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Résumé

Cette these est consacrée a ’étude de la régularité des solutions des équations de Monge-
Ampere complexes ainsi que des équations hessiennes complexes dans un domaine borné
de C™.

Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel.

Dans le deuxieme chapitre, on étudie le module de continuité des solutions du probléme de
Dirichlet pour les équations de Monge-Ampere lorsque le second membre est une mesure
a densité continue par rapport a la mesure de Lebesgue dans un domaine strictement
hyperconvexe lipschitzien.

Dans le troisieme chapitre, on prouve la continuité hélderienne des solutions de ce probleme
pour certaines mesures générales.

Dans le quatrieme chapitre, on considere le probleme de Dirichlet pour les équations
hessiennes complexes plus générales ou le second membre dépend de la fonction inconnue.
On donne une estimation précise du module de continuité de la solution lorsque la densité
est continue. De plus, si la densité est dans LP, on démontre que la solution est Holder-
continue jusqu’au bord.

Mots-clés

Probléme de Dirichlet, Opérateur de Monge-Ampere, Mesure de Hausdorff-Riesz, Fonction
m-sousharmonique, Opérateur hessien, Capacité, Module de continuité, Principe de com-
paraison, Théoreme de stabilité, Domaine strictement hyperconvexe lipschitzien, Domaine
strictement m-pseudoconvexe.






Abstract

In this thesis we study the regularity of solutions to the Dirichlet problem for complex
Monge-Ampeére equations and also for complex Hessian equations in a bounded domain of
c.

In the first chapter, we give basic facts in pluripotential theory.

In the second chapter, we study the modulus of continuity of solutions to the Dirichlet
problem for complex Monge-Ampeére equations when the right hand side is a measure
with continuous density with respect to the Lebesgue measure in a bounded strongly
hyperconvex Lipschitz domain.

In the third chapter, we prove the Holder continuity of solutions to this problem for some
general measures.

In the fourth chapter, we consider the Dirichlet problem for complex Hessian equations
when the right hand side depends on the unknown function. We give a sharp estimate
of the modulus of continuity of the solution as the density is continuous. Moreover, for
the case of LP-density we demonstrate that the solution is Holder continuous up to the
boundary.

Keywords

Dirichlet problem, Monge-Ampeére operator, Hausdorff-Riesz measure, m-subharmonic
function, Hessian operator, Capacity, Modulus of continuity, Comparison principle, Stabil-
ity theorem, Strongly hyperconvex Lipschitz domain, Strongly m-pseudoconvex domain.
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Chapter 0

Introduction

In this thesis we study the regularity of solutions to the Dirichlet problem for complex
Monge-Ampére equations and, more generally, for complex Hessian equations in a bounded
domain of C™.

Pluripotential theory became a branch of mathematical research in the last decades and
the complex Monge-Ampeére equation was studied extensively by many mathematicians.

Two influential works have been the work by Yau [Yau78] on non-degenerate equa-
tions on compact Kéahler manifolds, and by Bedford-Taylor [BT76] on generalized weak
solutions in the sense of pluripotential theory. They proved [BT76] that the complex
Monge-Ampeére operator has a sense for a non-smooth locally bounded plurisubharmonic
function and there exists a continuous solution to the Dirichlet problem in a bounded
strongly pseudoconvex domain with smooth boundary.

Since then, there has been considerable further progress, it was proved in [CKNS85]
the smoothness of the solution to the Dirichlet problem in the case of non-degenerate
smooth density and smooth boundary data.

Kolodziej demonstrated [Ko98, Ko99] that the Dirichlet problem still admits a unique
weak continuous solution when the right hand side of the complex Monge-Ampere equation
is a measure satisfying some sufficient condition which is close to be best possible. Further-
more, for the degenerate complex Monge-Ampére equation on compact Kéhler manifolds
he established [K098] a uniform a priori estimate which generalizes the celebrated a priori
estimate of Yau [Yau78].

A viscosity approach to the complex Monge-Ampeére equation has been developed
by Eyssidieux, Guedj and Zeriahi in [EGZ11] on compact Kéhler manifolds and they
compare viscosity and potential solutions. In the local context, Wang [Wan12] studied the
existence of a viscosity solution to the Dirichlet problem for the complex Monge-Ampeére
equation and estimated the modulus of continuity of the solution in terms of that of a
given subsolution and of the right hand side.

Some results have been known about the Hélder regularity of the solution to this prob-
lem for measures absolutely continuous with respect to the Lebesgue measure. Bedford and
Taylor [BT76] studied the Hélder continuity of the solution by means of Holder continuity
of the density and the boundary data. Guedj, Kotodziej and Zeriahi [GKZ08] established
Holder regularity of solutions for LP- densities bounded near the boundary of strongly
pseudoconvex domain.

In the compact case, there are many works in this area [Ko08, Ph10, DDGHKZ14] which
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exceed the scope of this thesis.

We are also interested in studying the complex Hessian equation in a bounded domain
of C". This equation corresponds to the elementary symmetric function of degree 1 < m <
n. When m = 1, this equation corresponds to the Poisson equation which is classical. The
case m = n corresponds to the complex Monge-Ampeére equation.

The complex Hessian equation is a natural generalisation of the complex Monge-
Ampere equation and has some geometrical applications. For examples, this equation
appears in problems related to quaternionic geometry [AV10] and in the work [STW15]
for solving Gauduchon’s conjecture. Its real counterpart has been developed in the works of
Trudinger, Wang and others (see for example [W09]). This all gives us a strong motivation
to study the existence and regularity of weak solutions to complex Hessian equations.

The complex Hessian equation is a new subject and is much more difficult to handle
than the complex Monge-Ampeére equation (e.g. the m-subharmonic functions are not
invariant under holomorphic change of variables, for m < n). Despite these difficulties,
the pluripotential theory which was developed for the complex Monge-Ampeére equation
can be adapted to the complex Hessian equation [B05, DK14, Lul2, SA12]. Blocki [BI05]
introduced some elements of the potential theory for m-subharmonic functions and proved
the existence of continuous solution for the homogeneous Dirichlet problem in the unit
ball. Dinew and Kotodziej [DK14] used pluripotential techniques adapted for the complex
Hessian equation to settle the question of the existence of weak solutions to the Dirichlet
problem. H. C. Lu introduced in [Lul2, Lul5| finite energy classes of m-subharmonic
functions and developed a variational approach to complex Hessian equations. The non-
degenerate complex Hessian equation on compact Kéahler manifold with smooth density
has been studied in [Hou09], [HMW10], [Jb12] and the degenerate case was treated in
[Lul3a] and [DK14]. H.C. Lu persisted in investigating a viscosity approach to complex
Hessian equations in his paper [Lul3b].

Now we will present an overview of the main results of this thesis. First, for the sake of
convenience we recall some notations. We denote by dV5s,, the Lebesgue measure in C™ and
LP(Q) stands for the usual LP-space with respect to the Lebesgue measure in a bounded
domain Q. We use d = 9+0 and d° = (i/4)(0—9), where 0 and 0 are the usual differential
operators. Here and subsequently, we use the notation :

() = {v e C(Q); [lvlls < +oo},
for 0 < B8 <1, and the S-Holder norm is given by

[v(z) = v(y)]

— 3 cny ey,
12 =yl

|lv]|g = sup {|U(z)] 1z € Q} + sup {
We mean by C*?(Q), with & > 1 and 0 < § < 1, the class of functions which have
continuous partial derivatives of order less than k, and whose k-th order partial derivatives
satisfy a Holder condition of order f3.
The Dirichlet problem for complex Monge-Ampeére equations. It asks for a
function, u, plurisubharmonic on € and continuous on  such that

(0.0.1) (dd°u)"™ = fdu, and u = ¢ on 01,

where ¢ € C(0Q), 11 is a nonnegative finite Borel measure on Q and 0 < f € L'(€, ).
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In Chapter 2, we consider this problem in a bounded strongly hyperconvex Lipschitz
domain of C™ with continuous densities with respect to the Lebesgue measure. Then we
prove in Section 2.5 a sharp estimate for the modulus of continuity of the solution.

Theorem 0.0.1. Let 2 C C" be a bounded strongly hyperconvex Lipschitz domain, ¢ €
C(09Q) and 0 < f € C(Q). Assume that wy, is the modulus of continuity of ¢ and Wei/n 1S
the modulus of continuity of f1/™. Then the modulus of continuity of the unique solution
U to (0.0.1) has the following estimate
1
() <1+ IV ) macfs (172), wpu/m (0), 877},
where 1 is a positive constant depending on €.

In [GKZ08], Guedj, Kolodziej and Zeriahi proved the Holder continuity of the solution
to (0.0.1) when ¢ € CH1(99Q) and f € LP(Q), for p > 1, is bounded near the boundary
€. Recently N.C. Nguyen [N14] proved that the solution is Holder continuous when the
density f satisfies a growth condition near 92. Our next result in Chapter 3 concerns the
Holder regularity of the solution when the density is merely in LP(2), p > 1. Moreover, we
improve the Hoélder exponent while p > 2 by using the relation between real and complex
Monge-Ampere operators.

Theorem 0.0.2. Let Q) C C" be a bounded strongly hyperconvez Lipschitz domain. Assume
that p € CH1(0Q) and f € LP(Q) for some p > 1. Then the unique solution U to (0.0.1) is
y-Hélder continuous on Q for any 0 < v < 1/(nq+1) where 1/p+1/q = 1. Moreover, if p >
2, then the solution U is Holder continuous on Q of exponent less than min{1/2,2/(ng+1)}.

In the same chapter, we study the Holder regularity of the solution to the Dirichlet
problem for a Hausdorff-Riesz measure of order 2n — 2 + ¢, with 0 < € < 2, that is a
non-negative Borel measure satisfies the condition

w(B(z,r)NQ) < Cr¥=2re vz e Q, Vo< r <1,

for some positive constant C. These measures are singular with respect to the Lebesgue
measure, for 0 < € < 2, and there are many nice examples (see Example 3.5.6).
More precisely, we prove in Section 3.5 the following theorems.

Theorem 0.0.3. Let Q be a bounded strongly hyperconvexr Lipschitz domain in C™ and p
be a Hausdorff-Riesz measure of order 2n—2-+¢, for 0 < e < 2. Suppose that o € C1(98)
and 0 < f € LP(Q, u) for some p > 1, then the unique solution to the Dirichlet problem
(0.0.1) is Hélder continuous on Q of exponent ev/2, for any 0 < v < 1/(ng + 1) where

1/p+1/q=1.

When the boundary data is merely Holder continuous, we can still prove the Holder
regularity of the solution using the last theorem.

Theorem 0.0.4. Let Q) be a bounded strongly hyperconvex Lipschitz domain in C™ and u be
a Hausdorff-Riesz measure of order 2n — 2+ ¢, for 0 < € < 2. Suppose that p € C*(0Q),
0 <a<land 0 < f € LP(Q,un), for some p > 1, then the unique solution to the
Dirichlet problem (0.0.1) is Holder continuous on Q of exponent g min{a, ey}, for any
0<vy<1/(ng+1) where 1/p+1/q=1.

Moreover, when §) is a smooth strongly pseudoconvexr domain the Holder exponent will
be 5 min{a, ey}, for any 0 <~y <1/(ng+1).
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A natural question is that if we have a Holder continuous subsolution to the Dirichlet
problem, can we get a Holder continuous solution in the whole domain?
This question is still open in the local case (see [DDGHKZ14] for a positive answer in the
compact setting). However, we prove some particular case.

Theorem 0.0.5. Let p be a nonnegative finite Borel measure on a bounded strongly hy-
perconvex Lipschitz domain Q. Let also o € CO%(09Q), 0 < a <1 and 0 < f € LP(Q, ),
p > 1. Assume that there exists a Holder continuous plurisubharmonic function w in
such that (dd°w)™ > p. If, near the boundary, p is Hausdorff-Riesz of order 2n — 2+ € for
some 0 < € < 2, then the solution U to (0.0.1) is Holder continuous on €.

The Dirichlet problem for complex Hessian equations. It consists in finding a
function w which is m-subharmonic in €2 and continuous on €2 such that

(0.0.2) (ddu)™ A "™ = fdVa, and u = ¢ on 02,

where p € C(9Q) and 0 < f € L1(9).
We first prove in Chapter 4 a sharp estimate for the modulus of continuity of the
solution when the density is continuous and depends on the unknown function.

Theorem 0.0.6. Let 2 be a smoothly bounded strongly m-pseudoconvex domain in C",
p € C(ON) and 0 < F € C(2 x R) be a nondecreasing function in the second variable.
Then the modulus of continuity wy of the solution U to

u € SH,(2) NC(Q),
(ddu)™ A "™ = F(z,u)dVa, in €,
U= on 0L,

satisfies the following estimate
1/m
wn(t) < YU+ 1P ) max (e (), wpnym (5,817},

where 7y is a positive constant depending only on Q, K = Q x {a}, a = supyq |¢| and
wpi/m(t) is given by

wpym(t) = sup  sup  |FY™(z1,y) — FY™(2,y)),
ye[—M,M] |Zl—22|§t

with M = a + 2 diam(Q)? supg FV/™(., —a).

For densities in LP(2), p > n/m, N. C. Nguyen [N14] proved that the solution to (0.0.2)
is Holder continuous when the density f satisfies some condition near the boundary. Here,
we prove the general case.

Theorem 0.0.7. Let 2 C C™ be a bounded strongly m-pseudoconvex domain with smooth
boundary, p € CLH(ON) and 0 < f € LP(Q), for some p > n/m. Then the solution to
(0.0.2), U € CO(Q) for any 0 < o < 71, where 1 is a constant depending on m, n, p
defined by (4.5.1).

Moreover, if p > 2n/m then the solution to the Dirichlet problem U € C%(Q), for any
0 < a < min{},2v}.
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In the particular case of radially symmetric solution in the unit ball, we are able to
find a better Holder exponent which turns out to be optimal.

Theorem 0.0.8. Let B be the unit ball and 0 < f € LP(B) be a radial function, where
p > n/m. Then the unique solution U for (0.0.2) with zero boundary values is given by the

explicit formula
1 1 t on1 1/m
U(T):—B/ tgn/m_l(/o P f(P)dP> dt,

o ocm o \Tl/m 02— 20— .=
where B = (W) . Moreover, U € C° m» (B) forn/m < p < 2n/m and U € Lip(B)
forp>2n/m.
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Chapter 1

Preliminaries

1.1 Basic facts in pluripotential theory

In this section, some useful facts from pluripotential theory will be stated and then used
throughout this thesis. For further information about pluripotential theory, see for example
[K191], [De89], [Ko05] and [GZ15].

Note that, with a domain we mean a nonempty, open and connected set.

Definition 1.1.1. Let 2 C R™ be a domain. An upper semicontinuous function u : @ —
R U {—o0} is said to be subharmonic if, for every relatively compact open subset U of (2
and every continuous function A : U — R that is harmonic on U, we have the implication

u<honoU= u<honU.

It is well known in several complex variables that the class of subharmonic functions is
very large and the fact that the property of being subharmonic is then not invariant under
biholomorphic mappings. This fact motivates the theory of plurisubharmonic functions
and pluripotential theory.

In pluripotential theory one therefore studies a smaller class of subharmonic functions
whose composition with biholomorphic mappings are subharmonic. This class is precisely
the class of plurisubharmonic functions that will be defined below.

Definition 1.1.2. A function u : Q@ — RU{—o0} is called plurisubharmonic (briefly psh)
if it is upper semicontinuous in 2 and subharmonic on the intersection of €2 with any
complex line {a + b§; ¢ € C} where a,b € C".

We denote by PSH () the set of all plurisubharmonic functions in Q. We state here
some basic properties of psh functions.

Proposition 1.1.3. 1. Ifu,v € PSH(Q) then A\u+nv € PSH(Q), VA,n > 0.
2. Ifue PSH(Q2) and x : R — R is convex increasing function then x ou € PSH ().

3. Let {u;}jen be a decreasing sequence of psh functions in . Then w := lim;_, 4o u;
is psh function in €.

4. If u € PSH(Q) then the standard regularizations ue = u * p. are psh in Q. := {z €
Q| dist(z,090) > €}, for 0 <e< 1.
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5. Let U be a non-empty proper open subset of Q, if u € PSH(QY), v € PSH(U) and
limsup v(z) < u(y) for every y € OU N, then the function
Z—)y
zeU

o max{u,v} inU,
| u inQ\ U,

s psh in €.

6. Let {ua} C PSH(Q) be locally uniformly bounded from above and u = sup uy. Then
the upper semi-continuous reqularization u* is psh and equal to u almost everywhere.

One of the important reasons to study plurisubharmonic functions is that we can use
them to define pseudoconvex domains.

Definition 1.1.4. A domain Q C C™ is called pseudoconvex if there exists a continuous
plurisubharmonic function ¢ in € such that {z € Q;p(2) < ¢} € Q, for all ¢ € R.

An important class of pseudoconvex domains is the class of hyperconvex domains.

Definition 1.1.5. A domain  C C" is called hyperconvez if there exists a negative
continuous plurisubharmonic function 1 in Q such that {z € Q;¢(z) < ¢} € Q, for all real
c <0.

It is known that the Hartogs triangle is a pseudoconvex domain but not hyperconvex.
However, Demailly [De87] proved that any pseudoconvex domain with Lipschitz boundary
is a hyperconvex domain.

1.2 The complex Monge-Ampeére operator

Let 0,0 be the usual differential operators, d = 8 + 0 and d® = (i/4)(0 — 8). Then
dd° = (i/2)00.

If u € C%(Q) is a plurisubharmonic function, then the complex Monge-Ampére operator
is defined by

C n C C azu n
(dd“u)" = (dd°u) A ... A\ (dd°u) = det <8zj8§k> g,
where 3 := dd®|z|? = (i/2) > 7—1 dzj A dz; is the standard Kéhler form in C".
Note that 5™ = n! dVs,, where

dVa, = (i/2)nd21 ANdzy A ... Ndzp, N\ dzy,

is the usual volume form on R?" or C".

For n = 1, we have dd“u = (1/4)AudV, and we know that the Laplace operator is
well defined on all subharmonic functions. In the case n > 2 the complex Monge-Ampere
operator can not be extended in a meaningful way to the whole class of plurisubharmonic
functions and still have the range contained in the class of nonnegative Borel measures
(see Example 3.1 in [Ki83)).
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In 1976, Bedford and Taylor in their seminal work proved that the complex Monge-
Ampere operator is well-defined on locally bounded plurisubharmonic functions. They
defined inductively the following closed nonnegative current

dduy A ddug A ... N dduy, := dd(uiddug A ... A\ dduy,),

where uy, ua, ..., up € PSH(Q) N LS.(2).

Furthermore, Cegrell [Ce04] introduced and investigated the largest class of plurisub-
harmonic functions on which the operator (dd®.)" is well-defined.

The following inequality, named Chern-Levine-Nirenberg inequality, gives a bound on
the local mass of the non-negative measure dd“u; A... Add“w,, in terms of L°°-norms of u;’s
and hence ensures that these measures dduj A ... A dd®uy,, where u; € PSH(2) N LS. (£2),

loc
7 =1,...,n, are Radon measures.

Proposition 1.2.1. Let K € U & (), where K is compact and U is open. Let u; €
PSH(Q)NLS.(Q), j =1,2,...,n. Then there exists a constant C depending on K,U,$}
such that

[ddur A ... AN ddun |k < Cllua|| ooy llunll Loo @)

In [BT82] Bedford and Taylor showed that the complex Monge-Ampére operator is
continuous with respect to monotone sequences of locally bounded plurisubharmonic func-
tions. Later, Xing [Xi96] found out that the convergence in capacity (defined below) entails
the convergence of corresponding Monge-Ampeére measures and he showed that this con-
dition is quite sharp in some case.

Let © be a bounded domain in C™. For a Borel subset K of 2, we introduce the
Bedford-Taylor capacity

Cap(K,Q) = sup {/ (ddu)";u € PSH(Q2), -1 <wu < O}.
K

By proposition 1.2.1, it is clear that the capacity is finite when K is relatively compact
in €.

Definition 1.2.2. A sequence u; of functions defined in (2 is said to converge in capacity
to u if for any ¢ > 0 and K €

lim Cap(K N {|u—uj| >t},Q) =0.
j—00

The complex Monge-Ampeére operator is continuous with respect to sequences of locally
uniformly bounded psh functions converging in capacity.

Theorem 1.2.3. Let (ui);’il, k=1,....,n be a locally uniformly bounded sequence of psh
functions in Q and ui — up € PSH(Q) N LS.(Q) in capacity as j — +oo fork=1,...,n.
Then ' ‘

lim ddu] A ... A ddu), = dduy A ... A\ dduy,

Jj—00

in the weak sense of currents in §Q.

We mention some useful theorems about the quasi-continuity of psh functions and the
maximum principle.
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Theorem 1.2.4. Let u be a psh function in 2. Then for all € > 0, there exists an open
set G C Q) such that Cap(G,Q) < € and u|q\q) s continuous.

Theorem 1.2.5. Let u,v € PSH(Q) N L{S.(2). Then we have the following inequality in
the sense of Borel measures in §)

(dd® max{u,v})" > 1z (ddu)™ + 1oy (ddv)™.
One of the most effective tools in pluripotential theory is the following comparison
principle

Theorem 1.2.6. Assume that u,v € PSH ()N L;S.(Q) are such that iminf,_, 50 (u(z) —

v(z)) > 0, then
/ (dd°v)™ < / (dd°u)".
{u<v} {u<v}

Corollary 1.2.7. Assume that u,v € PSH(Q2)NL.(Q) are such that liminf, g0 (u(z) —

loc

v(2)) > 0. If (dd°u)™ < (ddv)™ as Radon measures on 2, then v < u in Q.
Finally, we introduce Dinew’s inequality for mixed Monge-Ampeére measures [Di09].

Theorem 1.2.8. Let u,v € PSH(Q) N L>®(Y). Let also f,g € LY(Q) be nonnegative
functions such that the following inequalities hold,

(dd°u)"™ > fdVay, (ddv)" > gdVay,.

Then -
(dd°u)® A (ddv)" ™% > frng w dVan, k=1,...,n.

1.3 Basic facts about m-subharmonic functions

In this section, we briefly recall some facts from linear algebra and basic results from
potential theory for m-subharmonic functions. We refer the reader to [B105, SA12, Lul2,
DK12, Lul3a, N13, DK14, Lul5] for more details and recent results.

We set

Hm()\) = Z )\jl"‘)\j'm’

1< < <m<n
where A = (A1, ..., \,) € R™
Thus (t+ A1)...(t + \) = i Hp, (M)t for t € R, where Hyp(\) = 1.
We denote by I, the 01(7)7;3(1)'6 of the connected component of {H,, > 0} containing
(1,1,...,1). One can show that
Ly ={AeR": Hy(A +t,....; 0, + 1) >0, Vt > 0}.

It follows from the identity

Hyp (M 4t A+ 1) = Z (n _p>Hp(/\)tm—p,
p=0 \"P TP
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that
Iy ={AeR": H;(\) >0, V1 <j <m}.

It is clear that I, C T'y,—1 C ... C 'y, where I'), = {\ € R" : \; > 0, Vi}.
By the paper of Garding [G59], the set I, is a convex cone in R™ and H% " is concave
on I';,,. By Maclaurin’s inequality, we get

n —1/m n —-1/p
( ) H%”S() HYP 1<p<m<n

Let H be the vector space over R of complex Hermitian n x n matrices. For any A € H,
let A(A) = (A1,..., A\n) € R™ be the eigenvalues of A. We set

Hin(A) = Hp(A(A)).
Now, we define the cone
Dp={AcH NA) T} ={AcH:H;j(A)>0,V1<j<m}
Let « be a real (1,1)-form determined by
a= % Z al;dzi N dzj,
i,

where A = (a;;) is a Hermitian matrix. After diagonalizing the matrix A = (a;;), we see
that
a™ AT =S () 8"

where /3 is the standard Kéhler form in C" and Sy, (a) = Wﬁm(/l)
The last equality allows us to define
L)y = {aeCqyyy:an B >0,02AB2>0, .., ™A BT > 0},

where C(j 1y is the space of real (1,1)-forms with constant coefficients.

Let M : C’&l €
symmetric and M(a, ...,a) = Sp(a), for any a € Cq ).
The Garding inequality (see [G59]) asserts that

) = R be the polarized form of S,,, i.e. M is linear in every variable,

(1.3.1) M(aq, g, ..., quy) > S’m(al)l/m...gm(am)l/m, Q1,2 ey Uy € L.
Proposition 1.3.1. ([Bt05]). If ay,...,ap € Ty, 1 < p < m, then we have
ar Nag Ao Ao NG > 0.
Let us set
Ymi={ac I',,, of constant coefficients such that S’m(a) =1}

Recall the following elementary lemma whose proof is included for the convenience of the
reader.
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Lemma 1.3.2. Let a € I',y,. Then the following identity holds

5,0 ()1 — in {a Aag A .. /\Biml A B

Proof. Let M be a polarized form of S, defined by

soy € Em,Vi} .

aNag A .. Aoy NPT
s 7

for a1, ..., m_1 € B, € ['y. By Garding’s inequality (1.3.1), we have

M(a, 1y ey am_l) =

M(a,aq,...;am-1) > Sp(a)V/™.

