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Résumé

Cette thèse est consacrée à l’étude de la régularité des solutions des équations de Monge-
Ampère complexes ainsi que des équations hessiennes complexes dans un domaine borné
de C

n.
Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel.
Dans le deuxième chapitre, on étudie le module de continuité des solutions du problème de
Dirichlet pour les équations de Monge-Ampère lorsque le second membre est une mesure
à densité continue par rapport à la mesure de Lebesgue dans un domaine strictement
hyperconvexe lipschitzien.
Dans le troisième chapitre, on prouve la continuité hölderienne des solutions de ce problème
pour certaines mesures générales.
Dans le quatrième chapitre, on considère le problème de Dirichlet pour les équations
hessiennes complexes plus générales où le second membre dépend de la fonction inconnue.
On donne une estimation précise du module de continuité de la solution lorsque la densité
est continue. De plus, si la densité est dans Lp, on démontre que la solution est Hölder-
continue jusqu’au bord.

Mots-clés

Problème de Dirichlet, Opérateur de Monge-Ampère, Mesure de Hausdorff-Riesz, Fonction
m-sousharmonique, Opérateur hessien, Capacité, Module de continuité, Principe de com-
paraison, Théorème de stabilité, Domaine strictement hyperconvexe lipschitzien, Domaine
strictement m-pseudoconvexe.
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Abstract

In this thesis we study the regularity of solutions to the Dirichlet problem for complex
Monge-Ampère equations and also for complex Hessian equations in a bounded domain of
C

n.
In the first chapter, we give basic facts in pluripotential theory.
In the second chapter, we study the modulus of continuity of solutions to the Dirichlet
problem for complex Monge-Ampère equations when the right hand side is a measure
with continuous density with respect to the Lebesgue measure in a bounded strongly
hyperconvex Lipschitz domain.
In the third chapter, we prove the Hölder continuity of solutions to this problem for some
general measures.
In the fourth chapter, we consider the Dirichlet problem for complex Hessian equations
when the right hand side depends on the unknown function. We give a sharp estimate
of the modulus of continuity of the solution as the density is continuous. Moreover, for
the case of Lp-density we demonstrate that the solution is Hölder continuous up to the
boundary.

Keywords

Dirichlet problem, Monge-Ampère operator, Hausdorff-Riesz measure, m-subharmonic
function, Hessian operator, Capacity, Modulus of continuity, Comparison principle, Stabil-
ity theorem, Strongly hyperconvex Lipschitz domain, Strongly m-pseudoconvex domain.
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soeur Ghofran, qui m’ont soutenus durant mes nombreuses années d’études et sans lesquels
mon travail n’aurait pas vu le jour.
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m’avoir aidé à y arriver.
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Chapter 0

Introduction

In this thesis we study the regularity of solutions to the Dirichlet problem for complex
Monge-Ampère equations and, more generally, for complex Hessian equations in a bounded
domain of Cn.

Pluripotential theory became a branch of mathematical research in the last decades and
the complex Monge-Ampère equation was studied extensively by many mathematicians.

Two influential works have been the work by Yau [Yau78] on non-degenerate equa-
tions on compact Kähler manifolds, and by Bedford-Taylor [BT76] on generalized weak
solutions in the sense of pluripotential theory. They proved [BT76] that the complex
Monge-Ampère operator has a sense for a non-smooth locally bounded plurisubharmonic
function and there exists a continuous solution to the Dirichlet problem in a bounded
strongly pseudoconvex domain with smooth boundary.

Since then, there has been considerable further progress, it was proved in [CKNS85]
the smoothness of the solution to the Dirichlet problem in the case of non-degenerate
smooth density and smooth boundary data.

Ko%lodziej demonstrated [Ko98, Ko99] that the Dirichlet problem still admits a unique
weak continuous solution when the right hand side of the complex Monge-Ampère equation
is a measure satisfying some sufficient condition which is close to be best possible. Further-
more, for the degenerate complex Monge-Ampère equation on compact Kähler manifolds
he established [Ko98] a uniform a priori estimate which generalizes the celebrated a priori
estimate of Yau [Yau78].

A viscosity approach to the complex Monge-Ampère equation has been developed
by Eyssidieux, Guedj and Zeriahi in [EGZ11] on compact Kähler manifolds and they
compare viscosity and potential solutions. In the local context, Wang [Wan12] studied the
existence of a viscosity solution to the Dirichlet problem for the complex Monge-Ampère
equation and estimated the modulus of continuity of the solution in terms of that of a
given subsolution and of the right hand side.

Some results have been known about the Hölder regularity of the solution to this prob-
lem for measures absolutely continuous with respect to the Lebesgue measure. Bedford and
Taylor [BT76] studied the Hölder continuity of the solution by means of Hölder continuity
of the density and the boundary data. Guedj, Ko%lodziej and Zeriahi [GKZ08] established
Hölder regularity of solutions for Lp- densities bounded near the boundary of strongly
pseudoconvex domain.
In the compact case, there are many works in this area [Ko08, Ph10, DDGHKZ14] which
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exceed the scope of this thesis.
We are also interested in studying the complex Hessian equation in a bounded domain

of Cn. This equation corresponds to the elementary symmetric function of degree 1 ≤ m ≤
n. When m = 1, this equation corresponds to the Poisson equation which is classical. The
case m = n corresponds to the complex Monge-Ampère equation.

The complex Hessian equation is a natural generalisation of the complex Monge-
Ampère equation and has some geometrical applications. For examples, this equation
appears in problems related to quaternionic geometry [AV10] and in the work [STW15]
for solving Gauduchon’s conjecture. Its real counterpart has been developed in the works of
Trudinger, Wang and others (see for example [W09]). This all gives us a strong motivation
to study the existence and regularity of weak solutions to complex Hessian equations.

The complex Hessian equation is a new subject and is much more difficult to handle
than the complex Monge-Ampère equation (e.g. the m-subharmonic functions are not
invariant under holomorphic change of variables, for m < n). Despite these difficulties,
the pluripotential theory which was developed for the complex Monge-Ampère equation
can be adapted to the complex Hessian equation [B%l05, DK14, Lu12, SA12]. B%locki [B%l05]
introduced some elements of the potential theory for m-subharmonic functions and proved
the existence of continuous solution for the homogeneous Dirichlet problem in the unit
ball. Dinew and Ko%lodziej [DK14] used pluripotential techniques adapted for the complex
Hessian equation to settle the question of the existence of weak solutions to the Dirichlet
problem. H. C. Lu introduced in [Lu12, Lu15] finite energy classes of m-subharmonic
functions and developed a variational approach to complex Hessian equations. The non-
degenerate complex Hessian equation on compact Kähler manifold with smooth density
has been studied in [Hou09], [HMW10], [Jb12] and the degenerate case was treated in
[Lu13a] and [DK14]. H.C. Lu persisted in investigating a viscosity approach to complex
Hessian equations in his paper [Lu13b].

Now we will present an overview of the main results of this thesis. First, for the sake of
convenience we recall some notations. We denote by dV2n the Lebesgue measure in C

n and
Lp(Ω) stands for the usual Lp-space with respect to the Lebesgue measure in a bounded
domain Ω. We use d = ∂ + ∂̄ and dc = (i/4)(∂̄ −∂), where ∂ and ∂̄ are the usual differential
operators. Here and subsequently, we use the notation :

C0,β(Ω̄) = {v ∈ C(Ω̄); ‖v‖β < +∞},

for 0 < β ≤ 1, and the β-Hölder norm is given by

‖v‖β = sup
¶

|v(z)| : z ∈ Ω̄
©

+ sup

® |v(z) − v(y)|
|z − y|β : z, y ∈ Ω̄, z Ó= y

´

.

We mean by Ck,β(Ω̄), with k ≥ 1 and 0 < β ≤ 1, the class of functions which have
continuous partial derivatives of order less than k, and whose k-th order partial derivatives
satisfy a Hölder condition of order β.

The Dirichlet problem for complex Monge-Ampère equations. It asks for a
function, u, plurisubharmonic on Ω and continuous on Ω̄ such that

(0.0.1) (ddcu)n = fdµ, and u = ϕ on ∂Ω,

where ϕ ∈ C(∂Ω), µ is a nonnegative finite Borel measure on Ω and 0 ≤ f ∈ L1(Ω, µ).
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In Chapter 2, we consider this problem in a bounded strongly hyperconvex Lipschitz
domain of Cn with continuous densities with respect to the Lebesgue measure. Then we
prove in Section 2.5 a sharp estimate for the modulus of continuity of the solution.

Theorem 0.0.1. Let Ω ⊂ C
n be a bounded strongly hyperconvex Lipschitz domain, ϕ ∈

C(∂Ω) and 0 ≤ f ∈ C(Ω̄). Assume that ωϕ is the modulus of continuity of ϕ and ωf1/n is

the modulus of continuity of f1/n. Then the modulus of continuity of the unique solution
U to (0.0.1) has the following estimate

ωU(t) ≤ η(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), ωf1/n(t), t1/2},

where η is a positive constant depending on Ω.

In [GKZ08], Guedj, Ko%lodziej and Zeriahi proved the Hölder continuity of the solution
to (0.0.1) when ϕ ∈ C1,1(∂Ω) and f ∈ Lp(Ω), for p > 1, is bounded near the boundary
∂Ω. Recently N.C. Nguyen [N14] proved that the solution is Hölder continuous when the
density f satisfies a growth condition near ∂Ω. Our next result in Chapter 3 concerns the
Hölder regularity of the solution when the density is merely in Lp(Ω), p > 1. Moreover, we
improve the Hölder exponent while p ≥ 2 by using the relation between real and complex
Monge-Ampère operators.

Theorem 0.0.2. Let Ω ⊂ C
n be a bounded strongly hyperconvex Lipschitz domain. Assume

that ϕ ∈ C1,1(∂Ω) and f ∈ Lp(Ω) for some p > 1. Then the unique solution U to (0.0.1) is
γ-Hölder continuous on Ω̄ for any 0 < γ < 1/(nq+1) where 1/p+1/q = 1. Moreover, if p ≥
2, then the solution U is Hölder continuous on Ω̄ of exponent less than min{1/2, 2/(nq+1)}.

In the same chapter, we study the Hölder regularity of the solution to the Dirichlet
problem for a Hausdorff-Riesz measure of order 2n − 2 + ǫ, with 0 < ǫ ≤ 2, that is a
non-negative Borel measure satisfies the condition

µ(B(z, r) ∩ Ω) ≤ Cr2n−2+ǫ, ∀z ∈ Ω̄, ∀0 < r < 1,

for some positive constant C. These measures are singular with respect to the Lebesgue
measure, for 0 < ǫ < 2, and there are many nice examples (see Example 3.5.6).

More precisely, we prove in Section 3.5 the following theorems.

Theorem 0.0.3. Let Ω be a bounded strongly hyperconvex Lipschitz domain in C
n and µ

be a Hausdorff-Riesz measure of order 2n−2+ǫ, for 0 < ǫ ≤ 2. Suppose that ϕ ∈ C1,1(∂Ω)
and 0 ≤ f ∈ Lp(Ω, µ) for some p > 1, then the unique solution to the Dirichlet problem
(0.0.1) is Hölder continuous on Ω̄ of exponent ǫγ/2, for any 0 < γ < 1/(nq + 1) where
1/p + 1/q = 1.

When the boundary data is merely Hölder continuous, we can still prove the Hölder
regularity of the solution using the last theorem.

Theorem 0.0.4. Let Ω be a bounded strongly hyperconvex Lipschitz domain in C
n and µ be

a Hausdorff-Riesz measure of order 2n − 2 + ǫ, for 0 < ǫ ≤ 2. Suppose that ϕ ∈ C0,α(∂Ω),
0 < α ≤ 1 and 0 ≤ f ∈ Lp(Ω, µ), for some p > 1, then the unique solution to the
Dirichlet problem (0.0.1) is Hölder continuous on Ω̄ of exponent ǫ

ǫ+6 min{α, ǫγ}, for any
0 < γ < 1/(nq + 1) where 1/p + 1/q = 1.

Moreover, when Ω is a smooth strongly pseudoconvex domain the Hölder exponent will
be ǫ

ǫ+2 min{α, ǫγ}, for any 0 < γ < 1/(nq + 1).
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A natural question is that if we have a Hölder continuous subsolution to the Dirichlet
problem, can we get a Hölder continuous solution in the whole domain?
This question is still open in the local case (see [DDGHKZ14] for a positive answer in the
compact setting). However, we prove some particular case.

Theorem 0.0.5. Let µ be a nonnegative finite Borel measure on a bounded strongly hy-
perconvex Lipschitz domain Ω. Let also ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and 0 ≤ f ∈ Lp(Ω, µ),
p > 1. Assume that there exists a Hölder continuous plurisubharmonic function w in Ω
such that (ddcw)n ≥ µ. If, near the boundary, µ is Hausdorff-Riesz of order 2n − 2 + ǫ for
some 0 < ǫ ≤ 2, then the solution U to (0.0.1) is Hölder continuous on Ω̄.

The Dirichlet problem for complex Hessian equations. It consists in finding a
function u which is m-subharmonic in Ω and continuous on Ω̄ such that

(0.0.2) (ddcu)m ∧ βn−m = fdV2n and u = ϕ on ∂Ω,

where ϕ ∈ C(∂Ω) and 0 ≤ f ∈ L1(Ω).
We first prove in Chapter 4 a sharp estimate for the modulus of continuity of the

solution when the density is continuous and depends on the unknown function.

Theorem 0.0.6. Let Ω be a smoothly bounded strongly m-pseudoconvex domain in C
n,

ϕ ∈ C(∂Ω) and 0 ≤ F ∈ C(Ω̄ × R) be a nondecreasing function in the second variable.
Then the modulus of continuity ωU of the solution U to















u ∈ SHm(Ω) ∩ C(Ω̄),

(ddcu)m ∧ βn−m = F (z, u)dV2n in Ω,

u = ϕ on ∂Ω,

satisfies the following estimate

ωU(t) ≤ γ(1 + ‖F‖1/m
L∞(K)) max{ωϕ(t1/2), ωF 1/m(t), t1/2},

where γ is a positive constant depending only on Ω, K = Ω̄ × {a}, a = sup∂Ω |ϕ| and
ωF 1/m(t) is given by

ωF 1/m(t) := sup
y∈[−M,M ]

sup
|z1−z2|≤t

|F 1/m(z1, y) − F 1/m(z2, y)|,

with M = a + 2 diam(Ω)2 supΩ̄ F 1/m(., −a).

For densities in Lp(Ω), p > n/m, N. C. Nguyen [N14] proved that the solution to (0.0.2)
is Hölder continuous when the density f satisfies some condition near the boundary. Here,
we prove the general case.

Theorem 0.0.7. Let Ω ⊂ C
n be a bounded strongly m-pseudoconvex domain with smooth

boundary, ϕ ∈ C1,1(∂Ω) and 0 ≤ f ∈ Lp(Ω), for some p > n/m. Then the solution to
(0.0.2), U ∈ C0,α(Ω̄) for any 0 < α < γ1, where γ1 is a constant depending on m, n, p
defined by (4.5.1).

Moreover, if p ≥ 2n/m then the solution to the Dirichlet problem U ∈ C0,α(Ω̄), for any
0 < α < min{1

2 , 2γ1}.
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In the particular case of radially symmetric solution in the unit ball, we are able to
find a better Hölder exponent which turns out to be optimal.

Theorem 0.0.8. Let B be the unit ball and 0 ≤ f ∈ Lp(B) be a radial function, where
p > n/m. Then the unique solution U for (0.0.2) with zero boundary values is given by the
explicit formula

U(r) = −B

∫ 1

r

1

t2n/m−1

Ç

∫ t

0
ρ2n−1f(ρ)dρ

å1/m

dt,

where B =
Ä

Cm
n

2m+1n

ä−1/m
. Moreover, U ∈ C0,2− 2n

mp (B̄) for n/m < p < 2n/m and U ∈ Lip(B̄)
for p ≥ 2n/m.
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Chapter 1

Preliminaries

1.1 Basic facts in pluripotential theory

In this section, some useful facts from pluripotential theory will be stated and then used
throughout this thesis. For further information about pluripotential theory, see for example
[Kl91], [De89], [Ko05] and [GZ15].
Note that, with a domain we mean a nonempty, open and connected set.

Definition 1.1.1. Let Ω ⊂ R
n be a domain. An upper semicontinuous function u : Ω →

R ∪ {−∞} is said to be subharmonic if, for every relatively compact open subset U of Ω
and every continuous function h : Ū → R that is harmonic on U , we have the implication

u ≤ h on ∂U ⇒ u ≤ h on U.

It is well known in several complex variables that the class of subharmonic functions is
very large and the fact that the property of being subharmonic is then not invariant under
biholomorphic mappings. This fact motivates the theory of plurisubharmonic functions
and pluripotential theory.

In pluripotential theory one therefore studies a smaller class of subharmonic functions
whose composition with biholomorphic mappings are subharmonic. This class is precisely
the class of plurisubharmonic functions that will be defined below.

Definition 1.1.2. A function u : Ω → R∪ {−∞} is called plurisubharmonic (briefly psh)
if it is upper semicontinuous in Ω and subharmonic on the intersection of Ω with any
complex line {a + bξ; ξ ∈ C} where a, b ∈ C

n.

We denote by PSH(Ω) the set of all plurisubharmonic functions in Ω. We state here
some basic properties of psh functions.

Proposition 1.1.3. 1. If u, v ∈ PSH(Ω) then λu + ηv ∈ PSH(Ω), ∀λ, η ≥ 0.

2. If u ∈ PSH(Ω) and χ : R → R is convex increasing function then χ ◦ u ∈ PSH(Ω).

3. Let {uj}j∈N be a decreasing sequence of psh functions in Ω. Then u := limj→+∞ uj

is psh function in Ω.

4. If u ∈ PSH(Ω) then the standard regularizations uǫ = u ∗ ρǫ are psh in Ωǫ := {z ∈
Ω| dist(z, ∂Ω) > ǫ}, for 0 < ǫ ≪ 1.
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5. Let U be a non-empty proper open subset of Ω, if u ∈ PSH(Ω), v ∈ PSH(U) and
lim sup

z→y
z∈U

v(z) ≤ u(y) for every y ∈ ∂U ∩ Ω, then the function

w =

®

max{u, v} in U,
u in Ω \ U,

is psh in Ω.

6. Let {uα} ⊂ PSH(Ω) be locally uniformly bounded from above and u = sup uα. Then
the upper semi-continuous regularization u∗ is psh and equal to u almost everywhere.

One of the important reasons to study plurisubharmonic functions is that we can use
them to define pseudoconvex domains.

Definition 1.1.4. A domain Ω ⊂ C
n is called pseudoconvex if there exists a continuous

plurisubharmonic function ϕ in Ω such that {z ∈ Ω; ϕ(z) < c} ⋐ Ω, for all c ∈ R.

An important class of pseudoconvex domains is the class of hyperconvex domains.

Definition 1.1.5. A domain Ω ⊂ C
n is called hyperconvex if there exists a negative

continuous plurisubharmonic function ψ in Ω such that {z ∈ Ω; ψ(z) < c} ⋐ Ω, for all real
c < 0.

It is known that the Hartogs triangle is a pseudoconvex domain but not hyperconvex.
However, Demailly [De87] proved that any pseudoconvex domain with Lipschitz boundary
is a hyperconvex domain.

1.2 The complex Monge-Ampère operator

Let ∂, ∂̄ be the usual differential operators, d = ∂ + ∂̄ and dc = (i/4)(∂̄ − ∂). Then
ddc = (i/2)∂∂̄.

If u ∈ C2(Ω) is a plurisubharmonic function, then the complex Monge-Ampère operator
is defined by

(ddcu)n = (ddcu) ∧ ... ∧ (ddcu) = det

Ç

∂2u

∂zj∂z̄k

å

βn,

where β := ddc|z|2 = (i/2)
∑n

j=1 dzj ∧ dz̄j is the standard Kähler form in C
n.

Note that βn = n! dV2n where

dV2n = (i/2)ndz1 ∧ dz̄1 ∧ ... ∧ dzn ∧ dz̄n

is the usual volume form on R
2n or C

n.

For n = 1, we have ddcu = (1/4)∆udV2 and we know that the Laplace operator is
well defined on all subharmonic functions. In the case n ≥ 2 the complex Monge-Ampère
operator can not be extended in a meaningful way to the whole class of plurisubharmonic
functions and still have the range contained in the class of nonnegative Borel measures
(see Example 3.1 in [Ki83]).
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In 1976, Bedford and Taylor in their seminal work proved that the complex Monge-
Ampère operator is well-defined on locally bounded plurisubharmonic functions. They
defined inductively the following closed nonnegative current

ddcu1 ∧ ddcu2 ∧ ... ∧ ddcun := ddc(u1ddcu2 ∧ ... ∧ ddcun),

where u1, u2, ..., un ∈ PSH(Ω) ∩ L∞
loc(Ω).

Furthermore, Cegrell [Ce04] introduced and investigated the largest class of plurisub-
harmonic functions on which the operator (ddc.)n is well-defined.

The following inequality, named Chern-Levine-Nirenberg inequality, gives a bound on
the local mass of the non-negative measure ddcu1 ∧ ...∧ddcun in terms of L∞-norms of uj ’s
and hence ensures that these measures ddcu1 ∧ ... ∧ ddcun, where uj ∈ PSH(Ω) ∩ L∞

loc(Ω),
j = 1, ..., n, are Radon measures.

Proposition 1.2.1. Let K ⋐ U ⋐ Ω, where K is compact and U is open. Let uj ∈
PSH(Ω) ∩ L∞

loc(Ω), j = 1, 2, ..., n. Then there exists a constant C depending on K, U, Ω
such that

‖ddcu1 ∧ ... ∧ ddcun‖K ≤ C‖u1‖L∞(U)...‖un‖L∞(U).

In [BT82] Bedford and Taylor showed that the complex Monge-Ampère operator is
continuous with respect to monotone sequences of locally bounded plurisubharmonic func-
tions. Later, Xing [Xi96] found out that the convergence in capacity (defined below) entails
the convergence of corresponding Monge-Ampère measures and he showed that this con-
dition is quite sharp in some case.

Let Ω be a bounded domain in C
n. For a Borel subset K of Ω, we introduce the

Bedford-Taylor capacity

Cap(K, Ω) = sup
{

∫

K
(ddcu)n; u ∈ PSH(Ω), −1 ≤ u ≤ 0

}

.

By proposition 1.2.1, it is clear that the capacity is finite when K is relatively compact
in Ω.

Definition 1.2.2. A sequence uj of functions defined in Ω is said to converge in capacity
to u if for any t > 0 and K ⋐ Ω

lim
j→∞

Cap(K ∩ {|u − uj | > t}, Ω) = 0.

The complex Monge-Ampère operator is continuous with respect to sequences of locally
uniformly bounded psh functions converging in capacity.

Theorem 1.2.3. Let (uj
k)∞

j=1, k = 1, ..., n be a locally uniformly bounded sequence of psh

functions in Ω and uj
k → uk ∈ PSH(Ω) ∩ L∞

loc(Ω) in capacity as j → +∞ for k = 1, ..., n.
Then

lim
j→∞

ddcuj
1 ∧ ... ∧ ddcuj

n = ddcu1 ∧ ... ∧ ddcun

in the weak sense of currents in Ω.

We mention some useful theorems about the quasi-continuity of psh functions and the
maximum principle.
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Theorem 1.2.4. Let u be a psh function in Ω. Then for all ǫ > 0, there exists an open
set G ⊂ Ω such that Cap(G, Ω) < ǫ and u|(Ω\G) is continuous.

Theorem 1.2.5. Let u, v ∈ PSH(Ω) ∩ L∞
loc(Ω). Then we have the following inequality in

the sense of Borel measures in Ω

(ddc max{u, v})n ≥ 1{u≥v}(ddcu)n + 1{u<v}(ddcv)n.

One of the most effective tools in pluripotential theory is the following comparison
principle

Theorem 1.2.6. Assume that u, v ∈ PSH(Ω) ∩ L∞
loc(Ω) are such that lim infz→∂Ω(u(z) −

v(z)) ≥ 0, then
∫

{u<v}
(ddcv)n ≤

∫

{u<v}
(ddcu)n.

Corollary 1.2.7. Assume that u, v ∈ PSH(Ω) ∩ L∞
loc(Ω) are such that lim infz→∂Ω(u(z) −

v(z)) ≥ 0. If (ddcu)n ≤ (ddcv)n as Radon measures on Ω, then v ≤ u in Ω.

Finally, we introduce Dinew’s inequality for mixed Monge-Ampère measures [Di09].

Theorem 1.2.8. Let u, v ∈ PSH(Ω) ∩ L∞(Ω). Let also f, g ∈ L1(Ω) be nonnegative
functions such that the following inequalities hold,

(ddcu)n ≥ fdV2n, (ddcv)n ≥ gdV2n.

Then
(ddcu)k ∧ (ddcv)n−k ≥ f

k
n g

n−k
n dV2n, k = 1, ..., n.

1.3 Basic facts about m-subharmonic functions

In this section, we briefly recall some facts from linear algebra and basic results from
potential theory for m-subharmonic functions. We refer the reader to [B%l05, SA12, Lu12,
DK12, Lu13a, N13, DK14, Lu15] for more details and recent results.
We set

Hm(λ) =
∑

1≤j1<...<jm≤n

λj1
...λjm ,

where λ = (λ1, ..., λn) ∈ R
n.

Thus (t + λ1)...(t + λn) =
n
∑

m=0
Hm(λ)tn−m for t ∈ R, where H0(λ) = 1.

We denote by Γm the closure of the connected component of {Hm > 0} containing
(1, 1, ..., 1). One can show that

Γm = {λ ∈ R
n : Hm(λ1 + t, ..., λn + t) ≥ 0, ∀t ≥ 0}.

It follows from the identity

Hm(λ1 + t, ..., λn + t) =
m
∑

p=0

Ç

n − p

m − p

å

Hp(λ)tm−p,
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that
Γm = {λ ∈ R

n : Hj(λ) ≥ 0, ∀1 ≤ j ≤ m}.

It is clear that Γn ⊂ Γn−1 ⊂ ... ⊂ Γ1, where Γn = {λ ∈ R
n : λi ≥ 0, ∀i}.

By the paper of G̊arding [G59], the set Γm is a convex cone in R
n and H

1/m
m is concave

on Γm. By Maclaurin’s inequality, we get

Ç

n

m

å−1/m

H1/m
m ≤

Ç

n

p

å−1/p

H1/p
p ; 1 ≤ p ≤ m ≤ n.

Let H be the vector space over R of complex Hermitian n×n matrices. For any A ∈ H,
let λ(A) = (λ1, ..., λn) ∈ R

n be the eigenvalues of A. We set

H̃m(A) = Hm(λ(A)).

Now, we define the cone

Γ̃m := {A ∈ H : λ(A) ∈ Γm} = {A ∈ H : H̃j(A) ≥ 0, ∀1 ≤ j ≤ m}.

Let α be a real (1,1)-form determined by

α =
i

2

∑

i,j

aij̄dzi ∧ dz̄j ,

where A = (aij̄) is a Hermitian matrix. After diagonalizing the matrix A = (aij̄), we see
that

αm ∧ βn−m = S̃m(α)βn,

where β is the standard Kähler form in C
n and S̃m(α) = m!(n−m)!

n! H̃m(A).
The last equality allows us to define

Γ̂m := {α ∈ C(1,1) : α ∧ βn−1 ≥ 0, α2 ∧ βn−2 ≥ 0, ..., αm ∧ βn−m ≥ 0},

where C(1,1) is the space of real (1,1)-forms with constant coefficients.

Let M : Cm
(1,1) → R be the polarized form of S̃m, i.e. M is linear in every variable,

symmetric and M(α, ..., α) = S̃m(α), for any α ∈ C(1,1).
The G̊arding inequality (see [G59]) asserts that

(1.3.1) M(α1, α2, ..., αm) ≥ S̃m(α1)1/m...S̃m(αm)1/m, α1, α2, ..., αm ∈ Γ̂m.

Proposition 1.3.1. ([B#l05]). If α1, ..., αp ∈ Γ̂m, 1 ≤ p ≤ m, then we have

α1 ∧ α2 ∧ ... ∧ αp ∧ βn−m ≥ 0.

Let us set

Σm := {α ∈ Γ̂m of constant coefficients such that S̃m(α) = 1}.

Recall the following elementary lemma whose proof is included for the convenience of the
reader.
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Lemma 1.3.2. Let α ∈ Γ̂m. Then the following identity holds

S̃m(α)1/m = inf

®

α ∧ α1 ∧ ... ∧ αm−1 ∧ βn−m

βn
; αi ∈ Σm, ∀i

´

.

Proof. Let M be a polarized form of S̃m defined by

M(α, α1, ..., αm−1) =
α ∧ α1 ∧ ... ∧ αm−1 ∧ βn−m

βn
,

for α1, ..., αm−1 ∈ Σm, α ∈ Γ̂m. By G̊arding’s inequality (1.3.1), we have

M(α, α1, ..., αm−1) ≥ S̃m(α)1/m.

Then we obtain that

S̃m(α)1/m ≤ inf

®

α ∧ α1 ∧ ... ∧ αm−1 ∧ βn−m

βn
; αi ∈ Σm, ∀i

´

.

Now, setting α1 = ... = αm−1 = α
S̃m(α)1/m , we can ensure that

M(α, α1, ..., αm−1) = S̃m(α)1/m.

This completes the proof of lemma.

Aspects about m-subharmonic functions. Let Ω ⊂ C
n be a bounded domain. Let also

β := ddc|z|2 be the standard Kähler form in C
n.

Definition 1.3.3. ([B%l05]). Let u be a subharmonic function in Ω.
1) For smooth case, u ∈ C2(Ω) is said to be m-subharmonic (briefly m-sh) if the form ddcu
belongs pointwise to Γ̂m.
2) For non-smooth case, u is called m-sh if for any collection α1, α2, ..., αm−1 ∈ Γ̂m , the
inequality

ddcu ∧ α1 ∧ ... ∧ αm−1 ∧ βn−m ≥ 0

holds in the weak sense of currents in Ω.

We denote by SHm(Ω) the set of all m-sh functions in Ω. B%locki observed that up to
a point pluripotential theory can by adapted to m-subharmonic functions. We recall some
properties of m-sh functions.

Proposition 1.3.4 ([B%l05]). 1. PSH = SHn ⊂ SHn−1 ⊂ ... ⊂ SH1 = SH.

2. If u, v ∈ SHm(Ω) then λu + ηv ∈ SHm(Ω), ∀λ, η ≥ 0.

3. If u ∈ SHm(Ω) and γ : R → R is convex increasing function then γ ◦ u ∈ SHm(Ω).

4. Let {uj}j∈N be a decreasing sequence of m-subharmonic functions in Ω. Then u :=
limj→+∞ uj is m-subharmonic function in Ω.

