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Résumé
Dans cette thèse, on s’intéresse à l’existence et à l’unicité d’une solution pour l’équation

KPZ généralisée. On utilise la théorie récente des structures de régularité inspirée des
chemins rugueux et introduite par Martin Hairer afin de donner sens à ce type d’équations
singulières. La procédure de résolution comporte une partie algébrique à travers la dé-
finition du groupe de renormalisation et une partie stochastique avec la convergence de
processus stochastiques renormalisés. Une des améliorations notoire de ce travail ap-
portée aux structures de régularité est la définition du groupe de renormalisation par le
biais d’une algèbre de Hopf sur des arbres labellés. Cette nouvelle construction permet
d’obtenir des formules simples pour les processus stochastiques renormalisés. Ensuite, la
convergence est obtenue par un traitement efficace de diagrammes de Feynman.

Mots clés Equation KPZ généralisée, Chemins rugueux, Structures de Régularité,
Groupe de Renormalisation, Algèbre de Hopf, Diagrammes de Feynman, Equations dif-
férentielles partielles stochastiques.

Abstract
In this thesis, we investigate the existence and the uniqueness of the solution of the

generalised KPZ equation. We use the recent theory of regularity structures inspired from
the rough path and introduced by Martin Hairer in order to give a meaning to this singular
equation. The procedure contains an algebraic part through the renormalisation group and
a stochastic part with the computation of renormalised stochastic processes. One major
improvement in the theory of the regularity structures is the definition of the renormalisa-
tion group using a Hopf algebra on some labelled trees. This new construction paves the
way to simple formulas very useful for the renormalised stochastic processes. Then the
convergence is obtained by an efficient treatment of some Feynman diagrams.

Keywords Generalised KPZ equation, Rough path, Regularity Structures, Renormali-
sation group, Hopf algebra, Feynman diagrams, Partial stochastic differential equations.
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Chapter 1

Introduction

In this thesis, we study the generalised KPZ equation

∂tu = ∂2
xu+ f(u)(∂xu)2 + k(u)∂xu+ h(u) + g(u)ξ, t ≥ 0, x ∈ R/2π, (1.1)

i.e. an extension of the KPZ equation

∂tu = ∂2
xu+ (∂xu)2 + ξ, t ≥ 0, x ∈ R/2π, (1.2)

where ξ is a space-time white noise. We use the theory of regularity structures introduced
by Martin Hairer in [Hai14b] for solving a class of singular SPDEs. A singular SPDE is
a stochastic partial differential equation which contains some ill-defined term, typically a
product of two (or more) Schwartz distributions: for instance in the KPZ equation (1.2)
the solution u is not expected to be differentiable in x, so that the partial derivative ∂xu
makes sense only as a distribution and its square (∂xu)2 is ill-defined. In the generalised
KPZ equation (1.1) the term g(u)ξ is the product of the distribution ξ and the continuous
function g(u), which is however not sufficiently regular to give a classical meaning to this
product; therefore this term is as difficult as (∂xu)2 to treat.

The theory of regularity structures can be considered as a far-reaching extension of the
rough paths approach to stochastic processes introduced by Terry Lyons in [Lyo91] ; in
particular the ideas of Massimiliano Gubinelli in [Gub04] have proved to be particularly
fruitful. The "rough" point of view can be summarised as follows: if X is solution to
a stochastic differential equation driven by a process Y , then the map Y 7→ X can be
factorised into two separate maps

Y 7→ Y 7→ X,

where Y 7→ Y ∈ Y is measurable, Y is a metric space and Y 7→ X is continuous in
the metric of Y. The continuity of Y 7→ X yields very useful additional information like
stability properties of solutions. We call Y an enhancement of Y .

In singular SPDEs we have the same factorisation, but a new phenomenon arises. The
natural driving "process" is the space-time white noise ξ; if we replace ξ by a smooth
version ξε, for instance obtained by a convolution with a family of mollifiers, then the
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enhancement of ξε does not converge in Y as ε→ 0 (note that we have not explained yet
the structure of Y). Therefore in general the solution uε to our SPDE is not guaranteed to
converge either.

In order to solve this problem, the theory of regularity structures includes a renor-
malisation procedure, which consists in a way to appropriately modify the enhancement
of ξε, in order for the corresponding modified uε to converge. The renormalisation pro-
cedure has an algebraic step, by which the appropriate modification of the enhancement
of ξε is costructed, and an analytic step, where the actual convergence of the modified
enhancement is proved.

Both these steps are rather complex and it is one of the main aims to this thesis to
propose a systematic approach to this procedure. Note that several singular SPDEs have
already been solved by means of a number of computations concerning the convergence
of certain Feynman diagrams. For instance in [Hai14b, ZZ14, HS14, HP14, BK15, FH14,
HS15] several important equations, including the stochastic quantization, the Navier-
Stokes equation, the dynamical Sine-Gordon equation, the stochastic heat equation with
multiplicative noise, the FitzHugh-Nagumo equation and the KPZ equation , have already
been proved to be renormalisable in the sense explained above; however in all these pa-
pers one has to guess the structure of some linear operators related to the renormalisation
group and this makes the approach somewhat ad hoc and difficult to apply to very com-
plex equations. Indeed in the above papers the number of terms to be renormalised is
sufficiently low to allow a term-by-term study; from this point of view the generalised
KPZ equation (1.2) requires a different approach since, with around forty terms to renor-
malise, it is one of the most difficult examples in the theory.

Therefore, we improve several tools present in [Hai14b], in particular the represen-
tation of the renormalisation group by using Hopf algebras on labelled trees. This con-
struction is very similar to the one for the structure group, one of the basic elements in
the theory of regularity structures. In order to have a simpler formulation, we also extend
the structure space for the SPDEs. By this new algebraic representation, we can treat ef-
ficiently the Feynman diagrams and give a proof for the solution of the generalised KPZ
equation; moreover we can give a sketch of proof for the general case of locally subcritical
equations.

Most of the material of this thesis has been written in collaboration with my advisor
Lorenzo Zambotti and with Martin Hairer. I would like to thank them for the numerous
discussions we had on the theory of Regularity Structures.

This thesis is divided into two parts: one dedicated to the algebraic representation in
chapters 2, 3 and 4 and the other one to the computation of the stochastic terms. These
terms appear in the decomposition of our solution in chapters 5 and 6 where we also
provide a complete treatment of the generalised KPZ equation.

• In chapter 2, we present two hopf algebras on labelled trees associated to two
groups: the structure group and the renormalisation group. This construction is
based on the substitution Hopf algebra and the Connes-Kreimer Hopf algebra on
labelled trees. We also explain the link between the two constructions.
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1.1. Singular SPDEs

• Chapter 3 establishes a link between the previous algebraic setting and the regu-
larity structures used for solving singular SPDEs. We present the correspondence
with the symbol notation introduced in [Hai14b] and we give a direct construction
of the renormalised models, the topology used for proving the convergence of the
renormalised solution.

• Chapter 4 gives a way to have a very simple action of the renormalisation group onto
the model improving the formulae of the previous chapter. Therefore, we extend
the structure space by adding a new label to our labelled trees which keeps track
partially of the action of the renormalisation group. This extended structure also
simplifies many of the proofs for the renormalised model.

• Chapter 5 uses the renormalisation group in the extended structure in order to prove
the convergence of the model. We do not provide a proof of the general case but
we give general results for some Feynman diagrams with few divergences. These
diagrams include most of the examples which have been treated so far with the
regularity structures.

• In chapter 6, we focus mainly on the resolution of the generalised KPZ equation
which follows mainly from the methods introduced in the chapter 5.

1.1 Singular SPDEs
Let us recall briefly the main ideas of this theory: one considers a stochastic partial

differential equation (SPDE) of the form

∂tu = ∆u+ F (u,∇u, ξ)

where u = u(t, x) is a function (or a Schwarz distribution) on R+ × Rd, ξ is a white
noise (e.g.) on R+×Rd and F is some non-linear function affine in ξ . It has been known
for a long time that this kind of equation is ill-posed since the solution is expected to be
a genuine Schwarz distribution if d ≥ 2 and therefore the non-linearity F (u,∇u, ξ) is
ill-defined; famous examples include the KPZ equation in d = 1, where u is a continuous
function but ∇u is a distribution, and the stochastic quantization in d = 2, 3.

One can regularise the noise ξ, replacing it by the smooth function ξε := %ε ∗ ξ where
%ε is a mollifier, and obtain a well-posed equation

∂tuε = ∆uε + F (uε,∇uε, ξε).

However, as ε→ 0 no classical technique allows to control the behavior of uε.
The breakthrough has come in the papers [Hai13, Hai14b] where it has been noticed

that the solution uε can be written as a functional of a finite number of explicit polynomial
functions of the noise ξε:

uε = Ψ(Pτ (ξε), τ ∈ T0),

13



1.2. Regularity Structures

and that the functional Ψ (which is independent of ε) is continuous with respect to suitable
topologies. This however does not solve the problem yet, since it turns out that in most
cases Pτ (ξε) does not converge as ε→ 0; so we need a renormalisation procedure which
acts on the polynomial functions of the noise. We have to define a renormalised solution
by

Ruε = Ψ(RPτ (ξε), τ ∈ T0),

where R adds infinite constants in order to obtain the convergence. Several techniques
have been used to tackle this problem:

• In [Hai11, HW13, Hai13] rough path techniques allow to deal with a lack of regu-
larity in space. For the first time in [Hai13], the use of Feynman diagrams proves
the convergence of the polynomial functions of the noise.

• In [GIP12], [CC13] and [GP15b], the authors used paracontrolled distributions to
give a meaning to the ill-defined products in the equation. A good introduction to
this approach is given in [GP15c]. The paraproduct has also be recently used in a
geometric context for a generalisation of the parabolic Anderson model see [BB15].

• The regularity structure theory has been introduced in [Hai14b] which gives a hope
to treat a certain class of singular SPDEs with good properties corresponding to
a notion of local subcriticality. In [Hai14b], the main examples are the parabolic
Anderson model and the stochastic quantization for d = 3.

As all the previous articles, we will consider SPDEs on the torus with space-time
white noise. For the whole space, some equations have been solved in [BBF15] , [MW15]
with the paraproduct and in [HL15] with the regularity structure. Non gaussian noises
have been investigated for the KPZ equation in [HS15] and for the quantization stochastic
in [Hai15]

The regularity structures systematize the idea of polynomial functions of the noise by
introducing an abstract space T of symbols built by using rules depending on the form of
the equation. Then we define a model (Πx,Γxy) which allows us to interpret any symbol
τ ∈ T as a polynomial function Pτ (ξε) of the noise center at x. We change the base point
thanks to the application Γ which gives the topology of the models for our solution. The
theory associates a real number to each symbol called its homogeneity which corresponds
to a kind of regularity of the polynomial function of the noise. Short introduction to the
theory of regularity structures can be found in [Hai14a], [FH14] and [CW15]. We give
the main definitions in the next section.

1.2 Regularity Structures
The main ideas of regularity structures come from the rough theory introduced in

[Lyo91] and from control rough path see [Gub04]. The relation between the two theo-
ries is treated in [FH14]. The basic idea of regularity structure is to extend the Taylor
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1.2. Regularity Structures

expansion by interpreting an abstract set of symbols T with a family of operators Πε
x in

the case of a reguralised SPDEs . We want to obtain a local expansion of the solution uε
at the order γ > 0:

uε(y) = uε(x) +
N∑
i=1

aεi (x) (Πε
xτi)(y) + rε(x, y) (1.3)

with |rε(x, y)| < C‖x− y‖γs and |(Πε
xτi)(y)| < C‖x− y‖αis , where αi < γ and αi is the

homogeneity of τi. Moreover for a given scaling s ∈ Nd, we associate a norm ‖.‖s

‖x− y‖s =
d∑
i=1

|xi − yi|1/si .

The decomposition (1.3) is really close to the classical definition of Hölder function. A
function f belongs to Cγ with γ ∈ R+ \ N if there exists a constant C > 0 such that

f(y) =
∑
i≤γ

f (i)(x)

i!
(y − x)i + r(x, y) , |r(x, y)| ≤ C‖y − x‖γ

s
.

The abstract set T of symbols needs to be equipped with a structure if we want to
be able to change the point of the Taylor expansion. This is the purpose of a regularity
structure.

Definition 1.2.1. The triple F = (A,H, G) is called a regularity structure with model
spaceH and structure group G if

• A ⊂ R is bounded from below without accumulation points.

• The vector space H =
⊕

α∈AHα is graded by A such that each Hα is a Banach
space.

• The group G is a group of continuous operators on H such that, for every α ∈ A,
every Γ ∈ G, and every τ ∈ Hα, one has Γτ − τ ∈

⊕
β<αHβ .

One simple example of regularity structures is H̄ the linear span of the abstract poly-
nomials. Given (Xi)i=1...d, the space H̄n is defined as the linear span of Xk where |k|s =∑d

i=1 siki = n. In that case the structure group is isomorphic to Rd and it is given by the
translation:

(ΓhP )(X) = P (X + h).

If we want to describe the solution of a SPDE, we need to enlarge the structure space H̄
by adding new symbols. In the case of SPDEs the set H is given by the linear span of
some subset of F defined recursively as follows:

• {1, (Xi)i=1...d,Ξ} ⊂ F
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1.2. Regularity Structures

• if τ1, . . . , τn ∈ F then τ1 · · · τn ∈ F , where we assume that this product is associa-
tive and commutative

• if τ ∈ F \ {1, Xk : k ∈ Nd} then {I(τ), Ik(τ) : k ∈ Nd} ⊂ F .

To the polynomials, we add an abstract integrator I(·) which represents the convolution
with the heat kernel and we add also its derivatives. The construction of that space fol-
lows from a perturbative method: we start with the solution I(Ξ) of the linear equation,
the stochastic heat equation and then we plug this solution into the products where the
solution of our equation appears. In order to measure the regularity of our terms we de-
fine a scalar associated to each symbol its homogeneity. The homogeneity is computed
recursively by: |Ξ|s = α, |Xi|s = si, |1|s = 0

|τ1...τn|s = |τ1|s + ...+ |τn|s, Ik(τ) = |τ |s + β − |k|s.

where β is the regularising effect of I(·) and α is the regularity of the noise. For a space-
time white noise on Rd, α is equal to− |s|

2
−κ for some κ > 0 which traduces the fact that

ξ ∈ Cα see [Hai14b, lemma 10.2]. The parameter β is equal to 2 for the heat kernel. The
space Hη is the linear span of elements with homogeneity η. Under suitable condition
introduced in [Hai14b] of local subcriticality discussed also in 3.2, we obtain that the
spaceHη is finite. Even if most of the examples converge in this case, it is not a guarantee
of convergence. This condition is linked to the products appearing in the right-hand side
of an SPDE: we ask that the products have a regularising effect in the sense that we earn
some regularity at each step of a perturbative method. The structure group G has several
representations, we give the recursive one:

Γg1 = 1, ΓgΞ = Ξ, ΓgX = X + g(X), Γg(τ τ̄) = (Γgτ)(Γg τ̄),

ΓgIk(τ) = Ik(Γgτ) +
∑
`

X`

`!
g(Jk+`(τ)) ,

where
Jk(τ) := 1(β−|k|s+|τ |s>0) Ik(τ).

and g is a multiplicative functional on symbols with positive homogeneity. This definition
coincides with the one for the polynomial structure. One important fact is the polynomial
obtained from the difference ΓgIk(τ) − Ik(Γgτ). If we choose a correct g, we have a
Taylor expansion of the original symbol. The algebraic point of view is given in the next
section.

Until now, we have presented the abstract point of view and we want to build distri-
butions from these symbols. The idea of regularity structure is to have a local description:
we fix a point x in Rd and as a Taylor expansion, we will know the regularity around this
point. Before introducing the operators Πx, we need some notations. Let r > 0, we denote
by Br the set of functions ϕ : Rd → R such that ϕ ∈ Cr, ‖ϕ‖Cr ≤ 1 and ϕ is compactly
supported in a unit ball around the origin. The parameter r will depend on the equation,
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1.2. Regularity Structures

therefore we denote this space by B. In order to have a local description, we rescale these
test functions using the map Sλs associated to a scaling s:

Sλs (x1, ..., xd) := (λ−s1x1, ..., λ
−sdxd).

The rescale test functions are given by:

ϕλx(y) = λ−|s|ϕ(Sλs (y − x)). (1.4)

We denote by S ′(Rd) the space of Schwartz distributions on Rd and by L(H,S ′(Rd))
the space of linear maps from H to S ′(Rd). Let τ ∈ H, we set by ‖τ‖α the norm of its
components inHα. We are now able to give the definition of a model:

Definition 1.2.2. Given a regularity structure F and an integer d ≥ 1, a model for F on
Rd consists of maps

Π : R→ L(H,S ′(Rd)) Γ : Rd × Rd → G

x 7→ Πx (x, y) 7→ Γxy

such that ΓxyΓyz = Γxz and ΠxΓxy = Πy. Moreover, given r > | inf A|, for any compact
K ⊂ Rd and γ > 0, there exists a constant C such that the bounds

|(Πxτ)(ϕλx)| ≤ Cλ|τ |‖τ‖, ‖Γxyτ‖β ≤ C‖x− y‖α−βs ‖τ‖

hold uniformly over ϕ ∈ B, (x, y) ∈ K, τ ∈ Hα with α ≤ γ, and β < α.

Now when we look at algebraic properties, we write (Πxτ)(y) instead of (Πxτ)(ϕλx)
because we consider a regularised model in the sense that we convolve the noise ξ with
a mollifier. The model depends on ε and for every τ , Πxτ will be a function. But for the
convergence we can obtain distributions in the limit for symbols with negative homogene-
ity as Ξ. We present the interpretation given in [Hai14b] of the abstract integrator Ik(·).
We first start with a definition of some kernels with nice properties:

Definition 1.2.3. A kernel K is homogeneous of degree β − d. If K =
∑

n≥0Kn where
Kn : Rd → R is smooth compactly supported in B(0, 2−n) and such that:

sup
x
|DkKn(x)| . 2n(d−β+|k|s). (1.5)

Moreover, we have
∫
Kn(x)P (x)dx = 0 for every polynomial of degree N , for some

large value of N .

These kernels appear naturally in our equation. Indeed, thanks to the scaling of the
heat kernel G it has been proven in [Hai14b] that G can be decomposed into G = K +R
where K is homogeneous of degree 2− d and R is smooth. The term K is singular at the
origin and this singularity is measured through the bound (1.5).
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1.2. Regularity Structures

Definition 1.2.4. Given a kernel of homogeneous of degree β−d and a regularity structure
H, we say that a model (Π,Γ) is admissible if the identities

(ΠxX
k)(y) = (y − x)k, ΠxInτ = D(n)K ∗ Πxτ − ΠxJn(x)τ,

hold for every τ ∈ T with |τ |s ≤ N , where Jn(x) is given by

Jn(x)τ =
∑

|k|s<|τ |s+β−|n|s

Xk

k!

∫
D(k+n)K(x− y)(Πxτ)(dy).

In an admissible model, we subtract the Taylor expansion of D(n)K ∗ Πxτ in order
to obtain the right decrease around the point x depending on the homogeneity of τ . The
proof is based on the theorem given in [Hai14b] and in the appendix B. One can also have
another description of the admissible model by using the structure group:

Πxτ = ΠΓgxτ.

where gx is a functional defined recursively from Πx and Π is the operator which gives
the naïve interpretation to a symbol: ΠIn(τ) = D(n)K ∗ Πτ . Moreover, this definition is
a consequence of the fact that Πx(Γgx)

−1 does not depend on x. In this context, the map
Γxy is just described as follows:

Γxy = (Γgx)
−1 ◦ Γgy .

Remark 1.2.5. The model defined above is for H≤β =
⊕

α≤βHα with β < N . Indeed,
we want to annihilate polynomials up to a certain order. In most of the application is
sufficient to consider this space for a large value of N . We start with the symbols with
negative homogeneity then we can enlarge this family in order to be closed under the
action of the structure group see 3.1.8.

We solve our fixed point problem in the abstract spaceH. We are looking to functions
from Rd toH which behave like Hölder functions. We define the space Dγ by:

Definition 1.2.6. A function f : Rd → ⊕α<γHα, belongs to Dγ , if for every compact
domain K, one has:

‖f‖γ = sup
z∈K

sup
α<γ
‖f(z)‖α + sup

(z,z̄)∈K2

sup
α<γ

‖f(z)− Γzz̄f(z̄)‖α
‖z − z̄‖γ−αs

<∞. (1.6)

Remark 1.2.7. In practice, we add a second parameter η which allows us to deal with
singular initial conditions on the line {(t, x) : t = 0} see 6.1.3.

Remark 1.2.8. On a classical Hölder space, we look at the difference f(z)− f(z̄) which
can be expressed as a translation: f(z̄) = f(z + h) where h = (z̄ − z). The difference
between f(z) and Γzz̄f(z̄) is an extension of this fact. We change the base point with the
structure group and then we measure how close we are from the new point.
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1.2. Regularity Structures

The definition of the previous space depends on the model which is parametrised by
ε. We need a way to compare two models and a way to compare two functions in Dγ but
not defined on the same model. Based on [Hai14b], we use a semi distance between two
models. Let (Π,Γ) and (Π̄, Γ̄) two admissible models, we consider for a given compact
K ⊂ R2

‖Π; Π̄‖ = sup
z∈K

sup
ϕ∈B
λ∈(0,1]

sup
τ∈T

|(Πzτ − Π̄zτ)(ϕλz )|
λ|τ |

+ sup
z,z̄∈K

sup
τ∈T

sup
α<γ

‖Γzz̄τ − Γ̄zz̄τ‖α
‖z − z̄‖γ−α

.

In our case, this semi distance is a distance because we are working on a compact domain
in the space variable and on finite time. The natural distance defined in [Hai14b] between
U ∈ Dγ and Ū ∈ D̄γ where D̄γ is built from (Π̄, Γ̄), is given by

‖U ; Ū‖γ = sup
z∈K

sup
α<γ
‖U(z)−Ū(z)‖α+ sup

(z,z̄)∈K2

sup
α<γ

‖U(z)− Ū(z)− Γzz̄U(z̄) + Γzz̄Ū(z)‖α
|z − z̄|γ−α

on a fibred spaceMnDγ which contains pairs ((Π,Γ), U) such that (Π,Γ) is an admis-
sible model and such that the space Dγ is constructed from the model (Π,Γ).

We present the major theorem at the center of all the theory: the reconstruction theo-
rem first introduced in [Hai14b]. It states that from every f ∈ Dγ with γ > 0, there exists
a unique distribution close to Πxf(x) near x.

Theorem 1.2.9. With the same hypotheses as above, for every γ > 0 there exists a unique
linear mapR : Dγ → S ′(Rd) such that:

|(Rf − Πxf(x))(ϕλx)| . λγ ,

uniformly over ϕ ∈ B, for every f ∈ Dγ .

Remark 1.2.10. In the case of a parametrised model with ε, for every τ ∈ H, Πxτ
happens to be a function. Therefore one has an explicit expression forR given in [Hai14b]
by:

(Rf)(x) = (Πxf(x))(x).

When we solve a singular SPDEs, we have to give a meaning to ill-defined products.
The theory of regularity structure provides a definition for the product. We define some
subspaces of H called sectors which have nice properties. They will be the arrival space
for the space of functions Dγ .

Definition 1.2.11. Let V ⊂ H, V is a sector of regularity α ≤ 0 if

• V is invariant under G.

• V =
⊕

β≥α Vβ with Vβ ⊂ Hβ and there exists a complement of Vβ inHβ .

This definition allows us to give a way of multiplying function in the Dγ spaces. We
consider functions which take values in some specific sectors. We first give a precise
definition of what a product is in our structure.
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1.2. Regularity Structures

Definition 1.2.12. Let V, V̄ ⊂ T two sectors. A product on (V, V̄ ) is a bilinear map
? : V × V̄ → T such that for any τ ∈ Vα, τ̄ ∈ V̄β and Γ ∈ G, we have: τ ? τ̄ ∈ Tα+β and
Γ(τ ? τ̄) = (Γτ) ? (Γτ̄).

Remark 1.2.13. In the original theorem in [Hai14b], we need the hypothesis of γ regu-
larity for (V1, V2) which depends on the choice of the product in our structure. We have
chosen the pointwise product and for that product Γτ τ̄ = ΓτΓτ̄ which gives the γ regu-
larity for every γ.

The space Dγα is the space of functions f ∈ Dγ such that for every x:

f(x) ∈ T+
α =

⊕
β≥α

Tβ.

This space gives a bound of the lowest homogeneity which can appear in the decomposi-
tion of f(x).

Theorem 1.2.14. Let f1 ∈ Dγ1
α1

(V ), f2 ∈ Dγ2
α2

(V̄ ) and let ? a product on (V, V̄ ). Then the
function f given by f(x) = Qγ(f1(x) ? f2(x)) belongs to Dγα with

α = α1 + α2, γ = (γ1 + α2) ∧ (γ2 + α1),

where Qγ is the projection on
⊕

α≤γHα.

Remark 1.2.15. This theorem is close to the spirit of the classical result of harmonic
analysis which says that the product extends naturally to C−α×Cβ into S ′(Rd) if and only
if β > α see [BCD11].

Remark 1.2.16. A sector V is function-like if for α < 0, Vα = 0 and V0 = 〈1〉. For our
fixed point problem, we will not consider the whole space Dγ but we restrain ourself to
the subspace DγU which are functions in Dγ taking values in U given by

U = I(H)⊕ H̄

where H̄ are the abstract polynomials. The set U is an example of a function-like sector.
This set is also natural for a SPDE: if we perform a perturbative method all the terms will
be convolved with the heat kernel which is equivalent in the abstract space of applying
the abstract integrator I(·).

Given a product ? : V ×V → V on that sector, we can define for any smooth function
F : R→ R, any U ∈ Dγ(V ) and any γ > 0 the V -valued function Fγ(U):

(Fγ(U))(x) =
∑
k≥0

F (k)(u(x))

k!
Qγ
(
Ũ(x)?k

)
(1.7)

where we have set

u(x) = 〈1, U(x)〉, Ũ(x) = U(x)− u(x)1.
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1.3. Renormalisation Group

Proposition 1.2.17. If F ∈ Ck for sufficient large k, the map U 7→ Fγ(U) is locally
lipschitz continuous from Dγ into itself.

Remark 1.2.18. The identity (1.7) can be viewed as a linearisation. This is one of the ma-
jor strength of the theory compared to the paracontrolled distributions in [GIP12] where
the authors introduce a paralinearisation only for the first order. Moreover, this the main
reason of the fact that at this moment the generalised KPZ equation can only be solved
with the theory of regularity structures.

1.3 Renormalisation Group
For proving the convergence of the solution uε of the regularised equation, we use the

topology of the model. In [Hai14b], it has been proved that thanks to powerful extension
theorems is sufficient to show the convergence of Πε

xτ for τ ∈ T0 where T0 is a finite
subset of symbols. This finite set contains the symbols with negative homogeneity. The
cardinality of T0 is 8 for KPZ but 43 for the generalised KPZ. In general, the Πε

xτ do not
converge because of ill-defined products. We have to renormalise them which modifies
Πε
x in Π̂ε

x. For that purpose, we introduce a new group of transformationsR named renor-
malisation group which act on the symbols. For Mε ∈ R we can code the transformation
Πε
x → Π̂ε

x. This transformation has to preserve the algebraic structure of the model given
in 1.2.2.

For that aim, we define a map:

M : T0 → (T0)∗

where (T0)∗ contains T0 and other terms with positive homogeneity. Indeed, we need an
enlarge family of symbols because the map M adds counter terms with better homogene-
ity which can be positive. Then it is possible under suitable hypothesis on M to define a
renormalised model (ΠM ,ΓM) through a factorisation given in [Hai14b] by:

ΠM
x = (Πx ⊗ gx)∆M

where the map gx is defined from Πx and the map ∆M is defined through algebraic equa-
tions. The construction of the ∆M works for any map M but if we want to build a renor-
malised model we have to check the form of ∆Mτ for every τ ∈ T0. In many examples,
as in [Hai14b], [HP14] we have to guess the form of ∆M on T0 and then plug our guess
into the equations defining ∆M which induces a lot of computations. We propose an ap-
proach to the construction of the renormalisation group which is simpler than the method
proposed in [Hai14b]. Finally, these new objects will be the same. We want to describe
a concrete subgroup of the renormalisation group. Elements of this subgroup are given
through a coproduct ∆̂ and functionals with a support included in the set of symbols with
negative homogeneity:

M` = (`⊗ 1)∆̂.
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Moreover, we provide a recursive definition of that group:

M` = M◦
`R`

where M◦
` and R` are defined by using different coproducts. The main idea of this recur-

sive definition is that the map R` computes interactions between some symbols. These
interactions can be considered as gaussian correlations. Thanks to the nice properties of
R`, these mapsM belong to the renormalisation group and we can define the renormalised
model (ΠM ,ΓM) by the same recursive definition:

ΠM
x τ = ΠM◦

x Rτ.

One main difference is that the renormalised model can be defined directly on the whole
structure without using complex extension theorem. By extending the structure space and
the maps M , one can obtain a nice definition of the renormalised model given by:

ΠM
x τ = ΠxMτ.

1.3.1 Definitions
The construction of the renormalisation group is based on the construction of an Hopf

algebra as for the structure group. In this section, we provide the reader with basic defi-
nitions on Hopf algebra. We also present examples of Hopf algebra which have inspired
our construction. For the next definitions and propositions we follow [KRT12].

Definition 1.3.1. (Algebra) A unital associative algebra H over a field K is a K-linear
space endowed with two homomorphisms:

• a productM : H⊗H → H satisfying the associativity condition:

M(M⊗ id)(τ1 ⊗ τ2 ⊗ τ3) =M(id⊗M)(τ1 ⊗ τ2 ⊗ τ3) , ∀τ1, τ2, τ3 ∈ H.

• a unit u : K→ H satisfying:

M(u⊗ 1)(1⊗ τ) = τ =M(1⊗ u)(τ ⊗ 1) ,∀τ ∈ H.

Definition 1.3.2. (Algebra) A coalgebra H over a field K is a K-linear space endowed
with two homomorphisms:

• a coproduct ∆ : H → H⊗H satisfying the coassociativity condition:

∀τ ∈ H , (∆⊗ 1)∆τ = (1⊗∆)∆τ.

• a counit 1? : H → K satisfying:

∀τ ∈ H , (1? ⊗ 1)∆τ = τ = (1⊗ 1?)∆τ.
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Definition 1.3.3. A bialgebraH over a field K is a K-linear space endowed with both an
algebra and a coalgebra structure such that the coproduct and the counit are unital algebra
homomorphisms:

∆M =MH⊗H(∆⊗∆) ,∆1 = 1⊗ 1 ,

1?M =MK(1? ⊗ 1?) ,1?(1) = 1.

Definition 1.3.4. A graded bialgebra is a bialgebra graded as a linear space:

H =
∞⊕
n=0

H(n)

such that the grading is compatible with the algebra and the coalgebra structures:

H(n)H(m) ⊆ H(n+m) and ∆H(n) ⊆
n⊕
k=0

H(k) ⊗H(n−k).

Definition 1.3.5. A connected bialgebra is a graded bialgebraH for whichH(0) = u(K).

Definition 1.3.6. A Hopf algebra H over a field K is a bialgebra over K equipped with
an antipode map A : H → H obeying:

M(A⊗ 1)∆ = u(1?) =M(1⊗A)∆.

Proposition 1.3.7. Any connected graded bialgebra is a Hopf algebra whose antipode is
given by A(1) = 1 and recursively by any of the two following formulas for τ 6= 1:

A(τ) = −τ −
∑
(τ)

A(τ ′)τ ′′ ,

A(τ) = −τ −
∑
(τ)

τ ′A(τ ′′)

where we used Sweedler’s notation.

Remark 1.3.8. When we compute ∆τ for τ ∈ H, we obtain a sum of the form:
∑

i τ
′
i ⊗

τ ′′i which can be replaced as a shorthand notation by
∑

(τ) τ
′ ⊗ τ ′′. This notation is the

Sweedler’s notation.

Remark 1.3.9. This proposition is very useful to prove the Hopf algebra structure. We
will use it for the renormalisation group. But for the structure group, we have to construct
by hand the antipode.

Before giving Hopf algebra on labelled trees, we present briefly some well known
Hopf algebra. We first introduce the substitution Hopf algebra used in [CHV05] ,[CHV07],
[CHV10] in the context of Runge-Kunta methods. They can describe the coefficients for
the substittution of one B-series into another. This Hopf algebra is defined as follows.
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Given a tree τ , a subforest σ = {σ1, ..., σk} of τ denoted by σ ⊂ τ is such that each σi
are subtrees of τ and they are all disjoints. We define τ/σ as the tree obtained from τ by
removing all the subtrees σi. From these definitions, we can give a coproduct:

∆sτ =
∑
σ⊂τ

σ ⊗ (τ/σ).

We present a few examples of computation:

∆s• = • ⊗ • ,
∆s = ⊗ •+ • ⊗ ,

∆s = ⊗ •+ • ⊗ + 2 ⊗ ,

∆s = ⊗ •+ • ⊗ + 2 ⊗ + 3 ⊗ + ⊗ .

where we have performed the following identification • = ∅. If we consider H the space
generated by rooted forests with all connected components containing at least one edge,
H equipped with ∆s is a hopf algebra because H is a connected graded bialgebra where
the grading is defined in terms of the number of edges. We obtain a nice formula for the
antipode given in [CEM11] :

A(τ) = −τ +
∑
r≥1

(−1)r+1
∑

∅(σ1(...(σr(τ

σ1(σ2/σ1)...(σr/σr−1)(τ/σr), (1.8)

where the σi are subforests of τ .
Another well known algebra, is the Connes-Kreimer algebra HCK of rooted forests

originally introduced in [But72] and use in a different context in [CK98]. This algebra is
graded by the number of vertices, also used in the rough path theory in [Gub10]. For a
brief historical overview see [Bro04]. This algebra is a Hopf algebra equipped with the
following coproduct:

∆CKτ = τ ⊗ 1 + 1⊗ τ +
∑
c∈A(τ)

P c(τ)⊗Rc(τ).

∆CK• = • ⊗ 1 + 1⊗ • ,
∆CK = ⊗ 1 + 1⊗ + • ⊗ • ,

∆CK = ⊗ 1 + 1⊗ + ⊗ •+ • ⊗ ,

where

• A(τ) is the set of admissible cuts of a forest. An admissible cut is a collection of
edges which have the property that only one edge appears in the path between a leaf
and the root.
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• P c(τ) denotes the prunning operation: the subforests formed by the edges above
the cut c.

• Rc(τ) denotes the trunk operation: the subforests formed by the edges under the cut
c.

In the next section, we will define two Hopf algebras which are really close in their
construction to the previous coproducts. The structure group is encoded by a coproduct
similar to those of Connes-Kreimer and the renormalisation group is defined from a sub-
stitution coproduct.

1.3.2 Hopf algebra on Labelled trees and forests
In this section, we present the main definitions and the main result of chapter 2. A Hopf

algebra has already been given in [Hai14b] in order to describe the structure group with
the symbols. We want to repeat this construction for the renormalisation group. But we
need to change the formalism if we want to understand better the construction and see
the connection between the two groups. For that purpose, we introduce labelled trees and
labelled forests which encode the symbols and are closer to the original representation of
the Hopf algebra presented in the previous section.

We consider T the set of labelled trees. Every T n
e ∈ T is described with a triple

(T, e, n) where T is a rooted tree endowed with an edge-labelling e : ET → Nd and a
node-labelling n : N̊T → Nd. The sets ET , LT and N̊T correspond respectively to the
edges, the leaves and the inner nodes of T . All the edges and leaves carry a “type” taken
from some label set L = Le t Ll.

Given T n
e , T̂

n̂
ê ∈ T, we have two possible products: T n

e T̂
n̂
ê = T̄ n̄

ē ∈ T corresponds to
the graph obtained by identifying the roots and the labels are given by the disjoint sum of
the labels: (n̄, ē) = (n + n̂, e + ê). While T n

e · T̂ n̂
ê = F n̄

ē corresponds to the disjoint union
of the two labelled graphs and belongs to the set of labelled forests F. Moreover, · is the
natural product on the labelled forests. The operation on the shapes are given in the figure
just below:

Let T1 =
%T1

`2`1

and T2 =
%T2

`4`3

, then T1 · T2 =
%T1

`2`1

%T2

`4`3

and T1T2

%

`1 `2 `3 `4

.

We associate to each type ` ∈ L a “homogeneity” |`|s ∈ R. We also denote by |F n
e |s

the homogeneity of the labelled forest F n
e ∈ F, which is given by

|F n
e | =

∑
u∈LFtEF

|l(u)|s +
∑
x∈N̊F

|n(x)|s −
∑
e∈EF

|e(e)|s ,

where | · |s denotes the s-homogeneity of a multiindex. In particular, one has |1|s = 0 as
expected.

Remark 1.3.10. The labelled trees encode the symbols:
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1.3. Renormalisation Group

1. Each leaf represents an instance of the noise Ξ. If there is more than one noise, we
give the leaf a “type” from a set Ll indexing the different types of noise.

2. Each edge with label k ∈ Nd represents the operator Ik. Again, if there is more than
one integration map, we give the edge an additional “type” from a set Le indexing
the integration maps.

3. Each inner vertex with label k ∈ Nd represents a factor Xk.

The homogeneity is the same homogeneity as for the symbols.

Definition 1.3.11. For all T ∈ T, we denote by A+(T ) ⊂ A(T ) the set of all A ∈ A(T )
with either A = ∅ or A = {S} with S a rooted subtree of T such that %S = %T .

Definition 1.3.12. Given a forest F = T1 ·T2 · · ·Tk ∈ F, we denote by A(F ) the set of all
(possibly empty) finite collections A = {S1, . . . , Sn} of subtrees of F such that the Si’s
are pairwise disjoint and each Si is admissible in the sense that it satisfies: LSi ⊆ LTi and
either %Si = %Ti , or there exists at least one leaf ` ∈ LTi \ LSi with %Si ≤ `.

Any A = {S1, . . . , Sn} ∈ A(F ) induces a natural equivalence relation ∼A on NF by
postulating that x ∼A y if and only if either x = y or both x and y belong to the same
subtree Sj ∈ A. This allows us to define for all F n

e ∈ F another forest

R↓AF
n
e ∈ F ,

by taking the quotient of the graph (NF , EF ) with respect to ∼A. In other words, the
nodes of R↓AF are given by NF/ ∼A and its edges are given by EF \ {(x, y) ∈ EF :
x ∼A y}, with the obvious identifications. The forestR↓AF n

e inherits the edge-labels from
F n
e by simple restriction, while the node-labels are the sums of the labels over equivalence

classes:
n([x])

def
=

∑
y: y∼Ax

n(y). (1.9)

We also define
R↑AF = S1 · S2 · · · Sn ∈ F,

with the additional natural conventions that R↑∅F = 1 and R↓∅F = F. The forest R↑AF n
e

inherits edge- and node-labels from F n
e by simple restriction.

In the next example, we compute the previous operations on A = {S1, S2} ∈ A(T ):

%

`1 `3`2

%S1

`4

`5 `6 `7

%S2

`8

−→R↑AT =
%S1

`4

`3

%S2

`6 `7

%

`1 `3`2

%S1

`4

`5 `6 `7

%S2

`8

−→R↓AT =
%

%S2
%S1

`1 `2 `5 `8
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1.3. Renormalisation Group

Given a forest F ∈ F and an edge-label e : EF → Nd, we define the corresponding
node-label πe : NF → Nd by

πe(x) =
∑
e∈Ex

e(e) , Ex = {(x, y) ∈ EF} .

We set δ+ : 〈F〉 7→ 〈F〉 ⊗ 〈F〉, δ− : 〈F〉 7→ 〈F〉 ⊗ 〈F〉

δ+F n
e :=

∑
A∈A+(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA , (1.10)

δ−F n
e :=

∑
A∈A(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA , (1.11)

where we stress that the only difference between the two definitions lies in the choice
A ∈ A+(F ), resp.A ∈ A(F ). The set 〈F〉 is the linear span of F. The previous coproducts
take values in formal series.

Remark 1.3.13. If we forget the labels, we obtain a finite sum and the coproduct δ−

corresponds to the coproduct defined for the substitution Hopf algebra. The set A(T ) can
be identified with the subforests: the only difference is that we can not remove all the
leaves from a branch, it is in strong connection with the annihilation of the polynomials
by the abstract integrator I(·). Just below, we represent an example of subforest:

%

`1 `3`2

%A1

`4

`5 `6 `7

%A2

`8

−→
%A1

`4

`3

%A2

`6 `7

⊗
%

%A2
%A1

`1 `2 `5 `8

The other coproduct δ+ is close to the Connes-Kreimer Hopf algebra on labelled trees.
Indeed, there are two points of view for the transformation in the figure just below

%

`1 `3`2

`4

`5 `6 `7 `8

−→
%

`3

`4

`6 `7

⊗
%

`8`5`1 `2

The interpretation given in the definition of the coproduct is: we select a rooted subtree
in red, we put it on the left and on the right we keep the remaining branches. The other
interpretation is we select an admissible set of cuts which is the black edges, we remove
it and we connect them to a root on the right and on the left we consider the remainder.
The second vision is closer to the Connes-Kreimer Hopf algebra.

From the previous two coproducts, we are able to define two hopf algebras which give
two groups: one for the positive renormalisation and another for the negative renormali-
sation.
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Positive renormalisation: the structure group

Let Π+ : T → T+ the multiplicative projection on trees with positive homogeneity. We
define:

∆ : 〈T〉 → 〈T〉 ⊗ 〈T+〉, ∆ = (1⊗ Π+)δ+

∆+ : 〈T+〉 → 〈T+〉 ⊗ 〈T+〉, ∆+ = (Π+ ⊗ Π+)δ+.

The projection Π+ makes all the sum finite and the next theorem specifies the structure
we obtain on the labelled trees:

Theorem 1.3.14. The algebra 〈T+〉 endowed with the product (τ, τ̄) 7→ τ τ̄ and the co-
product ∆+ is a Hopf algebra. Moreover ∆ turns 〈T〉 into a right comodule over 〈T+〉.

We defineH+ as 〈T+〉. IfH∗+ denotes the dual ofH+, then we set

G+ := {g ∈ H∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H+}.

Theorem 1.3.15. Let

R+ = {Γg : 〈T〉 → 〈T〉, Γg = (1⊗ g)∆, g ∈ G+}.

ThenR+ is a group for the composition law. Moreover, one has for f, g ∈ G+:

ΓfΓg = Γf◦g

where f ◦ g is defined by
f ◦ g = (f ⊗ g)∆+.

Remark 1.3.16. The group G+ is exactly the structure group defined in [Hai14b]. One
can express the coproducts ∆ and ∆+ using the symbol notation see 3.3 and 4.8. It would
be slightly different from the coproduct given in [Hai14b] but it is essentially the same in
a different basis.

Negative renormalisation: the renormalisation group

Let Π− : 〈F〉 7→ 〈F−〉 be the canonical projection onto 〈F−〉. Then we define the following
maps

∆̂ : 〈F〉 → 〈F−〉 ⊗ 〈F〉, ∆̂ = (Π− ⊗ 1)δ−

∆− : 〈F−〉 → 〈F−〉 ⊗ 〈F−〉, ∆− = (Π− ⊗ Π−)δ−.

Theorem 1.3.17. The algebra 〈F−〉 endowed with the product (ϕ, ϕ̄) 7→ ϕ · ϕ̄ and the
coproduct ∆− is a Hopf algebra. Moreover ∆̂ turns 〈F〉 into a left comodule over 〈F−〉.

We defineH− as 〈F−〉. IfH∗− denotes the dual ofH−, then we set

G− := {` ∈ H∗− : `(ϕ1 · ϕ2) = `(ϕ1)`(ϕ2), ∀ϕ1, ϕ2 ∈ H−}.
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1.3. Renormalisation Group

Theorem 1.3.18. Let

R− = {M` : 〈T〉 → 〈T〉, M` = (`⊗ 1)∆̂, ` ∈ G−}.

ThenR− is a group for the composition law. Moreover, one has for f, g ∈ G−:

MfMg = Mf◦g

where f ◦ g is defined by
f ◦ g = (g ⊗ f)∆−.

Link between the two groups

The previous theorem gives us the renormalisation group for proving the convergnence of
the symbols. One can also have a nice recursive formulation where M` is given by:

M◦1 = 1, M◦X = X, M◦Ξ = Ξ

M◦τ τ̄ = (M◦τ)(M◦τ̄), Mτ = M◦Rτ

M◦Ik(τ) = Ik(Mτ) RIk(τ) = Ik(τ)

The last identityRIk(τ) = Ik(τ) is guarantee by taking the projection Π− with zero value
on terms of the form: Ik(τ). For all ` ∈ G−, we define

M◦ = M◦
` = (`⊗ 1)∆◦ = (`Π− ⊗ 1)δ◦

for some coproduct δ◦ defined as δ+ and δ− but on a diffeerent subset A◦. We defined

R = R` = (`⊗ 1)∆R = (`Π− ⊗ 1)δ+.

The map R has the nice property of commuting with the structure group which is the key
point for building the renormalised model.

Remark 1.3.19. We describe some elements of the subset is A◦ in the example just below.
On A = {S1, S2, S3} ∈ A(T ), we compute:

%S3

`1

`5 `6

`3`2

%S1

`4

`7 `8 `9

%S2

`10

−→ R↑AT =
%S1

`4

`3

%S2

`8 `9

%S3

`6`5

Finally, we obtain {S3} ∈ A+(T ) and {S1 , S2} ∈ A◦(T ). The set A◦(T ) as to be under-
stood as elements of A(T ) without rooted subtree.

Remark 1.3.20. This contruction of the renormalisation group contains all the examples
which have been treated see 3.7. In 3.7.1, we present all the basic ideas of the renormal-
isation group on the wick renormalisation of the power of a standard gaussian random
variable. All the examples belong to the gaussian case, but we can consider non-gaussian
noise like in [HS15] and [Hai15]: the main difference is that for the gaussian case the
functional ` is supported on trees with an even number of leaves whereas we do not have
such constraint in the non-gaussian case.
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1.3.3 The renormalised model
We can build a model (ΠM

x ,Γ
M
xy) using the construction of [Hai14b, section 8.3] and

we provide a recursive formulation for the map ΠM
x with is really close to the recursive

formulation for M in the previous section:
(ΠM◦

x 1)(y) = 1, (ΠM◦

x Ξ)(y) = ξ(y), (ΠM◦

x X)(y) = y − x,

(ΠM◦

x Ikτ)(y) =

∫
DkK(y − z)(ΠM

x τ)(z)dz −
∑
`

(y − x)`

`!
fMx (Jk+l(τ)),

(ΠM
x τ)(y) = (ΠM◦

x Rτ)(y), (ΠM◦

x τ τ̄)(y) = (ΠM◦

x τ)(y)(ΠM◦

x τ̄)(y)

(1.12)

where fMx ∈ H∗+ is defined by
fMx (X) = x, fMx (τ τ̄) = fMx (τ)fMx (τ̄)

fMx (J`(τ)) = 1(|I`(τ)|>0)

∫
D`K(x− z)(ΠM

x τ)(z)dz.

In the previous definition, we consider a map M = M` = (`⊗ 1)∆̂ such that R` is the
identity on terms of the form Ik(τ), the map ΠM◦

x and ΠM
x coincide on the first two lines

of the definition.

Remark 1.3.21. For the definition of ΠM◦
x on the noise, we suppose that we are in the

setting of a regularised model where ξ is smooth. If ξ is the space-time white noise, we
have to replace y by a rescaled test function ϕλx. The definition for abstract integrator
guarantees that we obtain an admissible model. We have used the new symbol Jk(τ)
which is non zero and equal to Ik(τ) when this term has positive homogeneity. The third
part of the definition describes the behaviour on a product: ΠM◦

x is multiplicative as for
M◦ and we need first to apply R for ΠM

x in order to recover the multiplicativity.

Remark 1.3.22. The main advantage of this definition is the recursive formula for the
product which allows us to compute the reconstructor operator RM given in the case of
smooth functions by

(RMτ)(x) = (ΠM
x τ)(x).

In most of the examples see 3.7, we even have the property:

(RMτ)(x) = (ΠM
x τ)(x) = (ΠxMτ)(x)

which is really convenient for computing the renormalised equation.

If we set FM
x = ΓgMx where gMx is defined from fMx in 3.6.2 , the transformation ΓMxy

is given by
ΓMxy = (FM

x )−1 ◦ FM
y = ΓγMxy ,

where γMxy = (gMx )−1 ◦ gMy .

30



1.3. Renormalisation Group

Theorem 1.3.23. Let (ΠM
x ,Γ

M
xy) defined as above, then this is a model on some subset of

T. Moreover, the maps ΠM◦
x = ΠM◦FM

x and ΠM
x = ΠMFM

x are independent of x.

Remark 1.3.24. The theorem is relatively vague on the subsets from which we obtain
the model. In most of the cases, we start from a finite set of labelled trees containing the
negative labelled trees and then we enlarge this family in order to be invariant under the
structure group. We can also define our model on a bigger space which incorporates all
the terms built from the products in our equation see 3.1.

Remark 1.3.25. For proving the previous theorem, we have to check algebraic properties
and analytical bounds given in 1.2.2. The algebraic properties follow from the decompo-
sition ofM withR commuting with the structure group. The analytical bounds rely on the
fact that we define an admissible model. Moreover, the projection Π− in the definition of
the coproduct creates counter-terms with better homogeneity when we remove divergent
patterns.

Remark 1.3.26. We provide different proofs of this result. The main one is based on the
factorisation given in [Hai14b]:

ΠM
x = (Πx ⊗ gx)∆M , γMx,y = (γx,y ⊗ gy)∆̂M .

In this proof (see 3.6.2), we have to guess what can be the correct formula for a recursive
definition on the abstract integrator. We give an alternative proof in the appendix based
on the use of recursive formula and this formulation does not use the coproduct. We also
show how the coproduct can be introduced from the recursive definition of Πx see A.

1.3.4 The extended structure
The motivation of the extension of the structure space is to obtain a simpler formula

for the renormalised model. We add a new node-label d : N → R which computes a new
homogeneity. For a shape T , we denote by T n,d

e such labelled tree. Let x a node of T ,
we define Tx where its nodes are identified with Nx = {u : x ≤ u} and we also define
Ex = {e = (x, a) ∈ E} which are the edges above x. The new homogeneity | · |ex of a
labelled tree T with root % is given by:

|T |ex = |n(%)|s +
∑
e′∈E%

|P↑e′T |ex + d(%) ,

where
|P↑e′T |ex = |l(e′)| − |e(e′)|s + |Tu|ex, e′ = (%, u).

The idea is that when we remove some subtrees, we keep track of some information
by changing the label d.

Remark 1.3.27. For the symbol notation, we add a new symbol 1α with the properties
1α · 1β = 1α+β and I(1α) = 0 . This symbol encodes the label d.
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We extend the operatorR↓A as given in the next example.

Example 1.3.28. We select A = {S1, S2} in A(T ), we remove it from the main tree and
we leave the homogeneity of the subtrees Si as labels:

%

`1 `3`2

%S1

`4

`5 `6 `7

%S2

`8

−→
%S1

`4

`3

%S2

`6 `7

⊗
%

|S2|ex|S1|ex

`1 `2 `5 `8

One can extend naturally with this new operator all the coproducts defined in the
previous part. This is the case for the coproduct for the renormalisation group. For ∆̂,
we obtain a decomposition of the form ∆̂T =

∑
i T

(1)
i ⊗ T

(2)
i with the nice property

|T |ex = |T (2)
i |ex. But for the structure group, we need to be cautious. Therefore, we have

to use a projector P which erases the root label d and preserves the property that for every
labelled tree T , one has ∆T =

∑
i T

(1)
i ⊗T

(2)
i which satisfies |T |ex = |T (1)

i |ex + |T (2)
i |ex .

Remark 1.3.29. One natural space of labelled trees which is invariant under the action of
the two groups is Tn, the labelled trees with d taking values in R−. This is also the correct
space for defining the model and for having the correct analytical bounds.

As for Πx, we define a map Π̂x : Tn → S ′(Rd) such that (Π̂x1α)(y) = 1 and where we
replace fx by f̂x. The definition of f̂x is exactly the same except for the abstract integrator
when we replace the homogeneity | · | by | · |ex.

f̂x(Ik(τ)) = 1(|Ik(τ)|ex>0)

∫
DkK(x− z)(Π̂xτ)(z)dz.

We do the same for ĝx and we obtain a new γ̂xy.

