Keywords: Core Ready SML Virtual Machines (Partitions) System Software P2 Code Generation Kernel HOL-TestGen Packages datatype, fun, records… Integrators sledgehammer Scala System Interface Proof Procedures simp, fast, blast, auto … Imovs2i regname regname | ... --{* arithmetic / logical operations *} | Iaddio regname regname immed | Iaddi regname regname immed | Iaddo regname regname regname Islli regname regname shift_amount |

Formal methods can be understood as the art of applying mathematical reasoning to the modeling, analysis and verification of computer systems. Three main verification approaches can be distinguished: verification based on deductive proofs, model checking and model-based testing.

Model-based testing, in particular in its radical form of theorem provingbased testing [BW13], bridges seamlessly the gap between the theory, the formal model, and the implementation of a system. Actually, theorem proving based testing techniques offer a possibility to directly interact with "real" systems: via different formal properties, tests can be derived and executed on the system under test. Suitably supported, the entire process can fully automated.

The purpose of this thesis is to create a model-based sequence testing environment for both sequential and concurrent programs. First a generic testing theory based on monads is presented, which is independent of any concrete program or computer system. It turns out that it is still expressive enough to cover all common system behaviours and testing concepts. In particular, we consider here: sequential executions, concurrent executions, synchronised executions, executions with abort. On the conceptual side, it brings notions like test refinements, abstract test cases, concrete test cases, test oracles, test scenarios, test data, test drivers, conformance relations and coverage criteria into one theoretical and practical framework.

In this framework, both behavioural refinement rules and symbolic execution rules are developed for the generic case and then refined and used for specific complex systems. As an application, we will instantiate our framework by an existing sequential model of a microprocessor called VAMP developed during the Verisoft-Project. For the concurrent case, we will use our framework to model and test the IPC API of a real industrial operating system called PikeOS.

Our framework is implemented in Isabelle/HOL. Thus, our approach directly benefits from the existing models, tools, and formal proofs in this system.

Motivations

Formal verification techniques, i. e. a family of methods that establish the correctness of programs wrt. a specification, have seen a remarkable boost in recent years. In particular methods based on deductive code-verification or model-checking can, within the boundaries of certain foundational assumptions, provide an absolute guarantee in a sense for the correctness of programs in a system. It is safe to state that the formal verification of computer systems becomes increasingly relevant due to the critical roles they play in daily human life, and this is reflected by their role in certification processes assuring that certain security or safety requirements are respected by a wider and wider range of products. An example of a critical systems, an embedded system comprising safety critical software components, e. g. the engine controller of an aeroplane.

However, pursuing our thought experiment a little further, we have to admit that flying our just-formally-verified aeroplane would simply be illegal, and for good reasons: The approval of an aeroplane (and other safety critical systems) is legally bound to formal certification process (such as DO178B/C [START_REF] Stallbaum | Toward do-178b-compliant test models[END_REF][START_REF] Brosgol | Do-178c: The next avionics safety standard[END_REF], Common criteria [START_REF]Common criteria for information technology security evaluation[END_REF], etc.), which requires a combination of tests and verification techniques. One reason is that deduction based verification may establish the correctness of code towards a specification, i. e. a mathematical model, but this doesn't guarantee that the model and its foundational assumptions correspond in sufficient precision to the physical reality in the embedded system. Another reason is that existing certification standards simply did not consider the possibilities of modern formal verification techniques, and certification engineers do not know what guarantees can and cannot be gained from the use of formal methods. Thus, a plane should never fly without verifying both, the code and its underlying modeling assumptions of its critical components, by a combination of test and proof techniques, enforced by an adequate formal certification process. While certifications of large systems, including fully functional operating systems up to Common Criteria EAL 1 4 [START_REF]Common criteria. Common criteria for information technology security evaluation ((version 3.1), Part: Security assurance components[END_REF] are common practice today, higher levels involve the use of formal methods in terms of combined test and proof activities, covering various layers of a system including soft and hardware-components. To reach EAL7, one has to formally specify a security policy model (called SPM), a model of the system operations called functional specification model (the FSP), and a kind of refinement proof between these two. Finally, a battery of tests have to be provided that establish the correspondence between the FSP and the "real" implementation in form of code. One of our goals is to contribute to the test-effort for an EAL 5 or higher certification of PikeOS 2 operating system by a test-method designed to support this activity. All three, modeling, certification and test effort were pursued the European EURO-MILS 3 project aiming at an EAL 5 certification for PikeOS, were the organizational context of this work. At present, specification-level verification and the development of test sets are usually two unrelated tasks. While test sets for certification kits are usually developed manually and independently from the specification, our model-based test case generation approach , developed during this thesis, uses a design model that can already be used for the verification task. Beyond the advantage of natural integration of our model-based testing techniques into a certification process, model-based testing using symbolic evaluation can treat models with complex state, which distinguishes it from popular model checking techniques [START_REF] Merz | Model checking: A tutorial overview[END_REF], and connect a model with a real implementation, without additional assumptions (i. e. correctness of the com-1 Evaluation Assurance Level 2 www.pikeos.com 3 www.euromils.eu piler, existence of the model of the underlying hardware, etc.). The latter distinguishes our approach from classical deductive verification techniques [START_REF] Ahrendt | Practical aspects of automated deduction for program verification[END_REF].

In formal testing, a branch of model-based testing, the properties of systems are verified by a testing experience based on a formal model. The goal of a test is to establish a conformance relation between the model and a system, which is a kind of a satisfaction relation that must, for practical reasons, be based on a finite test set, i. e. containing a generated set of test cases.

In our view, it is not possible to treat formal models only by paper and pencil notations as is the case in many works and publications. Models and proofs treated in this work i. e. the system model of a real operating system, its complex operational semantics and the resulting very complex symbolic execution rules, developed by a collaborating team comprising several persons routinely changing basic definitions, is out of reach of conventional paper and pencil theory development; a proof assistant for routinely re-checking definitions and re-proving proofs is indispensable in such a development effort. Thus, we will use interactive theorem proof assistant to carry our testing framework.

Interactive theorem proving is a technology of fundamental importance for mathematics and computer-science. It is based on expressive logical foundations and implemented in a highly trustable way. In this thesis, our approach is implemented inside the interactive theorem proving environment Isabelle/HOL extended by a plugin with test generation facilities called HOL-TestGen. The use of Isabelle/HOL as a modeling environment has the following advantages:

1. We inherit all its technical features, e. g., formal modeling and verification, code generation and document generation, 2. Our test case generation algorithm is based on the symbolic computation engine implemented as Isabelle tactics. Thus, can count as highly trustworthy, 3. HOL-TestGen allows us to seamlessly integrate formal verification and testing in a unique way.

Contributions

The main focus of our work is to provide a theorem proving-based sequence testing environment for both sequential and concurrent complex systems4 .

In fact, this kind of test environments is advantageous during different certification processes. We will divide the list of our contributions into three groups.

Our theoretical contributions consist in:

• the extension of the monad-based test framework, introduced in [START_REF] Achim | On Theorem Proverbased Testing[END_REF], by new concepts, e. g., executions with abort, interleaving, to express sequence test scenarios for concurrent and sequential programs,

• the derivation of behavioral refinement rules and symbolic execution rules for the new introduced concepts,

• the embedding of the standard test refinement in the monad testing framework, and

• a conformance relation based on observed error codes, to test security properties, e. g. information flow and access control, that links the specification and the implementation using abstract test drivers.

On the technical side we would like to mention:

• the definition of key theories to test computer systems, e. g. a theory on shared memory,

• the introduction of an optimized scheme to derive symbolic execution rules and an efficient way for their implementation in Isabelle/HOL, and

• a proposal to build test drivers that links abstract tests derived on Isabelle level with concrete concurrent code.

On the methodological side, our contributions are:

• a guideline to convert a functional system model to a testable theory, gained from a substantial case study,

• a methodology to control the execution of a concurrent program during our test experience, and

• a high-level mandatory guidelines and recommendations for both developers and evaluators of certification documents containing Isabelle specifications.

In fact, our contribution can be seen as a proposal of a test and proof environment composed of a tool chain Figure 1.1 that goes from the abstract Isabelle/HOL level down to code-level (e. g. C, SML). First, we will introduce a monad based sequence testing theory encoded in Isabelle. It is not restricted to a particular computer system, but we believe that monads are expressive enough to cover all common behavioral concepts (e. g. sequential executions, synchronized executions, etc.) and testing concepts (test oracles, test scenarios, coverage criteria, etc.). Then the proposed testing theory is extended by a non-standard behavioral concepts (i. e. aborted executions, concurrent executions with abort) and test concepts (i. e. a new coverage criterion to test IPC protocol, error-codes based conformance relation) to express security and functional test scenarios for systems executed in a concurrent context. Moreover, the functional model of both, the operating system PikeOS and the VAMP processor, are embedded in our monadic framework, and a test experience for the two systems was established.

In this thesis, we will also develop a test case generation process that fully relies on a symbolic execution rules established as Isabelle lemmas, i. e. formally derived rules. In fact, each system under test has its own specific operational semantic, which means that, the generic symbolic execution rules on the introduced monads operators are not optimized enough to execute any operational semantic. However, a refined versions of the generic symbolic execution rules are derived for the different case studies presented in this thesis. Moreover, and using Isabelle/ML which is a development environment for ML programming offered by Isabelle, we will develop tactics that help into the automation of the process of the application of symbolic execution rules on a given test scenario designed inside our framework.

Our contribution also covers, the implementation of test drivers to test concrete code. A test driver is composed from three main components: the test script, the adapter and the test harness. While HOL-TestGen code generator, which is actually a refined version of Isabelle code generator, is used to generate automatically test scripts in SML language, two programs implemented in Isabelle/ML will be used as a test harness and a test adapter for the test driver. Actually, and in order to test C concurrent code, we will add another program to our standard construction of test drivers. The program is also implemented in Isabelle/ML, and it uses the test script to generate a set of gdb files. In fact, during our test experiences, we will show how gdb can be used to control the executions of a given concurrent program implemented in C language. Thus, we avoid putting strong assumptions related to the non-determinism of the system scheduler choices during a concurrent execution. Finally, we will use MLton compiler as an interface to connect our test scripts written in SML level with implementations in C code-level, and build our test executables.

Overview

The idea behind this thesis is to design a test and proof environment for sequential and concurrent complex systems. In order to present this work, we have organised the document as following:

Part I: Introduction and Context

In the first part of the document we will introduce the context of this thesis. Formal methods, in particular the use of a verification technique based on formal testing approach implemented in a theorem proving environment, is the topic of this thesis. The chapter 2 contain a description of formal methods and its relation with formal testing. The chapter also contains a description for the formal development environment used in this thesis which is Isabelle/hol!. Moreover, the architectures of two systems used in our case studies is presented in this chapter.

Part II: Contributions

The second part of the document contains our contributions during this thesis. This part is devided into four chapters:

chapter 3: Isabelle in Certification Processes

This chapter was published as an internal technical report [START_REF] Nemouchi | Isabelle in certification processes[END_REF]. The chapter introduce mandatory recommendations for the evaluators of CC documents containing Isabelle theories. Actually it is an instantiation of Eric

Jaeger text [START_REF] Jaeger | A few remarks about formal development of secure systems[END_REF], a document that contain recommendations for evaluators of CC documents.

chapter 4: Theoretical and Technical Foundations

The content of this chapter was partially published in [START_REF] Achim | Testing the IPC protocol for a real-time operating system[END_REF]. In this chapter, we will introduce our test framework. Our framework is represented by a tool-chain consisting of:

1. The Specification Language: used to express different behaviors of computer programs. The specification language is based on a monad theory formalized on a top of Isabelle/hol!.

2. HOL-TestGen: it is an extension of Isabelle with test case generation facilities, e. g. trace generator based on Isabelle datatypes package, an interface to connect an Isabelle local proof context to constraintsolvers, etc.

3. Test Drivers: they are programs used to execute automatically the generated tests on a given program under test written in a given programming language, in particular we consider programs implemented in: sml, OCaml, scala, haskell, C and F#. In our approach, test drivers represent a link between the model and the program under test. Their implementation is not fully automatic. While some parts of the test driver is generated automatically, e. g. the test script, a particular part of it, which is the test adapter, is written by hand.

chapter 5: Testing VAMP Processor

The content of this chapter is published in [START_REF] Achim | Test program generation for a microprocessor[END_REF]. In order to meet requirements of a certification process for critical security systems, one has to formally verify properties on the specification as well as test the implementation thoroughly. This includes tests of the used hardware platform underlying a proof architecture to be certified. To this end, in this chapter we present a case study for the model-based generation of test programs (i.e, the basis for a certification kit) for a realistic model of a RISC processor called VAMP. In this case study we use an existing model of VAMP and HOL-TestGen to develop several conformance test scenarios.

chapter 6: Testing PikeOS API A part of this chapter was published in [START_REF] Achim | Testing the IPC protocol for a real-time operating system[END_REF]. The chapter introduces another case study for model-based test generation, but this time, our investigation covers the software layer, more precisely the API of an industrial concurrent embedded system. The chapter introduces a model of PikeOS embedded in our "monadic" test theory. That covers an extension of the theory to embed interleaving executions with abort, synchronization, and shared memory. Experiments on the IPC API and their results are also the topic of this chapter.

chapter 7: Conclusions

Finally, we sum-up with different achievements of this thesis and our future works related to the topic.

Introduction

Formal methods describe a set of mathematically based techniques and tools for specification, analysis and verification of computer systems. They are mainly used to describe and to verify, in a logically consistent way, some properties of these systems.

During a formal testing activity, a well-established branch of formal methods, the properties of systems are verified through a testing experience based on a satisfaction relation between the formal model (the specification) and the implementation of a system. More precisely, the goal of a test experience is to establish a conformance relation between a model and an implementation, that must, for practical reasons, be based on a finite test set. Consequently, testing attempts to run the real system and attempts to establish a verdict on a necessarily finite set of observations. The obvious fundamental limitations of the testing approach can be partly overcome by the following techniques:

1. test sets can be generated and the generation procedure can be designed to generate a different test set for regeneration. So a sequence of a decently organised regression test can increase the confidence in a software development process well enough.

2. the generation of test sets can be guided by a well-chosen coverage criteria whose effectiveness can be established by empirical observations in a concrete software development process.

From our point of view, formal testing is a sub-field of Model-Based Testing (MBT) since often semi-formal languages (e. g. UML [START_REF]The Unified Modeling Language Reference Manual[END_REF]) were used to generate tests. Because test suites are derived from models and not from source code, both formal testing and model-based testing are usually seen as a form of black-box testing. In the context of our work, our testing theory is developed in a formal environment, called the testing framework, implemented inside an interactive theorem proving environment.

Interactive theorem proving (ITP) is a technology of fundamental importance for mathematics and computer-science. Applications include very large mathematical proofs and semi-automated verification of complex software systems. ITP systems are based on expressive logical foundations and implemented usually in a highly trustable way; this is due to the architecture of contemporary ITP systems such as Coq [START_REF] Wiedijk | The Seventeen Provers of the World: Foreword by[END_REF]§4], Isabelle [START_REF] Nipkow | Isabelle/hol!-A Proof Assistant for Higher-Order Logic[END_REF] or the HOL family [Wie06, §1] (HOL4 [START_REF] Kumar | Challenges in using opentheory to transport harrison's HOL model from HOL light to HOL4[END_REF], HOL light [START_REF] Harrison | HOL Light: An overview[END_REF], etc.) going back to the influential LCF system [START_REF] Milner | Edinburgh LCF: A Mechanized Logic of Computation[END_REF] from 1979, which has pioneered key principles like correctness by construction for primitive inferences and definitions, free programmability in user-space via SML, and top-level command interaction.

The purpose of this chapter is primarily to present preliminaries on formal testing and on its specific branch: sequence testing. Moreover, we will bring together a body of system information that is generally known in the Isabelle community, but largely scattered in system documentations and papers. This includes a brief introduction into the system, a general overview over the methodology and covers certain aspects of the tool support. Such an introduction into Isabelle and its higher order logic implementation will help the reader to understand the different concepts and approaches proposed in this thesis. In fact, the general context of this thesis is: the implementation of a test and proof environment that relies on Isabelle, with the intention of using it during a certification processes of critical systems. Actually, during our investigations, our testing theory was extended by two substantial case studies, namely a micro-processor called VAMP[BJK + 06] and a real-time operating system PikeOS 1 [START_REF] Sysgo | PikeOS Fundamentals[END_REF]. Some concepts related to the latter are also presented in this chapter.

The chapter proceeds as follows: A general introduction into formal testing followed by an overview on sequence testing are presented in section 2.2 and subsection 2.2.2. In section 2.3, we provide a guided tour over the Isabelle system. In subsection 2.3.7 we describe an extension of Isabelle used for model-based testing, and discuss its advantages and limits in model based testing area. In section 2.4 and section 2.5, the basic design concepts and the system architectures related to VAMP and PikeOS are presented.

Formal Testing and Prover-Based Testing

The relation between deductive proof verification, model checking and formal testing is complementary and fruitful in our view, although the three approaches use common formal specifications techniques during the verification process. This relation is sketched in Figure 2.1. The advantages of using formal specifications by the three approaches can be summarized as follow:

• A formal specification language provides a mathematically precise notation to express properties of systems.

• In software engineering, formalizing the syntax and the semantics of specification languages leverages tools for automated reasoning on systems.

• Formal specifications of systems can systematically be refined to code [START_REF] Partsch | Program transformation systems[END_REF][START_REF]The B-book: Assigning Programs to Meanings[END_REF].

• In critical systems, specifications based on interactive theorem-proving tools can be used to prove that an implementation is free of bugs • In testing activity, test cases can be generated automatically from formal specification [START_REF] Cartwright | Formal program testing[END_REF][START_REF] Gaudel | Testing can be formal, too[END_REF][START_REF] Boyapati | Korat: Automated Testing Based on Java Predicates[END_REF] • Model-Based test techniques can compile a given formal specification to oracles that determine when a particular test passes or fails [HBB + 09] .

From a conceptual point of view, a testing activity can be seen as the establishment of a conformance relation between the model and the system under test in order to meet a given test requirements. In fact, in our Prover-Based Test (PBT) approach, the conformance relation is expressed within a formal testing framework. From our view, a formal testing framework is composed from:

1. the test specification: it is a higher order logic formula that express a property for the generated tests. In our framework a test scenario for a given test experience is formally expressed by a test specification.

According to the test requirements, and based on the definitions inside the test theory, a test specification is designed under some testing hypothesis and coverage criteria in a form of, a test refinement relation. The latter contains a category of conformance relations that link the model with the real system. The test specification is designed in the logical context of a background theory, called in our terminology the test theory. The test theory relies on testability hypotheses and contains concepts to express the test requirements for a given model-based test experience. For example a test theory contains: (a) a specification language to express the behavior of the system under test and also a formalization the properties to be checked during the test experience. Note that in our approach, the specification language, also called the model, has to be testable, i. e. can be refined to code, in order to be used for experiments, (b) defintions of concepts needed for the establishment of a given test experience, e. g. conformance relations, coverage criteria, test scenarios etc., and (c) the test strategy, e. g. symbolic execution process, data selection process, test execution process etc.

2. The scenario is technically captured by a test suite, which is a kind of a container comprising: (a) test theorem, (b) abstract tests, (c) concrete tests and (d) other data related to a test scenario, 3. the concrete test cases are executed on the system under test and the test results are derived, and 4. finally, a verdict is established, i. e., the test results are interpreted and some conclusions related to the test experience are stated. Of course, during the evaluation of the test experience, both testability assumptions and test results are used.

Different testing approaches and techniques and several ways of their integration inside a formal context were explored. In our context, we choose PBT approach, it has been applied to unit testing [BW09, BW13, BFNW13, BBW15], and during our work PBT was also applied to sequence test scenarios [START_REF] Achim | Test program generation for a microprocessor[END_REF][START_REF] Achim | Testing the IPC protocol for a real-time operating system[END_REF].

On Theorem Proving Based Testing (PBT)

The idea of using a test-generation method based on theorem proving environment is particularly attractive for establishing the link between the model and the real implementation. In recent years, HOL-TestGen [START_REF] Achim | On Theorem Proverbased Testing[END_REF] has been developed for testing models presented in HOL, in particular for operations with complex data-structures, so data-types comprising lists, sets, trees, records, etc. Tests were generated in the logical context of a background theory and wrt. to a particularly property (called test-specification) formulated in it. At the begin of this thesis, HOL-TestGen was mostly geared towards the generation of unit-tests and test-specifications of the form: pre(x)→ post(x, SUT(x))

where x is arbitrary input, so possibly also containing an input state, pre and post condition, and SUT an uninterpreted constant symbol representing the system under test. The test-specification schema covers test scenarios where the initial state of the system is known and the result state is returned by the SUT; it is therefore assumed to be accessible in principle.

HOL-TestGen provides automatic procedures to decompose via data-type splitting rules and a kind of DNF-normalization the initial test-specification into abstract test cases, i. e. clauses containing SUT(x) plus a collection of logical constraints on x. For example in [START_REF] Achim | On Theorem Proverbased Testing[END_REF], the authors want to express the property "SUT is a sorting algorithm on integer lists" by the test specification:

sort (list) = SUT (list)
where sort has been specified by, for example, an insertion-sort. A test case generation could yield the test cases in the (complete) test theorem: where the test hypotheses were marked by THYP, and the constraints on the variables inside the list are marked by PO. If these constraints are satisfiable, a constraint-solver can produce a ground instance for x, say c, and isolate post(c, SUT(c)) as concrete test, if these constraints are unsatisfiable they are infeasible tests that represent impossible (empty) abstract test-cases.

Eliminating infeasible test cases as early as possible is primordial for effective test generation; it is also the key advantage over random-based testing which tends to be hopelessly inefficient if pre-conditions are non-trivial. Finally, HOL-TestGen offers the possibility to convert concrete test suites via codegenerators into test drivers in a variety of target languages.

HOL-TestGen and its methodology is an instance of model-based testing (see [ABC + 13] for a recent survey over the field, which was pioneered by M.C. Gaudel at the beginning of the 90ies [START_REF] Gaudel | Software testing based on formal specification: Atheory and a tool[END_REF][START_REF] Gaudel | Testing can be formal, too[END_REF]). However, its meth-odology coined "proof-based testing" distinguishes itself from main-stream approaches by the following features:

1. rather than residing on small, decidable data-type theories in a propositional or first-order logic setting, HOL-TestGen embraces higherorder logic (HOL) and favors for background theories and test specifications abstract and concise mathematical descriptions rather than indirect problem-encoding;

2. HOL-TestGen allows for instrumenting the generation processes of abstract and concrete test cases by derived rules, i. e. rules that are short-cuts for the normalization and data selection phases which were justified by formal proof;

3. HOL-TestGen leverages the possibility to "massage" of a given model into a testable one; beyond aforementioned instrumentation of the process, an initial model can be refined or restricted to a model that is more suited for test-generation and its underlying needs for a symbolic execution process;

4. HOL-TestGen offers the possibility of a semantically controlled, clean integration from models to the test driver generation.

Prior work [START_REF] Achim | Formal firewall conformance testing: an application of test and proof techniques[END_REF] with HOL-TestGen had shown that sequence test scenarios could be treated effectively in principle, if the background theory is geared towards efficient symbolic execution and if the process is decently supported by automated reasoning. However, there is no direct way to generalize the reification technique used in [START_REF] Achim | Formal firewall conformance testing: an application of test and proof techniques[END_REF] to the PiKeOS model, something that will be tackled by this thesis. In our context, we are particularly interested in sequence tests, which we describe in sequel in more details.

A Gentle Introduction to: Sequence Testing

Sequence testing is a well-established branch of formal testing theory having its roots in automata theory. In formal testing, the model, also called the specification, and the system under test (SUT), also called the implementation, are usually belonging to different worlds (e. g. the specification is a logic based, and the SUT is implemented on C-level). The link between the two worlds is established by the refinement relation expressed on the model-level and complemented by methodological assumptions.

Methodological Assumptions

The methodological assumptions, sometimes called testability hypotheses in the literature, are used to bridge the gap between the model and the system under test [START_REF] Bernot | Software Testing Based on Formal Specifications: A Theory and a Tool[END_REF][START_REF] Lee | Principles and method of testing finite state machines-a survey[END_REF]. An example on testability hypothesis is the test refinement relation, it states that the system under test is a refinement of the model. The main testability assumptions in sequence testing theory are summarized as follows:

1. The tester can reset the system under test (the SUT) into a known initial state, 2. the tester can stimulate the SUT only via the operation-calls and input of a known interface; while the internal state of the SUT is hidden to the tester, the SUT is assumed to be only controlled by these stimuli, and 3. the SUT behaves deterministic with respect to an observed sequence of input-output pairs (it is input-output deterministic).

The latter two assumptions assure the reproducibility of test executions. The latter condition does not imply that the SUT is deterministic: for a given input ι, and in a given state σ, SUT may non-deterministically choose between the successor states σ and σ , provided that the corresponding outputs (o , σ) and (o , σ) are distinguishable. Thus, a SUT may behave non-deterministically, but must make its internal decisions observable by appropriate output. In other words, the relation between a sequence of input-output pairs and the resulting system state must be a function. There is a substantial body of theoretical work replacing the latter testability hypothesis by weaker or alternative ones (and avoiding the strict alternates of input and output, and adding asynchronous communication between tester and SUT, or adding some notion of time), but most practical approaches do assume it as we do throughout this thesis. Moreover note, that there are approaches (including our own paper [START_REF] Achim | Test program generation for a microprocessor[END_REF]) that allow at least a limited form of access to the final (internal) state of the SUT. Following [START_REF] Cavalcanti | Testing for refinement in CSP[END_REF], testability hypothesis are fundamental to establish the proof of the conformance relation between the model and the system under test. In [START_REF] Tretmans | Model-based testing 2010: Short abstracts[END_REF] the authors mention that "testing can never be complete: testing can only show the presence of errors, not their absence", which is a famous aphorism of Dijkstra. An answer to this statement was given by [START_REF] Feliachi | Semantics-Based Testing for Circus[END_REF], when the author mention that formal exhaustive testing can be used to show the correctness i. e. the absence of bugs if the testability hypothesis are satisfied. Since the exhaustive set of tests is generally infinite, other assumptions, called testing hypothesis are needed to complete the proof of the correctness.

Testing hypothesis

In [START_REF] Bernot | Software Testing Based on Formal Specifications: A Theory and a Tool[END_REF][START_REF] Gaudel | Testing can be formal, too[END_REF] two fundamental testing hypothesis, called uniformity and regularity hypothesis were introduced. They have been improved and embedded in Higher Order Logic (hol!) by [START_REF] Achim | On Theorem Proverbased Testing[END_REF]. The latter mention that regularity hypotheses can be used to address the problem of test case generation for universally quantified variables ranging over recursive datatypes such as lists and trees. The author formalized the assumption by the following natural deduction rule:

|x| < k x • • • P x P y
(2.1)

The rule express that P is always true if, it is true for all data x less than a given depth k. On the other hand side, uniformity assumption is used to bound the set of possible instantiations of a quantified variable, which is usually infinite. The assumption is formalized by the following logical formula:

(∃ x 1 . . . x n . P x 1 . . . x n) -→ (∀ x 1 . . . x n . P x 1 . . .

x n) (2.2)
This formula denote that if P is a true for a given instantiation x n then it is true for all instatiations of the type of the variable x. During our work, we will consider the latter testing hypothesis in connection with coverage criteria.

Coverage Criteria

The concept of coverage is mandatory in testing theory whenever exhaustive tests are impossible. If not all cases can be tested, a test coverage question can be raised. The question that must be answered is, did we test enough? For instance, if the test experience "fails", i. e. does not reveal any bugs under a given coverage, the latter can show to the tester where he can test more. The set of test cases must contain one test sequence for each executable path in the SUT can be seen as an example of a coverage for a given test experience. In [START_REF] Jiang | A study of interleaving coverage criteria[END_REF] five interesting coverage criteria based on concurrency fault models were introduced. We will adapt, refine and formalize some of these criteria in hol! to test concurrent code inspired by PikeOS.

The Conformance Relation

A conformance relation is a satisfaction relation between a specification and a system under test, for which we assume it behaves like a function. A conformance relation can be expressed by, e. g. equality, bisimulation, etc. Some conformance relations between a system specification and a SUT are proposed in subsection 2.2.3.

Verdicts

In general, two possible interpretations (verdicts) for the test set are distinguished, the test can pass or fail. If the SUT behaves correctly wrt. the specification by satisfying the established conformance relation then we say that the SUT passes the test with success. On the other hand, if the SUT does not satisfy the conformance relation we say that the SUT fails to pass the test.

In the next sections, we will present the known formal models used for sequence testing activities and discuss their techniques. From our point of view, a formal model is usually oriented towards a description of data and states composed thereof, or behavior in the sense of a set of system traces. In some cases, a model can also describe timing as well as performance. Thus we distinguish the following testing models (specifications) categories:

• Testing approaches based on behavioral models: describe the system by the relationships between states (data). Such a relationships typically describe the associations between system operations (inputs) and the system state, e. g. Kripke structures or Process Algebras.

• Testing approaches based on data abstraction: data abstraction describe the behavior of a system independently of its implementation.

For instance, the Input-Output relation is expressed by a function that should preserve a set of properties. The properties on the function are expressed by logical formulas. e. g. Axiomatic Specifications or Prover-Based Testing.

Background on Sequence Testing Models

Specification models possesses syntax and semantics for expressing sophisticated behavioral aspects of systems such as synchronisation and concurrency.

In the sequel we will highlight some of these specification languages, in particular these are: Input Output Automata (IOA), Axiomatic Specifications.

Background

Specification languages provide a formal system annotations such as pre post conditions and invariants that allow to express the intended behavior of the system. Such specifications are useful precisely in development of computer systems. When used in conjunction with automated analysis and system verification tools, such specifications can support detection of common vulnerabilities, generation of test cases and test oracles, and formal program verification. In the rest of this section we will first introduce theories related to sequence testing and then focus on specification languages that support concurrency. Actually, Kripke structures as semantic basis of LTL-like languages, have been widely used as a formal specification formalism and in testing activities. One of the first works that introduces testing techniques on a Kripkelike structure was the experiments done by Moore [START_REF] Moore | Gedanken-experiments on sequential machines[END_REF] on Finite State Machines (FSM). The idea of the experiments was based on interactions with a sequential machine in order to describe its behavior with a transition system. Inspired by fault detection experiments for sequential circuits represented by an FSM, Hennine [START_REF] Hennine | Fault detecting experiments for sequential circuits[END_REF] introduced two testing concepts during his work. The first one is called checking sequences, which are a generated input sequences (from a source FSM i. e. the specification) that start from a given initial state. The checking sequences were executed on a target FSM in order to check that the execution of the sequence of inputs by the latter correspond to the execution of the source FSM by the same sequence. In our terminology the checking sequences can be seen as test cases and the satisfaction of the checking sequence by the target FSM can be seen as a kind of conformance relation. The second concept introduced by Hennine is distinguishing sequence. The concept of distinguishing sequence assumes basically that each input sequence starting from a given initial state is bound to an output sequence and the latter is different from all others generated from a different initial state. In our terminology this can be seen as a testability hypotheses. Based on the concepts introduced by Moore and Hennine, other testing theories equipped with new notions, and more complex Kripke structures were developed. For instance, Lee and Yannakasis in their work [START_REF] Lee | Testing finite-state machines: State identification and verification[END_REF][START_REF] Lee | Principles and method of testing finite state machines-a survey[END_REF][START_REF] Lee | Principles and method of testing finite state machines-a survey[END_REF] discussed the use of distinguishing sequences and Unique Input Ouput sequences (UIO) to detect a non observable initial states. Actually, a lot of testing concepts and works were introduced for testing Finite State Machines, for more details on the story of testing theories, we would mention the remarkable background introduced by Feliachi [START_REF] Feliachi | Semantics-Based Testing for Circus[END_REF] in his Ph.D thesis and also the following surveys related to this topic [CSCS94, DY96, HBB + 09, Gau10]. In the rest of this section we would like to focus on testing approaches that consider concurrent executions, since one of our contributions belong to the latter field.

IO-Automata Based Testing

An Input/Output Automaton is an automaton with finite number of states where each transition is represented by an alternation of a single occurrence of input or output events. A sequence of input-output pairs through an Figure 2.2: IO-Determinism and Non-IO-Determinism automaton A is called a trace, the set of traces is written Trace(A). The function In returns for each trace the set of inputs for which A is enabled after this trace; in 2.2c for example, In [("a", 1)] is just {"b"}. Dually, Out yields for a trace t and input ι ∈ In(t) the set of outputs for which A is enabled after t; in 2.2b for example, Out([("a", 1)], "a") this is just {1, 2}.

Many approaches to test concurrent systems based on IOA were explored [BHJJ08, EH08, En-13]. In his work, Bochmann [START_REF] Gregorv | Testing systems specified as partial order input/output automata[END_REF] proposed a concurrent testing approach based on a new IOA model called Partial Order Input Output Automata (POIOA). A POIOA is a refined model of Multi-Port Automaton [LDvB + 93], in which concurrency between inputs as well as inputs ordering constraints are considered. The idea behind this work is to define order constraints for inputs, and then based on this order, a set of test cases in a form of checking sequences is derived. Several conformance relations were proposed by the authors, in general the proposed conformance relations are based on the fact that the implementation must provide the same inputs outputs alternation (or a quasi-equivalent one) as the one proposed by the checking sequence derived from the specification. In other words, a trace T is quasi-equivalent to a trace T if either T = T or T is obtained by reducing the input order constraints of T (input-input or input-output), and/or T is obtained by increasing the output-output constraints. Other conformance relations between a specification given as automaton SPEC labelled with input-output pairs and a system under test are introduced in the literature:

• input/output conformance (IOCO) [START_REF] Tretmans | Model based testing with labelled transition systems[END_REF]: for all traces t ∈ Traces(SPEC) and all ι ∈ In(t), the observed output of SUT must be in Out(t, ι),

• inclusion conformance [START_REF] Ponce De León | Conformance relations for labeled event structures[END_REF]: all traces in SPEC must be possible in SUT and,

• deadlock conformance [START_REF] Feliachi | The circus testing theory revisited in Isabelle/HOL[END_REF]: for all traces t ∈ Traces(SPEC) and b / ∈ In(t), b must be refused by SUT

Testing Based on axiomatic specifications

The most of approaches allowing the derivation of test cases from a specification are based on behavioral descriptions of the SUT, for example:

• IO-Automa [START_REF] Lynch | An introduction to input/output automata[END_REF].

• Control Flow Graph [START_REF] Allen | Control flow analysis[END_REF][START_REF] Allen | Control flow analysis[END_REF] of a given Program.

• Labeled Transition Systems [START_REF] Tretmans | Formal methods and testing. chapter Model Based Testing with Labelled Transition Systems[END_REF].

Axiomatic specifications, also called algebraic specifications [START_REF] Bougé | Test sets generation from algebraic specifications using logic programming[END_REF], are different. Actually, the specification of a system is represented by a a signature Σ = (S, F, V) composed from a finite set of types S and a finite set of function names F and a set of variables V . The requirement during a test process based on algebraic specifications is, the satisfaction of the axioms or their consequences, defined on the functions in F by the SUT. In fact, this is different from the approaches adopted by behavioral oriented specifications, where the satisfaction relation is based on the possibility or impossibility of manifesting a given behavior by the SUT. Basically, a test case is an instantiation of the axioms, or their consequences, by the terms(functions and variables) of the SUT. The conformance relation is represented by the satisfaction of the axioms defined in the specification by the terms of SUT. Many test theories based on algebraic specifications were developed [BCFG86, BGM91, DGM93, GLG08]. In the latter works, the authors expressed testability hypotheses as well as several exhaustive test definitions. Moreover note, testing hypotheses were proposed to deal with the problem of infinite test set. As examples of tools used to express algebraic specifications we mention: CASL [START_REF] Till Mossakowski | Casl âĂŤ the common algebraic specification language[END_REF], ACT-ONE [START_REF] Ehrig | ACT ONEan algebraic specification language with two levels of semantics[END_REF] and OBJ [START_REF] Gannon | Data abstraction, implementation, specification, and testing[END_REF].

Isabelle/HOL

In the context of certifications of critical hard-and software systems, an understanding of its architecture and the underlying methodology may help to understand why Isabelle, if correctly used, can be trusted to a significantly higher extent than conventional software, even more than other automated theorem proving environments (in fact, Sascha Böhme's work on proof reconstruction [START_REF] Böhme | Fast LCF-Style Proof Reconstruction for Z3[END_REF] inside Isabelle revealed errors the SMT solver Z3 [START_REF] Mendonça De Moura | Z3: An efficient smt solver[END_REF] that is perhaps the most tested conventional system currently on the market ...). Of course, Isabelle as software "contains errors". However, its architecture is designed to exclude that errors allow to infer logically false statements, and methodology may help to exclude that correctly inferred logical statements are just logical artifacts, or logically trivial statements, which can be impressing stunts without any value.

The Isabelle System Architecture

We will describe the layers of the system architecture bottom-up one by one, following the diagram Figure 2.3.

Figure 2.3: The diagram shows the different layers like execution environment, kernel, tactical level and proof-procedures, component level (providing external prover integration like Z3, specification components, and facilities like the code generator, the Scala API to the system bridging to the JVM-World, and the Prover-IDE (PIDE) layer allowing for asynchronous proof and document checking.

The foundation of system architecture is still the Standard ML (SML, [START_REF] Milner | The Definition of Standard ML[END_REF]) programming environment; the default PolyML implementation www.polyml.org supports nowadays multi-core hardware which is heavily used in recent versions for parallel and asynchronous proof checking when editing Isabelle theories. On top of this, the logical kernel is implemented which comprises typechecking, term-implementations and the management of global contexts (keeping, among many other things, signature information and basic logical axioms). The kernel provides the abstract data-types thm, which is essentially the triple (Γ, Θ, φ), written Γ Θ φ, where Γ is a list of meta-level assumptions, Θ the global context, containing, for example, the signature and core axioms of HOL and the signature of group operators, and a conclusion φ, i. e.a formula that is established to be derivable in this context (Γ, Θ). Intuitively, a thm of the form Γ Θ φ is stating that the kernel certifies that φ has been derived in context Θ from the assumptions Γ.

There are only a few operations in the kernel that can establish thm's, and the system correctness depends only on this trusted kernel. On demand, these operations can also log proof-objects that can be checked, in principle, independently from Isabelle; in contrast to systems like Coq, proof objects do play a less central role for proof checking which just resides on the inductive construction of thm's by kernel inferences shown, for example, in [START_REF] David | Efficient parallel programming in poly/ml and isabelle/ml[END_REF].

On the next layer, proof procedures were implemented -advanced tactical procedures that search for proofs based on higher-order rewriting like simp, tableau provers such as fast, blast, or metis , and combined procedures such as auto. Constructed proofs were always checked by the inference kernel.

The next layer provides major components -traditionally called packages -that implement the specification constructs such as type abbreviations, type definitions, etc., as discussed in subsection 2.3.3 in more details. Packages may also yield connectors to external provers (be it via the sledgehammer interface or via the smt interface to solvers such as Z3), machinery for (semitrusted) code-generators as well as the Isar-engine that supports structureddeclarative and imperative "apply style" proofs described in subsection 2.3.4. The Isar -engine [START_REF] Wenzel | Isabelle/Isar-a versatile environment for human-readable formal proof documents[END_REF] parses specification constructs and proofs and dispatches their treatment via the corresponding packages. Note that the Isar-Parser is configurable; therefore, the syntax for, say, a data-type statement and its translation into a sequence of logically safe constant definitions (constituting a "model" of the data type) can be modified and adapted, as well as the automated proofs that derive from them the characterizing properties of a data-type (distinctness and injectivity of the constructors, as well as induction principles) as thm's available in the global context Θ thereafter. Specification constructs represent the heart of the methodology behind Isabelle: new specification elements were only introduced by "conservative" mechanisms, i. e. mechanisms that maintain the logical consistency of the theory by construction; internally these constructs introduce declarations and axioms of a particular form. Note that some of these specification constructions, for example type definitions, require proofs of methodological side-conditions (like the non-emptiness of the carrier set defining a new type). We mention the last layer mostly for completeness: Recent Isabelle versions posses also an API written in Scala, which gives a general system interface in the JVM world and allows to hook-up Isabelle with other JVM-based tools or front-ends like the jEdit client. This API, called the "Prover IDE" or "PIDE" framework, provides an own infrastructure for controlling the concurrent tasks of proof checking. The jEdit-client of this framework is meanwhile customized as default editor of formal Isabelle sessions, i. e. the default userinterface the user has primarily access to. PIDE and its jEdit client manage collections of theory documents containing sequences of specification constructs, proofs, but also structured text, code, and machine-checked results of code-executions. It is natural to provide such theory documents as part of a certification evaluation documentation.

Isabelle and its Meta-Logic

The Isabelle kernel natively supports minimal higher-order logic called Pure.

It supports for just one logical type prop the meta-logical primitives for implication _ =⇒ _ and universal quantification x. P x. The metalogical primitives can be seen as the constructors of rules for various logical systems that can be represented inside Isabelle; a conventional "rule" in a logical textbook:

A 1 • • • A m C (2.3)
can be directly represented via the built-in quantifiers and the built-in implication =⇒ as follows in the Isabelle core logic Pure:

x 1 . . . x n . A 1 =⇒ . . . =⇒ A m =⇒ C
(2.4) . . . where the variables x 1 , . . . , x n are called parameters, the premises A 1 , . . . , A m assumptions and C the conclusion; note that =⇒ binds to the right. Also more complex forms of rules as occurring in natural deduction style inference systems like:

A • • • B A → B
(2.5) can be represented by (A =⇒ B) =⇒ A→B. Thus, the built-in logic provided by the Isabelle Kernel is essentially a language to describe (systems of) logical rules and provides primitives to instantiate, combine, and simplify them. Thus, Isabelle is a generic theorem prover. New object logics can be introduced by specifying their syntax and natural deduction inference rules. Among other logics, Isabelle supports first-order logic, Zermelo-Fraenkel set theory and the instance for Church's higher-order logic HOL. Moreover, Isabelle is also a generic system framework (roughly comparable with Eclipse) which offers editing, modeling, code-generation, document generation and of course theorem proving facilities; to the extent that some users use it just as programming environment for sml! or to write papers over checked mathematical content to generate L A T E X output. Many users know only the theorem proving language isar! for structured proofs and are more or less unaware that this is a particular configuration of the system, that can be easily extended. Note that for all of the aforementioned specification constructs and proofs there are specific syntactic representations in isar!.

Higher-order logic (HOL) [START_REF] Church | A formulation of the simple theory of types[END_REF][START_REF] Peter | An introduction to mathematical logic and type theory: to truth through proof[END_REF][START_REF] Peter | Introduction to Mathematical Logic and Type Theory: To Truth through Proof[END_REF] is a classical logic based on a simple type system. It is represented as an instance in Pure. HOL provides the usual logical connectives like _ ∧ _, _→_, ¬_ as well as the object-logical quantifiers ∀x. P x and ∃x. P x; in contrast to first-order logic, quantifiers my range over arbitrary types, including total functions f :: α ⇒ β. HOL is centred around extensional equality _ = _ :: α ⇒ α ⇒ bool. HOL is more expressive than first-order logic, since, e. g., induction schemes can be expressed inside the logic. Being based on a polymorphically typed λ -calculus, hol! can be viewed as a combination of a programming language like sml! or Haskel, and a specification language providing powerful logical quantifiers ranging over elementary and function types. Isabelle/HOL is the session based on the embedding of HOL into Isabelle/Pure. Note The that simple-type system as conceived by Church for HOL has been extended by Hindley/Milner style polymorphism with type-classes similar to Haskel [START_REF] Wadler | How to make ad-hoc polymorphism less ad-hoc[END_REF][START_REF] Wenzel | Type classes and overloading in higher-order logic[END_REF].

The Isabelle Methodology and Specification Constructs

The core of the logic is done via an axiomatization of the core concepts like equality, implication, and the existence of an infinite set, the rest of the library is derived from this core by logically safe ("conservative") extension principles which are syntactically identifiable constructions in Isabelle files. In the following, we will briefly describe the most common conservative extension principles.

Conservative Extensions.

Besides the logic, the instance of Isabelle called Isabelle/HOL offers support for specification constructs mapped to conservative extensions schemes, i. e. a combination of type and constant declarations as well as (internal) axioms of a very particular form. We will briefly describe here type abbreviations, type definitions, constant definitions, datatype definitions, primitive recursive definitions as well-as well-founded recursive definitions. We consider this as the "methodologically safe" core of the Isabelle/HOL system. Using solely these conservative definition principles, the entire Isabelle/HOL library is built which provides a logically safe language base providing a large collection of theories like sets, lists, Cartesian products α × β and disjoint type sums α + β, multi-sets, orderings, and various arithmetic theories which only contain rules derived from conservative definitions.

Type Abbreviations (Synonyms).

For example, typed sets are built in the Isabelle libraries via type synonyms on top of hol! as functions to bool; consequently, the constant definitions for set comprehension and membership are as follows2 : Isabelle's powerful syntax engine is instructed to accept the notation {x | P } for Collect λ x. P and the notation s ∈ S for member s S. As can be inferred from the example, constant definitions are axioms that introduce a fresh constant symbol by some closed, non-recursive expressions; these types of axioms are logically safe since they work like an abbreviation. The syntactic side-conditions of the axioms are mechanically checked, of course.

It is straightforward to express the usual operations on sets like _∪_, _∩_ :: α set ⇒ α set ⇒ α set as definitions, too, while the rules of typed set-theory are derived by proofs from them.

Datatypes.

Similarly, a logical compiler is invoked for the following statements introducing the types option and list: Similarly, the option type shown above is given a different notation: αoption is written as α ⊥ , None as ⊥, and Some X as X . Internally, recursive datatype definitions are represented by type-and constant definitions. Besides the constructors None, Some, Nil and Cons, the statement above defines implicitly the match-operation case x of ⊥⇒F | a ⇒G a respectively case x of []⇒F | (a#r)⇒G a r. From the internal definitions (not shown here) many properties are automatically derived like distinctness [] = a#t, injectivity of the constructors or induction schemes.

Type definitions.

Type definitions allows for a safe introduction of a new type. Other specification constructs, for example datatype, are based on it. The underlying construction is simple: any non-empty subset of an existing type can be turned into new type. This is achieved by defining an isomorphism between this set and the new type; the latter is introduced by two fresh constant symbols (representing the abstraction and the concretization function) and three internally generated axioms. As a simple example, consider the definition of type containing three elements. This type is represented by the first three natural numbers:

typedef three = {0::nat,1,2} apply (rule_tac x= 0 in exI) apply blast done

In order to enforce that the representing set on the right hand side is non empty, the package requires for this new type a proof of non-emptiness:

typedef three = {0::nat,1,2}

1. ∃ x. x ∈{0, 1, 2}

To use this new type we need to finish the proof of non empty set started by the use of typedef which can be done differently. For example we can finish the proof using existing theorems on the logical operator ∃ in Isabelle/HOL. To see all Isabelle's theorems related to ∃ we use the Isabelle command find_theorems. The query searches for theorems whose name contains an "ex" sub-string. One of the results is:

find_theorems name : exI HOL.exI: ?P ?x =⇒∃ x. ?P x

The searched theorems is applied in the following. In our case, the Isabelle proof method rule_tac is used, a resolution step, which unifies the theorem HOL.exI against the first proof goal in a resolution step: Its application in the proof allows to replace the schematic variable ?x by the constant 0 in our proof; this is specified by the key word in followed by the name of the theorem. The other schematic variable ?P is automatically filled in (using higher-order unification), which is possible since only one solution remains. The remainder of the proof consists of a call to the highly automated method blast, which does the trick for the necessary set-theoretic proof.