5. If u ∈ SHm(Ω) then the standard regularizations uǫ = u ∗ ρǫ are m-subharmonic in
Ωǫ := {z ∈ Ω| dist(z, ∂Ω) > ǫ}, for 0 < ǫ ≪ 1.
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6. Let U be a nonempty proper open subset of Ω. If u ∈ SHm(Ω), v ∈ SHm(U), and
lim
z→y
z∈U

v(z) ≤ u(y) for every y ∈ ∂U ∩ Ω, then the function

w =

®

max{u, v} in U,
u in Ω \ U,

is m-sh in Ω.

7. Let {uα} ⊂ SHm(Ω) be locally uniformly bounded from above and u = sup uα. Then
the upper semi-continuous regularization u∗ is m-sh and equal to u almost every-
where.

The following example was presented by S. Dinew in the international conference in
complex analysis and geometry AGC-2013 in Monastir (Tunisia).

Example 1.3.5. Let A be a nonnegative constant and define in C
n the function

u(z) =
−1

(Im(z1)2 + Im(z2)2 + ... + Im(zn)2)A
.

We claim that u is m-sh in C
n when A ≤ n−2m

2m and m ≤ ⌊n
2 ⌋. In fact, set

vǫ(z) = Im(z1)2 + Im(z2)2 + ... + Im(zn)2 + ǫ,

and χ : R+ → R
− such that χ(t) = −t−A. An easy computation shows that

(ddc(χ ◦ vǫ))
k ∧ βn−k =

k

2k−1
χ′′(vǫ)(χ

′(vǫ))
k−1dvǫ ∧ dcvǫ ∧ βn−1 +

(χ′(vǫ))
k

2k
βn.

Hence we get

(ddc(χ ◦ vǫ))
k ∧ βn−k =

Ak

2k
(n − 1)!v−k(A+1)

ǫ (n − 2k(A + 1))dV2n.

Then we can conclude that for any ǫ > 0 the function χ ◦ vǫ is m-sh in C
n if we have

A ≤ (n − 2m)/(2m) and m ≤ ⌊n/2⌋.
Since χ is increasing and vǫ decreases as ǫ tends to zero, we get χ ◦ vǫ ց u in C

n, thus
this yields u ∈ SHm(Cn) when A ≤ (n − 2m)/(2m) and m ≤ ⌊n/2⌋.

The following example shows that SHm(Ω) is not invariant under a holomorphic map-
ping.

Example 1.3.6. We define the function

u(z) = |z1|2 + |z2|2 − 1

2
|z3|2, z ∈ C

3.

A simple computation shows that u ∈ SH2(C3) and u /∈ PSH(C3).
Let f be a holomorphic mapping from C

3 to C
3 such that f(z) = (z1, z2,

√
2z3). Then

it is easy to see that u ◦ f is subharmonic but not 2-subharmonic.



24 Preliminaries

For locally bounded m-subharmonic functions, we can inductively define a closed non-
negative current (following Bedford and Taylor for plurisubharmonic functions).

ddcu1 ∧ ... ∧ ddcup ∧ βn−m := ddc(u1ddcu2 ∧ ... ∧ ddcup ∧ βn−m),

where u1, u2, ..., up ∈ SHm(Ω) ∩ L∞
loc(Ω), p ≤ m.

In particular, we define the nonnegative Hessian measure of u ∈ SHm(Ω) ∩ L∞
loc(Ω) to be

Hm(u) := (ddcu)m ∧ βn−m.

We can also use the following identity

du ∧ dcu := (1/2)ddc(u + C)2 − (u + C)ddcu, where C is big enough,

to define the nonnegative current

du1 ∧ dcu1 ∧ ddcu2 ∧ ... ∧ ddcup ∧ βn−m,

where u1, ..., up ∈ SHm(Ω) ∩ L∞
loc(Ω), p ≤ m.

One of the most important properties of m-subharmonic functions is the quasicontinu-
ity. Every m-subharmonic function is continuous outside an arbitrarily small open subset.
The m-Capacity is used to measure the smallness of these sets.

Definition 1.3.7. Let E ⊂ Ω be a Borel subset. The m-capacity of E with respect to Ω
is defined to be

Capm(E, Ω) := sup
{

∫

E
(ddcu)m ∧ βn−m; u ∈ SHm(Ω), −1 ≤ u ≤ 0

}

.

The m-capacity shares the same elementary properties as the capacity introduced by
Bedford and Taylor (see [SA12, DK14, Lu15]).

Proposition 1.3.8. 1. Capm(E1, Ω) ≤ Capm(E2, Ω), if E1 ⊂ E2.

2. Capm(E, Ω) = limj→∞ Capm(Ej , Ω), if Ej ↑ E.

3. Capm(E, Ω) ≤ ∑

Capm(Ej , Ω), for E = ∪Ej .

Definition 1.3.9. A sequence uj of functions defined in Ω is said to converge with respect
to Capm to a function u if for any t > 0 and K ⋐ Ω,

lim
j→+∞

Capm(K ∩ {|u − uj | > t}, Ω) = 0.

The following results can be proved by repeating the arguments in [Ko05].

Theorem 1.3.10. Let (uj
k)∞

j=1, k = 1, ..., m be a locally uniformly bounded sequence of m-

sh functions in Ω and uj
k → uk ∈ SHm(Ω) ∩ L∞

loc(Ω) in Capm as j → +∞ for k = 1, ..., m.
Then

ddcuj
1 ∧ ... ∧ ddcuj

m ∧ βn−m ⇀ ddcu1 ∧ ... ∧ ddcum ∧ βn−m.

Importantly, the complex Hessian operator is continuous with respect to the decreasing
convergence.
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Theorem 1.3.11. If uj ∈ SHm(Ω)∩L∞(Ω) is a sequence decreasing to a bounded function
u in Ω, then (ddcuj)m ∧ βn−m converges to (ddcu)m ∧ βn−m in the weak sense of currents
in Ω.

Theorem 1.3.12. Every m-subharmonic function u defined in Ω is quasi-continuous. This
means that for any positive number ǫ one can find an open set U ⊂ Ω with Capm(U, Ω) < ǫ
and such that u|Ω\U is continuous.

Theorem 1.3.13. Let {uj
k}∞

j=1 be a locally uniformly bounded sequence of m-subharmonic

functions in Ω for k = 1, 2, ..., m and let uj
k ↑ uk ∈ SHm(Ω) ∩ L∞

loc almost everywhere as
j → ∞ for k = 1, 2, ..., m. Then

ddcuj
1 ∧ ... ∧ ddcuj

m ∧ βn−m ⇀ ddcu1 ∧ ... ∧ ddcum ∧ βn−m.

Definition 1.3.14. Let Ω be a bounded domain in C
n and u ∈ SHm(Ω). We say that u

is m-maximal if for every open set G ⋐ Ω and for each upper semicontinuous function v
on Ḡ such that v ∈ SHm(G) and v ≤ u on ∂G, we have v ≤ u in G.

Theorem 1.3.15 ([B%l05]). Let u ∈ SHm(Ω) ∩ L∞
loc(Ω). Then Hm(u) = 0 in Ω if and only

if u is m-maximal.

Theorem 1.3.16 (Integration by parts). Let u, v ∈ SHm(Ω)∩L∞
loc(Ω) such that limz→∂Ω u =

limz→∂Ω v = 0. Then
∫

Ω
uddcv ∧ T =

∫

Ω
vddcu ∧ T,

where T = ddcu1 ∧ ... ∧ ddcum−1 ∧ βn−m and u1, ..., um−1 ∈ SHm(Ω) ∩ L∞
loc(Ω).

Theorem 1.3.17. For u, v ∈ SHm(Ω) ∩ L∞
loc(Ω), we have

(ddc max{u, v})m ∧ βn−m ≥ 1{u>v}(ddcu)m ∧ βn−m + 1{u≤v}(ddcv)m ∧ βn−m,

where 1E is the characteristic function of a set E.

Theorem 1.3.18. Let Ω be a bounded domain in C
n and u, v ∈ SHm(Ω) ∩ L∞

loc(Ω) be
such that lim infζ→∂Ω(u − v)(ζ) ≥ 0. Then

∫

{u<v}
(ddcv)m ∧ βn−m ≤

∫

{u<v}
(ddcu)m ∧ βn−m.

Corollary 1.3.19. Under the same assumption of Theorem 1.3.18, if (ddcu)m ∧ βn−m ≤
(ddcv)m ∧ βn−m as Radon measures on Ω, then v ≤ u in Ω.

Corollary 1.3.20. Let Ω be a bounded domain in C
n and u, v ∈ SHm(Ω) ∩ L∞

loc(Ω) be
such that limz→∂Ω u(z) = limz→∂Ω v(z) and u ≤ v in Ω. Then

∫

Ω
(ddcv)m ∧ βn−m ≤

∫

Ω
(ddcu)m ∧ βn−m.
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1.3.1 Cegrell’s inequalities for m-subharmonic functions

Let Ω be a bounded m-hyperconvex domain, that is, there exists a bounded continuous
m-sh function ϕ : Ω → R

− such that {ϕ < c} ⋐ Ω, for all c < 0.
We recall the definition of the class E0

m(Ω).

Definition 1.3.21. We let E0
m(Ω) denote the class of bounded functions v in SHm(Ω)

such that limz→∂Ω v(z) = 0 and
∫

Ω(ddcv)m ∧ βn−m < +∞.

This class was introduced by Cegrell in [Ce98], for m = n, and was considered by Lu
in [Lu15].

Lemma 1.3.22. Let u, v, v1, ..., vm−1 ∈ E0
m(Ω) and T = ddcv1 ∧ ... ∧ ddcvm−1 ∧ βn−m.

Then we have
∫

Ω
(−u)ddcv ∧ T ≤

Å∫

Ω
(−u)ddcu ∧ T

ã1/2 Å∫

Ω
(−v)ddcv ∧ T

ã1/2

.

Proof. It is enough to note that

(u, v) :=

∫

Ω
(−u)ddcv ∧ T

is symmetric semi positive bilinear form (using integration by parts). the required inequal-
ity follows from the classical Cauchy-Schwarz inequality for the form (u, v).

The following proposition was proved by induction in [Ce04] for plurisubharmonic
functions and we can do the same argument for m-sh functions.

Proposition 1.3.23. Suppose that h, u1, u2 ∈ E0
m(Ω), p, q ≥ 1 such that p + q ≤ m and

T = ddcg1 ∧ ... ∧ ddcgm−p−q ∧ βn−m, where g1, ..., gm−p−q ∈ E0
m(Ω). Then we get

∫

Ω
−h(ddcu1)p ∧ (ddcu2)q ∧ T ≤

ï∫

Ω
−h(ddcu1)p+q ∧ T

ò
p

p+q
ï∫

Ω
−h(ddcu2)p+q ∧ T

ò
q

p+q

.

Proof. We first prove the statement for p = q = 1. Thanks to the Cauchy-Schwarz in-
equality, we have

∫

Ω
−hddcu1 ∧ ddcu2 ∧ T =

∫

Ω
−u1ddcu2 ∧ ddch ∧ T

≤
ï∫

Ω
−u1ddcu1 ∧ ddch ∧ T

ò1/2 ï∫

Ω
−u2ddcu2 ∧ ddch ∧ T

ò1/2

=

ï∫

Ω
−h(ddcu1)2 ∧ T

ò1/2 ï∫

Ω
−h(ddcu2)2 ∧ T

ò1/2

.

The general case follows by induction in the same way as in [Ce04].

We will need in this thesis the following particular case.

Corollary 1.3.24. Let u1, u2 ∈ E0
m(Ω). Then we have

∫

Ω
ddcu1 ∧ (ddcu2)m−1 ∧ βn−m ≤

ï∫

Ω
(ddcu1)m ∧ βn−m

ò
1

m
ï∫

Ω
(ddcu2)m ∧ βn−m

ò
m−1

m

.
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For m = n, we have the following result proved by Cegrell [Ce04].

Corollary 1.3.25. Let u1, u2 ∈ E0(Ω). Then we have

∫

Ω
ddcu1 ∧ (ddcu2)n−1 ≤

ï∫

Ω
(ddcu1)n

ò
1

n
ï∫

Ω
(ddcu2)n

ò
n−1

n

.
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Chapter 2

Modulus of continuity of the

solution to the Dirichlet problem

2.1 Introduction

Let Ω be a bounded domain in C
n. Given ϕ ∈ C(∂Ω) and 0 ≤ f ∈ L1(Ω), we consider the

following Dirichlet problem:

Dir(Ω, ϕ, f) :











u ∈ PSH(Ω) ∩ C(Ω̄),
(ddcu)n = fβn in Ω,
u = ϕ on ∂Ω,

This problem was studied in the last decades by many authors. When Ω is a bounded
strongly pseudoconvex domain with smooth boundary and f ∈ C(Ω̄), Bedford and Taylor
showed that Dir(Ω, ϕ, f) has a unique continuous solution U := U(Ω, ϕ, f). Furthermore,
it was proved in [BT76] that U ∈ Lipα(Ω̄) when ϕ ∈ Lip2α(∂Ω) and f1/n ∈ Lipα(Ω̄)
(0 < α ≤ 1). In the nondegenerate case, i.e. 0 < f ∈ C∞(Ω̄) and ϕ ∈ C∞(∂Ω), Caffarelli,
Kohn, Nirenberg and Spruck proved in [CKNS85] that U ∈ C∞(Ω̄). However a simple
example of Gamelin and Sibony shows that the solution is not, in general, better than
C1,1-smooth when f ≥ 0 and smooth (see [GS80]). Krylov proved that if ϕ ∈ C3,1(∂Ω) and
f1/n ∈ C1,1(Ω̄), f ≥ 0 then U ∈ C1,1(Ω̄) (see [Kr89]).

For B-regular domains, B%locki [B%l96] proved the existence of a continuous solution to
the Dirichlet problem Dir(Ω, ϕ, f) when 0 ≤ f ∈ C(Ω̄).

In this chapter which is based on my paper [Ch15a], we consider the more general case
where Ω is a bounded strongly hyperconvex Lipschitz domain for which the boundary does
not need to be smooth (see the definition below) and we study the existence and regularity
of solutions to Dir(Ω, ϕ, f) when 0 ≤ f ∈ C(Ω̄).

The principal result in this chapter gives a sharp estimate for the modulus of continuity
of the solution in terms of the modulus of continuity of the data ϕ, f .

Theorem 2.1.1. Let Ω ⊂ C
n be a bounded strongly hyperconvex Lipschitz domain, ϕ ∈

C(∂Ω) and 0 ≤ f ∈ C(Ω̄). Assume that ωϕ is the modulus of continuity of ϕ and ωf1/n is

the modulus of continuity of f1/n. Then the modulus of continuity of the unique solution
U to Dir(Ω, ϕ, f) has the following estimate

ωU(t) ≤ η(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), ωf1/n(t), t1/2},
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where η is a positive constant depending on Ω.

Remark 2.1.2. Here we will use an alternative description of the solution given by The-
orem 2.3.2 to get an optimal control for the modulus of continuity of this solution in a
strongly hyperconvex Lipschitz domain. This result was suggested by E. Bedford [Be88]
and proved in the case of strictly convex domains with f = 0 [Be82].

We also consider the case when the density in the Dirichlet problem depends on the
unknown function:

(2.1.1)















u ∈ PSH(Ω) ∩ C(Ω̄),

(ddcu)n = F (z, u)βn in Ω,

u = ϕ on ∂Ω,

where F : Ω̄ ×R → R
+ is a continuous function and nondecreasing in the second variable.

We can prove a sharp estimate for the modulus of continuity of the solution to (2.1.1).
Since the proof is similar to the one of Theorem 4.1.1 for complex Hessian equations, we
do not mention it in this chapter.

Theorem 2.1.3. Let Ω be a bounded strongly hyperconvex Lipschitz domain in C
n, ϕ ∈

C(∂Ω) and 0 ≤ F ∈ C(Ω̄ × R) be a nondecreasing function in the second variable. Then
there exists a unique continuous solution U to (2.1.1) and its modulus of continuity satisfies
the following estimate

ωU(t) ≤ γ(1 + ‖F‖1/n
L∞(K)) max{ωϕ(t1/2), ωF 1/n(t), t1/2},

where γ is a positive constant depending only on Ω, K = Ω̄ × {a}, a = sup∂Ω |ϕ| and
ωF 1/n(t) is given by

ωF 1/n(t) := sup
y∈[−M,M ]

sup
|z1−z2|≤t

|F 1/n(z1, y) − F 1/n(z2, y)|,

with M := a + 2 diam(Ω)2 supΩ̄ F 1/n(., −a).

2.2 Basic facts

Definition 2.2.1. A bounded domain Ω ⊂ C
n is called a strongly hyperconvex Lipschitz

(briefly SHL) domain if there exist a neighborhood Ω′ of Ω̄ and a Lipschitz plurisubhar-
monic defining function ρ : Ω′ → R such that

1. Ω = {z ∈ Ω′; ρ(z) < 0} and ∂Ω = {ρ = 0},

2. there exists a constant c > 0 such that ddcρ ≥ cβ in Ω in the weak sense of currents.

Example 2.2.2.

1. Let Ω be a strictly convex domain, that is, there exists a Lipschitz defining function
ρ such that ρ − c|z|2 is convex for some c > 0. It is clear that Ω is a strongly
hyperconvex Lipschitz domain.
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2. A smooth strongly pseudoconvex bounded domain is a SHL domain (see [HL84]).

3. The nonempty finite intersection of strongly pseudoconvex bounded domains with
smooth boundary in C

n is a bounded SHL domain. In fact, it is sufficient to set
ρ = max{ρi}. More generally a finite intersection of SHL domains is a SHL domain.

4. The domain

Ω = {z = (z1, · · · , zn) ∈ C
n; |z1| + · · · + |zn| < 1} (n ≥ 2)

is a bounded strongly hyperconvex Lipschitz domain in C
n with non-smooth bound-

ary.

5. The unit polydisc in C
n (n ≥ 2) is hyperconvex with Lipschitz boundary but it is

not strongly hyperconvex Lipschitz.

We recall the definition of B-regular domain in the sense of Sibony ([Sib87], [B%l96]).

Definition 2.2.3. A bounded domain Ω in C
n is called B-regular if for any boundary

point z0 ∈ ∂Ω there exists v ∈ PSH(Ω) such that limz→z0
v(z) = 0 and v∗|Ω̄\{z0} < 0.

Remark 2.2.4. Any bounded SHL domain is B-regular in the sense of Sibony. Indeed,
for any boundary point z0 ∈ ∂Ω it is enough to take v(z) = Aρ − |z − z0|2 where A > 1/c
and c > 0 is as in Definition 2.2.1.

Remark 2.2.5. Kerzman and Rosay [KR81] proved that in a hyperconvex domain there
exists an exhaustion function which is smooth and strictly plurisubharmonic. Furthermore,
they proved that any bounded pseudoconvex domain with C1-boundary is hyperconvex
domain. Later, Demailly [De87] proved that any bounded pseudoconvex domain with
Lipschitz boundary is hyperconvex. It is obvious that such a domain can contain a germ
of analytic subvariety in the boundary, hence it can not be a bounded SHL domain (for
example, we smooth out the boundary of a polydisc) since the condition (2) in Definition
2.2.1 fails.

Let Ω ⊂ C
n be a bounded domain. If u ∈ PSH(Ω) then ddcu ≥ 0 in the sense of

currents. We define

(2.2.1) ∆Hu :=
n
∑

j,k=1

hjk̄

∂2u

∂zk∂z̄j
= tr (H.HessCu)

for every positive definite Hermitian matrix H = (hjk̄). We can view ∆Hu as a nonnegative
Radon measure in Ω.

The following lemma is elementary and important for what follows (see [Gav77]).

Lemma 2.2.6. Let Q be a n × n nonnegative Hermitian matrix. Then

(det Q)
1

n = inf{tr(H.Q) : H ∈ H+
n and det(H) = n−n},

where H+
n denotes the set of all positive Hermitian n × n matrices.
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Proof. For every matrix H ∈ H+
n , there is C ∈ H+

n such that C2 = H. We set H1/2 :=
C, hence H1/2.Q.H1/2 ∈ H+

n . After diagonalizing the matrix H1/2.Q.H1/2 and by the
inequality of arithmetic and geometric means, we get

(det Q)
1

n (det H)
1

n = (det(H1/2.Q.H1/2))
1

n ≤ 1

n
tr(H1/2.Q.H1/2).

Then

(det Q)
1

n (det H)
1

n ≤ 1

n
tr(Q.H).

Consequently, we have

(det Q)
1

n ≤ inf{tr(H.Q) : H ∈ H+
n and det(H) = n−n}.

Since Q ∈ H+
n , we diagonalize it, then we get A = (λii) ∈ H+

n such that Q = P.A.P −1

where P is the transformation matrix. One can find a matrix H = (αii) ∈ H+
n such that

det(H) = n−n and (det A)
1

n = tr(A.H). Indeed, it suffices to set

αii =
(
∏

i λii)
1

n

nλii
.

Finally,

(det Q)
1

n = (det A)
1

n = tr(H.A) = tr(H.P.A.P −1) = tr(H.Q).

Example 2.2.7. We calculate ∆H(|z|2) for every matrix H ∈ H+
n and det H = n−n.

∆H(|z|2) =
n
∑

j,k=1

hjk̄.δkj̄ = tr(H).

Using the inequality of arithmetic and geometric means, we have :

1 = (det I)
1

n ≤ tr(H),

hence ∆H(|z|2) ≥ 1 for every matrix H ∈ H+
n and det(H) = n−n.

The following result is well known (see [B%l96]), but we will give here an alternative proof
using ideas from the theory of viscosity due to Eyssidieux, Guedj and Zeriahi [EGZ11].

Proposition 2.2.8. Let u ∈ PSH(Ω) ∩ L∞(Ω) and 0 ≤ f ∈ C(Ω). Then the following
conditions are equivalent:
(1) ∆Hu ≥ f1/n in the weak sense of distributions, for any H ∈ H+

n and det H = n−n.
(2) (ddcu)n ≥ fβn in the weak sense of currents on Ω.

Proof. First, suppose that u ∈ C2(Ω). Then by Lemma 2.2.6 the inequality

∆Hu =
n
∑

j,k=1

hjk̄ ∂2u

∂zj∂z̄k
≥ f1/n, ∀H ∈ H+

n , det(H) = n−n,
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is equivalent to
Ç

det(
∂2u

∂zj∂z̄k
)

å1/n

≥ f1/n.

The latter means that
(ddcu)n ≥ fβn.

(1)⇒(2). Let (ρǫ) be the standard family of regularizing kernels with supp ρǫ ⊂ B(0, ǫ)
and

∫

B(0,ǫ) ρǫ = 1. Then the sequence uǫ = u∗ρǫ decreases to u, and we see that (1) implies

∆Huǫ ≥ (f1/n)ǫ. Since uǫ is smooth, we use the first case and get (ddcuǫ)
n ≥ ((f1/n)ǫ)

nβn,
hence by applying the convergence theorem of Bedford and Taylor (Theorem 7.4 in [BT82])
we obtain (ddcu)n ≥ fβn.

(2)⇒(1). Fix x0 ∈ Ω, and let q be a C2-function in a neighborhood B of x0 such that
u ≤ q in this neighborhood and u(x0) = q(x0).
First step: We will show that ddcqx0

≥ 0. Indeed, for every small enough ball B′ ⊂ B
centered at x0, we have

u(x0) − q(x0) ≥ 1

V (B′)

∫

B′

(u − q)dV2n,

therefore
1

V (B′)

∫

B′

qdV2n − q(x0) ≥ 1

V (B′)

∫

B′

udV2n − u(x0) ≥ 0.

Since q is C2-smooth and the radius of B′ tends to 0, it follows from Proposition 3.2.10 in
[H94] that ∆qx0

≥ 0. For every positive definite Hermitian matrix H with det H = n−n,
we make a linear change of complex coordinates T such that tr(HQ) = tr(Q̃) where
Q̃ = (∂2q̃/∂wj∂w̄k) and q̃ = q ◦ T −1. Then

∆Hq(x0) = tr(H.Q) = tr(Q̃) = ∆q̃(y0).

Indeed, we first make a unitary transformation T1 such that tr(H.Q) = tr(S.Q1) where
S is a diagonal matrix with positive eigenvalues λ1, ..., λn and Q1 :=

(

∂2q1/∂xj∂x̄k
)

with
q1 = q ◦ T −1

1 . Then we do another linear transformation T2 : Cn → C
n such that

T2(x1, ..., xn) :=

Ç

x1√
λ1

, ...,
xn√
λn

å

.

Let us set q̃ = q1 ◦ T −1
2 . We get that

tr(S.Q1) = λ1
∂2q1

∂x1∂x̄1
+ ... + λn

∂2q1

∂xn∂x̄n
=

∂2q̃

∂w1∂w̄1
+ ... +

∂2q̃

∂wn∂w̄n
= tr(Q̃).

Hence ∆Hq(x0) ≥ 0 for every H ∈ H+
n and det H = n−n, so ddcqx0

≥ 0.

Second step: We claim that (ddcq)n
x0

≥ f(x0)βn. Suppose that there exists a point x0 ∈ Ω
and a C2-function q which satisfies u ≤ q in a neighborhood of x0 and u(x0) = q(x0) such
that (ddcq)n

x0
< f(x0)βn. We put

qǫ(x) = q(x) + ǫ
Ä

‖x − x0‖2 − r2/2
ä
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for 0 < ǫ ≪ 1 small enough, we see that

0 < (ddcqǫ)n
x0

< f(x0)βn.

Since f is lower semi-continuous on Ω, there exists r > 0 such that

(ddcqǫ)n
x ≤ f(x)βn, x ∈ B(x0, r).

Then (ddcqǫ)n ≤ fβn ≤ (ddcu)n in B(x0, r) and qǫ = q + ǫ r2

2 ≥ q ≥ u on ∂B(x0, r), hence

qǫ ≥ u on B(x0, r) by the comparison principle. But qǫ(x0) = q(x0) − ǫ r2

2 = u(x0) − ǫ r2

2 <
u(x0), a contradiction.

Hence, from the first part of the proof, we get ∆Hq(x0) ≥ f1/n(x0) for every point x0 ∈
Ω and every C2-function q in a neighborhood of x0 such that u ≤ q in this neighborhood
and u(x0) = q(x0).

Assume that f > 0 and f ∈ C∞(Ω), then there exists g ∈ C∞(Ω) such that ∆Hg = f1/n.
Hence ϕ = u − g is ∆H -subharmonic (by Proposition 3.2.10’, [H94]), from which it follows
that ∆Hϕ ≥ 0 and ∆Hu ≥ f1/n.

In case f > 0 is merely continuous, we observe that

f = sup{w; w ∈ C∞, f ≥ w > 0},

so (ddcu)n ≥ fβn ≥ wβn. Since w > 0 is smooth, we have ∆Hu ≥ w1/n. Therefore, we get
∆Hu ≥ f1/n.

In the general case 0 ≤ f ∈ C(Ω), we observe that uǫ(z) = u(z) + ǫ|z|2 satisfies

(ddcuǫ)n ≥ (f + ǫn)βn,

and so
∆Huǫ ≥ (f + ǫn)1/n.

Letting ǫ converge to 0, we get ∆Hu ≥ f1/n for all H ∈ H+
n and det H = n−n.

As a consequence of Proposition 2.2.8, we give an alternative description of the classical
Perron-Bremermann family of subsolutions to the Dirichlet problem Dir(Ω, ϕ, f).

Definition 2.2.9. We denote by V(Ω, ϕ, f) the family of subsolutions of Dir(Ω, ϕ, f),
that is

V(Ω, ϕ, f) = {v ∈ PSH(Ω) ∩ C(Ω̄), v|∂Ω ≤ ϕ and ∆Hv ≥ f1/n, ∀H ∈ H+
n , det H = n−n}.

Remark 2.2.10. We observe that V(Ω, ϕ, f) Ó= ∅. Indeed, let ρ be as in Definition 2.2.1
and A, B > 0 big enough, then Aρ − B ∈ V(Ω, ϕ, f).

Furthermore, the family V(Ω, ϕ, f) is stable under finite maximum, that is if u, v ∈
V(Ω, ϕ, f) then max{u, v} ∈ V(Ω, ϕ, f). It is enough to show that

(2.2.2) ∆H(max{u, v}) ≥ min{∆Hu, ∆Hv}

We set µ := min{∆Hu, ∆Hv} and suppose that µ({z; u(z) = v(z)}) = 0. Then in the open
set Ω1 = {u < v}, we have ∆H(max{u, v}) = ∆Hv ≥ µ, and a similar consequence in the
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set Ω2 = {v < u}.
Since µ(Ω\(Ω1∪Ω2)) = 0 and ∆H(max{u, v}) ≥ 0, we get ∆H(max{u, v}) ≥ min{∆Hu, ∆Hv}.

In the general case, we replace v by v + ǫ, where ǫ > 0 is a small constant, then
max{u, v + ǫ} → max{u, v}. Thus ∆H(max{u, v + ǫ}) converges to ∆H(max{u, v}) in
the sense of distributions.
We set µ = min{∆Hu, ∆H(v + ǫ)}, by the first case the inequality is true for max{u, v + ǫ}
for all ǫ > 0 such that µ({z; u(z) = v(z) + ǫ}) = 0. On the other hand, µ({z; u(z) =
v(z) + ǫ}) = 0 for all ǫ > 0 except at most countably many ǫ > 0, then we obtain (2.2.2)
by passing to the limit when ǫ → 0 (avoiding these countably many values of ǫ > 0).

2.3 The Perron-Bremermann envelope

Bedford and Taylor proved in [BT76] that the unique solution to Dir(Ω, ϕ, f) in a bounded
strongly pseudoconvex domain with smooth boundary, is given as the Perron-Bremermann
envelope

u = sup{v; v ∈ B(Ω, ϕ, f)},

where B(Ω, ϕ, f) = {v ∈ PSH(Ω) ∩ C(Ω̄) : v|∂Ω ≤ ϕ and (ddcv)n ≥ fβn}.
Thanks to Proposition 2.2.8, we get the following corollary

Corollary 2.3.1. The two families V(Ω, ϕ, f) and B(Ω, ϕ, f) coincide, that is

V(Ω, ϕ, f) = B(Ω, ϕ, f).

The context of this section is classical and follows the main scheme of Bedford and
Taylor’s approach. A simplification of their proof was given by Demailly (for the homoge-
neous case ([De89])) and by B%locki for the general case (see [B%l96]). Here we will prove the
following theorem using an alternative description of the Perron-Bremermann envelope in
a bounded SHL domain.

Theorem 2.3.2. Let Ω ⊂ C
n be a bounded SHL domain, 0 ≤ f ∈ C(Ω̄) and ϕ ∈ C(∂Ω).

Then the Dirichlet problem Dir(Ω, ϕ, f) has a unique solution U. Moreover the solution is
given by

U = sup{v; v ∈ V(Ω, ϕ, f)},

where V is defined in Definition 2.2.9 and ∆H is the Laplacian associated to a positive
definite Hermitian matrix H as in (2.2.1).

The uniqueness of the solution to Dir(Ω, ϕ, f) is a consequence of the comparison
principle (Corollary 1.2.7).

The first step to prove this theorem is to ensure that U ∈ V(Ω, ϕ, f). For this purpose,
we use the argument of Walsh (see [Wal69] and [B%l96] ) to prove the continuity of the
upper envelope.
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2.3.1 Continuity of the upper envelope

Proposition 2.3.3. Let Ω ⊂ C
n be a bounded SHL domain, 0 ≤ f ∈ C(Ω̄) and ϕ ∈ C(∂Ω).