Then we obtain that

Sm(@)™ < in {0‘ R L -

we can ensure that

7S Em,VZ} .

: - _ - a
Now, setting a1 = ... = a1 = S(a)i/m

Mo, ar, ..., 1) = Sy ()™,

This completes the proof of lemma. Ol

Aspects about m-subharmonic functions. Let 2 C C™ be a bounded domain. Let also
B := dd®|z|? be the standard Kihler form in C".

Definition 1.3.3. ([Bl05]). Let u be a subharmonic function in 2.
1) For smooth case, u € C?() is said to be m-subharmonic (briefly m-sh) if the form dd“u
belongs pointwise to L.
2) For non-smooth case, u is called m-sh if for any collection ay, ag, ..., a;m—1 € . , the
inequality

dduNoag A oo A1 ABT™ >0

holds in the weak sense of currents in ).

We denote by SH,,(f2) the set of all m-sh functions in €. Blocki observed that up to
a point pluripotential theory can by adapted to m-subharmonic functions. We recall some
properties of m-sh functions.

Proposition 1.3.4 ([B105]). 1. PSH=SH, C SH,_1 C..C SH; =SH.
2. If u,v € SHpy, () then Au+nv € SHy,(2), YA, n > 0.
3. Ifue SHy, () and v : R — R is convex increasing function then v ou € SH,,(Q).

4. Let {uj}jen be a decreasing sequence of m-subharmonic functions in Q. Then u :=
lim; s o u; is m-subharmonic function in €.

5. If u € SH,,(R2) then the standard regularizations u. = u * p. are m-subharmonic in
Qe :={z € Q|dist(z,00) > €}, for 0 < e < 1.
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6. Let U be a nonempty proper open subset of Q. If u € SHpy,(2), v € SH,,(U), and
Ev(z) < u(y) for every y € OU NS, then the function
zeU

w max{u,v} inU,
| inQ\ U,

is m-sh in Q.

7. Let {uo} C SH,p () be locally uniformly bounded from above and u = sup u,. Then
the upper semi-continuous reqularization u* is m-sh and equal to u almost every-
where.

The following example was presented by S. Dinew in the international conference in
complex analysis and geometry AGC-2013 in Monastir (Tunisia).

Example 1.3.5. Let A be a nonnegative constant and define in C™ the function

-1
ulz) = (Im(z1)? + Im(22)* + ... + Im(zn)Q)A‘

We claim that u is m-sh in C" when A < %52 and m < |%]. In fact, set
ve(2) = Im(21)? + Im(20)* + ... + Im(2,) + e,
and y : RT — R~ such that x(t) = —t~*. An easy computation shows that

k / . k
(e (o)) A 5 = (0 (4 (w0)) N o gt O g,

Hence we get

n— Ak —
(dd®(x o ve))* A gk = o (=Dl MAD (n — 2k(A 4 1))dVay,.
Then we can conclude that for any ¢ > 0 the function x o v, is m-sh in C" if we have
A< (n—2m)/(2m) and m < |n/2].
Since x is increasing and v, decreases as € tends to zero, we get y o v \(u in C", thus
this yields u € SH,,,(C") when A < (n —2m)/(2m) and m < |n/2].

The following example shows that SH,,(2) is not invariant under a holomorphic map-
ping.

Example 1.3.6. We define the function
1
u(z) = |z1l* + [zf* - 5laf’, 2 € C
A simple computation shows that u € SHo(C?) and u ¢ PSH(C3).

Let f be a holomorphic mapping from C? to C? such that f(z) = (21, 22, v223). Then
it is easy to see that w o f is subharmonic but not 2-subharmonic.
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For locally bounded m-subharmonic functions, we can inductively define a closed non-
negative current (following Bedford and Taylor for plurisubharmonic functions).

dd®ui A ... Nddup, A BT = dd(urddug A ... A dduy A BT,

where w1, ug, ..., up € SHy, (Q) N L7S.(2), p < m.

loc

In particular, we define the nonnegative Hessian measure of w € SH,,(2) N Ljs,

(Q) to be
Hy,(u) == (ddu)™ A ™.
We can also use the following identity
du A d°u := (1/2)dd(u + C)* — (u + C)dd°u, where C is big enough,
to define the nonnegative current
dui A duy Addug A ... AN ddCu, A BT

where uy, ..., up € SHy, () N LS.(2), p < m.
One of the most important properties of m-subharmonic functions is the quasicontinu-
ity. Every m~-subharmonic function is continuous outside an arbitrarily small open subset.

The m-Capacity is used to measure the smallness of these sets.

Definition 1.3.7. Let £ C ) be a Borel subset. The m-capacity of FF with respect to €2
is defined to be

Cap,,(E, Q) := sup { /E(dalcu)m AL u e SH,(Q),—1 <u < 0}.

The m-capacity shares the same elementary properties as the capacity introduced by
Bedford and Taylor (see [SA12, DK14, Lul5)).
Proposition 1.3.8. 1. Cap,,(E1,) < Cap,,(E2,9), if E1 C Es.

2. Cap,,(E,Q) =lim;_,o Cap,,(E;,Q), if E; 1 E.

3. Cap,,(E,Q) <Y Cap,,(E;,Q), for E =UE;.
Definition 1.3.9. A sequence u; of functions defined in §2 is said to converge with respect
to Cap,, to a function w if for any ¢ > 0 and K & (2,

lim Cap,, (K N{|u—u;| >t}, Q) =0.

J—+o0
The following results can be proved by repeating the arguments in [Ko05].

Theorem 1.3.10. Let (Ui);ip k=1,...,m be a locally uniformly bounded sequence of m-

sh functions in Q and wj, — w, € SHy(Q)NLS.(Q) in Cap, as j — +oo fork=1,...,m.
Then ' ‘
dd®uw] A ... Addul, A BT = ddCuy A o A ddug, A BT

Importantly, the complex Hessian operator is continuous with respect to the decreasing
convergence.
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Theorem 1.3.11. Ifu; € SH,,(2)NL>*(R2) is a sequence decreasing to a bounded function
w in §, then (dd°uj)™ A "™ converges to (dd°u)™ A "™ in the weak sense of currents
in §2.

Theorem 1.3.12. Every m-subharmonic function u defined in Q) is quasi-continuous. This
means that for any positive number € one can find an open set U C Q with Cap,,(U,Q) < €
and such that u\Q\U is continuous.

Theorem 1.3.13. Let {ui}?’;l be a locally uniformly bounded sequence of m-subharmonic

unctions in Q) for k =1,2,...,m and let ul T up € SH,, () N LSS, almost everywhere as
k loc
j— o0 fork=1,2,....m. Then

ddw A ... A ddeud, A BT = ddCuy A .. A ddCu, A BT

Definition 1.3.14. Let Q be a bounded domain in C" and u € SH,,(Q2). We say that u
Is m-maximal if for every open set G € ) and for each upper semicontinuous function v
on G such that v € SH,,(G) and v < u on 9G, we have v < u in G.

Theorem 1.3.15 ([B105]). Let u € SH,,(2) N LyS.(2). Then Hy,(u) =0 in Q if and only
if u is m-mazimal.

Theorem 1.3.16 (Integration by parts). Letu,v € SHp,(Q)NL7S.(Q) such thatlim, g0 u =
hmz_)aQ v=0. Then

/ uddv AT = / vddu AT,
Q Q

where T = dd®uy A ... A dd®Upm—y A B"™ and uy, ..., um—1 € SHp () N L2 ().

loc

Theorem 1.3.17. For u,v € SH,,(2) N L .(Q2), we have
(dd® max{u,v})™ A B = 1yysey(ddu)™ A B 4 1<y (ddv)™ A "7,
where 1 is the characteristic function of a set E.

Theorem 1.3.18. Let Q be a bounded domain in C" and u,v € SH,,(Q2) N LS

loc(Q) be
such that liminfe_,p0(u —v)(() > 0. Then

/ (dd°v)™ A B < / (dd°u)™ A B
{u<v} {u<v}

Corollary 1.3.19. Under the same assumption of Theorem 1.3.18, if (dd°u)™ A "™ <
(dd“v)™ A B™~™ as Radon measures on 2, then v < u in €.

Corollary 1.3.20. Let Q be a bounded domain in C" and u,v € SH,, () N LS. () be
such that lim, 90 u(z) = lim, 9o v(z) and u < v in Q. Then

/Q (ddv)™ A B"T < /Q (dd°u)™ A ™.
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1.3.1 Cegrell’s inequalities for m-subharmonic functions

Let € be a bounded m-hyperconvex domain, that is, there exists a bounded continuous
m-sh function ¢ :  — R~ such that {¢ < ¢} € Q, for all ¢ < 0.
We recall the definition of the class £2 (€2).

Definition 1.3.21. We let £%(Q) denote the class of bounded functions v in SH,,(f)
such that lim,_,50 U(Z) =0 and fQ(ddc’L))m A BT < oo,

This class was introduced by Cegrell in [Ce98], for m = n, and was considered by Lu
in [Lulb].

Lemma 1.3.22. Let u,v,v1,...,um_1 € E9(Q) and T = ddvi A ... A ddvy,—1 A B,
Then we have

/Q(—u)ddcv ANT < (/Q(—u)ddcu A T) i (/Q(—v)ddcv A T)

Proof. 1t is enough to note that

1/2

(u,v) := / (—u)ddv AT
Q
is symmetric semi positive bilinear form (using integration by parts). the required inequal-

ity follows from the classical Cauchy-Schwarz inequality for the form (u,v). O]

The following proposition was proved by induction in [Ce04] for plurisubharmonic
functions and we can do the same argument for m-sh functions.

Proposition 1.3.23. Suppose that h,ui,us € E(Q), p,q > 1 such that p+ q < m and
T =ddgi A ... Ndd Gm—p—q N B*™, where g1, ..., Gm—p—q € ES(Q). Then we get

_b_ P
/ —h(dd°uy)P A (ddCus)? AT < { / —h(ddcul)erq/\T} o { / —h(ddus)PtI AT |7
Q Q Q

Proof. We first prove the statement for p = ¢ = 1. Thanks to the Cauchy-Schwarz in-
equality, we have
/ —hdd®uy A ddus AT = / —uiddug A dd°h AT
Q Q

1/2 1/2
< {/ —uydd®uy A ddh A T} U —ugddug N\ dd°h A T}
Q Q

_ UQ ~h(ddu)? A T} v Uﬂ ~h(ddus)? A T} v

The general case follows by induction in the same way as in [Ce04]. 0

We will need in this thesis the following particular case.

Corollary 1.3.24. Let uj,us € £2,(2). Then we have

m—1

/Q dd°uy A (dd°us)™ 1 A BT < { /Q (ddur)™ A ,anm} g { /Q (ddCup)™ A ™
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For m = n, we have the following result proved by Cegrell [Ce04].

Corollary 1.3.25. Let uj,ug € £ (). Then we have

n—1

3=

/Q dd°uy A (ddup)" ™ < [ /Q (dde)”}

{ /Q (ddcug)”} o
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Chapter 2

Modulus of continuity of the
solution to the Dirichlet problem

2.1 Introduction

Let Q be a bounded domain in C". Given ¢ € C(9f2) and 0 < f € L'(£2), we consider the
following Dirichlet problem:

u€ PSH(Q)NC(Q),
Dir(Q, ¢, f): 4 (ddu)™ = fp" in Q,
U= on 0f),

This problem was studied in the last decades by many authors. When € is a bounded
strongly pseudoconvex domain with smooth boundary and f € C(Q), Bedford and Taylor
showed that Dir(2, ¢, f) has a unique continuous solution U := U(£2, ¢, f). Furthermore,
it was proved in [BT76] that U € Lip,(Q) when ¢ € Lipya(09) and f1/" € Lip,(Q)
(0 < o < 1). In the nondegenerate case, i.e. 0 < f € C®(Q) and ¢ € C>°(9N), Caffarelli,
Kohn, Nirenberg and Spruck proved in [CKNS85] that U € C*°(Q). However a simple
example of Gamelin and Sibony shows that the solution is not, in general, better than
CHl-smooth when f > 0 and smooth (see [GS80]). Krylov proved that if ¢ € C3(92) and
Y7 e chi(Q), f >0 then Ue CHY(Q) (see [Kr89)).

For B-regular domains, Blocki [B196] proved the existence of a continuous solution to
the Dirichlet problem Dir(f2, ¢, f) when 0 < f € C(Q).

In this chapter which is based on my paper [Chlba], we consider the more general case
where € is a bounded strongly hyperconvex Lipschitz domain for which the boundary does
not need to be smooth (see the definition below) and we study the existence and regularity
of solutions to Dir(€2, ¢, f) when 0 < f € C(Q).

The principal result in this chapter gives a sharp estimate for the modulus of continuity
of the solution in terms of the modulus of continuity of the data ¢, f.

Theorem 2.1.1. Let 2 C C" be a bounded strongly hyperconvex Lipschitz domain, ¢ €
C(09Q) and 0 < f € C(Q). Assume that wy is the modulus of continuity of ¢ and wi/m is
the modulus of continuity of f1/™. Then the modulus of continuity of the unique solution
U to Dir(Q2, ¢, f) has the following estimate

wolt) < n(L+ 12 ) maxfwn (£12),wpn (), 172,
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where 1 is a positive constant depending on 2.

Remark 2.1.2. Here we will use an alternative description of the solution given by The-
orem 2.3.2 to get an optimal control for the modulus of continuity of this solution in a
strongly hyperconvex Lipschitz domain. This result was suggested by E. Bedford [Be8§]
and proved in the case of strictly convex domains with f = 0 [Be82].

We also consider the case when the density in the Dirichlet problem depends on the
unknown function:

u € PSH(Q) NC(Q),
(2.1.1) (ddu)"™ = F(z,u)p™ in €,
u= on 012,

where F : Q x R — Rt is a continuous function and nondecreasing in the second variable.

We can prove a sharp estimate for the modulus of continuity of the solution to (2.1.1).
Since the proof is similar to the one of Theorem 4.1.1 for complex Hessian equations, we
do not mention it in this chapter.

Theorem 2.1.3. Let Q be a bounded strongly hyperconvex Lipschitz domain in C™, ¢ €
C(0N) and 0 < F € C(Q x R) be a nondecreasing function in the second variable. Then
there exists a unique continuous solution U to (2.1.1) and its modulus of continuity satisfies
the following estimate

wU(t> < 7(1 + HFH},/‘;Z(K)) max{w@(t1/2)7wF1/" (t)atl/Q}a

where 7y is a positive constant depending only on Q, K = Q x {a}, a = supyq |¢| and
wpi/a(t) is given by

wpn(t) = sup  sup  |[FY"(z1,y) — FY"(20,y)),
ye[fM,M} |21722‘§t

with M := a + 2 diam(Q)? supg, F/"(., —a).

2.2 Basic facts

Definition 2.2.1. A bounded domain 2 C C" is called a strongly hyperconvex Lipschitz
(briefly SHL) domain if there exist a neighborhood €' of Q and a Lipschitz plurisubhar-
monic defining function p : Q' — R such that

1. Q={z € Q;p(z) <0} and 9Q = {p = 0},
2. there exists a constant ¢ > 0 such that ddp > ¢ in () in the weak sense of currents.
Example 2.2.2.

1. Let © be a strictly convex domain, that is, there exists a Lipschitz defining function
p such that p — c|z|? is convex for some ¢ > 0. It is clear that Q is a strongly
hyperconvex Lipschitz domain.
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2. A smooth strongly pseudoconvex bounded domain is a SHL domain (see [HL84]).

3. The nonempty finite intersection of strongly pseudoconvex bounded domains with
smooth boundary in C” is a bounded SHL domain. In fact, it is sufficient to set
p = max{p;}. More generally a finite intersection of SHL domains is a SHL domain.

4. The domain
Q={z=1(z1,,20) €C" 21|+ -+ |2n| <1} (n>2)

is a bounded strongly hyperconvex Lipschitz domain in C" with non-smooth bound-
ary.

5. The unit polydisc in C™ (n > 2) is hyperconvex with Lipschitz boundary but it is
not strongly hyperconvex Lipschitz.

We recall the definition of B-regular domain in the sense of Sibony ([Sib87], [B196]).

Definition 2.2.3. A bounded domain 2 in C" is called B-regular if for any boundary
point zg € 9N there exists v € PSH () such that lim._,», v(z) = 0 and v*|g 1,3 <0.

Remark 2.2.4. Any bounded SHL domain is B-regular in the sense of Sibony. Indeed,
for any boundary point zg € 92 it is enough to take v(z) = Ap — |z — 29|> where A > 1/c
and ¢ > 0 is as in Definition 2.2.1.

Remark 2.2.5. Kerzman and Rosay [KR81] proved that in a hyperconvex domain there
exists an exhaustion function which is smooth and strictly plurisubharmonic. Furthermore,
they proved that any bounded pseudoconvex domain with C'-boundary is hyperconvex
domain. Later, Demailly [De87] proved that any bounded pseudoconvex domain with
Lipschitz boundary is hyperconvex. It is obvious that such a domain can contain a germ
of analytic subvariety in the boundary, hence it can not be a bounded SHL domain (for
example, we smooth out the boundary of a polydisc) since the condition (2) in Definition
2.2.1 fails.

Let Q C C™ be a bounded domain. If v € PSH(2) then dd“u > 0 in the sense of
currents. We define

- 0*u
(2.2.1) Agu = j%::l hj%m = tr (H.Hesscu)

for every positive definite Hermitian matrix H = (h jl?:)' We can view Apu as a nonnegative
Radon measure in (2.
The following lemma is elementary and important for what follows (see [Gav77]).

Lemma 2.2.6. Let (Q be a n x n nonnegative Hermitian matriz. Then

3=

(det Q) = inf{tr(H.Q) : H € H,} and det(H) =n""},

where H," denotes the set of all positive Hermitian n x n matrices.
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Proof. For every matrix H € H;, there is C € H;f such that C? = H. We set HY/? :=
C, hence HY?2.Q.H'Y? ¢ H,; . After diagonalizing the matrix H'2.Q.H'? and by the
inequality of arithmetic and geometric means, we get

(det Q)7 (det H)» = (det(HY2.Q.HY?))% < %tr(Hl/z.Q.Hl/Q).

Then .
(det Q) (det H)# < ~tx(Q.H).

Consequently, we have
(det Q) < inf{tr(H.Q) : H € H,l and det(H) =n""}.

Since Q € H;, we diagonalize it, then we get A = (\;) € H such that Q = P.A.P~!
where P is the transformation matrix. One can find a matrix H = (oy;) € H," such that
det(H) = n~" and (det A)% = tr(A.H). Indeed, it suffices to set

3=

(I Aid)

Qi =
nA\i

Finally,
(det Q) = (det A)n = tr(H.A) = tr(H.P.A.P~Y) = tr(H.Q).

Example 2.2.7. We calculate Ay (|z|?) for every matrix H € H," and det H = n™".
n
2) = Z hjl}'ékj = tr(H).
Jk=1
Using the inequality of arithmetic and geometric means, we have :
= (det I)= < tr(H),
hence Ay (|z]?) > 1 for every matrix H € H," and det(H) = n™".

The following result is well known (see [B196]), but we will give here an alternative proof
using ideas from the theory of viscosity due to Eyssidieux, Guedj and Zeriahi [EGZ11].

Proposition 2.2.8. Let w € PSH(2) N L>®(Q) and 0 < f € C(Q2). Then the following
conditions are equivalent:

(1) Agu > fY" in the weak sense of distributions, for any H € H and det H = n™".
(2) (dd“u)™ > fB™ in the weak sense of currents on €.

Proof. First, suppose that u € C2(Q2). Then by Lemma 2.2.6 the inequality

Agu = Z h

7,k=1

Jk6

> fUn VH € H}  det(H) =n™",
020z
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is equivalent to

agu 1/n
det > fl/n,
< ¢ (azjazk)) =/

The latter means that
(ddeuy > fA".

(1)=(2). Let (p¢) be the standard family of regularizing kernels with supp p. C B(0, €)
and [ B(0,e) Pe = 1. Then the sequence ue = u* p, decreases to u, and we see that (1) implies
Ague > (fY™).. Since u, is smooth, we use the first case and get (dd®uc)™ > ((fY/™) )5,
hence by applying the convergence theorem of Bedford and Taylor (Theorem 7.4 in [BT82])
we obtain (dd“u)™ > fp™.

(2)=(1). Fix z¢ € €, and let ¢ be a C?>-function in a neighborhood B of zg such that
u < ¢ in this neighborhood and u(zg) = ¢(zo).

First step: We will show that dd®q,, > 0. Indeed, for every small enough ball B" C B
centered at xg, we have

1
u(w0) — a(r0) = i [ (0= Ve
B/
therefore 1 1
— dVay, — > dVa, — > 0.

Since ¢ is C?-smooth and the radius of B’ tends to 0, it follows from Proposition 3.2.10 in
[H94] that Agy, > 0. For every positive definite Hermitian matrix H with det H = n™",

we make a linear change of complex coordinates 7' such that tr(HQ) = tr(Q) where
Q = (9%4/0w;0wy) and G = qo T~1. Then

Anq(xo) = tr(H.Q) = tr(Q) = Ad(yo).-

Indeed, we first make a unitary transformation 77 such that tr(H.Q) = tr(S.Q1) where
S is a diagonal matrix with positive eigenvalues Ay, ..., A\, and Q1 := (02q1/ dxjOry) with
q=qoly 1. Then we do another linear transformation T : C* — C" such that

T In
To(z1, ey Tp) = \/—)\T,...,\/r )

Let us set § =q1 o T{l. We get that

a2q1 826 82(] N
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AN,

Hence Apq(zg) > 0 for every H € H, and det H = n™", so dd“q,, > 0.
Second step: We claim that (dd°q)y, > f(x0)B8". Suppose that there exists a point zo € {2
and a C2-function ¢ which satisfies u < ¢ in a neighborhood of x and u(xg) = g(xo) such

that (dd°q)}, < f(wo)B". We put

¢°(z) = q(2) + € (| — o> — r*/2)
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for 0 < € < 1 small enough, we see that
0 < (dd°q)7, < f(z0)B".
Since f is lower semi-continuous on €, there exists r > 0 such that
(dd°q)y < f(x)B", x € B(xo, 7).

Then (dd®¢®)" < fp" < (dd“u)™ in B(xp,r) and ¢¢ = g+ e% > g > u on 0B(xo,r), hence
¢ > u on B(xg,r) by the comparison principle. But ¢“(zg) = ¢(z0) — e% = u(xg) — eg <
u(zp), a contradiction.

Hence, from the first part of the proof, we get Agq(zg) > f1/"(xq) for every point zo €
Q) and every C2-function ¢ in a neighborhood of zy such that u < ¢ in this neighborhood
and u(xo) = q(xo).

Assume that f > 0 and f € C*°(€), then there exists g € C*°(Q) such that Ayg = f1/™.
Hence ¢ = u — g is Ag-subharmonic (by Proposition 3.2.10°, [H94]), from which it follows
that Agp >0 and Agu > fi/m,

In case f > 0 is merely continuous, we observe that

f=sup{w;w € C>®, f >w > 0},

so (dd°u)" > fB™ > wpB". Since w > 0 is smooth, we have Agu > w!/". Therefore, we get
In the general case 0 < f € C(Q2), we observe that uf(z) = u(z) + €|z|? satisfies
and so
AHue > (f_‘_en)l/n‘
Letting e converge to 0, we get Agu > f1/™ for all H € H and det H =n™". Ol

As a consequence of Proposition 2.2.8, we give an alternative description of the classical
Perron-Bremermann family of subsolutions to the Dirichlet problem Dir(, ¢, f).

Definition 2.2.9. We denote by V(Q, ¢, f) the family of subsolutions of Dir(, ¢, f),
that is

VI, f) = {ve PSH(Q) NC(Q),vlsn < ¢ and Agv > f1/" VH € H;f /det H = n~"}.

Remark 2.2.10. We observe that V(Q, ¢, f) # (. Indeed, let p be as in Definition 2.2.1
and A, B > 0 big enough, then Ap — B € V(Q, ¢, f).

Furthermore, the family V(€, ¢, f) is stable under finite maximum, that is if u,v €
V(Q, ¢, f) then max{u,v} € V(Q, ¢, f). It is enough to show that

(2.2.2) Apg(max{u,v}) > min{Agu, Agv}

We set p:= min{Apgu, Agv} and suppose that u({z;u(z) = v(z)}) = 0. Then in the open
set Q1 = {u < v}, we have Ay (max{u,v}) = Agv > p, and a similar consequence in the
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set Qo = {v < u}.

Since p(Q\(©21U€22)) = 0 and Ay (max{u,v}) > 0, we get Ay (max{u,v}) > min{Agu, Agv}.
In the general case, we replace v by v 4+ ¢, where ¢ > 0 is a small constant, then
max{u,v + ¢} — max{u,v}. Thus Ay(max{u,v + €}) converges to Ay (max{u,v}) in
the sense of distributions.

