precisely, suppose that at date t, the manager owns a futures portfolio α?(t);
then, at date t+ ∆t, the manager solves Ot+∆t, calculating an optimal portfolio α?(t+

∆t) and IV (t+∆t). The value of rebalancing the futures portfolio from α(t)? to α?(t+
∆t) is equal to

C(t,∆t) :=
∑
j

[α?j (t)− α?j (t+ ∆t)]F (t+ ∆t, Tj),

and the manager alters his portfolio if this rebalancing value is positive. We denote
by RI(t) the so-called rolling intrinsic value at time t, with, by definition, RI(t0) =

IV (t0). For each trading date, define recursively the cumulative profit generated by
this enhanced strategy by:

RI(t+ ∆t) := RI(t) + max(C(t,∆t), 0)

Obviously, at each rebalancing date t, the rolling intrinsic valueRI(t) is always greater
or equal to the intrinsic value IV (t0).

Remark 2.B.1. The intrinsic and rolling intrinsic methodologies capture the seasonal pattern
of natural gas prices: they lead to buying cheap summer futures and selling expensive winter
futures. The corresponding storage value greatly depends on the seasonal spread. With the
recent tightening of the spread (cf Section 2.2) the (rolling) intrinsic strategy has becomes less
attractive to practitioners.
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3
BSDEs, càdlàg martingale problems and
mean-variance hedging under basis risk.

This chapter is the object of Laachir and Russo [2014].

Abstract

The aim of this paper is to introduce a new formalism for the deterministic analysis
associated with backward stochastic differential equations driven by general càdlàg
martingales. When the martingale is a standard Brownian motion, the natural deter-
ministic analysis is provided by the solution of a semilinear PDE of parabolic type.
A significant application concerns the hedging problem under basis risk of a contin-
gent claim g(XT , ST ), where S (resp. X) is an underlying price of a traded (resp.
non-traded but observable) asset, via the celebrated Föllmer-Schweizer decomposi-
tion. We revisit the case when the couple of price processes (X,S) is a diffusion and
we provide explicit expressions when (X,S) is an exponential of additive processes.

3.1 Introduction

The motivation of this work comes from the hedging problem in the presence of ba-
sis risk. When a derivative product is based on a non traded or illiquid underlying,
the specification of a hedging strategy becomes problematic. In practice one frequent
methodology consists in constituting a portfolio based on a (traded and liquid) ad-
ditional asset which is correlated with the original one. The use of a non perfectly
correlated asset induces a residual risk, often called basis risk, that makes the market
incomplete. A common example is the hedging of a basket (or index based) option,
only using a subset of the assets composing the contract. Commodity markets also
present many situations where basis risk plays an essential role, since many goods
(as kerosene) do not have liquid future markets. For instance, kerosene consumers as
airline companies, who want to hedge their exposure to the fuel use alternative future
contracts, as crude oil or heating oil. The latter two commodities are strongly corre-
lated to kerosene and their corresponding future market is liquid. Weather derivatives
constitute an example of contract written on a non-traded underlying, since they are
based on heating temperature; natural gas or electricity are in general used to hedge

93
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these contracts.

In this work, we consider a maturity T > 0, a pair of processes (X,S) and a contin-
gent claim of the type h := g(XT ) or even h := g(XT , ST ). X is a non traded or illiquid,
but observable asset and S is a traded asset, correlated to X . In order to hedge this
derivative, in general the practitioners use the proxy asset S as a hedging instrument,
but since the two assets are not perfectly correlated, a basis risk exists. Because of
the incompleteness of this market, one should define a risk aversion criterion. One
possibility is to use the utility function based approach to define the hedging strat-
egy, see for example Davis [2006], Henderson and Hobson [2002], Monoyios [2004],
Monoyios [2007], Ceci and Gerardi [2009, 2011], Ankirchner et al. [2010]. We mention
also Ankirchner et al. [2013] who consider the case when an investor has tow possibil-
ities, either hedge with an illiquid instrument, which implies liquidity costs, or hedge
using a liquid correlated asset, which entails basis risk. Another approach is based
on the quadratic hedging error criterion: it follows the idea of the seminal work of
Föllmer and Schweizer [1991] that introduces the theoretical bases of the quadratic
hedging in incomplete markets. In particular, they show the close relation of the
quadratic hedging problem with a special semimartingale decomposition, known as
the Föllmer-Schweizer (F-S) decomposition. The reader can consult Schweizer [1994,
2001] for basic information on F-S decomposition, which provides the so called local
risk minimizing hedging strategy and it is a significant tool for solving the mean variance
hedging problem in an incomplete market.

Hulley and McWalter [2008] applied this general framework to the quadratic hedg-
ing under basis risk in a simple log-normal model. They consider for instance the
two-dimensional Black-Scholes model for the non traded (but observable) X and the
hedging asset S, described by

dXt = µXXtdt+ σXXtdW
X
t ,

dSt = µSStdt+ σSStdW
S
t ,

where (WX ,WS) is a standard correlated two-dimensional Brownian motion. They
derive the F-S decomposition of a European payoff h = g(XT ), i.e.

g(XT ) = h0 +

∫ T

0
Zhs dSs + LhT , (3.1.1)

where Lh is a martingale which is strongly orthogonal to the martingale part of the
hedging asset process S. Using the Feynman-Kac theorem, they relate the decomposi-
tion components h0 and Zh to a PDE terminal-value problem. This yields, as byprod-
uct, the price and hedging portfolio of the European option h. These quantities can
be expressed in closed formulae in the case of call-put options. Extensions of those
results to the case of stochastic correlation between the two assets X and S, have been
performed by Ankirchner and Heyne [2012].

Coming back to the general case, the F-S decomposition of hwith respect to theFt-
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semimartingale S can be seen as a special case of the well-known backward stochastic
differential equations (BSDEs). We look for a triplet of processes (Y,Z,O) being solu-
tion of an equation of the form

Yt = h+

∫ T

t
f̂(ω, s, Ys−, Zs)dV

S
s −

∫ T

t
ZsdM

S
s − (OT −Ot), (3.1.2)

where MS (resp. V S) is the local martingale (resp. the bounded variation process)
appearing in the semimartingale decomposition of S, O is a strongly orthogonal mar-
tingale to MS , and f̂(ω, s, y, z) = −z.

BSDEs were first studied in the Brownian framework by Pardoux and Peng [1990]
with an early paper of Bismut [1973]. Pardoux and Peng [1990] showed existence and
uniqueness of the solutions when the coefficient f̂ is globally Lipschitz with respect to
(y, z) and h being square integrable. It was followed by a long series of contributions,
see for example El Karoui et al. [2008] for a survey on Brownian based BSDEs and
applications to finance. For example, the Lipschitz condition was essential in z and
only a monotonicity condition is required for y. Many other generalizations were
considered. We also drive the attention on the recent monograph by Pardoux and
Rascanu [2014].

When the driving martingale in the BSDE is a Brownian motion, h = g(ST ), and S
is a Markov diffusion, a solution of a BSDE constitutes a probabilistic representation
of a semilinear parabolic PDE. In particular if u is a solution of the mentioned PDE,
then, roughly speaking setting Yt = u(t, St), Z = ∂su(t, St), O ≡ 0, the triplet (Y,Z,O)

is a solution to (3.1.2). That PDE is a deterministic problem naturally related to the
BSDE. When MS is a general càdlàg martingale, the link between a BSDE (3.1.2) and
a deterministic problem is less obvious.

As far as backward stochastic differential equations driven by a martingale, the
first paper seems to be Buckdahn [1993]. Later, several authors have contributed to
that subject, for instance Briand et al. [2002] and El Karoui and Huang [1997]. More
recently [Carbone et al., 2007, Theorem 3.1] give sufficient conditions for existence and
uniqueness for BSDEs of the form (3.1.2). BSDEs with partial information driven by
càdlàg martingales were investigated by Ceci et al. [2014a,b].

In this paper we consider a forward-backward SDE, issued from (3.1.2), where the
forward process solves a sort of martingale problem (in the strong probability sense,
i.e. where the underlying filtration is fixed) instead of the usual stochastic differential
equation appearing in the Brownian case. More particularly we suppose the existence
of an operator a : D(a) ⊂ C([0, T ]× R2)→ L, where L is a suitable space of functions
[0, T ]× R2 → C2 (see (3.2.2)), such that (X,S) verifies the following:

∀y ∈ D(a),

(
y(t,Xt, St)−

∫ t

0
a(y)(u,Xu−, Su−)dAu

)
0≤t≤T

is an Ft-local martingale,

and A is some fixed predictable bounded variation process. With a we associate the
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operator ã defined by
ã(y) := a(ỹ)− ya(id)− ida(y),

where id(t, x, s) = s, ỹ = y × id.
In the forward-backward BSDE we are interested in, the driver f̂ verifies

a(id)(t,Xt−(ω), St−(ω))f̂(ω, t, y, z) = f(t,Xt−(ω), St−(ω), y, z), (t, y, z) ∈ [0, T ]×C2, ω ∈ Ω,

(3.1.3)
for some f : [0, T ] × R2 × C2 → C. The main idea is to settle a deterministic problem
which is naturally associated with the forward-backward SDE (3.1.2).

The deterministic problem consists in looking for a pair of functions (y, z) which
solves

a(y)(t, x, s) = −f(t, x, s, y(t, x, s), z(t, x, s))

ã(y)(t, x, s) = z(t, x, s)ã(id)(t, x, s),
(3.1.4)

for all t ∈ [0, T ] and (x, s) ∈ R2, with the terminal condition y(T, ., .) = g(., .).

Any solution to the deterministic problem (3.1.4) will provide a solution (Y,Z,O)

to the corresponding BSDE, setting

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−).

For illustration, let us consider the elementary case when S is a diffusion process ful-
filling dSt = σS(t, St)dWt+bS(t, St)dt, andX ≡ 0. ThenAt ≡ t, 〈MS〉 =

∫ ·
0(σS)2(r, Sr)dr,

V S =
∫ ·

0 b(r, Sr)dr =
∫ ·

0 a(id)(r, Sr)dr; a is the parabolic generator of S, D(a) =

C1,2([0, T ]× R2 → C. In that case (3.1.4) becomes

∂ty(t, x, s) + (bs∂sy +
1

2
σ2
S∂ssy)(t, x, s) = −f(t, x, s, y(t, x, s), z(t, x, s))

z = ∂sy
(3.1.5)

In that situation ã is closely related to the classical derivation operator. When S mod-
els the price of a traded asset and f(t, x, s, y, z) = −bS(t, s)z, the resolution of (3.1.5)
emerging from the BSDE (3.1.2) with (3.1.3), allows to solve the usual (complete mar-
ket Black-Scholes type) hedging problem with underlying S. Consequently, in the
general case, ã appears to be naturally associated with a sort of ”generalized deriva-
tion map”. A first link between the hedging problem in incomplete markets and gen-
eralized derivation operators was observed for instance in Goutte et al. [2013].

The aim of our paper is threefold.

1) To provide a general methodology for solving forward-backward SDEs driven
by a càdlàg martingale, via the solution of a deterministic problem generaliz-
ing the classical partial differential problem appearing in the case of Brownian
martingales.

2) To give applications to the hedging problem in the case of basis risk via the
Föllmer-Schweizer decomposition. In particular we revisit the case when (X,S)
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is a diffusion process whose particular case of Black-Scholes was treated by Hul-
ley and McWalter [2008], discussing some analysis related to a corresponding
PDE.

3) To furnish a quasi-explicit solution when the pair of processes (X,S) is an expo-
nential of additive processes, which constitutes a generalization of the results of
Goutte et al. [2014] and Hubalek et al. [2006], established in the absence of basis
risk. This yields a characterization of the hedging strategy in terms of Fourier-
Laplace transform and the moment generating function.

The paper is organized as follows. In Section 3.2, we state the strong inhomogeneous
martingale problem, and we give several examples, as Markov flows and the exponen-
tial of additive processes. In Section 3.3, we state the general form of a BSDE driven
by a martingale and we associate a deterministic problem with it. We show in partic-
ular that a solution for this deterministic problem yields a solution for the BSDE. In
Section 3.4, we apply previous methodology to the F-S decomposition problem under
basis risk. In the case of exponential of additives processes, we obtain a quasi-explicit
decomposition of the mentioned F-S decomposition.

3.2 Strong inhomogeneous martingale problem

3.2.1 General considerations

In this paper T will be a strictly positive number. We consider a complete probability
space (Ω,F ,P) with a filtration (Ft)t∈[0,T ], fulfilling the usual conditions. By default,
all the processes will be indexed by [0, T ]. Let (X,S) a couple of Ft-adapted processes.
We will often mention concepts as martingale, semimartingale, adapted, predictable with-
out mentioning the underlying filtration (Ft)t∈[0,T ]. Given a bounded variation func-
tion φ : [0, T ]→ R, we will denote by t 7→ ‖φ‖t the associated total variation function.

We introduce a notion of martingale type problem related to (X,S), which is a
generalization of a stochastic differential equation. We emphasize that the present no-
tion looks similar to the classical notion of Stroock and Varadhan [2006] but here the
notion is probabilistically strong and relies on a fixed filtered probability space. In the
context of Stroock and Varadhan, however, a solution is a probability measure and the
underlying process is the canonical process on some canonical space. Here a filtered
probability space is given at the beginning. A similar notion was introduced in Russo
and Trutnau [2007] Definition 5.1. A priori, we will not suppose that our strong mar-
tingale problem is well-posed (existence and uniqueness).

Definition 3.2.1. Let O be an open set of R2. Let (At) be an Ft-adapted bounded variation
continuous process, such that, a.s.

dAt � dρt,
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for some bounded variation function ρ, and a a map

a : D(a) ⊂ C([0, T ]×O,C) −→ L, (3.2.1)

where

L = {f :[0, T ]×O → C, such that for every compact K of O
‖f‖K (t) := sup

(x,y)∈K
|f(t, x, y)| <∞ dρt a.e.}. (3.2.2)

We say that a couple of càdlàg processes (X,S) is a solution of the strong martingale prob-
lem related to (D(a), a, A) , if for any g ∈ D(a), (g(t,Xt, St))t is a semimartingale with
continuous bounded variation component such that∫ t

0
|a(g)(u,Xu−, Su−)|d ‖A‖u <∞ a.s. (3.2.3)

and

t 7−→ g(t,Xt, St)−
∫ t

0
a(g)(u,Xu−, Su−)dAu (3.2.4)

is an Ft- local martingale.

We start introducing some significant notations.

Notation 3.2.2.

1) id : (t, x, s) 7−→ s.

2) For any y ∈ C([0, T ]×O), we denote by ỹ the function ỹ := y × id, i.e.

(y × id)(t, x, s) = sy(t, x, s). (3.2.5)

3) Suppose that id ∈ D(a). For y ∈ D(a) such that ỹ ∈ D(a), we set

ã(y) := a(ỹ)− ya(id)− ida(y). (3.2.6)

As we have mentioned in the introduction, the map ã will play the role of a gener-
alized derivative. We state first a preliminary lemma.

Lemma 3.2.3. Let y ∈ D(a). Suppose that y, id, y × id ∈ D(a). We set Yt = y(t, St, Xt)

and MY be its martingale component given in (3.2.4). Then

〈MY ,MS〉t =

∫ t

0
ã(y)(u,Xu−, Su−)dAu.

Proof. In order to compute the angle bracket 〈MY ,MS〉, we start by expressing the
square bracket of MY and MS . First, note that, since y, id ∈ D(a) and A is a con-
tinuous process, then the bounded variation parts of the semimartingales (St)t and
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(y(t, St, Xt))t are continuous. We have

[MY ,MS ]t = [Y, S]t

= (SY )t −
∫ t

0
Ys−dSs −

∫ t

0
Ss−dYs,

where the first equality is justified by the fact that the square bracket of any process
with a continuous bounded variation process vanishes. Using moreover the fact that
y × id ∈ D(a), the process

[MY ,MS ]−
∫ ·

0
a(y × id)(r,Xr−, Sr−)dAr +

∫ ·
0
y(r,Xr−, Sr−)a(id)(r,Xr−, Sr−)dAr

+

∫ ·
0
Sr−a(y)(r,Xr−, Sr−)dAr

is an Ft-local martingale.
Consequently, [MY ,MS ] is a specialFt-semimartingale. Since 〈MY ,MS〉−[MY ,MS ]

is a local martingale, the result follows by uniqueness of the decomposition of a special
semimartingale.

In the sequel, we will make the following assumption.

Assumption 3.2.4. (D(a), a, A) verifies the following axioms.

i) id ∈ D(a).

ii) (t, x, s) 7→ s2 ∈ D(a).

Corollary 3.2.5. Let (X,S) be a solution of the strong martingale problem introduced in Def-
inition 3.2.1 then, under Assumption 3.2.4, S is a special semimartingale with decomposition
MS + V S given below.

i) V S
t =

∫ t
0 a(id)(u,Xu−, Su−)dAu.

ii) 〈MS〉t =
∫ t

0 ã(id)(u,Xu−, Su−)dAu.

Proof. i) is obvious since id ∈ D(a) and ii) is a consequence of Lemma 3.2.3 and the
fact that (t, x, s) 7→ s2 belongs to D(a).

In many situations, the operator a is related to the classical infinitesimal generator,
when it exists. We will make this relation explicit in the below example of Markov
processes.

3.2.2 The case of Markov semigroup

In this section O will be for simplicity R2. In this example, for illustration, we only
consider a single process S instead of a couple (X,S). For this reason, it is more
comfortable to re-express Definition 3.2.1 into the following simplified version. In the
present case we will always have At ≡ t.
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Definition 3.2.6. We say that S is a solution of the strong martingale problem related to
(D(a), a, A), if there is a map

a : D(a) ⊂ C([0, T ]× R) −→ L, (3.2.7)

where

L = {f :[0, T ]× R→ C, such that for every compact K of R
‖f‖K (t) := sup

x∈K
|f(t, x)| <∞ dt a.e.}, (3.2.8)

such that for any g ∈ D(a), (g(t, St))t is a (special) semimartingale with continuous bounded
variation component verifying ∫ t

0
|a(g)(u, Su−)|du <∞ a.s. (3.2.9)

and

t 7−→ g(t, St)−
∫ t

0
a(g)(u, Su−)du (3.2.10)

is a FSt - local martingale, where FSt is the canonical filtration associated with S.