Then the upper envelope

U = sup{v; v ∈ V(Ω, ϕ, f)}
belongs to V(Ω, ϕ, f) and U = ϕ on ∂Ω.

Proof. Let g ∈ C2(Ω̄) be an approximation of ϕ such that |g − ϕ| ≤ ǫ on ∂Ω, for fixed
ǫ > 0. Let also ρ be the defining function as in Definition 2.2.1 and A > 0 large enough
such that v0 := Aρ + g − ǫ belongs to V(Ω, ϕ, f) and ∆Hv0 ≥ max{supΩ̄ f1/n, 1}.

A similar construction gives that v1 := −Bρ + g + ǫ is plurisuperharmonic in Ω when
B > 0 is big enough. We claim that U ≤ v1 in Ω. Suppose that v ∈ V(Ω, ϕ, f), then
v − v1 ≤ ϕ − g − ǫ ≤ 0 on ∂Ω. Hence, by the maximum principle we get v − v1 ≤ 0 in Ω.
This yields U ≤ v1 in Ω. Consequently, we get v0 ≤ U ≤ v1. Then on the boundary ∂Ω we
have

ϕ − 2ǫ ≤ g − ǫ ≤ U ≤ g + ǫ ≤ ϕ + 2ǫ.

Letting ǫ tend to 0, we obtain that U = ϕ on ∂Ω and limz→ξ U(z) = ϕ(ξ) for all ξ ∈ ∂Ω.

We will prove that U is continuous on Ω. Fix ǫ > 0 and z0 in a compact set K ⋐ Ω.

Thanks to the continuity of v1 and v0 on Ω̄, one can find δ > 0 such that for any z1, z2 ∈ Ω̄
we have

|v1(z1) − v1(z2)| ≤ ǫ, |v0(z1) − v0(z2)| ≤ ǫ, if |z1 − z2| ≤ δ.

Let a ∈ C
n such that |a| < min{δ, dist(K, ∂Ω)}. Since U is the upper envelope, we can find

ṽ ∈ V(Ω, ϕ, f) such that ṽ(z0 + a) ≥ U(z0 + a) − ǫ. Let us set v = max{ṽ, v0}.

Hence, for all z ∈ Ω̄ and w ∈ ∂Ω such that |z − w| ≤ δ we get

−3ǫ ≤ v0(z) − ϕ(w) ≤ v(z) − ϕ(w) ≤ v1(z) − ϕ(w) ≤ 3ǫ.

This implies that

(2.3.1) |v(z) − ϕ(w)| ≤ 3ǫ, if |z − w| ≤ δ.

Then for z ∈ Ω and z + a ∈ ∂Ω, we have

v(z + a) ≤ ϕ(z + a) ≤ v(z) + 3ǫ.

We define the following function

v1(z) =

®

v(z) ; z + a /∈ Ω̄,

max{v(z), v(z + a) − 3ǫ} ; z + a ∈ Ω̄,

which is well defined, plurisubharmonic on Ω, continuous on Ω̄ and v1 ≤ ϕ on ∂Ω. Indeed, if
z ∈ ∂Ω, z+a /∈ Ω̄ then v1(z) = v(z) ≤ ϕ(z). On the other hand, if z ∈ ∂Ω and z+a ∈ Ω̄ then
we have, from (2.3.1), that v(z+a)−3ǫ ≤ ϕ(z), so v1(z) = max{v(z), v(z+a)−3ǫ} ≤ ϕ(z).

Moreover, we note by (2.2.2) that

∆Hv1(z) ≥ min(f1/n(z), f1/n(z + a)) if z, z + a ∈ Ω.
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Let ω be the modulus of continuity of f1/n. Then we conclude that

(2.3.2) ∆Hv1(z) ≥ f1/n(z) − ω(|a|) in Ω.

Now, let us define

v2 = v1 + ω(|a|)(v0 − ‖v0‖L∞(Ω̄)).

It is clear that v2 ∈ PSH(Ω) ∩ C(Ω̄) and v2 ≤ ϕ on ∂Ω. Furthermore, using (2.3.2) we see
that

∆Hv2 = ∆Hv1 + ω(|a|)∆Hv0 ≥ f1/n.

This yields that v2 ∈ V(Ω, ϕ, f).
For small enough |a| we can assume ω(|a|) ≤ ǫ/‖v0‖ and infer that

U(z0) ≥ v1(z0) + ω(|a|)v0(z0) − ω(|a|)‖v0‖
≥ v(z0 + a) − 5ǫ

≥ U(z0 + a) − 6ǫ.

The last inequality is true for every z0 ∈ K, then U is continuous on Ω.
It follows from Choquet’s lemma that there exists a sequence (uj) in V(Ω, ϕ, f) such

that

U = (sup
j

uj)∗.

As the family V(Ω, ϕ, f) is stable under the operation maximum, we can assume that
the sequence (uj) is increasing almost everywhere to U, then uj → U in L1(Ω). Hence
∆HU = lim ∆Huj ≥ f1/n for all H ∈ H+

n , detH = n−n, this implies U ∈ V(Ω, ϕ, f).

In order to verify that (ddc
U)n = fβn in Ω, we first ensure this statement when Ω = B

the unit ball in C
n. For this end, we introduce the following theorem, which is due to

Bedford and Taylor [BT76], to prove that the second order derivatives of U are locally
bounded under extra assumptions. Here the presentation is derived from Demailly [De89].

2.3.2 Regularity in the case of the unit ball

Theorem 2.3.4. Suppose that Ω = B is the unit ball in C
n, f1/n ∈ C1,1(B̄) and ϕ ∈

C1,1(∂B). Then the second order partial derivatives of U are locally bounded, in particular
U ∈ C1,1

loc (B).

Proof. First, we assert that U ∈ C0,1(B̄). Actually, let ϕ̃ be a C1,1-extension of ϕ to B̄2 :=
B̄(0, 2) such that

‖ϕ̃‖C1,1(B̄2) ≤ C‖ϕ‖C1,1(∂B)

for some positive constant C (see [GT01]).
Let us set A ≫ 1 such that u1 = A(|z|2 −1)+ ϕ̃ is plurisubharmonic on B2 and u2 = A(1−
|z|2) + ϕ̃ is plurisuperharmonic on B2. For A big enough, one can note that u1 ≤ U ≤ u2

on B̄ by the comparison principle. We set

ũ(z) =

®

U(z) ; z ∈ B,

u1(z) ; z ∈ B̄2 \ B.
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Since u1 = U = ϕ on ∂B, we get a well defined plurisubharmonic function ũ on B2 and
ũ ≤ max{u1, u2} on B̄2. Then for all z ∈ ∂B and |h| small we get

ũ(z + h) ≤ ϕ(z) + C1 max{‖u1‖C1(B̄2), ‖u2‖C1(B̄2)}|h|
≤ ϕ(z) + C2|h|,

where C2 = C1(A + C‖ϕ‖C1,1(∂B)).

Since f1/n ∈ C1,1(B̄), there exists a constant B such that

|f1/n(z) − f1/n(y)| ≤ B|z − y|.

Now, let us define the function

û(z) = ũ(z + h) − C2|h| + B|h|(|z|2 − 1).

It is clear that û ∈ PSH(B) ∩ C(B̄), û|∂B ≤ ϕ and ∆H û ≥ f1/n for all H ∈ H+
n and

det H = n−n. Thus we have û ∈ V(B, ϕ, f) and û ≤ U on B̄.
This implies that

ũ(z + h) − U(z) ≤ (C2 + B)|h| on B̄.

By changing h into −h, we conclude that

|U(z + h) − U(z)| ≤ (C2 + B)|h|,

for z ∈ B and |h| small. This yields that ‖U‖C0,1(B̄) ≤ (C2 + B).

Second step, we estimate the following expression

U(z + h) + U(z − h) − 2U(z).

But this expression is not defined in the whole ball B, thus we use the automorphism of
the unit ball. For a ∈ B, we define a holomorphic automorphism Ta of the unit ball as
follows;

Ta(z) =
Pa(z) − a +

»

1 − |a|2(z − Pa(z))

1 − 〈z, a〉 ; Pa(z) =
〈z, a〉a

|a|2 ,

where 〈., .〉 denote the Hermitian product in C
n.

Let h = a − 〈z, a〉z. Then we get for |a| ≪ 1 that

Ta(z) = z − h + O(|a|2),

where O(|a|2) is bounded and converges to 0 when |a| tends to 0, i.e. O(|a|2) ≤ c|a|2, for
some positive constant c which is uniform for z ∈ B̄.
The determinant of Jacobian matrix of Ta is given by

det T ′
a(z) = 1 + (n + 1)〈z, a〉 + O(|a|2).

Then
(

det T ′
a(z)

)2/n
= 1 +

2(n + 1)

n
〈z, a〉 + O(|a|2).
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Let g ∈ C0,1(B̄), so it is easy to see that

(2.3.3) |g ◦ Ta(z) − g(z − h)| ≤ ‖g‖C0,1(B̄).|Ta(z) − z + h| ≤ c1‖g‖C0,1(B̄).|a|2.

Since f1/n ∈ C1,1(B̄), we get by Taylor’s expansion

f1/n ◦ Ta(z) = f1/n(z − h + O(|a|2)) = f1/n(z) − Df1/n(z).h + O(|a|2).

We set ψ(z, a) = −Df1/n(z).h, then

f1/n ◦ Ta(z) = f1/n(z) + ψ(z, a) + O(|a|2).

A simple computation yields that the following expression

I := | det T ′
a|2/n(f1/n ◦ Ta) + | det T ′

−a|2/n(f1/n ◦ T−a),

can be estimated as follows

I ≥ 2f1/n − 4(n + 1)

n
|〈z, a〉ψ(z, a)| − c2|a|2.

There exists c3 > 0 depending on ‖f1/n‖C1,1(Ω̄) such that

|〈z, a〉ψ(z, a)| ≤ c3|z|.|a|2 ≤ c3|a|2.

Hence we get

| det T ′
a|2/n(f1/n ◦ Ta) + | det T ′

−a|2/n(f1/n ◦ T−a) ≥ 2f1/n − c4|a|2.

A similar computation yields that the following inequality holds on ∂B

(2.3.4) ϕ ◦ Ta + ϕ ◦ T−a ≤ 2ϕ + c4|a|2,

where c4 is large and depending also on ‖ϕ‖C1,1(∂B).
Let us consider

va(z) := (U ◦ Ta + U ◦ T−a)(z).

We observe that

∆H(U ◦ Ta) ≥ | det T ′
a|2/n(f1/n ◦ Ta),

then we get

∆Hva ≥ | det T ′
a|2/n(f1/n ◦ Ta) + | det T ′

−a|2/n(f1/n ◦ T−a) ≥ 2f1/n − c4|a|2.

Let us put

v(z) :=
1

2
va(z) − c4

2
|a|2(2 − |z|2) ∈ PSH(B) ∩ C(B̄).

It follows from (2.3.4) that v ≤ ϕ on ∂B. Moreover, we have

∆Hv =
1

2
∆Hva +

c4

2
|a|2∆H(|z|2) ≥ f1/n − c4

2
|a|2 +

c4

2
|a|2 ≥ f1/n,
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for every H ∈ H+
n , det H = n−n. Hence v ∈ V(B, ϕ, f), in particular v ≤ U .

Consequently,
1

2
va(z) − c4|a|2 ≤ 1

2
va(z) − c4

2
|a|2(2 − |z|2) ≤ U.

Hence, we get

(U ◦ Ta + U ◦ T−a)(z) − 2U(z) ≤ 2c4|a|2.

Applying (2.3.3) with g = U, we obtain

(2.3.5)

U(z − h) + U(z + h) − 2U(z) ≤ (U ◦ Ta + U ◦ T−a)(z) − 2U(z) + 2c1‖U‖C0,1(B̄).|a|2

≤ (2c4 + 2c1‖U‖C0,1(B̄)).|a|2

≤ c5|a|2.

Since h = a − 〈z, a〉z, the inverse linear map h Ô→ a has a norm less than 1/(1 − |z|2).
Indeed, using the Cauchy-Schwarz inequality, we have

|h| ≥ ||a| − |〈z, a〉|.|z|| ≥ ||a| − |z|2|a|| ≥ |a|(1 − |z|2).

Thus we conclude that

U(z + h) + U(z − h) − 2U(z) ≤ c5

(1 − |z|2)2
|h|2.

Let us fix a compact K ⊂ B. For z ∈ K and |h| small enough we obtain by taking a
convolution with a regularizing kernel ρǫ, for small enough ǫ > 0, that

Uǫ(z + h) + Uǫ(z − h) − 2Uǫ(z) ≤ c5

(1 − (|z| + ǫ)2)2
|h|2.

Since Uǫ ∈ PSH ∩ C∞(Bǫ) where Bǫ is the ball of radius 1 − ǫ and thanks to Taylor’s
expansion of degree two of uǫ, we infer

D2
Uǫ(z).h2 ≤ c5

(1 − (|z| + ǫ)2)2
|h|2.

Let us set

A :=
2c5

dist(K, ∂B)2
.

Then for all z ∈ K and h ∈ C
n with small enough norm we get

D2
Uǫ(z).h2 ≤ A|h|2.

The plurisubharmonicity of Uǫ yields

D2
Uǫ(z).h2 + D2

Uǫ(z).(ih)2 = 4
∑

j,k

∂2
Uǫ

∂zj∂z̄k
.hj h̄k ≥ 0.

Hence

D2
Uǫ(z).h2 ≥ −D2

Uǫ(z).(ih)2 ≥ −A|h|2.
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Therefore, we have
|D2

Uǫ(z)| ≤ A; ∀z ∈ K.

We know that the dual space of L1(K) is L∞(K), hence by applying the Alaoglu-Banach
theorem, there exists a bounded function g such that D2

Uǫ converges weakly to g in L∞(K).
On the other hand, D2

Uǫ → D2
U in the sense of distributions, then we get D2

U = g. Finally,
the second order derivatives of U exist almost everywhere and are locally bounded in B

with
‖D2

U‖L∞(K) ≤ A,

where A = 2c5/ dist(K, ∂B)2 and c5 depends on ‖U‖C0,1(B̄), ‖ϕ‖C1,1(∂B) and ‖f1/n‖C1,1(B̄).

Thus we conclude that U ∈ C1,1
loc (B).

Remark 2.3.5. Dufresnoy [Du89] proved that the C1,1-norm of U does not explode faster
than 1/dist(., ∂B) as we approach to the boundary. In general, U can not belong to C1,1(B̄),
the next example shows that there is a necessary loss in the regularity up to the boundary.

Example 2.3.6. Let B ⊂ C
2 and ϕ(z, w) = (1 + Re(w))1+ǫ ∈ C2,2ǫ(∂B) for small ǫ > 0.

We consider the following Dirichlet problem:










u ∈ PSH(Ω) ∩ C(Ω̄),
(ddc

U)2 = 0 in B,
U = ϕ on ∂B.

Then U(z, w) = (1 + Re(w))1+ǫ is the solution to this problem. One can observe that U

belongs to C1,ǫ(B̄) ∩ C1,1
loc (B) but it is not C1,1-smooth on B̄. This can be seen by a radial

approach to the boundary point (z0, w0) = (0, −1).

We will prove in the following proposition that the Perron-Bremermann envelope is
the solution to the Dirichlet problem in the unit ball B.

Proposition 2.3.7. Suppose 0 ≤ f1/n ∈ C1,1(B̄) and ϕ ∈ C1,1(∂B). Then the envelope U

is the solution to the Dirichlet problem Dir(B, ϕ, f).

Proof. We have proved that U ∈ C1,1
loc (B) and U ∈ V(B, ϕ, f). It remains to show that

(ddc
U)n = fβn. Proof by contradiction, suppose that there exists a point z0 ∈ B at which

U has second order partial derivatives and satisfies

(ddc
U)n(z0) > (f(z0) + ǫ)βn,

for some ǫ > 0. Then by Proposition 2.2.8 we have

∆HU(z0) > (f(z0) + ǫ)1/n,

for all H ∈ H+
n and det(H) = n−n.

Using the Taylor expansion at z0, we get

U(z0 + ξ) = U(z0) + DU(z0).ξ +
1

2

∑

j,k

∂2
U

∂zj∂zk
(z0)ξjξk+

+
1

2

∑

j,k

∂2
U

∂z̄j∂z̄k
(z0)ξ̄j ξ̄k +

∑

j,k

∂2
U

∂zj∂z̄k
(z0)ξj ξ̄k + o(|ξ|2).

= U(z0) + ReP (ξ) + L(ξ) + o(|ξ|2),
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where P is a complex polynomial of degree 2, then ReP is pluriharmonic and

L(ξ) =
∑

j,k

∂2
U

∂zj∂z̄k
(z0)ξj ξ̄k > 0.

Let us fix

s :=

Ç

f(z0) + ǫ/2

f(z0) + ǫ

å1/n

< 1.

One can find δ, r > 0 small enough such that B(z0, r) ⋐ B and for |ξ| = r, we have

U(z0) + ReP (ξ) + sL(ξ) + δ ≤ U(z0 + ξ).

We define the function

v(z) =

®

U(z) ; z /∈ B(z0, r),
max{U(z), v1(z)} ; z ∈ B(z0, r),

where v1(z) := U(z0) + ReP (z − z0) + sL(z − z0) + δ is a psh function in B(z0, r). It is
clear that v is well defined psh in B and satisfies v = ϕ on ∂B. We claim that ∆Hv ≥ f1/n

for all H ∈ H+
n and det(H) = n−n. Indeed, in the ball B(z0, r) we note

∆Hv1 ≥ s∆HL(z − z0) = s
∑

j,k

∂2
U

∂zj∂z̄k
(z0)hkj̄ > s(f(z0) + ǫ)1/n = (f(z0) + ǫ/2)1/n.

Since f is uniformly continuous in B̄, shrinking r if necessary, we can get that f(z0)+ǫ/2 ≥
f(z) for z ∈ B(z0, r), hence ∆Hv1(z) ≥ f1/n(z) in B(z0, r). Consequently, it follows from
(2.2.2) that ∆Hv ≥ f1/n. Thus we infer v ∈ V(B, ϕ, f) and v ≤ U in B. But we observe
that v(z0) = U(z0) + δ > U(z0), this is a contradiction.

Corollary 2.3.8. Let B be the unit ball in C
n, 0 ≤ f ∈ C(B̄) and ϕ ∈ C(∂B). Then the

upper envelope U is the solution to Dirichlet problem Dir(B, ϕ, f).

Proof. We choose a sequence of functions (fj) such that 0 < fj ∈ C∞(B̄) and fj decreases
to f uniformly on B̄. We also find a sequence C∞-smooth functions ϕj such that ϕj

increases to ϕ uniformly on ∂B. Thanks to the last proposition, there exists a continuous
solution Uj to the Dirichlet problem Dir(B, ϕj , fj). Hence, by the comparison principle,
we can conclude that the sequence Uj is increasing.
Fix ǫ > 0 and since fk converges uniformly to f , we find j0 > 0 such that fj ≤ fk + ǫn in
B̄ for all k ≥ j ≥ j0. Then we note for all k ≥ j ≥ j0 that

(ddc(Uk + ǫ(|z|2 − 1)))n ≥ (fk + ǫn)βn ≥ fjβn = (ddc
Uj)n.

Moreover, we can find j1 large enough such that ϕj + ǫ ≥ ϕk on ∂B for all k ≥ j ≥ j1.
Then for k ≥ j ≥ max{j0, j1} we have

(ddc(Uk + ǫ(|z|2 − 1)))n ≥ (ddc
Uj)n in B,

and

Uk + ǫ(|z|2 − 1) ≤ Uj + ǫ on ∂B.
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Hence by the comparison principle we get that for all k ≥ j ≥ max{j0, j1}
Uk − Uj ≤ 2ǫ − ǫ|z|2 ≤ 2ǫ in B̄.

On the other hand, Uj ≤ Uk, so we infer

‖Uk − Uj‖L∞(B̄) ≤ 2ǫ.

This implies that the sequence (Uj) converges uniformly in B̄.
Let us put u = limj→∞ Uj which is continuous on B̄, plurisubharmonic on B and

u = ϕ on ∂B. Moreover, (ddc
Uj)n converges to (ddcu)n in the weak sense of currents, then

(ddcu)n = fβn. Consequently, u is a candidate in the Perron-Bremermann envelope, i.e.
u ∈ V(B, ϕ, f) and u ≤ U in B. Once again the comparison principle yields u ≥ U in B.
Finally, we conclude u = U in B̄ and (ddc

U)n = fβn in B.

Proof of Theorem 2.3.2 . We already know as in Proposition 2.3.3 that U ∈ PSH(Ω)∩
C(Ω̄), U = ϕ on ∂Ω and (ddc

U)n ≥ fβn in Ω. It remains to prove that (ddc
U)n = fβn in Ω.

We use the balayage procedure as follows; Fix a ball B0 ⊂ Ω. Thanks to Corollary 2.3.8,
there exists a unique solution ψ to Dir(B0, U, f), that is

(ddcψ)n = fβn in B0 and ψ = U on ∂B0.

By the comparison principle U ≤ ψ on B0. Let us define the function

v(z) =

®

ψ(z) ; z ∈ B0,

U(z) ; z ∈ Ω̄ \ B0,

which belongs to V(Ω, ϕ, f) and v = U = ϕ on ∂Ω.
In particular v ≤ U, hence ψ ≤ U in B0. Consequently, ψ = U in B0. Then (ddc

U)n =
(ddcψ)n = fβn in B0. Since B0 is an arbitrary ball in Ω, we infer that (ddc

U)n = fβn in
Ω.

2.3.3 Stability estimates

Proposition 2.3.9. Let ϕ1, ϕ2 ∈ C(∂Ω) and f1, f2 ∈ C(Ω̄). Then the solutions U1 =
U(Ω, ϕ1, f1), U2 = U(Ω, ϕ2, f2) satisfy the following stability estimate

(2.3.6) ‖U1 − U2‖L∞(Ω̄) ≤ d2‖f1 − f2‖1/n

L∞(Ω̄)
+ ‖ϕ1 − ϕ2‖L∞(∂Ω),

where d := diam(Ω).

Proof. Let us fix z0 ∈ Ω and define

v1(z) = ‖f1 − f2‖1/n

L∞(Ω̄)
(|z − z0|2 − d2) + U2(z),

and
v2(z) = U1(z) + ‖ϕ1 − ϕ2‖L∞(∂Ω).

It is clear that v1, v2 ∈ PSH(Ω) ∩ C(Ω̄), v1 ≤ v2 on ∂Ω and (ddcv1)n ≥ (ddcv2)n in Ω.
Hence, by the comparison principle, we get v1 ≤ v2 in Ω. Then we conclude that

U2 − U1 ≤ d2‖f1 − f2‖1/n

L∞(Ω̄)
+ ‖ϕ1 − ϕ2‖L∞(∂Ω).

By reversing the roles of U1 and U2, we get the inequality (2.3.6).
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Remark 2.3.10. We will need in the sequel an estimate, proved by B%locki in [B%l93], for
the Ln − L1 stability of solutions to the Dirichlet problem Dir(Ω, ϕ, f)

(2.3.7) ‖U1 − U2‖Ln(Ω) ≤ λ(Ω)‖ϕ1 − ϕ2‖L∞(∂Ω) +
r2

4
‖f1 − f2‖1/n

L1(Ω),

where r = min{r′ > 0 : Ω ⊂ B(z0, r′) for some z0 ∈ C
n}.

2.4 The modulus of continuity of Perron-Bremermann en-

velope

Recall that a real function ω on [0, l], 0 < l < ∞, is called a modulus of continuity if ω is
continuous, subadditive, nondecreasing and ω(0) = 0.
In general, ω fails to be concave, we denote by ω̄ the minimal concave majorant of ω. We
denote by ωψ the optimal modulus of continuity of the continuous function ψ which is
defined by

ωψ(t) = sup
|x−y|≤t

|ψ(x) − ψ(y)|.

The following property of the minimal concave majorant ω̄ is well known (see [Kor82] and
[Ch14]).

Lemma 2.4.1. Let ω be a modulus of continuity on [0, l] and ω̄ be the minimal concave
majorant of ω. Then ω(ηt) ≤ ω̄(ηt) ≤ (1 + η)ω(t) for any t > 0 and η > 0.

Proof. Fix t0 > 0 such that ω(t0) > 0. We claim that

ω(t)

ω(t0)
≤ 1 +

t

t0
, ∀t ≥ 0.

For 0 < t ≤ t0, since ω is nondecreasing, we have

ω(t)

ω(t0)
≤ ω(t0)

ω(t0)
≤ 1 +

t

t0
.

Otherwise , if t0 ≤ t ≤ l, by Euclid’s Algorithm, we write t = kt0 + α, 0 ≤ α < t0 and k is
natural number with 1 ≤ k ≤ t/t0 . Using the subadditivity of ω, we observe that

ω(t)

ω(t0)
≤ kω(t0) + ω(α)

ω(t0)
≤ k + 1 ≤ 1 +

t

t0
.

Let l(t) := ω(t0) + t
t0

ω(t0) be a straight line, then ω(t) ≤ l(t) for all 0 < t ≤ l.
Therefore,

ω̄(t) ≤ l(t) = ω(t0) +
t

t0
ω(t0),

for all 0 < t ≤ l. Hence, for any η > 0 we have

ω(ηt) ≤ ω̄(ηt) ≤ (1 + η)ω(t).
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2.4.1 Modulus of continuity of the solution

Now, we will start the first step to establish an estimate for the modulus of continuity
of the solution to Dir(Ω, ϕ, f). For this purpose, it is natural to investigate the relation
between the modulus of continuity of U and the modulus of continuity of a subbarrier and
a superbarrier. We prove the following:

Proposition 2.4.2. Let Ω ⊂ C
n be a bounded SHL domain, ϕ ∈ C(∂Ω) and 0 ≤ f ∈ C(Ω̄).

Suppose that there exist v ∈ V(Ω, ϕ, f) and w ∈ SH(Ω) ∩ C(Ω̄) such that v = ϕ = −w on
∂Ω, then the modulus of continuity of U satisfies

ωU(t) ≤ (d2 + 1) max{ωv(t), ωw(t), ωf1/n(t)},

where d := diam(Ω).

Proof. Let us set g(t) := max{ωv(t), ωw(t), ωf1/n(t)}. As v = ϕ = −w on ∂Ω, we have for

all z ∈ Ω̄ and ξ ∈ ∂Ω that

−g(|z − ξ|) ≤ v(z) − ϕ(ξ) ≤ U(z) − ϕ(ξ) ≤ −w(z) − ϕ(ξ) ≤ g(|z − ξ|).

Hence

(2.4.1) |U(z) − U(ξ)| ≤ g(|z − ξ|), ∀z ∈ Ω̄, ∀ξ ∈ ∂Ω.

Fix a point z0 ∈ Ω. For any vector τ ∈ C
n with small enough norm, we set Ω−τ :=

{z − τ ; z ∈ Ω} and define in Ω ∩ Ω−τ the function

v1(z) = U(z + τ) + g(|τ |)|z − z0|2 − d2g(|τ |) − g(|τ |),

which is a well defined psh function in Ω ∩ Ω−τ and continuous on Ω̄ ∩ Ω̄−τ . By (2.4.1), if
z ∈ Ω̄ ∩ ∂Ω−τ we can see that

(2.4.2) v1(z) − U(z) ≤ g(|τ |) + g(|τ |)|z − z0|2 − d2g(|τ |) − g(|τ |) ≤ 0.

Moreover, we assert that ∆Hv1 ≥ f1/n in Ω ∩ Ω−τ for all H ∈ H+
n , det H = n−n. Indeed,

we have
∆Hv1(z) ≥ f1/n(z + τ) + g(|τ |)∆H(|z − z0|2)

≥ f1/n(z + τ) + g(|τ |)
≥ f1/n(z + τ) + |f1/n(z + τ) − f1/n(z)|
≥ f1/n(z)

for all H ∈ H+
n and det H = n−n. Hence, by the above properties of v1, we find that

Vτ (z) =

®

U(z) ; z ∈ Ω̄ \ Ω−τ ,

max{U(z), v1(z)} ; z ∈ Ω̄ ∩ Ω−τ ,

is a well defined function and belongs to PSH(Ω) ∩ C(Ω̄). It is clear that ∆HVτ ≥ f1/n

for all H ∈ H+
n , det H = n−n. We claim that Vτ = ϕ on ∂Ω. If z ∈ ∂Ω \ Ω−τ then
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Vτ (z) = U(z) = ϕ(z). On the other hand, if z ∈ ∂Ω ∩ Ω−τ , we get by (2.4.2) that Vτ (z) =
max{U(z), v1(z)} = U(z) = ϕ(z). Consequently, Vτ ∈ V(Ω, ϕ, f) and this implies that

Vτ (z) ≤ U(z); ∀z ∈ Ω̄.

Then for all z ∈ Ω̄ ∩ Ω−τ we have

U(z + τ) + g(|τ |)|z − z0|2 − d2g(|τ |) − g(|τ |) ≤ U(z).

Hence,
U(z + τ) − U(z) ≤ (d2 + 1)g(|τ |) − g(|τ |)|z − z0|2 ≤ (d2 + 1)g(|τ |).

Reversing the roles of z + τ and z, we get

|U(z + τ) − U(z)| ≤ (d2 + 1)g(|τ |), ∀z, z + τ ∈ Ω̄.

Thus, finally,
ωU(|τ |) ≤ (d2 + 1) max{ωv(|τ |), ωw(|τ |), ωf1/n(|τ |)}.

Remark 2.4.3. Let Hϕ be the harmonic extension of ϕ in a bounded SHL domain Ω. We
can replace w in the last proposition by Hϕ. It is known in the classical harmonic analysis
(see [Ai10]) that the harmonic extension Hϕ does not have, in general, the same modulus
of continuity of ϕ.
Let us define, for small positive t, the modulus of continuity

ψα,β(t) = (− log(t))−αtβ

with α ≥ 0 and 0 ≤ β < 1. It is clear that ψα,0 is weaker than the Hölder continuity and
ψ0,β is the Hölder continuity. It was shown in [Ai02] that ωHϕ(t) ≤ cψ0,β(t) for some c > 0
if ωϕ(t) ≤ c1ψ0,β(t) for β < β0 where β0 < 1 depends only on n and the Lipschitz constant
of the defining function ρ. Moreover, a similar result was proved in [Ai10] for the modulus
of continuity ψα,0(t). However, the same argument of Aikawa gives that ωHϕ(t) ≤ cψα,β(t)
for some c > 0 if ωϕ(t) ≤ c1ψα,β(t) for α ≥ 0 and 0 ≤ β < β0 < 1.

This leads us to the conclusion that if there exists a barrier v to the Dirichlet problem
such that v = ϕ on ∂Ω and ωv(t) ≤ λψα,β(t) with α, β as above, then the last proposition
gives

ωU ≤ λ1 max{ψα,β(t), ωf1/n(t)},

where λ1 > 0 depends on λ and diam(Ω).