We set pp = min{Agu, Ag(v+e€)}, by the first case the inequality is true for max{u,v+e€}
for all € > 0 such that u({z;u(z) = v(z) + €}) = 0. On the other hand, p({z;u(z) =
v(z) +€}) = 0 for all € > 0 except at most countably many € > 0, then we obtain (2.2.2)

by passing to the limit when € — 0 (avoiding these countably many values of € > 0).

2.3 The Perron-Bremermann envelope

Bedford and Taylor proved in [BT76] that the unique solution to Dir(£2, ¢, f) in a bounded
strongly pseudoconvex domain with smooth boundary, is given as the Perron-Bremermann
envelope

u = sup{v;v € B(Q, ¢, f)},

where B(Q, ¢, f) = {v € PSH(Q)NC(Q) : v|spq < ¢ and (dd°v)™ > f"}.
Thanks to Proposition 2.2.8, we get the following corollary

Corollary 2.3.1. The two families V(2, p, f) and B(Q), ¢, ) coincide, that is
V(. f) =B, f).

The context of this section is classical and follows the main scheme of Bedford and
Taylor’s approach. A simplification of their proof was given by Demailly (for the homoge-
neous case ([De89])) and by Blocki for the general case (see [B196]). Here we will prove the
following theorem using an alternative description of the Perron-Bremermann envelope in
a bounded SHL domain.

Theorem 2.3.2. Let Q C C" be a bounded SHL domain, 0 < f € C(Q) and ¢ € C(05).
Then the Dirichlet problem Dir(Q2, ¢, ) has a unique solution U. Moreover the solution is
given by

U = sup{v;v € V(Q, ¢, )},

where V is defined in Definition 2.2.9 and Ap is the Laplacian associated to a positive
definite Hermitian matriz H as in (2.2.1).

The uniqueness of the solution to Dir(), ¢, f) is a consequence of the comparison
principle (Corollary 1.2.7).

The first step to prove this theorem is to ensure that U € V(€2, ¢, f). For this purpose,
we use the argument of Walsh (see [Wal69] and [B196] ) to prove the continuity of the
upper envelope.
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2.3.1 Continuity of the upper envelope

Proposition 2.3.3. Let Q C C" be a bounded SHL domain, 0 < f € C(Q) and ¢ € C(95).
Then the upper envelope

U = sup{v; v € V(% 9, f)}
belongs to V(, ¢, f) and U= ¢ on 0N.

Proof. Let g € C?(Q) be an approximation of ¢ such that |g — ¢| < € on 99, for fixed
€ > 0. Let also p be the defining function as in Definition 2.2.1 and A > 0 large enough
such that vy := Ap + g — € belongs to V(Q, ¢, f) and Agvy > max{supg /1)

A similar construction gives that vy := —Bp + g + € is plurisuperharmonic in €2 when
B > 0 is big enough. We claim that U < v in . Suppose that v € V(, ¢, f), then
v—uv1 <p—g—e<0on 0f2. Hence, by the maximum principle we get v — v; < 0 in €.
This yields U < v1 in . Consequently, we get vg < U < v1. Then on the boundary 02 we
have

p—2e<g—e<U<g+e< p+2e

Letting € tend to 0, we obtain that U= ¢ on 02 and lim,_,¢ U(z) = (&) for all £ € 02

We will prove that U is continuous on 2. Fix € > 0 and 2y in a compact set K & €.
Thanks to the continuity of v; and vg on €2, one can find § > 0 such that for any z1, zo € Q
we have

lv1(z1) —v1(22)] <€, Jvo(z1) —vo(22)| < € if |21 — 29| < 4.

Let a € C™ such that |a| < min{d, dist(K, 9€)}. Since U is the upper envelope, we can find
U € V(2 , f) such that 9(z0 +a) > U(20 + a) — €. Let us set v = max{%, vo}.
Hence, for all z € Q and w € 99 such that |z — w| < § we get

36 < wp(2) — plw) < v(2) — p(w) < vi(2) — p(w) < 3e.
This implies that
(2.3.1) [v(z) — p(w)] < 3¢, if |z —w| < 0.
Then for z € Q and z + a € 92, we have
v(z+a) <p(z+a) <v(z)+ 3e.

We define the following function

_ J () z4+a¢Q,
u(z) = { max{v(z),v(z+a) —3e} ;z4+a€Q,

which is well defined, plurisubharmonic on €2, continuous on Q and v; < ¢ on 9. Indeed, if
2 € 00, z+a ¢ Qthen vy (2) = v(z) < ¢(2). On the other hand, if z € 9Q and z+a € Q then
we have, from (2.3.1), that v(z+a)—3e < ¢(2), so v1(z) = max{v(z),v(z+a)—3e} < p(2).
Moreover, we note by (2.2.2) that

Agvi(z) > min(fY"(2), /(2 + a)) if 2,2 +a € Q.
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Let w be the modulus of continuity of f1/™. Then we conclude that
(2.3.2) Apvi(z) > f/"(2) — w(la]) in Q.

Now, let us define
v2 = v1 + w(|al)(vo = [[voll Lo ())-

It is clear that v € PSH(2)NC(2) and vy < ¢ on 9. Furthermore, using (2.3.2) we see
that
AH’UQ = AHU1 + w(|a\)AH1}0 > fl/n

This yields that ve € V(Q, ¢, f).

For small enough |a| we can assume w(|a|) < €/|lvg|| and infer that
U(z0) = v1(z0) +w(lal)vo(z0) — w(|a])|vo

> v(20 + a) — be

> U(z0 + a) — Ge.

The last inequality is true for every zg € K, then U is continuous on 2.

It follows from Choquet’s lemma that there exists a sequence (u;) in V(€2, ¢, f) such
that

U= (supu;)*.
j

As the family V(£, ¢, f) is stable under the operation maximum, we can assume that
the sequence (u;) is increasing almost everywhere to U, then u; — U in L*(Q). Hence
ApU = lim Agu; > fY7 for all H € H;f, detH = n™™, this implies U € V(, ¢, f). O

In order to verify that (ddU)" = fB" in 2, we first ensure this statement when ) = B
the unit ball in C™. For this end, we introduce the following theorem, which is due to
Bedford and Taylor [BT76], to prove that the second order derivatives of U are locally
bounded under extra assumptions. Here the presentation is derived from Demailly [De89].

2.3.2 Regularity in the case of the unit ball

Theorem 2.3.4. Suppose that Q = B is the unit ball in C*, f1/" € CYY(B) and ¢ €
CHY(OB). Then the second order partial derivatives of U are locally bounded, in particular
UeCll(B).

loc

Proof. First, we assert that U € C»'(B). Actually, let ¢ be a Ch'-extension of ¢ to By :=

B(0,2) such that
[8llcr1(@,) < Cllellerion)

for some positive constant C' (see [GT01]).
Let us set A > 1 such that u; = A(|z|>— 1)+ is plurisubharmonic on By and us = A(1 —
|2|?) + ¢ is plurisuperharmonic on By. For A big enough, one can note that u; < U < us

on B by the comparison principle. We set

v JU(z) ;zeB,
a(z) = { ui(z) ;z € By\B.
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Since u1 = U = ¢ on OB, we get a well defined plurisubharmonic function @ on Bs and
@ < max{uj,us} on By. Then for all z € 9B and |h| small we get

u(z + h) < p(2) + Crmax{||uiller g, luzller @, HAl
< 90(2) + CQ’h’7

where Cy = Cl(A:i— Cllelleram))-
Since f1/ € C11(B), there exists a constant B such that

[ (z) = ()| < Blz — .
Now, let us define the function
@(z) = @(z + h) — Ca|h| + BJh|(|z]* — 1).

It is clear that & € PSH(B) NC(B), dlsg < ¢ and Ayt > f/7" for all H € H; and
det H = n~". Thus we have @ € V(B, ¢, f) and @ < U on B.
This implies that

@(z+h) —U(z) < (Cz + B)|h| on B.

By changing h into —h, we conclude that
[U(z + h) —U(z)| < (Cy + B)|hl,

for z € B and [h| small. This yields that [|U]|co. gy < (C2 + B).

Second step, we estimate the following expression
U(z+h)+U(z —h) —20(2).

But this expression is not defined in the whole ball B, thus we use the automorphism of
the unit ball. For a € B, we define a holomorphic automorphism 7; of the unit ball as

follows;
T.(2) = Pa(z) —a+ /1= lal*(z — Pa(2)) - Py(2) (z,a)a

1—(z,a) T el

where (.,.) denote the Hermitian product in C".
Let h = a — (z,a)z. Then we get for |a| < 1 that

Ta(z) =2 = h+O(la]),

where O(|a|?) is bounded and converges to 0 when |a| tends to 0, i.e. O(|al?) < c|a?, for
some positive constant ¢ which is uniform for z € B.
The determinant of Jacobian matrix of T, is given by

detT)(2) = 1+ (n+ 1){z,a) + O(|a?).

Then

(det T/ (2))*™ =1+

204D (. 0) + O(aP)
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Let g € C%!(B), so it is easy to see that
(2.3.3) |90 Ta(2) = g(z = h)| < llgllcon (@) |Ta(2) — 2 + Al < c1llgllcon g)-lal*.
Since f1/" € C1(B), we get by Taylor’s expansion
f e Tu(z) = f7(z = h+ O(|la’)) = f/"(2) = DfY"(2)-h + O(la]?).
We set (z,a) = —DfY"(z).h, then
fY o Tuz) = fY7(2) + (2, a) + O(|af).
A simple computation yields that the following expression
Ii=|det Ty /™ (f1/7" 0 Tp) + | det T, /" (f1/" 0 T-y),
can be estimated as follows

D) (e )~ eolal?

There exists c3 > 0 depending on Hfl/nHCLl(Q) such that
|z, a)ip(z,a)| < eslzl-Jaf* < csfal®.
Hence we get
| det T2/ (fY7 o T,) + | det T [ (FY/" 0 Ty) > 2f1™ — eylal?.
A similar computation yields that the following inequality holds on 0B
(2.3.4) woT,+woT q <20+ cylal?,

where cy is large and depending also on [|¢|[c1.1(gm)-
Let us consider
Va(2) = (UoTy+UoT_,)(2).

We observe that
Ap(UoTy,) > |det T2/ (fY" o T,),

then we get
Aprva = | det TP/ (£ 0 T,) + | det T, P/ (F" 0 T_y) > 2" — cyfaf?.

Let us put
v(2) := ~va(2) — —|a*(2 — |2|*) € PSH(B) N C(B).

It follows from (2.3.4) that v < ¢ on 9B. Moreover, we have

1 c4 c4 cq
Anv = 5 Anva+ HaPAu(l2?) 2 17 = Dal? + Laf? = £/7,
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for every H € H,F,det H =n"". Hence v € V(B, ¢, f), in particular v < U .
Consequently,

1 1 Cy4
Jval2) = calal® < va(2) = 5|a|2(2 —|z) <u.

Hence, we get
(UoTy +UoT o)(2) — 20(2) < 2¢4lal?.

Applying (2.3.3) with g = U, we obtain

Ulz—h)+U(z+h)—20(2) < (Uo T, +UoT_,)(2) — 2U(2) + 201HU||CO,1(@).|a]2
(2.3.5) < (264 + 201”UHC071(B))-|G‘2

IN

cslal?.

Since h = a — (z,a)z, the inverse linear map h + a has a norm less than 1/(1 — |z|?).
Indeed, using the Cauchy-Schwarz inequality, we have

|8 > Jlal = |(z, a)|-|2l| > lla] — [=*|all > |al(1 — |[?).

Thus we conclude that

s 9
9) h)+U(z—h) —20(2) < ———|h|".
(24 1)+ U = 1) = 20(2) < (=T
Let us fix a compact K C B. For z € K and |h| small enough we obtain by taking a
convolution with a regularizing kernel p., for small enough € > 0, that

Cs
Ue(z+h) +Uc(z — h) — 20 (2) < 11— (2 + 02

Since Uc € PSH N C*®(B,) where B, is the ball of radius 1 — e and thanks to Taylor’s
expansion of degree two of ue, we infer

3 |hf?.

D2U,(2).h2 < C5

2
N EErE

Let us set
2c5

A= — .
dist (K, 0B)?2
Then for all z € K and h € C" with small enough norm we get

D?U.(z).h* < A|h|2.
The plurisubharmonicity of U, yields

92U,

2 2 2 732 _
DU (2).h* + D*Uc(2).(ih)* = 4 9205
gk 7

hjhy > 0.

Hence
D?U.(2).h? > —D?U.(2).(ih)* > —A|h|?.
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Therefore, we have
|D?U.(z)| < A;Vz € K.
We know that the dual space of L'(K) is L°°(K), hence by applying the Alaoglu-Banach
theorem, there exists a bounded function g such that D?U, converges weakly to g in L= (K).
On the other hand, D?U, — D?U in the sense of distributions, then we get D?U = g¢. Finally,
the second order derivatives of U exist almost everywhere and are locally bounded in B
with
|1 D?U]| oo (1) < A,

where A = 2¢;/ dist(K,0B)? and c5 depends on [0]lco.1.@) ll#llcri(om) and Hfl/”||cl,1(]g3).
Thus we conclude that U € Cll O’cl (B). O

Remark 2.3.5. Dufresnoy [Du89] proved that the Cl'-norm of U does not explode faster
than 1/dist(., OB) as we approach to the boundary. In general, U can not belong to C1'*(B),
the next example shows that there is a necessary loss in the regularity up to the boundary.

Example 2.3.6. Let B C C? and o(z,w) = (1 + Re(w))!™¢ € C*2¢(0B) for small € > 0.
We consider the following Dirichlet problem:

ue PSH(Q)NC(Q),
(dd°U)? =0 in B,
U=¢p on 0B.

Then U(z,w) = (1 + Re(w))' is the solution to this problem. One can observe that U
belongs to C1¢(B) N C2H(B) but it is not C*'-smooth on B. This can be seen by a radial

loc

approach to the boundary point (zp,wo) = (0, —1).

We will prove in the following proposition that the Perron-Bremermann envelope is
the solution to the Dirichlet problem in the unit ball B.

Proposition 2.3.7. Suppose 0 < f1/" € CYY(B) and ¢ € CV1(OB). Then the envelope U
is the solution to the Dirichlet problem Dir(B, ¢, f).

Proof. We have proved that U € Cllo’c1 (B) and U € V(B, ¢, f). It remains to show that
(dd“U)™ = f". Proof by contradiction, suppose that there exists a point zgp € B at which
U has second order partial derivatives and satisfies

(dd°U)"(20) > (f(20) + €)5",
for some € > 0. Then by Proposition 2.2.8 we have
AnU(z0) > (f(z0) + )M,

for all H € H,} and det(H) =n™".
Using the Taylor expansion at zg, we get

1 0%u
U(z0 + &) = U(20) + DU(20).£§ + B JZI; M(Zo)fjfk-i-

+1§ U (20)&;€k + D U (20)&;&k + o(I€%)
22~ 95,07, YT L gr0g, VS '
gk J i,k J

= U(20) + ReP(&) + L(€) + o([¢]),
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where P is a complex polynomial of degree 2, then ReP is pluriharmonic and

L&)=Y 5250 (20)&;&k > 0.

J.k

Let us fix
(f(z(» + e/2)”"
Si=|—F— < 1.
f(20) + €
One can find §,7 > 0 small enough such that B(zp,7) € B and for |£| = r, we have

U(z0) + ReP(€) + sL(€) + 6 < U(z0 + €).

We define the function

v(2) = { U(z) ;2 ¢ B(zo,7),

max{U(z),v1(2)} ;z € B(z,7),

where v1(2) := U(z9) + ReP(z — 20) + sL(z — 29) + 0 is a psh function in B(zp,r). It is
clear that v is well defined psh in B and satisfies v = ¢ on B. We claim that Agzv > f1/7
for all H € H,I and det(H) = n~". Indeed, in the ball B(zg,r) we note
0*u 1/n 1/n
Apvr > sAgL(z — 20) = s Y 7——=—(20)ly; > s(f(20) + €)™ = (f(20) + €/2)"/".
ik 82J6,zk

Since f is uniformly continuous in B, shrinking r if necessary, we can get that f(zo)+e€/2 >
f(2) for z € B(zy,7), hence Agvi(z) > f1/"(2) in B(zp,r). Consequently, it follows from
(2.2.2) that Agv > fY/™. Thus we infer v € V(B, ¢, f) and v < U in B. But we observe
that v(z0) = U(20) + 0 > U(2p), this is a contradiction. O

Corollary 2.3.8. Let B be the unit ball in C", 0 < f € C(B) and ¢ € C(OB). Then the
upper envelope U is the solution to Dirichlet problem Dir(B, ¢, f).

Proof. We choose a sequence of functions (f;) such that 0 < f; € C>®°(B) and f; decreases
to f uniformly on B. We also find a sequence C*®-smooth functions @; such that ¢;
increases to ¢ uniformly on 9B. Thanks to the last proposition, there exists a continuous
solution U; to the Dirichlet problem Dir(B, ¢;, f;). Hence, by the comparison principle,
we can conclude that the sequence U; is increasing.

Fix € > 0 and since fj converges uniformly to f, we find jo > 0 such that f; < fi +€" in
B for all k> j > jo. Then we note for all k > j > jo that

(dd“(Ug + e(|2* = 1)))" = (fi + €)™ = f;8" = (dd°U)".

Moreover, we can find j; large enough such that ¢; + € > ¢ on OB for all & > j > j;.
Then for k > j > max{jo, j1} we have

(dd*(Uy, + €(|2[2 = 1)) > (dd°U;)™ in B,

and
Uy, +€(]2|* — 1) < U; + € on IB.
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Hence by the comparison principle we get that for all &k > j > max{jo, ji}
U — U; < 2¢ — ¢]2> < 2¢ in B.
On the other hand, U; < U, so we infer

105 = Ujll o ) < 2€-

This implies that the sequence (U;) converges uniformly in B.

Let us put u = lim;_ .o U; which is continuous on B, plurisubharmonic on B and
u = ¢ on 0B. Moreover, (dd°U;)" converges to (dd‘u)" in the weak sense of currents, then
(dd“u)™ = f™. Consequently, u is a candidate in the Perron-Bremermann envelope, i.e.
u € V(B,p, f) and u < U in B. Once again the comparison principle yields v > U in B.
Finally, we conclude « = U in B and (dd°U)" = fA"™ in B. O

Proof of Theorem 2.3.2 . We already know as in Proposition 2.3.3 that U € PSH(Q2)N
C(Q), U=y on 9Q and (dd°U)" > fB" in Q. It remains to prove that (dd°U)" = fB" in Q.
We use the balayage procedure as follows; Fix a ball By C 2. Thanks to Corollary 2.3.8,
there exists a unique solution ¢ to Dir(By,U, f), that is

(dd“y)" = fB" in By and ¢ =U on 0By.
By the comparison principle U < ¢ on By. Let us define the function

_J ¥(2) ;z€ By,
v(z)_{U(z) ;zEQO\Bo,

which belongs to V(Q, ¢, f) and v = U = ¢ on 0.

In particular v < U, hence 1y < U in By. Consequently, ©» = U in By. Then (ddU)" =
(dd“y)™ = fB™ in By. Since By is an arbitrary ball in Q, we infer that (dd“U)" = f5" in
Q. O
2.3.3 Stability estimates

Proposition 2.3.9. Let ¢1,p2 € C(0Q) and fi, f2 € C(Q). Then the solutions U; =
U(2, 01, f1), Ua = U(Q, v, f2) satisfy the following stability estimate

(2.3.6) U1 = Us | oo @y < [ f1 — f2HLoo(Q) + [lp1 — w2l Lo 00)
where d := diam(€2).
Proof. Let us fix zg € Q2 and define
1/n
vi1(2) = [l = fall /2 ) (12 = 20l* — @) + Ua(2),
and
v2(2) = U1(2) + [lp1 — 2|l L~ 90)-
It is clear that vi,vo € PSH(Q) NC(Q), v1 < vz on 9N and (dd°vy)™ > (dd°ve)™ in Q.
Hence, by the comparison principle, we get v; < vo in 2. Then we conclude that

1/n
Uy — U < d°|f1 — f?HL/oo(Q) + o1 — w2l L= (00)-

By reversing the roles of U; and U, we get the inequality (2.3.6). O
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Remark 2.3.10. We will need in the sequel an estimate, proved by Blocki in [B193], for
the L™ — L' stability of solutions to the Dirichlet problem Dir($, ¢, f)

2
r n
(2.3.7) 101 = V2l zn(0) < AQ)ller = p2lleon) + Il = f2\|1L/1(Q)7

where 7 = min{r’ > 0: Q C B(zg,r’) for some 2z € C"}.

2.4 The modulus of continuity of Perron-Bremermann en-
velope

Recall that a real function w on [0,!], 0 < I < oo, is called a modulus of continuity if w is
continuous, subadditive, nondecreasing and w(0) = 0.

In general, w fails to be concave, we denote by @ the minimal concave majorant of w. We
denote by w, the optimal modulus of continuity of the continuous function ¢ which is

defined by
wy(t) = sup |P(z) —¥(y)l-

lz—y|<t

The following property of the minimal concave majorant w is well known (see [Kor82] and
[Ch14]).

Lemma 2.4.1. Let w be a modulus of continuity on [0,1] and & be the minimal concave
magorant of w. Then w(nt) < w(nt) < (14 n)w(t) for any t >0 and n > 0.

Proof. Fix tg > 0 such that w(typ) > 0. We claim that

t
<1+ —, V¥t>0.
to

Otherwise , if tg <t <[, by Euclid’s Algorithm, we write t = ktg+ o, 0 < o < £y and k is
natural number with 1 < k < ¢/t . Using the subadditivity of w, we observe that

w(t)  kw(to) +w(a) t
w(to) = w(to) §k+1§1+t0'

Let I(t) := w(to) + %w(to) be a straight line, then w(t) <I(¢) for all 0 < ¢ <.
Therefore,

B(t) < 1() = wito) + ttow(to),

for all 0 < ¢t < [. Hence, for any n > 0 we have

w(nt) < wnt) < (1+nw(d).
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2.4.1 Modulus of continuity of the solution

Now, we will start the first step to establish an estimate for the modulus of continuity
of the solution to Dir(2, ¢, f). For this purpose, it is natural to investigate the relation
between the modulus of continuity of U and the modulus of continuity of a subbarrier and
a superbarrier. We prove the following:

Proposition 2.4.2. Let Q C C" be a bounded SHL domain, ¢ € C(0Q) and 0 < f € C(Q).

Suppose that there exist v € V(Q,p, f) and w € SH(2) NC(Q) such that v = = —w on
09, then the modulus of continuity of U satisfies

wy(t) < (d* + 1) max{w,(t), wi(t),wpi/m (1)},
where d := diam(£2).

Proof. Let us set g(t) := max{wy(t),ww(t),wsp/m(t)}. As v = = —w on 9Q, we have for
all z € Q and ¢ € 99 that

—9(lz = €l) < wv(z) = 9(§) <U(2) — @(§) < —w(z) — ¢(§) < g(|z = &]).
Hence
(2.4.1) [U(z) —U(&)| < g(lz —¢]), VzeQ,VEe o,

Fix a point zy € . For any vector 7 € C" with small enough norm, we set Q_, :=
{z — 1,2 € Q} and define in QN Q_; the function

vi(2) =U(z +7) + g(I7])]z — 20[* — d*g(|7]) — g(I7]),

which is a well defined psh function in 2N Q_; and continuous on QNQ_,. By (2.4.1), if
z € QN ON_, we can see that

(2.4.2) vi(z) = U(z) < g(I7]) + g(I7])lz = 20|* — d*g(I7]) — g(|7]) < 0.

Moreover, we assert that Agv; > fl/” in QN Q_, for all H € H,,det H=n"". Indeed,
we have

Apoi(z) = Y7z + 1) + g(IT) A (|2 = 20/)
> f17(z 4 1) + g(I7))
> fa )+ ) = 2
> Y7 (2)

for all H € H, and det H = n~". Hence, by the above properties of v, we find that

] U(2) 2€Q\Q_,
Vr(z) = { max{U(z), 0 (2)} ;z€QnQ_,,

is a well defined function and belongs to PSH(Q) NC(Q). It is clear that AV, > f1/»
for all H € H,f,det H = n~". We claim that V; = ¢ on 0Q. If z € 9Q \ Q_, then
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Vi(z) =U(z) = ¢(z). On the other hand, if z € 9Q N Q_., we get by (2.4.2) that V (z) =
max{U(z),v1(z)} = U(2) = ¢(z). Consequently, V; € V(Q, p, f) and this implies that

Vi (2) <U(2);Vz € Q.
Then for all z € QN Q_, we have
U(z + 1) + g(|7])|z — 20l* = g(I7]) — g(|7]) < V(2).
Hence,
U(z +7) = U(2) < (& + D)g(I7]) = g(IT)|2 = 20f* < (d* + D)g(I7]).