Theorem 1.3.30. Let (Π̂M , Γ̂M) extended above, then this is a model on some subset of
Tn with the homogeneity | · |ex. One has the following identities:

Π̂M
x = Π̂xM, Γ̂Mxy = Γ̂γ̂Mxy = Γ̂γ̂xyM◦ . (1.13)

Remark 1.3.31. As for the renormalised model, we do not precise the subset of Tn. Its
definition can be found in 4.1.14. The main idea is that we have to restraint the value of
d if we want to have for each scalar β a finite number of labelled trees with homogeneity
below β.

Remark 1.3.32. The identities (1.13) overcome the main difficulties for proving that we
obtain a model:

• The map M acts on Π̂x as in the stationnary version of this operator which is Π:
ΠM = ΠM . This action provides a nice formula for the reconstruction operator:

(RMf(x))(x) = (Π̂xMf(x))(x),

where f belongs to Dγ with γ > 0. For the convergence of the model, we will
use the extended structure because we can have explicit formula for the Feynman
diagrams.
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• The action of M on the structure group is given by M◦ acting on γ̂xy. This is not
surprising, because these maps are both multiplicative on the labelled trees. More-
over, the map M◦ in Γ̂γ̂xyM◦ acts on a labelled tree where we have already removed
a rooted subtree. This suggests that the actions of the positive and the negative
renormalisation do not overlap.

1.4 The use of Feynman diagrams

Most of the examples of singular SPDEs present a gaussian struture through a space-
time white noise. Therefore, for each labelled tree T n

e we can perform a Wierner chaos
decomposition on

(
Π

(ε)
x T n

e

)
(ϕ) where ϕ is a test function. This one of the main step for

proving the convergence of the model. We prove the next theorem for the generalised
KPZ equation and we provide tools for the general case of locally subcritical equations in
5.8.1.

Theorem 1.4.1. Let (ΠMε
x ,ΓMε

xy ) be a renormalised model associated to an SPDEs in the
extended structure. Then there exists a random model (Πx,Γxy) and a constant C such
that for every underlying compact space-time domain

E‖ΠMε ; Π‖ ≤ Cεκ/2.

In that context, we will use some Feynman diagrams. In our framework, a Feynman
diagram would be a labelled graph where each node is a variable integrated on Rd and the
edges are kernels which can depend on a parameter ε. Then, we want to obtain uniform
bounds in ε for proving the convergence of the diagrams. Diverging patterns in a Feynman
diagram are subgraphs such that if we freeze the variables outside these subgraphs then
the integration of the other variables is not well defined. This property can be expressed
in terms of homogeneity where a scalar measure the previous singularity. The main goal
of these diagrams is to transpose an analytical problem into a combinatorial one: the
convergence is based essentially on checking bounds on the labels of the graph.

1.4.1 Wiener chaos decomposition

In this section, we follow the presentation of the Wiener chaos given in [Nua05]. We
consider H a real Hilbert space with the scalar product 〈., .〉H .

Definition 1.4.2. A stochastic process W = {W (h), h ∈ H} defined on a complete
probability space (Ω,F , P ) is a isormal Gaussian process if W is a collection of centered
Gaussian variables such that the map h 7→ Wh is an isometry from H to L2(Ω,F). We
have for every g, h ∈ H:

E(W (g)W (h)) = 〈g, h〉H .
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1.4. The use of Feynman diagrams

The space-time white noise can be discribed in this setting by taking H equal to some
L2 space. We denote by G the σ- field generated by the random variables {W (h), h ∈ H}.

For n ≥ 1, we considerHn the closed linear subspace in L2(Ω,F , P ) of:

{Hn(W (h)), h ∈ H, ‖h‖H = 1}.

where the Hn are the Hermite polynomial. We notice that:

• For n = 1,H1 is the set of the constants.

• For n 6= m,Hn andHn are ortogonal.

The spaceHn is called the Wiener chaos of order n.

Theorem 1.4.3. The space L2(Ω,G, P ) can be decomposed into the infinite orthogonal
sum of the subspacesHn:

L2(Ω,G, P ) = ⊕∞n=0Hn.

Let {ei, i ≥ 1} an orthonormal basis of H and H⊗sn the k-fold symmetric tensor
power of H . If H = L2(T ) then H⊗sn can be identified with the space of symmetric
square integrable function in n arguments on T . We have a natural isometry Ĩn (up to
a factor

√
n!) between H⊗sn and the n th Wiener chaos Hn given by for any sequence

a1, a2, ... of positive integer with only finitely many non-zero element such that |a| = n:

Ĩn : sym(⊗∞i=1e
⊗ai
i ) 7→ a!

∞∏
i=1

Hai(W (ei))

where sym is defined on f(t1, ..., tm) by

sym(f)(t1, ..., tm) =
1

m!

∑
σ

f(tσ(1), ..., tσ(m)).

The map In = Ĩn ◦ sym : H⊗n → L2(Ω, P ) has the following property:

E(In(f)2) = n!‖sym(f)‖2 ≤ n!‖f‖2.

Now, we give one important lemma which is a consequence of Nelson’s hypercon-
tractivity:

Lemma 1.4.4. Let X a L2 random variable in the k-th inhomogeneous Wiener chaos.
Then for every p ≥ 1, there exists a constant Ck,p such that E(|X|2P ) ≤ Ck,pE(|X|2).

This lemma tells us that for such sequence of processes Xε depending on a param-
eter ε, we just need to have uniform bounds on their L2 norm if we want to prove the
convergence of that sequence.
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1.4.2 Renormalised Feynman diagrams

It has been noticed in [Hai14b] that for proving the convergence of the model, we just
need to have bounds on the covariance of (Π̂ε

0τ)(ϕλ) where ϕλ is a rescaled test function
around the origin and τ is a labelled tree with negative homogeneity. In order to com-
pute the covariance of (Π̂ε

0τ)(ϕλ), we decompose this process onto its k-th homogeneous
Wiener chaos (Π̂ε,k

0 τ)(ϕλ):

(Π̂ε
0τ)(ϕλ) =

∑
k≤‖τ‖

(Π̂ε,k
0 τ)(ϕλ).

Then by orthogonality of the different chaos, we obtain:

E(|(Π̂ε
0τ)(ϕλ)|2) =

∑
k≤‖τ‖

E(|(Π̂ε,k
0 τ)(ϕλ)|2).

Each term Π̂ε,k
0 τ can be described by a kernel Ŵ ε,kτ inL2(R)⊗k through a map f 7→ Ik(f)

which satisfies:
E(Ik(f)2) ≤ k!‖f‖2 (1.14)

where ‖ · ‖ is the L2 norm. Finally, we obtain:

E(|(Π̂ε
0τ)(ϕλ)|2) ≤

∑
k≤‖τ‖

〈Ŵ ε,kτ, Ŵ ε,kτ〉.

where ‖τ‖ denotes the number of leaves in τ .

Remark 1.4.5. Given a labelled tree T n
e , we use the extended structure in order to have a

clear way of computing the kernel Ŵ ε,kT n
e . Indeed, we have:

(Π̂ε
0T

n
e )(ϕλ) = (Πε

0MεT
n
e )(ϕλ)

=
∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)(
Πε

0R
↓
AT

n−nA,nA+πeA
e+eA

)
(ϕλ).

This explicit expression comes from the simple action of Mε on Π0 in the extended struc-
ture. Then, we obtain:

Ŵ ε,kT n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W ε,k

(
R↓AT

n−nA,nA+πeA
e+eA

)
(1.15)

where the definition of the kernel W ε,k is given in 5.1.1. We also provide a recursive
definition of `ε see 5.1.3 in order to treat the subdivergences. This definition can also be
expressed in terms of the antipode of the negative renormalisation see 5.8.9 .
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1.4. The use of Feynman diagrams

Each term 〈Ŵ ε,kτ, Ŵ ε,kτ〉 can be represented by a sum of terms Iλ(K) defined by:

Iλ(K) =

∫ ∫
ϕλ(x)ϕλ(y)K(x, y)dxdy.

where K is obtained from generalised convolution of other kernels and Iλ(K) can be
rewritten using a direct graph G = (V , E):

Iλ(K) =

∫
(Rd)V0

∏
e∈E

K̂e(xe+ , xe−)dx

where e = (e+, e−) and G has three distinguished vertices V? = {v0, v?,1, v?,2}. Each
edge e ∈ E is labelled by (ae, re, ve) ∈ R× Z× V .

By definition, we have for e ∈ E :

K̂e(xe+ , xe−) = Ke(xe+ − xe−)−
∑
|j|s<re

(xe+ − xve)j

j!
DjKe(xve − xe−).

where Ke is compactly supported in a ball of radius 1 around the origin and such that

|DkKe(x)| . ‖x‖−ae−|k|ss

holds uniformly over x with ‖x‖s ≤ 1 and for multiindices k.
We assume that v?,1 and v?,2 are connected to v0 by two edges with label (0, 0).

G′

v0

v?,1 v?,2

(0, 0) (0,
0)

Remark 1.4.6. Given a labelled tree T n
e , there exists a direct algorithm for encoding

Ŵ ε,kT n
e see 5.2. In general, the kernel Ke is associated to an edge of T n

e : it could be
derivatives of the heat kernels, polynomials or the mollifier %ε. The distinguished vertices
correspond to the rescaled test function.

For any V̄ ⊂ V , we also define the following subsets of E :

E↑(V̄) = {e ∈ E : e ∩ V̄ = e−}, E↓(V̄) = {e ∈ E : e ∩ V̄ = e+},
E0(V̄) = {e ∈ E : e ∩ V̄ = e}, E(V̄) = {e ∈ E : e ∩ V̄ 6= ∅}.

We suppose that our graph G satisfies the following assumptions:
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1.4. The use of Feynman diagrams

Assumption 1. 1. For every subset V̄ ⊂ V , one has∑
e∈E0(V̄)

ae +
∑

e∈E↑(V̄)

1{ve∈V̄∧re>0}(ae + re − 1)−
∑

e∈E↓(V̄)

1ve∈V̄re < (|V̄| − 1)|s|

2. For every non-empty subset V̄ ⊂ V \ V?, one has the bound:∑
e∈E0(V̄)

ae +
∑

e∈E↓(V̄)

(
1{ve∈V̄∨re=0}(ae + re − 1)− (re − 1)

)
+
∑

e∈E↑(V̄)

((ae + re)− 1ve∈V̄re) > |V̄||s|

Remark 1.4.7. The first assumption is a kind of integrability condition, it gives the con-
vergence. The second one is a guarantee of having the right homogeneity in the limit. We
notice that the nodes ve help the convergence in the first assumption because they appear
with a sign minus.

Theorem 1.4.8. Consider a labelled graph G as above satisfying Assumption 3 and a
collection of kernelsK associated to the graph. Then, there exists a constantC depending
only on the cardinality of V and on the kernels K such that

|Iλ(K)| ≤ Cλ|G|s , λ ∈ (0, 1],

where

|G| = |V \ V?||s| −
∑
e∈E

ae,

is the homogeneity of the graph G.

Remark 1.4.9. This theorem has been introduced in [HQ15] in a simple version: the
node ve is equal to v0 for every edge e and all the divergent patterns are removed and
replaced by a renormalised edges. We will not use these renormalised edges. Indeed, the
renormalisation of the diverging patterns is done by a node ve 6= v0. In fact, we have two
renormalisations:

• Positive renormalisation which is given by edges labelled with ve = v0 and re > 0.
This renormalisation comes from Π0 and therefore from the structure group.

• Negative renormalisation given by edges labelled with ve 6= v0. This renormalisa-
tion appears when we rewrite the term Ŵ ε,kT n

e with the use of telescopic sum.

We summarise how we proceed for proving the convergence:

• For each k, we identify the divergence and the subdivergence in Ŵ ε,kT n
e .

37



1.5. The generalised KPZ

• We rewrite by using a telescopic sum the kernels Ŵ ε,kT n
e into a sum of graphs

where negative renormalisations appear and the divergences identified in the first
part are renormalised.

• We finish by just applying the theorem 1.4.8 on each graph.

We use this method for the generalised KPZ. In that case, we do not face overlapping
divergence. Moreover, only one term presents a sudivergence and it can be treated by
hand.

1.5 The generalised KPZ
In this section, we present our main example on which we apply the previous renor-

malisation techniques. We want to solve the equation on R+ × S1 given by:

∂tu = ∂2
xu+ g(u)(∂xu)2 + k(u)∂xu+ h(u) + f(u)ξ, (1.16)

where ξ is a space-time white noise and x takes value in the circle S1. This is an extension
of the KPZ equation:

∂tu = ∂2
xu+ (∂xu)2 + ξ

introduced in [KPZ86]. This equation is ill-posed because solutions to the linear problem
the stochastic heat equation are not differentiable. Therefore, the product (∂xu)2 is ill-
defined. In [BG97], the authors give a meaning to this equation by using the Hopf-Cole
transformation, the solution is given by u = log(Z), where Z solves dZ = ∂2

xZ+ZdW in
the Itô sense see [PZ14]. Since this trick, the major improvement has come from [Hai13]
where the author gives a notion of solution with the use of the rough path theory which
coincides with the Hopf-Cole solution and which is unique. We recover also the same
solution with the regularity structure. Another interesting approach are the energy solu-
tions where their uniqueness has been recently proved in [GP15a]. The main interest of
studying a general version of KPZ is the invariance under change of coordinates which
can describe a natural free evolution for loops on manifold generalising the heat equation
see [Fun92].

We fix an even, smooth, compactly supported function % : R2 → R with
∫
% = 1 and

we set

%ε(t, x) = ε−3%(ε−2t, ε−1x), c% =

∫
P (z)(% ∗ %)(z)dz

where ∗ means space-time convolution. We regularise the noise as follows

ξε = %ε ∗ ξ.

The renormalised equation is given by:

∂tuε = ∂2
xuε+g(uε)

(
(∂xuε)

2 − Cε
)

+k(uε)∂xuε+h(uε)+f(uε)(ξε−Cεf ′(uε)). (1.17)

38



1.5. The generalised KPZ

Theorem 1.5.1. Let k h and g smooth functions. Let uε the solution of (6.2) with Cε =
ε−1c% and h replaced by

h̄(u) = h(u)− c(1)
% (f ′(u)3f(u) + g(u)3f(u)4)

− (3c(1)
% + c(2)

% )(g(u)2f ′(u)f(u)3 + g(u)f ′(u)2f(u)2)

− c(2)
% (g(u)f ′′(u)f(u)3 + g′(u)f ′(u)f(u)3 + f ′′(u)f ′(u)f(u)2 + g′(u)g(u)f(u)4)

for some constants c(i)
% which can depend on % but not on ε. The initial condition uε(0, ·) =

u(0, ·) is taken in C(S1). for both cases. Then, there exists a choice of c(i)
% such that for

some T > 0, one has

lim
ε→0

sup
(t,x)∈[0,T ]×S1

|u(t, x)− uε(t, x)| = 0,

in probability for some limit u which gives the Itô product for f(u)ξ. Moreover for any
α ∈ (0, 1

2
) and t > 0, the restriction of uε to [t, T ]× S1 converges to u in probability for

the topology of Cα,α/2. Finally, if we take a smooth diffeomorphism ϕ then ϕ(uε) satisfies
the same kind of equation with the same constants but with new g̃, h̃, k̃ and f̃ depending
on g, h, k, f and ϕ.

Remark 1.5.2. The constants c%, c
(1)
% and c(2)

% are the same as in [HP14] and they have
been chosen to obtain the Itô product.
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Chapter 2

Hopf Algebras on Labelled trees and
forests

In this chapter, we consider labelled trees and labelled forests and we define two Hopf
algebras on their linear span (see Section 2.4 for all relevant definitions). This construction
is close to the Connes-Kreimer Hopf algebra on labelled trees. These Hopf algebras are
used to construct, respectively, the structure group of a regularity structure (see Definition
1.2.1) and the renormalisation group (see Section 2.4.4). In this way we have an (almost)
unified descriptions of these two groups and their algebraic properties.

2.1 Notations

Given a finite set S and a map ` : S → N, we write

`!
def
=
∏
x∈S

`(x)! ,

and we define the corresponding binomial coefficients accordingly. Note that if `1 and
`2 have disjoint supports, then (`1 + `2)! = `1!`2!. Given a map π : S → S̄, we also
define π?` : S̄ → N by π?`(x) =

∑
y∈π−1(x) `(y). With this definition at hand, one has the

following slight reformulation of the classical Chu-Vandermonde identity.
For k, ` : S → N we define (

k

`

)
def
=
∏
x∈S

(
k(x)

`(x)

)

where we use the convention (
k

`

)
= 0 if k 6≤ `.
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2.2. Rooted trees

Lemma 2.1.1 (Chu-Vandermonde). One has the identity∑
` :π?`

(
k

`

)
=

(
π?k

π?`

)
,

where the sum runs over all possible choices of ` such that π?` is fixed.

Proof. We fix a map f : S → N and we have the following identity:∑
` :π?`=π?f

(
k

`

)
=
∏
x∈S̄

∑
∑
y∈π−1(x)

`(y)

=(π?f)(x)

∏
y∈π−1(x)

(
k(y)

`(y)

)
.

The classical Chu-Vandermonde identity gives for each x ∈ S̄:

∑
∑
y∈π−1(x)

`(y)

=π?f(x)

∏
y∈π−1(x)

(
k(y)

`(y)

)
=

(∑
y∈π−1(x) k(y)

π?f(x)

)
=

(
π?k(x)

π?f(x)

)

which concludes the proof.

Remark 2.1.2. This statement is also consistent with the case where the maps k and `
are multi-index valued under the natural identification of a map S → Nd with a map
S × {1, . . . , d} → N given by `(x)i ↔ `(x, i).

2.2 Rooted trees
A rooted tree T is a finite tree (a finite connected graph without simple cycles) with a
distinguished vertex, % = %T , called the root, and a function l : LT t ET → L, where

1. L is a fixed non-empty set of types

2. edges of T are denoted by E = ET ⊂ N ×N and nodes by N = NT

3. leaves, denoted by L = LT , are defined as nodes other than the root which have
degree equal to one (i.e. which are adjacent to a single edge).

Given a rooted tree T , we endow N with the partial order ≤ where w ≤ v if and only
if w is on the unique path connecting v to the root, and we orient edges in E so that if
(x, y) ∈ E, then x ≤ y. For any two nodes v and w of T (possibly, but not necessarily,
leaves), we denote by v ∧ w the maximal node that is less than both v and w. Interior
nodes, i.e. nodes which are not leaves, are denotes by N̊ = N \ L.

We allow for the case L = ∅, in which case N = N̊ consists of one element (the
root) and E is empty. We do however not allow for N = ∅. We denote by 1 the (unique)
labelled tree with L = ∅.
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2.2. Rooted trees

Definition 2.2.1. We write T0 for the set of all rooted trees and 〈T0〉 for the linear span
of T0. If T1, T2 ∈ T0, then we define T1T2, the product of T1 and T2, as the tree obtained
by identifying the roots %T1 and %T2; in other words, T1T2 is equal to (T1 t T2)/ ∼, where
x ∼ y if x = y or {x, y} = {%T1 , %T2}. This product is commutative and associative.

Definition 2.2.2. We write F0 for the collection of all multisets with elements in T0 \ 1.
We will denote elements of F0 equivalently either by {T1, . . . , Tk} with Ti ∈ T0 \ 1 or by
T1 · T2 · · ·Tk, with the empty set denoted either by ∅ or by 1. Elements of F0 are called
forests and we have a natural embedding of T0 in F0.

We then write 〈F0〉 for the free vector space generated by F0, equipped with the prod-
uct · as above, extended by linearity. Note that this is canonically isomorphic to the free
commutative algebra over T0, quotiented by the ideal generated by (1 − 1). In other
words, the special tree 1 ∈ T0 is identified with the unit of 〈F0〉, so that one has for
example 1 · T1 · T2 = T1 · T2 = T2 · T1 in 〈F0〉.

Remark 2.2.3. Given T1, T2 ∈ T0, we have two possible products: T1T2 ∈ T0 corre-
sponds to the graph obtained by identifying the roots, while T1 · T2 ∈ F0 corresponds to
the disjoint union of the two graphs (if both T1 and T2 are different from 1). In particular,
we can identify T1T2 with a forest in F0, which is however different from T1 · T2.

We illustrate this by the following example:

T1 =
%T1

`2`1

and T2 =
%T2

`4`3

, then T1 · T2 =
%T1

`2`1

%T2

`4`3

and T1T2

%

`1 `2 `3 `4

.

Definition 2.2.4. A forest F = T1 ·T2 · · ·Tk ∈ F0 is canonically identified with the graph
T1 t · · · t Tk, with nodes NF = NT1 t · · · t NTk and edges EF = ET1 t · · · t ETk . We
call LF = LT1 t · · · t LTk the set of leaves and N̊F = N̊T1 t · · · t N̊Tk the set of inner
nodes of F .

Definition 2.2.5. Given a rooted tree T ∈ T0 and a rooted subtree S ⊆ T , we say that S
is admissible in T if

1. LS ⊆ LT

2. either %S = %T , or there exists at least one leaf ` ∈ LT \ LS with %S ≤ `.

Definition 2.2.6. Given a forest F = T1 · T2 · · ·Tk ∈ F0, a subtree of F is a rooted tree
S = (NS, ES) ⊂ F = (NF , EF ). Note that necessarily S is a rooted subtree of one of the
Ti’s. A subtree S of F is said to be admissible if, for some i, S ⊂ Ti and S is admissible
in Ti. We write S(F ) for the set of admissible subtrees of F .

%S1

`1 `3`1

`4

`5 `6 `7

%S2

`8
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2.2. Rooted trees

In the example just above, the subtree S1 in green is admissible. However, the subtree
S2 in red is not admissible, even though its leaves are leaves of the original tree, because
there is no leaf ` not in S2 such that %S2 ≤ `.

2.2.1 Operations on forests
Definition 2.2.7. Given a forest F = T1 · T2 · · ·Tk ∈ F0, we denote by A(F ) the set of
all A ⊂ S(F ) such that any two elements of A are disjoint. Here, two subtrees S1, S2 ∈
S(F ) are said to be disjoint if the set of nodes touched by S1 is disjoint from the set
of nodes touched by S2. In general, it will be convenient to identify a subtree of F with
the corresponding subset of NF . Given F ∈ F0, we can (and will) view A(F ) again as a
subset of F0. In particular, we will identify elements in A(F ) that only differ by a number
of trees consisting solely of a root.

Note that A(F ) is never empty since one does always have ∅ ∈ A(F ).

Definition 2.2.8. Any A = {S1, . . . , Sn} ∈ A(F ) induces a natural equivalence relation
∼A on NF by postulating that x ∼A y if and only if either x = y or both x and y belong
to the same subtree Sj ∈ A. This allows us to define another forest

R↓AF ∈ F0 ,

by taking the quotient of the graph (NF , EF ) with respect to∼A. In other words, the nodes
of R↓AF are given by NF/ ∼A and its edges are given by EF \ {(x, y) ∈ EF : x ∼A y},
with the obvious identifications. We also define

R↑AF = S1 · S2 · · · Sn ∈ F0,

with the additional natural conventions thatR↑∅F = 1 andR↓∅F = F .

In the next example, we compute the previous operations on A = {S1, S2} ∈ A(T ):

T =
%

`1 `3`2

%S1

`4

`5 `6 `7

%S2

`8

=⇒ R↑AT =
%S1

`4

`3

%S2

`6 `7

, R↓AT =
%

%S2
%S1

`1 `2 `5 `8

.

Remark 2.2.9. Definitions 2.2.5 and 2.2.7 guarantee that the set of leaves/edges of both
R↓AF and R↑AF are naturally identified with subsets of the leaves/edges of F for all
A ∈ A(F ). In particular the types given to leaves/edges of R↓AF are inherited from the
corresponding leaves/edges in F . Moreover, one has canonical injections

A(R↑AF ) ⊂ A(F ) , A(R↓AF ) ⊂ A(F ) ,

via the obvious identifications of subtrees ofR↑AF andR↓AF with subtrees of F .
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2.2. Rooted trees

Remark 2.2.10. Recall that rooted trees in T0 are canonically identified with a forest in
F0. An important property is that for all A ∈ A(T ) with T ∈ T0, one has R↓AT ∈ T0,
while in generalR↑AT ∈ F0 butR↑AT /∈ T0.

Before we proceed, we introduce a number of relations, operations and properties of
these collections of rooted subtrees of a forest F ∈ F0. First, given A,B ∈ A(F ), we say
that A b B if the following two properties hold:

1. For every A ∈ A there exists B ∈ B such that A ⊂ B.

2. For every B ∈ B, writing AB = {A ∈ A : A ⊂ B}, one has AB ∈ A(R↑BF ).

The following is now immediate.

Lemma 2.2.11. If A b B thenR↑AR
↑
BF = R↑AF .

Given A ∈ A(F ) and B ∈ S(F ) such that for each A ∈ A one has either A ⊂ B
or A ∩ B = ∅ (identifying a subtree with the corresponding set of nodes), we write
B \\ A ∈ S(R↓AF ) for the subtree whose set of nodes agrees with that of B, but viewed
as a subset of N/ ∼A. This is well-defined since our assumptions precisely guarantee that
each equivalence class of ∼A is either contained in the set of nodes of B, or disjoint from
it. Given A,B ∈ A(F ) with A b B, we then define B \\ A ∈ A(R↓AF ) analogously by
setting

B \\ A =
{
B \\ A : B ∈ B

}
.

With this definition, it is straightforward to see that

Lemma 2.2.12. If A b B and C := B \\ A then

R↑CR
↓
AF = R↓AR

↑
BF, R↓CR

↓
AF = R↓BF.

Conversely, given A ∈ A(F ) and C ∈ A(R↓AF ), for C ∈ C we define AC ∈ S(F )
as the subtree of F obtained by taking the nodes of C and, instead of viewing them as a
subset of NR↓AF = NF/ ∼A, we “expand” the equivalence relation ∼A and view them
again as a subset of NF . One can verify that AC is indeed an admissible subtree of F .
Still in the same context, we then define

C dA =
{
AC : C ∈ C

}
∪
{
A ∈ A : A ∩ AC = ∅, ∀C ∈ C

}
∈ A(F ) .

In the next example, we consider a subtree B and A ⊂ B.

%B

`1 `3`2

`4

`5 `6 `7 `8

−→
%B

`4

`5 `6 `7

%A

`8

−→

`4 `5 `8

%A

We have first computed R↑BT then C = R↓A(R↑BT ) ∈ F0. Using the previous operations,
we have: A b B, B \\ A = C and B = A d C.
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2.2. Rooted trees

Proposition 2.2.13. Given A ∈ A(F ) and C ∈ A(R↓AF ), one has A b (C d A) and
(C dA) \\ A = C. Conversely, given A b B, one has (B \\ A) dA = B.

Proof. We first show that A b (C d A). The first property of b obviously holds, so we
only need to check the second one. Writing B = C d A, every element B ∈ B is, by
definition, either of the form B = AC for some C ∈ C, or of the form B = A for some
A ∈ A disjoint from all the AC . In the latter case, one has AB = B ∈ A(R↑BF ) as
required. In the first case, we need to verify that {A ∈ A : A ⊂ AC} ∈ A(R↑BF ). The
only way in which this could fail is if one of these subtrees A ∈ A is not admissible in B
(although it is necessarily admissible in F ), namely if there is no ` ∈ LB\LA with %A ≤ `.
This however would imply that NA is a leaf of B \\ A. One has B \\ A = AC \\ A = C,
since the operation C 7→ AC “undoes” the effect of the equivalence relation ∼A, while
the operation AC 7→ AC \\ A enforces it again. Therefore, NA would be a leaf of C, but
leaves of C are also leaves of R↓AF by definition of A, so that NA would be a leaf of
R↓AF . This however is ruled out by the fact that A is admissible by assumption.

To show that B \\ A = C, note that for elements B ∈ B of the type B = AC , one has
B \\ A = C as above. In the case B = A for some A ∈ A, one has B \ A = 1, so that it
does not contribute to B \\A, thus showing that indeed B \\A = C. Finally, the last claim
is immediate from the definitions which imply that AB\\A = B.

Corollary 2.2.14. For any shape T ∈ T0, there is a bijection between pairs (A,B) in
A(T ) with A b B and pairs (A, C) such that C ∈ A(R↓AT ).

Proof. The map (A,B) 7→ (A, C) is obtained by setting C = B \\ A and its inverse
by setting B = C d A. Proposition 2.2.13 then precisely states that these operations are
inverses of each other.

2.2.2 Coproducts on forests
We assume that we are given, for each T ∈ T0, a subset Ā(T ) ⊂ A(T ), such that the
following properties hold.

Assumption 2. The sets of collections of subtrees Ā(T ) satisfy the following properties.

1. One has 1 ∈ Ā(T ) for every T ∈ T0.

2. For every T ∈ T0, A ∈ Ā(T ), and C ∈ Ā(R↓AT ), one has C dA ∈ Ā(T ).

3. For every T ∈ T0 and A,B ∈ Ā(T ) with A b B, one has B \\ A ∈ Ā(R↓AT ).

Then we set for F = T1 · T2 · · ·Tk ∈ F0

Ā(F ) =
{
∪ki=1Ai, Ai ∈ Ā(Ti)

}
,

with the natural convention Ā(∅) = {∅}.
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2.2. Rooted trees

Lemma 2.2.15. Assuming Assumption 2, for any forest F ∈ F0, there is a bijection
between pairs (A,B) with B ∈ Ā(F ) and A b B, and pairs (Ā, B̄) with Ā ∈ Ā(F ) and
B̄ ∈ A(R↓ĀF ).

Proof. Identical to that of Corollary 2.2.14, noting that Assumption 2 guarantees that one
does indeed have A ∈ Ā(F ), B̄ d Ā ∈ Ā(F ) and B \\ A ∈ A(R↓ĀF ).

Theorem 2.2.16. Let Ā satisfy Assumption 2 and define a linear map ∆̄ : 〈F0〉 → 〈F0〉 ⊗
〈F0〉 by

∆̄F =
∑
A∈Ā(F )

R↑AF ⊗R
↓
AF .

Then, the identity
(1⊗ ∆̄)∆̄F = (∆̄⊗ 1)∆̄F ,

holds for every F ∈ F0. Moreover ∆̄ is multiplicative, i.e. for all F1, F2 ∈ F0

∆̄(F1 · F2) = (∆̄F1) · (∆̄F2). (2.1)

Finally ∆̄ : 〈F0〉 → F0 ⊗ 〈T0〉, where 〈T0〉 is the linear span of T0, viewed as a subspace
of 〈F0〉.
Proof. One has

(1⊗ ∆̄)∆̄F =
∑
A∈Ā(F )

B∈Ā(R↓AF )

R↑AF ⊗R
↑
BR
↓
AF ⊗R

↓
BR
↓
AF ,

(∆̄⊗ 1)∆̄F =
∑
C∈Ā(F )

A∈Ā(R↑C F )

R↑AR
↑
CF ⊗R

↓
AR

↑
CF ⊗R

↓
CF .

(∆̄⊗ 1)∆̄F =
∑
C∈Ā(F )
AbC

R↑AR
↑
CF ⊗R

↓
AR

↑
CF ⊗R

↓
CF .

As a consequence of Lemma 2.2.15, we can put the outer sums in bijection with each
other by identifying the collections A appearing in both expressions, and by identifying
B with C \\ A (or equivalently C with B dA).

We are therefore led to compare the two quantities

R↑AF ⊗R
↑
BR
↓
AF ⊗R

↓
BR
↓
AF ,

R↑AR
↑
CF ⊗R

↓
AR

↑
CF ⊗R

↓
CF ,

withA b C and B = C \\A (or equivalently C = BdA). Note now that, as a consequence
of the definitions of the relation between A, B and C, one has

R↑AR
↑
C = R↑A , R↑BR

↓
A = R↓AR

↑
C , R↓BR

↓
A = R↓C ,

so that both of these expressions are of the form

R↑AF ⊗R
↓
AR

↑
CF ⊗R

↓
CF .

In order to show multiplicativity we note that by the definition Ā(F1 · F2) can be canoni-
cally identified with Ā(F1)× Ā(F2) since F1 · F2 is the graph F1 t F2.

47



2.3. Labelled trees and forests

2.3 Labelled trees and forests
Definition 2.3.1. A labelled tree is a triple (T, e, n), where T ∈ T0 is a rooted tree en-
dowed with an edge-labelling e : ET → Nd and a node-labelling n : N̊T → Nd. We denote
by T the set of such labelled trees and denote a triple (T, e, n) by T n

e ∈ T.

Remark 2.3.2. Note that we have a natural projection T 7→ T0 defined by discarding the
labels, i.e. T n

e = (T, e, n) 7→ T . The product in T0 has a natural extension to a product in
T, (T n

e , T̂
n̂
ê ) 7→ T̄ n̄

ē , where T̄ := T T̂ , the edge-labels ē in T̄ are obtained by restriction on
ET and ET̂ , the node-labels n̄ on NT̄ \ {%T̄} are obtained by restriction on NT \ {%T} and
NT̂ \ {%T̂}, while n̄(%T̄ ) := n(%T ) + n̂(%T̂ ). This product is commutative and associative.

Definition 2.3.3. A labelled forest is a triple (F, e, n), where F ∈ F0 is a forest endowed
with an edge-labelling e : EF → Nd and a node-labelling n : N̊F → Nd. We denote by F
the set of such labelled forests and denote a triple (F, e, n) by F n

e ∈ F.

Remark 2.3.4. Note that we have a natural projection F 7→ F0 defined by discarding the
labels, i.e. F n

e = (F, e, n) 7→ F . The product in F0 has a natural extension to a product in
F, (F n

e , F̂
n̂
ê ) 7→ F̄ n̄

ē , where F̄ := F · F̂ , and labels are obtained by restriction on F and F̂ .
This product is commutative and associative.

Definition 2.3.5. For all F n
e ∈ F and A ∈ A(F ) we can extend canonically the equiv-

alence relation ∼A on F to F n
e . The forest R↑AF n

e inherits edge- and node-labels from
F n
e by simple restriction. The forest R↓AF n

e inherits the edge-labels from F n
e by simple

restriction, while the node-labels are the sums of the labels over equivalence classes:

n([x])
def
=

∑
y: y∼Ax

n(y). (2.2)

Before we proceed, we introduce another structure on F. Given F n
e ∈ F, we write

|F n
e | = |EF |+ |e|+ |n| ,

where, for a multiindex n say, we set |n| =
∑

x∈NF

∑d
i=1 n(x)i, and similarly for e. Note

that we then have the identities

|R↑AF
n
e | = |EA|+ |e�EA|+ |n�NA| , |R

↓
AF

n
e | = |EF \EA|+ |e�EF \ EA|+ |n| , (2.3)

where � denotes the restriction operator.
With this notation, we see that if we furthermore consider a finite set of types L, then

the set {F n
e ∈ F : |F n

e | = N} is finite for every N ≥ 0. This is because there are only
finitely many possibles shapes for a forest with a given number of edges (remember that
our forests contain no empty trees), and only finitely many ways of labelling them with
labels of any fixed total size. We therefore have a natural grading 〈F〉 =

⊕
N≥0 FN , and

similarly for any space of the type 〈F〉 ⊗ 〈F〉, etc.
Given a graded vector space of the form V =

⊕
N≥0 VN , we then write [V ] for the

(strictly larger) space of all formal series of the form
∑

N≥0 vN with vN ∈ VN . Given two
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2.3. Labelled trees and forests

graded vector spaces V and V̄ , we call a linear map A : [V ] → [V̄ ] infinite triangular if
the projection of AvN onto V̄M vanishes for M < N . Such linear maps are in bijection
with the set of infinite “matrices” of the form {AMN}M,N≥0 with AMN ∈ L(VN , V̄M) and
AMN = 0 for M < N , and composition is given by formal matrix multiplication (this
only involves finite sums thanks to the triangular structure of these matrices). Henceforth,
we make a slight abuse of language and write again A : V → V̄ instead of A : [V ]→ [V̄ ]
for such a map, but whenever we do this we will explicitly state thatA is infinite triangular.

Given a forest F ∈ F0 and an edge-label e : EF → Nd, we define the corresponding
node-label πe : NF → Nd by

πe(x) =
∑
e∈Ex

e(e) , Ex = {(x, y) ∈ EF} .

Let Ā satisfy Assumption 2 and define an infinite triangular linear map ∆̄ : 〈F〉 →
〈F〉 ⊗ 〈F〉 by

∆̄F n
e =

∑
A∈Ā(F )

∑
nA,eA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA (2.4)

where, for A = {S1, . . . , Sn},

1. eA runs over all Nd-valued functions on EF supported by the set of edges (x1, x2) ∈
EF \ ∪iESi such that x1 ∈ ∪iNSi

2. nA runs over the set of all Nd-valued functions on NF supported by ∪iN̊Si .

Note that, as a consequence of (2.3), one has∣∣R↑AF nA+πeA
e ⊗R↓AF

n−nA
e+eA

∣∣ = |F n
e |+ 2|eA| ,

so that this map is indeed triangular.

Theorem 2.3.6. If Ā satisfies Assumption 2 then the identity

(1⊗ ∆̄)∆̄F n
e = (∆̄⊗ 1)∆̄F n

e , (2.5)

holds for every F n
e ∈ F. Moreover ∆̄ is multiplicative, i.e. for all F1, F2 ∈ F

∆̄(F1 · F2) = (∆̄F1) · (∆̄F2). (2.6)

Finally ∆̄ : 〈T〉 → F⊗ 〈T〉, where 〈T〉 is the linear span of T.

Proof. We first show the multiplicativity property (2.6). Arguing as in the proof of (2.1)
in Theorem 2.3.6 we see that A ∈ Ā(FF̄ ) if and only if A = A ∪ Ā with A ∈ Ā(F )
and Ā ∈ Ā(F̄ ); moreover eA factorises as eA + eĀ, with eA, eĀ supported by EF and EF̄
respectively, and so does nA on N̊FF̄ . Therefore

R↓A
(
FF̄ )n+n̄−nA

e+ē+eA =
(
R↓A1

F
n−nA1
e+eA1

)(
R↓A2

F̄
n̄−nA2
ē+eA2

)
,
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2.3. Labelled trees and forests

as well as
R↑A(FF̄ )nA+πeA

e+ē = R↑A1
F

nA1
+πeA1

e R↑A2
F̄

nA2
+πeA2

ē .

Since factorials factor over functions with disjoint support, so that for example eA! =
eA1 !eA2 !, then all coefficients in (2.4) factorise and (2.6) follows.

We prove now (2.5). We first show that the identity (2.5) holds in the special case
when F n

e is a labelled forest with vanishing node-label, namely when n = 0; we will see
later how the general case can be coerced into this. If n = 0, then (2.4) reduces to the
somewhat cleaner identity

∆̄Fe =
∑
A∈Ā(F )

∑
eA

1

eA!
R↑AF

πeA
e ⊗R↓AFe+eA .

One has

(1⊗ ∆̄)∆̄Fe =
∑
A∈Ā(F )

B∈Ā(R↓AF )

∑
eA,eB

1

eA!eB!
R↑AF

πeA
e ⊗R↑BR

↓
AF

πeB
e+eA ⊗R

↓
BR
↓
AFe+eA+eB ,

(∆̄⊗ 1)∆̄Fe =
∑
C∈Ā(F )
AbC

∑
eCA,eC ,n

C
A

1

eC!eCA!

(
πeC
nCA

)
R↑AR

↑
CF

nCA+πeCA
e ⊗R↓AR

↑
CF

πeC−nCA
e+eCA

⊗R↓CFe+eC .

The previous formal series are well-defined. Indeed, if we fix one term appearing in the
sum, the edge-labels eA, eCA and eC are uniquely determined and this implies the same
property for eB and nCA.

As a consequence of Lemma 2.2.15, we can put the outer sums in bijection with each
other by identifying the collections A appearing in both expressions, and by identifying
B with C \\ A (or equivalently C with B d A). We are therefore led to compare the two
quantities

1

eA!eB!
R↑AF

πeA
e ⊗R↑BR

↓
AF

πeB
e+eA ⊗R

↓
BR
↓
AFe+eA+eB , (2.7)

1

eC!eCA!

(
πeC
nCA

)
R↑AR

↑
CF

nCA+πeCA
e ⊗R↓AR

↑
CF

πeC−nCA
e+eCA

⊗R↓CFe+eC , (2.8)

with summations implied over all of the label functions appearing, and with A b C and
B = C\\A (or equivalently C = BdA). Note now that, as a consequence of the definitions
of the relation between B and C, one has

R↑AR
↑
C = R↑A , R↑BR

↓
A = R↓AR

↑
C , R↓BR

↓
A = R↓C ,

so that both of these expressions are of the form

K(n1,2, e1,2)R↑AF
n2
e ⊗R

↓
AR

↑
CF

n1
e2
⊗R↓CFe1 ,

for some label functions n1,2, e1,2 and combinatorial factors K. Furthermore, the label
functions have the following properties:
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2.3. Labelled trees and forests

1. One has πe2 ≤ n2 ≤ π(e1 + e2) and n1 + πAn2 − πAπ(e1 + e2) = 0.

2. The edge-label e1 is supported on ĒC , while e2 is supported on EC ∩ ĒA.

3. The node-label n1 is a function on the quotient set N/ ∼A.

4. The node-label n2 is supported on NA.

We call any choice of label functions satisfying these properties “acceptable”. Given an
acceptable choice of label functions n1,2, e1,2, we say that labels eA, eB, eC , eCA and nCA are
compatible with this choice if the following identities hold:

πA
(
πeC − nCA

)
= n1 = πAπeB ,

nCA + πeCA = n2 = πeA ,
eC = e1 = eA|ĒC + eB ,
eCA = e2 = eA|EC .

(2.9)

Note that the first identity is redundant since it is an automatic consequence of the remain-
ing three identities, combined with the fact that the labelling is acceptable. It thus suffices
to show that if we sum the combinatorial factor appearing in (2.7) over all values of eA
and eB compatible with a given acceptable choice of n1,2, e1,2, then we obtain the same
value as when we sum the combinatorial factor of (2.8) over all compatible values of eC ,
eCA and nCA.

We first consider (2.8), which is the easier case. Indeed, it follows from the last three
identities of (2.9) that eC , eCA and nCA are uniquely determined by n2, e1 and e2, so that the
corresponding sum over combinatorial factors contains one single term and is given by

1

e1!e2!

(
πe1

n2 − πe2

)
=

(πe1)!

e1!e2!(n2 − πe2)!(π(e1 + e2)− n2)!
=

1

e1!e2!

(
πe1

n2 − πe2

)
.

(Note that being acceptable automatically implies that the various quantities appearing
here are positive.) Regarding (2.7), the situation is a little bit more complicated since the
identities (2.9) are not sufficient in general to determine eA and eB completely. Indeed,
the only part of the way in which e1 is split between the summands eA|ĒC and eB that is
determined is its image under π. Since πeB = π(e1 + e2)−n2 is determined, we still have
the freedom to choose the actual values of eB that are consistent with πeB. Once this is
chosen, it is easy to see that this also determines eA.

Combining this with (2.7), we conclude that the sum over the combinatorial factors
appearing there is given by∑

eB |πeB

1

e2!(e1 − eB)!eB!
=

1

e1!e2!

∑
eB

(
e1

eB

)
,

where the sum runs over all values of eB consistent with πeB = π(e1 + e2) − n2 and
we used the fact that (f + g)! = f !g! for any two label functions f and g with disjoint
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supports. It now remains to apply the Chu-Vandermonde identity, thus yielding∑
eB |πeB

(
e1

eB

)
=

(
πe1

πeB

)
=

(
πe1

π(e1 + e2)− n2

)
=

(
πe1

n2 − πe2

)
,

so that the claim follows at once.
It now remains to show that the required identity also holds if we endow F with a

non-zero node-label. For this, we use the following trick: we add additional types to the
set L by setting L̄ = Lt{?i}di=1 and we consider the map ι that takes a forest F ∈ FL and
builds a new forest ιF ∈ FL̄ obtained by setting the node-labels to 0 and, for any inner
node x, adding n(x)i new edges with type ?i and edge label 0. We denote by (ηi)i=1,...,d

the canonical basis of Rd, i.e. ηi(j) = 1(i=j), j ∈ {1, . . . , d}.
Given a forest F ∈ FL̄, we call edges of type ?i for some i “virtual edges” and we call

leaves not incident to a virtual edge “proper leaves”. We define a map Π: FL̄ → 〈FL〉 by
setting ΠF = 0 if F contains a virtual edge e with e(e) 6≤ ηi. Otherwise, ΠF is obtained
by erasing all virtual edges e = (x, y) and, for each virtual edge of type ?i with a 0 edge-
label, adding ηi to n(x). In particular, one can convince oneself that Π is a left-inverse for
ι.

Setting A(F ) = Ā(ΠF ) for all F ∈ FL̄, it is immediate that A then again satisfies
Assumption 2, so that if we define ∆ by (2.4) with Ā replaced by A, we have

(∆⊗ 1)∆F = (1⊗∆)∆F ,

for every forest F ∈ FL̄ without any node-labels. In particular, one has

(∆⊗ 1)∆ιF = (1⊗∆)∆ιF , (2.10)

for every forest F ∈ FL. We now claim that one has

(1⊗ Π)∆F̄ = ∆̄ΠF̄ , (2.11)

for every forest F̄ ∈ FL̄ (even those with additional node-labels). We show now that the
claim, combined with (2.10), implies (2.5), i.e. co-associativity of ∆̄. Now (2.10) and
(2.11) yield

(1⊗ ∆̄)∆̄ = (1⊗ ∆̄)(1⊗ Π)∆ι = (1⊗ 1⊗ Π)(1⊗∆)∆ι

and

(∆̄⊗ 1)∆̄ = ((1⊗ Π)∆⊗ 1)(1⊗ Π)∆ι = (1⊗ Π⊗ Π)(∆⊗ 1)∆ι

= (1⊗ Π⊗ Π)(1⊗∆)∆ι.

In order to conclude we need to show that (Π ⊗ Π)∆ = (1 ⊗ Π)∆; this is true since
A ∈ A(F̄ ) = Ā(ΠF̄ ) does not contain virtual edges, so that ΠR↑AF̄ = R↑AF̄ .

It remains to show that (2.11) holds. We note again thatA ∈ A(F̄ ) = Ā(ΠF̄ ) contains
no virtual edge. Then, if ΠF̄ = 0, namely if there exists an edge of type ?i with ē(e) 6≤ ηi,
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then the same is true for R↓AF̄ , i.e. for each of the terms appearing in the right-hand side
of (2.4) with Ā replaced by A, so that one does indeed also have (1⊗ Π)∆F̄ = 0.

We therefore assume that ΠF̄ 6= 0 from now on and we set F = ΠF̄ . We also define a
function m : NF = NF̄ → Nd by setting m(x)i to be equal to the number of virtual edges
of type ?i incident to x. In particular, denoting by n, e the labellings of F and by n̄, ē the
labellings of F̄ , the definition of Π implies that e and ē coincide on proper edges, so that
one can write

ē = e + eV ,

with eV supported on virtual edges only. Furthermore these quantities are related by

n = n̄ + m− πeV . (2.12)

Furthermore, the definition of ∆F̄ guarantees that the set of admissible collections ap-
pearing in ∆F̄ is the same as the set of admissible collections appearing in ∆̄F , with the
obvious identification of the leaves of F as a subset of those of F̄ . Since F and F̄ have
the same nodes, the node-label nA appearing in (2.4) runs in principle over the same set
in both cases. However, since the node-labelling n̄ for F̄ is in general smaller than the
node-labelling n of F , n̄A runs over a smaller set.

On the other hand, F̄ has more edges than F (it contains all virtual edges), so that ēA
runs over a larger class in that case. However, any label function ēA defined on the edges
of F̄ can be written uniquely as ēA = eA+ eVA, where eVA is supported on the virtual edges,
while eA is supported on the proper edges.

Since the set EA does not contain any virtual edges, the forest R↑AF̄
n̄A+πēA
ē is exactly

the same as the forest R↑AF nA+πeA
e for every admissible collection A, provided that one

has the identity
n̄A + πēA = nA + πeA . (2.13)

This is because the identity F = ΠF̄ guarantees that e and ē coincide, save for the fact
that ē has additional values on the virtual edges which are however discarded by the action
ofR↓A. Similarly, it is straightforward to verify that one has the identity

ΠR↓AF̄
n̄−n̄A
ē+ēA = R↓AF

n−nA
e+eA ,

provided that the following holds:

1. On proper edges, one has ēA = eA, so that one does indeed have ēA = eA + eVA,
where eVA is supported on the virtual edges.

2. For every virtual edge e ∈ E \ EA of type i, one has ē(e) + eVA(e) ≤ ηi, since
otherwise the left hand side vanishes. In particular, ē and eVA have disjoint supports.

Indeed, if this is the case, then (2.12) and (2.13) imply that the node-labelling of ΠR↓AF̄
n̄−n̄A
ē+ēA

is given by

πA(n̄− n̄A + m− πeVA − πeV ) = πA(n− n̄A − πeVA) = πA(n− nA) ,
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which is precisely the node-labelling of the right hand side. The claim thus follows if we
can show that

1

eA!

(
n

nA

)
=
∑
eVA

1

(eA + eVA)!

(
n−m + πeV

nA − πeVA

)
,

where eVA is as above. Note first that since eVA has support disjoint from eA, one has (eA +
eVA)! = eA!eVA!. Furthermore, eVA(e) is always either 0 or ηi for some i, so that one actually
has eVA! = 1. Furthermore, given πeVA, the number of possible choices for eVA consistent
with it is precisely equal to (

m− πeV

πeVA

)
.

This is because at each node x, there are m virtual edges incident to x, but only m− πeV
of these have label 0 and so can be used for eVA. It therefore remains to show that(

n

nA

)
=
∑
πeVA

(
m− πeV

πeVA

)(
n−m + πeV

nA − πeVA

)
,

but this follows immediately from the Chu-Vandermonde identity, thus concluding the
proof.

2.4 Positive and negative renormalisations
Definition 2.4.1. For all T ∈ T, we denote by A+(T ) ⊂ A(T ) the set of all A ∈ A(T )
with either A = ∅ or A = {S} with S a rooted subtree of T such that %S = %T .

Lemma 2.4.2. Assumption 2 is satisfied for Ā = A and Ā = A+.

Proof. The first property is part of the definitions and the second one follows from the
fact thatR↓BdAF = R↓BR

↓
AF . Regarding the last property, the fact that C \\A ∈ A(R↓AF )

similarly follows from the fact thatR↓C\\AR
↓
AF = R↓CF .

We then define two infinite triangular maps δ+ : 〈F〉 7→ 〈F〉 ⊗ 〈F〉 and δ− : 〈F〉 7→
〈F〉 ⊗ 〈F〉 exactly as in (2.4), but with Ā = A+ for δ+ and Ā = A for δ−.

δ+F n
e :=

∑
A∈A+(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA , (2.14)

δ−F n
e :=

∑
A∈A(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA . (2.15)

Note that δ+ can also be viewed as a map δ+ : 〈T〉 7→ 〈T〉 ⊗ 〈T〉 since, by Defini-
tion 2.4.1,R↑AT is given by a single rooted tree for all A ∈ A+(T ).

Below, we compute one term given by the coproduct δ− with A = {A1, A2} ∈ A(T )
and one term given by δ+ for A ∈ A+(T )
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%

`1 `3`2

%A1
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`5 `6 `7

%A2
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−→
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`6 `7

⊗
%
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`1 `2 `5 `8

%

`1 `3`2

`4

`5 `6 `7 `8

−→
%

`3

`4

`6 `7

⊗
%

`8`5`1 `2

Definition 2.4.3. A rooted tree T ∈ T0 is said to be elementary if it either consists only
of the root or has only one edge incident to the root. Let T̂0 ⊂ T0 be the set of elementary
rooted trees. Let T̂ be the corresponding set of labelled trees.

2.4.1 Homogeneity
Definition 2.4.4. We associate to each type ` ∈ L a “homogeneity” |`|s ∈ R. We also
denote by |F n

e |s the homogeneity of the labelled forest F n
e ∈ F, which is given by

|F n
e |s =

∑
u∈LFtEF

|l(u)|s +
∑
x∈N̊F

|n(x)|s −
∑
e∈EF

|e(e)|s ,

where | · |s denotes the s-homogeneity of a multiindex. In particular, one has |1| = 0 as
expected.

Remark 2.4.5. For a labelled tree T n
e ∈ T ⊂ F the homogeneity is also well-defined.

Moreover the homogeneity has the property

|τ τ̄ |s = |τ |s + |τ̄ |s, ∀ τ, τ̄ ∈ T,

|ϕ · ϕ̄|s = |ϕ|s + |ϕ̄|s, ∀ϕ, ϕ̄ ∈ T.