2.4.2 Construction of barriers

In this subsection, we will construct a subsolution to the Dirichlet problem with the
boundary value ϕ and estimate its modulus of continuity.

Proposition 2.4.4. Let Ω ⊂ C
n be a bounded SHL domain. Assume that ϕ ∈ C(∂Ω) and

0 ≤ f ∈ C(Ω̄), then there exists a subsolution v ∈ V(Ω, ϕ, f) such that v = ϕ on ∂Ω and
the modulus of continuity of v satisfies the following inequality

ωv(t) ≤ λ(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), t1/2},

where λ > 0 depends on Ω.
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Observe that we do not assume any smoothness on ∂Ω.

Proof. First of all, fix ξ ∈ ∂Ω. We claim that there exists vξ ∈ V(Ω, ϕ, f) such that
vξ(ξ) = ϕ(ξ). It is sufficient to prove that there exists a constant C > 0 depending on Ω
such that for every point ξ ∈ ∂Ω and ϕ ∈ C(∂Ω), there is a function hξ ∈ PSH(Ω) ∩ C(Ω̄)
satisfying
(1) hξ(z) ≤ ϕ(z), ∀z ∈ ∂Ω,
(2) hξ(ξ) = ϕ(ξ),
(3) ωhξ

(t) ≤ Cωϕ(t1/2).

Assume this is true. We fix z0 ∈ Ω and write K1 := supΩ̄ f1/n ≥ 0. Hence

∆H(K1|z − z0|2) = K1∆H |z − z0|2 ≥ f1/n, ∀H ∈ H+
n , det H = n−n.

We also set K2 := K1|ξ − z0|2. Then for the continuous function

ϕ̃(z) := ϕ(z) − K1|z − z0|2 + K2,

we have hξ such that (1)-(3) hold.
Then the desired function vξ ∈ V(Ω, ϕ, f) is given by

vξ(z) = hξ(z) + K1|z − z0|2 − K2.

Thus hξ(z) ≤ ϕ̃(z) = ϕ(z)−K1|z −z0|2 +K2 on ∂Ω, so vξ(z) ≤ ϕ on ∂Ω and vξ(ξ) = ϕ(ξ).
Moreover, it is clear that

∆Hvξ = ∆Hhξ + K1∆H(|z − z0|2) ≥ f1/n, ∀H ∈ H+
n , det H = n−n.

Furthermore, using the hypothesis of hξ, we can control the modulus of continuity of vξ

ωvξ
(t) = sup

|z−y|≤t
|vξ(z) − vξ(y)| ≤ ωhξ

(t) + K1ω|z−z0|2(t)

≤ Cωϕ̃(t1/2) + 4d3/2K1t1/2

≤ Cωϕ(t1/2) + 2dK1(C + 2d1/2)t1/2

≤ (C + 2d1/2)(1 + 2dK1) max{ωϕ(t1/2), t1/2},

where d := diam(Ω). Hence, we conclude that

ωvξ
(t) ≤ λ(1 + K1) max{ωϕ(t1/2), t1/2},

where λ := (C + 2d1/2)(1 + 2d) is a positive constant depending on Ω.
Now we will construct hξ ∈ PSH(Ω)∩C(Ω̄) which satisfies the three conditions above.

Let B > 0 be large enough such that the function

g(z) = Bρ(z) − |z − ξ|2

is psh in Ω. Let ω̄ϕ be the minimal concave majorant of ωϕ and define

χ(x) = −ω̄ϕ((−x)1/2),
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which is a convex nondecreasing function on [−d2, 0]. Now fix r > 0 so small that |g(z)| ≤
d2 in B(ξ, r) ∩ Ω and define for z ∈ B(ξ, r) ∩ Ω̄ the function

h(z) = χ ◦ g(z) + ϕ(ξ).

It is clear that h is a continuous psh function on B(ξ, r)∩Ω and we see that h(z) ≤ ϕ(z) if
z ∈ B(ξ, r) ∩ ∂Ω and h(ξ) = ϕ(ξ). Moreover by the subadditivity of ω̄ϕ and Lemma 2.4.1
we have

ωh(t) = sup
|z−y|≤t

|h(z) − h(y)|

≤ sup
|z−y|≤t

ω̄ϕ

ï

∣

∣

∣|z − ξ|2 − |y − ξ|2 − B(ρ(z) − ρ(y))
∣

∣

∣

1/2
ò

≤ sup
|z−y|≤t

ω̄ϕ

î

(|z − y|(2d + B1))1/2
ó

≤ C.ωϕ(t1/2),

where C := 1 + (2d + B1)1/2 depends on Ω.
Recall that ξ ∈ ∂Ω and fix 0 < r1 < r and γ1 ≥ 1 + d/r1 such that

−γ1ω̄ϕ

î

(|z − ξ|2 − Bρ(z))1/2
ó

≤ inf
∂Ω

ϕ − sup
∂Ω

ϕ,

for z ∈ ∂Ω ∩ ∂B(ξ, r1). Set γ2 = inf
∂Ω

ϕ. Then

γ1(h(z) − ϕ(ξ)) + ϕ(ξ) ≤ γ2 for z ∈ ∂B(ξ, r1) ∩ Ω̄.

Now set

hξ(z) =

®

max[γ1(h(z) − ϕ(ξ)) + ϕ(ξ), γ2] ; z ∈ Ω̄ ∩ B(ξ, r1),

γ2 ; z ∈ Ω̄ \ B(ξ, r1),

which is a well defined psh function on Ω, continuous on Ω̄ and such that hξ(z) ≤ ϕ(z) for
all z ∈ ∂Ω. Indeed, on ∂Ω ∩ B(ξ, r1) we have

γ1(h(z) − ϕ(ξ)) + ϕ(ξ) = −γ1ω̄ϕ(|z − ξ|) + ϕ(ξ) ≤ −ω̄ϕ(|z − ξ|) + ϕ(ξ) ≤ ϕ(z).

Hence it is clear that hξ satisfies the three conditions above.
We have just proved that for each ξ ∈ ∂Ω, there is a function vξ ∈ V(Ω, ϕ, f) with

vξ(ξ) = ϕ(ξ) and

ωvξ
(t) ≤ λ(1 + K1) max{ωϕ(t1/2), t1/2}.

Set
v(z) = sup {vξ(z); ξ ∈ ∂Ω} .

Since 0 ≤ ωv(t) ≤ λ(1 + K1) max{ωϕ(t1/2), t1/2}, we see that ωv(t) converges to zero when
t converges to zero. Consequently, v ∈ C(Ω̄) and v = v∗ ∈ PSH(Ω). Thanks to Choquet’s
lemma, we can choose a nondecreasing sequence (vj), where vj ∈ V(Ω, ϕ, f), converging
to v almost everywhere. This implies that

∆Hv = lim
j→∞

∆Hvj ≥ f1/n, ∀H ∈ H+
n , det H = n−n.

It is clear that v(ξ) = ϕ(ξ) for any ξ ∈ ∂Ω. Finally, v ∈ V(Ω, ϕ, f), v = ϕ on ∂Ω and
ωv(t) ≤ λ(1 + K1) max{ωϕ(t1/2), t1/2}.
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Remark 2.4.5. If we assume that Ω has a smooth boundary and ϕ is C1,α-smooth for
0 < α ≤ 1, then it is possible to construct a (1 + α)/2-Hölder continuous barrier v to
the Dirichlet problem Dir(Ω, ϕ, f) (see [BT76, Theorem 6.2]). Here, for a bounded SHL
domain, if ϕ ∈ C1,1(∂Ω) we can find a Lipschitz barrier to Dir(Ω, ϕ, f). It is enough to
take v := Aρ + ϕ̃ where ϕ̃ is an extension of ϕ to Ω̄ and A ≫ 1.

Corollary 2.4.6. Under the same assumption of Proposition 2.4.4, there exists a plurisu-
perharmonic function ṽ ∈ C(Ω̄) such that ṽ = ϕ on ∂Ω and

ωṽ(t) ≤ λ(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), t1/2},

where λ > 0 depends on Ω.

Proof. We can perform the same construction as in the proof of Proposition 2.4.4 for
the function ϕ1 = −ϕ ∈ C(∂Ω); then we get v1 ∈ V(Ω, ϕ1, f) such that v1 = ϕ1 on

∂Ω and ωv1
(t) ≤ λ(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), t1/2}. Hence, we set ṽ = −v1 which is a

plurisuperharmonic function on Ω, continuous on Ω̄ and satisfying ṽ = ϕ on ∂Ω and

ωṽ(t) ≤ λ(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), t1/2},

where λ > 0 is a constant depending on Ω.

2.5 Proof of main results

2.5.1 Proof of Theorem 2.1.1

Thanks to Proposition 2.4.4, we have a subsolution v ∈ V(Ω, ϕ, f) with v = ϕ on ∂Ω and

ωv(t) ≤ λ(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), t1/2}.

From Corollary 2.4.6, we get w ∈ PSH(Ω) ∩ C(Ω̄) such that w = −ϕ on ∂Ω and

ωw(t) ≤ λ(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), t1/2},

where λ > 0 is a constant. Applying the Proposition 2.4.2 we obtain the required result,
that is

ωU(t) ≤ η(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(t1/2), ωf1/n(t), t1/2},

where η > 0 depends on Ω.

Corollary 2.5.1. Let Ω be a bounded SHL domain in C
n. Let ϕ ∈ C0,α(∂Ω) and 0 ≤

f1/n ∈ C0,β(Ω̄), 0 < α, β ≤ 1. Then the solution U to the Dirichlet problem Dir(Ω, ϕ, f)
belongs to C0,γ(Ω̄) for γ = min{β, α/2}.

The following example illustrates that the estimate of ωU in Theorem 2.1.1 is optimal.
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Example 2.5.2. Let ψ be a concave modulus of continuity on [0, 1] and

ϕ(z) = −ψ[
»

(1 + Rez1)/2], for z = (z1, z2, ..., zn) ∈ ∂B ⊂ C
n.

It is easy to show that ϕ ∈ C(∂B) with modulus of continuity

ωϕ(t) ≤ Cψ(t),

for some C > 0.
Let v(z) = −(1+Rez1)/2 ∈ PSH(B)∩C(B̄) and χ(λ) = −ψ(

√
−λ) be a convex increasing

function on [−1, 0]. Hence we see that

u(z) = χ ◦ v(z) ∈ PSH(B) ∩ C(B̄),

and satisfies (ddcu)n = 0 in B and u = ϕ on ∂B. The modulus of continuity of U, ωU(t),
has the estimate

C1ψ(t1/2) ≤ ωU(t) ≤ C2ψ(t1/2),

for C1, C2 > 0. Indeed, let z0 = (−1, 0, ..., 0) and z = (z1, 0, ..., 0) ∈ B where z1 = −1 + 2t
and 0 ≤ t ≤ 1. Hence, by Lemma 2.4.1, we see that

ψ(t1/2) = ψ[
»

|z − z0|/2] = ψ[
»

(1 + Rez1)/2] = |U(z) − U(z0)| ≤ 3ωU(t).

Finally, it is natural to try to relate the modulus of continuity of U := U(Ω, ϕ, f) to
the modulus of continuity of U0 := U(Ω, ϕ, 0) the solution to Bremermann problem in a
bounded SHL domain.

Proposition 2.5.3. Let Ω be a bounded SHL domain in C
n, 0 ≤ f ∈ C(Ω̄) and ϕ ∈ C(∂Ω).

Then there exists a positive constant C = C(Ω) such that

ωU(t) ≤ C(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωU0

(t), ωf1/n(t)}.

Proof. First, we search for a subsolution v ∈ V(Ω, ϕ, f) such that v|∂Ω = ϕ and estimate
its modulus of continuity. Since Ω is a bounded SHL domain, there exists a Lipschitz
defining function ρ on Ω̄. Define the function

v(z) = U0(z) + Aρ(z),

where A := ‖f‖1/n
L∞/c and c > 0 is as in Definition 2.2.1. It is clear that v ∈ V(Ω, ϕ, f),

v = ϕ on ∂Ω and
ωv(t) ≤ C̃ωU0

(t),

where C̃ := γ(1 + ‖f‖1/n

L∞(Ω̄)
) and γ ≥ 1 depends on Ω.

On the other hand, by the comparison principle we get that U ≤ U0. So,

v ≤ U ≤ U0 in Ω and v = U = U0 = ϕ on ∂Ω.

Thanks to Proposition 2.4.2, there exists λ > 0 depending on Ω such that

ωU(t) ≤ λ max{ωv(t), ωU0
(t), ωf1/n(t)}.

Hence, for some C > 0 depending on Ω,

ωU(t) ≤ C(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωU0

(t), ωf1/n(t)}.
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2.5.2 Estimate of the ψ-norm of the solution

Definition 2.5.4. Let ψ be a modulus of continuity, E ⊂ C
n be a bounded set and

g ∈ C ∩ L∞(E). We define the norm of g with respect to ψ ( briefly, ψ-norm) as follows:

‖g‖ψ := sup
z∈E

|g(z)| + sup
z Ó=y∈E

|g(z) − g(y)|
ψ(|z − y|) .

Proposition 2.5.5. Let Ω ⊂ C
n be a bounded SHL domain, ϕ ∈ C(∂Ω) with modulus of

continuity ψ1 and f1/n ∈ C(Ω̄) with modulus of continuity ψ2. Then there exists a constant
C > 0 depending on Ω such that

‖U‖ψ ≤ C(1 + ‖f‖1/n

L∞(Ω̄)
) max{‖ϕ‖ψ1

, ‖f1/n‖ψ2
},

where ψ(t) = max{ψ1(t1/2), ψ2(t)}.

Proof. By hypothesis, we see that ‖ϕ‖ψ1
< ∞ and ‖f1/n‖ψ2

< ∞. Let z Ó= y ∈ Ω̄. By
Theorem 2.1.1, we get

|U(z) − U(y)| ≤ η(1 + ‖f‖1/n

L∞(Ω̄)
) max{ωϕ(|z − y|1/2), ωf1/n(|z − y|)}

≤ η(1 + ‖f‖1/n

L∞(Ω̄)
) max{‖ϕ‖ψ1

, ‖f1/n‖ψ2
}ψ(|z − y|),

where ψ(|z − y|) = max{ψ1(|z − y|1/2), ψ2(|z − y|)}. Hence

sup
z Ó=y∈Ω̄

|U(z) − U(y)|
ψ(|z − y|) ≤ η(1 + ‖f‖1/n

L∞(Ω̄)
) max{‖ϕ‖ψ1

, ‖f1/n‖ψ2
},

where η ≥ d2 + 1 and d = diam(Ω) (see Proposition 2.4.2). From Proposition 2.3.9, we
note that

‖U‖L∞(Ω̄) ≤ d2‖f‖1/n

L∞(Ω̄)
+ ‖ϕ‖L∞(∂Ω) ≤ η max{‖ϕ‖ψ1

, ‖f1/n‖ψ2
}.

Then we can conclude that

‖U‖ψ ≤ 2η(1 + ‖f‖1/n

L∞(Ω̄)
) max{‖ϕ‖ψ1

, ‖f1/n‖ψ2
}.
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Chapter 3

Hölder continuity of solutions for

general measures

3.1 Introduction

In this chapter, we are interested in studying the regularity of solutions to the following
Dirichlet problem:

Dir(Ω, ϕ, fdµ) :











u ∈ PSH(Ω) ∩ C(Ω̄),
(ddcu)n = fdµ in Ω,
u = ϕ on ∂Ω,

where µ is a nonnegative finite Borel measure on a bounded SHL domain Ω, 0 ≤ f ∈
Lp(Ω, µ) for p > 1, and ϕ ∈ C(∂Ω).

Ko%lodziej demonstrated [Ko98, Ko99] the existence of a weak continuous solution to
this problem as soon as µ is dominated by a suitable function of capacity on a bounded
strongly pseudoconvex domain with smooth boundary.

We consider in this thesis the class of measures satisfying (3.3.1) and ensure Ko%lodziej’s
existence theorem in a bounded SHL domain. More precisely, we prove the following.

Theorem 3.1.1. Let µ be a measure satisfying Condition H(τ) for some τ > 0 on a
bounded SHL domain Ω ⊂ C

n and ϕ ∈ C(∂Ω). Then there exists a unique continuous
solution to Dir(Ω, ϕ, dµ).

Then we investigate the Hölder continuity of the solution in several cases.

In the case of the Lebesgue measure, we have estimated in Chapter 2 the modulus of
continuity of the solution in terms of the modulus of continuity of the boundary data ϕ
and the density f in a bounded SHL domain.

Guedj, Ko%lodziej and Zeriahi proved [GKZ08] that the solution to Dir(Ω, ϕ, fdV2n) is
Hölder continuous on Ω̄ when f ∈ Lp(Ω), p > 1, is bounded near the boundary of strongly
pseudoconvex domain and ϕ ∈ C1,1(∂Ω). Recently, N. C. Nguyen [N14] proved the Hölder
continuity when the density satisfies a growth condition near the boundary.

Here, we deal the case of Lp-density without assuming any condition near the boundary.
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Theorem 3.1.2. Let Ω ⊂ C
n be a bounded SHL domain. Assume that ϕ ∈ C1,1(∂Ω) and

f ∈ Lp(Ω) for some p > 1. Then the unique solution U to Dir(Ω, ϕ, fdV2n) is γ-Hölder
continuous on Ω̄ for any 0 < γ < 1/(nq + 1) where 1/p + 1/q = 1.

Moreover, if p ≥ 2, then the solution U is Hölder continuous on Ω̄ of exponent less
than min{1/2, 2/(nq + 1)}.

In the case of singular measures with respect to the Lebesgue measure, there is no study
about the regularity of solution in a bounded domain in C

n (see [Ph10] for regularity of
solutions in the compact case). We will consider the case of measures having densities in
Lp, for p > 1, with respect to Hausdorff-Riesz measures which are defined in (3.5.5).

We prove the Hölder continuity of the solution while the boundary data belongs to
C1,1(∂Ω).

Theorem 3.1.3. Let Ω be a bounded SHL domain in C
n and µ be a Hausdorff-Riesz

measure of order 2n−2+ǫ for 0 < ǫ ≤ 2. Suppose that ϕ ∈ C1,1(∂Ω) and 0 ≤ f ∈ Lp(Ω, µ)
for some p > 1, then the unique solution to Dir(Ω, ϕ, fdµ) is Hölder continuous on Ω̄ of
exponent ǫγ/2 for any 0 < γ < 1/(nq + 1) and 1/p + 1/q = 1.

This result generalizes the one proved in [GKZ08, Ch15a] from which the main idea of
our proof originates.

When the boundary data is merely Hölder continuous we state the regularity of the
solution using the previous theorem.

Theorem 3.1.4. Let Ω be a bounded SHL domain in C
n and µ be a Hausdorff-Riesz

measure of order 2n − 2 + ǫ for 0 < ǫ ≤ 2. Suppose that ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and
0 ≤ f ∈ Lp(Ω, µ) for some p > 1, then the unique solution to Dir(Ω, ϕ, fdµ) is Hölder
continuous on Ω̄ of exponent ǫ

ǫ+6 min{α, ǫγ} for any 0 < γ < 1/(nq+1) and 1/p+1/q = 1.

Moreover, when Ω is a smooth strongly pseudoconvex domain the Hölder exponent will
be ǫ

ǫ+2 min{α, ǫγ}, for any 0 < γ < 1/(nq + 1).

In the case of the Lebesgue measure, i.e. ǫ = 2, in a smooth strongly pseudoconvex
domain we get the Hölder exponent min{α/2, γ} which is better than the one obtained in
[BKPZ15].

Our final purpose concerns how to get the Hölder continuity of the solution to the
Dirichlet problem Dir(Ω, ϕ, fdµ) by means of the Hölder continuity of a subsolution to
Dir(Ω, ϕ, dµ) for some special measure on Ω.

Theorem 3.1.5. Let µ be a finite Borel measure on a bounded SHL domain Ω satisfying
Condition H(∞) mentioned below. Let also ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and 0 ≤ f ∈ Lp(Ω, µ),
p > 1. Assume that there exists a λ-Hölder continuous plurisubharmonic function w in Ω
such that (ddcw)n ≥ µ. If, near the boundary, µ is Hausdorff-Riesz of order 2n − 2 + ǫ for
some 0 < ǫ ≤ 2, then the solution U to Dir(Ω, ϕ, fdµ) is Hölder continuous on Ω̄.

Such a problem is still open for measures without any condition near the boundary of
a bounded domain in C

n.

Most of the content of this chapter will be found in my papers [Ch15a] and [Ch15b].



Stability theorem 55

3.2 Stability theorem

Definition 3.2.1. A nonnegative finite Borel measure µ on Ω is said to satisfy Condition
H(∞) if for any τ > 0 there exists a positive constant A depending on τ such that

µ(K) ≤ ACap(K, Ω)1+τ ,

for any Borel subset K of Ω.

Before announcing the stability theorem, let us prove some useful lemmas.

Lemma 3.2.2. Let v1, v2 ∈ PSH(Ω) ∩ L∞(Ω) be such that lim infz→∂Ω(v1 − v2)(z) ≥ 0.
Then for all t, s > 0, we have

tnCap({v1 − v2 < −s − t}, Ω) ≤
∫

{v1−v2<−s}
(ddcv1)n.

Proof. Fix v ∈ PSH(Ω) such that −1 ≤ v ≤ 0. Then for any t, s > 0, we have

{v1 − v2 < −s − t} ⊂ {v1 − v2 < −s + tv} ⊂ {v1 − v2 < −s} ⋐ Ω.

The comparison principle yields that

tn
∫

{v1−v2<−s−t}
(ddcv)n ≤

∫

{v1−v2<−s−t}
(ddc(v2 + tv))n

≤
∫

{v1−v2<−s+tv}
(ddc(v2 + tv))n

=

∫

{v1<−s+v2+tv}
(ddc(−s + v2 + tv))n

≤
∫

{v1<−s+v2+tv}
(ddcv1)n

≤
∫

{v1−v2<−s}
(ddcv1)n.

Taking the supremum over all such functions v gives the required result.

Lemma 3.2.3. Let g : R+ → R
+ be a decreasing right continuous function. Assume that

there exist τ, B > 0 such that

(3.2.1) tg(s + t) ≤ B[g(s)]1+τ , for all s, t > 0.

Then g(s) = 0 for all s ≥ s∞, where s∞ := 2B[g(0)]τ

1−2−τ .

Proof. We define by induction an increasing sequence (sj) ∈ R
N
+ as follows.

s0 := 0,

sj := sup{s > sj−1 : g(s) > g(sj−1)/2}, ∀j ≥ 1.
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It is clear that for any s > sj we have g(s) ≤ g(sj−1)/2. As g is right continuous, we
conclude that g(sj) ≤ g(sj−1)/2. Hence, we infer

(3.2.2) g(sj) ≤ g(0)

2j
.

Let us set M := 2B[g(0)]τ > 0 and Mj := 2−jτ M for j ≥ 1. We apply (3.2.1) for sj and
Mj , then it follows from (3.2.2) that

g(sj + Mj) ≤ B

Mj
g(sj)1+τ ≤ g(sj)/2.

Consequently, we get sj+1 ≤ sj + Mj since g(s) > g(sj)/2 for any s ∈ (sj , sj+1). In the
same way we can see that s1 ≤ M . Thus the sequence (sj) is bounded from above with
limit

∑

j≥0

(sj+1 − sj) ≤ M +
∑

j≥1

Mj =
M

1 − 2−τ
=: s∞.

Then the lemma follows.

The following weak stability estimate, proved in [GKZ08] for the Lebesgue measure,
plays an important role in our work. A similar, but weaker, estimate was established
by Ko%lodziej [Ko02] and in the compact setting it was proved by Eyssidieux, Guedj and
Zeriahi [EGZ09]. Here we show that this estimate is still true for any measure µ satisfying
Condition H(∞).

Theorem 3.2.4. Let µ satisfy Condition H(∞) on a bounded domain Ω ⊂ C
n and 0 ≤

f ∈ Lp(Ω, µ), p > 1. Suppose that v1, v2 are two bounded psh functions in Ω such that
lim infz→∂Ω(v1 − v2)(z) ≥ 0 and (ddcv1)n = fdµ. Fix r ≥ 1 and 0 < γ < r/(nq + r),
1/p + 1/q = 1. Then there exists a constant C = C(r, γ, n, q) > 0 such that

(3.2.3) sup
Ω

(v2 − v1) ≤ C(1 + ‖f‖η
Lp(Ω,µ))||(v2 − v1)+||γLr(Ω,µ),

where (v2 − v1)+ = max{v2 − v1, 0} and η = 1
n + γq

r−γ(r+nq) .

In order to prove this theorem we need the following proposition.

Proposition 3.2.5. Under the same assumption of Theorem 3.2.4 and for any α > 0,
there exists a positive constant C1 = C1(n, q, α) such that for all ǫ > 0,

sup
Ω

(v2 − v1) ≤ ǫ + C1‖f‖1/n
Lp(Ω,µ)[Cap({v1 − v2 < −ǫ}, Ω)]α.

Proof. Let us set g(s) := Cap({v1 − v2 < −s − ǫ}, Ω)1/n. By applying Lemma 3.2.2 we
conclude that

tnCap({v1 − v2 < −ǫ − s − t}, Ω) ≤
∫

{v1−v2<−ǫ−s}
(ddcv1)n

≤
∫

{v1−v2<−ǫ−s}
fdµ

≤ ‖f‖Lp(Ω,µ)µ({v1 − v2 < −ǫ − s})1/q
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Since µ satisfies Condition H(∞), we find a positive constant C̃ depending on n, q and α
such that

tnCap({v1 − v2 < −ǫ − s − t}, Ω) ≤ C̃‖f‖Lp(Ω,µ)[Cap({v1 − v2 < −ǫ − s}, Ω)]1+αn.

Therefore, this yields that

tg(s + t) ≤ B[g(s)]1+αn,

where B := C̃1/n‖f‖1/n
Lp(Ω,µ).

Now, it follows from Lemma 3.2.3 that Cap({v1 − v2 < −ǫ − s∞}, Ω) = 0. Hence v2 − v1 ≤
ǫ + s∞ almost everywhere and then the inequality holds everywhere in Ω. Consequently,
we have

sup
Ω

(v2 − v1) ≤ ǫ + C1‖f‖1/n
Lp(Ω,µ)[Cap({v1 − v2 < −ǫ}, Ω)]α,

where C1 depends only on n, q and α.

Proof of Theorem 3.2.4. Applying Lemma 3.2.2 with s = t = ǫ and using Hölder inequal-
ity, we infer

Cap({v1 − v2 < −2ǫ}, Ω) ≤ ǫ−n
∫

{v1−v2<−ǫ}
fdµ

≤ ǫ−n−r/q
∫

Ω
(v2 − v1)

r/q
+ fdµ

≤ ǫ−n−r/q‖f‖Lp(Ω,µ)‖(v2 − v1)+‖r/q
Lr(Ω,µ).

Fix α > 0 to be chosen later and apply Proposition 3.2.5 to get

sup
Ω

(v2 − v1) ≤ 2ǫ + C1ǫ−α(n+r/q)‖f‖α+1/n
Lp(Ω,µ)‖(v2 − v1)+‖αr/q

Lr(Ω,µ).

We set ǫ := ‖(v2 − v1)+‖γ , where 0 < γ < r/(nq + r) is fixed and

α :=
γq

r − γ(r + nq)
.

Then we get

sup
Ω

(v2 − v1) ≤ C(1 + ‖f‖α+1/n
Lp(Ω,µ))||(v2 − v1)+||γLr(Ω,µ),

where C > 0 depends on n, q, γ and r.

Remark 3.2.6. When µ satisfies only the condition in Definition 3.3.1 below, we can get
some stability estimate.
Suppose that v1, v2 are two bounded psh functions in Ω such that lim infz→∂Ω(v1−v2)(z) ≥
0 and (ddcv1)n = dµ. Fix r ≥ 1, then there exists a constant C = C(r, τ, n) > 0 such that

(3.2.4) sup
Ω

(v2 − v1) ≤ C||(v2 − v1)+||γLr(Ω,µ),

where (v2 − v1)+ = max{v2 − v1, 0} and γ := τr
n+τ(n+r) .
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3.3 Existence of solutions

This section is devoted to explain the existence of continuous solutions to the Dirichlet
problem Dir(Ω, ϕ, µ) for measures µ dominated by Bedford-Taylor’s capacity, as in (3.3.1)
below, on a bounded SHL domain.

Definition 3.3.1. A finite Borel measure µ on Ω is said to satisfy Condition H(τ) for
some fixed τ > 0 if there exists a positive constant A such that

(3.3.1) µ(K) ≤ ACap(K, Ω)1+τ ,

for any Borel subset K of Ω.

Ko%lodziej [Ko98] demonstrated the existence of a continuous solution to Dir(Ω, ϕ, µ)
when µ verifies (3.3.1) and some local extra condition in a bounded strongly pseudoconvex
domain with smooth boundary. Furthermore, he disposed of the extra condition in [Ko99]
using Cegrell’s result [Ce98] about the existence of a solution in the energy class F1.

Here, the existence of continuous solutions to Dir(Ω, ϕ, µ) in a bounded SHL domain
follows from the lines of Ko%lodziej and Cegrell’s arguments in [Ko98, Ce98].

First of all, we prove the existence of continuous solutions to the Dirichlet problem for
measures having densities in Lp(Ω) with respect to the Lebesgue measure.

Theorem 3.3.2. Let Ω ⊂ C
n be a bounded SHL domain, ϕ ∈ C(∂Ω) and 0 ≤ f ∈

Lp(Ω), for some p > 1. Then there exists a unique solution U to the Dirichlet problem
Dir(Ω, ϕ, fdV2n).

Proof. Let (fj) be a sequence of smooth functions on Ω̄ which converges to f in Lp(Ω).
Thanks to Theorem 2.3.2, there exists a function Uj ∈ PSH(Ω) ∩ C(Ω̄) such that Uj = ϕ
on ∂Ω and (ddc

Uj)n = fjdV2n in Ω. We claim that

(3.3.2) ‖Uk − Uj‖L∞(Ω̄) ≤ A(1 + ‖fk‖η
Lp(Ω))(1 + ‖fj‖η

Lp(Ω))‖fk − fj‖γ/n
L1(Ω),

where 0 ≤ γ < 1/(q + 1) is fixed, η := 1
n + γq

n−γn(1+q) , 1/p + 1/q = 1 and A =

A(γ, n, q, diam(Ω)).

Indeed, by the stability theorem 3.2.4 and for r = n, we get that

sup
Ω

(Uk − Uj) ≤ C(1 + ‖fj‖η
Lp(Ω))‖(Uk − Uj)+‖γ

Ln(Ω) ≤ C(1 + ‖fj‖η
Lp(Ω))‖Uk − Uj‖γ

Ln(Ω),

where 0 ≤ γ < 1/(q + 1) is fixed and C = C(γ, n, q) > 0.
Hence by the Ln − L1 stability theorem in [B%l93] (see our Remark 2.3.10),

‖Uk − Uj‖Ln(Ω) ≤ C̃‖fk − fj‖1/n
L1(Ω),

where C̃ depends on diam(Ω).
Then, from the last two inequalities and reversing the role of Uj and Uk, we deduce

‖Uk − Uj‖L∞(Ω) ≤ CC̃γ(1 + ‖fk‖η
Lp(Ω))(1 + ‖fj‖η

Lp(Ω))‖fk − fj‖γ/n
L1(Ω).
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Since Uk = Uj = ϕ on ∂Ω, the inequality (3.3.2) holds.
As fj converges to f in Lp(Ω), there is a uniform constant B > 0 such that

‖Uk − Uj‖L∞(Ω̄) ≤ B‖fk − fj‖γ/n
L1(Ω).