Reversing the roles of z + 7 and z, we get
[U(z47) —U(2)| < (d*>+ Dg(|7]), V2,2 + T € Q.

Thus, finally,
wo(l7]) < (@ + 1) max{wy(|7), wu (|71 w1/ (1))}
O

Remark 2.4.3. Let H, be the harmonic extension of ¢ in a bounded SHL domain €. We
can replace w in the last proposition by H. It is known in the classical harmonic analysis
(see [Ail0]) that the harmonic extension H, does not have, in general, the same modulus
of continuity of .

Let us define, for small positive ¢, the modulus of continuity

Yap(t) = (—log(t)) "t

with @ > 0 and 0 < 8 < 1. It is clear that 1), is weaker than the Holder continuity and
to,p is the Holder continuity. It was shown in [Ai02] that wpy,, () < ¢y g(t) for some ¢ > 0
if wy(t) < e1op(t) for B < By where By < 1 depends only on n and the Lipschitz constant
of the defining function p. Moreover, a similar result was proved in [Ai10] for the modulus
of continuity tq0(t). However, the same argument of Aikawa gives that wy,, (t) < ctbq (1)
for some ¢ > 0 if wy,(t) < c19q,4(t) for a >0and 0 < B < fy < 1.

This leads us to the conclusion that if there exists a barrier v to the Dirichlet problem
such that v = ¢ on 9Q and w,(t) < A\p, g(t) with «, 3 as above, then the last proposition
gives

wy < A max{ya,g(t),wsp/m(t)},

where A\; > 0 depends on A and diam(2).

2.4.2 Construction of barriers

In this subsection, we will construct a subsolution to the Dirichlet problem with the
boundary value ¢ and estimate its modulus of continuity.

Proposition 2.4.4. Let Q C C" be a bounded SHL domain. Assume that ¢ € C(0S2) and
0 < f eC(R), then there exists a subsolution v € V(Q, ¢, f) such that v = ¢ on 0Q and
the modulus of continuity of v satisfies the following inequality

wlt) S AL+ I ) mascw, (t112),1/2,

where X > 0 depends on 2.
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Observe that we do not assume any smoothness on 0f2.

Proof. First of all, fix { € 0. We claim that there exists ve € V(Q, ¢, f) such that
ve(§) = @(&). It is sufficient to prove that there exists a constant C' > 0 depending on

such that for every point £ € 9 and ¢ € C(052), there is a function he € PSH(Q) NC(£2)
satisfying
(1) he(z) < p(2),Vz € 09,

(2) he(€) = #(6),
(3) wne () < Curp(t/2)

Assume this is true. We fix zp € Q and write K := supg /7 > 0. Hence
A (K1 |z — 20)?) = KiAg|z — 20|? > fY/",VH € H} ,det H = n™".
We also set Ko := K1|¢ — 20|?. Then for the continuous function
3(2) == p(2) — K1|z — 20]” + Ko,

we have hg such that (1)-(3) hold.
Then the desired function ve € V(§, ¢, f) is given by

ve(2) = he(2) + Ki|z — ,270|2 — K>.

Thus he(2) < @(2) = @(2) — K1]z — 20|? + K2 on 09, so ve(z) < ¢ on 0Q and ve(€) = ¢(€).
Moreover, it is clear that

Apve = Aghe + K1Ap(|z — 20|?) > /" VH € H ,det H =n™".
Furthermore, using the hypothesis of h¢, we can control the modulus of continuity of v

W (1) = | suI‘)< [ve(2) — ve(Y)] < whe (t) + Kiwp, )2 (t)
z—y|<t

< Cuwg(tY?) + 4d3? K /2
< Cuwy (tY?) + 24K, (C + 2dY/?)t1/?
< (C + 2dY?)(1 + 2dK;) max{w, (t1/?), 12},

where d := diam(2). Hence, we conclude that
e (£) < A1+ Ky mascluo, (1/2), 12},

where \ := (C + 2d'/?)(1 + 2d) is a positive constant depending on €.

Now we will construct he € PSH(Q)NC(£2) which satisfies the three conditions above.
Let B > 0 be large enough such that the function

9(2) = Bp(z) — |z — €[
is psh in €. Let w, be the minimal concave majorant of w, and define

X(2) = —@,((—)'?),



48 Modulus of continuity of the solution to the Dirichlet problem

which is a convex nondecreasing function on [de, 0]. Now fix > 0 so small that |g(z)| <
d? in B(¢,7) N Q and define for z € B(&,r) N Q the function

h(z) = x 0 g(z) + ¢(§).

It is clear that h is a continuous psh function on B(&, )N and we see that h(z) < p(z) if
z € B(&,r)NoQ and h(€) = ¢(§). Moreover by the subadditivity of w, and Lemma 2.4.1

we have
wp(t) = sup [h(z) — h(y)]
lz—y|<t
sup @, |||z — &2~y — & — B(o(z) — o(w))| "]
\z y|<t
< sup Wy [ |z — yl( 2d+Bl))1/2]
lz—y|<t

< Cuw,(t7?),

where C := 1+ (2d + B;)"/? depends on .
Recall that £ € 9Q and fix 0 < r; < r and 71 > 1+ d/ry such that

~m@, [(|2 = €° = Bp(=)"?] < info - sup .

for z € 00N OB(E,11). Set y2 = iangfgo. Then

Y1(h(2) = ©(§)) + (&) < 72 for z € B(E,r1) N QL.
Now set B
he(z) = { max[y1(h(z) — ¢(€)) + @(€),72] ;2 € QN B(Em),
¢ Yo ;2 € Q\ B(& ),

which is a well defined psh function on ©, continuous on Q and such that he(z) < p(z) for
all z € 99Q. Indeed, on 9Q N B(&,r1) we have

1 (h(2) = @(§)) + 0(€) = =@y (12 = &]) + @(§) < =y (2 = &]) + 9(§) < ¢(2).

Hence it is clear that hg satisfies the three conditions above.

We have just proved that for each £ € 09, there is a function ve € V(€2, ¢, f) with
ve(§) = ¢(§) and

wee (1) < A1+ K1) max{w,(t/?), t1/2}.
Set
v(z) = sup {ve(2): € € 082} .

Since 0 < w,(t) < A(1+ K;) max{w, (t'/2),tY/2}, we see that w,(t) converges to zero when
t converges to zero. Consequently, v € C(Q) and v = v* € PSH(R). Thanks to Choquet’s
lemma, we can choose a nondecreasing sequence (v;), where v; € V(€, ¢, f), converging
to v almost everywhere. This implies that

Apv = lim Agv; > fY" VH € Hf det H =n™".
j—o0

It is clear that v(§) = ¢(&) for any & € 09Q. Finally, v € V(Q, ¢, f), v = ¢ on 9§ and
wy(t) < A1+ Kp) max{w,(t1/2), t1/2}. 0
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Remark 2.4.5. If we assume that 2 has a smooth boundary and ¢ is C**-smooth for
0 < a < 1, then it is possible to construct a (1 4+ «)/2-Holder continuous barrier v to
the Dirichlet problem Dir(Q, ¢, f) (see [BT76, Theorem 6.2]). Here, for a bounded SHL
domain, if ¢ € C'(99Q) we can find a Lipschitz barrier to Dir(€2, o, f). It is enough to
take v := Ap + @ where $ is an extension of ¢ to Q and A >> 1.

Corollary 2.4.6. Under the same assumption of Proposition 2.4.4, there exists a plurisu-
perharmonic function © € C(2) such that © = ¢ on 9 and

wlt) S AL+ [ FI2 ) masc{ew, (/) 677},

where A > 0 depends on €.

Proof. We can perform the same construction as in the proof of Proposition 2.4.4 for
the function 1 = —¢p € C(9N); then we get v; € V(Q,p1, f) such that v; = 1 on

90 and wy, (1) < A1+ Hle/n )max{w@(tlﬂ),tlﬂ}. Hence, we set © = —v; which is a

plurisuperharmonic function on Q continuous on  and satisfying & = ¢ on 9Q and
wilt) < AL+ (11 ) max{w, (%), /),

where A > 0 is a constant depending on (2. O

2.5 Proof of main results

2.5.1 Proof of Theorem 2.1.1

Thanks to Proposition 2.4.4, we have a subsolution v € V(Q, ¢, f) with v = ¢ on 09 and
wult) < ML £ ) max{e, (/%) 172},

From Corollary 2.4.6, we get w € PSH(Q) N C(Q) such that w = —p on 90 and
wut) < ML+ ) max{u (1), £1/2),

where A > 0 is a constant. Applying the Proposition 2.4.2 we obtain the required result,
that is

wolt) < n(L+ 12 ) maxfwn (£12),wpn (), /2,
where 17 > 0 depends on (2. O

Corollary 2.5.1. Let Q be a bounded SHL domain in C". Let ¢ € C%*(0) and 0 <
e c98(Q), 0 < o, B < 1. Then the solution U to the Dirichlet problem Dir(S, ¢, f)
belongs to C*7(Q) for v = min{3, a/2}.

The following example illustrates that the estimate of wy in Theorem 2.1.1 is optimal.
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Example 2.5.2. Let ¢ be a concave modulus of continuity on [0, 1] and

o(z) = =Y[\/(1 + Rez1)/2], for z = (21, 22, ..., 2,) € OB C C".

It is easy to show that ¢ € C(0B) with modulus of continuity

wy(t) < CY(t),

for some C' > 0. B
Let v(z) = —=(14+ Rez1)/2 € PSH(B)NC(B) and x(A) = —¢(v/—\) be a convex increasing
function on [—1,0]. Hence we see that

u(z) = x ov(z) € PSH(B)NC(B),

and satisfies (dd“u)” = 0 in B and u = ¢ on IB. The modulus of continuity of U, wy(t),
has the estimate
Crp(t'?) < wy(t) < Coyp(t'/?),

for C1,Cy > 0. Indeed, let 29 = (—1,0,...,0) and z = (21,0, ...,0) € B where z; = —1 + 2¢
and 0 <t < 1. Hence, by Lemma 2.4.1, we see that
Y(t'?) = ¢[\/]z = 201/2] = ¥/ (1 + Rez1)/2] = [U(z) — U(20)| < 3wy(t).

Finally, it is natural to try to relate the modulus of continuity of U := U(Q2, ¢, f) to
the modulus of continuity of Uy := U(2, ¢,0) the solution to Bremermann problem in a
bounded SHL domain.

Proposition 2.5.3. Let Q be a bounded SHL domain in C", 0 < f € C(Q) and ¢ € C(05).
Then there exists a positive constant C = C(Q2) such that

wo(t) < C(1+ 112 ) mac{n, (8), @ m (1)}

Proof. First, we search for a subsolution v € V(£2, ¢, f) such that v|sq = ¢ and estimate
its modulus of continuity. Since (2 is a bounded SHL domain, there exists a Lipschitz
defining function p on (2. Define the function
v(z) =Up(z) + Ap(z),
where A := Hin/oZ/c and ¢ > 0 is as in Definition 2.2.1. It is clear that v € V(Q, ¢, f),
v = ¢ on Jf) and .
wy(t) < Cuwy,y (1),
where C := (1 + Hf”lL/oZ(Q)) and v > 1 depends on €.
On the other hand, by the comparison principle we get that U < Ug. So,
v<U<Upin Q and v =U =Ty = ¢ on .
Thanks to Proposition 2.4.2, there exists A > 0 depending on ) such that
wy(t) < Amax{wy(t),wy, (t), wpi/n ()}

Hence, for some C' > 0 depending on (2,

wo(t) < C(1+ [ FI1YE ) mac{on, (8), i (8)}.
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2.5.2 Estimate of the v-norm of the solution

Definition 2.5.4. Let @ be a modulus of continuity, £ C C" be a bounded set and
g € CNL>(E). We define the norm of g with respect to ¢ ( briefly, ¥-norm) as follows:

- lo(z) = 9(y)]
lglly = suplg()l + sup Zpe— o=

Proposition 2.5.5. Let Q C C" be a bounded SHL domain, ¢ € C(092) with modulus of
continuity 1 and f1/" € C (Q) with modulus of continuity 1. Then there exists a constant
C > 0 depending on ) such that

1/n n
0l < OO+ I£1)2 o) max (@l £/ oo}

where () = max {1 (¢1/2), o (1)}

Proof. By hypothesis, we see that ||¢|ly, < co and |[f1/"|y, < cco. Let z # y € Q. By
Theorem 2.1.1, we get

[U(2) = V)| < 01+ 112 ) max{wp (|2 = y'72),wpn (12 =y}
< (1L + £ ) max{ gl L™ lys Yo (2 = ),
where 9(|z — yl) = max{t1(]z = y/2), (|2 — y|)}. Hence

U(z) —U(y)l _ l/n 1/n
S (=) < LA 1] oo ) 0@l @llon s 177 sz 3

where 7 > d? + 1 and d = diam(Q2) (see Proposition 2.4.2). From Proposition 2.3.9, we
note that

1/n n
V)l ooy < 171 / q) T el @0 < nmax{ ]|l | £ g, }-

Then we can conclude that

1/n n
U]l < 2n(1 + HfHL/oo(Q ) max{ ][l | /"l }-
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Chapter 3

Holder continuity of solutions for
general measures

3.1 Introduction

In this chapter, we are interested in studying the regularity of solutions to the following
Dirichlet problem:

u€e PSH(Q2)NC(Q),
Dir(Q, @, fdu) : < (dd°u)™ = fdu in Q,
u=q on 052,

where p is a nonnegative finite Borel measure on a bounded SHL domain €, 0 < f €
LP(Q, p) for p > 1, and ¢ € C(012).

Kolodziej demonstrated [Ko98, Ko99] the existence of a weak continuous solution to
this problem as soon as pu is dominated by a suitable function of capacity on a bounded
strongly pseudoconvex domain with smooth boundary.

We consider in this thesis the class of measures satisfying (3.3.1) and ensure Kotodziej’s
existence theorem in a bounded SHL domain. More precisely, we prove the following.

Theorem 3.1.1. Let p be a measure satisfying Condition H(T) for some 7 > 0 on a
bounded SHL domain Q C C" and ¢ € C(0N2). Then there exists a unique continuous
solution to Dir(Q, ¢, du).

Then we investigate the Holder continuity of the solution in several cases.

In the case of the Lebesgue measure, we have estimated in Chapter 2 the modulus of
continuity of the solution in terms of the modulus of continuity of the boundary data ¢
and the density f in a bounded SHL domain.

Guedj, Kolodziej and Zeriahi proved [GKZ08] that the solution to Dir(2, ¢, fdVa,) is
Holder continuous on Q when f € LP(Q), p > 1, is bounded near the boundary of strongly
pseudoconvex domain and ¢ € C11(9Q). Recently, N. C. Nguyen [N14] proved the Holder
continuity when the density satisfies a growth condition near the boundary.

Here, we deal the case of LP-density without assuming any condition near the boundary.
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Theorem 3.1.2. Let Q C C" be a bounded SHL domain. Assume that ¢ € CH1(0Q) and
f € LP(Q) for some p > 1. Then the unique solution U to Dir(Q), ¢, fdVa,) is v-Holder
continuous on Q for any 0 <y < 1/(nq+ 1) where 1/p+1/q = 1.

Moreover, if p > 2, then the solution U is Holder continuous on Q of exponent less
than min{1/2,2/(nq + 1)}.

In the case of singular measures with respect to the Lebesgue measure, there is no study
about the regularity of solution in a bounded domain in C" (see [Ph10] for regularity of
solutions in the compact case). We will consider the case of measures having densities in
LP for p > 1, with respect to Hausdorff-Riesz measures which are defined in (3.5.5).

We prove the Holder continuity of the solution while the boundary data belongs to
chL(09).

Theorem 3.1.3. Let Q be a bounded SHL domain in C" and p be a Hausdorff-Riesz
measure of order 2n—2+¢ for 0 < € < 2. Suppose that ¢ € CH1(9) and 0 < f € LP(Q, )
for some p > 1, then the unique solution to Dir(Q, ¢, fdu) is Holder continuous on Q of
exponent ey/2 for any 0 <y <1/(ng+1) and 1/p+1/q = 1.

This result generalizes the one proved in [GKZ08, Chl5a] from which the main idea of
our proof originates.

When the boundary data is merely Holder continuous we state the regularity of the
solution using the previous theorem.

Theorem 3.1.4. Let Q be a bounded SHL domain in C™ and p be a Hausdorff-Riesz
measure of order 2n — 2 + ¢ for 0 < € < 2. Suppose that ¢ € CO*(0Q), 0 < a < 1 and
0 < f e LP(Q,u) for some p > 1, then the unique solution to Dir(S2, ¢, fdu) is Hélder
continuous on § of exponent 5 min{c, ey} for any 0 <~y <1/(ng+1) and 1/p+1/q=1.

Moreover, when € is a smooth strongly pseudoconver domain the Hélder exponent will
be 5 min{a, ey}, for any 0 <y < 1/(ng+1).

In the case of the Lebesgue measure, i.e. € = 2, in a smooth strongly pseudoconvex
domain we get the Holder exponent min{«a/2,~} which is better than the one obtained in
[BKPZ15].

Our final purpose concerns how to get the Holder continuity of the solution to the
Dirichlet problem Dir(2, ¢, fdu) by means of the Holder continuity of a subsolution to
Dir(Q, ¢, du) for some special measure on §.

Theorem 3.1.5. Let i be a finite Borel measure on a bounded SHL domain § satisfying
Condition H(oo) mentioned below. Let also p € C**(99Q),0 < a <1 and0 < f € LP(Q, p),
p > 1. Assume that there exists a \-Holder continuous plurisubharmonic function w in €2
such that (dd“w)™ > u. If, near the boundary, p is Hausdorff-Riesz of order 2n — 2+ € for
some 0 < € < 2, then the solution U to Dir (), , fdu) is Holder continuous on Q.

Such a problem is still open for measures without any condition near the boundary of
a bounded domain in C”.
Most of the content of this chapter will be found in my papers [Chl5a] and [Ch15b].
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3.2 Stability theorem

Definition 3.2.1. A nonnegative finite Borel measure p on €2 is said to satisfy Condition
H(o0) if for any 7 > 0 there exists a positive constant A depending on 7 such that

p(K) < ACap(K, Q)"
for any Borel subset K of €.
Before announcing the stability theorem, let us prove some useful lemmas.

Lemma 3.2.2. Let vi,v9 € PSH(Q) N L>®(Q) be such that liminf,  gq(v; — v2)(2) > 0.
Then for all t,s > 0, we have

t"Cap({v1 —va < —s —t},0Q) < / (ddvy)".
{v1—va<—s}

Proof. Fix v e PSH(2) such that —1 < v < 0. Then for any ¢,s > 0, we have
{vi —ve < —s—t} C{vy —va < —s+tv} C {v; —v2 < —s} € Q.

The comparison principle yields that

g / ddc n
{v1 —v2<—s—t}

IN

/ (dd(vs + to))"
{v1—v2<—s—t}

/ (dd°(vs + t0))"
{vi—va<—s+tv}

(dd(—s + vy + tv))"

IN

/{'01 <—s+uva+ttv}

IN

/ (dd°v,)"
{vi<—s+va+tv}

< / (dd°v1)".
{vi—va2<—s}
Taking the supremum over all such functions v gives the required result. O

Lemma 3.2.3. Let g : RT — R be a decreasing right continuous function. Assume that
there exist 7, B > 0 such that

(3.2.1) tg(s +1t) < Blg(s)]'™, for all s,t > 0.
Then g(s) =0 for all s > so0, where Soo := %.

Proof. We define by induction an increasing sequence (s;) € RY as follows.

sj =sup{s > sj_1:9(s) > g(sj—1)/2},Vj > 1.
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It is clear that for any s > s; we have g(s) < g(sj—1)/2. As g is right continuous, we
conclude that g(s;) < g(sj—1)/2. Hence, we infer

9(0)
Let us set M := 2B[g(0)]” > 0 and M; := 2797M for j > 1. We apply (3.2.1) for s; and
M;, then it follows from (3.2.2) that

B
9(sj + Mj) < S9(s)"™"7 < g(55)/2,
J
Consequently, we get sj.1 < s; + M; since g(s) > g(s;)/2 for any s € (sj,5;41). In the

)
same way we can see that s; < M. Thus the sequence (s;) is bounded from above with
limit

M
Z(Sj+1 — S]) S M+ ZMJ = ? = Soo-
Jj=0 j=>1
Then the lemma follows. O

The following weak stability estimate, proved in [GKZ08] for the Lebesgue measure,
plays an important role in our work. A similar, but weaker, estimate was established
by Kolodziej [Ko02] and in the compact setting it was proved by Eyssidieux, Guedj and
Zeriahi [EGZ09]. Here we show that this estimate is still true for any measure u satisfying
Condition H(c0).

Theorem 3.2.4. Let i satisfy Condition H(oco) on a bounded domain Q@ C C™ and 0 <
f e LP(Q,u), p > 1. Suppose that v, vy are two bounded psh functions in Q0 such that
liminf, ,50(v1 — v2)(2) > 0 and (ddv1)" = fdu. Fizr > 1 and 0 < v < r/(ng + 1),
1/p+1/q=1. Then there exists a constant C = C(r,v,n,q) > 0 such that

(3.2.3) sup(v2 = 1) < O+ |1yl 02 = v0) [}

where (v — v1)4+ = max{vy —v,0} and n =+ + %.

In order to prove this theorem we need the following proposition.
Proposition 3.2.5. Under the same assumption of Theorem 3.2.4 and for any o > 0,
there exists a positive constant C1 = Cy(n,q,«) such that for all € > 0,

sup(v2 = 01) < €+ Ca|l £ [ Copl{or = v < —€}, )"

Proof. Let us set g(s) := Cap({v; — va < —s — €},Q)Y/™. By applying Lemma 3.2.2 we
conclude that

t"Cap({vi —v2a < —e—s—t},Q) < / (ddvp)"™

{vi—ve<—e—s}

< / Jdu
{vi—vo<—e—s}

<Nl poump({vr —ve < —e — s})1/4
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Since p satisfies Condition H(co), we find a positive constant C depending on n, ¢ and «
such that

t"Cap({v) —va < —e —s—1},Q) < C~1||f||Lp(Q7M) [Cap({v1 — v < —€ — s}, Q)]1+°m.

Therefore, this yields that
tg(s +1t) < Blg(s)]'+*",

where B := él/anHlL/zj(LQ,u)'

Now, it follows from Lemma 3.2.3 that Cap({v1 —v2 < —€ — s}, ) = 0. Hence vy —v1 <
€ + S almost everywhere and then the inequality holds everywhere in €. Consequently,
we have

sup(v2 —v1) <e+ Cl||fHLp(QM [Cap({v1 —v2 < —€},Q)]°,
where C] depends only on n,q and a. O

Proof of Theorem 3.2.4. Applying Lemma 3.2.2 with s = ¢ = € and using Hoélder inequal-
ity, we infer

Cap({v1 —va < —2¢},9Q) < e*"/ fdu
{v1—v2<—e}

< e—n—r/q/ (Ug _ Ul):_/qfd,u
Q
<" fl ol (ve — v )+HU @
Fix a > 0 to be chosen later and apply Proposition 3.2.5 to get

sup(vy — 1) < 2+ Coe D IR (v — 01) 776G -

We set € := ||(va — v1)+||7, where 0 < v < r/(ng + r) is fixed and

_ vq
o= ——.
r—~(r+ngq)
Then we get
+1
sup(v = 1) < C(1L+ 7150l v2 = 01)4l [
where C' > 0 depends on n, ¢,y and 7. ]

Remark 3.2.6. When p satisfies only the condition in Definition 3.3.1 below, we can get
some stability estimate.

Suppose that vy, v9 are two bounded psh functions in € such that lim inf, 50 (v1 —v2)(z) >
0 and (dd®vy)™ = dp. Fix r > 1, then there exists a constant C' = C(r,7,n) > 0 such that

(3.2.4) Slglzp(w —v1) < C|(v2 — Ul)+HZT(Q,H)v

T

where (ve — v1)4+ = max{vy — v1,0} and v := ntr(ntr)”



58 Hélder continuity of solutions for general measures

3.3 Existence of solutions

This section is devoted to explain the existence of continuous solutions to the Dirichlet
problem Dir (2, ¢, u) for measures p dominated by Bedford-Taylor’s capacity, as in (3.3.1)
below, on a bounded SHL domain.

Definition 3.3.1. A finite Borel measure p on € is said to satisfy Condition H(7) for
some fixed 7 > 0 if there exists a positive constant A such that

(3.3.1) pu(K) < ACap(K, )",
for any Borel subset K of €.

Kolodziej [Ko98| demonstrated the existence of a continuous solution to Dir(£2, ¢, 1)
when g verifies (3.3.1) and some local extra condition in a bounded strongly pseudoconvex
domain with smooth boundary. Furthermore, he disposed of the extra condition in [Ko99]
using Cegrell’s result [Ce98| about the existence of a solution in the energy class Fj.