Definition 2.4.6. Let F− ⊂ F be the set of all labelled forests F n
e = 1 or F n

e = (T1 ·
T2 · · ·Tk)ne such that Ti /∈ T̂0 and |(Ti)ne |s < 0 for all i = 1, . . . , k, i.e. Ti is non-elementary
and (Ti)

n
e has negative homogeneity. The set F− is stable under the product inherited from

F and therefore 〈F−〉 is an algebra. If we set T− as the set of non-elementary rooted trees
with negative homogeneity, then 〈F−〉 is the algebra generated by T− in 〈F〉.

Definition 2.4.7. Let T0
+ ⊂ T̂ be the set of elementary labelled trees with positive homo-

geneity and zero label at the root; if n is a node-labelling of T then n̂(x) := n(x)1(x6=%T )

is the node-labelling of T with the label of the root set to 0; then T+ is the set of labelled
trees T n

e such that T n̂
e is a product of trees in T0

+. The set T+ is stable under the product
inherited from T and therefore 〈T+〉 is an algebra.

Let Π+ : 〈F〉 7→ 〈T+〉 and Π− : 〈F〉 7→ 〈F−〉 be the canonical projection onto 〈T+〉,
resp. 〈F−〉. Then we define the following maps

∆ : 〈T〉 → 〈T〉 ⊗ 〈T+〉, ∆ = (1⊗ Π+)δ+
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∆+ : 〈T+〉 → 〈T+〉 ⊗ 〈T+〉, ∆+ = (Π+ ⊗ Π+)δ+

∆̂ : 〈F〉 → 〈F−〉 ⊗ 〈F〉, ∆̂ = (Π− ⊗ 1)δ−

∆− : 〈F−〉 → 〈F−〉 ⊗ 〈F−〉, ∆− = (Π− ⊗ Π−)δ−.

We also set
∆R : 〈T〉 → 〈F−〉 ⊗ 〈T〉, ∆R = (Π− ⊗ 1)δ+. (2.16)

Remark 2.4.8. While δ± take values in formal (infinite) sums, the projections Π± make
all sums defining ∆, ∆+, ∆̂, ∆− and ∆R finite.

2.4.2 Positive renormalisation
We want to prove the following

Theorem 2.4.9. The algebra 〈T+〉 endowed with the product (τ, τ̄) 7→ τ τ̄ and the co-
product ∆+ is a Hopf algebra. Moreover ∆ turns 〈T〉 into a right comodule over 〈T+〉.

Proof. We claim first that δ+, defined in (4.2) and proved to be multiplicative on labelled
forests endowed with the product (ϕ, ϕ̄) 7→ ϕ · ϕ̄ in Theorem 2.3.6, is also multiplicative
on labelled trees endowed with the product (T n

e , T̄
n̄
ē ) 7→ T n

e T̄
n̄
ē . We recall that A+(T ) ⊂

A(T ) is the set of all A = {S} with S a rooted subtree of T such that %S = %T ; with
a slight abuse of notation we denote {S} simply by S. We note first that A+ has a nice
factorisation property with respect to the product of labelled trees: indeed A+(T T̄ ) is the
set of rooted subtrees S of T T̄ such that %S = %T T̄ and the map

A+(T T̄ ) 3 A = S 7→ (S ∩ T, S ∩ T̄ ) = (A1,A2) ∈ A+(T )× A+(T̄ )

is a bijection, with inverse

A+(T )× A+(T̄ ) 3 (S, S̄) 7→ SS̄ ∈ A+(T T̄ ).

Now if A ∈ A+(T T̄ ) then eA factorises as eA1 + eA2 , with eA1 , eA2 supported by ET and
ET̄ respectively, and so does nA on N̊T T̄ \ {%T T̄}. Therefore

R↓A
(
T T̄ )n+n̄−nA

e+ē+eA =
(
R↓A1

T
n−nA1
e+eA1

)(
R↓A2

T̄
n̄−nA2
ē+eA2

)
,

as well as
R↑A(T T̄ )nA+πeA

e+ē = R↑A1
T

nA1
+πeA1

e R↑A2
T̄

nA2
+πeA2

ē .

Since factorials factor over functions with disjoint support, so that for example eA! =
eA1 !eA2 !, the only part that could potentially prevent (4.2) from factorising when replacing
T n
e by T n

e T̄
n̄
ē is the contribution of the root labels nA(%), where the combinatorial factor in

the sum over nA(%) may potentially differ from that of the double sum over nA1(%) and
nA2(%). However, we note that also in the second case the right hand side only depends
on nA1(%) + nA2(%) so that the claim follows from the identity∑

k

(
n1 + n2

k

)
F (k) =

∑
k1,k2

(
n1

k1

)(
n2

k2

)
F (k1 + k2) ,
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which holds for any expression F as a consequence of the Vandermonde identity.
We note now an important difference between Π+ and Π−: indeed, Π+ is multiplica-

tive on labelled trees while Π− in general is not (both are trivially multiplicative on la-
belled forests). In a formula:

Π+(τ τ̄) = (Π+τ) (Π+τ̄), ∀ τ, τ̄ ∈ T.

Now, we have to prove that

(1⊗∆+)∆ = (∆⊗ 1)∆, (1⊗∆+)∆+ = (∆+ ⊗ 1)∆+. (2.17)

We claim that the following identity holds:

(Π+ ⊗ Π+)δ+Π+ = (Π+ ⊗ Π+)δ+.

We have to prove that the righ-hand side of this identity vanishes for all τ ∈ T \T+. Note
that such τ is a product of elementary trees, not all of them with positive homogeneity.
Since δ+ and Π+ are multiplicative on T, then it is enough to check the identity on elemen-
tary trees with negative homogeneity. Now for every τ ∈ T, one has δ+τ =

∑
i τ

(1)
i ⊗τ

(2)
i

where |τ |s = |τ (1)
i |s + |τ (2)

i |s for all i, so that if |τ |s < 0 then |τ (1)
i |s ∧ |τ

(2)
i |s < 0 and

therefore (Π+ ⊗ Π+)δ+τ = 0.
Now, in order to prove the first equality in (2.17) we notice that

(1⊗∆+)∆ = (1⊗ (Π+ ⊗ Π+)δ+)(1⊗ Π+)δ+ = (1⊗ (Π+ ⊗ Π+)δ+Π+)δ+

= (1⊗ (Π+ ⊗ Π+)δ+)δ+ = (1⊗ Π+ ⊗ Π+)(1⊗ δ+)δ+

and

(∆⊗ 1)∆ = ((1⊗ Π+)δ+ ⊗ 1)(1⊗ Π+)δ+ = ((1⊗ Π+)δ+ ⊗ Π+)δ+

= (1⊗ Π+ ⊗ Π+)(δ+ ⊗ 1)δ+.

By Theorem 2.3.6, (1⊗ δ+)δ+ = (δ+⊗ 1)δ+ and we obtain the first equality in (2.17). In
order to prove the second equality, we have

(1⊗∆+)∆+ = (1⊗ (Π+ ⊗ Π+)δ+)(Π+ ⊗ Π+)δ+ = (Π+ ⊗ (Π+ ⊗ Π+)δ+Π+)δ+

= (Π+ ⊗ (Π+ ⊗ Π+)δ+)δ+ = (Π+ ⊗ Π+ ⊗ Π+)(1⊗ δ+)δ+

and

(∆+ ⊗ 1)∆+ = ((Π+ ⊗ Π+)δ+ ⊗ 1)(Π+ ⊗ Π+)δ+ = ((Π+ ⊗ Π+)δ+ ⊗ Π+)δ+

= (Π+ ⊗ Π+ ⊗ Π+)(δ+ ⊗ 1)δ+.

Again we conclude by the coassociativity of δ+.
Finally, we must prove that 〈T+〉 admits an antipode, i.e. a map A : 〈T+〉 7→ 〈T+〉

such that
M(1⊗ A)∆+τ =M(A⊗ 1)∆+τ = 1(τ=1)1 = 1?

where M : T ⊗ T 7→ T is the multiplication map of labelled trees, τ ⊗ τ̄ 7→ τ τ̄ . We
introduce a partial order on T+: we write |Eτ | for the number of edges of τ and then we
say that τ < τ̄ if
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2.4. Positive and negative renormalisations

• either |Eτ | < |Eτ̄ |

• or |Eτ | = |Eτ̄ | and |τ |s < |τ̄ |s.

Let 1n be the labelled tree composed by the root with node label equal to n ≥ 0. Since

∆+1n =
n∑
k=0

(
n

k

)
1k ⊗ 1n−k

we obtain by recurrence on n that A1n = (−11)n.
Suppose now that T n

e ∈ T+ \ {1n, n ≥ 0}. If |T n
e |s ∈ [0, 1[, then for any non-zero eA

or nA we have |R↓AT
n−nA
e+eA |s < 0 and therefore

∆+T n
e =

∑
A∈A+(T )

Π+R↑AT
n
e ⊗ Π+R↓AT

n
e

= 1⊗ T n
e +

∑
A∈A+(T )\{∅}

Π+R↑AT
n
e ⊗ Π+R↓AT

n
e ,

so that necessarily

AT n
e = −

∑
A∈A+(T )\{∅}

Π+R↑AT
n
e

[
AΠ+R↓AT

n
e

]
and in the right hand side we haveR↓AT n

e < T n
e since the number of edges is decreased by

the condition A 6= ∅, so that AT n
e is well-defined by recurrence on the number of edges.

For any T n
e ∈ T+ \ {1n, n ≥ 0} with |T n

e |s ≥ 1 we have analogously

∆+T n
e = 1⊗ T n

e +
∑

A∈A+(T )\{∅}

∑
eA,nA

1

eA!

(
n

nA

)
Π+R↑AT

nA+πeA
e ⊗ Π+R↓AT

n−nA
e+eA ,

where the right hand side consists of a finite sum by the effect of the projections Π+.
Therefore necessarily

AT n
e = −

∑
A∈A+(T )\{∅}

∑
eA,nA

1

eA!

(
n

nA

)
Π+R↑AT

nA+πeA
e

[
AΠ+R↓AT

n−nA
e+eA

]
,

and in the right hand side we have R↓AT
n−nA
e+eA < T n

e so that AT n
e is well-defined by recur-

rence on the order <.
The fact that 〈T〉 is a right comodule for 〈T+〉 is nothing but the first identity in

(2.17).

Remark 2.4.10. The proof has been done in a different setting in [Hai14b, Theorem 8.16]
for 〈T+〉. See the section 3.2 for the equivalence between the definitions of ∆ and ∆+ with
the labelled trees and the definitions with the symbols.
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2.4.3 Negative renormalisation
We want to prove the following

Theorem 2.4.11. The algebra 〈F−〉 endowed with the product (ϕ, ϕ̄) 7→ ϕ · ϕ̄ and the
coproduct ∆− is a Hopf algebra. Moreover ∆̂ turns 〈F〉 into a left comodule over 〈F−〉.

Proof. By Theorem 2.3.6 we have the coassociativity of δ−, namely the identity (1 ⊗
δ−)δ− = (δ− ⊗ 1)δ−. We claim now that

(Π− ⊗ Π−)δ−Π− = (Π− ⊗ Π−)δ−.

Let us consider ϕ ∈ F \ F−, i.e. ϕ = τ1 · τ2 · · · τk and there is a τ ∈ {τ1, . . . , τk} with
|τ |s > 0 or τ elementary. If we are in the former situation, then we argue as for the
analogous formula in the proof of Theorem 2.4.9: indeed, δ−τ =

∑
i τ

(1)
i ⊗ τ

(2)
i with

|τ |s = |τ (1)
i |s + |τ (2)

i |s for all i, so that if |τ |s > 0 then |τ (1)
i |s ∨ |τ

(2)
i |s > 0 and therefore

(Π− ⊗ Π−)δ−τ = 0. Else, if T ∈ T̂, the edge e% incident to the root % of τ appears for
every i in one of the τ (j)

i for j ∈ {1, 2}. If e% belongs to τ (2)
i then τ (2)

i /∈ T̂. Else if e%
belongs to τ (1)

i , one of the tree in {τ1, . . . , τk} is not in T̂. In both cases, Π−τ = 0.
It follows immediately from Theorem 2.3.6, Lemma 2.4.2 and that one has the identi-

ties

(1⊗ ∆̂)∆̂ = (∆− ⊗ 1)∆̂, (1⊗∆−)∆− = (∆− ⊗ 1)∆− . (2.18)

Furthermore, if we grade 〈F−〉 by postulating that 〈F−〉n is spanned by those forests with
a total of n edges, then it follows immediately from our definitions that ∆̂ and the product
of forests are compatible with this grading and that 〈F−〉0 = 〈1〉 ≈ R. It follows that
〈F−〉 is a graded and connected bi-algebra, which therefore admits a unique antipode
which turns it into a Hopf algebra. The fact that F is a left comodule for 〈F−〉 is nothing
but the first identity in (2.18).

2.4.4 Groups
We defineH− as 〈F−〉. IfH∗− denotes the dual ofH−, then we set

G− := {` ∈ H∗− : `(ϕ1 · ϕ2) = `(ϕ1)`(ϕ2), ∀ϕ1, ϕ2 ∈ H−}.

Theorem 2.4.12. Let

R− = {M` : 〈T〉 → 〈T〉, M` = (`⊗ 1)∆̂, ` ∈ G−}.

ThenR− is a group for the composition law. Moreover, one has for f, g ∈ G−:

MfMg = Mf◦g

where f ◦ g is defined by
f ◦ g = (g ⊗ f)∆−.
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We defineH+ as 〈T+〉. IfH∗+ denotes the dual ofH+, then we set

G+ := {g ∈ H∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H+}.

Theorem 2.4.13. Let

R+ = {Γg : 〈T〉 → 〈T〉, Γg = (1⊗ g)∆, g ∈ G+}.

ThenR+ is a group for the composition law. Moreover, one has for f, g ∈ G+:

ΓfΓg = Γf◦g

where f ◦ g is defined by
f ◦ g = (f ⊗ g)∆+.

We introduce a new coproduct in order to explain the link between the positive and
the negative renormalisation.

Definition 2.4.14. For all T ∈ T0 we denote by A◦(T ) the family of all (possibly empty)
A ∈ A(T ) such that if A = {S1, . . . , Sk} then %Si 6= %T for all i = 1, . . . , k. For all
F ∈ F0 with F = T1 · T2 · · ·Tn we set

A◦(F ) := {A ∈ A(F ) : A = A1 ∪ · · · ∪ Am, Ai ∈ A◦(Ti), i = 1, . . . ,m},

and A◦(1) := ∅.

Then we set with the usual notations the map δ◦ : 〈F〉 7→ 〈F〉 ⊗ 〈T〉

δ◦F n
e :=

∑
A∈A◦(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA , (2.19)

and
∆̄◦ : 〈T〉 7→ 〈F−〉 ⊗ 〈T〉, ∆̄◦

def
= (Π− ⊗ 1)δ◦.

Remark 2.4.15. While the sum defining δ◦ is in general infinite, the effect of the projec-
tion Π− is to make the sum defining ∆̄◦ finite.

Proposition 2.4.16. The map ∆̄◦ is multiplicative on 〈T〉, i.e. ∆̄◦(τ1τ2) = (∆̄◦τ1)(∆̄◦τ2)
for all τ1, τ2 ∈ 〈T〉, where we consider on 〈F−〉 ⊗ 〈T〉 the product

(ϕ1, τ1)⊗ (ϕ2, τ2) 7→ (ϕ1 · ϕ2, τ1τ2).

Proof. We introduce for n, k ∈ Nd an operator that we call (for reasons which will be
clear later) XnIk : T 7→ T̂, which takes a labelled tree T n

e , adds to it a new node that
becomes the new root and an edge linking the new root to the old one; the new root gets
the label n and the new edge gets the label k; all other labels are unchanged. We also call
Π̂ : T̂ 7→ T the map which associates to an elementary labelled tree T n

e a labelled tree
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obtained by erasing the only edge e = (%, y) incident to the root % in T and setting the
root to be y.

Since all labelled trees are products of elementary trees, it is enough to prove that for
τ1, . . . , τm ∈ T̂ we have ∆̄◦(τ1 · · · τm) = (∆̄◦τ1) · · · (∆̄◦τm). It is easy to see that for all
T n
e ∈ T̂

A◦(T n
e ) = A(Π̂T n

e ), δ◦T n
e = (1⊗Xn(%)Ie(e))δ−Π̂T n

e

where as above % is the root of T n
e and e = (%, y) is the only edge incident to %.

Now if T n
e = τ1 · · · τm ∈ T with τ1, . . . , τm ∈ T̂, then we have a canonical bijection

between A◦(T n
e ) and A(Π̂τ1) × · · · × A(Π̂τm) and the numerical coefficients factorise

nicely, so that

δ◦(τ1 · · · τm)

=
m∏
i=1

∑
Ai∈A(Π̂τi)

∑
eAi ,nAi

1

eAi !

(
n

nAi

)
R↑Ai(Π̂τi)

nAi+πeAi
e ⊗Xn(%i)Ie(ei)R

↓
Ai(Π̂τi)

n−nAi
e+eAi

=
m∏
i=1

(1⊗Xn(%i)Ie(ei))δ−Π̂τi =
m∏
i=1

δ◦τi.

From the multiplicativity of Π− on labelled forests we obtain the result.

For all ` ∈ G−, we define

M◦
` = (`⊗ 1)∆̄◦ = (`Π− ⊗ 1)δ◦

where δ◦ is given by (2.19).

Proposition 2.4.17. LetM : 〈F〉 ⊗ 〈F〉 7→ 〈F〉, ϕ⊗ ϕ̄ 7→ ϕ · ϕ̄. Then

(M⊗ 1)(1⊗ δ◦)δ+ = δ−.

Proof. By multiplicativity on 〈F〉, it is enough to prove the equality on all T n
e ∈ T. Note

that

(1⊗ δ◦)δ+T n
e =

∑
A∈A+(T )

1

eA!

(
n

nA

) ∑
B∈A◦(R↓AT )

1

eB!

(
πA(n− nA)

nB

)
·

· R↑AT
nA+πeA
e ⊗R↑BR

↓
AT

nB+πeB
e+eA ⊗R↓BR

↓
AT

n−nA−nB
e+eA+eB

and therefore

(M⊗ 1)(1⊗ δ◦)δ+ =
∑

A∈A+(T )

1

eA!

(
n

nA

) ∑
B∈A◦(R↓AT )

1

eB!

(
πA(n− nA)

nB

)
·

·
(
R↑AT

nA+πeA
e · R↑BR

↓
AT

nB+πeB
e+eA

)
⊗R↓BR

↓
AT

n−nA−nB
e+eA+eB .
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At this point, we note that since B ∈ A◦(R↓AT ), eA and eB have disjoint support so that
eA!eB! = (eA + eB)!. Similarly, thanks to the fact that nB has support away from the root
ofR↓AT , one has (

πA(n− nA)

nB

)
=

(
n− nA
nB

)
,

so that (
n

nA

)(
πA(n− nA)

nB

)
=

n!(n− nA)!

nA!(n− nA)!nB!(n− nA − nB)!

=
n!

(nA + nB)!(n− nA − nB)!
=

(
n

nA + nB

)
.

We note also that the map (A,B) 7→ C = A ∪ B is a bijection between {(A,B) : A ∈
A+(T ),B ∈ A◦(R↓AT )} and A(T ), since every C ∈ A(T ) is either in A◦(T ) (if none
of the subtrees touches the root of T ), or of the form {S} ∪ B, where %S = %T and
B ∈ A◦(R↓AT ). Moreover setting, eC = eA + eB and nC = nA + nB, the above sum can
also be rewritten as∑

C∈A(T )

∑
nC ,eC

1

eC!

(
n

nC

)
R↑CT

nC+πeC
e ⊗R↓CT

n−nC
e+eC = δ−T n

e .

This concludes the proof.

Corollary 2.4.18. Let ` ∈ G− andR`
def
= (`⊗1)∆R with ∆R as in (4.4). ThenM` = M◦

`R`.

Proof. Note that

M◦
`R` = (`Π− ⊗ 1)δ◦(`Π− ⊗ 1)δ+ = (`Π− ⊗ `Π− ⊗ 1)(1⊗ δ◦)δ+.

Now, since `Π− : 〈F〉 7→ R is multiplicative, we obtain

M◦
`R` = (`Π− ⊗ 1)(M⊗ 1)(1⊗ δ◦)δ+ = (`Π− ⊗ 1)δ− = M`.

This concludes the proof.

Example 2.4.19. Through the next subtree, we explain the link between A, A+ and A◦
such that we obtain the previous corollary. On A = {S1, S2, S3} ∈ A(T ), we compute:

%S3

`1

`5 `6

`3`2

%S1

`4

`7 `8 `9

%S2

`10

−→R↑AT =
%S1

`4

`3

%S2

`8 `9

%S3

`6`5

Finally, we obtain {S3} ∈ A+(T ) and {S1 , S2} ∈ A◦(T ). The set A◦(T ) as to be
understood as elements of A(T ) without rooted subtree.
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Proposition 2.4.20. We have

(1⊗∆)∆R = (∆R ⊗ 1)∆.

Moreover for all ` ∈ G−, R` commutes withR+.

Proof. Both results follow from the co-associativity of δ+. Indeed,

(1⊗∆)∆R = (Π− ⊗ 1⊗ Π+)(1⊗ δ+)δ+ = (Π− ⊗ 1⊗ Π+)(δ+ ⊗ 1)δ+ = (∆R ⊗ 1)∆.

Now for all ` ∈ G− and g ∈ G+

R`Γg = (`Π− ⊗ gΠ+)(δ+ ⊗ 1)δ+ = (`Π− ⊗ gΠ+)(1⊗ δ+)δ+ = ΓgR`.
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Chapter 3

Renormalisation group in SPDEs

We want now to apply the construction of the previous chapter to regularity structures re-
lated with subcritical SPDEs. First we have to select subsets of labelled trees (or forests):
indeed the set of all labelled trees is far too big and the requirement that the homogeneities
be bounded below is violated since we can take arbitrary powers of a tree with negative
homogeneity. However on suitable (admissible) subspaces we can define regularity struc-
tures which satisfy the properties of Definition 1.2.1.

Then we establish a link with the symbol notation of [Hai14b] and we show the re-
lationship between our construction and that of [Hai14b]. We note that the original con-
struction of the structure group was already based on a Hopf Algebra description, while
the renormalisation group had a different (less transparent) definition.

Throughout this chapter we give, when it is possible, recursive constructions of the
object we define. Again, in [Hai14b] one can find a recursive definition for the model
before renormalisation, but not the the renormalised model. A recursive description of
our Hopf Algebras, groups and (renormalised) models sheds a different light on these
objects; moreover it is particularly simple to be coded in a computer programme. Even
more recursive computations are collected at the end of this thesis in Appendix A.

3.1 Regularity structures on labelled trees
Definition 3.1.1. A set of labelled trees T is admissible if for every T n

e ∈ T , every node-
labels n1, n2 such that n− n1 ≥ 0 and every admissible subtree T̄ of T , one has

T̄ n−n1
e ∈ T , T̄ n+n2

e ∈ T , |T̄ n
e |s > max

`∈LT̄
|`|s.

We denote by T−, the algebra 〈〈Π−T 〉〉and by T+ the algebra

T+ = {Π+R↓AT
n−nA
e+eA : ∀A ∈ A+(T ), ∀nA, eA}.

We present a major example of admissible set which is Tad given by

Tad = {T n
e ∈ T : ∀n1, n− n1 ≥ 0 ∀T̄ ∈ A(T ) |T̄ n−n1

e |s > max
`∈LT̄
|`|s}.
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Remark 3.1.2. The third condition in 3.1.1 used for the definition of Tad guarantees that
the set of homogeneities is bounded from below.

Definition 3.1.3. Let T n
e ∈ T . We denote by A(ET ) the set containing E = {e1, ..., en} ⊂

ET such that Tei ∩ Tej = ∅ for i 6= j. For an edge e, the notation Te means the tree above
e = (e+, e−): its nodes are given by Ve = {v ∈ V \ {v0} : e+ ∧ v = e+}.

Definition 3.1.4. A set of labelled trees T is locally-subcritical if for every T n
e ∈ T and

every E = {e1, ..., en} ∈ A(ET ) one has P↓ET n
e admissible, where P↓ET n

e means that we
replace all the tree Tei by a leave ` with the minimum |`|s.

We define the set Tloc the maximal subset for the inclusion of Tad such that Tloc is
locally subcritical. The coproducts ∆, R and ∆̂ are defined on the whole space of labelled
trees T. The next proposition shows the action of the previous coproducts on a admissible
set of labelled trees:

Proposition 3.1.5. Let T an admissible set of labelled trees. Then ∆ : T → T ⊗ T+ and
∆̂ : T → T− ⊗ Tad.

Proof. By definition, the result is obvious for ∆. For ∆̂, let T n
e ∈ T , it follows:

δ−T n
e :=

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AT

nA+πeA
e ⊗R↓AT

n−nA
e+eA .

We have to check that for all A ∈ A(T ), eA and nA such that |R↑AT nA+πeA
e |s ≤ 0, one has

R↓AT
n−nA
e+eA ∈ Tad. Let B ∈ A(T ):

• If B and A are independent then R↑BR
↓
AT

n−nA
e+eA = R↑BT n

e and we have |R↑BT n
e |s >

max`∈LB |`|s by the admissibility of the set T .

• Else, let C ∈ A(T ) such that C = B ∪
⋃
AB. It follows:

max
`∈LB
|`|s < max

`∈LC
|`|s < |R↑CT

n
e |s = |R↑BR

↓
AT

n−nA
e+eA |s + |R↑AT

nA+πeA
e |s

which implies
|R↑BR

↓
AT

n−nA
e+eA |s > max

`∈LB
|`|s

because |R↑AT nA+πeA
e |s ≤ 0.

Proposition 3.1.6. Let T a local subcritical set of labelled trees. Then ∆ : T → T ⊗ T+

and ∆̂ : T → T− ⊗ Tloc.
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3.2. Link with SPDEs and the symbol notation

Proof. We have to check that for all A ∈ A(T ), eA and nA such that |R↑AT nA+πeA
e |s ≤ 0

and for all E ∈ A(ET ), one hasR↓AP
↓
ET

n−nA
e+eA ∈ Tad. We notice that

R↓AP
↓
ET

n−nA
e+eA = P↓ER

↓
AT

n−nA
e+eA .

The term R↓AT
n−nA
e+eA is admissible by definition. Then we use the proposition 3.1.5 to

conclude.

Proposition 3.1.7. Let T a local subcritical set of labelled trees. Then we define a regu-
larity structure (AT ,HT , GT ) given by:

• AT = {α : ∃τ ∈ T , |τ |s = α}.

• HT =
⊕

α∈AHα andHα is the linear span of Tα = {τ ∈ T : |τ |s = α}.

• GT is the restriction of G to T .

Proof. The proof will be done in the next section with the symbol notation.

We finish the section by a result on the completion of some finite subset in Tad in
order to have a subset invariant by ∆ and ∆̂.

Proposition 3.1.8. Let T a finite subset of Tloc. There exists a finite set T ∗ such that
T ⊂ T ∗ ⊂ Tloc, ∆ : T ∗ → T ∗ ⊗ T ∗+ and ∆̂ : T ∗ → T ∗− ⊗ T ∗.

Proof. We define recursively the sets Tn, A1
n, A2

n, E1
n and E2

n by

T0 = T , ∆ : Tn → A1
n ⊗A2

n, ∆̂ : A1
n ∪ A2

n → 〈〈E1
n〉〉 ⊗ E2

n,

Tn+1 = Tn ∪ A1
n ∪ A2

n ∪ E1
n ∪ E2

n.

If we look at the sequence of maximum (τn)n∈N in Tn+1 \ Tn regarding the number of
edges and then the homogeneity, is strictly decreasing. Indeed, if we take T ∈ Tloc then
∆T and ∆̂T give a decomposition of the form

∑
i T

(1)
i ⊗T

(2)
i where for each i, the number

of edges in T (1)
i , T

(2)
i is equal to the number of edges in T . We can add new terms in Tn+1

if T (1)
i is of the formXk, in that case we take derivatives of some edges of the original tree

which give a term with lower homogeneity. There exists a N such that TN = TN+1.

Remark 3.1.9. For the applications, we can start the iteration on a negative set of symbols
or on T−loc. This iteration has been done in many examples like in [HP14].

3.2 Link with SPDEs and the symbol notation
The labelled trees can be represented by the use of symbols in the following way:

1. The symbol Ξ encodes the leaves as noises . If there is more than one “type” of leaf
from a set Ll, then we introduce different type of noises (Ξi)i∈L1 .
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3.2. Link with SPDEs and the symbol notation

2. To each edge with label k ∈ Nd, we associate an operator Ik. Again, if there is more
than one “type”, the integration maps are indexed with the set Le.

3. A factor Xk encodes each inner vertex with label k ∈ Nd.

Remark 3.2.1. In the previous coding, the noise Ξ always appears as Ik(Ξ) and never by
itself. In the case of regularity structures generated by stochastic PDEs driven by additive
noise, this is automatically the case. In the general case, this can always be enforced “ar-
tificially” for example by introducing a new type of edge with label 0. Then to this edge,
we associate an abstract integration map I? of homogeneity 0 and replace all occurrences
of Ξ by I?(Ξ) which does not change the algebraic structure.

Now, we consider only one type of noise and one type of edge: this case covers all the
examples which have been treated. The set T is encoded by the set of symbols F defined
recursively as follows:

• {1, (Xi)i=1...d,Ξ} ⊂ F

• if τ1, . . . , τn ∈ F then τ1 · · · τn ∈ F , where we assume that this product is associa-
tive and commutative

• if τ ∈ F \ {1, Xk : k ∈ Nd} then {I(τ), Ik(τ) : k ∈ Nd} ⊂ F .

In that setting, we can compute the homogeneity recursively: |Ξ|s = α, |Xi|s = si,
|1|s = 0

|τ1...τn|s = |τ1|s + ...+ |τn|s, Ik(τ) = |τ |s + β − |k|s.

where β is the edge-type of I(·).

Remark 3.2.2. The previous homogeneity is the same as the homogeneity introduced in
2.4.4: it is just a recursive way of computing it.

Labelled trees can be associated to parabolic SPDE such as the generalised KPZ equa-
tion given in one dimension in space by:

∂tu = ∂2
xu+ g(u)(∂xu)2 + h(u)∂xu+ k(u) + f(u)ξ.

and the stochastic quantization given in dimension 3 by:

∂tu = ∆u+ u3 + ξ.

Indeed, we extract rules from the right hand-side of an SPDE and we perform the follow-
ing transformations:

ξ 7→ Ξ, xi 7→ Xi, u 7→ I(·), Dnu 7→ In(·), u,Dnu 7→ Xk k ∈ Nd.
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3.2. Link with SPDEs and the symbol notation

The latest rules mean that u and Dnu can be either replaced by a monomial or the cor-
responding abstract integrator I(·) and In(·). Non-linearities of the form g(u) are re-
placed by polynomials xmun and then we apply the previous transformations. In the
generalised KPZ equation the term g(u)(∂xu)2 gives the rules XkI(·)nI1(·)m for every
k, n,m ∈ N× N× {0, 1, 2} where I1(·) is a shorthand notation for I(0,1)(·). That means
for XkI(·)nI1(·)2:

τ1, ..., τn, τ
′
1, τ
′
2 ∈ H ⇐⇒ Xk

(
n∏
i=1

I(τi)

)
I1(τ ′1)I1(τ ′2) ∈ H.

We obtain a set of rulesRu associated to the equation of the form:

Ru = {XkI(.)`I1(.)m(Ξ)n : (k, `,m, n) ∈ B} (3.1)

whereB is a subset ofN3×{0, 1}. We suppose that Ξ ∈ Ru. In the stochastic quantization,
we have

Rqua = {Xk, XkI(·), XkI(·)2, I(·)3, Ξ, k ∈ N3}

and for the generalised KPZ

Rgkpz = {XkI(·)`, XkI(·)`I1(·), XkI(·)`I1(·)2, XkI(·)`Ξ, (k, `) ∈ N2 × N}.

Now we are able to give a recursive definition of some subset of symbols:

T := {τ ∈ F : τ = R(τ1, ..., τn), R ∈ Ru and τ1, ..., τn ∈ T or τ = Ξ}.

We associate to each rule an homogeneity as follows:

|Ξ|s = α, , |Ik(·)|s = α + 2− |k|s,

∣∣∣∣∣∏
i

Ri

∣∣∣∣∣
s

=
∑
i

|Ri|s (3.2)

where the Ri are of the form Ξ, Ik(·) and X`.

Definition 3.2.3. A set of rules G is locally subcritical if for each R ∈ G \ {Ξ}:

|R|s > |Ξ|s.

This definition is a reformulation of the notion of local subcriticality introduced in
[Hai14b, Assumption 8.3]. Indeed instead of using rules, the product is described with
abstract polynomials:

• the noise ξ is replaced by the dummy variable Ξ with homogeneity α.

• Every occurrence of Dku such that α+ β − |k|s ≤ 0 is replaced by Pk with homo-
geneity α + β − |k|s.

69



3.2. Link with SPDEs and the symbol notation

The homogeneity of a monomial is the sum of the homogeneities of each factor. Then
the condition of local subcriticality turns out to be: each monomials must have a homo-
geneity strictly bigger than α. In our settings it likes looking only at rules with negative
homogeneity and checking that they have a bigger homogeneity than the noise.

With this assumption on the set of our rule, we can generate a well defined regular-
ity structure which allows us to solve the equation. The idea is that when we apply a
perturbative method at each step the regularity of our expansion increases. Given a local
subcritical set of rulesRu, we define βRu the regularity we earn at each step inRu by:

βRu = min
R∈Ru\{Ξ}

|R|s − |Ξ|s.

For the generalized KPZ , βRgkpz = 1/2 and for the stochastic quantization, we have
βRqua = 1 . Under the hypothesis of local subcriticality, it has been proven in [Hai14b]
that for every α ∈ A, the set Tα is finite. The key point of the proof is [Hai14b, lemma
(8.10)] which strongly uses the parameter βRu .

Remark 3.2.4. The space T contains all the symbols which can be renormalised and it
also contains abstract integrator map Ik(·) such that |Ik(·)|s > |Ξ|s.
Remark 3.2.5. If we face different types of noise (Ξi), for the homogeneity of the rule
we take α = mini |Ξi|s in (3.2). Then the condition for the local subcriticality is given for
every R ∈ G \ {Ξi : i} by:

|R|s > max
i
|Ξi|s.

Remark 3.2.6. This notion of local subcriticality guarantees the convergence of the model
in most of the examples see chapter 5. But in [Hos15], the author puts in evidence a
counter-example in the KPZ equation with a fractional derivative equal to 1

4
.

The next proposition establishes a link with [Hai14b, Definition 8.6]

Proposition 3.2.7. The sets of symbols built from a locally subcritical set of rules Ru

such that for every XkI(·)mI1(·)nΞ` ∈ Ru, one has for every k̄, m̄ ≤ m, n̄ ≤ n, ¯̀≤ `,
X k̄I(·)m̄I1(·)n̄Ξ

¯̀ ∈ Ru, are in bijection with the local subcritical sets of Labelled trees.

Proof. Each time, we use a rule we can use any subrule which creates any subtree from
the initial labelled tree. That subtree has a homogeneity greater than the homogeneity of
the noise from the local subcriticality of the rules. For the reverse, from a local subcritical
set of labelled trees F , we obtain the rules by looking at each inner mode u of T n

e ∈ F to
the label n(u) which gives X |n(u)|s and to the edges E↓({u}) defined by

E↓({u}) = {(u, v) : e = (e+, e−)(u, v) ∈ ET}

which yields to the rules used to build the labelled tree T n
e :

X |n(u)|s
∏

e∈E↓({u})
|l(e)|s 6=0

l(e)e(e)(·)
∏

e∈E↓({u}) ,`∈LT
`=e−

l(`).

where we have identified l(e) with I(·) and l(`) with Ξ.
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3.2. Link with SPDEs and the symbol notation

We finish our discussion on the structure space by justifying the universality of the
generalised KPZ:

Proposition 3.2.8. We consider the set of symbols F generated by the abstract integrator
I(·) and I1(·) = I(0,1)(·) with |Ξ|s = −3

2
− κ, |I(·)|s = 1

2
− κ and |I1(·)|s = −1

2
− κ.

Then Iloc = Tkpzg where Tkpzg is the structure space associated to the generalised KPZ.

Proof. In terms of homogeneity, the only abstract integrators which can be used are I(·)
and I1(·) because |Ik(·)|s < −3

2
for k /∈ {(0, 0) , (0, 1)}. Moreover, for m > 2 it follows

|I1(·)m|s < −3
2
. We deduce from these observations that the set of rulesRgkpz given by

Rgkpz = {XkI(·)`, XkI(·)`I1(·), XkI(·)`I1(·)2, XkI(·)`Ξ, (k, `) ∈ N2 × N}

generates all the terms in Tloc.

Remark 3.2.9. By definition, Tloc ⊂ Tad but Tloc 6= Tad. Indeed, the following tree
I1(I1(Ξ)2)3 belongs to Tad but not to Tloc because |I1(Ξ)3|s = −3

2
− 3κ < |Ξ|s. In the

examples all the terms in Tad will converge, but we want to avoid trees built with a non
local subcritical rule like I1(·)3 for the KPZ equation.

We want to derive recursive versions with the symbols for δ+ and δ−. For that purpose,
we consider a collection of constants that can conveniently be indexed by expressions of
the type C (τ) with τ ∈ F . Let Ĥ denote the vector space spanned by elements of the
form στ with σ ∈ 〈〈C (F)〉〉 and τ ∈ F . Elements of Ĥ have a unique decomposition
of the form

∑
τ∈F σττ with στ ∈ 〈〈C (F)〉〉. We then define ∆◦ : H → R[[H ⊗ H]] and

∆̂◦ : H → R[[Ĥ ⊗ H]] by:
∆◦1 = 1⊗ 1, ∆◦Xi = Xi ⊗ 1 + 1⊗Xi, ∆◦Ξ = Ξ⊗ 1 + 1⊗ Ξ

∆◦(τ τ̄) = (∆◦τ)(∆◦τ̄), ∆◦Ik(τ) = (Ik ⊗ 1)∆◦τ +
∑
`

X`

`!
⊗ Ik+`(τ).


∆̂◦1 = 1⊗ 1, ∆̂◦Xi = Xi ⊗ 1 + 1⊗Xi, ∆̂◦Ξ = Ξ⊗ 1 + 1⊗ Ξ

∆̂◦(τ τ̄) = (∆̂◦τ)(∆̂◦τ̄), ∆̂◦Ik(τ) =

(
Ik ⊗ 1 +

∑
`

X`

`!
C ⊗ Ik+`

)
∆̂◦τ.

We extend the previous coproducts on the forests F identified with 〈〈C (F)〉〉 by setting:

∆◦C = (C ⊗ C )∆◦, ∆̂◦C = (C ⊗ C )∆̂◦.

The previous recursive construction can be explained graphically using colouring
trees. We concentrate ourself on the shape and we omit the decorations given by the
infinite sum over `. If we look at one term τ1⊗ τ2 appearing in the decomposition of ∆◦τ ,
we obtain the following term for Ikτ
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3.2. Link with SPDEs and the symbol notation

(Ik ⊗ 1) ⊗ τ2 = ⊗ τ2.

In the representation of τ1, we just look at the shape and we forget the labels. The
abstract integrator Ik(·) adds a new edge to the tree τ1 drawn in red . We use a different
color for τ1 in order to show that we are are building the rooted subtree. The term (1 ⊗
Ik(τ)) indicates that we detach the tree Ik(τ) from the red tree.

For ∆̂◦, we extract several rooted subtrees simultaneously. We represent subtrees in
blue which have been detached. The tree in red is the next subtree we want to erase but it
is not yet achieved. At each step, we have two possibilities: we continue the construction
of the diverging pattern with Ik ⊗ 1 or the construction is over and we just need to color
the tree in blue with (C ⊗ 1) (we start to build a new pattern).

(Ik ⊗ 1 + C ⊗ Ik) ⊗ τ2 =

⊗ τ2 + ⊗ Ik(τ2).

Proposition 3.2.10. By identifying H and 〈〈H〉〉 with subspaces of 〈T〉 and 〈〈T〉〉 respec-
tively, δ+ and δ− coincide with the maps ∆◦ and (C ⊗ 1)∆̂◦.

Proof. The fact that δ±1 = 1⊗ 1 and δ±Ξ = Ξ⊗ 1 + 1⊗ Ξ follows immediately from
the definitions. The element Xk ∈ T is encoded by the tree consisting of just a root, but
with label k. One then has A = ∅ and eA = 0, while nA runs over all possible labels for
the root. This shows that (4.2) and (4.3) yield in this case

δ±Xk =
∑
`

(
k

`

)
Xk−` ⊗X` ,

which is as required.
It now remains to verify that the recursive identities hold as well. We have seen at the

beginning of the proof of Theorem 2.4.9 that δ+ is multiplicative on labelled trees. It re-
mains to consider ∆◦Ik(T n

e ), where Ik is the operation that grafts a tree onto a new root via
a new edge e? with edge-label k and type corresponding to the abstract integration map I.
It then follows from the definitions that A+(Ik(T )) is given by A+(Ik(T )) = Ik(A+(T )).
This is because e? is the only edge incident to the root, so that every admissible rooted
subtree contains e?. Given A ∈ A+(T ), since the root-label of Ik(T n

e ) is 0, the set of all
possible node-labels nA for Ik(T ) appearing in (4.2) for δ+Ik(T n

e ) coincides with those
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3.2. Link with SPDEs and the symbol notation

appearing the expression for δ+T n
e . Furthermore, it follows from the definitions that for

any such A one has
R↑AIk(T

nA+πeA
e ) = Ik(R↑AT

nA+πeA
e ) ,

so that, writing ? as a shortcut for ∅ ∈ A+(Ik(T )), we have the identity

δ+Ik(T n
e ) = (Ik ⊗ 1)δ+T n

e +
∑
e?,n?

1

e?!

(
n

n?

)
R↑?Ik(Te)n?+πe?

⊗Xn(%)−Σn?R↓?Ik+e?(e?)(T
n
e )

= (Ik ⊗ 1)δ+T n
e +

∑
e?

1

e?!
Xπe? ⊗ Ik+e?(e?)(T

n
e ) .

because n(%) = 0 so that n? is a zero ( n(%)− Σn? ≥ 0 ) . Note now that e? consists of a
single label (say `), supported on e?. As a consequence, we can rewrite the above as

δ+Ik(T n
e ) = (Ik ⊗ 1)δ+T n

e +
∑
`

1

`!
X` ⊗ Ik+`(T

n
e ).

For δ−, we define δ̃− as δ− but we distinguish subtrees in A+(T ):

δ̃−T n
e :=

∑
T%∈A+(T ) ,Ã∈A◦(T )

A=Ã∪{T%}∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
(T%)

nA+πeA
e ? R↑AT

nA+πeA
e ⊗R↓AT

n−nA
e+eA .

Then, it is straightforward to notice that δ̃− is multiplicative for the product:

((ϕ1 ? τ1)⊗ τ3)((ϕ2 ? τ2)⊗ τ4) = (ϕ1 · ϕ2 ? τ1τ2)⊗ τ3τ4.

We identify the product ? with terms of the form τ1C (τ2). Depending on the value of T%
we obtain two recursive terms appearing in δ̃− given by

δ̃−Ik(T n
e ) = (Ik ⊗ 1)δ̃−T n

e + (
∑
`

1

`!
X`C ⊗ Ik+`)δ̃

−T n
e .

If we apply (C ⊗ 1) on δ̃−, we obtain δ−.

By applying the projections, Π+ and Π−, we obtain the recursive definition for all the
coproducts defined in the first section. The coproducts ∆ and ∆+ have been introduced in
[Hai14b, Sec. 8] but in a different form. They are given by

∆1 = 1⊗ 1, ∆Ξ = Ξ⊗ 1, ∆Xi = Xi ⊗ 1 + 1⊗Xi,

∆(τ τ̄) = (∆τ)(∆τ̄), ∆Ik(τ) = (Ik ⊗ 1)∆τ +
∑
`,m

X`

`!
⊗ Xm

m!
Jk+`+m(τ).

(3.3)
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∆+1 = 1⊗ 1, ∆+Xi = Xi ⊗ 1 + 1⊗Xi, ∆+(τ τ̄) = (∆+τ)(∆+τ̄),

∆+Jk(τ) = 1⊗ Jkτ +
∑
`

(Jk+` ⊗
(−X)`

`!
)∆τ.

(3.4)

where
Jk(τ) := 1(|Ik(τ)|s>0) Ik(τ).

and the setH+ can be described using the symbol notation as the linear span of:

F+ = {Xk
∏
i

Jki(τi) : τi ∈ F and k, ki ∈ Nd}.

The previous recursive definition is slightly different from those with δ+. But if we
make a change of basis by defining J̃k(τ) =

∑
m

Xm

m!
Jk+m(τ) (note that the sum is finite

since at some point Jk+m(τ) = 0), we obtain the same recursive definition

∆(τ τ̄) = ∆τ ·∆τ̄ , ∆Ik(τ) = (Ik ⊗ 1)∆τ +
∑
`

X`

`!
⊗ J̃k+`(τ) .

For ∆+, it follows that one has the identity

∆+J̃k(τ) =
∑
`,m,n

(Xm

m!
Jk+`+m+n ⊗

(−X)`

`!

Xn

n!

)
∆τ +

∑
`,m

X`

`!
⊗ Xm

m!
Jk+`+m(τ)

=
∑
m

(Xm

m!
Jk+m ⊗ 1

)
∆τ +

∑
`,m

X`

`!
⊗ Xm

m!
Jk+`+m(τ)

=
(
J̃k ⊗ 1

)
∆τ +

∑
`

X`

`!
⊗ J̃k+`(τ) .

Finally, we view F+ as the free algebra generated by the Xi and all formal expressions of
the form Jk(τ) where Jk(τ) = 0 if |Ik(τ)|s < 0.

3.3 Computations with ∆̂◦

We give examples of computation with ∆̂◦ on terms which appear in the stochastic heat
equation in [HP14]. The symbols are represented using trees:

Ξ→ I(Ξ)→ I(Ξ)Ξ→ I(I(Ξ)Ξ)→ I(I(Ξ)Ξ)Ξ→

We proceed recursively and we use three colours: the subrees belonging to the free algebra
〈〈F〉〉 are in blue if their construction is over with C , if it is not they are in red. The
remaining tree on the right is in black.
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∆̂◦ = ⊗ 1 + 1⊗ ∆̂◦ = (I ⊗ 1 + C ⊗ I) ∆̂◦ = ⊗ 1+ 1⊗

∆̂◦ =

(
∆̂◦

)(
∆̂◦

)
= ⊗ 1 + ⊗ + ⊗ + 1⊗

∆̂◦ = (I ⊗ 1 + C ⊗ I)∆̂◦

( )
= ⊗ 1 + ⊗ + ⊗ + 1⊗

∆̂◦ =

(
∆◦

)(
∆◦

)
= ⊗ 1 + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + 1⊗

∆̂◦ = (I ⊗ 1 + C ⊗ I)∆̂◦

( )
= ⊗ 1 + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + 1⊗

Remark 3.3.1. The previous computation creates a lot of terms which end up to be zero
when we apply (`Π− ⊗ 1). In the computation, we omit the decorations in order to have
a nicer form.

3.4 Computation with ∆̂

We use the same notation as in the section concerning the computations of ∆̂◦ and we
represent the abstract integrator map I1(·) by a snake edge.

I1(I(Ξ)Ξ)2 →

`1 `2 `3 `4

I(I(I(Ξ)Ξ)Ξ)Ξ→
`4

`3

`2`1

I1(XΞ)I1(Ξ)→
`2`1

X I(XΞ)Ξ→
`2`1

X
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∆̂

`1 `2 `3 `4

=

`1 `2 `3 `4

⊗ 1+
`3`2

⊗
`4`1

+
`3`2

X ⊗
`4`1

+
`2 `3

X ⊗
`4`1

+1⊗

`1 `2 `3 `4

,

∆̂
`4

`3

`2`1

=
`4

`3

`2`1

⊗ 1+
`3`2

⊗
`4

`1

+
`3`2

X ⊗
`4

`1

`4`3

⊗

`1 `2

+
`4`3

X ⊗

`1 `2

+1⊗
`4

`3

`2`1

.

3.5 Composition of renormalisation operations using the
symbol notation

We want to derive recursive proofs for δ+ and δ− using the symbol notation. We briefly
recall the construction with the symbol notation given in 3.2. We consider a collection of
constants that can conveniently be indexed by expressions of the type C (τ) with τ ∈ F .
The space 〈〈F〉〉 is identified with 〈〈C (F)〉〉. Let Ĥ denote the vector space spanned by
elements of the form στ with σ ∈ 〈〈C (F)〉〉 and τ ∈ F . Elements of F̂ have a unique
decomposition of the form

∑
τ∈F σττ with στ ∈ 〈〈C (F)〉〉. We remind the definition of

∆◦ : H → R[[H⊗H]] and ∆̂◦ : H → R[[Ĥ ⊗ H]] given by:


∆◦1 = 1⊗ 1, ∆◦Xi = Xi ⊗ 1 + 1⊗Xi, ∆◦Ξ = Ξ⊗ 1 + 1⊗ Ξ

∆◦(τ τ̄) = (∆◦τ)(∆◦τ̄), ∆◦Ik(τ) = (Ik ⊗ 1)∆◦τ +
∑
`

X`

`!
⊗ Ik+`(τ).

(3.5)


∆̂◦1 = 1⊗ 1, ∆̂◦Xi = Xi ⊗ 1 + 1⊗Xi, ∆̂◦Ξ = Ξ⊗ 1 + 1⊗ Ξ

∆̂◦(τ τ̄) = (∆̂◦τ)(∆̂◦τ̄), ∆̂◦Ik(τ) =

(
Ik ⊗ 1 +

∑
`

X`

`!
C ⊗ Ik+`

)
∆̂◦τ.

(3.6)

We can extend ∆◦ from 〈〈H〉〉 to R[[〈〈H〉〉 ⊗ 〈〈H〉〉]] and ∆̂◦ from Ĥ to R[[Ĥ ⊗ Ĥ]] by
imposing that for τ ∈ F and σ ∈ C (F):

∆◦C (τ) = (C ⊗ C )∆◦τ, ∆̂◦C (τ) = (C ⊗ C )∆̂◦τ, ∆̂◦στ = ∆̂◦σ∆̂◦τ .
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Proposition 3.5.1. One has (∆◦ ⊗ 1)∆◦ = (1⊗∆◦)∆◦.

Proof. We proceed by induction. The proof is obvious for 1, Xi and Ξ. By multiplicativ-
ity, we just need to look at terms of the form Ik(τ). Therefore

(∆◦ ⊗ 1)∆◦Ik(τ) = (∆◦ ⊗ 1)((Ik ⊗ 1)∆◦τ +
∑
`

X`

`!
⊗ Ik+`(τ))

= (Ik ⊗ 1⊗ 1)(∆◦ ⊗ 1)∆◦τ +
∑
`

X`

`!
⊗ (Ik+`(τ)⊗ 1)∆◦

+
∑
`,m

X`

`!
⊗ Xm

m!
⊗ Ik+`+m(τ).

On the other hand, it follows:

(1⊗∆◦)∆◦Ik(τ) = (1⊗∆◦)((Ik ⊗ 1⊗ 1)∆◦τ +
∑
`

X`

`!
⊗ Ik+`(τ))

= (Ik ⊗ 1)(1⊗∆◦)∆◦τ +
∑
`

X`

`!
⊗ (Ik+`(τ)⊗ 1)∆◦

+
∑
`,m

X`

`!
⊗ Xm

m!
⊗ Ik+`+m(τ).

We conclude by applying the induction hypothesis on τ : (∆◦⊗1)∆◦τ = (1⊗∆◦)∆◦τ .

Proposition 3.5.2. One has (∆̂◦ ⊗ 1)∆̂◦ = (1⊗ ∆̂◦)∆̂◦.