This implies that the sequence Uj converges uniformly in Ω̄. Set

U = lim
j→+∞

Uj .

It is clear that U ∈ PSH(Ω)∩C(Ω̄), U = ϕ on ∂Ω. Moreover, (ddc
Uj)n converges to (ddc

U)n

in the sense of currents, thus (ddc
U)n = fdV2n in Ω. The uniqueness of the solution follows

from the comparison principle.

We will summarize the steps of the proof of Theorem 3.1.1.

• We approximate µ by non-negative measures µs having bounded denstities with
respect to the Lebesgue measure and preserving the total mass on Ω.

• We find solutions Us to Dir(Ω, ϕ, µs) in a bounded SHL domain Ω using Theorem
3.3.2.

• We prove that the measures µs are uniformly dominated by capacity. Then, we can
ensure that the solutions Us are uniformly bounded on Ω̄.

• We set U := (lim sup Us)∗ which is a candidate to be the solution of Dir(Ω, ϕ, µ).

• The delicate point is then to show that (ddc
Us)n converges to (ddc

U)n in the weak
sense of measures. For this purpose, we invoke Cegrell’s techniques [Ce98] to ensure
that

∫

Ω
Us dµ →

∫

Ω
U dµ,

and
∫

Ω
|Us − U| dµs → 0,

when s → +∞.

• Finally, we assert the continuity of this solution in Ω̄.

Suppose first that µ has compact support in Ω. Let us consider a subdivision Is of suppµ
consisting of 32ns congruent semi-open cubes Is

j with side ds = d/3s, where d := diam(Ω)

and 1 ≤ j ≤ 32ns. Thanks to Theorem 3.3.2, one can find Us ∈ PSH(Ω) ∩ C(Ω̄) such that

Us = ϕ on ∂Ω,

and

(ddc
Us)n = µs :=

∑

j

µ(Is
j )

d2n
s

χIs
j
dV2n in Ω.

We will control the L∞-norm of Us. For this end, we first prove that µs are uniformly
dominated by Bedford-Taylor’s capacity.

The following lemma is due to S. Ko%lodziej [Ko96].



60 Hölder continuity of solutions for general measures

Lemma 3.3.3. Let E ⋐ Ω be a Borel set. Then for any D > 0 there exists t0 > 0 such
that

Cap(Ky, Ω) ≤ DCap(K, Ω), |y| < t0,

where K ⊂ E and Ky := {x; x − y ∈ K}.

Proof. Without loss of generality we can assume that K is compact and K ⋐ E. We define
wy := u∗

Ky
(x + y), where uKy is the extremal function of Ky defined by

uKy := sup{v ∈ PSH(Ω) : v ≤ 0 on Ω, v ≤ −1 on Ky}.

For any 0 < c < 1/2, we set Ωc := {u∗
E < −c}. Let A ≫ 1 be such that Aρ ≤ uE in Ω.

Since ρ ≤ −c/(2A) for any x ∈ Ωc/2, we can find t0 := t0(E, Ω) such that x + y ∈ Ω for
any |y| < t0. Therefore,

g(x) :=

®

max{wy(x) − c, (1 + 2c)u∗
E(x)} ; x ∈ Ωc/2,

(1 + 2c)u∗
E(x) ; x ∈ Ω \ Ωc/2,

is a well defined bounded psh function in Ω.
Since K ⋐ E and u∗

E = −1 on a neighborhood of K, we infer that wy − c ≥ (1 + 2c)u∗
E

there. Hence, we have

Cap(K, Ω) ≥ (1 + 2c)−n
∫

K
(ddcg)n = (1 + 2c)−n

∫

K
(ddcwy)n

= (1 + 2c)−n
∫

Ky

(ddcu∗
Ky

)n = (1 + 2c)−nCap(Ky, Ω).

Consequently, we obtain

Cap(Ky, Ω) ≤ (1 + 2c)nCap(K, Ω),

for any |y| < t0.

Lemma 3.3.4. Let Ω be a bounded SHL domain and µ be a compactly supported measure
satisfying Condition H(τ) for some τ > 0. Then there exist s0 > 0 and B = B(n, τ) > 0
such that for all s > s0 the measures µs, defined above, satisfy

µs(K) ≤ BCap(K, Ω)1+τ ,

for all Borel subsets K of Ω.

Proof. Let us set δs := diam Is
j . We define for large s ≫ 1 a regularizing sequence of

measures
µ̃s = µ ∗ ρs,

where ρs ∈ C∞
0 (B(0, 2δs)) is a radially symmetric non-negative function such that

ρs =
1

2Vol(B(0, δs))
on B(0, δs),

and
∫

B(0,2δs)
ρsdV2n = 1.
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For all Borel subsets K ⊂ Ω, we get

µ̃s(K) =
∑

j

∫

K∩Is
j

Ç

∫

B(x,2δs)
ρs(x − y)dµ(y)

å

dV2n

≥
∑

j

∫

K∩Is
j

Ç

∫

B(x,δs)
ρs(x − y)dµ(y)

å

dV2n

≥
∑

j

∫

K∩Is
j

Ç

µ(B(x, δs))

2Vol(B(x, δs))

å

dV2n

≥ 1

2(2n)nτ2n

∑

j

∫

K

Ç

µ(Is
j )

d2n
s

χIs
j

å

dV2n

=
µs(K)

2(2n)nτ2n
,

where τ2n is the volume of the unit ball in C
n.

We set Ky := {x; x − y ∈ K}, for y ∈ C
n. Then, by Lemma 3.3.3, we find t0 > 0 and

s0 > 1/t0 such that
Cap(Ky, Ω) ≤ 2Cap(K, Ω), |y| < t0,

for any Borel set K ⊂ ∪s>s0
suppµs ⋐ Ω.

We infer for all s > s0 and K ⊂ Ω, that

µ̃s(K) ≤ sup
|y|<1/s

µ(Ky) ≤ A sup
|y|<1/s

Cap(Ky, Ω)1+τ ≤ 21+τ ACap(K, Ω)1+τ .

This completes the proof.

Proposition 3.3.5. There exists a uniform constant C > 0 such that

‖Us‖L∞(Ω̄) ≤ C,

for all s > s0, where s0 is as in Lemma 3.3.4.

Proof. We owe the idea of the proof to Benelkourchi, Guedj and Zeriahi [BGZ08] in a
slightly different context. Without loss of generality we can assume ϕ = 0 in Dir(Ω, ϕ, µ)
and µ(Ω) ≤ 1.
Let us fix s > s0. It follows from Lemma 3.3.4 that there exists a uniform constant
B = B(n, τ) > 0 so that the following inequality holds for all Borel sets K ⊂ Ω,

µs(K) ≤ BCap(K, Ω)1+τ .

We define for k > 0,

g(k) := − 1

n
ln(Cap{Us < −k}).

This function is increasing on [0, +∞] and g(+∞) = +∞. We claim that

(3.3.3) ln t + (1 + τ)g(k) − ln B/n ≤ g(k + t),

for all t, k > 0. Indeed, Lemma 3.2.2 yields that

(3.3.4) tnCap({Us < −k − t}) ≤ µs({Us < −k}) ≤ BCap({Us < −k})1+τ .
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Now we define an increasing sequence (kj) as follows

kj+1 := kj + B1/ne1−τg(kj), for all j ∈ N,

where k0 = 2.
We claim that g(k0) ≥ 0. To get this end, we apply the inequality (3.3.4) for t = k = 1,
then we get

Cap({Us < −2}) ≤ µs({Us < −1}) ≤ µ(Ω) ≤ 1.

We apply (3.3.3) with t = tj = kj+1 − kj and k = kj to get that

g(kj) ≥ j + g(k0) ≥ j.

Thus g(kj) goes to +∞ as j goes to +∞.
Let us set k∞ := limN→+∞ kN . Then g(k∞) = +∞. We claim that k∞ is bounded by an
absolute constant independent of Us.

k∞ = lim
N→+∞

N−1
∑

0

(kj+1 − kj) + 2

= lim
N→+∞

N−1
∑

0

(B1/ne1−τg(kj)) + 2

≤ lim
N→+∞

eB1/n
N−1
∑

0

e−τj + 2

≤ eB1/n/(1 − e−τ ) + 2 =: M(n, τ).

For any k ≥ k∞, we conclude that g(k) = +∞, hence

Cap({Us < −k}) = 0 for all k ≥ k∞.

This means that for any s > s0 the function Us is bounded from below by an absolute
constant −k∞ ≥ −M(n, τ).

Thanks to Proposition 3.3.5, the sequence (Us) is uniformly bounded. Passing to a
subsequence we can assume that Us converges in L1

loc(Ω) (see Theorem 4.1.9 in [H83]). Let
us set U := (lim sup Us)∗ ∈ PSH ∩ L∞(Ω). Hence Us converges to U almost everywhere in
Ω with respect to the Lebesgue measure dV2n.

Lemma 3.3.6. Let µ be a finite Borel measure on Ω. Suppose that Us ∈ PSH(Ω) ∩ C(Ω̄)
converges to U ∈ PSH(Ω)∩L∞(Ω) almost everywhere with respect to the Lebesgue measure
and ‖Us‖L∞(Ω̄) ≤ C, for some uniform constant C > 0. Then, we have

(3.3.5) lim
s→+∞

∫

Ω
Usdµ =

∫

Ω
Udµ,

and

(3.3.6) lim
s→+∞

∫

Ω
|Us − U|(ddc

Us)n = 0.
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Proof. Since Us is uniformly bounded in L2(Ω, dµ), there exists a subsequence, for which
we keep the same notation, (Us) converges weakly to v1 in L2(Ω, dµ). In particular, Us

converges to v1 almost everywhere with respect to dµ and
∫

Ω
Usdµ →

∫

Ω
v1dµ.

By Banach-Saks’ Theorem there exists a subsequence Us such that (1/M)
∑M

s=1 Us con-
verges to v2 in L2(Ω, dµ) and hence there exists a subsequence such that fM = (1/M)

∑M
s=1 Us

converges to v2 almost everywhere with respect to dµ, when M → +∞. Hence v1 = v2

almost everywhere with respect to dµ and we have
∫

Ω
( sup
N≥M

fM )∗dµ =

∫

Ω
sup

N≥M
fM dµ →

∫

Ω
v2dµ =

∫

Ω
v1dµ.

On the other hand, fM → U in L2(Ω, dV2n) and so (supN≥M fM )∗ ց U everywhere in Ω
and thus

∫

Ω
( sup
N≥M

fM )∗dµ →
∫

Ω
Udµ.

Then we get

lim
s→+∞

∫

Ω
Usdµ =

∫

Ω
v1dµ =

∫

Ω
v2dµ = lim

M→+∞

∫

Ω
( sup
N≥M

fM )∗dµ =

∫

Ω
Udµ.

So as to prove (3.3.6), we define

vs(x) =
1

τ2n(2nds)2n

∫

|ξ|≤2nds

|U(x + ξ) − Us(x + ξ)|dV2n,

where τ2n is the volume of the unit ball in C
n and ds = diam(Ω)/3s.

Then we see that

∫

Ω
|Us − U|(ddc

Us)n =
∑

j

µ(Is
j )

d2n
s

∫

Is
j

|U − Us|dV2n

≤
∑

j

τ2n(2n)2n
∫

Is
j

vs(x)dµ(x)

≤ τ2n(2n)2n
∫

Ω
vs(x)dµ(x).

We claim that
∫

Ω vs(x)dµ(x) → 0 as s → +∞. Indeed, we note that

vs(x) =
1

τ2n(2nds)2n

∫

|ξ|≤2nds

|U(x + ξ) − sup
j≥s

Uj(x + ξ) + sup
j≥s

Uj(x + ξ) − Us(x + ξ)|dV2n

≤ 1

τ2n(2nds)2n

∫

|ξ|≤2nds

(sup
j≥s

Uj(x + ξ) − U(x + ξ))dV2n

+
1

τ2n(2nds)2n

∫

|ξ|≤2nds

sup
j≥s

Uj(x + ξ)dV2n − 1

τ2n(2nds)2n

∫

|ξ|≤2nds

Us(x + ξ)dV2n

≤ 2

τ2n(2nds)2n

∫

|ξ|≤2nds

(sup
j≥s

Uj(x + ξ))∗dV2n − U(x) − Us(x).
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It stems from the monotone convergence theorem and (3.3.5) that

∫

Ω
vs(x)dµ(x) → 0, s → +∞.

Proof of Theorem 3.1.1. We can assume, by passing to a subsequence in (3.3.6), that
∫

Ω |Us − U|(ddc
Us)n ≤ 1/s2. Consider

Ũs := max{Us, U − 1/s} ∈ PSH(Ω) ∩ L∞(Ω̄).

It follows from Hartogs’ lemma that Ũs → U in Bedford-Taylor’s capacity. In fact, we prove
that for any Borel set K ⊂ Ω such that U|K is continuous we have Ũs converges uniformly
to U on K. Since Ũs → U in L1

loc(Ω) and by Theorem 4.1.9 in [H83] we get

lim
s→+∞

sup
K

(Ũs − U) = 0.

Thereby, we conclude that

‖Ũs − U‖L∞(K) → 0, as s → +∞.

Thus the convergence in capacity of Ũs to U comes immediately from the quasicontinuity
of U. Now, since Ũs is uniformly bounded for all s > s0 as in Proposition 3.3.5, we get by
Theorem 1.2.3 that (ddc

Ũs)n converges to (ddc
U)n in the weak sense of currents.

We need now to compare (ddc
Ũs)n and (ddc

Us)n following [GZ07]. It is known that

(ddc
Ũs)n ≥ 1{Us≥U−1/s}(ddc

Us)n.

Our assumption implies that 1{Us<U−1/s}(ddc
Us)n → 0. Indeed,

0 ≤
∫

{Us<U−1/s}
(ddc

Us)n ≤ s

∫

Ω
|Us − U|(ddc

Us)n ≤ 1/s.

Therefore, 0 ≤ (ddc
Us)n ≤ (ddc

Ũs)n + o(1), hence we get by letting s → +∞ that

(ddc
U)n ≥ dµ.

Now, we prove that
∫

Ω
(ddc

U)n =

∫

Ω
dµ.

Actually, let v be the continuous solution to the Dirichlet problem for the homogeneous
Monge-Ampère equation with the boundary data ϕ. From the comparison principle we
get Us ≤ v for all s > 0 and so U ≤ v in Ω. Since the continuous function v − Us equals
to zero on ∂Ω, we find a neighborhood of ∂Ω such that v − Us < 1/s there. Hence,
U − 1/s ≤ v − 1/s < Us in this neighborhood and so that Ũs = Us there. Now, we get by
Stokes’ theorem

∫

Ω
(ddc

Ũs)n =

∫

Ω
(ddc

Us)n =

∫

Ω
dµ.
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By the weak convergence of measures, we obtain

∫

Ω
(ddc

U)n ≤
∫

Ω
dµ.

This complete the proof of Theorem 3.1.1 when µ has compact support in Ω.
For the general case, when µ is only satisfying Condition H(τ). Let χj is a nonde-

creasing sequence of smooth cut-off function, χj ր 1 in Ω, we can do the same argument
and get solutions Uj to the Dirichlet problem for the measures χjµ. By Lemma 3.3.5, the
solutions Uj are uniformly bounded. We set U := (lim sup Uj)∗ ∈ PSH(Ω) ∩ L∞(Ω̄) and
the last argument yields that U is the required bounded solution to Dir(Ω, ϕ, µ).

It remains to prove the continuity of the solution U in Ω̄. It is clear that

(3.3.7) lim
z→ξ

U(z) = ϕ(ξ), ∀ξ ∈ ∂Ω.

Let us fix K ⊂ Ω and let uj be the standard regularization of U. We extend ϕ to a
continuous function on Ω̄. For all small d > 0 we can find by (3.3.7) an open set Kd ⊃ K
and j0 > 0 such that

ϕ < U + d/2 and uj < ϕ + d/2 in a neighborhood of ∂Kd, ∀j ≥ j0.

Hence uj < U + d in a neighborhood of ∂Kd for all j ≥ j0 and then

lim inf
z→ζ

(U(z) + d − uj(z)) ≥ 0,

for all ζ ∈ ∂Kd.
We claim that the set {uj − U > 2d} is empty for any j ≥ j0. Otherwise, we will

get a contradiction following similar techniques to those in Lemma 3.2.3 and Lemma
3.3.5 as follows. Let us set v1 := U + d and v2 := uj . We define for s ≥ 0 the function
g(s) := Cap({v1 − v2 < −s}) and an increasing sequence (km) such that k0 := 0 and

km := sup{k > km−1; g(k) > g(km−1)/e}.

Hence we get g(km) ≤ g(km−1)/e. Let N be an integer so that kN ≤ d and

g(d) ≥ g(kN )/e.

By Lemma 3.2.2 we obtain

(d − kN )ng(d) ≤ µ({v1 − v2 < −kN }) ≤ Ae1+τ g(d)1+τ .

Then we get

(3.3.8) d − kN ≤ A1/ne(1+τ)/ng(d)τ/n.

Now, let t := k − km−1 where 0 < km−1 < k ≤ d such that g(k) > g(km−1)/e. We infer
again by Lemma 3.2.2 that

tng(k) ≤ µ({v1 − v2 < −km−1} ≤ Aeg(k)g(km−1)τ .
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Hence,
t ≤ (Ae)1/ng(km−1)τ/n.

Letting k → k−
m, we get

tm := km − km−1 ≤ (Ae)1/ng(km−1)τ/n.

Then we have

kN =
m=N
∑

m=1

tm ≤ (Ae)1/n
m=N
∑

m=1

g(km−1)τ/n ≤ (Ae)1/nNg(0)τ/n.

By the definition of convergence by capacity, we get for j ≥ j0 that g(0) is very small so
that kN ≤ d/2. Then (3.3.8) yields that

d/2 ≤ A1/ne(1+τ)/ng(d)τ/n.

Since d > 0 is fixed and g(d) = Cap({uj − U > 2d}) goes to zero when j goes to +∞, we
obtain a contradiction in the last inequality.

3.4 Hölder continuity of solutions

We introduce in this section the basic ingredients of proofs of main theorems. Let µ be a
measure satisfying Condition H(∞), 0 ≤ f ∈ Lp(Ω, µ), p > 1 and ϕ ∈ C(∂Ω). Thanks to
Theorem 3.1.1, we denote by U the continuous solution to Dir(Ω, ϕ, fdµ) and consider

Uδ(z) := sup
|ζ|≤δ

U(z + ζ), z ∈ Ωδ,

where Ωδ := {z ∈ Ω; dist(z, ∂Ω) > δ}.
To ensure the Hölder continuity of the solution in Ω, we need to control the L∞-norm

of Uδ − U in Ωδ.
It will be shown in Lemma 3.4.3 that the Hölder norm of the solution U can be estimated

by using either supΩδ
(Uδ − U) or supΩδ

(Ûδ − U), where

Ûδ(z) :=
1

τ2nδ2n

∫

|ζ−z|≤δ
U(ζ)dV2n(ζ), z ∈ Ωδ,

and τ2n is the volume of the unit ball in C
n.

It is clear that Ûδ is not globally defined in Ω, so we extend it with a good control near
the boundary ∂Ω. To this end, we assume the existence of ν-Hölder continuous function
v such that v ≤ U in Ω and v = U on ∂Ω. Then, we present later the construction of such
a function.

Lemma 3.4.1. Let Ω be a bounded SHL domain and ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1. Assume
that there is a function v ∈ C0,ν(Ω̄) for 0 < ν ≤ 1, such that v ≤ U in Ω and v = ϕ on
∂Ω. Then there exist δ0 > 0 small enough and c0 > 0, depending on Ω, ‖ϕ‖C0,α(∂Ω) and
‖v‖C0,ν(Ω̄), such that for any 0 < δ1 ≤ δ < δ0 the function

Ũδ1
=

{

max{Ûδ1
, U + c0δν1} in Ωδ,

U + c0δν1 in Ω \ Ωδ,

is plurisubharmonic in Ω and continuous on Ω̄, where ν1 = min{ν, α/2}.



Hölder continuity of solutions 67

Proof. If we prove that Ûδ1
≤ U + c0δν1 on ∂Ωδ, then the required result can be obtained

by the standard gluing procedure.
Thanks to Corollary 2.4.6, we find a plurisuperharmonic function ṽ ∈ C0,α/2(Ω̄) such that
ṽ = ϕ on ∂Ω and

‖ṽ‖C0,α/2(Ω̄) ≤ C‖ϕ‖C0,α(∂Ω),

where C depends on Ω. From the maximum principle we see that U ≤ ṽ in Ω and ṽ = ϕ
on ∂Ω.
Fix z ∈ ∂Ωδ, there exists ζ ∈ C

n with ‖ζ‖ = δ1 such that Ûδ1
(z) ≤ U(z + ζ). Hence, we

obtain
Ûδ1

(z) − U(z) ≤ U(z + ζ) − U(z) ≤ ṽ(z + ζ) − v(z).

We choose ζ0 ∈ C
n, with ‖ζ0‖ = δ, so that z + ζ0 ∈ ∂Ω. Since ṽ(z + ζ0) = v(z + ζ0), we

infer
ṽ(z + ζ) − v(z) ≤ [ṽ(z + ζ) − ṽ(z + ζ0)] + [v(z + ζ0) − v(z)]

≤ 2‖ṽ‖C0,α/2(Ω̄)δ
α/2 + ‖v‖C0,ν(Ω̄)δ

ν

≤ c0δν1 ,

where c0 := 2C‖ϕ‖C0,α(∂Ω) + ‖v‖C0,ν(Ω̄).

Moreover, we can conclude from the last argument that

(3.4.1) |U(z1) − U(z2)| ≤ 2c0δν1 ,

for all z1, z2 ∈ Ω̄ \ Ωδ such that |z1 − z2| ≤ δ.

Remark 3.4.2. When ϕ ∈ C1,1(∂Ω), the last lemma holds for ν1 = ν. Indeed, let ϕ̃
be a C1,1-extension of ϕ to Ω̄. We define the plurisuperharmonic Lipschitz function ṽ :=
−Aρ + ϕ̃, where A ≫ 1 and ρ is the defining function of Ω. Hence, the constant c0 in
Lemma 3.4.1 will depend only on Ω, ‖ϕ‖C1,1(∂Ω) and ‖v‖C0,ν(Ω̄).

Lemma 3.4.3. Given 0 < α < 1, the following conditions are equivalent.

1. There exist δ′, A > 0 such that for any 0 < δ ≤ δ′,

Uδ − U ≤ Aδα on Ωδ.

2. There exist δ′′, B > 0 such that for any 0 < δ ≤ δ′′,

Ûδ − U ≤ Bδα on Ωδ.

Proof. Since Ûδ ≤ Uδ, we get immediately the implication (1) ⇒ (2). In order to prove
(2) ⇒ (1) we need to show that there exist δ′, A > 0 such that

ω(δ) := sup
z∈Ωδ

[(Uδ − U)(z)] ≤ Aδα.

Fix δΩ > 0 small enough so that Ωδ Ó= ∅ for δ ≤ δ̃Ω := (C +2)δΩ where C > 0 is a constant
to be chosen later. Since U is uniformly continuous on Ω̄, we have for any fixed 0 < δ < δ̃Ω,

ν(δ) := sup
δ<t≤δ̃Ω

ω(t)t−α < +∞.
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We claim that there exists δ′ > 0 small enough such that for any 0 < δ ≤ δ′, we have

ω(δ) ≤ Aδα with A = 4c0(C + 3)α + e4(C + 1)αB + ν(δΩ),

where c0 is as in Lemma 3.4.1. Assume that this is not the case. Then there exists δ ≤ δΩ

such that
ω(δ) > Aδα.

Let us set δ := sup{t < δΩ; ω(t) > Atα}. Then

(3.4.2)
ω(δ)

δα
≥ A ≥ ω(t)

tα
for all t ∈ [δ, δ̃Ω].

Since U is continuous on Ω̄, we find z0 ∈ Ω̄δ, ζ0 ∈ Ω̄ such that |z0 − ζ0| ≤ δ and

ω(δ) = U(ζ0) − U(z0).

We assert that dist(z0, ∂Ω) > (C + 2)δ. In fact, if dist(z0, ∂Ω) ≤ (C + 2)δ and z1 ∈ ∂Ω
such that dist(z0, z1) = dist(z0, ∂Ω), then we have by (3.4.1) that

ω(δ) = U(ζ0) − U(z1) + U(z1) − U(z0) ≤ 4c0(C + 3)αδα < Aδα.

This is a contradiction.
Now we apply (3.4.2) for t = (C + 2)δ and hence we get

U(ζ0) − U(z) ≤ (C + 2)αω(δ) for all z ∈ B(z0, (C + 1)δ).

As B1 := B(ζ0, Cδ) ⊂ B2 := B(z0, (C + 1)δ), we can write
(3.4.3)

Û(C+1)δ(z0) =
1

τ2n(C + 1)2nδ2n

∫

B2

U(z)dV2n(z)

=

Å

C

C + 1

ã2n 1

τ2nC2nδ2n

∫

B1

U(z)dV2n(z) +
1

τ2n(C + 1)2nδ2n

∫

B2\B1

U(z)dV2n(z)

≥
Å

C

C + 1

ã2n

U(ζ0) + [U(ζ0) − (C + 2)αω(δ)]

Ç

1 −
Å

C

C + 1

ã2n
å

= U(ζ0) − (C + 2)α

Ç

1 −
Å

C

C + 1

ã2n
å

ω(δ)

= U(z0) + Dω(δ),

where D := 1 − (C + 2)α
(

1 −
Ä

C
C+1

ä2n
)

. We have D ≥ e−4 if

α ≤ 1

log(C + 2)
log

Ñ

1 − e−4

1 −
Ä

C
C+1

ä2n

é

=: α̃.

Hence, we infer
Û(C+1)δ(z0) ≥ U(z0) + e−4ω(δ).

By (2), the last inequality is equivalent to

ω(δ) ≤ e4B(C + 1)αδα < Aδα.
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This is a contradiction and hence our claim is true. It remains to show that for any fixed
0 < α < 1 we can find C > 0 such that α̃ > α. For this end, we choose C := n/x with
0 < x < 1 and note that

Ç

n/x

n/x + 1

å2n

≥ e−2x for all n ∈ N.

Hence this yields that

α̃ ≥ 1

log(n/x + 2)
log

Ç

1 − e−4

1 − e−2x

å

.

Since the function

g(x) :=
log(1 − e−4) − log(1 − e−2x)

log(n/x + 2)

is continuous on ]0, 1[ and limx→0 g(x) = 1, we can find x > 0 small enough such that
g(x) ≥ α.
This completes the proof.

Theorem 3.4.4. Let Ω be a bounded SHL domain and let µ be a finite Borel measure on Ω
satisfying Condition H(∞). Suppose that ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1, and 0 ≤ f ∈ Lp(Ω, µ)
for p > 1. Then the solution U to Dir(Ω, ϕ, fdµ) is Hölder continuous on Ω̄ of exponent
1
λ min{ν, α/2, τγ}, for any γ < 1/(nq+1) and 1/p+1/q = 1, if the two following conditions
hold:
(i) there exists v ∈ C0,ν(Ω̄), for 0 < ν ≤ 1, such that v ≤ U in Ω and v = ϕ on ∂Ω,
(ii) and ‖Ûδ1

− U‖L1(Ωδ ,µ) ≤ cδτ , where c, τ > 0 and 0 < δ1 = δλ, for some λ ≥ 1.

Moreover, if ϕ ∈ C1,1(∂Ω) then the Hölder exponent of U will be 1
λ min{ν, τγ}.

Proof. It follows from Lemma 3.4.1 that there exist c0 > 0 and δ0 > 0 so that

Ũδ1
=

{

max{Ûδ1
, U + c0δν1} in Ωδ,

U + c0δν1 in Ω \ Ωδ,

belongs to PSH(Ω) ∩ C(Ω̄), for 0 < δ1 ≤ δ < δ0 and ν1 = min{ν, α/2}.
By applying Theorem 3.2.4 with v1 := U + c0δν1 and v2 := Ũδ1

, we infer that

sup
Ωδ

(Ûδ1
− U − c0δν1) ≤ sup

Ω
(Ũδ1

− U − c0δν1) ≤ c1(1 + ‖f‖η
Lp(Ω,µ))‖(Ũδ1

− U − c0δν1)+‖γ
L1(Ω,µ),

where η := 1/n + γq/[1 − γ(1 + nq)], c1 = c1(n, q, γ) and 0 < γ < 1/(nq + 1) is fixed.
Since Ũδ1

= U + c0δν1 in Ω \ Ωδ and

‖(Ũδ1
− U − c0δν1)+‖L1(Ω,µ) ≤ ‖Ûδ1

− U‖L1(Ωδ ,µ).

We conclude that

sup
Ωδ

(Ûδ1
− U) ≤ c0δν1 + c1(1 + ‖f‖η

Lp(Ω,µ))‖Ûδ1
− U‖γ

L1(Ωδ ,µ).

By hypotheses we have

sup
Ωδ

(Ûδ1
− U) ≤ c0δν1 + c1cγ(1 + ‖f‖η

Lp(Ω,µ))δ
τγ .
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Let us set c2 := (c0 + c1cγ)(1 + ‖f‖η
Lp(Ω,µ)). We derive from the last inequality that

sup
Ωδ

(Ûδ1
− U) ≤ c2δmin{ν1,τγ}.

This means that
Ûδ − U ≤ c2δ

1

λ
min{ν1,τγ} in Ωδ1/λ .

Hence, by Lemma 3.4.3, there exists c3, δ̃0 > 0 such that for all 0 < δ < δ̃0 we have

(3.4.4) Uδ − U ≤ c3δ
1

λ
min{ν1,τγ} in Ωδ1/λ .

Thus, (3.4.4) and (3.4.1) yield the Hölder continuity of U on Ω̄ of exponent 1
λ min{ν, α/2, τγ},

for any γ < 1/(nq + 1) and 1/p + 1/q = 1.
Finally, if ϕ ∈ C1,1(∂Ω), we get that the Hölder exponent is 1

λ min{ν, τγ}, since ν1 = ν
(see Remark 3.4.2).

We prove in the following proposition that the total mass of Laplacian of the solution
is finite when the boundary data is C1,1-smooth.

Proposition 3.4.5. Let µ be a finite Borel measure satisfying Condition H(τ) on Ω and
ϕ ∈ C1,1(∂Ω). Then the solution U to Dir(Ω, ϕ, dµ) has the property that

∫

Ω
∆U ≤ C,

where C > 0 depends on n, Ω, ‖ϕ‖C1,1(∂Ω) and µ(Ω).