It remains to point out that the same proof can be done by different proofstyle called structured proof or Isar-proof. The same proof can be represented in this style as follows: After finishing the proof about the definition of this new type, many theorems will be deduced automatically by Isabelle. We can check the new deduced theorems related to this new type by using the command find_theorems. In the concrete example, there are 82 new theorems deduced that were related to this type definition. Well-founded Recursive Function Definitions.

Actually, there is a parser for primitive and well-founded recursive function definition syntax. For example, the sort-operation can be defined by: which is again compiled internally to constant definitions. Here, α :: linorder requires that the type α is a member of the type class linorder. Thus, the operation sort works on arbitrary lists of type (α :: linorder) list on which a linear ordering is defined. The internal (non-recursive) constant definition for the operations ins and sort is quite involved and requires a termination proof with respect to a well-founded ordering constructed by a heuristic. Nevertheless, the logical compiler will finally derive all the equations in the statements above from this definition and makes them available for automated simplification.

The theory of partial functions is of particular practical importance. Partial functions α β are then defined as functions α⇒β option supporting the usual concepts of domain dom f ≡ {x | f x = None}) and range ran f ≡ {x | ∃y. f y = Some x}. Partial functions can be viewed as "maps" or dictionaries; the empty map is defined by ∅ ≡ λ x. None, and the update operation, written p(x → t), by λ y. if y = x then Some t else p y.

Finally, the override operation on maps, written p 1 ⊕ p 2 , is defined by λ x. case p 1 x of None ⇒ p 2 x | Some X ⇒ Some X.

Records

An Isabelle record [Wen15 Other operations on records like extending record type are defined too.

Function Definitions

The HOL instantiation for Isabelle contains a theory on total functions [START_REF] Nipkow | Theory fun[END_REF]. A set of operations and lemmas are defined in this theory. An Isabelle function is seen as an application f : E → F , where E is the domain and F is the range of f , in the following some Isabelle definition that exist in this theory are presented: which defines a new tactic that applies just the existential-introduction rule of hol!. This is the key to build large and own tactic procedures and even tools inside the Isabelle environment. Note that the fragment {@thm exI} is called an antiquotation; it is expanded before being passed to the SML compiler with code that accesses the thm exI (see section subsection 2.3.3, pp8.) in the Isabelle database for theorems. By additional SML-code, this tactic can be converted into a Isar-method, which can be bound to own syntax inside the Isar-language. Thus, the proof language is technically extensible by own, user-defined proof-commands (see [START_REF] Wenzel | The Isabelle/Isar Reference Manual[END_REF] for the details).

Isabelle Proofs

In addition to types, classes and constants definitions, Isabelle theories can be extended by proving new lemmas and theorems. These lemmas and theorems are derived from other existing theorems in the context of the current theory. Isabelle offers various ways to construct proofs for new theorems, we distinguish two main categories: forward and backward proofs:

Local forward proofs.

The goal of a forward proof is to derive a new theorem from old ones. This is done either by instantiating some unknowns in the old theorems, or by composing different theorems together. The instantiation can be done using the of and where operators as follows: Note that when using of the instances of the variables appear in the same order of appearance of the unknown variables in the theorems. Consequently, we can avoid instantiating a variable by giving a dummy value in the position of its corresponding instance.

The second way of deriving theorems is by composing different theorems together using the OF or THEN operators. The first operator OF is used to compose one theorem to others. For a theorem th1 given by A =⇒ B and a theorem th2given by A', the theorem th1[OF th2] results from the unification of A and A' and thus instantiating the unknowns in B. Theorems with multiple premises can be composed to more than one theorem given as arguments to the OF operator. For example, given the conjunction introduction theorem conjI given by ?P =⇒ ?Q =⇒ ?P ∧ ?Q and the reflexivity theorem ref given by ?x = ?x, the composition of these theorem conjI[OF refl[of a] refl[of b]] results in the following theorem a = a ∧ b = b. In a similar way, the THEN operator is used to compose different theorems together. The theorem th1[THEN th2] is obtained by applying the rule th2 to the theorem th1. For example, composing a theorem th1 given by a = b with the symmetry rule sym given by ?s = ?t =⇒?t = ?s is written th1[THEN sym] and the result is b = a.

Global backward proofs.

The usual and mostly used proof style is the backward or goal-directed proof style. First, a proof goal is introduced then the proof is performed by simplifying this goal into different sub-goals and, finally, prove the resulting sub-goals from existing theorems. The proofs are build using natural de-duction by applying some existing (proved) inference rules. For each logical operator, two kinds of rules are defined: introduction and elimination rules.

The backward proofs can be structured in two different ways:

1. Apply style proofs, where the proof goal is simplified using a succession of rules applications. This results in a so-called apply-script, describing the proof steps. An example of such a proof is given in the following:

lemma conj_rule: [[P; Q]]=⇒ P∧ (Q ∧P)
apply (rule conjI)

apply assumption apply (rule conjI)

apply assumption

apply assumption done Although this proof style is easy to apply, long apply-scripts can become unreadable and hard to maintain. A more structured and safe way to write the proofs is by using the Isar language.

2. Structured Isar proofs allow for writing sophisticated and yet still fairly human-readable proofs. The Isar language defines a set of commands and shortcuts that offer more control on the proof state. An example of a structured induction proof is given in the following: For the sake of this presentation, we appeal to an "immediate intuition" of a mathematically knowledgable reader; for detailed introduction into the structured proof language, the reader is referred to the Isar Reference Manual of the System documentation.

In addition to internal Isabelle proof procedures, there are some external proof procedures (blast going back to leantap [START_REF] Beckert | leanT A P : Lean tableau-based deduction[END_REF], metis existing as a stand-alone first-order paramodulation procedure [START_REF] Hurd | First-order proof tactics in higher-order logic theorem provers[END_REF] as well as CVC4[BCD + 11] and Z3 [START_REF] Mendonça De Moura | Z3: An efficient smt solver[END_REF] via the smt interface) that have been integrated into Isabelle in a logically safe way.

Isabelle/HOL Code Generation

Finally, Isabelle/HOL manages a set of executable types and operators, i. e., types and operators for which a compilation to sml!, OCaml, Scala, or Haskel is possible. Setups for arithmetic types such as int have been done allowing for different trade-offs between trust and efficiency. Moreover any datatype and any recursive function are included in this executable set (providing that they only consist of executable operators). Of particular interest for evaluators is the use of the Isar command:

value sort[1, 7, 3] (2.6)
In the context of the definitions, it will compile them via the code-generator to SML code, execute it, and output:

[1, 3, 7] (2.7)
This provides an easy means to inspect constructive definitions and to get easy feedback for given test examples for them. See the part "Code generation from Isabelle/HOL theories" by Florian Haftmann from the Isabelle system documentation for further details.

Isabelle/HOL Document Generation

Of particular interest for evaluators or certifications are Isabelle's features for semantically supported typesetting: within the document element:

1 text{* This is text containing λ's and β's ... *} for example, arbitrary LaTeX code can be inserted for using technical and mathematical notation of annotations of formal document elements. Inside a text-document, the document antiquotation mechanism already mentioned in 2.3.3 can be applied:

which results in a print of theorems directly from their formal Isabelle presentation. Since it is possible to define new antiquotations, one can, for example, track security requirements or security claims in theorems or tests (a detailed description of document antiquotations is found in the "Isar Reference Manual" by Makarius Wenzel from the Isabelle system documentation).

Thus it is possible to use this mechanism to support the traceability of the common criteria items like protection profiles, security targets, requirements, security properties etc. For all these entities, be it informal or not, declarations and applications of antiquotations can be used in text fragments that allow for a direct consistency checking over the entire document. During a certification process, evaluators are encouraged to use the Isabelle/jedit user-interface directly (and not just the generated .pdf documentation), since it allows for an in-depth inspection and exploration of the formal content of a theory: tooltips reveal typing information, evaluations of critical expressions can often be done by the value ... document item, and operator-symbols occurring in HOL-expressions were hyper-linked to referring definitions or binding occurrences. Note, however, that a user-interface is a dozen system layers away from a Isabelle inference kernel which opens the way for implementation errors in display and editing components, increasing the risk of misinterpretations. A final check of an entire document should therefore be made in the (GUI-less) build mode (which enforces also stronger checking).

Isabelle extensions: HOL-TestGen

HOL-TestGen3 (see Figure 2.4) is an interactive, i. e., semi-automated, test generation tool for specification-based tests built upon Isabelle/HOL. Instead of using Isabelle/HOL as "proof assistant," it is used as modeling environment for the domain specific background theory of a test (the test theory), for stating and logically transforming test goals (the test specifications), as-well as for the test generation method implemented by Isabelle's tactic procedures. In a nutshell, the test generation method consists of:

1. a test case generation phase, which is essentially an equivalence partitioning procedure of the input/output relation based on a cnf !-like normal form computation, 2. a test data selection phase, which essentially uses a combination of constraint solvers using random test generation and the integrated SMTsolver Z3 [dMB08],

3. a test execution phase, which reuses the Isabelle/HOL code-generators to convert the instantiated test cases to test driver code that is run against a system under test.

A detailed account on the symbolic computation performed by the test case generation and test selection procedures is contained in [START_REF] Achim | On Theorem Proverbased Testing[END_REF]. The test case generation method is basically an equivalence partitioning combined with a variable splitting technique that can be seen as an (abstract) syntax testing in the sense of the ISO 29199 specification [Int12, Sec. 5.2.1 and 5.2.4]. The equivalence partitioning separates the input/output relation of a program under test (PUT), usually specified by pre-and post-conditions, into classes for which the tester has reasons to believe that PUT will treat them the same.

Of course, the HOL-TestGen approach inherits all glory, but also all limitations of a testing approach: The entire specification is reduced via specific test purposes and underlying test hypothesis ("pick one out of the equivalence class, and it's going to be ok for all class members") to a finite number of tests to be checked. These purposes and hypotheses ' may be difficult to justify and need careful inspection, more difficult than having just a universal statement over the entire input/output relation. On the other hand, testing can establish confidence over the real system, and makes no modeling assumptions -like the Simpl-approach subsection 3.4.1 -over the underlying hardware, the correct modeling of behavior of hardware components such as sensors, the compiler, and the equivalence of the assumed operational semantics of the used programming language(s) with the actually executed one. For this reason, it can be safely stated that for certifications of the highest-levels, a suitable combination of test and proof techniques will be necessary. Proofs for the higher levels of the models establishing the desired security properties in a Target Of Evaluation TOE, tests for establishing that the assumptions made in the lower levels of the models correspond to the reality in the TOE.

The Verified Architecture Microprocessor (VAMP)

The Verified Architecture Microprocessor (VAMP) as well as the microkernel VAMOS [START_REF] Dorrenbacher | Formal Specification and Verification of Microkernel[END_REF] has been developed and verified in the context of the German research projects Verisoft4 and VerisoftXT5 . The goal in particular of the former project was the pervasive formal verification of computer systems from the application level down to the silicon, i. e., the hardware design.

On the Application Software Layer, this includes foundational proofs justifying a verification approach for system-level concurrent programs that are running as user processes on the micro-kernel VAMOS [START_REF] Dorrenbacher | Formal Specification and Verification of Microkernel[END_REF]. On the System Software Layer, VAMOS provides an infrastructure for memory virtualization, for communication with hardware devices, for process (represented as a sequence of assembly instructions), and for inter-process communication (IPC) via synchronous message passing that need to be verified. On the Tools Layer, the correctness of the compiler needs to be verified and, finally, on the Hardware Layer, the functional correctness of the hardware design is formally verified. These four layers comprise the Verisoft Architecture (see Figure 2.5); each of the layers is in itself structured in several sub-layers.

Our work focuses on the hardware layer, more precisely the assembly-level (VAMPasm), i. e., the instruction set of the Verified Architecture Micro-Processor (VAMP) [BJK + 06]. VAMP is a pipelined reduced instruction set (RISC) processor based on the out-of-order execution principle (see [START_REF] Hennessy | Computer Architecture, Fourth Edition: A Quantitative Approach[END_REF] for details). The VAMPasm (section 5.2 presents the formal model we are using in our work) includes 56 instructions: 8 instructions for memory data transfer, 2 instructions for constant data transfer, 2 instructions for register data transfer, 14 instructions for arithmetic and logical operations, 16 instructions for test operations, 6 instructions for shift operations, 6 instruc- tions for control operations as well as 2 instructions for interrupt handling. In our unit and sequence test scenarios presented in section 5.3, we generate tests from a formal model of the instruction set, i. e., we test the conformance of the gate level (which corespondents to the implementation in traditional model-based testing) to assembly-level (which corespondents to the model in traditional model-based testing).

PikeOS System Architecture

PikeOS is a real-time commercial operating system that supervises and ensures the execution and separation between software applications running on the top of various hardware platforms [START_REF] Sysgo | PikeOS Fundamentals[END_REF][START_REF] Sysgo | PikeOS Kernel. SYSGO[END_REF]. It stands in the tradition of so-called separation kernels and follows ideas of the influential L4 kernel project [START_REF] Liedtke | on ţ-kernel construction[END_REF]. The PikeOS architecture comprises four layers (see Figure 2.6). The virtual machine initialization table (VMIT) is a database containing the global configuration of the system and its application structure. In the VMIT, partitions (virtual machines), tasks (POSIX-like processes), their threads, their memory-, processor-, and time resources, communication channels as well as access-control rights on these resources were defined. Only at boot-time, partitions, processes and threads can be created via PikeOS System Software (PSSW); at run-time the application structure and its time-scheduling is fixed: PikeOS has no dynamic process creation. In other words: based on the VMIT configuration, the PikeOS system software (PSSW) will generate a set of virtual machines in the Partitions layer during the boot-phase. In this layer each resource partition is composed from a set of applications, and can be executed under the predefined policy and use the predefined resources of the VMIT. Applications in the resource partitions can also be used for system calls of PikeOS kernel. In kernel layer, the set of resource partitions is seen as a set of PikeOS tasks, that contain PikeOS threads and shares kernel resources (memory, files, processors, communication channels . . .). The kernel provides a set of APIs used by the threads and tasks. As in Unixlike systems, special hardware-the MMU-gives application-level tasks the illusion to live in an own separate memory space: the virtual memory. However, all threads belonging to a task live in the same memory space, namely the memory space of the task they belong to. In contrast, system-level tasks can also access the physical memory and the MMU. Besides memory separation, PikeOS also offers time-separation and multi-core support. Our work focuses on a particular part of the kernel layer providing interprocess communication (IPC), the PikeOS IPC API.

Conclusions

In this chapter we have presented the general context of this thesis. First, an overview on formal testing, its background and its relation with the other formal methods techniques were introduced. Actually, formal testing approaches bridge the gap between the formal model and the reality; in certification effort, this can be a valuable contribution to gain confidence over results achieved by deductive verification or model checking, in which, the verification activity is usually done on the model level solely. From the other side, deductive verification and model checking approaches, can be used to refine/adapt an additional model to a testable one, i. e. a model that is suited to symbolic execution and that can therefore be used in the different testing approaches. Second, we have presented Isabelle/hol! and pointed the essential system features. We believe that a such introduction to Isabelle system will help the reader to understand our contributions explained in the remaining chapters. Finally, the basic notions and the system architecture of VAMP Processor and PikeOS system were described. The next chapter contain our first contribution during this thesis, in particular we will introduce an instantiation of the text in [START_REF] Jaeger | A few remarks about formal development of secure systems[END_REF] for Isabelle in order to show how Isabelle can be used in certification processes.

Part II

Contributions

3

A sideline : Isabelle/HOL in certification processes A System Description and Mandatory Recommendations

Introduction

Recently, theorem proving environments have been widely used in the area of computer systems security and certification and, for instance, in Common Criteria. The Common Criteria (CC) [START_REF]Common criteria for information technology security evaluation[END_REF] is a well-known and recognized computer security certification standard. The standard is centered around the role of the developer, who provides implementation but also "artefacts of compliance with the level of security targeted", while the evaluator "confirms the compliance of the information supplied" as well as determines "completeness, accuracy and quality" of the deliverables. Especially wrt. "completeness, accuracy and quality" of specifications and proofs, formal methods and especially mechanically proof checking techniques can push the trust and the reproducibility of the results to levels not obtainable by a human certification expert alone. This explains why at its higher assurance levels, the CC requires the use of formal methods for specification and verification. A well-established formal specification formalism must be used to model the system and of the different security policies.

A reliable theorem prover is needed to prove and verify different properties of the specification. Recent theorem provers offer rich and powerful formal environments that are very suitable for both activities.

Among the important number of theorem provers available nowadays, we concentrate on the Isabelle theorem prover1 . Following [START_REF] Thomas | Formal proof[END_REF], the Isabelle System, developed into one of the top five systems for the logically consistent development of formal theories. In particular the instance of the Isabelle system with higher-order logic called Isabelle/HOL is therefore a natural choice as a formal methods tool as required by the Common Criteria on the higher assurance levels EAL5 to EAL7.

In this chapter we present a side-effect of our work that still relevant to its context (a European project aiming at a certification of an industrial operating system), as well as the methodological role of testing a certification process. In particular we contributed to the paper2 which was sent to the ANSSI3 . As a contribution, the chapter culminates in some high-level mandatory guidelines and recommendations for both developers and evaluators of certification documents using Isabelle. It attempts to be a complement to [START_REF] Jaeger | A few remarks about formal development of secure systems[END_REF].

The chapter proceeds as follows: at first in section 3.2, we give some general information from Common Criteria standard about formal methods, modeling and associated requirements. In section 3.3, we refer to methodological issues of Isabelle/HOL leading to recommendations for evaluators. In section 3.4 we chose a major extensions of Isabelle for code-verification, and discuss its advantages and limits in a high-level certification process. The final discussion contains a little survey on publications on the topic as well as a summary for evaluators.

Common Criteria: Normative Context

For high levels of certification (i.e. for EAL5 to EAL7) in the Common Criteria [START_REF]Common criteria for information technology security evaluation[END_REF] some requirements introduce the use of formal methods at diverse phases of the design process. Regarding to the level of security target required, the use of formal methods match different objectives. For deeper explanations on high certification levels related to Common Criteria, i. e. EAL 5 to EAL7, and their requirements we would refer to [START_REF] Nemouchi | Isabelle in certification processes[END_REF].

Methodological Recommendations for the Evaluator

There are four potential dangers of a formal proof system that it wrongly accepts the desired theorem "This operating system is secure":

1. Inherent inconsistency of the logics (e. g., hol!) or inconsistent use of the logics (introduction of inconsistent axioms by one way or the other).

2. The incorrect implementation of Isabelle the Isabelle Kernel and of the hol! instance in it.

3. The incorrect package implementation realizing advanced specification constructions like type definitions etc.

4. Since Isabelle is highly configurable, there is a certain danger of obfuscation of bogus-proofs.

Beyond the more philosophical objections4 , the risk outlined by the by first item is in fact minimal: Higher-order logic is an extremely well studied object of academic interest [START_REF] Peter | An introduction to mathematical logic and type theory: to truth through proof[END_REF][START_REF] Mike | Introduction to HOL[END_REF], and while there are known limits in proving soundness and completeness inside a hol!-prover, they just stimulated a lot of recent research to come a "formal proof over hol! in hol!" as close as possible, e.g. by adding to hol! an axiom over the existence of a sufficiently large cardinal [START_REF] Harrison | Towards self-verification of HOL Light[END_REF][START_REF] Myreen | Steps towards verified implementations of HOL Light[END_REF].

The risk outlined by the second item is also very small. The reasons are threefold:

A Some of the aforementioned soundness proofs cover also the implementation aspects of the core of a provers of the hol!-family (hol!-light, ...).

B The specific architecture of provers of the LCF family (HOL4, Isabelle, HOL-light, Coq) enforces that any proof is actually checked by by this fairly small core.

C These core-inferences can optionally be protocoled in an proof-object which can, in principle, in case of serious doubt be checked by another implementation of a hol!-prover. However, since these objects tend to be very large, this approach requires decent engineering. Fortunately, this should only be necessary in exceptional cases.

The risk of the third item is minimal as far as the described standard conservative standard extension schemes such as type_synonym's, datatype's, definition's and fun's, typedef's, specification's, inductive's, typeclasses and locales are concerned. The same holds for diagnostic commands like type, term, value, etc. that do not change the global context of a theory. These are fairly well-understood schemes which have in parts been proven formally correct for similar systems such as the HOL4 system [START_REF] Kumar | HOL with definitions: Semantics, soundness, and a verified implementation[END_REF]. These schemes cover the largest parts of the Isabelle/HOL libraries. Here lies the main advantage of the LCF-approach and the methodology to base libraries on conservative (logically safe) definitions.

The risk is small as far as other standard extension schemes are concerned; since extension schemes generate internally axioms, there have been reported consistency problems with combinations of other extension schemes such as consts and defs as well as defs (overloaded); the Isabelle reference manual points out that the internal checks of Isabelle do not guarantee soundness. 5It remains the risk of item four, which is concerned with the resulting methodology in "how to use Isabelle". For very large theory documentations, it must be considered non-negligeable. It is the key-issue addressed in the remainder of this section. to include arbitrary SML programs, in particular programs that make direct inferences on top of the kernel. This use of Isabelle is not unsafe; critical parts of the hol! library use this mechanism. Isabelle is designed to have user land SML code extensions, and the kernel protects itself against logical inconsistencies coming from ML extensions. However, there are a few deliberate opt-outs, and furthermore, it is in principle possible to obfuscate them in Isabelle ML code such that an evaluator may be fooled by a text appearing to be an Isabelle proof but isn't in the sense of the inference kernel. Thus, besides the principle possibility that a pretty-printed theorem does not state what it appears to state by some misuse of mathematical notation (an inherent problem of any formal method), there is the possibility of fake-proofs as a consequence of ML code and (re)-configurations of the ISAR proof language.

On the use of SML

If SML-code is accepted in an evaluation, it has to be made sure -potentially by extra justifications or external experts with Isabelle implementation expertise -that this code does not implicitly generate axioms, registers oracles and defines proof methods equivalent to sorry (or variants like sorry_fun) to be discussed in the sequel; in any case, the evaluation is substantially simpler if SML-code is strictly avoided.

Axioms and Bogus-Proofs

Obviously, when using the Isar axiomatization construct allowing to add an arbitrary axiom, it is immediately possible to bring the system in an inconsistent state. The immediate methodological consequence is to ban it from use in to be evaluated theories completely (such that it is only internally used inside specification constructs in and and in the aforementioned foundational axioms coming with the system distribution) and to restrict theory building on conservative extensions. This is also common practice in scientific conferences addressing formal proof such as ITP. However, there are more subtle ways to introduce an axiom that leads to inconsistency. First, there is a mechanism in Isabelle to register oracles into the system. They can be used for a particularly simple, but logically unsafe integration of external provers into Isabelle and can be used inside self-defined tactics. Logically, an oracle is a function that produces axioms on the fly. It is an instance of the axiom rule of the kernel, but there is an operational difference: The system always records oracle invocations within proof-objects of theorems by a unique tag. Of course, oracle invocations should again be avoided in a certified proof.

A particular instance of the oracle mechanism is the sorry proof method. This is method is always applicable and closes any (sub)-proof successfully, and a useful means in top-down proof developments in Isabelle. Unneces-sary to repeat that no sorry statements should remain in a proof document underlying certification. By the way, the system is by default in a mode in which it refuses to generate proof documents containing sorry's, only by explicitly putting it in a mode called quick_and_dirty this can be overcome. There are several ways to activate quick_and_dirty, by it by explicit ML statements like quick_and_dirty:=true, be it in the ROOT.ML-files (till version 2013-1), or be it in the session-configuration files ROOT-files (since version 2013).

Oracles and sorry's are particularly dangerous in methodological foundation proofs (type or type-class is non-empty, recursions well-founded), since the use of the the oracle-tag inside the corresponding proof-objects gets lost on the level of type expressions. Thus, a sorry could introduce inconsistent types whose "effects" could be used in bogus-proofs depending on them. We will discuss this a little more in detail: Recall that deduction in Isabelle/hol! is centered around the requirement that types and type-classes are nonempty. This is a consequence of the fact that the β-reduction rule ((λ x ::

τ.E)E → E[x := E]
) is executed pervasively during deduction, be in in resolution or rewriting steps. It is well-known however, that β-reduction is unsound in the presence of empty types6 . Thus, an obfuscated sorry in a methodological proof leaves no other than very local traces in the proof objects and can be exploited much later via an inconsistent type in a proof based on this type definition; the exploit could again be obfuscated by another self-defined proof-method, say auto' which will be hard to detect by inspection. The only systematic way to rule out obfuscated bogus-proof is either by ruling out ML-constructs or by checking all proof objects of the entire theory.

On the use of external provers

The Isabelle distribution comes with a number of external provers, namely:

• sledgehammer : its use is uncritical, since it remains completely extern to proof documentations and is only used for the generation of highlevel Isabelle proofs, that were certified by the kernel.

• blast, metis: these are internal devices but also uncritical, since their results were used via a proof object certification.

• smt: this method uses, for example, the external SMT-solver Z3. The integration is carefully made and uses no oracles -instead, a form of tactical proof re-construction mechanism is used [START_REF] Böhme | Fast LCF-Style Proof Reconstruction for Z3[END_REF] that is logically safe.

Other external provers have to be considered carefully; in particular integrations using the oracle-mechanism should be ruled out.

Extensions of Isabelle: Guidelines for the Evaluator

Besides HOL-TestGen described in subsection 2.3.7, there are other Isabelle extensions relevent for certification processes, namely Isabelle/simpl. In itself, Isabelle/Simpl can be considered nearly as as "trustable" as Isabelle/HOL itself : the library is built upon conservative extensions of the HOL -kernel, and the ML extensions are done by Isabelle developers themselves and stood the test of the time. Program verification proofs establishing that a Simpl-program is correct with respect its (pre-post-condition) specifications can be handled by the same evaluation procedures as any other Isabelle development. However, as in any process involving the verification of C programs, the C parser and its transition from "real C" to the idealized imperative language Simpl has to be considered with a wise dose of scepticism. Here is are whole spectrum of different glimpses possible: since the C parser defines a semantics-by-translation for its fragment of C, the question remains unproven that this semantics is faithful to the semantics of the real C compiler generating production-level code (which involves questions on compiler cor-Figure 3.1: Refinement steps for a formal development approach compliant to CC rectness, semantic faithfulness of the execution environment, correctness of compilation optimizations, hardware-correctness, etc.). The problem has been addressed via particular validation techniques of the parsing process [START_REF] Greenaway | Bridging the gap: Automatic verified abstraction of C[END_REF], but is, in full generality, unsolvable.

Recommendations for CC certifications

A refinement based approach for CC evaluation

The figure 3.1 presents a refinement scheme which implements different refinement steps from security policy model SPM to implementation. With this approach, the properties demonstrated on an abstract SPM are formally preserved down to the levels of the functional specification model FSP and a TOE specification design model, the TSD. At each level of abstraction the dedicated model and its associated proofs demonstrate the security properties and are compliant with the CC requirement. The use of a formal refinement methodology demonstrates the consistency between each refined model and preserve the properties demonstrated at high level of abstraction. The evaluation of this kind of approach can be conducted in three different phases by the evaluator:

• Phase 1: Verification of the proof of the SPM formal specification. On the initial abstract model, a verification shall be conducted to check the relevance of the security objectives modeling in the formal model with the informal specification. A second point is the verification of the model soundness to assure than the model is not inconsistent (refers to chapter 3.3.2).

• Phase 2: Refinement of the SPM formal specification. A first step of this phase is the verification of the refinement process and methodology.

On each refinement, verification on the properties and on the soundness of the model are conducted. From the initial abstract model, on each intermediate concrete model, the evaluator checks the traceability (i.e. the traceability of the requirements) between models. An informal link can be considered between the last formal model of the TDS and the implementation. A bi-directional detailed traceability of the security requirements shall be managed between this two different artefacts to verify the implementation of the security requirements and than the implementation contains only desired requirements7 .

• Phase 3: General and transverse activities. This last phase consists mainly of the verification on the proofs and on justifications on the tools used as support for development and design. The complete traceability from the security target to the implementation is verified included traceability between each refinement steps of formal models. During this phase, the evaluator replay the proofs and check the consistency of the formal properties and assumptions defined on the environment and the context (see 2.3.5 last paragraph for details of facilities supplied by Isabelle/HOL. The use of keywords to report the proof of parts of the proof obligations is forbidden (for example the use of the sorry proof method, see chapter 3.3.2 for details).

When formal methods are used, some practices should be applied to facilitate the work of the evaluator and be more efficient.

• Formal models should be defined in accordance with some naming convention informations and is a huge help for traceability.

• Formal models should be define in accordance with "coding" rules ([START_REF] Jaeger | A few remarks about formal development of secure systems[END_REF]). The proofs associated can be replay.

• Documentation and deliveries should respect templates and integrate traceability with requirements or elements from input specifications. From this point, the use of the Isabelle interface should be interesting with regard to its functionalities, refers to 2.3.5.

Summary

Background References

The most notable text describing the scientific history behind the LCF-family of hol! provers is done by by Mike Gordon[Gor00]. It covers the beginning of the entire research programme from 1972 to the mid-80ies, ranging from foundational issues of the logic over contributions to type-systems (as the "Hindley-Milner-Polymorphism") [START_REF] Milner | A theory of type polymorphism in programming[END_REF] to the issue of the practical, safe implementation of rewrites and decision procedures [START_REF] Paulson | A generic tableau prover and its integration with isabelle[END_REF].

The LCF research programme was in parallel to another notable source of nowadays interactive theorem proving technologies: the Automath-project.

In 1968, N.G. de Bruijn designs the first computer program to check the validity of general mathematical proofs, using typed λ -calculi as a direct means to represent proof objects as such. The emphasis of this programme was initially on proof-checking; de Bruijn's system Automath eventually checked every proposition in a primer that Landau had written for his daughter on the construction of real numbers as Dedekind cuts. A descendant of this family, which also has deeply influenced the Isabelle kernel design (proof objects, core inferences) is the Coq system (see http://coq.inria.fr).

Another notable survey on research programme is contained in the papers contained in A Special Issue on Formal Proof distributed by the American Mathematical Society (see http://www.ams.org/notices/200811/, but also [START_REF] Thomas | Formal proof[END_REF]), which presents nicely the relevance of modern ITP technology for purely mathematical problems (an argument, which has been strengthened recently by the formal proof of the Feit-Tompson theorem, whose precise formulation has haunted mathematicians for decades [START_REF] Gonthier | Engineering mathematics: the odd order theorem proof[END_REF], and the formal proof of the Kepler-conjecture, which is a known mathematical problem for about 400 years.).

Concluding Remarks and a Summary

We have presented the Isabelle/hol! system and pointed out the essential arguments, why by a particular combination of system-architecture and methodology, the system is suited to give the currently highest possible guarantee on a formal proof in particular and a logical theory development in general. In a sense, Isabelle/hol! offers the same guarantees for logical systems as Coq [START_REF] Jaeger | A few remarks about formal development of secure systems[END_REF], and in some sense better guarantees than, for example, the B method or model-checkers like FDR. Isabelle/hol! is therefore a natural choice for evaluations in the higher certification levels EAL5 to EAL7 in the Common Criteria (CC) [START_REF]Common criteria for information technology security evaluation[END_REF].

If the methodological side-conditions are respected which can be reduced essentially to an number syntactic checks, the formal consistency of the entire certification document containing formal specifications, proofs of consistency and the proofs of security properties, refinement-proofs between the different abstraction layers, and finally test-case generations as well as test-results can be guaranteed, and the evaluator can therefore concentrate on the more fundamental questions: does the model represent the right thing? are the modeling assumptions justified?

As "take-home-message" we would summarize these side-conditions as follows:

• Use a trusted, unmodified Isabelle version from the distribution.

• Check the restriction to definitional axioms only, enforce the use of "safe" specification constructs discussed here.

• Rule out axiomatization, sorry, their variants or disguised equivalents (such as oracle declarations).

• In particular sorry's or equivalent constructions in methodological proofs have to be ruled out.

• Check the quick-and-dirty mode status.

• Exploring a TOE interactively, for example by jEdit, which allows for inspecting theories and definitions, their animation, the checking of types and of proof details, is a great means to increase confidence for an evaluator. However, the final check should be done in a non-interactive mode (pretty-printing and display machinery is actually quite far from the kernel and can be erroneous in itself).

• The main theorem in an CC evaluation is presumably of the form: "the security property X stated in the context of the security model Y is satisfied for the functional model Z under some conditions A in some locale B". A skeptical evaluator may insist on proofs that A and B are actually satisfiable, under circumstances even in a constructive sense.

• A conservative evaluator should restrict or ban ML-statements (with the possible exception of declarations of antiquotations), otherwise inspect ML-statements with particular care.

The internal code generator (also used in code-antiquotations and valuestatements) stood the test of the time, but enjoys not quite the same level of trust as the proof facilities. The generation of proof objects for a complete theory is in principle possible, but should not be necessary except in case of a concrete suspicion of a fraudulent proof attempt.

Introduction

The verification of systems combining soft-and hardware, such as modern avionics systems, asks for combined efforts in test and proof: In the context of certifications such as EAL5 in Common Criteria section 3.2, the required formal security models have to be linked to system models via refinement proofs, and system models to code-level implementations via testing techniques.

Our work complements the testing initiative by a proof-based testing technique linking the formal system model of the PikeOS inter-process communication against the real system. This is a technical challenge for at least the following reasons:

• the system model is a transaction machine over a very rich state,

• system calls were implemented by internal, uninterruptible "atomic actions" reflecting the L4-microkernel concept; atomic actions define the granularity of our concurrency model, and

• the security model is complex and, in case of aborted system calls, leads to non-standard notions of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical foundations.

• We use symbolic execution techniques to cope with the large statespace; their inherent drawback to be limited to relatively short execution traces is outweighed by their expressive power,

• we extend the "monadic test approach" proposed in [START_REF] Achim | Test-sequence generation with hol-testgen with an application to firewall testing[END_REF][START_REF] Achim | On Theorem Proverbased Testing[END_REF] to a test-method for concurrent code. It combines an IO-automata view [START_REF] Lynch | An introduction to input/output automata[END_REF] with extended finite state machines [START_REF] Gill | Introduction to the theory of finite-state machines[END_REF] using abstract transitions, and

• we need an adaption of concurrency notions, a "semantic view" on partial-order reduction and its integration into interleaving-based coverage criteria.

This sums up to a novel, tool-supported, integrated test methodology for concurrent OS-system code, ranging from an abstract system model in Isabelle/HOL, complemented embedding of the latter into our monadic sequence testing framework, our setups for symbolic execution down to generation of test-drivers and the code instrumentation.

In this chapter we will introduce a set of technical and theoretical contributions to test concurrent programs. On theoretical side, we present the monadic test approach from an IO-Automata view in section 4.2 then we show how it can be used to express concurrent test scenarios in section 4.4. In section 4.3 we state our refinement relation, which help us to express a family of conformance relations to link the abstract model with the concrete implementation. On the technical side, we will show how Isabelle is used as an abstract test case generator in section 4.5. Finally, our techniques to build test drivers for concurrent code are presented in section 4.7.

Monads Theory

The obvious way to model the state transition relation of an automaton A is by a relation of the type (σ × (ι × o) × σ) set; isomorphically, one can also model it via:

ι ⇒ (σ ⇒ (o × σ) set)
or for a case of a deterministic transition function:

ι ⇒ (σ ⇒ (o × σ) option)
In a theoretic framework based on classical higher-order logic (HOL), the distinction between "deterministic" and "non-deterministic" is actually much more subtle than one might think: since the transition function can be underspecified via the Hilbert-choice operator, a transition function can be represented by

step ι σ = {(o, σ)| post(σ, o, σ)} or: step ι σ = Some(SOME(o, σ). post(σ, o, σ))
for some post-condition post. While in the former "truly non-deterministic" case step can and will at run-time choose different results, the latter "underspecified deterministic" version will decide in a given model (so to speak: the implementation) always the same way: a choice that is, however, unknown at specification level and only declaratively described via post. For the system in this paper and our prior work on a processor model [START_REF] Achim | Test program generation for a microprocessor[END_REF], it was possible to opt for an under-specified deterministic stepping function. We abbreviate functions of type σ

⇒ (o × σ) set or σ ⇒ (o × σ) option MON SBE (o, σ) or MON SE (o, σ)
, respectively; thus, the aforementioned state transition functions of io-automata can be typed by ι → MON SBE (o, σ) for the general and ι → MON SE (o, σ) for the deterministic setting. If these function spaces were extended by the two operations bind and unit satisfying three algebraic properties, they form the algebraic structure of a monad that is well known to functional programmers as well as category theorists.

Popularized by [START_REF] Wadler | Comprehending monads[END_REF], monads became a kind of standard means to incorporate stateful computations into a purely functional world.

Since we have an underspecified deterministic stepping function in our system model, we will concentrate on the latter monad which is called the stateexception monad in the literature. The operations bind, which represent sequential composition with value passing, and unit, which represent the embedding of a value into a computation, are defined for the special-case of the state-exception monad as follows:

definition bind_SE :: ('o,'σ)MON SE ⇒('o ⇒('o','σ)MON SE) ⇒ ('o','σ)MON SE where bind_SE f g = (λσ. case f σof None ⇒None | Some (out, σ') ⇒g out σ') definition unit_SE :: 'o ⇒('o, 'σ)MON SE ((return _) 8)
where unit_SE e = (λσ. Some(e,σ))

We will write x ← m 1 ; m 2 for the sequential composition of two (monad) computations m 1 and m 2 expressed by bind SE m 1 (λ x.m 2). Moreover, we will write "return" for unit SE . This definition of bind SE and unit SE satisfy the required monad laws: More formally, σ |= m holds if and only if (m σ = None ∧ fst(the(m σ))), where fst and snd are the usual first and second projection into a Cartesian product and the is the projection in the Some a variant of the option type.

We define a valid test-sequence as a valid monad execution of a particular format: it consists of a series of monad computations m 1 . . . m n applied to inputs ι 1 . . . ι n and a post-condition P in a return depending on observed output. It is formally defined as follows:

σ |= o 1 ← m 1 ι 1 ; . . . ; o n ← m n ι n ; return(P o 1 • • • o n)
The notion of a valid test-sequence has two facets: On the one hand, it is executable, i. e., a program, iff m 1 , . . . , m n , P are. Thus, a code-generator can map a valid test-sequence statement to code, where the m i where mapped to operations of the SUT interface. On the other hand, valid test-sequences can be treated by a particular simple family of symbolic executions calculi, characterized by the schema (for all monadic operations m of a system, which can be seen as its step-functions): This kind of rules is usually specialized for concrete operations m; if they contain pre-conditions C m (constraints on ι and state), this calculus will just accumulate those and construct a constraint system to be treated by constraint solvers used to generate concrete input data in a test.

(σ |= return P) = P (4.1a) C m ι σ m ι σ = N one

An Example: MyKeOS.

To present the effect of the symbolic rules during symbolic execution, we present a toy OS-model. MyKeOS provides only three atomic actions for allocation and release of a resource (for example a descriptor of a communication channel or a file-descriptor). A status operation returns the number of allocated resources. All operations are assigned to a thread (designated by thread_id) belonging to a task (designated by task_id, a Unix/POSIXlike process); each thread has a thread-local counter in which it stores the number (the status) of the allocated resources. The input is modeled by the data-type: where out_c captures the return-values. Since alloc and release do not have a return value, they signalize just the successful termination of their corresponding system steps. The global table var_tab (corresponding to our symbolic state σ) of thread-local variables is modeled as partial map assigning to each active thread (characterized by the pair of task and thread id) the current status:

type_synonym thread_local_var_tab = (task_id ×thread_id) int
The operation have the precondition that the pair of task and thread id is actually defined and, moreover, that resources can only be released that have been allocated; the initial status of each defined thread is set to 0. The hol! representation of the preconditions and post-conditions is: | precond σ (status taskid thid) = ((taskid,thid) ∈dom σ) Depicted as an extended finite state-machine (EFSM), the operations of our system model SPEC are specified as shown in Figure 4.1. A transcription of an EFSM to HOL is scattered here1 . Actually the HOL model of an EFSM is represented by a locale [START_REF] Ballarin | Tutorial to Locales and Locale Interpretation[END_REF], which is instantiated by the above definitions of pre-post conditions and: where SPEC represent the instantiation of an EFSM with the semantics of MyKeOS. We show a concrete symbolic execution rule derived from the definitions of the SPEC system transition function, e. g., the instance for Equa-tion 4.1c:

(tid , thid) ∈ dom(σ) SPEC (alloc tid thid m) σ = Some(alloc_ok, σ) (σ |= s ← SPEC (alloc tid thid m); m s) = (σ |= m alloc_ok)
where σ = var _tab and σ = σ((tid , thid) := (σ(tid , thid) + m)). Thus, this rule allows for computing σ, σ in terms of the free variables var_tab, tid , thid and m. The rules for release and status are similar. For this rule, SPEC (alloc tid thid m) is the concrete stepping function for the input event alloc tid thid m, and the corresponding constraint C SPEC of this transition is (tid , thid) ∈ dom(σ).

Conformance Relations Revisited

We state a family of test conformance relations that link the specification and abstract test drivers. The trick is done by a coupling variable res that transport the result of the symbolic execution of the specification SPEC to the expected result of the SUT.

σ |= o 1 ← SPEC ι 1 ; . . . ; o n ← SPEC ι n ; return(res = [o 1 • • • o n]) -→ σ |= o 1 ← SUT ι 1 ; . . . ; o n ← SUT ι n ; return(res = [o 1 • • • o n])
Successive applications of symbolic execution rules allow to reduce the premise of this implication to

C SPEC ι 1 σ 1 -→ . . . -→ C SPEC ι n σ n -→ res = [a 1 • • • a n]
(where the a i are concrete terms instantiating the bound output variables o i), i. e., the constrained equation res

= [a 1 • • • a n].
The latter is substituted into the conclusion of the implication. In our previous example, case-splitting over input-variables ι 1 , ι 2 and ι 3 yields (among other instances) ι 1 = alloc t 1 th 1 m, ι 2 = release t 2 th 2 n and ι 3 = status t 3 th 3 , which allows us to derive automatically the constraint:

(t 1 , th 1) ∈ dom(σ) -→ (t 2 , th 2) ∈ dom(σ) ∧ n < σ (t 2 , th 2) -→ (t 3 , th 3) ∈ dom(σ) -→ res = [alloc_ok, release_ok, status_ok(σ (t 3 , th 3)]
where σ = σ((t 1 , th 1) := (σ(t 1 , th 1)+m))) and σ = σ ((t 2 , th 2) := (σ(t 2 , th 2)n))). In general, the constraint C SPEC i ι i σ i can be seen as an symbolic abstract test execution; instances of it (produced by a constraint solver such as Z3 integrated into Isabelle) will provide concrete input data for the valid testsequence statement over SUT, which can therefore be compiled to test driver code. In our example here, the witness t 1 = t 2 = t 3 = 0, th 1 = th 2 = th 3 = 5, m = 4 and n = 2 satisfies the constraint and would produce (predict) the output sequence res = [alloc_ok, release_ok, status_ok 2] for SUT according to SUT. Thus, a resulting (abstract) test-driver is: For example, if we instantiate the conformance predicate conf by: conf ιs os res = (length(ιs) = length(os) ∧ res = os)

σ |= o 1 ← SUT ι 1 ; . . . ; o 3 ← SUT ι 3 ; return([alloc_ok, release_ok, status_ok 2] = [o 1 • • • o 3])
we have a precise characterization of inclusion conformance introduced in subsection 2.2.3: We constrain the tests to those test sequences where no exception occurs in the symbolic execution of the model. Symbolic execution fixes possible output-sequence (which must be as long as the input sequence since no exception occurs) in possible symbolic runs with possible inputs, which must be exactly observed in the run of the SUT in the resulting abstract test-driver. Using pre and post-condition predicates, it is straight-forward to characterize deadlock conformance or IOCO mentioned earlier (recall that our framework assumes synchronous communication between tester and SUT; so this holds only for a IOCO-version without quiescence). Further, we can characterize a set of initial states or express constraints on the set of input-sequences by the coverage criteria CovCrit, which we will discuss in the sequel.

Coverage Criteria for Interleaving

In the following, we consider input sequences ιs which were built as interleaving of one or more inputs for different processes; for the sake of simplicity, we will assume that it is always possible to extract from an input event the thread and task id it belongs to. It is possible to represent this interleaving, for example, by the following definition:

fun interleave :: 'a list ⇒'a list ⇒'a list set where interleave [] [] = {[]} |interleave A [] = {A} |interleave [] B = {B} |interleave (a # A) (b # B) = image (λx. a # x) (interleave A (b # B)) ∪ image (λx. b # x) (interleave (a # A) B)
and by requiring for the input sequence ιs to belong to the set of interleaving of two processes P1 and P2: ιs ∈ interleave P1 P2. It is well known that the combinatorial explosion of the interleaving space represents fundamental problem of concurrent program verification. Testing, understood as the art of creating finite, well-chosen sub-spaces for large input-output spaces, offers solutions based on adapted coverage criteria [SLZ07] of these spaces, which refers to particular instances of CovCrit in the previous section. A well-defined coverage criterion [ZHM97, FTW04] can reduce a large set of interleaving to a smaller and manageable one. For example, consider the executions of the two threads in MyKeOS: T = [alloc 3 1 2, release 3 1 1, status 3 1] and T' = [alloc 2 5 3, release 3 1 1, status 2 5].

Since our simplistic MyKeOS has no shared memory, we simulate the effect by allowing T' to execute a release-action on the local memory of task 3, thread 1 by using its identity. In general, we are interested in all possible values of a shared program variable x at position l after the execution of a process P . To this end we will define two sets of interleaving under two different known criteria.

• Criterion1: standard interleaving (SIN) the interleaving space of actions sequences gets a complete coverage iff all feasible interleaving of the actions of P are covered.

• Criterion2: state variable interleaving (SVI) the interleaving space of actions sequences gets a complete coverage iff all possible states of x at l in P are covered.

Under SIN we derive 10 possible actions sequences, which is reduced under SVI to 3 sequences (where one leads to a crash; recall our assumption that the memory is initially 0). Unlike to SIN, SVI has provided a smaller interleaving set that cover all possible states. If we consider var_tab[3,1] for x when executing status 3 1, the possible results may be undefined, O or 1. While SIN has provided a bigger set, that cover all possible 3 states of x with redundant sequences representing the same value. In model-checking, this reduction technique is also known as partial order reduction [START_REF] Peled | All from one, one for all: on model checking using representatives[END_REF][START_REF] Godefroid | A partial approach to model checking[END_REF].

It is a part of a beauty for our test and proof approach, that we can actually formally prove that the test-sets resulting from the test-refinements:

SPEC Init,SIN,conf SUT and SPEC Init,SV I,conf SUT are equivalent for a given SPEC. The core of such an equivalence proof is, of course, a proof of commutativity of certain step executions, so properties of the form:

o ← SPEC ι i ; o ← SPEC ι j ; M o o = o ← SPEC ι j ; o ← SPEC ι i ; M o o ,
which are typically resulting from the fact that these executions depend on disjoint parts of the state. In MyKeOS, for example, such a property can be proven automatically for all ι i = release t th and ι j = release t th with t = t ∨th = th ; such reordering theorems justify a partial order on inputs to reduce the test-space. We are implicitly applying the testability hypothesis that SUT is input-output deterministic; if a input-output sequence is possible in SPEC, the assumed input-output determinism gives us that repeating the test by an equivalent one will produce the same result.