Here, the existence of continuous solutions to Dir (2, ¢, 1) in a bounded SHL domain
follows from the lines of Kolodziej and Cegrell’s arguments in [Ko98, Ce98|.

First of all, we prove the existence of continuous solutions to the Dirichlet problem for
measures having densities in LP(§2) with respect to the Lebesgue measure.

Theorem 3.3.2. Let Q@ C C" be a bounded SHL domain, ¢ € C(0Q) and 0 < f €
LP(Q), for some p > 1. Then there exists a unique solution U to the Dirichlet problem
DiT(Q, 2 deQn)

Proof. Let (f;) be a sequence of smooth functions on { which converges to f in LP(€2).
Thanks to Theorem 2.3.2, there exists a function U; € PSH(§2) N C(§2) such that U; = ¢
on 0N and (dd°U;)" = f;dVa, in Q. We claim that

(3-3-2) HUk - UjHLOO(Q) < A(l + kaHT[],P(Q))(l =+ HfJHLp Q))ka | Ll(Q)7
where 0 < v < 1/(q + 1) is fixed, n := %—{—ﬁ 1/p+1/g = 1 and A =
A(y,n, q, diam(2)).

Indeed, by the stability theorem 3.2.4 and for » = n, we get that

Sup (U = U) < O+ 15110k = 05)+ 1y < OO+ 155l 10k = Uil ey

where 0 < v < 1/(q+ 1) is fixed and C' = C(v,n, q) > 0.
Hence by the L™ — L! stability theorem in [B193] (see our Remark 2.3.10),

=~ 1/n
10 = Ul < Cllfi = Fill g

where C' depends on diam().
Then, from the last two inequalities and reversing the role of U; and Uy, we deduce

10k = Ul () < CEV+ il (1 + i) i = 31740
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Since Uy = U; = ¢ on 09, the inequality (3.3.2) holds.
As f; converges to f in LP(2), there is a uniform constant B > 0 such that

Ve = Ujll oo () < Bllfr = fj”z/f(lm-
This implies that the sequence U; converges uniformly in Q. Set
U= lim Uj.

Jj——+o00

It is clear that U e PSH(Q)NC(S2), U= ¢ on J2. Moreover, (dd“U;)™ converges to (dd°U)"
in the sense of currents, thus (dd“U)™ = fdVa, in Q. The uniqueness of the solution follows
from the comparison principle. O

We will summarize the steps of the proof of Theorem 3.1.1.

e We approximate p by non-negative measures ps having bounded denstities with
respect to the Lebesgue measure and preserving the total mass on ).

e We find solutions Us to Dir(Q, ¢, pus) in a bounded SHL domain €2 using Theorem
3.3.2.

e We prove that the measures 15 are uniformly dominated by capacity. Then, we can
ensure that the solutions Ug are uniformly bounded on 2.

e We set U := (limsup Us)* which is a candidate to be the solution of Dir(£2, ¢, ).

e The delicate point is then to show that (dd“Us)™ converges to (ddU)™ in the weak
sense of measures. For this purpose, we invoke Cegrell’s techniques [Ce98] to ensure

that
/Usdp%/Udu,
Q Q

/ Uy — U] dpas — 0,
Q

and

when s — 4o00.
e Finally, we assert the continuity of this solution in €.

Suppose first that p has compact support in €2. Let us consider a subdivision 7° of suppu
consisting of 32" congruent semi-open cubes I§ with side dy = d/3%, where d := diam ()
and 1 < j < 32", Thanks to Theorem 3.3.2, one can find Us € PSH(Q) N C(Q) such that

Us = ¢ on 012,
and )
. plI5 :
(ddUs)" = ps == Z in XI;dV2n in Q.
j S

We will control the L*-norm of Us. For this end, we first prove that us are uniformly
dominated by Bedford-Taylor’s capacity.
The following lemma is due to S. Kolodziej [Ko96].
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Lemma 3.3.3. Let E € ) be a Borel set. Then for any D > 0 there exists to > 0 such
that
Cap(Ky, Q) < DCap(K,Q), |y| < to,

where K C E and K, :={x; x —y € K}.

Proof. Without loss of generality we can assume that K is compact and K € E. We define
Wy = u*Ky (r +y), where ug, is the extremal function of K, defined by

ug, =sup{v € PSH(2) :v <0on Q,v < —1on Ky}

For any 0 < ¢ < 1/2, we set Q. := {u}; < —c}. Let A > 1 be such that Ap < ug in Q.
Since p < —c/(2A) for any = € ./, we can find ty := to(F,2) such that z +y € Q for
any |y| < to. Therefore,

o(z) = { max{wy(z) — ¢, (1 +2c)up(z)} ;7 € Qo,

(14 2c)up(x) ;2 € Q\ Qeyo,
is a well defined bounded psh function in €.
Since K € E and uj = —1 on a neighborhood of K, we infer that w, —c > (1 + 2c)u}j

there. Hence, we have

Cap(K, Q) > (14 2¢)" /K (dd°g)" = (1+2¢)" /K (dd°w,)"

=(1+ 20)_"/ (ddu, )" = (1+2¢) " Cap(Ky, Q).
Ky

Consequently, we obtain
Cap(Ky, @) < (1+20)"Cap(K, ),
for any |y| < to. O

Lemma 3.3.4. Let Q) be a bounded SHL domain and p be a compactly supported measure
satisfying Condition H(T) for some T > 0. Then there exist sy > 0 and B = B(n,7) > 0
such that for all s > sg the measures us, defined above, satisfy

ps(K) < BCap(K, )17,
for all Borel subsets K of 2.

Proof. Let us set ¢, := diam [;. We define for large s > 1 a regularizing sequence of
measures

fls = [ * Ps,

where ps € C§°(B(0,205)) is a radially symmetric non-negative function such that

1

= Nol(B(0,57)) on B(0,ds),

Ps

and

/ psdVo, = 1.
B(0,25.)
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For all Borel subsets K C €2, we get

where 7, is the volume of the unit ball in C™.
We set K, := {z;2 —y € K}, for y € C". Then, by Lemma 3.3.3, we find ¢y > 0 and
so > 1/tg such that

Cap(Ky,Q) < ZCap(Kv Q)> |y| <o,

for any Borel set K C Ugs g suppps € €.
We infer for all s > sg and K C 2, that

A (K) < sup p(K,) < A sup Cap(K,, Q)" < 217 ACap(K, Q).
ly|<1/s ly|<1/s

This completes the proof. O
Proposition 3.3.5. There exists a uniform constant C' > 0 such that

[Us][ ooy < C,
for all s > sg, where sg is as in Lemma 3.3.4.

Proof. We owe the idea of the proof to Benelkourchi, Guedj and Zeriahi [BGZ08| in a
slightly different context. Without loss of generality we can assume ¢ = 0 in Dir($, ¢, 1)
and pu(Q) < 1.

Let us fix s > sg. It follows from Lemma 3.3.4 that there exists a uniform constant
B = B(n,7) > 0 so that the following inequality holds for all Borel sets K C €,

pis(K) < BCap(K, Q).

We define for k& > 0,
1
g(k) := —Eln(Cap{Us < —k}).

This function is increasing on [0, +00] and g(+00) = 4+00. We claim that
(3.3.3) Int+ (14 7)g(k) —InB/n < g(k +1t),
for all ¢,k > 0. Indeed, Lemma 3.2.2 yields that

(3.3.4) t"Cap({Us < —k — t}) < pus({Us < —k}) < BCap({Us < —k})1F7.
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Now we define an increasing sequence (k;) as follows
kjy1:=Fk; + BYmel=m9(ki) for all j € N,

where kg = 2.

We claim that g(ko) > 0. To get this end, we apply the inequality (3.3.4) for t = k = 1,
then we get

Cap({Us < —2}) < ps({Us < —1}) < p(Q2) < 1.
We apply (3.3.3) with t =t; = kj11 — k;j and k = k; to get that
g(kj) > 7+ g(ko) > j.

Thus g(k;) goes to 400 as j goes to +o0.

Let us set koo := limpy_ 400 k. Then g(koo) = +00. We claim that ko is bounded by an
absolute constant independent of Us.

N—-1
koo = lim EO: (ki1 — k) +2
N By (ky)
_ : 1/n 1—7g(k;
N1—1>I-I|—1<>o % (B € ’ ) + 2

N—-1
< i Bl/n T 42
SRR

<eBY"/(1—eT)+2=: M(n,1).
For any k > ks, we conclude that g(k) = 400, hence
Cap({Us < —k}) =0 for all k£ > k.

This means that for any s > sg the function Uy is bounded from below by an absolute
constant —ks, > —M(n, 7). O

Thanks to Proposition 3.3.5, the sequence (Us) is uniformly bounded. Passing to a
subsequence we can assume that U converges in Li .(£2) (see Theorem 4.1.9 in [H83]). Let
us set U:= (limsupUs)* € PSH N L*>(£). Hence Ug converges to U almost everywhere in
Q) with respect to the Lebesgue measure dVa,.

Lemma 3.3.6. Let p be a finite Borel measure on €. Suppose that Us € PSH(Q)NC(Q)
converges toU € PSH(Q)NL>® () almost everywhere with respect to the Lebesgue measure
and |[Us| ooy < €, for some uniform constant C'> 0. Then, we have

(3.3.5) lim Usd,u:/Ud,u,
Q Q

s§——+00

and

(3.3.6) lim / U, — U|(dd°U,)" = 0.
Q

S$—+00
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Proof. Since U is uniformly bounded in L?(€2, du), there exists a subsequence, for which
we keep the same notation, (Us) converges weakly to vy in L?(€2,dy). In particular, U
converges to v; almost everywhere with respect to du and

/Usdu%/vldu.
Q Q

By Banach-Saks’ Theorem there exists a subsequence Us such that (1/M) 32, Uy con-
verges to vg in L?(€2, dp) and hence there exists a subsequence such that fy; = (1/M) "M, U,
converges to vy almost everywhere with respect to du, when M — +o0o. Hence vy = v
almost everywhere with respect to du and we have

/(sup fM)*du:/ sup fMdu%/vgdu:/vldu.
Q N>M QN>M Q Q

On the other hand, fi — U in L*(Q,dVa,) and so (supysys far)* \ U everywhere in Q
and thus

/Q( sup fM)*dM—>/QUdu'

N>M
Then we get

li Ud:/ d:/ dp = 1li *d:/Ud.
B Jo Ui = o e = o vt = i Jo Uk, S i = o Ol

So as to prove (3.3.6), we define

1

vs(z) = P GTERED

| W@+ €)= U+ €)ldVan,
‘£|§2”ds

where Ty, is the volume of the unit ball in C" and ds = diam(€2)/3°.
Then we see that

o u(I3)
/Q ’Us - U‘(dd Us) - Z d27]l /IS ’U - Us‘dVQn
J 5 J

< ZTgn(2n)2n /ﬁ vs(x)dp(z)

< Tgn(2n)2"/gvs(a:)du(x).

We claim that [, vs(x)du(xz) — 0 as s — +o00. Indeed, we note that

1
s = U — U, U, —Us dvn
) = g [ 0@ — Sy 4 €) Ui (e -+ €) Ul + Ol
i )
_ supUs;(x + &) — U(x + £))dVs,
~ Ton(2ndg)?n |§\§2nd5(j218) i ) ( £)dvs
1 1
_ supU,(x + an—i/ Us(x + &)dVay,
Ton(2nd;)?" /|§§2nds i e+ Vs Ton (2nds)*™ Jjg|<2nd, (+L)avs

|
_— supU;(z + &))" dVa, — U(x) — Us(x).
S o ndy) |§\§2nds(j218) i(x+€))"dVa (z) (z)
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It stems from the monotone convergence theorem and (3.3.5) that

/ vs(z)dp(z) = 0, s — +oo.
Q
OJ

Proof of Theorem 3.1.1. We can assume, by passing to a subsequence in (3.3.6), that
Jo [Us — U] (dd°Us)™ < 1/s*. Consider

Us := max{U,U—1/s} € PSH() N L>®(Q).

It follows from Hartogs’ lemma that Uy — U in Bedford-Taylor’s capacity. In fact, we prove
that for any Borel set K C € such that U|x is continuous we have Uy converges uniformly
to Uon K. Since Us — U in L, .(Q) and by Theorem 4.1.9 in [H83] we get

sgr—i{loo Sip( U) =0

Thereby, we conclude that
105 — Ul poo (i) — 0, as s — 4o0.

Thus the convergence in capacity of U to U comes immediately from the quasicontinuity
of U. Now, since Uy is uniformly bounded for all s > sy as in Proposition 3.3.5, we get by
Theorem 1.2.3 that (dd°Us)" converges to (dd°U)™ in the weak sense of currents.

We need now to compare (dd°Us)™ and (dd°Us)™ following [GZ07]. It is known that

(ddcﬁs)n Z 1{U.92U—1/5} (ddCUs)n

Our assumption implies that 1y, <y_1/5)(dd“Us)"™ — 0. Indeed,

0< / (dd°Uy)" < s / U, — U|(dd°U,)" < 1/s.
{Us<U-1/s} QO

Therefore, 0 < (ddUs)™ < (dd“Us)™ + o(1), hence we get by letting s — +oo that

(dd°U)" > dyu.

[ aroy = [ an

Actually, let v be the continuous solution to the Dirichlet problem for the homogeneous
Monge-Ampere equation with the boundary data ¢. From the comparison principle we
get Ug < v for all s > 0 and so U < v in €. Since the continuous function v — U equals
to zero on 0f2, we find a neighborhood of 92 such that v — Uy < 1/s there. Hence,
U—1/s <v—1/s < Uy in this neighborhood and so that U; = U there. Now, we get by

Stokes’ theorem
/ (dd°T,)" — / (dd°Us) / du.
Q

Now, we prove that
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By the weak convergence of measures, we obtain

/Q (dd°v)" < /Q dp.

This complete the proof of Theorem 3.1.1 when p has compact support in 2.

For the general case, when p is only satisfying Condition # (7). Let x; is a nonde-
creasing sequence of smooth cut-off function, x; 1 in 2, we can do the same argument
and get solutions U; to the Dirichlet problem for the measures x;u. By Lemma 3.3.5, the

solutions U; are uniformly bounded. We set U := (limsupU;)* € PSH(Q) N L>(Q2) and
the last argument yields that U is the required bounded solution to Dir(Q, o, p).
It remains to prove the continuity of the solution U in €. It is clear that

(3.3.7) lim U(z) = (), V& € 0Q.

z—E

Let us fix K C 2 and let u; be the standard regularization of U. We extend ¢ to a
continuous function on €. For all small d > 0 we can find by (3.3.7) an open set Ky O K
and jp > 0 such that

¢ <U+d/2 and u; < ¢ + d/2 in a neighborhood of 0Ky, Vj > jo.
Hence uj; < U+ d in a neighborhood of 0Ky for all j > jo and then

lim inf(U(2) + d — u;j(2)) > 0,

z—C

for all ¢ € 0K4.

We claim that the set {u; — U > 2d} is empty for any j > jo. Otherwise, we will
get a contradiction following similar techniques to those in Lemma 3.2.3 and Lemma
3.3.5 as follows. Let us set v1 := U+ d and vy := u;. We define for s > 0 the function
g(s) := Cap({v1 — v2 < —s}) and an increasing sequence (k;,) such that kg := 0 and

ke = sup{k > km—1;g(k) > g(km-1)/e}.
Hence we get g(knm) < g(km—1)/e. Let N be an integer so that ky < d and
g(d) = g(kn)/e.
By Lemma 3.2.2 we obtain
(d—kn)"g(d) < p({vr — vz < —kn}) < Ae'Tg(d)' 7.
Then we get
(3.3.8) d—ky < AYmeHD/mg(g)ym/m,

Now, let ¢t := k — ky,—1 where 0 < k-1 < k < d such that g(k) > g(kmn—1)/e. We infer
again by Lemma 3.2.2 that

t"g(k) < p({vr —v2 < =K1} < Aeg(k)g(km-1)"
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Hence,
t < (Ae)/"g(km—1)"/".

Letting k — k., we get
tm = km — km—1 < (A€)Y"g(kp_1)7/™.

Then we have
ky = Z tm < (Ae)M/™ Z G(km_1)™™ < (Ae)Y"Ng(0)/™.

By the definition of convergence by capacity, we get for j > jo that ¢(0) is very small so
that ky < d/2. Then (3.3.8) yields that

d/2 < Al/ne(lJrT)/ng(d)T/n.

Since d > 0 is fixed and g(d) = Cap({u; — U > 2d}) goes to zero when j goes to +o00, we
obtain a contradiction in the last inequality. O

3.4 Holder continuity of solutions

We introduce in this section the basic ingredients of proofs of main theorems. Let p be a
measure satisfying Condition H(oo), 0 < f € LP(2, u), p > 1 and ¢ € C(99). Thanks to
Theorem 3.1.1, we denote by U the continuous solution to Dir (), ¢, fdu) and consider
Us(z) := sup U(z + (), z € Qs,
[¢]<d

where Qs := {z € Q;dist(z,09Q) > d}.

To ensure the Holder continuity of the solution in €2, we need to control the L*°-norm
of Us — U in €.

It will be shown in Lemma 3.4.3 that the Hélder norm of the solution U can be estimated
by using either supg, (Us — U) or supg, (Us — U), where

A 1
Us(z) = 7-2n62n/|C—Z|S(SU(C)d‘/2n(C)’ z € (U,

and 79, is the volume of the unit ball in C™.

It is clear that Us is not globally defined in €2, so we extend it with a good control near
the boundary 9€). To this end, we assume the existence of v-Holder continuous function
v such that v < Uin ©Q and v = U on 9€2. Then, we present later the construction of such
a function.

Lemma 3.4.1. Let Q be a bounded SHL domain and ¢ € C%*(09), 0 < a < 1. Assume
that there is a function v € COV(Q) for 0 < v < 1, such that v < U in Q and v = ¢ on
OS). Then there exist 69 > 0 small enough and co > 0, depending on Q, |[¢l|co.ea0) and
Hv||co,,,(§—2), such that for any 0 < §1 < 0 < 0y the function

g max{Us,, U+ cod”'} in Qs,
6 =
! U+ coo™t m Q\Qg,

is plurisubharmonic in Q and continuous on 2, where v; = min{v, a/2}.
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Proof. If we prove that ﬁgl < U+ ¢pd* on 0€2g, then the required result can be obtained
by the standard gluing procedure.

Thanks to Corollary 2.4.6, we find a plurisuperharmonic function o € C%/2(Q) such that
¥ = ¢ on 0f2 and

[9llco.er2(@y < Cllellco.aiany,

where C' depends on €). From the maximum principle we see that U< ¢ in Q and © = ¢
on Jf2.
Fix z € 094, there exists ¢ € C" with [|¢|| = 6 such that Us,(2) < U(z + ¢). Hence, we
obtain

Us, (2) = U(2) SU(z+¢) —U(2) < 5(2+¢) —v(2).

We choose (p € C", with ||(o|| = 9, so that z 4+ {y € 9. Since 0(z + (o) = v(z + (o), we

infer
0(z +¢) —v(2) < [0(z + () = 0(z + ¢o)] + [v(z + Go) — v(2)]

< 2/[lgo.0 /200" + ([0l o (0"
< oo™,
where ¢g 1= 2C|¢||co.e(a0) + [[vllcor @)- O
Moreover, we can conclude from the last argument that
(3.4.1) [U(z1) — U(22)| < 2¢p0™,
for all 21, 2o € O\ Q5 such that |2, — 25| < 4.

Remark 3.4.2. When ¢ € C11(99), the last lemma holds for 1 = v. Indeed, let @
be a Ch!'-extension of ¢ to Q. We define the plurisuperharmonic Lipschitz function ¢ :=
—Ap + ¢, where A > 1 and p is the defining function of 2. Hence, the constant ¢y in
Lemma 3.4.1 will depend only on €, [¢|[c1.1(90) and [[v]|co.(q)-

Lemma 3.4.3. Given 0 < a < 1, the following conditions are equivalent.

1. There exist 6', A > 0 such that for any 0 < 6 < ¢,

Us — U < A6 on Q5.

2. There exist 6", B > 0 such that for any 0 < § < §”,

U5 — U < B&“ on 9.

Proof. Since Us < Us, we get immediately the implication (1) = (2). In order to prove
(2) = (1) we need to show that there exist ¢’, A > 0 such that

w(d) == Zseuéa [(Us —U)(2)] < Ad“.

Fix 6o > 0 small enough so that Q5 % 0 for § < dg := (C'+2)dq where C > 0 is a constant
to be chosen later. Since U is uniformly continuous on §2, we have for any fixed 0 < § < dq,

v(d):= sup w(t)t™* < +oo.
5<tSSQ
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We claim that there exists 6’ > 0 small enough such that for any 0 < § < ¢, we have
w(8) < AS™ with A = 4co(C + 3)* + eX(C + 1)*B + v(dq),

where ¢g is as in Lemma 3.4.1. Assume that this is not the case. Then there exists § < dg
such that

w(d) > Ad*.
Let us set § := sup{t < dq; w(t) > At*}. Then
(3.4.2) “’5(;5) > A> “‘;f) for all t € [6,3q).

Since U is continuous on €, we find zg € Q5, (o € Q such that |z0 — Co| < ¢ and
w(d) =U(Co) — U(20)-

We assert that dist(zg,0Q) > (C + 2)d. In fact, if dist(zp,0Q) < (C' + 2)d and z; € 00
such that dist(zg, z1) = dist(z0, 92), then we have by (3.4.1) that

w(8) =U(Co) — U(z1) +U(21) — U(20) < 4eo(C + 3)%6% < As.

This is a contradiction.
Now we apply (3.4.2) for ¢t = (C' + 2)6 and hence we get

U(¢p) —U(2) < (C'+2)%(9) for all z € B(zy, (C + 1)9).

As By := B(({p,C0) C By := B(zp, (C + 1)¢), we can write
(3.4.3)
1

Ucnslz0) = Tan(C + 1)2n62n /B U(@)dVan(2)
. < C )271 1 / U( )dV ( ) n 1 / U( )dV ( )
— C i 1 T2n02n52n B, z 2 TQn(C i 1)2n52n B\ By z oan (2

2(Cﬁ£>%W®%HW®%%C+2VW®WF_<Cilfﬁ

=U@w—«c+2w(1—(cf;)m)ww>
= U(20) + Dw(9),

where D :=1— (C +2)“ (1 — (CLJFJZH) We have D > e~ 4 if

- 1 | ( 1—e* )

a < og 5 =
1 2 C_\*"

og(C+ ) 1_(C+1>

Uicr1)s(20) > Ulz0) + e *w(d).
By (2), the last inequality is equivalent to

!

Hence, we infer

w(8) < e*B(C +1)%6* < A§°.
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This is a contradiction and hence our claim is true. It remains to show that for any fixed
0 < a <1 we can find C' > 0 such that & > «. For this end, we choose C' := n/z with
0 < x < 1 and note that

2n
( n/z > > e % for all n € N.
n/x+1

Hence this yields that

A > 1 lo 1-e*
Oé_log(n/frj—l—Z) \1 -2 )

log(1 — e %) — log(1 — e~27)

Since the function

9x) = log(n/x + 2)
is continuous on ]0, 1[ and lim,_,o g(z) = 1, we can find z > 0 small enough such that
g(z) > o
This completes the proof. ]

Theorem 3.4.4. Let 2 be a bounded SHL domain and let p be a finite Borel measure on 2

satisfying Condition H(00). Suppose that ¢ € C¥*(0Q), 0 < a <1, and 0 < f € LP(Q, p)

for p > 1. Then the solution U to Dir(Q, ¢, fdu) is Holder continuous on Q0 of exponent

%min{y, a/2,1v}, for anyy < 1/(nq+1) and 1/p+1/q = 1, if the two following conditions

hold:

(i) there exists v € COV(Q), for 0 < v < 1, such that v <U in Q and v = ¢ on 09,

(ii) and |[Us, — U|| 11 (q, ) < 07, where ¢,7 >0 and 0 < &, = 6%, for some A > 1.
Moreover, if ¢ € CH1(0) then the Hélder exponent of U will be %min{u, v}

Proof. It follows from Lemma 3.4.1 that there exist ¢y > 0 and dg > 0 so that

3. — maX{fJ(sl,U—i—Co(syl} in Qj,
e U + ¢oo™? in Q\Qg,

belongs to PSH () NC(Q), for 0 < §; < § < dp and vy = min{v, a/2}.
By applying Theorem 3.2.4 with vy := U+ ¢9d”* and vy := Us,, we infer that

sup(l, — U= co8™") < sup(Bs, ~U =08 < e1(1+ £ 0, 1Ty = 0= o0 ) [
5

where 1 :=1/n+vq/[1 —v(1 4+ nq)], c1 = c1(n,q,7v) and 0 < v < 1/(ng+ 1) is fixed.
Since Us, = U+ ¢! in Q\ Qs and

105, — U — co0™) ¢l 1) < 1105, — Ull L1y, -
We conclude that

sup(l, = 0) < cod” + 11+ 111y 0,0) 108 = VL g
5

By hypotheses we have

sup(0, — ) < 0" + 161+ 1y )07
5
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Let us set ¢z := (co + c1¢7) (1 + Hf||Lp(Q ;) We derive from the last inequality that

sup (U5, — U) < ¢pomintvmh,
Qs

This means that )
ﬁ(s —U< CQ(SX min{v1,77} in 951/)\.