Let (Xs,x
t )t≥s,x∈R be a time-homogeneous Markovian flow. In particular, if S =

X`,x and f is a bounded Borel function, then

E
[
f(St)|FSs

]
= Ψ(t− s, Ss), (3.2.11)

where ` ≤ s ≤ t ≤ T and

Ψ(r, y) = E
[
f(X0,y

r )
]

= E
[
f(Xs,y

s+r)
]
, (3.2.12)

for any r, s ≥ 0 and FS is the canonical filtration for S. We suppose moreover that
X`,x
t is square integrable for any 0 ≤ ` ≤ t ≤ T and x ∈ R. We denote by E the linear

space of functions such that

E =
{
f ∈ C such that f̃ := x 7→ f(x)

1 + x2
is uniformly continuous and bounded

}
,

(3.2.13)
equipped with the norm

‖f‖E := sup
x

|f(x)|
1 + x2

<∞.

The set E can easily be shown to be a Banach space equipped with the norm ‖.‖E .
Indeed E is a suitable space for Markov processes which are square integrable. In
particular, (3.2.11) and (3.2.12) remain valid if f ∈ E. From now on we consider the
family of linear operators (Pt, t ≥ 0) defined on the space E by

Ptf(x) = E
[
f(X0,x

t )
]
, for t ∈ [0, T ], x ∈ R, ∀f ∈ E. (3.2.14)

We formulate now a fundamental assumption.
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Assumption 3.2.7.

i) PtE ⊂ E for all t ∈ [0, T ].

ii) The linear operator Pt is bounded, for all t ∈ [0, T ].

iii) (Pt) is strongly continuous, i.e. lim
t→0

Ptf = f in the E topology.

Using the Markov flow property (3.2.11), it is easy to see that the family of contin-
uous operators (Pt) defined above has the semigroup property. In particular, under
Assumption 3.2.7, the family (Pt) is strongly continuous semigroup on E.

Assumption 3.2.7 is fulfilled in many common cases, as mentioned in Proposition
3.2.8 and Remarks 3.2.9 and 3.2.10.

The proposition below concerns the validity of items i) and ii).

Proposition 3.2.8. Let t ∈ [0, T ]. Suppose that x 7→ X0,x
t is differentiable in L2(Ω) such that

sup
x∈R

E
[
|∂xX0,x

t |2
]
<∞. (3.2.15)

Then Ptf ∈ E for all f ∈ E and Pt is a bounded operator.

The proof of this proposition is reported in Appendix 3.A.

Remark 3.2.9. Condition (3.2.15) of Proposition 3.2.8 is fulfilled in the following two cases.

1) If (Lt) is a Lévy process, the Markov flow X0,x = x+ L verifies ∂xX0,x = 1.

2) If (X0,x
t ) is a diffusion process verifying

X0,x
t = x+

∫ t

0
b(X0,x

s )ds+

∫ t

0
σ(X0,x

s )dWs,

where b and σ are C1
b functions.

Remark 3.2.10. Item iii) of Assumption 3.2.7 is verified in the case of square integrable Lévy
processes, c.f. Proposition 3.B.1 in Appendix 3.B.

For the rest of this subsection we work under Assumption 3.2.7.
Item iii) of Assumption 3.2.7 permits to introduce the definition of the generator of

(Pt) as follows.

Definition 3.2.11. The generator L of (Pt) in E is defined on the domain D(L) which is the
subspace of E defined by

D(L) =
{
f ∈ E such that lim

t→0

Ptf − f
t

exists in E
}
. (3.2.16)

We denote by Lf the limit above. We refer to [Jacob, 2001, Chapter 4], for more details.
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Remark 3.2.12. If f ∈ E such that there is g ∈ E such that

(Ptf)(x)− f(x)−
∫ t

0
Psg(x)ds = 0, ∀t ≥ 0, x ∈ E,

then f ∈ D(L) and g = Lf .
Previous integral is always defined asE-valued Bochner integral. Indeed, since (Pt) is strongly
continuous, then by [Jacob, 2001, Lemma 4.1.7], we have

‖Pt‖ ≤Mwe
wt, (3.2.17)

for some real w and related constant Mw. ‖ · ‖ denotes here the operator norm.

A useful result which allows to deal with time-dependent functions is given below.

Lemma 3.2.13. Let f : [0, T ]→ D(L) ⊂ E. We suppose the following.

i) f is continuous as a D(L)-valued function, where D(L) is equipped with the graph
norm.

ii) f : [0, T ]→ E is of class C1.

Then, the below E-valued equality holds:

Ptf(t, .) = f(0, .) +

∫ t

0
Ps(Lf(s, .))ds+

∫ t

0
Ps(

∂f

∂s
(s, .))ds, ∀t ∈ [0, T ]. (3.2.18)

Remark 3.2.14. We observe that the two integrals above can be considered as E-valued
Bochner integrals because, by hypothesis, s 7→ Lf(s, ·) and s 7→ ∂f

∂s (s, .) are continuous
with values in E, and so we can apply again (3.2.17) in Remark 3.2.12.

Proof. It will be enough to show that

d

dt
Ptf(t, .) = Pt(Lf(t, .)) + Pt

(
∂f

∂t
(t, .)

)
, ∀t ∈ [0, T ]. (3.2.19)

In fact, even if Banach space valued, a differentiable function at each point is also ab-
solutely continuous.

Since the right-hand side of (3.2.19) is continuous it is enough to show that the
right-derivative of t 7→ Ptf(t, ·) coincides with the right-hand side of (3.2.19). Let
h > 0. We evaluate

Pt+hf(t+ h, .)− Ptf(t, .) = I1(t, h) + I2(t, h),

where

I1(t, h) = Pt+hf(t+ h, .)− Ptf(t+ h, .), I2(t, h) = Ptf(t+ h, .)− Ptf(t, .).
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Now by [Jacob, 2001, Lemma 4.1.14], we get

I1(t, h) := Pt+hf(t+ h, .)− Ptf(t+ h, .) =

∫ t+h

t
PsLf(t+ h, .)ds.

We divide by h and we get∥∥∥∥1

h

∫ t+h

t
(PsLf(t+ h, .)− PsLf(t, .))ds

∥∥∥∥
E

≤ 1

h

∫ t+h

t
ds ‖Ps {Lf(t+ h, .)− Lf(t, .)}‖E

≤ ‖Lf(t+ h, .)− Lf(t, .)‖E
1

h

∫ t+h

t
‖Ps‖ ds

≤ ‖f(t+ h, .)− f(t, .)‖D(L)

1

h

∫ t+h

t
‖Ps‖ ds,

where ‖.‖D(L) is the graph norm of L. This converges to zero (note that ‖Ps‖ is
bounded by (3.2.17)), and we get that

1

h
I1(t, h)

h→0−−−→ Pt(Lf(t, .)).

We estimate now I2(t, h).∥∥∥∥Ptf(t+ h, .)− Ptf(t, .)

h
− Pt(

∂f

∂t
(t, .))

∥∥∥∥
E

≤ ‖Pt‖
∥∥∥∥f(t+ h, .)− f(t, .)

h
− ∂f

∂t
(t, .)

∥∥∥∥
E

.

This goes to zero as h goes to zero, by Assumption ii).
This concludes the proof of Lemma 3.2.13.

We can now discuss the fact that a process S = X0,x, where Xs,x
t is a Markovian

flow (as precised at the beginning of Section 3.2.2) is a solution to our (time inhomo-
geneous) strong martingale problem (3.2.6).

Theorem 3.2.15. We denote

D(a) = {g : [0, T ]→ D(L) such that assumptions i) and ii) of Lemma 3.2.13 are fulfilled}

and for g ∈ D(a)

a(g)(t, x) =
∂g

∂t
(t, x) + Lg(t, ·)(x), ∀t ∈ [0, T ], x ∈ R.

Then S is a solution of the strong martingale problem introduced in Definition 3.2.6.

Remark 3.2.16. Let g ∈ D(a). Since for each t ∈ [0, T ], by assumptions i) and ii) of Lemma
3.2.13, a(g)(t, ·) ∈ E, then, obviously a(g) ∈ L. Moreover, the same assumptions imply that
t 7→ ∂g

∂t (t, ·) and t 7→ Lg(t, ·) are continuous on [0, T ] and hence are bounded, i.e.

sup
t∈[0,T ]

∥∥∥∥∂g∂t (t, ·)
∥∥∥∥
E

<∞, sup
t∈[0,T ]

‖Lg(t, ·)‖E <∞.
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This yields in particular that Condition (3.2.9) is fulfilled.

Proof of Theorem 3.2.15.
It remains to show the martingale property (3.2.10). We fix 0 ≤ s < t ≤ T and a

bounded random variable FSs -measurable G. It will be sufficient to show that

E [A(s, t)] = 0, (3.2.20)

where

A(s, t) = G

(
g(t, St)− g(s, Ss)−

∫ t

s
∂rg(r, Sr)dr −

∫ t

s
Lg(r, .)(Sr)dr

)
.

By taking the conditional expectation of A(s, t) with respect to FSs , using (3.2.11)
and Fubini’s theorem, we get

E
[
A(s, t)|FSs

]
= Gφ(Ss),

where

φ(x) =

(
Pt−sg(t, .)(x)− g(s, x)−

∫ t

s
(Pr−s∂rg(r, .))(x)dr −

∫ t

s
(Pr−sLg(r, .))(x)dr

)
, ∀x ∈ R.

We define f : [0, T − s] × R → R by f(τ, ·) = g(τ + s, ·). f fulfills the assumptions of
Lemma 3.2.13 with T being replaced by T − s. By the change of variable u = r − s,
setting τ = t− s, the equality above becomes

φ(x) =

(
Pτf(τ, .)(x)− f(0, x)−

∫ τ

0
(Pu∂rf(u, .))(x)du−

∫ τ

0
(PuLf(u, .))(x)dr

)
.

Now by Lemma 3.2.13 we get that φ(x) = 0, ∀x ∈ R. Consequently E
[
A(s, t)|FSs

]
= 0

and (3.2.20) is fulfilled.

Remark 3.2.17. We introduce the following subspace E2
0 of C2.

E2
0 = {f ∈ C2 such that f ′′ vanishes at infinity}. (3.2.21)

Note that only the second derivative is supposed to vanish at infinity.
E2

0 is included inE. Indeed, if f ∈ E2
0 , then the Taylor expansion f(x) = f(0)+xf ′(0)+

x2
∫ 1

0 (1 − α)f ′′(xα)dα implies that f̃ is bounded. On the other hand, by straightforward

calculus we see that the first derivative df̃
dx is bounded. This implies that f̃ is uniformly con-

tinuous.
In several examples it is easy to identify E2

0 as a significant subspace of D(L), see for instance
the example of Lévy processes which is described below.

A significant particular case: Lévy processes

As anticipated above, an insightful example for Markov flows is the case of Lévy pro-
cesses. We specify below the corresponding infinitesimal generator.
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Let (Xt) be a square integrable Lévy process with characteristic triplet (A, ν, γ),
such that X0 = 0. We refer to, e.g., [Cont and Tankov, 2004, Chapter 3] for more
details.

We suppose that (Xt) is of pure jump, i.e. A = 0 and γ = 0. Since X is square
integrable, then (c.f. [Cont and Tankov, 2004, Proposition 3.13])∫

R
|x|2ν(dx) <∞ (3.2.22)

and

c1 :=
E [Xt]

t
=

∫
|x|>1

xν(dx) <∞, c2 :=
Var[Xt]

t
=

∫
R
|x|2ν(dx) <∞. (3.2.23)

Clearly the corresponding Markov flow is given by X0,x
t = x+Xt, t ≥ 0, x ∈ R.

The classical theory of semigroup for Lévy processes is for instance developed in
Section 6.31 of Sato [2013]. There one defines the semigroup P on the set C0 of contin-
uous functions vanishing at infinity, equipped with the sup-norm ‖u‖∞ = supx |u(x)|.
By [Sato, 2013, Theorem 31.5], the semigroup P is strongly continuous on C0, with
norm ‖P‖ = 1, and its generator L0 is given by

L0f(x) =

∫ (
f(x+ y)− f(x)− yf ′(x)1|y|<1

)
ν(dy). (3.2.24)

Moreover, the set C2
0 of functions f ∈ C2 such that f , f ′ and f

′′
vanish at infinity, is

included in D(L0). We remark that the domain D(L) includes the classical domain
D(L0). In fact, we have

‖g‖E ≤ ‖g‖C0 , ∀g ∈ C0.

Consequently, if f ∈ D(L0) ⊂ C0, then for t > 0∥∥∥∥Ptf − ft
− L0f

∥∥∥∥
E

≤
∥∥∥∥Ptf − ft

− L0f

∥∥∥∥
C0

.

So f ∈ D(L) and Lf = L0f .
Assumption 3.2.7 is verified because of Proposition 3.2.8, item 1) of Remark 3.2.9

and Remark 3.2.10.
The theorem below shows that the space E2

0 , defined in Remark 3.2.17, is a subset
of D(L).

Theorem 3.2.18. LetL be the infinitesimal generator of the semigroup (Pt). ThenE2
0 ⊂ D(L)

and
Lf(x) =

∫ (
f(x+ y)− f(x)− yf ′(x)1|y|<1

)
ν(dy), f ∈ E2

0 . (3.2.25)

A proof of this result, using arguments in Figueroa-López [2008], is developed in
Appendix 3.B.

In conclusion, C2 functions whose second derivative vanishes at infinity belong to
D(L). For instance, id : x 7→ x ∈ D(L). On the other hand the function x2 : x 7→ x2
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also belongs to D(L).

In fact, for every x ∈ R, t ≥ 0 we have

Ptf(x)− f(x) =
E
[
(x+Xt)

2
]
− x2

t
=

2xc1t+ c2t+ c2
1t

2

t
.

Obviously, this converges to the function x 7→ 2xc1 + c2 according to the E-norm.
Finally it follows that L(x2) = 2xc1 + c2.

Corollary 3.2.19. We have the following inclusion:

E2
0 ⊕ x2 ⊂ D(L)

3.2.3 Diffusion processes

Here we will suppose againO = R×E, whereE = R or ]0,∞[. A function f : [0, T ]×O
will be said to be globally Lipschitz if it is Lipschitz with respect to the second and
third variable uniformly with respect to the first.

We consider here the case of a diffusion process (X,S) whose dynamics is de-
scribed as follows:

dXt = bX(t,Xt, St)dt+
2∑
i=1

σX,i(t,Xt, St)dW
i
t

dSt = bS(t,Xt, St)dt+
d∑
i=1

σS,i(t,Xt, St)dW
i
t ,

(3.2.26)

where W = (W 1,W 2) is a standard 2-dimensional Brownian motion with canonical
filtration (Ft), bX , bS , σX,i, and σS,i, for i = 1, 2, b, σ : [0, T ] × R2 → R are continuous
functions which are globally Lipschitz.

We also suppose (X0, S0) to have all moments and that S takes value in E. For
instance a geometric Brownian motion takes value in E =]0,∞[, if it starts from a pos-
itive point.

Remark 3.2.20. Let p ≥ 1. It is well-known, that there is a constant C(p), only depending
on p, such that

E

[
sup
t≤T

(|Xt|p + |St|p)

]
≤ C(p)(|X0|p + |S0|p).

By Itô formula, for f ∈ C1,2([0, T [×O), we have

df(t,Xt, St) = ∂tf(t,Xt, St)dt+ ∂sf(t,Xt, St)dSt + ∂xf(t,Xt, St)dXt

+
1

2
{∂ssf(t,Xt, St)d〈S〉t + ∂xxf(t, St, Xt)d〈X〉t + 2∂sxf(t,Xt, St)d〈S,X〉t} .

We denote |σS |2 =
2∑
i=1

σ2
S,i, |σX |2 =

2∑
i=1

σ2
X,i and 〈σS , σX〉 =

2∑
i=1

σS,iσX,i.
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Hence, the operator a can be defined as

a(f) = ∂tf + bS∂sf + bX∂xf

+
1

2

{
|σS |2∂ssf + |σX |2∂xxf + 2〈σS , σX〉∂sxf

}
,

associated with At ≡ t and a domain D(a) = C1,2([0, T [×O) ∩ C0([0, T ]×O).
Note that Assumption 3.2.4 is verified since id and id × id belong to D(a). Moreover,
a straightforward calculation gives

ã(f) = |σS |2∂sf(t, x, s) + 〈σS , σX〉∂xf(t, x, s)

In particular,
ã(id) = |σS |2.

Remark 3.2.21. By Itô formula, for 0 ≤ u ≤ T , we obviously have

f(u,Xu, Su)−
∫ u

0
a(f)(r,Xr, Sr)dr =

∫ u

0
∂xf(r,Xr, Sr)

(
σX,1(r,Xr, Sr)dW

1
r + σX,2(r,Xr, Sr)dW

2
r

)
+

∫ u

0
∂sf(r,Xr, Sr)

(
σS,1(r,Xr, Sr)dW

1
r + σS,2(r,Xr, Sr)dW

2
r

)
.

3.2.4 Variant of diffusion processes

Let (Wt) be an Ft-standard Brownian motion and S be a solution of the SDE

dSt = σ(t, St)dWt + b1(t, St)dat + b2(t, St)dt, (3.2.27)

where b1, b2, σ : [0, T ]×R2 → R are continuous functions which are globally Lipschitz,
and a : [0, T ] → R is an increasing function such that da is singular with respect to
Lebesgue measure. We set At = at + t.

The equation (3.2.27) can be written as

dSt = σ(t, St)dWt +

(
b1(t, St)

dρt
dAt

+ b2(t, St)
dt

dAt

)
dAt.

A solution S of (3.2.27) verifies the strong martingale problem with respect to
(D(a), a, A), in the sense where D(a) = C1,2([0, T ]× R) and for f ∈ D(a),

a(f)(t, s) =

(
∂tf(r, s)

dr

dAr
+ ∂sf(r, s)̃b(r, s) +

1

2
∂ssf(r, s)σ̃2(r, s)

)
,

where b̃(t, s) = b1(t, s) dρtdAt
(t) + b2(t, s) dt

dAt
(t) and σ̃2(t, s) = σ2(t, s) dt

dAt
(t).