Sequence Test Scenarios for Concurrent Programs

HOL-TestGen is a test-generation system based on the Isabelle theorem prover. The main goal of this system is to use the features of Isabelle in order to generate a test set. Using the isar command test_spec from HOL-TestGen framework a test scenario can be represented in form of a test specification. A test specification is an hol! formula, i. e. a valid test sequence, that describe the test set to be generated. Two possible schemes for a test scenario can be expressed by a test specification: unit test scheme, sequence test scheme. In this section we will focus on sequence test scenarios. In sequence test scenarios, a set of input sequences are generated under a given coverage criteria and symbolically executed (see section 4.6 for more details on our symbolic execution process). Actually, a test specification is a lemma which contains our refinement relation (see section 4.3) as a proof statement. The representation of a refinement relation, for a scenario related to MyKeOS system, using Isabelle/isar language can be: shows σ 0 |=(s ←mbind S PUT; return (x = s))

In the scenario test_status the assumption account_defined is used to bound the set of threads to 2 members in each task and at least a task exists in the system. The assumption CovCrit represent the set of possible input sequences related to the concurrent execution between syscall tid 0 m m' and syscall tid 1 m'' m'''. Moreover, SPEC represent the model of the behaviour of the SUT. Finally, the conclusion σ 0 |=(s ←mbind S PUT ; return (s = x)) is used to link the model with the real system via the free variable PUT. Actually, the free variable PUT will be linked to the actual code of SUT during the execution of the test script (for more details linkage between a model and a SUT see section 4.7).

In fact, the representation of test_status by a lemma offers a way to use the symbolic computation engine of Isabelle, usually used for proofs, as a simulation environment for the behaviour of the SUT. Basically, the simulation is done via the application of symbolic execution rules, e. g. an instance for Equation 4.1c, on the proof statement, which result with a set of sub-goals. Each sub-goal represent an abstract test case, and each abstract test case is a representation of a set of possible executions in the SUT. The simulation, related to the behavior of MyKeOS specified in the scenario test_status, using symbolic execution on Isabelle, is represented by the following: A such proof context refinement process, is executed until the input sequence of actions is empty, which provide directly for the case of a test specification of a simple operational semantics, a test normal forms, represented by subgoals. Of course, the proof statement can be connected to constraint-solvers with the HOL-TestGen command gen_test_data, which will instantiate the free variables,e. g. σ 0 , tid in the different subgoals of the proof statement, by a real data that satisfies the derived constraints.

Symbolic Execution

Symbolic execution rules, are logical inference rules used to simulate the behavior of a given system (or a program) by showing the effect of the operational semantics of that system (or program) on the symbolic variables. Symbolic variables are a typed syntactic names used to refer to a given object (i. e. a passive entity in the operating system), that may have an infinite set of representations (values). In general, two kind of variables are distinguished in an operating system, global variables and local variables. For instance, in our test specification test_status the variable σ 0 can be seen as a global variable that refer to the state of the system (i. e. an object which can be modified by all subjects (threads)).

In order to give a better explanation on the symbolic execution rules used during the simulation of the behavior of MyKeOS we would introduce the generic scheme of their hol! representation: Code 1: A Generic Elimination Rule For Symbolic Execution

If we observe more closely the previous inference rule, we can figure out that the rule is an elimination rule. An elimination rule is an inference rule that eliminate a given constructor from the premises, i. e. in the rule exec_mbindFStop_E we had eliminated in_ev from the input sequence (in_ev # S). Actually, the scheme of an elimination rule matches with the scheme of our test specifications, i. e. the free variable Q in exec_mbindFStop_E will match with σ 0 |=(s ←mbind S PUT; return (s = x)) in test_status; the assumption A of exec_mbindFStop_E will match with the assumption SPEC of test_status, and the resulting proof context after the application of this elimination inference rule on the test specification test_status will be, the instatiation of the assumption B of exec_mbindFStop_E by the variables of SPEC. A such process is used for transforming the proof context, and it is calles ematching. On Isabelle ematching can be expressed by the tactic ematch_tac.

Our symbolic execution process, which is actually based on proof context transformations by ematching, has an enormous performance gain effect on the symbolic execution engine of Isabelle (see subsection 6.5.7 for the impressive results of a such process of symbolic execution). The performance gain provided by our process is comming from the fact that, the whole calculation process is technically reduced to a formal syntactic transformation of the proof context by elimination rules (applied by ematching), instead of a calculation process based on standard generic substitution rules, rewriting rules, introduction rules, etc., which involve more calculations in the different Isabelle layers.

Test Drivers for Concurrent C Programs

The generation of the test-driver is a non-trivial exercise since it is essentially two-staged: Firstly, we choose (from the different options the Isabelle codegenerator offers) to generate an SML test-driver, which is then secondly, compiled to a C program that is linked to the actual program under test. A test-driver for HOL-TestGen consists of four components:

• main.sml the global controller (a fixed element in the library),

• harness.sml a statistic evaluation library (a fixed element in the library), • X_script.sml the test-script that corresponds merely one-to-one to the generated test-data (generated) • X_adapter.sml a hand-written program; in our scenario, it replaces the usual (black-box) program under test by SML code, that calls the external C-functions via a foreign function interface. On all three levels, the HOL-level, the SML-level, and the C-level, there are different representations of basic data-types possible; the translation process of data to and from the C-code under test has therefore to be carefully designed (and the sheer space of options is sometimes a pain in the neck). Integers, for example, are represented in two ways inside Isabelle/HOL; there is the mathematical quotient construction and a "numerals" representation providing "bit-string-representation-behind-the-scene" enabling relatively efficient symbolic computation on integers. Both representations can be compiled "natively" to data types in the SML level. By an appropriate configuration, the code-generator can map "int" of HOL to three different implementations: the SML standard library Int.int, the native-C interfaced by Int32.int, and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler. We do a three-step compilation of data-representations Model-to-Model, Model-to-SML, SML-to-C. A basic preparatory step for the initializing the test-environment to enable test-generation is: The tool store_test_thm is a tool from HOL-TestGen framework. This tool provide the ability to users to store a given proof context of the test specification and refer to this proof context by a label (i. e. mykeos_simple). The tool gen_test_data from HOL-TestGen provide the ability to users to instantiate the symbolic variables inside abstract test cases by concrete data. The latter step is done by sending proof obligations, i. e. constraints on the variables generated during the symbolic execution, to constraint solvers in order to instantiate them with satisfiable witnesses. The tool generate_test_script is provided by HOL-TestGen framework. Basically, the tool provide the ability to users to transform the proof context stored using store_test_thm to a code equation; code equations are rewriting rules used as inputs for Isabelle code generators. For instance, the following code equation is resulting from the application of gen_test_script on the proof context labeled by the name

σ 0 |=(

The adapter

In the following, we describe the interface of the SML-program under test, which is in our scenario an adapter to the C code under test. This is the heart of the Model-to-SML translation. Actually, during the execution of the test script, the free variable specified inside the test specification under name PUT will be replaced by an adapter. In fact, the adapter is a function defined on the HOL-level, and its semantic is based on constant definitions called stubs. The stubs are replaced later-on by the semantic of the implementation using code serialisation technique offered by the interface of Isabelle code generator to link the Model-level with SML The stepAdapter function links the HOL-world and establishes the logical link to HOL stubs which were mapped by the code-generator to adapter functions in SML, which call internally to C-code inside X_adapter.sml via a Foreign Function Interface (FFI).

Code generation and Serialisation

In order to generate concrete code from our theories we will use the code generator [START_REF] Haftmann | Code generation from Isabelle/HOL theories[END_REF] facilities of Isabelle/HOL. It allows to turn a certain class of HOL specifications into corresponding executable code in a target language (e. g. SML). In this section, we will show how we build a setup to generate SML file containing our test script. As an example we will continue to run MykeOS example via the test specification test_status2.

In the first place, we will generate 2 SML files. The first one containing all datatypes used in our test specification. The second one containing an adapter for the variable representing the system under test called PUT in the test specification test_status2. Therefore, both files will be used as libraries for the test script and help to increase its readability. Using Isabelle "serialiser", we configure the code-generator to identify the PUT with the generated SML code implicitly defined by the above stepAdapter definition.

GDB and Concurrent Code Testing

Actually the generated build from MLton compiler will contain tests for threads executed in a concurrent context. The problem with executing tests on concurrent code is that: the execution order of the program actions proposed by the system scheduler will not necessarily be the same as the one proposed by the tester, and this because of the non-deterministic choices of the system scheduler. In order to deal with this problem, we have to enforce a certain order for the actions executed by the threads, i. e. a certain scheduling, during test execution. In other words, at run-time, the execution order proposed by the system scheduler must correspond to the execution order provided by the tester. Our solution is, the execution of the test executable within a GDB2 session. The latter contain features, usually used for debugging, that can be used to control the execution of the concurrent code and make it conform to the generated executions proposed by the tester. Technically, the gdb features allow the possibility to attach to breack-points within the concurrent code a scripting code that is executed if a break point is reached, and the complete control of thread switches. In order to generate automatically the GDB script that controls an execution of a system under test during a test experience, we had implemented a GDB generator on top of Isabelle/ML. Basically, the generator takes as argument 4 mandatory entries:

1. A function that setup the entry breakpoints switches, 2. A function that setup the exit breakpoints switches, 3. A function that setup the main breakpoint switch, 4. and a list of needed informations containing: thread IDs of the model with a mapping to there creation order inside a gdb session, and informations on the lines numbers for the breakpoints within the concurrent code.

Executed together, these functions implement an algorithm that setup thread switches for the program under test, that is conform to the switches represented by the generated input sequences from a test scenario on the model-level. Moreover note, the algorithm works correctly only if the single-core execution options are activated during the gdb session. In order to execute correctly the generated GDB scripts, the option taskset should be stated. It specifies a single core execution for the gdb session. An abstraction of our algorithm used to generate GDB scripts from a test script is introduced in algorithm 1.

Conlusions

In this chapter we have presented our major contribution during this thesis.

The chapter contains theoretical and technical foundations to test C concurrent program. On the theoretical side, we had presented our test generation framework which relies on a monadic test theory implemented in Isabelle/hol!. Our framework is equipped with a specification language based on monads that contains important definitions for testing and symbolic execution activities. First, in order to show the expressive power of our specification language, an isomorphism between the automata world and monads world was presented. Second, in order to provide a generic framework to express state exception behavior, two monad operators were introduced bind_SE and unit_SE. Based on the latter operators, a new concept called valid test sequence was defined. On the one hand, the notion of a valid test sequence is used to express the behavior of a given system. On the other hand, it is executable and can be treated by a family of symbolic executions calculi. A set of generic symbolic execution rules, for the defined operators, were introduced and in order to show how these concepts are used to model and/or to symbolically execute a given system, a running example on a simple OS called MykeOS was presented. Third, we proposed a generic scheme called test specification, expressed technically by a refinement relation, to link a specification with an implementation, then we had showed how it can be instantiated with a family of test conformance relations. Finally, in order to optimize the symbolic execution process for our test specifications, especially for the case of sequence test scenarios, an approach based on the notion of coverage criteria was proposed.

On the technical side, we highlighted the problem of testing concurent programs, and we proposed an approach to test concurrent C code using scheduler control via GDB scripts.

5

Testing VAMP Processor

Introduction

Certifications of critical security or safety system properties are becoming increasingly important for a wide range of products. Certifying large systems like operating systems up to Common Criteria EAL 4 is common practice today, and higher certification levels are at the brink of becoming reality.

To reach EAL 7 one has to formally verify properties on the specification as well as test the implementation thoroughly. This includes tests of the used hardware platform of the architecture to be certified. In this chapter, we address the latter problem: we present a case study that uses a formal model of a microprocessor and generate test programs from it. These test programs validate that a microprocessor implements the specified instruction set correctly. We built our case study on an existing model that was, together with an operating system, developed in Isabelle/HOL. We use HOL-TestGen, a model-based testing environment which is an extension of Isabelle/HOL. We develop several conformance test scenarios, where processor models were used to synthesize test programs that were run against real hardware in the loop. Our test case generation approach directly benefits from the existing models and formal proofs in Isabelle/HOL. We present a case study for the model-based generation of test programs (i.e, the basis for a certification kit) for a realistic model of a RISC processor called VAMP. VAMP is inspired by IBM's G5 architecture. In the Verisoft project1 , a formal model for both the processor and a small operating system has been developed in Isabelle/HOL. We will adapt and reuse the processor model to generate test cases that can be used to check if a given hardware conforms to the model of the VAMP processor. The presented test scenario is of particular interest for the higher levels of certification processes as imposed by Common Criteria EAL 7. Even if the transition from C programs to the processor models has been completely covered by deductive verification methods as in CompCert [START_REF] Leroy | Formal verification of a realistic compiler[END_REF], certification bodies will require test sets checking the conformance of the underlying processor model to real hardware. At present, specification-level verification and the development of test sets are usually two distinct tasks. Moreover, test sets for certification kits are usually developed manually. In contrast, our model-based test case generation approach uses the design model that was already used for the verification task. In particular, we are using HOL-TestGen to generate test sequences generated from the VAMP model. As HOL-TestGen is built on top of Isabelle/HOL, i. e., test specification are expressed in terms of higher-order logic (HOL), we can directly benefit from the already existing verification models. In fact, the tight integration of a verification and a test environment is a distinguishing feature of HOL-TestGen.

The VAMP Model

The Verified Architecture MicroProcessor (VAMP) [BJK + 06] is a 32-bit RISC CPU with a DLX-instruction set including floating point instructions, delayed program counter, address translation, and support for maskable nested precise interrupts. The VAMP hardware contains five execution units: the Fixed Point Unit, the Memory Unit, and three Floating Point Units. Instructions have up to six 32-bit source operands and produce up to four 32-bit results. The memory interface [BJK + 06] of the VAMP consists of two Memory Management Units that access instruction and data caches, which in turn access a physical memory via a bus protocol. In the context of the Verisoft project, an Isabelle/HOL specification (programmer's model) of the VAMP processor was introduced. The processor consists of a set of transitions defined over the Instruction Set Architecture (ISA) configurations. A configuration is composed of five elements:

1. Program counter (pcp): a 30 bit register containing the address of next instruction to be executed, this register is used to fetch an instruction without altering the execution of the current one. This pipelining mechanism is called delayed pc. 2. Delayed program counter (dpc): a 30 bit register for delayed program counter, containing the currently executed instruction. While the fetch of the next instruction is performed in the pcp register, the dcp is kept unchanged until the end of the execution of the current instruction. 3. General purpose registers (gprs): a register file consisting of 32 registers of 32 bits each. These registers are used in different operations, and can be addressed by their index (0-31). The first register is always set to 0. 4. Special purpose registers (sprs): a register file consisting of 32 registers of 32 bits each, used for particular tasks. The first register for instance is the status register, containing the interrupts masks. Some registers are used as flags registers or as condition registers. Each special purpose register is addressed directly by its name. 5. Memory model (mm): a 2 32 bytes addressable memory. Different caching and virtual memory infrastructures are implemented in the VAMP system. The transition relation is defined by the execution of the program instructions defined in the initial configuration. The VAMP implements the full DLX instruction set from [START_REF] Hennessy | Computer Architecture, Fourth Edition: A Quantitative Approach[END_REF]. This set includes load and store operations for double words, words, half words and bytes. It includes also different shift operations, jump-and-link operations and various arithmetic and logical operations.

To avoid the complex and inconvenient bit vector representation of data and instructions, an assembly language was introduced abstracting the VAMP ISA. In this case addresses are represented by natural numbers and registers and memory contents by integers. Our test specifications and experiments are based on this instruction set (assembler) model. The Isabelle theory of the assembler model is an abstraction of the instruction set architecture. In addition to the representation of addresses as naturals and values as integers, some other ISA features are abstracted. The instructions are represented in an abstract datatype with readable names. The address translation is not visible at this level, assembler computations live in linear (virtual) memory space. Interrupts are not visible at this level as well. The assembler configuration is an abstraction of the ISA configuration, defined as a record type with the following fields:

• pcp: a natural number representing the program counter,

• dcp: a natural number representing the delayed program counter,

• gprs: a list of integers representing the general purpose register file,

• sprs: a list of integers representing the special purpose register file,

• mm: a memory model represented by a mapping from naturals to integers. The HOL definition of the configuration is given by the ASMcore t record type. The register file type is defined as a list of integers representing the different registers. Since the assembler representation of addresses and values is less restrictive than the bit vector representation, some conversion functions and restriction predicates were defined to reduce the domain of addresses and values to only meaningful values. This was the case also for the configurations, since the number of registers is not mentioned in the definition of the registers type. The well-fomedness of assembler configurations is given by the is_ASMcore predicate. This predicate ensures that register files contain exactly 32 registers each. It also checks that all register and memory cells contain valid values. The instruction set of the assembler is defined as an abstract datatype instr in Isabelle. All operations mnemonics are used as datatype constructors, associated to their corresponding operands. Different types of instructions can be distinguished: data transfer commands, arithmetic and logical operations, test operations, shift operations, control operations and some basic interrupts. and instruction, the configuration resulting from executing the instruction in the initial configuration. Step st ≡ exec_instr st (current_instr st)

These transition relations are used in our study as the basis of test specifications. The assembler model is more abstract than the processor model, consequently, different complex details are made transparent. Examples are interrupts handling and virtual memory and caching, pipelining and instruction reordering. In a black-box testing scenario, an abstract description of the system under test is used as a basis for test generation. This will be the case in our study, where the processor model is used to extract abstract test cases for the processor. The aim of this testing scenario is to check that the processor behaves as described in the assembler model, independently of the internal implementation details.

Testing VAMP Processor Conformance

As motivated earlier, we will apply essentially two testing scenarios: modelbased unit testing and sequence testing. In a unit testing scenario, the test specification is described by pre-and post-conditions on the inputs and results produced by the system under test. This scenario assumes control over the initial state and the access to the internal states of the SUT after the test. In sequence testing scenario, only the control of the internal state initialization is necessary, and in some cases the reference to the final state.

In principle, the test result is inferred from a sequence system inputs and observed outputs. For any given inputs and state, the system-defined as an i/o stepping function-may either fail or produce outputs and a successor state. The unit testing scenario can be seen as a special form of (one step) sequence testing, where the output state is more or less completely accessible for the test.

In our case study, both testing scenarios are useful. The unit testing scenario will be used to test individually each operation or instruction with different data. Sequence testing will be used to test any sequence of instructions up to a given length. We will address subsets of related instructions separately, a combination of different instruction types is possible but not explored here. We studied four types of instructions: 1. memory related load and store operations, 2. arithmetic operations, 3. logic operations and 4. control-flow related operations.

Generalities on Model-based Tests

A general test specification for unit instruction testing would be the following:

1 test_spec pre σ ι =⇒ SUT σ ι = k exec_instr σ ι
where _ = k _ is a specially defined executable equality that compares the content of the registers and just the top k memory cells (instead of infinite memory). _ = k _ is our standard conformance relation comparing the state controlled according to the model and the state controlled by the SUT; here, we make the testability assumption that we can trust our test environment that reads the external state and converts it to its abstraction. Note that SUT is a free variable that is replaced during the test execution with the system under test. Each test case is composed of an instruction, an initial configuration and the resulting configuration after the execution of the instruction. From this test specification, HOL- which requires that the last load action(s) are tested before, but makes less assumptions over the execution environment (i. e., a trustworthy implementation of _ = k _). In both schemes σ 0 is the initial state and ιs is the sequence of instructions that will be generated and exec VAMP is a lifting of exec_instr into the state exception monad:

definition exec VAMP
where exec VAMP ≡ (λ i σ. Some ((), exec_instr σ i))

The pre-conditions pre of our test specifications-also called test purposesare added to the test specifications to reduce the generated instruction sequences to any given subset.

The initial configuration can also be generated as an input of the test cases. This may produce ill-formed configurations due to their abstract representation in the assembler model. We choose for our study to define and use an empty initial configuration σ 0 that is proved to be well-formed.

Test Specification

Common analysis techniques such as stuck-at-faults [START_REF] Hayes | Fault modeling for digital MOS integrated circuits[END_REF] are based on the idea that a given circuit design-thus, an implementation-is modified by mutators capturing a particular fabrication fault model, e. g.: one or n wires connecting gates in the circuit are broken. This can be seen conceptually as a white-box mutation technique and has, consequently, all advantages and all draw-backs of an implementation-based testing method compared to all draw-backs and all advantages to its specification-based counterparts. Stackat-faults are very effective for medium-size circuits and use the structure of the given design to construct equivalence classes tests incorporating directly a fault model. This type of testing technique, however, will not reveal design flaws such as a write-read error under the influence of byte-alignments in the memory.

While we have a VAMP gate-level model in our hands and could have opted for testing technique on this layer, for this thesis, we opted to stay on the design level of the VAMP machine. This does not mean that we can not refine with little effort the equivalence classes underlying our tests further: instead of assuming in our test hypothesis that "one write-read of a memory cell successful, thus all write-reads in this cell successful," one could force HOL-TestGen to generate finer test classes, by exploring the byte-or the bit-level representations of registers and memory cells. The second phase of test generation is the test data instantiation. This is done using the gen_test_data command of HOL-TestGen. One possible resulting test case is given by the following:

Testing Load-Store Operations

SUT σ 0 (Ilb 1 0 1) σ_1
where σ _1 is the expected final state after executing the given operation. With this kind of test cases, each operation is tested individually, in a unit test style. This kind of test will reveal design faults i. e.if the result of the operation is not correct. It also detects any undesired state modification, like changing some flags or registers. In a similar way, load and store instruction sequences are characterized using the same predicate is_load_store which is generalized to entire input sequences to the combinator list_all from the HOL-library. Rather than using a fairly difficult to execute characterization in form of an automaton or an extended finite state-machine that introduce some form of symbolic trace, we use monadic combinators of the state-exception monad directly to define valid test sequences constrained by suitable test purposes. where the first subgoal gives the schematic test case, and the second subgoal states the uniformity hypothesis for this case. The generation of test data is done similarly using the gen_test_data command, which instantiate the schematic variables with concrete values. this corresponds to the following assembly code sequence:

ISW 0 1 8 LLBU 1 0 -3 LLBU 3 2 8
This test programs will eventually reveal errors related to read and write sequences. Even if each operation is realized in a correct way, the sequencing may contain errors, like errors due to byte alignment or information loss due to pipelining. In this testing scenario, we consider test post-conditions expressed on the final state of the automaton. This post-condition is expressed using the state-exception primitive assert_SE. This scenario is not very realistic in hardware processors, because the final state, in particular the internal processor registers, will not be directly observable. An alternative scenario would be to consider the state-exception primitive return that introduces a step by step checking of the output values. This output value might be, e. g., retrieved from the updated memory cell. Test specification for this kind of scenarios is as follows: which require a modified VAMP where individual steps were wrapped into trusted code that makes, e. g., internal register content explicit.

Testing Arithmetic Operations

Similarly, we set up a unit test scenario, where we constrain by the test purpose is_arith the operations to be tested to arithmetic ones:

test_spec σ = exec_instr σ 0 i =⇒ is_arith i =⇒ SUT σ 0 i σ apply (gen_test_cases 0 1 SUT) store_test_thm arith_instr
At this stage, each arithmetic operation is covered by one generated test case, an example is given in the following:

1. SUT σ 0 (Iaddi ??X277 ??X266 ??X255) (...)

which contains a test case for he addition operation. A note on the test granularity is at place here: as such, the granularity that HOL-TestGen applies to test arithmetic operations is fairly coarse: just one value satisfying all constraints over a variable of type integer is selected. This is a consequence of our model (registers were represented as integers and not as bitvectors of type: 32 word which would be (nowadays) a valuable alternative) as well as the HOL-TestGen heuristics to select for each variable just one candidate. The standard workaround would be to introduce in the test purpose definitions more case distinctions, e. g., by A possible generated sequence is given in the following, resulting from the gen_test_data command. which corresponds to the following assembly code sequence:

ISUB 2 1 0 IADD 1 5 2 IADD 1 0 4
This sequence corresponds to a subtraction followed by two addition operations.

Testing Control-Flow Related Operations

Also with branching operations we are following the same theme:

test_spec is_branch i =⇒SUT σ 0 i = k exec_instr σ 0 i apply (gen_test_cases 0 1 SUT) store_test_thm branch_instr
This generates unit test cases for branching operations starting from the initial sate σ 0 . One example of the generated schematic test cases is given by:

1. SUT σ 0 (Ijalr ??X27X7) (...)

The problem with this scenario is that the initial state is fixed, while the branching operations behavior depends essentially on the flag values. A more interesting scenario would be to consider different initial states, where the flags values are changed for each test case.

In the test sequence generation, the test specification is given as follows: The test sequence and test data generation returns, e. g., this concrete test sequence:

σ 0 |=(s ←mbind [Ij 1, Ijalr 0] exec VAMP ; assert_SE (λσ. σ = k SUT σ 0 [Ij 1, Ijalr 0]))
which corresponds to the following assembly code sequence:

IJ 1 IJALR 0
The test data generation in all the considered scenarios is performed by constraint solving and random instantiation. This leads to test sequences with coarsely grained memory access. As such, an underlying fault-model is somewhat arcane (i. e., interferences of operations in distant memory areas). If one is interested in such faults, a more dense test method should be chosen. Rather, one would adding additional constraints to reduce the uniformity domain again. One could simply bound the range of addresses to be used in test sequences, or define a used-predicate over input sequences that computes the set of addresses that store-operations write to, and constrain the loadoperations to this set, or the like. This kind of constraints can also be used to improve the coverage of our selected data, by dividing the uniformity domain into different interesting sub-domains.

Experiences and First Experimental Data

Methodologically, we deliberately refrained in this paper to modify the modelwe took it "as is," and added derived rules to make it executable in test scenarios where we assume a reference implementation running against the SUT. For example, the model describes padding functions for bytes, words, and long-words treating the most significant bit differently in certain load and store operations; in the semantic machine model as it was developed in the Verisoft Project, there are comparisons on these padding functions themselves-this is possible in HOL, but in no functional executable language, had therefore to be replaced by equivalent formulations exploiting the fact there are only three variants of padding functions, thus a finite number, were actually used in the VAMP machine. Another issue is the linear memory in the machine (a total, infinite function from natural numbers to memory cells, i. e., long words); comparisons on memory, as arising in tests where the real state has to be compared against the specified state, had to be weakened to finitized conformance relations. While as a whole, our approach is done in a pretty generic model-based testing framework, a few adaptions had to be made due to some specialties of this model. For example, since the assembly language has 56 instructions, casesplitting over the language explodes fast over the length of test sequences. While sequence tests are methodologically and pragmatically more desirable (less control over the state is assumed), they are therefore more vulnerable to state-space explosion: sequences of length 3 generate at some point of the process 56+56 2 +56 3 = 178808 cases. In this situation, a few heuristic adaptions (represented on the tactic level) and more significantly, constraints on the level of the test purposes had to be imposed with respect to state-space explosion, test purposes like list_all is_logic ι helps to reduce the test sequences to 7 + 7 2 + 7 3 , i. e., a perfectly manageable size (see discussion in the next section).

Test Generation

As mentioned earlier, we opted for a combination of unit and sequence test scenarios. Unit tests have the drawback of imposing stronger assumptions on testability: it is assumed that the test driver has actually access to registers and memory (which essentially boils down to the fact that we trust code in the test driver that consists of store-operations of registers into the memory). Sequence tests rely on the observed behavior of tests and make weaker assumptions on testability, for the price of being more vulnerable to state-space explosion. The sequence scenarios on load-and store operations in subsection 5.3.3 uses 39 seconds in the test partitioning phase and 42 seconds in the test data selection phase (measurements were made on a Powerbook with a 2.8 Ghz Intel Core 2 Duo). 1170 subgoals were generated, where one third are explicit test hypothesis and two third are actual test cases. The other scenarios in subsection 5.3.5, subsection 5.3.4 and the more basic subsection 5.3.1 use considerably less time (between two and twenty seconds for the entire process).

Test Execution

Nevertheless, compile time for the model (as part of the test drivers) was less than a second; compilation of the entire test driver in SML depends, of course, drastically on the size of finally generated tests. Since we restrained via test purposes the test cases in each individual scenario to about 1000, the compile time for a test remained below 3 seconds. Scaling up our test plan is essentially playing with a number of control parameters; however this is usually done only at the end of the test plan development for reasons of convenience.

Our study focuses for the moment on test generations; we did not do any experiments against hardware so far. However, there is a hardware-simulator in the sources of the Verisoft-project; in the future, we plan to generate mutants of this simulator and get thus experimental data on the bug-detection capabilities on the generated test sets.

To give an idea on how the test cases will be executed, we did some exper-iments using the generated executable model. Starting from the abstract model, an executable translation of it in SML is performed using the Isabelle's code-generation facilities. This generated code contains all the type and constant definitions that are needed to execute the different assembler operations on an executable state. A sketch of the generated SML code for the VAMP processor is given in the following: where the datatype definition instr is generated from the instruction type definition introduced in section 5.2. the functions definitions are generated from their corresponding constants and functions defined in the model. Our fist experiment was the application of the generated test cases on this executable model. Using the HOL-TestGen test script generation, two test scripts were generated for load/store and arithmetic operations sequence. For both cases, 585 test cases were generated and then transformed to executable testers. Running all these tests did, obviously, not reveal any error, since the same model was used for test generation and execution. To evaluate the quality our generated test cases, we introduced some changes to the executable model, producing a mutant model. Three changes were introduced in the int_add, int_sub and cell2data operations of the generated SML code. In this case, a majority of tests detected the errors. For testing the arithmetic operations, we obtained:

Conlusions

Related Work

Formal verification is widely used in the hardware industry since at least ten years (e. g., [Fox03, SV03, BFY + 97, Rus99, Har03]). Nevertheless, formal models of complete processors as well as verification approaches that provide an end-to-end verification from the application layer to the hardware design layer are rare. Besides VAMP [START_REF] Dorrenbacher | Formal Specification and Verification of Microkernel[END_REF], notably, exceptions are [START_REF] Anthony | Formal specification and verification of arm6[END_REF] and [START_REF] Appenzeller | Formal verification of a powerpc microprocessor[END_REF]. The closest related work with respect to the processor model is [START_REF] Anthony | Formal specification and verification of arm6[END_REF] to which our approach should be directly applicable.

Similarly, test program generation approaches for microprocessor instruction sets have been known for a long time (e. g., [FT01, KKV11, MD08, SMZ05]). Among them manual approaches based on informal descriptions of the instruction set such as [START_REF] Fallah | A new functional test program generation methodology[END_REF] or random testing approaches such as [START_REF] Shen | Crpg: a configurable random test-program generator for microprocessors[END_REF].

Only a few works suggest to use model-based or specification-based test program generation algorithms, e. g., [START_REF] Kamkin | Reconfigurable model-based test program generator for microprocessors. Software Testing Verification and Validation Workshop[END_REF] and [START_REF] Mishra | Specification-driven directed test generation for validation of pipelined processors[END_REF]. These works have in common that they are based on dedicated test models that are independently developed from the verification models. [START_REF] Mishra | Specification-driven directed test generation for validation of pipelined processors[END_REF] is the most closely related work; the authors are using the explicit state model checker SMV to generate test programs from a dedicated test model for SMV that concentrates on pipelining faults. In contrast, our approach seamlessly integrates the test program generation into an existing verification tool chain, re-using existing verification models.

Conclusion and Future Work

We presented an approach for testing the conformance of a processor with respect to an abstract model that captures the instruction set (i. e., the assembly-level) of the processor. This abstraction level is particular important as, first, it is the level of detail that is usually available for commercial off-the-shelf (COTS) processors and, second, it is the target level of high-level compilers. Thus, our approach can, on the one hand, support the certification of the COTS processors for which the manufacturer is neither willing to certify the processor itself or to disclose the necessary internal details. Moreover, our approach helps to bridge the gap between the software layer (e. g., in avionics requiring certification according to DO-178 [START_REF] Hilderman | Avionics Certification: A Complete Guide to DO-178 (Software)[END_REF]) and the hardware layer (e. g., in avionics requiring certification according to DO-254 [START_REF] Hilderman | Avionics Certification: A Complete Guide to DO-178 (Software)[END_REF]). As (embedded) systems combining hardware and software components for providing core functionality in safety critical systems (e. g., "fly-by-wire") are used more and more often, we see an increasing need for validation techniques that seamlessly bridge the gap between hardware and software. Consequently, we see this area as the utterly important one for future work: providing a test case generation methodology that can be applied end-toend in the development process and allows for validating each development step. These test cases, called certification kits, are required even if compilers and processors are formally verified: The system builders require them for proving, as part of their certification process, that their are applying the tools correctly (i. e., according to their specification).

6

Testing PikeOS API

Introduction

In the following, we will outline the PikeOS model (the full-blown model developed as part of the EUROMILS project is about 20 kLOC of Isabelle/HOL code), and demonstrate how this model is embedded into our monadic testing theory.

As a foundation for our symbolic computing techniques, we refine the theory of monads to embed interleaving executions with abort, synchronization, and shared memory to a general but still optimized behavioral test framework. This framework is instantiated by a model of PikeOS inter-process communication system-calls. Inheriting a micro-architecture going back to the L4 kernel, the system calls of the IPC-API are internally structured by atomic actions; according to a security model, these actions can fail and must produce error-codes. Thus, our tests reveal errors in the enforcement of the security model. The chapter proceeds as follow: In section 6.2 an informal description of PikeOS IPC is presented. The section 6.3 contains the formalisation of PikeOS IPC in Isabelle/hol!. In order to catch the behavior of the latter a new monad combinator is introduced in subsection 6.3.4. Moreover, a generic memory model is presented in section 6.4, it is used to specify some of PikeOS IPC atomic actions, i. e. the BUF and MAP atomic actions. In order to test PikeOS IPC, our testing approach is extended by new notions, in particular these are:

• a new coverage criteria is defined in subsection 6.5.1,

• a new symbolic execution rules are derived in subsection 6.5.3,

• a new methodology for building test drivers is presented in subsection 6.5.6.

Finally, our experimental results are presented in subsection 6.5.7.

PikeOS IPC Protocol

The IPC mechanism [START_REF] Sysgo | PikeOS Fundamentals[END_REF][START_REF] Sysgo | PikeOS Kernel. SYSGO[END_REF] is the primary means of thread communication in PikeOS. Historically, its efficient implementation in L4 played a major role in the micro-kernel renaissance after the early 1990s. Microkernels had received a bad reputation, as systems built on top were performing poorly, culminating in the billion-dollar failure of the IBM Workplace OS.

A combination of shared memory techniques-the MMU is configured such that parts of virtual memory space are actually represented by identical parts of the physical memory-and a radical redesign of the IPC primitives in L4 resulted in an order-of-magnitude decrease in IPC cost. Also in PikeOS, IPC message transfer can operate between threads which may belong to different tasks. However, the kernel controls the scope of IPC by determining, in each instance, whether the two threads are permitted to communicate with each other. IPC transfer is based on shared memory, which requires an agreement between the sender and receiver of an IPC message. If either the sending or the receiving thread is not ready for message transfer, then the other partner must wait. Both threads can specify a timeout for the maximum time they are prepared to wait and have appropriate access-control rights. Our IPC model includes eight atomic actions, corresponding more-or-less to code sections in the API system calls p4_ipc_buf_send() and p4_ipc_buf_recv() protected by a global system lock. If errors in these actions occur-for example for lacking access-rights-the system call is aborted, which means that all atomic actions belonging to the running system call as well as the call of the communication partner were skipped and execution after the system calls on both sides is continuing as normal. It is the responsibility of the application to act appropriately on error-codes reported as a result of a call.

In our sequence test scenarios, and using our symbolic execution process running on the top of HOL-TestGen, we show how we generate tests from our formal model of the IPC mechanism, we build a test driver and show how we can run the generated tests against the PikeOS IPC implementation defined in C-level.

PikeOS Model

We model the protocol as composition of several operational semantics; this composition is represented by monad-transformers adding, for example, to the basic transition semantics the semantics for abort behavior.

State

In our model, the system state is an abstraction of the VMIT (which is immutable) and mutable task specific resources. It is presented by the (polymorphic) record type: Note that the syntax is very close to functional programming languages such as SML or OCaml or F#. The parameterization is motivated by the need of having different abstraction layers throughout the entire theory; thus, for example, the resource field will be instantiated at different places by abstract shared memory, physical memory, physical memory and devices, etc.-from the viewpoint of an operating system, devices are just another implementation of memory. In the entire theory, these different instantiations of kstate were linked by abstraction relations establishing formal refinements. Similarly, the field current_thread will be instantiated by the model of the ID of the thread in the execution context and more refined versions thereof. thread_list represents information on threads and there executions. The communication _rights field represent the communication policy defined between the active entities (i. e., threads and tasks). The field access_rights represent the access policy defined between active entities and passive entities (i. e., system resources).

For the purpose of test-case generation, we favor instances of kstate which are as abstract as possible and for which we derived suitable rules for fast symbolic execution.

Actions

As mentioned earlier, the execution of the system call can be interrupted or aborted at the border-line of code-segments protected by a lock. To avoid the complex representation of interruption points, we model the effect of these lock-protected code-segments as atomic actions. Thus, we will split any system call into a sequence of atomic actions (the problem of addressing these code-segments and influencing their execution order in a test is addressed in the next section). Atomic actions are specified by datatype as follows: Where ACTION ipc is type abbreviation for IPC actions instantiated by p4_direct ipc .

The type ACTION ipc models exactly the input events of our monadic testing framework. Thread IDs are triples of natural numbers that specify the resource partition the thread belongs to as well as the task and the individual id. The stepping function as a whole is too complex to be presented here; we limit ourselves to presenting a portion of an auxiliary function of it that models just the PREP_SEND stage of the IPC protocol; it must check if the task and thread id of the communication partner is allowed in the VMIT, if the memory is shared to this partner, if the sending thread has in fact writing permission to the shared memory, etc. The VMIT is part of the resource, so the memory configuration, and auxiliary functions like is_part_mem_th allow for extracting the relevant information from it. The semantic of the different stages is described using a total functions: Where PREP_SEND, WAIT_SEND, BUF_SEND, and DO NE_SEND define an operational semantic for the atomic actions of the PikeOS IPC protocol.

Traces, executions and input sequences

During our experiments, we will generate input sequences rather than traces. An input sequence is a list of a datatype capturing atomic action input syntactically. An execution is the application of a transition function over a given input sequence. Using mbind, the execution over a given input sequence is can be immediately constructed.

definition execution = (λis ioprog σ. mbind is ioprog σ)

Aborted Executions

Our model support the notion of abort. An abort is an action done by the system to stop the execution of a given system call. A system call can be aborted for different reasons:

• timeouts: a system call can not finish its execution because a timeout happened. For instance, a caller tried to access to a given resource and run out of the specified waiting time without success, i. e. the resource was not available at that moment. Or the caller run out of the specified waiting time when he was about to wait for a given input from another call.

• other error codes: a system call can not finish its execution because of a returned error code during its execution, i. e. on of the call conditions was not satisfied, e. g. wrong communication partner. Thus, the system stops the execution of the call.

In all cases, when an abort happen to a given PikeOS call, the remaining atomic actions of the call are canceled (not executed). For the case of the IPC protocol both calls, the one coming from the caller and the one coming from his communication partner, are canceled. To express the behavior of the abort in our model we will add to our specification language a new monad combinator. The behavior expressed by this combinator is abstracted by the pseudo code in algorithm 2.

In the case of an aborted system call, the semantic of our combinator express the same behavior as stutter steps in automata models, i. e. we stay in the same state, only the error table will change. The error table is modeled by the field errors_tab of the record (...) kstate representing the system state, the field is instantiated by a partial function with type error_tab:: thid error, and it is used to save (i. e. marks by a flag) the threads in error state, i. e. threads who cause errors during the execution of their system call. Every thread inside the error table is considered as a thread in an error state, when a given system call executed by a given thread is aborted, i. e. the executed action provide an output error code, we update the thread table by adding the thread and its error. Before executing any atomic action (stage) we will check the error

| Some(NO_ERRORS, σ') ⇒unit SE (NO_ERRORS) (σ') | Some(out', σ') ⇒unit SE (out') (set_caller_partner_error caller partner σσ' out' a))
(*both caller and partner were 'informed' to be in error-state.*)

(...))
In subsection 6.5.3 we derive generic symbolic execution rules related to a given monad ioprog that specify an input output program, with the abort operator wrapped around,i. e. abort lift (ioprog). We refine these rules for the specific case when the operational semantics,i. e. represented by the free variable ioprog, is related to PikeOS IPC.

IPC Execution Function

To combine the different semantics of IPC atomic actions we can use:

• The Isabelle specification construct fun: Express the semantic with explicit case matching on actions type in a single function.

The transition function is a total function of the form: The function exec_action is adapted to the monads using the following definition:

definition exec_action_Mon where exec_action_Mon = (λact σ. Some (error_codes(exec_action σact),

exec_action σ act))
The latter function represent the basic operational semantic for PikeOS IPC and it will be combined with the semantic of the abort operator presented in subsection 6.3.4. For instance we wrap around the function exec_action_Mon, the operator abort lift in order to get, abort lift (exec_action_Mon act σ).

System Calls

As mentioned earlier, PikeOS system calls are seen as sequence of atomic actions that respect a given ordering. Actually, each system call can perform a set of operations. On system-level, the execution of some operations can be ignored by specifying the corresponding parameters in the call by null.

PikeOS IPC API provides seven different calls, the most general one is the call P4_ ipc(). Using P4_ ipc(), five operations can be performed: 1. Send a copied message, 2. Receive a copied message, 3. Receive an event (not modeled), 4. Send a mapped message, and 5. Receive a mapped message. The corresponding Isabelle model for the call is:

datatype ('thread_id, 'msg) P4_IPC_call = P4_IPC_call 'thread_id 'thread_id 'msg | P4_IPC_BUF_call 'thread_id 'thread_id 'msg | P4_IPC_MAP_call 'thread_id 'thread_id 'msg (...)

A Generic Shared Memory Model

Shared memory is the key for the L4-like IPC implementations: while the MMU is usually configured to provide a separation of memory spaces for different tasks (a separation that does not exist on the level of physical memory with its physical memory pages, page tables, . . .), there is an important exception: physical pages may be attributed to two different tasks allowing to transfer memory content directly from one task to another.

In order to model a such memory implementation, we will use an abstract memory model with a sharing relation between addresses. The sharing relation is used to model the IPC map operation, which establishes that memory spaces of different tasks were actually shared, such that writes in one memory space were directly accessed in the other. Under the sharing relation, our memory operations respect two properties:

1. Read memory on shared addresses returns the same value.

2. All shared addresses has the same value after writing.

In formal methods, the latter two properties are called invariants. An invariant is a property preserved by a class of mathematical object when a certain updates (changes) are performed on that class. The notion of invariants will be used in our model of shared memory. In our memory model, the two listed invariants will be preserved on a tuple type consisting of a pair of two elements: a partial function and an equivalence relation. While the partial function will specify the memory, i. e. the function represent a mapping from its domain consisting of a set of addresses to its range consisting of their corresponding data, the equivalence relation determines the different equivalent classes for addresses. Actually, these equivalent classes are resulting from the different map operations performed by processes of a system. In order to implement this model on top of Isabelle/hol! we will use the specification construct typedef, and this for two reasons:

1. It offers a way to define an abstract type that can be equipped with invariants.

2. A defined operation on that abstract type, can be easily used for code generation and this, only by providing a soundness proof which express that the operation preserve the invariants on the defined type.

The hol! specification for our memory abstract type is done by: This type definition defines an isomorphism between the set on the right hand side that contains pairs of the type ('α 'β) × ('α ⇒ 'α ⇒ bool) and the set defined by the new type ('α, 'β)memory ; the first element of a pair is a partial function representing a mapping from addresses to data, the second element is an equivalence relation. The type ('α, 'β)memory is introduced by two fresh constant symbols, the function Abs_memory for abstracting the pairs, and Rep_memory the concretization function that refer to the pairs. The application of a given operation op on the pairs is isomorphically the same as the application of Abs_op on the type ('α, 'β)memory with the only difference: the use of the type ('α, 'β)memory for the definition of the different operations assure that the latter talk about representatives which preserve the invariant. Because the set of tuples of type ('a 'b) × ('a ⇒ 'a ⇒ bool) is infinite and may contain tuples that does not preserve the desired invariant, thus the direct use of op is not consistent. That is why we will always define a function on representatives in the following, and this in order to get the desired effects on the pairs. Afterwards we implement and use its corresponding abstraction that refers implicitly to representatives preserving the invariant. Implecitely, five theorems are generated by Isabelle for the functions Abs_memory and Rep_memory, where Rep_memory_inverse, ... are names for the generated theorems:

typedef ('α, 'β) memory = {(σ ::'α 'β, R). equivp R ∧(∀ x y. R x y -→σx = σy)}
Rep_memory_inverse:

Abs_memory (Rep_memory x) = x Abs_memory_inverse: ?y ∈ {(σ , R). equivp R ∧(∀ x y. R x y -→σx = σ y)} =⇒
Rep_memory (Abs_memory ?y) = ?y Rep_memory_inject:

(Rep_memory ?x = Rep_memory ?y) = (?x = ?y) Rep_memory:

Rep_memory ?x ∈{(σ, R). equivp R ∧(∀ x y. R x y -→σx = σ y)}
These theorems will help in the proof of the different lemmas used for reasoning on a defined constant based on the type ('α, 'β)memory. Using this new defined abstract type we will now specify three main memory operations, which are write denoted by _ :=$ _ read by _ $ _ and map by _ (_ _).

The hol! specification of these memory operations is represented for instance, for the case of the map operation by:

fun transfer_rep ::('a 'b) ×('a ⇒'a ⇒bool) ⇒'a ⇒'a ⇒ ('a 'b) ×('a ⇒ 'a ⇒ bool)
where The function transfer_rep is an update function on representatives, i. e. on the pairs of type ('a 'b) × ('a ⇒ 'a ⇒ bool), and the function add_e is its abstraction defined on the type ('α, 'β)memory. Basically, the function transfer_rep takes a memory represented by the pair

('a 'b) × ('a ⇒ 'a ⇒ bool),
a source address src, a destination adress dst and update the pair, in order to express the effect of a memory map on that pair, as follow:

1. the first element of the pair, which is a partial function representing a mapping from addresses to data, is updated by assigning the data of the source address to the destination address 2. the second element of the pair, which is an equivalent relation between addresses, is updated by adding the destination address to the same equivalent class of the source address, and at the same time the relation between the destination and its old equivalent class is destroyed. This definition was validated by PikOS kernel engineers Actually, we will not directly use transfer_rep, the function will be abstracted by add_e, and this is advantageous for the following reasons; on one hand we make sure that, on model level, add_e will always return pairs that preserve the invariant. On the other hand, the specification constraint lift_definition provide automatically a code generation setup for memory operations based on the type ('α, 'β)memory, i. e. the generated implementation will contain implicitly only pairs that preserve the invariant.