Hence, by Lemma 3.4.3, there exists cs, 8o > 0 such that for all 0 < § < &y we have
(3.4.4) Us—U< 635% min{v1,79} i Qsi/x.

Thus, (3.4.4) and (3.4.1) yield the Holder continuity of U on Q of exponent + min{v, a/2, 77},
forany vy < 1/(ng+1) and 1/p+1/q = 1.

Finally, if ¢ € C11(99), we get that the Hélder exponent is § min{v, 7y}, since v = v
(see Remark 3.4.2). O

We prove in the following proposition that the total mass of Laplacian of the solution
is finite when the boundary data is C'''-smooth.

Proposition 3.4.5. Let u be a finite Borel measure satisfying Condition H(7) on  and
© € CH1(09Q). Then the solution U to Dir(Q, ¢, du) has the property that

/Augc,
Q

where C > 0 depends on n, Q, [¢llc1190) and (1(2).

Proof. Let Uy be the solution to the Dirichlet problem Dir(£2,0,du). We first claim that
the total mass of AUy is finite in 2. Indeed, let p be the defining function of 2. Then by
Corollary 1.3.25 we get

/Qdcho A(ddp)t < ( /Q (ddCUO)")l/n ( /Q (ddcp)n)(”_l)/ !
<y ([ )"

Since {2 is a bounded SHL domain, there exists a constant ¢ > 0 such that dd°p > ¢f in
Q. Hence, (3.4.5) yields

| d

(3.4.5)

U A (ddp)"~!

O)1/n . (n—1)/n
S R
Q

Now we note that the total mass of complex Monge-Ampere measure of p is finite in €2 by
the Chern-Levine-Nirenberg inequality and since p is psh and bounded in a neighborhood
of Q. Therefore, the total mass of AUy is finite in €.

Let ¢ be a Ct: 1—extenslon of ¢ to Q such that [|3]|c1.1,0 1) < Cllelleraaq) for some C > 0.
Now, let v = Ap + @ + Uy where A > 0 is big enough Such that Ap+ @ € PSH(Q). By
the comparison principle we see that v <Uin  and v =U = ¢ on Jf). Since p is psh in a
neighborhood of Q and ||AUp||q < +o0, we deduce that |[Av||q < +oc0. Then the following
lemma completes the proof. O
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Lemma 3.4.6. Let 2 be a bounded domain in C". Suppose that vi,ve are continuous
subharmonic function in Q such that v < vg in Q and v = vy on 0L, then we have

/ ddve A BV < / ddvi A 871
Q Q

Proof. First assume that v; = vy in a neighborhood of 9). Then Stokes’ theorem yields
that

/ ddovy A B = / ddevy A 3"
Q Q

For the general case, we define the function ve := max{vy — €,v1}. Hence we see that
v1 < ve in © and ve = v near the boundary 0f). Therefore, we get

/ ddev, A B = / ddevy A A1
Q Q

Since v1 < vy in Q, we get that v. vy in Q. Hence ddv. A B7~! converges to ddvi A B" 1
in the weak sense of measures and we conclude that

/ ddvy A "1 < lim inf / ddve A 7L = / ddvy A gL
Q e—0 Q Q

3.5 Proof of main results

Our first aim is to prove Theorem 3.1.2 by applying Theorem 3.4.4. It is well known that
the Lebesgue measure dVs, satisfies Condition H(co) (see [Z01]). We first estimate the
L'-norm of Us — U with respect to the Lebesgue measure as in [GKZ08].

Lemma 3.5.1. ([GKZ08]). Let o € CH1(0Q) and f € LP(Q), p > 1. Then the solution U
to the Dirichlet problem satisfies

/Q [05(2) — U(2)|dVan(2) < C52,

where C' is a positive constant depending on n, 2 and || f| rr(q)-

Proof. Let us denote by o9,_1 the surface measure of the unit sphere. It follows from the
Poisson-Jensen formula, for z € 25 and 0 < r < §, that

; _ _ " 1-2n
— /8 o, (O —0C) =, /0 ¢ ( /B » AU({)) dt.

Using polar coordinates we obtain for z € (g,

é r
05(2) — V(=) = 3= /0 P21y /D 2 gy ( /B » Au(g)).
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Now we integrate on 5 with respect to dVs,, and use Fubini’s theorem

[ 050 vl = g [ [t [T ([ i) v
;2’; /0 r=Ldr /0 =2t /Q 5 < /B . AU(&)) dVan(2)
S ;2/05 21 /0’" tl‘Q”dt/Q (/B(U) dVQn(z)> AU(€)

<e, / AU
Q

Proposition 3.4.5 yields that the total mass of AU is finite in {2 and this completes the
proof. O

We will introduce here the interplay between the real and complex Monge-Ampere
measures which really goes back to Cheng-Yau and was first explained in Bedford’s survey
[Be88] (see also [CP92]). This relation will be useful in the proof of Theorem 3.1.2.

We recall that if u is a locally convex smooth function in €2, its real Monge-Ampeére

measure is defined by
Mu = det (=28 av;
o 8£Cj8xk n

When u is only convex, then Mu can be defined following Alexandrov [A55] by means of
the gradient image as a nonnegative Borel measure on § (see [Gut01], [RT77], [Gav77]).

We recall the theorem of existence of convex solution to the Dirichlet problem for the
real Monge-Ampere equation, this theorem is due to Rauch and Taylor.

Theorem 3.5.2. (/[RT77]). Let Q be a strictly convex domain. Assume that ¢ € C(00Q)
and 1 is a nonnegative Borel measure on Q with ;1(Q2) < oo. Then there is a unique convex
u € C(R) such that Mu = p in Q and u= @ on 0.

Proposition 3.5.3. Let 0 < f € LP(Q), p > 2 and u be a locally convex function in 2
and continuous on Q. If the real Monge-Ampére measure Mu > f2dVay, then the complex
Monge-Ampére measure satisfies the inequality (ddu)™ > fdVa, in the weak sense of
measures in ).

Proof. For a smooth function u, we have
(3.5.1) | det(0%u/0z;0%) > > det(9%u/dx;0xy).

Hence, we immediately get that (dd°u)™ > fdVay, (see [CP92]).
Moreover, it is well known for smooth convex function that

d%u

(352) (Mu)l/n 1anHU where AHU —Zhj m

7.k

for any symmetric positive definite matrix H = (h;) with det H = n™" (see [Gav77],
[B197]). In general case, we will prove that (dd°u)™ > fB™ weakly in Q. Indeed, the
problem being local, we can assume that u is defined and convex in a neighborhood of a
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ball B C Q. For § > 0, we set ps := Mu * ps then us > gs, where gs := f2 % ps (without
loss of generality we assume gs > 0). We may assume that v and pgs are defined in this
neighborhood of B. Let s be a sequence of smooth functions on dB converging uniformly
to u there. Let u% be a smooth convex function such that Mu’ = ps in B and u® = @5 on
OB. Let @ € C(B) be a convex function such that M# = 0 and @ = @5 on dB. Moreover,
let v9 € C(B) be a convex function such that Mv® = s and v° = 0 on 9B.

From the comparison principle for the real Monge-Ampere operator (see [RT77]), we can
infer that

(3.5.3) i+ 00 <ub <a—1°
It follows from Lemma 3.5 in [RT77] that
(3.5.4) (—0°(2))?" < ¢ (diam(B))?" ! dist(x, dB)Mv®(B), = € B.

Then we conclude that {u°} is uniformly bounded sequence of convex functions, hence
there exists a subsequence {u51 } converging locally uniformly on B.

Moreover, (3.5.3) and (3.5.4) imply that {u%} is uniformly convergent on B. From the
comparison principle it follows that u% converges uniformly to u. Since u% & C>(B) and
Mu® > f%x ps,dVop, we get that

(ddu® )" > (f2 + ps;) " 2dVi.
Finally, as u% converges uniformly to u, we conclude by Bedford and Taylor’s convergence
theorem that
(dd°u)"™ > fdVay,.

O]

We prove now Holder continuity of the solution to the Dirichlet problem Dir(£2, ¢, fdVay,)
with 0 < f € LP(Q).

Proof of Theorem 3.1.2. We first suppose that f = 0 near the boundary of €2, that
is, there exists a compact K € 2 such that f = 0 in Q \ K. To apply Theorem 3.4.4,
we establish a Holder continuous function v such that v < U in Q and v = ¢ on 0. Let
p be the defining function of Q given by Definition 2.2.1 and ¢ be a Ch!-extension of ¢
to Q such that [8lleri@) < Cllellerian), for some C > 0. Now, we take A > 0 large

enough such that v := Ap + ¢ € PSH(Q)NC%(Q) and v < U in a neighborhood of K.
By the comparison principle, we can find that v < U in Q \ K and hence v < U in Q and
vlga = Ulpa = ¢. Hence, by this construction and Lemma 3.5.1, the two conditions in
Theorem 3.4.4 are satisfied. This implies that the solution U is Hélder continuous in € of
exponent 2 for any v < 1/(ng+1) and 1/p+1/q = 1.

For the general case, when f € LP(Q), p > 1. Let us fix a large ball B C C" so that
Q € B C C" Let f be the trivial extension of f to B. Since f € LP(Q) is equal to zero
near 0B, the first case yields that the solution h; to the following Dirichlet problem

(dd°hy)™ = fdVa, in B, and hy =0 on 9B,

is Holder continuous on B of exponent 2v. Now, let ko denote the solution to the Dirichlet
problem in € with boundary values ¢ — h; and the zero density. Thanks to Theorem 2.1.1,
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we infer that he € C% (Q) Therefore, the required barrier will be v := hy + ho. It is clear
that v € PSH(Q)NC(Q), v|aq = ¢ and (dd°v)™ > fdVa, in the weak sense in Q. Hence,
by the comparison principle we get that v < U in Q and v = U = ¢ on 9f2. Moreover, we
have v € C%(Q), for any v < 1/(ng + 1). By applying Theorem 3.4.4, we conclude that
the solution U belongs to C%7(Q).

In the special case when f € LP(Q), p > 2. We can improve the Holder exponent of
U by using the relation between the real and complex Monge-Ampere measures. Let us
set pu := f2dVa, which is a nonnegative Borel measure on B with w(B) < oo. Thanks to
Theorem 3.5.2 there exists a unique convex function v € C(B) such that Mu = p in B
and v = 0 on dB. Hence u is Lipschitz continuous in Q. By Proposition 3.5.3, we have
(dd“u)™ > fdVay, in Q.
We will construct the required barrier as follows. Let h,_, be the solution to the Dirichlet
problem with zero density and ¢ — u boundary data. Then h,_, is Holder continuous of
exponent 1/2 in Q by Theorem 2.1.1. Now, it is easy to check that v := u + hgy—y is psh in
) and satisfies v = ¢ in 9N and (dd°v)"™ > fdVa, in Q. So, by the comparison principle,
we have v < U in . By Theorem 3.4.4 and Lemma 3.5.1, our solution U will be Holder
continuous of exponent min{1/2,2v}, for any v < 1/(ng + 1). O

Remark 3.5.4. It is shown in [GKZ08| that we cannot expect a better Holder exponent
than 2/(ngq) (see also [P105]).

We introduce an important class of Borel measures on €2 containing Riesz measures and
closely related to Hausdorff measures which play an important role in geometric measure
theory [Ma95]. We call such measures Hausdorff-Riesz measures.

Definition 3.5.5. A finite Borel measure on (2 is called a Hausdorfl-Riesz measure of
order 2n — 2 + ¢, for 0 < € < 2 if it satisfies the following condition :

(3.5.5) w(B(z,r)NQ) < Crn=2% V2 e Q, Yo <r <1,
for some positive constant C'.

We give some interesting examples of Hausdorff-Riesz measures.
Example 3.5.6.

1. The Lebesgue measure dVa, on €, for e = 2.

2. The surface measure of a compact real hypersurface, for ¢ = 1.

3. Measures of the type ddv A ﬁ?*l, where v is a a-Hoélder continuous subharmonic
function in a neighborhood of €2, for € = a.

4. The measure 15H?"2T¢ where H?"~21¢ is the Hausdorff measure and F is a Borel
set such that H*"~2T¢(E) < +oo.

5. If u is a Hausdorff-Riesz measure of order 2n — 2 4 ¢, then fdu is Hausdorff-Riesz of
order 2n—2+¢€', with € := e—(2n—2+¢€)/p, for any f € LP(Q,u), p > (2n—24¢€)/e.

The existence of continuous solutions to Dir (2, ¢, fdu) for such measures follows im-
mediately from Theorem 3.1.1 and the following lemma.
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Lemma 3.5.7. Let 2 be a bounded SHL domain and p be a Hausdorff-Riesz measure of
order 2n—2+e¢, for 0 < e < 2. Assume that 0 < f € LP(Q, ) for p > 1, then for all 7 > 0
there exists D > 0 depending on T,¢€,q and diam(2) such that for any Borel set K C €2,

(3.5.6) /K Fdp < D] fll oo [ Cap(K, 2)]+7

Proof. By the Holder inequality we have

[ Fdi < 1 oK)

Let zp € Q be a fixed point and R := 2 diam(€2). Hence, Q2 € B := B(zg, R). For any Borel
set K C Q we get, by Corollary 5.2 in [Z04] and Alexander-Taylor’s inequality, that

w(K) < C(Tr(K))? < Cexp(—e/2 Cap(K, B)~Y/™) < C exp(—¢/2 Cap(K,Q)~/™),

where C' > 0 depends on € and diam(2).
Now, for any 7 > 0, we can find D > 0 depending on 7, ¢, ¢ and diam(2) such that

/K Fdp < DI|f|| 1 [Cap(K, Q)]+

O]

The first step in the proof of Theorem 3.1.3 is to estimate |[Us — Ul 21 (Qg,)> SO We
present the following lemma.

Lemma 3.5.8. Let Q) C C™ be a SHL domain and p be a Hausdorff-Riesz measure of order
2n —2+¢€ on Q, for 0 < e < 2. Suppose that 0 < f € LP(Q,pn), p > 1 and ¢ € CH(9Q).
Then the solution U to Dir(), ¢, fdu) satisfies

/. [05(2) ~ U(E)ldu(z) < O

where C'is a positive constant depending on n, €, 0, || f|lzr,u) and u(Q2).

Proof. Following a slight modification in the proof of Lemma 3.5.1, we can get the required
inequality:. O

When ¢ is not Ch!-smooth, the measure AU may have infinite mass on 2. Fortunately,
we can estimate ||Us, — Ul 21 (0, for some §; < < 1.
We need the following property of a bounded SHL domain.

Lemma 3.5.9. Let Q be a bounded SHL domain. Then there exist a function p € PSH ()N
COL(Q) such that near 9 we have

(3.5.7) ¢y dist(z,0Q) > —p(z) > co dist(z, 0Q)?,

for some c1,co > 0 depending on Q.
Moreover, dd°p > cof in the weak sense of currents on €.



76 Hélder continuity of solutions for general measures

Proof. Since €2 is a strongly hyperconvex Lipschitz domain, there exist a constant ¢ > 0
and a defining function p such that ddp > ¢f in the weak sense of currents on 2. Let
us fix £ € 99, then the function defined by pe(z) := p(z) — ¢/2|z — €| is Lipschitz
continuous in  and satisfies dd°s¢ > (c/2) in the weak sense of currents on 2. Hence,
pe € PSH(Q)NCY(Q). Set
p = sup{pe : £ € 0}
It is clear that p € C*Y(Q) N PSH(Q) and thus the first inequality in (3.5.7) holds. For
any £ € 00 we have —p¢(2) > (¢/2)|z — £/?, so we infer that
—p(2) > (¢/2) dist(z, 0Q)?,

for any z near 0f2.
The last statement follows from the fact that for any & € 02, dd°pe > (c¢/2)8 in the
weak sense of currents on (). O

Remark 3.5.10. When ) is a smooth strongly pseudoconvex domain, we know that the
defining function p satisfies near the boundary,

—p = dist(., 00Q).

Lemma 3.5.11. Let Q@ C C" be a bounded SHL domain and i be a Hausdorff-Riesz
measure of order 2n — 2 + € on ), for 0 < € < 2. Suppose that 0 < f € LP(Q,pu), p > 1
and ¢ € CO*(09Q), a < 1. Then for any small ¢; > 0, we have the following inequality

/Q [05,(2) = U(2)]dp(z) < C5/27,

where 01 = (1/2)(51/2+3’/6 and C is a positive constant depending on n, €), €, €1 and
[ull oo (@)

Proof. One sees as in the proof of Lemma 3.5.1 that

§ r
05, (2) ~ U(z) = 535 / L2y / 112y ( / AU(§)).
1 J0 0 B(z,t)

Then, we integrate on 25 with respect to p and use Fubini’s Theorem

4 r
/ (05, (2) — U(2)]du(z) < %/ 1,,2n71d7,/ tundt/ (/ du(z)) A(E)
Qs 01" Jo 0 Qs_: \UB(e,0)
1 r
< S [Centar [t [ v
0" Jo 0 Qs

1 r
< 5% sup (_ﬁ)—(3+e1)/2/ r%—ldr/ t—1+€dt/ (—p)BFU/2Ay(¢)
0 0 Qs _¢

1 Qs

Cn —(34€1)/21(_ ~\(3+e1)/2 N " ite
< < sup(=p) =)0l [ tar [t ar

1 Q2 0 0

o

Elll_ = (3+61)/2A
< - Al

< 1327 (=p) D2 Au]lg,
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where p is as in Lemma 3.5.9 and C > 0 is a positive constant depending on € and n.

To complete the proof we demonstrate that the mass ||(—p5)®+<)/2AU|q is finite. The
following idea is due to [BKPZ15] with some appropriate modifications. We set for simpli-
fication 0 := (34 €1)/2. Let p, be the standard regularizing kernels with supp p,, C B(0,7)
and fB(o,n) ppdVa, = 1. Hence, u, = Ux p, € C*° N PSH(Q,) decreases to U in Q. It is
clear that |uy||L(q,) < [[UlL~(q) and the first derivatives of u, have L°°-norms less than
Ul oo () /- We denote by xq, the characteristic function of €2,. Since u, N\, U in Q, we
have xq, (—p)? Au, converges to (—§)? AU in the weak sense of measures.

It is sufficient to show that

L= [ () ddeu, g,

n

is bounded by an absolute constant independent of . We have by Stokes’ theorem

1=
29

/89 (—ﬁ)gilundcﬁ/\ﬂnil :/ (—ﬁ)a’ldun /\dcﬁ/\ﬁnil—i-
n

Qy

(=p)0d°uy A B+ G/Q (=p)"Ydp A dCuy A BN
n

n

Note that

+/ (—ﬁ)a’lunddcﬁ/\ﬁ’"’l

n

- 1)/ (=p)°2updj A dp A B

n

Hence, we get
T= [0 douyn g0 [ (5 Tugdpn 5
o, o,

-0 s (=p)!Luyddp A B 4+ 0(0 — 1) / (=p)"2uydp Ndp A B
n

Qy
< Ol ([, do+ [ awons+ [ (pr2n).
%, Q, Q,

< Cllull oo () (/ do —i—/ dd’p A B + / (_ﬁ)(1+61)/26n) ’
02y Q O

where do = d°p A (dd°p)"~! and p is the defining function of . Since p is psh in a
neighborhood of Q, the second integral in the last inequality is finite. Thanks to Lemma
3.5.9, we have —p > co dist(., 02)? near 9 and so the third integral will be finite since
€1 > 0 small enough. Consequently, we infer that I is bounded by a constant independent
of n and then this proves our claim. O

Corollary 3.5.12. When ) is a smooth strongly pseudoconver domain, then Lemma
3.5.11 holds also for 6, = (1/2)6Y/?+ 1/,

Proof. Let p be the defining function of ). In view of Remark 3.5.10 and the last argument,
we can estimate ||(—p)TAU||q, for €; > 0 small enough, and ensure that this mass is
finite. So the proof of Lemma 3.5.11 is still true for more better §; := (1/2)6"/?t1/¢. O
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We are in a position to prove the Holder continuity of the solution to Dir(€2, ¢, fdu)
where 1 is a Hausdorff-Riesz measure of order 2n — 2 + ¢ and ¢ € CH1(09).

Proof of Theorem 3.1.3. We first assume that f equals to zero near the boundary 052,
then there exists a compact K € € such that f = 0 on Q\ K. Since ¢ € CH1(99), we
extend it to ¢ € C1(Q) such that [8ller1(@) < Cllelleri(an) for some constant C. Let p be
the defining function of © and let A > 1 be so that v := Ap+ @ € PSH(2) and v < U in
a neighborhood of K. Moreover, by the comparison principle, we see that v < Uin Q\ K.
Consequently, v € PSH(Q) N C%(Q) and satisfies v < U on Q and v = U = ¢ on 9. It
follows from Theorem 3.4.4 and Lemma 3.5.8 that U € C%<7(Q), for any 0 < v < 1/(ng+1).

In the general case, fix a large ball B C C" containing € and define a function f €
LP(B, ) so that f := f in Q and f := 0 in B\ Q. Hence, the solution to the following

Dirichlet problem

vy € PSH(B)NC(B),
(ddv)™ = fdu in B,
v =0 on 0B,

belongs to COY' (B), with 4/ = ey for any v < 1/(ng + 1).

Let hy—y, be the continuous solution to Dir(€2, ¢o—v1,0). Then, Theorem 2.1.1 implies that
hg—v, belongs to C%7'/2(Q)). This enables us to construct a Holder barrier for our problem.
We take vg = v +hy_y, . It is clear that vy € PSH(Q)NC%'/2(Q) and vy < Uon Q by the
comparison principle. Hence, Theorem 3.4.4 and Lemma 3.5.8 imply that the solution U to
Dir(Q, ¢, fdu) is Holder continuous on Q of exponent evy/2 for any 0 < v < 1/(ng+1). O

In the case when ¢ is only Holder continuous, we prove the Hélder regularity of the
solution.

Proof of Theorem 3.1.4. Let also v1 be as in the proof of Theorem 3.1.3 and h,_,, be
the solution to Dir (€2, ¢ — v1,0). In order to apply Theorem 3.4.4, we set v = vi + hy_yy, .
Hence, v € PSH(Q)N € C(R), v = ¢ on I and (dd°v)" > fdu in Q. The comparison
principle yields v < U in Q. Moreover, by Theorem 2.1.1, we have h,_,, € o (Q)
with 4" = 1/2min{«, ey}. Hence, it stems from Theorem 3.4.4 and Lemma 3.5.11 that

the solution U is Holder continuous on € of exponent — min{«, ey}, for any 0 < v <

e+6
1/(ng+1).
Moreover, when 2 is a smooth strongly pseudoconvex domain and by Corollary 3.5.12
we get more better Holder exponent 5 min{«, ey}, for any 0 <y < 1/(ng + 1). O

Corollary 3.5.13. Let Q be a finite intersection of strongly pseudoconvex domains in
Cn. Assume that ¢ € CO%(0), 0 < a < 1, and 0 < f € LP(Q) for some p > 1.
Then the solution U to the Dirichlet problem Dir(S, ¢, fdVay,) belongs to CO(Q) with
o =min{a/2,v} for any 0 <~y < 1/(nq+1). Moreover, if p € CH1(9Q) the solution U is
~v-Hélder continuous on .

The first part of this corollary was proved in Theorem 1.2 in [BKPZ15] with the Holder
exponent min{2vy, a}v and the second part was proved in [GKZ08] and [Chl5a] (see also
[N14, Ch14] for the complex Hessian equation).

Our final purpose concerns how to get the Holder continuity of the solution to the
Dirichlet problem Dir (2, ¢, fdu), by means of the Holder continuity of a subsolution to



Proof of main results 79

Dir(Q, ¢, du) for some special measure p on 2. We suppose here that p is less than the
Monge-Ampere measure of a Holder continuous psh function and has the behavior of some
Hausdorff-Riesz measure near the boundary.

Proof of Theorem 3.1.5. Let €2; € (2 be an open set such that x is a Hausdorfl-Riesz
measure on )\ 7. Let also 2y € Q be a a neighborhood of ;. We claim that

(3.5.8) /Q (05 — U)dp < /Q (05 — U)(dd°w)™ < C|| AU, 5737,

1 1
where C' depends on §2; and Q9. This estimate was proved in [DDGHKZ14]. We can assume
without loss of generality that €21 := Bj, Q9 := Bs and —2 < w < —1 in ). This implies
that h(z) := |22 — 4 < w on By, while w < h on By \ B, for some 1 < rg < 2.
Replacing w by max{w, h}, we can assume that w = h on By \ B,,. Fix x € C§°(C") such
that x > 0, x(2) := x(|2]), suppx C By and [ xdVa, = 1. Let us set

ws() = g [ w5 V()

Since w € PSH(Q) N C%\(Q), we obtain that
ws(z) — w(z) < C16.
Observe that

Dws
8zj82k

C2||w||L<>°(Q)

(3.5.9)

We choose ¢ € C§°(C™) such that 0 < ¢ <1, ¢ =1 on B,, and supp¢ C B,,, where
rg < r1 < ro < 2. We define

i(z) = | w(z - 06(:)0)x(y) dVanl)
Note that
i5(2) ~w(z) = [ (= = 06(:)y) ~ w(x(w) Vanly) < 18’

and
ws(2z) = ws(z) on B, ws(2z) = w(z) on Ba\B,,.