Indeed, by Itô formula, the process

t 7→ f(t, St)−
∫ t

0
a(f)(r, Sr)dAr

is a local martingale.
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3.2.5 Exponential of additive processes

A càdlàg process (Z1, Z2) is said to be an additive process if (Z1, Z2)0 = 0, (Z1, Z2) is
continuous in probability and it has independent increments, i.e. (Z1

t − Z1
s , Z

2
t − Z2

s )

is independent of Fs for 0 ≤ s ≤ t ≤ T and (Fs) is the canonical filtration associated
with (Z1, Z2).

In this section we restrict ourselves to the case of exponential of additive pro-
cesses which are semimartingales (shortly semimartingale additive processes) and we
specify a corresponding martingale problem (a,D(a), A) for this process. This will
be based on Fourier-Laplace transform techniques. The couple of processes (X,S) is
defined by

X = exp(Z1)

S = exp(Z2),

where (Z1, Z2) is an (two-dimensional) semimartingale additive process.
We denote by D the set

D := {z = (z1, z2) ∈ C2| E
[
|XRe(z1)

T S
Re(z2)
T |

]
<∞}.

We convene that C2 = R2 + iR2, associating the couple (z1, z2) with (Rez1,Rez2) +

i(Imz1, Imz2). Clearly we have D = (D ∩ R2) + iR2. We also introduce the notation

D/2 := {z ∈ C2| 2z ∈ D} ⊂ D.

Remark 3.2.22. By Cauchy-Schwarz inequality, z, y ∈ D/2 implies that z + y ∈ D.

We denote by κ : D → C, the generating function of (Z1, Z2), see for instance
[Goutte et al., 2014, Definition 2.1]. In particular κ verifies

exp(κt(z1, z2)) = E
[
exp(z1Z

1
t + z2Z

2
t )
]

= E [Xz1
t S

z2
t ] .

We will adopt similar notations and assumptions as in Goutte et al. [2014], which
treated the problem of variance optimal hedging for a one-dimensional exponential of
additive process. We introduce a function ρ, defined, for each t ∈ [0, T ], as follows:

ρt(z1, z2, y1, y2) := κt(z1 + y1, z2 + y2)− κt(z1, z2)− κt(y1, y2), for (z1, z2), (y1, y2) ∈ D/2,
ρt(y1, y2) := ρt(z1, z2, z̄1, z̄2), for (z1, z2) ∈ D/2,

ρSt := ρt(0, 1) = κt(0, 2)− 2κt(0, 1), if (0, 1) ∈ D/2.
(3.2.28)

We remark that for (z1, z2) ∈ D/2, t 7→ ρt(z1, z2) is a real function. These functions
appear naturally in the expression of the angle brackets of (MX ,MS) whereMX (resp.
MS) is the martingale part of X (resp. S).

From now on, in this section, the assumption below will be in force.

Assumption 3.2.23.
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1) ρS is strictly increasing.

2) (0, 2) ∈ D. This is equivalent to the existence of the second order moment of S.

Note that, by Cauchy-Schwarz, the second item implies that, D/2 + (0, 1) ⊂ D.

We remind that previous assumption implies that Z2 has no deterministic incre-
ments, see [Goutte et al., 2014, Lemma 3.9].

Similarly as in [Goutte et al., 2014, Propositions 3.4 and 3.15], one can prove the
following.

Proposition 3.2.24.

1) For every (z1, z2) ∈ D,
(
Xz1
t S

z2
t e
−κt(z1,z2)

)
is a martingale.

2) t 7→ κt(z1, z2) is a bounded variation continuous function, for every (z1, z2) ∈ D. In
particular, t 7→ ρt(z1, z2) is also a bounded variation continuous function, for every
(z1, z2) ∈ D/2.

3) Let I be a compact real set included in D. Then

sup
(x,y)∈I

sup
t≤T

E [Xx
t S

y
t ] = sup

(x,y)∈I
sup
t≤T

eκt(x,y) <∞.

4) ∀(z1, z2) ∈ D/2, t 7→ ρt(z1, z2) is non-decreasing.

5) κdt(z1, z2)� ρSdt , for every z ∈ D.

6) ρdt(z1, z2, y1, y2)� ρSdt , for every (z1, z2), (y1, y2) ∈ D/2.

Remark 3.2.25. Note that, for any (z1, z2) ∈ D, Xz1Sz2 is a special semimartingale. Indeed,
by Proposition 3.2.24, Xz1

t S
z2
t = Nte

κt(z1,z2) where κ(z1, z2) is a bounded variation contin-
uous function and N is a martingale. Hence, integration by parts implies that Xz1Sz2 is a
special semimartingale whose decomposition is given by

Xz1Sz2 = M(z1, z2) + V (z1, z2), (3.2.29)

where Mt(z1, z2) = Xz1
0 S

z2
0 +

∫ t
0 e

κu(z1,z2)dNu and Vt(z1, z2) =
∫ t

0 X
z1
u−S

z2
u−κdu(z1, z2),

∀t ∈ [0, T ].

The following proposition shows that the local martingale part of the decompo-
sition above is a square integrable martingale if (z1, z2) ∈ D/2 and gives its angle
bracket in terms of the generating function.

Proposition 3.2.26. Let z = (z1, z2), y = (y1, y2) ∈ D/2. Then Xz1Sz2 is a special semi-
martingale, whose decomposition Xz1Sz2 = M(z1, z2) + V (z1, z2) satisfies, for t ∈ [0, T ],

V (z1, z2)t =

∫ t

0
Xz1
u−S

z2
u−κdu(z1, z2)

〈M(z1, z2),M(y1, y2)〉t =

∫ t

0
Xz1+y1
u− Sz2+y2

u− ρdu(z1, z2, y1, y2).
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In particular,

〈M(z1, z2)〉t := 〈M(z1, z2),M(z1, z2)〉t =

∫ t

0
X

2Re(z1)
u− S

2Re(z2)
u− ρdu(z1, z2).

Moreover, M(z1, z2) is a square integrable martingale.

Proof. This can be done adapting the techniques of [Hubalek et al., 2006, Lemma 3.2]
and its generalization to one-dimensional additive processes, i.e. [Goutte et al., 2014,
Proposition 3.17 and Lemma 13.19].

The measure dρS , called reference variance measure in Goutte et al. [2014], plays
a central role in the expression of the canonical decomposition of special semimartin-
gales depending on the couple (X,S).

Corollary 3.2.27. The semimartingale decomposition of S is given by S = MS + V S , where,
for t ∈ [0, T ]

V S
t =

∫ t

0
Su−κdu(0, 1)

〈MS〉t =

∫ t

0
S2
u−ρ

S
du.

Proof. It follows from Proposition 3.2.26 setting z1 = 0, z2 = 1.

Now we state some useful estimates.

Lemma 3.2.28. Let (a, b) ∈ D ∩ R2. Then

E

[
sup
t≤T

Xa
t S

b
t

]
<∞.

Proof. Let (a, b) ∈ D ∩ R2, then (a/2, b/2) ∈ D/2. By Proposition 3.2.26, we have

X
a/2
t S

b/2
t = Mt(a/2, b/2) +

∫ t

0
X
a/2
u− S

b/2
u−κdu(a/2, b/2), ∀t ∈ [0, T ]

and M(a/2, b/2) is a square integrable martingale. Hence, by Doob inequality, we
have

E

[
sup
t≤T
|Mt(a/2, b/2)|2

]
≤ 4E

[
|MT (a/2, b/2)|2

]
<∞.

On the other hand, using Cauchy-Schwarz inequality and Fubini theorem, we obtain

E

[
sup
t≤T

∣∣∣∣∫ t

0
X
a/2
u− S

b/2
u−κdu(a/2, b/2)

∣∣∣∣2
]
≤ ‖κ(a/2, b/2)‖T

∫ T

0
E
[
Xa
u−S

b
u−

]
‖κ(a/2, b/2)‖du

= ‖κ(a/2, b/2)‖T
∫ T

0
eκu(a,b) ‖κ(a/2, b/2)‖du

≤ e‖κ(a,b)‖T ‖κ(a/2, b/2)‖2T <∞.
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Finally

E

[
sup
t≤T

Xa
t S

b
t

]
= E

[
sup
t≤T

∣∣∣Xa/2
t S

b/2
t

∣∣∣2] <∞.

In the general case, when (z1, z2) ∈ D, the local martingale part of the special
semimartingale Xz1Sz2 is a true (not necessarily square integrable) martingale.

Proposition 3.2.29. Let (z1, z2) ∈ D, then, M(z1, z2), the local martingale part of Xz1Sz2 ,
is a true martingale such that

E

[
sup
t≤T
|Mt(z1, z2)|

]
<∞.

Proof. Let (z1, z2) ∈ D. Adopting the notations of (3.2.29), we remind that, by Propo-
sition 3.2.26, ∀t ∈ [0, T ], Mt(z1, z2) = Xz1

t S
z2
t −

∫ t
0 X

z1
u−S

z2
u−κdu(z1, z2). For this local

martingale we can write

E

[
sup
t≤T
|Mt(z1, z2)|

]
≤ E

[
sup
t≤T
|Xz1

t S
z2
t |

]
+ E

[∫ T

0

∣∣Xz1
t−S

z2
t−
∣∣ ‖κ(z1, z2)‖dt

]

≤ E

[
sup
t≤T

∣∣∣XRe(z1)
t S

Re(z2)
t

∣∣∣] (1 + ‖κ(z1, z2)‖T ) .

Since (Re(z1),Re(z2)) belongs to D, by Lemma 3.2.28, the right-hand side is finite.
Consequently the local martingale M(z1, z2) is indeed a true martingale.

The goal of this section is to show that (X,S) is a solution of a strong martingale
problem, with related triplet (D(a), a, A), which will be specified below. For this pur-
pose, we determine the semimartingale decomposition of (f(t,Xt, St))t for functions
f : [0, T ]×O → C, where O =]0,∞[2, of the form

f(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2λ(t, z1, z2), ∀t ∈ [0, T ], x, y > 0, (3.2.30)

where Π is finite complex Borel measure on C2 and λ : [0, T ] × C2 −→ C. The family
of those functions will include the set D(a) defined later.

Proposition 3.2.29 and item 5) of Proposition 3.2.24 say that, for z = (z1, z2) ∈ D,

t 7→ Xz1
t S

z2
t −

∫ t

0
Xz1
u−S

z2
u−κdu(z1, z2) = Xz1

t S
z2
t −

∫ t

0
Xz1
u−S

z2
u−
dκu(z1, z2)

dρSu
ρSdu

is a martingale. This provides the semimartingale decomposition of the basic func-
tions (t, x, s) 7→ xz1zz2 for z1, z2 ∈ D, applied to (X,S). Those functions are expected
to be elements of D(a) and one candidate for the bounded variation process A is ρS . It
remains to precisely define D(a) and the operator a.
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A first step in this direction is to consider a Borel function λ : [0, T ]×C2 → C such
that, for any (z1, z2) ∈ D, t ∈ [0, T ] 7→ λ(t, z1, z2) is absolutely continuous with respect
to ρS .

Lemma 3.2.30. Let λ : [0, T ] × C2 → C such that, for any (z1, z2) ∈ D, t ∈ [0, T ] 7→
λ(t, z1, z2) is absolutely continuous with respect to ρS . Then for any (z1, z2) ∈ D,

t 7→Mλ
t (z1, z2) := Sz1t X

z2
t λ(t, z1, z2)−

∫ t

0
Xz1
u−S

z2
u−

{
dλ(u, z1, z2)

dρSu
+ λ(u, z1, z2)

dκu(z1, z2)

dρSu

}
ρSdu,

(3.2.31)
is a martingale. Moreover, if (z1, z2) ∈ D/2 thenMλ(z1, z2) is a square integrable martingale
and

E
[
|Mλ

t (z1, z2)|2
]

=

∫ t

0
eκu(2Re(z1),2Re(z2))|λ(u, z1, z2)|2ρdu(z1, z2).

Proof. Let (z1, z2) ∈ D, M(z1, z2) and V (z1, z2) be the random fields introduced in Re-
mark 3.2.25. Since λ(dt, z1, z2) � ρSdt, then t 7→ λ(t, z1, z2) is a bounded continuous
function on [0, T ]. By item 5) of Proposition 3.2.24 Mλ(z1, z2) is well-defined. Integrat-
ing by parts and taking into account Remark 3.2.25 allows to show

Mλ
t (z1, z2) = λ(0, z1, z2)M0(z1, z2) +

∫ t

0
λ(u, z1, z2)dMu(z1, z2), ∀t ∈ [0, T ]. (3.2.32)

Obviously Mλ(z1, z2) is a local martingale. In order to prove that it is a true martin-
gale, we establish that

E

[
sup
t≤T

∣∣∣Mλ
t (z1, z2)

∣∣∣] <∞.
Indeed, by integration by parts in (3.2.32), for t ∈ [0, T ] we have

Mλ
t (z1, z2) = λ(t, z1, z2)Mt(z1, z2)−

∫ t

0
Mu−(z1, z2)λ(du, z1, z2).

Hence, as in the proof of Lemma 3.2.28,

E

[
sup
t≤T

∣∣∣Mλ
t (z1, z2)

∣∣∣] ≤E[sup
t≤T
|λ(t, z1, z2)Mt(z1, z2)|

]
+ E

[∫ T

0
|Mu−(z1, z2)| ‖λ(., z1, z2)‖dt

]

≤2E

[
sup
t≤T
|Mt(z1, z2)|

]
‖λ(., z1, z2)‖T .

(3.2.33)

Thanks to Proposition 3.2.29, the right-hand side of (3.2.33) is finite and finallyMλ(z1, z2)

is shown to be a martingale so that the first part of Lemma 3.2.30 is proved.
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Now, suppose that (z1, z2) ∈ D/2. By (3.2.32) and Proposition 3.2.26, we have

E
[
〈Mλ(z1, z2)〉T

]
= E

[∫ T

0
|λ(t, z1, z2)|2〈M(z1, z2)〉dt

]
= E

[∫ T

0
X

2Re(z1)
u− S

2Re(z2)
u− |λ(u, z1, z2)|2ρdu(z1, z2)

]
=

∫ T

0
eκu(2Re(z1),2Re(z2))|λ(u, z1, z2)|2ρdu(z1, z2)

≤ sup
u≤T

eκu(2Re(z1),2Re(z2))

∫ T

0
|λ(u, z1, z2)|2ρdu(z1, z2) <∞.

(3.2.34)

The latter term is finite by point 3) of Proposition 3.2.24 and by the fact that λ(., z1, z2)

is bounded on [0, T ]. Consequently, Mλ(z1, z2) is a square integrable martingale and
since |Mλ(z1, z2)|2 − 〈Mλ(z1, z2)〉 is a martingale, then

E
[
|Mλ

t (z1, z2)|2
]

=

∫ t

0
eκu(2Re(z1),2Re(z2))|λ(u, z1, z2)|2ρdu(z1, z2),

because of (3.2.34).

Now, let Π be a finite Borel measure on C2 and let us make the following assump-
tion on it.

Assumption 3.2.31. We set I0 := Re(supp Π).

1. I0 is bounded.

2. I0 ⊂ D.

Note that this assumption implies that supp Π ⊂ D.

Theorem 3.2.32. Suppose that Assumptions 3.2.23 and 3.2.31 are verified. Let λ : [0, T ] ×
C2 → C be a function such that

∀(z1, z2) ∈ supp Π, λ(dt, z1, z2) � ρSdt, (3.2.35)

∀t ∈ [0, T ],

∫
C2

d|Π|(z1, z2)|λ(t, z1, z2)|2 < ∞, (3.2.36)∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

∣∣∣∣ < ∞. (3.2.37)

Then the function f defined by

f(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2λ(t, z1, z2), ∀t ∈ [0, T ], x, s > 0. (3.2.38)

is continuous. Moreover

t 7→Mλ
t := f(t,Xt, St)−

∫ t

0
ρSdu

∫
C2

dΠ(z1, z2)Xz1
u−S

z2
u−

{
dλ(u, z1, z2)

dρSu
+ λ(u, z1, z2)

dκu(z1, z2)

dρSu

}
(3.2.39)

is a martingale.
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Remark 3.2.33. In (3.2.37) and (3.2.39), part of the integrand with respect to Π is only
defined for (z1, z2) ∈ D. By convention the integrand will be set to zero for (z1, z2) /∈ D. In
the sequel we will adopt the same rule.

Proof. Let λ : [0, T ]× C2 → C verifying the hypotheses of the theorem.

The function f is well-defined. Indeed, for t ∈ [0, T ], x, y > 0,

|f(t, x, s)| ≤ sup
(a,b)∈I0

xasb
∫
C2

d|Π|(z1, z2)|λ(t, z1, z2)|,

which is finite because of Condition (3.2.36) and Assumption 3.2.31, taking into ac-
count Cauchy-Schwarz inequality.

Moreover, by Fubini theorem and (3.2.38), we get

E [|f(t,Xt, St)|] ≤
∫
C2

d|Π|(z1, z2)E
[
X

Re(z1)
t S

Re(z2)
t

]
|λ(t, z1, z2)|

≤ sup
u∈[0,T ],(a,b)∈I0

E
[
Xa
uS

b
u

] ∫
C2

d|Π|(z1, z2)|λ(t, z1, z2)|.(3.2.40)

The right-hand side is finite by item 3) of Proposition 3.2.24 and Condition (3.2.36).

We observe that t 7→ λ(t, z1, z2) is a continuous function since it is absolutely con-
tinuous with respect to ρS for fixed (z1, z2) ∈ C2. On the other hand, Condition (3.2.36)
implies that the family (λ(t, z1, z2), t ∈ [0, T ]) is |Π| -uniformly integrable. These prop-
erties, together with Lebesgue dominated convergence theorem imply that f defined
in (3.2.38) is continuous with respect to all the variables.