If we look closely, we can observe that a little proof was mandatory to get the definition of add_e. In fact, in order to preserve the consistency of its global context, Isabelle forces a such proof. This proof is used to make sure that the invariant defined in the abstract type is preserved by the definition of add_e. In other words, we have to make sure that the added definition is sound and its use does not break the invariant, a such soundness proof was provided by the following lemma: In order to simplify the use of these abstract memory operations by constraint solvers, and also in order to simplify the proof of symbolic execution rules related to these operations, lemmas expressing the key properties of our shared memory model were introduced, we will present only the most important lemmas: Similarly, we prove other rules for memory map and memory read which represent a memory theory modulo sharing. The defined memory operations are used actually to implement the MAP and BUF actions of PikeOS IPC. For more details on our hol! model, and the core theory for shared memory see section B.

lemma transfer_rep_sound: assumes σ ∈ {(σ , R). equivp R ∧(∀ x y. R x y -→σx = σ y)} shows transfer_rep σ src dst ∈ {(σ , R). equivp R ∧(∀ x y. R x y -→σx = σ y)} proof - obtain mem

Testing PikeOS IPC

Coverage Criteria for IPC

An IPC call defines a communication relation between two threads. In PikeOS, IPC communications can be symmetric, transitive but can not be reflexive (a thread can not send or receive an IPC message for himself). The transitivity or intransitivity of IPC communications depends mainly on the defined communication rights table and access rights table. In this section, we will define input sequences for ipc calls. The defined input sequences express IPC communications between threads. Other definitions, which are almost the same as the ones used for input sequences, will be used to derive the possible communications between threads after the execution of an IPC call. The IPC input sequences will be used in scenarios for testing information flow policy via IPC error codes, and also scenarios on access control policy implemented via the two tables cited before. The definition of an input sequence of type IPC communication is based on a new coverage criterion. The criterion is based on the functional model of PikeOS IPC (see section 6.2), and also on our technique to reduce the set of interleaving if two actions can commute (see section 4.4).

• Criterion3: IPC communications (IPC comm) the interleaving space of input sequences gets a complete coverage iff all IPC communications of a given SUT are covered.

IPC communications are input sequences derived under IPC comm . They have the form:

[IPC PREP (SEND th_id th_id' msg), IPC PREP (RECV th_id' th_id msg), IPC WAIT (SEND th_id th_id' msg), IPC WAIT (RECV th_id' th_id msg), IPC BUF (RECV th_id' th_id msg), IPC DONE (RECV th_id' th_id msg), IPC DONE (SEND th_id th_id' msg)]

Test Case Generation Process

In our model, a test case generation process is applied on the test scenario to generate concrete tests. To apply a such process we will implicitly benefit from implemented tools, proofs and tactics of Isabelle. As explained in section 4.5, a test scenario is specified by a test specification which is actually a lemma. The goal is not to provide a proof for the lemma, the goal is just to normalize this HOL formula until we get a test normal form (TNF) [START_REF] Achim | On Theorem Proverbased Testing[END_REF], and then we generate concrete test from the TNF. In our approach, the process of test generation is composed of:

The Symbolic State.

In our model a symbolic state is the Isabelle lemma proof statement, i. e. a proof context.

The Symbolic Execution Process.

Our symbolic execution process can be seen as an exploration of the proof tree resulting from the application of symbolic execution rules to a given test specification. Symbolic execution rules are Isabelle proved lemmas. Those rules are inference rules derived from a given operational semantics. They are used to simulate the execution of a given transition function, which specify the behavior of the system under test. The application of a such rules allows for going from a symbolic state, i. e. a proof statement, to another symbolic state. In sequence test scenarios this step is applied until the input sequence is empty.

The Normalization Process.

Normalization rules are Isabelle proved lemmas. Two main goal are distinguished for the normalization process 1. First, normalization rules are used to simplify the abstract test cases generated after the application of symbolic execution rules, in order to get a proof statement containing a set of TNFs that can be easily treated by constraint-solvers.

2. Second, normalization rules are used to eliminate as much as possible unfeasible executions in the proof tree, i. e. proof statements that lead to true, (see subsection 6.5.4 for further explanation).

In our model, the outputs from this step are abstract test cases. Abstract test cases are a normalized proof goals generated from symbolic execution process. Proof goals are normalized, i. e., reduced to clauses over linear arithmetic, list, and map-theories in a format that can be treated by the subsequent constraint solver. Outputs from the normalization process are also called TNFs. In our approach, the step of normalization takes most of the generation time.

The Test Theorem.

After the normalization process we generate the test theorem. Actually HOL-TestGen provides a tactic for the generation of a test theorem of the form:

C 1 (a 1) ⇒ P (a 1 , P U T a 1) . . . C n (a n) ⇒ P (a n , P U T a n) T HY P (H 1 ∧ • • • ∧ H n)
T S The test theorem decompose each abstract test case in the local proof context generated from a test specification to 3 parts:

1. Proof Obligations: are the premises of a given abstract test case. e. g. in the previous formula a proof obligation is C i (a i).

Testing Hypotheses:

In addition to testing hypotheses expressed as assumptions of a given test specification, HOL-TestGen offer a way to introduce testing hypotheses, e. g. regularity and uniformity hypotheses, to a test specification. In the previous formula testing hypothesis are H i . T HY P is a constant definition used as markup for the testing hypothesis during the generation of the test theorem.

3. Abstract Test Cases: also called TNFs, they are represented in the test theorem by C i (a 1) ⇒ P (a i , P U T a i), where P is the oracle, and a i is a concrete instance that must satisfy the constraint C i .

A test theorem state that a concrete test case passes if the application of a program under test P U T on a concrete instance a i satisfies the oracle P .

Test Data Generation.

The proof obligations of each abstract test case are sent to constraint-solvers such as Z3 [START_REF] Mendonça De Moura | Z3: An efficient smt solver[END_REF], in order to construct a concrete ("ground") data for the variables. These instantiated abstract test cases represent actually execution paths in a program under test; they are used as test cases for this system.

Symbolic Execution Rules

Symbolic execution rules are inference rules for the elimination of the inputs in the test specification. In our model we distinguish two categories of these rules:

1. The generic ones: they are related to operators of our specification language, i. e. the proposed monad operators in our theory like:bind_SE. These rules are fixed element in the theory, and they represent the generic simulation for the behavior of any state exception monad ioprog, of type ('ι ⇒ ('o,'σ) MON_SE).

2. The specific ones: they are a refinement, or an instantiation, of the generic ones. These rules represent the simulation of the behavior of a model, which is an intantiation of ioprog by a given operational sematic.

The Generic Rules.

Generic rules are elimination rules derived for the generic operational semantics expressed by the different monads operators introduced by our specification language. This kind of rules has the form:

(σ |= outs ← ioprog (ι#ιs); P s) ioprog ι σ = Some (o ι , σ) (σ |= outs ← ioprog ιs; P (o ι #s)) oι,σ • • • Q Q
where σ is a symbolic variable that denote the state of a given system, outs is a sequence of outputs resulting from the execution of the transition function ioprog, ι#ιs is a list of inputs and P is a post condition on the sequence of outputs. A concrete example of generic symbolic execution rules is the rule 1 presented in section 4.2. In order to catch the behavior of PikeOS, our specification language was extended by a new state exception monad operator called abort lift , an example of a generic symbolic execution rule related to this operator is: In order to motivate the use of elimination rules for symbolic execution, we will explain the process of their application on a given proof context. The use of the rule abort_wait_send_mbindFSave_E on a given test specification Test_Scenario is conditioned by the existence of a given assumption in Test_Scenario that have the same scheme of the assumption valid_exec and the existence of a conclusion. For the case of a valid test specification the conclusion will have the same scheme of valid_exec, the only difference will be the FREE variable that represent the model, e. g. ioprog. Actually, it is replaced by a variable, e. g. SUT, that represent the system under test. Once these conditions are brought together for a given test specification Test_Scenario the application of the rule will be performed using the tactic ematch_tac (see section 4.5 for further explanations). The process of the application of rules , such as abort_wait_send_mbindFSave_E, on a valid representation of Test_Scenario is:

1. Each time the input action (IPC WAIT (SEND caller partner msg)) is in the header of a sequence of inputs ιs specified in a test specification Test_Scenario, a matching is established between the assumption valid_exec and the assumption that specify a model of a tested system in Test_Scenario, e. g. an assumption that specify a model for a test specification Test_Scenario related to PikeOS can be σ |= (outs ←mbind ιs(abort lift exec_action_Mon);return(outs = x). The same thing will happen for the conclusion of the rule, which is by the way a free variable Q that can be instantiated by any boolean formula, of course for the case of a valid test specification the scheme of the conclusion specify a valid test execution for a system under test, e. g.

σ |=(outs ←mbind ιs SUT;return(outs = x).

2. After the establishment of the ematching, the proof statement provided by Test_Scenario is transformed to a new proof statement. The latter will contain a set of proof goals, each goal has is a "not matched" assumption specified in the rule, e. g. if Test_Scenario contain only an assumption in the form of valid_exec then the new proof context, after the application of the rule with ematching tactic, will contain the other assumptions of the rule like in_err_state and not_in_err_state_Some3, etc.

3. We repeat the same process with different rules related to different input actions until we got an empty input sequence. The resulting proof statement will receive a normalization process in order to get abstract test cases for Test_Scenario.

A such process, actually based on ematching technique, has an enormous performance gain effect on symbolic execution engine of Isabelle. Because, the whole calculation process is reduced technically to a formal syntactic transformation of the proof context, instead of calculus based on substitution, rewriting, instantiation, introduction, etc. From another side, the execution of a such process on a sequence of inputs specified in a given test specification can be easily automated by an algorithm. The algorithm basically is represented by an Isabelle tactic, the latter takes the different symbolic execution rules related to the different actions of the specified system and execute the rules on the proof context until no rules can be applied. For instance, a tactic for symbolic execution related to the actions of PikeOS IPC is:

val a b o r t _ i p c _ m b i n d _ T e s t G e n _ P u r e E 2 1 _ e m a t c h = (ALLGOALS o TestGen . REPEAT ') (CHANGED o TRY o FIRST ' [ematch_tac [@ { thm a b o r t _ p r e p _ s e n d _ H O L _ e l i m 2 1 } , @ { thm a b o r t _ p r e p _ r e c v _ H O L _ e l i m 2 1 } , @ { thm a b o r t _ w a i t _ s e n d _ H O L _ e l i m 2 1 } , @ { thm a b o r t _ w a i t _ r e c v _ H O L _ e l i m 2 1 } , @ { thm a b o r t _ b u f _ s e n d _ H O L _ e l i m 2 1 } , @ { thm a b o r t _ b u f _ r e c v _ H O L _ e l i m 2 1 } , @ { thm a b o r t _ m a p _s e n d _ H O L _ e l i m 2 } , @ { thm a b o r t _ m a p _r e c v _ H O L _ e l i m 2 } , @ { thm abort_done_send_HOL_elim1 '} , @ { thm abort_done_recv_HOL_elim1 '}]]);
The tactic abort_ipc_mbind_testGen_PureE21_ematch is implemented on SML level using the different Isabelle SML libraries, the elements of the tactic are:

• ALLGOALS: a tactic combinator of type tactic * tactic -> tactic from the module Tactical of Isabelle/ML. It applies the tactic on all goals of a proof statement. A proof statement is usually called a proof context.

• TestGen.REPEAT': a tactic combinator of type (int -> tactic)-> int -> tactic. It is an adaptation of REPEAT_ALL_NEW, from the module Tactical of Isabelle/ML for HOL-TestGen and it is used to repeat the same tactic on a given subgoal.

• CHANGED: a tactic combinator of type tactic -> tactic. Its apply the tactic on a given goal, and if it fails (i. e.the goal is not changed), an Isabelle fail error is raised.

• TRY: a tactic combinator of type tactic -> tactic. its apply the tactic on a given goal, and if it fails, it let the goal unchanged.

• FIRST': a tactic combinator of type ('a -> tactic)list -> 'a -> tactic. Tries a number of tactics, specified actually inside a list, on a given goal.

• @{thm _}: an antiquotation that refers to a given Isabelle theorem.

Antiquotations are used as links to the object specified using Isabelle's specification constructs. The objects can be Isabelle theorems, types, theories, etc. Each object has its own type of antiquotation, e. g. in order to refer to a given Isabelle theory we use @{theory theory_name}, another antiquotation can be @{context}, it is used to refer to a given local context(proof statement) of a proof. Antiquotations are useful for many activities, e. g. they are useful in order to get formal links of the different objects in a given document generated from Isabelle theories, which helps for instance in the review of the document. Also they are useful for development, e. g. in the development automated tactics.

• abort_prep_send_HOL_elim21: is a symbolic execution rules related to PikeOS IPC model.

For more details on Isabelle tactic development we would refer to [Urb]. Moreover note, for more details on the proofs of symbolic execution rules related to abort lift see section O.

The Specific Rules.

These rules are instantiations for the generic ones by a given operational semantics. For the case of PikeOS system, its operational semantics is expressed by a transition function (presented in subsection 6.3.5) over 10 atomic actions which are:

1. PREP SEND/RECV: in this stage some checks related to PikeOS message descriptor, i. e. a file containing details about the communicating threads, are done.

WAIT SEND/RECV:

The wait stage is mainly used for synchronisation.

BUF SEND/RECV :

The stage BUF represent data transfer via memory copy.

MAP SEND/RECV :

The stage MAP data transfer via memory mapping.

DONE SEND/RECV:

The stage DONE used to finish the IPC communication between the threads.

As mentioned in the previous section and in section 4.5, the role of the symbolic execution rule is to update the proof context according to the execution semantics of the different atomic actions of the IPC protocol. An example of a symbolic execution rule derived from the operational semantics of PikeOS IPC is: Each assumption inside the above elimination rule express a possible execution path for the action appearing in the head of the executed input sequence, e. g. the latter rule is related to the wait stage represented syntaxically by (IPC WAIT (SEND caller partner msg)).

Other Rules.

In order to simplify the proof of the symbolic execution rules presented earlier, other rules related to the execution semantics of PikeOS were derived: Moreover, in order to optimize the process, some rules called behavioral refinement rules are derived: For more details on these rules we would refer to section L.

Abstract Test Cases

Abstract test cases are proof goals resulting from the application of symbolic execution and the normalization processes on a given test specification. Abstract test cases represent a possible execution path in the system under test.

In our approach, having n number of abstract test cases does not necessarily mean that all n paths are feasible. An abstract test case is feasible if and only if there exist a model, i. e. an instatiation of the free variables by a witness, that satisfy the premises of the abstract test case. In our approach, the number of feasible test cases is always less than or equal to the number of abstract test cases resulting from symbolic execution and normalization processes. The number of feasible abstract test cases is not necessarily equal to the number of concrete tests. A concrete test is a witness used to justify that a given abstract test case is feasible. Many witnesses can exist and used for the justification. Actually, in some cases the number of witnesses can be infinite. Of course, if no witnesses can be derived for an abstract test case this means that the abstract test case is infeasible. Thus, in our approach we can clearly end with 0 concrete tests for a given test scenario and this can happen if the constraint-solver can not provide a model that satisfies the proof obligations of the formula that represent an abstract test case. The problems related to detecting feasible abstract test cases, and the elimination of infeasible ones before the test generation, is not tackled during this thesis. An example of an abstract test case is:

z za y. (...) = [e, f, g] =⇒ (...) = [a, b, C] =⇒ IPC_send_comm_check_st id thID2 thID1 σ_1 =⇒ IPC_params_c4 thID2 thID1 =⇒ IPC_params_c5 thID1 σ_1 =⇒ act_info (th_flag σ_1) thID2 = None =⇒ ¬ IPC_buf_check_st id thID2 thID1 (σ _1(|current_thread := thID2, thread_list := if thID2 ∈dom (thread_list σ_1) then thread_list σ_1(thID2 →(the •thread_list σ_1) thID2 (|th_state := WAITING|)) else thread_list σ_1, error_codes := NO_ERRORS|)) =⇒ thID1 = thID2 =⇒ act_info (th_flag σ_1) thID1 = Some y =⇒ σ _1 |= (outs ←mbind [IPC WAIT (RECV thID1 thID2 [z, za]), IPC WAIT (SEND thID2 thID1 [z, za]), IPC BUF (SEND thID2 thID1 [z, za]), IPC MAP (SEND thID2 thID1 [z, za]), IPC DONE (SEND thID2 thID1 [z, za]), IPC DONE (RECV thID1 thID2 [z, za])] PUT2; unit SE (outs = [y, NO_ERRORS, ERROR_IPC error_IPC_1_in_BUF_SEND, ERROR_IPC error_IPC_1_in_BUF_SEND, ERROR_IPC error_IPC_1_in_BUF_SEND, ERROR_IPC error_IPC_1_in_BUF_SEND]))
In order to get a concrete test case we have to instantiate this abstract test case with witnesses for the variables z, za, y. The instantiation process is done by sending the formula that contains the conjunction of the premises, e. g. IPC_params_c4 thID2 thID1, to constraint-solvers via an interface provided by HOL-TestGen. In our terminology, the conjunction between the premises of an abstract test case is called Proof Obligation (PO). Most of the time, a configuration is needed in order to help the constraint solver to reason about proof obligations. The configuration of the constraint solver is basically done by a set of Isabelle lemmas that help in the solving process of the PO. For technical reasons, the lemmas of the configuration must be written in hol! language, and not in isar or pure language. For example in order to allow the constraint-solver smt to reason about properties related to our abstract memory model, we use the rule: In its current form this rule will be refused by the solver smt. The following adaptation is needed:

lemma adde_share_charn_smt : ¬(i shares (σ) k') ∧ ¬(k shares (σ) k') -→ i shares (σ(i' k')) k = i shares (σ) k using adde_share_charn by simp
In our framework, and in order to feed the solver smt with the rule adde_share _charn_smt we use the command:

declare adde_share_charn_smt [testgen_smt_facts]
We have to notice that we experienced several problems related to solving a PO containing constraints around an abstract type,e. g. the type of our memory model. For example, in some cases the smt solver fails to provide a solution to a PO containing a constraint of the form (i shares (σ) k), and this of course because we do not have yet a perfect lemmas configuration that help the solver to reason about the shares relation correctly.

Test Data For Sequence-based Test Scenarios

A test scenario is represented by a test specification and can have two main schemes: unit test scheme or sequence test scheme. The specification TS_simple_example2 is an example of a sequence test scenario for PikeOS IPC.

test_spec TS_simple_example2:

ιs ∈ IPC_communication =⇒ σ 1 |=(outs ←mbind is(abort lift exec_action_Mon);return(outs = x) -→σ 1 |=(outs ←mbind is SUT; return(outs = x))
For a σ 1 definition that contains a suitable VMIT configuration, a possible generated values for ιs are, e. g.:

[IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]), IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]), IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]), IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]), IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),

IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),

IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8])]
The sequence is an abstraction of an IPC communication between the thread with the ID = (0, 0, 1) and the thread with ID = (0, 0, 2) via a message msg = [0, 4, 5, 8]. Natural numbers inside the message are abstractions on memory addresses. In TS_simple_example2 the execution semantic of the input sequence is represented by our execution function exec_action_Mon.

We wrapped around our execution function a monad transformer abort lif t that express the behavior of an abort. The equality in return(outs = x) specify our conformance relation between SUT outputs and the model outputs. After using our symbolic execution process the out of this test case is:

[NO_ERRORS, NO_ERRORS, ERROR_IPC error_IPC_1_in_WAIT_RECV, ERROR_IPC error_IPC_1_in_WAIT_RECV, ERROR_IPC error_IPC_1_in_WAIT_RECV, ERROR_IPC error_IPC_1_in_WAIT_RECV, ERROR_IPC error_IPC_1_in_WAIT_RECV]
The error-codes observed in the sequence is related to IPC. The error-codes was returned in the stage WAIT_ RECV. The interpretation of this errorcodes is that the thread has not the rights to communicate with his partner. We can observe the behavior of our abort operator in this sequence of errorcodes; All stages following WAIT_RECV are purged (not executed), and the same error is returned instead. We focus on error-codes in our scenarios, since error-codes represent a potential for undesired information flow: for example, un-masked error-messages may reveal the structure of tasks and threads of a foreign partition in the system; a revelation that the operating system as separation kernel should prevent.

Test Drivers

In this section we address the problem to compile "abstract test-drivers" as described in the previous sections into concrete code and code instrumentations that actually execute these tests. HOL-TestGen can generate test scripts (recall Figure 1 In addition, for testing C code, we need to provide a small SML structure (ca. 20 lines of code), called Adapter, that serves two purposes: 1. the configuration of the foreign function, e. g., the mapping from SML datatypes to C datatypes and 2. the concretization of abstractions to bridge the gap between an abstract test model and the concrete SUT.

An example for a concretization would be a test specification using an an enumeration to encode error states while the implementation uses an efficient encoding as bit vector. The Adapter structure only needs to be updated after significant changes to either the system specification or the system under test. For testing concurrent, i. e., multi-threaded, programs we need to solve a particular challenge: enforcing certain thread execution orders (a certain scheduling) during test execution. There are, in principle, three different options available to control the scheduler during test execution: 1. instrumenting the SUT to make the thread switching deterministic and controllable, 2. using a deterministic scheduler that can be controlled by test driver, or 3. using the features of debuggers, such as the GNU debugger (gdb), for multi-threaded programs. In our prototype for POSIX compliant systems, we have chosen the third option: we execute the SUT within a gdb session and we use the gdb to switch between the different threads in a controlled way. We rely on two features of gdb (thus, out approach can be applied to any other debugger with similar features), namely: 1. the possibility to attach to break points in the object code scripting code that is executed if a break point is reached and 2. the complete control of the threading, i. e., gdb allows to switch explicitly between threads while ensuring that only the currently active thread is executed (using the option set scheduler-locking on). This approach has the advantage that we neither need to modify the SUT nor do we need to develop a custom scheduler. We only need to generate a configuration for controlling the debugger. The necessary gdb command file is generated automatically by HOL-Testgen based on a mapping of the abstract thread switching points to break points in the object code. The break points at the entry points allows us to control the thread creation, while the remaining break points allow us to control the switching between threads. Thus, we only need the SUT compiled in debugging mode and this mapping. In this sense, we still have a "black-box" testing approach. Moreover, Using gdb together with taskset, we ensure that all threads are executed on the same core; in our application, we can accept that the actual execution in gdb changes the timing behavior. Moreover, we assume a sequential memory model, so our approach does not cover TLB-related race conditions occurring in multi-core CPU's.

A note on testing small embedded systems and low-level operating system code. This setup works well for mid-size embedded systems to large systems using standard desktop or server operating systems. It does not work for small embedded systems or for testing small operating system kernels or hypervisors. Such system often to neither provide a rich enough libc (or libm) nor enough system resources that allows to run the complete test driver on the system under test. For such systems, we envision a hosttarget setup, where only a very small target library needs to be ported to the target system. This target library serves mainly two purposes: 1. stimulate, remotely controlled from the host system, the functions under test and 2. collect the test result and report it back to the host system. All expensive computation such as comparing test results, creating statistics are executed on the host system. Finally, for small systems it might be necessary to develop a custom scheduler, e. g., similar to [START_REF] Musuvathi | Chess: A systematic testing tool for concurrent software[END_REF], to control the execution order of multithreaded programs.

Experimental Results

In this section we will discuss our test experiences, the obtained results and the different problems encountered. The table Table 3. TT: is the step of the generation of the test theorem. During this step we use an HOL-TestGen tactic to determine the PO and to introduce uniformity testing hypotheses (recall subsection 2.2.2) on the different proof goals resulting from the Norm step. This step can be seen as a preparatory step for the data selection process.

4. TD: represent the step of test data selection. During this step we send the POs in the test theorem to constraint-solvers. Also, after that a given solver choose a model for the POs an Isabelle proof is mandatory in order to make sure that the chosen model satisfies the PO. We have to notice that, for simple models, the process of proving the satisfaction of the PO by the chosen model, is done automatically by an Isabelle tactic but, for complicated models such as PikeOS model, where its symbolic execution results with complicated predicated defined around abstract types, e. g. predicate around our memory model, the proofs need to be done manually. This does not mean that the process can not be automated, but at the moment, we do not have the set of lemmas and the corresponding tactics that help to get a such automatic setup.

Each column in Table 6.1 is composed of two other columns. The columns named Num contain the number of outputs from each step of the generation process, and the columns Time contain the duration of the step by minutes.

The scenarios Sc1 and Sc2 contain the value undet in their columns, it means that we did not manage to finish the steps of the generation and the experience is done for these scenarios. The judgement undet is different from the judgement represented by the symbol -, also contained in the table. The judgement undet is applied to an experience where our process of test generation had failed in a given step, and we are not trying to fix the failed part because, the fixes depends on major changes in the various levels of the tool-chain. The judgementis applied on an experience which is not finished yet, i. e. we do not have the results of all the steps of the process but, finishing the experience depends on manageable technical problems3 . Note that the execution of the steps related to the test generation process is sequential. Thus, if the current step fails the next one can not be executed.

For example during the scenario Sc1, we had derived actually 69984 symbolic test cases in 2 hours for 1 input sequence that represent an IPC communication (recall subsection 6.5.1) but, we did not manage to normalize a such proof context with a such size, which means that all remaining steps of the process can not be performed because they all depend of the outputs from the Norm step.

As explained in subsection 6.5.4, the generation of 69984 symbolic test cases does not necessarily mean that all the cases, represented by proof goals, are feasible. We have to normalize the proof goals in order to eliminate the contradictory ones. Even if we have managed to normalize a proof context with a such size, we still need to find models for the different normalized goals and prove that, the chosen models satisfy the POs. While the fact of generating almost 70000 goals using our symbolic approach in only 2 hours can be seen as an impressive result, we have failed during the normalization process, and this come back to:

1. The model. the model of PikeOS IPC is heavy, and this because of the branching in the atomic actions, especially the PREP action.

2. The way of modeling. it is the main influential factor. We believe that some changes on the way of modeling can help to make the normalization process lighter. e. g. the definition of meta-predicates that characterize feasible paths only, or at least the elimination of the most of infeasible paths, and accordingly, the definition of the corresponding symbolic execution rules, can actually result with an optimized proof context after the SE step.

In order to execute our tool-chain from top to bottom we have tried other test scenarios to avoid the previous cited problems. For example, the scenario Sc2 is similar to the scenario Sc1 but, without including the PREP stage in the input sequence that represent 1 IPC communication. From Sc2, we had derived 1973 symbolic test cases in 2 minutes (which is another impressive result). After 6 hours of normalization process, 27 abstract test case remained. But still we did not manage to get automatically models for the 27 abstract test cases, and this because of a failure from the constraint-solvers, such smt, to provide a solution for complicated POs. The failure come back mainly to missing lemmas used as a configuration (recall last paragraphs in subsection 6.5.4) for the constraint solvers and not to the constraints-solver design.

For the scenarios Sc3 to Sc5, we have tried another approach in order to deal with the previous cited problems and also to generate test cases that cover communications with PREP action. Basically the approach is based on a technique that, allows to force a given execution path from the possible ones, resulting from the execution of the PREP action. Actually, after the execution of a PREP action, 6 execution paths are possible (see the symbolic execution rule for PREP action in section O). Since we have 2 PREP actions in the head of a sequence that represent 1 IPC communication, all possible execution paths related to the 2 PREP actions is equal to 6 × 6. Actually, the 2 PREP actions are derived from: the ipc send system call for the PREP SEND action, and the ipc receive system call for PREP RECV. Each system call is executed by a thread. Instead to opt for a standard execution of the 2 PREP actions with rules that simulate all possible executions paths like we did in Sc1, we had opted for rules that force one execution path inside a test scenario. In order to cover all paths, we had designed 36 scenarios, each scenario force a given execution path during the PREP stage. Because we do not have any problems for executing the other actions which are different from PREP, we used the standard rules for their symbolic execution.

In order to apply this new tchnique to our scenarios, new symbolic execution rules were designed to cope with the explosion in the number of the abstract test cases, which influence negatively our normalization process. For example, in the scenario Sc3 we had derived 2 new symbolic execution rules for PREP actions. Each rule characterize one execution path by assuming that the path-predicate that describe the execution path is true. The symbolic execution rules used to simulate the the behavior of the actions PREP_SEND and PREP_RECV in the scenario Sc3 are: Of course the path-predicate in_err_exec1 must be expressed also in the test specification Sc3. This predicate express the fact that the caller of the action (the caller of PREP SEND and also the caller of PREP RECV), was in an error-state (recall subsection 6.3.4). From another side, we did not manage to execute the generated tests on PikeOS sources, for confidentiality reasons. In order to evaluate our approach we had implemented a PikeOS IPC-like environment using POSIX implementation. We had managed to execute 2 scenarios on this PikeOS demonstrator. Of course, when the state of the PikeOS demonstrator is initialised correctly our tests did not found any bugs.

Conclusion

Related Work.

There is a wealth of approaches for tests of behavioral models; they differ in the underlying modeling technique, the testability and test hypothesis', the test conformance relation etc.; in subsection 2.2.3 we mention a few. Unfortunately, many works make the underlying testability hypothesis' not explicit which makes a direct comparison difficult and somewhat vague. For the space of testability assumptions used here (the system is input-output deterministic, is adequately modeled as under-specified deterministic system, synchronous coupling between tester and SUT suffices), to the best of our knowledge, our approach is unique in its integrated process from theory, modeling, symbolic execution down to test-driver generation.

With respect to the test-driver approach, this work undeniably owes a lot Microsoft's CHESS project [START_REF] Musuvathi | Chess: A systematic testing tool for concurrent software[END_REF], which promoted the idea to actually control the scheduler of real systems and use partial-order reduction techniques to test systematically concurrent executions for races in applications of realistic size (e. g., IE, Firefox, Apache). For our approach, controlling the scheduler is the key to justify the presentation of the system as underspecified deterministic transition function.

Conclusion and Future Work.

We see several conceptual and practical advantages of a monadic approach to sequence testing:

1. a monadic approach resists the tendency to surrender to finitism and constructivism at the first-best opportunity; a tendency that is understandably wide-spread in model-checking communities,

2. it provides a sensible shift from syntax to semantics: instead of a firstorder, intentional view in nodes and events in automata, the heart of the calculus is on computations and their compositions, 3. the monadic theory models explicitly the difference between input and output, between data under control of the tester and results under control of the SUT, 4. the theory lends itself for a theoretical and practical framework of numerous conformance notions, even non-standard ones, and which gives 5. ways to new calculi of symbolic evaluation enabling symbolic states (via invariants) and input events (via constraints) as well as a seamless, theoretically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the formal theory of sequence testing (as given in the HOL-TestGen library theories Monad.thy and TestRefinements.thy) providing connections between monads, rules for test-driver optimization, different test refinements, etc., is worth further development. On a test-theoretical level, our approach provides the basis for a comparison on test-methods, in particular ones based on different testability hypothesis'. Pragmatically, our test driver setup needs to be modified to be executable on the PikeOS system level. For this end, we will need to develop a hosttarget setup (see subsection 6.5.6). Finally, we are interested in extending our techniques to actually test information flow properties; since error-codes in applications may reveal internal information of partitions (as, for example, the number of its tasks and threads), this seems to be a rewarding target. For this purpose, not only action sequences need to be generated during the constraint solving process, but also (abstract) VMITs.

Part III

Conclusions 7

Conclusions and Future Works

Summary

In the different chapters of this, we introduced thesis a test and proof environment for the specification, deductive verification and testing of concurrent programs. Our approach relies on the theorem proving Isabelle/hol!. In the context of this Ph.D thesis, the architecture, features, tools and the underlying methodology of Isabelle were also presented. We believe to have justified our claim that was, if correctly used, Isabelle can be trusted to a significantly higher extent than conventional software used in certification processes and test generation based on symbolic execution. The main problematic tackled by our work was the generation of tests for the certification of complex concurrent systems such operating systems. Our solution was, first of all, the proposition of a monad based test theory for the specification of a such system. Afterwards, we had used symbolic execution approach, based on theorem proving environment in order to generate test cases. Our contributions, results and achievement are:

Isabelle/hol! in Certification Processes
In section 2.3, we have presented the Isabelle/hol! system and pointed out the essential arguments, why by a particular combination of system-architecture and methodology, the system is suited to give the currently highest possible guarantee on a formal proof in particular and a logical theory development in general. In a sense, Isabelle/hol! offers the same guarantees for logical systems as Coq, and in some sense better guarantees than, for example, the B method or model-checkers like FDR. Isabelle/hol! is therefore a natural choice for evaluations in the higher certification levels EAL5 to EAL7 in the Common Criteria (CC). If the methodological side-conditions are respected which can be reduced essentially to a number of syntactic checks, the formal consistency of the entire certification document containing formal specifications, proofs of consistency and the proofs of security properties, refinement-proofs between the different abstraction layers, and finally testcase generations as well as test-results can be guaranteed, and the evaluator can therefore concentrate on the more fundamental questions: does the model represent the right thing? are the modeling assumptions justified?

A Monad Based Testing Theory

Our framework is equipped with a specification language (see chapter 4) based on monads that contains important definitions for testing and symbolic execution activities. The expressive power of our specification language was was highlighted by an isomorphism between the automata world and monads world. A set of generic symbolic execution rules, for the defined monad operators was also introduced. Unlike to IO-Automata based specification, it turns out that symbolic execution based on monads specifications and its representation in the hol! language can cope with the large state space; and that was confirmed by the results that we have got from our case studies, where our approach was applied on on two complex systems.

Sequence Testing For Concurrent Complex Systems

In order to optimize the symbolic execution process for our test specifications, especially for the case of sequence test scenarios of concurrent systems, an approach based on the notion of coverage criteria was proposed in section 4.4. On the technical side, an approach to build automated test drivers for testing non-deterministic system executions was proposed in section 4.7.

Testing VAMP Microprocessor

As a case study, and in order to confirm the efficiency of our test framework, we presented in chapter 5, an approach for testing the conformance of a processor with respect to an abstract model that captures the instruction set (i. e., the assembly-level) of the processor. This abstraction level is of a particular importance for, first, it is the level of detail that is usually available for commercial off-the-shelf (COTS) processors and, second, it is the target level of high-level compilers.

Testing PikeOS System

Another achievement of our work was presented in chapter 6. It consist of a case study, containing the formalization and test case generation for the complex operating system PikeOS. The approach allows for testing relatively fine-grained concurrency of atomic actions, which are actually related to system calls of an L4-like micro-kernel. During this case study we focused on the IPC API. The case study was another confirmation of the expressive power and the efficiency of theorem proving based test framework. Especially if the framework is combined with a monad based testing theory.

Futur Works

We see several directions for future works: On the model level, the formal theory of sequence testing (as given in the HOL-TestGen library theories Monad.thy and TestRefinements.thy) providing connections between monads, rules for test-driver optimization, different test refinements, etc., is worth further development. On a test-theoretical level, our approach provides the basis for a comparison on test-methods, in particular ones based on different testing hypotheses and a bit indirectly even the underlying hypotheses of testability. Pragmatically, our test driver setup needs to be modified to be executable on systems such as PikeOS. For this end, we will need to develop a host-target setup approach, that can cope with restrictions of low level system code, e. g. limited libraries, limited access to IO. Finally, we are interested in extending our techniques to actually test security properties such as information flow properties; since error-codes in applications may reveal internal information of partitions (as, for example, the number of its tasks and threads), this seems to be a rewarding target. For this purpose, not only action sequences need to be generated during the constraint solving process, but also (abstract) VMITs.

Part IV

PikeOS IPC Model

A

Isabelle sources theory TypeSchemes imports Main begin

A HOL representation of PikeOS Datatypes

A.1 kernel state record (resource, thread-id , thread , sp-th-th, sp-th-res, errors) kstate = resource :: resource -system ressources: memory, files.. current-thread :: thread-id -a thread in the execution context.. thread-list :: thread -list of threads in the system. communication-rights :: sp-th-th -security policy between threads.. access-rights :: sp-th-res -security policy between threads and ressources..

error-codes

:: errors -error returned if a system call is aborted..

A.2 atomic actions

Atomic actions can be seen as instructions which can not be interrupted by the system scheduler during there execution. Each API has its own set of atomic actions. type-synonym (ipc-stage, ipc-direction, mem-param1 , mem-param2 , evn-param1 , evn-param2) trace = (ipc-stage, ipc-direction, mem-param1 , mem-param2 , evn-param1 , evn-param2) action list

A.4 Threads

A thread is the smallest entity in the operating system.

(a ⇒ a ⇒ bool) ⇒ (a ⇒ b) ⇒ a ⇒ b ⇒ (a ⇒ b)
where fun-upd-equivp eq f a b = (λx . if eq x a then b else f x) -This lemma is the same as Fun.fun-upd-same: (?f (?x := ?y)) ?x = ?y; applied on our genralization fun-upd-equivp ?eq ?f ?a ?b = (λx . if ?eq x ?a then ?b else ?f x) of ?f (?a := ?b) ≡ λx . if x = ?a then ?b else ?f x. This proof tell if our function fun-upd-equivp op = f x y is equal to f this is equivalent to the fact that f x = y lemma fun-upd-equivp-iff : ((fun-upd-equivp (op =) f x y) = f) = (f x = y) by (simp add :fun-upd-equivp-def , safe, erule subst, auto)

-Now we try to proof the same lemma applied on any equivalent relation equivp eqv instead of the equivalent relation op =. For this case, we had split the lemma to 2 parts. the lemma fun-upd-equivp-iff-part1 to proof the case when eq (f a) b -→ eq (fun-upd-equivp eqv f a b z) (f z), and the second part is the lemma fun-upd-equivp-iff-part2 to proof the case equivp eqv =⇒ fun-upd-equivp eqv f a b

= f -→ f a = b. lemma fun-upd-equivp-iff-part1 : equivp R =⇒ (z . R x z =⇒ R (f z) y) =⇒ R (fun-upd-equivp R f x y z) (f z) by (auto simp: fun-upd-equivp-def Equiv-Relations.equivp-reflp Equiv-Relations.equivp-symp) lemma fun-upd-equivp-iff-part2 : equivp R =⇒ fun-upd-equivp R f x y = f -→ f x = y
apply (simp add :fun-upd-equivp-def , safe) apply (erule subst, auto simp: Equiv-Relations.equivp-reflp) done -Just anotther way to formalise equivp ?R =⇒ fun-upd-equivp ?R ?f ?x ?y = ?f -→ ?f ?x = ?y without using the strong equality

lemma equivp R =⇒ (z . R x z =⇒ R (fun-upd-equivp R f x y z) (f z)) =⇒ R y (f x)
by (simp add : fun-upd-equivp-def Equiv-Relations.equivp-symp equivp-reflp)

-this lemma is the same in equivp ?R; z . ?R ?x z =⇒ ?R (?f z) ?y =⇒ ?R (fun-upd-equivp ?R ?f ?x ?y ?z) (?f ?z) where op = is generalized by another equivalence relation

lemma fun-upd-equivp-idem: f x = y =⇒ (fun-upd-equivp (op =) f x y) = f by (simp only: fun-upd-equivp-iff) lemma fun-upd-equivp-triv : fun-upd-equivp (op =) f x (f x) = f by (simp only: fun-upd-equivp-iff)
-This is the generalization of fun-upd-equivp op = ?f ?x (?f ?x) = ?f on a given equivalence relation For the special case that @term eq is just the equality @term "op =", sharing update and classical update are identical.

lemma fun-upd-equivp-triv-part1 : equivp R =⇒ (z . R x z =⇒fun-upd-equivp (R) f x (f x) z) =⇒ f x apply (auto simp:fun-upd-equivp-def) apply (metis equivp-reflp) done lemma fun-upd-equivp-triv-part2 : equivp R =⇒ (z . R x z =⇒ f z) =⇒ fun-upd-equivp (R) f x (f x)
(a ⇒ b option) × (a ⇒ a ⇒ bool) ⇒ a ⇒ b ⇒ (a ⇒ b option) × (a ⇒ a ⇒ bool) where Pair-upd-lifter ((f , R)) x y = (fun-upd-equivp R f x (Some y), R) lemma update -sound : assumes σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} shows Pair-upd-lifter σ x y ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} proof - obtain mem
(α β) × (α ⇒ α ⇒ bool) ⇒ (α × β)list ⇒ (α β) × (α ⇒ α ⇒ bool) where update-list-rep (f , R) nlist = (foldl (λ(f , R)(addr ,val). Pair-upd-lifter (f , R) addr val) (f , R) nlist)
lemma update-list-rep-p: assumes 1 : P σ and 2 : src dst σ. P σ =⇒ P (Pair-upd-lifter σ src dst) shows P (update-list-rep σ list) using 1 2 apply (induct list arbitrary: σ) apply (force,safe) apply (simp del : Pair-upd-lifter .simps) using surjective-pairing apply metis done lemma update-list-rep-sound :

assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} shows update-list-rep σ (nlist) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)}
assumes σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} shows transfer-rep σ src dst ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} proof - obtain mem
(α β) × (α ⇒ α ⇒ bool) ⇒ (α × α)list ⇒ (α β) × (α ⇒ α ⇒ bool) where share-list-rep (f , R) nlist = (foldl (λ(f , R) (src,dst). transfer-rep (f , R) src dst) (f , R) nlist) fun share-list-rep :: (α β) × (α ⇒ α ⇒ bool) ⇒ (α × α)list ⇒ (α β) × (α ⇒ α ⇒ bool) where share-list-rep (f , R) [] = (f , R) | share-list-rep (f , R) (n#nlist) = share-list-rep (transfer-rep(f ,R)(fst n)(snd n)) nlist lemma share-list-rep -p:
assumes 1 : P σ and 2 : src dst σ. P σ =⇒ P (transfer-rep σ src dst) shows P (share-list-rep σ list) using 1 2 apply (induct list arbitrary: σ P) apply force apply safe apply (simp del : transfer-rep.simps) using surjective-pairing apply metis done lemma foldl-preserve-p: assumes 1 : P mem and 2 : y z mem . P mem =⇒ P (f mem y z) shows P (foldl (λa (y, z). f mem y z) mem list) using 1 2 apply (induct list arbitrary: f mem , auto) apply metis done lemma share-list-rep-p: assumes 1 : P σ and 2 : src dst σ. P σ =⇒ P (transfer-rep σ src dst) shows P (share-list-rep σ list) using 1 2 apply (induct list arbitrary: σ) apply force apply safe apply (simp del : transfer-rep.simps) using surjective-pairing apply metis done

The modification of the underlying equivalence relation on adresses is only defined on very strong conditions -which are fulfilled for the empty memory, but difficult to establish on a non-empty-one. And of course, the given relation must be proven to be an equivalence relation. So, the case is geared towards shared-memory scenarios where the sharing is defined initially once and for all.

definition update R :: (α, β)memory ⇒ (α ⇒ α ⇒ bool) ⇒ (α, β)memory (- := R -100) where σ := R R ≡ Abs-memory (fst(Rep-memory σ), R) definition lookup R :: (α, β)memory ⇒ (α ⇒ α ⇒ bool) ($ R -100) where $ R σ ≡ (snd (Rep-memory σ)) lemma update R -comp-lookup R : assumes equiv : equivp R and sharing-conform : ∀ x y. R x y -→ fst(Rep-memory σ) x = fst(Rep-memory σ) y shows ($ R (σ := R R)) = R unfolding lookup R -def update R -
definition reset :: (α, β) memory ⇒ α set⇒ (α, β)memory (-(reset -) 100) where σ (reset X) = (let (σ ,eq) = Rep-memory σ; eq = λ a b. eq a b ∨ (∃ x ∈X . eq a x ∨ eq b x) in if X ={} then σ
else Abs-memory (fun-upd-equivp eq σ (SOME x . x ∈X) None, eq)) -this lemma says that if we do an update on an adress x all the elements that are equivalent of x are updated lemma update : σ (x := $ y) = Abs-memory(fun-upd-equivp (λx y. x shares σ y) (fst (Rep-memory σ)) x (Some y), snd (Rep-memory σ)) unfolding update-def sharing-def by (metis update update-def) theorem update-cancel : assumes 1 :¬ (x shares σ x) shows (σ(x := $ y))(x := $ z) = (σ(x := $ z)(x := $ y)) proofhave * :

assumes x shares σ x shows σ(x := $ y)(x := $ z) = (σ(x := $ z)) proof - have * : (fun-upd-equivp(snd (Rep-memory σ))(fst(Rep-memory σ)) x (Some y),snd (Rep-memory σ)) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} unfolding fun-upd-equivp-def by(rule update -sound [simplified fun-upd-equivp-def], simp) have * * : R σ. equivp R =⇒ R x x =⇒ fun-upd-equivp R (fun-upd-equivp R σ x (Some y)) x (Some z) = fun-upd-equivp R σ x (Some
x y.(fun-upd-equivp(snd (Rep-memory σ))(fst(Rep-memory σ)) x (Some y),snd (Rep-memory σ))

∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} unfolding fun-upd-equivp-def by(rule update -sound [simplified fun-upd-equivp-def], simp) have * * : R σ. equivp R =⇒ ¬ R x x =⇒ fun-upd-equivp R (fun-upd-equivp R σ x (Some y)) x (Some z) = fun-upd-equivp R (fun-upd-equivp R σ x (Some z))
x (Some y) unfolding fun-upd-equivp-def apply(rule ext) apply(case-tac R xa x , auto) apply(erule contrapos-np) apply(frule equivp-transp, simp-all) apply(erule equivp-symp, simp-all) done show ?thesis apply(simp add : update) apply(insert assms[simplified sharing-def]) (σ(x y)) $ y = σ $ x using transfer-rep-fst1 unfolding transfer .rep-eq lookup-def by metis lemma add e -not-share-lookup:

assumes 1 : ¬(x shares σ z) and 2 : ¬(y shares σ z) shows σ (x y) $ z = σ $ z using assms unfolding sharing-def lookup-def transfer .rep-eq using id-def sharing-def sharing-refl transfer-rep-fst2 by metis lemma transfer-share-dom:

assumes 1 : z ∈ Domain σ and 2 : ¬(y shares σ z) shows (σ(x y)) $ z = σ $ z using assms unfolding Domain-def sharing-def lookup-def using 2 transfer .rep-eq id-apply sharing-refl transfer-rep-fst2 by metis lemma shares-result : assumes 1 : (x shares σ y) shows σ $ x = σ $ y using assms lookup-def shares-result by metis lemma transfer-share-cancel1 : assumes 1 : (x shares σ z) shows (σ(x y)) $ z = σ $ x using 1 transfer .rep-eq transfer-share-trans lookup-def transfer-rep-fst1 shares-result by (metis) B.12 Test on Sharing and Transfer via smt ...

lemma ∀ x y. x = y -→ ¬(x shares σ y) =⇒ σ $ x > σ $ y =⇒ σ(3 (4 ::nat))= σ =⇒ σ = (σ (3 := $ ((σ $ 4) + 2))) =⇒ x = 3 =⇒ x = 4 =⇒ y = 3 =⇒ y = 4 =⇒ σ $ x > σ $ y
by (smt add e -not-share-lookup transfer-share-charn update-apply) B.13 Instrumentation of the smt Solver lemma transfer-share-charn-smt :

¬(i shares σ k) ∧ ¬(k shares σ k) -→ i shares σ(i k) k = i

B.15 An Intrastructure for Global Memory Spaces

Memory spaces are common concepts in Operating System (OS) design since it is a major objective of OS kernels to separate logical, linear memory spaces belonging to different processes (or in other terminologies such as PiKeOS: tasks) from each other. We achieve this goal by modeling the adresses of memory spaces as a pair of a subject (e.g. process or task, denominated by a process-id or task-id) and a location (a conventional adress).

Our model is still generic -we do not impose a particular type for subjects or locations (which could be modeled in a concrete context by an enumeration type as well as integers of bitvector representations); for the latter, however, we require that they are instances of the type class α assuring that there is a minimum of infrastructure for address calculation: there must exist a 0 :: a-element, a distinct 1 :: a-element and an addition operation with the usual properties. In addition to the communication rights, the scope of IPC communication can further constrained by the receiving thread.

• If thread initiates an OR operation, any threads having rights can send msg to this thread.

• If thread initiates CR operation, it limits the IPC sending partner to one specific thread.

• If thread initiates NR operation, no thread can send a message to this thread.

D.2 Relation between threads adresses and memory adresses

This section contains some predicate that defines relations between own thread addresses and memory addresses those predicate will be used to define some error codes related to own thread addresses.