Proof. Let U0 be the solution to the Dirichlet problem Dir(Ω, 0, dµ). We first claim that
the total mass of ∆U0 is finite in Ω. Indeed, let ρ be the defining function of Ω. Then by
Corollary 1.3.25 we get

(3.4.5)

∫

Ω
ddc

U0 ∧ (ddcρ)n−1 ≤
Å∫

Ω
(ddc

U0)n
ã1/n Å∫

Ω
(ddcρ)n

ã(n−1)/n

≤ µ(Ω)1/n
Å∫

Ω
(ddcρ)n

ã(n−1)/n

.

Since Ω is a bounded SHL domain, there exists a constant c > 0 such that ddcρ ≥ cβ in
Ω. Hence, (3.4.5) yields

∫

Ω
ddc

U0 ∧ βn−1 ≤ 1

cn−1

∫

Ω
ddc

U0 ∧ (ddcρ)n−1

≤ µ(Ω)1/n

cn−1

Å∫

Ω
(ddcρ)n

ã(n−1)/n

.

Now we note that the total mass of complex Monge-Ampère measure of ρ is finite in Ω by
the Chern-Levine-Nirenberg inequality and since ρ is psh and bounded in a neighborhood
of Ω̄. Therefore, the total mass of ∆U0 is finite in Ω.
Let ϕ̃ be a C1,1-extension of ϕ to Ω̄ such that ‖ϕ̃‖C1,1(Ω̄) ≤ C‖ϕ‖C1,1(∂Ω) for some C > 0.
Now, let v = Aρ + ϕ̃ + U0 where A > 0 is big enough such that Aρ + ϕ̃ ∈ PSH(Ω). By
the comparison principle we see that v ≤ U in Ω and v = U = ϕ on ∂Ω. Since ρ is psh in a
neighborhood of Ω̄ and ‖∆U0‖Ω < +∞, we deduce that ‖∆v‖Ω < +∞. Then the following
lemma completes the proof.
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Lemma 3.4.6. Let Ω be a bounded domain in C
n. Suppose that v1, v2 are continuous

subharmonic function in Ω such that v1 ≤ v2 in Ω and v1 = v2 on ∂Ω, then we have

∫

Ω
ddcv2 ∧ βn−1 ≤

∫

Ω
ddcv1 ∧ βn−1.

Proof. First assume that v1 = v2 in a neighborhood of ∂Ω. Then Stokes’ theorem yields
that

∫

Ω
ddcv2 ∧ βn−1 =

∫

Ω
ddcv1 ∧ βn−1.

For the general case, we define the function vǫ := max{v2 − ǫ, v1}. Hence we see that
v1 ≤ vǫ in Ω and vǫ = v1 near the boundary ∂Ω. Therefore, we get

∫

Ω
ddcvǫ ∧ βn−1 =

∫

Ω
ddcv1 ∧ βn−1.

Since v1 ≤ v2 in Ω, we get that vǫ ր v2 in Ω. Hence ddcvǫ ∧βn−1 converges to ddcv1 ∧βn−1

in the weak sense of measures and we conclude that

∫

Ω
ddcv2 ∧ βn−1 ≤ lim inf

ǫ→0

∫

Ω
ddcvǫ ∧ βn−1 =

∫

Ω
ddcv1 ∧ βn−1.

3.5 Proof of main results

Our first aim is to prove Theorem 3.1.2 by applying Theorem 3.4.4. It is well known that
the Lebesgue measure dV2n satisfies Condition H(∞) (see [Z01]). We first estimate the
L1-norm of Ûδ − U with respect to the Lebesgue measure as in [GKZ08].

Lemma 3.5.1. ([GKZ08]). Let ϕ ∈ C1,1(∂Ω) and f ∈ Lp(Ω), p > 1. Then the solution U

to the Dirichlet problem satisfies

∫

Ωδ

[Ûδ(z) − U(z)]dV2n(z) ≤ Cδ2,

where C is a positive constant depending on n, Ω and ‖f‖Lp(Ω).

Proof. Let us denote by σ2n−1 the surface measure of the unit sphere. It follows from the
Poisson-Jensen formula, for z ∈ Ωδ and 0 < r < δ, that

1

σ2n−1r2n−1

∫

∂B(z,r)
U(ξ)dσ(ξ) − U(z) = cn

∫ r

0
t1−2n

Ç

∫

B(z,t)
∆U(ξ)

å

dt.

Using polar coordinates we obtain for z ∈ Ωδ,

Ûδ(z) − U(z) =
cn

δ2n

∫ δ

0
r2n−1dr

∫ r

0
t1−2ndt

Ç

∫

B(z,t)
∆U(ξ)

å

.
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Now we integrate on Ωδ with respect to dV2n and use Fubini’s theorem

∫

Ωδ

[Ûδ(z) − U(z)]dV2n(z) =
cn

δ2n

∫

Ωδ

∫ δ

0
r2n−1dr

∫ r

0
t1−2ndt

Ç

∫

|ξ−z|≤t
∆U(ξ)

å

dV2n(z)

=
cn

δ2n

∫ δ

0
r2n−1dr

∫ r

0
t1−2ndt

∫

Ωδ

Ç

∫

B(z,t)
∆U(ξ)

å

dV2n(z)

≤ cn

δ2n

∫ δ

0
r2n−1dr

∫ r

0
t1−2ndt

∫

Ω

Ç

∫

B(ξ,t)
dV2n(z)

å

∆U(ξ)

≤ cn

∫

Ω
∆Uδ2

Proposition 3.4.5 yields that the total mass of ∆U is finite in Ω and this completes the
proof.

We will introduce here the interplay between the real and complex Monge-Ampère
measures which really goes back to Cheng-Yau and was first explained in Bedford’s survey
[Be88] (see also [CP92]). This relation will be useful in the proof of Theorem 3.1.2.

We recall that if u is a locally convex smooth function in Ω, its real Monge-Ampère
measure is defined by

Mu := det

Ç

∂2u

∂xj∂xk

å

dV2n.

When u is only convex, then Mu can be defined following Alexandrov [A55] by means of
the gradient image as a nonnegative Borel measure on Ω (see [Gut01], [RT77], [Gav77]).

We recall the theorem of existence of convex solution to the Dirichlet problem for the
real Monge-Ampère equation, this theorem is due to Rauch and Taylor.

Theorem 3.5.2. ([RT77]). Let Ω be a strictly convex domain. Assume that ϕ ∈ C(∂Ω)
and µ is a nonnegative Borel measure on Ω with µ(Ω) < ∞. Then there is a unique convex
u ∈ C(Ω̄) such that Mu = µ in Ω and u = ϕ on ∂Ω.

Proposition 3.5.3. Let 0 ≤ f ∈ Lp(Ω), p ≥ 2 and u be a locally convex function in Ω
and continuous on Ω̄. If the real Monge-Ampère measure Mu ≥ f2dV2n then the complex
Monge-Ampère measure satisfies the inequality (ddcu)n ≥ fdV2n in the weak sense of
measures in Ω.

Proof. For a smooth function u, we have

(3.5.1) | det(∂2u/∂zj∂z̄k)|2 ≥ det(∂2u/∂xj∂xk).

Hence, we immediately get that (ddcu)n ≥ fdV2n (see [CP92]).
Moreover, it is well known for smooth convex function that

(3.5.2) (Mu)1/n = inf ∆Hu, where ∆Hu :=
∑

j,k

hjk
∂2u

∂xj∂xk
,

for any symmetric positive definite matrix H = (hjk) with det H = n−n (see [Gav77],
[B%l97]). In general case, we will prove that (ddcu)n ≥ fβn weakly in Ω. Indeed, the
problem being local, we can assume that u is defined and convex in a neighborhood of a
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ball B̄ ⊂ Ω. For δ > 0, we set µδ := Mu ∗ ρδ then µδ ≥ gδ, where gδ := f2 ∗ ρδ (without
loss of generality we assume gδ > 0). We may assume that u and µδ are defined in this
neighborhood of B̄. Let ϕδ be a sequence of smooth functions on ∂B converging uniformly
to u there. Let uδ be a smooth convex function such that Muδ = µδ in B and uδ = ϕδ on
∂B. Let ũ ∈ C(B̄) be a convex function such that Mũ = 0 and ũ = ϕδ on ∂B. Moreover,
let vδ ∈ C(B̄) be a convex function such that Mvδ = µδ and vδ = 0 on ∂B.
From the comparison principle for the real Monge-Ampère operator (see [RT77]), we can
infer that

(3.5.3) ũ + vδ ≤ uδ ≤ ũ − vδ.

It follows from Lemma 3.5 in [RT77] that

(3.5.4) (−vδ(x))2n ≤ cn(diam(B))2n−1 dist(x, ∂B)Mvδ(B), x ∈ B.

Then we conclude that {uδ} is uniformly bounded sequence of convex functions, hence
there exists a subsequence {uδj } converging locally uniformly on B.
Moreover, (3.5.3) and (3.5.4) imply that {uδj } is uniformly convergent on B̄. From the
comparison principle it follows that uδj converges uniformly to u. Since uδj ∈ C∞(B̄) and
Muδj ≥ f2 ∗ ρδj

dV2n, we get that

(ddcuδj )n ≥ (f2 ∗ ρδj
)1/2dV2n.

Finally, as uδj converges uniformly to u, we conclude by Bedford and Taylor’s convergence
theorem that

(ddcu)n ≥ fdV2n.

We prove now Hölder continuity of the solution to the Dirichlet problem Dir(Ω, ϕ, fdV2n)
with 0 ≤ f ∈ Lp(Ω).

Proof of Theorem 3.1.2. We first suppose that f = 0 near the boundary of Ω, that
is, there exists a compact K ⋐ Ω such that f = 0 in Ω \ K. To apply Theorem 3.4.4,
we establish a Hölder continuous function v such that v ≤ U in Ω and v = ϕ on ∂Ω. Let
ρ be the defining function of Ω given by Definition 2.2.1 and ϕ̃ be a C1,1-extension of ϕ
to Ω̄ such that ‖ϕ̃‖C1,1(Ω̄) ≤ C‖ϕ‖C1,1(∂Ω), for some C > 0. Now, we take A > 0 large

enough such that v := Aρ + ϕ̃ ∈ PSH(Ω) ∩ C0,1(Ω̄) and v ≤ U in a neighborhood of K.
By the comparison principle, we can find that v ≤ U in Ω \ K and hence v ≤ U in Ω and
v|∂Ω = U|∂Ω = ϕ. Hence, by this construction and Lemma 3.5.1, the two conditions in
Theorem 3.4.4 are satisfied. This implies that the solution U is Hölder continuous in Ω̄ of
exponent 2γ for any γ < 1/(nq + 1) and 1/p + 1/q = 1.

For the general case, when f ∈ Lp(Ω), p > 1. Let us fix a large ball B ⊂ C
n so that

Ω ⋐ B ⊂ C
n. Let f̃ be the trivial extension of f to B. Since f̃ ∈ Lp(Ω) is equal to zero

near ∂B, the first case yields that the solution h1 to the following Dirichlet problem

(ddch1)n = f̃dV2n in B, and h1 = 0 on ∂B,

is Hölder continuous on B̄ of exponent 2γ. Now, let h2 denote the solution to the Dirichlet
problem in Ω with boundary values ϕ−h1 and the zero density. Thanks to Theorem 2.1.1,
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we infer that h2 ∈ C0,γ(Ω̄). Therefore, the required barrier will be v := h1 + h2. It is clear
that v ∈ PSH(Ω) ∩ C(Ω̄), v|∂Ω = ϕ and (ddcv)n ≥ fdV2n in the weak sense in Ω. Hence,
by the comparison principle we get that v ≤ U in Ω and v = U = ϕ on ∂Ω. Moreover, we
have v ∈ C0,γ(Ω̄), for any γ < 1/(nq + 1). By applying Theorem 3.4.4, we conclude that
the solution U belongs to C0,γ(Ω̄).

In the special case when f ∈ Lp(Ω), p ≥ 2. We can improve the Hölder exponent of
U by using the relation between the real and complex Monge-Ampère measures. Let us
set µ := f̃2dV2n which is a nonnegative Borel measure on B with µ(B) < ∞. Thanks to
Theorem 3.5.2 there exists a unique convex function u ∈ C(B̄) such that Mu = µ in B
and u = 0 on ∂B. Hence u is Lipschitz continuous in Ω̄. By Proposition 3.5.3, we have
(ddcu)n ≥ fdV2n in Ω.
We will construct the required barrier as follows. Let hϕ−u be the solution to the Dirichlet
problem with zero density and ϕ − u boundary data. Then hϕ−u is Hölder continuous of
exponent 1/2 in Ω̄ by Theorem 2.1.1. Now, it is easy to check that v := u + hϕ−u is psh in
Ω and satisfies v = ϕ in ∂Ω and (ddcv)n ≥ fdV2n in Ω. So, by the comparison principle,
we have v ≤ U in Ω. By Theorem 3.4.4 and Lemma 3.5.1, our solution U will be Hölder
continuous of exponent min{1/2, 2γ}, for any γ < 1/(nq + 1).

Remark 3.5.4. It is shown in [GKZ08] that we cannot expect a better Hölder exponent
than 2/(nq) (see also [Pl05]).

We introduce an important class of Borel measures on Ω containing Riesz measures and
closely related to Hausdorff measures which play an important role in geometric measure
theory [Ma95]. We call such measures Hausdorff-Riesz measures.

Definition 3.5.5. A finite Borel measure on Ω is called a Hausdorff-Riesz measure of
order 2n − 2 + ǫ, for 0 < ǫ ≤ 2 if it satisfies the following condition :

(3.5.5) µ(B(z, r) ∩ Ω) ≤ Cr2n−2+ǫ, ∀z ∈ Ω̄, ∀0 < r < 1,

for some positive constant C.

We give some interesting examples of Hausdorff-Riesz measures.

Example 3.5.6.

1. The Lebesgue measure dV2n on Ω, for ǫ = 2.

2. The surface measure of a compact real hypersurface, for ǫ = 1.

3. Measures of the type ddcv ∧ βn−1, where v is a α-Hölder continuous subharmonic
function in a neighborhood of Ω̄, for ǫ = α.

4. The measure 1EH2n−2+ǫ, where H2n−2+ǫ is the Hausdorff measure and E is a Borel
set such that H2n−2+ǫ(E) < +∞.

5. If µ is a Hausdorff-Riesz measure of order 2n − 2 + ǫ, then fdµ is Hausdorff-Riesz of
order 2n−2+ǫ′, with ǫ′ := ǫ−(2n−2+ǫ)/p, for any f ∈ Lp(Ω, µ), p > (2n−2+ǫ)/ǫ.

The existence of continuous solutions to Dir(Ω, ϕ, fdµ) for such measures follows im-
mediately from Theorem 3.1.1 and the following lemma.
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Lemma 3.5.7. Let Ω be a bounded SHL domain and µ be a Hausdorff-Riesz measure of
order 2n − 2 + ǫ, for 0 < ǫ ≤ 2. Assume that 0 ≤ f ∈ Lp(Ω, µ) for p > 1, then for all τ > 0
there exists D > 0 depending on τ, ǫ, q and diam(Ω) such that for any Borel set K ⊂ Ω,

(3.5.6)

∫

K
fdµ ≤ D‖f‖Lp(Ω,µ)[Cap(K, Ω)]1+τ .

Proof. By the Hölder inequality we have

∫

K
fdµ ≤ ‖f‖Lp(Ω,µ)µ(K)1/q.

Let z0 ∈ Ω be a fixed point and R := 2 diam(Ω). Hence, Ω ⋐ B := B(z0, R). For any Borel
set K ⊂ Ω we get, by Corollary 5.2 in [Z04] and Alexander-Taylor’s inequality, that

µ(K) ≤ C(TR(K))ǫ/2 ≤ C exp(−ǫ/2 Cap(K, B)−1/n) ≤ C exp(−ǫ/2 Cap(K, Ω)−1/n),

where C > 0 depends on ǫ and diam(Ω).
Now, for any τ > 0, we can find D > 0 depending on τ, ǫ, q and diam(Ω) such that

∫

K
fdµ ≤ D‖f‖Lp(Ω,µ)[Cap(K, Ω)]1+τ .

The first step in the proof of Theorem 3.1.3 is to estimate ‖Ûδ − U‖L1(Ωδ ,µ), so we
present the following lemma.

Lemma 3.5.8. Let Ω ⊂ C
n be a SHL domain and µ be a Hausdorff-Riesz measure of order

2n − 2 + ǫ on Ω, for 0 < ǫ ≤ 2. Suppose that 0 ≤ f ∈ Lp(Ω, µ), p > 1 and ϕ ∈ C1,1(∂Ω).
Then the solution U to Dir(Ω, ϕ, fdµ) satisfies

∫

Ωδ

[Ûδ(z) − U(z)]dµ(z) ≤ Cδǫ,

where C is a positive constant depending on n, ǫ, Ω, ‖f‖Lp(Ω,µ) and µ(Ω).

Proof. Following a slight modification in the proof of Lemma 3.5.1, we can get the required
inequality.

When ϕ is not C1,1-smooth, the measure ∆U may have infinite mass on Ω. Fortunately,
we can estimate ‖Ûδ1

− U‖L1(Ωδ,µ) for some δ1 < δ ≤ 1.

We need the following property of a bounded SHL domain.

Lemma 3.5.9. Let Ω be a bounded SHL domain. Then there exist a function ρ̃ ∈ PSH(Ω)∩
C0,1(Ω̄) such that near ∂Ω we have

(3.5.7) c1 dist(z, ∂Ω) ≥ −ρ̃(z) ≥ c2 dist(z, ∂Ω)2,

for some c1, c2 > 0 depending on Ω.
Moreover, ddcρ̃ ≥ c2β in the weak sense of currents on Ω.
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Proof. Since Ω is a strongly hyperconvex Lipschitz domain, there exist a constant c > 0
and a defining function ρ such that ddcρ ≥ cβ in the weak sense of currents on Ω. Let
us fix ξ ∈ ∂Ω, then the function defined by ρ̃ξ(z) := ρ(z) − c/2|z − ξ|2 is Lipschitz
continuous in Ω̄ and satisfies ddcρ̃ξ ≥ (c/2)β in the weak sense of currents on Ω. Hence,
ρ̃ξ ∈ PSH(Ω) ∩ C0,1(Ω̄). Set

ρ̃ := sup{ρ̃ξ : ξ ∈ ∂Ω}.

It is clear that ρ̃ ∈ C0,1(Ω̄) ∩ PSH(Ω) and thus the first inequality in (3.5.7) holds. For
any ξ ∈ ∂Ω we have −ρ̃ξ(z) ≥ (c/2)|z − ξ|2, so we infer that

−ρ̃(z) ≥ (c/2) dist(z, ∂Ω)2,

for any z near ∂Ω.
The last statement follows from the fact that for any ξ ∈ ∂Ω, ddcρ̃ξ ≥ (c/2)β in the

weak sense of currents on Ω.

Remark 3.5.10. When Ω is a smooth strongly pseudoconvex domain, we know that the
defining function ρ satisfies near the boundary,

−ρ ≈ dist(., ∂Ω).

Lemma 3.5.11. Let Ω ⊂ C
n be a bounded SHL domain and µ be a Hausdorff-Riesz

measure of order 2n − 2 + ǫ on Ω, for 0 < ǫ ≤ 2. Suppose that 0 ≤ f ∈ Lp(Ω, µ), p > 1
and ϕ ∈ C0,α(∂Ω), α ≤ 1. Then for any small ǫ1 > 0, we have the following inequality

∫

Ωδ

[Ûδ1
(z) − U(z)]dµ(z) ≤ Cδǫ/2−ǫ1 ,

where δ1 = (1/2)δ1/2+3/ǫ and C is a positive constant depending on n, Ω, ǫ, ǫ1 and
‖u‖L∞(Ω̄).

Proof. One sees as in the proof of Lemma 3.5.1 that

Ûδ1
(z) − U(z) =

cn

δ2n
1

∫ δ1

0
r2n−1dr

∫ r

0
t1−2ndt

Ç

∫

B(z,t)
∆U(ξ)

å

.

Then, we integrate on Ωδ with respect to µ and use Fubini’s Theorem

∫

Ωδ

[Ûδ1
(z) − U(z)]dµ(z) ≤ cn

δ2n
1

∫ δ1

0
r2n−1dr

∫ r

0
t1−2ndt

∫

Ωδ−t

Ç

∫

B(ξ,t)
dµ(z)

å

∆U(ξ)

≤ cn

δ2n
1

∫ δ1

0
r2n−1dr

∫ r

0
t−1+ǫdt

∫

Ωδ−t

∆U(ξ)

≤ cn

δ2n
1

sup
Ωδ−δ1

(−ρ̃)−(3+ǫ1)/2
∫ δ1

0
r2n−1dr

∫ r

0
t−1+ǫdt

∫

Ωδ−t

(−ρ̃)(3+ǫ1)/2∆U(ξ)

≤ cn

δ2n
1

sup
Ωδ/2

(−ρ̃)−(3+ǫ1)/2‖(−ρ̃)(3+ǫ1)/2∆U‖Ω

∫ δ1

0
r2n−1dr

∫ r

0
t−1+ǫdt

≤ cnδ−3−ǫ1

ǫ(2n + ǫ)
δǫ

1‖(−ρ̃)(3+ǫ1)/2∆U‖Ω

≤ C1δǫ/2−ǫ1‖(−ρ̃)(3+ǫ1)/2∆U‖Ω,
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where ρ̃ is as in Lemma 3.5.9 and C1 > 0 is a positive constant depending on ǫ and n.
To complete the proof we demonstrate that the mass ‖(−ρ̃)(3+ǫ1)/2∆U‖Ω is finite. The

following idea is due to [BKPZ15] with some appropriate modifications. We set for simpli-
fication θ := (3+ ǫ1)/2. Let ρη be the standard regularizing kernels with supp ρη ⊂ B(0, η)
and

∫

B(0,η) ρηdV2n = 1. Hence, uη = U ∗ ρη ∈ C∞ ∩ PSH(Ωη) decreases to U in Ω. It is

clear that ‖uη‖L∞(Ωη) ≤ ‖U‖L∞(Ω) and the first derivatives of uη have L∞-norms less than
‖U‖L∞(Ω)/η. We denote by χΩη the characteristic function of Ωη. Since uη ց U in Ω, we

have χΩη (−ρ̃)θ∆uη converges to (−ρ̃)θ∆U in the weak sense of measures.
It is sufficient to show that

I :=

∫

Ωη

(−ρ̃)θddcuη ∧ βn−1,

is bounded by an absolute constant independent of η. We have by Stokes’ theorem

I =

∫

∂Ωη

(−ρ̃)θdcuη ∧ βn−1 + θ

∫

Ωη

(−ρ̃)θ−1dρ̃ ∧ dcuη ∧ βn−1.

Note that
∫

∂Ωη

(−ρ̃)θ−1uηdcρ̃ ∧ βn−1 =

∫

Ωη

(−ρ̃)θ−1duη ∧ dcρ̃ ∧ βn−1+

+

∫

Ωη

(−ρ̃)θ−1uηddcρ̃ ∧ βn−1

− (θ − 1)

∫

Ωη

(−ρ̃)θ−2uηdρ̃ ∧ dcρ̃ ∧ βn−1.

Hence, we get

I =

∫

∂Ωη

(−ρ̃)θdcuη ∧ βn−1 + θ

∫

∂Ωη

(−ρ̃)θ−1uηdcρ̃ ∧ βn−1

− θ

∫

Ωη

(−ρ̃)θ−1uηddcρ̃ ∧ βn−1 + θ(θ − 1)

∫

Ωη

(−ρ̃)θ−2uηdρ̃ ∧ dcρ̃ ∧ βn−1

≤ C‖u‖L∞(Ω̄)

Ç

∫

∂Ωη

dσ +

∫

Ωη

ddcρ̃ ∧ βn−1 +

∫

Ωη

(−ρ̃)θ−2βn

å

,

≤ C‖u‖L∞(Ω̄)

Ç

∫

∂Ωη

dσ +

∫

Ω
ddcρ ∧ βn−1 +

∫

Ω
(−ρ̃)(−1+ǫ1)/2βn

å

,

where dσ = dcρ ∧ (ddcρ)n−1 and ρ is the defining function of Ω. Since ρ is psh in a
neighborhood of Ω̄, the second integral in the last inequality is finite. Thanks to Lemma
3.5.9, we have −ρ̃ ≥ c2 dist(., ∂Ω)2 near ∂Ω and so the third integral will be finite since
ǫ1 > 0 small enough. Consequently, we infer that I is bounded by a constant independent
of η and then this proves our claim.

Corollary 3.5.12. When Ω is a smooth strongly pseudoconvex domain, then Lemma
3.5.11 holds also for δ1 = (1/2)δ1/2+1/ǫ.

Proof. Let ρ be the defining function of Ω. In view of Remark 3.5.10 and the last argument,
we can estimate ‖(−ρ)1+ǫ1∆U‖Ω, for ǫ1 > 0 small enough, and ensure that this mass is
finite. So the proof of Lemma 3.5.11 is still true for more better δ1 := (1/2)δ1/2+1/ǫ.
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We are in a position to prove the Hölder continuity of the solution to Dir(Ω, ϕ, fdµ)
where µ is a Hausdorff-Riesz measure of order 2n − 2 + ǫ and ϕ ∈ C1,1(∂Ω).

Proof of Theorem 3.1.3. We first assume that f equals to zero near the boundary ∂Ω,
then there exists a compact K ⋐ Ω such that f = 0 on Ω \ K. Since ϕ ∈ C1,1(∂Ω), we
extend it to ϕ̃ ∈ C1,1(Ω̄) such that ‖ϕ̃‖C1,1(Ω̄) ≤ C‖ϕ‖C1,1(∂Ω) for some constant C. Let ρ be
the defining function of Ω and let A ≫ 1 be so that v := Aρ + ϕ̃ ∈ PSH(Ω) and v ≤ U in
a neighborhood of K. Moreover, by the comparison principle, we see that v ≤ U in Ω \ K.
Consequently, v ∈ PSH(Ω) ∩ C0,1(Ω̄) and satisfies v ≤ U on Ω̄ and v = U = ϕ on ∂Ω. It
follows from Theorem 3.4.4 and Lemma 3.5.8 that U ∈ C0,ǫγ(Ω̄), for any 0 < γ < 1/(nq+1).

In the general case, fix a large ball B ⊂ C
n containing Ω and define a function f̃ ∈

Lp(B, µ) so that f̃ := f in Ω and f̃ := 0 in B \ Ω. Hence, the solution to the following
Dirichlet problem











v1 ∈ PSH(B) ∩ C(B̄),

(ddcv1)n = f̃dµ in B,
v1 = 0 on ∂B,

belongs to C0,γ′

(B̄), with γ′ = ǫγ for any γ < 1/(nq + 1).
Let hϕ−v1

be the continuous solution to Dir(Ω, ϕ−v1, 0). Then, Theorem 2.1.1 implies that
hϕ−v1

belongs to C0,γ′/2(Ω̄). This enables us to construct a Hölder barrier for our problem.
We take v2 = v1 +hϕ−v1

. It is clear that v2 ∈ PSH(Ω)∩C0,γ′/2(Ω̄) and v2 ≤ U on Ω̄ by the
comparison principle. Hence, Theorem 3.4.4 and Lemma 3.5.8 imply that the solution U to
Dir(Ω, ϕ, fdµ) is Hölder continuous on Ω̄ of exponent ǫγ/2 for any 0 < γ < 1/(nq+1).

In the case when ϕ is only Hölder continuous, we prove the Hölder regularity of the
solution.

Proof of Theorem 3.1.4. Let also v1 be as in the proof of Theorem 3.1.3 and hϕ−v1
be

the solution to Dir(Ω, ϕ − v1, 0). In order to apply Theorem 3.4.4, we set v = v1 + hϕ−v1
.

Hence, v ∈ PSH(Ω)∩ ∈ C(Ω̄), v = ϕ on ∂Ω and (ddcv)n ≥ fdµ in Ω. The comparison
principle yields v ≤ U in Ω. Moreover, by Theorem 2.1.1, we have hϕ−v1

∈ C0,γ′′

(Ω̄)
with γ′′ = 1/2 min{α, ǫγ}. Hence, it stems from Theorem 3.4.4 and Lemma 3.5.11 that
the solution U is Hölder continuous on Ω̄ of exponent ǫ

ǫ+6 min{α, ǫγ}, for any 0 < γ <
1/(nq + 1).

Moreover, when Ω is a smooth strongly pseudoconvex domain and by Corollary 3.5.12
we get more better Hölder exponent ǫ

ǫ+2 min{α, ǫγ}, for any 0 < γ < 1/(nq + 1).

Corollary 3.5.13. Let Ω be a finite intersection of strongly pseudoconvex domains in
C

n. Assume that ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1, and 0 ≤ f ∈ Lp(Ω) for some p > 1.
Then the solution U to the Dirichlet problem Dir(Ω, ϕ, fdV2n) belongs to C0,α′

(Ω̄) with
α′ = min{α/2, γ} for any 0 < γ < 1/(nq + 1). Moreover, if ϕ ∈ C1,1(∂Ω) the solution U is
γ-Hölder continuous on Ω̄.

The first part of this corollary was proved in Theorem 1.2 in [BKPZ15] with the Hölder
exponent min{2γ, α}γ and the second part was proved in [GKZ08] and [Ch15a] (see also
[N14, Ch14] for the complex Hessian equation).

Our final purpose concerns how to get the Hölder continuity of the solution to the
Dirichlet problem Dir(Ω, ϕ, fdµ), by means of the Hölder continuity of a subsolution to
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Dir(Ω, ϕ, dµ) for some special measure µ on Ω. We suppose here that µ is less than the
Monge-Ampère measure of a Hölder continuous psh function and has the behavior of some
Hausdorff-Riesz measure near the boundary.

Proof of Theorem 3.1.5. Let Ω1 ⋐ Ω be an open set such that µ is a Hausdorff-Riesz
measure on Ω \ Ω1. Let also Ω2 ⋐ Ω be a a neighborhood of Ω̄1. We claim that

(3.5.8)

∫

Ω1

(Ûδ − U)dµ ≤
∫

Ω1

(Ûδ − U)(ddcw)n ≤ C‖∆U‖Ω2
δ

2λ
λ+2n ,

where C depends on Ω1 and Ω2. This estimate was proved in [DDGHKZ14]. We can assume
without loss of generality that Ω1 := B1, Ω2 := B2 and −2 ≤ w ≤ −1 in Ω. This implies
that h(z) := |z|2 − 4 < w on B1, while w < h on B2 \ Br0

for some 1 < r0 < 2.
Replacing w by max{w, h}, we can assume that w = h on B2 \ Br0

. Fix χ ∈ C∞
0 (Cn) such

that χ ≥ 0, χ(z) := χ(|z|), supp χ ⊂ B1 and
∫

B1
χdV2n = 1. Let us set

wδ(z) :=
1

δ2n

∫

B(z,δ)
w(y)χ(

z − y

δ
)dV2n(y).

Since w ∈ PSH(Ω) ∩ C0,λ(Ω), we obtain that

wδ(z) − w(z) ≤ C1δλ.