We show now that the process t 7→Mλ
t is well-defined. This holds because

E
[∫ t

0
ρSdu

∫
C2

d|Π|(z1, z2)|Xz1
u−S

z2
u−|
∣∣∣∣dλ(u, z1, z2)

dρSu
+ λ(u, z1, z2)

dκu(z1, z2)

dρSu

∣∣∣∣]
(3.2.41)

≤ sup
u∈[0,T ],(a,b)∈I0

E
[
Xa
uS

b
u

] ∫ t

0
ρSdu

∫
C2

d|Π|(z1, z2)

∣∣∣∣dλ(u, z1, z2)

dρSu
+ λ(u, z1, z2)

dκu(z1, z2)

dρSu

∣∣∣∣ ,
which is finite by point 3) of Proposition 3.2.24 and Condition (3.2.37). Inequality
(3.2.41) allows to apply Fubini theorem to the integral term in (3.2.39), so that we get

Mλ
t =

∫
C2

dΠ(z1, z2)

(
Xz1
t S

z2
t λ(t, z1, z2)−

∫ t

0
Xz1
u−S

z2
u−

{
dλ(u, z1, z2)

dρSu
+ λ(u, z1, z2)

dκu(z1, z2)

dρSu

}
ρSdu

)
=

∫
C2

dΠ(z1, z2)Mλ
t (z1, z2),

(3.2.42)

where Mλ(z1, z2) is defined in (3.2.31) for any (z1, z2) ∈ D. We observe that

E
[∫

C2

d|Π|(z1, z2)
∣∣∣Mλ

t (z1, z2)
∣∣∣] <∞, (3.2.43)
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taking into account (3.2.40) and (3.2.41). It remains to show that Mλ is a martingale.
Let 0 ≤ s ≤ t ≤ T and a bounded, Fs-measurable random variable G. By Fubini
theorem and Lemma 3.2.30 it follows

E
[
Mλ
t G
]

=

∫
C2

dΠ(z1, z2)E
[
Mλ
t (z1, z2)G

]
=

∫
C2

dΠ(z1, z2)E
[
Mλ
s (z1, z2)G

]
= E

[∫
C2

dΠ(z1, z2)Mλ
s (z1, z2)G

]
= E

[
Mλ
s G
]
,

which implies the desired result.

We proceed now to the definition of the domain D(a) in view of the specification
of the corresponding martingale problem. We set

D(a) =
{
f : (t, x, s) 7→

∫
C2

dΠ(z1, z2)xz1sz2λ(t, z1, z2),∀t ∈ [0, T ], x, y > 0,

where Π is a finite Borel measure on C2 verifying Assumption 3.2.31,

with λ : [0, T ]× C2 → C Borel such that conditions (3.2.35), (3.2.36)

and (3.2.37) are fulfilled
}
.

(3.2.44)

Corollary 3.2.34. Suppose that Assumptions 3.2.23 and 3.2.31 are verified. Then (X,S) is a
solution of the strong martingale problem related to (D(a), a, ρS) where, for f ∈ D(a) of the
type (3.2.38), a(f) is defined by

a(f)(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2
{
dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

}
, (3.2.45)

for all t ∈ [0, T ], x, s > 0.

Proof. By Theorem 3.2.32 note that f ∈ D(a) defined in (3.2.38) is continuous, which
implies that (3.2.1) is fulfilled. By (3.2.37), a(f) belongs to L defined in (3.2.2) and
Condition (3.2.3) is fulfilled. Finally (3.2.4) is a consequence of (3.2.39) in Theorem
3.2.32.

Under additional conditions, one can say more about the martingale decomposi-
tion given by the strong martingale problem related to (D(a), a, ρS).

Proposition 3.2.35. Let f ∈ D(a) as defined in (3.2.38). Suppose the following.

a) I0 := Re(supp Π) ⊂ D/2,

b)
∫
C2

d|Π|(z1, z2)

∫ T

0
|λ(u, z1, z2)|2ρdu(z1, z2) <∞.

Then, the martingale t 7→Mλ
t = f(t,Xt, St)−

∫ t

0
a(f)(u,Xu−, Su−)ρSdu is square integrable.
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Proof. Let t ∈ [0, T ] and Mλ as defined in (3.2.39), which is a martingale by Theorem
3.2.32. By (3.2.42) we have

Mλ
t =

∫
C2

dΠ(z1, z2)Mλ
t (z1, z2), (3.2.46)

where Mλ(z1, z2) was defined in (3.2.31). By Lemma 3.2.30, for every (z1, z2) ∈ D/2,
we have

E
[
|Mλ

t (z1, z2)|2
]

=

∫ t

0
eκu(2Re(z1),2Re(z2))|λ(u, z1, z2)|2ρdu(z1, z2). (3.2.47)

By Fubini theorem, integrating both sides of (3.2.47) with respect to |Π|, gives

E
[∫

C2

d|Π|(z1, z2)|Mλ
t (z1, z2)|2

]
=

∫
C2

d|Π|(z1, z2)E
[
|Mλ

t (z1, z2)|2
]

=

∫
C2

d|Π|(z1, z2)

∫ t

0
eκu(2Re(z1),2Re(z2))|λ(u, z1, z2)|2ρdu(z1, z2)

≤ sup
u∈[0,T ],(a,b)∈I0

eκu(a,b)

∫
C2

d|Π|(z1, z2)

∫ t

0
|λ(u, z1, z2)|2ρdu(z1, z2).

Now, by point 3) of Proposition 3.2.24 and condition b), the right-hand side is finite.
This together with (3.2.46) and Cauchy-Schwarz show that Mλ is square integrable.

Proposition 3.2.36. We suppose the validity of Assumptions 3.2.23.

1) Assumption 3.2.4 is verified. More precisely

i) id : (t, x, s) 7−→ s ∈ D(a) and

a(id)(t, x, s) = s
dκt(0, 1)

dρSt
, ∀t ∈ [0, T ], x, s > 0. (3.2.48)

ii) (t, x, s) 7−→ s2 ∈ D(a) and

ã(id)(t, x, s) = s2, ∀t ∈ [0, T ], x, s > 0. (3.2.49)

2) Let Π be a finite signed Borel measure on C2 verifying Assumption 3.2.31. Let f ∈ D(a)

of the form (3.2.44), such that f̃ = f × id ∈ D(a). Then ã, defined in (3.2.6), is given
by, ∀t ∈ [0, T ], x, s > 0,

ã(f)(t, x, s) =

∫
C2

dΠ(z1, z2)λ(t, z1, z2)xz1sz2+1dρt(z1, z2, 0, 1)

dρSt
. (3.2.50)

Proof.
We first address item 1).

i) Let Π1(z1, z2) = δ{z1=0,z2=1} and λ ≡ 1. Since by Assumption 3.2.23 (0, 1) ∈ D,
Π1 fulfills Assumption 3.2.31. The other conditions (3.2.35), (3.2.36), (3.2.37)
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defining D(a) in (3.2.44) are trivially satisfied. Consequently id ∈ D(a) and
(3.2.48) follows from (3.2.45).

ii) Let Π2(z1, z2) = δ{z1=0,z2=2} and λ ≡ 1. Again, by Assumption 3.2.23 (0, 2) ∈ D,
and Π2 fulfills Assumption 3.2.31. Similar arguments as for i) allow to show that
(t, x, s) 7−→ s2 ∈ D(a).

Formula (3.2.50) constitutes a direct application of (3.2.45), taking into account
(3.2.44), which establishes item 2). In particular (3.2.49) holds.

3.3 The basic BSDE and the deterministic problem

3.3.1 General framework

We consider twoFt-adapted processes (X,S) fulfilling the martingale problem related
to (D(a), a, A) stated in Definition 3.2.1 under Assumption 3.2.4. We denote byMS the
martingale part of S.

Let f̂ : Ω × [0, T ] × C2 −→ C be a predictable random field (i.e. such that for
every y, z, s 7→ f̂(·, s, y, z) is predictable) and h be an FT -measurable, complex valued,
random variable. As we have mentioned in the introduction, the object of our interest
is a BSDE of the type (3.1.2). We focus on a deterministic natural problem associated
with it, which plays the role of the semilinear PDE of the Brownian case.

Definition 3.3.1. A triplet (Y,Z,O) of processes is called solution of (3.1.2) if the following
holds.

1) (Yt) is Ft-adapted;

2) (Zt) is Ft-predictable and

(a)
∫ T

0 |Zs|
2d〈MS〉s <∞ a.s.

(b)
∫ T

0 |f̂(ω, s, Ys−, Zs)|d
∥∥V S

∥∥
s
<∞ a.s.

3) Equality (3.1.2) holds and (Ot) is an Ft-local martingale such that 〈O,MS〉 = 0 and
O0 = 0 a.s.

In this section we are more particularly interested in the BSDE (3.1.2) when f̂ is
given by (3.1.3).

3.3.2 The forward-backward case and the deterministic problem

As we have already mentioned in the Introduction, the BSDE on which we will focus
on, arises when the driver coefficient f̂ is associated with a locally bounded function
f : [0, T ]×O × C2 −→ C and with the Ft-special semimartingale (X,S) which solves
the strong martingale problem related to (D(a), a, A). In conformity with (3.1.3), we
suppose the form of f̂ and of the target r.v. h as follows.

a(id)(t,Xt−(ω), St−(ω))f̂(ω, t, y, z) = f(t,Xt−(ω), St−(ω), y, z),

h = g(XT , ST ),

Quantification of the model risk in finance and related problems Ismail Laachir 2015
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for some continuous function g : O → C.

Therefore, our subject of study is the particular BSDE given below.

Yt = h+

∫ T

t
f(r,Xr−, Sr−, Yr−, Zr)dAr−

∫ T

t
ZrdM

S
r − (OT −Ot), t ∈ [0, T ]. (3.3.1)

As we remarked in the introduction, whenMS is a Brownian motion and (Ft) is its
canonical filtration, (3.3.1) can be linked to a semilinear partial differential equation.
We will formulate a deterministic problem, generalizing that ”classical” semilinear
PDE. In particular we look for solutions (Y,Z,O) for which there is a function y ∈ D(a)

such that ỹ = y × id ∈ D(a) and a locally bounded Borel function z : [0, T ]×O −→ C,
such that

Yt = y(t,Xt, St), (3.3.2)

Zt = z(t,Xt−, St−), ∀t ∈ [0, T ], (3.3.3)

and ∫ t

0
|Zs|2d〈MS〉s < ∞ a.s.

(3.3.4)∫ t

0
|f(s,Xs−, Ss−, Ys−, Zs)|d ‖A‖s < ∞ a.s.

By (3.3.2) and (3.3.4), Conditions 1) and 2) of Definition 3.3.1 are obviously fulfilled.
Consequently the triplet (Y,Z,O) where

Ot := Yt − Y0 −
∫ t

0
ZrdM

S
r +

∫ t

0
f(r,Xr−, Sr−, Yr−, Zr)dAr, (3.3.5)

is a solution of (3.1.2) provided that

1. (Ot) is an Ft-local martingale, (3.3.6)

2. 〈O,MS〉 = 0, (3.3.7)

3. YT = g(XT , ST ). (3.3.8)

Since (X,S) solves the strong martingale problem related to (D(a), a, A), replacing
(3.3.2) in expression (3.3.5), Condition (3.3.6) can be rewritten saying that∫ t

0
a(y)(r,Xr−, Sr−)dAr +

∫ t

0
f(r,Xr−, Sr−, Yr−, Zr)dAr

is an Ft-local martingale. This implies that

∫ t

0
a(y)(r,Xr−, Sr−)dAr +

∫ t

0
f(r,Xr−, Sr−, Yr−, Zr)dAr = 0. (3.3.9)
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On the other hand, Condition (3.3.7) implies

〈MY ,MS〉t =

∫ t

0
Zsd〈MS〉s, (3.3.10)

where MY denotes the martingale part of Y . By Lemma 3.2.3 and item ii) of Corollary
3.2.5, we have

〈MY ,MS〉t =

∫ t

0
ã(y)(r,Xr−, Sr−)dAr

〈MS〉t =

∫ t

0
ã(id)(r,Xr−, Sr−)dAr.

Consequently, Condition (3.3.10) can be re-expressed as∫ t

0
ã(y)(r,Xr−, Sr−)dAr =

∫ t

0
z(r,Xr−, Sr−)ã(id)(r,Xr−, Sr−)dAr. (3.3.11)

Condition (3.3.8) requires y(T, ·, ·) = g.
This allows to state the following representation theorem.

Theorem 3.3.2. Suppose the existence of a function y, such that y, ỹ := y × id belong to
D(a), and a Borel locally bounded function z, solving the system

a(y)(t, x, s) = −f(t, x, s, y(t, x, s), z(t, x, s)) (3.3.12)

ã(y)(t, x, s) = z(t, x, s)ã(id)(t, x, s), (3.3.13)

for t ∈ [0, T ] and (x, s) ∈ O, where the equalities hold in L, with the terminal condition
y(T, ., .) = g(., .).

Then the triplet (Y, Z,O) defined by

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−) (3.3.14)

and (Ot) given by (3.3.5), is a solution to the BSDE (3.3.1).

Proof. The triplet (Y, Z,O) fulfills the three conditions of Definition 3.3.1 provided that
(3.3.4) is verified. Indeed, since y ∈ D(a) then the integral

∫ t
0 |f(s,Xs−, Ss−, Ys−, Zs)|d ‖A‖s ,

is finite taking into account (3.2.3).
Since z is locally bounded, then

∫ T
0 |Zs|

2d〈M〉s is also finite. This concludes the proof
of the theorem.

Remark 3.3.3.

1. The statement of Theorem 3.3.2 can be generalized relaxing the assumption on z to be
locally bounded. We replace this with the condition∫ T

0
z2(r,Xr−, Sr−)ã(id)(r,Xr−, Sr−)dAr <∞ a.s. (3.3.15)

This is equivalent to
∫ T

0 |Zs|
2d〈M〉s <∞ a.s.
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2. In particular, if z is locally bounded a.s., then (3.3.15) is fulfilled.

Remark 3.3.4. Theorem 3.3.2 constitutes also an existence theorem for particular BSDEs.
If MS is a square integrable martingale and the function f̂ associated with f , fulfills some
Lipschitz type conditions then the solution (Y,Z,O) provided by (3.3.14) is unique in the
class of processes introduced in [Carbone et al., 2007, Theorem 3.1].

The presence of the local martingale O is closely related to the classical martingale
representation property. In fact, if (Ω,F ,P) verifies the local martingale representation
property with respect to MS , then O vanishes.

Proposition 3.3.5. Suppose that (Ω,F ,P) fulfills the local martingale representation property
with respect to M . Then, if (Y,Z,O) is a solution to (3.3.1), then, necessarily Ot = 0, ∀t ∈
[0, T ].

Proof. Since (Ot) is an Ft-local martingale, there is a predictable process (Zt) such that

Ot = O0 +

∫ t

0
ZsdM

S
s , ∀t ∈ [0, T ].

So the condition 〈O,MS〉 ≡ 0 implies∫ .

0
Zsd〈MS〉 = 0.

Consequently,
Z ≡ 0 dP⊗ d〈MS〉 a.e.,

and so Ot = O0 = 0 ∀t ∈ [0, T ].

3.3.3 Illustration 1: the Markov semigroup case

Let us consider the case of Section 3.2.2 with related notations. Let S = X0,x be a
solution of the strong martingale problem related to (D(a), a, A), see Definition 3.2.6.
Let (Pt) be the semigroup introduced in (3.2.14), fulfilling Assumption 3.2.7 with gen-
erator L defined in Definition 3.2.11. Let f : [0, T ]×R×C −→ C be a locally bounded
function and a continuous function g : R −→ C.
Here we have of course S = MS + V S where V S =

∫ ·
0 a(id)(r, Sr−)dr and id(s) ≡ s.

Theorem 3.3.2 gives the following.

Proposition 3.3.6. Suppose the existence of a function y : [0, T ]×R→ C and a Borel locally
bounded function z : [0, T ]× R→ C verifying the following.

i) t 7→ y(t, ·) (resp. ỹ(t, ·)) takes value in D(L) and it is continuous with respect to the
graph norm.

ii) t 7→ y(t, ·) (resp. ỹ(t, ·)) is of class C1 with values in E.
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iii) For (t, x) ∈ [0, T ]× R,

∂ty(t, x) + Ly(t, ·)(x) = −f(t, x, y(t, x), z(t, x)),

z(t, ·)L̃(id) = L̃y(t, ·),
y(T, .) = g,

where L̃ϕ = Lϕ̃− ϕLid− idLϕ.

Then the triplet (Y, Z,O), where

Yt := y(t, St), Zt := z(t, St−),

Ot := Yt − Y0 −
∫ t

0
ZrdM

S
r +

∫ t

0
f̂(r, ω, Yr−, Zr)dV

S
r , t ∈ [0, T ],

is a solution of the BSDE

Yt = g(ST ) +

∫ T

t
f̂(r, ω, Yr−, Zr)dV

S
r −

∫ T

t
ZrdM

S
r − (OT −Ot), t ∈ [0, T ],

in the sense of Definition 3.3.1, where

a(id)(r, Sr−(ω))f̂(r, ω, y, z) = f(r, Sr−(ω), y, z).

Remark 3.3.7. If S = σW with σ > 0 and ϕ : [0, T ] × R → C is of class C1,2 then
a(ϕ) = ∂tϕ+ σ2

2 ∂ssϕ and ã(ϕ) = σ2∂sϕ = ã(id)∂sϕ.
In the case where L is a generic generator, the formal quotient ã(ϕ)

ã(id)
can be considered as a sort

of generalized derivative.

3.3.4 Illustration 2: the diffusion case

Consider the case of where (X,S) is diffusion process as given in equations (3.2.26).
We remind that in that case, the operator a, for ϕ ∈ C1,2([0, T ]× R2), is given by

a(ϕ) = ∂tϕ+ bS∂sϕ+ bX∂xϕ

+
1

2

{
|σS |2∂ssϕ+ |σX |2∂xxϕ+ 2〈σS , σX〉∂sxϕ

}
.

Corollary 3.3.8. Let (y, z) be a solution of the PDE

a(y)(t, x, s) = −f(t, x, s, y(t, x, s), z(t, x, s)) (3.3.16)

|σS |2z(t, x, s) = |σS |2∂sy(t, x, s) + 〈σS , σX〉∂xy(t, x, s), (3.3.17)

with terminal condition y(T, ., .) = g(., .). Then the triplet (Y,Z,O), where

Yt = y(t,Xt, St), Zt = z(t,Xt, St),

and (Ot) is given by (3.3.5) is a solution to the BSDE (3.3.1).
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3.4 Explicit solution for Föllmer-Schweizer decomposition in
the basis risk context

3.4.1 General considerations

We will discuss in this section the important Föllmer-Schweizer decomposition, de-
noted shortly F-S decomposition. It is a generalization of the well-known Galtchouk-
Kunita-Watanabe decomposition for martingales, to the more general case of semi-
martingales. Our task will consist in providing explicit expressions for the F-S decom-
position in several situations. Let S be a special semimartingale with canonical decom-
position S = MS + V S . In the sequel we will convene that the space L2(MS) consists
of the predictable processes (Zt)t∈[0,T ] such that E

[∫ T
0 |Zs|

2d〈MS〉s
]
<∞ and L2(V S)

will denote the set of all predictable processes (Zt)t∈[0,T ] such that E
[(∫ T

0 |Zs|d‖V
S‖s
)2
]
<

∞. The intersection of these two spaces is denoted

Θ := L2(MS) ∩ L2(V S). (3.4.1)

The Föllmer-Schweizer decomposition is defined as follows.