-predicate that specify if this list of addresses are part of the addresses of the memory To avoid the complexe representation of memory, we represent the memory content as a list of integers and the adresses are natural numbers. An id of the thread is represented by a tuple of natural numbers that specify, the task and the partition that the thread belongs to. To use this abstraction on PikeOS IPC API in our nvironment, we will just define a new type and instantiate our free variables a and b by Isabelle natural numbers type as follwing:

definition
type-synonym p4-action ipc -simplified = (nat × nat × nat , nat list) action ipc -simplified type-synonym ACTION ipc = (p4-stage ipc , (thread id , int list) p4-direct ipc) action ipc type-synonym (o, σ)Mon S E = σ (o * σ)

G.2 Atomic actions semantics

Actually, PikeOS IPC API provides 7 system calls. An execution of each system call will split it to atomic actions. Those atomic actions are called stages. In order to execute The p4_ipc_send call, the kernel will split it into 4 stages:

1. PREP stage 2. WAIT stage 3. BUF stage 4. DONE stage
In addition of providing interruption points, the execution of those stages is used to provide a security model to the IPC mechanism. In each stage and during the execution a set of conditions will be checked by the kernel. If one of the conditions is not satisfied, for example the communication security policy is not respected, the kernel abort the call and return an error code. A comparison procedure between actions. Used to indentify actions that can reply to an aborted system call. A comparison procedure between actions. Used to indentify actions that will be aborted.

G.3 Semantics of atomic actions with thread IDs as arguments

G.8 Composition equality on same action

For the general case the order of the executions of PikeOS matter iff executed on the same action, because the semantics of the execution related to each action is separated

lemma sem-comp-prep-send1 : (out1 ← PREP-SEND M O N a ; PREP-RECV M O N a) = (out1 ← PREP-RECV M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send2 : (out1 ← PREP-SEND M O N a ; WAIT-SEND M O N a) = (out1 ← WAIT-SEND M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send3 : (out1 ← PREP-SEND M O N a ; WAIT-RECV M O N a) = (out1 ← WAIT-RECV M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send4 : (out1 ← PREP-SEND M O N a ; BUF-SEND M O N a) = (out1 ← BUF-SEND M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send5 : (out1 ← PREP-SEND M O N a ; BUF-RECV M O N a) = (out1 ← BUF-RECV M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send6 : (out1 ← PREP-SEND M O N a ; MAP-SEND M O N a) = (out1 ← MAP-SEND M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send7 : (out1 ← PREP-SEND M O N a ; MAP-RECV M O N a) = (out1 ← MAP-RECV M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send8 : (out1 ← PREP-SEND M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send9 : (out1 ← PREP-SEND M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a ; PREP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv2 : (out1 ← PREP-RECV M O N a ; WAIT-SEND M O N a) = (out1 ← WAIT-SEND M O N a ; PREP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv3 : (out1 ← PREP-RECV M O N a ; WAIT-RECV M O N a) = (out1 ← WAIT-RECV M O N a ; PREP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv4 : (out1 ← PREP-RECV M O N a ; BUF-SEND M O N a) = (out1 ← BUF-SEND M O N a ; PREP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv5 : (out1 ← PREP-RECV M O N a ; BUF-RECV M O N a) = (out1 ← BUF-RECV M O N a ; PREP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv6 : (out1 ← PREP-RECV M O N a ; MAP-SEND M O N a) = (out1 ← MAP-SEND M O N a ; PREP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv7 : (out1 ← PREP-RECV M O N a ; MAP-RECV M O N a) = (out1 ← MAP-RECV M O N a ; PREP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv8 : (out1 ← PREP-RECV M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; PREP-RECV M O N a
lemma sem-comp-wait-recv4 : (out1 ← WAIT-RECV M O N a ; BUF-SEND M O N a) = (out1 ← BUF-SEND M O N a ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) lemma sem-comp-wait-recv5 :

(out1 ← WAIT-RECV M O N a ; BUF-RECV M O N a) = (out1 ← BUF-RECV M O N a ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv6 : (out1 ← WAIT-RECV M O N a ; MAP-SEND M O N a) = (out1 ← MAP-SEND M O N a ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv7 : (out1 ← WAIT-RECV M O N a ; MAP-RECV M O N a) = (out1 ← MAP-RECV M O N a ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv8 : (out1 ← WAIT-RECV M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv9 : (out1 ← WAIT-RECV M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send6 : (out1 ← BUF-SEND M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; BUF-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send7 : (out1 ← BUF-SEND M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a; BUF-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send8 : (out1 ← BUF-SEND M O N a ; MAP-SEND M O N a) = (out1 ← MAP-SEND M O N a ; BUF-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send9 : (out1 ← BUF-SEND M O N a ; MAP-RECV M O N a) = (out1 ← MAP-RECV M O N a ; BUF-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv6 : (out1 ← BUF-RECV M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; BUF-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv7 : (out1 ← BUF-RECV M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a ; BUF-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv8 : (out1 ← BUF-RECV M O N a ; MAP-SEND M O N a) = (out1 ← MAP-SEND M O N a ; BUF-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv9 : (out1 ← BUF-RECV M O N a ; MAP-RECV M O N a) = (out1 ← MAP-RECV M O N a ; BUF-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send6 : (out1 ← MAP-SEND M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; MAP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send7 : (out1 ← MAP-SEND M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a ; MAP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send8 : (out1 ← MAP-SEND M O N a ; BUF-SEND M O N a) = (out1 ← BUF-SEND M O N a ; MAP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send9 : (out1 ← MAP-SEND M O N a ; BUF-RECV M O N a) = (out1 ← BUF-RECV M O N a ; MAP-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-recv6 : (out1 ← MAP-RECV M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; MAP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-recv7 : (out1 ← MAP-RECV M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a ; MAP-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

G.9 Composition equality on different same actions: partial order reduction

For the specific case of IPC protocol the order of the executions of PikeOS does matter iff executed on different actions, because the semantics of the execution related to each action can react in some cases on the same field of the state, eg: the field related to erro codes... So the switch between the execution order related to IPC actions can be done but under some assumptions and only for a subset of actions

lemma sem-comp-wait-recv11 : (out1 ← WAIT-RECV M O N a ; DONE-RECV M O N b) = (out1 ← DONE-RECV M O N b ; WAIT-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send10 : (out1 ← BUF-SEND M O N a ; DONE-SEND M O N b) = (out1 ← DONE-SEND M O N b ; BUF-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send11 : (out1 ← BUF-SEND M O N a ; DONE-RECV M O N b) = (out1 ← DONE-RECV M O N b; BUF-SEND M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv10 : (out1 ← BUF-RECV M O N a ; DONE-SEND M O N b) = (out1 ← DONE-SEND M O N b ; BUF-RECV M O N a)
by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) | Some(ERROR-MEM error-memory, σ) ⇒ Some(ERROR-MEM error-memory, set-caller-partner-error caller partner σ σ (ERROR-MEM error-memory))

lemma sem-comp-buf-recv11 : (out1 ← BUF-RECV M O N a ; DONE-RECV M O N b) = (out1 ← DONE-RECV M O N b ; BUF-RECV M O N a)
| Some(ERROR-IPC error-IPC , σ) ⇒ Some(ERROR-IPC error-IPC , set-caller-partner-error caller partner σ σ (ERROR-IPC error-IPC))) (* both caller and partner were informed to be in error -state. *) (* hypothese: all other atomic actions have no purge *)) lemma exec-action id -Mon-th-flag0 : a = IPC ipc-stage (ipc-direction) =⇒ ipc-stage = DONE =⇒ exec-action id -Mon a σ = Some (NO-ERRORS ,σ) =⇒ th-flag σ = th-flag σ unfolding exec-action id -Mon-def apply auto apply (cases ipc-stage) apply (case-tac ipc-direction) apply simp-all unfolding PREP-SEND id -def PREP-RECV id -def apply simp-all apply (case-tac ipc-direction) apply simp-all unfolding WAIT-SEND id -def apply simp-all apply safe apply (case-tac thread-list σ (a, aa, b)) apply simp-all unfolding WAIT-RECV id -def apply simp-all apply safe apply simp-all apply (case-tac thread-list σ (a, aa, b)) apply simp-all apply (case-tac ipc-direction) apply simp-all unfolding BUF-SEND id -def apply simp-all unfolding BUF-RECV id -def apply simp-all apply (cases ipc-direction) apply (simp-all add : MAP-SEND id -def MAP-RECV id -def) done

H.4 IPC operations with thread ID

We define an operation as a trace with a given order on atomic actions. For the IPC API we will define two types of operations, we call the first type request and the second type reply. Following this terminology a given PikeOS thread can request to communicate with another thread or reply to a communication request. The Isabelle specification of operations is as following:

definition ipc-send-
PREP-RECV id -obvious0 PREP-RECV id -obvious1 PREP-RECV id -obvious2 PREP-SEND id -obvious0 PREP-SEND id -obvious1 PREP-SEND id -obvious2 WAIT-RECV id -obvious0 WAIT-RECV id -obvious1 WAIT-RECV id -obvious2 WAIT-SEND id -obvious0 WAIT-SEND id -obvious1 WAIT-SEND id -obvious2 BUF-RECV id -obvious0 BUF-SEND id -obvious0 DONE-SEND id -obvious0 DONE-RECV id -obvious0
lemmas atomic-action-normalizer-errors-Pure = PREP-RECV id -Pure-obvious0 PREP-RECV id -Pure-obvious1 PREP-SEND id -Pure-obvious0 PREP-SEND id -Pure-obvious1 WAIT-RECV id -Pure-obvious0 WAIT-RECV id -Pure-obvious1 WAIT-SEND id -Pure-obvious0 DONE-SEND id -Pure-obvious0 DONE-RECV id -Pure-obvious0 lemmas atomic-action-normalizer-act-info = act-info-obvious0 act-info-obvious1 act-info-obvious2 act-info-prep-send-obvious0 act-info-prep-recv-obvious0 act-info-wait-send-obvious0 act-info-wait-recv-obvious0 act-info-buf-send-obvious0 act-info-buf-recv-obvious0 act-info-done-send-obvious0 act-info-done-recv-obvious0 lemmas atomic-action-normalizer = prep-send-obvious prep-recv-obvious wait-send-obvious wait-recv-obvious buf-send-obvious buf-recv-obvious lemmas PREP-SEND id -normalizer-hyps = thread-eq-def exec-action id -Mon-prep-fact0-def exec-action id -Mon-prep-fact1-def IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def is-part-mem-def Product-Type.split-beta lemmas PREP-RECV id -normalizer-hyps = thread-eq-def Product-Type.split-beta exec-action id -Mon-prep-fact0-def exec-action id -Mon-prep-fact1-def IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def is-part-mem-def lemmas WAIT-SEND id -normalizer-hyps = thread-eq-def Product-Type.split-beta IPC-send-comm-check-st id -def IPC-params-c4-def IPC-buf-check-st id -def lemmas WAIT-RECV id -normalizer-hyps = thread-eq-def Product-Type.split-beta IPC-recv-comm-check-st id -def IPC-params-c4-def IPC-buf-check-st id -def lemmas BUF-SEND id -normalizer-hyps = thread-eq-def Product-Type.split-beta HOL.split-if HOL.split-if-asm upd-st-res-equiv id -def update-th-smm-equiv-def equiv-def sym-def refl-on-def Here is a collection of generic symbolic execution rules for for our Monadtransformer abort lif t . They make the specific semantics of aborting atomic actions explicit on the level of a side-calculus. case (IPC ipc-stage ipc-direction) assume hyp0 : a = IPC ipc-stage ipc-direction then show ?thesis using assms proof (cases ipc-stage) case PREP assume hyp1 :ipc-stage = PREP then show ?thesis using assms hyp0 hyp1 proof (cases ipc-direction) case (SEND thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) next case (RECV thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) qed next case WAIT assume hyp1 :ipc-stage = WAIT then show ?thesis using assms hyp0 hyp1 proof (cases ipc-direction) case (SEND thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) next case (RECV thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) qed next case BUF assume hyp1 :ipc-stage = BUF then show ?thesis using assms hyp0 hyp1 proof (cases ipc-direction) case (SEND thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) next case (RECV thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) qed next case MAP assume hyp1 :ipc-stage = MAP then show ?thesis using assms hyp0 hyp1 proof (cases ipc-direction) case (SEND thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) next case (RECV thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) qed next case DONE assume hyp1 : ipc-stage = DONE then show ?thesis using assms hyp0 hyp1 proof (cases ipc-direction) case (SEND thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2 by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) next case (RECV thread-id1 thread-id2 adresses) assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses then show ?thesis using assms hyp0 hyp1 hyp2

L.3 Symbolic Execution rules on WAIT stage

lemma abort-wait-send-obvious0 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS , σ) shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ))

using assms by simp lemma abort-wait-send-obvious1 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-succes:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-MEM error-mem, (set-error-mem-waits caller partner σ σ error-mem msg)) using assms by simp lemma abort-wait-send-obvious2 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)

shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-waits caller partner σ σ error-IPC msg))

using assms by simp lemma abort-wait-send-obvious3 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-sucess:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS , σ)

shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

using assms proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa,b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-send-obvious4 :

assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg))), snd (the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg))

case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg) = Some a then show ?thesis using assms hyp0 proof (cases a)

fix aa b assume hyp1 :a= (aa,b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-send-obvious5 :

assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg))), snd (the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-recv-obvious8 : mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS , σ)

then Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg)))) else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)

then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg)))) else if ioprog (IPC BUF (RECV caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa,b) then show ?thesis using assms hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg) = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some ad) assume hyp4 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) fix ae bb assume hyp5 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some af) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some af then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases af) fix ag bc assume hyp7 : af = (ag, bc) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp qed qed qed qed qed qed qed qed lemma abort-buf-recv-obvious8 : mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

| Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ error-mem msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg)))) | Some(ERROR-IPC error-IPC , σ)⇒ Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg))))

| None ⇒ Some([], σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by simp next case (Some ab) assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next case (Some ad) assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 proof (cases ad) fix ae bb assume hyp8 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 by simp qed qed next case (ERROR-MEM error-memory) assume hyp5 :ac = ERROR-MEM error-memory then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufr caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufr caller partner σ ba error-memory msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 :ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp11 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 proof (cases ad) fix ae bb assume hyp12 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 by simp qed qed qed qed qed qed qed lemma abort-buf-recv-obvious9 : fst(the(mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))

| Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg)))

| None ⇒ [])) by(simp split: option.split errors.split,auto) L.5 Symbolic Execution Rules on MAP stage lemma abort-map-send-obvious0 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS , σ) shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ))

using assms by simp lemma abort-map-send-obvious1 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success: ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-MEM error-mem, (set-error-mem-maps caller partner σ σ error-mem msg)) using assms by simp lemma abort-map-send-obvious2 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-maps caller partner σ σ error-IPC msg)) using assms by simp lemma abort-map-send-obvious3 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS , σ)

shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-send-obvious4 :

assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg))), snd (the(mbind S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg)= Some a then show ?thesis using assms hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-send-obvious5 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-succes : ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg))), snd (the(mbind S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-dones caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-dones caller partner σ σ error-IPC msg) = Some a then show ?thesis using assms hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-send-obvious6 : assumes in-err :caller ∈ dom ((th-flag σ))

shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ = Some(get-caller-error caller σ, σ) using assms by simp lemma abort-map-send-obvious7 : assumes in-err : caller ∈ dom ((th-flag σ))

shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-send-obvious8 :

assumes A: ∀ act σ . ioprog act σ = None shows mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS , σ)

then Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg))))

else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)

then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg)))) else if ioprog (IPC MAP (SEND caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa,b) then show ?thesis using assms hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg) = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some ad) assume hyp4 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) fix ae bb assume hyp5 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some af) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some af then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases af) fix ag bc assume hyp7 : af = (ag, bc) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp qed qed qed qed qed qed qed qed lemma abort-map-send-obvious8 : mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

| Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg))))

| Some(ERROR-IPC error-IPC , σ)⇒ Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg))) , snd (the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ error-IPC msg)))) | None ⇒ Some([], σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by simp next case (Some ab) assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next case (Some ad) assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 proof (cases ad) fix ae bb assume hyp8 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 by simp qed qed next case (ERROR-MEM error-memory) assume hyp5 :ac = ERROR-MEM error-memory then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 :ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg))

case None then show ?thesis by simp next case (Some ad) assume hyp11 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 proof (cases ad) fix ae bb assume hyp12 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 by simp qed qed qed qed qed qed qed lemma abort-map-send-obvious9 : fst(the(mbind (IPC MAP (SEND caller partner msg)#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))

| Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-maps caller partner σ σ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-maps caller partner σ σ error-IPC msg)))

| None ⇒ [])
) by (simp split: option.split errors.split,auto) lemma abort-map-recv-obvious0 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ))

using assms by simp lemma abort-map-recv-obvious1 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ = Some (ERROR-MEM error-mem, (set-error-mem-mapr caller partner σ σ error-mem msg))

using assms by simp lemma abort-map-recv-obvious2 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-succes: ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-mapr caller partner σ σ error-IPC msg))

using assms by simp lemma abort-map-recv-obvious3 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success : ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ)

shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some a then show ?thesis using assms hyp0

proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-recv-obvious4 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg))), snd (the(mbind S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg)))) using assms proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg) = Some a then show ?thesis using assms hyp0 proof (cases a)

fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-recv-obvious5 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg))), snd (the(mbind S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-doner caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-doner caller partner σ σ error-IPC msg) = Some a then show ?thesis using assms hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa , b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-recv-obvious6 : assumes in-err :caller ∈ dom ((th-flag σ))

shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ = Some(get-caller-error caller σ, σ) using assms by simp lemma abort-map-recv-obvious7 : assumes in-err :caller ∈ dom ((th-flag σ))

shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-map-recv-obvious8 : mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ)

then Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg))))

else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)

then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg)))) else if ioprog (IPC MAP (RECV caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa,b) then show ?thesis using assms hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg) = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some ad) assume hyp4 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) fix ae bb assume hyp5 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some af) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some af then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases af) fix ag bc assume hyp7 : af = (ag, bc) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp qed qed qed qed qed qed qed qed lemma abort-map-recv-obvious8 : mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

| Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg))))

| Some(ERROR-IPC error-IPC , σ)⇒ Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg))))

| None ⇒ Some([], σ)))

proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by simp next case (Some ab) assume hyp2 : ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next case (Some ad) assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 proof (cases ad) fix ae bb assume hyp8 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 by simp qed qed next case (ERROR-MEM error-memory) assume hyp5 :ac = ERROR-MEM error-memory then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-mapr caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-mapr caller partner σ ba error-memory msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 :ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp11 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ ba error-IPC msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 proof (cases ad) fix ae bb assume hyp12 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 by simp qed qed qed qed qed qed qed lemma abort-map-recv-obvious9 : fst(the(mbind

((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))

| Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-mapr caller partner σ σ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-mapr caller partner σ σ error-IPC msg)))

| None ⇒ [])) by(simp split: option.split errors.split,auto) L.6 Symbolic Execution Rules rules on DONE stage lemma abort-done-send-obvious0 :

assumes not-in-err : caller / ∈ dom ((th-flag) σ) assumes ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ = None shows abort lif t ioprog (IPC DONE (SEND caller partner msg)) σ = Some(NO-ERRORS , σ) using assms by (simp split:option.split) lemma abort-done-send-obvious1 : assumes not-in-err :caller / ∈ dom ((th-flag) σ) and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ = None and exec-success :mbind S (abort lif t ioprog) σ = Some(out ,σ) shows σ = σ using assms by auto lemma abort-done-send-obvious2 :

assumes not-in-err :caller / ∈ dom ((th-flag) σ) and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ = None shows mbind S (abort lif t ioprog) σ = Some(out ,σ) =⇒ out = (NO-ERRORS #out) using assms by auto lemma abort-done-send-obvious3 : assumes in-err :caller ∈ dom ((th-flag) σ) shows abort lif t ioprog (IPC DONE (SEND caller partner msg)) σ = Some(get-caller-error caller σ, remove-caller-error caller σ) using assms by simp lemma abort-done-send-obvious4 : assumes in-err :caller ∈ dom ((th-flag) σ) and exec-success:mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) shows hd out = get-caller-error caller σ proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by (simp, elim conjE , simp add : HOL.eq-sym-conv) qed qed lemma abort-done-send-obvious5 : assumes in-err :caller ∈ dom ((th-flag) σ) and exec-success:mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and exec-success :mbind S (abort lif t ioprog) (σ(|th-flag := (th-flag σ) (caller := None)|)) = Some(out ,σ) shows out = the (((th-flag) σ) caller) #out using assms by simp lemma abort-done-send-obvious6 : assumes in-err :caller ∈ dom ((th-flag σ)) and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and exec-success : mbind S (abort lif t ioprog) (remove-caller-error caller σ) = Some(out ,σ) shows σ = σ using assms by simp lemma abort-done-send-obvious7 : assumes exec-success : mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t ioprog) σ = Some (out ,σ) and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ = None shows(if caller ∈ dom ((th-flag) σ) then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ) of Some (out ,σ

) ⇒ σ = σ) else (case mbind S (abort lif t ioprog) σ of Some (out ,σ) ⇒ σ = σ)) proof (cases caller ∈ dom ((th-flag σ)))
case True assume hyp0 : caller ∈ dom ((th-flag σ)) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) (remove-caller-error caller σ)) case None then show ?thesis using assms hyp0 by simp next case (Some a) assume hyp1 :mbind F ailS av e S (abort lif t ioprog) (remove-caller-error caller σ) = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a) fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by simp qed qed next case False assume hyp0 : caller / ∈ dom ((th-flag σ)) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis using assms hyp0 by simp next case (Some a) assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a) fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by auto qed qed qed lemma abort-done-send-obvious8 : assumes execu-success : mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t ioprog) σ = Some (out ,σ) and ioprog-success: ioprog (IPC DONE (SEND caller partner msg)) σ = None shows (if caller ∈ dom ((th-flag) σ) then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ) of Some (out ,σ) ⇒ out = (get-caller-error caller σ #out))

else (case mbind S (abort lif t ioprog) σ of Some (out ,σ) ⇒ out = (NO-ERRORS #out))) proof (cases caller ∈ dom ((th-flag σ)))

case True assume hyp0 : caller ∈ dom ((th-flag σ)) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ)) case None then show ?thesis by simp next case (Some a) assume hyp1 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a)

fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by simp qed qed next case False assume hyp0 : caller / ∈ dom ((th-flag σ)) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a) fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by auto qed qed qed lemma abort-done-send-obvious9 : mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag) σ) then Some (get-caller-error caller σ# fst(the(mbind S (abort lif t ioprog)(remove-caller-error caller σ))), snd (the(mbind S (abort lif t ioprog) (remove-caller-error caller σ))))

else (case ioprog (IPC DONE (SEND caller partner msg)) σ of None ⇒ Some ([], σ)

| Some (out , σ) ⇒ Some (NO-ERRORS # (fst o the)(mbind S (abort lif t ioprog) σ), (snd o the)(mbind S (abort lif t ioprog) σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = Some a then show ?thesis using hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa, b) then show ?thesis using hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 by (simp add : split: option.split) qed qed qed qed lemma abort-done-send-obvious10 :

(fst o the)(mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t ioprog) σ) = (if caller ∈ dom ((th-flag) σ) then get-caller-error caller σ# (fst o the)(mbind S (abort lif t ioprog) (remove-caller-error caller σ)) else (case ioprog (IPC DONE (SEND caller partner msg)) σ of None ⇒ [] | Some (out , σ)⇒ NO-ERRORS # (fst o the)(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = Some a then show ?thesis using hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa, b) then show ?thesis using hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 by (simp split: option.split) qed qed qed qed lemma abort-done-recv-obvious0 : assumes no-inerr :caller / ∈ dom ((th-flag) σ) and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ = None shows abort lif t ioprog (IPC DONE (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) using assms by (simp split:option.split) lemma abort-done-recv-obvious1 : assumes not-in-err :caller / ∈ dom ((th-flag) σ) and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ = None shows mbind S (abort lif t ioprog) σ = Some(out ,σ) =⇒ σ = σ using assms by auto lemma abort-done-recv-obvious2 :

assumes not-inerr :caller / ∈ dom ((th-flag) σ) and exec-success :mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ = None shows mbind S (abort lif t ioprog) σ = Some(out ,σ) =⇒ out = (NO-ERRORS #out) using assms by auto lemma abort-done-recv-obvious3 : assumes in-err : caller ∈ dom ((th-flag) σ) shows abort lif t ioprog (IPC DONE (RECV caller partner msg)) σ = Some(get-caller-error caller σ, remove-caller-error caller σ) using assms by simp lemma abort-done-recv-obvious4 : assumes in-err :caller ∈ dom ((th-flag) σ) and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) shows hd out = get-caller-error caller σ proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = Some a then show ?thesis using assms hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by (simp, elim conjE , simp add : HOL.eq-sym-conv) qed qed lemma abort-done-recv-obvious5 : assumes in-err :caller ∈ dom ((th-flag) σ) and exec-success: mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and exec-success :mbind S (abort lif t ioprog) (remove-caller-error caller σ) = Some(out ,σ)

shows out = (get-caller-error caller σ #out) using assms by simp lemma abort-done-recv-obvious6 : assumes in-err :caller ∈ dom ((th-flag) σ) and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(out ,σ) and exec-success :mbind S (abort lif t ioprog) (remove-caller-error caller σ) = Some(out ,σ) shows σ = σ using assms by simp lemma abort-done-recv-obvious7 : assumes exec-success: mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog) σ = Some (out ,σ) and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ = None shows (if caller ∈ dom ((th-flag) σ) then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ) of Some (out ,σ

) ⇒ σ = σ) else (case mbind S (abort lif t ioprog) σ of Some (out ,σ) ⇒ σ = σ)) proof (cases caller ∈ dom ((th-flag) σ))
case True assume hyp0 : caller ∈ dom ((th-flag) σ) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) (remove-caller-error caller σ)) case None then show ?thesis using assms hyp0 by simp next case (Some a) assume hyp1 :mbind F ailS av e S (abort lif t ioprog) (remove-caller-error caller σ) = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a)

fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by simp qed qed next case False assume hyp0 : caller / ∈ dom ((th-flag) σ) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis using assms hyp0 by simp next case (Some a) assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a) fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by auto qed qed qed lemma abort-done-recv-obvious8 : assumes exec-success : mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog) σ = Some (out ,σ) and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ = None shows (if caller ∈ dom ((th-flag) σ) then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ) of Some (out ,σ) ⇒ out = (get-caller-error caller σ #out))

else (case mbind S (abort lif t ioprog) σ of Some (out ,σ) ⇒ out = (NO-ERRORS #out))) proof (cases caller ∈ dom ((th-flag σ)))

case True assume hyp0 : caller ∈ dom ((th-flag σ)) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) (remove-caller-error caller σ)) case None then show ?thesis using assms hyp0 by simp next case (Some a) assume hyp1 :mbind F ailS av e S (abort lif t ioprog) (remove-caller-error caller σ) = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a)

fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by simp qed qed next case False assume hyp0 : caller / ∈ dom ((th-flag σ)) then show ?thesis using assms hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis using assms hyp0 by simp next case (Some a) assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 hyp1 proof (cases a) fix aa b assume hyp2 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 hyp2 by auto qed case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs)))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = Some (ERROR-MEM error-mem))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner = Some (ERROR-MEM error-mem)) ∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = ((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner) | Some(ERROR-IPC error-IPC , σ)⇒ ((set-error-ipc-preps caller partner σ σ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))∧ case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(auto simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed then show ?thesis using hyp0 hyp1 proof (cases exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by(simp add : exec-action id -Mon-def valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) ba) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) ba = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases error-codes ba) case NO-ERRORS assume hyp7 :error-codes ba = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by (auto simp add : PREP-SEND id -def valid-SE-def bind-SE-def exec-action id -Mon-def split: split-if-asm) next case (ERROR-MEM error-memory) assume hyp7 :error-codes ba = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by (auto simp add : PREP-SEND id -def valid-SE-def bind-SE-def exec-action id -Mon-def split: split-if-asm) next case (ERROR-IPC error-IPC) assume hyp7 :error-codes ba = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by (auto simp add : PREP-SEND id -def valid-SE-def bind-SE-def exec-action id -Mon-def split: split-if-asm) qed qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-mem-preps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-mem-preps caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def PREP-SEND id -def split : errors.split option.split split-if-asm) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-ipc-preps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 case None then show ?thesis using assms hyp0 hyp1 by(simp add : exec-action id -Mon-def valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 | Some(ERROR-MEM error-mem, σ)⇒ ((set-error-mem-bufs caller partner σ σ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs)))∧ shows σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs) using assms by (simp add : abort-done-send-obvious11 exec-action id -Mon-def) lemma abort-done-recv-mbind-TestGen-Pure-intro:

assumes case True then show ?thesis using valid-exec by (subst (asm) abort-buf-recv-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False by (subst (asm) abort-buf-recv-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-buf-recv-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-buf-recv-HOL-elim21 : case True then show ?thesis using valid-exec by (subst (asm) abort-map-send-obvious10 , elim in-err-state, simp) next case False then show ?thesis proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False Some by (subst (asm) abort-map-send-obvious10 , case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1 , simp, auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-map-send-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-map-send-HOL-elim2 : case True then show ?thesis using valid-exec by (subst (asm) abort-map-recv-obvious10 , elim in-err-state, simp) next case False then show ?thesis proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False Some by (subst (asm) abort-map-recv-obvious10 , case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1 , simp, auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis case True then show ?thesis using valid-exec by (subst (asm) abort-wait-recv-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False by (subst (asm) abort-wait-recv-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-wait-recv-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-wait-recv-HOL-elim21 : assumes case True then show ?thesis using valid-exec by (subst (asm) abort-buf-send-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False by (subst (asm) abort-buf-send-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-buf-send-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-buf-send-HOL-elim21 : We define a system call by a set of operations. PikeOS IPC API contain 7 system calls, each system call can do a set of operations. In this section we will just present the most general one called p4_ipc:

Figure 1

 1 Figure 1.1: The HOL-TestGen Workflow.

Figure 2

 2 Figure 2.1: A Test and Proof Framework

 1. [] = SUT [] 2. THYP ([] = SUT [] -→[] = SUT []) 3. [x] = SUT [x] 4. THYP ((∃ x. [x] = SUT [x]) -→(∀ x. [x] = SUT [x])) 5. PO (x < xa) 6. [x, xa] = SUT [x, xa]7. THYP ((∃ x xa. xa < x ∧[xa, x] = SUT [xa, x]) -→ (∀ x xa. xa < x -→[xa, x] = SUT [xa, x])) 8. PO (¬ x < xa) 9. [xa, x] = SUT [x, xa] (...) 20. PO ((x < xa ∧xb < xa) ∧¬xb < x) 21. [x, xb, xa] = SUT [xb, x, xa]

 type_synonym 'α set = 'α ⇒bool definition Collect :: ('α ⇒bool) ⇒'α set where Collect S = S definition member:: 'α ⇒'α set ⇒bool where member s S = S s

 datatype 'a list = Nil | Cons 'a 'a list datatype 'a option = None | Some 'a Here, [] and a#l are alternative syntax for Nil and Cons a l; moreover, [a, b, c] is defined as alternative syntax for a#b#c#[].

 find_theorems name : three. searched for name: three found 9 theorems (40 displayed)

 : linorder ⇒'α List.list ⇒'α List.list where ins x [] = [x] | ins x (y#ys) = (if x < y then x #y#(ins x ys) else y#(ins x ys)) fun sort ::'α:: linorder List.list ⇒'α List.list where sort [] = [] | sort (x#xs) = ins x (sort xs)

 definition id :: 'a ⇒'a where id = (λx. x) definition comp :: ('b ⇒'c) ⇒('a ⇒'b) ⇒ 'a ⇒ 'c (infixl o 55) where f o g = (λx. f (g x)) lemma id_apply [simp]: id x = x by (simp add: id_def) lemma comp_apply [simp]: (f o g) x = f (g x) by (simp add: comp_def) In those two examples id specify the identity function andcomp (has as infix syntax the symbol o) specify function composition. Actually, the theory Fun.thy is an extension of the Set.thy theory, other definitions like domain of the function, range, image . . . are implemented in Set.thy. ML Code. It is possible inside Isabelle documents to directly access the underlying ML-layer of the system architecture, and even extend the environment of the underlying ML interpreter/compiler. One can include the fragment: ML{* fun fac x = if x = 0 then 1 else x * fac(x-1); *} in a document and then later on evaluate: ML{* fac 20; *} Since Isabelle itself sits as a collection of ML modules in this SML environment, it is possible to access its kernel and tactical functions: ML{* open Tactic; fun mis x = res_inst_tac [(x, x)] {@thm exI} 1*}

Figure 2

 2 Figure 2.4: An Isabelle session showing the jEdit client as Isabelle Interface. The upper-left sub-window allows one to interactively step through a test theory comprising test specifications while the lower-left sub-window shows the corresponding system state of the spot marked in blue in the upper window.

Figure 2 . 6 :

 26 Figure 2.6: PikeOS architecture.

 lemma bind_left_unit [simp]: (x ←return c; P x) = P c by (simp add: unit_SE_def bind_SE_def) lemma bind_right_unit[simp]: (x ←m; return x) = m apply (simp add: unit_SE_def bind_SE_def) apply (rule ext) apply (case_tac m σ, simp_all) done lemma bind_assoc[simp]: (y ←(x ←m; k x); h y) = (x ←m; (y ←k x; h y)) apply (simp add: unit_SE_def bind_SE_def, rule ext) apply (case_tac m σ, simp_all) apply (case_tac a, simp_all) done On this basis, the concept of a valid monad execution, written σ |= m, can be expressed: an execution of a Boolean (monad) computation m of type (bool, σ) MON SE is valid if and only if its execution is performed from the initial state σ, no exception occurs and the result of the computation is true.definition valid_SE :: ' σ ⇒ (bool,'σ) MON_SE ⇒bool (infix |=15) where (σ |=m) = (m σ = None ∧fst(the (m σ)))

(

 σ |= ((s ← m ι; m s))) = F alse (4.1b) C m ι σ m ι σ = Some(b, σ) (σ |= s ← m ι; m s) = (σ |= m b) (4.1c) Which corresponds to the following Isabelle/HOL implementation: lemma exec_unit_SE [simp]: (σ |=(return P)) = (P) by(auto simp: valid_SE_def unit_SE_def) lemma exec_bind_SE_failure: A σ = None =⇒¬(σ |=((s ←A ; M s))) by(simp add: valid_SE_def unit_SE_def bind_SE_def) lemma exec_bind_SE_success: A σ = Some(b,σ') =⇒(σ |=((s ←A ; M s))) = (σ' |=(M b)) by(simp add: valid_SE_def unit_SE_def bind_SE_def)

 datatype in_c = alloc task_id thread_id nat | release task_id thread_id nat | status task_id thread_id datatype out_c = alloc_ok | release_ok | status_ok nat

 fun precond :: thread_local_var_tab ⇒in_c ⇒bool where precond σ (alloc taskid thid res) = ((taskid,thid) ∈dom σ) | precond σ (release taskid thid res) = ((taskid,thid) ∈dom σ∧ (int res) ≤the(σ(taskid,thid)))

Figure 4

 4 Figure 4.1: SPEC: An Extended Finite State Machine for MyKeOS.

 definition strong_impl :: [' σ ⇒'ι⇒bool, 'ι⇒('o,'σ)MON_SB] ⇒'ι⇒('o, 'σ)MON_SE where strong_impl pre post ι= (λ σ. if pre σ ι then Some(SOME(out,σ'). (out,σ') ∈post ισ) else None) definition SPEC = (strong_impl precond postcond)

 (tid,0) ∈dom σ 0 ∧(tid,1) ∈dom σ 0 and CovCrit : S ∈interleave (syscall tid 0 m m') (syscall tid 1 m'' m''') and SPEC : σ 0 |=(s ←mbind S SPEC; return (x = s))

 ************************************ ***Resulting proof statement: ctxt1*** **************************************) 1. σ 0 |=(s ←mbind [alloc tid 1 m'', release tid 0 m', release tid 1 m''', status tid 1] SYS; unit_SE (x = s)) =⇒ σ 0 |=(s ←mbind S PUT; unit_SE (s = x)) (**************************** ***rules applied on: ctxt1*** ****************************) apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E}, @{thm release.exec_mbindFStop_E}, @{thm alloc.exec_mbindFStop_E}, @{thm H1}] 1) (************************************** ***Resulting proof statement: ctxt2*** **************************************) 1.(tid, 1) ∈dom σ 0 =⇒ σ 0 ((tid, 1) →the (σ 0 (tid, 1)) + int m'') |= (s ←mbind [release tid 0 m', release tid 1 m''', status tid 1] SYS ; unit_SE (x = alloc_ok # s)) =⇒ σ 0 |=(s ←mbind S PUT; unit_SE (s = x)) (**************************** ***rules applied on: ctxt2*** ****************************) apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E}, @{thm release.exec_mbindFStop_E}, @{thm alloc.exec_mbindFStop_E}, @{thm H1}] 1) (************************************* ***Resulting proof statement: ctxt3*** **************************************) 1. (tid, 1) ∈dom σ 0 =⇒ (tid, 0) ∈dom (σ 0 ((tid, 1) →the (σ 0 (tid, 1)) + int m'')) ∧ int m' ≤ the ((σ 0 ((tid, 1) →the (σ 0 (tid, 1)) + int m'')) (tid, 0)) =⇒ σ 0 ((tid, 1) →the (σ 0 (tid, 1)) + int m'', (tid, 0) → the ((σ 0 ((tid, 1) →the (σ 0 (tid, 1)) + int m'')) (tid, 0))int m') |= (s ←mbind [release tid 1 m''', status tid 1] SYS ; unit_SE (x = alloc_ok # release_ok # s)) =⇒ σ 0 |=(s ←mbind S PUT; unit_SE (s = x)) (...)

 (σ |=(s ←mbind (in_ev # S) efsm; return (P s))) and B:E σ =⇒ ((upd σ) |=(s←mbind S efsm;return(P(out_ev σ# s)))) =⇒ Q shows Q by(insert A, rule B, simp_all del: mbind'_bind)

 system_def : (c 0 ,no) ∈dom σ 0 and store_finite : σ 0 = map_of T and test_purpose : test_purpose [(c 0 ,no),(c 0 ,no')] S and sym_exec_spec :

 ≡ [([], lazy ((λa. Some -1) |= (s ←mbind [alloc 3 5 (nat 2), status 3 5] PUT; unit_SE (s = [alloc_ok, status_ok (nat 1)])))), ([], lazy ((λa. if a = (2, 3) then Some 8465 else Some 8) |= (s ←mbind [release 2 3 (nat 8466), status 2 3] PUT; unit_SE (s = [])))), ([], lazy ((λa. Some 8468) |= (s ←mbind [release 2 3 (nat 1), status 2 3] PUT; unit_SE (s = [release_ok, status_ok (nat 8467)])))), ([], lazy ((λa. if a = (2, 3) then Some 8465 else Some 8) |= (s ←mbind [release 2 3 (nat 8466), status 2 3] PUT; unit_SE (s = [])))), ([], lazy ((λa. Some -1) |= (s ←mbind [alloc 2 3 (nat 1), alloc 2 3 (nat 1), status 2 3] PUT; unit_SE (s = [alloc_ok, alloc_ok, status_ok (nat 1)])))), (...)]

 type_synonym regcont = int --{* contents of register *} type_synonym registers = regcont list --{* register file *} type_synonym mem t = nat ⇒mem_cell t --{*memory *} record ASMcore t = dpc :: nat pcp :: nat gprs :: registers sprs :: registers mm :: mem t

 definition is_ASMcore :: ASMcore t ⇒bool where is_ASMcore st ≡ asm_nat (dpc st) ∧ asm_nat (pcp st) ∧ length (gprs st) = 32 ∧ length (sprs st) = 32 ∧ (∀ ind < 32. asm_int (reg (gprs st) ind)) ∧ (∀ ind < 32. asm_int (sreg (sprs st) ind)) ∧ (∀ ad. asm_int (data_mem_read (mm st) ad))

 fun exec_instr :: [ASMcore t , instr] ⇒ASMcore t where --{* Arithmetic Instructions *} exec_instr st (Iaddo RD RS1 RS2) = arith_exec st int_add (reg (gprs st) RS1) (reg (gprs st) RS2) RD | ... --{* Logical Instructions *} | exec_instr st (Iand RD RS1 RS2) = arith_exec st s_and (reg (gprs st) RS1) (reg (gprs st) RS2) RD | ... --{* Shift Instructions *} | exec_instr st (Isll RD RS1 RS2) = arith_exec st sllog (reg (gprs st) RS1) (reg (gprs st) RS2) RD | ... The transition relation is defined as a function that takes a configuration and returns its successor. The transitions are defined by the execution of the current program instruction given in the delayed program counter.

definition

 Step :: ASMcore t ⇒ ASMcore t where

σ 0

 0 |=(s ←mbind [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8] exec VAMP ; assert_SE (λσ. σ = k SUT σ 0 [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8]))

test_spec list_all is_load_store ιs =⇒ (σ 0

 0 |=(s ←mbind ιexec VAMP '; return (SUT ιs)))

σ 0

 0 |=(s ←mbind [Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4] exec VAMP ; assert_SE (λσ. σ = k SUT σ 0 [Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4]))

 test_spec list_all is_branch (ιs::instr list) =⇒ (σ 0 |=(s ←mbind ιs exec VAMP ; assert_SE (λσ. σ= k SUT σ 0 ιs))) apply (gen_test_cases SUT) store_test_thm branch_instr_seq

 structure VAMP : sig datatype num = One | Bit0 of num | Bit1 of num datatype 'a set = Set of 'a list | Coset of 'a list datatype instr = Ilb of IntInf . int * IntInf . int * IntInf . int | ... Ijr of IntInf . int | Itrap of IntInf . int | Irfe val int_add : IntInf . int -> IntInf . int -> IntInf . int val int_sub : IntInf . int -> IntInf . int -> IntInf . int val cell2data : IntInf . int -> IntInf . int val exec_instr : unit aSMcore_t_ext -> instr -> unit aSMcore_t_ext val sigma_0 : unit aSMcore_t_ext val execInstrs : unit aSMcore_t_ext -> instr list -> unit aSMcore_t_ext ...

 datatype ('ipc_stage,'ipc_dir)action ipc = IPC 'ipc_stage 'ipc_dir datatype p4_stage ipc = PREP | WAIT | BUF | MAP | DONE datatype ('thread_id ,'addresses) p4_direct ipc = SEND 'thread_id 'thread_id 'addresses | RECV 'thread_id 'thread_id 'addresses type_synonym ACTION ipc = (p4_stage ipc ,(nat×nat×nat,nat list)p4_direct ipc)action ipc

 definition PREP_SEND ::ACTION ipc state id ⇒ ACTION ipc ⇒ACTION ipc state id where PREP_SEND σ act = (case act of (IPC PREP (SEND caller partner msg)) ⇒ ... if is_part_mem_th (get_thread_by_id'' partner σ) (resource σ) then if IPC_params_c1 (get_thread_by_id'' partner σ) then ...)

(

 case a of (IPC DONE (SEND caller partner msg)) ⇒ if caller ∈dom (act_info (th_flag σ)) then unit SE (fst (the((act_info (th_flag σ)) caller))) (*shoud be: my error*) (σ (|th_flag := (th_flag σ) (|act_info := ((act_info (th_flag σ)) (caller := None))|) |)) else unit SE (NO_ERRORS) (σ) (*execute done*) (...) | (IPC _ (SEND caller partner msg)) ⇒ if caller ∈dom (act_info (th_flag σ)) then unit SE (get_caller_error caller σ(*should be: my error*)) σ (* purge *) else (case ioprog a σof None ⇒ None (*never happens in our exec fun*)

 fun exec_action ::ACTION ipc state id ⇒ ACTION ipc ⇒ACTION ipc state id where PREP_SEND_run: exec_action σ (IPC PREP (SEND caller partner msg)) = PREP_SEND σ (IPC PREP (SEND caller partner msg))| (...)

 proof show (Map.empty, (op =)) ∈?memory by (auto simp: identity_equivp) qed

 transfer_rep (m, r) src dst = (m o (id (dst := src)), (λ x y . r ((id (dst := src)) x) ((id (dst := src)) y))) lift_definition add_e :: ('a,'b)memory ⇒'a ⇒'a ⇒ ('a, 'b)memory (_ '(_ _')) is transfer_rep using transfer_rep_sound by simp

 and R where P: (mem, R) = σand E: equivp R and M: ∀ x y . R x y -→mem x = mem y using assms equivpE by auto obtain mem' and R' where P': (mem', R') = transfer_rep σsrc dst by (metis surj_pair) have D1: mem' = (mem o (id (dst := src))) and D2: R' = (λ x y . R ((id (dst := src)) x) ((id (dst := src)) y)) using P P' by auto have equivp R' using E unfolding D2 equivp_def by metis moreover have ∀ y z . R' y z -→mem' y = mem' z using M unfolding D1 D2 by auto ultimately show ?thesis using P' by auto qed

 ('a, 'b)memory ⇒'a ⇒bool ((_ shares() _ / _) where (x shares (σ) y) ≡(snd(Rep_memory σ) x y) definition Domain :: ('α, 'β)memory ⇒'α set where Domain σ = dom (fst (Rep_memory σ)) lemma shares_result: assumes 1: (x shares (σ) y) shows σ $ x = σ $ y using assms lookup_def shares_result by metis Sharing is modulo equivalence relation: lemma sharing_refl [simp]: (x shares (σ) x) using insert Rep_memory[of σ] by (auto simp: sharing_def elim: equivp_reflp) lemma sharing_sym [sym]: assumes x shares (σ) y shows y shares (σ) x using assms Rep_memory[of σ] by (auto simp: sharing_def elim: equivp_symp) lemma sharing_trans [trans]: assumes x shares (σ) y and y shares (σ) z shows x shares (σ) z using assms insert Rep_memory[of σ] by(auto simp: sharing_def elim: equivp_transp) Sharing relates to memory write as follows: lemma sharing_upd: x shares (σ(a :=$b)) y = x shares (σ) y (*$*) using insert Rep_memory[of σ] by(auto simp: sharing_def update_def Abs_memory_inverse[OF update_sound]) lemma update_idem' : assumes 1: x shares (σ) y and 2: x ∈Domain σ and 3: σ $ x = z shows σ (y:=$ z) = σ proofhave * : y ∈Domain σ by(simp add: shares_dom[OF 1, symmetric] 2) have **: σ (x :=$ (σ $ y)) = σ using 1 2 * by (simp add: update_triv) also have (σ $ y) = σ $ x by (simp only: lookup_def shares_result [OF 1]) finally show ?thesis using 1 2 3 sharing_sym update_triv by fast qed lemma update_share: assumes z shares (σ) x shows σ (x :=$ a) $ z = a using assms by (simp only: update_apply if t rue) lemma update_other: assumes ¬(z shares (σ) x) shows σ (x :=$ a) $ z = σ$ z (*$*) using assms by (simp only: update_apply if_False) theorem update_cancel: assumes x shares σ x' shows σ (x :=$ y)(x' :=$ z) = (σ(x' :=$ z)) (*$*) proofhave ** : R σ . equivp R =⇒R x x' =⇒ fun_upd_equivp R (fun_upd_equivp R σx (Some y)) x' (Some z) = fun_upd_equivp R σx' (Some z) Pair_code_eq Pair_upd_lifter.simps assms sharing_charn sharing_def update' update.rep_eq by metis qed theorem update_commute: assumes 1:¬ (x shares (σ) x') shows (σ (x :=$ y))(x' :=$ z) = (σ (x':=$ z)(x :=$ y)) proof -(...) Sharing relates to domain as follows: lemma Domain_mono: assumes 1: x ∈Domain σ and 2: (x shares (σ) y) shows y ∈ Domain σ using 1 2 Rep_memory[of σ] by (auto simp add: sharing_def Domain_def) lemma update_triv: assumes 1: x shares (σ) y and 2: y ∈Domain σ shows σ (x :=$ (σ $ y)) = σ proof -{ fix z assume zx: z shares (σ) x then have zy: z shares (σ) y using 1 by (rule sharing_trans) have F: y ∈Domain σ =⇒ x shares (σ) y =⇒ Some (the (fst (Rep_memory σ) x)) = fst (Rep_memory σ) y by(auto simp: Domain_def dest: shares_result) have Some (the (fst (Rep_memory σ) y)) = fst (Rep_memory σ) z using zx and shares_result [OF zy] shares_result [OF zx] using F [OF 2 1] by simp } note 3 = this show ?thesis unfolding update'' lookup_def fun_upd_equivp_def by (simp add: 3 Rep_memory_inverse if_cong) qed lemma update_idem : assumes 1: x shares (σ) y and 2: x ∈Domain σ and 3: σ $ x = z shows σ (x:= $ z) = σ proofhave * : y ∈Domain σ by(simp add: shares_dom[OF 1, symmetric] 2) have σ (x := $ (σ $ y)) = σ using 1 2 * by (simp add: update_triv) also have (σ $ y) = σ $ x by (simp only: lookup_def shares_result [OF 1]) also note 3 finally show ?thesis . qed

 (outs ←(mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lift ioprog));P outs)) and in_err_state: caller ∈dom (act_info (th_flag σ)) =⇒ (σ |=(outs ←(mbind S (abort lift ioprog)); P (get_caller_error caller σ# outs))) =⇒Q (...) and not_in_err_state_Some3: σ' error_IPC. (caller / ∈dom (act_info (th_flag σ))) =⇒ ioprog (IPC WAIT (SEND caller partner msg)) σ= Some(ERROR_IPC error_IPC, σ') =⇒ ((set_error_ipc_waitr caller partner σσ' error_IPC msg) |= (outs ←(mbind S(abort lift ioprog)); P (ERROR_IPC error_IPC# outs))) =⇒Q and not_in_err_state_None: (caller / ∈dom (act_info (th_flag σ))) =⇒ ioprog (IPC WAIT (SEND caller partner msg)) σ= None =⇒ (σ |=(P [])) =⇒Q shows Q proof (cases caller ∈dom (act_info (th_flag σ))) (...)