Proof. Since both maps are multiplicative and the identity obviously holds when applied
to 1, Xi or Ξ, it suffices to verify that it also holds for elements of the form Ik(τ). For
this, note first that ∆̂◦ has the following properties. For στ ∈ F̂ , one has by definition

∆̂◦C (στ) = ∆̂◦σC (τ)1 = ∆̂◦(σC (τ))

= (∆̂◦σ)(C ⊗ C )∆̂◦τ = (C ⊗ C )∆̂◦(στ) .
(3.7)

Furthermore, one has the identity

∆̂◦Ik(στ) = ∆̂◦σIk(τ) = (∆̂◦σ)∆̂◦Ik(τ)

= (∆̂◦σ)(Ik ⊗ 1 +
∑
`

X`

`!
C ⊗ Ik+`)∆̂

◦τ

= (Ik ⊗ 1 +
∑
`

X`

`!
C ⊗ Ik+`)(∆̂

◦σ∆̂◦τ)

= (Ik ⊗ 1 +
∑
`

X`

`!
C ⊗ Ik+`)(∆̂

◦στ) .
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It follows that for any τ ∈ F̂ one has the identity

(∆̂◦ ⊗ 1)∆̂◦Ik(τ) = (∆̂◦Ik ⊗ 1 + ∆̂−
∑
`

X`

`!
C ⊗ Ik+`)∆̂

◦τ

= ((Ik ⊗ 1 +
∑
`

X`

`!
C ⊗ Ik+`)∆̂

◦ ⊗ 1

+
∑
`,m

(
X`

`!
C ⊗ Xm

m!
C )∆̂◦ ⊗ Ik+`+m)∆̂◦τ

= (Ik ⊗ 1⊗ 1 +
∑
`

X`

`!
C ⊗ Ik+` ⊗ 1

+
∑
`,m

X`

`!
C ⊗ Xm

m!
C ⊗ Ik+`+m)(∆̂◦ ⊗ 1)∆̂◦τ .

On the other hand, we have

(1⊗ ∆̂◦)∆̂◦Ik(τ) = (Ik ⊗ 1⊗ 1 +
∑
`

X`

`!
C ⊗ Ik+` ⊗ 1

+
∑
`,m

X`

`!
C ⊗ Xm

m!
C ⊗ Ik)(1⊗ ∆̂◦)∆̂◦τ ,

the claim follows by induction.

Proposition 3.5.3. One has:

(Π+ ⊗ Π+)∆◦Π+ = (Π+ ⊗ Π+)∆◦,

(Π−C ⊗ Π−)∆̂◦ = (Π−C ⊗ Π−)∆̂◦Π−.

Proof. By multiplicativity of Π+ and ∆◦, we just need to check the first identity for Ik(τ).
We have ∆◦Ik(τ) =

∑
i τ

(1)
i ⊗τ

(2)
i where |Ik(τ)|s = |τ (1)

i |s+|τ
(2)
i |s. If Ik(τ) has a negative

homogeneity then for every i, one of the τ (j)
i , j ∈ {1, 2} is negative. For the other identity,

we use the same kind of argument.

Given a linear functional ` : 〈〈F〉〉 → R, we define a renormalisation map M = M`

by: 
M◦

` 1 = 1, M◦
`X = X, M◦

` Ξ = Ξ

M◦
` τ τ̄ = (M◦

` τ)(M◦
` τ̄), M`τ = M◦

`R`τ

M◦
` Ik(τ) = Ik(M`τ)

(3.8)

where the map R = R` is defined by

R`τ = (`Π−C ⊗ 1)∆◦τ . (3.9)
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Proposition 3.5.4. Let ` : T− → R a multiplicative functional. If M` and M◦
` are given

by (3.14) with R = R` as in (3.9), then one has

M◦
` = (`1∗ ⊗ 1)∆̂◦, M` = (`C ⊗ 1)∆̂◦ . (3.10)

Proof. To show (3.10), we take this as a definition for two linear maps M and M◦, and
we show that these satisfy the identities (3.14). The first three identities are immediate,
and it is easy to verify that one has indeed

M◦Ik = IkM ,

as required. It is also straightforward to verify thatM◦ as given by (3.10) is multiplicative,
so that it only remains to show that M = M◦R. If we can show that

∆̂◦ = (M⊗ 1)(1⊗ (1∗ ⊗ 1)∆̂◦)∆◦ , (3.11)

Applying the right hand side to Ik(τ) we have

(M⊗ 1)(1⊗ (1∗ ⊗ 1)∆̂◦)∆◦Ik(τ)

= (M⊗ 1)
(
Ik ⊗ (1∗ ⊗ 1)∆̂◦

)
∆◦τ + (

∑
m

Xm

m!
1∗ ⊗ 1)∆̂◦Ik+m(τ)

= (M⊗ 1)
(
Ik ⊗ (1∗ ⊗ 1)∆̂◦

)
∆◦τ +

(∑
m

Xm

m!
C ⊗ Ik+m

)
∆̂◦τ .

At this stage we note that one has the identity

M(Ik ⊗ 1∗) = IkM(1⊗ 1∗) ,

so that, making use of the induction hypothesis, we have

(M⊗ 1)
(
Ik ⊗ (1∗ ⊗ 1)∆̂◦

)
∆◦τ

=
(
Ik ⊗ 1

)
(M⊗ 1)

(
1⊗ (1∗ ⊗ 1)∆̂◦

)
∆◦τ =

(
Ik ⊗ 1

)
∆̂◦τ .

Combining this with the recursive definition of ∆̂◦, we conclude that (3.11) does indeed
hold as required to conclude the proof.

3.6 Renormalised Models
We start the section by a general recursive formulation of the renormalisation group with-
out coproduct. During this section, we use mainly the symbol notation for the structure
space.
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3.6.1 A recursive formulation
Before giving the recursive definition of the renormalisation map, we precise some nota-
tions. We denote by ‖τ‖ the number of times the symbol Ξ appears in τ . We extend the
definitions of | · |s and ‖ · ‖ to any linear combination τ =

∑
i αiτi of canonical basis

vectors τi with αi 6= 0 by

|τ |s := min
i
|τi|s, ‖τ‖ := max

i
‖τi‖ , (3.12)

which suggests the natural conventions |0|s = +∞ and ‖0‖ = −∞. We also define a
partial order <T on T by setting:

τ1 <T τ2 if ‖τ1‖ < ‖τ2‖ or (‖τ1‖ = ‖τ2‖ and |τ1|s < |τ2|s). (3.13)

Definition 3.6.1. A symbol τ is an elementary symbol if it has the following form: Ξ, X
and In(σi).

Remark 3.6.2. This is the same definition for the symbols as for the labelled trees given
in 2.4.7.

Proposition 3.6.3. Let τ =
∏

i τi such that the τi are elementary symbols and that τ is
not an elementary symbol then τi <T τ .

Proof. We consider τ =
∏

i τi and let τj an elementary symbol appearing in the previous
decomposition. We define τ̄j =

∏
i6=j τi. If the product τ̄j contains a term of the form

Ik(σ) then ‖τ̄j‖ > 0 and ‖τj‖ < ‖τ̄j‖+‖τj‖ = ‖τ‖. Otherwise, τ̄j = Xk and ‖τj‖ = ‖τ‖
but |τ̄j|s > 0 which gives |τj|s < |τj|s + |τ̄j|s = |τ |s. Finally, we obtain τi <T τ .

Given a regularity structure (A,H, G), we consider L(H) the space of linear maps on
H. For our recursive formulation, we choose a subset of L(H):

Definition 3.6.4. A map R ∈ L(H) is admissible if

1. For every elementary symbol τ , Rτ = τ .

2. For every multiindex k and any symbol τ , R(Xkτ) = XkRτ .

3. For each τ ∈ T , ‖Rτ − τ‖ < ‖τ‖.

4. For each τ ∈ T , |Rτ − τ |s > |τ |s.

5. It commutes with G: RΓ = ΓR for every Γ ∈ G.

We denote by Lad(H) the set of admissible maps. For R ∈ Lad(H), we define a
renormalisation map M = MR by:

M◦1 = 1, M◦X = X, M◦Ξ = Ξ

M◦τ τ̄ = (M◦τ)(M◦τ̄), Mτ = M◦Rτ

M◦Ik(τ) = Ik(Mτ)

(3.14)
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The main idea behind this definition is that R computes the interaction between sev-
eral elements of the product

∏
i τi. In [Hai14b] and [HP14], elements of the renormalisa-

tion group are described by an exponential: M = exp(Ci
∑

i Li) where (Li)i ⊂ L(H).
The recursive construction is more convenient for several purposes: it gives an explicit
and a canonical way of computing the diverging constant we have to subtract. Moreover,
the proof of the construction of the renormalised model is simpler than the one given in
[Hai14b].

Remark 3.6.5. The definitions (3.12) as well as the convention that follows are designed
in such a way that if the third and the fourth conditions of Definition 3.6.4 hold for canon-
ical basis vectors τ , then they automatically hold for every τ ∈ H.

Remark 3.6.6. The first two conditions of 3.6.4 guarantee that M commutes with the
abstract integrator map. The third condition is crucial for the definition of M and ΠM :
the recursion (3.15) stops after a finite number of iterations since it decreases strictly
the quantity ‖ · ‖ and thus the partial order <T . Moreover, this condition guarantees that
R = 1 +L where L is a nilpotent map and therefore R is invertible. The fourth condition
allows us to treat the analytical bounds in the definition of the model and the last condition
is needed for the algebraic identities.

Remark 3.6.7. Note that M = MR does not always commute with the structure group G
even if R does ; we will see a counterexample in the group of the stochastic heat equation
see proposition 3.7.9 .

Proposition 3.6.8. Let R ∈ Lad(H), then MR is well-defined.

Proof. We proceed by induction using the order <T . If τ ∈ {Ξ, Xk, k ∈ N} then Mτ =
M◦Rτ = M◦τ = τ . If τ = Ik(τ ′) then

MIk(τ ′) = M◦RIk(τ ′) = M◦Ik(τ ′) = Ik(Mτ ′).

We conclude by applying the induction hypothesis on τ ′ because we have |τ ′|s < |τ |s. Let
τ =

∏
i τi ∈ T a product of elementary symbols with at least two symbols in the product,

we can write
Mτ = M◦(Rτ − τ) +M◦τ.

We apply the induction hypothesis on Rτ − τ <T τ because ‖Rτ − τ‖ < ‖τ‖. For M◦τ ,
we have

M◦τ =
∏
i

M◦Rτi =
∏
i

Mτi.

We know from 3.13 that for every i, τi <T τ . Therefore, we apply the induction hypothesis
on the τi.

Remark 3.6.9. In the sequel, we use the order <T for every induction proof on our sym-
bols. It is possible to choose any other order on the symbols for these proofs.
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Remark 3.6.10. The properties of the definition of an admissible mapR do not guarantee
that T is invariant under the action of R. Therefore, the map MR can create terms which
do not belong to the structure space of an SPDE. In the previous case, we need to specify
more the admissible map R.

One crucial property for defining a model is the commutating property of R ∈ L(H)
with the structure group. This property can be rewritten as

Proposition 3.6.11. Let R ∈ L(H) then R commutes with G iff

(R⊗ 1)∆ = ∆R.

Proof. Let Γg ∈ G with g ∈ H∗+ and R ∈ L(H) commuting with G. It follows

RΓg = R(1⊗ g)∆ = (1⊗ g)(R⊗ 1)∆.

On the other hand, we have
ΓgR = (1⊗ g)∆R.

If the identity RΓg = ΓgR holds for every g ∈ H∗+, we obtain (R ⊗ 1)∆ = ∆R. The
reverse is obvious.

Remark 3.6.12. If we define R through the coproduct ∆◦, then it is easy to check that
R ∈ Lad(H).

We finish the section by an alternative definition of the map M . We denote by ML the
representation of M : 

M1 = 1, MX = X, MΞ = Ξ

M
∏
i

τi =
∏
i

Mτi −ML
∏
i

τi

MIk(τ) = Ik(Mτ)

(3.15)

where the τi are elementary symbols having the following form: Ξ, X and In(σi) and the
map L needs to satisfy the following properties:

1. For every elementary symbol τ , Lτ = 0 and for every multiindex k, LXk = 0.

2. For each τ ∈ T , ‖Lτ‖ < ‖τ‖ and |Lτ |s > |τ |s.

3. It commutes with G: LΓ = ΓL for every Γ ∈ G.

This properties are very similar to those of R. Noticing that the map L is nilpotent, one
can check that R = (1 + L)−1 and M◦ = M(1 + L).
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3.6.2 Renormalised models

In this section, we consider a renormalisation map M = MR defined from an admissible
map R. We first define two maps ΠM◦ and ΠM by

(ΠM◦1)(y) = 1, (ΠM◦Ξ)(y) = ξ(y), (ΠM◦X)(y) = y,

(ΠM◦Ikτ)(y) =

∫
DkK(y − z)(ΠMτ)(z)dz,

(ΠMτ)(y) = (ΠM◦Rτ)(y), (ΠM◦τ τ̄)(y) = (ΠM◦τ)(y)(ΠM◦ τ̄)(y).

We prove that we can build a model (ΠM
x ,Γ

M
xy) using the construction of [Hai14b,

section 8.3] and we provide a recursive formulation for the map ΠM
x :

(ΠM◦

x 1)(y) = 1, (ΠM◦

x Ξ)(y) = ξ(y), (ΠM◦

x X)(y) = y − x,

(ΠM◦

x Ikτ)(y) =

∫
DkK(y − z)(ΠM

x τ)(z)dz −
∑
`

(y − x)`

`!
fMx (Jk+l(τ)),

(ΠM
x τ)(y) = (ΠM◦

x Rτ)(y), (ΠM◦

x τ τ̄)(y) = (ΠM◦

x τ)(y)(ΠM◦

x τ̄)(y)

(3.16)

where fMx ∈ H∗+ is defined by
fMx (X) = x, fMx (τ τ̄) = fMx (τ)fMx (τ̄)

fMx (J`(τ)) = 1(|I`(τ)|s>0)

∫
D`K(x− z)(ΠM

x τ)(z)dz.

Let gMx given by 
gMx (X) = −x, gMx (τ τ̄) = gMx (τ)gMx (τ̄)

gMx (Jkτ) = −
∑
`

(−x)`

`!
fMx (Jk+`τ).

We consider FM
x = ΓgMx and we have

ΠM◦

x = ΠM◦FM
x , ΠM

x = ΠMFM
x

In that setting, the transformation ΓMxy is given by

ΓMxy = (FM
x )−1 ◦ FM

y .

By taking R = Id, we obtain M = M◦ = Id which gives the same definition of Πx

and Γxy as in [Hai14b, section 8.3].
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Reformulation of the conditions

In [Hai14b, (8.34)], the renormalised model (ΠM
x ,Γ

M
xy) is defined by using a factorisation

of the form:

ΠM
x = (Πx ⊗ gx)∆M , γMx,y = (γx,y ⊗ gy)∆̂M (3.17)

where ΓMxy = (1⊗ γMxy)∆. We have changed the definition by replacing fx by gx because
we have modified the coproduct ∆ and ∆+. From [Hai14b, Proposition 8.36], given M
there exists a unique choice of linear maps M̂ , ∆M and ∆̂M such that

M̂Jkτ =M(Jk ⊗ 1)∆Mτ , (3.18a)
(1⊗M)(∆⊗ 1)∆Mτ = (M ⊗ M̂)∆τ , (3.18b)

(AM̂A⊗ M̂)∆+ = (1⊗M)(∆+ ⊗ 1)∆̂M

M̂(τ1τ2) = (M̂τ1)(M̂τ2), M̂Xk = Xk,

whereM is the multiplication map given byM(τ ⊗ τ̄) = τ τ̄ andA denotes the antipode
associated to ∆+. It is very important to note here that in general the first identity holds
only if |Ik(τ)|s > 0. Indeed, if |Ik(τ)|s ≤ 0, then the left hand side vanishes by definition
(because Jk(τ) = 0), while the right hand side may still be non-zero!

If for every τ with |τ |s < 0, ∆Mτ has a certain good form then (ΠM
x ,Γ

M
xy) is a model

and we obtain a renormalisation group.

Definition 3.6.13. The renormalisation group R consists of the set of linear maps M
commuting with Ik and with multiplication by Xk, such that for τ ∈ Hα one has:

∆Mτ ∈ H≥α ⊗H+,

whereH≥α =
⊕

β≥αHβ .

Remark 3.6.14. The last property is called "upper triangular" and it is crucial for the
analytical bounds needed for a model. The map ∆̂M has also to be upper triangular. We
omit this fact in the definition because it has been proven in [HQ15, Theorem A.1] that
the upper triangularity of ∆M implies the one of ∆̂M .

Remark 3.6.15. This construction is really systematic but for most of the examples, one
needs to guess the form of ∆M on each τ ∈ T with negative homogeneity and this can
become difficult for very large renormalisation groups.

Let us remind some properties of the antipode:

M(1⊗A)∆+ = 1∗ =M(A⊗ 1)∆+

where 1∗ ∈ H∗+ is such that 1∗(τ) = 1τ=1.
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Lemma 3.6.16. Let D : H⊗H+ → H⊗H+ given by

D = (1⊗M)(∆⊗ 1)

then D is invertible and D−1 is given by

D−1 = (1⊗M)(1⊗A⊗ 1)(∆⊗ 1).

Proof. We have by using the fact that (∆ ⊗ 1)∆ = (1 ⊗ ∆+)∆ and M(1 ⊗ M) =
M(M⊗ 1)

D−1D = (1⊗M)(1⊗A⊗ 1)(1⊗ 1⊗M)((∆⊗ 1)∆⊗ 1)

= (1⊗M(A⊗M))((1⊗∆+)∆⊗ 1)

= (1⊗M)(1⊗M(A⊗ 1)⊗ 1)((1⊗∆+)∆⊗ 1)

= (1⊗M)((1⊗M(A⊗ 1)∆+)∆⊗ 1).

Now it follows with the identitiesM(A⊗ 1)∆+ = 1∗ and (1⊗ 1∗)∆τ = (τ ⊗ 1)

D−1D = (1⊗M)((1⊗ 1∗)∆⊗ 1) = 1⊗ 1.

Using the same properties, we prove that DD−1 = 1⊗ 1.

Remark 3.6.17. The previous lemma gives an explicit expression of the inverse of D. It
is a refinement of [Hai14b, Proposition 8.38] which proves the fact that D is invertible.

Using explicit expression of the inverse, we change the second identity (3.18b) into

∆M = (1⊗M)
(
(1⊗A)∆M ⊗ M̂

)
∆ . (3.19)

Alternatively, this can also be written as

(1⊗A)∆M = (1⊗M)
(
∆M ⊗AM̂

)
∆ .

Remark 3.6.18. The equivalence between (3.19) and (3.18b) is in the strong sense that
(3.19) holds for any given symbol τ if and only if (3.18b) holds for the same symbol τ .

Regarding the antipode A, one has the recursive definition

A1 = 1, AXi = −Xi, A(τ1τ2) = A(τ1)A(τ2),

M(1⊗A)∆+Jkτ = 0.

which gives ∑
i

X i

i!
AJk+`+i(τ) = −M

(
Jk+` ⊗A

)
∆τ . (3.20)

We will use the fact in the next section that, as a consequence of this, one has the identities∑
`

M
(
AJk+` ⊗

X`

`!

)
∆τ = −Jk(τ) . (3.21)

To see this, simply multiply both sides in (3.20) by X`

`!
A and make use of the binomial

identity: 1 =
∑

`,i
X`

`!
(−X)i

i!
.
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A recursive approach

We build two linear maps ∆M and ∆M◦ by setting

∆M◦1 = 1⊗ 1 , ∆M◦Xi = Xi ⊗ 1 , ∆M◦Ξ = Ξ⊗ 1 ,

and then recursively

∆M◦τ τ̄ =
(
∆M◦τ

)(
∆M◦ τ̄

)
, ∆Mτ = ∆M◦Rτ , (3.22)

as well as

∆M◦Ik(τ) = (Ik ⊗ 1)∆Mτ −
∑

|`+m|s≥|Ikτ |s

X`

`!
⊗ (−X)m

m!
M
(
Jk+`+m⊗ 1

)
∆Mτ . (3.23)

We claim that if M and ∆M are defined in this way, then provided that one defines M̂
by (3.18a), the identity (3.18b) holds.

Proposition 3.6.19. IfM , ∆M and M̂ are defined as above, then the identities (3.18) hold
and M belongs to R.

Proof. Since (3.18a) holds by definition and it is straightforward to verify that ∆M is
“upper triangular” (just proceed by induction using (3.23) and (3.22)), we only need to
verify that (3.18b), or equivalently (3.19), holds. For this, we first note that since ∆M =
∆M◦R, M = M◦R, R commutes with ∆, and since R is invertible by assumption, (3.19)
is equivalent to the identity

∆M◦ = (1⊗M)
(
(1⊗A)∆M◦ ⊗ M̂

)
∆ , (3.24)

and it is this identity that we proceed to prove now. Both sides in (3.24) are morphisms so
that, by induction, it is sufficient to show that if (3.24) holds for some element τ , then it
also holds for Ik(τ). (The fact that it holds for 1, Xi and Ξ is easy to verify.)

Starting from (3.23), we first use (3.18a) and the fact that ∆M and ∆M◦ agree on
elements of the form Ik(τ) to rewrite ∆M◦Ik(τ) as

∆M◦Ik(τ) = (Ik⊗1)∆Mτ+
∑
`,m

X`

`!
⊗ (−X)m

m!

(
M̂Jk+`+m(τ)−M(Jk+`+m⊗1)∆Mτ

)
,

(3.25)
where the sum runs over all multiindices ` (but only finitely many terms in the sum are
non-zero). By (3.21), we have

M(Jk+`+m ⊗ 1)∆Mτ = −
∑
i

X i

i!
M
(
M(AJk+`+m+i ⊗ 1)∆⊗ 1

)
∆Mτ

= −
∑
i

X i

i!
M
(
AJk+`+m+i ⊗ 1

)(
1⊗M

)(
∆⊗ 1

)
∆Mτ ,
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Recall that by Remark 3.6.18, the induction hypothesis implies that (3.18b) holds, so that
we finally conclude that

M(Jk+`+m ⊗ 1)∆Mτ = −
∑
i

X i

i!
M
(
AJk+`+m+iM ⊗ M̂

)
∆τ .

Using again the induction hypothesis, but this time in its form (3.19), we thus obtain
from (3.25) the identity

∆M◦Ik(τ) = (1⊗M)
(
(Ik ⊗A)∆M ⊗ M̂

)
∆τ +

∑
`,m

X`

`!
⊗ (−X)m

m!
M̂Jk+`+m(τ)

+
∑
`

X`

`!
⊗M

(
AJk+`M ⊗ M̂

)
∆τ .

At this stage, we see that we can use the definition of ∆ to combine the first and the last
term, yielding

∆M◦Ik(τ) = (1⊗M)
(
(1⊗A)∆IkM ⊗ M̂

)
∆τ +

∑
`,m

X`

`!
⊗ (−X)m

m!
M̂Jk+`+m(τ)

= (1⊗M)
(
(1⊗A)∆M◦ ⊗ M̂

)
(Ik ⊗ 1)∆τ +

∑
`,m

X`

`!
⊗ (−X)m

m!
M̂Jk+`+m(τ) .

We now rewrite the last term∑
`,m

X`

`!
⊗ (−X)`

`!
M̂Jk+`+m(τ) =

∑
`,m

(1⊗M)
(X`

`!
⊗ (−X)m

m!
⊗ M̂Jk+`+m(τ)

)
=
∑
`

(1⊗M)
(

(1⊗A)∆M◦X
`

`!
⊗ M̂Jk+`(τ)

)
=
∑
`

(1⊗M)
(
(1⊗A)∆M◦ ⊗ M̂

)(X`

`!
⊗ Jk+`(τ)

)
.

Inserting this into the above expression and using the definition of ∆ finally yields (3.24)
as required, thus concluding the proof.

Every M ∈ R− is defined from an admissible map R. Therefore, we can establish
from the previous proposition a link betweenR− andR:

Theorem 3.6.20. R− is a subgroup ofR.

We finish the section by the proof of the recursive identity for ΠM
x :

Proposition 3.6.21. Let ΠM
x , ΠM◦

x defined from (3.17). Then these maps satisfy (3.16).
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Proof. The result follows easily for τ ∈ {1,Ξ, X}. Let τ =
∏

i τi. By multiplicativity of
Πx, gx and ∆M◦ , we obtain

ΠM◦

x τ = (Πx ⊗ gx)∆M◦
∏
i

τi =
∏
i

(
(Πx ⊗ gx)∆M◦τi

)
=
∏
i

ΠM◦

x τi

The fact that ΠM
x = ΠM◦

x R comes from ∆M = ∆M◦R. For τ ′ = Ik(τ), it follows from
the fact that we have built an admissible model.

3.7 Examples of renormalisation groups
For the examples of this section, we define the renormalisation map MR by using an
admissible map R = (`⊗ I)∆◦ where the support of ` is contained in the set of symbols
with negative homogeneity and without any X in their construction. Moreover for each
example, we describe the structure and we look at the following properties which a model
could verify or not:

Properties 3.7.1. 1. The map M commutes with G.

2. For every symbol τ , ΠM
x τ = ΠxMτ .

3. For every symbol τ , (ΠM
x τ)(x) = (ΠxMτ)(x).

Remark 3.7.2. In this section, we will give examples which do not verify the first two
properties. But the last one is verified by all the examples. In the framework of the ex-
tended structure, we directly have the second property.

We start with a toy model on the Wick renormalisation then we move on to examples
based on the SPDEs regularity structure introduced in section 3.2.

3.7.1 Hermite polynomials
We look at a very simple example: the powers of a standard gaussian r.v. ξ with zero mean
and covariance c2, which can be interpreted as a white noise on a singleton {x}. The set
T is given by: T = {Ξn : n ∈ N} and G = {Id} . Given the natural definition

Π Ξn = ξn,

we want to find M such that the renormalised n-th power of ξ is the Wick product:

ΠMΞn = ξ�n = Hn(ξ, c)

where Hn are generalised Hermite polynomials: H0 = 1, Hn+1(x, c) = xHn(x, c) −
c2H ′n(x, c).
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One natural way of defining M is M = exp(−R) where R = (`⊗ I)∆◦ and `(Ξn) =
c2
1(n=2). The multiplicative coproduct ∆◦ is defined by :

∆◦1 = 1⊗ 1, ∆◦Ξ = Ξ⊗ 1 + 1⊗ Ξ.

On Ξn, we obtain the binomial formula

∆◦Ξn =
n∑
k=0

(
n

k

)
Ξk ⊗ Ξn−k.

This coproduct can be expressed in our general setting with the same subset A+(T ). But
in that case, we do not have any labels. In the next example, we will encode Ξn with a set
of n leaves. A rooted subtree is identified with a subset of leaves.

Example 3.7.3. We present one term in the decomposition of ∆◦Ξ8 which is in the support
of `:

`4`3`2`1 `5 `6 `7 `8`3 `7 −→ `3 `7 ⊗ `4`2`1 `5 `6 `8 .

We have removed the set {`3, `7} from the term Ξ8.

Then ΠM is given by:
ΠMΞn = ΠMΞn.

By definition, this example verifies all the three properties 3.7.1. We are able to pro-
vide a description of `:

Proposition 3.7.4. The map M is given by:

M = (`wick ⊗ 1)∆̂◦

where

`wick = 1∗ +
∑
k≥1

(−1)k
(2k − 1)!

2k−1(k − 1)!
c2k1{Ξ2k}.

Proof. We use the following lemma:

Lemma 3.7.5. For every k ∈ N∗ Rk
k!

= (fk ⊗ I)∆◦, where

fk =
(2k − 1)!

2k−1(k − 1)!
c2k1{Ξ2k}.
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Proof. We proceed by recurrence. It is obvious for k = 1. Let k ∈ N∗, we suppose the
property true for that integer. We have for every n ∈ N

Rk+1

(k + 1)!
Ξn =

1

k + 1
R(fk ⊗ 1)∆◦Ξn

=
1

k + 1
(fk ⊗ `⊗ 1)(1⊗∆◦)

n∑
m=0

(
n

m

)
Ξm ⊗ Ξn−m

=
1

k + 1
(fk ⊗ `⊗ 1)

n∑
m=0

n−m∑
l=0

(
n

m

)(
n−m
l

)
Ξm ⊗ Ξl ⊗ Ξn−m−l

= 1{n≥2k+2}
1

k + 1

(2k − 1)!

2k−1(k − 1)!
c2k+2

(
n

2k

)(
n− 2k

2

)
= 1{n≥2k+2}

(2k + 1)!

2kk!
c2k+2.

From the previous lemma, we deduce that `wick = 1∗ +
∑

k≥1(−1)kfk which con-
cludes the proof.

Example 3.7.6. We illustrate the previous proposition by giving one term of the decom-
position of ∆̂◦Ξ8. We identify a subforest by a collection of sets of leaves. Let A =
{{`1, `5}, {`3, `7}}, we have

`4`3`2`1 `5 `6 `7 `8`1 `5`3 `7 −→ `3 `7`1 `5 ⊗ `4`2 `6 `8 .

The space between {`1, `5} and {`3, `7}means that we have a product on the forest which
is different from the product in Ξ8. The functionals fk and `wick are multiplicative for this
product

3.7.2 The KPZ equation
The renormalisation group for the KPZ equation has been introduced in [Hai13] and it
has been given in the setting of regularity structure in [Hai14a]. We first present the set of
rulesRkpz used for building Tkpz:

Rkpz = {Xk, XkI1(·), XkI1(·)2, k ∈ N}.

The admissible map Rkpz associated to KPZ is defined by Rkpz = ((1∗ − `kpz) ⊗ I)∆◦

where `kpz is given by:

`kpz(I1(Ξ)2) = C1, `kpz
(
I1(I1(Ξ)2)2

)
= C ′,

`kpz(I1(Ξ)I1(I1(Ξ)I1(I1(Ξ)2))) = C ′′.

Otherwise, `kpz is zero.
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Proposition 3.7.7. The map M = MRkpz satisfies the properties 3.7.1.

Proof. For proving the first two properties, we need the following lemma:

Lemma 3.7.8. For every symbol τ , M◦τ = τ and there exists a polynomial Pτ such that:
Mτ = τ + Pτ (X).

Proof. We proceed by induction. It is obvious for X and Ξ. For τ = I1(τ ′), we apply the
induction hypothesis on τ ′ which gives

M◦I1(τ ′) = I1(Mτ ′) = I1(τ ′ + Pτ ′(X)) = I1(τ ′).

Let τ =
∏

i τi a product of elementary symbols. From the induction hypothesis on the τi,
it follows

M
∏
i

τi = M◦(Rτ − τ) +
∏
i

M◦τi = M◦(Rτ − τ) + τ.

Then Rτ − τ is non zero if one element in the support of `kpz is a subsymbol of τ .
Necessarily, τ should be of the form

• τ1I1(Ξτ2)I1(Ξτ3),

• τ1I1(Ξτ2)I1(τ3I1(Ξτ4)I1(τ5I1(τ6Ξ)I1(τ7Ξ))),

• τ1I1(τ2I1(τ3Ξ)I1(τ4Ξ))I1(τ5I1(τ6Ξ)I1(τ7Ξ)),

where the τi belong to Tkpz. By looking, at the rule available in Rkpz, we deduce that the
τi should be monomials of the form Xk. Therefore, Rτ − τ is a polynomial which allows
us to conclude.

For the first property, we proceed by induction and we also prove that M◦ commutes
with G . Let Γ ∈ G, the proof is obvious for X and Ξ. Let τ = I1(τ ′), it happens

MΓI1(τ ′) = M(ΓI1(τ ′)− I1(Γτ ′) + I1(Γτ ′)) = ΓI1(τ ′)− I1(Γτ ′) + I1(ΓMτ ′).

On the other hand, we have

ΓMI1(τ ′) = ΓI1(Mτ ′)− I1(ΓMτ ′) + I1(ΓMτ ′).

Using the previous lemma, it follows I1(Mτ ′) = I1(τ ′) and I1(ΓMτ ′) = I1(Γτ ′) which
give the result. The same proof works for M◦.

Let τ =
∏

i τi a product of elementary symbols, we have

MΓτ = M◦RΓτ = M◦ΓRτ = M◦Γ(Rτ − τ) +
∏
i

M◦Γτi

= ΓM◦(Rτ − τ) +
∏
i

ΓM◦τi = ΓMτ.
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where we have used the fact thatM commutes with Γ on the τi andRτ which comes from
the induction hypothesis and the fact that R commutes with G . For the second property,
we proceed as the same by induction. The only difficult point is for τ = I1(τ ′). We have
by applying the induction hypothesis, the previous lemma on τ ′ and using the fact that K
integrates to zero against polynomials

(ΠM
x I1τ

′)(y) =

∫
D1K(y − z)(ΠM

x τ
′)(z)dz

−
∑
`

(y − x)`

`!
1|τ ′|s+1−`>0

∫
D1+`K(x− z)(ΠM

x τ
′)(z)dz

=

∫
D1K(y − z)(Πxτ

′)(z)dz

−
∑
`

(y − x)`

`!
1|τ ′|s+1−`>0

∫
D1+`K(x− z)(Πxτ

′)(z)dz.

which allows us to conclude.

3.7.3 The stochastic heat equation
This equation is given by:

∂tu = ∂2
xu+ h(u) + f(u)ξ

and has been studied in [HP14] using regularity structures. The set of rules Rshe for
building Tshe is:

Rshe = {Xk, XkI(·)`Ξ, k, ` ∈ N}.
The admissible mapRshe associated to the stochastic equation (SHE) is defined byRshe =
((1∗ − `she)⊗ I)∆◦ where `she is given by:

`she(I(Ξ)Ξ) = C1,

`she(I(I(I(Ξ)Ξ)Ξ)Ξ) = C2, `she(I(Ξ)I(I(Ξ)Ξ)Ξ) = C3.

Otherwise, `she is zero.
The map Mshe is an example of a map which does not commute with the structure

group G. More precisely, we have

Proposition 3.7.9. The map M = Mshe satisfies only the third property in 3.7.1.

Proof. One counterexample, for the first two properties is given by: τ = I(I(I(Ξ)Ξ)Ξ),
we have

ΓgMsheτ = Γgτ − C1ΓgI(I(Ξ))

MsheΓgτ = Γgτ − C1I(ΓgI(Ξ)).

Now ΓgI(I(Ξ)) − I(ΓgI(Ξ)) is a polynomial different from zero. Similarly, one can
check that ΠM

x τ 6= ΠxMτ . For the third property, we use the proposition A.2.7. We need
to check that property on every I(τ) ∈ Tshe with negative homogeneity. Such terms do
not exist that ends the proof.
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3.7.4 The generalised KPZ
The equation contains the previous equations and it is given by:

∂tu = ∂2
xu+ g(u)(∂xu)2 + h(u)∂xu+ k(u) + f(u)ξ.

The set of rulesRgkpz for building Tgkpz is:

Rgkpz = {XkI(·)`, XkI(·)`I1(·), XkI(·)`I1(·)2, XkI(·)`Ξ, k, ` ∈ N}.
The admissible mapRgkpz associated to the generalised KPZ is defined byRgkpz = ((1∗−
`gkpz)⊗ I)∆◦ where `gkpz is given by:

`gkpz(I1(Ξ)2) = C1, `gkpz(I(Ξ)Ξ) = C1,

∀τ, ‖τ‖ = 4 ∧ |τ |s < 0, `gkpz(τ) = Cτ .

Otherwise, `gkpz is zero. This renormalisation group is a mix between the renormalisa-
tion group of the KPZ equation and the stochastic heat equation. Indeed, `gkpz can be
decomposed as:

`gkpz = `kpz + `she + `mix

where the support of `mix are resonant terms between the two equations with four Ξ’s in
their decomposition.

Proposition 3.7.10. The map M = Mgkpz satisfies only the third property in 3.7.1.

Proof. The same counterexample τ = I(I(I(Ξ)Ξ)Ξ) as in Mshe works for the first two
properties. For the third property,

{I1(τ) τ ∈ Tgkpz and |I1(τ)|s < 0} = {I1(Ξ), I1(I1(Ξ)2), I1(I1(Ξ)Ξ)}.
and ΠM

x I1(τ)(x) = (ΠxMI1(τ))(x) for τ ∈ {Ξ, I1(Ξ)2, I(Ξ)Ξ}.

3.7.5 The stochastic quantization
The stochastic quantization given in dimension 3 by:

∂tu = ∆u+ u3 + ξ.

and has been studied in [Hai14b]. The set of rulesRqua for building Tqua is:

Rqua = {Xk, XkI(·), XkI(·)2, I(·)3, Ξ, k ∈ N}
The admissible map Rqua associated to the stochastic quantization is defined by Rqua =
((1∗ − `qua)⊗ I)∆◦ where `qua is given by:

`qua(I(Ξ)2) = C4, `qua(I(Ξ)2I(I(Ξ)2)) = C5.

Otherwise, `qua is zero.

Proposition 3.7.11. The map M = Mqua satisfies only the third property in 3.7.1.

Proof. For the first two properties, a good counterexample is τ = I(I(τ)3). For the
third property, {I(τ) τ ∈ Tgkpz and |I(τ)|s < 0} = {I(Ξ)}. then it is obvious that
ΠM
x I(Ξ) = ΠxMI(Ξ) .
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Chapter 4

Extension of the structure

In this chapter we introduce a different construction of a regularity structure associated
with a subcritical SPDE. We start from the same labelled trees as in the previous chapters,
but we add to each vertex an additional label which we use to keep track of the action
of the renormalisation group: if we "extract" from a tree a negative subtree S rooted at
v ∈ T , then we add to this second label in v the homogeneity of S; this label participates
to the computation of the homogeneity, in particular when we construct (renormalised)
models.

On this extended structure the renormalisation group has a particularly simple form;
moreover, simply by forgetting the new label, we recover the original construction and
therefore the construction projects onto the old one.

4.1 New labelled trees
In most of the examples in section 3.7 , we have ΠM

x 6= ΠxM . Indeed, if we look at a
labelled tree of the form I(τ). From the previous section, we know that there exist τi such
that MI(τ) = I(Mτ) = I(τ) +

∑
i I(τi) with |τi|s > |τ |s. Then we obtain

(ΠM
x I(τ))(y) =

∫
K(y − z)(ΠM

x τ)(z)dz −
∑

`<d|I(τ)|se

(y − x)`

`!
fMx (J`(τ))

(ΠxMI(τ))(y) =

∫
K(y − z)(Πxτ)(z)dz −

∑
`<d|I(τ)|se

(y − x)`

`!
fMx (J`(τ))

+
∑
i

∫ K(y − z)(Πxτi)(z)dz −
∑

`<d|I(τi)|se

(y − x)`

`!
fMx (J`(τi))

.
The main difference between the two identities is that we can have longer Taylor expan-
sion in the last line because |τi|s > |τ |s. With τ = I(I(I(Ξ)Ξ)Ξ), we obtain a counter-
example to ΠM

x = ΠxM . We extend the structure and the maps M , Πx in such a way that
this identity turns out to be true. The main idea is to guarantee that for every labelled tree
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τ , one has a decomposition Mτ = τ +
∑

i τi with |τi|ex = |τ |ex where | · |ex is a new
homogeneity.

For that purpose, we use the same formalism as for T and we define Tex by:

1. We give the same meaning to the node-labels, the leaves and the edge-labels as for
T.

2. We add a new node-label d : N → R which computes a new homogeneity. From
that label, we obtain the order of the Taylor expansion we need to subtract when we
define Πx.

For a shape T , we denote by T n,d
e such labelled tree. Let x a node of T , we define Tx

where its nodes are identified with Nx = {u : x ≤ u} and we also define Ex = {e =
(x, a) ∈ E} which are the edges above x. The new homogeneity | · |ex of a labelled tree
T with root % is given by:

|T |ex = |n(%)|s +
∑
e′∈E%

|P↑e′T |ex + d(%) ,

where
|P↑e′T |ex = |l(e′)| − |e(e′)|s + |Tu|ex, e′ = (%, u).

Remark 4.1.1. By induction, one can check that |T |ex = |T |+
∑

u∈N d(u).

We define one natural injection from T to Tex, ιex : T → Tex, which sets all the
node-labels of d to zero for T n

e ∈ T. The previous application can be considered as a map
from Tex to Tex by replacing all the node labels by the new one. We denote by Tn the set
of labelled trees with d : NT → R−. We do the same with the forests by setting Fex as the
extended forest of F. The space Fn are the forests with negative d.

Given T n,d
e , T̂ n̂,d̂

ê, ∈ Tn, we have two possible products: T n
e T̂

n̂,d̂
ê = T̄ n̄,d̄

ē ∈ T cor-
responds to the graph obtained by identifying the roots and the labels are given by the
disjoint sum of the labels: (n̄, ē, d̄) = (n + n̂, e + ê, d+ d̂). While T n,d

e · T̂
n̂,d̂
ê = F n̄,d̄

ē cor-
responds to the disjoint union of the two labelled graphs and belongs to the set of labelled
forests Fn.

Let A ∈ A(T ),

• we extend R↑AT by performing the same computation and the new node-labels is
dA the restriction of d to A .

• we do the same forR↓AT and for every A ∈ A, we replace d(%A) by |R↑AT |ex.

In the next example, we compute R↓AT for A = {S1, S2}. The main difference with
the extended structure is that we leave some information about the trees we have removed:
their homogeneity.
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%

`1 `3`2

%S1

`4

`5 `6 `7

%S2

`8

−→
%

|S2|ex|S1|ex

`1 `2 `5 `8

.

Lemma 4.1.2. For C = B dA with B ∈ A(R↓AT ), one has:

R↑BR
↓
A = R↓AR

↑
C , R↓BR

↓
A = R↓C ,

Proof. LetA ∈ A(T ) and C = BdA with B ∈ A(R↓AT ). Let A ∈ A, the only difference
betweenR↓A andR↓A is the label of %A the root ofR↑AT . We have two cases:

1. If for every B ∈ B, NA ∩NB = ∅ then A ∈ C and we obtain the same label.

2. If there exist B ∈ B and C ∈ C such that NA ∩ NB 6= ∅ and such that R↓BR
↓
AB

=

R↓C . Then the new label d′(%C) inR↓CT is given by:

d′(%C) = |R↑CT |ex

where

|R↑CT |ex = |R↑BR
↓
ABT |ex +

∑
A∈AB

|R↑AT |ex = |R↑BR
↓
AT |ex,

which allows us to conclude.

We extend the linear map ∆̄ : 〈Fex〉 → 〈Fex〉 ⊗ 〈Fex〉 defined in (2.4) by

∆̄F n,d
e =

∑
A∈Ā(F )

∑
nA,eA

1

eA!

(
n

nA

)
R↑AF

nA+πeA,d
e ⊗R↓AF

n−nA,d+nA+πeA
e+eA (4.1)

where, for A = {S1, . . . , Sn},

1. eA runs over all Nd-valued functions on EF supported by the set of edges (x1, x2) ∈
EF \ ∪iESi such that x1 ∈ ∪iNSi

2. nA runs over the set of all Nd-valued functions on NF supported by ∪iN̊Si .

Proposition 4.1.3. One has: (∆̄⊗ 1)∆̄ = (1⊗ ∆̄)∆̄.

Proof. If n = 0, then (2.4) reduces to the somewhat cleaner identity

∆̄F 0,d
e =

∑
A∈Ā(F )

∑
eA

1

eA!
R↑AF

πeA,d
e ⊗R↓AF

0,d+πeA
e+eA .
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4.1. New labelled trees

One has

(1⊗ ∆̄)∆̄F 0,d
e =

∑
A∈Ā(F )

B∈Ā(R↓AF )

∑
eA,eB

1

eA!eB!
R↑AF

πeA,d
e ⊗R↑BR

↓
AF

πeB,d+πeA
e+eA

⊗R↓BR
↓
AF

0,d+πeA+πeB
e+eA+eB ,

(∆̄⊗ 1)∆̄F 0,d
e =

∑
C∈Ā(F )
AbC

∑
eCA,eC ,n

C
A

1

eC!eCA!

(
πeC
nCA

)
R↑AR

↑
CF

nCA+πeCA,d
e

⊗R↓AR
↑
CF

πeC−nCA,d+nCA+πeCA
e+eCA

⊗R↓CF
0,d+πeC
e+eC .

So that both of these expressions are of the form

K(n1,2, e1,2)R↑AF
n2
e ⊗R

↓
AR

↑
CF

n1,d+n2
e2

⊗R↓CF
0,d+e1−e
e1

,

for some label functions n1,2, e1,2 and combinatorial factors K. At this point, the proof is
quite the same as for 2.3.6.

We set δ+ : 〈Fex〉 7→ 〈Fex〉 ⊗ 〈Fex〉, δ− : 〈Fex〉 7→ 〈Fex〉 ⊗ 〈Fex〉

δ+F n,d
e :=

∑
A∈A+(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA,d
e ⊗R↓AF

n−nA,d+nA+πeA
e+eA , (4.2)

δ−F n,d
e :=

∑
A∈A(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA,d
e ⊗R↓AF

n−nA,d+nA+πeA
e+eA . (4.3)

Definition 4.1.4. We define the positive labelled trees Tn+ and the negative forests Fn− as
the same as for T+, F− with the new homogeneity | · |ex. We consider P the projection
which sets the root label of d to 0:

PT n,d
e = T n,d̄

e , d̄ = d− 1%T d.

Let Π+ : 〈Fn〉 7→ 〈Tn+〉, Π− : 〈Fn〉 7→ 〈Fn−〉 be the canonical projection onto 〈Tn+〉,
resp. 〈Fn−〉. Then we define the following maps

∆ : 〈Tn〉 → 〈Tn〉 ⊗ 〈Tn+〉, ∆ = (1⊗ Π+P)δ+

∆+ : 〈Tn+〉 → 〈Tn+〉 ⊗ 〈Tn+〉, ∆+ = (Π+P ⊗ Π+P)δ+

∆̂ : 〈Fn〉 → 〈Fn−〉 ⊗ 〈Fn〉, ∆̂ = (Π− ⊗ 1)δ−

∆− : 〈Fn−〉 → 〈Fn−〉 ⊗ 〈Fn−〉, ∆− = (Π− ⊗ Π−)δ−.

We also set
R : 〈Tn〉 → 〈Fn−〉 ⊗ 〈Tn〉, R = (Π− ⊗ 1)δ+. (4.4)
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4.1. New labelled trees

Remark 4.1.5. While δ± take values in formal (infinite) sums, the projections Π± make
all sums defining ∆, ∆+, ∆̂, ∆− and R finite.

Remark 4.1.6. By construction for every labelled tree T , one has ∆T =
∑

i T
(1)
i ⊗ T

(2)
i

which satisfies |T |ex = |T (1)
i |ex + |T (2)

i |ex thanks to the projection of P . The maps R and
∆̂ give a decomposition of the form ∆̂T =

∑
i T

(1)
i ⊗ T

(2)
i with |T |ex = |T (2)

i |ex. All the
projections guarantee that trees with negative d are invariant under the previous maps.

From this remark, we have the identities:

Lemma 4.1.7. One has:

(Π− ⊗ Π−)δ−Π− = (Π− ⊗ Π−)δ−, (Π+P ⊗ Π+P)δ+Π+P = (Π+P ⊗ Π+P)δ+.

This lemma allows to prove in a similar way as in 2.4.9 and 2.4.11 that

Theorem 4.1.8. The algebra 〈Tn+〉 endowed with the product (τ, τ̄) 7→ τ τ̄ and the co-
product ∆+ is a Hopf algebra. Moreover ∆ turns 〈Tn〉 into a right comodule over 〈Tn+〉.
The algebra 〈Fn−〉 endowed with the product (ϕ, ϕ̄) 7→ ϕ · ϕ̄ and the coproduct ∆− is a
Hopf algebra. Moreover ∆̂ turns 〈Fn〉 into a left comodule over 〈Fn−〉.

We obtain the same definition for G− andR−. If 〈Fn−〉∗ denotes the dual of 〈Fn−〉, then
we set

G− := {` ∈ 〈Fn−〉∗ : `(ϕ1 · ϕ2) = `(ϕ1)`(ϕ2), ∀ϕ1, ϕ2 ∈ 〈Fn−〉}.

Theorem 4.1.9. Let

R− = {M` : 〈Tn〉 → 〈Tn〉, M` = (`⊗ 1)∆̂, ` ∈ G−}.

ThenR− is a group for the composition law. Moreover, one has for f, g ∈ G−:

MfMg = Mf◦g

where f ◦ g is defined by
f ◦ g = (g ⊗ f)∆−.

If 〈Tn+〉∗ denotes the dual of 〈Tn+〉, then we set

G+ := {g ∈ 〈Tn+〉∗ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ 〈Tn+〉}.

Theorem 4.1.10. Let

R+ = {Γg : 〈Tn〉 → 〈Tn〉, Γg = (1⊗ g)∆, g ∈ G+}.

ThenR+ is a group for the composition law. Moreover, one has for f, g ∈ G+:

ΓfΓg = Γf◦g

where f ◦ g is defined by
f ◦ g = (f ⊗ g)∆+.
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4.1. New labelled trees

Then we extend the map δ◦ : 〈Tn〉 7→ 〈Fn〉 ⊗ 〈Tn〉

δ◦F n,d
e :=

∑
A∈A◦(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA,d
e ⊗R↓AF

n−nA,d+nA+πeA
e+eA , (4.5)

and
∆̄◦ : 〈Tn〉 7→ 〈Fn−〉 ⊗ 〈Tn〉, ∆̄◦

def
= (Π− ⊗ 1)δ◦.

For all ` ∈ G−, we define

M◦
` = (`⊗ 1)∆̄◦ = (`Π− ⊗ 1)δ◦.

Proposition 4.1.11. Let ` ∈ G− and R`
def
= (` ⊗ 1)∆R with ∆R as in (4.4). Then M` =

M◦
`R`. Moreover for all ` ∈ G−, R` commutes withR+.

Let α ∈ R, we introduce a new symbol 1α which is the tree with only one node, its
root % and d(%) = α. We have the following properties:

1α · 1β = 1α+β, I(1α) = 0.

Using this notation, we provide a formula for the projection P:

P(1ατ) = τ, (4.6)

where the labelled tree τ has a root label d equals to zero. We also give recursive formula
using this symbol notation for δ±:


∆◦1α = 1α ⊗ 1α, ∆◦Xi = Xi ⊗ 1|Xi|s + 1⊗Xi, ∆◦Ξ = Ξ⊗ 1|Ξ|s + 1⊗ Ξ

∆◦(τ τ̄) = (∆◦τ)(∆◦τ̄), ∆◦Ik(τ) = (Ik ⊗ 1|Ik|s)∆
◦τ +

∑
`

X`

`!
⊗ 1|`|sIk+`(τ).

(4.7)


∆̂◦1α = 1α ⊗ 1α, ∆̂◦Xi = Xi ⊗ 1|Xi|s + 1⊗Xi, ∆̂◦Ξ = Ξ⊗ 1|Ξ|s + 1⊗ Ξ

∆̂◦(τ τ̄) = (∆̂◦τ)(∆̂◦τ̄), ∆̂◦Ik(τ) =

(
Ik ⊗ 1|Ik|s +

∑
`

X`

`!
C ⊗ 1|`|sIk+`

)
∆̂◦τ.

(4.8)

Remark 4.1.12. If we choose a map ` ∈ G− which is zero on terms of the form Ik(τ)
then we obtain these nice identities:

R`Ik(τ) = Ik(τ), M`Ik(τ) = M◦
` Ik(τ) = Ik(Mτ).

We finish this subsection by given a natural way of extending the definition 3.1.1 of
an admissible set of labelled trees:
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Definition 4.1.13. A set of labelled trees Tex is admissible if Tex ⊂ Tn, for every T n,d
e ∈

Tex, every node-labels n1, n2 such that n − n1 ≥ 0 and every admissible subtree T̄ of T ,
one has

T̄ n−n1,d
e ∈ Tex, T̄ n+n2,d

e ∈ Tex, |T̄ n,d
e | > max

`∈LT̄
|`|.

We denote by T −ex , the algebra 〈〈Π−Tex〉〉and by T +
ex the algebra

T +
ex = {Π+R↓AT

n−nA,d
e+eA : ∀A ∈ A+(T ), ∀nA, eA}.

We extend as the same the definition of the local subcritical set of labelled trees.

Definition 4.1.14. A set of labelled trees T is locally subcritical if for every T n
e ∈ T and

every E = {e1, ..., en} ∈ A(ET ) one has P↓ET n
e admissible. Moreover, for every T n,d

e ∈ T
one has ∀A ∈ A(T ) ,∀nA , eA such that |R↑AT nA+πeA

e |s ≤ 0:

R↓AT
n−nA,nA+πeA
e+eA ∈ T .

Finally, every T n,d
e with d different from the zero function is obtained by the previous

operation.

We define the extend Texad as :

Texad = {T n,d
e ∈ Tn : ∀n1, n− n1 ≥ 0 ∀T̄ ∈ A(T ) |T̄ n−n1,d

e | > max
`∈LT̄
|`|}.