Definition 3.4.1. Let h be a (possibly complex valued) square integrable FT -measurable ran-
dom variable. We say that h admits an F-S decomposition with respect to S if it can be written
as

h = h0 +

∫ T

0
ZsdSs +OT ,P− a.s., (3.4.2)

where h0 is an F0-measurable r.v., Z ∈ Θ and O = (Ot)t∈[0,T ] is a square integrable martin-
gale, strongly orthogonal to MS .

Remark 3.4.2.

1) The notion of weak and strong orthogonality is discussed for instance in [Protter, 2005,
Section 4.3] and [Jacod and Shiryaev, 2003, Section 1.4b]. Let L and N be two Ft-
local martingales, with null initial value. L and N are said to be strongly orthogonal
if LN is a local martingale. If L and N are locally square integrable, then they are
strongly orthogonal if and only if 〈L,N〉 = 0. The definition of locally square integrable
martingale is given for instance just before [Protter, 2005, Theorem 49 in Chapter 1].

2) The F-S decomposition makes also sense for complex valued square integrable random
variable h. In that case the triplet (h0, Z,O) is generally complex.

3) If h admits an F-S decomposition (3.4.2) then the complex conjugate h̄ admits an F-S
decomposition given by

h̄ = h̄0 +

∫ T

0
Z̄sdSs + ŌT ,P− a.s. (3.4.3)

The F-S decomposition has been extensively studied in the literature: sufficient
conditions on the process S were given so that every square integrable random vari-
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able has such a decomposition. A well-known condition ensuring the existence of
such a decomposition is the so called structure condition (SC).

Definition 3.4.3. We say that a special semimartingale S = V S +MS satisfies the structure
condition (SC) if there exists a predictable process α such that

1. V S
t =

∫ t
0 αsd〈M

S〉s,

2.
∫ T

0 α2
sd〈MS〉s <∞ a.s.

The latter quantity plays a central role in the F-S decomposition. The associated
process

Kt :=

∫ t

0
α2
sd〈MS〉s for t ∈ [0, T ], (3.4.4)

is called mean variance trade-off process.

Remark 3.4.4. Monat and Stricker [1995] proved that, under (SC) and the additional condi-
tion that the process K is uniformly bounded, the F-S decomposition of any real valued square
integrable random variable exists and it is unique. More recent papers about the subject are
Schweizer [2001], Černý and Kallsen [2007] and references therein.

This general decomposition refers to the process S as underlying and it will be
applied in the context of mean-variance hedging under basis risk, where X is an ob-
servable price process of a non-traded asset.
As in previous sections, we consider a couple (X,S) verifying the martingale prob-
lem (3.2.7), and we suppose Assumption 3.2.4 to be fulfilled. In the sequel we do not
necessarily assume (SC) for S.

Definition 3.4.5. Let h be a square integrable FT -measurable random variable. We say that
h admits a weak F-S decomposition with respect to S if it can be written as

h = h0 +

∫ T

0
ZsdSs +OT ,P−a.s., (3.4.5)

where h0 is an F0-measurable r.v., Z is a predictable process such that
∫ T

0 |Zs|
2d〈MS〉s <∞

a.s.,
∫ T

0 |Zs|d‖V
S‖s < ∞ a.s. and O is a local martingale such that 〈O,MS〉 = 0 with

O0 = 0.

Finding a weak F-S decomposition (3.4.5) (h0, Z,O) for some r.v. h is equivalent to
finding a solution (Y, Z,O) of the BSDE

Yt = h−
∫ T

t
ZsdSs − (OT −Ot). (3.4.6)

The link is given by Y0 = h0. The latter equation (3.4.6) can be seen as a special case of
BSDE (3.3.1), where the driver f is linear in z, of the form

f(t, x, s, y, z) = −a(id)(t, x, s)z. (3.4.7)

This point of view was taken for instance by Schweizer [1994].

Quantification of the model risk in finance and related problems Ismail Laachir 2015
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Remark 3.4.6. Let (Y,Z,O) be a solution of (3.4.6) with Z ∈ Θ, where Θ has been defined in
(3.4.1) and O is a square integrable martingale. Then h admits an F-S decomposition (3.4.2)
with Y0 = h0.

We consider the case of the final value h = g(XT , ST ) for some continuous function
g. Theorem 3.3.2 can be applied to obtain the result below.

Corollary 3.4.7. Let y (resp. z): [0, T ]×O → C. We suppose the following.

1) y, ỹ := y × id belong to D(a).

2) z verifies (3.3.15) of Remark 3.3.3.

3) (y, z) solve the problem

a(y)(t, x, s) = a(id)(t, x, s)z(t, x, s), (3.4.8)

ã(y)(t, x, s) = ã(id)(t, x, s)z(t, x, s), (3.4.9)

where the equalities hold in L, with the terminal condition y(T, ., .) = g(., .).

Then the triplet (Y, Z,O), where

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−), Ot = Yt − Y0 −
∫ t

0
ZsdSs,

is a solution to the linear BSDE (3.4.6) linked to the weak F-S decomposition.

Remark 3.4.8. We remind that, setting h0 = y(0, X0, S0), the triplet (h0, Z,O) is a candi-
date for a true F-S decomposition, see Definition 3.4.1. Sufficient conditions for this are the
following.

a) h = g(XT , ST ) ∈ L2(Ω).

b) (z(t,Xt−, St−))t ∈ Θ i.e.

• E
[∫ T

0 |z(t,Xt−, St−)|2 ã(id)(t,Xt−, St−)dAt

]
<∞.

• E
[(∫ T

0 |z(t,Xt−, St−)| ‖a(id)(t,Xt−, St−)dA‖t
)2
]
<∞.

c)
(
y(t,Xt, St)−

∫ t
0 a(y)(u,Xu−, Su−)dAu

)
t

is an Ft-square integrable martingale.

We remark that b) and c) imply by additivity that O is a square integrable martin-
gale. In fact

Ot = y(t,Xt, St)−
∫ t

0
a(y)(u,Xu−, Su−)dAu −

∫ t

0
z(u,Xu−, Su−)dMS

u , ∀t ∈ [0, T ].

(3.4.10)
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3.4.2 Application: exponential of additive processes

We will investigate in this section a significant context where the equations in Corol-
lary 3.4.7 can be solved, yielding the weak F-S decomposition and we can give suffi-
cient conditions so that the true F-S decomposition is fulfilled. We focus on exponen-
tial of additive processes. Another example will be given in Section 3.4.3.

Let (X,S) be a couple of exponential of semimartingale additive processes, as in-
troduced in Section 3.2.5.

Proposition 3.4.9. Under Assumption 3.2.23, S verifies the (SC) condition given in Defini-
tion 3.4.3 if and only if ∫ T

0

(
dκt(0, 1)

dρSt

)2

dρSt <∞ (3.4.11)

In this case, the mean variance trade-off process K is deterministic and given by

Kt =

∫ t

0

(
dκu(0, 1)

dρSu

)2

dρSu <∞, ∀t ∈ [0, T ]. (3.4.12)

Proof. It follows from Corollary 3.2.27 and item 5) of Proposition 3.2.24.

We look for the F-S decomposition of an FT -measurable random variable h of the
form h := g(XT , ST ) for a function g such that

g(x, s) =

∫
C2

dΠ(z1, z2)xz1sz2 , (3.4.13)

where Π is finite Borel complex measure.

In Section 3.2.5, Corollary 3.2.34 states that (X,S) fulfills the martingale problem
with respect to (D(a), a, ρS) where the objects D(a), a and ρS were introduced respec-
tively in (3.2.44), (3.2.45), (3.2.28). In order to determine the F-S decomposition (in its
weak form given in (3.4.5)) we make use of Corollary 3.4.7. We look for a function y

(resp. z): [0, T ]×R2 → C such that Hypotheses 1), 2) and 3) are fulfilled. In agreement
with definition of D(a) given in (3.2.44) we select y of the form

y(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2λ(t, z1, z2), (3.4.14)

where Π being the same finite complex measure as in (3.4.13) and λ : [0, T ]× C2 → C.
We will start by writing ”necessary” conditions for a couple (y, z), such that y has the
form (3.4.14), to be solutions of (3.4.8) and (3.4.9).

Suppose that the couple (y, z) fulfills (3.4.8) and (3.4.9) of Corollary 3.4.7. We con-
sider the expressions of a(id), ã(id) given by (3.2.48), (3.2.49), and a(y), ã(y) given by
(3.2.45) and (3.2.50), for f = y. We replace them in the two above mentioned condi-
tions (3.4.8) and (3.4.9) to obtain the following equations for λ (dρSt a.e.).
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∫
C2

dΠ(z1, z2)xz1sz2
{
dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

}
= s

dκt(0, 1)

dρSt
z(t, x, s)∫

C2

dΠ(z1, z2)λ(t, z1, z2)xz1sz2+1dρt(z1, z2, 0, 1)

dρSt
= s2z(t, x, s).

(3.4.15)
The final condition y(T, ·, ·) = g produces∫

C2

dΠ(z1, z2)xz1sz2λ(T, z1, z2) =

∫
C2

dΠ(z1, z2)xz1sz2 . (3.4.16)

Replacing z from the second line of (3.4.15) in the first line, by identification of the
inverse Fourier-Laplace transform, it follows that λ verifies

dλ(t, z1, z2)

dρSt
= λ(t, z1, z2)

{
dκt(0, 1)

dρSt

dρt(z1, z2, 0, 1)

dρSt
− dκt(z1, z2)

dρSt

}
(3.4.17)

λ(T, z1, z2) = 1, (3.4.18)

for all (z1, z2) ∈ supp Π. Without restriction of generality we can clearly set λ(·, z1, z2) =

0 for (z1, z2) outside the support of Π. We observe that for fixed z1, z2, (3.4.17) consti-
tutes an ordinary differential equation (in the Lebesgue-Stieltjes sense) in time t.

We solve now the linear differential equation (3.4.17). Provided that

u 7→ dρu(z1, z2, 0, 1)

dρSu

dκu(0, 1)

dρSu
∈ L1([0, T ], dρs), (3.4.19)

the (unique) solution of (3.4.17), is given by

λ(t, z1, z2) = exp

(∫ T

t

[
dκu(z1, z2)

dρSu
− dρu(z1, z2, 0, 1)

dρSu

dκu(0, 1)

dρSu

]
dρSu

)
= exp

(∫ T

t
κdu(z1, z2)− dρu(z1, z2, 0, 1)

dρSu
κdu(0, 1)

)
(3.4.20)

= exp

(∫ T

t
η(z1, z2, du)

)
,

where

η(z1, z2, t) := κt(z1, z2)−
∫ t

0

dρu(z1, z2, 0, 1)

dρSu
κdu(0, 1), (3.4.21)

which is clearly absolutely continuous with respect to dρS .
At this point, we have an explicit form of λ defining the function y intervening in the
weak F-S decomposition. In the sequel we will show that such a choice of λwill consti-
tute a sufficient condition so that (y, z) where y is defined by (3.4.14) and z determined
by the second line of (3.4.15), is a solution of the deterministic problem given by (3.4.8)
and (3.4.9).

In order to check (3.4.19) and the validity of (3.4.15) and (3.4.16), we formulate the
following assumption reinforcing Assumptions 3.2.23 and 3.2.31.
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Assumption 3.4.10. Recall I0 := Re(supp Π)(⊂ R2), where we convene that Re(z1, z2) =

(Re(z1),Re(z2)). We denote I := 2I0 ∪ {(0, 1)} and D the set

D =
{
z ∈ D,

∫ T

0

∣∣∣∣dκu(z1, z2)

dρSu

∣∣∣∣2 dρSu <∞}. (3.4.22)

We assume the validity of the properties below.

1) ρS is strictly increasing.

2) I0 is bounded.

3) ∀z ∈ supp Π, z, z + (0, 1) ∈ D .

4) sup
x∈I

∥∥∥∥d(κt(x))

dρSt

∥∥∥∥
∞
<∞.

Remark 3.4.11.

1) Assumptions 3.2.23 and 3.2.31 are consequences of Assumption 3.4.10.

2) Taking into account Remark 3.2.33, we emphasize that, for the rest of this section, the
statements would not change if we consider that the quantities integrated with respect
to the measure Π are null outside its support.

3) I ⊂ D, in particular (0, 1) ∈ D because of item 4) of Assumption 3.4.10.

4) By previous item and Proposition 3.4.9, S verifies the (SC) condition and the mean
variance trade-off process K given by (3.4.12) is deterministic.

5) I0 ⊂ D/2 (i.e. supp Π ⊂ D/2). This follows again by item 4) of Assumption 3.4.10.

In the sequel we will introduce the following notation.

γt(z1, z2) :=
dρt(z1, z2, 0, 1)

dρSt
, ∀(z1, z2) ∈ D/2, t ∈ [0, T ]. (3.4.23)

Similarly to [Goutte et al., 2014, Lemma 3.28], we can show the upper bounds
below.

Lemma 3.4.12. Under Assumption 3.4.10, we have the following.

1) Condition (3.4.19) is verified for t ∈ [0, T ], (z1, z2) ∈ supp Π.

2) There is a positive constant c1, such that dρSs a.e. sup
(z1,z2)∈I0+iR2

dRe(η(z1, z2, t))

dρSt
≤ c1.

3) There are positive constants c2, c3 such that, dρs a.e. the following holds.

For any (z1, z2) ∈ I0 + iR2,

∣∣∣∣γt(z1, z2)

∣∣∣∣2 ≤ dρt(z1, z2)

dρSt
≤ c2 − c3

dRe(η(z1, z2, t))

dρSt
.

4) sup
(z1,z2)∈I0+iR2

−
∫ T

0
2Re(η(z1, z2, dt)) exp

(∫ T

t
2Re(η(z1, z2, ds))

)
<∞.
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Proof. For illustration we prove item 1), the other points can be shown by similar tech-
niques as in [Goutte et al., 2014, Lemma 3.28].
Let t ∈ [0, T ], (z1, z2) ∈ supp Π. Condition (3.4.19) is valid since (0, 1) ∈ D, z, z+(0, 1) ∈
D and(∫ t

0

∣∣∣∣dρu(z1, z2, 0, 1)

dρSu

dκu(0, 1)

dρSu

∣∣∣∣ ρSdu)2

≤
∫ t

0

∣∣∣∣dρu(z1, z2, 0, 1)

dρSu

∣∣∣∣2 ρSdu ∫ t

0

∣∣∣∣dκu(0, 1)

dρSu

∣∣∣∣2 ρSdu.

Now, we can state a proposition that gives indeed the weak F-S decomposition of
a random variable h = g(XT , ST ).

Proposition 3.4.13. We suppose the validity of Assumption 3.4.10. Let λ be defined as

λ(t, z1, z2) = exp

(∫ T

t
η(z1, z2, du)

)
,∀(z1, z2) ∈ D/2, (3.4.24)

where η has been defined at (3.4.21). Then (Y, Z,O) is a solution of the BSDE (3.4.6), where

Yt =

∫
C2

dΠ(z1, z2)Xz1
t S

z2
t λ(t, z1, z2)

Zt =

∫
C2

dΠ(z1, z2)Xz1
t−S

z2−1
t− λ(t, z1, z2)γt(z1, z2)

Ot = Yt − Y0 −
∫ t

0
ZsdSs,

recalling that γ has been defined in (3.4.23).

Proof. The result will follow from Corollary 3.4.7 for which we need to check the as-
sumptions.
First we prove that the function y defined by

y(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2λ(t, z1, z2),

where λ is defined in (3.4.24), is indeed an element of D(a). Secondly, we prove that
the associated ỹ also belongs to D(a). Third, we check the condition (3.3.15) for z.
Finally we need to check the validity of the system of equations (3.4.8) and (3.4.9).
Concerning y, the function λ(·, z1, z2) is well-defined for (z1, z2) ∈ supp Π, thanks to
point 1) of Lemma 3.4.12 and by definition we have λ(dt, z1, z2)� ρSdt, ∀(z1, z2) ∈ D,
which is Condition (3.2.35).
In order to prove that y ∈ D(a), which was defined in (3.2.44), it remains to prove
the two conditions below which constitute conditions (3.2.36) and (3.2.37) of Theorem
3.2.32. ∫

C2

d|Π|(z1, z2) |λ(t, z1, z2)|2 <∞, ∀t ∈ [0, T ]; (3.4.25)∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

∣∣∣∣ <∞. (3.4.26)
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Let t ∈ [0, T ], (z1, z2) ∈ D/2. By (3.4.24), we have

|λ(t, z1, z2)| = exp

(∫ T

t

dRe(η(z1, z2, u))

dρSu
ρSdu

)
,

which implies, by item 2) of Lemma 3.4.12, that

|λ(t, z1, z2)| ≤ exp
(
c1ρ

S
T

)
, (3.4.27)

which gives in particular (3.4.25): in fact
∫
C2 d|Π|(z1, z2)|λ(t, z1, z2)|2 ≤ e2c1ρST |Π|(C2) <

∞.