 (outs ←(mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lift exec_action id _Mon)); P outs)) and in_err_exec: caller ∈dom (act_info (th_flag σ)) =⇒ (σ |=(outs ←(mbind S(abort lift exec_action id _Mon)); P (get_caller_error caller σ# outs))) =⇒Q and not_in_err_exec1: caller / ∈dom (act_info (th_flag σ)) =⇒ IPC_send_comm_check_st id caller partner σ=⇒ IPC_params_c4 caller partner =⇒ IPC_params_c5 partner σ=⇒ (σ (|current_thread := caller, thread_list := update_th_waiting caller (thread_list σ), error_codes := NO_ERRORS, th_flag := th_flag σ|) |=(outs ←(mbind S(abort lift exec_action id _Mon)); P (NO_ERRORS # outs))) =⇒Q (...) not_in_err_exec24: caller / ∈dom (act_info (th_flag σ)) =⇒ IPC_send_comm_check_st id caller partner σ=⇒ IPC_params_c4 caller partner =⇒ ¬IPC_params_c5 partner σ=⇒ ∃ th. (thread_list σ) caller = Some th =⇒ (σ (|current_thread := caller , thread_list := update_th_current caller (thread_list σ), error_codes := ERROR_IPC error_IPC_5_in_WAIT_SEND, th_flag := th_flag σ (|act_info := act_info (th_flag σ) (caller →(ERROR_IPC error_IPC_5_in_WAIT_SEND), partner →(ERROR_IPC error_IPC_5_in_WAIT_SEND))|)|) |= (outs ←(mbind S(abort lift exec_action id _Mon)); P (ERROR_IPC error_IPC_5_in_WAIT_SEND# outs)))=⇒Q shows Q

 (outs ←(mbind ((IPC PREP (SEND caller partner msg))#S) (abort lift exec_action id _Mon)); P outs)) = ((caller ∈dom ((act_info o th_flag)σ) -→ (σ |=(outs ←(mbind S(abort lift exec_action id _Mon)); P (get_caller_error caller σ# outs)))) ∧ (caller / ∈dom ((act_info o th_flag)σ) -→ (∀ a b. (a = NO_ERRORS -→ exec_action_id_Mon (IPC PREP (SEND caller partner msg)) σ= Some (NO_ERRORS, b) -→ (σ (|current_thread := caller, thread_list := update_th_ready caller (thread_list σ), error_codes := NO_ERRORS, th_flag := th_flag σ|)|= (outs ←(mbind S(abort lift exec_action id _Mon)); P (NO_ERRORS # outs)))) ∧ (∀ error_memory. a = ERROR_MEM error_memory -→ exec_action id _Mon (IPC PREP (SEND caller partner msg)) σ= Some (ERROR_MEM error_memory, b) -→ (σ (|current_thread := caller, thread_list := update_th_current caller (thread_list σ), := ((act_info o th_flag)σ) (caller →(ERROR_MEM error_memory), partner →(ERROR_MEM error_memory))|)|) (...)

 PREP (SEND caller partner msg)) σ= Some(NO_ERRORS, σ') shows abort lift ioprog (IPC PREP (SEND caller partner msg)) σ= Some(NO_ERRORS, (error_tab_transfer caller σσ')) using assms by simp

 lemma adde_share_charn [simp, code_unfold]: assumes 1: ¬(i shares (σ) k') and 2: ¬(k shares (σ) k') shows i shares(σ(i' k')) k = i shares (σ) k using assms fun_upd_apply id_def mem_adde_E sharing_def sharing_refl by metis

 lemma abort_prep_send_HOL_elim21'_factor: assumes valid_exec: (σ |=(outs ←(mbind ((IPC PREP (SEND caller partner msg))#S) (abort lift exec_action_id_Mon)); P outs)) and in_err_exec1: caller ∈dom (act_info (th_flag σ)) and in_err_exec: (σ |=(outs ←(mbind S(abort lift exec_action_id_Mon)); P (get_caller_error caller σ# outs))) =⇒Q shows Q apply (insert valid_exec) apply (elim abort_prep_send_mbindFSave_E') apply (simp add: in_err_exec) apply (simp add: in_err_exec1)+ done lemma abort_prep_recv_HOL_elim21'_factor: assumes valid_exec: (σ |=(outs ←(mbind ((IPC PREP (RECV caller partner msg))#S) (abort lift exec_action_id_Mon)); P outs)) and in_err_exec1: caller ∈dom (act_info (th_flag σ)) and in_err_exec: (σ |=(outs ←(mbind S(abort lift exec_action_id_Mon)); P (get_caller_error caller σ # outs))) =⇒Q shows Q apply (insert valid_exec) apply (elim abort_prep_recv_mbindFSave_E') apply (simp add: in_err_exec) apply (simp add: in_err_exec1)+ done

 datatype (ipc-stage, ipc-direction) action ipc = IPC ipc-stage ipc-direction datatype (mem-param1 , mem-param2) action mem = MEM mem-param1 mem-param2 datatype (evn-param1 , evn-param2) action ev n = EVN evn-param1 evn-param2 datatype (ipc-stage, ipc-direction, mem-param1 , mem-param2 , evn-param1 , evn-param2) action = atom ipc (ipc-stage, ipc-direction) action ipc | atom mem (mem-param1 , mem-param2) action mem | atom ev n (evn-param1 , evn-param2) action ev n A.3 traces A trace is sequence of atomic actions.. -An IPC actions trace type-synonym (ipc-stage, ipc-direction) trace ipc = (ipc-stage, ipc-direction) action ipc list -A memory actions IPC trace type-synonym (mem-param1 , mem-param2) trace mem = (mem-param1 , mem-param2) action mem list -An event actions trace type-synonym (evn-param1 , evn-param2) trace ev n = (evn-param1 , evn-param2) action ev n list -A trace that contain all atomic actions

 x by (simp add :fun-upd-equivp-def equivp-reflp split: split-if) lemma fun-upd-equivp-apply [simp]: (fun-upd-equivp (op =) f x y) z = (if z = x then y else f z) by (simp only: fun-upd-equivp-def) -This is the generalization of fun-upd-equivp op = ?f ?x ?y ?z = (if ?z = ?x then ?y else ?f ?z) with e given equivalence relation and not only with op = lemma fun-upd-equivp-apply1 [simp]: equivp R =⇒(fun-upd-equivp R f x y) z = (if R z x then y else f z) by (simp add : fun-upd-equivp-def) lemma fun-upd-equivp-same: (fun-upd-equivp (op =) f x y) x = y by (simp only: fun-upd-equivp-def)simp -This is the generalization of fun-upd-equivp op = ?f ?x ?y ?x = ?y with a given equivalence relation lemma fun-upd-equivp-same1 : equivp R =⇒ (fun-upd-equivp R f x y) x = y by (simp add : fun-upd-equivp-def equivp-reflp)

 lemma fun-upd-equivp-vs-fun-upd : (fun-upd-equivp (op =)) = fun-upd by(rule ext, rule ext, rule ext,simp add :fun-upd-def fun-upd-equivp-def) B.2 Definition of the shared-memory type typedef (α, β) memory = {(σ:: α β, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} proof show (Map.empty, (op =)) ∈ ?memory by (auto simp: identity-equivp) qed fun memory-inv :: (a ⇒ b option) × (a ⇒ a ⇒ bool) ⇒ bool where memory-inv (Pair f R) = (equivp R ∧ (∀ x y. R x y -→ f x = f y)) lemma Abs-Rep-memory [simp]:Abs-memory (Rep-memory σ) = σ by (simp add :Rep-memory-inverse) lemma memory-invariant [simp]: memory-inv σ-rep = (Rep-memory (Abs-memory σ-rep) = σ-rep) using Rep-memory [of Abs-memory σ-rep] Abs-memory-inverse mem-Collect-eq prod-caseE prod-caseI2 memory-inv .simps by smt lemma Pair-code-eq : Rep-memory σ = Pair (fst (Rep-memory σ)) (snd (Rep-memory σ)) by (simp add : Product-Type.surjective-pairing) lemma snd-memory-equivp [simp]: equivp(snd (Rep-memory σ)) by(insert Rep-memory[of σ], auto) B.3 Operations on Shared-Memory setup-lifting type-definition-memory abbreviation mem-init :: (a ⇒ b option) × (a ⇒ a ⇒ bool) where mem-init ≡ (Map.empty, (op =)) lemma memory-init-eq-sound : mem-init ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} proofobtain mem and R where Pair : (mem, R) =mem-init and Eq: equivp R using identity-equivp by auto have D1 : R = (op =) and D2 : mem = Map.empty using Pair prod .inject by auto moreover have inv-part2 : ∀ x y . R x y -→ mem x = mem y unfolding D1 D2 by auto ultimately show ?thesis using Eq Abs-memory-cases Pair-inject Rep-memory-cases Rep-memory-inverse identity-equivp memory-inv .elims(3) memory-invariant by auto qed lift-definition init :: (α, β) memory is mem-init :: (α ⇒ β option) × (α ⇒ α ⇒ bool) using memory-init-eq-sound by simp value init::(nat,int)memory value map (λx . the (fst (Rep-memory init)x)) [1 .. 10] value take (10) (map (Pair Map.empty) [(op =)]) value replicate 10 init term Rep-memory σ term [(σ::nat int, R)<-xs . equivp R ∧ (∀ x y. R x y -→ σ x = σ y)] definition init-mem-list :: α list ⇒ (nat, α) memory where init-mem-list s = Abs-memory (let h = zip (map nat [0 .. int(length s)]) s in foldl (λx (y,z). fun-upd x y (Some z)) Map.empty h, op =) Memory Read Operation definition lookup :: (α, β) memory ⇒ α ⇒ β (infixl $ 100) where σ $ x = the (fst (Rep-memory σ) x) Memory Update Operation fun Pair-upd-lifter ::

 and R where Pair : (mem, R) = σ and Eq: equivp R and Mem: ∀ x y . R x y -→ mem x = mem y using assms equivpE by auto obtain mem and R where Pair : (mem , R) = Pair-upd-lifter σ x y using surjective-pairing by metis have Def1 : mem = fun-upd-equivp R mem x (Some y) and Def2 : R = R using Pair Pair by auto have Eq : equivp R using Def2 Eq by auto moreover have ∀ y z . R y z -→ mem y = mem z using Mem equivp-symp equivp-transp unfolding Def1 Def2 by (metis Eq fun-upd-equivp-def) ultimately show ?thesis using Pair by auto qed lift-definition update :: (α, β) memory ⇒ α ⇒ β ⇒ (α, β) memory (-(-:= $ -) 100) is Pair-upd-lifter using updatesound by simp lemma update : σ (x := $ y) = Abs-memory (fun-upd-equivp (snd (Rep-memory σ)) (fst (Rep-memory σ)) x (Some y), (snd (Rep-memory σ))) using Rep-memory-inverse surjective-pairing Pair-upd-lifter .simps update.rep-eq by metis fun update-list-rep ::

 fun transfer-rep :: (α β) × (α⇒ α ⇒ bool) ⇒ α ⇒ α ⇒ (α β) × (α⇒ α ⇒ bool) where transfer-rep (m, r) src dst = (m o (id (dst := src)), (λ x y . r ((id (dst := src)) x) ((id (dst := src)) y))) lemma transfer-rep-simp : transfer-rep X src dst = ((fst X) o (id (dst := src)), (λ x y . (snd X) ((id (dst := src)) x) ((id (dst := src)) y))) by(subst surjective-pairing[of X],subst transfer-rep.simps, simp) lemma transfer-rep-sound :

 and R where P : (mem, R) = σ and E : equivp R and M : ∀ x y . R x y -→ mem x = mem y using assms equivpE by auto obtain mem and R where P : (mem , R) = transfer-rep σ src dst by (metis surj-pair) have D1 : mem = (mem o (id (dst := src))) and D2 : R = (λ x y . R ((id (dst := src)) x) ((id (dst := src)) y)) using P P by auto have equivp R using E unfolding D2 equivp-def by metis moreover have ∀ y z . R y z -→ mem y = mem z using M unfolding D1 D2 by auto ultimately show ?thesis using P by auto qed lift-definition transfer :: (α, β)memory ⇒ α ⇒ α ⇒ (α, β)memory (-(--) [0 ,111 ,111]110) is transfer-rep using transfer-rep-sound by simp lemma transfer-rep-sound2 : transfer-rep (Rep-memory σ) a b ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} by (metis (lifting, mono-tags) Rep-memory transfer-rep-sound) fun share-list2 :: (α, β) memory ⇒ (α × α)list ⇒ (α, β) memory (infix / 60) where σ / S = (foldl (λ σ (a,b). (σ (a b))) σ S) lemma sharelist2-Nil [simp] : σ / [] = σ by simp lemma sharelist2-Cons[simp] : σ / ((a,b)#S) = (σ(a b) / S) by simp fun share-list-rep ::

 lemma reset-mt : σ (reset {}) = σ unfolding reset-def Let-def by simp lemma reset-sh : assumes * : (x shares σ y) and * * : x ∈ X shows σ (reset X) $ y = None oops B.6 Memory Domain Definition definition Domain :: (α, β)memory ⇒ α set where Domain σ = dom (fst (Rep-memory σ)) B.7 Properties on Memory Domain lemma Domain-charn: assumes 1 :x ∈ Domain σ shows ∃ y. Some y = fst (Rep-memory σ) x using 1 by(auto simp: Domain-def) lemma Domain-charn1 : assumes 1 :x ∈ Domain σ shows ∃ y. the (Some y) = σ $ x using 1 by(auto simp: Domain-def lookup-def) -This lemma says that if x and y are quivalent this means that they are in the same set of equivalent classes lemma shares-dom [code-unfold , intro]: assumes x shares σ y shows (x ∈ Domain σ) = (y ∈ Domain σ) using insert Rep-memory[of σ] assms by (auto simp: sharing-def Domain-def) lemma Domain-mono: assumes 1 : x ∈ Domain σ and 2 : (x shares σ y) shows y ∈ Domain σ using 1 2 Rep-memory[of σ] by (auto simp add : sharing-def Domain-def) corollary Domain-nonshares : assumes 1 : x ∈ Domain σ and 2 : y / ∈ Domain σ shows ¬(x shares σ y) using 1 2 Domain-mono by(fast) lemma Domain-init[simp] : Domain init = {} unfolding init-def Domain-def by(simp-all add :identity-equivp Abs-memory-inverse) lemma Domain-update[simp] :Domain (σ (x := $ y)) = (Domain σ) ∪ {y . y shares σ x } unfolding update-def Domain-def sharing-def proof (simp-all) have * : Pair-upd-lifter (Rep-memory σ) x y ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} by (simp, metis (lifting, mono-tags) Rep-memory mem-Collect-eq updatesound) have * * : snd (Rep-memory σ) x x by(metis equivp-reflp sharing-charn2) show dom (fst (Rep-memory (Abs-memory (Pair-upd-lifter (Rep-memory σ) x y)))) = dom (fst (Rep-memory σ)) ∪ {y. snd (Rep-memory σ) y x } apply(simp-all add : Abs-memory-inverse[OF *]) apply(subst surjective-pairing [of (Rep-memory σ)]) apply(subst Pair-upd-lifter .simps, simp) apply(auto simp: * * fun-upd-equivp-def) done qed lemma Domain-share1 : assumes 1 : a ∈ Domain σ and 2 : b ∈ Domain σ shows Domain (σ(a b)) = Domain σ proof (simp-all add :Set.set-eq-iff , tactic ALLGOALS (rtac @{thm allI })) fix x have * * * : transfer-rep (Rep-memory σ) (id a) (id b) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} by (metis (lifting, mono-tags) Rep-memory transfer-rep-sound) show (x ∈ Domain (σ (a b))) = (x ∈ Domain σ) unfolding sharing-def Domain-def transfer-def map-fun-def o-def apply(subst Abs-memory-inverse[OF * * *]) apply(insert 1 2 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if split-if-asm) done qed lemma Domain-share-tgt : a ∈ Domain σ =⇒ b ∈ Domain (σ (a b)) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst Abs-memory-inverse[OF transfer-rep-sound2]) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(simp add : o-def transfer-rep-simp Domain-def) by(auto split: split-if) lemma Domain-share2 : assumes 1 : a ∈ Domain σ and 2 : b / ∈ Domain σ shows Domain (σ(a b)) = (Domain σ -{x . x shares σ b} ∪ {b}) proof (simp-all add :Set.set-eq-iff , auto) fix x assume 3 : x ∈ Domain (σ (a b)) and 4 : x = b show x ∈ Domain σ apply(insert 3 4) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst (asm) Abs-memory-inverse[OF transfer-rep-sound2]) apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if split-if-asm) done next fix x assume 3 : x ∈ Domain (σ (a b)) and 4 : x = b and 5 : x shares σ b have * * : x / ∈ Domain σ using 2 5 Domain-mono by (fast) show False apply(insert 3 4 5 , erule contrapos-pp, simp) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst Abs-memory-inverse[OF transfer-rep-sound2]) apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if split-if-asm) using * * Domain-def domI apply fast done next show b ∈ Domain (σ (a b)) using 1 Domain-share-tgt by fast next fix x assume 3 : x ∈ Domain σ and 4 : ¬ x shares σ b show x ∈ Domain (σ (a b)) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst Abs-memory-inverse[OF transfer-rep-sound2]) apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if split-if-asm) using 3 Domain-def domD apply fast done qed lemma Domain-share3 : assumes 1 : a / ∈ Domain σ shows Domain (σ(a b)) = (Domain σ -{b}) proof (simp-all add :Set.set-eq-iff , auto) fix x assume 3 : x ∈ Domain (σ (a b)) show x ∈ Domain σ apply(insert 3) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst (asm) Abs-memory-inverse[OF transfer-rep-sound2]) apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if split-if-asm) done next assume 3 : b ∈ Domain (σ (a b)) show False apply(insert 1 3) apply(erule contrapos-pp[of b ∈ Domain (σ (a b))], simp) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst Abs-memory-inverse[OF transfer-rep-sound2]) apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if) done next fix x assume 3 : x ∈ Domain σ and 4 : x = b show x ∈ Domain (σ (a b)) apply(insert 3 4) unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def apply(subst Abs-memory-inverse[OF transfer-rep-sound2]) apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def) apply(auto split: split-if split-if-asm) done qed lemma Domain-transfer : Domain (σ(a b)) = (if a / ∈ Domain σ then (Domain σ -{b}) else if b / ∈ Domain σ then (Domain σ -{x . x shares σ b} ∪ {b}) else Domain σ) using Domain-share1 Domain-share2 Domain-share3 by metis lemma Domain-transfer-approx : Domain (σ(a b)) ⊆ Domain (σ) ∪ {b} by(auto simp: Domain-transfer) B.8 Sharing Relation and Memory Update lemma sharing-upd : x shares (σ(a := $ b)) y = x shares σ y using insert Rep-memory[of σ] by(auto simp: sharing-def update-def Abs-memory-inverse[OF updatesound])

 apply(simp add : Abs-memory-inverse [OF *] * *) done qed B.9 Properties on lookup and update wrt the Sharing Relation lemma update-triv : assumes 1 : x shares σ y and 2 : y ∈ Domain σ shows σ (x := $ (σ $ y)) = σ proof -{ fix z assume zx : z shares σ x then have zy: z shares σ y using 1 by (rule sharing-trans) have F : y ∈ Domain σ =⇒ x shares σ y =⇒ Some (the (fst (Rep-memory σ) x)) = fst (Rep-memory σ) y by(auto simp: Domain-def dest: shares-result) have Some (the (fst (Rep-memory σ) y)) = fst (Rep-memory σ) z using zx and shares-result [OF zy] shares-result [OF zx] using F [OF 2 1] by simp } note 3 = this show ?thesis unfolding update lookup-def fun-upd-equivp-def by (simp add : 3 Rep-memory-inverse if-cong) qed lemma update-idem : assumes 1 : x shares σ y and 2 : x ∈ Domain σ and 3 : σ $ x = z shows σ(y:= $ z) = σ proofhave * : y ∈ Domain σ by(simp add : shares-dom[OF 1 , symmetric] 2) have * * : σ (x := $ (σ $ y)) = σ using 1 2 * by (simp add : update-triv) also have (σ $ y) = σ $ x by (simp only: lookup-def shares-result [OF 1]) finally show ?thesis using 1 2 3 sharing-sym update-triv by fast qed lemma update-idem : assumes 2 : x ∈ Domain σ and 3 : σ $ x = z shows σ(x := $ z) = σ proofshow ?thesis using 2 3 sharing-refl update-triv by fast qed lemma update-apply: (σ(x := $ y)) $ z = (if z shares σ x then y else σ $ z) proofhave * : (λz . if z shares σ x then Some y else fst (Rep-memory σ) z , snd (Rep-memory σ)) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} unfolding sharing-def by(rule updatesound [simplified fun-upd-equivp-def], simp) show ?thesis proof (cases z shares σ x) case True assume A: z shares σ x show σ (x := $ y) $ z = (if z shares σ x then y else σ $ z) unfolding update lookup-def fun-upd-equivp-def by(simp add : Abs-memory-inverse [OF *]) next case False assume A: ¬ z shares σ x show σ (x := $ y) $ z = (if z shares σ x then y else σ $ z) unfolding update lookup-def fun-upd-equivp-def by(simp add : Abs-memory-inverse [OF *]) qed qed lemma update-share: assumes z shares σ x shows σ(x := $ a) $ z = a using assms by (simp only: update-apply if-True) lemma update-other : assumes ¬(z shares σ x) shows σ(x := $ a) $ z = σ $ z using assms by (simp only: update-apply if-False) lemma lookup-update-rep: assumes 1 : (snd (Rep-memory σ)) x y shows (fst (Pair-upd-lifter (Rep-memory σ) src dst)) x = (fst (Pair-upd-lifter (Rep-memory σ) src dst)) y using 1 shares-result sharing-def sharing-upd update.rep-eq by (metis (hide-lams, no-types)) lemma lookup-update-rep : assumes 1 : x shares σ y shows (σ (src := $ dst)) $ x = (σ (src := $ dst)) $ y using 1 lookup-def lookup-update-rep sharing-def update.rep-eq by metis theorem memory-ext : assumes * : x y. (x shares σ y) = (x shares σ y) and * * : Domain σ = Domain σ and * * * : x . σ $ x = σ $ x shows σ = σ apply(subst Rep-memory-inverse[symmetric]) apply(subst (3) Rep-memory-inverse[symmetric]) apply(rule arg-cong[of --Abs-memory]) apply(auto simp:Product-Type.prod-eq-iff) proofshow fst (Rep-memory σ) = fst (Rep-memory σ) apply(rule ext, insert * * * * * , simp add : lookup-def Domain-def) apply (metis (lifting, no-types) domD domIff the.simps) done next show snd (Rep-memory σ) = snd (Rep-memory σ) by(rule ext, rule ext, insert * , simp add : sharing-def) qed Nice connection between sharing relation, domain of the memory and content equaltiy on the one hand and equality on the other; this proves that our memory model is fully abstract in these three operations. corollary memory-ext2 : (σ = σ) = ((∀ x y. (x shares σ y) = (x shares σ y)) ∧ Domain σ = Domain σ ∧ (∀ x . σ $ x = σ $ x)) by(auto intro: memory-ext) B.10 Rules On Sharing and Memory Transfer lemma transfer-rep-inv-E : assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y -→ σ x = σ y)} and 2 : memory-inv (transfer-rep σ src dst) =⇒ Q shows Q using assms transfer-rep-sound [of σ] by (auto simp: Abs-memory-inverse) lemma transfer-rep-fst1 : assumes 1 : σ = fst(transfer-rep (Rep-memory σ) src dst) shows x . x = dst =⇒ σ x = (fst (Rep-memory σ)) src using 1 unfolding transfer-rep-simp by simp lemma transfer-rep-fst2 : assumes 1 : σ = fst(transfer-rep (Rep-memory σ) src dst) shows x . x = dst =⇒ σ x = (fst (Rep-memory σ)) (id x) using 1 unfolding transfer-rep-simp by simp lemma lookup-transfer-rep : (fst (transfer-rep (Rep-memory σ) src dst)) src = (fst (transfer-rep (Rep-memory σ) src dst)) dst using Rep-memory [of σ] apply (erule-tac src= src and dst = dst in transfer-rep-inv-E) apply (rotate-tac 1) apply (subst (asm) surjective-pairing[of (transfer-rep (Rep-memory σ) src dst)]) unfolding memory-inv .simps apply (erule conjE) apply (erule allE)+ apply (erule impE) unfolding transfer-rep-simp apply auto using equivp-reflp snd-memory-equivp apply metis done theorem share-transfer : x shares σ(a b) y = ((y = b ∧ (x = b ∨ (x = b ∧ x shares σ a))) ∨ (y = b ∧ ((x = b ∧ a shares σ y) ∨ (x = b ∧ x shares σ y)))) unfolding sharing-def transfer-def unfolding transfer-def map-fun-def o-def id-def apply(subst Abs-memory-inverse[OF transfer-rep-sound2], simp add : transfer-rep-simp) by (metis equivp-reflp sharing-charn2) lemma transfer-share:a shares σ(a b) b by(simp add : share-transfer sharing-refl) lemma transfer-share-sym:a shares σ (b a) b by(simp add : share-transfer sharing-refl) lemma transfer-share-mono:x shares σ y =⇒ ¬(x shares σ b) =⇒ (x shares σ (a b) y) by(auto simp: share-transfer sharing-refl) lemma transfer-share-charn: ¬(x shares σ b) =⇒ ¬(y shares σ b) =⇒ x shares σ(a b) y = x shares σ y by(auto simp: share-transfer sharing-refl) lemma transfer-share-trans:(a shares σ x) =⇒ (x shares σ(a b) b) by(auto simp: share-transfer sharing-refl sharing-sym) lemma transfer-share-trans-sym:(a shares σ y) =⇒ (b shares (σ(a b)) y) using transfer-share-trans sharing-sym by fast lemma transfer-share-trans : (a shares (σ(a b)) z) =⇒ (b shares (σ(a b)) z) using transfer-share sharing-sym sharing-trans by fast lemma transfer-tri : x shares σ (a b) y =⇒ x shares σ b ∨ b shares σ y ∨ x shares σ y by (metis sharing-sym transfer-share-charn) lemma transfer-tri : ¬ x shares σ (a b) y =⇒ y shares σ b ∨ ¬ x shares σ y by (metis sharing-sym sharing-trans transfer-share-mono) lemma transfer-dest : assumes 1 : a shares σ (a b) y and 2 : b = y shows a shares σ y using assms by(auto simp: share-transfer sharing-refl sharing-sym) lemma transfer-dest : assumes 1 : ¬(x shares σ a) and 2 : x = b and 3 : x shares σ b shows ¬(x shares σ (a b) b) using assms by(auto simp: share-transfer sharing-refl sharing-sym) lemma transfer-dest :x = b =⇒ y shares σ a =⇒ x shares σ(a b) y by (metis sharing-sym transfer-share-trans-sym) thm share-transfer transfer-share transfer-share-sym sharing-sym [THEN transfer-share-trans] sharing-sym [THEN transfer-share-trans-sym] transfer-share-trans transfer-dest transfer-dest transfer-tri transfer-share-mono transfer-tri transfer-share-charn transfer-dest B.11 Properties on Memory Transfer and Lookup lemma transfer-share-lookup1 : (σ(x y)) $ x = σ $ x using lookup-transfer-rep transfer-rep-fst1 unfolding lookup-def transfer .rep-eq by metis lemma transfer-share-lookup2 :

 shares σ k using transfer-share-charn by fast lemma add e -not-share-lookup-smt: ¬(x shares σ z)∧ ¬(y shares σ z)-→ (σ (x y) $ z) = (σ $ z) using add e -not-share-lookup by auto lemma transfer-share-dom-smt: z ∈ Domain σ ∧ ¬(y shares σ z)-→ (σ(x y)) $ z = σ $ z using transfer-share-dom by auto lemma transfer-share-cancel1-smt:(x shares σ z)-→ (σ(x y)) $ z = σ $ x using transfer-share-cancel1 by auto lemma lookup-update-rep -smt: x shares σ y-→(σ (src := $ dst)) $ x = (σ (src := $ dst)) $ y using lookup-update-rep by auto theorem update-commute-smt: ¬ (x shares σ x) -→ ((σ(x := $ y))(x := $ z)) = (σ(x := $ z)(x := $ y))using update-commute by auto theorem update-cancel-smt: (x shares σ x)-→ (σ(x := $ y)(x := $ z)) = (σ(x := $ z)) using update-cancel by auto lemma update-other-smt: ¬(z shares σ x)-→ (σ(x := $ a) $ z) = σ $ z using update-other by auto lemma update-share-smt:(z shares σ x) -→ (σ(x := $ a) $ z) = a using update-share by auto lemma update-idem-smt : (x shares σ y)∧ x ∈ Domain σ ∧ (σ $ x = z) -→ (σ(x := $ z)) = σ using update-idem by fast lemma update-triv-smt: (x shares σ y) ∧ y ∈ Domain σ -→ (σ (x := $ (σ $ y))) = σusing update-triv by auto lemma shares-result-smt: x shares σ y-→ σ $ x = σ $ y using shares-result by fast lemma shares-dom-smt : x shares σ y -→ (x ∈ Domain σ) = (y ∈ Domain σ) using shares-dom by fast lemma sharing-sym-smt : x shares σ y-→y shares σ x using sharing-sym by (auto) lemma sharing-trans-smt: x shares σ y ∧ y shares σ z -→ x shares σ z using sharing-trans by(auto) lemma nat-0-le-smt: 0 ≤ z -→ int (nat z) = z by transfer clarsimp lemma nat-le-0-smt: 0 > z -→ int (nat z) = 0 by transfer clarsimp lemma transfer-share-trans-smt: (x shares σ z) -→(z shares σ(x y) y) using transfer-share-trans by fast lemma transfer-share-mono-smt: (x shares σ y)∧ ¬(x shares σ y)-→ (x shares σ (x y) y) using transfer-share-mono by fast lemma transfer-share-trans -smt: (x shares (σ(x y)) z)-→(y shares (σ(x y)) z) using transfer-share-trans by fast lemma transfer-share-old-new-trans-smt: (x shares σ z)-→(y shares (σ(x y)) z) using transfer-share-trans-sym by fast lemma transfer-share-old-new-trans1-smt: a shares σ b ∧ a shares σ c -→ (c shares (σ (a d)) b) using transfer-share-trans-smt sharing-sym-smt sharing-trans-smt by metis lemma Domain-mono-smt: x ∈ Domain σ ∧ (x shares σ y)-→y ∈ Domain σ using Domain-mono by fast lemma sharing-upd-smt: x shares (σ(a := $ b)) y = x shares σ y using sharing-upd by fast lemma sharing-init-mem-list-smt : i = k -→ ¬(i shares init-mem-list S k) using sharing-init-mem-list by fast lemma mem1-smt:(σ(a b) $ a) = (σ(a b) $ b) by (metis transfer-share-lookup1 transfer-share-lookup2) B.14 Tools for the initialization of the memory definition memory-fst-eq init :: int list ⇒ int list ⇒ (int, int)memory where memory-fst-eq init ADD VAL = (foldl (λ m (x , y). (m (x := $ y))) init (zip ADD VAL)) definition memory-snd-eq init :: int list ⇒ int list ⇒(int, int)memory ⇒(int, int)memory where memory-snd-eq init SRC DST m = (foldl (λm (x , y). (m (x y))) m (zip SRC DST)) definition memory-eq init :: int list ⇒ int list ⇒ int list ⇒(int, int)memory where memory-eq init SRC VAL DST = foldl (λ m (SRC , DST). memory-snd-eq init SRC DST m) (memory-fst-eq init SRC VAL) [(SRC , DST)] lemmas sharing-smt = sharing-refl transfer-share sharing-commute nat-le-0-smt nat-0-le-smt sharing-sym-smt transfer-share-lookup1 transfer-share-lookup2 sharing-init-mem-list-smt sharing-upd-smt shares-result-smt transfer-share-old-new-trans-smt transfer-share-trans-smt mem1-smt update-share-smt shares-dom-smt Domain-mono-smt sharing-trans-smt transfer-share-cancel1-smt transfer-share-trans -smt update-apply update-other-smt update-cancel-smt transfer-share-old-new-trans1-smt lookup-update-rep -smt update-triv-smt transfer-share-mono-smt update-commute-smt transfer-share-dom-smt add e -not-share-lookup-smt update-idem-smt transfer-share-charn-smt lemmas sharing-refl-smt = sharing-refl

 fun init g lobalmem :: ((sub× loc::comm-semiring-1), β) memory ⇒ (sub× loc) ⇒ β list ⇒ ((sub× loc), β) memory (-|> -<| -[60 ,60 ,60] 70) where σ |> start <| [] = σ | σ |> (sub,loc) <| (a # S) = ((σ((sub,loc):= $ a)) |> (sub, loc+1)<| S) lemma Domain-mem-init-Nil : Domain(σ |> start <| []) = Domain σ by simp Example type-synonym task-id = int type-synonym loc = int type-synonym global-mem = ((task-id ×loc), int)memory definition σ 0 :: global-mem whereσ 0 ≡ init |> (0 ,0) <| [0 ,0 ,0 ,0] |> (2 ,0) <| [0 ,0] |> (4 ,0) <| [2 ,0] lemma σ 0 -Domain: Domain σ 0 = {(4 , 1), (4 , 0), (2 , 1), (2 , 0), (0 , 3), (0 , 2), (0, 1), (0 , 0)} unfolding σ 0 -def by(simp add : sharing-upd) notation transfer (add e) lemmas add e -def = transfer-def lemmas add e -rep-eq = transfer .rep-eq lemmas transfer-share-old-new-trans = transfer-share-trans-sym lemmas sharing-commute-smt = sharing-commute lemmas update-apply-smt = update-apply lemmas transfer-share-lookup2-smt = transfer-share-lookup2 lemmas transfer-share-lookup1-smt = transfer-share-lookup1 lemmas transfer-share-smt = transfer-share end theory IPC-errors-type imports ../TypeSchemes ../Memory/SharedMemoryNew begin B.16 Error codes datatype C HOL representation of PikeOS IPC error codes -error codes are returned if an IPC action is aborted, the error codes has the following specificities: • Must indicates which stage the error was occured. • Each IPC stage has its own set of error codes • Errors in the receiving stages does not affect sending stages • Errors in sending stages affect receiving stages We have another type of errors which is related to the different memory functionality. -IPC errors datatype error-IPC = no-IPC-error | error-IPC-4 -if an action is used in stepping function with the wrong stage -errors of the SEND part of IPC | error-IPC-21-in-PREP-SEND -IF the receiver is an OR | error-IPC-22-in-PREP-SEND -IF the receiver is an CR and the sender is not the one who can send msg to this receiver | error-IPC-23-in-PREP-SEND -IF the receiver is an NR | error-IPC-4-in-PREP-SEND-if an action is used in the wrong stage | error-IPC-21-in-PREP-RECV -IF the receiver is an OR | error-IPC-22-in-PREP-RECV -IF the receiver is an CR and the sender is not the one who can send msg to this receiver | error-IPC-23-in-PREP-RECV -IF the receiver is an NR | error-IPC-4-in-PREP-RECV-if an action is used in the wrong stage | error-IPC-1-in-WAIT-SEND -if the thread has no rights to communicate with his partner | error-IPC-2-in-WAIT-SEND -if the thread has no rights to access to this list of virtual adresses | error-IPC-3-in-WAIT-SEND -if the thread try to send an IPC msg to him self | error-IPC-4-in-WAIT-SEND-if an action is used in the wrong stage | error-IPC-5-in-WAIT-SEND -if the receiver dont exist in the list of threads in the systeme | error-IPC-6-in-WAIT-SEND -if the list of threads in the systeme is Nil | error-IPC-7-in-WAIT-SEND -if the caller can not communicate with the receiver |error-IPC-1-in-BUF-SEND -if the thread has no rights to access to this list of virtual adresses |error-IPC-1-in-BUF-RECV -if the thread has no rights to access to this list of virtual adresses | error-IPC-1-in-WAIT-RECV -if the thread has no rights to communicate with his partner | error-IPC-2-in-WAIT-RECV -if the thread has no rights to access to this list of virtual adresses | error-IPC-3-in-WAIT-RECV -if the thread try to send an IPC msg to him self | error-IPC-4-in-WAIT-RECV-if an action is used in the wrong stage | error-IPC-5-in-WAIT-RECV -if the receiver dont exist in the list of threads in the systeme Go to Done stage | error-IPC-6-in-WAIT-RECV -if the list of threads in the systeme is Nil | error-IPC-7-in-WAIT-RECV -if the caller can not communicate with the receiver -memory errors datatype error-memory = no-mem-error -no errors related to memory adresses | not-valid-sender-addr-in-PREP-SEND -error related to the adresses of the sender | not-valid-receiver-addr-in-PREP-SEND -error related to the adresses of the receiver | not-valid-receiver-addr-in-PREP-RECV | not-valid-sender-addr-in-PREP-RECV -datatype that contain memory and IPC errors datatype errors = NO-ERRORS | ERROR-MEM error-memory | ERROR-IPC error-IPC type-synonym error ipc = errors end theory IPC-thread-type imports ../Memory/SharedMemoryNew ../TypeSchemes begin D HOL representation of PikeOS threads type datatype thread-state = CURRENT | WAITING | READY | STOPPED | IN-ACTIVE

 datatype th-ipc-st = OR -Open Receive | CR -Close Receive | NR -Nil Receive datatype partition enum = part0 |part1 |part2 datatype task enum = task0 |task1 |task2 datatype thread enum = th0 |th1 |th2 type-synonym thread id = (partition enum * task enum * thread enum) type-synonym thread ipc = (thread id , thread-state, th-ipc-st, (int, int) memory ,thread id) thread D.1 interface between thread and memory definition update-th-smm-equiv where update-th-smm-equiv th addr val = update (own-vmem-adr th) addr val

 abbreviation update-state caller σ f error ≡ σ(|current-thread := caller , thread-list := f caller (thread-list σ), error-codes := error |)

 abbreviation get-th-addrs th σ ≡ (* thread adresses to be updated *) ((sorted-list-of-set.F o Domain) ((own-vmem-adr o the o thread-list σ) th))

 definition actioneq-op a a = (case a of (IPC PREP (SEND caller partner msg)) ⇒ (actions-receiv-cases a partner caller msg) | (IPC PREP (RECV caller partner msg)) ⇒ (actions-send-cases a partner caller msg) | (IPC WAIT (SEND caller partner msg)) ⇒ (actions-receiv-cases a partner caller msg) | (IPC WAIT (RECV caller partner msg)) ⇒ (actions-send-cases a partner caller msg) | (IPC BUF (SEND caller partner msg)) ⇒ (actions-receiv-cases a partner caller msg) | (IPC BUF (RECV caller partner msg)) ⇒ (actions-send-cases a partner caller msg) | (IPC DONE (SEND caller partner msg)) ⇒ (actions-receiv-cases a partner caller msg) | (IPC DONE (RECV caller partner msg)) ⇒ (actions-send-cases a partner caller msg))

 simp]: resource (exec-action id σ (IPC DONE (SEND caller partener msg))) = resource σ by simp lemma mem-inv8 [simp]: resource (exec-action id σ (IPC DONE (RECV caller partener msg))) = resource σ by simp lemma mem-inv9 [simp]: resource (exec-action id σ (IPC PREP (SEND caller partener msg))) = resource (exec-action id σ (IPC PREP (RECV caller partener msg))) unfolding mem-inv3 mem-inv4 by simp lemma mem-inv10 [simp]: resource (exec-action id σ (IPC PREP (SEND caller partener msg))) = resource (exec-action id σ (IPC WAIT (SEND caller partener msg))) unfolding mem-inv4 mem-inv1 by simp lemma mem-inv11 [simp]: resource (exec-action id σ (IPC PREP (SEND caller partener msg))) = resource (exec-action id σ (IPC WAIT (RECV caller partener msg))) unfolding mem-inv2 mem-inv4 by simp lemma mem-inv12 [simp]: resource (exec-action id σ (IPC PREP (SEND caller partener msg))) = resource (exec-action id σ (IPC DONE (SEND caller partener msg))) unfolding mem-inv4 by simp lemma mem-inv13 [simp]: resource (exec-action id σ (IPC PREP (SEND caller partener msg))) = resource (exec-action id σ (IPC DONE (RECV caller partener msg))) unfolding mem-inv4 by simp lemma mem-inv14 [simp]: resource (exec-action id σ (IPC PREP (RECV caller partener msg))) = resource (exec-action id σ (IPC WAIT (SEND caller partener msg))) unfolding mem-inv3 mem-inv1 by simp lemma mem-inv15 [simp]: resource (exec-action id σ (IPC PREP (RECV caller partener msg))) = resource (exec-action id σ (IPC WAIT (RECV caller partener msg))) unfolding mem-inv2 mem-inv3 by simp lemma mem-inv16 [simp]: resource (exec-action id σ (IPC PREP (RECV caller partener msg))) = resource (exec-action id σ (IPC DONE (SEND caller partener msg))) unfolding mem-inv3 by simp lemma mem-inv17 [simp]: resource (exec-action id σ (IPC WAIT (SEND caller partener msg))) = resource (exec-action id σ (IPC DONE (RECV caller partener msg))) unfolding mem-inv1 by simp lemma mem-inv18 [simp]: resource (exec-action id σ (IPC WAIT (SEND caller partener msg))) = resource (exec-action id σ (IPC DONE (SEND caller partener msg))) unfolding mem-inv1 by simp lemma mem-inv19 [simp]: resource (exec-action id σ (IPC WAIT (RECV caller partener msg))) = resource (exec-action id σ (IPC DONE (SEND caller partener msg))) unfolding mem-inv2 by simp lemma mem-inv20 [simp]: resource (exec-action id σ (IPC WAIT (RECV caller partener msg))) = resource (exec-action id σ (IPC DONE (RECV caller partener msg))) unfolding mem-inv2 by simp lemma mem-inv21 [simp]: resource (exec-action id σ (IPC DONE (SEND caller partener msg))) = resource (exec-action id σ (IPC DONE (RECV caller partener msg))) by simp