Observe that

(3.5.9)

∣

∣

∣

∣

∣

∂2wδ

∂zj∂z̄k

∣

∣

∣

∣

∣

≤ C2‖w‖L∞(Ω)

δ2
.

We choose φ ∈ C∞
0 (Cn) such that 0 ≤ φ ≤ 1, φ = 1 on Br1

and supp φ ⊂ Br2
, where

r0 < r1 < r2 < 2. We define

w̃δ(z) =

∫

B1

w
Ä

z − δφ(z)y
ä

χ(y) dV2n(y).

Note that

w̃δ(z) − w(z) =

∫

B1

[w
Ä

z − δφ(z)y
ä

− w(z)]χ(y) dV2n(y) ≤ C1δλ,

and

w̃δ(z) = wδ(z) on Br1
, w̃δ(z) = w(z) on B2\Br2

.

Fix now any z ∈ B2\Br0
. Since w = h there, we have for any δ < δ0,

∂2w̃δ

∂zj∂zk
(z) =

∫

B1

∂2

∂zj∂zk
h
Ä

z − δφ(z)y
ä

χ(y) dV2n(y)

=

∫

B1

[δjk + δO(1)]χ(y) dV2n(y)

= δjk + δO(1).



80 Hölder continuity of solutions for general measures

If δ is small enough, we conclude that w̃δ ∈ PSH(B2\Br0
), ∀δ < δ0. Hence w̃δ is

actually plurisubharmonic in all of B2. Set

T :=
n−1
∑

j=0

(ddcw)j ∧ (ddcw̃δε)n−1−j ,

where ǫ > 0 to be chosen later. From (3.5.9), Lemma 3.5.1 and Stokes’ formula we get

∫

Ω1

(Ûδ − U)(ddcw)n ≤
∫

B2

(Ûδ − U)(ddcw)n

=

∫

B2

(Ûδ − U)[(ddcw)n − (ddcw̃δε)n] +

∫

B2

(Ûδ − U)(ddcw̃δε)n

≤
∫

B2

(Ûδ − U)ddc(w − w̃δε) ∧ T +
C3

δ2nε

∫

B2

(Ûδ − U) dV2n

≤
∫

B2

(w̃δε − w)ddc(U − Ûδ) ∧ T +
C3

δ2nε

∫

B2

∆Uδ2

≤
∫

B2

(w̃δε − w)ddc
U ∧ T + C3

∫

B2

∆Uδ2(1−nε)

≤ C1δελ
∫

Br2

ddc
U ∧ T + C3δ2(1−nε)

∫

B2

∆U

≤ C4

∫

B2

∆U[δελ‖w‖n−1
L∞(Ω) + δ2(1−nε)]

≤ C4

∫

B2

∆U δτ ,

where ε = 2
λ+2n and τ = 2λ

λ+2n .

Now, let µ̃ be a Hausdorff-Riesz measure on Ω of order 2n − 2 + ǫ so that µ̃ equals µ
in Ω \ Ω1. As ϕ is not C1,1-smooth, we estimate ‖Ûδ1

− U‖L1(Ωδ ,µ) with δ1 := (1/2)δ1/2+3/ǫ.
Then, we have

∫

Ωδ

(Ûδ1
− U)dµ ≤

∫

Ω1

(Ûδ1
− U)dµ +

∫

Ωδ

(Ûδ1
− U)dµ̃.

Fix ǫ1 > 0 small enough. Then, it follows from (3.5.8) and Lemma 3.5.11 that

∫

Ωδ

(Ûδ1
− U)dµ ≤

∫

Ω1

(Ûδ1
− U)(ddcw)n +

∫

Ωδ

(Ûδ1
− U)dµ̃

≤ C‖∆U‖Ω2
δ

2λ
λ+2n

1 + C ′δǫ/2−ǫ1 ,

where C = C(Ω1, Ω2, ‖w‖L∞) is a positive constant and C ′ depends on n, Ω, ǫ, ǫ1 and
‖U‖L∞(Ω̄). Since the mass of ∆U is locally bounded, there exists a constant C ′′ > 0 such
that

∫

Ωδ

(Ûδ1
− U)dµ ≤ C ′′δτ ,

where τ = min{ ǫ
2 − ǫ1, λ(ǫ+6)

ǫ(λ+2n)}.

The last requirement to apply Theorem 3.4.4 is to construct a function v ∈ C0,ν(Ω̄) for
0 < ν ≤ 1 such that v ≤ U in Ω and v = ϕ on ∂Ω. Let us denote by w1 the solution to



Proof of main results 81

Dir(Ω, 0, fdµ̃) and hϕ the solution to Dir(Ω, ϕ, 0). Now, set v = w1 +hϕ +Aρ with A ≫ 1
so that v ≤ U in a neighborhood of Ω̄1. It is clear that v ∈ PSH(Ω) ∩ C(Ω̄), v = ϕ on ∂Ω
and v ≤ U in Ω by the comparison principle. Moreover, by Theorem 2.1.1, we infer that
v ∈ C0,ν(Ω̄), for ν = 1/2 min{ǫγ, α} and any γ < 1/(nq +1). Finally, we get from Theorem

3.4.4 that U is Hölder continuous on Ω̄ of exponent ǫ
ǫ+6 min{α, ǫγ, 2λγ(ǫ+6)

ǫ(λ+2n) }.

The following are nice applications of Theorem 3.1.5.

Corollary 3.5.14. Let Ω ⊂ C
n be a bounded SHL domain and µ be a finite Borel measure

with compact support on Ω. Let also ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and 0 ≤ f ∈ Lp(Ω, µ), p > 1.
Assume that there exists a λ-Hölder continuous psh function w in Ω such that (ddcw)n ≥ µ.
Then the solution to the Dirichlet problem Dir(Ω, ϕ, fdµ) is Hölder continuous on Ω̄ of
exponent min{α/2, 2λγ

λ+2n}, for any γ < 1/(nq + 1) and 1/p + 1/q = 1.

Example 3.5.15. Let µ be a finite Borel measure with compact support on a bounded
SHL domain Ω. Let also ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and 0 ≤ f ∈ Lp(Ω, µ), p > 1. Suppose
that µ ≤ dVn, where dVn is the Lebesgue measure of the totally real part R

n of Cn, then
the solution to the Dirichlet problem Dir(Ω, ϕ, fdµ) is Hölder continuous on Ω̄ of exponent
min{α/2, 2γ

1+2n}, for any γ < 1/(nq + 1) and 1/p + 1/q = 1.

Proof. Since R
n = {Imzj = 0, j = 1, ..., n}, one can present the Lebesgue measure of the

totaly real part R
n of Cn in the form

Ñ

ddc
n
∑

j=1

(Imzj)+

én

.

Let us set w =
∑n

j=1(Imzj)+. It is clear that w ∈ PSH(Ω)∩C0,1(Ω̄) and µ ≤ (ddcw)n on Ω.

Corollary 3.5.14 yields that the solution U belongs to C0,α′

(Ω̄) with α′ = min{α/2, 2γ
1+2n},

for any γ < 1/(nq + 1).

At the end, we note that a slight modification in the proof of Theorem 3.1.5 enables us
to estimate the modulus of continuity of the solution in terms of the modulus of continuity
of a subsolution.

Remark 3.5.16. Let µ be a measure satisfying the Condition H(∞) on a bounded SHL
domain Ω. Let also ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and 0 ≤ f ∈ Lp(Ω, µ), p > 1. Assume that
there exists a continuous plurisubharmonic function w in Ω such that (ddcw)n ≥ µ. If the
measure µ is Hausdorff-Riesz of order 2n − 2 + ǫ in Ω \ Ω1 for some 0 < ǫ ≤ 2, where
Ω1 ⋐ Ω, then the solution U to Dir(Ω, ϕ, fdµ) has the following modulus of continuity

ωU(δ) ≤ C max{δν , ωγ
w(δ

2−τ
2n )},

where ν = min{ αǫ
ǫ+6 , ǫ2γ

ǫ+6 , τγ}, 0 < τ < 2 is an arbitrary constant and C is a positive
constant depends on Ω, Ω1, n, ǫ, ‖U‖L∞(Ω), ‖w‖L∞(Ω).
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3.6 Open questions

• Let ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1 and let µ be a finite Borel measure on Ω satisfying
Condition H(∞). Suppose that the Dirichlet problem Dir(Ω, ϕ, dµ) has a Hölder
continuous subsolution in Ω. Is the solution to this problem Hölder continuous in Ω̄?
We have shown in Theorem 3.1.5 an affirmative answer when µ satisfies some nice
condition near ∂Ω.

• Suppose that µ is a finite Borel measure on Ω and it is strongly dominated by
capacity, that is, there exist A, B > 0 so that for any Borel set K ⊂ Ω,

µ(K) ≤ Ae−BCap(K,Ω)−1/n
.

Suppose that ϕ ∈ C0,α(∂Ω), 0 < α ≤ 1. Does the solution to Dir(Ω, ϕ, dµ) belong to
C0,α′

(Ω̄) for some 0 < α′ < 1?



Chapter 4

The Dirichlet problem for complex

Hessian equations

4.1 Introduction

Let Ω be a bounded domain in C
n with smooth boundary and let m be an integer such

that 1 ≤ m ≤ n. Given ϕ ∈ C(∂Ω) and 0 ≤ f ∈ C(Ω̄), we consider the Dirichlet problem
for the complex Hessian equation:

(4.1.1)















u ∈ SHm(Ω) ∩ C(Ω̄),

(ddcu)m ∧ βn−m = fβn in Ω,

u = ϕ on ∂Ω,

where SHm(Ω) denotes the set of all m-subharmonic functions in Ω and β := ddc|z|2 is
the standard Kähler form in C

n.

In the case m = 1, this equation corresponds to the Poisson equation which is classical
(see [GT01]). The case m = n corresponds to the complex Monge-Ampère equation which
was intensively studied these last decades by several authors (see [BT76], [CP92], [CK94],
[Ko98]).

The complex Hessian equation is a new subject and is much more difficult to handle
than the complex Monge-Ampère equation (e.g. the m-subharmonic functions are not
invariant under holomorphic change of variables, for m < n). Despite these difficulties,
the pluripotential theory developed in ([BT82] , [De89], [Ko98]) for the complex Monge-
Ampère equation, can be adapted to the complex Hessian equation.

The Dirichlet problem (4.1.1) was considered by S.Y. Li in [Li04]. He proved that if Ω
is a bounded strongly m-pseudoconvex domain with smooth boundary (see the definition
below), ϕ ∈ C∞(∂Ω) and 0 < f ∈ C∞(Ω̄) then there exists a unique smooth solution to
(4.1.1).

The existence of continuous solution for the homogeneous Dirichlet problem in the unit
ball was proved by Z. B%locki [B%l05].

Recently, S. Dinew and S. Ko%lodziej proved in [DK14] that there exists a unique continuous
solution to (4.1.1) when 0 ≤ f ∈ Lp(Ω), p > n/m.
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A potential theory for the complex Hessian equation was independently developed by
Sadullaev and Abdullaev in [SA12] and H.C. Lu in [Lu12].

H.C. Lu developed [Lu13b] a viscosity approach to the following Dirichlet problem for the
complex Hessian equation.

(4.1.2)















u ∈ SHm(Ω) ∩ C(Ω̄),

(ddcu)m ∧ βn−m = F (z, u)βn in Ω,

u = ϕ on ∂Ω,

where F : Ω̄ ×R → R
+ is a continuous function and nondecreasing in the second variable.

Our first main result in this chapter gives a sharp estimate for the modulus of continuity
of the solution to the Dirichlet problem (4.1.2). More precisely, we will prove the following
theorem.

Theorem 4.1.1. Let Ω be a smoothly bounded strongly m-pseudoconvex domain in C
n,

ϕ ∈ C(∂Ω) and 0 ≤ F ∈ C(Ω̄ × R) be a nondecreasing function in the second variable.
Then the modulus of continuity ωU of the solution U satisfies the following estimate

ωU(t) ≤ γ(1 + ‖F‖1/m
L∞(K)) max{ωϕ(t1/2), ωF 1/m(t), t1/2},

where γ is a positive constant depending only on Ω, K = Ω̄ × {a}, a = sup∂Ω |ϕ| and
ωF 1/m(t) is given by

ωF 1/m(t) := sup
y∈[−M,M ]

sup
|z1−z2|≤t

|F 1/m(z1, y) − F 1/m(z2, y)|,

with M := a + 2 diam(Ω)2 supΩ̄ F 1/m(., −a).

H.C. Lu proved in [Lu13b] that the solution to (4.1.2) is Hölder continuous on a smooth
bounded strongly pseudoconvex domain Ω under conditions of Hölder continuity of ϕ and
F .

In the case of the complex Monge-Ampère equation, Y. Wang gave a control on the
modulus of continuity of the solution assuming the existence of a subsolution and a su-
persolution with the given boundary data ([Wan12]).

Here we do not assume the existence of a subsolution and a supersolution. Actually
the main argument in our proof consists in constructing adequate barriers for the Dirichlet
problem for the complex Hessian equation (4.1.2) in a strongly m-pseudoconvex domain.

In the case when the density f ∈ Lp(Ω) with p > n/m, N.C. Nguyen [N14] proved the
Hölder continuity of the solution to (4.1.1) when the boundary data is in C1,1(∂Ω) and the
density f satisfies a growth condition near the boundary of Ω.

In the case m = n, the author recently proved [Ch15a] that the solution to the Dirich-
let problem (4.1.1) is Hölder continuous on Ω̄ without assuming any condition near the
boundary. Using the same idea we can prove a similar result for the complex Hessian
equation. Accurately, we have the following theorem.
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Theorem 4.1.2. Let Ω ⊂ C
n be a bounded strongly m-pseudoconvex domain with smooth

boundary, ϕ ∈ C1,1(∂Ω) and 0 ≤ f ∈ Lp(Ω), for some p > n/m. Then the solution to
(4.1.1) U ∈ C0,α(Ω̄) for any 0 < α < γ1, where γ1 is a constant depending on m, n, p
defined by (4.5.1).

Moreover, if p ≥ 2n/m then the solution U ∈ C0,α(Ω̄), for any 0 < α < min{1
2 , 2γ1}.

In the particular case when f ∈ Lp(Ω), for p > n/m, and satisfies some condition near
the boundary ∂Ω we can get a better exponent.

Theorem 4.1.3. Let Ω ⊂ C
n be a strongly m-pseudoconvex bounded domain with smooth

boundary. Suppose ϕ ∈ C1,1(∂Ω) and 0 ≤ f ∈ Lp(Ω) for some p > n/m, such that

f(z) ≤ (h ◦ ρ(z))m near ∂Ω,

where ρ is the defining function on Ω and 0 ≤ h ∈ L2([−A, 0[), with A ≥ supΩ |ρ|, is
an increasing function. Then the solution U to (4.1.1) is Hölder continuous of exponent
α < min{1/2, 2γ1}, where γ1 is a constant defined by (4.5.1).

Finally, we prove Hölder continuity of the radially symmetric solution with a better
exponent which turns out to be optimal.

Theorem 4.1.4. Let f ∈ Lp(B) be a radial function, where p > n/m. Then the unique
solution U to (4.1.1) with zero boundary values is given by the explicit formula

(4.1.3) U(r) = −B

∫ 1

r

1

t2n/m−1

Ç

∫ t

0
ρ2n−1f(ρ)dρ

å1/m

dt, r = |z|,

where B =
Ä

Cm
n

2m+1n

ä−1/m
. Moreover, U ∈ C0,2− 2n

mp (B̄) for n/m < p < 2n/m and U ∈ Lip(B̄)
for p ≥ 2n/m.

4.2 Preliminaries

We define the differential operator Lα : SHm(Ω) ∩ L∞
loc(Ω) → D′(Ω) such that

ddcu ∧ α1 ∧ ... ∧ αm−1 ∧ βn−m = Lαuβn,

where α1, ..., αm−1 ∈ Σm. In appropriate complex coordinates this operator is the Laplace
operator.

Example 4.2.1. Using the G̊arding inequality (1.3.1), one can note that Lα(|z|2) ≥ 1 for
any αi ∈ Σm, 1 ≤ i ≤ m − 1.

We will prove the following essential proposition by applying ideas from the viscosity
theory developed in [EGZ11] for the complex Monge-Ampère equation and extended to the
complex Hessian equation by H.C.Lu [Lu13b]. A similar result to the following proposition,
but for m = n, was proved in [B%l96] (see also [Ch15a]).
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Proposition 4.2.2. Let u ∈ SHm(Ω) ∩ C(Ω) and 0 ≤ F ∈ C(Ω × R). The following
conditions are equivalent:
1) Lαu ≥ F 1/m(z, u), ∀α1, ..., αm−1 ∈ Σm.
2) (ddcu)m ∧ βn−m ≥ F (z, u)βn in Ω.

Proof. First observe that if u ∈ C2(Ω), then by Lemma 1.3.2 we can see that (1) is
equivalent to

S̃m(α)1/m ≥ F 1/m(z, u),

where α = ddcu is a real (1,1)-form belongs to Γ̂m.
The last inequality corresponds to

(ddcu)m ∧ βn−m ≥ F (z, u)βn in Ω.

(1 ⇒ 2) We consider the standard regularization uǫ of u by convolution with smoothing
kernel. We then get

Lαuǫ ≥ (F 1/m(z, u))ǫ.

Since uǫ is smooth, we infer by the observation above that

(ddcuǫ)
m ∧ βn−m ≥ ((F 1/m(z, u))ǫ)

mβn.

Letting ǫ → 0, by the convergence theorem for the Hessian operator under decreasing
sequence, we get

(ddcu)m ∧ βn−m ≥ F (z, u)βn in Ω.

(2 ⇒ 1) Fix x0 ∈ Ω and q is a C2-function in a neighborhood V ⋐ Ω of x0 such that u ≤ q
in this neighborhood and u(x0) = q(x0). We will prove that

(ddcq)m
x0

∧ βn−m ≥ F (x0, u(x0))βn.

First step: we claim that ddcqx0
∈ Γ̂m.

If u is smooth, we note that x0 is a local minimum point of q − u, then ddc(q − u)x0
≥ 0.

Hence, we see that (ddcq)k ∧ βn−k ≥ 0 in x0, for 1 ≤ k ≤ m. This gives that ddcqx0
∈ Γ̂m.

If u is non-smooth, let uǫ be the standard smooth regularization of u. Then uǫ is m-sh,
smooth and uǫ ց u. Now let us fix δ > 0 and ǫ0 > 0 such that the neighborhood of x0,
V ⊂ Ωǫ0

. For each ǫ < ǫ0, let yǫ be the maximum point of uǫ − q − δ|x − x0|2 on B̄ ⋐ V ,
where B is a small ball centered at x0. Then we have

uǫ(x) − q(x) − δ|x − x0|2 ≤ uǫ(yǫ) − q(yǫ) − δ|yǫ − x0|2.

Assume that yǫ → y ∈ B̄ and set x = x0. By passing to the limit in the last inequality, we
derive that

0 ≤ u(y) − q(y) − δ|y − x0|2,

but q ≥ u in V , then we can conclude that y = x0.
Let us then define

q̃ := q + δ|x − x0|2 + uǫ(yǫ) − q(yǫ) − δ|yǫ − x0|2,
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which is a C2-function in B and satisfies uǫ(yǫ) = q̃(yǫ) and q̃ ≥ uǫ in B, then the following
inequality holds in yǫ,

(ddcq̃)k ∧ βn−k ≥ 0 for 1 ≤ k ≤ m.

This means that
(ddcq + δβ)k

yǫ
∧ βn−k ≥ 0 for 1 ≤ k ≤ m.

Letting ǫ tend to 0, we get

(ddcq + δβ)k
x0

∧ βn−k ≥ 0 for 1 ≤ k ≤ m.

Since the last inequality holds for any δ > 0, we can get that ddcqx0
∈ Γ̂m.

Second step: assume that there exist a point x0 ∈ Ω and a C2-function q satisfying
u ≤ q in a neighborhood of x0 and u(x0) = q(x0) such that

(ddcq)m
x0

∧ βn−m < F (x0, u(x0))βn.

Let us set

qǫ(x) = q(x) + ǫ(|x − x0|2 − r2

2
),

which is a C2-function and for 0 < ǫ ≪ 1 small enough we have

0 < (ddcqǫ)m
x0

∧ βn−m < F (x0, u(x0))βn.

Since F is continuous on Ω × R, there exists r > 0 such that

(ddcqǫ)m ∧ βn−m ≤ F (x, u(x))βn in B(x0, r).

Hence, we get
(ddcqǫ)m ∧ βn−m ≤ (ddcu)m ∧ βn−m in B(x0, r),

and qǫ = q + ǫr2/2 > q ≥ u on ∂B(x0, r). It follows from the comparison principle (see
[B%l05, Lu12]) that qǫ ≥ u in B(x0, r). But this contradicts that qǫ(x0) = u(x0) − ǫr2/2 <
u(x0).

We have shown that for every point x0 ∈ Ω, and every C2-function q in a neighborhood
of x0 such that u ≤ q in this neighborhood and u(x0) = q(x0), we have (ddcq)m

x0
∧ βn−m ≥

F (x0, u(x0))βn, hence we have Lαqx0
≥ F 1/m(x0, u(x0)).

Final step: assume that F > 0 is a smooth function. Then there exists a C∞-function,
say g such that Lαg = F 1/m(x, u) . Hence Theorem 3.2.10’ in [H94] implies that ϕ = u−g
is Lα-subharmonic, consequently Lαu ≥ F 1/m(x, u).
In case F > 0 is only continuous, we note that

F (z, u) = sup{w ∈ C∞, 0 < w ≤ F}.

Since (ddcu)m ∧ βn−m ≥ F (x, u)βn, we get (ddcu)m ∧ βn−m ≥ wβn. As w > 0 is smooth,
we see that Lαu ≥ w1/m. Therefore, we conclude Lαu ≥ F 1/m(x, u).
In the general case 0 ≤ F ∈ C(Ω × R), we observe that uǫ(z) = u(z) + ǫ|z|2 satisfies

(ddcuǫ)
m ∧ βn−m ≥ (F (x, u) + ǫm)βn.

By the last step, we get Lαuǫ ≥ (F (x, u) + ǫm)1/m , then the required result follows by
letting ǫ tend to 0.
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Definition 4.2.3. Let Ω ⊂ C
n be a smoothly bounded domain, we say that Ω is strongly

m-pseudoconvex if there exist a defining function ρ of Ω (i.e. a smooth function in a
neighborhood U of Ω̄ such that ρ < 0 on Ω, ρ = 0 and dρ Ó= 0 on ∂Ω ) and c > 0 such that

(ddcρ)k ∧ βn−k ≥ cβn in U, for 1 ≤ k ≤ m.

The existence of a solution U to the Dirichlet problem (4.1.1) was proved in [DK14].
This solution can be given by the upper envelope of subsolutions to the Dirichlet problem
as in [BT76] for the complex Monge-Ampère equation.

(4.2.1) U = sup{v ∈ SHm(Ω) ∩ C(Ω̄); v|∂Ω ≤ ϕ and (ddcv)m ∧ βn−m ≥ F (z, v)βn}.

However, thanks to Lemma 4.2.2, we can describe the solution as the following

(4.2.2) U = sup{v ∈ Vm(Ω, ϕ, F )},

where the family Vm(Ω, ϕ, F ) is defined as

Vm = {v ∈ SHm(Ω) ∩ C(Ω̄); v|∂Ω ≤ ϕ and Lαv ≥ F (z, v)1/m, ∀αi ∈ Σm, 1 ≤ i ≤ m − 1}.

This family is nonempty and stable under the operation of taking finite maximum.
Observe that the description of the solution in formula (4.2.2) is more convenient, since it
deals with subsolutions with respect to a family of linear elliptic operators.

4.3 Existence of solutions

At first, Li proved [Li04] that there exist smooth solutions to (4.1.1) for smooth positive
densities and smooth boundary values. Moreover, it is well known that there exist contin-
uous solutions to (4.1.1) for Lp-densities (see [DK14]). We can give an alternative proof
to the existence of these solutions using an analogue method to the proof of Proposition
3.3.2.

In this section we study the existence of a continuous solution to (4.1.2) following
Cegrell [Ce84] and using the Schauder-Tychonoff fixed point theorem.

Let u1 be the continuous solution to (4.1.1) for the boundary values ϕ and the density
f = 0 and let also u2 be the continuous solution to (4.1.1) for the boundary values ϕ and
the density f = maxK F (z, t) where K := Ω̄ × {max∂Ω |ϕ|}.

Let us set
A := {v ∈ SHm(Ω) ∩ L∞(Ω); u2 ≤ v ≤ u1}.

This set is convex and compact in the weak topology. We define the operator G : A → A
by taking G(v) to be the continuous solution to the Dirichlet problem:

(ddcw)m ∧ βn−m = F (z, v)βn and lim
z→∂Ω

w(z) = ϕ,

which exists and is unique by [DK14]. We claim that this operator is continuous in the
L1(Ω)-topology. Let vj ∈ A converges to v in the L1(Ω)-topology. By passing to a subse-
quence, we can assume that vj converges pointwise almost everywhere to v. We set

mi(z) := inf
j≥i

F (z, vj) and Mi(z) := sup
j≥i

F (z, vj).
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It is clear mi(z) ≤ F (z, vi) ≤ Mi(z). We take ṽi and v̂i to be the solutions to (4.1.1)
with densities mi and Mi respectively. Thus, we conclude v̂i ≤ G(vi) ≤ ṽi. Hence, (ṽi) is
decreasing sequence and (v̂i) is increasing sequence. So, we put lim ṽ := lim ṽi ∈ SHm(Ω)
and v̂ := (lim v̂i)

∗ ∈ SHm(Ω). Hence, we infer

(ddcṽ)m ∧ βn−m = (ddcv̂)m ∧ βn−m = F (z, v)βn.

The comparison principle implies that ṽ = v̂. Finally, we get lim G(vi) = v̂ = ṽ = G(v)
almost everywhere. Hence G is continuous in the weak topology.

It follows from the Schauder-Tychonoff fixed point theorem that there exists v ∈ A
such that G(v) = v. So that we have a function u ∈ SHm(Ω)∩L∞(Ω) such that (ddcu)m ∧
βn−m = F (z, u)βn and limz→ξ u(z) = ϕ(ξ), ∀ξ ∈ ∂Ω.

Since our solution is the unique solution to (4.1.1) for the bounded density f = F (z, u),
this implies that u is continuous on Ω̄.

The uniqueness of the solution to (4.1.2) is a consequence of the comparison principle.
Indeed, suppose that there exist two continuous solutions u1, u2 such that the open set
V := {u1 < u2} is not empty. Since F is nondecreasing in the second variable, we get
that (ddcu1)m ∧ βn−m ≤ (ddcu2)m ∧ βn−m in V and u1 = u2 on ∂V . By the comparison
principle, we infer that u1 ≥ u2 in V . This is a contradiction.

4.4 Modulus of continuity of the solution

Lemma 4.4.1. Let Ω ⊂ C
n be a bounded strongly m-pseudoconvex domain with smooth

boundary. Then for every point ξ ∈ ∂Ω and ϕ ∈ C(∂Ω), there exist a constant C > 0
depending only on Ω and a function hξ ∈ SHm(Ω)∩C(Ω̄) such that the following conditions
hold:
(1) hξ(z) ≤ ϕ(z), ∀z ∈ ∂Ω,
(2) hξ(ξ) = ϕ(ξ),
(3) ωhξ

(t) ≤ Cωϕ(t1/2).

Proof. Since Ω is strongly m-pseudoconvex and its defining function ρ is smooth, we can
choose B > 0 large enough such that the function

g(z) = Bρ(z) − |z − ξ|2,

is m-subharmonic in Ω. Let ω̄ϕ be the minimal concave majorant of ωϕ and define

χ(x) = −ω̄ϕ((−x)1/2),

which is a convex nondecreasing function on [−d2, 0]. Now, fix r > 0 so small that |g(z)| ≤
d2 in B(ξ, r) ∩ Ω and define for z ∈ B(ξ, r) ∩ Ω̄ the function

h(z) = χ ◦ g(z) + ϕ(ξ).

It is clear that h is a continuous m-subharmonic function on B(ξ, r)∩Ω and one can observe
that h(z) ≤ ϕ(z) if z ∈ B(ξ, r) ∩ ∂Ω and h(ξ) = ϕ(ξ). Moreover, by the subadditivity of
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ω̄ϕ and Lemma 2.4.1 we have

ωh(t) = sup
|z−y|≤t

|h(z) − h(y)|

≤ sup
|z−y|≤t

ω̄ϕ

ï

∣

∣

∣|z − ξ|2 − |y − ξ|2 − B(ρ(z) − ρ(y))
∣

∣

∣

1/2
ò

≤ sup
|z−y|≤t

ω̄ϕ

î

((2d + B1)|z − y|)1/2
ó

≤ C̃.ωϕ(t1/2),

where C̃ := 1 + (2d + B1)1/2 is a constant depending on Ω.
Recall that ξ ∈ ∂Ω and fix 0 < r1 < r and γ1 ≥ 1 + d/r1 such that

−γ1ω̄ϕ

î

(|z − ξ|2 − Bρ(z))1/2
ó

≤ inf
∂Ω

ϕ − sup
∂Ω

ϕ,

for z ∈ ∂Ω ∩ ∂B(ξ, r1). Let us set γ2 = inf
∂Ω

ϕ, it follows that

γ1(h(z) − ϕ(ξ)) + ϕ(ξ) ≤ γ2 for z ∈ ∂B(ξ, r1) ∩ Ω̄.

Now set

hξ(z) =

®

max{γ1(h(z) − ϕ(ξ)) + ϕ(ξ), γ2} ; z ∈ Ω̄ ∩ (B(ξ, r1),

γ2 ; z ∈ Ω̄ \ B(ξ, r1),

which is a well defined m-subharmonic function on Ω and continuous on Ω̄. Moreover, it
satisfies hξ(z) ≤ ϕ(z) for all z ∈ ∂Ω. Indeed, on ∂Ω ∩ B(ξ, r1) we have

γ1(h(z) − ϕ(ξ)) + ϕ(ξ) = −γ1ω̄ϕ(|z − ξ|) + ϕ(ξ) ≤ −ω̄ϕ(|z − ξ|) + ϕ(ξ) ≤ ϕ(z).

Furthermore, the modulus of continuity of hξ satisfies

ωhξ
(t) ≤ Cωϕ(t1/2),

where C := γ1C̃ depends on Ω. Hence, hξ satisfies the conditions (1)-(3), and this completes
the proof.

In the following proposition, we establish a barrier to the problem (4.1.2) and estimate
its modulus of continuity.