Finally, to conclude that y ∈ D(a), we need to show (3.4.26). By construction, λ
verifies equation (3.4.17). Hence, by (3.4.17) and Cauchy-Schwarz we get

(∫ T

0
dρSt

∣∣∣dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

∣∣∣)2

=

(∫ T

0
dρSt |λ(t, z1, z2)|

∣∣∣∣dκt(0, 1)

dρSt

dρt(z1, z2, 0, 1)

dρSt

∣∣∣∣)2

≤
∫ T

0
|λ(t, z1, z2)|2 |γt(z1, z2)|2 dρSt

∫ T

0

∣∣∣∣dκt(0, 1)

dρSt

∣∣∣∣2 dρSt
≤ (I1(z1, z2) + I2(z1, z2))

∫ T

0

∣∣∣∣dκt(0, 1)

dρSt

∣∣∣∣2 dρSt ,
(3.4.28)

with

I1(z1, z2) := c2

∫ T

0
|λ(t, z1, z2)|2 dρSt ,

(3.4.29)

I2(z1, z2) := −c3

∫ T

0
|λ(t, z1, z2)|2 dRe(η(z1, z2, t))

dρt
dρSt ,

where we have used item 3) of Lemma 3.4.12. Since λ is uniformly bounded, see
(3.4.27), we have

I1(z1, z2) ≤ c2ρ
S
T exp

(
2c1ρ

S
T

)
. (3.4.30)

On the other hand,

I2(z1, z2) = −c3

∫ T

0
Re(η(z1, z2, dt)) exp

(∫ T

t
2Re(η(z1, z2, ds))

)
≤ c3 sup

y∈I0+iR2

−
∫ T

0
Re(η(y1, y2, dt)) exp

(∫ T

t
2Re(η(y1, y2, ds))

)
,

(3.4.31)

which is finite by item 4) of Lemma 3.4.12. Integrating (3.4.28) with respect to |Π|, tak-
ing into account the two uniform bounds in (z1, z2), i.e. (3.4.30) and (3.4.31), we can
conclude to the validity of (3.4.26), so that y ∈ D(a).
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We show similarly that ỹ := y × id ∈ D(a). In fact, for t ∈ [0, T ] and x, y > 0, we
have

ỹ(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2+1λ(t, z1, z2)

=

∫
C2

dΠ̃(z1, z2)xz1sz2 λ̃(t, z1, z2),

where λ̃(t, z1, z2) = λ(t, z1, z2 − 1) and Π̃ is the Borel complex measure defined by∫
C2

dΠ̃(z1, z2)ϕ(z1, z2) =

∫
C2

dΠ(z1, z2)ϕ(z1, z2 + 1),

for every bounded measurable function ϕ. Hence, supp Π̃ = supp Π + (0, 1). By Re-
mark 3.4.11 1) and 5), we have (0, 1) ∈ D/2 and supp Π ⊂ D/2. Then, by Remark
3.2.22, supp Π̃ ⊂ D, so that Assumption 3.2.31 is verified for Π̃. Moreover, by defini-
tion of Π̃, the conditions (3.2.35) and (3.2.36) are fulfilled replacing Π and λwith Π̃ and
λ̃. In order to conclude that ỹ ∈ D(a), we need to show

A :=

∫ T

0
dρSt

∫
C2

d|Π̃|(z1, z2)

∣∣∣∣dλ(t, z1, z2 − 1)

dρSt
+ λ(t, z1, z2 − 1)

dκt(z1, z2)

dρSt

∣∣∣∣ <∞,
(3.4.32)

which corresponds to Condition (3.2.37) for Π and λ replaced by Π̃ and λ̃. Note that

A =

∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2 + 1)

dρSt

∣∣∣∣
=

∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

(
dρt(z1, z2, 0, 1)

dρSt
+
dκt(z1, z2)

dρSt
+
dκt(0, 1)

dρSt

)∣∣∣∣
≤ A1 +A2 +A3,

where

A1 :=

∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

∣∣∣∣ ,
A2 :=

∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣λ(t, z1, z2)
dκt(0, 1)

dρSt

∣∣∣∣ ,
A3 :=

∫ T

0
dρSt

∫
C2

d|Π|(z1, z2)

∣∣∣∣λ(t, z1, z2)
dρt(z1, z2, 0, 1)

dρSt

∣∣∣∣ .
The first term A1 is finite, since we already proved that y ∈ D(a) and so condition
(3.4.26) is fulfilled. Moreover

A2 ≤
∥∥∥∥dκt(0, 1)

dρSt

∥∥∥∥
∞

∫ T

0
dρSt

∫
C2

d|Π|(z1, z2) |λ(t, z1, z2)| .

The right-hand side is finite, thanks to point 4) of Assumption 3.4.10 and the fact
that λ is uniformly bounded.
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Finally, by Cauchy-Schwarz and item 3) of Lemma 3.4.12, taking into account No-
tation (3.4.23), by similar arguments as (3.4.28), we have

(A3)2 ≤ |Π|(C2)ρST

∫
C2

d|Π|(z1, z2)

∫ T

0
dρSt |λ(t, z1, z2)|2 |γt(z1, z2)|2

≤ |Π|(C2)ρST

∫
C2

d|Π|(z1, z2)(I1(z1, z2) + I2(z1, z2)),

where I1(z1, z2) and I2(z1, z2) have been defined in (3.4.29). We have already shown
in (3.4.30) and (3.4.31) that I1 and I2 are bounded on supp Π, hence A3 < ∞. In
conclusion, it follows indeed that ỹ ∈ D(a) and Hypothesis 1) of Corollary 3.4.7 is
verified.
We define (t, x, s) 7→ z(t, x, s) so that s2z(t, x, s) = ã(y)(t, x, s). This gives

z(t, x, s) =

∫
C2

dΠ(z1, z2)xz1sz2−1λ(t, z1, z2)γt(z1, z2), ∀t ∈ [0, T ], x, y > 0, (3.4.33)

Lemma 3.4.14 below shows that (3.3.15) is fulfilled and so Hypothesis 2) of Corollary
3.4.7 is verified.

We go on verifying Hypothesis 3) of Corollary 3.4.7, i.e. the validity of (3.4.15) and
(3.4.16). Condition (3.4.16) is straightforward since λ(T, ·, ·) = 1. The second equal-
ity in (3.4.15) takes place by definition of z. The first equality holds true integrating
(3.4.17) thanks to (3.4.26). This proves 3) of Corollary 3.4.7.

Finally Corollary 3.4.7 implies that (Y,Z,O), is a solution of the BSDE (3.4.6) pro-
vided we establish the following.

Lemma 3.4.14. Let z be as in (3.4.33), where λ, γ have been respectively defined in (3.4.24)
and (3.4.23). We have

E
[∫ T

0
|z(r,Xr−, Sr−)|2 S2

r−ρ
S
dr

]
<∞.

In particular (3.3.15) is fulfilled.

Proof. First, let us show that∫
C2

dΠ(z1, z2)

∫ T

0
|λ(t, z1, z2)|2ρdt(z1, z2) <∞. (3.4.34)
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132 BSDES, CÀDLÀG MARTINGALE PROBLEMS AND MEAN-VARIANCE HEDGING UNDER BASIS RISK.

For this, we use points 3) and 4) of Lemma 3.4.12, (3.4.27) and (3.4.20) we get∫ T

0
|λ(t, z1, z2)|2ρdt(z1, z2) =

∫ T

0
|λ(t, z1, z2)|2dρt(z1, z2)

dρSt
ρSdt

≤
∫ T

0
|λ(t, z1, z2)|2

(
c2 − c3

dRe(η(y1, y2, t))

dρSt

)
ρSdt

≤ c2e
2c1ρST ρST − c3

∫ T

0
Re(η(z1, z2, dt)) exp

(∫ T

t
2Re(η(z1, z2, ds))

)
≤ c2e

2c1ρST ρST +

c3 sup
(ξ1,ξ2)∈I0+iR2

−
∫ T

0
Re(η(ξ1, ξ2, dt)) exp

(∫ T

t
2Re(η(ξ1, ξ2, ds))

)
.

Hence (3.4.34) is fulfilled.
Using Cauchy-Schwarz inequality, Fubini theorem and point 3) of Lemma 3.4.12,

we have

E
[∫ T

0
|z(r,Xr−, Sr−)|2 S2

r−dρ
S
r

]
= E

[∫ T

0

∣∣∣∣∫
C2

dΠ(z1, z2)Xz1
t−S

z2
t−λ(t, z1, z2)γt(z1, z2)

∣∣∣∣2 ρSds
]

≤ |Π|(C2) sup
t∈[0,T ],(a,b)∈I0

E
[
X2a
t S

2b
t

] ∫
C2

d|Π|(z1, z2)

∫ t

0
|λ(t, z1, z2)γt(z1, z2)|2 ρSds

≤ |Π|(C2) sup
t∈[0,T ],(a,b)∈I0

E
[
X2a
t S

2b
t

] ∫
C2

d|Π|(z1, z2)

∫ t

0
|λ(t, z1, z2)|2 ρdt(z1, z2).

The right-hand side is finite, thanks to (3.4.34).

One can prove that the weak F-S decomposition in Proposition 3.4.13 is actually a
strong F-S decomposition in the sense of Definition 3.4.1.

Theorem 3.4.15. Under Assumption 3.4.10, the random variable

h =

∫
C2

dΠ(z1, z2)Xz1
T S

z2
T

admits an F-S decomposition (3.4.2) where h0 = Y0 and (Y, Z,O) is given in Proposition
3.4.13.

Moreover, if h is real-valued then the decomposition (Y,Z,O) is real-valued and it is there-
fore the unique F-S decomposition.

Remark 3.4.16. This statement is a generalization of the results of Goutte et al. [2014] (and
Hubalek et al. [2006]) to the case of hedging under basis risk. This yields a characterization
of the hedging strategy in terms of Fourier-Laplace transform and the moment generating
function.

Proof. Since Π is a finite measure, then h is square integrable. Indeed by Cauchy-
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Schwarz

E
[
h2
]
≤ |Π|(C2)

∫
C2

E
[
|XT |2Re(z1)|ST |2Re(z2)

]
dΠ(z1, z2)

(3.4.35)

≤
(
|Π|(C2)

)2
sup

(a,b)∈I
E
[
|XT |a|ST |b

]
,

where I is a bounded subset of R2 defined in Assumption 3.4.10. By item 2) of As-
sumption 3.4.10 and item 3) of Proposition 3.2.24, previous quantity is finite.

By item 4) of Remark 3.4.11 and by Remark 3.4.4, the real-valued F-S decomposi-
tion of any real valued square integrable FT -measurable random variable is unique.

As a consequence, if h is real-valued then its F-S decomposition is also real-valued.
In fact, if (Y0, Z,O) is an F-S decomposition of h, then (Y 0, Z,O) is also an F-S of h by
item 3) of Remark 3.4.2. Thus, by subtraction, (Im(Y0), Im(Z), Im(O)) is an F-S de-
composition with real-valued triplet of the real-valued r.v. Im(h) = 0. By uniqueness
Im(Y0), Im(Z) and Im(O) are null and the decomposition (Y0, Z,O) is real valued.

Now, let (Y,Z,O) defined in Proposition 3.4.13. It remains to prove that (Y0, Z,O)

is a strong (possibly complex) F-S decomposition in the sense of Definition 3.4.1. For
this we need to show items a),b),c) of Remark 3.4.8. Item a) has been the object of
(3.4.35).

We show below item b) i.e. E
[∫ T

0 |Zs|
2d〈MS〉s

]
<∞ and E

[(∫ T
0 |Zs|d‖V

S‖s
)2
]
<

∞. The first inequality is stated in Lemma 3.4.14. In order to prove the second one, we
remind that, by Corollary 3.2.27,

dV S
t = St−κdt(0, 1) = St−

dκt(0, 1)

dρSt
ρSdt.

Consequently

E

[(∫ T

0
|Zs|d‖V S‖s

)2
]

= E

[(∫ T

0
|Zu|

∣∣∣∣dκu(0, 1)

dρSu

∣∣∣∣Su−ρSdu)2
]

≤
∫ T

0

∣∣∣∣dκu(0, 1)

dρSu

∣∣∣∣2 ρSduE [∫ T

0
|Zu|2S2

u−ρ
S
du

]
,

which is finite since, by item 3) of Remark 3.4.11 which says that (0, 1) ∈ D, taking into
account Lemma 3.4.14.

To end this proof, we need to show item c) of Remark 3.4.8. For this we use Propo-
sition 3.2.35 for which we need to check conditions a) and b). By item 5) of Remark
3.4.11 we have I0 ⊂ D/2 which constitutes item a). Item b) is verified by condition
(3.4.34) is verified. Hence Proposition 3.2.35 implies that

t 7→ y(t,Xt, St)−
∫ t

0
a(y)(u,Xu−, Su−)ρSdt

is a square integrable martingale.
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3.4.3 Diffusion processes

We set O = R × E, where E = R or ]0,∞[. In this Section we apply Corollary 3.4.7
to the diffusion processes (X,S) modeled in Section 3.2.3 whose dynamics is given by
(3.2.26). We are interested in the F-S decomposition of h = g(XT , ST ). We recall the
assumption in that context.

Assumption 3.4.17.

• bX , bS , σX and σS are continuous and globally Lipschitz.

• g : O → R is continuous.

We remind that (X,S) solve the strong martingale problem related to (D(a), a, A)

whereAt = t, D(a) = C1,2([0, T [×O)∩C1([0, T ]×O). For a function y ∈ D(a), obviously
ỹ ∈ D(a) and the operators a and ã are given by

a(y) = ∂ty + bS∂sy + bX∂xy

+
1

2

{
|σS |2∂ssy + |σX |2∂xxy + 2〈σS , σX〉∂sxy

}
,

ã(y) = |σS |2∂sy + 〈σS , σX〉∂xy.

Conditions 3) of that Corollary 3.4.7 translates into

bSz = ∂ty + bS∂sy + bX∂xy +
1

2

{
|σS |2∂ssy + |σX |2∂xxy + 2〈σS , σX〉∂sxy

}
,

y(T, ., .) = g(., .), (3.4.36)

|σS |2z = |σS |2∂sy + 〈σS , σX〉∂xy.

If, moreover, 1
|σS | is locally bounded, then we have the following: ∂ty +B∂xy +

1

2

(
|σS |2∂ssy + |σX |2∂xxy + 2〈σS , σX〉∂sxy

)
= 0,

y(T, ., .) = g(., .),
(3.4.37)

and

z = ∂sy +
〈σS , σX〉
|σS |2

∂xy, (3.4.38)

where

B = bX − bS
〈σS , σX〉
|σS |2

. (3.4.39)

z is then locally bounded since σS , σX and 1
|σS | are locally bounded and because y ∈

D(a).

Proposition 3.4.18. We suppose the validity of Assumption 3.4.17 and that |σS | is always
strictly positive.
If (y, z) is a solution of the system (3.4.37) and (3.4.38), such that y ∈ D(a), then (Y, Z,O) is
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a solution of the BSDE (3.4.6), where

Yt = y(t,Xt, St),

Zt = z(t,Xt, St),

Ot = Yt − Y0 −
∫ t

0
ZsdSs.

Proof. It follows from Corollary 3.4.7 for which we need to check the conditions 1), 2)
and 3). Indeed, since y, ỹ ∈ D(a), Condition 1) holds; since z is locally bounded, by
item 2. of Remark 3.3.3, Condition 2) is fulfilled. Condition 3) has been the object of
the considerations above the statement of the Proposition.

The result above yields the weak F-S decomposition for h. In order to show that
(Y0, Z,O) constitutes a true F-S decomposition, we need to make use of Remark 3.4.8.
First we introduce the following assumption.

Assumption 3.4.19. Suppose that the process (X,S) takes values in O and the following.

i) g ∈ C1 such that g, ∂xg and ∂sg have polynomial growth.

ii) B is globally Lipschitz.

iii) ∂xB, ∂sB, ∂xσX , ∂sσX , ∂xσS and ∂sσS exist, are continuous and have polynomial
growth.

iv) σS never vanishes.

We formulate the following.

Theorem 3.4.20. Suppose that Assumptions 3.4.17 and 3.4.19 are fulfilled, and suppose the
existence of a function y : [0, T ]×O → R such that

y ∈ C0([0, T ]×O) ∩ C1,2([0, T [×O) verifies the PDE (3.4.37) and has polynomial growth.
(3.4.40)

Then the F-S decomposition (3.4.2) of h = g(XT , ST ) is provided by (h0, Z,O) where,
h0 = Y0 and

Yt = y(t,Xt, St), Zt = z(t,Xt, St), Ot = Yt − Y0 −
∫ t

0
ZsdSs,

and z : [0, T ]×O → R is given by (3.4.38).

Proof. Let y : [0, T ] × O → R verifying (3.4.40) and z defined by (3.4.38). In order to
show that the triplet given in Proposition 3.4.18 yields a true F-S decomposition, we
need to show items a), b), c) of Remark 3.4.8.

First note that the random variable g(XT , ST ) is square integrable, because g has
polynomial growth and X and S admit all moments, see Remark 3.2.20. So a) is veri-
fied.
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In view of verifying item b) of Remark 3.4.8 we remind that

a(id) = bS , ã(id) = |σS |2, At ≡ t and z = ∂sy +
〈σS , σX〉
|σS |2

∂xy.

Indeed, since y has polynomial growth, it is forced to be unique since [Karatzas
and Shreve, 1991, Theorem 7.6, chapter 5] implies that

y(t, x, s) = E
[
g(Xt,x,s

T , St,x,sT )
]
, (3.4.41)

where (X̃ = Xt,x,s, S̃ = St,x,s) is a solution of

d
(
X̃r
S̃r

)
= Σ(r, X̃r, S̃r)dW̃r +

(
B(r,X̃r,S̃r)

0

)
dr,

with X̃t = x, S̃t = s, where W̃ = (W̃ 1, W̃ 2) is a standard two-dimensional Brownian
motion, and

Σ =
( σX,1 σX,2
σS,1 σS,2

)
.

We remind that B has been defined in (3.4.39).

By (3.4.41), a straightforward adaptation of [Friedman, 1975, Theorem 5.5] yields
that the partial derivatives ∂xy and ∂sy exist and are continuous on [0, T ]×O and they
have polynomial growth.

Using (3.4.38), we have

zbS = bS∂sy + bX∂xy −B∂xy.

Now, since ∂xy and ∂sy have polynomial growth, and by assumption bS , bX and B

have linear growth, we get that zbS has polynomial growth. This gives, by Remark
3.2.20,

E

[(∫ T

0
|zbS | (t,Xt, St)dt

)2
]
<∞.

On the other hand, using (3.4.38) and Cauchy-Schwarz, we have

|zσS | = ||σS |∂sy +
〈σX , σS〉
|σS |

∂xy|

≤ |σS ||∂sy|+ |σX ||∂xy|.

Since σX , σS have linear growth and ∂xy and ∂sy have polynomial growth, we get that
zσS has polynomial growth, which implies, by Remark 3.2.20, that

E
[∫ T

0
|zσS |2 (t,Xt, St)dt

]
<∞.

Consequently, item b) of Remark 3.4.8 is fulfilled.