We define the set Texloc the maximal subset for the inclusion of Texad such that Texloc is
locally subcritical.

4.2 Renormalised model
As for Πx, we define a map Π̂x : Tn → S ′(Rd):

(Π̂x1α)(y) = 1, (Π̂xΞ)(y) = ξ(y), (Π̂xX)(y) = y − x,(
Π̂xτ τ̄

)
(y) =

(
Π̂xτ

)
(y)
(

Π̂xτ̄
)

(y),

(Π̂xIk(τ))(y) =

∫
DkK(y − z)(Π̂xτ)(z)dz −

∑
`

(y − x)`

`!
f̂x(Ik+`(τ)),

where the map f̂x is defined by
f̂x(1α) = 1{α≥0}, f̂x(X) = x, f̂x(τ τ̄) = f̂x(τ)f̂x(τ̄),

f̂x(Ik(τ)) = 1(|Ik(τ)|ex>0)

∫
DkK(x− z)(Π̂xτ)(z)dz.

Remark 4.2.1. The difference between fx and f̂x comes from the level of the cut off: we
replace | · |s by | · |ex. By the property | · |ex ≤ | · |s, we obtain shorter Taylor expansion.
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Remark 4.2.2. In the definition, we consider (Π̂xτ)(y) instead of (Π̂xτ)(ϕλx) because the
regularisation of the noise transforms all the previous elements into functions. When we
have to prove the convergence of that model, we need to look at the definition with a test
function.

Proposition 4.2.3. For every τ ∈ Tn, one has: (Π̂xτ)(y) . ‖y − x‖|τ |exs .

Proof. We proceed by induction. The proof is obvious for the Xi and Ξ. We apply the in-
duction hypothesis on each τi in a product of the form τ =

∏
i τi with τi ∈ {Ξ, Xi, Ik(τ)}.

Let Ik(τ) ∈ Tex, we have:

(Π̂xIk(τ))(y) =

∫
DkK(y − z)(Π̂xτ)(z)dz −

∑
`

(y − x)`

`!
f̂x(Ik+`(τ))

=

∫
DkK(y − z)(Π̂xτ)(z)dz

−
∑

`<|Ik(τ)|ex

(y − x)`

`!

∫
Dk+`K(−z)(Π̂xτ)(z)dz

the end of the proof is the same as in [Hai14b] by applying the induction hypothesis on τ
and using the theorem B.0.8 with the fact that |Ik(τ)|ex = |I| − |k|s + |τ |ex.

Remark 4.2.4. For τ ∈ T, we obtain (Π̂xιexτ)(y) . ‖y − x‖|τ |ss which is the bound
needed for a model.

We define Γ̂xy by
Γ̂xy = Γ̂ĝ−1

x
◦ Γ̂gy = Γ̂γ̂xy ,

where 
ĝx(α) = 1{α≥0}, ĝx(X) = −x, ĝx(τ τ̄) = ĝx(τ)ĝx(τ̄),

ĝx(Jkτ) = −
∑
`

(−x)`

`!
f̂x(Jk+`τ),

and
γ̂xy = (ĝxA⊗ ĝy)∆+.

Proposition 4.2.5. For every τ ∈ Tn+ , one has:

|γ̂xyτ | ≤ C‖x− y‖|τ |exs ,

where C is a constant depending only on the model.

Proof. By multiplicativity, one has to check the bound for τ ′ = Ik(τ):

γ̂xyJk(τ) = (ĝxA⊗ ĝy)∆+Jk(τ)

= (ĝxAJk ⊗ ĝy)∆τ +
∑
`

x`

`!
ĝy(Jk+`(τ))
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= (
∑
`,m

x`

`!

(−x)m

m!
M(f̂xJk+`+m ⊗ ĝxA)∆)⊗ ĝy)∆τ

−
∑
`,m

x`

`!

(−y)m

m!
f̂y(Jk+`+m(τ))

= (M(f̂xJk ⊗ ĝxA)⊗ f̂y)(1⊗∆+)∆τ −
∑
`

(x− y)`

`!
f̂y(Jk+`(τ))

= f̂x(JkΓxyτ)−
∑
`

(x− y)`

`!
f̂y(Jk+`(τ))

= (Jxyτ)k

where for a ∈ Tα

J (x)a =
∑

|k|s<α+β

Xk

k!

∫
Rd
DkK(x− y)(Πxa)(y)dy,

and
Jxy = J (x)Γxy − ΓxyJ (y).

From [Hai14b, lemma 5.21], we have if |Ik(τ)|ex > 0

|(Jxyτ)k| ≤ C‖x− y‖|Ik(τ)|ex
s

where C is a constant depending only on the model.

Let ` ∈ G− which is zero on terms of the form Ik(τ). We define the renormalisation
map M` by

M` = (`⊗ 1)∆̂ (4.9)

which is also given by M = M` = M◦
`R` = M◦R with R` = (Π− ⊗ 1)δ+.

Remark 4.2.6. Let τ ∈ Tex, then M◦
` τ ∈ H|τ |ex which implies M◦Π+P = Π+PM◦

where P is defined as in (4.6) because the map M◦ does not create new root label. More-
over, we have M◦Jk = JkM .

Proposition 4.2.7. One has: (M◦ ⊗M◦)∆ = ∆M◦ and (M ⊗M◦)∆ = ∆M .

Proof. We proceed by induction. We have

(M ⊗M◦)∆ = (M◦ ⊗M◦)(R⊗ 1)∆ = (M◦ ⊗M◦)∆R = ∆M◦R = ∆M.

By multiplicativity, we just need to check it for Ik(τ). It happens:

(M◦ ⊗M◦)∆Ik(τ) = (M◦ ⊗M◦)

(
(Ik ⊗ 1|Ik|s)∆τ +

∑
`

X`

`!
⊗ 1|`|sJk+`(τ)

)
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= (Ik ⊗ 1|Ik|s)(M ⊗M
◦)∆τ +

∑
`

X`

`!
⊗ 1|`|sJk+`(Mτ).

On the other side, we have:

∆M◦Ik(τ) = ∆Ik(Mτ)

which allows us to conclude.

Proposition 4.2.8. One has: M◦A = AM◦.

Proof. We proceed by induction. We have by using the previous proposition:

M◦AJk(τ) = −
∑
`

M
(
M◦Jk ⊗

(−X)`

`!
M◦A

)
∆τ

= −
∑
`

M
(
JkM ⊗

(−X)`

`!
AM◦

)
∆τ

= −
∑
`

M
(
Jk ⊗

(−X)`

`!
A
)

∆Mτ = AM◦Jk(τ).

Remark 4.2.9. The proposition 4.2.7 tells us that even if the following identities are not
true: (

∆̄◦ ⊗ ∆̄◦
)
∆ = (1⊗∆)∆̄◦, (∆̂⊗ ∆̄◦)∆ = (1⊗∆)∆̂,

one has

(`⊗ 1⊗ `⊗ 1)
(
∆̄◦ ⊗ ∆̄◦

)
∆ = (`⊗∆)∆̄◦, (`⊗ 1⊗ `⊗ 1)(∆̂⊗ ∆̄◦)∆ = (`⊗∆)∆̂.

which can be replaced by

M(13)(2)(4)
(
∆̄◦ ⊗ ∆̄◦

)
∆ = (1⊗∆)∆̄◦, (∆̂⊗ ∆̄◦)∆ =M(13)(2)(4)(1⊗∆)∆̂.(4.10)

whereM(13)(2)(4) is defined by

M(13)(2)(4)(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1τ3 ⊗ τ2 ⊗ τ4).

The identity (4.10) is similar to the one obtained in [CEM11, theorem 8] . All these prop-
erties come from the fact that M◦ commutes with Π+. The proposition presents 4.2.8 a
very strong identity: M◦ commutes with the antipode A. Finally from these propositions,
we derive nice formulas for the renormalised model.
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In order to obtain a renormalised model from M , we need to find M̂ , ∆M and ∆̂M

such that

(M̂ ⊗AM̂A)∆+ = (1⊗M)(∆+ ⊗ 1)∆̂M ,

(M ⊗ M̂)∆ = (1⊗M)(∆⊗ 1)∆M ,

M̂Jk =M(Jk ⊗ 1)∆M

(4.11)

as for the renormalised model without the extended structure. Moreover, ∆M and ∆̂M need
to be upper triangular in the sense that for every τ , ∆Mτ and ∆̂Mτ admit a decomposition
of the form

∑
i τ

(1)
i ⊗ τ

(2)
i such that |τ (1)

i |ex = |τ |ex.

Proposition 4.2.10. Let M̂ , ∆M and ∆̂M defined by

M̂ = M◦, ∆M = M ⊗ 1, ∆̂M = M̂ ⊗ 1,

then they satisfy (4.11). The maps ∆M and ∆̂M are also upper triangular.

Proof. The first two identities come from propositions 4.2.8 and 4.2.7. The last one is a
consequence of M◦Jk = JkM . The remark 4.2.6 gives the upper triangularity.

We defined the renormalised model by:

Π̂M
x = Π̂xM, Γ̂Mxy = Γ̂γ̂Mxy = Γ̂γ̂xyM◦ . (4.12)

Theorem 4.2.11. (Π̂M , Γ̂M) is a model on every admissible set of labelled trees Tex with
the homogeneity | · |ex.

Proof. The algebraic properties come from the identities (4.11). For the analytical bounds,
let τ ∈ Tn, it follows:

(Π̂M
x τ)(y) = (Π̂xMτ)(y) =

∑
i

(Π̂xτi)(y) .
∑
i

‖y − x‖|τi|exs . ‖y − x‖|τ |exs .

where the τi satisfy |τi|ex = |τ |ex. Moreover, one has

γ̂Mxyτ = γ̂xyM
◦τ =

∑
i

γ̂xyM
◦τi .

∑
i

‖y − x‖|τi|exs . ‖y − x‖|τ |exs .

where the τi satisfy |τi|ex = |τ |ex.
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4.3 Comments
The major aim of the extended structure is to provide a simple construction of the renor-
malised model. In this section, we recap what it has been done in that field and we focus
on the major improvements offered by the extended structure. In [Hai14b, (8.34)], the
renormalised model (ΠM

x ,Γ
M
xy) is defined with a factorisation of the form:

ΠM
x = (Πx ⊗ gx)∆M , γMx,y = (γx,y ⊗ gy)∆̂M

where ΓMxy = (1⊗ γMxy)∆. Then we need to find M̂ , ∆M and ∆̂M such that

(M̂ ⊗AM̂A)∆+ = (1⊗M)(∆+ ⊗ 1)∆̂M ,

(M ⊗ M̂)∆ = (1⊗M)(∆⊗ 1)∆M ,

M̂Jk =M(Jk ⊗ 1)∆M

The existence of such maps given a map M has been proved in [Hai14b]. But this proof
does not give an explicit formula for the maps ∆M and ∆̂M . In order to get a model, we
have to check the upper triangularity of ∆M and ∆̂M . Therefore, one needs to guess the
form of ∆M and ∆̂M on each τ ∈ T with negative homogeneity. This has been done in
[Hai14b], [HP14]. One major improvement is the recursive formula for M introduced in
2.4.18 by M = M◦R when we are considering a map M given by: M = M` = (`⊗ 1)∆̂
where ` ∈ G−. This definition provides a recursive formulation for ∆M and allows us
to have a direct proof. In [HQ15], it has been proved thanks to a complicate recursive
formula that the upper triangularity of ∆M implies the one of ∆̂M . Finally, the map ΠM

x is
given recursively in (3.16) by:

(ΠM◦

x 1)(y) = 1, (ΠM◦

x Ξ)(y) = ξ(y), (ΠM◦

x X)(y) = y − x,

(ΠM◦

x Ikτ)(y) =

∫
DkK(y − z)(ΠM

x τ)(z)dz −
∑
`

(y − x)`

`!
fMx (Jk+l(τ)),

(ΠM
x τ)(y) = (ΠM◦

x Rτ)(y), (ΠM◦

x τ τ̄)(y) = (ΠM◦

x τ)(y)(ΠM◦

x τ̄)(y)

The extended structure provides a simpler answer to the definition of the renormalised
model. The maps M̂ , ∆M and ∆̂M are just given by:

M̂ = M◦, ∆M = M ⊗ 1, ∆̂M = M̂ ⊗ 1,

which provide natural algebraic properties:

ΠM
x = ΠxM, ΓMxy = ΓγMxy = ΓγxyM◦ .

We conserve all the Hopf algebra structure and the definition of M does not differ from
the one in the normal structure. We will use this formulation in the next chapters.
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Chapter 5

Convergence of the models

The construction of the previous chapters gives algebraic formulae for the renormalised
model associated with a subcritical SPDE. Now we want to consider the "concrete" ran-
dom objects Π̂ε

x and study their convergence as ε → 0. To this aim we compute their
L2 norms which are represented as norms of appropriate integral kernels. Therefore to a
labelled tree T n

e we associate a finite family of integral kernels (the integration variables
being indexed by the vertices of T ).

These integral kernels have themselves a combinatorial structure, and we code them
by graphs which are obtained from the tree T with a class of transformations, which
include addition and displacement of edges and modification of the labels. In this chapter,
we provide tools for the proof of the convergence of the model in the general case for
local subcritical SPDEs with space-time white noise. The next theorem which has been
proved in the case of the stochastic heat equation with multiplicative noise in [HP14] will
be proved in the next chapter for the generalised KPZ equation.

Theorem 5.0.1. Let (ΠMε
x ,ΓMε

xy ) be the renormalised model described in chapter 4 . Then
there exist a random model (Πx,Γxy) and a constant C such that for every underlying
compact space-time domain

E‖ΠMε ; Π‖ ≤ Cεκ/2.

5.1 From abstract trees to graphs

We consider a renormalised model (Π̂x, Γ̂xy) = (ΠM
x ,Γ

M
xy) on the extended structure

where Mε = M`ε is defined as in (4.9) by:

MεT
n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
R↓AT

n−nA,nA+πeA
e+eA . (5.1)

By [Hai14b, thm 10.7], we only need to prove that for every τ ∈ T with |τ |s < 0, we
have

E(|(Π̂ε
xτ)(ϕλx)|2) . λ2|τ |+κ, E(|(Π̂ε

xτ − Π̂τ)(ϕλx)|2) . εκλ2|τ |+κ (5.2)
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5.1. From abstract trees to graphs

for some κ > 0, uniformly over 0 ≤ ε ≤ 1, λ ∈ (0, 1], smooth test function ϕ and locally
uniformly in x. The rescaled function ϕλx is defined as in (1.4).

Since the kernels are invariant by translation, it is enough to consider the case x = 0.
Until the end of the section, we use the shorthand notation ϕλ for ϕλ0 . It has been noticed
in [Hai14b] that Π̂ε

0τ belongs to the inhomogeneous Wiener chaos of order ‖τ‖where ‖τ‖
is the number of Ξ in τ . In order to compute the covariance of (Π̂ε

0τ)(ϕλ), we decompose
this process onto its k-th homogeneous Wiener chaos (Π̂ε,k

0 τ)(ϕλ):

(Π̂ε
0τ)(ϕλ) =

∑
k≤‖τ‖

(Π̂ε,k
0 τ)(ϕλ).

Then by orthogonality of the different chaoses, we obtain:

E(|(Π̂ε
0τ)(ϕλ)|2) =

∑
k≤‖τ‖

E(|(Π̂ε,k
0 τ)(ϕλ)|2).

Each term Π̂ε,k
0 τ can be described by a kernel Ŵ ε,kτ in L2(Rd)⊗k through a map f 7→

Ik(f) which satisfies:
E(Ik(f)2) ≤ k!‖f‖2 (5.3)

where ‖ · ‖ is the L2 norm. Finally, we obtain:

E(|(Π̂ε
0τ)(ϕλ)|2) ≤

∑
k≤‖τ‖

〈Ŵ ε,kτ, Ŵ ε,kτ〉.

It remains to find a nice description of Ŵ ε,kτ in order to compute their L2 norm. Using
the extended structure, we have:

(Π̂ε
0T

n
e )(ϕλ) = (Πε

0MεT
n
e )(ϕλ)

=
∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)(
Πε

0R
↓
AT

n−nA,nA+πeA
e+eA

)
(ϕλ).

Then, we obtain:

Ŵ ε,kT n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W ε,k

(
R↓AT

n−nA,nA+πeA
e+eA

)
where W ε,k is defined using the recursive definition of Πε

0. Until the rest of this chapter,
we denote by xv0 the zero of Rd.

Definition 5.1.1. Let T n,d
e ∈ Tn. For k ≥ 0 we want to define W ε,kT n,d

e ∈ (L2(Rd))⊗k
such that

Πε
0 T

n,d
e (ϕλ) =

∑
k≤|LT |

Πε,k
0 T n,d

e (ϕλ) =
∑
k≤|LT |

Ik(W
ε,kT n,d

e ).

If k + |LT | /∈ 2N or k > |LT | we set W ε,kT n,d
e := 0 and we suppose thereafter that

k + |LT | ∈ 2N. We fix an arbitrary order of LT .
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5.1. From abstract trees to graphs

• We first set Ke : (Rd)2 → R for all e = (e+, e−) ∈ ET

– if e− /∈ LT

K̂e(xe+ , xe−) :=

De(e)K(xe+ − xe−)−
∑
|j|s<re

(xe+)j

j!
De(e)+jK(−xe−)


where re := d|Te+|exe ∨ 0 and Te+ is the subtree of T above e+, namely the
nodes of Te+ are Ne+ = {v ∈ T : v ∧ e+ = e+}.

– if e− ∈ LT
K̂e(xe+ , xe−) := %ε(xe+ − xe−).

• Now we define (WεT n,d
e ) : (Rd){%T }∪LT → R

(WεT n,d
e )(xv, v ∈ {%T} ∪ LT ) :=

∫
(Rd)|N̄T |

∏
u∈NT

(xu)
n(u)

∏
e∈ET

K̂e(xe+ , xe−)
∏
v∈N̄T

dxv

where N̄T = NT \ ({%T} ∪ LT ).

• Now we denote by Lk(T ) the set of all σ : {%T} ∪ LT → {0, 1, . . . , (|LT |+ k)/2}
such that

– σ(%T ) = 0

– for all i ∈ {0, 1, . . . , (|LT |+ k)/2}, |σ−1(i)| ∈ {1, 2}
– |σ−1(i)| = 1 for all i ∈ {0, 1, . . . , k} and σ−1 : {1, . . . , k} → LT is increasing

(with respect to the fixed arbitrary order on LT )

– |σ−1(i)| = 2 for all i ∈ {k + 1, . . . , (|LT |+ k)/2}.

• Then we can defineWε,kT n,d
e : (Rd)k+1 → R

(Wε,kT n,d
e )(y0, y1, ..., yk) =

∑
σ∈Lk(T )

∫
(Rd)

|LT |−k
2

(WεT n,d
e )(yσ(v), v ∈ {%T} ∪ LT )

|LT |+k
2∏

i=k+1

dyi.

• Finally we set W ε,kT n,d
e : (Rd)k → R(

W ε,kT n,d
e

)
(y1, ..., yk) =

∫
Rd
ϕλ(y0)(Wε,kT n,d

e )(y0, y1, ..., yk) dy0.

y0

y1 y3y2

y4

y5 y6

xe−

y7

xe+

y8

K̂
e

y0

y1 y3y2

y4

y5 y2

xe−

y6

xe+

y3

K̂
e
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5.1. From abstract trees to graphs

In the figure just above, the first tree represents WεT n,d
e then we give one element of

Wε,4T n,d
e . The leaves which are integrated are in red.

Remark 5.1.2. The formula for K̂e is given by a Taylor expansion of the form

f(y)−
∑
j<r

(y − x)j

j!
Djf(x)

where f := De(e)K, x = −xe− , y − x = xe+ , y = xe+ − xe− . This comes from the
definition of Πx and its action on the abstract integration operator.

In the next definition, we give our candidate for `ε:

Definition 5.1.3. Let T n,d
e ∈ Tn− then `ε is defined recursively by: `ε(1) = 1, if |LT | /∈ 2N

then `ε(T n,d
e ) = 0, otherwise

`ε(T
n,d
e ) = −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA,d
e

)
W̃ ε,0

(
R↓AT

n−nA,d+nA+πeA
e+eA

)
,

where, using the notations of Definition 5.1.1,

• W̃εT n,d
e : (Rd){%T }∪LT → R

(W̃εT n,d
e )(xv, v ∈ {%T} ∪ LT ) :=

∫
(Rd)|N̄T |

∏
u∈NT

(xu − x%T )n(u)
∏
e∈ET

Ke(xe+ , xe−)
∏
v∈N̄T

dxv,

where Ke is defined as follows: if e− ∈ LT

Ke(xe+ , xe−) := %ε(xe+ − xe−)

while if e− /∈ LT

Ke(xe+ , xe−) = De(e)K(xe+ − xe−).

• W̃ε,0T n,d
e : Rd → R

(W̃ε,0T n,d
e )(y0) =

∑
σ∈L0(T )

∫
(Rd)

|LT |
2

(W̃εT n,d
e )(yσ(v), v ∈ {%T} ∪ LT )

|LT |
2∏
i=1

dyi.

• By translation invariance, (W̃ε,0T n,d
e )(y0) does not depend on y0 and is therefore

equal to a constant that we call W̃ ε,0T n,d
e ∈ R.

Remark 5.1.4. Let F n,d
e = (T1)n1,d1

e1
· ... · (Tn)nn,dnen a labelled forest, then we extend the

definition ofWε, W̃ε,0 by setting

Wε(F n,d
e ) =

n∏
i=1

Wε
(
(Ti)

ni,di
ei

)
, W̃ε,0(F n,d

e ) =
n∏
i=1

W̃ε,0
(
(Ti)

ni,di
ei

)
.
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5.1. From abstract trees to graphs

Definition 5.1.5. Let A = {T1, ..., Tn} ∈ A(T ). We set

1. k(A) := |LT | − ‖A‖ = |LT | −
∑

Ti∈A ‖Ti‖, where ‖Ti‖ is the number of leaves in
Ti

2. L(A) is the set of all σ ∈ Lk(A)(T ) such that for all i = k(A) + 1, . . . , |LT |+k(A)
2

there exists j ∈ {1, . . . , n} such that σ−1(i) ⊂ Tj .

In other words, σ belongs to L(A) if and only if:

• for two leaves v1, v2 ∈ L(T ) with v1 6= v2, we have σ(v1) = σ(v2) only if v1 and v2

belong to the same tree Tj ∈ A

• for each Tj ∈ A and v1 ∈ Tj there is one (and only one) v2 ∈ Tj such that
σ(v1) = σ(v2)

• σ(v) ∈ {1, . . . , k} for all v ∈ LT \ LA.

Then we set for k = k(A):

(PAWε(T n
e ))(y0, y1, ..., yk) =

∑
σ∈L(A)

∫
(Rd)

|LT |−k
2

(WεT n,d
e )(yσ(v), v ∈ {%T} ∪ LT )

|LT |+k
2∏

i=k+1

dyi.

Remark 5.1.6. From the previous definition, we obtain another description of the k-th
Wiener chaos:

Wε,k(T n
e ) =

∑
A∈Ak(T )

PAWε(T n
e ) + W̄ε,k(T n

e ) (5.4)

where Ak(T ) = {A ∈ A(T ) : ‖A‖ = |LT | − k} and W̄ε,k(T n
e ) are the other compo-

nents.

y0

y1 y3y2

%T1

y3

y4 y5 y5

%T2

y6

y0

y1 y3y2

%T1

y3

y4 y2 y5 y6

The first tree represents PAWε(T n
e ) with A = {T1, T2} ∈ A4(T ) . The other tree is

one of the terms in W̄ε,k(T n
e ): we have made another contraction in PAWε(T n

e ) with
A = {T1} ∈ A6(T ) which does not create a contraction in A4(T ).

The strategy of the proof is the following:

• We use a variant of a general theorem for labelled graphs introduced in [HQ15]
which covers terms of the form 〈Ŵ ε,kτ, Ŵ ε,kτ〉.
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5.2. Bounds on Labelled Graphs

• We start by proving bounds for W ε,‖τ‖τ which give bounds also for the W ε,kτ with
k < ‖τ‖. One crucial argument for these bounds is the admissibility of our trees
given in 3.1.1. At this stage, we know exactly which divergent parts in W ε,kτ have
to be renormalised.

• We perform a renormalisation procedure by ‘hand‘ in order to treat these diver-
gences. Then we systematize this idea by the use of a telescopic sum which is equal
to W ετ . The previous decomposition determines the values of the map `ε.

• We end the proof by making the pairing (scalar product) of two renormalised graphs
(kernels).

5.2 Bounds on Labelled Graphs
In this section, we present a slight modification of the convergence theorem given in
[HQ15] which is useful for more complex diverging patterns. Each scalar product 〈Ŵ ε,kτ, Ŵ ε,kτ〉
can be represented by a sum of terms Iλ(K) defined by:

Iλ(K) =

∫ ∫
ϕλ(x)ϕλ(y)J(x, y)dxdy

where J is obtained from generalised convolution of other kernels. The integral Iλ(K)
can be rewritten using a directed graph G = (V , E):

Iλ(K) =

∫
(Rd)V0

∏
e∈E

Ĵe(xe+ , xe−)
∏
v∈V0

dxv

where

• every directed edge e ∈ E is denoted by e = (e+, e−)

• G has three distinguished vertices V? = {v0, v?,1, v?,2}

• V0 is the set V \ {v0}

• for all v ∈ V0, dxv is the Lebesgue measure on Rd.

We still have to define the kernels Ĵe. To each edge e ∈ E we associate

• a label (ae, re, ve) ∈ R× Z× V

• a kernel Je : Rd \ {0} → R which is compactly supported in a ball of radius 1
around the origin and such that

|DkJe(x)| . ‖x‖−ae−|k|ss

holds uniformly over x with ‖x‖s ≤ 1 and for multiindices k.
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5.2. Bounds on Labelled Graphs

By definition, we have for e ∈ E :

Ĵe(xe+ , xe−) = Je(xe+ − xe−)−
∑
|j|s<re

(xe+ − xve)j

j!
DjJe(xve − xe−).

Here

• ae is the order of the singularity of the kernel Je associated to the edge e.

• the integer re gives the order of the Taylor expansion of the edge e and ve ∈ V gives
the point xve ∈ Rd around which we expand our kernel.

For d > 0, we define the following semi-norm for the functions Je given by:

‖Je‖ae,d = sup
|k|s<d

sup
0<‖x‖s≤1

‖x‖ae+|k|ss |DkJe(x)|.

We assume that v?,1 and v?,2 are connected to v0 by two edges with label (0, 0, v0).

G′

v0

v?,1 v?,2
(0, 0, v0 ) (0,

0, v
0)

We will often write (ae, re) instead of (ae, re, ve) when ve = v0. In fact, ve 6= v0 implies a
negative renormalisation for the convergence. For ve = v0, this is the positive renormali-
sation given by the Taylor expansion in Π̂.

Remark 5.2.1. Let T n
e a labelled tree, these labelled graphs encode all the kernel com-

ing from the Wiener chaos decomposition of (Πε
0T

n
e )(ϕλ). Indeed, the kernel W ε(T n

e ) is
obtained by

• the test function ϕλ is encoded by the edge between v0 and one distinguished edge
labelled (0, 0).

• the label (|s|+ κ, 0) with κ > 0 is for the molifier %ε and is replaced in the limit by
a delta function. The molifier is present in the labelled tree as a leaf and is linked to
the tree with a zero labelled edge when we face a product of the form I(·)Ξ.

• an edge e such that 0 ≤ ae < |s| is associated to the same edge in the labelled tree
and the kernel Je is given by De(e)K. For the other labels, we have ve = v0 and
re = d|Te|se ∨ 0 where Te is the tree above e = (e+, e−) in T n

e , Te = (Ve, E0(Ve))
and Ve = {v ∈ V \ {v0} : e+ ∧ v = e+}.
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5.2. Bounds on Labelled Graphs

• the node label in T n
e is transformed into edges with label (ae, 0) between the inner

nodes and the node v0 such that for every inner node u in T , a(u,v0) = −|n(u)|s.

Finally, we only integrate the variables corresponding to the inner nodes. Using this
matching, we build a labelled graph from a labelled tree but with only two distinguished
vertices. Then by merging some leaves, we obtain terms in W ε,k(T n

e ) and by taking two
terms in W ε,k(T n

e ) as labelled graph we build a term in 〈Ŵ ε,kτ, Ŵ ε,kτ〉.

For any V̄ ⊂ V , we also define the following subsets of E :

• E↑(V̄) := {e ∈ E : e ∩ V̄ = e−}, the set of edges which exit V̄

• E↓(V̄) = {e ∈ E : e ∩ V̄ = e+}, the set of edges which enter V̄

• E0(V̄) = {e ∈ E : e ∩ V̄ = e}, the set of edges which are contained in V̄

• E(V̄) = {e ∈ E : e ∩ V̄ 6= ∅}, the union of the previous sets.

We suppose that our graph G satisfies the following assumptions:

Assumption 3. 1. For every subset V̄ ⊂ V , one has∑
e∈E0(V̄)

ae+
∑

e∈E↑(V̄)

1{ve∈V̄∧re>0}(ae+re−1)−
∑

e∈E↓(V̄)

1{ve∈V̄}re < (|V̄|−1)|s| (5.5)

2. For every non-empty subset V̄ ⊂ V \ V?, one has the bound:∑
e∈E0(V̄)

ae +
∑

e∈E↓(V̄)

(
1{ve∈V̄∨re=0}(ae + re − 1)− (re − 1)

)
+
∑

e∈E↑(V̄)

((ae + re)− 1ve∈V̄re) > |V̄||s|
(5.6)

We want to prove that these assumptions are satisfied by a class of graphs constructed
with local subcritical rules. One important information on a graph G will be its homo-
geneity

|G|s = |V \ V?||s| −
∑
e∈E

ae.

Theorem 5.2.2. Consider a labelled graph G as above satisfying Assumption 3 and a
collection of kernels K associated to the graph. Then, there exist d > 0 and a constant C
depending only on the cardinality of V such that

|Iλ(K)| ≤ Cλ|G|s
∏
e∈E

‖Ke‖ae,d, λ ∈ (0, 1].
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5.2. Bounds on Labelled Graphs

Example 5.2.3. We present few examples in the maximum chaos order from KPZ terms
where |s| = 3 and the singularity at the origin of the heat kernel is 1:

G(Ξ) =

0

v?,1 v?,2

3,
0 3, 0

, G(I(Ξ))

0

v?,1 v?,2

1
,1

1
,1

3,
0 3, 0

and

G(I(Ξ)Ξ) =

0

v?,1 v?,2

1
,1

1
,1

3,
0 3, 0

Remark 5.2.4. In most of the examples, the kernel Je can take few values: K, K ′ and
%

(2)
ε = %ε ∗%ε where K is the singular part of the heat kernel around the origin. It has been

noticed in [HP14] that for any d > 0:

‖K‖1,d + ‖K ′‖2,d <∞ , sup
ε∈(0,1]

‖%(2)
ε ‖3,d <∞ , sup

ε∈(0,1]

ε−κ‖%(2)
ε ‖3+κ,d <∞ ,

for every κ ∈ (0, 1). When we want to prove the convergence of the model, we need to
check

E(|(Π̂ε
0τ − Π̂0τ)(ϕλ)|2) . εκλ2|τ |+κ. (5.7)

We perform the same Wiener chaos decomposition on (Π̂ε
0τ−Π̂0τ)(ϕλ) as for (Π̂ε

0τ)(ϕλ).
The kernel associated to each Wiener chaos is slightly different: it can be expressed by a
sum of terms similar to those of (Π̂ε

0τ)(ϕλ) but instead of just having %ε we obtain δ and
%ε− δ. These terms will check the same bounds as for (Π̂ε

0τ)(ϕλ) and they will contain at
least one %ε − δ which gives the bound in (5.7).

Remark 5.2.5. The proof of the theorem 5.2.2 is based on two main ingredients:

• the decomposition of the kernels into a sum of kernels with decreasing compact
support.

• a partition of the domain of integration using trees.

For the proof, we follow the main steps given in [HQ15] and we omit the proof of some
lemmas which can be found in [HQ15].
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5.2. Bounds on Labelled Graphs

5.2.1 Decomposition of the kernels

We will use the following lemma given in [HQ15]

Lemma 5.2.6. For each e ∈ E , there exists a sequence of kernels {K(n)
e }n≥0 such that:

• One has Ke(x) =
∑

n≥0K
(n)
e (x) for all x 6= 0.

• The kernel K(n)
e is supported in the annulus An = {x : ‖x‖s ∈ [2−(n+2), 2−n]}.

• For all k, the bound
|DkK(n)

e (x)| . 2(ae+|k|s)n,

holds uniformly in n.

With these properties, we can decompose the kernel
∏

e∈E K̂e. For every n = (k, p,m) ∈
N3 and every edge e ∈ E , if re > 0 we define a function K̂(n)

e (y, x) by

K̂(n)
e (y, x) = Ψ(k)(y − x)Ψ(p)(xve − x)Ψ(m)(y − xve)Ke(y − x)−

∑
|j|s<re

(y − xve)j

j!
DjKe(xve − x)

.
Else K̂(n)

e (y, x) is just given by

K̂(n)
e (y, x) = Ψ(k)(y − x)Ke(y − x),

where the function Ψ(n) is defined from ψ : R → [0, 1] a smooth function supported on
[3/8, 1] such that

∑
n∈Z ψ(2nx) = 1 for every x 6= 0. We set for every n ∈ N:

Ψ(n)(x) = ψ(2nx).

This function gives also the decomposition of the previous lemma, one has K(n)
e (x) =

Ψ(n)(x)Ke(x).
In our graph, we have two vertices v1,? and v2,? which are connected to the origin

through the kernels ϕλ. We obtain

Iλ(K) =
∑
n∈Nλ

∫
(Rd)V0

K̂(n)(x)dx, K̂(n)(x) =
∏
e∈E

K̂(ne)
e (xe+ , xe−)

where Nλ is the set of functions n : V2 → N3 such that 2−|ne| ≤ λ for the two edges
(v?,i, 0).
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5.2. Bounds on Labelled Graphs

5.2.2 Partition of the integration domain
We denote by B(V) the set of all labelled rooted binary trees which have V as their set of
leaves and we impose a condition on the labelling:

`v ≥ `w for v ≥ w

where v ≥ w means that w belongs to the shortest path connecting v to the root vertex.
The following notation will be useful: u∧w is the most recent common ancestor of v and
w. In the following tree, we have `v1∧v2 ≥ `v′ .

r

v1

v1 ∧ v2

v?

v′

v2

The labelled trees (B, `) make a partition of the domain of integration. The labelling
` means that for any v, w ∈ V , we have:

‖v − w‖s ∼ 2−`v∧w .

Definition 5.2.7. Let (B, `) ∈ B(V) and c > 0. The setNc(B, `) consists of all functions
n : V2 → N3 such that for every edge e = (v, w):

• If ne = (m, 0, 0) then
|m− `v∧w| ≤ c.

• Else ne = (k,m, o) and:

|k − `v∧w| ≤ c, |m− `v∧ve| ≤ c, |o− `w∧ve| ≤ c.

Lemma 5.2.8. There exists c > 0 such that, for every n : V2 → N3 such that K̂(n)

as defined as before is non-vanishing, there exists an element (B, `) ∈ B(V) with n ∈
Nc(B, `).

If we denote by Bλ(V) the subset in B(V) with the property that 2−`v∧w ≤ λ for
v, w ∈ V?, then it follows

|Iλ(K)| .
∑

B∈Bλ(V)

∑
n∈Nc(B,`)

∣∣∣∣∫
(Rd)V0

K̂(n)(x)dx

∣∣∣∣.
We define D(B, `, C) ⊂ (Rd)V0 such that ‖xv − xw‖s ≤ C2`v∧w for v, w ∈ V .

Lemma 5.2.9. Let D(B, `, C) as above.
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5.2. Bounds on Labelled Graphs

• There exists Ĉ such that the support of K̂(n) is contained in D(B, `, Ĉ) for n ∈
Nc(B, `).

• If we consider Bo the set of interior vertices in B, then

µ(D(B, `, Ĉ)) .
∏
v∈Bo

2−`v |s|

where µ is the lebesgue measure.

As a consequence of the previous lemma, it follows

|Iλ(K)| .
∑

(B,`)∈Bλ(V)

∑
n∈Nc(B,`)

(∏
v∈Bo

2−`v |s|

)
sup
x
|K̂(n)(x)|. (5.8)

We notice that
sup
x
|K̂(n)(x)| ≤

∏
e∈E

sup
x
|K̂(ne)

e (xe+ , xe−)|.

We need to have a bound on K̂(ne)
e (xe+ , xe−). Let e ∈ E , n ∈ Nc(B, `) and ne = (k, p,m).

It follows

|k − `xe+∧xe− | ≤ c, |p− `xe−∧xve | ≤ c, |m− `xe+∧xve | ≤ c,

when re > 0. The comparison between m and k gives different bounds. Indeed from
theorem B.0.8, we have the identity:

K̂(ne)
e (xe+ , xe−) = Ψ(k)(xe+ − xe−)Ψ(p)(xve − xe−)Ψ(m)(xe+ − xve)Ke(xe+ − xe−)−

∑
|j|s<re

(xe+ − xve)j

j!
DjKe(xve − xe−)


= Ψ(k)(xe+ − xe−)Ψ(p)(xve − xe−)Ψ(m)(xe+ − xve)

∑
|r|s=re

∫
Rd
DrKe(y)Qre(x, dy).

where the kernel Qre has the property:

Qre(x,Rd) . ‖xe+ − xve‖res .

There exists a constant C0 such that

1. If m ≥ k + C0, then

sup
x
|K̂ne

e (xe+ , xe−)| . 2−rem+(ae+re)k ∼ 2−re`xe+∧xve+(ae+re)`xe+∧xe− .

2. If k ≥ m+ C0, then

sup
x
|K̂ne

e (xe+ , xe−)| . 2aek +
∑
|j|s<re

2−m|j|s+(ae+|j|s)p . 2aek.
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3. If k ∼ m then

sup
x
|K̂ne

e (xe+ , xe−)| . 2aek +
∑
|j|s<re

2−m|j|s+(ae+|j|s)p . 2(ae+re−1)p−(re−1)m.

We denote by A+, A and A−, the previous configurations. They are represented in the
next figure:

1)

r

e+

e+ ∧ ve

e−

e↑

ve

2)

r

e+

e↑

ve

e+ ∧ ve

e−

3)

r

e−

e− ∧ ve

e+

e↑

ve

where we have set e↑ = e+ ∧ e−. When re = 0, we simply have the following bound:

sup
x
|K̂ne

e (xe+ , xe−)| . 2aek.

Denoting by Bo the inner nodes of B and by A0 the set of edges such that re = 0 , we
define a function η : Bo → R by η =

∑
e∈E ηe where

ηe(v) = 1e∈A(−ae1e↑(v)) + 1e∈A+

(
re1e+∧ve(v)− (ae + re)1e↑(v)

)
− 1e∈A−((ae + re − 1)1e−∧ve(v)− (re − 1)1e↑(v)) + 1e∈A0(−ae1e↑(v)).

We have
sup
x
|K̂(ne)

e (xe+ , xe−)| .
∏
v∈Bo

2−`vηe(v)

and
sup
x
|K̂(n)(x)| .

∏
v∈Bo

2−`vη(v).

Therefore from the previous inequality and from (5.8):

|Iλ(K)| .
∑

B∈Bλ(V)

∑
n∈Nλ(B)

∏
v∈Bo

2−`v η̃(v)

where η̃(v) = |s|+ η(v). We want to prove our theorem for every labelled tree in Bλ(V)
For a rooted tree B with a fixed distinguished vertex v? ∈ B, we consider a function

η : B → R and:
Iλ(B, η) =

∑
n∈Nλ(B)

∏
v∈B

2−nvηv .

We set |η| =
∑

v∈B ηv and we have the following bound

Theorem 5.2.10. The function η satisfies the following two properties:
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5.2. Bounds on Labelled Graphs

• For every v ∈ B, one has
∑

u≥v ηu > 0.

• For every v ∈ B such that v? ≥ v, one has
∑

u�v ηu < 0, if this sum contains at
least one term.

Then, one has Iλ(B, η) ∼ λ|η|, uniformly over λ ∈ (0, 1].

We want to check the two conditions of the previous theorem on our map η̃. For the
first condition, let v ∈ Bo and we consider Lv ⊂ V the leaves attached to v. We need to
have∑
u≥v

η̃(u) = |s|(|Lv| − 1) +
∑
u≥v

(
∑
e∈A

(−ae1e↑(u)) +
∑
e∈A+

(
re1e+∧ve(u)− (ae + re)1e↑(u)

)
−
∑
e∈A−

((ae + re − 1)1e−∧ve(u)− (re − 1)1e↑(u)−
∑
e∈A0

(ae1e↑(u)))

= |s|(|Lv| − 1)−
∑

e∈E0(Lv)

ae −
∑

e∈E↑(Lv)

1ve∈Lv(ae + re − 1) +
∑

e∈E↓(Lv)

1ve∈Lvre > 0

where we have used the fact that the cardinality of {u ∈ Bo : u ≥ v} is equal to |Lv| − 1.
In the next array, we compute the contribution of the edge e depending on what set, it
belongs to:

E0(Lv) E↑(Lv) E↓(Lv)
A+ ae 0 −1ve∈V̄re
A ae 0 0
A− ae 1ve∈V̄(ae + re − 1) 0
A0 ae 0 0

For the second condition, we fix a node v ∈ Bo such that v? ≥ v. Denoting by
Uv = {u ∈ Bo : u � v} and V̄ the set of leaves attached to Uv. We note that V̄ ⊂ V \ V?
where V̄ is the set of leaves attached to Uv. Moreover, we have |V̄| = |Uv|. It follows∑

u∈Uv

η̃(u) = |s||V̄| −
∑
u∈Uv

(
∑
e∈A

(−ae1e↑(u)) +
∑
e∈A+

(
re1e+∧ve(u)− (ae + re)1e↑(u)

)
−
∑
e∈A−

((ae + re − 1)1e−∧ve(u)− (re − 1)1e↑(u))−
∑
e∈A0

(ae1e↑(u))).

We compute the different cases:

E0(V̄) E↑(V̄) E↓(V̄)
A+ ae (ae + re)− 1ve∈V̄re ae
A ae ae ae
A− ae ae 1ve∈V̄(ae + re − 1)− (re − 1)
A0 ae ae ae
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5.3. Elementary Labelled Graphs

Then ∑
u∈Uv

η̃(u) ≤ |s||V̄| −
∑

e∈E0(V̄)

ae −
∑

e∈E↓(V̄)

(1ve∈V̄∨e∈A0
(ae + re − 1)− (re − 1))

−
∑

e∈E↑(V̄)

((ae + re)− 1ve∈V̄re) < 0.

The conditions of the theorem 5.2.10 are equivalent to the conditions 5.2.2 which con-
cludes the proof.

5.3 Elementary Labelled Graphs
We will not consider general labelled graphs but some graphs built with elementary com-
ponents. Elementary labelled graphs represent integral kernels and are obtained by some
transformations of the original labelled tree. To an elementary graph corresponds a la-
belled tree T n

e such that the elementary graph encodes Πε
0T

n
e . In this section, we present

a recursive construction of the elementary graphs and we give some bounds on them by
checking the assumptions of the theorem 5.2.2.

Definition 5.3.1. An elementary labelled graph is a graph G = (V , E) connected with
two distinguished vertices V? = {v0, v?} with the edge label (ae, re, ve) ∈ R × N × V
such that

• This graph is almost a tree in the sense that T̄ = (V̄ , Ē) = (V \ {v0}, E \ Ev0) is a
tree where Ev0 = {(v, v0) ∈ E}, all the edges which contain v0 belong to Ev0 and
v? is its root. Moreover it can be associated to a labelled tree T n

e such that

– ET = Ē , NT = NT̄ and LT = LT̄

– for every edge e ∈ ET , ae = |s|+ |e(e)|s − |l(e)|s
– for every edge e ∈ {e : e− ∈ LT}, ae = |s| + κ, |e(e)|s = |l(e)|s = 0 and
|l(e−)|s = −|s|/2− κ = α with κ > 0

– for every node v ∈ NT , (a(v,v0), r(v,v0), v(v,v0)) = (−|n(v)|s, 0, v0).

• For every edge e of T̄ , one has: re = d|Te|se ∨ 0 where Te is the tree above e =
(e+, e−), Te = (Ve, E0(Ve)) and Ve = {v ∈ V \ {v0} : e+ ∧ v = e+}.

Remark 5.3.2. In practice, we compute the elementary labelled graph from a labelled
tree T n

e . The algorithm has been described in 5.2.1.

We define the homogeneity of an elementary labelled graph T by:

|G|s =

(
|N̊G|+

|LG|
2
− 2

)
|s| −

∑
e∈E

ae.
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5.3. Elementary Labelled Graphs

In the definition of the homogeneity, the term −2 means that we do not want to count the
distinguished vertices.

We denote by |T n
e |s the homogeneity of the labelled tree T n

e ∈ T, which is given by

|T n
e |s =

∑
u∈LTtET

|l(u)|s +
∑
x∈N̊T

|n(x)|s −
∑
e∈ET

|e(e)|s .

Proposition 5.3.3. Let G an elementary labelled graph and T̄ n
e the labelled tree associ-

ated to it. Then |T̄ n
e |s = |G|s.

Proof. By definition,

|G|s =

(
|N̊G|+

|LG|
2
− 2

)
|s| −

∑
e∈E

ae =

(
|N̊G|+

|LG|
2
− 2

)
|s| −

∑
e∈ET̄

ae −
∑
e∈Ev0

ae

=

(
|N̊G|+

|LG|
2
− 2

)
|s| −

∑
e∈ET̄

(|s|+ |e(e)|s − |l(e)|s)−
∑

(v,v0)∈E

(−|n(v)|s)− |LT̄ |κ

=

(
|N̊G|+

|LG|
2
− 2

)
|s| −

∑
e∈ET̄

|s| −
∑
e∈ET̄

|e(e)|s +
∑

(v,v0)∈E

|n(v)|s +
∑
e∈ET̄

|l(e)|s − |LT̄ |κ

We conclude by noticing that(
|N̊G|+

|LG|
2
− 2

)
|s| −

∑
e∈ET̄

|s| − |LT̄ |κ =

(
|N̊T̄ |+

|LT̄ |
2
− 1

)
|s| −

∑
e∈ET̄

|s| − |LT̄ |κ

= |LT̄ |α =
∑
u∈LT̄

|l(u)|s.

Moreover, we have
∑

(v,v0)∈E |n(v)|s =
∑

v∈N̊T̄
|n(v)|s.

Remark 5.3.4. In general, we have ∀u ∈ LT̄ , |l(u)|s = − |s|
2
− κ for κ > 0 like the

generalised KPZ. For the rest of the section when ae = |s|, it has to be understood as
|s|+ κ.

Definition 5.3.5. We define the graph G(Ξ) = ({v0, v?, v`}, EΞ) and G(X) associated to
the symbols Ξ and X:

G(Ξ) =

0

v?

v`

0, 0

3
,0

and G(X) =

0

v?
0, 0

−1, 0

.

Definition 5.3.6. From two elementary graphs G1, G2, we define a new elementary graph
T = (V , E) = T1 ~ T2 by: V = V1 ∪ V2 and E = E1 ∪ E2. We also make the following
identification: v1

? ∼ v2
? ∼ v? and v1

0 ∼ v2
0 ∼ v0. We set ae? = ae1? + ae2? and re? = 0 for

e? = (v?, v0) and ei? = (vi?, v
i
0), i ∈ {1, 2}.
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Definition 5.3.7. The integration of an elementary graph G = (V , E) is the elementary
graph G′ = In(G) given by: (V ∪ {v′?}, E ′) where E ′ is defined by

• if ae? 6= 0 then E ′ = E ∪{(v′?, v0), (v′?, v?)} with the label of (v′?, v0) given by (0, 0).

• else E ′ = (E \ {(v?, v0)}) ∪ {(v′?, v0), (v′?, v?)}.

where the edge label for (v′?, v0) and e = (v′?, v?) are respectively (0, 0) and
(|s| − |I(·)|s + |n|s, 0 ∨ d|G′|se, v0).

Example 5.3.8. Just below, we give some examples from the generalised KPZ when
|s| = 3:

G(XΞ) =

0

v?
−1, 0

3
,0

, G(I(XΞ)) = I(G(XΞ)) =

0

v?

−
1, 0

1
,1

3,
0

and G(I(Ξ)Ξ) = G(I(Ξ))~G(Ξ) =

0

v?

1
,1

3,
0

.

Remark 5.3.9. Elementary graphs represent the kernel W ε,‖τ‖τ for some symbol τ asso-
ciated to the maximal Wiener chaos of Πε

0τ . Therefore, we suppose that these graphs are
built using the same set of rules as for the symbols.

Definition 5.3.10. Let Ru a set of rules as defined in (3.1), we denote by GRu the set of
elementary graphs built from that set and from G(Ξ).

Remark 5.3.11. Let G = (V , E) ∈ GRu , one has ve = v0 for every e ∈ E . If the set of
rulesRu is locally subcritical then any elementary graph G in GRu satisfies the following
property : for every subtree T of G different from Ξ, one has |T |s > |Ξ|s = α.

Example 5.3.12. The generalised KPZ terms with negative homogeneity are built with
the following rules:

1)

v?

2)

v?

T1

v?

T1 T2

v?

T1 T2 3)

v?

T1 T2 T3

v?

T1 T2

4)

v?

T1 T2 T3

v?

T1 T2 T3 where the Ti are generalised KPZ terms and the edges
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, and have respectively labelled of the form: (3, 0), (2, α) and (1, β). We have also

other rules when we multiply these rules with X .

Remark 5.3.13. We obtain a labelled graph with three distinguished vertices by taking
two elementary graphs with the same number of leaves and by merging their leaves. This
procedure will be described after the renormalisation in 5.6.

We want to prove an analogue of the conditions on the labelled graph for an elemen-
tary graphG = (V , E) generated by a set of rulesRu. We denote by V` the set of its leaves
and Vi the set of its inner nodes.

Assumption 4. 1. For every subset V̄ ⊂ V0 one has

∑
e∈E0(V̄)

ae ≤
(
|V̄i|+

|V̄`|
2
− 1

2

)
|s|+ κ. (5.9)

2. For every subset V̄ ⊂ V , on has for |V̄i| ≥ 3

∑
e∈E0(V̄)

ae+
∑

e∈E↑(V̄)

1{ve∈V̄∧re>0}(ae+re−1)−
∑

e∈E↓(V̄)

1ve∈V̄re <

(
|V̄i|+

|V̄`|
2
− 1

)
|s|.

(5.10)
We consider the vertex 0 as an inner node.

3. For every non-empty subset V̄ ( V0, one has:∑
e∈E0(V̄)

ae +
∑

e∈E↓(V̄)

(
1{ve∈V̄∨re=0}(ae + re − 1)− (re − 1)

)
+
∑

e∈E↑(V̄)

((ae + re)− 1ve∈V̄re) + 1v?∈V̄ |G|s >
(
|V̄i|+

|V̄`|
2
− 1v?∈V̄

)
|s|.

(5.11)

If V̄ = V0, we obtain the equality in the previous bound which is the definition of
|G|s.

Let G = (V , E) ∈ GRu and T̄ = (V̄ , Ē) a subtree of G. We define the homogeneity of
this subtree as:

|T̄ |s =

(
|V̄i|+

|V̄`|
2
− 1v?∈V̄

)
|s| −

∑
e∈E0(V̄)

ae −
∑

e∈E↑(V̄)

ae −
∑

e∈E↓(V̄)

1ae<0ae.

Proposition 5.3.14. Let G = (V , E) ∈ GRu and T̄ = (V̄ , Ē) a subtree of G such that
V̄ ( V0, then V̄ satisfies the assumption (5.11).
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Proof. Let % the root of T̄ , we denote by T% the tree above %. If % 6= v?, we replace T%
by Tu where (u, %) ∈ E . To each edge e = (e+, e−) ∈ E↓(V̄), we can associate a tree
Te = Te− and we obtain:

T% = T̄ ∪
⋃

e∈E↓(V̄)

Te, |T%|s = |T̄ |s +
∑

e∈E↓(V̄)

|Te|s.

Then

|T%|s =

(
|V̄i|+

|V̄`|
2
− 1v?∈V̄

)
|s| −

∑
e∈E0(V̄)

ae −
∑

e∈E↑(V̄)

ae +
∑

e∈E↓(V̄)

|Te|s.