) by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-prep-recv9 : (out1 ← PREP-RECV M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a ; PREP-RECV M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-wait-send4 : (out1 ← WAIT-SEND M O N a ; BUF-SEND M O N a) = (out1 ← BUF-SEND M O N a ; WAIT-SEND M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-wait-send5 : (out1 ← WAIT-SEND M O N a ; BUF-RECV M O N a) = (out1 ← BUF-RECV M O N a ; WAIT-SEND M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-wait-send6 : (out1 ←WAIT-SEND M O N a ; MAP-SEND M O N a) = (out1 ← MAP-SEND M O N a ; WAIT-SEND M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-wait-send7 : (out1 ← WAIT-SEND M O N a ;MAP-RECV M O N a) = (out1 ← MAP-RECV M O N a ; WAIT-SEND M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) lemma sem-comp-wait-send8 : (out1 ← WAIT-SEND M O N a ; DONE-SEND M O N a) = (out1 ← DONE-SEND M O N a ; WAIT-SEND M O N a) by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) lemma sem-comp-wait-send9 : (out1 ← WAIT-SEND M O N a ; DONE-RECV M O N a) = (out1 ← DONE-RECV M O N a; WAIT-SEND M O N a)

 lemma sem-comp-prep-send10 : (out1 ← PREP-SEND M O N a ; DONE-SEND M O N b) = (out1 ← DONE-SEND M O N b ; PREP-SEND M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-prep-send11 : (out1 ← PREP-SEND M O N a ; DONE-RECV M O N b) = (out1 ← DONE-RECV M O N b ; PREP-SEND M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-prep-recv10 : (out1 ← PREP-RECV M O N a ; DONE-SEND M O N b) = (out1 ← DONE-SEND M O N b ; PREP-RECV M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)lemma sem-comp-prep-recv11 : (out1 ← PREP-RECV M O N a ; DONE-RECV M O N b) = (out1 ← DONE-RECV M O N b ; PREP-RECV M O N a)by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) term (resource o snd o the) ((out1 ← WAIT-SEND M O N a ; WAIT-RECV M O N b) σ) lemma WAIT-SEND M O N -None: WAIT-SEND M O N (IPC WAIT a) σ = None by (induct a, auto simp add : unit-SE-def split:option.split) lemma WAIT-RECV M O N -None: WAIT-RECV M O N (IPC WAIT a) σ = None by (induct a, auto simp add : unit-SE-def split:option.split) lemma sem-comp-wait-send10 : (out1 ← WAIT-SEND M O N a ; DONE-SEND M O N b) = (out1 ← DONE-SEND M O N b ; WAIT-SEND M O N a) by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) lemma sem-comp-wait-send11 : (out1 ← WAIT-SEND M O N a ; DONE-RECV M O N b) = (out1 ← DONE-RECV M O N b; WAIT-SEND M O N a) by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split) lemma sem-comp-wait-recv10 : (out1 ← WAIT-RECV M O N a ; DONE-SEND M O N b) = (out1 ← DONE-SEND M O N b ; WAIT-RECV M O N a) by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc .induct, simp-all add : unit-SE-def bind-SE-def split:option.split)

 abbreviationget-caller-error caller σ ≡ (the o(th-flag) σ) caller

H. 6

 6 Pridicates on operations definition is-ipc-trace where is-ipc-trace actl = (∀ a∈set(actl ::trace ipc).∃ caller partner msg. a = IPC PREP (RECV caller partner msg)∨ a = IPC WAIT (RECV caller partner msg)∨ a = IPC BUF (RECV caller partner msg)∨ a = IPC DONE (RECV caller partner msg)∨ a = IPC PREP (SEND caller partner msg)∨ a = IPC WAIT (SEND caller partner msg)∨ a = IPC BUF (SEND caller partner msg)∨ a = IPC DONE (SEND caller partner msg)) definition is-ipc-trace id where is-ipc-trace id actl = (∀ a∈set(actl ::trace ipc).∃ caller partner msg. a = IPC PREP (RECV caller partner msg)∨ a = IPC WAIT (RECV caller partner msg)∨ a = IPC BUF (RECV caller partner msg)∨ a = IPC DONE (RECV caller partner msg)∨ a = IPC PREP (SEND caller partner msg)∨ a = IPC WAIT (SEND caller partner msg)∨ a = IPC BUF (SEND caller partner msg)∨ a = IPC DONE (SEND caller partner msg)) H.7 Simplification rules related to traces lemma prep-send-comp-mbind-eq2 : mbind is (λa. (out1 ← PREP-SEND M O N a ; PREP-RECV M O N a)) σ = mbind is (λa. (out1 ← PREP-RECV M O N a ; PREP-SEND M O N a)) σ by (simp only: sem-comp-prep-send1) lemma prep-send-comp-mbind-eq3 : by (simp only: sem-comp-buf-recv8) lemma buf-recv-comp-mbind-eq4 : mbind is (λa. (out1 ← BUF-RECV M O N a ; MAP-RECV M O N a)) σ = mbind is (λa. (out1 ← MAP-RECV M O N a ; BUF-RECV M O N a)) σ by (simp only: sem-comp-buf-recv9) lemma map-recv-comp-mbind-eq1 : mbind is (λa. (out1 ← MAP-RECV M O N a ; DONE-SEND M O N a)) σ = mbind is (λa. (out1 ← DONE-SEND M O N a ; MAP-RECV M O N a)) σ by (simp only: sem-comp-map-recv6) lemma map-recv-comp-mbind-eq2 : mbind is (λa. (out1 ← MAP-RECV M O N a ; DONE-RECV M O N a)) σ = mbind is (λa. (out1 ← DONE-RECV M O N a ; MAP-RECV M O N a)) σ by (simp only: sem-comp-map-recv7) end theory IPC-step-normalizer imports IPC-traces begin I IPC Stepping Function and Traces definition exec-action id -Mon-prep-fact0 caller partner σ msg = (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) definition exec-action id -Mon-prep-fact1 caller partner σ = (¬IPC-params-c1 ((the o thread-list σ) partner) -→ (IPC-params-c2 ((the o thread-list σ) partner) ∧ IPC-params-c6 caller ((the o thread-list σ) partner))) definition exec-action id -Mon-prep-fact2 caller partner σ = (¬IPC-params-c1 ((the o thread-list σ) partner) ∧ IPC-params-c2 ((the o thread-list σ) partner)∧ ¬IPC-params-c6 caller ((the o thread-list σ) partner)) definition exec-action id -Mon-prep-send-fact3 caller error-mem σ msg = (¬(list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧ error-mem = not-valid-sender-addr-in-PREP-SEND) definition exec-action id -Mon-prep-send-fact4 caller partner error-mem σ msg = ((list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧ ¬(list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg) ∧ error-mem = not-valid-receiver-addr-in-PREP-SEND) definition exec-action id -Mon-prep-recv-fact3 caller error-mem σ msg = (¬(list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧ error-mem = not-valid-sender-addr-in-PREP-RECV) definition exec-action id -Mon-prep-recv-fact4 caller partner error-mem σ msg = ((list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧ ¬(list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg) ∧ error-mem = not-valid-receiver-addr-in-PREP-RECV) definition exec-action id -Mon-prep-fact5 caller partner σ = (¬IPC-params-c1 ((the o thread-list σ) partner)∨ (IPC-params-c2 ((the o thread-list σ) partner)∧ IPC-params-c4 caller partner) ∧ IPC-params-c3 ((the o thread-list σ) partner)) definition exec-action id -Mon-prep-fact6 caller partner σ = (¬IPC-params-c1 ((the o thread-list σ) partner)∨ (IPC-params-c2 ((the o thread-list σ) partner)∧ IPC-params-c4 caller partner) ∧ ¬IPC-params-c3 ((the o thread-list σ) partner)) definition exec-action id -Mon-prep-fact7 caller partner σ = (¬IPC-params-c1 ((the o thread-list σ) partner)∨ (IPC-params-c2 ((the o thread-list σ) partner)∧ IPC-params-c4 caller partner)) I.1 Simplification rules related to the stepping function exec-action id -Monlemma exec-action id -Mon-mbind-obvious: σ S . mbind S (abort lif t exec-action id -Mon) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-mbind-obvious : (case mbind S (abort lif t exec-action id -Mon) σ of None ⇒ Some ([get-caller-error caller σ], σ) | Some (outs, σ) ⇒ a) = a proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t exec-action id -Mon) σ = Some a then show ?thesis using hyp0 by simp qed lemma exec-action id -Mon-all-obvious1 : ∀ a σ.∃ errors σ . exec-action id -Mon a σ = Some (errors, σ) by (auto, rule action ipc .induct, auto simp:exec-action id -Mon-def) Simplification rules on PREP action lemma exec-action id -Mon-prep-send-obvious0 : σ. exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-prep-send-obvious1 : (exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ) = (if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) then if IPC-params-c1 ((the o thread-list σ) partner) then Some (NO-ERRORS , σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |)) else if IPC-params-c2 ((the o thread-list σ) partner) then if IPC-params-c6 caller ((the o thread-list σ) partner) then Some (NO-ERRORS , σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |)) else σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|)) else Some (ERROR-IPC error-IPC-23-in-PREP-SEND, σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|))else Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND, σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|))) by (simp add : exec-action id -Mon-def PREP-SEND id -def)lemma exec-action id -Mon-prep-send-obvious2 : (fst o the)(exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ) = (if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) then if IPC-params-c1 ((the o thread-list σ) partner) then NO-ERRORS else (if IPC-params-c2 ((the o thread-list σ) partner) then if IPC-params-c6caller ((the o thread-list σ) partner) then NO-ERRORS else ERROR-IPC error-IPC-22-in-PREP-SEND else ERROR-IPC error-IPC-23-in-PREP-SEND) else ERROR-MEM not-valid-sender-addr-in-PREP-SEND) by (simp add :exec-action id -Mon-def PREP-SEND id -def) lemma exec-action id -Mon-prep-send-obvious3 : (exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS , σ)) = (σ = σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |) ∧ exec-action id -Mon-prep-fact0 caller partner σ msg ∧ exec-action id -Mon-prep-fact1 caller partner σ) by (auto simp add : exec-action id -Mon-def PREP-SEND id -def exec-action id -Mon-prep-fact0-def exec-action id -Mon-prep-fact1-def split: errors.split split-if split-if-asm) lemma exec-action id -Mon-prep-send-obvious4 : (exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)) = ((σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)∧ ¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧ error-mem = not-valid-sender-addr-in-PREP-SEND)) by (auto simp add : exec-action id -Mon-def PREP-SEND id -def split: errors.split split-if split-if-asm) lemma exec-action id -Mon-prep-send-obvious5 : (exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)) = ((σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|)∧ exec-action id -Mon-prep-fact0 caller partner σ msg ∧ ¬IPC-params-c1 ((the o thread-list σ) partner) ∧ IPC-params-c2 ((the o thread-list σ) partner) ∧ ¬ IPC-params-c6 caller ((the o thread-list σ) partner) ∧ error-IPC = error-IPC-22-in-PREP-SEND) ∨ (σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|)∧ exec-action id -Mon-prep-fact0 caller partner σ msg ∧ ¬IPC-params-c1 ((the o thread-list σ) partner) ∧ ¬ IPC-params-c2 ((the o thread-list σ) partner) ∧ error-IPC = error-IPC-23-in-PREP-SEND)) by (auto simp add : exec-action id -Mon-def PREP-SEND id -def exec-action id -Mon-prep-fact2-def exec-action id -Mon-prep-fact0-def split: errors.split split-if split-if-asm) lemma exec-action id -Mon-prep-recv-obvious0 : ∀ σ. exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-prep-recv-obvious1 : (exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ) = (if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) then if IPC-params-c1 ((the o thread-list σ) partner) then Some(NO-ERRORS , σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |)) else (if IPC-params-c2 ((the o thread-list σ) partner) then if IPC-params-c6 caller ((the o thread-list σ) partner) then Some(NO-ERRORS , σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |)) else Some(ERROR-IPC error-IPC-22-in-PREP-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |)) else Some(ERROR-IPC error-IPC-23-in-PREP-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |))) else Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |))) by(simp add : exec-action id -Mon-def PREP-RECV id -def) lemma exec-action id -Mon-prep-recv-obvious2 : fst(the(exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ)) = (if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) then if IPC-params-c1 ((the o thread-list σ) partner) then NO-ERRORS else (if IPC-params-c2 ((the o thread-list σ) partner) then if IPC-params-c6 caller ((the o thread-list σ) partner) then NO-ERRORS else ERROR-IPC error-IPC-22-in-PREP-RECV else ERROR-IPC error-IPC-23-in-PREP-RECV) else ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) unfolding exec-action id -Mon-def by (simp add : exec-action id -Mon-def PREP-RECV id -def) lemma exec-action id -Mon-prep-recv-obvious3 : (exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ)) = (σ = σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |) ∧ exec-action id -Mon-prep-fact0 caller partner σ msg∧ exec-action id -Mon-prep-fact1 caller partner σ) by (auto simp add : exec-action id -Mon-def PREP-RECV id -def exec-action id -Mon-prep-fact0-def exec-action id -Mon-prep-fact1-def split: errors.split split-if split-if-asm) lemma exec-action id -Mon-prep-recv-obvious4 : (exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)) = ((σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |)∧ ¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧ error-mem = not-valid-receiver-addr-in-PREP-RECV)) by (auto simp add : exec-action id -Mon-def PREP-RECV id -def split: errors.split split-if split-if-asm) lemma exec-action id -Mon-prep-recv-obvious5 : (exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)) = ((σ =σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |)∧ exec-action id -Mon-prep-fact0 caller partner σ msg ∧ ¬IPC-params-c1 ((the o thread-list σ) partner) ∧ IPC-params-c2 ((the o thread-list σ) partner) ∧ ¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧ error-IPC = error-IPC-22-in-PREP-RECV) ∨ (σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)∧ exec-action id -Mon-prep-fact0 caller partner σ msg ∧ ¬IPC-params-c1 ((the o thread-list σ) partner) ∧ ¬ IPC-params-c2 ((the o thread-list σ) partner) ∧ error-IPC = error-IPC-23-in-PREP-RECV)) by (auto simp add : exec-action id -Mon-def PREP-RECV id -def exec-action id -Mon-prep-fact2-def exec-action id -Mon-prep-fact0-def split: errors.split split-if split-if-asm) Simplification rules on WAIT action lemma exec-action id -Mon-wait-send-obvious0 : σ. exec-action id -Mon (IPC WAIT (SEND caller partner msg)) σ = None unfolding exec-action id -Mon-def by (auto simp add : exec-action id -Mon-def WAIT-RECV id -def split: list.split-asm) lemma exec-action id -Mon-wait-recv-obvious4 : (exec-action id -Mon (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)) = ((¬ IPC-recv-comm-check-st id caller partner σ -→ σ =σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |) ∧ error-IPC = error-IPC-1-in-WAIT-RECV) ∧ (IPC-recv-comm-check-st id caller partner σ -→ ((¬ IPC-params-c4 caller partner -→ σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |) ∧ error-IPC = error-IPC-3-in-WAIT-RECV) ∧ (IPC-params-c4 caller partner -→ ((¬ IPC-params-c5 partner σ -→ σ = update-state-wait-recv-params5 σ caller ∧ error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC) ∧ ¬ IPC-params-c5 partner σ))))) by (auto simp add : update-state-wait-recv-params5-def exec-action id -Mon-def WAIT-RECV id -def split: split-if-asm list.split-asm) Simplification rules on BUF action lemma exec-action id -Mon-buf-send-obvious0 : σ. exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-buf-send-obvious1 : (exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ) = (if ¬ IPC-buf-check-st id caller partner σ then Some (ERROR-IPC error-IPC-1-in-BUF-SEND, σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND|)) else Some(NO-ERRORS , σ(|current-thread := caller , resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs partner σ) (get-msg-values msg σ)), thread-list := update-th-ready caller thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS |) ∧ error =NO-ERRORS)) by (auto simp add : exec-action id -Mon-def MAP-RECV id -def) Simplification rules on DONE action lemma exec-action id -Mon-done-send-obvious0 : ∀ σ. exec-action id -Mon (IPC DONE (SEND caller partner msg)) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-done-send-obvious1 : (exec-action id -Mon (IPC DONE (SEND caller partner msg)) σ) = Some(error-codes σ, σ) unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-done-send-obvious2 : fst (the(exec-action id -Mon (IPC DONE (SEND caller partner msg)) σ)) = error-codes σ unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-done-send-obvious3 : (exec-action id -Mon (IPC DONE (SEND caller partner msg)) σ = Some(error , σ)) = (σ = σ ∧ error-codes σ = error) by (auto simp add : exec-action id -Mon-def) lemma exec-action id -Mon-done-recv-obvious0 : σ. exec-action id -Mon (IPC DONE (RECV caller partner msg)) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-done-recv-obvious1 : (exec-action id -Mon (IPC DONE (RECV caller partner msg)) σ) = Some(error-codes σ, σ) unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-done-recv-obvious2 : fst(the(exec-action id -Mon (IPC DONE (RECV caller partner msg)) σ)) = error-codes σ unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-done-recv-obvious3 : (exec-action id -Mon (IPC DONE (RECV caller partner msg)) σ = Some(error , σ)) = (σ = σ ∧ error-codes σ = error) by (auto simp add : exec-action id -Mon-def) lemma exec-action id -Mon-act-info-obvious0 : (exec-action id -Mon a σ = Some(error , σ)) =⇒ (state id .th-flag σ = state id .th-flag σ) unfolding exec-action id -Mon-def by (auto, rule action ipc .induct , rule p4-stage ipc .induct,rule p4-direct ipc .induct, auto, rule action ipc .induct, simp-all , rule p4-stage ipc .induct, rule p4-direct ipc .induct, auto simp: PREP-SEND id -def PREP-RECV id -def ,rule p4-direct ipc .induct, auto, simp add : WAIT-SEND id -def split: option.split, simp add : WAIT-RECV id -def split: option.split, rule p4-direct ipc .induct, auto simp add : BUF-SEND id -def BUF-RECV id -def , rule p4-direct ipc .induct,auto simp add : MAP-SEND id -def MAP-RECV id -def , rule p4-direct ipc .induct, auto) lemma exec-action id -Mon-act-info-obvious0 : (exec-action id -Mon a σ = Some(error , σ)) = (state id .th-flag σ = state id .th-flag σ ∧ error-codes (exec-action id σ a) = error ∧ exec-action id σ a = σ) unfolding exec-action id -Mon-def by (auto, rule action ipc .induct , rule p4-stage ipc .induct,rule p4-direct ipc .induct, auto, rule action ipc .induct, simp-all , rule p4-stage ipc .induct, rule p4-direct ipc .induct, auto simp: PREP-SEND id -def PREP-RECV id -def ,rule p4-direct ipc .induct, auto, simp add : WAIT-SEND id -def split: option.split, simp add : WAIT-RECV id -def split: option.split, rule p4-direct ipc .induct, auto simp add : BUF-SEND id -def BUF-RECV id -def , rule p4-direct ipc .induct,auto simp add : MAP-SEND id -def MAP-RECV id -def , rule p4-direct ipc .induct, auto) lemma exec-action id -Mon-act-info-obvious1 : exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some(error , σ) =⇒ (state id .th-flag σ) caller = (state id .th-flag σ) caller by (auto simp:exec-action id -Mon-def PREP-RECV id -def) lemma exec-action id -Mon-act-info-obvious2 : (state id .th-flag σ) caller = (th-flag(snd (the(exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ)))) caller unfolding exec-action id -Mon-def by (simp add : PREP-RECV id -def) lemma exec-errors-obvious0 : (exec-action id -Mon a σ) = Some (NO-ERRORS ,σ) =⇒ error-codes σ = NO-ERRORS by (auto simp only: exec-action id -Mon-def prod .inject the.simps) lemma exec-errors-obvious1 : (exec-action id -Mon a σ) = Some (NO-ERRORS ,σ) =⇒ error-codes σ = ERROR-MEM error-mem by (auto simp only: exec-action id -Mon-def prod .inject the.simps) lemma exec-errors-obvious2 : (exec-action id -Mon a σ) = Some (NO-ERRORS ,σ) =⇒ error-codes σ = ERROR-IPC error-ipc by (auto simp only: exec-action id -Mon-def prod .inject the.simps) lemmas step-normalizer-None = exec-action id -Mon-prep-send-obvious0 exec-action id -Mon-prep-recv-obvious0 exec-action id -Mon-wait-send-obvious0 exec-action id -Mon-wait-recv-obvious0 exec-action id -Mon-buf-send-obvious0 exec-action id -Mon-buf-recv-obvious0 exec-action id -Mon-done-send-obvious0 exec-action id -Mon-done-recv-obvious0 lemmas step-normalizer-Some = exec-action id -Mon-act-info-obvious0 end theory IPC-atomic-action-normalizer imports IPC-step-normalizer begin ((exec-action id σ (IPC DONE (RECV caller partner msg)))= σ ∧ error-codes σ = error) by simp J.3 Symbolic Execution Rules for Error Codes field on Purelevel lemma PREP-SEND id -Pure-obvious0 : (error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) = NO-ERRORS =⇒ P) ≡ (exec-action id -Mon-prep-fact0 caller partner σ msg &&& exec-action id -Mon-prep-fact1 caller partner σ &&& (PREP-SEND id σ (IPC PREP (SEND caller partner msg)) = σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS |))=⇒ P) find-theorems name:Pure. apply (rule equal-intr-rule) apply (elim meta-impE) apply (drule conjunctionD2) apply (drule conjunctionD2) apply (auto simp add : PREP-SEND id -def exec-action id -Mon-prep-fact0-def exec-action id -Mon-prep-fact1-def split: errors.split split-if split-if-asm) done lemma PREP-SEND id -Pure-obvious1 : (error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) = ERROR-MEM error-mem =⇒P) ≡ (¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)) &&& error-mem = not-valid-sender-addr-in-PREP-SEND &&& (PREP-SEND id σ (IPC PREP (SEND caller partner msg)) = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)) =⇒ P) apply (rule equal-intr-rule) apply (simp-all add : conjunction-imp Pure.imp-conjunction) by (auto simp add : PREP-SEND id -def split: errors.split split-if split-if-asm) lemma WAIT-SEND id -Pure-obvious0 : (error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) = NO-ERRORS =⇒ P) ≡ (IPC-send-comm-check-st id caller partner σ &&& IPC-params-c4 caller partner &&& IPC-params-c5 partner σ &&& (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)) = σ(|current-thread := caller , thread-list := update-th-waiting caller (thread-list σ), error-codes := NO-ERRORS |)) =⇒ P) apply (rule equal-intr-rule) apply (drule conjunctionD2)+ by (auto simp add :WAIT-SEND id -def split: errors.split split-if split-if-asm option.split-asm) lemma WAIT-SEND id -Pure-obvious1 : (error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) = ERROR-IPC error-IPC =⇒ P) ≡ ((¬ IPC-send-comm-check-st id caller partner σ =⇒ (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))= σ (|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|) &&& error-IPC = error-IPC-1-in-WAIT-SEND) &&& (IPC-send-comm-check-st id caller partner σ =⇒ ((¬ IPC-params-c4 caller partner =⇒ (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))= σ (|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|) &&& error-IPC = error-IPC-3-in-WAIT-SEND) &&& (IPC-params-c4 caller partner =⇒ ((¬ IPC-params-c5 partner σ =⇒ (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))= update-state-wait-send-params5 σ caller &&& error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC error-IPC) &&& ¬ IPC-params-c5 partner σ)))) =⇒ P) apply (rule equal-intr-rule) apply (simp-all add : conjunction-imp Pure.imp-conjunction) by (simp-all add : update-state-wait-send-params5-def WAIT-SEND id -def split: errors.split split-if split-if-asm option.split option.split-asm) lemma DONE-SEND id -Pure-obvious0 : (error-codes (exec-action id σ (IPC DONE (SEND caller partner msg))) = error =⇒P) ≡ ((exec-action id σ (IPC DONE (SEND caller partner msg)))= σ =⇒ error-codes σ = error =⇒P) apply (simp-all add : conjunction-imp Pure.imp-conjunction) by (auto simp add :WAIT-RECV id -def split: errors.split split-if split-if-asm option.split-asm) lemma WAIT-RECV id -Pure-obvious1 : (error-codes (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))) = ERROR-IPC error-IPC =⇒ P)≡ ((¬ IPC-recv-comm-check-st id caller partner σ =⇒ (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))= σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |) &&& error-IPC = error-IPC-1-in-WAIT-RECV) &&& (IPC-recv-comm-check-st id caller partner σ =⇒ ((¬ IPC-params-c4 caller partner =⇒ (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))= σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |) &&& error-IPC = error-IPC-3-in-WAIT-RECV) &&& (IPC-params-c4 caller partner =⇒ ((¬ IPC-params-c5 partner σ =⇒ (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))= update-state-wait-recv-params5 σ caller &&& error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC) &&& ¬ IPC-params-c5 partner σ)))) =⇒ P) apply (rule equal-intr-rule) apply (simp-all add : conjunction-imp Pure.imp-conjunction) by (simp-all add : update-state-wait-recv-params5-def WAIT-RECV id -def split: errors.split split-if split-if-asm list.split-asm) lemma DONE-RECV id -Pure-obvious0 : (error-codes (exec-action id σ (IPC DONE (RECV caller partner msg))) = error =⇒ P) ≡ ((exec-action id σ (IPC DONE (RECV caller partner msg)))= σ =⇒ error-codes σ = error =⇒ P) by simp by simp lemmas atomic-action-normalizer-errors =

lemmas

 BUF-RECV id -normalizer-hyps = BUF-SEND id -normalizer-hyps lemmas splitter = option.split errors.split split-if list.split lemmas splitter-asm = option.split-asm errors.split-asm split-if-asm list.split-asm K IPC pre-conditions normalizer lemmas pre-conditions-defs = IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def IPC-params-c5-def IPC-send-comm-check-st id -def IPC-recv-comm-check-st id -def IPC-buf-check-st id -def Product-Type.split-beta is-part-addr-th-mem-def is-part-addr-addr-def end theory IPC-trace-normalizer imports IPC-atomic-action-normalizer begin L The Core Theory for Symbolic Execution of abort lif t L.1 mbind and ioprog fail lemma mbind F ailS av e -ioprog-None1 : assumes ioprog-fail : ioprog a σ = None shows mbind F ailS av e (a # S) ioprog σ = Some ([], σ) using assms by(simp add : Product-Type.split-beta) lemma mbind F ailS av e -ioprog-None2 : assumes exec-fail : mbind F ailS av e (a # S) ioprog σ = Some ([], σ) shows ioprog a σ = None using exec-fail by(simp add : Product-Type.split-beta split: option.split-asm) lemma mbind F ailS av e -ioprog-None: (ioprog a σ = None) = (mbind F ailS av e (a # S) ioprog σ = Some ([], σ)) by (auto simp: mbind F ailS av e -ioprog-None1 mbind F ailS av e -ioprog-None2)

 lemma abort-None1 : assumes ioprog-fail : ioprog a σ = None shows mbind (a # S)(abort lif t ioprog) σ = Some ([], σ) oops lemma abort-None2 : assumes exec-fail : mbind (a # S)(abort lif t ioprog) σ = Some([], σ) shows ioprog a σ = None proof (cases a)

 lemma abort-None0 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and not-done-act:stages = DONE and ioprog-fail :ioprog (IPC stages (SEND caller partner msg)) σ = None shows (abort lif t ioprog) (IPC stages (SEND caller partner msg)) σ = ioprog (IPC stages (SEND caller partner msg)) σ using not-in-err not-done-act ioprog-fail by(simp add : split: IPC-atomic-actions.p4-stage ipc .split,safe, simp-all) lemma abort-None1 : assumes not-in-err :caller / ∈ dom ((state id .th-flag σ)) and ioprog-fail : ioprog (IPC PREP (SEND caller partner msg)) σ = None shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some ([], σ) using assms by simp lemma mbind-exec-action id -Mon-None: mbind (a # S) exec-action id -Mon σ = None by(rule Monads.mbind-nofailure) lemma mbind-exec-action id -Mon-Some: ∃ outs σ . mbind (a # S) exec-action id -Mon σ = Some (outs,σ) by(insert mbind-exec-action id -Mon-None, auto) lemma mbindef-exec-action id -Mon-None: mbind (a # S) exec-action id -Mon σ = None by(rule mbind-exec-action id -Mon-None) lemma mbindef-exec-action id -Mon-Some: ∃ outs σ . mbind (a # S) exec-action id -Mon σ = Some (outs,σ) by (auto, rule action ipc .induct, simp split: option.split)

 qed qed lemma abort-done-recv-obvious10 : fst(the(mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag) σ) then (get-caller-error caller σ# fst(the(mbind S (abort lif t ioprog) (remove-caller-error caller σ)))) else (case ioprog (IPC DONE (RECV caller partner msg)) σ of None ⇒ [] | Some (out , σ)⇒ NO-ERRORS # (fst o the)(mbind S (abort lif t ioprog) σ))) by (simp split: option.split) lemmas trace-normalizer-errors-case = abort-prep-send-obvious9 abort-prep-recv-obvious9 abort-wait-send-obvious9 abort-wait-recv-obvious9 abort-buf-send-obvious9 abort-buf-recv-obvious9 abort-done-send-obvious10 abort-done-recv-obvious10 end theory IPC-symbolic-exec-rewriting imports IPC-trace-normalizer begin M Rewriting Rules for Symbolic Execution of Sequence Test Scheme M.1 Symbolic Execution Rules for PREP stage lemma abort-prep-send-obvious10 : (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog)); P outs)) = (if caller ∈ dom ((th-flag)σ) then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ) ⇒ (error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)) | Some(ERROR-MEM error-mem, σ)⇒ ((set-error-mem-preps caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) | Some(ERROR-IPC error-IPC , σ)⇒ ((set-error-ipc-preps caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) | None ⇒ (σ |= (P [])))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed qed qed qed qed qed lemma abort-prep-send-obvious12 : (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog)); P outs)) = (if caller ∈ dom ((th-flag)σ) then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ) ⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))∧ (((th-flag) σ) caller = None) ∧ ((th-flag) σ) caller = ((th-flag) (error-tab-transfer caller σ σ)) caller ∧ (th-flag σ = th-flag (error-tab-transfer caller σ σ)) | Some(ERROR-MEM error-mem, σ)⇒ ((set-error-mem-preps caller partner σ σ error-mem msg)

 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed qed qed qed qed qed lemma abort-prep-send-obvious10 : (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (ioprog (IPC PREP (SEND caller partner msg)) σ = None -→ (σ |= (P []))) ∧ ((∀ a σ . (a = NO-ERRORS -→ ioprog (IPC PREP (SEND caller partner msg)) σ = Some (NO-ERRORS , σ) -→ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ) -→ ((set-error-mem-preps caller partner σ σ error-memory msg)|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , σ) -→ ((set-error-ipc-preps caller partner σ σ error-IPC msg)|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))))))))

 abort-prep-send-obvious10 : (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (∀ a b. (a = NO-ERRORS -→ exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some (NO-ERRORS , b) -→ (σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abort lif t exec-action id -Mon));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, b) -→ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM error-memory, th-flag := th-flag σ (caller → (ERROR-MEM error-memory), partner → (ERROR-MEM error-memory))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ exec-action id -Mon (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , b) -→ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC , state id .th-flag := th-flag σ (caller → (ERROR-IPC error-IPC), partner → (ERROR-IPC error-IPC))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC # outs))))))) proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t exec-action id -Mon) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b)

 hyp3 hyp4 hyp5 hyp6 by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def PREP-SEND id -def split : errors.split option.split split-if-asm) qed qed qed qed qed qed qed lemma abort-prep-send-obvious11 : (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (∀ a b. (exec-action id -Mon-prep-fact0 caller partner σ msg ∧ exec-action id -Mon-prep-fact1 caller partner σ -→ (σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abort

 lemma abort-prep-recv-obvious10 : (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t exec-action id -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ ((∀ a b. (a = NO-ERRORS -→ exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some (NO-ERRORS , b) -→ (σ(|current-thread := caller , thread-list := update-th-ready caller (thread-list σ), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abort lif t exec-action id -Mon));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, b) -→ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-MEM error-memory, state id .th-flag := th-flag σ (caller → (ERROR-MEM error-memory), partner → (ERROR-MEM error-memory))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , b) -→ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC , state id .th-flag := th-flag σ (caller → (ERROR-IPC error-IPC), partner → (ERROR-IPC error-IPC))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC # outs)))))))) proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t exec-action id -Mon) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 proof (cases exec-action id -Mon (IPC PREP (RECV caller partner msg)) σ)

 error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)∧ exec-action id -Mon-prep-fact0 caller partner σ msg ∧ ¬IPC-params-c1 ((the o thread-list σ) partner) ∧ ¬IPC-params-c2 ((the o thread-list σ) partner) ∧ error-IPC = error-IPC-23-in-PREP-RECV)) -→ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC , state id .th-flag := th-flag σ (caller → (ERROR-IPC error-IPC), partner → (ERROR-IPC error-IPC))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC # outs)))))))) by (auto simp add : abort-prep-recv-obvious10 exec-action id -Mon-prep-recv-obvious3 exec-action id -Mon-prep-recv-obvious4 exec-action id -Mon-prep-recv-obvious5)

)))∧ (((th-flag) σ) caller = None) ∧ ((th-flag) σ) caller = ((th-flag) (error-tab-transfer caller σ σ)) caller ∧ (th-flag σ = th-flag (error-tab-transfer caller σ σ)) | Some(ERROR-MEM error-mem, σ)⇒ ((set-error-mem-waits caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs)))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = Some (ERROR-MEM error-mem))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner = Some (ERROR-MEM error-mem)) ∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = ((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner) | Some(ERROR-IPC error-IPC , σ)⇒ ((set-error-ipc-waits caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = Some (ERROR-IPC error-IPC))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner = Some (ERROR-IPC error-IPC)) ∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = ((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner) | None ⇒ (σ |= (P [])))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show

 -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (∀ a b. (a = NO-ERRORS -→ exec-action id -Mon (IPC WAIT (RECV caller partner msg)) σ = Some (NO-ERRORS , b) -→ ((σ(|current-thread := caller , thread-list := update-th-waiting caller (thread-list σ), error-codes := NO-ERRORS , th-flag := th-flag σ |)) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs)))) ∧ then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (error-tab-transfer caller σ ba) = Some ad then show

))) else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS , σ) ⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))∧ (((th-flag) σ) caller = None) ∧ ((th-flag) σ) caller = ((th-flag) (error-tab-transfer caller σ σ)) caller ∧ (th-flag σ = th-flag (error-tab-transfer caller σ σ))

 (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (∀ a b. (a = NO-ERRORS -→ exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ = Some (NO-ERRORS , b) -→ ((σ(|current-thread := caller , resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs partner σ) (get-msg-values msg σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|)) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , b) -→ ((σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC , state id .th-flag := state id .th-flag σ (caller → (ERROR-IPC error-IPC), partner → (ERROR-IPC error-IPC))|)) |= (outs ← (mbind S (abort lif t exec-action id -Mon));

)))∧ (((th-flag) σ) caller = None) ∧ ((th-flag) σ) caller = ((th-flag) (error-tab-transfer caller σ σ)) caller ∧ (th-flag σ = th-flag (error-tab-transfer caller σ σ)) | Some(ERROR-MEM error-mem, σ)⇒ ((set-error-mem-bufr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs)))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = Some (ERROR-MEM error-mem))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner = Some (ERROR-MEM error-mem)) ∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = ((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner) | Some(ERROR-IPC error-IPC , σ)⇒ ((set-error-ipc-bufr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = Some (ERROR-IPC error-IPC))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner = Some (ERROR-IPC error-IPC)) ∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = ((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner) | None ⇒ (σ |= (P [])))) proof (cases mbind F ailS av e S (

 -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (∀ a b. (a = NO-ERRORS -→ IPC-buf-check-st id caller partner σ -→ ((σ(|current-thread := caller , resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs caller σ) (get-msg-values msg σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|)) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs)))) ∧ (a = NO-ERRORS ∧ msg = [] -→ IPC-buf-check-st id caller partner σ -→ ((σ(|current-thread := caller , resource := resource σ, thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , then show

 (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog)); P outs)) = (if caller ∈ dom ((th-flag σ)) then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ) ⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) ∧ (((th-flag) σ) caller = None) ∧ (((th-flag) σ) caller = ((th-flag) (error-tab-transfer caller σ σ)) caller) ∧ (th-flag σ = th-flag (error-tab-transfer caller σ σ)) | Some(ERROR-MEM error-mem, σ)⇒ ((set-error-mem-maps caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs)))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = Some (ERROR-MEM error-mem))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner = Some (ERROR-MEM error-mem)) ∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = ((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner) | Some(ERROR-IPC error-IPC , σ)⇒ ((set-error-ipc-maps caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = Some (ERROR-IPC error-IPC))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner = Some (ERROR-IPC error-IPC)) ∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = ((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner) | None ⇒ (σ |= (P [])))) proof (cases mbind F ailS av e

)))∧ (((th-flag) σ) caller = None) ∧ (((th-flag) σ) caller = ((th-flag) (error-tab-transfer caller σ σ)) caller) ∧ (th-flag σ = th-flag (error-tab-transfer caller σ σ))) | Some(ERROR-MEM error-mem, σ)⇒ (((set-error-mem-mapr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs)))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = Some (ERROR-MEM error-mem))∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner = Some (ERROR-MEM error-mem)) ∧ (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller = ((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) partner))| Some(ERROR-IPC error-IPC , σ)⇒ (((set-error-ipc-mapr caller partner σ σ error-IPC msg)|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = Some (ERROR-IPC error-IPC))∧

 (a = NO-ERRORS -→ ((σ(|current-thread := caller , resource := foldl (λm (src,dst). (m (src dst))) (resource σ) (zip msg (get-th-addrs caller σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|)) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs)))))) ∧ (caller / ∈ dom ((th-flag)σ) ∧ msg = [] -→ (∀ a b. (a = NO-ERRORS -→ ((σ(|current-thread := caller , resource := resource σ, thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|)) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs))))))) by (auto simp add :abort-map-recv-obvious10 exec-action id -Mon-map-recv-obvious3) M.5 Symbolic Execution Rules for DONE stage

 lemmas trace-normalizer-errors-TestGen = abort-prep-send-obvious10 abort-prep-recv-obvious10 abort-wait-send-obvious10 abort-wait-recv-obvious10 abort-buf-send-obvious10 abort-buf-recv-obvious10 abort-done-send-obvious11 abort-done-recv-obvious11 valid-SE-def bind-SE-def unit-SE-def lemmas trace-normalizer-errors-exec-conj-imp-TestGen = abort-prep-send-obvious10 abort-prep-recv-obvious10 abort-wait-send-obvious10 abort-wait-recv-obvious10 abort-buf-send-obvious10 abort-buf-recv-obvious10 abort-done-send-obvious11 abort-done-recv-obvious11 end theory IPC-symbolic-exec-intros imports IPC-symbolic-exec-rewriting begin N Introduction Rules for Sequence Testing Scheme N.1 Introduction Rules for PREP stage lemma abort-prep-send-mbind-TestGen-Pure-intro: assumes in-err-state: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind (S)(abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) and not-in-err-state1 : a b. caller / ∈ dom ((state id .th-flag σ)) =⇒ a = NO-ERRORS =⇒partner → (ERROR-IPC error-IPC))|) |= (outs ← (mbind (S)(abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC # outs)) shows σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t exec-action id -Mon)); P outs) using assms by (auto simp: abort-wait-recv-obvious10 in-err-state) N.3 Introduction rules rules for BUF stage lemma abort-buf-send-mbind-TestGen-Pure-intro: assumes in-err-state: caller ∈ dom ((th-flag σ)) =⇒ σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)) and not-in-err-state1 : a b. caller / ∈ dom ((th-flag σ)) =⇒ a = NO-ERRORS =⇒ exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ = Some (NO-ERRORS , b) =⇒ σ(|current-thread := caller , resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs partner σ) (get-msg-values msg σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS |) |= (outs ← (mbind (S)(abort lif t exec-action id -Mon));P (NO-ERRORS # outs)) and not-in-err-state2 : a b error-IPC . caller / ∈ dom ((th-flag σ)) =⇒ a = ERROR-IPC error-IPC =⇒ exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , b) =⇒ σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC , state id .th-flag := state id .th-flag σ (caller → (ERROR-IPC error-IPC), partner → (ERROR-IPC error-IPC))|) |= (outs ← (mbind (S)(abort lif t exec-action id -Mon));P (ERROR-IPC error-IPC # outs)) shows σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs) using assms by (auto simp : abort-buf-send-obvious10) lemma abort-buf-recv-mbind-TestGen-Pure-intro: assumes in-err-state: caller ∈ dom ((th-flag σ)) =⇒ σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)) and not-in-err-state1 : a b. caller / ∈ dom ((th-flag σ)) =⇒ a = NO-ERRORS =⇒ exec-action id -Mon (IPC BUF (RECV caller partner msg)) σ = Some (NO-ERRORS , b) =⇒ σ(|current-thread := caller , resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs caller σ) (get-msg-values msg σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS |)|= (outs ← (mbind (S)(abort lif t exec-action id -Mon));P (NO-ERRORS # outs)) and not-in-err-state2 : a b error-IPC . caller / ∈ dom ((th-flag σ)) =⇒ a = ERROR-IPC error-IPC =⇒ exec-action id -Mon (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , b) =⇒ σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC , state id .th-flag := state id .th-flag σ (caller → (ERROR-IPC error-IPC), partner → (ERROR-IPC error-IPC))|)|= (outs ← (mbind (S)(abort lif t exec-action id -Mon));P (ERROR-IPC error-IPC # outs)) shows σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs) using assms by (auto simp: abort-buf-recv-obvious10) N.4 Introduction rules for MAP stage lemma abort-map-send-mbind-TestGen-Pure-intro: assumes in-err-state: caller ∈ dom ((th-flag σ)) =⇒ σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)) and not-in-err-state1 : a b. caller / ∈ dom ((th-flag σ)) =⇒ a = NO-ERRORS =⇒ exec-action id -Mon (IPC MAP (SEND caller partner msg)) σ = Some (NO-ERRORS , b) =⇒ (caller / ∈ dom ((state id .th-flag σ)) =⇒ σ |= (outs ← (mbind (S)(abort lif t exec-action id -Mon));P (NO-ERRORS # outs)))

 error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND, th-flag := th-flag σ (caller → (ERROR-IPC error-IPC-3-in-WAIT-SEND), partner → (ERROR-IPC error-IPC-3-in-WAIT-SEND))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-3-in-WAIT-SEND# outs)))=⇒Q and not-in-err-exec23 : caller / ∈ dom ((th-flag σ)) =⇒ IPC-send-comm-check-st id caller partner σ =⇒ IPC-params-c4 caller partner =⇒ ¬IPC-params-c5 partner σ =⇒ (thread-list σ) caller = None =⇒ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND, th-flag := th-flag σ (caller → (ERROR-IPC error-IPC-6-in-WAIT-SEND), partner → (ERROR-IPC error-IPC-6-in-WAIT-SEND))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-6-in-WAIT-SEND# outs)))=⇒Q and not-in-err-exec24 : caller / ∈ dom ((th-flag σ)) =⇒ IPC-send-comm-check-st id caller partner σ =⇒ IPC-params-c4 caller partner =⇒ ¬IPC-params-c5 partner σ =⇒ ∃ th. (thread-list σ) caller = Some th =⇒ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND, th-flag := th-flag σ (caller → (ERROR-IPC error-IPC-5-in-WAIT-SEND), partner → (ERROR-IPC error-IPC-5-in-WAIT-SEND))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-5-in-WAIT-SEND# outs)))=⇒Q shows Q apply (insert valid-exec) apply (elim abort-wait-send-mbindFSave-E) apply (simp only: in-err-exec) apply (simp only: exec-action id -Mon-wait-send-obvious3) apply (simp add : not-in-err-exec1) apply (simp add : exec-action id -Mon-def WAIT-SEND id -def split: split-if-asm

(

 caller → (ERROR-IPC error-IPC-6-in-WAIT-RECV), partner → (ERROR-IPC error-IPC-6-in-WAIT-RECV))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-6-in-WAIT-RECV # outs)))=⇒Q and not-in-err-exec24 : caller / ∈ dom ((th-flag σ)) =⇒ IPC-recv-comm-check-st id caller partner σ =⇒ IPC-params-c4 caller partner =⇒ ¬IPC-params-c5 partner σ =⇒ ∃ th. (thread-list σ) caller = Some th =⇒ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV , th-flag := th-flag σ (caller → (ERROR-IPC error-IPC-5-in-WAIT-RECV), partner → (ERROR-IPC error-IPC-5-in-WAIT-RECV))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-5-in-WAIT-RECV # outs)))=⇒Q shows Q apply (insert valid-exec) apply (elim abort-wait-recv-mbindFSave-E) apply (simp only: in-err-exec) apply (simp only: exec-action id -Mon-wait-recv-obvious3) apply (simp add : not-in-err-exec1) apply (simp add : exec-action id -Mon-def WAIT-RECV id -def split: split-if-asm

 (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS , σ) =⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-Some2 : σ error-mem. (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) =⇒ ((set-error-mem-bufs caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((set-error-ipc-bufs caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (SEND caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ))) case True then show ?thesis using valid-exec by (subst (asm) abort-buf-send-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False by (subst (asm) abort-buf-send-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-buf-send-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-buf-send-HOL-elim21 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-exec: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-exec1 :caller / ∈ dom ((th-flag σ)) =⇒ IPC-buf-check-st id caller partner σ =⇒ (σ(|current-thread := caller , resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs partner σ) (get-msg-values msg σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs))) =⇒ Q and not-in-err-exec12 : caller / ∈ dom (th-flag σ) =⇒ IPC-buf-check-st id caller partner σ =⇒ msg = [] =⇒ (σ(|current-thread := caller , resource := resource σ, thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs))) =⇒ Q and not-in-err-exec2 : caller / ∈ dom ((th-flag σ)) =⇒ ¬ IPC-buf-check-st id caller partner σ =⇒ (σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND, th-flag:= th-flag σ (caller → (ERROR-IPC error-IPC-1-in-BUF-SEND), partner → (ERROR-IPC error-IPC-1-in-BUF-SEND))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))=⇒ Q shows Q apply(insert valid-exec) apply (subst (asm) abort-buf-send-obvious11) using in-err-exec not-in-err-exec1 not-in-err-exec2 apply auto done O.6 Symbolic Execution rules for BUF RECV lemma abort-buf-recv-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-state-Some1 : σ . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) =⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-Some2 : σ error-mem. (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) =⇒ ((set-error-mem-bufr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((set-error-ipc-bufr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))

 assumes valid-exec: (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-exec: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); σ) =⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-Some2 : σ error-mem. (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) =⇒ ((set-error-mem-maps caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((set-error-ipc-maps caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (SEND caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))

(

 outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-state-Some1 : σ . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) =⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-Some2 : σ error-mem. (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) =⇒ ((set-error-mem-mapr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((set-error-ipc-mapr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (RECV caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))

 using valid-exec False by (subst (asm) abort-map-recv-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-map-recv-HOL-elim2 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-exec: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-exec1 : caller / ∈ dom ((th-flag σ)) =⇒ (σ(|current-thread := caller , resource := foldl (λm (src,dst). (m (src dst))) (resource σ) (zip msg (get-th-addrs caller σ)), thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs))) =⇒ Q and not-in-err-exec12 : caller / ∈ dom ((th-flag σ)) =⇒ msg = [] =⇒ (σ(|current-thread := caller , resource := resource σ, thread-list := update-th-ready caller (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS , th-flag := th-flag σ|) |= (outs ← (mbind S (abortlif t exec-action id -Mon)); P (NO-ERRORS # outs))) =⇒ Q shows Q apply(insert valid-exec) apply (subst (asm) abort-map-recv-obvious11) using in-err-exec not-in-err-exec1 not-in-err-exec12 apply auto done O.9 Symbolic Execution rules for DONE SEND lemma abort-done-send-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state: caller ∈ dom ((th-flag σ)) =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Qand not-in-err-state-Some:(caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC DONE (SEND caller partner msg)) σ = None =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Qand not-in-err-state-None:(caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC DONE (SEND caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))case True then show ?thesis using valid-exec by (subst (asm) abort-done-send-obvious11 , elim in-err-state, simp) next case False then show ?thesis proof (cases ioprog (IPC DONE (SEND caller partner msg)) σ = None) case True then show ?thesis using assms by (subst (asm) abort-done-send-obvious11 , simp only: False comp-apply) next case False then show ?thesis using assms not-in-err-state-None by (metis (mono-tags) comp-apply in-err-state False abort-done-send-obvious11) qed qed lemma abort-done-send-HOL-elim1 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-exec: caller ∈ dom ((th-flag σ)) =⇒ (((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q) and not-in-err-exec1 : caller / ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon));P (NO-ERRORS # outs))) =⇒ Q shows Q using assms by (rule abort-done-send-mbindFSave-E , simp-all add : exec-action id -Mon-def) O.10 Symbolic Execution rules for DONE SEND lemma abort-done-recv-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state: caller ∈ dom ((th-flag σ)) =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-state-Some: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ))) case True then show ?thesis using valid-exec by (subst (asm) abort-done-recv-obvious11 , elim in-err-state, simp) next case False then show ?thesis proof (cases ioprog (IPC DONE (RECV caller partner msg)) σ = None) case True then show ?thesis using assms by (subst (asm) abort-done-recv-obvious11 , simp only: False) next case False then show ?thesis using assms not-in-err-state-None by (metis (mono-tags) in-err-state False abort-done-recv-obvious11) qedσ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = Some (ERROR-IPC error-IPC) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner = Some (ERROR-IPC error-IPC)=⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner =⇒ ((set-error-ipc-waitr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Qand not-in-err-state-None:(caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC WAIT (SEND caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))case True then show ?thesis using valid-exec by (subst (asm) abort-wait-send-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False by (subst (asm) abort-wait-send-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-wait-send-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-wait-send-HOL-elim21 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = Some (ERROR-IPC error-IPC) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner = Some (ERROR-IPC error-IPC)=⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner =⇒ ((set-error-ipc-waitr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC WAIT (RECV caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))