In order to show the last item c), taking into account Remark 3.2.21, we need to
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prove that

u 7→MY
u =

∫ u

0
∂xy(r,Xr, Sr)

(
σX,1(r,Xr, Sr)dW

1
r + σX,2(r,Xr, Sr)dW

2
r

)
+

∫ u

0
∂sy(r,Xr, Sr)

(
σS,1(r,Xr, Sr)dW

1
r + σS,2(r,Xr, Sr)dW

2
r

)
is a square integrable martingale. This is due to the fact that ∂xy and ∂sy have poly-
nomial growth, and that σX and σS have linear growth, and Remark 3.2.20, which
implies that

E
[∫ T

0
{(∂xy(r,Xr, Sr))

2|σX(r,Xr, Sr)|2 + (∂sy(r,Xr, Sr))
2|σS(r,Xr, Sr)|2}du

]
<∞.

This concludes the proof of Theorem 3.4.20.

Below we show that, under Assumptions 3.4.17 and 3.4.19, Condition (3.4.40) is
not really restrictive.

Proposition 3.4.21. We assume the validity of Assumptions 3.4.17 and 3.4.19.
Moreover we suppose the validity of one of the three items below.

1) We set O = R2. Suppose that the second (partial, with respect to (x, s)) derivatives of
B, σX , σS and g exist, are continuous and have polynomial growth.

2) We set O = R2. We suppose B, σX , σS to be bounded and there exist λ1, λ2 > 0 such
that

λ1|ξ|2 ≤ (ξ1, ξ2)C(t, x, s)(ξ1, ξ2)T ≤ λ2|ξ|2, ∀ξ = (ξ1, ξ2) ∈ O,

where C(t, x, s) =
(
|σX |2(t,x,s) 〈σX ,σS〉(t,x,s)
〈σX ,σS〉(t,x,s) |σS |2(t,x,s)

)
.

3) (Black-Scholes case.) We suppose O =]0,+∞[2.

bS(t, x, s) = sb̂S ,

bX(t, x, s) = xb̂X ,

σS(t, x, s) = (sσ̂S,1, sσ̂S,2),

σX(t, x, s) = (xσ̂X,1, xσ̂X,2),

where b̂S , b̂X , σ̂S,1, σ̂S,2, σ̂X,1 and σ̂X,2 are constants, such that 〈σ̂X , σ̂S〉 < |σ̂X ||σ̂S |.

We have the following.

i) There is a (unique) strict solution y of (3.4.37) in the classC1,2([0, T [×O)∩C0([0, T ]×O)

with polynomial growth.

ii) The F-S decomposition (3.4.2) of h = g(XT , ST ) is provided by (h0, Z,O) where (Y,Z,O)

fulfill

Yt = y(t,Xt, St), Zt = z(t,Xt, St) and Ot = Yt − Y0 −
∫ t

0
ZsdSs,
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where z is given by (3.4.38).

Remark 3.4.22. We will show below that under the hypotheses above, conclusion i) holds, i.e.
there is a function y fulfilling (3.4.40). We observe that, by the proof of Theorem 3.4.20, if such
a y exists then it admits the probabilistic representation (3.4.41) and so it is necessarily the
unique C1,2([0, T [×O) ∩ C0([0, T ]×O), with polynomial growth, solution of (3.4.37).

Proof. We proceed to discussing the existence of y mentioned in Remark 3.4.22. So we
distinguish now the mentioned three cases.

Suppose first item 1). The function y defined by (3.4.41) is a continuous function
by the fact that the flow (X̃, S̃) is continuous in all variables and Remark 3.2.20, taking
into account Lebesgue dominated convergence theorem. [Friedman, 1975, Theorem
6.1], states that y belongs to C1,2([0, T ] × O), and it verifies the PDE (3.4.37). [Fried-
man, 1975, Theorem 5.5] says in particular that y has polynomial growth. In that case
conclusion i) is established.

Under the assumption described in item 2), the conclusion i) can be obtained by
simply adapting the proof of [Friedman, 1964, Theorem 12, p.25]. Indeed, according
to [Friedman, 1964, Theorem 8, p.19] there is a fundamental solution Γ : {(t1, t2), 0 ≤
t1 < t2 ≤ T} × R2 × R2 → R such that

Γ(t1, t2; γ, ξ) ≤ 1

a1(t2 − t1)
exp

(
− −|γ − ξ|

2

a1(t2 − t1)

)
, (3.4.42)

where a1 is a positive constant.

Now, by [Friedman, 1964, Theorem 12, p.25], the function y defined by

y(t, x, s) =

∫
R2

Γ(t, T ; (x, s), (ξ1, ξ2))g(ξ1, ξ2)dξ1dξ2, (3.4.43)

is a strict solution of (3.4.37), in particular it belongs to C1,2([0, T [×R2)∩C0([0, T ]×R2).

Since g has polynomial growth then there exist a2 > 0, p > 1 such that, ∀x, s ∈ R,

|g(x, s)| ≤ a2(1 + |x|p + |s|p). (3.4.44)

Thus, by (3.4.43), (3.4.42) and (3.4.44), for x, s ∈ R and 0 ≤ t ≤ T , we have

|y(t, x, s)| ≤ a2

a1(T − t)

∫
R2

(1 + |ξ1|p + |ξ2|p) exp

(
−|x− ξ1|2 + |s− ξ2|2

a1(T − t)

)
dξ1dξ2.

So there is a constant C1(p, T ) > 0 such that

|y(t, x, s)| ≤ C1(p, T ) (1 + E [|x+G1|p + |x+G2|p]) , (3.4.45)

where G = (G1, G2) is a two dimensional centered Gaussian vector with covariance
matrix equal to a1(T−t)

2 times the identity matrix. Since p > 1, then there is a constant
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C2(p, T ) such that

|y(t, x, s)| ≤ C2(p, T ) (1 + |x|p + |s|p + E [|G1|p + |G2|p])
≤ C3(p, T ) (1 + |x|p + |s|p) ,

where C3(p, T ) is another positive constant. In conclusion the solution y given by
(3.4.43) has polynomial growth.

We discuss now the Black-Scholes case 3) showing that, also in that case, there is
y such that (3.4.40) is fulfilled. First note that the uniform ellipticity condition in 2) is
not fulfilled for this dynamics, so we consider a logarithmic change of variable. For a
function y ∈ D(a), we introduce the function ŷ : [0, T ]× R2 → R defined by

ŷ(t, x, s) = y(t, log(x), log(s)), ∀t ∈ [0, T ], x, s > 0.

By inspection we can show that y is a solution of (3.4.37) if and only if ŷ fulfills

0 = ∂tŷ +

(
b̂X − b̂S

〈σ̂S , σ̂X〉
|σ̂S |2

− 1

2
|σ̂X |2

)
∂xŷ −

1

2
|σ̂S |2∂sŷ +

+
1

2

(
|σ̂S |2∂ssŷ + |σ̂X |2∂xxŷ + 2〈σ̂S , σ̂X〉∂sxŷ

)
, (3.4.46)

ŷ(T, ., .) = ĝ(., .),

where ĝ(x, s) = g(ex, es), ∀x, s ∈ R. Note that the PDE problem (3.4.46) has constant
coefficients and it verifies the uniform ellipticity condition in 2).

Moreover, since g has polynomial growth, then there exist c > 0, p > 1 such that
g(x, s) ≤ c(1 + xp + sp), ∀x, s > 0 again. Hence ĝ(x, s) ≤ c(1 + epx + eps), ∀x, s ∈ R.

Again, by simple adaptation of the proof of [Friedman, 1964, Theorem 12, p.25], we
observe that equation (3.4.46) admits a solution ŷ in C1,2([0, T [×R2) ∩C0([0, T ]×R2),
such that

ŷ(t, x, s) ≤ K(1 + epx + eps), ∀x, s ∈ R,

whereK > 0. This yields that y has polynomial growth, since y(t, x, s) = ŷ(t, log(x), log(s)), ∀t ∈
[0, T ], x, s > 0, so

y(t, x, s) ≤ K(1 + xp + sp), ∀t ∈ [0, T ], x, s > 0.

This concludes the proof of conclusion i).

Conclusion ii) is now a direct consequence of Theorem 3.4.20 together with condi-
tion i).

Remark 3.4.23. The last item of Proposition 3.4.21 permits to recover the results already
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found in Hulley and McWalter [2008], by replacing

b̂S = (µS − r),
b̂X = (µU − r),
σ̂S = (σS , 0),

σ̂X = (ρσU ,
√

1− ρ2σU ),

where µS , µU , r, σS and σU are constants.
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Appendix 3.A Proof of Proposition 3.2.8

Proof. Let f ∈ E and set f̃(x) = f(x)
1+x2

, ∀x ∈ R. Condition (3.2.15) implies, by mean
value theorem, that there exists a constant c(t) such that

E
[∣∣∣X0,x

t −X0,y
t

∣∣∣2] ≤ c(t) |x− y|2 , ∀x, y ∈ R.

Then, by the Garsia-Rodemich-Rumsey criterion, see for instance [Barlow and Yor,
1982, Section 3], there exists a r.v. Γt such that E

[
Γ2
t

]
<∞ and ∀x, y ∈ R∣∣∣X0,x

t −X0,y
t

∣∣∣ ≤ Γt |x− y|α , for 0 < α <
1

2
, (3.A.1)

possibly up to a modified version of the flow.

This implies in particular that for x ∈ R

|X0,x
t |2

1 + x2
≤ 2

1 + x2

(
|X0,0

t |2 + |X0,x
t −X0,0

t |2
)

≤ 2

1 + x2

(
|X0,0

t |2 + |Γt|2 |x|2α
)

≤ 2
(
|X0,0

t |2 + |Γt|2
)
.

Hence

sup
x∈R

E

[
|X0,x

t |2

1 + x2

]
<∞. (3.A.2)

Consequently, for x ∈ R, we have

|Ptf(x)|
1 + x2

=

∣∣∣E [f(X0,x
t )
]∣∣∣

1 + x2

≤ ‖f‖E
1 + E

[
|X0,x

t |2
]

1 + x2

≤ ‖f‖E sup
ξ∈R

1 + E
[
|X0,ξ

t |2
]

1 + ξ2
.

The right-hand side is finite, thanks to (3.A.2), so that

‖Ptf‖E ≤ ‖f‖E sup
ξ∈R

1 + E
[
|X0,ξ

t |2
]

1 + ξ2
. (3.A.3)

After we will have shown that P̃tf is also uniformly continuous, (3.A.3) will also im-
ply that Ptf ∈ E and that Pt is a bounded linear operator.

Therefore it remains to show that P̃tf is uniformly continuous. For this, let x, y ∈
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R. We have

Ptf(x)

1 + x2
− Ptf(y)

1 + y2
= E

[
f(X0,x

t )

1 + x2
− f(X0,y

t )

1 + y2

]
(3.A.4)

= E [I1 + I2] ,

where

I1 =
(
f̃(X0,x

t )− f̃(X0,y
t )
) 1 + (X0,x

t )2

1 + x2

I2 = f̃(X0,y
t )

(
1 + (X0,x

t )2

1 + x2
− 1 + (X0,y

t )2

1 + y2

)
.

Let ε > 0. By uniform continuity of f̃ , there exists δ1 > 0 such that

∀a, b ∈ R, |a− b| ≤ δ1 ⇒
∣∣∣f̃(a)− f̃(b)

∣∣∣ < ε. (3.A.5)

Since lim
M→∞

E
[
|I1|1|Γt|≥M

]
= 0, there exists M1 > 0 such that

E
[
|I1|1|Γt|≥M1

]
< ε. (3.A.6)

We fix 0 < α < 1
2 and we choose δ2 =

(
δ1
M1

)1/α
. Taking into account (3.A.1) and

(3.A.5), for |x− y| < δ2 we have

E
[
|I1|1|Γt|<M1

]
≤ E

[
1 + (X0,x

t )2

1 + x2

(
f̃(X0,x

t )− f̃(X0,y
t )
)
1|X0,x

t −X
0,y
t |<δ1

]

< sup
ξ∈R

E

[
1 + |X0,ξ

t |2

1 + ξ2

]
ε.

The right-hand side is finite thanks to (3.A.2). Consequently, if |x−y| < δ2, then (3.A.6)
implies that

E [|I1|] < A1ε, (3.A.7)

where A1 = 1 + supξ∈R E
[
1 +

|X0,ξ
t |2

1+ξ2

]
.

Concerning I2, we define

F (ω, z) =
1 + |X0,z

t (ω)|2

1 + z2
, ω ∈ Ω, z ∈ R. (3.A.8)
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Since z 7→ F (·, z) is differentiable in L2(Ω), by mean value theorem we get

E [|I2|] = |x− y|E
[∣∣∣∣f̃(X0,y

t )

∫ 1

0
∂zF (·, ax+ (1− a)y)da

∣∣∣∣]
≤ |x− y| ‖f‖E sup

z
E [|∂zF (·, z)|] .

It remains to estimate the previous supremum. We have for z ∈ R

∂zF (·, z) = 2
X0,z
t ∂zX

0,z
t

1 + z2
− 2z

1 + |X0,z
t |2

(1 + z2)2
.

So by Cauchy-Schwarz we get

E [|∂zF (·, z)|] ≤ 2

E
[
|X0,z

t |2
]

1 + z2

E
[
|∂zX0,z

t |2
]

1 + z2

1/2

+ 2
|z|

1 + z2

1 + E
[
|X0,z

t |2
]

1 + z2

≤ A2,

where

A2 = 2

sup
z

E
[
|X0,z

t |2
]

1 + z2
sup
z

E
[
|∂zX0,z

t |2
]1/2

+

1 + sup
z

E
[
|X0,z

t |2
]

1 + z2

 .

By (3.2.15) and (3.A.2) A2 is finite and we get

E [|I2|] ≤ A2 ‖f‖E |x− y|. (3.A.9)

Combining inequalities (3.A.7) and (3.A.9), (3.A.4) gives the existence of δ > 0 such
that

|x− y| < δ ⇒
∣∣∣∣Ptf(x)

1 + x2
− Ptf(y)

1 + y2

∣∣∣∣ < ε,

so that the function x 7→ Ptf(x)
1+x2

is uniformly continuous.
In conclusion we have proved that Ptf ∈ E. Pt is a bounded linear operator fol-

lows as a consequence of (3.A.3).

Appendix 3.B Proof of Theorem 3.2.18

We recall that the semigroup P is here given by Ptf(x) = E [f(x+Xt)] , x ∈ R, t ≥ 0

and X is a square integrable Lévy process vanishing at zero. The classical theory of
semigroup for Lévy processes defines the semigroup P on the set C0 of continuous
functions vanishing at infinity, equipped with the sup-norm ‖u‖∞ = supx |u(x)|, c.f.
for example [Sato, 2013, Theorem 31.5]. On C0, the semigroup P is strongly continu-
ous, with norm ‖P‖ = 1, and its generator L0 is given by

L0f(x) =

∫ (
f(x+ y)− f(x)− yf ′(x)1|y|<1

)
ν(dy), f ∈ C0. (3.B.1)
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144 BSDES, CÀDLÀG MARTINGALE PROBLEMS AND MEAN-VARIANCE HEDGING UNDER BASIS RISK.

Moreover, [Sato, 2013, Theorem 31.5] shows that C2
0 ⊂ D(L0), where C2

0 is the set of
functions f ∈ C2 such that f , f ′ and f

′′
vanish at infinity.

To prove Theorem 3.2.18 which concerns the infinitesimal generator of the semi-
group P defined on the set E (c.f. (3.2.13)) related to a square integrable pure jump
Lévy process, we adapt the classical theory. Since we consider a space (E, ‖.‖E), dif-
ferent from the classical one, i.e. (C0, ‖.‖∞), we need to show that (Pt) is still a strongly
continuous semigroup.

Proposition 3.B.1. LetX be a square integrable Lévy process, then the semigroup (Pt) : E →
E is strongly continuous.

Proof. The idea of the proof is an adaptation of the proof in [Sato, 2013, Theorem 31.5].

Let f ∈ E and f̃ defined by f̃(x) = f(x)
1+x2

, ∀x ∈ R. We evaluate, for t > 0, x ∈ R

Ptf(x)− f(x)

1 + x2
= E

[
f̃(x+Xt)− f̃(x)

]
+ E

[
f̃(x+Xt)

X2
t + 2xXt

1 + x2

]
.

So

‖Ptf − f‖E ≤ sup
x∈R

∣∣∣E [f̃(x+Xt)− f̃(x)
]∣∣∣+ sup

x∈R

∣∣∣∣E [f̃(x+Xt)
X2
t + 2xXt

1 + x2

]∣∣∣∣ . (3.B.2)

First, note that∣∣∣∣E [f̃(x+Xt)
X2
t + 2xXt

1 + x2

]∣∣∣∣ ≤ ‖f‖E E
[
X2
t + 2|xXt|
1 + x2

]
≤ ‖f‖E

(
E
[
X2
t

]
+ E [|Xt|]

)
,

hence

sup
x∈R

∣∣∣∣E [f̃(x+Xt)
X2
t + 2xXt

1 + x2

]∣∣∣∣ ≤ ‖f‖E (E [X2
t

]
+ E [|Xt|]

)
.

Since X is a square integrable Lévy process, E
[
X2
t

]
= c2t + c2

1t
2 where c1, c2 were

defined in (3.2.23). Hence, the right-hand side of the inequality above goes to zero as
t goes to zero.

Now we prove that the first term supx∈R

∣∣∣E [f̃(x+Xt)− f̃(x)
]∣∣∣ in the right-hand

side of (3.B.2) goes to zero as well. Let ε > 0 be a fixed positive real. Since f̃ is
uniformly continuous, then there is δ > 0 such that

∀x, y |x− y| < δ ⇒ |f̃(x)− f̃(y)| < ε

2
.

Moreover, since X is continuous in probability

∃t0 > 0, such that ∀t < t0, P(|Xt| > δ) <
ε

4 ‖f‖E
.
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For all x ∈ R, t < t0 we have∣∣∣E [f̃(x+Xt)− f̃(x)
]∣∣∣ ≤ E

[∣∣∣f̃(x+Xt)− f̃(x)
∣∣∣1{|Xt|≤δ}]+ E

[∣∣∣f̃(x+Xt)− f̃(x)
∣∣∣1{|Xt|>δ}]

≤ ε

2
+ 2 ‖f‖E P(|Xt| > δ)

≤ ε.

Since the inequality above is valid for every x ∈ R, then

sup
x∈R

∣∣∣E [f̃(x+Xt)− f̃(x)
]∣∣∣ t→0−−→ 0.