By definition, we have
∑

e∈E↑(V̄) re > |T%|s if % 6= v? else |T%|s = |G|s and E↑(V̄) = ∅.
Moreover, let e ∈ E↓(V̄), it follows: If |Te|s > 0 then |Te|s > re − 1, else by local sub-
criticality of the graph G, we have |Te|s > − |s|2 − κ > −ae. The previous bounds allow
us to conclude and we obtain:∑
e∈E0(V̄)

ae +
∑

e∈E↑(V̄)

(ae + re) +
∑

e∈E↓(V̄)

(1re=0(ae + re − 1)− (re − 1)) + 1v?∈V̄ |G|s >(
|V̄i|+

|V̄`|
2
− 1v?∈V̄

)
|s|.

LetG = (V , E) ∈ GRu and V̄ ( V0. We consider Ḡ = (V̄ , Ē) where Ē = E0(V̄) . Then
the graph Ḡ admits the following decomposition: Ḡ =

⊔
j∈K Tj where Tj = (Vj, Ej) are

disjoint subtrees of G and K is a finite set. Using this characterisation, we have:

Proposition 5.3.15. Let G = (V , E) ∈ GRu and let V̄ ⊂ V \ V?. Then V̄ satisfies the
assumption (5.11).

Proof. We decompose V̄ =
⊔
j∈K Vj where the Vj are disjoints sets and Tj = (Vj, E0(Vj))

is a subtree of G. Then we apply the previous proposition on each Vj and by summing the
bounds, we obtain the required result.

Proposition 5.3.16. Let G = (V , E) a labelled graph and V̄ ⊂ V such that v0 ∈ V̄ and
such that Ṽ = V \ V̄ satisfies (5.11) then V̄ satisfies the assumption (5.10) .

Proof. We suppose that V̄ does not satisfy (5.10) which yields:∑
e∈E0(V̄)

ae +
∑

e∈E↑(V̄)

1{ve∈V̄∧re>0}(ae + re − 1)−
∑

e∈E↓(V̄)

1ve∈V̄re ≥
(
|V̄i|+

|V̄`|
2
− 1

)
|s|.

On the other hand, Ṽ = V \ V̄ satisfies (5.11): ∑
e∈E0(Ṽ)

ae +
∑

e∈E↑(Ṽ)

(ae + re − 1ve∈Ṽre)
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+
∑

e∈E↓(Ṽ)

(
1ve∈Ṽ∨re=0(ae + re − 1)− (re − 1)

)
+ 1v?∈Ṽ |G|s >

(
|Ṽi|+

|Ṽ`|
2
− 1v?∈Ṽ

)
|s|.

We notice that E↑(V̄) = E↓(Ṽ) and E↓(V̄) = E↑(Ṽ) which give by summing the two
bounds: ∑

e∈E

ae + 1v?∈Ṽ |G|s >
(
|Vi|+

|V`|
2
− 1− 1v?∈Ṽ

)
|s|. (5.12)

We have:

−|s|
2
− κ ≤ |G|s =

(
|Vi|+

|V`|
2
− 2

)
|s| −

∑
e∈E

ae

then ∑
e∈E

ae ≤
(
|Vi|+

|V`|
2
− 3

2

)
|s|+ κ.

which is in contradiction with (5.12) for κ > 0 small. We deduce that V̄ satisfies the
condition (5.10).

Proposition 5.3.17. Every G = (V , E) ∈ GRu satisfies the condition (5.10) for V̄ ⊂ V
and v0 ∈ V̄ .

Proof. Let Ṽ = V \ V̄ . The graph G satisfies the condition (5.11) on Ṽ . By the previous
proposition, V̄ satisfies (5.10).

Proposition 5.3.18. LetG = (V , E) ∈ GRu and T̄ = (V̄ , Ē) =
⊔
j∈K Tj such that V̄ ⊂ V0.

Then

• If |K| ≥ 3 or |T̄ |s > 0 then the condition (5.10) is satisfied.

• If |K| = 2 and there exists j ∈ K such that |Tj|s > − |s|2 − κ then the condition
(5.10) is satisfied.

• If |K| = 1 and |T̄ |s < 0 then the condition (5.9) is satisfied but not (5.10).

Proof. For every j ∈ K, we denote by Vj,i, the inner nodes and by Vj,` the leaves of the
tree Ti. One has |Tj|s ≥ − |s|2 − κ, which yields(

|Vj,i| − 1 +
|Vj,`|

2

)
|s| −

∑
e∈E0(Vj)

ae ≥ |Tj|s ≥ −
|s|
2
− κ

∑
e∈E0(Vj)

ae ≤
(
|Vj,i|+

|Vj,`|
2
− 1

2

)
|s|+ κ.
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By summing the previous bounds, we obtain:∑
e∈E0(V̄)

ae =
∑
j∈K

∑
e∈E0(Vj)

ae

≤
∑
j∈K

(
|Vj,i|+

|Vj,`|
2
− 1

2
+

κ

|s|

)
|s| =

(
|V̄i|+

|V̄`|
2
−
∑
j∈K

(
1

2
− κ

|s|

))
|s|.

We distinguish several cases:

• If |K| ≥ 3, we have
∑

j∈K

(
1
2
− κ
|s|

)
> 1 which gives the result.

• If |T̄ |s > 0, then
∑

j∈K |Tj|s > 0 which gives the required bound.

• We conclude as the same when |K| = 2 and when one the Tj satisfied |Tj|s >
− |s|

2
− κ.

• For the last assertion when |K| = 1 and |T̄ |s < 0, the fact that |T̄ |s > − |s|2 − κ
proves the condition (5.9) but |T̄ |s < 0 is in contradiction with (5.10).

Remark 5.3.19. In the previous proposition, we omit one case when T̄ = T1 t T2 and
|T1|s = |T2|s = − |s|

2
− κ. This case will be treated after and needs a renormalisation

procedure as for |T̄ |s < 0.

Proposition 5.3.20. Let G = (V , E) ∈ GRu and T̄ = (V̄ , Ē) a subtree of G. We suppose
that there exists a leaf ` in T̄ such that ` /∈ V` then if |V̄| > 1, the condition (5.5) is
satisfied.

Proof. We have |T̄ |s > − |s|2 − κ and we consider the tree T̃ where we have replaced
the node ` by a leaf which will count |s|/2. We always have |T̃ |s > − |s|2 − κ but now
|T̄ |s = |T̃ |s − |s|

2
> − |s|

2
− κ which gives |T̄ |s > −κ and |T |s > 0. Indeed, the set of

homogeneities is a discrete set. Above−κ, the next homogeneity is 0 which contains only
the trivial tree. Finally, the subtree T̄ satisfies (5.5).

5.4 Contractions
If we look at elements in the lower chaos which come from contractions, we start with a
graph G in GRu and then we merge some leaves in G.

Definition 5.4.1. Let G = (V , E) ∈ GRu an elementary labelled graph. A graph Ḡ =
(V̄ , Ē) is obtained from G by contractions if there exists an involution map f from V` to
itself such that V̄ = V/ ∼f and Ē = E/ ∼f where ∼f means we identify any v ∈ V` with
its image f(v). The leaves of Ḡ are given by the v ∈ V` such that f(v) = v.
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Proposition 5.4.2. Let G = (V , E) ∈ GRu an elementary labelled graph and Ḡ = (V̄ , Ē)
a graph obtained from G by contractions. If G satisfies the conditions (5.11) and (5.10)
then Ḡ satisfies the same conditions.

Proof. To any subset V of V , we can associate a subset Ṽ of V̄ . Indeed, the contractions
identify some pairs of leaves in V which become inner nodes in V̄ . We have the following
identities:

E0(V ) = E0(Ṽ ), E↑(V ) = E↑(Ṽ ), E↓(V ) = E↓(Ṽ ), |Vi|+
|V`|
2

= |Ṽi|+
|Ṽ`|
2
,

which give the result.

Example 5.4.3. Among the KPZ terms, we face three types of contractions which create
new cycles:

0

T1

T2

vc

γ
1

γ
3

γ2

0

T1

T2

vc

γ
2

γ 3

γ
4

γ
3

0

T1

vc

T2

γ
1 γ 2

γ
4γ 3

with γi = (αi, βi) and the Ti are

subtrees. From now, we denote by vc the node coming from the merging of two leaves `1

and `2.

5.5 Renormalisation Procedure

5.5.1 Renormalisation by hand
From the proposition 5.3.18 , given G = (V , E) ∈ GRu the diverging patterns are the
negative subtrees of T n

e the labelled tree such that W εT n
e is encoded by G. Therefore, we

have to renormalise them. In this section we treat one negative subtree by performing a
local transformation using a telescopic sum.

Let G = (V , E) ∈ GRu and T̄ = (V̄ , Ē) a negative subtree of G. In order to treat this
divergence, we change the label of some edge e ∈ E↓(V̄) by replacing ve = v0 by a node
of T̄ such that this new Taylor expansion point has a renormalisation effect on T̄ .

Let e = (v1, v2) ∈ E↓(V̄) and v ∈ T̄ such that there exists v′ with (v′, v) ∈ E↑(V̄).

The situation can be represented by:
v

v1

v2

γ

where the symbol means that there exists
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5.5. Renormalisation Procedure

a path between v1 and v. In most of the examples, this path would be just an edge. The
label of e is replaced by γ = (ae, r

′
e, v). This transformation and the choice of the level

r′e depend on the subtree T̄ . For instance, we take r′e = max(d−|T̄ |se, re) . The previous
renormalised edges appear in a telescopic sum. We start with ve = v0 on e. We have the

same configuration as before:
v

v1

v2

γ

. The label of γ is given by (ae, re, v0). We want to

rewrite the Taylor expansion in the point v and we proceed as follows:

K̂e(xv1 − xv2) = Ke(xv1 − xv2)−
∑
|j|s<re

(xv1)j

j!
K(j)
e (−xv2)

= Ke(xv1 − xv2)−
∑
|j|s<r′e

(xv1 − xv)j

j!
K(j)
e (xv − xv2)

+
∑
|j|s<r′e

(xv1 − xv)j

j!
K(j)
e (xv − xv2)−

∑
|j+k|s<re

(xv1 − xv)j(xv)k

j!k!
K(j+k)
e (−xv2)

= Ke(xv1 − xv2)−
∑
|j|s<r′e

(xv1 − xv)j

j!
K(j)
e (xv − xv2)

+
∑
|j|s<r′e

(xv1 − xv)j

j!

K(j)
e (xv − xv2)−

∑
|k|s<re−|j|s

(xv)
k

k!
K(j+k)
e (−xv2)

.
This decomposition is general but in the case of the generalised KPZ, we deal only with
derivatives in space. Therefore, j ∈ N. Graphically speaking, we make the following
decomposition on our graph G:

v

v1

v2

γ

=
v

v1

v2

γ
e

+
∑
|j|s<r′e

v

v1v2

e j

γ
j

(5.13)

where the labels of γ, γe, γj and ej are respectively: (ae, re, v0), (ae, r
′
e, v), (ae+|j|s,max(re−

|j|s, 0), v0) and (−|j|s, 0, v0). We prove the next two propositions in the case of the gen-
eralised KPZ and they are true for many examples. We will provide a counter-example in
the section 5.7 for the general case.

Proposition 5.5.1. Let G as above, we suppose that G satisfies the conditions (5.6) then
the new graph Ḡ obtained from the transformation of the label of e = (v1, v2) satisfies the
same condition.
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Proposition 5.5.2. Let G as above, we suppose that G satisfies the conditions (5.5) for
some subsets V 6= V̄ then the new graph obtained from the transformation of the label of
e = (v1, v2) satisfies this condition on the same subsets and on V̄ .

The next two propositions establish that we have the correct bounds for the terms with
the labels γ and γe then we have the same bounds for the remaining terms depending on
j in 5.13.

Proposition 5.5.3. If the conditions (5.6) is satisfied in 5.13 for the terms with the labels
γ and γe, then this condition is satisfied on the other terms on V ⊂ V such that V ∩
{v, v1, v2} 6= {v}.

Proof. The first term has been treated. We have to consider the impact of the new edges
ej and γj for the other terms. Let V ⊂ V , we look at Vj = V ∩ {v, v1, v2}:

γj ej γe γ
{v} 1(re−|j|s<0)(ae + |j|s)− 1re−|j|s>0(re − |j|s − 1) −|j|s 0 0
{v1} 0 −|j|s −(r′e − 1) −(re − 1)
{v2} ae + |j|s + max(re − |j|s, 0) 0 ae + r′e ae + re
{v, v1} 1(re−|j|s<0)(ae + |j|s)− 1re−|j|s>0(re − |j|s − 1) −|j|s −(r′e − 1) −(re − 1)
{v, v2} ae + |j|s −|j|s ae ae + re
{v1, v2} ae + |j|s + max(re − |j|s, 0) −|j|s ae ae
{v, v1, v2} ae + |j|s −|j|s ae ae

The sum of the contributions of γj and ej is greater than the minimum between γe and γ
except for Vj = {v}: when re − |j|s > 0, then −(re − 1) ≤ 0.

Proposition 5.5.4. If the condition (5.10) is satisfied in 5.13 for the terms with the labels
γ and γe on some subsets V , then this condition is satisfied for the other terms on the same
subsets.

Proof. The first term has been treated in the previous proposition. We have to consider
the impact of the new edges ej and γj for the other terms. Let V ⊂ V , if v0 ∈ V then
from the previous proposition the conditions (5.11) are satisfied on V \ V . We deduce
that the conditions (5.10) are satisfied for V . We suppose that v0 /∈ V and we look at
Vj = V ∩ {v, v1, v2}:

γj ej γe γ
{v} 0 0 0 0
{v1} 0 0 0 0
{v2} 0 0 0 0
{v, v1} 0 −|j|s −r′e 0
{v, v2} ae + |j|s 0 ae + r′e ae
{v1, v2} 0 0 ae ae
{v, v1, v2} ae + |j|s −|j|s ae ae
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5.5. Renormalisation Procedure

The sum of the contributions of γj and ej is smaller than the maximum between γe
and γ.

When we obtain a graph with no leaves after the previous transformation, we want
to transform those graphs in constants by fixing all the labels (ae, re, v0) to (ae, 0). Let
e = (v1, v2) an edge in T̄ with a label (ae, re, v0) and re > 0. We can perform the following
decomposition:

v1

v2

= v1

v2

a
e
,0

−
∑
|k|s<re

0

v1

v2

−|k|s , 0

a
e

+
|j|s ,0

.

For the generalised KPZ, we will prove the next proposition:

Proposition 5.5.5. The previous terms depending on k satisfy the conditions (5.10) and
(5.11) on V(T̄ ).

5.5.2 A complete example

In the sequel, we present the complete renormalisation of a negative pattern which is
created by the contraction of two different trees Ξ.

Ḡ =
e+

v1

v

`2`1

e−

γ
e

−→ G =
e+

v1

v

e− vc

γ
e

.

In the previous graph, we go from Ḡ to G by identifying the two leaves `1 and `2 which
create the node vc. The edges (e+, vc) and (v, vc) represent a %ε and its behaviour around
the origin is ‖x‖−|s|−κs .

This is the only divergent pattern which is not a tree. We perform our telescopic sum
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in the next identity:

G =
e+

v1

v

e− vc

γ
e

=
e+

v1

v

e−

γ
e

=
e+

v1

v

e−

γ
?e

+
∑
|j|s<r′e

e+

v1

v

e−

ej

γ
j

.

where γe = (ae, re, v0), γ?e = (ae, r
′
e, v), ej = (−|j|s, 0, 0) and γj = (ae + |j|s,max(re −

|j|s, 0), v0). The first identity comes from the fact that a mollifier is invariant by convolu-
tion:

%̂ε = (%ε ∗ %ε)
is also a mollifier if % is. This property allows us to make disappear the node vc. Then we
also have for j = 0:

e+

v1

v

e−
γ
e

=
e+

v1

e−

γ
e

which erases the divergence given by V = {e+, v}. Indeed, if we look at the edge ē =
(v1, e+) , it follows:

K̂ē(xv1 − xe+) = Kē(xv1 − xe+)−
∑
|j|s<rē

(xv1)j

j!
K

(j)
ē (−xe+).

By multiplying by %ε(xv − xe+) and by integrating over xe+ , we obtain:∫
Rd
%ε(xv − xe+)K̂ē(xv1 − xe+)dxe+ =

∫
Rd
%ε(xv − xe+)De(ē)K(xv1 − xe+)dxe+

−
∑
|j|s<rē

(xv1)j

j!

∫
Rd
%ε(xv − xe+)De(ē)+jK(−xe+)dxe+

= De(ē)Kε(xv1 − xe+)−
∑
|j|s<rē

(xv1)j

j!
De(ē)+jKε(−xe+)

where Kε = %ε ∗K. From [Hai14b, Lemma 10.17] , it follows that the value of ae is the
same for Kε as for K. Let G? and Gj given by:

G? =
e+

v1

v

e−

γ
?e

, Gj =
e+

v1

v

e−

ej

γ
j

.
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Proposition 5.5.6. The graphsG?,Gj satisfy the conditions (5.11), (5.10) on V̄ = {e+, v}
and on the same subset as for the original graph.

Proof. Let V ⊂ NG? . We first check the condition (5.11) and we look at V = V ∩
{e+ , e− , v}. Comparing the contribution of the edge e in G? and G, we obtain:

V G? G
{v} 0 0
{e−} ae + r′e ae + re
{e+} −(r′e − 1) + 1r′e=0(ae + r′e − 1) −(re − 1) + 1re=0(ae + re − 1)
{e+, e−} ae ae
{e+, v} ae −(re − 1) + 1re=0(ae + re − 1)
{e−, v} ae ae + re
{e+, e−, v} ae ae

Most of the time, the contribution of G? is bigger than the one of G. It remains to treat
V̄ = {e+} and V̄ = {e−, v}. In that case, the edge (e+, v) gives the contribution |s| + κ.
If we look at the graph Ḡ which is the graph G before the contraction of the two leaves `1

and `2, we can add in V the leave `1 (resp. `2) for V = {e+} (resp. V = {e−, v}) and we
loose |s|/2 for the bound without these leaves. But we know that the condition (5.11) is
satisfied on Ḡ given by:

Ḡ =
e+

v1

v

`2`1

e−

γ
e

.

By noticing that −(r′e − 1) > −|s|/2 and max(|Te|s, 0) < |s|/2, we obtain the same
difference between G? and G than between Ḡ and G which allows us to conclude. We
have used the fact that when e ∈ E↑(EG), the label re can be replaced by max(|Te|s, 0)
and the condition (5.11) is satisfied for V in G. For the graph Gj , the only problem occurs
when V = {v}. In that case, we apply the same trick as before by looking at the graph
before the contraction.

We proceed as the same for the condtion (5.10). Let V ⊂ NG? . We look at V̄ =
V ∩ {e+ , e− , v}. Comparing the contribution of the edge e in G? and G, we obtain:

V G? G
{v} 0 0
{e−} 0 0
{e+} 0 0
{e+, e−} ae ae
{e+, v} −r′e 0
{e−, v} 1r′e>0(ae + r′e − 1) 0
{e+, e−, v} ae ae
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When V = {e+, v}, the new contribution −r′e compensates the divergence of V .

Ḡ =
e+

v1

v

`2`1

e−

γ
e

−→ G̃ =
e+

v1

v

`2`1

e−

a
e
,0

If V = {e− , v} then we use the graph Ḡ: by adding the leaf `2, we earn |s|/2 + κ
which compensates r′e − 1. The graph G̃ where the label of (v, e−) is (ae, 0) satisfies
the condition (5.10) because we obtain a graph locally-subcritical. In the sense that the
product created by the displacement of the edge e comes from a local-subcritical labelled
tree.

5.5.3 A general approach
Let T n

e ∈ GRu the original labelled tree, to which we associate the graph G represent-
ing the integral kernel of the maximal Wiener chaos; by merging some leaves, we ob-
tain graphs Gk’s representing the integral kernels of the lower Wiener chaoses. Negative
subtrees of T ne correspond to (possibly) diverging subgraphs of the Gk. In the previous
section, we have described how to manage such divergence with a telescopic sum. We
want to do the same on disjoint negative subgraphs. After that renormalisation, we obtain
a finte number of graphs G1,..., Gr which belong to an extension of GRu such that

W ε(T n
e ) =

∑
i

Gi

+
∑
Ā⊂A

(−1)|Ā|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā)W ε

(
R↓ĀT

n−nĀ,nĀ+πeĀ
e+eĀ

)
where A = {T1, ..., Tn} ∈ A(T ) and the inclusion Ā ⊂ A means that T ∈ Ā implies
T ∈ A. The graph Gi satisfies the conditions (5.9) and (5.11) and the second term is
compensated by the renormalisation. For the whole section, we fix A ∈ A(T ).

Remark 5.5.7. We have

W ε
(
R↑AT

nA+πeA
e

)
(%A) =

n∏
i=1

W ε
(
R↑TiT

nA+πeA
e

)
(%Ti).

where the notationW ε
(
R↑TiT

nA+πeA
e

)
(%Ti) means that the tree is rooted in %Ti . Moreover,

the variable x%Ti is the same as in the term W ε(R↓AT
n−nA,nA+πeA
e+eA ) and it is integrated.
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The term W ε
(
R↑TiT

nA+πeA
e

)
(%Ti) does not contain any test function ϕλ, we have made an

abuse of notation by replacingW by W . Moreover, the previous term should be written
with a node label d̄, W ε

(
R↑TiT

nA+πeA,d̄
e

)
(%Ti) in order to obtain the right length for the

Taylor expansion. Indeed, we have to keep track of the trees above Ti in T . For the rest of
the section, we omit this label.

In the sequel, we want to give a general formula for the sum of the graphs Gi.

Definition 5.5.8. Let G = (V , E) an elementary graph with associated tree T as in defini-
tion 5.3.1 . We suppose that we have ordered the edges of T . Then, forA = {T1, ..., Tn} ∈
A(T ) we define E↓(A) as: {E1, ..., En} ∈ E↓(A) if Ei ⊂od E↓(Ti) where ⊂od means that
Ei is composed of the first |Ei|th edges toward the order fixed on the edges in E↓(Ti).

Definition 5.5.9. Let A = {T1, ..., Tn} ∈ A(T ), E = {E1, ..., En} ∈ E↓(A), eE Nd-valued
function on ET supported by the set E and nA Nd-valued function on NT supported by
∪iN̊Ti . We define PnA,eE

E W ε(T n−nA,nA+πeE
e+eE ) as the graph G where we make the following

transformations:

• Every edge ei = (vi1, v
i
2) ∈ Ei such that rei ≥ 0 is removed and is replaced by

the edge (%Ti , v
i
2) with the same label. Moreover, we add an edge (%Ti , v

i
1) with the

label (−|πeE(vi1)|s, 0, 0).

• Every edge of the form (vi, v0) with vi ∈ Ti, is replaced by an edge (%Ti , v0) with
the same label and an edge (vi, %Ti) with label (−|nA(vi)|s, 0, 0).

• the label (aei , rei , vei) of the minimum edges ei in E↓(Ti) \ Ei

becomes

– (aei , r
′
ei
, %Ti) if |(Ti)nAe |s +

∑
e′≤odei |eE(e

′)|s ≤ 0 then r′ei is given by

r′ei = max(rei , d−(|(Ti)nAe |s +
∑
e′≤odei

|eE(e′))|se).

– does not change otherwise.

If we do not perform the third transformation on Ti, we use the notationPnA,eE
E,Ti W

ε(T n−nA,nA+πeE
e+eE ).

We denote by P nAW ε(T n−nA,nA
e ) the second operation.

LetRu, a set of rules. For A = {T1, ..., Tn}, we define G̃Ru(A) as

G̃Ru(A) = {PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ) : T n
e ∈ TRu , E ∈ E↓(A) , eE , nA}.
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In the next figure, we consider for T = (V , E): E ′ = {(vr,1, v1) , (vr,1, v2) , (vr,2, v3)}.
The minimum edge in E \ E ′ is given by (vr,2, v4).

T

%T

v1 v5v2 v4v3

vr,2vr,1

−→ %T

v1 v5v2 v4v3

vr,2
vr,1

Remark 5.5.10. If one of the Ei is equal to E↓(Ti) then:

PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ) = W ε
(
R↑TiT

nA+πeE
e

)
(%Ti)P

nA,eE′
E ′ W ε(R↓TiT

n−nA,nA+πeE
e+eE )

where E ′ = E \ Ei and eE ′ is the restriction of eE to E ′. If E = {E↓(T1), ..., E↓(Tn)} then

PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ) = W ε
(
R↑AT

nA+πeE
e

)
(%A)W ε(R↓AT

n−nA,nA+πeE
e+eE ).

Proposition 5.5.11. For every A = {T1, ..., Tn} ∈ A(T ), one has

W ε(T n
e ) =

∑
E∈E↓(A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ).

where

1. eE runs over all Nd-valued functions onET supported by the set E such that ∀e ∈ Ei,
one has |(Ti)nAe |s +

∑
e′≤ode |eE(e

′)|s ≤ 0 for e 6= eimax the maximum edge in Ei and
eE(e) < max(re, d−(|(Ti)nAe |s +

∑
e′≤ode |eE(e

′)|s)e).

2. nA runs over the set of all Nd-valued functions on NT supported by ∪iN̊Ti such that
nA ≤ n.

The only divergent part in the previous sum is given for E = {E1, ..., En} where one of
the Ei is equal to E↓(Ti) and the associated tree has a negative homogeneity. Finally, we
obtain

W ε(T n
e ) =

∑
i

Gi

+
∑
Ā⊂A

(−1)|Ā|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā)W ε

(
R↓ĀT

n−nĀ,nĀ+πeĀ
e+eĀ

)
where the Gi are terms with renormalisation on A, in the sense that for each Ti ∈ A, the
label of one edge e in E↓(Ti) has been changed as in the first part of the definition 5.5.9.
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Proof. We proceed by recurrence on the size of A and we want to first prove that:∑
E∈E↓(A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ) =
∑
nA

(
n

nA

)
PnAW ε(T n−nA,nA

e ).

Let A = {T1, ..., Tn+1} and E = {E1, ..., En+1} where Ei ⊂od E↓(Ti). We fix some labels
eE , nA and we set

AE =
∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ).

Let e = (e+, e−) the minimum edge in E↓(Tn+1) \ En+1, we have

K̂e(xe+ − xe−) = Ke(xe+ − xe−)−
∑
|j|s<re

(xe+ − xve)j

j!
K(j)
e (xve − xe−)

= Ke(xe+ − xe−)−
∑
|j|s<r′e

(xe+ − x%Tn+1
)j

j!
K(j)
e (x%Tn+1

− xe−) +
∑
|j|s<r′e

(xe+ − x%Tn+1
)j

j!K(j)
e (x%Tn+1

− xe−)−
∑

|k|s<re−|j|s

(x%Tn+1
− xve)k

k!
K(j+k)
e (xve − xe−)

.
where r′e is defined as in 5.5.9. Then, it follows:

AE =
∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E,Tn+1

W ε(T n−nA,nA+πeE
e+eE )−

∑
eE′ ,nA

1

eE ′ !

(
n

nA

)
PnA,eE′
E ′,Tn+1

W ε(T
n−nA,nA+πeE′
e+eE′

),

where E ′ = {E ′1, ..., E ′n+1} and Ei = E ′i for i 6= n + 1, E ′n+1 = En+1 ∪ {e}. If En+1 =
E↓(Tn+1), then

AE =
∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E,Tn+1

W ε(T n−nA,nA+πeE
e+eE ).

By fixing E1, ..., En and making the sum over En+1 , it remains the term for En+1 = ∅:∑
En+1⊂odE↓(Tn+1)

AE = 1En+1=∅
∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E,Tn+1

W ε(T n−nA,nA+πeE
e+eE )

= 1En+1=∅
∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ).

Finally, we have∑
E∈E↓(An+1)

AE =
∑

E∈E↓(An)

∑
En+1⊂odE↓(Tn+1)

AE∪{En+1}
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=
∑

E∈E↓(An)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )

=
∑
nA

(
n

nA

)
PnAW ε(T n−nA,nA

e ),

where we have concluded by applying the recurrence hypothesis to An. It remains to
prove by recurrence that:

W ε(T n
e ) =

∑
nA

(
n

nA

)
PnAW ε(T n−nA,nA

e ).

We proceed as the same as before and we use the binomial identity for every vi ∈ Ti:

(xvi)
n(vi) =

∑
|k|s≤|n(vi)|s

(
n(vi)

k

)
(xvi − x%Ti )

k(x%Ti )
n(vi)−k.

For the last part of the proposition, we proceed by induction on the size of A. Let
E = {E1, ..., En, E↓(Tn+1)} ∈ E↓(A). By setting Ã = {Tn+1}, Ā = An = {T1, ..., Tn}
and Ē = {E1, ..., En} we obtain

PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ) = W ε
(
R↑ÃT

nÃ+πeÃ
e

)
(%Ã)PnĀ,eĒ

Ē W ε(R↓ÃT
n−nÃ−nĀ,nÃ+πeÃ+nĀ+πeĒ
e+eÃ+eĒ

)

where the labels nĀ, eĒ are the restriction of nA, eE to Ā and Ē . The labels nÃ, eÃ are the
restriction of nA, eE to Ã. It follows

W ε(T n
e ) =

∑
E∈E↓(A)

AE =
∑
E∈E↓(A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )

=
∑

Ē∈E↓(An)

AĒ∪{E↓(Tn+1)} +
∑

Ẽ⊂odE↓(Tn+1)

Ẽ 6=E↓(Tn+1)

∑
Ē∈E↓(An)

AĒ∪Ẽ .

For the first term of the previous identity, we obtain:∑
Ē∈E↓(An)

AĒ∪{E↓(Tn+1)} =
∑

Ē∈E↓(An)

∑
eÃ,nÃ

1

eÃ!

(
n

nĀ

)
∑

eĒ ,nĀ

1

eĒ !

(
n

nĀ

)
PnĀ,eĒ
Ē W ε(R↓ÃT

n−nÃ−nĀ,nÃ+πeÃ+nĒ+πeĒ
e+eÃ+eĒ

)

W ε
(
R↑ÃT

nÃ+πeÃ
e

)
(%Ã),

which yields∑
Ē∈E↓(An)

AĒ∪{E↓(Tn+1)}

=
∑
eÃ,nÃ

1

eÃ!

(
n

nÃ

)
W ε
(
R↑ÃT

nÃ+πeÃ
e

)
(%Ã)W ε(R↓ÃT

n−nÃ,nÃ+πeÃ
e+eÃ

).
(5.14)
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For the second term, we apply the induction hypothesis on each AẼ for An on it and we
have the existence of renormalised graph Gi such that:∑

Ẽ⊂odE↓(Tn+1)

Ẽ 6=E↓(Tn+1)

AẼ =
∑
i

Gi +
∑

Ẽ⊂E↓(Tn+1)

Ẽ 6=E↓(Tn+1)

∑
Ā⊂An
Ā6=∅

(−1)|Ā|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
∑

eẼ ,nÃ

1

eẼ !

(
n

nÃ

)
PnÃ,eẼ
Ẽ W ε(R↓ĀT

n−nĀ−nÃ,nĀ+πeĀ+nÃ+πeẼ
e+eĀ+eẼ

)

W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā).

(5.15)

The graph Gi are renormalised toward An but also toward A because each AẼ has been
renormalised for Tn+1. Then the divergent term is given by∑

Ẽ⊂E↓(Tn+1)

Ẽ 6=E↓(Tn+1)

∑
Ā⊂An
Ā6=∅

(−1)|Ā|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
∑

eẼ ,nÃ

1

eẼ !

(
n

nẼ

)
PnÃ,eẼ
Ẽ W ε(R↓ĀT

n−nĀ−nÃ,nĀ+πeĀ+nẼ+πeẼ
e+eĀ+eẼ

)

W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā)

=
∑
Ā⊂An

(−1)|Ā|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā)W ε(R↓ĀT

n−nĀ,nĀ+πeĀ
e+eĀ

)

−
∑
Ā⊂A

Tn+1∈Ā

(−1)|Ā|
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(
R↑Tn+1

T
nĀ+πeĀ
e

)
(%Tn+1)

W ε
(

Π−R↑Ā\Tn+1
T

nĀ+πeĀ
e

)
(%Ā\Tn+1

)W ε(R↓ĀT
n−nĀ,nĀ+πeĀ
e+eĀ

).

=
∑

Ā⊂A ,Ā6=∅
Ā6={Tn+1}

(−1)|Ā|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā)W ε(R↓ĀT

n−nĀ,nĀ+πeĀ
e+eĀ

)

−
∑
Ā⊂A

Tn+1∈Ā

(−1)|Ā|
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π+R↑Tn+1
T

nĀ+πeĀ
e

)
(%Tn+1)

W ε
(

Π−R↑Ā\Tn+1
T

nĀ+πeĀ
e

)
(%Ā\Tn+1

)W ε(R↓ĀT
n−nĀ,nĀ+πeĀ
e+eĀ

),

where Π+ is not multiplicative on the labelled trees and it is the projection onto positive
labelled trees. By summing the two expressions (5.14) and (5.15), we get

W ε(T n
e ) =

∑
i

Ḡi

+
∑
Ā⊂A
Ā6=∅

(−1)|A|+1
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π−R↑ĀT
nĀ+πeĀ
e

)
(%Ā)W ε

(
R↓ĀT

n−nĀ,nĀ+πeĀ
e+eĀ

)
.
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where
∑
Ḡi is given by:∑

i

Ḡi =
∑
i

Gi −
∑
Ā⊂A

Tn+1∈Ā

(−1)|Ā|
∑
eĀ,nĀ

1

eĀ!

(
n

nĀ

)
W ε
(

Π+R↑Tn+1
T

nĀ+πeĀ
e

)
(%Tn+1)

W ε
(

Π−R↑Ā\Tn+1
T

nĀ+πeĀ
e

)
(%Ā\Tn+1

)W ε(R↓ĀT
n−nĀ,nĀ+πeĀ
e+eĀ

),

Then from the previous sum, we factorise the term W ε
(

Π+R↑Tn+1
T

nĀ+πeĀ
e

)
(%Tn+1) and

we perform our telescopic on the remainder which allows us to conclude.

Using the previous proposition, we perform a decomposition of Ŵ ε,k(T n
e ):

Ŵ ε,k(T n
e ) =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W ε,k

(
R↓AT

n−nA,nA+πeA
e+eA

)
= W ε,k(T n

e ) +
∑

A∈A(T ),A6=∅

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W ε,k

(
R↓AT

n−nA,nA+πeA
e+eA

)
.

Then, it follows from (5.4) and from the second part of (5.5.11):

W ε,k(T n
e ) = W̄ε,k(T n

e ) +
∑

A∈Ak(T )

PAW ε(T n
e )

= W̄ε,k(T n
e ) +

∑
A∈Ak(T )

PA
∑
E∈E↓(A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )

= W̄ε,k(T n
e ) +

∑
A∈Ak(T )

PA
∑
i

Gi

+
∑

A′∈Ak(T )

∑
A⊂A′
A6=∅

(−1)|Ā|+1PA′
∑
eA,nA

1

eA!

(
n

nA

)
W ε
(

Π−R↑AT
nA+πeA
e

)
W ε(R↓AT

n−nA,nA+πeA
e+eA )

= W̄ε,k(T n
e ) +

∑
A∈Ak(T )

PA
∑
i

Gi

+
∑

A′∈Ak(T )

∑
A⊂A′
A6=∅

(−1)|Ā|+1PA′\A
∑
eA,nA

1

eA!

(
n

nA

)
W ε,0

(
Π−R↑AT

nA+πeA
e

)
W ε(R↓AT

n−nA,nA+πeA
e+eA ).

where the Gi are graphs with no divergence. The precise value of the Gi is given in the
proposition 5.5.18. We would like to set for every A ∈ Ak(T ):

`ε

(
Π−R↑AT

nA+πeA
e

)
= (−1)|A|W ε,0

(
Π−R↑AT

nA+πeA
e

)
in order to compensate the divergent term appearing in the previous decomposition. In
fact we just subtract the diverging part of the previous term and we define `ε by:

`ε

(
Π−R↑AT

nA+πeA
e

)
= (−1)|A|W̃ ε,0

(
Π−R↑AT

nA+πeA
e

)
.

where W̃ ε,0 is given in 5.1.3.
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Remark 5.5.12. The definition given here for the map `ε does not take into account some
sub-divergences. We suppose that there does not exist a negative subtree T̄ such that T̄ is
included in one of the element of A.

Remark 5.5.13. The term W̄ε,k(T n
e ) may contain divergence of the formA ∈ Am(T ) for

m ≥ k. These divergences appear in a bigger wiener chaos and they are renormalised by:∑
A∈Am(T )

(−1)|A|
∑
eA,nA

1

eA!

(
n

nA

)
W ε,0

(
Π−R↑AT

nA+πeA
e

)
W ε,k(R↓AT

n−nA,nA+πeA
e+eA ).

We will face sub-divergence in the generalised KPZ equation only for the 0th wiener
chaos.

Definition 5.5.14. Let G = (V , E) a labelled graph, we define A(G) such that for every
A = {G1, ..., Gn} ∈ A(G), the Gi are disjoint subgraphs of G with a minimal node
given by the orientation of the edges %Gi . Moreover for each Gi = (Vi, Ei), one has
E↓(Vi) * E↓({%Gi}).

Definition 5.5.15. Let G = (V , E) a labelled graph. We consider Ē ⊂ E1 ⊂ E+ = {e ∈
E : re > 0 and ve = v0}, Ẽ ⊂ E1 \ Ē and eĒ Nd-valued function on E supported by the
set E . We define P eĒ

Ē,E1
G as the graphs where we make the following transformations:

• the label (ae, re, v0) of the edges e in Ẽ becomes (ae, 0, v0).

• Every edge e = (v1, v2) ∈ Ē is removed and is replaced by the edge (v0, v2) with
the label (ae + |eE(e)|s, 0, v0) . Moreover, we add an edge (v0, v1) with the label
(−|πeE(v1)|s, 0, 0).

For A = {G1, ..., Gn} ∈ A(G), let E(A) = {
⋃n
i=1 Ei : Ei ⊂ EGi}. We define ḠRu(A) as

ḠRu(A) = {P eĒ
Ē,E1

G : G ∈ G̃Ru(A) , Ē ⊂ E1 ⊂ E+ ∈ E(A) , eE}

and ḠRu by

ḠRu =
⋃

A∈A(G)

ḠRu(A).

In the figure below, the set Ē is given by: {(vr,1, v1) , (vr,1, v2) , (vr,2, v3) , (vr,2, v4)}.

T

%T

v0

v1 v2 v4v3

vr,2vr,1

−→

T

%T

v0

v1 v2 v4v3

vr,2vr,1
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Proposition 5.5.16. Let G = (V , E) a labelled graph and E1 ⊂ E+, one has

G =
∑
Ē⊂E1

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E1
G.

where eĒ runs over all Nd-valued functions onEG supported by the set Ē such that ∀e ∈ Ē ,
|eE(e)|s < re.

Proof. We proceed by recurrence on the size of E1. Let e = (e+, e−) ∈ E1 and Ē contain-
ing e. We have ,

K̂e(xe+ − xe−) = Ke(xe+ − xe−)−
∑
|j|s<re

(xe+)j

j!
K(j)
e (−xe−).

Therefore,∑
eĒ′

1

eĒ ′ !
(−1)|Ē

′|P eĒ′

Ē ′,E1
G+

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E1
G =

∑
eĒ′

1

eĒ ′ !
(−1)|Ē

′|P eĒ′

Ē ′,E ′1
G,

where E ′1 = E1 \ {e} and Ē ′ = Ē \ {e}. It follows by applying the recurrence hypothesis
on E ′1 and the previous identity∑

Ē⊂E1

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E1
G =

∑
Ē′⊂E1
e/∈E′

∑
eĒ′

1

eĒ ′ !
(−1)|Ē

′|P eĒ′

Ē ′,E1
G+

∑
Ē′⊂E1
Ē=E′∪{e}

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E1
G

=
∑
Ē⊂E ′1

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E ′1
G = G.

Remark 5.5.17. Let T n
e a labelled tree. We consider the graph G = (V , E) = W ε,0(T n

e ).
By taking E1 = E+, Ē = ∅ and eĒ = 0 , we obtain:

P eĒ
Ē,E1

W ε,0(T n
e ) = W̃ ε,0(T n

e ).

Proposition 5.5.18. Let T n
e a labelled tree, one has the following decomposition

W ε,k(T n
e ) = W̄ε,k(T n

e ) +
∑

A∈Ak(T )

PA
∑
E∈E↓? (A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )

+
∑

A∈Ak(T )

PA
∑

E∈E↓−(A)

∑
eE ,nA

1

eE !

(
n

nA

) ∏
E1∈E◦

∑
Ē⊂E1
Ē 6=∅

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E1


PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )
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+
∑

A′∈Ak(T )

∑
A⊂A′
A6=∅

(−1)|A|+1PA′\A
∑
eA,nA

1

eA!

(
n

nA

)
W̃ ε,0

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
,

where for A = {T1, ..., Tn}, E↓−(A) = {E ∈ E↓(A) : ∃i Ei = E↓(Ti)}, E↓? (A) =

E↓(A) \ E↓−(A) and E◦ = {Ti : Ei = E(Ti) }. In the previous identities, the graphs Gi

are given by the second and the third term in the right-hand side.

Proof. This identity follows from the application of proposition 5.5.11 and 5.5.16. More-
over, we have to perform the same kind of summation as in the second part of 5.5.11.

Remark 5.5.19. The identity in 5.5.18 can be rewritten as:

W ε,k(T n
e ) = W̄ε,k(T n

e )

+
∑

A∈Ak(T )

PA
∑
E∈E↓? (A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(R↓AT

n−nA,nA+πeE
e+eE )W̃ ε(R↑AT

n−nA,nA+πeE
e+eE )

+
∑

A∈Ak(T )

PA
∏
T̄∈A

(
W ε(R↑

T̄
T n
e )− W̃ ε(R↑

T̄
T n
e )
)
W ε(R↓

T̄
T n
e )

+
∑

A′∈Ak(T )

∑
A⊂A′
A6=∅

(−1)|A|+1PA′\A
∑
eA,nA

1

eA!

(
n

nA

)
W̃ ε,0

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
.

This new formulation follows from the summation over the non diverging patterns created
by the removal of the taylor expansion.

Remark 5.5.20. The previous identity is useful when we do not create positive pattern in
the sense thatR↑AT nA+πeA

e has a negative homogeneity.

Proposition 5.5.21. Let T n
e ∈ TRu and k 6= 0, then the graph Ŵ ε,k(T n

e ) admits a decom-
position:

Ŵ ε,k(T n
e ) =

∑
i

Gi

where the Gi satisfy the conditions (5.10) and (5.11).

Proof. We use the general decomposition in proposition 5.5.18. The only divergent term
is the last one:∑
A′∈Ak(T )

∑
A⊂A′
A6=∅

(−1)|A|+1PA′\A
∑
eA,nA

1

eA!

(
n

nA

)
W̃ ε,0

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
which is removed by the renormalisation term:∑

A′∈Ak(T )

∑
A⊂A′
A6=∅

PA′\A
∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)

143



5.5. Renormalisation Procedure

where `ε
(
R↑AT nA+πeA

e

)
= (−1)|A|+1W̃ ε,0

(
R↑AT nA+πeA

e

)
. For the other terms of the de-

composition, they contain elementary transformations which renormalise the diverging
pattern A = {T1, ..., Tn}.

Remark 5.5.22. In the previous proposition, we have made the following abuse of nota-
tion by considering the diverging pattern {Ξ,Ξ} as one negative subtree. This divergence
is treated in 5.5.6.

If we want the 0th order chaos to be zero, we obtain the following constraint on `ε:

Ŵ ε,0(T n
e ) =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
R↑AT

nA+πeA
e

)
W ε,0

(
R↓AT

n−nA,nA+πeA
e+eA

)
= 0

`ε(T
n
e ) = −

∑
A∈A(T )\{T}

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
R↑AT

nA+πeA
e

)
W ε,0

(
R↓AT

n−nA,nA+πeA
e+eA

)
.

5.5.4 Example

We want to give a complete example for the tree T n
e = I(I(Ξ)2Ξ)Ξ which has been

treated in [HP14]. We consider one component in the second Wiener chaos given by:

0
v?

v1

v

v2

1, 2

1, 1

3, 0
1,

1

This component is obtained by merging the two leaves `1 and `2 in the figure just
below. Then we perform the convolution of the mollifier which makes disappear the node
vc:

0
v?

`2

`1

v1

v

v2

1, 2

1, 1

3, 0

1,
1

−→

0
v?

vc

v1

v

v2

1, 2

1, 1
1,

1

−→

0
v?

v1

v

v2

1, 2

1, 1

3, 0

1,
1

We illustrate the following decomposition for this example:
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W ε,k(T n
e ) = W̄ε,k(T n

e ) +
∑

A∈Ak(T )

PA
∑
E∈E↓? (A)

∑
eE ,nA

1

eE !

(
n

nA

)
PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )

+
∑

A∈Ak(T )

PA
∑

E∈E↓−(A)

∑
eE ,nA

1

eE !

(
n

nA

) ∏
E1∈E◦

∑
Ē⊂E1
Ē 6=∅

∑
eĒ

1

eĒ !
(−1)|Ē|P eĒ

Ē,E1


PnA,eE
E W ε(T n−nA,nA+πeE

e+eE )

+
∑

A′∈Ak(T )

∑
A⊂A′
A6=∅

(−1)|A|+1PA′\A
∑
eA,nA

1

eA!

(
n

nA

)
W̃ ε,0

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
,

In the computation just below, we have:

• A1(T ) = {{v?, v}}.

• E↓? (A) = {∅, {(v, v1)}}. Then for E1 = {(v, v1)}, we perform the sum for eE1 and
nA between 0 and 1.

• E↓(A) = E↓? (A) ∪ E↓−(A) with E↓−(A) = {{(v, v1), (v, v2)}}.

• For, E = {{(v, v1), (v, v2)}}, one has E◦ = {{(v?, v)}} and Ē = E1 = {(v?, v)}
with |Ē | = 1 . The label eĒ is just equal to 0.

• For the last part, it follows

W̃ ε,0
(
R↑AT

nA+πeA
e

)
∈{

v?

v

1, 0

2, 0

,

v?

v

1, 0

3, 0

}

W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
∈ {

0
v?

v1 v2

1, 1 1,
1 ,

0
v?

v1 v2

1, 1 2,
0 }

0
v?

v1

v

v2

1, 2

1, 1

3, 0

1,
1

=

0
v?

v1

v

v2

1, 2

γ
?

3, 0

1,
1

+

0
v?

v1
v

v2

1, 2 1,
1

3, 0

1,
1

+

0
v?

v1
v

v2

1, 2 2,
0

2, 0

1,
1
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=

0
v?

v1

v

v2

1, 2

γ
?

3, 0

1,
1

+

0
v?

v1
v

v2

1, 1 1,
1

3, 0

γ ?

+

0
v?

v1
v

v2

1, 2 2,
0

2, 0

γ
1
?

+C1

0
v?

v1 v2

1, 1 1,
1 +2C0

0
v?

v1 v2

2, 0 1,
1

when γ? = (1, 2, v?) and γ1
? = (1, 1, v?) Then

C1 =

v?

v

1, 2

3, 0

=

v?

v

1, 0

3, 0

−

0
v?

v

3, 0

1, 0 −

0
v?

v

2, 0

2, 0

C0 =

v?

v
1, 2

2, 0

=

v?

v

1, 0

2, 0

−

0
v?

v

2, 0

1, 0 −

0
v?

v

1, 0

2, 0

The only divergent part comes from
v?

v

1, 0

2, 0

and
v?

v

1, 0

3, 0

.

5.6 Pairing of labelled graphs
Definition 5.6.1. A labelled graph G = (V , E) is obtained from ḠRu if there exist G1 =
(V1, E1), G2 = (V2, E2) such that the Gi belongs to ḠRu . The graphs Gi are built from
elementary graphs Ḡi ∈ GRu through contractions and the renormalisation procedure. We
suppose also the existence of a bijective map f from V1,` to V2,` such that E = (E1 ∪
E2)/ ∼f and V = (V1 ∪ V2)/ ∼f where ∼f means that we identify f(v) with v for every
v ∈ V1,`. We do the same identification between v1

0 and v2
0 .

Proposition 5.6.2. Every graph G = (V , E) obtained from ḠRu satisfies the assumptions
(5.5) and (5.6).

Proof. We build our graphGwith two graphsG1, G2 which satisfy (5.9) and (5.11) where
we merge their leaves using a bijective map f . Let V̄ ⊂ V , there exist V̄1 ⊂ V1 and
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V̄2 ⊂ V2 such that V̄ = (V̄1 ∪ V̄2)/ ∼f . The following identities hold:

E0(V) = E0(V1) t E0(V2), E↑(V) = E↑(V1) t E↑(V2),

E↓(V) = E↓(V1) t E↓(V2), V = V1,i t V2,i t V1,`.

The Ti satisfy the assumption (5.11) by summing the two bounds and using the previous
identities we obtain the bound (5.6) for the graph G. We do the same for the condition
(5.5) when v0 ∈ V̄ In this case we do not have any constraints on the cardinality of V̄ .

We suppose V̄ ⊂ V0 such that |V̄| ≥ 3. We set V̄` = V̄ ∩ V1,` = V̄ ∩ V2,`.

• If V̄` 6= ∅, then V̄1 6= ∅ and V̄2 6= ∅. We obtain the condition (5.9) on each Ti for V̄i
. The summation of the bounds gives the result (5.5).

• If V̄` = ∅, there exists j ∈ {1, 2} such that |V̄ ∩ Vj,i| ≥ 2 and there exists a leaf ` in
V̄j such that ` /∈ V̄`. From the proposition 5.3.20, the condition (5.5) is satisfied by
V̄j which gives the desire bound.

If |V̄| = 2 then we can face the following pattern V̄ = {v1, v2} created by the pairing

of the leaves:
v1 v2

. We apply to this term the renormalisation procedure

described in 5.5.2 .

5.7 Alternative proof
We start the section with a counter-example to the previous method:

Example 5.7.1. Let us consider the following graph:

0
v?

v1

v2

v3

γ
1

−
j, 0

γ
3

γ
2

where γ1 = (1, 2 + j, 0), γ2 = (1, 1 + j, 0) and γ3 = (1, 1 + j, v1). If we look at V̄ =
{v3, v1}, we obtain:∑
e∈E0(V̄)

ae +
∑

e∈E↓(V̄)

(
1{ve∈V̄∨re=0}(ae + re − 1)− (re − 1)

)
+
∑

e∈E↑(V̄)

((ae + re)− 1ve∈V̄re)
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5.7. Alternative proof

= 3 + j + 3− (j − 1) + 1− j + 3 = 11− j

which can be even negative for j > 11. Therefore, the condition (5.11) is not satisfied. As
the same, we can prove that for V = {v0, v2} the condition (5.9) is not satisfied.

In order to treat the previous example, we perform the telescopic sum on a specific
domain of integration as described in 5.2.2 . Let G = (V , E) ∈ GRu an elementary graph
and T̄ = (V̄ , Ē) a negative subtree of G. In order to treat this divergence, we change the
label of some edge e ∈ E↓(V ) by replacing ve = v0 by a node in V̄ such that this new
Taylor expansion point has a renormalisation effect on V̄ . Let e = (v1, v2) ∈ E↓(V̄) and
v ∈ V̄ such that there exists v′ with (v, v′) ∈ E↑(V̄). The situation can be represented by:

v

v1

v2

γ

where the symbol means that there exists a path between v1 and v in T̄ . The

label of e is replaced by γ = (ae, r
′
e, v) where r′e = max(d−|T̄ |se, re).

Definition 5.7.2. We denote by V(T̄ ), the set such that V ∈ V(T̄ ) and:(
∃v3 ∈ V̄ ∩ V ∧

(
∃v4 ∈ V \ V̄

))
⇒ V̄ ⊂ V.

The previous situation can be summarised by the following trees:

V̄ v2
.

Proposition 5.7.3. Let G as above, we suppose that G satisfies the condition (5.11) then
the new graph obtained from the transformation of the label of e satisfies the same condi-
tion on V(T̄ ) .

Proof. We have to check that by changing ve = v0 in G the contribution of the edge e is
preserved. Let V ∈ V(T̄ ), we distinguish three cases:

• e ∈ E0(V ) then we still have the same contribution with ae.

• e ∈ E↓(V ), we have v1 ∈ V . Then from the properties of V(T̄ ), V̄ ⊂ V and v ∈ V .
We obtain a better contribution 0 instead of −re.