Proposition 4.4.2. Let Ω ⊂ C
n be a bounded strongly m-pseudoconvex domain with

smooth boundary. Assume that ωϕ is the modulus of continuity of ϕ ∈ C(∂Ω) and 0 ≤
F ∈ C(Ω̄ × R) is nondecreasing in the second variable. Then there exists a subsolution
v ∈ Vm(Ω, ϕ, F ) such that v = ϕ on ∂Ω and the modulus of continuity of v satisfies the
following inequality

ωv(t) ≤ λ max{ωϕ(t1/2), t1/2},

where λ = η(1 + ‖F‖1/m
L∞(K)), K = Ω̄ × {sup∂Ω |ϕ|} and η is a positive constant depending

on Ω.
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Proof. First of all, fix ξ ∈ ∂Ω. We will prove that there exists vξ ∈ Vm(Ω, ϕ, F ) such that
vξ(ξ) = ϕ(ξ).
We fix z0 ∈ Ω and set K1 := supK F 1/m. Hence, we have

Lα(K1|z − z0|2) = K1Lα|z − z0|2 ≥ F 1/m(z, sup
∂Ω

|ϕ|),

for all αi ∈ Σm, 1 ≤ i ≤ m − 1 and z ∈ Ω̄. We also set K2 := K1|ξ − z0|2 and define the
continuous function

ϕ̃(z) := ϕ(z) − K1|z − z0|2 + K2.

we find, by Lemma 4.4.1, a constant C > 0 depending on Ω and a function hξ satisfying
the following conditions:
1) hξ(z) ≤ ϕ̃(z), ∀z ∈ ∂Ω,
2) hξ(ξ) = ϕ̃(ξ),
3) ωhξ

(t) ≤ Cωϕ̃(t1/2).
Then the required function vξ ∈ Vm(Ω, ϕ, F ) is given by

vξ(z) := hξ(z) + K1|z − z0|2 − K2.

It is obvious that vξ ∈ SHm(Ω) ∩ C(Ω̄). Since

hξ(z) ≤ ϕ̃(z) = ϕ(z) − K1|z − z0|2 + K2 on ∂Ω,

we conclude vξ(z) ≤ ϕ(z) on ∂Ω and vξ(ξ) = ϕ(ξ). Moreover, we have

Lαvξ = Lαh + K1Lα|z − z0|2 ≥ F 1/m(z, vξ) in Ω.

Furthermore, by the hypothesis on hξ , we can estimate the modulus of continuity of vξ:

ωvξ
(t) = sup

|z−y|≤t
|v(z) − v(y)| ≤ ωh(t) + K1ω|z−z0|2(t)

≤ Cωϕ̃(t1/2) + 4d3/2K1t1/2

≤ Cωϕ(t1/2) + 2dK1(C + 2d1/2)t1/2

≤ (C + 2d1/2)(1 + 2dK1) max{ωϕ(t1/2), t1/2},

where d := diam(Ω). Hence, we have

ωvξ
(t) ≤ η(1 + K1) max{ωϕ(t1/2), t1/2},

where η := (C + 2d1/2)(1 + 2d) is a constant depending on Ω.

We have just proved that for each ξ ∈ ∂Ω, there is a function vξ ∈ Vm(Ω, ϕ, F ) such
that vξ(ξ) = ϕ(ξ), and

ωvξ
(t) ≤ η(1 + K1) max{ωϕ(t1/2), t1/2}.

Let us set

v(z) = sup {vξ(z); ξ ∈ ∂Ω} .
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We have 0 ≤ ωv(t) ≤ η(1 + K1) max{ωϕ(t1/2), t1/2}, thus ωv(t) converges to zero when
t converges to zero. Consequently, we get v ∈ C(Ω̄) and v = v∗ ∈ SHm(Ω). Thanks to
Choquet’s lemma, we can choose a nondecreasing sequence (vj), where vj ∈ Vm(Ω, ϕ, F ),
converging to v almost everywhere. So that

Lαv = lim
j→∞

Lαvj ≥ F 1/m(z, v), ∀αi ∈ Σm.

It is clear that v(ξ) = ϕ(ξ) for any ξ ∈ ∂Ω. Finally, we get v ∈ Vm(Ω, ϕ, F ) such that
v = ϕ on ∂Ω and ωv(t) ≤ η(1 + K1) max{ωϕ(t1/2), t1/2}.

Corollary 4.4.3. Under the same assumption of Proposition 4.4.2. There exists a m-
superharmonic function ṽ ∈ C(Ω̄) such that ṽ = ϕ on ∂Ω and

ωṽ(t) ≤ λ max{ωϕ(t1/2), t1/2},

where λ > 0 is as in Proposition 4.4.2.

Proof. We can do the same construction as in the proof of Proposition 4.4.2 for the function
ϕ1 = −ϕ ∈ C(∂Ω), then we get v1 ∈ Vm(Ω, ϕ1, F ) such that v1 = ϕ1 on ∂Ω and ωv1

(t) ≤
λ max{ωϕ(t1/2), t1/2}. Hence, we set ṽ = −v1 which is a m-superharmonic function on Ω,
continuous on Ω̄ and satisfying ṽ = ϕ on ∂Ω and ωṽ(t) ≤ λ max{ωϕ(t1/2), t1/2}.

Proof of Theorem 4.1.1. Thanks to Proposition 4.4.2, we obtain a subsolution v ∈
Vm(Ω, ϕ, F ) with v = ϕ on ∂Ω and ωv(t) ≤ λ max{ωϕ(t1/2), t1/2}. From Corollary 4.4.3,
we construct a m-superharmonic function ṽ ∈ C(Ω̄) such that ṽ = ϕ on ∂Ω and ωṽ(t) ≤
λ max{ωϕ(t1/2), t1/2}, where λ is as in Proposition 4.4.2.
Applying the maximum principle, we get that

v(z) ≤ U(z) ≤ ṽ(z) for all z ∈ Ω̄.

We set g(t) = max{λ max{ωϕ(t1/2), t1/2}, ωF 1/m(t)} and d := diam(Ω). Then

|U(z) − U(ξ)| ≤ g(|z − ξ|); ∀z ∈ Ω, ∀ξ ∈ ∂Ω.

Let us fix a point z0 ∈ Ω, for any vector τ ∈ C
n with small enough norm, we define

V (z, τ) =

®

U(z) ; z + τ /∈ Ω, z ∈ Ω̄,
max{U(z), v1(z)} ; z, z + τ ∈ Ω,

where v1(z) = U(z + τ) + g(|τ |)|z − z0|2 − d2g(|τ |) − g(|τ |) .
Observe that if z ∈ Ω, z + τ ∈ ∂Ω, we have

(4.4.1) v1(z) − U(z) ≤ g(|τ |) + g(|τ |)|z − z0|2 − d2g(|τ |) − g(|τ |) ≤ 0.

Then v1(z) ≤ U(z) for z ∈ Ω, z + τ ∈ ∂Ω. In particular, V (z, τ) is well defined and belongs
to SHm(Ω) ∩ C(Ω̄).
We claim that

F 1/m(z1, U(x)) − F 1/m(z2, U(x)) ≤ ωF 1/m(|z1 − z2|),
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for all x, z1, z2 ∈ Ω̄. Indeed, it is enough to show that

‖U‖L∞(Ω̄) ≤ M := a + 2d2 sup
Ω̄

F 1/m(., −a),

with a := sup∂Ω |ϕ|. By the maximum principle, we have U ≤ a. We set b = supΩ̄ F 1/m(., −a)
and ũ = b(|z −z0|2 −d2)−a ∈ SHm(Ω)∩C(Ω̄) where z0 ∈ Ω is a fixed point. Hence, ũ ≤ ϕ
on ∂Ω. Since F is nondecreasing in the second variable, we get

(ddcũ)m ∧ βn−m ≥ F (z, −a)βn ≥ F (z, ũ)βn.

Consequently, ũ ≤ U in Ω and then we get the required statement.
Now, we assert that LαV ≥ F 1/m(z, V ), for all αi ∈ Σm. Indeed,

Lαv1(z) ≥ F 1/m(z + τ, U(z + τ)) + g(|τ |)Lα(|z − z0|2)

≥ F 1/m(z + τ, U(z + τ)) + g(|τ |)
≥ F 1/m(z + τ, U(z + τ)) + |F 1/m(z + τ, U(z + τ)) − F 1/m(z, U(z + τ))|
≥ F 1/m(z, U(z + τ)),

≥ F 1/m(z, v1(z)),

for all αi ∈ Σm, 1 ≤ i ≤ m − 1.
If z ∈ ∂Ω , z + τ /∈ Ω, then V (z, τ) = U(z) = ϕ(z). On the other hand, z ∈ ∂Ω, z + τ ∈ Ω,
we get by (4.4.1) that V (z, τ) = max{U(z), v1(z)} = U(z) = ϕ(z). Then V (z, τ) = ϕ(z) on
∂Ω, hence V ∈ Vm(Ω, ϕ, F ).
Consequently, V (z, τ) ≤ U(z); ∀z ∈ Ω̄. This implies that if z ∈ Ω , z + τ ∈ Ω̄, we have

U(z + τ) + g(|τ |)|z − z0|2 − d2g(|τ |) − g(|τ |) ≤ U(z).

Hence,
U(z + τ) − U(z) ≤ (d2 + 1)g(|τ |) − g(|τ |).|z − z0|2 ≤ (d2 + 1)g(|τ |).

Reversing the roles of z + τ and z, we get

|U(z + τ) − U(z)| ≤ (d2 + 1)g(|τ |); ∀z ∈ Ω̄.

Thus,
ωU(t) ≤ (d2 + 1)g(t).

Finally, we have

ωU(t) ≤ γ(1 + ‖F‖1/m
L∞(K)) max{ωϕ(t1/2), ωF 1/m(t), t1/2},

where γ := η(d2+1), η is a positive constant depending on Ω and K = Ω̄×{sup∂Ω |ϕ|}.

Remark 4.4.4. When m = n we can get by a slight modification that the proof is still
true for a bounded strongly hyperconvex Lipschitz domain in C

n and this yields Theorem
2.1.3 in Chapter 2.

Theorem 4.1.1 has the following consequence.
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Corollary 4.4.5. Let Ω be a smoothly bounded strongly m-pseudoconvex domain in C
n.

Let ϕ ∈ C2α(∂Ω) and 0 ≤ f1/m ∈ Cα(Ω̄), 0 < α ≤ 1/2. Then the solution U of the Dirichlet
problem (4.1.1) belongs to Cα(Ω̄).

This result was proved by Nguyen in [N14] for the homogeneous case (f ≡ 0). H.C. Lu
proved in [Lu12, Lu13b] the Hölder continuity of the solution U under the same assumption
of Corollary 4.4.5 in a bounded strongly pseudoconvex domain. A similar result for m = n
goes back to Bedford and Taylor in [BT76] and the main idea of the proof depends on
Walsh’s method [Wal69].

We now give an example to point out that there is a loss in the regularity up to the
boundary and show that our result is optimal.

Example 4.4.6. Let ψ be a concave modulus of continuity on [0, 1] and

ϕ(z) = −ψ[
»

(1 + Rez1)/2], for z = (z1, z2, ..., zn) ∈ ∂B ⊂ C
n.

We can show that ϕ ∈ C(∂B) with modulus of continuity ωϕ(t) ≤ Cψ(t), for some C > 0.
We consider the following Dirichlet problem:











u ∈ SHm(Ω) ∩ C(Ω̄),
(ddcu)m ∧ βn−m = 0 in B,
u = ϕ on ∂B,

where 2 ≤ m ≤ n is an integer. Then by the comparison principle, U(z) := −ψ[
»

(1 + Rez1)/2]
is the unique solution to this problem. One can observe by a radial approach to the bound-
ary point (−1, 0, ..., 0) that

C1ψ(t1/2) ≤ ωU(t) ≤ C2ψ(t1/2),

for some C1, C2 > 0.

4.5 Hölder continuous solutions for Lp-densities

4.5.1 Preliminaries and known results

The existence of a weak solution to the complex Hessian equation in some bounded domain
in C

n was established in the work of Dinew and Ko%lodziej [DK14]. More precisely, let
Ω ⋐ C

n be a smoothly (m − 1)-pseudoconvex domain, ϕ ∈ C(∂Ω) and 0 ≤ f ∈ Lp(Ω) for
some p > n/m. Then there exists U ∈ SHm(Ω) ∩ C(Ω̄) such that (ddc

U)m ∧ βn−m = fβn

in Ω and U = ϕ on ∂Ω.

Recently, N.C. Nguyen in [N14] proved that the Hölder continuity of this solution under
some technical conditions: the density f ∈ Lp(Ω), p > n/m is bounded near the boundary
∂Ω or f ≤ C|ρ|−mν there and the boundary data ϕ belongs to C1,1(∂Ω).

Here we follow the approach proposed in [GKZ08] for the complex Monge-Ampère
equation. A crucial role in this approach is played by an a priori weak stability estimate
of the solution. This approach has been adapted to the complex Hessian equation in [N14]
and [Lu12]. Here is the precise statement.
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In order to simplify the notation, we set from now on for r ≥ 1,

(4.5.1) γr =
r

r + mq + pq(n−m)
p− n

m

,

where p > n/m, 1 ≤ m ≤ n and 1/p + 1/q = 1.

Theorem 4.5.1. Fix 0 ≤ f ∈ Lp(Ω) for p > n/m. Let u, v ∈ SHm(Ω) ∩ L∞(Ω̄) be such
that (ddcu)m∧βn−m = fβn in Ω, and lim infz→∂Ω(u−v)(z) ≥ 0. Fix r ≥ 1 and 0 < γ < γr,
where γr is as in (4.5.1). Then there exists a uniform positive constant C = C(γ, ‖f‖Lp(Ω))
such that

sup
Ω

(v − u) ≤ C
î

‖(v − u)+‖Lr(Ω)

óγ
,

where (v − u)+ := max{v − u, 0}.

The proof of this stability theorem is similar to the one for the complex Monge-Ampère
equation (see Theorem 3.2.4).

The second result gives the Hölder continuity under some additional hypothesis.

Theorem 4.5.2. ([N14]). Let 0 ≤ f ∈ Lp(Ω) for p > n/m, and ϕ ∈ C(∂Ω). Let U be the
continuous solution to (4.1.1). Suppose that there exists v ∈ C0,ν(Ω̄) for 0 < ν ≤ 1 such
that v ≤ U in Ω and v = ϕ on ∂Ω.
1) If ∇U ∈ L2(Ω) then U ∈ C0,α(Ω̄) for any α < min{ν, γ2}.
2) If the total mass of ∆U is finite in Ω then U ∈ C0,α(Ω̄) for any α < min{ν, 2γ1}, where
γr is defined by (4.5.1) for r ≥ 1.

This result is analogue to that proved by Guedj, Ko%lodziej and Zeriahi [GKZ08].

4.5.2 Construction of Hölder barriers

The remaining problem is to construct a Hölder continuous barrier with the right exponent
which guarantees one of the conditions in Theorem 4.5.2.

Using the interplay between the real and complex Monge-Ampère measures, we will
construct Hölder continuous m-subharmonic barriers for the Dirichlet problem (4.1.1)
when f ∈ Lp(Ω), p ≥ 2n/m.

Proposition 4.5.3. Let 0 ≤ f ∈ Lp(Ω), p ≥ 2n/m and let u be a locally convex function
in Ω and continuous on Ω̄. If the real Monge-Ampère measure Mu ≥ f2n/mdV2n then the
complex Hessian measure satisfies the inequality (ddcu)m ∧ βn−m ≥ fdV2n in the weak
sense of measures on Ω.

Proof. It stems from Proposition 3.5.3 that (ddcu)n ≥ fn/mdV2n in Ω. Set v = |z|2 ∈
PSH(Ω). Since (ddcu)n ≥ fn/mdV2n and (ddcv)n ≥ dV2n, we get by Theorem 1.2.8 that

(ddcu)m ∧ βn−m ≥ fdV2n.

The following result gives the existence of a 1/2-Hölder continuous m-subharmonic
barrier for the problem (4.1.1) when f ∈ Lp(Ω), p ≥ 2n/m.
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Theorem 4.5.4. Let ϕ ∈ C0,1(∂Ω) and f ∈ Lp(Ω), p ≥ 2n/m. Then there exists v ∈
SHm(Ω) ∩ C0,1/2(Ω̄) such that v = ϕ on ∂Ω and (ddcv)m ∧ βn−m ≥ fβn in the weak sense
of currents. In particular, v ≤ U in Ω.

Proof. Let B be a large ball containing Ω̄ and let f̃ be the function defined by f̃ = f on
Ω and f̃ = 0 on B \ Ω. Then f̃ ∈ Lp(B), p ≥ 2n/m . Let us set µ := f̃2n/m(n!)2n/mdV2n

that is a nonnegative Borel measure on B with µ(B) < ∞. Thanks to Theorem 3.5.2 there
exists a unique convex function u ∈ C(B̄) such that Mu = µ in B and u = 0 on ∂B. Hence
u is Lipschitz continuous on Ω̄. By Proposition 4.5.3, we have (ddcu)m ∧ βn−m ≥ fβn in
Ω.
We will construct the required barrier as follows. Let hϕ−u be the upper envelope of
Vm(Ω, ϕ − u, 0). Then, thanks to Theorem 4.1.1, hϕ−u is Hölder continuous of exponent
1/2 in Ω̄. Now it is easy to check that v := u + hϕ−u is m-sh in Ω and satisfies v = ϕ in
∂Ω and (ddcv)m ∧ βn−m ≥ fβn on Ω. Hence v ≤ U in Ω by the comparison principle.

The last theorem provides us with a Hölder continuous barrier for the Dirichlet problem
(4.1.1) with better exponent.

However, when f ∈ Lp(Ω) for p > n/m, we can find a Hölder continuous barrier with
exponent less than γ1.

Proof of Theorem 4.1.2. We first prove that the total mass of ∆U is finite in Ω. Let U0

be the solution to the Dirichlet problem (4.1.1) with zero boundary values and the density
f . We first claim that the total mass of ∆U0 is finite in Ω. Indeed, let ρ be the defining
function of Ω. By Corollary 1.3.24 we obtain

(4.5.2)

∫

Ω
ddc

U0∧(ddcρ)m−1∧βn−m ≤
ï∫

Ω
(ddc

U0)m ∧ βn−m
ò

1

m
ï∫

Ω
(ddcρ)m ∧ βn−m

ò
m−1

m

.

Since Ω is a bounded strongly m-pseudoconvex domain, there exists a constant c > 0 such
that (ddcρ)j ∧ βn−j ≥ cβn in Ω for 1 ≤ j ≤ m. We find A ≫ 1 such that Aρ − |z|2 is m-sh
function. Now, it is easy to see that

∫

Ω
ddc

U0 ∧ βn−1 ≤
∫

Ω
ddc

U0 ∧ (Addcρ)m−1 ∧ βn−m.

Hence, the inequality (4.5.2) yields

∫

Ω
ddc

U0 ∧ βn−1 ≤ Am−1
ï∫

Ω
(ddc

U0)m ∧ βn−m
ò

1

m
ï∫

Ω
(ddcρ)m ∧ βn−m

ò
m−1

m

.

Now, we note that the total mass of complex Hessian measures of ρ and U0 are finite in
Ω. Therefore, the total mass of ∆U0 is finite in Ω.
Let ϕ̃ be a C1,1-extension of ϕ to Ω̄ such that ‖ϕ̃‖C1,1(Ω̄) ≤ C‖ϕ‖C1,1(∂Ω), for some C > 0.

Let v = Bρ+ ϕ̃+U0, where B ≫ 1 is so that Bρ+ ϕ̃ ∈ SHm(Ω)∩C(Ω̄). By the comparison
principle, we see that v ≤ U in Ω and v = U = ϕ on ∂Ω. Since ρ is smooth in a neighborhood
of Ω̄ and ‖∆U0‖Ω < +∞, we derive that ‖∆v‖Ω < +∞. Then, by Lemma 3.4.6, we have
‖∆U‖Ω < +∞.

To apply Theorem 4.5.2 we construct a Hölder continuous function v such that v ≤ U

in Ω and v = ϕ on ∂Ω. We first assume that f = 0 near the boundary of Ω, that is there
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exists a compact K ⋐ Ω such that f = 0 in Ω \ K. We set A > 0 large enough so that
v := Aρ + ϕ̃ ∈ SHm(Ω) ∩ C0,1(Ω̄) and v ≤ U in a neighborhood of K. By the comparison
principle, we can find that v ≤ U in Ω \ K and hence v ≤ U in Ω and v|∂Ω = U|∂Ω = ϕ.
Thus, Theorem 4.5.2 implies that the solution U is Hölder continuous in Ω̄ of exponent
α1 < 2γ1, where γ1 is as in (4.5.1).

For the general case, when 0 ≤ f ∈ Lp(Ω), p > n/m. Let us fix a large ball B ⊂ C
n

such that Ω ⋐ B ⊂ C
n. We define f̃ = f in Ω and f̃ = 0 in B \ Ω. Let h1 to the Dirichlet

problem in B with the density f̃ and zero boundary values. Since f̃ ∈ Lp(Ω) is bounded
near ∂B, h1 is Hölder continuous on B̄ of exponent α1 < 2γ1 by the previous case. Now
let h2 denote the solution to the Dirichlet problem in Ω with boundary values ϕ − h1 and
zero density. Thanks to Theorem 4.1.1, we infer that h2 ∈ C0,α2(Ω̄), where α2 = α1/2.
Therefore, the required barrier will be v = h1 + h2. It is clear that v ∈ SHm(Ω) ∩ C(Ω̄),
v|∂Ω = ϕ and (ddcv)m ∧ βn−m ≥ fβn in the weak sense in Ω. Hence, by the comparison
principle, we get that v ≤ U in Ω and v = U = ϕ on ∂Ω. Moreover, we have v ∈ C0,α(Ω̄)
for any α < γ1.
Hence, when p > n/m, we get by Theorem 4.5.2 that U ∈ C0,α(Ω̄) for any α < γ1.
Moreover, if p ≥ 2n/m, Theorem 4.5.4 gives the existence of a 1/2-Hölder continuous
barrier to the Dirichlet problem. Then, we obtain by Theorem 4.5.2 that U ∈ C0,α(Ω̄) for
any α < min{1/2, 2γ1}.

We are able to find a better Hölder-exponent of the solution, when the density f ∈
Lp(Ω), p > n/m, satisfies the following condition near the boundary ∂Ω,

f(z) ≤ (h ◦ ρ(z))m near ∂Ω,

where 0 ≤ h ∈ L2([−A, 0[) is an increasing function and A ≥ supΩ |ρ|.

Proof of Theorem 4.1.3. Let χ : [−A, 0] → R
− be the primitive of h such that χ(0) = 0.

It is clear that χ is a convex increasing function. By the Hölder inequality, we see that

|χ(t1) − χ(t2)| ≤ ‖h‖L2 |t1 − t2|1/2,

for all t1, t2 ∈ [−A, 0]. From the hypothesis, there exists a compact K ⋐ Ω such that

(4.5.3) f(z) ≤ (h ◦ ρ(z))m for z ∈ Ω \ K.

Then the function v = χ ◦ ρ is m-subharmonic in Ω, continuous on Ω̄ and satisfies

ddcχ ◦ ρ = χ′′(ρ)dρ ∧ dcρ + χ′(ρ)ddcρ ≥ χ′(ρ)ddcρ,

in the weak sense of currents in Ω.
By Definition 4.2.3, there is a constant c > 0 such that (ddcρ)m ∧ βn−m ≥ cβn. Hence

the inequality (4.5.3) yields

(4.5.4) (ddcv)m ∧ βn−m ≥ c(h ◦ ρ)mβn ≥ c.fβn in Ω \ K.

Now consider a C1,1-extension ϕ̃ of ϕ to Ω̄ and choose B ≫ 1 large enough so that Bρ + ϕ̃
is m-subharmonic in Ω and

ṽ := B(v + ρ) + ϕ̃ ≤ U in a neighborhood of K.
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Then ṽ is m-subharmonic in Ω and if B ≥ (1/c)1/m, then it follows from (4.5.4) that

(ddcṽ)m ∧ βn−m ≥ fβn in Ω \ K.

By the comparison principle, we have ṽ ≤ U on Ω \ K. Consequently, ṽ ≤ U on Ω̄, ṽ = ϕ
on ∂Ω and ṽ ∈ C0,1/2(Ω̄).
As in the proof of Theorem 4.1.2 we have that the total mass of ∆U is finite in Ω. Hence,
Theorem 4.5.2 yields that the solution U belongs to C0,α(Ω̄) for any α < min{1/2, 2γ1}.

As an example of application of the last result, fix p > n/m, take h(t) := (−t)−α with
0 < α < 1/(pm), t < 0 and define f := (h ◦ ρ)m.

4.5.3 Hölder continuity for radially symmetric solution

Here we consider the case when the right hand side and the boundary data are radial.
In this case, Huang and Xu [HX10] gave an explicit formula for the radial solution of
the Dirichlet problem (4.1.1) with f ∈ C(B̄) (see also [Mo86] for complex Monge-Ampère
equations). Moreover, they studied higher regularity for radial solutions (see also [DD13]).

Here, we will extend this explicit formula to the case when f ∈ Lp(B), for p > n/m, is
a radial nonnegative function and ϕ ≡ 0 on ∂B. Then, we prove Hölder continuity of the
radially symmetric solution.

Proof of Theorem 4.1.4. Let fk ∈ C(B̄) be a positive radial symmetric function such
that {fk} converges to f in Lp(B). Then there exists, by [HX10], a unique solution Uk ∈
C(B̄) to (4.1.1) with zero boundary values and the density fk, given by the following
formula:

Uk(r) = −B

∫ 1

r

1

t2n/m−1

Ç

∫ t

0
ρ2n−1fk(ρ)dρ

å1/m

dt.

It is clear that Uk converges in L1(B) to the function ũ given by the same formula i.e.

ũ(r) = −B

∫ 1

r

1

t2n/m−1

Ç

∫ t

0
ρ2n−1f(ρ)dρ

å1/m

dt.

We claim that the sequence {Uk} is uniformly bounded and equicontinuous in B̄. Indeed,
let 0 < r < r1 ≤ 1, we have

|Uk(r1) − Uk(r)| = B

∫ r1

r

1

t2n/m−1

Ç

∫ t

0
ρ2n−1fk(ρ)dρ

å1/m

dt

≤ B

∫ r1

r

1

t2n/m−1

Ç

∫ t

0
ρ(2n−1)/qρ(2n−1)/pfk(ρ)dρ

å1/m

dt

≤ C‖fk‖1/m
Lp(B)

∫ r1

r

1

t2n/m−1

Ç

∫ t

0
ρ2n−1dρ

å1/mq

dt

≤ C‖fk‖1/m
Lp(B)(r

2− 2n
mp

1 − r
2− 2n

mp ).

Since fk converges to f in Lp(B), we get ‖fk‖Lp(B) ≤ C1, where C1 > 0 does not depend on

k. Hence Uk is equicontinuous on B̄. By Arzelà-Ascoli theorem, there exists a subsequence
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Ukj
converges uniformly to ũ.

Consequently, ũ ∈ SHm(B)∩C(B̄) and thanks to the convergence theorem for the complex
Hessian operator (see [SA12]) we can see that (ddcũ)m ∧ βn−m = fβn in B.
Moreover, we have

|ũ(r1) − ũ(r)| ≤ C‖f‖1/m
Lp(B)(r

2− 2n
mp

1 − r
2− 2n

mp ).

Hence, for p ≥ 2n/m we get ũ ∈ Lip(B̄), and for n/m < p < 2n/m we have ũ ∈
C0,2− 2n

mp (B̄).

We give an example which illustrates that the Hölder exponent 2 − 2n
mp given by The-

orem 4.1.4 is optimal.

Example 4.5.5. Let p ≥ 1 be a fixed exponent. Take fα(z) = |z|−α, with 0 < α < 2n/p.
Then it is clear that fα ∈ Lp(B). The unique radial solution to the Dirichlet problem
(4.1.1) with right hand side fα and zero boundary values is given by

Uα(z) = c(r2−α/m − 1); r := |z| ≤ 1,

where c =
Ä

Cm
n

2m+1n

ä−1/m
( 1

2n−α)1/m m
2m−α . Then we have

1. If p > n/m then 0 < α < 2m and the solution Uα is (2 − 2n
mp + δ)−Hölder with

δ = (2n/p − α)/m. Since α can be chosen arbitrary close to 2n/p, this implies that the
optimal Hölder exponent is 2 − 2n

mp .
2. Observe that when 1 ≤ p < n/m and 2m < α < 2n, then the solution Uα is

unbounded.

The next example shows that in Theorem 4.1.4, n/m is the critical exponent in order
to have a continuous solution.

Example 4.5.6. Consider the density f given by the formula

f(z) :=
1

|z|2m(1 − log|z|)γ
,

where γ > m/n is fixed.
It is clear that f ∈ Ln/m(B) \ Ln/m+δ(B) for any δ > 0. An elementary computa-

tion shows that the corresponding solution U given by the explicit formula (4.1.3) can be
estimated by

U(z) ≤ C(1 − (1 − log|z|)1−γ/m),

where C > 0 depends only on n, m and γ. Hence we see that if m/n < γ < m then U goes
to −∞ when z goes to 0. In this case the solution U is unbounded.

4.6 Open questions

• Let Ω be a smooth bounded strongly m-pseudoconvex domain in C
n, ϕ ∈ C(∂Ω). Let

also µ be a Hausdorff-Riesz measure on Ω and 0 ≤ f ∈ Lp(Ω, µ) for some p > n/m.
Does there exist a continuous solution to (4.1.1)?
Moreover, if ϕ is Hölder continuous, can we say that U is Hölder continuous in Ω̄?
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[STW15] G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed
volume form, preprint arXiv:1503.04491.

[Wal69] J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math.
Mech. 18 (1968/1969), 143-148.

[W09] X-J. Wang, The k-Hessian equation, Geometric analysis and PDEs, 177-252,
Lecture Notes in Math., 1977, Springer, Dordrecht, 2009.

[Wan12] Y. Wang, A viscosity approach to the Dirichlet problem for complex Monge-
Ampère equations, Math. Z. 272 (2012), no. 1-2, 497-513.

[Xi96] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math.
Soc. 124 (1996), 457-467.

[Yau78] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex
Monge-Ampère equation I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411.

[Z01] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubhar-
monic functions, Indiana Univ. Math. J. 50 (2001), 671-703.

[Z04] A. Zeriahi, The size of plurisubharmonic lemniscates in terms of Hausdorff-Riesz
measures and capacities, Proc. London Math. Soc. 89 (2004), no. 1, 104-122.



Résumé

Cette thèse est consacrée à l’étude de la régularité des solutions des équations de Monge-

Ampère complexes ainsi que des équations hessiennes complexes dans un domaine borné

de C
n.

Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel.

Dans le deuxième chapitre, on étudie le module de continuité des solutions du problème de

Dirichlet pour les équations de Monge-Ampère lorsque le second membre est une mesure

à densité continue par rapport à la mesure de Lebesgue dans un domaine strictement

hyperconvexe lipschitzien.

Dans le troisième chapitre, on prouve la continuité hölderienne des solutions de ce problème

pour certaines mesures générales.

Dans le quatrième chapitre, on considère le problème de Dirichlet pour les équations

hessiennes complexes plus générales où le second membre dépend de la fonction inconnue.

On donne une estimation précise du module de continuité de la solution lorsque la densité

est continue. De plus, si la densité est dans L
p, on démontre que la solution est Hölder-

continue jusqu’au bord.
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paraison, Théorème de stabilité, Domaine strictement hyperconvexe lipschitzien, Domaine
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