This concludes the proof that P is a strongly continuous semigroup.

Remark 3.B.2. Note that the semigroup (Pt) is not a contraction. In fact, if f ∈ E, t > 0,
then

‖Ptf‖E = sup
x∈R

∣∣∣∣E [f(x+Xt)

1 + x2

]∣∣∣∣ . (3.B.3)

Let f0(x) = 1 + x2 and denote again c1 = E [X1] and c2 = Var(X1). Obviously f0 ∈ E,
‖f0‖E = 1 and

‖Ptf0‖E = sup
x∈R

E
[

1 + (x+Xt)
2

1 + x2

]
= 1 + sup

x≥0

2x|c1|t+ c2t+ c2
1t

2

1 + x2
(3.B.4)

= 1 + |c1|t+ c2
1t

2.

Hence (Pt) cannot be not a contraction since

‖Pt‖ ≥ ‖Ptf0‖E > 1.

On the other hand, for f ∈ E, (3.B.3) gives

‖Ptf‖E ≤ ‖f‖E ‖Ptf0‖E .

By (3.B.4) this implies that

‖Pt‖ ≤ 1 + (|c1|+ c2)t+ c2
1t

2.

So, there exists a positive real ω > 0 such that

‖Pt‖ ≤ eωt.

Semigroups verifying the latter inequality are called quasi-contractions, see Pazy [1983].
For instance, [Pazy, 1983, Corollary 3.8] implies that

∀λ > ω, λI − L is invertible. (3.B.5)
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At this point we show that the space E2
0 , defined in (3.2.21), is a subset of D(L)

and that formula (3.B.1) remains valid in E2
0 . This will be done adapting a technique

described in [Sato, 2013, Theorem 31.5], where it is stated that C2
0 is included inD(L0).

The main tool used for the proof of [Sato, 2013, Theorem 31.5] is the small time asymp-
totics

lim
t→0

1

t
E [g(Xt)] =

∫
g(x)ν(dx), (3.B.6)

which holds for bounded continuous function g vanishing on a neighborhood of the
origin, see [Sato, 2013, Corollary 8.9]. This result has been extended to a class of un-
bounded functions by [Figueroa-López, 2008, Theorem 1.1]. (3.B.6) is used in [Figueroa-

López, 2008, Proposition 2.3] to prove that the quantity lim
t→0

Ptg − g
t

(x) converges point-

wise, under some suitable conditions on the function g.

We state a similar lemma below.

Lemma 3.B.3. Let f ∈ E2
0 . For all x ∈ R, the quantity

lim
t→0

Ptf − f
t

(x) (3.B.7)

exists and equals the right-hand side of (3.B.1).

Remark 3.B.4.

1) To be self-contained, we give below a simple proof of Lemma 3.B.3, in the case when X
is a square integrable pure jump process.

2) Later we will need to show that the point-wise convergence (3.B.7) holds according to
the norm of E.

Proof. Let f ∈ E2
0 . First, we verify that the integral∫ (

f(x+ y)− f(x)− yf ′(x)1|y|<1

)
ν(dy) (3.B.8)

is well-defined for all x ∈ R, taking into account
∫
y2ν(dy) <∞ by (3.2.22).

In fact, by Taylor expansion and since f ∈ E2
0 , then for every x ∈ R there exist

a, b ≥ 0 such that, for all y ∈ R

|f(x+ y)− f(x)|1|y|≥1 ≤ a(y2 + 1)1|y|≥1,

|f(x+ y)− f(x)− f ′(x)y|1|y|<1 ≤ by2
1|y|<1.

Let t > 0, x ∈ R. By Taylor expansion and Fubini theorem, recalling that Ptf(x) =

E [f(x+Xt)] we have

Ptf − f
t

(x) = c1f
′(x) +

∫ 1

0
(1− a)

1

t
E
[
f
′′
(aXt + x)X2

t

]
da.

By abuse of notation, we denote by L0f(x) the integral (3.B.8). Taking into account
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(3.2.23) we have

L0f(x) = c1f
′(x) +

∫ (
f(x+ y)− f(x)− yf ′(x)

)
ν(dy)

= c1f
′(x) +

∫ 1

0
(1− a)

∫
R
y2f

′′
(ay + x)ν(dy)da. (3.B.9)

Hence, it remains to show that (x being fixed)

Ptf − f
t

(x)− L0f(x) =

∫ 1

0
(1− a)

(1

t
E
[
X2
t f
′′
(aXt + x)

]
−
∫
R
y2f

′′
(ay + x)ν(dy)

)
da

−−→
t→0

0.

(3.B.10)

For a ∈ [0, 1], we denote g(y) = y2f
′′
(ay + x). We have g(y) ∼

y→0
y2f

′′
(x). If f

′′
(x) 6= 0,

then [Figueroa-López, 2008, Theorem 1.1] (ii) implies that

lim
t→0

1

t
E [g(Xt)] =

∫
R
g(y)ν(dy). (3.B.11)

If f
′′
(x) = 0, then g(y) = o(y2) and (3.B.11) is still valid by [Figueroa-López, 2008,

Theorem 1.1] (i). We conclude to the validity of (3.B.10) by Lebesgue dominated con-
vergence theorem taking into account that f

′′
is bounded.

As observed in a similar case in [Figueroa-López, 2008, Remark 2.4], we will prove
that the point-wise convergence proved in Lemma 3.B.7 holds in the strong sense.

For this purpose, we introduce the linear subspace

Ẽ =
{
f ∈ C such that f̃ := x 7→ f(x)

1 + x2
is vanishing at infinity

}
of E. It it is easy to show that Ẽ is closed in E so that it is a Banach subspace of E.

Lemma 3.B.5. Let f, g ∈ Ẽ, such that

lim
t→0

Ptf − f
t

(x) = g(x), ∀x ∈ R. (3.B.12)

Then f ∈ D(L) and Lf = g.

Proof. We first introduce a restriction P̃ of the semigroup P to the linear subspace Ẽ.
By Lebesgue dominated convergence theorem and the fact that 1+(Xt+x)2

1+x2
≤ 2(|Xt|2 +

1), one can show that Ptf ∈ Ẽ for any f ∈ Ẽ, t ≥ 0. Hence (P̃t) is a semigroup on Ẽ;
we denote by L̃ its infinitesimal generator.

As in [Sato, 2013, Lemma 31.7], we denote by L#f = g, the operator defined by
the equation (3.B.12) for f, g ∈ Ẽ and by D(L#) its domain, i.e. the set of functions f
for which (3.B.12) exists. Then L# is an extension of L̃.
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Fix q > |c1|+ c2. We prove first that

∀f ∈ D(L#) (qI − L#)f = 0⇒ f = 0. (3.B.13)

Let f ∈ D(L#) such that (qI−L#)f = 0. We denote f− = −(f ∧0) and f+ = f ∨0.
Suppose that f+ 6= 0. Since f̃+ is continuous and vanishing at infinity, there exists x1

such that f
+(x1)
1+x21

= max
x

f+(x)

1 + x2
> 0. Moreover f(x1) = f+(x1) . Then

E [f(x1 +Xt)− f(x1)]

t
≤ 1

t

(
f(x1)

E
[
1 + (x1 +Xt)

2
]

1 + x2
1

− f(x1)

)
.

Passing to the limit when t→ 0 it follows

L#f(x1) ≤ f(x1)(|c1|+ c2).

Then
(q − |c1| − c2)f(x1) ≤ 0,

which contradicts the fact that f(x1) > 0. Hence, f+ = 0. With similar arguments, we
can show that f− = 0 and so f = 0, which proves (3.B.13).

By restriction, (P̃t) fulfills ‖P̃t‖ ≤ eωt, in particular it is a quasi-contraction semi-
group, so by (3.B.5), we can certainly choose q > max(|c1| + c2, ω), so that qI − L̃ is
invertible and R(qI − L̃) = Ẽ.
We observe that D(L̃) ⊂ D(L#). Let now f ∈ D(L#); then (qI − L#)f ∈ Ẽ =

R(qI − L̃). Consequently, there is v ∈ D(L̃) such that (qI − L#)f = (qI − L̃)v. So,
(qI − L#)(f − v) = 0.

By (3.B.13), (qI − L#) is injective, so f = v and f ∈ D(L̃). Consequently L̃f is
given by g defined in (3.B.12). Finally, the fact that D(L̃) ⊂ D(L) and L̃ is a restriction
of L allow to conclude the proof of Lemma 3.B.5.

We continue the proof of Theorem 3.2.18 making use of Lemmas 3.B.3 and Lemma
3.B.5.
First, let us prove that E2

0 ⊂ Ẽ. Indeed by Taylor expansion, we have, for f ∈ E2
0

f(x)

1 + x2
=

f(0)

1 + x2
+

x

1 + x2
f ′(0) +

x2

1 + x2

∫ 1

0
(1− α)f ′′(xα)dα.

Since limx→∞ f
′′(xα) = 0 for all α ∈]0, 1[, then by Lebesgue theorem, we have that

limx→∞
f(x)
1+x2

= 0, so f ∈ Ẽ.

By Lemma 3.B.3, it follows

lim
t→0

Ptf − f
t

(x) = L0f(x), ∀x ∈ R,

where L0 is given in (3.B.8). In order to apply Lemma 3.B.5, it remains to show that
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L0f ∈ Ẽ. Using relation (3.B.9), for x ∈ R we get

L0f(x)

1 + x2
= c1

f ′(x)

1 + x2
+

∫ 1

0
(1− a)

∫
R
y2 f

′′
(ay + x)

1 + x2
ν(dy)da.

Since f ∈ E2
0 , then f ′′ is bounded and f ′ has linear growth. So, the fact that

∫
R y

2ν(dy) <

∞ implies indeed limx→∞
L0f(x)
1+x2

= 0 and L0f ∈ Ẽ.
Finally, Lemma 3.B.5 implies that E2

0 ⊂ D(L) and for f ∈ E2
0 , Lf is given by

(3.2.25).
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P. Hénaff et C. Martini. Model validation: theory, practice and perspectives. The Journal
of Risk Model Validation, 5(3):15, 2011.

V. Henderson et D. Hobson. Substitute hedging. Risk, 15:171–75, 2002.

P. Henry-Labordère et N. Touzi. An explicit martingale version of Brenier’s theorem.
Preprint arXiv:1302.4854v1., 2013.

P. Henry-Labordère, X. Tan, et N. Touzi. An explicit martingale version of the one-
dimensional Brenier’s theorem with full marginals constraint. Available at SSRN
2335969, 2014.

A. Hirsa, G. Courtadon, et D. B. Madan. The effect of model risk on the valuation of
barrier options. The Journal of Risk Finance, 4(2):47–55, 2003. doi: 10.1108/eb022961.

D. Hobson. The Skorokhod embedding problem and model-independent bounds for
option prices. In Paris-Princeton Lectures on Mathematical Finance 2010, volume 2003
of Lecture Notes in Math., pages 267–318. Springer, Berlin, 2011. doi: 10.1007/978-3-
642-14660-2˙4.

D. Hobson et M. Klimmek. Robust price bounds for the forward starting straddle.
Finance Stoch., 19(1):189–214, 2015. doi: 10.1007/s00780-014-0249-4.

D. Hobson et A. Neuberger. Robust bounds for forward start options. Math. Finance,
22(1):31–56, 2012. doi: 10.1111/j.1467-9965.2010.00473.x.

Quantification of the model risk in finance and related problems Ismail Laachir 2015

http://dx.doi.org/10.1080/17442508.2013.774402
http://dx.doi.org/10.1080/17442508.2013.774402
http://dx.doi.org/10.1007/BF00699039
http://dx.doi.org/10.1007/BF00699039
http://dx.doi.org/10.1080/14697680802596856
http://dx.doi.org/10.1080/14697680802596856
http://arxiv.org/abs/1312.3789
http://dx.doi.org/10.1108/eb022961
http://dx.doi.org/10.1007/978-3-642-14660-2_4
http://dx.doi.org/10.1007/978-3-642-14660-2_4
http://dx.doi.org/10.1007/s00780-014-0249-4
http://dx.doi.org/10.1111/j.1467-9965.2010.00473.x


158 BIBLIOGRAPHY

D. G. Hobson. Robust hedging of the lookback option. Finance and Stochastics, 2, 08
1998. doi: 10.1007/s007800050044.

F. Hubalek, J. Kallsen, et L. Krawczyk. Variance-optimal hedging for processes with
stationary independent increments. Ann. Appl. Probab., 16(2):853–885, 2006. doi:
10.1214/105051606000000178.

J. Hull et W. Suo. A methodology for assessing model risk and its application to the
implied volatility function model. Journal of Financial and Quantitative Analysis, 37:
297–318, 6 2002. doi: 10.2307/3595007.

H. Hulley et T. A. McWalter. Quadratic hedging of basis risk. Research Paper Series 225,
Quantitative Finance Research Centre, University of Technology, Sydney, 2008.

N. Jacob. Pseudo differential operators and Markov processes. Vol.I. Imperial College Press,
London, 2001. ISBN 1-86094-293-8. doi: 10.1142/9781860949746. Fourier analysis
and semigroups.

J. Jacod et A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemati-
cal Sciences]. Springer-Verlag, Berlin, second edition, 2003. ISBN 3-540-43932-3. doi:
10.1007/978-3-662-05265-5.

A. Jacquier et P. Roome. Asymptotics of forward implied volatility. arXiv preprint
arXiv:1212.0779, 2012.

L. Kantorovich. On the transfer of masses (in russian). 37(2):227–229, 1942.

L. V. Kantorovich. On a problem of Monge. Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI), 312(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11):
15–16, 1948. doi: 10.1007/s10958-006-0050-9.

I. Karatzas et S. E. Shreve. Brownian motion and stochastic calculus, volume 113 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991. ISBN
0-387-97655-8. doi: 10.1007/978-1-4612-0949-2.

N. Krylov. On the relation between differential operators of second order and the
solutions of differential equations. Krylov, N.V., et al. (eds.) Steklov Seminar, pages
214–229, 1985.
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Résumé

L’objectif central de la thèse est d’étudier diverses mesures
du risque de modèle, exprimées en terme monétaire, qui
puissent être appliquées de façon cohérente à une collec-
tion hétérogène de produits financiers. Les deux premiers
chapitres traitent cette problématique, premièrement d’un
point de vue théorique, ensuite en menant un étude em-
pirique centrée sur le marché du gaz naturel. Le troisième
chapitre se concentre sur une étude théorique du risque dit
de base (en anglais basis risk). Dans le premier chapitre,
nous nous sommes intéressés à l’évaluation de produits
financiers complexes, qui prend en compte le risque de
modèle et la disponibilité dans le marché de produits dérivés
basiques, appelés aussi vanille. Nous avons en particulier
poursuivi l’approche du transport optimal (connue dans la
littérature) pour le calcul des bornes de prix et des stratégies
de sur (sous)-couverture robustes au risque de modèle.
Nous reprenons en particulier une construction de proba-
bilités martingales sous lesquelles le prix d’une option ex-
otique atteint les dites bornes de prix, en se concentrant
sur le cas des martingales positives. Nous mettons aussi
en évidence des propriétés significatives de symétrie dans
l’étude de ce problème. Dans le deuxième chapitre, nous
approchons le problème du risque de modèle d’un point
de vue empirique, en étudiant la gestion optimale d’une
unité de gaz naturel et en quantifiant l’effet de ce risque
sur sa valeur optimale. Lors de cette étude, l’évaluation
de l’unité de stockage est basée sur le prix spot, alors
que sa couverture est réalisée avec des contrats à termes.
Comme mentionné auparavant, le troisième chapitre met
l’accent sur le risque de base, qui intervient lorsque l’on
veut couvrir un actif conditionnel basé sur un actif non-
traité (par exemple la température) en se servant d’un porte-
feuille constitué d’actifs traités sur le marché. Un critère
de couverture dans ce contexte est celui de la minimisation
de la variance qui est étroitement lié à la décomposition
dite de Föllmer-Schweizer. Cette décomposition peut être
déduite de la résolution d’une certaine équation différentielle
stochastique rétrograde (EDSR) dirigée par une martingale
éventuellement à sauts. Lorsque cette martingale est un
mouvement brownien standard, les EDSR sont fortement as-
sociées aux EDP paraboliques semilinéaires. Dans le cas
général nous formulons un problème déterministe qui étend
les EDPs mentionnées. Nous appliquons cette démarche à
l’important cas particulier de la décomposition de Föllmer-
Schweizer, dont nous donnons des expressions explicites de
la décomposition du payoff d’une option lorsque les sous-
jacents sont exponentielles de processus additifs.

Abstract

The main objective of this thesis is the study of the model
risk and its quantification through monetary measures. On
the other hand we expect it to fit a large set of complex
(exotic) financial products. The first two chapters treat the
model risk problem both from the empirical and the theo-
retical point of view, while the third chapter concentrates
on a theoretical study of another financial risk called basis
risk. In the first chapter of this thesis, we are interested in
the model-independent pricing and hedging of complex fi-
nancial products, when a set of standard (vanilla) products
are available in the market. We follow the optimal transport
approach for the computation of the option bounds and the
super (sub)-hedging strategies. We characterize the optimal
martingale probability measures, under which the exotic op-
tion price attains the model-free bounds; we devote special
interest to the case when the martingales are positive. We
stress in particular on the symmetry relations that arise when
studying the option bounds. In the second chapter, we ap-
proach the model risk problem from an empirical point of
view. We study the optimal management of a natural gas
storage and we quantify the impact of that risk on the gas
storage value. As already mentioned, the last chapter con-
centrates on the basis risk, which is the risk that arises when
one hedges a contingent claim written on a non-tradable but
observable asset (e.g. the temperature) using a portfolio of
correlated tradable assets. One hedging criterion is the mean-
variance minimization, which is closely related to the cele-
brated Föllmer-Schweizer decomposition. That decomposition
can be deduced from the resolution of a special Backward
Stochastic Differential Equations (BSDEs) driven by a càdlàg
martingale. When this martingale is a standard Brownian
motion, the related BSDEs are strongly related to semi-linear
parabolic PDEs. In that chapter, we formulate a determinis-
tic problem generalizing those PDEs to the general context of
martingales and we apply this methodology to discuss some
properties of the Föllmer-Schweizer decomposition. We also
give an explicit expression of such decomposition of the op-
tion payoff when the underlying prices are exponential of ad-
ditives processes.
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