• e ∈ E↑(V ), we have v2 ∈ V . If v /∈ V , we obtain a better contribution ae + r′e. Else
if v ∈ V then V̄ ⊂ V and v1 ∈ V which is absurd.

Proposition 5.7.4. Let T as above, the condition (5.9) is satisfied on V(T̄ ).
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Proof. As before, we have to check that by changing ve = v0 in G the contribution of
the edge e is preserved and it is improved when we choose the set V̄ . Let V ∈ V(T̄ ), we
distinguish three cases:

• e ∈ E0(V ) then we still have the same contribution with ae.

• e ∈ E↓(V ), we have v1 ∈ V . If v0 /∈ V then in the case of V = V̄ , we have a new
contribution −r′e which compensates the divergence of V̄ . Else v0 ∈ V , from the
properties of V(T̄ ), we have v ∈ V and the contribution −r′e is better than −re.

• e ∈ E↑(V ), we have v2 ∈ V . If v ∈ V then v1 ∈ V which is absurd. Else we have
the same contribution.

When we obtain a graph with no leave after the previous transformation, we want
to transform those graphs in constants by fixing all the labels (ae, re, v0) to (ae, 0). Let
e = (v1, v2) an edge in T̄ with a label (ae, re, v0) and re > 0. We can perform the following
decomposition:

v1

v2

= v1

v2

a
e
,0

−
∑
|k|s<re

0

v1

v2

−|k|s , 0

a
e

+
|k|s ,0

.

Proposition 5.7.5. The previous terms depending on k satisfy the conditions (5.10) and
(5.11) on V(T̄ ).

Proof. Let V ∈ V(T̄ ). If 0 /∈ V then we consider the tree T̄ without the edge e. We are
able to split T̄ into two subtrees of G which satisfy the bound (5.9) and the sum of these
two bounds proves the condition (5.10). For (5.11) , if v1 or v2 does not belong to V then
from the definition of V(T̄ ), we have T̄ ∩ V = ∅.

Remark 5.7.6. We can extend the previous result to A ∈ A(T ) where T is the labelled
graph associated to G.

5.8 General Theorem
We want to give some ideas about the following theorem
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Theorem 5.8.1. Let (ΠMε
x ,ΓMε

xy ) be the renormalised model described in chapter 4 asso-
ciated to a local-subcritical equation . Then there exist a random model (Πx,Γx,y) and a
constant C such that for every underlying compact space-time domain

E‖ΠMε ; Π‖ ≤ Cεκ/2.

Remark 5.8.2. The notion of local-subcriticality needs to be specify if we look at the
counter-example given by [Hos15]. We envisage here the case of a multiplicative (additive
depends on the equation) space-time white noise.

5.8.1 Extending the definition
Let T n

e , a label tree, we have by applying Mε = M`ε defined as in (4.9):

MεT
n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
R↓AT

n−nA,nA+πeA
e+eA . (5.16)

Then, the kernel associated to k-th Wiener chaos is given by:

Ŵ ε,kT n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W ε,k

(
R↓AT

n−nA,nA+πeA
e+eA

)
.

Definition 5.8.3. Let T n,d
e a labelled tree. We define an integration domain D as a subset

of A(R↓T ) given by:

A(R↓T ) =
⋃

A∈A(T )

A(R↓AT ).

Definition 5.8.4. Given an integration domain D and A ∈ D, we define A(D) as:

A(D) =
⋃
Ā∈D
Ā⊂A

Ā.

Remark 5.8.5. The set A(D) contains the main divergence A and all its subdivergences.

Example 5.8.6. For A(D) = {T1, T2, T3, T3,1, T3,2}, the different inclusions are repre-
sented by a direct tree just below. An edge of the form (T, T̄ ) means that T̄ ⊂ T .

T

T1T2

T3,1 T3,2

T3
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Remark 5.8.7. Given a labelled tree T n,d
e , in the definition of Wε,k(T n

e ) for k ≤ |LT |
some variables indexed by the inner nodes are integrated. We consider B(V) the set of all
labelled rooted binary trees which have VT = {xv : v ∈ ET} as their set of leaves and
we impose a condition on the labelling:

`v ≥ `w for v ≥ w

where v ≥ w means that w belongs to the shortest path connecting v to the root vertex.
We have already introduced these trees in the section 5.2.2.

The labelled trees (B, `) make a partition of the domain of integration. The labelling
` means that for any v, w ∈ V , we have:

‖v − w‖s ∼ 2−`v∧w .

We fix a labelled tree (B̃, `) in B(VT ). Then we define an integration domain D which
contains every negative subtree T̄ of T such that the subtree with the leaves VT̄ is an
admissible subtree of B̃ in the sense that there exists no leaf ` ∈ LB \ LB̃ such that
%B̃ ≤ `. In the next example, we compute one term which appears in W ε,0(T ) where
T = I1(I(Ξ)Ξ)2.

0
v?

v3 v4

v1

v5 v6

v2

2, 0

1
, 1

1
, 1

2,
0

3
, 0

3
, 0

−→

0
v?

v3

v1 v2

2, 0

1, 11,
1

2,
0

3, 0

We present two integration domains:

• the first one contains the subtrees {v?, v1, v2, v3, v4, v5, v6} and {v?, v3} when we
remove {v?, v1, v2}.

• the second one contains the subtrees {v?, v1, v2, v3, v4, v5, v6} , {v?, v1, v2, v4, v5}
and {v?, v3}.

0

v? v1 v2 v3

0

v3

v?

v2v1
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We can give a more precise formula for the k-th Wiener chaos:

Wε,k(T n
e ) =

‖T‖∑
m=k

∑
A∈Am(T )

PkAWε(T n
e )

where PkA makes the contraction for A and then we complete with other contractions in
order to be in the k-th Wiener. We avoid contraction that can be done by A′ such that
A ⊂ A′ where this inclusion means that T1 ∈ A implies the existence of T2 ∈ A′ such
that T1 ⊂ T2. We set by Am the bigger element in D ∩Am(T ) for the inclusion if this set
is not empty. Then the only divergent part in the previous sum is given by:

Wε,k
D (T n

e ) =

‖T‖∑
m=k

1D∩Am(T )6=∅PkAmW
ε(T n

e ).

We can rewrite the previous identity as:

Wε,k
D (T n

e ) =
∑
A∈D

PkAWε(T n
e ).

Definition 5.8.8. Let D an integration domain and A ∈ D. We define E↓(A(D)) as
the same as E↓(A) but with the constraint that for {E1, ..., En} ∈ E↓(A(D)) one has
Ei ∩ Ej = ∅ where 1 ≤ i < j ≤ n.

For E ∈ E↓(A(D)), we extend the definition of PnA,eE
E W ε(T n−nA,nA+πeE

e+eE ) by start-
ing with the different operations on the maximal trees toward the inclusion order. Then
we follow by the other trees respecting this order. In the example 5.8.6, we start with
{T1 , T2 , T3} and we finish with {T3,1 , T3,2}.

Now, we use the telescopic sum:

W ε,k
D (T n

e ) =
∑
i

Gi

−
∑
A′∈D

∑
A⊂A′
∅

PkA′\A
∑
eA,nA

1

eA!

(
n

nA

)
`Dε

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
,

where the Gi are renormalised on D and `Dε is given recursively for T n,d
e ∈ Tn− by:

`Dε (1) = 1, if |LT | /∈ 2N then `Dε (T n,d
e ) = 0, otherwise

`Dε (T n,d
e ) = −

∑
A∈D\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
`Dε

(
Π−R↑AT

nA+πeA
e

)
W̃ ε,0

(
R↓AT

n−nA,nA+πeA
e+eA

)
,

The last terms appear with a sign minus in∑
A′∈D

∑
A⊂A′

PkA′\A
∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
R↑AT

nA+πeA
e

)
W ε
(
R↓AT

n−nA,nA+πeA
e+eA

)
.
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Now, we have to look after the renormalisation term of the form:

`ε

(
R↑BT

nB+πeB
e

)
W ε
(
R↓BT

n−nB,nB+πeB
e+eB

)
.

where B ∈ A(T ). We also have to look inside the term `ε

(
R↑BT nB+πeB

e

)
. For that purpose,

we need a new representation of the map `ε.

5.8.2 A new representation for the subdivergences
Let T n

e ∈ Tn−, then `ε is defined recursively by: `ε(1) = 1, if |LT | /∈ 2N then `ε(T n
e ) = 0,

otherwise

`ε(T
n
e ) = −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W̃ ε,0

(
R↓AT

n−nA,nA+πeA
e+eA

)
,

This recursive formulation is really close to the formula for the antipode S of the Hopf
algebra Tn− in (1.8). Indeed, one has:

Proposition 5.8.9. Let T n,d
e a labelled tree in Tn− then

`ε(T
n,d
e ) = W̃ ε,0(S(T n,d

e )).

Proof. We proceed by induction. By using the recursive expression of `ε and the formula
for the antipode in the proposition 1.3.7, we obtain:

W̃ ε,0(S(T n,d
e ))

= W̃ ε,0

− ∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
S
(

Π−R↑AT
nA+πeA,d
e

)
R↓AT

n−nA,d+nA+πeA
e+eA


= −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
W̃ ε,0

(
S
(

Π−R↑AT
nA+πeA,d
e

))
W̃ ε,0

(
R↓AT

n−nA,d+nA+πeA
e+eA

)
= −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
W̃ ε,0

(
R↓AT

n−nA,nA+πeA
e+eA

)
= `ε(T

n,d
e ),

where we have apply the induction hypothesis on each term Π−R↑AT nA+πeA,d
e . This con-

cludes the proof.

We can provide a non-recursive formulation of the previous identity by considering
new labelled trees. Let T n,d

e ∈ Tn−, we associate a finite number of labelled trees built in
the following way:

• Each leaf is labelled by a term of the formR↓AT
n−nA,d+nA+πeA
e+eA and each inner node

encodes a term of the form Π−R↑AT nA+πeA,d
e . The root is labelled by T n,d

e .
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• From each inner node labelled with T n,d
e , the next branches of the tree are built by

using a term of the form:

`ε

(
Π−R↑AT

nA+πeA,d
e

)
W̃ ε,0

(
R↓AT

n−nA,d+nA+πeA
e+eA

)
.

For A = {T1, ..., Tn}, we have:

T n
e

Π−R↑T1
T

nA+πeA
e

· · ·
Π−R↑Tn

T
nA+πeA
eR↓AT

n−nA,nA+πeA
e+eA

We denote by T`ε the set of such tree and by T`ε(T n
e ) ⊂ T`ε trees with T n

e for the root
label. These trees correspond to the point of view of Connes-Kreimer in [CK98] which
associates to each Feynman diagram a rooted labelled tree representing the structure of
the subdivergences of the graph.

Remark 5.8.10. Using the previous notations, we obtain the following description for
`ε(T

n
e ):

`ε(T
n
e ) =

∑
T∈T`ε (T n

e )

(−1)|LT |c(T )
∏
u∈LT

W̃ ε,0(u) (5.17)

where c(T ) is a combinatorial coefficient depending on T . This non-recursive formulation
is similar to the replacement of the iterative Bogoliubov formula by the Zimmermann’s
Forest Formula see [Zei08].

Example 5.8.11. We give an example of such graph for T n
e = I(I(Ξ)2Ξ)Ξ:

I(I(Ξ)2Ξ)Ξ

I(Ξ)Ξ

I(Ξ)Ξ 1

I(Ξ)2

I(I(Ξ)2Ξ)Ξ

I(XΞ)Ξ

I(XΞ)Ξ 1

I(Ξ)I1(Ξ)

where the previous trees represent:

W̃ ε,0(I(Ξ)Ξ))W̃ ε,0(I(Ξ)2), W̃ ε,0(I(XΞ)Ξ))W̃ ε,0(I(Ξ)I1(Ξ)).

For each leaf u, we compute the integration domain associated to the labelled tree
W̃ ε,0(u). Then we perform the telescopic decomposition on each leaf of a tree which does
not contain an element of the integration domain as a leaf.

Let B such that C = B dA, One has

R↑AR
↑
C = R↑A , R↑BR

↓
A = R↓AR

↑
C .

By our telescopic sum, we make the following transformation in the next graph:
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T

R↑ATR↓AT
−→

T

R↑CT

−R↓AR
↑
CT R↑AR

↑
CT

R↓CT

The telescopic sum will induce several local transformations of the previous form. We
have described the action on the shape but the same works for the labels. By noticing that
R↑AR

↑
CT = R↑AT , we have added two inner nodes and one leave to the original graph.

This term appears with a sign minus in the formula (5.17) and we do not apply a telescopic
sum on this term because it contains B a consequence of the fact thatR↑BR

↓
A = R↓AR

↑
C .

We finish the section by giving the main steps of the proof of the theorem 5.8.1:

• First, we perform some renormalisation on each negative pattern created by the
contraction of two Ξ. We do this renormalisation on the counter-terms appearing in
MT n

e and also inside the tree generated by `ε.

• Then we decompose the integration domain and we compute its divergent patterns.
We renormalise them by starting by the bigger one and then we treat the subdiver-
gence. During this renormalisation, we need to be careful: the contraction of two
Ξ creates a diverging edge e which can appear as a subdivergence. In that case, we
suppose that we have chosen r′e large enough to cover the divergence of a bigger
pattern.

• It remains to look at each leaf of `ε and to check the condition (5.6). This condition
may not be satisfied if we have a positive subtree in a diverging pattern. But the
renormalisation of the negative complementary of this positive subtree helps for the
bounds.
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Chapter 6

Solving the Generalised KPZ equation

In this chapter, we solve the generalised KPZ equation given on R+ × S1, where S1 =
R/2π, by:

∂tu = ∂2
xu+ g(u)(∂xu)2 + k(u)∂xu+ h(u) + f(u)ξ. (6.1)

where g, k, h and f are smooth. We follow mainly the procedure in [HP14]. The treatment
of the Feynman diagrams is based on the chapter 5. Let an even, smooth, compactly
supported function % : R2 → R with

∫
% = 1 and we set

%ε(t, x) = ε−3%(ε−2t, ε−1x), c% =

∫
P (z)(% ∗ %)(z)dz

where ∗ means space-time convolution and P is the heat kernel. We regularise the noise
as follows

ξε = %ε ∗ ξ.

We prove in this chapter the next two theorems:

Theorem 6.0.12. Let k, h and g smooth functions. Let uε the solution of

∂tuε = ∂2
xuε + g(uε)

(
(∂xuε)

2 − Cε
)

+ k(uε)∂xuε + h̄(uε) + f(uε)(ξε−Cεf ′(uε)) (6.2)

with Cε = ε−1c% and h̄ given by

h̄(u) = h(u)− c(1)
% (f ′(u)3f(u) + g(u)3f(u)4)

− (3c(1)
% + c(2)

% )(g(u)2f ′(u)f(u)3 + g(u)f ′(u)2f(u)2)

− c(2)
% (g(u)f ′′(u)f(u)3 + g′(u)f ′(u)f(u)3 + f ′′(u)f ′(u)f(u)2 + g′(u)g(u)f(u)4)

for some constants c(i)
% which can depend on % but not on ε. The initial condition uε(0, ·) =

u(0, ·) is taken in C(S1) for both cases. Then, there exists a choice of c(i)
% such that for

some T > 0, one has

lim
ε→0

sup
(t,x)∈[0,T ]×S1

|u(t, x)− uε(t, x)| = 0,
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6.1. Structure and the model

in probability for some limit u which gives the Itô product for f(u)ξ. Moreover for any
α ∈ (0, 1

2
) and t > 0, the restriction of uε to [t, T ]× S1 converges to u in probability for

the topology of Cα,α/2.

Theorem 6.0.13. If we take a smooth diffeomorphism ϕ then ϕ(uε) satisfies the same kind
of equation with the same constants but with new g̃, h̃, k̃ and f̃ depending on g, h, k, f
and ϕ given by

f̃ =
f ◦ ϕ
ϕ′

, g̃ = (g ◦ ϕ)ϕ′ +
ϕ′′

ϕ′
, h̃ =

h ◦ ϕ
ϕ′

, k̃ = k ◦ ϕ.

6.1 Structure and the model

6.1.1 Structure
In order to prove the existence of our solution, we use the framework of regularity struc-
ture introduced in [Hai14b]. We will not give a full description of that theory but we
explain how it applies to our example. We first have to build a graded vector space
H =

⊕
α∈AHα where A is a set of real locally finite and bounded and Hα is finite-

dimensional. The space H comes with a group G of linear transformation acting on H
such that for every τ ∈ Hα and every Γ ∈ G:

Γτ − τ ∈
⊕
β<α

Hβ. (6.3)

Before givingH, we remind to the reader the definition of a more general space F recur-
sively as follows:

• {1, X0, X1,Ξ} ⊂ F

• if τ1, . . . , τn ∈ F then τ1 · · · τn ∈ F , where we assume that this product is associa-
tive and commutative

• if τ ∈ F \ {1, Xk : k ∈ N2} then {I(τ), I(0,1)(τ)} ⊂ F .

where (X0, X1) corresponds to (T,X) with the parabolic scaling (2, 1). For k = (k0, k1),
the term Xk is given by X2k0

0 Xk1
1 . The symbol Ξ corresponds to the noise and Ik(·) for

every k ∈ N2 is for the convolution with the heat kernel differentiated k times. From now
we use the shorthand notation I1(·) instead of I(0,1)(·).

To each τ ∈ F , we associate a real number |τ |s called its homogeneity: |Ξ|s = −3
2
−κ,

|X0|s = 2, X1 = 1, |1|s = 0

|τ1...τn|s = |τ1|s + ...+ |τn|s, Ik(τ) = |τ |s + 2− |k|s.

Remark 6.1.1. The homogeneity corresponds to a kind of regularity. The space time
white noise belongs to the Hölder space C− 3

2
−κ for every κ > 0.
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6.1. Structure and the model

The abstract symbols of F appear if we apply a perturbative method on the equation
starting with the noise. Of course, the space H will not contain all the possible products.
The licit products come from the equation. Therefore, we extract rules from the right
hand-side of the equation as described in 3.2 . We make the following transformations:

ξ 7→ Ξ, xi 7→ Xi, u 7→ I(·), D(0,1)u 7→ I1(·), u,D(0,1)u 7→ Xk k ∈ N2.

The latest rules mean that u and D(0,1)u can be either replaced by a monomial or the
corresponding abstract integrator I(·) and I1(·). Non-linearities of the form g(u) are
replaced by polynomials xmun and then we apply the previous transformations. In the
generalized KPZ equation the term g(u)(∂xu)2 gives the rules XkI(·)nI1(·)m for every
k, n,m ∈ N× N× {0, 1, 2}. That means for XkI(·)nI1(·)2:

τ1, ..., τn, τ
′
1, τ
′
2 ∈ H ⇐⇒ Xk

(
n∏
i=1

I(τi)

)
I1(τ ′1)I1(τ ′2) ∈ H.

By applying the previous transformation, the set of rules is given by

Rgkpz = {XkI(·)`, XkI(·)`I1(·), XkI(·)`I1(·)2, XkI(·)`Ξ, (k, `) ∈ N3}.

Now we are able to give the definition of the model set:

T := {τ ∈ F : τ = R(τ1, ..., τn) R ∈ Ru and τ1, ..., τn ∈ T or τ = Ξ},

and we let H be the linear span of T . If Tα := {τ ∈ T : |τ |s = α}, then A := {α ∈
R : Tα 6= ∅} and Hα is the linear span of Tα. The set of rules used to build T is local
subcritical which gives the finiteness of the set Tα. Moreover, we can give the regularity
we earn when we apply a rule:

βRgkpz = min
R∈Rgkpz\{Ξ}

|R|s − |Ξ|s =
1

2
> 0.

This parameter of the equation will play a major role in the convergence of our solution.
Using the labelled trees notation T n

e , the locally subcriticality implies that: for every T̄
subtree of T , one has

|T̄ n
e |s > |Ξ|s = −3

2
− κ.

In order to have better properties, we use the extended structure by adding a new symbol
1α with α < 0. For every labelled tree T n

e , every A ∈ A(T ) and every eA, nA such that
|R↑AT nA+πeA

e |s < 0, we add the following term:

R↓AT
n−nA,nA+πeA
e+eA .

In order to define the structure group G, we need more notations. We set

T+ := {τ ∈ F : τ = 1 or |τ |s > 0, and τ = τ1τ2 =⇒ τ1, τ2 ∈ T+},
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6.1. Structure and the model

and we letH+ be the linear span of T+. IfH∗+ denotes the dual ofH+, then we define

G+ := {g ∈ H∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H+}.

For any g ∈ H∗+ we define a linear operator Γg : H 7→ H by
Γg1α = 1α, ΓgΞ = Ξ, ΓgX = X + g(X), Γg(τ τ̄) = (Γgτ)(Γg τ̄),

ΓgIk(τ) = Ik(Γgτ) +
∑
`

X`

`!
g(Jk+`(τ)) ,

where
Jk(τ) := 1(β−|k|s+|τ |s>0) Ik(τ).

The structure group G is given by:

G = {Γg, g ∈ H∗+}

It is easy to check the property (6.3) on G but it is not obvious to prove that this set
forms a group under composition.

Remark 6.1.2. The linear map Γg is given using the coproduct ∆ defined on the extended
structure in 4.1 : Γg = (1⊗ g)∆ which is equivalent to the recursive definition.

In order to describe the set T , we use the same graphical notation as in [HP14]. There-
fore all the basis vectors are denoted in blue. We draw a circle for Ξ = . The abstract
integrators I(.) and I1(.) are represented by a downward facing straight line which is
thicker for I1(.). Symbols in this representation are multiplied by joining their trees by
their roots. For example, we have: I(I1(Ξ)2)Ξ = . . The multiplication of τ by X is
denoted by if τ contains Ξ else is given by . Symbols of negative homogeneity will
play a major role, therefore we list them:

Homogeneity Symbol(s)

−3
2
− κ

−1− 2κ ,
−1

2
− 3κ , , , , ,

−1
2
− κ ,

−4κ , , , , , , , , , , ,
, , , , , , , , , , ,

−2κ , , , , , , , ,
0 1

(6.4)

In order to describe the extended structure Tex, we represent the symbol 1−1−2κ by a green
circle: 1−1−2κ = . We add the following negative symbols

Homogeneity Symbol(s)

−4κ , , , , ,
(6.5)
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6.1. Structure and the model

Remark 6.1.3. The symbol 1−2κ appears also in some labelled trees when we remove the
subtrees , , , , , and . But all the constants associated to the previous
negative trees end up to be zero.

6.1.2 Model

In practice, we do not need to define a model for the whole space H. We can restrict
ourselves to H≤ζ =

⊕
α≤ζ Hα for some large ζ . We first equip R2 with the norm ‖ · ‖s

associated to the parabolic scaling (2, 1), defined by

‖(t, x)‖s = |t|1/2 + |x|.

We consider a kernel K : R2 → R which satisfies:

1. The kernel K is compactly supported in the unique ball B(0, 1) center at the origin
associated to ‖ · ‖s.

2. The kernel is anticipative in the sense that for t ≤ 0, K(t, x) = 0. Moreover, it is
symmetric in the space variable: K(t, x) = K(t,−x).

3. For (t, x), with (t, x) ∈ B(0, 1/2) and t > 0, then

K(t, x) =
1√
4πt

e−
x2

4t

and K is smooth on |t|+ x2 ≥ 1/4.

4. For every polynomial P : R2 → R of parabolic scaling less than ζ , one has∫
R2

K(t, x)P (t, x)dtdx = 0.

The kernelK is very similar to the heat kernelG. The existence of such kernel is proved in
[Hai14b] by using a smooth cutoff function which allows us to split the heat kernel G into
two pieces: G = K + R where R is smooth. We will interpret our abstract symbol in the
space S ′(R2) of Schwartz distributions on R2. In order to have a local description in that
space, we denote by B the set of function ϕ : R2 → R such that ϕ ∈ C2, ‖ϕ‖C2 ≤ 1 and
ϕ is compactly supported in a unit ball around the origin. We rescale these test functions
using the parabolic scaling:

ϕλz̄ (z) = λ−3ϕ(λ−2(t− t̄), λ−1(x− x̄))

where z = (t, x) and z̄ = (t̄, x̄). We denote by L(H,S ′(R2)) the space of linear maps
fromH to S ′(R2).
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6.1. Structure and the model

We define a sequence of admissible models (ΠMε ,ΓMε) using a renormalisation map
Mε defined on the extended structure, using a coproduct given in (4.1):

MεT
n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA
e

)
R↓AT

n−nA,nA+πeA
e+eA . (6.6)

Let A = {T1, ..., Tn} ∈ A(T ) then by multiplicativity of `ε, we get:

`ε

(
Π−R↑AT

nA+πeA
e

)
=

n∏
i=1

`ε

(
Π−R↑TiT

nA+πeA
e

)
.

From the gaussian structure, `ε must be zero on trees with odd number of leaves. This fact
is guaranteed in the recursive definition 5.1.3 of `ε where we have:

`ε(T
n,d
e ) = −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA,d
e

)
W̃ ε,0

(
R↓AT

n−nA,d+nA+πeA
e+eA

)
,

and W̃ ε,0 is zero on trees with odd number of leaves. From (6.4) and the fact that elemen-
tary trees are killed by Π−, we deduce that we apply `ε on:

Homogeneity Symbol(s)

−1− 2κ ,
−4κ , , , , , , , , , , ,

, , , , , , , , , , ,
−2κ , , , , , , , ,
0 1

(6.7)

We explain the computation ofMε on some examples. For , the only subtrees which
are non zero in A(T ) are: 1, , and . Therefore, we obtain

Mε = `ε(1) + `ε( ) + `ε( ) + `ε( ) + `ε( ) + `ε( )

= + `ε( ) + `ε( ) + `ε( ).

For , `ε is non zero on 1, , and . Moreover, appears two times in that’s
why we have a combinatorial factor of 2 in the next identity

Mε = `ε(1) + `ε( ) + 2`ε( ) + 2`ε( ) + 2`ε( ) + `ε
( )

= + `ε( ) + 2`ε( ) + `ε
( )

.

Remark 6.1.4. In the two previous examples, we anticipate the fact that `ε( ) = `ε( ) =
`ε( ) = 0 which will be proved in 6.6.3. Moreover, we omit the label−2κ in the counter-
terms associated to the previous constants: , and .
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If we use the recursive definition of `ε in the previous computation, we get:

`ε

( )
= −W̃ ε,0

( )
+ W̃ ε,0( ) W̃ ε,0

( )
+ W̃ ε,0( ) W̃ ε,0

( )
`ε
( )

= −W̃ ε,0
( )

+ W̃ ε,0( ) W̃ ε,0( ) + 2W̃ ε,0( ) W̃ ε,0
( )

.

Finally, the mapMε has 34 parameters: the value of W̃ ε,0 on each negative tree. If we want
just the convergence of the renormalised model the map W̃ ε,0 is uniquely determined as
in 5.1.3. There are three constraints which restraint our choice for `ε and give a map with
less parameters:

• the Itô product in 6.3.

• the invariance by smooth diffeomorphism in 6.2.2.

• the convergence of the renormalised model in 6.6 .

In order to obtain the Itô model, we need to annihilate the main components of the 0-th
Wiener chaos of { , , , , , , , , , , , , } which are terms of the
form: τΞ. Then the map `ε is given on these terms by:

`ε( ) = −Cε = −W̃ ε,0( )

`ε

( )
= −c(1)

% = −W̃ ε,0
( )

+ Cε W̃
ε,0
( )

+ Cε W̃
ε,0
( )

`ε
( )

= −c(2)
% = −W̃ ε,0

( )
+ Cε W̃

ε,0( ) + Cε W̃
ε,0
( )

`ε

( )
= −c(3)

% = −W̃ ε,0
( )

+ Cε W̃
ε,0
( )

`ε

( )
= −c(4)

% = −W̃ ε,0
( )

+ Cε W̃
ε,0
( )

`ε

( )
= −c(5)

% = −W̃ ε,0
( )

`ε
( )

= −c(6)
% = −W̃ ε,0

( )
+ Cε W̃

ε,0
( )

,

where Cε ∼ ε−1 and the c(i)
% are order one. The explanation of why the constants c(i)

%

end up to be finite can be found in 6.6.4. The invariance by diffeomorphism gives the
following constraints:

`ε( ) = `ε( ) = −Cε
4`ε

( )
+ `ε

( )
= −c(1)

%

`ε
( )

+
1

2
`ε

( )
= −c(2)

%

`ε
( )

+ `ε
( )

= −c(2)
%

`ε
( )

+ 2`ε
( )

= −c(2)
%

`ε

( )
+ `ε

( )
+ 2`ε

( )
= −c(2)

%
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2`ε

( )
+ 2`ε

( )
+ 2`ε

( )
+ 4`ε

( )
= −3c(1)

% − c(2)
%

2`ε

( )
+ 2`ε

( )
+ `ε

( )
+ `ε

( )
= −3c(1)

% − c(2)
% .

For the convergence some terms need a log renormalisation with Lε ∼ log(ε) given
in 6.6.4: { , , , , , , , }. This log renormalisation is compatible
with the previous constraints and we obtain the following values for `ε:

`ε( ) = `ε( ) = −Cε , `ε

( )
= −c(1)

% ,

`ε

( )
= `ε

( )
= −c(2)

% , `ε

( )
= −c(3)

% ,

`ε

( )
= −c(4)

% , `ε

( )
= −c(5)

% ,

`ε
( )

= −c(6)
% , `ε

( )
= `ε

( )
=

1

8
Lε ,

`ε
( )

= −1

2
Lε − c(1)

% , `ε
( )

= −1

4
Lε ,

`ε
( )

= −c(2)
% , `ε

( )
= −1

2
Lε ,

`ε
( )

= `ε
( )

=
1

4
Lε , `ε

( )
= −1

2
Lε − c(2)

% ,

Otherwise `ε is zero. These values precise the definition of `gkpz given in 3.7.4. After
computing the values of `ε, the renormalisation map M is given

for τ ∈ { , , , , , , , , , , , ,1} by:

Mτ = τ.

For the other terms, we have

Mε = − Cε , Mε = − Cε ,
Mε = − 2Cε , Mε = − Cε ,

Mε = − Cε , Mε = − Cε − Cε − c(1)
% ,

Mε = − Cε − Cε + c(4)
% , Mε = − Cε − c(3)

% ,

Mε = − Cε − c(4)
% , Mε = − Cε − 3

2
c(1)
% −

1

2
c(2)
% + c(5)

% ,

Mε = − c(5)
% , Mε = − Cε +

1

8
Lε ,

Mε = +
1

8
Lε , M = − 1

2
Lε − c(1)

% ,

Mε = − Cε − 3c(1)
% − c(2)

% + c(3)
% , Mε = − 1

4
Lε ,

Mε = − 3Cε , Mε = − Cε ,

Mε = − Cε − Cε , Mε = − Cε − 2Cε − c(2)
% + c(6)

% ,
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Mε = − Cε − c(2)
% , Mε = − Cε ,

Mε = − Cε − Cε − c(2)
% Mε = − Cε − 1

2
Lε ,

Mε = − Cε +
1

4
Lε , Mε = +

1

4
Lε ,

Mε = − Cε − c(6)
% , Mε = − Cε − 1

2
Lε − c(2)

% ,

Mε = − Cε ,

Remark 6.1.5. The exact values of the constants are explained in the section 6.6. The
divergent part Lε of the constant is crucial for the convergence of the model. This log
divergence compensates and it is not present in the renormalised equation. This fact has
been noticed in [Hai13] for the KPZ equation and the terms 4 + .

Remark 6.1.6. The choice for `ε is not unique. We give one example of map `ε such that
all the constraints explained above are satisfied.

In the framework of the extended structure the maps ΠMε
x and ΓMε

x,y have nice identities
in (4.12):

ΠMε
x = ΠxMε, ΓMε

xy = ΓγMεx,y
= Γγx,yM◦ε .

Remark 6.1.7. The expression of ΠMε
x is useful to obtain the renormalised equation and

to explain the convergence of the renormalised model.

6.1.3 Fixed point

We solve our fixed point problem in the abstract space H. We are looking for functions
from R2 to H which behave like Hölder functions. For that purpose, we define the space
Dγ,η by:

Definition 6.1.8. A function f : R2 → ⊕α<γHα, belongs to Dγ,η, if for every compact
domain K, one has:

‖f‖γ,η = sup
z∈K

sup
α<γ

‖f(z)‖α
|t|( η−α2

)∧0
+ sup

(z,z̄)∈K2

sup
α<γ

‖f(z)− Γzz̄f(z̄)‖α
(|t| ∧ |t̄|) η−γ2 ‖z − z̄‖γ−αs

<∞. (6.8)

In the previous definition, we have denoted by ‖τ‖α the norm of the component of τ
inHα.

Remark 6.1.9. If we do not distinguish the time variable t in the definition of Dγ,η and
take η = γ, we obtain an analogue of the Hölder function. Adding the parameter η allows
us to deal with singular initial conditions on the line {(t, x) : t = 0}.
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The definition of the previous spaces depends on the model which is parametrised by
ε. We need a way to compare two models and a way to compare two functions in Dγ,η
with respect to two different models. Based on [Hai14b], we use a semi-distance between
two models. Given (Π,Γ) and (Π̄, Γ̄) two admissible models, we consider for a given
compact K ⊂ R2

‖Π; Π̄‖ = sup
z∈K

sup
ϕ∈B
λ∈(0,1]

sup
τ∈T

|(Πzτ − Π̄zτ)(ϕλz )|
λ|τ |s

+ sup
z,z̄∈K

sup
τ∈T

sup
α<γ

‖Γzz̄τ − Γ̄zz̄τ‖α
‖z − z̄‖γ−αs

.

In our case, this semi distance is a distance because we are working on a compact domain
in the space variable and on finite time. The natural distance defined in [Hai14b] between
U ∈ Dγ,η and Ū ∈ D̄γ,η where D̄γ,η is built from (Π̄, Γ̄), is given by

‖U ; Ū‖γ,η = sup
z∈K

sup
α<γ

‖U(z)− Ū(z)‖α
|t|( η−α2

)∧0
+ sup

(z,z̄)∈K2

sup
α<γ

‖U(z)− Ū(z)− Γzz̄U(z̄) + Γzz̄Ū(z)‖α
(|t| ∧ |t̄|) η−γ2 |z − z̄|γ−α

.

on a fibred spaceMnDγ,η which contains pairs ((Π,Γ), U) such that (Π,Γ) is an admis-
sible model and such that the space Dγ,η is constructed from the model (Π,Γ). For our
fixed point problem, we will not consider the whole space Dγ,η but we restrain ourselves
to the subspace Dγ,ηU of functions in Dγ,η taking values in U given by

U = I(H)⊕ H̄

where H̄ are the abstract polynomials. The set U is an example of a sector of H with 0
regularity. We recall the definition given in [Hai14b] by

Definition 6.1.10. Let V ⊂ H, V is a sector of regularity α ≤ 0 if

• V is invariant under the structure group G.

• V =
⊕

β≥α Vβ with Vβ ⊂ Hβ and there exists a complement of Vβ inHβ .

This definition allows us to give a way of multiplying functions in the Dγ,η spaces.
We consider functions which take values in some specific sectors.

Proposition 6.1.11. Let for i ∈ {1, 2}, Ui ∈ Dγi,ηi(Vi) where Vi is a sector of regularity
αi. Let furthermore, γ = (γ1 + α2) ∧ (γ2 + α1). Then U = Qγ(U1U2) ∈ Dγ,η

where
η = (η1 + α1) ∧ (η2 + α1) ∧ (η1 + η2) and Qγ is the projection on

⊕
α≤γHα.

Remark 6.1.12. In the original theorem in [Hai14b], we need the hypothesis of γ regu-
larity for (V1, V2) which depends on the choice of the product in our structure. We have
chosen the pointwise product for the product Γτ τ̄ = ΓτΓτ̄ which gives the γ regularity
for every γ.

Now, we want to be able to reconstruct a global distribution from U ∈ Dγ,η. This
action is done by the reconstruction operator R given in [Hai14b]. In our case, for every
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τ ∈ H, Πxτ happens to be a function. Therefore one has an explicit expression for R :
Dγ,η → C 1

2
−κ given in [Hai14b] by:

(RU)(x) = (ΠxU(x))(x).

Every element U of Dγ,η has a unique description:

U(z) = u(z)1 + Ũ(z)

where Ũ belongs to
⊕

α≥βHα where β = 1
2
− κ. Indeed the term with the worst homo-

geneity in I(H) is I(Ξ) with |I(Ξ)|s = 1
2
− κ. For U ∈ Dγ,ηU , we just have RU = u. It

has proved in [Hai14b], that the map (Π, U) 7→ RU is jointly lipschitz continuous toward
the distances defined before.

We need to reformulate the classical fixed point problem into theDγ,η spaces. We start
with the integral equation:

u = G ∗ ((g(u)(∂xu)2 + h(u)∂xu+ k(u) + f(u)ξε)1t>0) +G ∗ u0,

where G denotes the heat kernel. We want to rewrite the previous equation in Dγ,η and
the solution U will be linked to u by the reconstruction operator: u = RU . We first give
a meaning to the non-linear operations g(u), h(u), k(u) and f(u). Let U ∈ Dγ,ηU and a
smooth function F : R→ R, we define

(F̂ (U))(z) = F (u(z))1 +
∑
k≥1

DkF (u(z))

k!
QγŨ(z)k.

whereQγ is the projection on
⊕

α≤γHα For the partial derivative ∂x, we associate a linear
operator D on U defined by:

DI(τ) = I1(τ), DXk = Xk−(0,1).

The action on Dγ,η of the previous two operators is:

• F̂ maps Dγ,ηU into Dγ,ηV where V is a sector of regularity 0.

• D maps Dγ,ηU into Dγ−1,η−1
W where W is a sector of regularity −1

2
− κ.

We notice that z 7→ Ξ belongs to Dγ,γ for every γ > 0 and takes value in a sector of
regularity α = −3

2
− κ. By applying several times the proposition 6.1.11, we obtain:

• U 7→ F̂ (U)Ξ maps Dγ,ηU into Dγ+α,η+α.

• U 7→ Qγ−1

(
Ĥ(U)DU

)
maps Dγ,ηU into Dγ−1,η−1 .

• U 7→ Qγ+α(DU)2 maps Dγ,ηU into Dγ+α,2η−2

W̄
where W̄ is a sector of regularity

2α + 2.
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• U 7→ Qγ+α

(
Ĝ(U)Qγ+α(DU)2

)
= Qγ+α

(
Ĝ(U)(DU)2

)
mapsDγ,ηU intoDγ+α,2η−2.

If U ∈ Dγ,η then for every γ̄ ≤ γ and η̄ ≤ η, then Qγ̄U ∈ Dγ̄,η̄. Let Fγ defined for
every τ ∈ U by

Fγ(τ) = Qγ+α

(
Ĝ(τ)(Dτ)2 + Ĥ(τ)Dτ + K̂(τ) + F̂ (τ)Ξ

)
then it happens:

Proposition 6.1.13. The map u 7→ Fγ(u) is locally lipschitz from Dγ,ηU to Dγ+α,2η−2 for
every γ > |α| and for every η ∈ (0, α + 2].

Now it remains to give a meaning to the space time convolution with the heat kernel
and the initial condition in our abstract space. In [Hai14b], it has been shown that it is
possible to construct a linear operator P : Dγ−2+δ,η−2+δ → Dγ,ηU with γ > 2 + δ and
δ < 1

2
− κ− η such that:

1. P commutes with the reconstruction operatorR :RPU = G ∗ RU .

2. P can be decomposed as follows: PU = IU + P̄U where P̄U takes value in H̄ .

3. There exists θ > 0 such that:

‖P1t>0U‖γ,η . T θ‖U‖γ−2+δ,η−2+δ

over the domain [0, T ]× R.

Given a function u ∈ Cγ , we denote by Jγu its taylor expansion of order γ:

(Jγu)(z) =
∑
|k|s<γ

Xk

k!
(Dku)(z).

After the introduction of the previous objects, we are able to pose our fixed point problem
in Dγ,ηU by looking at solutions U of:

U = P(F̂γ(U)1t>0) + Jγ(G ∗ u0). (6.9)

Theorem 6.1.14. Let γ ∈ (3
2
+κ, ζ) and f , g, h, k smooth. Then for every initial condition

u0 ∈ C(S1) and every admissible model (Π,Γ), there exits a time T such that the fixed
point map (6.9) admits a unique solution in Dγ,0([0, T ] × S1). The solution is locally
lipschitz continuous from C(S1)×M toMnDγ,0.

168



6.2. The renormalised equation

6.2 The renormalised equation
This section is devoted to the proof of the renormalised equation obtained from Mε and
the proof of the theorem 6.0.13. The proof of the convergence of the renormalised model
is delayed to the next chapter.

Proposition 6.2.1. Let k, h, g, f smooth functions and Mε defined as in (6.6). Let u0 ∈
C(S1) and ξε a smooth function. We denote by U the local solution to (6.9) with model
(ΠMε ,ΓMε). Then the function uε = RMεU is the classical solution to (6.2) with h re-
placed by h̄.

Proof. The function U solves

U = P(F̂γ(U)1t>0) + Jγ(G ∗ u0). (6.10)

By applying the reconstruction operatorRMε of the model (ΠMε ,ΓMε), we obtain:

u = G ∗ ((k(u) +RMε(Ĝ(u)(DU)2) +RMε(Ĥ(u)DU) +RMε(F̂ (u)Ξ))1t>0) +G ∗ u0

If we consider an element ofDγ,η with γ = 3
2

+2κ, for κ > 0 then U admits the following
decomposition:

U = u1 + f(u) + f ′(u)f(u) + g(u)f(u)2 + u′X + f ′(u)2f(u)

+ g(u)f ′(u)f(u)2
(

+
)

+ g(u)2f(u)2

+
1

2
f ′′(u)f(u)2 + g′(u)f(u)3 + f ′(u)u′ ,

for some functions u and u′. By considering the right hand-side of the equation satisfied
by U as an element of Dκ for κ > 0, we have:

Fγ(U) = Qκ
(
Ĝ(U)(DU)2 + Ĥ(U)DU + K̂(U) + F̂ (U)Ξ

)
= f(u) + f ′(u)f(u) + g(u)f(u)2 +

1

2
f ′′(u)f(u)2

+ f ′(u)2f(u) + g(u)f ′(u)f(u)2
(
2 +

)
+ 2g(u)2f(u)3

+ f ′(u)u′ + (g(u)u′ + k(u))f(u) + f ′(u)3f(u)

+ g(u)f ′(u)2f(u)2
(

2 + + 2 +
)

+ g(u)2f ′(u)f(u)3
(

2 + 2 + 4 + 2
)

+ g(u)3f(u)4
(

4 +
)

+
1

6
f ′′′(u)f(u)3 +

1

2
g′′(u)f(u)4 +

1

2
f ′′(u)f ′(u)f(u)2

(
+ 2

)
+

1

2
g(u)f ′′(u)f(u)3

(
2 + 2

)
+ g′(u)f ′(u)f(u)3

(
+ + 2

)
+ g′(u)g(u)f(u)4

(
2 + + 2

)
+ f ′(u)2u′ + f ′′(u)f(u)u′
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+ 2g(u)f ′(u)f(u)u′ + g′(u)f(u)2u′ + (g(u)u′ + k(u))f ′(u)f(u)

+ (g(u)u′ + k(u))g(u)f(u)2 + (g′(u)u′ + k′(u))f(u)2

+ (g(u)u′ + k(u))f ′(u)f(u) + (g(u)u′ + k(u))g(u)f(u)2 + u1.

The coefficients of the trees are easy to compute: they depend on the rules used for their
construction. The generalised KPZ terms with negative homogeneity are built with the
following rules:

Ξ→ f(u), XΞ→ f ′(u)u′, I(·)nΞ→ f (n)(u), XI(·)nΞ→ f (n+1)(u)u′,

I(·)nI1(·)2 → g(n)(u), XI(·)nI1(·)2 → g(n+1)(u)u′, I(·)I1(·)→ (k′(u) + g′(u)u′).

We want to compute the reconstruction operatorRMε on Fγ(U). For that purpose, we use
the identity:

(RMετ)(z) = (ΠMε
z τ)(z) = (ΠzMετ)(z)

where (ΠMε ,ΓMε) is the model defined on the extended structure. For every τ with nega-
tive homogeneity, we have:

Mετ = τ +
∑
i

λiτi

where the τi belong to { , , , , , ,1} and λi ∈ R. It follows:

(Πz )(z) = (Πz )(z) = 0

and we have the same identities for { , , , , } because the node label d is ignored
at the root by Πx . It remains to compute Π̂ on and :

(Πz )(z) = (Πz )(z)(Πz )(z) = 0

(Πz )(z) = (Πz )(z)(Πz )(z) = 0,

because | |ex > 0 and | |ex > 0. Finally, we obtain:

(RMεFγ(U))(z) = g(u)
(
(∂xu)2 − Cεf(u)2

)
+ h̄(u) + f(u)(ξ − Cεf ′(u)).

Indeed, we have:

(Πx )(x)− (ΠMε
x )(x) = c(1)

% ,

(Πx2 + 2 + 2 + 4 )(x)− (ΠMε
x 2 + 2 + 2 + 4 )(x)

= 3c(1)
% + c(2)

% + 2(
1

4
Lε) + 4(−1

8
Lε) = 3c(1)

% + c(2)
% ,

(Πx2 + 2 + + )(x)− (ΠMε
x 2 + 2 + + )(x) = 3c(1)

% + c(2)
% ,

(Πx4 + )(x)− (ΠMε
x 4 + )(x) = 4(−1

8
)Lε +

1

2
Lε + c(1)

% = c(1)
% ,

(Πx + )(x)− (ΠMε
x + )(x) = c(2)

% ,
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(Πx + 2 )(x)− (ΠMε
x + 2 )(x) =

1

2
Lε + 2(−1

4
)Lε = 0 ,

(Πx )(x)− (ΠMε
x )(x) = c(2)

% ,

(Πx + 2 )(x)− (ΠMε
x + 2 )(x) =

1

2
Lε + c(2)

% + 2(−1

4
)Lε = c(2)

% ,

(Πx )(x)− (ΠMε
x )(x) = Cε ,

(Πx )(x)− (ΠMε
x )(x) = Cε.

Proposition 6.2.2. Let uε the solution of (6.2) with h replaced by h̄. If we take a smooth
diffeomorphism ϕ then vε = ϕ(uε) satisfies the same kind of equation with the same
constants but with new g̃, h̃, k̃ and f̃ depending on g, h, k, f and ϕ.

Proof. We consider the following equation:

∂tuε = ∂2
xuε + g(uε)(∂xuε)

2 + k(uε)(∂xuε) + h(uε) + f(uε)ξε.

If we set uε = ϕ(vε) where ϕ is a smooth diffeomorphism, then

∂tuε = ϕ′(vε)∂tvε, ∂xuε = ϕ′(vε)∂xvε, ∂2
xuε = ϕ′′(vε)(∂xvε)

2 + ϕ′(vε)∂
2
xvε.

Now, vε is the solution of the following equation:

∂tvε = ∂2
xvε +

(
(g ◦ ϕ)ϕ′ +

ϕ′′

ϕ′

)
(vε)(∂xvε)

2 + (k ◦ ϕ)(vε)∂xvε +

(
h ◦ ϕ
ϕ′

)
(vε)

+

(
f ◦ ϕ
ϕ′

)
(vε)ξε.

We define the maps Vϕ and Rε by:

Vϕ : (f, g, h, k) 7→
(
f ◦ ϕ
ϕ′

, (g ◦ ϕ)ϕ′ +
ϕ′′

ϕ′
,
h ◦ ϕ
ϕ′

, k ◦ ϕ
)

Rε : (f, g, h, k) 7→ (f, g, h1, k)

where

h1(u) = h(u)− C(ε)
1 f ′(u)3f(u)− C(ε)

2 g(u)2f ′(u)f(u)3 − C(ε)
3 g(u)f ′(u)2f(u)2

− C(ε)
4 g(u)3f(u)4 − C(ε)

5 g(u)f ′′(u)f(u)3 − C(ε)
6 g′(u)f ′(u)f(u)3

− C(ε)
7 f ′′(u)f ′(u)f(u)2 − C(ε)

8 g′(u)g(u)f(u)4 − C(ε)
9 g(u)f(u)2 − C(ε)

10 f
′(u)f(u).

The previous constants are of order one (see 6.6) except C(ε)
9 and C(ε)

10 which behave
as 1/ε. We want to prove in order to have the invariance by diffeomorphism that:

Rε ◦ Vϕ = Vϕ ◦Rε.
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We first compute Vϕ ◦Rε:

Vϕ ◦Rε : (f, g, h, k) 7→
(
f ◦ ϕ
ϕ′

, (g ◦ ϕ)ϕ′ +
ϕ′′

ϕ′
,
h1 ◦ ϕ
ϕ′

, k ◦ ϕ
)

The other term Rε ◦ Vϕ is given by

Rε ◦ Vϕ : (f, g, h, k) 7→
(
f ◦ ϕ
ϕ′

, (g ◦ ϕ)ϕ′ +
ϕ′′

ϕ′
, h2, k ◦ ϕ

)
where h2 has the following form:

h2 =
h1 ◦ ϕ
ϕ′

−
(
−C(ε)

1 − C
(ε)
2 + C

(ε)
3 + C

(ε)
4 + 2C

(ε)
5 + C

(ε)
6 − 2C

(ε)
7 − C

(ε)
8

)
(f ◦ ϕ)4(ϕ′′)3

(
1

ϕ′

)7

−
(
−C(ε)

5 − C
(ε)
6 + C

(ε)
7 + C

(ε)
8

)
(f ◦ ϕ)4ϕ′′ϕ′′′

(
1

ϕ′

)6

− (
(
−2C

(ε)
2 + C

(ε)
3 + 3C

(ε)
4 + 2C

(ε)
5 − C

(ε)
6

)
(f ◦ ϕ)4(g ◦ ϕ)(ϕ′′)2

+ (3C
(ε)
1 + 3C

(ε)
7 + C

(ε)
2 − 2C

(ε)
3 − C

(ε)
5 − C

(ε)
6 )(f ◦ ϕ)3(f ′ ◦ ϕ)(ϕ′′)2)

(
1

ϕ′

)5

− ((C
(ε)
6 − C

(ε)
7 )(f ◦ ϕ)3(f ′ ◦ ϕ)ϕ′′′ + (C

(ε)
8 − C

(ε)
5 )(f ◦ ϕ)4(g ◦ ϕ)ϕ′′′)

(
1

ϕ′

)4

− ((C
(ε)
9 − C

(ε)
10 )(f ◦ ϕ)2 + (C

(ε)
5 − C

(ε)
7 )(f ◦ ϕ)3(f ′′ ◦ ϕ)

+ (C
(ε)
8 − C

(ε)
6 )(f ◦ ϕ)4(g′ ◦ ϕ) + (−3C

(ε)
1 + C

(ε)
3 − C

(ε)
7 )(f ◦ ϕ)2(f ′ ◦ ϕ)2

+ (−C(ε)
2 + 3C

(ε)
4 + C

(ε)
8 )(f ◦ ϕ)4(g ◦ ϕ)2

+ (C
(ε)
6 − C

(ε)
5 + 2C

(ε)
2 − 2C

(ε)
3 )(f ◦ ϕ)3(f ′ ◦ ϕ)(g ◦ ϕ))ϕ′′

(
1

ϕ′

)3

It turns out that if we want the previous identityRε ◦Vϕ = Vϕ ◦Rε, we have to choose:

C
(ε)
1 = C

(ε)
4 , C

(ε)
3 = C

(ε)
2 = 3C

(ε)
1 + C

(ε)
5 , C

(ε)
5 = C

(ε)
6 = C

(ε)
7 = C

(ε)
8 , C

(ε)
9 = C

(ε)
10 .

These constraints are easy to check by fixing the two constants C(ε)
1 = c

(1)
% and C(ε)

5 =

c
(2)
% needed for the Itô model. The constants C10 is equal to Cε. Then, the renormalised

equation for uε is given by

∂tuε = ∂2
xuε + g(uε)

(
(∂xuε)

2 − Cεf(uε)
2
)

+ h(uε) + f(uε)(ξ − f ′(uε)Cε)
− c(1)

% (f ′(uε)
3f(uε) + g(uε)

3f(uε)
4)

− (3c(1)
% + c(2)

% )(g(uε)
2f ′(uε)f(uε)

3 + g(uε)f
′(uε)

2f(uε)
2)

− c(2)
% (g(uε)f

′′(uε)f(uε)
3 + g′(uε)f

′(uε)f(uε)
3

+ f ′′(uε)f
′(uε)f(uε)

2 + g′(uε)g(uε)f(uε)
4).
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6.3 The Itô model
We want to define a random model (Π̂, Γ̂) called the Itô model as in [HP14] which will
be the limit of (Π̂ε, Γ̂ε) = (ΠMε ,ΓMε) such that for every τ ∈ U

(Π̂(t,x)Ξτ)(ϕ) =

∫ ∞
t

〈(Π̂(t,x)τ)(s, ·)ϕ(s, ·), dW (s)〉.