Fix now any 2 € Bo\B,,. Since w = h there, we have for any § < &y,

Qw 2
aijajk 9=, 3:82kh(2 —06(2)y)x(y) dVan(y)
=) [0 + 00(1)]x(y) dVan(y)

=01 + 50(1).
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If § is small enough, we conclude that ws € PSH(B2\B,,), V6§ < . Hence 1y is
actually plurisubharmonic in all of Bo. Set

n—1
T :=> (dd“w)’ A (dd°ws)""",
j=0

where € > 0 to be chosen later. From (3.5.9), Lemma 3.5.1 and Stokes’ formula we get
/ (05 — U)(ddw)" < / (05 — U)(dd°w)"
Ql ]BQ

= [ (U5 —U)[(dd°w)™ — (ddts-)"] (U5 — U) (dd s )™
Bo Bo

< / (05 — U)dd®(w — wge) AT + Q*/ (s — U) dVan
By 6277,& B,

] A C
< /B (5 — w)dd“(U —Ts) AT + 2 /B AUS?
2 2

< / (5e — w)dd°UAT 4+ Cs | Aus21—ne)
]BQ B?

< 046%™ ddUNT + C5620—m2) [ Au
Br, By

§C4/]B AU[&S)\HMHZ;}(Q) +52(1—n6)]
2

< Cy AU 67,
B2

_ 2 _2)
where ¢ = ron and 7 = Xton-

Now, let i be a Hausdorfl-Riesz measure on €2 of order 2n — 2 + € so that ji equals p
in Q\ Q. As ¢ is not Ch'-smooth, we estimate [|Us, — Ul|;1(q; ) With 61 := (1/2)81/2+3/,
Then, we have

| s —vdu < [ (@, —vdp+ [ (@, - )dn.
Qs Q1 Qs

Fix €; > 0 small enough. Then, it follows from (3.5.8) and Lemma 3.5.11 that

[ 0, —0du < [ (8, - 0)@ddow)+ [ (05~ V)i
Qs Q1 Qs
2\

< CJ| AUl 67 + ¢/,

where C' = C'(Q4,Qa, ||w]|L<) is a positive constant and C’ depends on n, €, €, ¢; and
[U]] e ()~ Since the mass of AU is locally bounded, there exists a constant C” > 0 such
that

/ (05, — U)du < C"47,
Qs

. A(e+6
where 7 = min{§ — €, E(/(\JFQTE)}.

The last requirement to apply Theorem 3.4.4 is to construct a function v € C% (Q) for
0 < v <1 such that v < Uin Q and v = ¢ on €. Let us denote by w; the solution to
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Dir(Q,0, fdfi) and hy, the solution to Dir(£2, ¢, 0). Now, set v = w1 +hy,+ Ap with A > 1
so that v < U in a neighborhood of Q;. It is clear that v € PSH(2) NC(2), v = ¢ on 09
and v < U in by the comparison principle. Moreover, by Theorem 2.1.1, we infer that

v e CO(Q), for v = 1/2min{ey, a} and any v < 1/(nqqL 1). Finally, we get from Theorem

2Ay(e+6
6(:\/+2n)) } 0

3.4.4 that U is Holder continuous on Q of exponent —« mln{a €7,

The following are nice applications of Theorem 3.1.5.

Corollary 3.5.14. Let Q0 C C" be a bounded SHL domain and p be a finite Borel measure
with compact support on . Let also p € C¥*(00),0 < a <1and0 < f € LP(Q,pu), p> 1.
Assume that there exists a A\-Hoélder continuous psh function w in Q such that (dd“w)™ > p.
Then the solution to the Dirichlet problem Dir(Q, @, fdu) is Hélder continuous on Q of
exponent min{a /2, /\+2n} forany v <1/(ng+1) and 1/p+1/q = 1.

Example 3.5.15. Let p be a finite Borel measure with compact support on a bounded
SHL domain €. Let also ¢ € C%*(09Q), 0 < a < 1and 0 < f € LP(Q, 1), p > 1. Suppose
that p < dV,,, where dV,, is the Lebesgue measure of the totally real part R" of C", then
the solution to the Dirichlet problem Dir(2, ¢, fdu) is Holder continuous on Q of exponent
min{a/2, 1+2n} forany vy <1/(ng+1) and 1/p+1/¢=1.

Proof. Since R™ = {Imz; = 0,j = 1,...,n}, one can present the Lebesgue measure of the
totaly real part R™ of C" in the form

<ddC i([mzj)Jr) .

=1

Let us set w = Y (Imz;) . It is clear that w € PSH(Q)NC* () and p < (dd°w)™ on Q.
Corollary 3.5.14 yields that the solution U belongs to C%®' () with o/ = min{«/2, 1+2n}
for any v < 1/(ng + 1). O

At the end, we note that a slight modification in the proof of Theorem 3.1.5 enables us
to estimate the modulus of continuity of the solution in terms of the modulus of continuity
of a subsolution.

Remark 3.5.16. Let p be a measure satisfying the Condition H(c0) on a bounded SHL
domain . Let also ¢ € C%¥(99), 0 < o < 1land 0 < f € LP(Q, ), p > 1. Assume that
there exists a continuous plurisubharmonic function w in €2 such that (ddw)™ > u. If the
measure p is Hausdorff-Riesz of order 2n — 2 + € in Q \ Q; for some 0 < € < 2, where
0y € Q, then the solution U to Dir(£2, ¢, fdu) has the following modulus of continuity

wy(8) < Cmax{6”,w} (677 )},

where v = min{ %%, 6JFG,TW} 0 < 7 < 2 is an arbitrary constant and C is a positive
constant depends on Q, Qy, n, €, [|[Ul| g (), [[w]] Lo ()



82 Hélder continuity of solutions for general measures

3.6 Open questions

o Let ¢ € CO%¥(09), 0 < a < 1 and let i be a finite Borel measure on ) satisfying
Condition H(c0). Suppose that the Dirichlet problem Dir(, ¢, du) has a Holder
continuous subsolution in Q. Is the solution to this problem Holder continuous in Q7?
We have shown in Theorem 3.1.5 an affirmative answer when p satisfies some nice
condition near 0f).

e Suppose that p is a finite Borel measure on 2 and it is strongly dominated by
capacity, that is, there exist A, B > 0 so that for any Borel set K C €,

—1/n

:U’(K) < AefBCap(K,Q)

Suppose that ¢ € CO(09), 0 < a < 1. Does the solution to Dir(£2, ¢, du) belong to
CO'(Q) for some 0 < o/ < 1?7



Chapter 4

The Dirichlet problem for complex
Hessian equations

4.1 Introduction

Let 2 be a bounded domain in C" with smooth boundary and let m be an integer such
that 1 < m < n. Given ¢ € C(02) and 0 < f € C(Q2), we consider the Dirichlet problem
for the complex Hessian equation:

u € SH,(2) NC(Q),
(4.1.1) (ddu)™ A =" = fB™  in €,
U= on 01},

where SH,,(Q2) denotes the set of all m-subharmonic functions in Q and § := dd°|z|? is
the standard Kahler form in C".

In the case m = 1, this equation corresponds to the Poisson equation which is classical
(see [GTO01]). The case m = n corresponds to the complex Monge-Ampére equation which
was intensively studied these last decades by several authors (see [BT76], [CP92], [CK94],
[Ko98]).

The complex Hessian equation is a new subject and is much more difficult to handle
than the complex Monge-Ampere equation (e.g. the m-subharmonic functions are not
invariant under holomorphic change of variables, for m < n). Despite these difficulties,
the pluripotential theory developed in ([BT82] , [De89], [Ko98]) for the complex Monge-
Ampere equation, can be adapted to the complex Hessian equation.

The Dirichlet problem (4.1.1) was considered by S.Y. Li in [Li04]. He proved that if 2
is a bounded strongly m-pseudoconvex domain with smooth boundary (see the definition
below), ¢ € C®(09) and 0 < f € C®(Q) then there exists a unique smooth solution to
(4.1.1).

The existence of continuous solution for the homogeneous Dirichlet problem in the unit
ball was proved by Z. Blocki [B105].
Recently, S. Dinew and S. Kotodziej proved in [DK14] that there exists a unique continuous

solution to (4.1.1) when 0 < f € LP(Q), p > n/m.
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A potential theory for the complex Hessian equation was independently developed by
Sadullaev and Abdullaev in [SA12] and H.C. Lu in [Lul2].

H.C. Lu developed [Lul3b] a viscosity approach to the following Dirichlet problem for the
complex Hessian equation.

u € SH,,(Q2) NC(Q),
(4.1.2) (ddu)™ A "~ = F(z,u)p™ in Q,
U= on 01,

where F : Q x R — Rt is a continuous function and nondecreasing in the second variable.

Our first main result in this chapter gives a sharp estimate for the modulus of continuity
of the solution to the Dirichlet problem (4.1.2). More precisely, we will prove the following
theorem.

Theorem 4.1.1. Let § be a smoothly bounded strongly m-pseudoconvex domain in C",
p € CON) and 0 < F € C(2 x R) be a nondecreasing function in the second variable.
Then the modulus of continuity wy of the solution U satisfies the following estimate

1
o) < A1+ IS ) mafuns(172), wpnm (8), £1/2),
where v is a positive constant depending only on Q, K = Q x {a}, a = supyq || and
wpi/m (t) is given by

wpym(t) = sup  sup  |FY™(z1,y) — FY™(20,y)),
yE[—M,M] |21 —22|<t

with M := a + 2 diam(Q)? supg F/"(., —a).

H.C. Lu proved in [Lul3b] that the solution to (4.1.2) is Holder continuous on a smooth
bounded strongly pseudoconvex domain €2 under conditions of Hélder continuity of ¢ and
F.

In the case of the complex Monge-Ampere equation, Y. Wang gave a control on the
modulus of continuity of the solution assuming the existence of a subsolution and a su-
persolution with the given boundary data ([Wanl2]).

Here we do not assume the existence of a subsolution and a supersolution. Actually
the main argument in our proof consists in constructing adequate barriers for the Dirichlet
problem for the complex Hessian equation (4.1.2) in a strongly m-pseudoconvex domain.

In the case when the density f € LP(Q2) with p > n/m, N.C. Nguyen [N14] proved the
Holder continuity of the solution to (4.1.1) when the boundary data is in C1'*(9€2) and the
density f satisfies a growth condition near the boundary of 2.

In the case m = n, the author recently proved [Chlba] that the solution to the Dirich-
let problem (4.1.1) is Hélder continuous on € without assuming any condition near the
boundary. Using the same idea we can prove a similar result for the complex Hessian
equation. Accurately, we have the following theorem.
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Theorem 4.1.2. Let 2 C C™ be a bounded strongly m-pseudoconvex domain with smooth
boundary, p € CH1H(OQ) and 0 < f € LP(Q), for some p > n/m. Then the solution to
(4.1.1) U € CO%(Q) for any 0 < a < 1, where v1 is a constant depending on m, n, p
defined by (4.5.1).

Moreover, if p > 2n/m then the solution U € C%%(Q), for any 0 < a < min{%, 291 }.

In the particular case when f € LP(Q), for p > n/m, and satisfies some condition near
the boundary 0f) we can get a better exponent.

Theorem 4.1.3. Let 2 C C" be a strongly m-pseudoconver bounded domain with smooth
boundary. Suppose p € CH1(9Q) and 0 < f € LP(QQ) for some p > n/m, such that

f(z) < (hop(2))™ near 69,

where p is the defining function on Q and 0 < h € L*([—A,0[), with A > supq |p|, is
an increasing function. Then the solution U to (4.1.1) is Holder continuous of exponent
a < min{l/2,2y,}, where v1 is a constant defined by (4.5.1).

Finally, we prove Holder continuity of the radially symmetric solution with a better
exponent which turns out to be optimal.

Theorem 4.1.4. Let f € LP(B) be a radial function, where p > n/m. Then the unique
solution U to (4.1.1) with zero boundary values is given by the explicit formula

1 1 t 1/m
(4.1.3) W) =B [ o ([ 0 0dp) e =l
. t2n/m—1 0
. om —1/m 02— 22— .
where B = (meln) . Moreover, U € C™° m» (B) forn/m < p < 2n/m and U € Lip(B)
for p>2n/m.

4.2 Preliminaries

We define the differential operator Lo : SHy,(2) N L (Q) — D'(2) such that

loc

ddu Nag A ... N a1 A BT = LoufB”,

where aq, ..., n—1 € 2. In appropriate complex coordinates this operator is the Laplace
operator.

Example 4.2.1. Using the Garding inequality (1.3.1), one can note that L, (]z|?) > 1 for
any a; € Xy, 1 <1< m—1.

We will prove the following essential proposition by applying ideas from the viscosity
theory developed in [EGZ11] for the complex Monge-Ampere equation and extended to the
complex Hessian equation by H.C.Lu [Lul3b]. A similar result to the following proposition,
but for m = n, was proved in [B196] (see also [Chlbal).
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Proposition 4.2.2. Let u € SH,,(Q2) NC(Q) and 0 < F € C(2 x R). The following
conditions are equivalent:

1) Lou > FY™(z,u),Yoq, ..., oim—1 € S

2) (ddu)™ A 7" > F(z,u)p"™ in Q.

Proof. First observe that if u € C?(f2), then by Lemma 1.3.2 we can see that (1) is
equivalent to
S(@)/™ = FY™(z,u),

where a = ddu is a real (1,1)-form belongs to I'yy,.
The last inequality corresponds to

(ddu)™ A" > F(z,u)B"™ in Q.

(1 = 2) We consider the standard regularization u, of u by convolution with smoothing
kernel. We then get
Lote > (FY™(z,u))..

Since u, is smooth, we infer by the observation above that
(ddue)™ A BT > ((Fl/m(z, u))e)™"p".

Letting ¢ — 0, by the convergence theorem for the Hessian operator under decreasing
sequence, we get
(ddu)™ A" > F(z,u)B"™ in Q.

(2 = 1) Fix 29 € Q and ¢ is a C2-function in a neighborhood V' & € of g such that u < ¢
in this neighborhood and u(xg) = q(zp). We will prove that

(dd®q)ig NB"™ = F(x0, u(x0))5".

First step: we claim that dd‘q,, € L.

If u is smooth, we note that xg is a local minimum point of ¢ — u, then dd®(¢ — u)z, > 0.
Hence, we see that (ddq)* A "% > 0 in g, for 1 < k < m. This gives that dd‘qy, € |-
If w is non-smooth, let u. be the standard smooth regularization of w. Then wu, is m-sh,
smooth and u. N\, u. Now let us fix § > 0 and ¢y > 0 such that the neighborhood of xg,
V C Q. For each € < €, let y. be the maximum point of uc — ¢ — §|x — z0|* on BeV,
where B is a small ball centered at xy. Then we have

ue(x) - Q(‘T) - 5|5C - xO’z < Ue(ye) - Q(?k) - 6’ye - CC0|2~

Assume that y. — y € B and set = x¢. By passing to the limit in the last inequality, we
derive that

0 < u(y) —q(y) — dly — zo|?,

but ¢ > w in V, then we can conclude that y = zg.
Let us then define

q:=q+ 0z — 1‘0|2 + ue(ye) — q(ye) — Olye — $0|27
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which is a C?-function in B and satisfies u.(y.) = G(y.) and § > u. in B, then the following
inequality holds in vy,
(dd°q)" A B"F >0 for 1 <k <m.

This means that
(dd°q +68)k AB"F > 0for 1 <k <m.

Letting € tend to 0, we get
(dd°q+0B)5 AB"F >0 for 1 <k <m.

Since the last inequality holds for any 6 > 0, we can get that dd°q,, € L.
Second step: assume that there exist a point o € Q and a C?-function ¢ satisfying
u < ¢ in a neighborhood of xy and u(zg) = q(z¢) such that

(dd°q)ye N B"™ < F(wo,u(x0))B".

Let us set

742

() = ala) + el — ol - ),

which is a C?-function and for 0 < € < 1 small enough we have
0 < (ddq)ze NB"™ < F(x0,u(x0)) "
Since F' is continuous on §2 X R, there exists r > 0 such that
(ddeq®)™ A "™ < F(z,u(x))pf™ in B(xg,r).

Hence, we get

(ddq)™ A "™ < (ddu)™ A BT in B(xo, 1),
and ¢¢ = g + er?/2 > q > u on OB(xg,7). It follows from the comparison principle (see
[B105, Lul2]) that ¢¢ > u in B(zq, 7). But this contradicts that ¢¢(zo) = u(zg) — er?/2 <
u(xo).

We have shown that for every point 2o € €, and every C?-function ¢ in a neighborhood
of g such that u < g in this neighborhood and u(xg) = q(xo), we have (dd°q)y; A B" ™™ >
F(xg,u(x0))B", hence we have Lagz, > FY™ (20, u(z0)).

Final step: assume that F' > 0 is a smooth function. Then there exists a C*°-function,
say g such that Log = F'/"(z,u) . Hence Theorem 3.2.10 in [H94] implies that ¢ = u—g
is L,-subharmonic, consequently Lou > FY/™(z, u).

In case F' > 0 is only continuous, we note that

F(z,u) =sup{w € C*,0 < w < F}.

Since (ddu)™ A "™ > F(xz,u)p", we get (dd“u)™ A "™ > wp™. As w > 0 is smooth,
we see that Lou > w'/™. Therefore, we conclude Lou > FY/™(x, u).
In the general case 0 < F' € C(Q x R), we observe that uc(z) = u(z) + ¢|z|? satisfies

(ddue)™ A "™ > (F(x,u) + €™)p™.

By the last step, we get Loue > (F(z,u) + em)l/m , then the required result follows by
letting € tend to 0. ]
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Definition 4.2.3. Let 2 C C™ be a smoothly bounded domain, we say that €2 is strongly

m-pseudoconvex if there exist a defining function p of € (i.e. a smooth function in a
neighborhood U of  such that p < 0 on €2, p =0 and dp # 0 on 9 ) and ¢ > 0 such that

(ddcp)k ABYF>efminU, forl <k<m.

The existence of a solution U to the Dirichlet problem (4.1.1) was proved in [DK14].
This solution can be given by the upper envelope of subsolutions to the Dirichlet problem
as in [BT76] for the complex Monge-Ampére equation.

(4.2.1)  U=sup{v e SH,(Q)NC(Q); v|ga < ¢ and (ddv)™ A" > F(z,v)5"}.
However, thanks to Lemma 4.2.2, we can describe the solution as the following
(4.2.2) U =sup{v € Vn(Q, p, F)},
where the family V,,, (€2, ¢, F) is defined as
Vin = {v € SH,, () NC(Q); v]oa < p and Lov > F(z,0)/" Va; € Sy, 1 < i <m — 1}.

This family is nonempty and stable under the operation of taking finite maximum.
Observe that the description of the solution in formula (4.2.2) is more convenient, since it
deals with subsolutions with respect to a family of linear elliptic operators.

4.3 Existence of solutions

At first, Li proved [Li04] that there exist smooth solutions to (4.1.1) for smooth positive
densities and smooth boundary values. Moreover, it is well known that there exist contin-
uous solutions to (4.1.1) for LP-densities (see [DK14]). We can give an alternative proof
to the existence of these solutions using an analogue method to the proof of Proposition
3.3.2.

In this section we study the existence of a continuous solution to (4.1.2) following
Cegrell [Ce84] and using the Schauder-Tychonoff fixed point theorem.

Let u; be the continuous solution to (4.1.1) for the boundary values ¢ and the density
f =0 and let also ug be the continuous solution to (4.1.1) for the boundary values ¢ and
the density f = maxy F(z,t) where K := Q x {maxsq |¢|}.

Let us set

A:={ve SH,(Q)NL®Q);us <v<u}.

This set is convex and compact in the weak topology. We define the operator G : A — A
by taking G(v) to be the continuous solution to the Dirichlet problem:
(dd“w)™ A" = F(z,v)8" and  lim w(z) = ¢,
z—00
which exists and is unique by [DK14]. We claim that this operator is continuous in the

L(Q)-topology. Let v; € A converges to v in the L'(Q)-topology. By passing to a subse-
quence, we can assume that v; converges pointwise almost everywhere to v. We set

m;(z) == }r;fF(z,vj) and M;(z) := sgp F(z,v;).
2 Jj=>
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It is clear m;(z) < F(z,v;) < M;(z). We take 9; and 0; to be the solutions to (4.1.1)
with densities m; and M; respectively. Thus, we conclude 0; < G(v;) < v;. Hence, (9;) is
decreasing sequence and (9;) is increasing sequence. So, we put lim o := lim; € SH,, ()
and v := (lim0;)* € SH,,(Q2). Hence, we infer

(dd°T)™ A B = (dd°0)™ A 7™ = F(z, v) 8"

The comparison principle implies that © = 0. Finally, we get limG(v;) = v = v = G(v)
almost everywhere. Hence G is continuous in the weak topology.

It follows from the Schauder-Tychonoff fixed point theorem that there exists v € A
such that G(v) = v. So that we have a function u € SH,,(2) N L () such that (ddu)™
BT = F(z,u)B"™ and lim,_,¢ u(z) = ¢(§), V¢ € 0Q.

Since our solution is the unique solution to (4.1.1) for the bounded density f = F(z,u),
this implies that w is continuous on €.

The uniqueness of the solution to (4.1.2) is a consequence of the comparison principle.
Indeed, suppose that there exist two continuous solutions wu,us such that the open set
V := {u; < ug} is not empty. Since F' is nondecreasing in the second variable, we get
that (ddup)™ A "™ < (ddu2)™ A "™ in V and u; = ug on dV. By the comparison
principle, we infer that u; > ug in V. This is a contradiction.

4.4 Modulus of continuity of the solution

Lemma 4.4.1. Let Q0 C C™ be a bounded strongly m-pseudoconvexr domain with smooth
boundary. Then for every point & € 0Q and ¢ € C(0N), there exist a constant C' > 0
depending only on Q and a function he € SH,,(Q)NC(Q) such that the following conditions
hold:

(1) he(z) < p(2),Vz € 09,

(2) he(€) = (6,

(3) whe(t) < C

Proof. Since € is strongly m-pseudoconvex and its defining function p is smooth, we can
choose B > 0 large enough such that the function

w,(t172).

9(2) = Bp(z) — |z — £,
is m-subharmonic in €. Let @, be the minimal concave majorant of w, and define
X(@) = =@, ((=2)'/?),

which is a convex nondecreasing function on [—d?,0]. Now, fix > 0 so small that [g(z)| <
d? in B(&,7) NQ and define for z € B(£,7) N the function

h(z) = x 0 g(z) + ¢(&).

It is clear that h is a continuous m-subharmonic function on B(&, r)N$) and one can observe
that h(z) < ¢(z) if z € B(&,r) N 9Q and h(§) = ¢(&). Moreover, by the subadditivity of
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w, and Lemma 2.4.1 we have

wh(t) = sup [h(z) = h(y)]

lz—y|<t

< ‘j@l}lﬁq% D!z — &=y — € = B(p(2) - p(v))|

1/2}

< sup @, [((2d+ B1)|z —y|)'"?]
|[z—y|<t

< Cw,(t1?),

where C := 14 (2d + B;)'/? is a constant depending on €.
Recall that £ € 9Q and fix 0 < r; < r and 73 > 1+ d/ry such that

~m@y [(|2 = €° — Bp()"?] <info - sup .

for z € 00N OB(E,r1). Let us set o = ianéap, it follows that

Y1 (h(z) = 0(€)) + @(§) < 72 for z € AB(E,71) N

Now set

hee) = { )~ O+ D) 52 B0 BT
¢ V2 ;2 € Q\ B(&m),

which is a well defined m-subharmonic function on € and continuous on €. Moreover, it
satisfies he(z) < p(2) for all z € 9Q. Indeed, on 92 N B(&,r1) we have

Y1(h(2) = p(§)) + (&) = =Wy (|2 — &]) + @(§) < =@y (2 —&]) + 9(§) < ¢(2).

Furthermore, the modulus of continuity of h¢ satisfies
whe (1) < Cuwg(t'7?),

where C' := ~;C depends on 2. Hence, h satisfies the conditions (1)-(3), and this completes
the proof. O

In the following proposition, we establish a barrier to the problem (4.1.2) and estimate
its modulus of continuity.