If we denote by F , the filtration generated by the increment of W the underlying cylin-
drical Wiener process, the support of ϕ needs to be included in the future (t,∞) × S1.
From [HP14], we have to prove that for each Ξτ with negative homogeneity one has in
the limit:

(Π̂0τΞ)(ϕ) = ((Π̂0τ) � (Π̂0Ξ))(ϕ),

where � is the wick product.
This identity has been proved for { , , , , , , , , } in [HP14]. It re-

mains to prove the same identity for { , , , , , , }. We first explain the
proof for the general case and then we wil give a complete example. Let τ1 = τΞ, we
want to avoid the contraction between Ξ and another Ξ in (Π̂

(ε)
0 τ)(ϕ) when we pass to the

limit in ε. We get two possibilities which are summarised in the next figure:

0

v?

v2

`1

`2

ϕ

−→

0

v?

v2

vc

ϕ

,

0

v?

v2

`1

`2

ϕ

−→

0

v?

v2

vc

ϕ

,

where the edge (v?, v2) has to been understood as there exits a path between v? and v2.
In the second figure, the path between v? and v2 may be empty but there exists a path
between v2 and 0. We notice that:

• The contraction in the first figure creates a cycle. If (v?, v2) is just an edge, the
renormalisation of this divergence will annihilate the term in the limit. If (v?, v2)
is a path with more edges, it starts to become tricky: this cycle is a good help for
the convergence thanks to the non-anticipativity of the kernel K. But we are not
guaranteed that we obtain a zero constant in the limit that’s why we need to remove
this kind of terms with the renormalisation group.

• In the second figure, we obtain a cycle with the test function. In that case, all the
terms will go to zero in the limit because we have chosen a test function supported
in the future.
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After presenting the main arguments given in [HP14], we present a full example by
considering the Wiener chaos decomposition of :

(Π̂
(ε)
0 )(ϕ) =

7∑
i=1

Ai =
1, 1 1,

1 −
1, 1

1,
0 + 2

1, 1 1,
1

+2
1, 0 1,

1 − 2 1, 0

1,
1 − 2 1, 0

1,
1 − 2

1, 0

1,
0

We can make several remarks:

• The renormalisation has killed the following terms:

1, 1 1,
0
,

1, 0 1,
0

The last one is typically the kind of order one terms in the 0-th Wiener chaos which
is not equal to zero.

• The terms A2, A5, A6 and A7 contain a cycle with the test function ϕ.

• For the term A4, the cycle is renormalised but the renormalisation constant `ε( ) is
equal to zero by symmetry.

Finally, all the terms implying a contraction with the rooted Ξ go to zero as ε tends to
zero.

6.4 Renormalisation procedure
Let G = (V , E) ∈ GRu the diverging patterns are given by negative subtree of G. We
apply here the renormalisation with the telescopic sum introduced in 5.5.1. This method
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works because in the case of the generalised KPZ, one can check that on each tree all their
negative subtrees are disjoint except for one tree which will require a special treatment
in 6.5. Among the generalised KPZ graphs with negative homogeneity, we can list the
negative patterns:

v1 v2

vc

0

G1

G2

vc

γ
1

γ
3

γ2

0

G1

vc

G2

γ
1 γ 2

γ
4γ 3

with γi = (αi, βi) and the

Gi are generalised KPZ graphs. In this section, we consider only terms in the first and
second Wiener chaos obtained after one contraction. The 0-th Wiener chaos will be treated
in the section 6.6.

Remark 6.4.1. The negative subtrees look simple because the maximum number of
leaves is 4. When we perform two contractions, we obtain directly a constant. Moreover,
G after one contraction will contain most of the time only one diverging subtree.

Remark 6.4.2. The first example appears also in the maximum chaos order and it has
been proved in 5.5.2 that it does not need a renormalisation. This is also the only case
when a divergence is created from two subtrees. The third example has to be treated
carefully when γ3 = γ4 = (3, 0) because we have a subdivergence in that pattern.

We apply the renormalisation with a telescopic sum explained in 5.5.1. Let G =
(V , E) ∈ GRu and T̄ = (V̄ , Ē) a negative subtree of T . In order to treat this divergence,
we change the label of some edge e ∈ E↓(V̄) by replacing ve = v0 by a node of T̄ such
that this new Taylor expansion point has a renormalisation effect on T̄ . Let e = (v1, v2) ∈
E↓(V̄) and v ∈ T̄ such that there exists v′ with (v′, v) ∈ E↑(V̄). The situation can be

represented by:
v

v1

v2

γ

where the symbol means that there exists an edge between v1

and v. The label of e is replaced by γ = (ae, r
′
e, v) where r′e = max(d−|T̄ |se, re). For the

next theorem, we consider a subtree T̄ which gives the graph Ḡ = (V̄ , Ē) after contracting
two leaves creating the node vc:

v1 v

v2
vc

γ

,
v

v1

v2

vc

γ
γ

1

γ
3

γ2 ,
v

v1

v2 v3

vc

γ
γ
′

γ
1

γ
3

γ2 . (6.11)
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6.4. Renormalisation procedure

For the first case, we have V̄ = {v1, v} and it has been treated in 5.5.6. For the others
we get V̄ = {v1, v, vc}.

Proposition 6.4.3. Let G as above, we suppose that G satisfies the condition (5.6) then
the new graph G? obtained from the transformation of the label of e = (v1, v2) satisfies
the same condition.

Proof. We have to check that by changing ve = v0 in G the contribution of the edge e is
preserved. Let V ⊂ V , we distinguish three cases:

• e ∈ E0(V ) then we still have the same contribution with ae.

• e ∈ E↓(V ), we have v1 ∈ V :

– If v ∈ V then the new contribution is ae which is the same when re ≤ 0 and
which is better than −(re − 1) when re > 0.

– If v /∈ V , then the new contribution is−(r′e− 1) which can be more restrictive
than −(re− 1) when r′e > re. This case appears when T̄ is a negative subtree.
In the practical example, we have r′e − re ≤ 1 and γi = (aγ3 , 0). It follows for
the second case in (6.11):

aγ1 + aγ3 − 3 + 1vc∈V (aγ2 − 3) ≥ −|T̄ |s > (r′e − 1).

Then the conditions (5.11) is satisfied for V = {v1} and for V = {v1, vc}.
For the third case, if v3 /∈ V , the contribution −(rγ′ − 1) is equal to zero. If
v3 ∈ V , then we use the previous bound for {v1}, {v1, vc} and the fact that
rγ1 ≥ rγ′ to conclude for {v3}.

• e ∈ E↑(V ), we have v2 ∈ V .

– If v /∈ V , we have a contribution bigger than ae + re which is ae + r′e.

– Otherwise if v ∈ V then we loose a factor re. For the negative tree, we have
rγ3 = 0 and rγ1 , rγ2 are not both strictly positive. We notice that for rγ1 > 0

aγ3 + aγ1 + rγ1 − 1 ≤ 6

we obtain the same bound for rγ2 > 0. It follows that by adding the node v1

and vc, the bound becomes sharper to check but in that case we know from G
that the bound (5.11) is satisfied.

Remark 6.4.4. The previous proof is not general because on two cases, we have to com-
pute the labels to check the bounds. If we want to have a general proof, we need to change
our strategy like in 5.7.
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6.4. Renormalisation procedure

Proposition 6.4.5. Let G as above, we suppose that G satisfies the conditions (5.5) for
some subsets V 6= V̄ then the new graph obtained from the transformation of the label of
e = (v1, v2) satisfies this condition on the same subsets and on V̄ .

Proof. Let V ⊂ G, such that the condition (5.5) is satisfied or such that V = V̄ . We have
to check that by changing ve = v0 in G the contribution of the edge e is preserved and it
has been improved in the case of V = G′. As before we distinguish three cases:

• e ∈ E0(V ) then we still have the same contribution with ae.

• e ∈ E↓(V ), we have v1 ∈ V :

– If v ∈ V then the new contribution is −r′e which compensates the cycle.

– If v /∈ V , then V is not equal to G′ and the condition (5.5) is satisfied.

• e ∈ E↑(V ), we have v2 ∈ V .

– If v /∈ V , we have the same contribution equal to 0.

– Otherwise if v ∈ V then we can have a contribution ae + r′e − 1 bigger than
ae + re − 1 in the last two cases. By adding vc and v1 in V and using the fact
that:

3∑
i=1

aγi − 6 + r′e − 1 > 0,

we obtain the desired bound.

The previous renormalised edges appear in a telescopic sum. Graphically speaking,
we make the following decomposition on our graph G:

v

v1

v2

γ

=
v

v1

v2

γ
e

+
∑
j<r′e

v

v1v2

e j

γ
j

(6.12)

where the labels of γ, γe, γj and ej are respectively: (ae, re, 0), (ae, r
′
e, v), (ae+j,max(re−

j, 0), 0) and (−j, 0, 0).

Proposition 6.4.6. If the conditions (5.6) and (5.10) are satisfied on some subsets V in
6.12 for the terms with the labels γ and γe in the examples given by 6.11 , then this
condition is satisfied on the other terms for the same subsets.
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6.4. Renormalisation procedure

Proof. For the bound (5.10), the result follows directly from proposition 5.5.4. For the
bound (5.6), the proposition gives the result except when we consider a subset V such
that V ∩ {v, v1, v2} = {v} and j < re. In that case the node v has a negative contribution
−(re − 1). But in all the examples re ≤ 1 which gives the result.

We iterate the renormalisation procedure on each edge in E↓(V̄) and we obtain a graph
with no leaves which can be divergent. In the generalised KPZ terms, the diverging graph
has the following form:

v

v1

vc

e γ
3

γ2 =
v

v1

vc

e ′

γ
3

γ2 −
∑
k<re

0

v

vc
v1

(−
k, 0)

γ3 (α
e
+
k
,0
)

γ
2

(6.13)

where the label of e, e′, γ2 and γ3 are given respectively by (ae, re, 0), (ae, 0, 0) (aγ2 , 0, 0),
(aγ3 , 0, 0).

Proposition 6.4.7. The condition (5.11) is satisfied for all the term of the previous de-
composition (6.13).

Proof. Let V a subset of G. We have for V ′ = V ∩ {v, v1}:

e e′ (0, v) (0, v1)
{v, v1} ae ae −k ae + k
{v} −(re − 1) 0 −k 0
{v1} ae + re ae 0 ae + k

For the first two rows of the previous array, the contribution of e′ and the sum of (0, v)
and (0, v1) are greater than e. The main difference occurs when V ′ = {v1} and re > 0.
In that case, we consider that vc, v ∈ V . The node v gives a contribution bounded by
aγ + rγ ≤ |s| where γ ∈ E↑(V ) and the condition (5.11) is satisfied. By removing this
node and keeping the other contribution different from γ, we notice that ae is sufficient
for the required bound instead of ae + re.

Proposition 6.4.8. The condition (5.10) is satisfied on each termGk depending on k < re
of the previous decomposition (6.13) and it is also satisfied for the first term G̃ on subset
V 6= {v, vc, v1}.

Proof. Let V ⊂ G. If 0 /∈ V then we can split the graph Gk into two KPZ trees by
splitting vc into two leaves and the condition (5.9) is satisfied on each tree which gives
(5.10) on V . If 0 ∈ V the previous proposition gives the condition (5.11) on Gk \V which
proves (5.10) on V .
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6.5. Examples

6.5 Examples
In this section, we give a complete decomposition for some trees. We start with I1(I(Ξ)Ξ)2

where we look at one term appearing in the second Wiener chaos:

0
v?

x1

v

`1`2 v2

v1

2, 0

1,
11, 1

2,
0

3, 03,
0

−→

0
v?

x1

v

vc v2

v1

2, 0

1,
11, 1

2,
0

3, 03,
0

Its telescopic sum is given by:

0
v?

x1

v

vc v2

v1

2, 0

1,
11, 1

2,
0

3, 03,
0

=

0
v?

x1

v

vc v2

v1
2, 0

1,
1γ

?

2,
0 +

∑
j<2

0
v?

v2

v
x1

v1

2, 0

γj

1
,1

2,
0

−
j, 0

where γ? = (1, 2, v?) and γj = (1+j, 1−j, 0). One can show easily like in propositions
6.4.3, 6.4.5 and 6.4.6 that:

• All the terms of the previous decomposition satisfy the condition (5.11).

• For the term with the label γ?, the condition (5.9) is satisfied for all the subsets ex-
cept for {v, v1, vc}. We need to renormalise this divergence with another telescopic
sum in (6.14).

• For the other terms in the right-hand side, the condition is not satisfied on {v, v1, v?}
whereas the edge (v1, v) disappears by convolution at the node v. We renormalise
these terms in (6.15) and (6.16).

0
v?

x1

v

vc v2

v1

2, 0

1,
1γ

?

2,
0 =

0
v?

x1

v

vc v2

v1

2, 0

γ

γ
?

2,
0 +

0
v?

v2

v

x1

v1

2, 0

γ
?

1
,1

2,
0

(6.14)

where γ = (1, 1, v).

179



6.5. Examples

0
v?

v2

v
x1

v1

2, 0

2, 0

1
,1

2,
0

−
1, 0

=

0
v?

v2

v
x1

v1

2, 0

2, 0

γ
?

2,
0

−
1, 0

+ C1
0

0
v?

x1 v2

2, 0 1,
1

(6.15)

where γ? = (1, 1, v?) and C1
0 =

0

v v1

2, 0 2,
0

−
1, 0

.

0
v?

v2

v
x1

v1

2, 0
1, 1

1
,1

2,
0 =

0
v?

v2

v
x1

v1

2, 0

1, 1

γ
?

2,
0 + C2

0

0
v?

x1 v2

2, 0 1,
1

+ C1

0
v?

x1 v2

1, 1 1,
1

(6.16)

where γ? = (1, 2, v?), and C2
0 =

0

v v1

2, 0 2,
0−

1,
0

and C1 =

0

v v1

2, 0 2,
0 . By sym-

metry between the nodes v and v1, we have C0 := C1
0 = C2

0 . Finally, the renormalised
term is given by:

0
v?

x1

v

vc v2

v1

2, 0

1,
11, 1

2,
0

3, 03,
0

− C1

0
v?

x1 v2

1, 1 1,
1 −2C0

0
v?

x1 v2

2, 0 1,
1 .

180



6.5. Examples

In the previous example, the constant C0 turns out to be zero because of the antisym-
metry of the derivatives of the heat kernel.

We follow with the maximal chaos order for τ = ΞI(I(Ξ)Ξ) and we first present how
we build the scalar product 〈W ε,‖τ‖τ ,W ε,‖τ‖τ〉:

0
v?,1 v?,2

v1

v2

v

1
,1

1
,1

1
,1

1
,1

−→

0
v?,1 v?,2

v1

v2

v

1
,1

1
,1

1
,1

1
,1

Then we renormalise the edge (v, v1) in the next identity:

0
v?,1 v?,2

v1

v2

v
1
,1

1
,1

1
,1

1
,1

=

0
v?,1 v?,2

v1

v2

v

1
,1

γ

1
,1

1
,1

+

0
v?,1 v?,2

v1

v2

v

1
,1

1, 1
1
,1

1,
1

where γ = (1, 1, v). After that renormalisation, we renormalise on each term in the right-
hand side the edge (v1,?, v2,?).

We present an example which needs three renormalisations: the tree I(I(I(Ξ)Ξ)Ξ)Ξ
in the second Wiener chaos order:

0
v?,1 v?,2

v1

v3

v2

v4

1
,2

1
,1

1
,2

1
,1

1
,1

1
,1

−→

0
v?,1 v?,2

v1

v3

v2

v4

1
,2

1
,1

1
,2

1
,1

1
,1

1
,1
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0
v?,1 v?,2

v1

v3

v2

v4

1
,2

1
,1

1
,2

1
,1

1
,1

1
,1

=

0
v?,1 v?,2

v1

v3

v2

v4

1
,2

1
,1

1
,2

1
,1

γ 1
,1

+

0
v?,1 v?,2

v1

v3

v2

v4

1
,2

1
,1

1
,2

1
,1

1, 1 1,
1

where γ = (1, 1, v4). We have treated V = {v2, v4} then as in the first example we have
to renormalise the sets V1 = {v1, v?,1} and V2 = {v2, v?,2}.

Remark 6.5.1. All this renormalisation procedure works because the sets V , V1 and V2

are disjoint and they are the only possible divergent sets in the previous graph. This is the
case for all the generalised KPZ terms.

6.6 Computation of the constants
We treat the constants according to their diverging rate which corresponds roughly to the
homogeneity of the term associated with. Indeed, for |τ |s = −1 − 2κ, the constants are
of order 1/ε. Then for |τ |s = −4κ and |τ |s = −2κ, some of the constants are of order
log(ε), others are just of order one. In this section, the constants are computed by using
the map `ε defined recursively in 5.1.3 by:

`ε(T
n,d
e ) = −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
`ε

(
Π−R↑AT

nA+πeA,d
e

)
W̃ ε,0

(
R↓AT

n−nA,d+nA+πeA
e+eA

)
.

6.6.1 Methodology
We work as in [HQ15] with the rescaled kernel given by

Kε,%(z) = (% ∗ S(1)
ε K)(z),

where the operator S(α)
ε is defined by

(S(α)
ε K)(t, x) = εαK(ε2t, εx).

We introduce a family of norms

‖F‖α,β = sup
|z|≤1

|z|α|F (z)|+ sup
|z|≥1

|z|β|F (z)|,

and we denote by Bα,β the Banach space of the functions F : Rd → R such that ‖F‖α,β <
∞. The next lemmas and propositions are extracted from [HQ15].
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6.6. Computation of the constants

Proposition 6.6.1. The kernels Kε,% and K ′ε,% belong to B0,1 and B0,2 respectively. For
every κ > 0, they converge to P% and P ′% in B0,1−κ and B0,2−κ respectively, where P% =
P ∗ % and P is the heat kernel.

Lemma 6.6.2. Let for j = 1, 2, Fj functions on R on Rd+1 with parabolic scaling such
that Fi ∈ Bαi,βi with αi < d+ 2 and β1 + β2 > d+ 2. Then there exists C > 0 such that

‖F1 ∗ F2‖α,β ≤ C‖F1‖α1,β1‖F2‖α2,β2 ,

with α = 0 ∨ (α1 + α2 − d− 2) and β = (β1 + β2 − d− 2) ∧ β1 ∧ β2.

We define a kernel Pε by

Pε(z) =

∫
K ′ε,%(z − z̄)K ′ε,%(−z̄)dz̄.

Lemma 6.6.3. Let Rε, R̃
(1)
ε and R̃(2)

ε defined through the identities:

2Pε(z) = Kε,%(z) +Kε,%(−z) +R(1)
ε (z) + (S(1)

ε R(2)
ε )(z),

S(1)
ε K = Kε,%(z) + R̃(1)

ε , S(2)
ε K ′ = K ′ε,%(z) + R̃(1)

ε .

Then, there exists some C independent of ε ∈ (0, 1] such that

‖R(1)
ε ‖0,2 + ‖R(2)

ε ‖0,4 + ‖R̃(1)
ε ‖1,2 + ‖R̃(2)

ε ‖2,3 ≤ C.

For every κ > 0, the previous kernels converge in B0,2−κ, B0,4, B1,2−κ and B2,3−κ as
ε → 0. The limit of R(1)

ε is zero and the limits of R̃(1)
ε and R̃(2)

ε are independent of the
choice of K.

The previous lemma is summarised in the next figure where Eε converges to a limit
independent of K.

2
z 0

z̄

−→
z 0

+
z 0

+ Eε.

Remark 6.6.4. The transformation of Pε in lemma 6.6.3 follows from the identity on the
heat kernel:

2

∫
P ′(z − z̄)P ′(−z̄)dz̄ = P (z) + P (−z).

The previous lemma is also true by replacing % by %(2) = % ∗ % in the right hand-side of
the main identity.

183



6.6. Computation of the constants

Let Ŵε,0T n,d
e the 0-th Wiener chaos of the tree T n,d

e where we have removed all the
positive renormalisations. This term is the sum of some constants of the form:∫

(Rd)NT \{v?}

∏
u∈NT

(xu)
n(u)

∏
e∈ET

Ke(xe+ − xe−)dx.

In these constants, we perform the following change of variable: (t′, x′) = (ε2t, εx) ∈ R2.
Finally, we replace every kernelsKe by S(ae)

ε Ke and the constant is multiplied by ε|G|s . On
kernels of the form %ε, we obtain % after the substitution. Then we can apply the lemma
6.6.2 to the kernels Ke and we obtain different cases:

• If the convergence takes place in Bα,β with β > |s| and |s| < α, we can conclude.

• Else, we will have β > |s| and we will notice that the time variable will belong to a
compact domain and the kernel will be uniformly integrable.

We will use two main tools:

• The transformation of Pε into Kε,%(z) +Kε,%(−z) which simplifies our graph.

• integration by part in order to create terms of the form Pε and then we are able to
apply the first transformation.

We apply these two rules as an algorithm on the constants we have to treat.

6.6.2 Constants for |τ |s = −1− 2κ

We prove in this section that the two constants corresponding to the renormalisation of
, are exactly equal. For Πε

x , the diverging part of the mean is given by:

C
(ε)
1 =

∫ ∫
%ε(t, x)(K ∗ %ε)(t, x)dxdt.

From the scaling invariance of the heat kernel and the fact that K is compactly supported,
we deduce that for sufficient small ε:

C
(ε)
1 =

c%
ε

=
1

ε

∫ ∫
%(t, x)(P ∗ %)(t, x)dxdt =

1

ε

∫ ∫
P (t, x)%(2)(t, x)dxdt.

The mean of the term Πε
x is given by:

C
(ε)
2 =

∫
K ′%,ε(z)2dz = K%(2),ε(0) + C̃

(ε)
2

where we have used the lemma 6.6.3. In that setting, K%(2),ε(0) = c% and C̃(ε)
2 converge to

a limit independent of the choice of K. Finally, we can choose the same renormalisation
constant C(ε)

1 for Πε
x .
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6.6.3 Constants for |τ |s = −2κ

These symbols are given by

Homogeneity Symbol(s)

−2κ , , , , , , , ,

We distinguish two cases:

• By antisymmetry, the constants given by , , , , , , are equal to
zero.

• For and , we obtain a constant integrated against K ′ and K which ends up to
be zero.

6.6.4 Constants for |τ |s = −4κ

We can potentially obtain logarithmic divergencies from the symbols of homogeneity
−4κ, i.e. those that are borderline divergent and involve four instances of the noise. Here
is a list of these symbols:

Symbols of homogeneity −4κ

, , , , , , , , , , ,
, , , , , , , , , , ,

We use the technic introduced in [HP14] and [HQ15]. The terms are more complicated
so we need an efficient graphical notation Therefore, we used the notation introduced in
[HP14]. For each integration variable in R2, we draw a node . The origin is given by
a special node . The edges represent the different kernels evaluated at the difference
between the two variables that it connects: an arrow for the heat kernel, a dotted line for
%(2) = % ∗ % and a snake line for the derivative of the heat kernel. In order to note the
contraction on the trees, we color two leaves in blue if they are paired and we leave the
two other leaves in grey.

Constants of order one

Those nice constants of order one are given by:

Symbols of homogeneity −4κ and with no divergence

, , , , , , , , , , , , , ,

We briefly recall the main arguments used in [HP14]. We look at integrability of
the previous kernels at different scales. The small scales are not a problem since %(2)

is bounded and the singularity of the heat kernel is mild.
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6.6. Computation of the constants

For the large scales, the time variable belongs to a compact domain because %(2) is
compactly supported and we have K(x, t) = 0 for t < 0. Moreover, the orientation of
the graph and the disposition of the edges show that we can earn some integration in time
which make the constant to converge:

• If two nodes are connected by %(2) like this , then the corresponding time
variables can be separated by at most a fixed finite distance.

• for any configuration of the type , the time coordinate of the middle
variables has to lie between the time coordinates of the other two.

If we find an oriented cycle in the graph, we know that we earn integrations in time.
By applying the previous rules and the fact for any fixed time, the heat kernel decays
exponentially fast in the space variable, we prove that most the terms converge.

Finally, there are two basic mechanisms that prevent a logarithmic divergency:

1. The contracted graph is not 2-connected. In this case, the divergency has typically
already been taken care of by previous renormalisations. This the case for , ,

, , and .

2. There is a contraction between one vertex and another vertex that is located on the
path joining the first one to the root. Such a contraction causes a “loop”, with the
consequence that the integration of the time variables becomes restricted to a small
region of width ε2.

We draw the different contractions among the terms , , , , , ,
, and : , , , , , , , , , , , , , , ,

, and . The previous terms allows us to decompose each `ε(τ) according to the
contractions. We give one example:

`ε

( )
= −c(1)

% = + = −W̃ ε,0
( )

+ Cε W̃
ε,0
( )

+ Cε W̃
ε,0
( )

.

In the next figures, we represent all the constants:
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= , = − c% , = =

= , = − c% = R , = = ,

= , = − c% , = =

= , = − c% = R ,

= − c% = R ,

= , = =

(6.17)

where the symbol R inside a loop indicates that it was “renormalised” by subtracting
a delta-function with weight identical to the integral of the kernel represented by the loop.
We have performed a substitution for , and we have replaced P ′ ∗ P ′ by 1

2
P in

in order to obtain nice expressions.
The constants used for the Itô product are:

c(1)
% = + , c(2)

% = + , c(3)
% = + ,

c(4)
% = + , c(5)

% = + , c(6)
% = +

Now we give the explicit value of the constants which appear in the renormalised equa-
tion:

=

∫
P (−z1)P (z1 − z2)P (z2 − z3)%(2)(−z2)%(2)(z1 − z3)

3∏
i=1

dzi

=

∫
P (z1)P (z2)P (z3)%(2)(z1 + z2)%(2)(z2 + z3)

3∏
i=1

dzi,

=

∫
P (z1)P (z2)(P (z3)%(2)(z3)− c%δ(z3))%(2)(z1 + z2 + z3)

3∏
i=1

dzi,

=

∫
P (z1)P (z2)P (z3)%(2)(z1 + z2)%(2)(z2 − z3)

3∏
i=1

dzi,

=

∫
P (z1)P (z2)(P (z3)%(2)(z3)− c%δ(z3))%(2)(z1 − z2 + z3)

3∏
i=1

dzi.
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Most of the terms contain loops except , and . We use the argument developed
in [HP14]. If we denote by Q the distributions given by Q(z) = P (z)%(2)(z) − c%δ0(z),
we obtain:

= =

∫
%(2)(z1 − z2)(P ∗Q)(z1)P (z2)dz1dz2

=

∫
%(2)(z1 − z2)(P ∗Q)(z1)P ′(z2)dz1dz2.

The formula is really the same for and we conclude by the next lemma from [HP14]:

Lemma 6.6.5. There exists a constant C such that the function P ∗ Q is bounded by
C(|z|−1 ∧ |z|−3), uniformly in z.

Log renormalisation

The remaining list of symbols that can cause logarithmic divergencies is given by:

Symbols causing logarithmic divergencies

, , , , , , ,

When computing the corresponding expectations, each of them can be contracted in three
different ways. However, only two of these contractions yield logarithmic divergencies.
We express these divergencies in terms of the basic quantity Lε given by

Lε =

∫
B1,ε

P 3(z) dz =
1

2
√

3π
log ε ,

where B1,ε = {(t, x) : t ∈ [ε2, 1]}, and P denotes the heat kernel. We then have the
following identities:

= =
1

4
Lε , =

1

8
Lε ,

= =
1

8
Lε , =

1

4
Lε ,

= = − 1

16
Lε , = −1

4
Lε ,

= =
1

4
Lε , = −1

2
Lε ,

= =
1

4
Lε ,

= = −1

8
Lε .

We compute the constants by making substitution and replacing P ′ ∗ P ′ by P . Using
these rules, we obtain:
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= −→ 1
2

−→ 1
2

−→ 1
4
Lε,

= −→ −→ 1
2

−→ 1
4

−→ 1
8
Lε,

= −→ 1
4

−→ −1
8

−→ −1
8

−→ − 1
16
Lε,

= −→ 1
2

−→ 1
4
Lε, = −→ 1

4
Lε,

= −→ 1
2

−→ 1
2

−→ −1
4

−→ −1
8
Lε,

= −→ = − −→ 1
8
Lε, = = 1

4
Lε,

= −→ 1
2

= 1
2
−→ 1

2
−1

2
−→ −1

4
Lε

−→ −1
2

= −1
2

−→ −1
4
Lε, where the arrow � represents a

derivative in time.
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Appendix A

Alternative recursive proofs

In this section, we provide an alternative construction of the structure group and the renor-
malised model using recursive formulae.

A.1 Structure Group
In order to define the structure group G, we need more notations. We set

T+ := {τ ∈ F : τ = 1 or |τ |s > 0, and τ = τ1τ2 =⇒ τ1, τ2 ∈ T+},

and we letH+ be the linear span of T+. IfH∗+ denotes the dual ofH+, then we define

G+ := {g ∈ H∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H+}.

For any g ∈ H∗+ we define a linear operator Γg : H 7→ H by
Γg1 = 1, ΓgΞ = Ξ, ΓgX = X + g(X), Γg(τ τ̄) = (Γgτ)(Γg τ̄),

ΓgIk(τ) = Ik(Γgτ) +
∑
`

X`

`!
g(Jk+`(τ)) ,

where
Jk(τ) := 1(β−|k|s+|τ |s>0) Ik(τ).

We define the product ◦ : G+ ×G+ 7→ G+ recursively by:
(g1 ◦ g2)(X) = g1(X) + g2(X), (g1 ◦ g2)(τ1τ2) = (g1 ◦ g2)(τ1)(g1 ◦ g2)(τ2)

(g1 ◦ g2)(Jk(τ)) = g1(Jk(Γg2τ)) +
∑
`

(g1(X))`

`!
g2(Jk+`(τ)).

Proposition A.1.1.

1. For every g ∈ G+, α ∈ A, τ ∈ Hα and multiindex k, we have Γgτ−τ ∈
⊕

β<|τ |sHβ

and ΓgIk(τ)− Ik(Γgτ) is a polynomial.
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A.1. Structure Group

2. The set (Γg, g ∈ G+) forms a group under the composition of linear operators from
H toH. Moreover, this definition coincides with that of [Hai14b, (8.17)].

3. For all g, ḡ ∈ G+, one has ΓgΓḡ = Γg◦ḡ. (G+, ◦) is a group and each element g has
a unique inverse g−1 given by the recursive formula

g−1(X) = −g(X), g−1(τ1τ2) = g−1(τ1)g−1(τ2)

g−1(Jk(τ)) = −
∑
`

(−g(X))`

`!
g(Jk+l(Γg−1τ)).

(A.1)

The product ◦ coincides with that defined in [Hai14b, Definition 8.18].

Proof. We prove the first property by induction on the construction of H. Let g ∈ G+.
The proof is obvious for τ ∈ {1, X,Ξ}. Let τ = τ1τ2 then we have

Γgτ1τ2 = Γgτ1(Γgτ2 − τ2) + (Γgτ1 − τ1)τ2 + τ1τ2

We apply the induction hypothesis on τ1 and τ2. Let τ = Ik(τ ′) then the recursive defini-
tion of Γg gives:

ΓgIk(τ ′) = Ik(Γgτ ′ − τ ′) + Ik(τ ′) +
∑
`

X`

`!
g(Jk+`(τ

′))

We apply the induction hypothesis on τ ′.
Let g, ḡ ∈ G+, h = g ◦ ḡ ∈ G+. Simple computations show that

Γh1 = 1, ΓhΞ = ΓgΓḡΞ, ΓhX = ΓgΓḡX, Γh(τ τ̄) = ΓgΓḡ(τ τ̄).

We need to check that ΓgΓḡIk(τ) = ΓhIk(τ):

ΓgΓḡIk(τ) = Γg

(
Ik(Γḡτ) +

∑
`

X`

`!
ḡ(Jk+l(τ))

)

= Ik(ΓgΓḡτ) +
∑
`

X`

`!
g(Jk+`(Γḡτ)) +

∑
`

(X + g(X))`

`!
ḡ(Jk+l(τ))

while

ΓhIk(τ) = Ik(Γhτ) +
∑
`

X`

`!
h(Jk+`(τ))

= Ik(ΓgΓḡτ) +
∑
`

X`

`!

(
g(Jk+`(Γḡτ)) +

∑
j

(g(X))j

j!
ḡ(Jk+`+j(τ))

)

= Ik(ΓgΓḡτ) +
∑
`

X`

`!
g(Jk+`(Γḡτ)) +

∑
`

(X + g(X))`

`!
ḡ(Jk+`(τ)).
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By comparing the two formulae, we obtain that ΓgΓḡ = Γg◦ḡ.
Let us show that ◦ is associative on G+, namely that g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3;

this is obvious if tested on X and on τ τ̄ ; it remains to check this formula on Ik(τ):

g1 ◦ (g2 ◦ g3)(Jk(τ)) = g1(Jk(Γg2◦g3τ)) +
∑
`

(g1(X))`

`!
g2 ◦ g3(Jk+l(τ))

= g1(Jk(Γg2◦g3τ)) +
∑
`

(g1(X))`

`!
g2(Jk+l(Γg3τ)) +

∑
`

(g1(X) + g2(X))`

`!
g3(Jk+l(τ)),

while

(g1 ◦ g2) ◦ g3(Jk(τ)) = g1 ◦ g2(Jk(Γg3τ)) +
∑
`

(g1 ◦ g2(X))`

`!
g3(Jk+`(τ))

= g1(Jk(Γg2Γg3τ)) +
∑
`

(g1(X))`

`!
g2(Jk+`(Γg3τ)) +

∑
`

(g1(X) + g2(X))`

`!
g3(Jk+`(τ))

and again by comparing the two formulae we obtain the claim.
Let us show now that (A.1) defines the correct inverse in (G+, ◦). First of all, the

neutral element in G+ is clearly 1∗(τ) := 1(τ=1). As usual, the only non-trivial property
is that g ◦ g−1(Ik(τ)) = g−1 ◦ g(Ik(τ)) = 1∗(Ik(τ)) = 0. We have

g ◦ g−1(Jk+`(τ)) = g(Jk+`(Γg−1τ)) +
∑
m

(g(X))m

m!
g−1(Jk+`+m(τ)),

= g(Jk+`(Γg−1τ))−
∑
m,`

(g(X))m

m!

(−g(X))`

`!
g(Jk+`+m(Γg−1τ)) = 0

and

g−1 ◦ g(Jk(τ)) = g−1(Jk(Γgτ)) +
∑
`

(g−1(X))`

`!
g(Jk+`(τ))

= g−1(Jk(Γgτ)) +
∑
`

(−g(X))`

`!
g(Jk+`(τ))

= −
∑
`

(−g(X))`

`!
g(Jk+`(Γg−1◦gτ)) +

∑
`

(−g(X))`

`!
g(Jk+`(τ)),

where we have used a recurrence assumption in the identification Γg−1◦gτ = τ . Since Γ1∗

is the identity inH, we obtain that (Γg, g ∈ G+) also forms a group.
We show now that these objects coincide with those defined in [Hai14b, section 8]. In

[Hai14b], the action of H∗+ on H is defined through the following coproduct ∆ : H 7→
H×H+, 

∆1 = 1⊗ 1, ∆X = X ⊗ 1 + 1⊗X,
∆Ξ = Ξ⊗ 1, ∆(τ τ̄) = (∆τ)(∆τ̄)

∆Ik(τ) = (Ik ⊗ I)∆τ +
∑
`

X`

`!
⊗ Jk+`(τ).
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We claim that
Γgτ = (I ⊗ g)∆τ, ∀ g ∈ G+, τ ∈ H. (A.2)

First, (A.2) is easily checked on 1, X,Ξ and τ τ̄ ∈ H. We check the formula on Ik(τ):

ΓgIk(τ) = Ik(Γgτ) +
∑
`

(g(X))`

`!
g(Jk+`(τ))

= (I ⊗ g)

[
(Ik ⊗ I)∆τ +

∑
`,

X`

`!
⊗ Jk+`(τ)

]
= (I ⊗ g)∆Ik(τ).

In [Hai14b], another coproduct ∆+ : H+ ×H+ 7→ H+ is defined as follows:
∆+1 = 1⊗ 1, ∆+X = X ⊗ 1 + 1⊗X, ∆+(τ τ̄) = (∆+τ)(∆+τ̄),

∆+Jk(τ) = (Jk ⊗ 1)∆τ +
∑
`

X`

`!
⊗ Jk+`(τ).

In order to prove that the product ◦ in G̃ is the same as in [Hai14b], we need to check that
for every g1, g2 ∈ H∗+ we have:

g1 ◦ g2(τ) = g1 ⊗ g2(∆+τ), ∀ τ ∈ H+.

As usual, this formula is easily checked on 1, X and on products τ τ̄ ∈ H+. We check the
formula on Jk(τ):

(g1 ◦ g2)(Jk(τ)) = g1(Jk(Γg2τ)) +
∑
`

(g1(X))`

`!
g2(Jk+`(τ))

= (g1 ⊗ 1)(Jk ⊗ g2)∆τ + (g1 ⊗ g2)
∑
`

X`

`!
⊗ Jk+`(τ)) = g1 ⊗ g2(∆+τ).

A.2 Renormalised model
As in [Hai14b], we want a renormalised model (ΠM

x ,Γ
M
xy) with the following property:

ΠMτ = ΠMτ. (A.3)

We define the linear map ΠM by:
(ΠM◦1)(y) = 1, (ΠM◦X)(y) = y, (ΠM◦Ξ)(y) = ξ(y),

(ΠM◦Ikτ)(y) =

∫
DkK(y − z)(ΠMτ)(z)dz

(ΠM◦τ τ̄)(y) = (ΠM◦τ)(y)(ΠM◦ τ̄)(y), (ΠMτ)(y) = (ΠM◦Rτ)(y)

(A.4)
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where the recursive definition is the same as for M . The kernel K is homogeneous of
degree 2 − d and it appears in the decomposition of the heat kernel G = K + R where
R is smooth in [Hai14b]. The definition of ΠM is really close to the definition of Π. The
main difference is that ΠM is no longer multiplicative because we have to renormalize
some ill-defined products by subtracting diverging terms which is done by the action of
R.

Remark A.2.1. We have chosen the definition (A.2) for ΠM instead of (A.3) because
the definition (A.2) contains the definition of Π when R = Id. Moreover, the recursive
formula for the product is really close to the definition of ΠM

x and this fact is useful for
the proofs.

Proposition A.2.2. We have the following identities: ΠMτ = ΠMτ and ΠM◦τ =
ΠM◦τ .

Proof. We proceed again by induction. It’s obvious for 1,X and Ξ. For τ = Ik(τ ′), by the
induction hypothesis the claim holds for τ ′ because ‖Ik(τ ′)‖ = ‖τ ′‖ and |Ik(τ ′)|s > |τ ′|s.
We have:

(ΠMIkτ ′)(y) =

∫
DkK(y − z)(ΠMτ ′)(z)dz =

∫
DkK(y − z)(ΠMτ ′)(z)dz

= (ΠIkMτ ′)(y) = (ΠMIkτ ′)(y).

For τ =
∏

i τi product of elementary symbols, we obtain by applying the induction hy-
pothesis on Rτ − τ and the τi:

(ΠM◦τ)(y) =
∏
i

(ΠM◦τi)(y) =
∏
i

(ΠM◦τi)(y) = (ΠM◦τ)(y)

and

(ΠMτ)(y) = (ΠM◦(Rτ − τ))(y) + (ΠM◦τ)(y)

= (ΠM◦(Rτ − τ))(y) + (ΠM◦τ)(y) = (ΠMτ)(y)

which conclude the proof.

Until the end of the section, R is an admissible map and M is a renormalisation map
built from R.

The renormalised model (ΠM ,ΓM) associated to M = MR is given by
(ΠM◦

x 1)(y) = 1, (ΠM◦

x Ξ)(y) = ξ(y), (ΠM◦

x X)(y) = y − x.

(ΠM◦

x Ikτ)(y) =

∫
DkK(y − z)ΠM

x (τ)(z)dz −
∑
`

(y − x)`

`!
fMx (Jk+`(τ))

(ΠM
x τ)(y) = (ΠM◦

x Rτ)(y), (ΠM◦

x τ τ̄)(y) = (ΠM◦

x τ)(y)(ΠM◦

x τ̄)(y)
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where fMx ∈ H∗+ is defined by
fMx (X) = x, fMx (τ τ̄) = fMx (τ)fMx (τ̄)

fMx (Jk(τ)) = 1(|Ik(τ)|s>0)

∫
DkK(x− z)(ΠM

x τ)(z)dz.

We also define
ΓMxyX = X + (x− y), ΓMxyΞ = Ξ, ΓMxy(τ τ̄) = (ΓMxyτ)(ΓMxy τ̄)

ΓMxyIk(τ) = Ik(ΓMxyτ)−
∑
`

(X + x− y)`

`!
fMy (Jk+l(τ)) +

∑
`

X`

`!
fMx (Jk+`(Γxyτ)).

and 
gMx (X) = −x, gMx (τ τ̄) = gMx (τ)gMx (τ̄)

gMx (Jkτ) = −
∑
`

(−x)`

`!
fMx (Jk+`τ).

Proposition A.2.3. The ΓM operator is also given by:

ΓMxy = (FM
x )−1 ◦ FM

y

where FM
x = ΓgMx . Moreover, another equivalent recursive definition is:

ΓMxyX = X + (x− y), ΓMxyΞ = Ξ, ΓMxy(τ τ̄) = (ΓMxyτ)(ΓMxy τ̄)

ΓMxyIk(τ) = Ik(ΓMxyτ)−
∑

|`|s<|τ |s+β−|k|s

(ΠM
x Ik+`(Γ

M
xyτ))(y)

(X + x− y)`

`!
.

(A.5)

Proof. We have

(gMx )−1(Jk(τ)) =−
∑
`

(−gMx (X))`

`!
gMx (Jk+`(Γ(gMx )−1τ))

=−
∑
m,`

(x)`

`!

(−x)m

m!
fMx (Jk+`+m(Γ(gMx )−1τ))

=− fMx (Jk(Γ(gMx )−1τ)).

Since by definition

ΓgIk(τ) = Ik(Γgτ) +
∑
`

X`

`!
g(Jk+`(τ)),

then

ΓgMy Ik(τ) = Ik(ΓgMy τ)−
∑
`

(X − y)`

`!
fMy (Jk+`(τ))
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and

Γ(gMx )−1Ik(τ) = Ik(Γ(gMx )−1τ) +
∑
`

X`

`!
(gMx )−1(Jk+`(τ))

= Ik(Γ(gMx )−1τ)−
∑
`

X`

`!
fMx (Jk+l(Γ(gMx )−1τ)),

so that

Γ(gMx )−1ΓgMy Ik(τ) =Ik(Γ(gMx )−1ΓgMy τ)−
∑
`

X`

`!
fMx (Jk+l(Γ(gMx )−1ΓgMy τ))

+
∑
`

(X + x− y)`

`!
fMy (Jk+`(τ)).

Therefore, Γ(fMx )−1ΓfMy satisfies the same recursive property as ΓMxy.
Finally, we need to prove (A.5). We have

ΓMxyIk(τ) = Ik(ΓMxyτ) +
∑
`

(X + x− y)`

`!
AMy,x,k,`,

where

AMy,x,k,` = fMy (Jk+`(τ))−
∑
m

(y − x)m

m!
fMx (Jk+`+m(ΓMxyτ)).

We write ΓMxyτ =
∑

i τi with |τi|s ≤ |τ |s; note that ΠM
y τ = ΠM

x ΓMxyτ =
∑

i Π
M
x τi, and

AMy,x,k,` is zero unless ` < |τ |s + β − |k|s, and if this condition is satisfied then

AMx,y,k,` =

∫
Dk+`K(y − z)(ΠM

y τ)(z)dz −
∑
m,i

(y − x)m

m!
fMx (Jk+`+m(τi))

=
∑
i

[∫
Dk+`K(y − z)(ΠM

x τi)(z)dz −
∑
m

(y − x)m

m!
fMx (Jk+`+m(τi))

]
=
∑
i

ΠM
x (Ik+`(τi))(y) = ΠM

x (Ik+`(Γ
M
xyτ))(y).

This allows to conclude.

Remark A.2.4. The interest of the previous formula for ΓM is to show a strong link
with the definition of ΠM

x . Moreover it simplifies the proof of the analytical bound of the
model. Indeed, analytical bounds on ΠM

x give the bounds for ΓM .

Proposition A.2.5. The following identities hold: ΠM
x = ΠMFM

x and ΠM◦
x = ΠM◦FM

x .
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Proof. We proceed by induction. The proof is obvious for τ ∈ {1,Ξ, X} For τ = Ik(τ ′),
we apply the induction hypothesis on τ ′, it follows:

(ΠM◦

x τ)(y) =

∫
DkK(y − z)(ΠM

x τ
′)(z)dz −

∑
`

(y − x)`

`!
fMx (Jk+`(τ

′))

=

∫
DkK(y − z)(ΠMFM

x τ ′)(z)dz −
∑
`

(y − x)`

`!
fMx (Jk+`(τ

′))

= (ΠMFM
x Ik(τ ′))(y).

It remains to check the identity on a product τ =
∏

i τi where each τi is elementary. We
have

ΠMFM
x τ = ΠM◦RFM

x τ = ΠM◦FM
x Rτ

since by definition FM
x = ΓfMx ∈ G and R commutes with G. Then by applying the

induction hypothesis on Rτ − τ and the τi, we have

ΠM◦FM
x τ =

∏
i

ΠM◦FM
x τi =

∏
i

ΠM◦

x τi = ΠM◦

x τ.

and

ΠM◦FM
x Rτ = ΠM◦FM

x (Rτ − τ) + ΠM◦FM
x τ

= ΠM◦

x (Rτ − τ) + ΠM◦

x τ = ΠM◦

x Rτ = ΠM
x τ.

Proposition A.2.6. If R is an admissible map then (ΠM ,ΓM) is a model.

Proof. The algebraic relations are given by the previous proposition. It just remains to
check the analytical bound. For τ = Ξ or τ = Ik(τ ′), the proof is the same as in [Hai14b].
For τ =

∏
i τi a product of elementary symbols, we have

ΠM
x τ = ΠM◦

x (Rτ − τ) + ΠM◦

x τ.

We apply the induction hypothesis on the τi and Rτ − τ :

|(ΠM◦

x τ)(y)| =
∏
i

|(ΠM◦

x τi)(y)| .
∏
i

‖x− y‖|τi|ss = ‖x− y‖|τ |ss ,

|(ΠM◦

x (Rτ − τ))(y)| . ‖x− y‖|Rτ−τ |ss . ‖x− y‖|τ |ss .

It just remains the analytical bound for ΓM . We proceed by induction. For τ = Ξ or
τ = X , the bound is obvious. Let τ =

∏
i τi where the τi are elementary symbols. For

β < |τ |s, we have

‖ΓMxyτ‖β =
∑

∑
i αi,j=β

αi,j<‖τi‖

∏
i

‖ΓMxyτi‖αi,j

≤ C
∑

∑
i αi,j=β

αi,j<‖τi‖

∏
i

‖x− y‖|τi|s−αi,js ‖τ‖ ≤ C‖x− y‖α−βs .
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For τ ′ = Ik(τ), the recursive definition (A.5) gives:

ΓMxyIk(τ) = Ik(ΓMxyτ)−
∑

`<β+|τ |s−|k|s

(ΠM
x Ik+l(Γ

M
xyτ))(y)

(X + x− y)`

`!
.

Let α < |Ik(τ)|s. If α ∈ R \ N, let us write ΓMxyτ = τ +
∑

i τ
i
xy with

|τ ixy|s = αi < |τ |s, ‖τ ixy‖αi . ‖x− y‖|τ |s−αis ;

then if

‖ΓMxyτ ′‖α = ‖Ik(ΓMxyτ)‖α .
∑
i

1(αi+β−|k|s=α)‖x− y‖|τ |s−αis . ‖x− y‖|τ |s+β−|k|s−α
s .

Now, if α ∈ N and α < |Ik(τ)|s then

‖ΓMxyIk(τ)‖α =

∣∣∣∣∣∣
∑

α≤|`|s<β+|τ |s−|k|s

(X + x− y)`

`!
(ΠM

x Ik+`(Γ
M
xyτ))(y)

∣∣∣∣∣∣
.

∑
α≤|`|s<β+|τ |s−|k|s

‖x− y‖|`|s−αs

`!

∑
γ≤|τ |s

‖x− y‖β+γ−|k|s−|`|s
s ‖ΓMxyτ‖β+γ−|k|s

.
∑

α≤|`|s<β+|τ |s−|k|s

‖x− y‖|`|s−αs

`!

∑
γ≤|τ |s

‖x− y‖β+γ−|k|s−|`|s
s ‖x− y‖|τ |s−β−γ+|k|s

s

. ‖x− y‖|τ |s−αs .

Proposition A.2.7. We suppose that for every τ = Ik(τ ′) ∈ T such that |τ |s < 0, we have
(ΠM

x τ)(x) = (ΠxMτ)(x). Then the following identities hold: (ΠM
x τ)(x) = (ΠxMτ)(x)

and (ΠM◦
x τ)(x) = (ΠxM

◦τ)(x) for every τ ∈ T .

Proof. We proceed by induction. For τ ∈ {1,Ξ, X}, we have

(ΠM
x τ)(x) = (Πxτ)(x) = (ΠxMτ)(x).

For τ = Ik(τ ′) , if |τ ′|s > 0 then the recursive definition of ΠM
x gives

(ΠM
x Ikτ ′)(x) = 0

(ΠxMIkτ ′)(x) = (ΠxIkMτ ′)(x) = 0

For the second identity, we have used the fact that |Mτ ′|s ≥ |τ ′|s. Otherwise, if |τ ′|s < 0
then the hypothesis allows us to conclude. For an elementary product τ =

∏
i τi, it follows

by using the induction hypothesis

(ΠM◦

x τ)(x) =
∏
i

(ΠM◦

x τi)(x) =
∏
i

(ΠxM
◦τi)(x) = (ΠxM

◦τ)(x)
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A.2. Renormalised model

(ΠM
x τ)(x) = (ΠM◦

x (Rτ − τ))(x) + (ΠM◦

x τ)(x)

= (ΠxM
◦(Rτ − τ))(x) + (ΠxM

◦τ)(x) = (ΠxMτ)(x).

Proposition A.2.7 is crucial for deriving the renormalised equation in many examples.
Indeed, the reconstruction map RM associated to the model (ΠM ,ΓM) is given for every
τ ∈ T by:

(RMτ)(x) = (ΠM
x τ)(x) = (ΠxMτ)(x)

because for every τ ∈ T , Πxτ is a function. The result of proposition A.2.7 has just been
checked on examples [Hai14b], [HP14] and [HQ15] but not in a general setting. In general
for y 6= x, (ΠM

x τ)(y) is not necessarily equal to (ΠxMτ)(y) as mentioned in [Hai14b].
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Appendix B

Generalised Taylor formula

The next generalised Taylor formula is useful for many proofs including the analytic
bounds for a model and the convergence of the trees. This formula is taken from [Hai14b,
proposition A.1] . We first introduce some notations by defining:

µ`(x, dy) = 1[0,x](y)
(x− y)`−1

(`− 1)!
dy, µ?(x, dy) = δ0(dy),

where for ` = 0, we set µ0(x, dy) = δx(dy). For any k ∈ Nd, we consider the kernel Qk
given on Rd by:

Qk(x, dy) =
d∏
i=1

µki (xi, dyi),

where we defined

µki (a, ·) =


µki(z, ·), if i ≤ m(k),

zki

ki!
µ?(z, ·).

and

m(k) = min{j : kj 6= 0}.

One crucial property of these kernels is µki (z,R) = zki
ki!

which gives

Qk(x,Rd) =
xk

k!
.

Theorem B.0.8. Let A ⊂ Nd such that for every k ∈ A, one has k< = {` 6= k : ∀i `i ≤
ki}. We define ∂A = {k /∈ A : k − em(k) ∈ A}. Then for every smooth functions f on
Rd, it follows

f(x) =
∑
k∈A

Dkf(0)

k!
xk +

∑
k∈∂A

∫
Rd
Dkf(y)Qk(x, dy).
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