Proposition 4.4.2. Let 0 C C" be a bounded strongly m-pseudoconver domain with
smooth boundary. Assume that w, is the modulus of continuity of ¢ € C(992) and 0 <
F € C(Q x R) is nondecreasing in the second variable. Then there exists a subsolution
v € Vi (¢, F) such that v = ¢ on 9 and the modulus of continuity of v satisfies the
following inequality

wy(t) < Amax{w, (t1/2), /%),

where A =n(1 + ||FH1L/°T(K)), K = Q x {supyq ||} and n is a positive constant depending

on €.
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Proof. First of all, fix £ € 0Q. We will prove that there exists ve € V,,(€, ¢, F') such that
ve(§) = (§)-

We fix 25 € 2 and set Ky := supy F1/™_ Hence, we have

La(Kilz = 20[*) = K1Lalz — 20[* 2 Fl/m(mgg o),

for all oy € ¥,,,,1 <7 < m —1 and z € Q. We also set Ko := K1|¢ — 2| and define the
continuous function
@(Z) = (p(Z) — Kﬂz — Z0’2 + K.

we find, by Lemma 4.4.1, a constant C' > 0 depending on €2 and a function h¢ satisfying
the following conditions:
1) he(2) < 3(2), ¥z € 99,

2) he(§) = @(8),
3) whe (t) < Cuwy(t!/?).
Then the required function ve € Vi, (2, ¢, F') is given by

ve(2) = he(2) + Ki|z — 20)* — K.
It is obvious that ve € SH,,(€2) NC(). Since
he(2) < ¢(2) = o(2) — Ki|z — 20]* + K3 on 99,
we conclude vg(2) < ¢(2) on 082 and ve(§) = p(£). Moreover, we have
Love = Loh + K1 Lo |z — z0]2 > Fl/m(z, ve) in Q.

Furthermore, by the hypothesis on h¢ , we can estimate the modulus of continuity of ve:

Wy (t) = | Su1|3 [v(2) = v(y)] < wh(t) + Kiwp, .2 (1)
z—y|<t
< Cwp(t/?) + 4d32 K, t1/?
< Cw,(?) + 24K (C + 2dY/?)tt/?

< (C + 2dY?)(1 + 2d K1) max{w, (t1/2), /2},
where d := diam(2). Hence, we have
wie () < (1 + K1) max{w,(t1/2), /%),

where 7 := (C' + 2d"/?)(1 + 2d) is a constant depending on €.
We have just proved that for each { € 09, there is a function ve € V,, (€, ¢, F') such

that ve(§) = (&), and
e t) < (1 + Ky) max{u (11/2), 6112,

Let us set
v(z) = sup {ve(2); € € 00}
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We have 0 < w,(t) < n(1 + K1) max{w,(t'/2),t/2}, thus w,(t) converges to zero when
t converges to zero. Consequently, we get v € C(Q) and v = v* € SH,,(Q). Thanks to
Choquet’s lemma, we can choose a nondecreasing sequence (v;), where v; € Vi, (Q, ¢, F'),
converging to v almost everywhere. So that
Lov = lim Lav; > FY™(2,0),Yay; € S,.
‘]%OO

It is clear that v(§) = ¢(&) for any & € 09. Finally, we get v € V;,, (2, , F') such that
v = on IN and w,(t) < n(l+ Ky) max{w@(t1/2),t1/2}' =

Corollary 4.4.3. Under the same assumption of Proposition 4.4.2. There exists a m-

superharmonic function © € C(§2) such that © = ¢ on 0 and
wr(t) < Amax{ury(£12), 112},
where A > 0 is as in Proposition 4.4.2.

Proof. We can do the same construction as in the proof of Proposition 4.4.2 for the function
p1 = —@ € C(09), then we get v1 € Vin(Q, 1, F') such that v; = ¢; on 9 and w,, () <
)\max{w@(tlm), t1/2}. Hence, we set © = —v; which is a m-superharmonic function on €,
continuous on 2 and satisfying o = ¢ on 90 and wg(t) < Amax{w,(t!/?),t1/2}. O

Proof of Theorem 4.1.1. Thanks to Proposition 4.4.2, we obtain a subsolution v €
Vin(Q, 0, F) with v = ¢ on 9Q and w, () < Amax{w,(t'/2),t/2}. From Corollary 4.4.3,
we construct a m-superharmonic function v € C(€2) such that ¥ = ¢ on 09 and ws(t) <
Amax{w, (t1/2),t'/2}, where X is as in Proposition 4.4.2.

Applying the maximum principle, we get that

v(z) < U(z) < 5(2) for all z € Q.
We set g(t) = max{\ max{w,(t'/?),t"/2},wpi/m(t)} and d := diam(Q). Then
U(2) —U()| < 9|z — £]);Vz € 2, V€ € 9.
Let us fix a point zg € €, for any vector 7 € C" with small enough norm, we define

[ U(») 2+ TENzEQ,
Vizr) = { max{U(z),v1(2)} ;z,z+7T€Q,
where v1(2) = U(z + 7) + g(|7])|z — 20| — g (I7[) — g(I7]) -

Observe that if z € Q, z + 7 € 082, we have

(4.4.1) vi(2) = U(z) < g(|7]) + g(I7])]z = 20|* = d*g(I7]) — g(|7]) < 0.

Then vy (2) < U(2) for z € Q, 2+ 7 € 9. In particular, V (2, 7) is well defined and belongs
to SHp,(2) NC(Q).
We claim that

FY™(21,U(x)) = FY™(22,0()) < wprym (21 = 22),
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for all z, z1, 2o € Q. Indeed, it is enough to show that

0] ooy < M = a+ 2d*sup F'/™ (., —a),
Q

with a := supyq, [|. By the maximum principle, we have U < a. We set b = supg, FYm(., —a)
and @ = b(|z — 20|?> — d?) —a € SH,,(2) NC(Q) where 2y € Q is a fixed point. Hence, @ < ¢
on 0f). Since F' is nondecreasing in the second variable, we get

(dd°a)™ A" > F(z,—a)B" > F(z,0)5".

Consequently, & < U in € and then we get the required statement.
Now, we assert that L,V > FY/™(2, V), for all a; € ¥,,. Indeed,

Lovi(2) = FY" (2 + 1,U(z + 7)) + (/7)) La(]z — 20/?)
> FY™(z + 7,0z + 7)) + g(|7])
> FYmG 41Uz + 7))+ |[FY™ (24 7,U(z 4+ 7)) — FY™(2,U(z + 7))
> FYVm(z,0(z + 1)),
> PV (z,01(2)),
forall oy € ¥, 1 < <m — 1.
If2z€00,z+7¢Q, then V(2,7) =U(z) = p(z). On the other hand, z € 9Q, z + 7 € Q,
we get by (4.4.1) that V(z,7) = max{U(z),v1(2)} = U(z) = ¢(2). Then V(z,7) = ¢(z) on

08, hence V € V,,(2, o, F). ) )
Consequently, V(z,7) < U(z);Vz € Q. This implies that if z € Q , z 4+ 7 € Q, we have

U(z + 1) + g(I7])|z = 20l* = Pg(I7]) - g(|7]) < V(2).

Hence,
U(z + 1) = U(2) < (@ + )g(|7]) = 9(I7).|2 = 20* < (& + D)g(|7]).
Reversing the roles of z + 7 and z, we get
U(z+7) = U(2)] < (d® 4+ 1)g(|7|);Vz € Q.
Thus,
wy(t) < (d* + 1)g(t).
Finally, we have

wolt) <A1+ [|F (2 o)) mac{wp (£72), wpasm (8), 6723,

where y := n(d?+1), n is a positive constant depending on Q and K = Qx {supgq, [¢|}. O

Remark 4.4.4. When m = n we can get by a slight modification that the proof is still
true for a bounded strongly hyperconvex Lipschitz domain in C™ and this yields Theorem
2.1.3 in Chapter 2.

Theorem 4.1.1 has the following consequence.
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Corollary 4.4.5. Let Q be a smoothly bounded strongly m-pseudoconvex domain in C".
Let ¢ € C**(09Q) and 0 < f1/™ € C*(Q), 0 < o < 1/2. Then the solution U of the Dirichlet

problem (4.1.1) belongs to C*(§2).

This result was proved by Nguyen in [N14] for the homogeneous case (f = 0). H.C. Lu
proved in [Lul2, Lul3b] the Holder continuity of the solution U under the same assumption
of Corollary 4.4.5 in a bounded strongly pseudoconvex domain. A similar result for m =n
goes back to Bedford and Taylor in [BT76] and the main idea of the proof depends on
Walsh’s method [Wal69].

We now give an example to point out that there is a loss in the regularity up to the
boundary and show that our result is optimal.

Example 4.4.6. Let ¢ be a concave modulus of continuity on [0, 1] and

o(z) = —[\/(1 + Rez) /2], for z = (21, 22, ..., 2,) € OB C C".

We can show that ¢ € C(9B) with modulus of continuity w,(t) < C(t), for some C' > 0.
We consider the following Dirichlet problem:

u e SHy(Q) NC(S),
0

(ddu)™ AN B"™ =0 in B,
U= on OB,
where 2 < m < nis an integer. Then by the comparison principle, U(z) := —t[/(1 + Rez1)/2]

is the unique solution to this problem. One can observe by a radial approach to the bound-
ary point (—1,0,...,0) that

Crp(t/?) < wy(t) < Corp(t?),

for some C4,Cy > 0.

4.5 Holder continuous solutions for [P-densities

4.5.1 Preliminaries and known results

The existence of a weak solution to the complex Hessian equation in some bounded domain
in C" was established in the work of Dinew and Kolodziej [DK14]. More precisely, let
2 € C" be a smoothly (m — 1)-pseudoconvex domain, ¢ € C(0f2) and 0 < f € LP(Q) for
some p > n/m. Then there exists U € SH,,(Q) NC(Q) such that (dd°U)™ A g7~™ = f3"
in Q and U = ¢ on 09.

Recently, N.C. Nguyen in [N14] proved that the Holder continuity of this solution under
some technical conditions: the density f € LP(Q2), p > n/m is bounded near the boundary
O or f < C|p|~™ there and the boundary data ¢ belongs to C%'(99).

Here we follow the approach proposed in [GKZO08| for the complex Monge-Ampere
equation. A crucial role in this approach is played by an a priori weak stability estimate
of the solution. This approach has been adapted to the complex Hessian equation in [N14]
and [Lul2]. Here is the precise statement.
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In order to simplify the notation, we set from now on for » > 1,

r

(4.5.1) Vr = ,
pg(n—m)
r+ mq+ P

m

where p >n/m, 1 <m <nand 1/p+1/q=1.

Theorem 4.5.1. Fiz 0 < f € LP(Q) for p > n/m. Let u,v € SH,,,(2) N L>®(Q) be such
that (dd°u)™AB"~™ = fB™ in Q, and liminf, go(u—v)(z) > 0. Fizr > 1 and0 < vy < v,
where . is as in (4.5.1). Then there exists a uniform positive constant C = C (v, fllr (o))
such that

sup(v —u) < ¢ (0 = w)tllre)
where (v — u)4 := max{v — u,0}.

The proof of this stability theorem is similar to the one for the complex Monge-Ampere
equation (see Theorem 3.2.4).

The second result gives the Holder continuity under some additional hypothesis.

Theorem 4.5.2. ([N14]). Let 0 < f € LP(Q) for p > n/m, and ¢ € C(09). Let U be the
continuous solution to (4.1.1). Suppose that there exists v € C**(Q) for 0 < v < 1 such
that v < U in Q and v = ¢ on ).

1) If VU € L?*(Q) then U € C%*(Q) for any o < min{v, y2}.

2) If the total mass of AU is finite in Q then U € CO%*(Q) for any o < min{v, 2y}, where
v is defined by (4.5.1) forr > 1.

This result is analogue to that proved by Guedj, Kotodziej and Zeriahi [GKZ08|.

4.5.2 Construction of Holder barriers

The remaining problem is to construct a Hélder continuous barrier with the right exponent
which guarantees one of the conditions in Theorem 4.5.2.

Using the interplay between the real and complex Monge-Ampeére measures, we will
construct Holder continuous m-subharmonic barriers for the Dirichlet problem (4.1.1)
when f € LP(Q2), p > 2n/m.

Proposition 4.5.3. Let 0 < f € LP(Q), p > 2n/m and let u be a locally convex function
in Q and continuous on Q. If the real Monge-Ampére measure Mu > f2/"dVa, then the
complex Hessian measure satisfies the inequality (ddu)™ A "™ > fdVay, in the weak
sense of measures on 2.

Proof. Tt stems from Proposition 3.5.3 that (dd°u)™ > f™™dVa, in Q. Set v = |2| €
PSH(Q). Since (dd°u)™ > f™/™dVs,, and (dd°v)" > dVay,, we get by Theorem 1.2.8 that

(ddu)™ A B™ > FdVa,.
O

The following result gives the existence of a 1/2-Hoélder continuous m-subharmonic
barrier for the problem (4.1.1) when f € LP(Q2), p > 2n/m.
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Theorem 4.5.4. Let ¢ € COL(00) and f € LP(Q), p > 2n/m. Then there exists v €
SH,, () NCOY2(Q) such that v = ¢ on dQ and (dd°v)™ A B7~™ > fA" in the weak sense
of currents. In particular, v < U in .

Proof. Let B be a large ball containing Q and let f be the function defined by f = f on
Qand f=0o0n B\ Q. Then f € LP(B), p > 2n/m . Let us set p := f2*/™(n!)>*/™dVy,
that is a nonnegative Borel measure on B with p(B) < co. Thanks to Theorem 3.5.2 there
exists a unique convex function u € C(B) such that Mu = p in B and u = 0 on dB. Hence
u is Lipschitz continuous on €. By Proposition 4.5.3, we have (dd°u)™ A "~™ > fB" in
Q.

We will construct the required barrier as follows. Let h,_, be the upper envelope of
Vi (£, ¢ — 1, 0). Then, thanks to Theorem 4.1.1, h,_, is Holder continuous of exponent
1/2 in Q. Now it is easy to check that v := u + hy—y is m-sh in Q and satisfies v = ¢ in
00 and (ddv)™ A "™ > f5™ on . Hence v < U in Q by the comparison principle. [J

The last theorem provides us with a Hélder continuous barrier for the Dirichlet problem
(4.1.1) with better exponent.

However, when f € LP(Q2) for p > n/m, we can find a Holder continuous barrier with
exponent less than ;.

Proof of Theorem 4.1.2. We first prove that the total mass of AU is finite in €. Let Uy
be the solution to the Dirichlet problem (4.1.1) with zero boundary values and the density
f. We first claim that the total mass of AUy is finite in 2. Indeed, let p be the defining
function of Q. By Corollary 1.3.24 we obtain

m—1

(4.5.2) /Q dd°Ug A (ddp)™ LA™ < { /Q (dd°Up)™ A ﬁ"—m}’i { /Q (dd°p)™ A "™

Since 2 is a bounded strongly m-pseudoconvex domain, there exists a constant ¢ > 0 such
that (dd°p)? A "7 > ¢B™ in  for 1 < j < m. We find A > 1 such that Ap — |z|? is m-sh
function. Now, it is easy to see that

/ dd°ug A B < / dd°Uy A (AddCp)y™ 1 A B,
Q Q

Hence, the inequality (4.5.2) yields

m—1
m

lﬂf%Aﬂ”4SAm*L@Mmewﬁ“ﬂi{LufmmAa%m

Now, we note that the total mass of complex Hessian measures of p and Uy are finite in
). Therefore, the total mass of AUy is finite in (2.
Let ¢ be a Cll-extension of ¢ to Q such that [8ller1 @) < Cllelleriaqy, for some C > 0.

Let v = Bp+ @ +Up, where B > 1 is so that Bp+ @ € SH,,,(2)NC(R). By the comparison
principle, we see that v < Uin Q and v = U = ¢ on Jf2. Since p is smooth in a neighborhood
of Q and ||AUp|lq < +oo, we derive that ||Av|lq < +o0o. Then, by Lemma 3.4.6, we have
|AU]q < +oc.

To apply Theorem 4.5.2 we construct a Holder continuous function v such that v <U
in Q and v = ¢ on 92. We first assume that f = 0 near the boundary of €2, that is there
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exists a compact K € 2 such that f = 0 in Q\ K. We set A > 0 large enough so that
vi=Ap+p € SH,(Q)NC"(Q) and v < U in a neighborhood of K. By the comparison
principle, we can find that v < Uin Q\ K and hence v < U in Q and v|pg = Ulgg = .
Thus, Theorem 4.5.2 implies that the solution U is Hélder continuous in € of exponent
a1 < 271, where 7 is as in (4.5.1).

For the general case, when 0 < f € LP(Q2), p > n/m. Let us fix a large ball B ¢ C"
such that Q@ € B € C". We define f = f in Q and f = 01in B\ Q. Let h; to the Dirichlet
problem in B with the density f and zero boundary values. Since f € LP (€©2) is bounded
near 0B, h; is Holder continuous on B of exponent a; < 2v; by the previous case. Now
let ho denote the solution to the Dirichlet problem in Q with boundary values ¢ — h; and
zero density. Thanks to Theorem 4.1.1, we infer that hy € C%®2(Q), where oy = a1/2.
Therefore, the required barrier will be v = hy + ho. It is clear that v € SH,, () NC(Q),
vlga = ¢ and (ddv)™ A "™ > fB™ in the weak sense in ). Hence, by the comparison
principle, we get that v < U in Q and v = U = ¢ on 0). Moreover, we have v € CO’Q(Q)
for any a < 7.

Hence, when p > n/m, we get by Theorem 4.5.2 that U € C%*(Q) for any o < 71.

Moreover, if p > 2n/m, Theorem 4.5.4 gives the existence of a 1/2-Hélder continuous
barrier to the Dirichlet problem. Then, we obtain by Theorem 4.5.2 that U € C%(Q) for
any « < min{1/2, 2y, }. O

We are able to find a better Holder-exponent of the solution, when the density f &€
LP(Q), p > n/m, satisfies the following condition near the boundary 02,

f(z) < (hop(2))™ near 09,
where 0 < h € L?([—A4,0]) is an increasing function and A > supg, |p|.

Proof of Theorem 4.1.3. Let x : [-A,0] — R~ be the primitive of & such that x(0) = 0.
It is clear that x is a convex increasing function. By the Hdélder inequality, we see that

x(t1) = x(t2)] < [P g2ltr — t2]"/?,
for all t1,te € [—A,0]. From the hypothesis, there exists a compact K € 2 such that
(4.5.3) f(z) < (hop(z))™ for z € Q\ K.
Then the function v = x o p is m-subharmonic in €, continuous on € and satisfies
dd®x o p=X"(p)dp N d°p+ X' (p)dd°p > X'(p)dd°p,

in the weak sense of currents in €.
By Definition 4.2.3, there is a constant ¢ > 0 such that (dd®p)™ A =™ > ¢™. Hence
the inequality (4.5.3) yields

(4.5.4) (ddv)" AL > c(hop)"[" > c.f5" in Q\ K.

Now consider a Ch!-extension ¢ of ¢ to Q and choose B >> 1 large enough so that Bp+ ¢
is m-subharmonic in 2 and

0 := B(v+ p)+ ¢ < U in a neighborhood of K.
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Then @ is m-subharmonic in Q and if B > (1/¢)'/™, then it follows from (4.5.4) that
(ddo)™ Ap"™ > fB" in Q\ K.

By the comparison principle, we have v < U on © \ K. Consequently, o < U on Q=09
on 9N and v € C1/2(Q).

As in the proof of Theorem 4.1.2 we have that the total mass of AU is finite in 2. Hence,
Theorem 4.5.2 yields that the solution U belongs to C%%(2) for any a < min{1/2,2y;}. O

As an example of application of the last result, fix p > n/m, take h(t) := (—t)~* with
0<a<1/(pm),t<0and define f:= (hop)™.

4.5.3 Holder continuity for radially symmetric solution

Here we consider the case when the right hand side and the boundary data are radial.
In this case, Huang and Xu [HX10] gave an explicit formula for the radial solution of
the Dirichlet problem (4.1.1) with f € C(B) (see also [Mo86] for complex Monge-Ampére
equations). Moreover, they studied higher regularity for radial solutions (see also [DD13]).

Here, we will extend this explicit formula to the case when f € LP(B), for p > n/m, is
a radial nonnegative function and ¢ = 0 on 9B. Then, we prove Holder continuity of the
radially symmetric solution.

Proof of Theorem 4.1.4. Let f. € C(B) be a positive radial symmetric function such
that {fi} converges to f in LP(B). Then there exists, by [HX10], a unique solution Uy, €
C(B) to (4.1.1) with zero boundary values and the density fx, given by the following

formula:
1 1 t o1 1/m
Ur(r) = —B/ Enfm—1 (/0 P fk(ﬂ)dp> dt.

It is clear that Uy converges in L'(B) to the function @ given by the same formula i.e.

1 1 t 1/m
u(r) = —B/T njm—1 </0 Pznlf(P)dP> dt.

We claim that the sequence {Ux} is uniformly bounded and equicontinuous in B. Indeed,
let 0 <r <ry <1, we have

1 1 t o1 1/m
wetrn) =0 = B [ s ([ P o)

1/m

r1 1 t B e
SB/ tzn/ml</0 plPr= /a2 ””’fk(p)dp) dt

m [T 1 by 1/mq
< Ol | Mn( [ 1dp> "

1m , 2-2& 2—2n
SOkaHLp(B)(Tl —rt ).
Since fi converges to f in LP(B), we get || fx||zr@) < C1, where C1 > 0 does not depend on
k. Hence Uy, is equicontinuous on B. By Arzela-Ascoli theorem, there exists a subsequence
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Ug; converges uniformly to .

Consequently, @ € SH,,(B)NC(B) and thanks to the convergence theorem for the complex
Hessian operator (see [SA12]) we can see that (dd“a)™ A "™ = 4" in B.

Moreover, we have

1/m 2-2n 2—2n

[a(r1) — a(r)| < OIS | oy (ry ™ —r277%).

Hence, for p > 2n/m we get @ € Lip(B), and for n/m < p < 2n/m we have u €

2n -
c¥? s (B). 0
We give an example which illustrates that the Holder exponent 2 — % given by The-
orem 4.1.4 is optimal.

Example 4.5.5. Let p > 1 be a fixed exponent. Take f,(z) = |z|7%, with 0 < o < 2n/p.
Then it is clear that f, € LP(B). The unique radial solution to the Dirichlet problem
(4.1.1) with right hand side f, and zero boundary values is given by

Uus(2) = c(r2_a/m —1); r:=1z| <1,

cm —l/m
where ¢ = (7277131”) (g )/
1. If p > n/m then 0 < a < 2m and the solution U, is (2 — %’; + 6)—Holder with
d = (2n/p — a)/m. Since « can be chosen arbitrary close to 2n/p, this implies that the
2n

optimal Holder exponent is 2 — ~=.

2. Observe that when 1 < p < n/m and 2m < a < 2n, then the solution U, is
unbounded.

. Then we have

The next example shows that in Theorem 4.1.4, n/m is the critical exponent in order
to have a continuous solution.

Example 4.5.6. Consider the density f given by the formula

1
&)= L loglaly

where v > m/n is fixed.

It is clear that f € L™™(B)\ L"/™*9(B) for any § > 0. An elementary computa-
tion shows that the corresponding solution U given by the explicit formula (4.1.3) can be
estimated by

U(z) < C(1 = (1~ log|z))' /™),
where C' > 0 depends only on n, m and . Hence we see that if m/n < < m then U goes
to —oo when z goes to 0. In this case the solution U is unbounded.

4.6 Open questions

e Let Q be a smooth bounded strongly m-pseudoconvex domain in C", p € C(09). Let
also p be a Hausdorff-Riesz measure on Q and 0 < f € LP(2, u) for some p > n/m.
Does there exist a continuous solution to (4.1.1)7
Moreover, if ¢ is Hélder continuous, can we say that U is Holder continuous in Q?
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Résumé

Cette these est consacrée a ’étude de la régularité des solutions des équations de Monge-
Ampere complexes ainsi que des équations hessiennes complexes dans un domaine borné
de C™.

Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel.

Dans le deuxieme chapitre, on étudie le module de continuité des solutions du probléme de
Dirichlet pour les équations de Monge-Ampere lorsque le second membre est une mesure
a densité continue par rapport a la mesure de Lebesgue dans un domaine strictement
hyperconvexe lipschitzien.

Dans le troisieme chapitre, on prouve la continuité hélderienne des solutions de ce probleme
pour certaines mesures générales.

Dans le quatrieme chapitre, on considere le probleme de Dirichlet pour les équations
hessiennes complexes plus générales ou le second membre dépend de la fonction inconnue.
On donne une estimation précise du module de continuité de la solution lorsque la densité
est continue. De plus, si la densité est dans LP, on démontre que la solution est Holder-
continue jusqu’au bord.

Mots-clés

Probléme de Dirichlet, Opérateur de Monge-Ampere, Mesure de Hausdorff-Riesz, Fonction
m-sousharmonique, Opérateur hessien, Capacité, Module de continuité, Principe de com-
paraison, Théoreme de stabilité, Domaine strictement hyperconvexe lipschitzien, Domaine
strictement m-pseudoconvexe.