σ

 error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = Some (ERROR-IPC error-IPC) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner = Some (ERROR-IPC error-IPC)=⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner =⇒ ((set-error-ipc-bufs caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (SEND caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))

 assumes valid-exec: (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S) ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) =⇒ ((th-flag σ)) caller = None =⇒ ((th-flag (error-tab-transfer caller σ σ))) caller = ((th-flag σ)) caller =⇒ th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-Some2 : σ error-mem. (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) =⇒ ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) caller = Some (ERROR-MEM error-mem) =⇒ ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) partner = Some (ERROR-MEM error-mem) =⇒ ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) caller = ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) partner =⇒ ((set-error-mem-bufr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = Some (ERROR-IPC error-IPC) =⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner = Some (ERROR-IPC error-IPC)=⇒ ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) caller = ((th-flag (set-error-ipc-maps caller partner σ σ error-IPC msg))) partner =⇒ ((set-error-ipc-bufr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) =⇒Qand not-in-err-state-None:(caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC BUF (RECV caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ)))(caller → (ERROR-IPC error-IPC-1-in-BUF-RECV), partner → (ERROR-IPC error-IPC-1-in-BUF-RECV))|) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (ERROR-IPC error-IPC-1-in-BUF-RECV # outs)))=⇒ Q shows Q apply(insert valid-exec) apply (elim abort-buf-recv-HOL-elim21) using in-err-exec not-in-err-exec1 not-in-err-exec2 not-in-err-exec12 apply auto done P.7 Symbolic Execution rules for MAP SEND lemma abort-map-send-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-state-Some1 : σ . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS , σ) =⇒ ((th-flag σ)) caller = None =⇒ ((th-flag (error-tab-transfer caller σ σ))) caller = ((th-flag σ)) caller =⇒ th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-Some2 : σ error-mem. (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) =⇒ ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) caller = Some (ERROR-MEM error-mem) =⇒ ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) partner = Some (ERROR-MEM error-mem) =⇒ ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) caller = ((th-flag (set-error-mem-maps caller partner σ σ error-mem msg))) partner =⇒ ((set-error-mem-maps caller partner σ σ error-mem msg) assumes 1 : resource σ = (foldl (λm (src,dst). (m (src dst))) (resource σ) (n#ns)) and 2: (fst n) shares (resource σ)((fst n) (snd n)) (snd n) =⇒ ((resource σ)((fst n) (snd n)) $ (fst n)) = ((resource σ)((fst n) (snd n)) $ (snd n)) =⇒ ((resource σ)((fst n) (snd n)) $ (fst n)) = ((resource σ) $ (fst n)) =⇒ resource σ = (foldl (λm (src,dst). (m (src dst))) ((resource σ)((fst n) (snd n))) ns) =⇒Qshows Q using 1 using transfer-share [of fst n, of (resource σ), of snd n] transfer-share-lookup2 [of (resource σ), of fst n, of snd n] transfer-share-lookup1 [of (resource σ), of fst n, of snd n] apply (elim 2) apply (simp-all add : Product-Type.split-beta) done lemma mem-share-list-I :(fst n) shares (resource σ)((fst n) (snd n)) (snd n) =⇒ ((resource σ)((fst n) (snd n)) $ (fst n)) = ((resource σ)((fst n) (snd n)) $ (snd n)) =⇒ ((resource σ)((fst n) (snd n)) $ (fst n)) = ((resource σ) $ (fst n)) =⇒ resource σ = (foldl (λm (src,dst). (m (src dst))) ((resource σ)((fst n) (snd n))) ns) =⇒ resource σ = (foldl (λm (src,dst). (m (src dst))) (resource σ) (n#ns)) using transfer-share [of fst n, of (resource σ), of snd n] transfer-share-lookup2 [of (resource σ), of fst n, of snd n] transfer-share-lookup1 [of (resource σ), of fst n, of snd n] apply (simp-all add : Product-Type.split-beta) done lemma abort-map-send-HOL-elim2 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-exec: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-exec1 : caller / ∈ dom ((th-flag σ)) =⇒ ((th-flag σ)) caller = None =⇒ ((th-flag (error-tab-transfer caller σ σ))) caller = case False then show ?thesis using valid-exec False hyp1 apply (subst (asm) abort-done-send-obvious11) apply (simp only: if-False comp-apply split: bool .split-asm) apply (elim not-in-err-state-None) apply (erule contrapos-np) apply (simp-all) done qed qed lemma abort-done-send-HOL-elim1 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-state1 : caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒ (((th-flag (remove-caller-error caller σ)))) partner = ((th-flag σ)) partner =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and in-err-state2 : caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒ (((th-flag (remove-caller-error caller σ)))) partner = None =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-exec1 : caller / ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon));P (NO-ERRORS # outs))) =⇒ Q shows Q using valid-exec by (rule abort-done-send-mbindFSave-E , simp-all add : exec-action id -Mon-def in-err-state1 in-err-state2 not-in-err-exec1) P.10 Symbolic Execution rules for DONE SEND lemma abort-done-recv-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state1 : caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒ (((th-flag σ)) partner = (((th-flag (remove-caller-error caller σ)))) partner) =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and in-err-state2 : caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒ (((th-flag (remove-caller-error caller σ)))) partner = None =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-state-Some: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q and not-in-err-state-None: (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒ (σ |= (P [])) =⇒ Q shows Q proof (cases caller ∈ dom ((th-flag σ))) case True then show ?thesis using valid-exec apply (subst (asm) abort-done-recv-obvious12 , simp) apply (erule disjE) apply (erule conjE)+ apply (simp add : in-err-state1) apply (erule conjE)+ apply (simp add : in-err-state2) done next case False assume hyp1 : caller / ∈ dom ((th-flag σ)) then show ?thesis proof (cases ioprog (IPC DONE (RECV caller partner msg)) σ = None) case True then show ?thesis using assms by (subst (asm) abort-done-recv-obvious11 , simp only: False) next case False then show ?thesis using valid-exec False hyp1 apply (subst (asm) abort-done-recv-obvious11) apply (simp only: if-False split: bool .split-asm) apply (elim not-in-err-state-None) apply (erule contrapos-np) apply (simp-all) done qed qed lemma abort-done-recv-HOL-elim1 : assumes valid-exec: (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) and in-err-state1 : caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒ (th-flag (remove-caller-error caller σ)) partner = (th-flag σ) partner =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and in-err-state2 :caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒ (th-flag (remove-caller-error caller σ)) partner = None =⇒ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-exec1 : caller / ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon));P (NO-ERRORS # outs))) =⇒ Q shows Q using valid-exec by (rule abort-done-recv-mbindFSave-E , simp-all add : exec-action id -Mon-def in-err-state1 in-err-state2 not-in-err-exec1) end theory IPC-system-calls imports IPC-symbolic-exec-intros IPC-symbolic-exec-elims begin Q HOL representation of PikeOS IPC system calls

Q. 2

 2 System calls based on datatype datatype (thread-id , msg) P4-IPC-call = P4-IPC-call thread-id thread-id msg | P4-IPC-SEND-call thread-id thread-id msg | P4-IPC-RECV-call thread-id thread-id msg | P4-IPC-BUF-call thread-id thread-id msg | P4-IPC-BUF-SEND-call thread-id thread-id msg | P4-IPC-BUF-RECV-call thread-id thread-id msg | P4-IPC-MAP-call thread-id thread-id msg | P4-IPC-MAP-SEND-call thread-id thread-id msg | P4-IPC-MAP-RECV-call thread-id thread-id msg IPC WAIT (RECV caller partner msg), IPC MAP (RECV caller partner msg), IPC DONE (RECV caller partner msg)])Q.3 Predicates on system callsdefinition is-ipc-system-call id where is-ipc-system-call id sc = (∃ caller partner msg. sc = P4-IPC id caller partner msg) lemmas system-calls-normalizer = is-ipc-system-call id -def P4-IPC id -def end theory IPC-coverage imports IPC-system-calls begin fun sync-communication :: a list ⇒ a list ⇒ a list ⇒ a list set ((-/ -/ -) [201 , 0 , 201] 200) where [] [] [] = {[]}| A [] B = interleave A B | [] N [] = {[]}| A [n1 , n2] [] = (if n1 ∈ set A ∨ n2 ∈ set A then {} else {A})| [] [n1 ,n2] (B) = (if n1 ∈ set B ∨ n2 ∈ set B then {} else {B })| (a#A) [n1 ,n2] (b#B) = (if (a = n1 ∧ b = n2) then image (λ x . n1 #n2 # x) (A [n1 ,n2] B) else if a = n1 ∧ b = n2 then image (λ x . a # x) (A [n1 ,n2] (b#B)) else if a = n1 ∧ b = n2 then image (λ x . b # x) ((a#A) [n1 ,n2] B) else (image(λ x . a # x) (A [n1 ,n2] (b#B)) ∪ (image (λ x . b # x) ((a#A) [n1 ,n2] B))))| A N B = A [] Bdatatype(th-id , sclist)criterion = interleave-all (th-id × sclist) list |TPAIR th-id th-id th-id sclist |COMM th-id th-id th-id sclist IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-BUF-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-BUF-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg),IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-MAP-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) definition [simp]: sc-cases-IPC-SEND-call th msg th sc = (case sc of P4-IPC-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) (* check if th is caller of sc and th is his partner and msg msg are equal *) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] (th msg th) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] (th msg th))) |P4-IPC-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] (th msg th) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] (th msg th)) |P4-IPC-BUF-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-BUF-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-MAP-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |-⇒ {}) definition [simp]: sc-cases-IPC-RECV-call th msg th sc = (case sc of P4-IPC-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) (* check if th is caller of sc and th is his partner and msg msg are equal *) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] (th msg th) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)](th msg th))) |P4-IPC-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] (th msg th) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] (th msg th))) |P4-IPC-BUF-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-BUF-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((thmsgth) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-MAP-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg =msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |-⇒ {}) definition [simp]: sc-cases-IPC-BUF-call th msg th sc = (case sc of P4-IPC-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) (* check if th is caller of sc and th is his partner and msg msg are equal *) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (thmsgth) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-BUF-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-BUF-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-BUF-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-BUF-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-BUF-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC BUF (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC BUF (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |-⇒ {}) definition [simp]: sc-cases-IPC-MAP-call th msg th sc = (case sc of P4-IPC-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) (* check if th is caller of sc and th is his partner and msg msg are equal *) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-MAP-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |-⇒ {}) definition [simp]: sc-cases-IPC-MAP-SEND-call th msg th sc = (case sc of P4-IPC-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) (* check if th is caller of sc and th is his partner and msg msg are equal *) then {} else (((th msg th) [IPC WAIT (SEND th th msg), IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg), IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |P4-IPC-MAP-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-MAP-RECV-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])) |-⇒ {}) definition [simp]: sc-cases-IPC-MAP-RECV-call th msg th sc = (case sc of P4-IPC-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) (* check if th is caller of sc and th is his partner and msg msg are equal *) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else ((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]))) |P4-IPC-MAP-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (((th msg th) [IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg)] ([IPC PREP (RECV th th msg), IPC WAIT (RECV th th msg), IPC MAP (RECV th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)]) ∪ (th msg th) [IPC WAIT (RECV th th msg) , IPC WAIT (SEND th th msg)] ([IPC PREP (SEND th th msg), IPC WAIT (SEND th th msg), IPC MAP (SEND th th msg), IPC DONE (SEND th th msg), IPC DONE (RECV th th msg)])))) |P4-IPC-MAP-SEND-call th1 th2 msg ⇒ (if (th2 = th) ∨ (th1 = th) ∨ (msg = msg) then {} else (th msg th) else sc-cases-IPC-MAP-RECV-call th msg th sc)) fun criteria :: (th-id , (th-id , msg) P4-IPC-call)criterion ⇒ ((p4-stage ipc , (th-id , msg) p4-direct ipc)action ipc list) set where criteria (interleave-all S) = undefined |criteria (COMM th th scTab) = (case scTab th of None ⇒ {} | Some sc ⇒ (case scTab th of None ⇒ {} | Some sc ⇒ comm-cases th th sc sc)) |criteria (TPAIR th th scTab) = (case scTab th of None ⇒ (case scTab th of None ⇒ {} | Some sc ⇒ {IPC-call-sem sc}) | Some sc ⇒ (case scTab th of None ⇒ {IPC-call-sem sc} | Some sc ⇒ interleave (IPC-call-sem sc) (IPC-call-sem sc))) Q.5 Partial order theorem lemma partial-order-ipc-instance-resource: assumes 1 : th = th shows image (λ is. mbind is (λa. (out1 ← BUF-RECV M O N a ; MAP-RECV M O N a)) σ) (criteria (COMM th th [th → P4-IPC-call th th msg , th → P4-IPC-call th th msg])) = image (λ is. mbind is (λa. (out1 ← BUF-RECV M O N a ; MAP-RECV M O N a)) σ) (interleave (th msg th) (th msg th)) oops lemma (int o card) (criteria (COMM th th [th → P4-IPC-call th th msg , th → P4-IPC-call th th msg])) < (int o card) ((interleave (th msg th) (th msg th))) by simp Q.6 ipc communications derivations Q.7 Lemmas on ipc communications lemma comm-with-P4-IPC-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) fix scTab th case None from this show ?thesis using assms by auto next case (Some a) from this show ?thesis using assms by auto qed lemma comm-with-P4-IPC-BUF-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-BUF-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma comm-with-P4-IPC-BUF-SEND-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-BUF-SEND-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma comm-with-P4-IPC-BUF-RECV-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-BUF-RECV-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma comm-with-P4-IPC-MAP-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-MAP-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma comm-with-P4-IPC-MAP-SEND-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-MAP-SEND-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma comm-with-P4-IPC-MAP-RECV-call-Some: assumes 1 :(the o scTab) th = (P4-IPC-call th th msg) ∧ (the o scTab) th = (P4-IPC-MAP-RECV-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed Q.8 No communications lemma not-comm-SEND-SEND: assumes 1 :(the o scTab) th = (P4-IPC-SEND-call th th msg) ∧ (the o scTab) th = (P4-IPC-SEND-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma not-comm-SEND-SEND-BUF : assumes 1 :(the o scTab) th = (P4-IPC-SEND-call th th msg) ∧ (the o scTab) th = (P4-IPC-BUF-SEND-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma not-comm-SEND-SEND-MAP : assumes 1 :(the o scTab) th = (P4-IPC-SEND-call th th msg) ∧ (the o scTab) th = (P4-IPC-MAP-SEND-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma not-comm-RECV-RECV : assumes 1 :(the o scTab) th = (P4-IPC-RECV-call th th msg) ∧ (the o scTab) th = (P4-IPC-RECV-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma not-comm-RECV-RECV-BUF : assumes 1 :(the o scTab) th = (P4-IPC-RECV-call th th msg) ∧ (the o scTab) th = (P4-IPC-BUF-RECV-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th shows criteria (COMM th th scTab) = {} proof (cases scTab th) case None assume 1 : scTab th = None then show ?thesis using assms by auto next case (Some a) assume 1 : scTab th = Some a then show ?thesis using assms by (auto simp: split:option.split) qed lemma not-comm-RECV-RECV-MAP : assumes 1 :(the o scTab) th = (P4-IPC-RECV-call th th msg) ∧ (the o scTab) th = (P4-IPC-MAP-RECV-call th th msg) and 2 : th ∈ dom scTab ∧ th ∈ dom scTab and 3 : th = th

6

 Testing PikeOS API 6.1 Introduction . 6.2 PikeOS IPC Protocol . 6.3 PikeOS Model . 6.3.1 State . 6.3.2 Actions . 6.3.3 Traces, executions and input sequences 6.3.4 Aborted Executions 6.3.5 IPC Execution Function 6.3.6 System Calls . 6.4 A Generic Shared Memory Model 6.5 Testing PikeOS IPC . 6.5.1 Coverage Criteria for IPC 6.5.2 Test Case Generation Process 6.5.3 Symbolic Execution Rules 6.5.4 Abstract Test Cases 6.5.5 Test Data For Sequence-based Test Scenarios Trace refinement . Simplification rules related to traces I IPC Stepping Function and Traces I.1 Simplification rules related to the stepping function exec-action id -Mon . J Atomic Actions Reasoning .

		H.2
		H.3	Execution function for actions with thread ID
		H.4	IPC operations with thread ID
		H.5	IPC operations with free variables
	H.6 H.7 1 Pridicates on operations
			Part I
		Introduction and Context
		A.4	Threads .
	B	Shared Memory Model .
		B.1	Prerequisites .
		B.2	Definition of the shared-memory type
		B.3	Operations on Shared-Memory
		B.4	Sharing Relation Definition

6.5.6 Test Drivers . 6.5.7 Experimental Results 6.6 Conclusion . 6.6.1 Related Work. 6.6.2 Conclusion and Future Work. III Conclusions 7 Conclusions and Future Works 7.1 Summary . 7.2 Futur Works . IV PikeOS IPC Model A Isabelle sources A HOL representation of PikeOS Datatypes A.1 kernel state . A.2 atomic actions . A.3 traces . Introduction Contents 1.1 Motivations . 2 1.2 Contributions . 4 1.3 Overview . 7

 Conclusions .

	2.3.6 Isabelle/HOL Document Generation
	2.3.7 Isabelle extensions: HOL-TestGen
	2.4 The Verified Architecture Microprocessor (VAMP) 37
	2.5 PikeOS System Architecture
	2.6

2 Context Contents 2.1 Introduction . 2.2 Formal Testing and Prover-Based Testing 2.2.1 On Theorem Proving Based Testing (PBT) 2.2.2 A Gentle Introduction to: Sequence Testing 2.2.3 Background on Sequence Testing Models 2.3 Isabelle/HOL . 2.3.1 The Isabelle System Architecture 2.3.2 Isabelle and its Meta-Logic 2.3.3 The Isabelle Methodology and Specification Constructs . 2.3.4 Isabelle Proofs . 2.3.5 Isabelle/HOL Code Generation

 Contents 3.1 Introduction . 3.2 Common Criteria: Normative Context 3.3 Methodological Recommendations for the Evaluator . 3.3.1 On the use of SML 3.3.2 Axioms and Bogus-Proofs 3.3.3 On the use of external provers

	3.4 Extensions of Isabelle: Guidelines for the Eval-
	uator .
	3.4.1 An Example: The Isabelle/Simpl
	3.5 Recommendations for CC certifications
	3.5.1 A refinement based approach for CC evaluation . .

3.6 Summary .

3.6.1 Background References 51 3.6.2 Concluding Remarks and a Summary 51

 For testing the load/store operations, we obtained:

	Number of successful test cases : 54 of 585 (ca . 9%)
	Number of warning :	0 of 585 (ca . 0%)
	Number of errors :	0 of 585 (ca . 0%)
	Number of failures :	531 of 585 (ca . 91%)
	Number of fatal errors :	0 of 585 (ca . 0%)
	Number of successful test cases : 303 of 585 (ca . 51%)
	Number of warning :	0 of 585 (ca . 0%)
	Number of errors :	0 of 585 (ca . 0%)
	Number of failures :	282 of 585 (ca . 49%)
	Number of fatal errors :	0 of 585 (ca . 0%)

 table, if a given thread executing an action different from DONE is in the domain of the function that specify the error table, then we purge his executed action (we do nothing to the state of the system) else we will execute the action. During every DONE action execution, if the thread is in the error table then, we remove it from the domain of the function that specify the error table else, we execute the DONE action. The hol! representation of the new monad operator is abort lift , the latter express the explained behavior and will be wrapped around our transition function for PikeOS IPC protocol. The wrapper transforms the behavior of if executing DONE stage then if an error happened then Update error table by removing the error flag of the current thread and don't execute the DONE action. else Execute the DONE action. end else if Executing a different IPC stage from DONE then if an error happened then Update the error table by putting an error flag on both threads in the IPC communication, the caller and his partner, and purge the executed action.

else Execute the action. end end end Algorithm 2: A pseudo code for the Abort operator the basic transition function related to IPC protocol presented in subsection 6.3.5, to a the behavior abstracted by algorithm 2. fun abort lift :: (ACTION ipc ⇒(errors, (ACTION ipc ,'a) state id _scheme)Mon SE) ⇒ (ACTION ipc ⇒(errors, (ACTION ipc ,'a) state id _scheme)Mon SE) where abort lift ioprog a σ=

 .1) in SML, Haskell, Scala and F#. For our application, we generate SML test scripts and use MLton (www.mlton.org) for building the test executable: MLton 1. provides a foreign function interface to C and 2. is easily portable to small POSIX system (it mainly requires a C compiler, libc, and libm).1 In more detail, we generate two SML structures automatically from the Isabelle theories. The first structure, called Datatypes, contains the datatypes that are used by the interface of the SUT. In our example, this includes, e. g.

, IPC_protocol and P4_IPC_call. The second structure, called TestScript, contains a list of all generated test cases as well the test oracle, i. e., the algorithms necessary to decide if a test result complies to the specification or not. In addition, HOL-TestGen provides a test harness (as SML structure TestHarness) that 1. takes the list of test cases (from TestScript) and executes them on the SUT, 2. uses the test oracle (also from TestScript) to decide if the actual test results complies to the specification, and 3. provides statistics about the number of successful and failed tests as well as errors (e. g., unexpected exceptions) during test execution.

 6.1 represent 5 2 different test specifications related to PikeOS IPC , i. e. test scenarios for PikeOS IPC API, and also the statistics related to the application of the different steps of our test generation process on these scenarios. Four columns are distinguished in Table 6.1: 1. SE: is the step related to the symbolic execution process. During this step the derived symbolic execution rules related to PikeOS IPC are applied on the scenario. 2. Norm: represent the step of our normalization process. During this step we apply tactics like simp and other derived rules from the model in order to eliminate contradictory proof goals resulting from the SE step.

Table 6 .

 6 If the state is not ini-1: Statistics for our TestGen Process tialised correctly our generated tests detect the bugs. Finally, we still have problems to define a program that initialise automatically the state of the demonstrate and bring it to the same value generated by the model. At the moment this step is done manually, and this due to some technical chanllenges like, how to export or import the values of a static array defined on

	Scenarios	SE			Norm	TT		TD	
		Num Time Num Time Num Time Num Time
	Sc1	69984 120 undet undet undet undet undet undet
	Sc2	1973	2	27	360	1	162	undet undet
	Sc3	1973	2	2	0.01	1	120	2080	0.23
	Sc4	1973	2	-	-	-	-	-	-
	Sc5	1973	2	-	-	-	-	-	-

C-level to the sml-level. Finally, another technical challenge is that GDB can not run an executable containing a Main.sml function defined in sml language. In order to deal with this problem, we have to define a Main.c function on C-level and call our harness.sml inside the Main.c, and this using the foreign function interface of MLton.

 def by(subst Abs-memory-inverse, simp-all add : equiv sharing-conform)

	assumes 1 : i = k
	shows ¬(i shares init k)
	unfolding sharing-def init-def
	using 1
	by (auto simp: Abs-memory-inverse identity-equivp)
	lemma shares-init[simp]: (x shares init y) = (x =y)
	unfolding sharing-def init-def
	by (metis init-def sharing-init sharing-def sharing-refl)
	lemma sharing-init-mem-list:
	assumes 1 : i = k
	shows ¬(i shares init-mem-list S k)
	unfolding sharing-def init-mem-list-def
	using 1
	by (auto simp: Abs-memory-inverse identity-equivp)
	B.4 Sharing Relation Definition
	lemma sharing-charn: using assms
	equivp (snd (Rep-memory σ)) unfolding sharing-def
	using Rep-memory[of σ] using Rep-memory[of σ]
	unfolding sharing-def by auto
	by auto
	lemma sharing-charn :
	lemma sharing-init:

definition sharing :: α ⇒ (α, β)memory ⇒ α ⇒ bool ((-shares() -/ -) [201 , 0 , 201] 200) where (x shares σ y) ≡ (snd (Rep-memory σ) x y) definition Sharing :: α set ⇒ (α, β)memory ⇒ α set ⇒ bool ((-Shares() -/ -) [201 , 0 , 201] 200) where (X Shares σ Y) ≡ (∃ x ∈X . ∃ y∈Y . x shares σ y) B.5 Properties on Sharing Relation assumes 1 : (x shares σ y) shows (∃ R. equivp R ∧ R x y) by (auto simp add : sharing-def snd-def equivp-def) lemma sharing-charn2 : shows∃ x y. (equivp (snd (Rep-memory σ)) ∧ (snd (Rep-memory σ)) x y) using sharing-charn [THEN equivp-reflp] by (simp)fast -Lemma to show that ?x shares ? σ ?y ≡ snd (Rep-memory ? σ) ?x ?y is reflexive lemma sharing-refl : (x shares σ x) using insert Rep-memory[of σ] by (auto simp: sharing-def elim: equivp-reflp) -Lemma to show that ?x shares ? σ ?y ≡ snd (Rep-memory ? σ) ?x ?y is symetric lemma sharing-sym [sym]: assumes x shares σ y shows y shares σ x using assms Rep-memory[of σ] by (auto simp: sharing-def elim: equivp-symp) lemma sharing-commute : x shares σ y = (y shares σ x) by(auto intro: sharing-sym) -Lemma to show that ?x shares ? σ ?y ≡ snd (Rep-memory ? σ) ?x ?y is transitive lemma sharing-trans [trans]: assumes x shares σ y and y shares σ z shows x shares σ z using assms insert Rep-memory[of σ] by(auto simp: sharing-def elim: equivp-transp) lemma shares-result: assumes x shares σ y shows fst (Rep-memory σ) x = fst (Rep-memory σ) y

 definition IPC-sub-sub-sp ::thread id ⇒thread id ⇒ (thread id ⇒thread id ⇒ bool)⇒(thread id thread ipc)⇒ bool where IPC-sub-sub-sp caller partner rel thl = (reflp rel ∧ rel caller partner ∧ caller ∈ dom thl ∧ partner ∈ dom thl) definition IPC-send-comm-check ::thread id ⇒thread id ⇒ (thread id ⇒thread id ⇒ bool)⇒(thread id thread (dom o fst o Rep-memory)((own-vmem-adr o the o thl) caller) ⊆ ((dom o fst o Rep-memory) mem) ∧ rel partner mem) .4 interface between IPC Preconditions and IPC a state id -scheme definition IPC-send-comm-check-st id ::thread id ⇒ thread id ⇒ a state id -scheme⇒ bool where IPC-send-comm-check-st id caller partner σ = (IPC-sub-sub-sp caller partner (communication-rights σ) (thread-list σ) ∧ IPC-params-c4 caller partner) definition IPC-recv-comm-check-st id ::thread id ⇒ thread id ⇒ a state id -scheme⇒ bool where IPC-recv-comm-check-st id caller partner σ = IPC-sub-sub-sp caller partner (communication-rights σ) (thread-list σ) definition IPC-buf-check-st id ::thread id ⇒ thread id ⇒ a state id -scheme⇒ bool where IPC-buf-check-st id caller partner σ = IPC-buf-check caller partner (resource σ) (access-rights σ) (thread-list σ) definition IPC-map-check-st id

	definition IPC-map-check
	where	IPC-map-check = undefined

ipc)⇒ bool where IPC-send-comm-check caller partner rel thl = (IPC-sub-sub-sp caller partner rel thl ∧ IPC-params-c4 caller partner) definition IPC-recv-comm-check ::thread id ⇒thread id ⇒ (thread id ⇒thread id ⇒ bool)⇒(thread id thread ipc)⇒ bool where IPC-recv-comm-check caller partner rel thl = IPC-sub-sub-sp caller partner rel thl F.3 IPC conditions on threads access rights definition IPC-sub-obj-sp where IPC-sub-obj-sp = undefined definition IPC-buf-check :: thread id ⇒thread id ⇒ (int, int) memory ⇒ (thread id ⇒ (int, int) memory ⇒bool)⇒ (thread id thread ipc) ⇒bool where IPC-buf-check caller partner mem rel thl = (caller ∈ dom thl ∧ partner ∈ dom thl ∧ Fwhere IPC-map-check-st id = undefined end theory IPC-atomic-actions imports IPC-actions-preconditions ../../../../src/TestLib begin G HOL representation of PikeOS IPC atomic actions G.1 Types instantiation In order to model PikeOS IPC API atomic actions, we will instantiate types of the parameters of a by other Isabelle datatypes as following:

| IPC-RECV thread-id thread-id adresses

 resource (exec-action id σ (IPC PREP (SEND caller partener msg))) = resource σ by (auto simp : PREP-SEND id -def) lemma mem-inv5 [simp]: resource (exec-action id σ (IPC BUF (RECV caller partner msg))) = (if ¬ IPC-buf-check-st id caller partner σ then resource σ else foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs caller σ) (get-msg-values msg σ))) by (auto simp : BUF-RECV id -def) by (auto simp :BUF-SEND id -def)

	definition actioneq a a = (case a of (IPC PREP (SEND caller partner msg)) ⇒ (actions-send-cases a caller partner msg) | (IPC PREP (RECV caller partner msg)) ⇒ (actions-receiv-cases a caller partner msg) | (IPC WAIT (SEND caller partner msg)) ⇒ (actions-send-cases a caller partner msg) lemma mem-inv5-E : case True show ?thesis using True 1 unfolding mem-inv5 by (simp, elim 2) next case False show ?thesis using False 1 unfolding mem-inv5 by (simp, elim 3 , simp) qed qed lemma mem-inv6 [simp]: resource (exec-action lemma mem-inv6-E : assumes 1 : σ = resource (exec-action id σ (IPC BUF (SEND caller partner msg))) and proof -show ?thesis using 1 unfolding mem-inv5 proof (cases ¬ IPC-buf-check-st id caller partner σ) case True show ?thesis using True 1 unfolding mem-inv6 by (simp, elim 2) next case False show ?thesis using False 1 unfolding mem-inv6 by (simp, elim 3 , simp) qed qed 2 : ¬ IPC-buf-check-st shows Q lemma mem-inv7 [

| (IPC WAIT (RECV caller partner msg)) ⇒ (actions-receiv-cases a caller partner msg) | (IPC BUF (SEND caller partner msg)) ⇒ (actions-send-cases a caller partner msg) | (IPC BUF (RECV caller partner msg)) ⇒ (actions-receiv-cases a caller partner msg) | (IPC DONE (SEND caller partner msg)) ⇒ (actions-send-cases a caller partner msg) | (IPC DONE (RECV caller partner msg)) ⇒ (actions-receiv-cases a caller partner msg)) G.7 Lemmas and simplification rules related to atomic actions lemma mem-inv1 [simp]: resource (exec-action id σ (IPC WAIT (SEND caller partener msg))) = resource σ apply (auto simp : WAIT-SEND id -def) apply (cases thread-list σ caller ,auto) done lemma mem-inv2 [simp]: resource (exec-action id σ (IPC WAIT (RECV caller partener msg))) = resource σ apply (auto simp : WAIT-RECV id -def) apply (cases thread-list σ caller ,auto) done lemma mem-inv3 [simp]: resource (exec-action id σ (IPC PREP (RECV caller partener msg))) = resource σ by (auto simp : PREP-RECV id -def) lemma mem-inv4 [simp]: assumes 1 : σ = resource (exec-action id σ (IPC BUF (RECV caller partner msg))) and 2 : ¬ IPC-buf-check-st id caller partner σ =⇒ σ = resource σ =⇒ Q and 3 : IPC-buf-check-st id caller partner σ =⇒ σ = foldl (λm (addr ,val). (m (addr :=

$ val))) (resource σ) (zip (get-th-addrs caller σ) (get-msg-values msg σ)) =⇒ Q shows Q proofshow ?thesis using 1 unfolding mem-inv5 proof (cases ¬ IPC-buf-check-st id caller partner σ) id σ (IPC BUF (SEND caller partner msg))) = (if ¬ IPC-buf-check-

st id caller partner σ then resource σ else foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs partner σ) (get-msg-values msg σ))) id caller partner σ =⇒ σ = resource σ =⇒ Q and 3 : IPC-buf-check-st id caller partner σ =⇒ σ = foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) (zip (get-th-addrs partner σ) (get-msg-values msg σ)) =⇒ Q

 request id :: thread id ⇒ int list⇒ thread id ⇒ trace ipc ((idid / -) [201 , 0 , 201] 200) where caller id msg id partner ≡ [IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg)] definition ipc-recv-request id :: thread id ⇒ int list⇒ thread id ⇒ trace ipc ((idid / -) [201 , 0 , 201] 200) where caller id msg id partner ≡ [IPC PREP (RECV caller partner msg),

	abbreviation ipc-send-response ((--/ -) [201 , 0 , 201] 200)
	where caller	msg	partner ≡ [IPC PREP (SEND caller partner msg),
			IPC WAIT (SEND caller partner msg),
			IPC BUF (SEND caller partner msg),
			IPC MAP (SEND caller partner msg),
			IPC DONE (SEND caller partner msg),
			IPC DONE (RECV partner caller msg)]
	abbreviation ipc-recv-response ((-	-/ -) [201 , 0 , 201] 200)
	where		
	caller	msg	partner ≡ [IPC PREP (RECV caller partner msg),
			IPC WAIT (RECV caller partner msg),
			IPC BUF (RECV caller partner msg),
			IPC MAP (RECV caller partner msg),
			IPC DONE (SEND partner caller msg),
			IPC DONE (RECV caller partner msg)]
	abbreviation ipc-send-request ((--/ -) [201 , 0 , 201] 200)
	where caller	msg	partner ≡ [IPC PREP (SEND caller partner msg),
			IPC WAIT (SEND caller partner msg)]
	abbreviation ipc-recv-request ((--/ -) [201 , 0 , 201] 200)
	where caller	msg	partner ≡ [IPC PREP (RECV caller partner msg),
			IPC WAIT (RECV caller partner msg)]

IPC WAIT (RECV caller partner msg)] -A thread can do response operation to sending or receiving message response definition ipc-send-response id ::thread id ⇒ int list⇒ thread id ⇒ trace ipc ((idid / -) [201 , 0 , 201] 200) where caller id msg id partner ≡ [IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC DONE (RECV partner caller msg)] definition ipc-recv-response id ::thread id ⇒ int list⇒ thread id ⇒ trace ipc ((idid / -) [201 , 0 , 201] 200) where caller id msg id partner ≡ [IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (RECV caller partner msg), IPC DONE (SEND partner caller msg), IPC DONE (RECV caller partner msg)] lemmas request-normalizer = ipc-send-response id -def ipc-recv-response id -def ipc-send-request id -def ipc-recv-request id -def H.5 IPC operations with free variables

 Noneshows (abort lif t ioprog) (IPC stages (SEND caller partner msg)) σ = None using assms by(simp add : split: p4-stage ipc .split,safe, simp-all)

	and fix caller ioprog-fail : ioprog (IPC stages direction) σ = None caller / ∈ dom ((state id .th-flag σ)) =⇒
	shows (abort lif t ioprog) (IPC stages direction) σ = None show stages = DONE =⇒
	proof (cases stages) stages = WAIT =⇒ ioprog (IPC stages direction) σ = None =⇒
	case (PREP) caller / ∈ dom ((state id .th-flag σ)) =⇒ direction = SEND thread-id1 thread-id2 adresses =⇒
	then show abort lif t ioprog (IPC stages direction) σ = None stages = DONE =⇒ abort lif t ioprog (IPC stages direction) σ = None
	using assms ioprog (IPC stages direction) σ = None =⇒ using assms
	proof (cases direction) direction = RECV thread-id1 thread-id2 adresses =⇒ by simp
	case (SEND thread-id1 thread-id2 adresses) abort lif t ioprog (IPC stages direction) σ = None next
	fix caller using assms case (RECV thread-id1 thread-id2 adresses)
	show by simp fix caller
	stages = PREP =⇒ qed show
	caller / ∈ dom ((state id .th-flag σ)) =⇒ stages = MAP =⇒ next
	stages = DONE =⇒ case (BUF) caller / ∈ dom ((state id .th-flag σ)) =⇒
		ioprog (IPC stages direction) σ = None =⇒ stages = DONE =⇒
		direction = SEND thread-id1 thread-id2 adresses =⇒ ioprog (IPC stages direction) σ = None =⇒
		abort lif t ioprog (IPC stages direction) σ = None direction = RECV thread-id1 thread-id2 adresses =⇒
	using assms abort lif t ioprog (IPC stages direction) σ = None
	by simp using assms
	next by simp
	case (RECV thread-id1 thread-id2 adresses) qed
	fix caller next
	show case (DONE)
	stages = PREP =⇒
		caller / ∈ dom ((state id .th-flag σ)) =⇒
		stages = DONE =⇒
	ioprog (IPC stages direction) σ = None =⇒ using assms
	direction = RECV thread-id1 thread-id2 adresses =⇒ by simp
	abort lif t ioprog (IPC stages direction) σ = None next
	using assms case (RECV thread-id1 thread-id2 adresses)
	by simp fix caller
	qed show
	next stages = BUF =⇒
	case (WAIT) caller / ∈ dom ((state id .th-flag σ)) =⇒
	then show abort lif t ioprog (IPC stages direction) σ = None stages = DONE =⇒
	using assms ioprog (IPC stages direction) σ = None =⇒
	proof (cases direction) direction = RECV thread-id1 thread-id2 adresses =⇒
	case (SEND thread-id1 thread-id2 adresses) abort lif t ioprog (IPC stages direction) σ = None
	fix caller using assms
	show by simp
	stages = WAIT =⇒ qed
	next	caller / ∈ dom ((state id .th-flag σ)) =⇒
	stages = DONE =⇒ case (MAP)
	ioprog (IPC stages direction) σ = None =⇒ then show abort lif t ioprog (IPC stages direction) σ = None
	direction = SEND thread-id1 thread-id2 adresses =⇒ using assms
	abort lif t ioprog (IPC stages direction) σ = None proof (cases direction)
	using assms case (SEND thread-id1 thread-id2 adresses)
	lemma abort-None : by simp fix caller
	assumes not-in-err : caller . caller / ∈ dom ((state id .th-flag σ)) next show
	and case (RECV thread-id1 thread-id2 adresses) not-done-act: stages = DONE stages = MAP =⇒

by (simp-all add : Product-Type.split-beta split: split-if-asm option.split-asm errors.split-asm) qed qed qed lemma abort-None :

assumes not-in-err : caller / ∈ dom ((state id .th-flag σ)) and not-done-act: stages = DONE and ioprog-fail : ioprog (IPC stages (SEND caller partner msg)) σ = then show abort lif t ioprog (IPC stages direction) σ = None using assms proof (cases direction) case (SEND thread-id1 thread-id2 adresses) fix caller show stages = BUF =⇒ caller / ∈ dom ((state id .th-flag σ)) =⇒ stages = DONE =⇒ ioprog (IPC stages direction) σ = None =⇒ direction = SEND thread-id1 thread-id2 adresses =⇒ abort lif t ioprog (IPC stages direction) σ = None then show abort lif t ioprog (IPC stages direction) σ = None using assms by simp qed

 Some(NO-ERRORS , σ) shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

	mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) σ = snd (the(mbind S (abort lif t ioprog) (set-error-ipc-preps caller partner σ σ error-IPC by (simp add : Product-Type.split-beta) case (Some ab) case (Some ah) (set-error-ipc-preps caller partner σ σ error-IPC msg)))) proof (cases a) thus ?thesis proof (cases af) next σ) case (NO-ERRORS) case (ERROR-IPC error-IPC) by simp msg))), case (Some a) proof (cases a) case (Some a) assume hyp6 :mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer case None by simp using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 proof (cases a) thus ?thesis thus ?thesis
	Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer (set-error-mem-preps caller partner σ σ error-mem msg)))) msg)))) qed then Some(NO-ERRORS # assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab assume hyp7 :mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer | None ⇒ Some([], σ))) fix ad ba using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 1 fix ag bc case (Some a) thus ?thesis thus ?thesis snd (the(mbind S (abort lif t ioprog) (set-error-mem-prepr caller partner σ assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a fix aa b assume hyp0 :mbind F ailS av e S (abort lif t ioprog) σ = Some a caller σ σ) = Some af then show ?thesis qed by simp fix aa b by simp by simp
	caller σ σ))), proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) qed fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller thus ?thesis caller σ σ) = Some ah proof (cases mbind F ailS av e S (abort lif t ioprog) σ) assume hyp7 : a = (ad , ba) proof (cases af) assume hyp10 : af = (ag, bc) assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = None using hyp3 1 assms hyp0 hyp2 using hyp3 1 assms hyp0 hyp2 lemma abort-prep-recv-obvious2 : σ error-mem msg)))) then show ?thesis assume hyp1 : a = (aa, b) then show ?thesis then show ?thesis by simp qed qed assume hyp2 : a = (aa, b) next next
	snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) case (None) case (None) qed σ σ))), using A hyp0 hyp1 thus ?thesis case None thus ?thesis fix ag bc thus ?thesis assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some a proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) assumes not-in-err : caller / ∈ dom ((th-flag σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using assms hyp0 then show ?thesis using assms hyp0 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 next next qed thus ?thesis case (Some ac) case (Some ac)
	proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) then show ?thesis assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = None qed snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller proof (cases ab) using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 thus ?thesis using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 1 assume hyp10 : af = (ag, bc) using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 hyp10 1 thus ?thesis σ b)) (set-error-ipc-preps caller partner σ b error-IPC msg)) and ioprog-success: ioprog (IPC PREP (RECV caller partner msg)) σ = case None proof (cases mbind F ailS av e S (abort lif t ioprog) using assms hyp0 hyp1 proof (cases a) proof (cases af) case (Some a) case (ERROR-MEM error-memory) qed using assms hyp0 hyp1 hyp2 assume hyp4 :ab = NO-ERRORS assume hyp9 : mbind F ailS av e S (abort lif t ioprog)
	case (None) using assms then show ?thesis σ σ)))) fix ac ba proof (cases ah) by simp proof (cases ac) thus ?thesis by simp using assms hyp0 hyp1 case None case None Some(ERROR-IPC error-IPC , σ) then show ?thesis (set-error-ipc-prepr caller partner σ σ error-IPC msg)) by simp fix aa b fix ag bc assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp5 : ac = ERROR-MEM error-memory qed by simp assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer (set-error-ipc-prepr caller partner σ b error-IPC msg) = Some
	then show ?thesis by simp using assms hyp0 lemma abort-prep-send-obvious6 : else if ioprog (IPC PREP (SEND caller partner msg)) σ = assume hyp2 : ab = (ac, ba) fix ai bd next fix ae bb using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 hyp10 1 qed proof (cases a) thus ?thesis thus ?thesis shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ = by simp case None qed assume hyp1 : a = (aa,b) assume hyp7 :af = (ag,bc) then show ?thesis then show ?thesis qed qed caller σ b) = Some ac ac
	using assms next by simp assumes in-err :caller ∈ dom ((th-flag σ)) Some(ERROR-MEM error-mem, σ) thus ?thesis assume hyp8 : ah= (ai , bd) case (Some a) assume hyp8 : ac = (ae, bb) by simp qed fix aa b by simp by simp Some (ERROR-IPC error-IPC , (set-error-ipc-prepr caller partner σ σ next then show ?thesis qed then show ?thesis then show ?thesis using assms hyp0 using assms hyp0 hyp1 hyp2 hyp3 hyp5 qed qed thus ?thesis assume hyp10 : ab = ERROR-IPC error-IPC
	by simp case (Some a) next shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ = then Some(ERROR-MEM error-mem# using A hyp0 hyp1 hyp2 thus ?thesis assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a thus ?thesis qed qed assume hyp2 : a = (aa, b) next next error-IPC msg)) case (Some a) by simp using assms hyp0 hyp1 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) qed next using hyp3 hyp4 hyp5 1assms hyp0 hyp2 thus ?thesis	
	next assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some a case (Some a) Some(get-caller-error caller σ, σ) fst(the(mbind S (abort lif t ioprog) proof (cases mbind F ailS av e S (abort lif t ioprog) using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 hyp8 thus ?thesis using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 hyp8 1 qed qed thus ?thesis case (Some ac) case (Some ac) using assms assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a next lemma abort-prep-recv-obvious8 : proof (cases mbind F ailS av e S (abort lif t ioprog) by simp fix aa b (set-error-mem-prepr caller partner σ ba error-memory msg)) case (Some a) proof (cases ac) using assms hyp9 hyp10 hyp3 1 hyp0 hyp2
	case (Some a) then show ?thesis assume hyp0 :ioprog (IPC PREP (SEND caller partner msg)) σ = Some a using assms (set-error-mem-preps caller partner σ σ error-mem (set-error-ipc-preps caller partner σ σ error-IPC msg)) by simp proof -by simp qed qed using assms hyp0 hyp1 hyp2 assume hyp4 :ab = NO-ERRORS assume hyp9 : mbind F ailS av e S (abort lif t ioprog) by simp then show ?thesis case (Some aa) mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog) σ = (set-error-ipc-prepr caller partner σ σ error-IPC msg)) qed assume hyp1 :a= (aa, b) case None assume hyp0 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some a fix ad ba proof (cases ac)
	assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some a using assms hyp0 then show ?thesis by simp msg))) case None qed {have 1 : caller ∈ dom ((th-flag σ)) -→ qed qed qed by simp assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer (set-error-ipc-preps caller partner σ b error-IPC msg) = Some using assms hyp0 assume hyp1 : mbind F ailS av e S (abort lif t ioprog) (if caller ∈ dom ((th-flag σ)) case None qed then show ?thesis then show ?thesis thus ?thesis assume hyp6 : ac = (ad , ba) fix ad ba
	then show ?thesis proof (cases a) using assms hyp0 thus ?thesis qed (case a of (outs, σ) ⇒ Some (get-caller-error caller σ # outs, σ)) = qed qed qed qed caller σ b) = Some ac ac lemma abort-prep-recv-obvious3 : proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-prepr caller partner σ σ error-IPC msg) = then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), then show ?thesis qed using assms hyp0 hyp1 by simp using hyp0 thus ?thesis assume hyp6 : ac = (ad , ba) L.2 Symbolic Execution Rules on PREP stage using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) show ?thesis using assms hyp0 hyp1 proof (case-tac aa) assume hyp2 : aa= NO-ERRORS show ?thesis using assms hyp0 hyp1 hyp2 by (simp split: option.split) next fix error-memory assume hyp3 : aa = ERROR-MEM error-memory show ?thesis using assms hyp0 hyp1 hyp3 by simp next fix error-IPC assume hyp4 : aa = ERROR-IPC error-IPC fix aa b assume hyp1 : a = (aa, b) show ?thesis using assms hyp0 hyp1 proof (case-tac aa) assume hyp2 : aa = NO-ERRORS show ?thesis using assms hyp0 hyp1 hyp2 by simp next fix error-memory assume hyp3 : aa = ERROR-MEM error-memory show ?thesis using assms hyp0 hyp1 hyp3 by (simp split: option.split) next fix error-IPC assume hyp4 : aa = ERROR-IPC error-IPC show ?thesis using assms hyp0 hyp1 hyp4 proof (cases a) fix aa b assume hyp1 : a = (aa, b) show ?thesis using assms hyp0 hyp1 proof (case-tac aa) assume hyp2 : aa = NO-ERRORS show ?thesis using assms hyp0 hyp1 hyp2 by simp next fix error-memory assume hyp3 : aa = ERROR-MEM error-memory show ?thesis using assms hyp0 hyp1 hyp3 by simp next fix error-IPCa assume hyp4 : aa = ERROR-IPC error-IPCa show ?thesis lemma abort-prep-send-obvious7 : then show ?thesis using assms proof (cases a) fix aa b assume hyp1 : a = (aa, b) by simp next case (Some ad) assume hyp3 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ σ error-IPC msg) = Some ad thus ?thesis using A hyp0 hyp1 hyp2 hyp3 proof (cases ad) fix ae bb assume hyp4 : ad = (ae, bb) thus ?thesis using A hyp0 hyp1 hyp2 hyp3 hyp4 qed qed qed qed qed qed qed qed lemma abort-prep-send-obvious8 : Some (get-caller-error caller σ # fst a, snd a) by (simp add : Product-Type.split-beta) thus ?thesis using hyp0 1 proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) { case None thus ?thesis using hyp0 1 by simp next case (Some aa) assume hyp1 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some aa thus ?thesis using hyp0 hyp1 1 proof (cases aa) fix ab b assume hyp2 : aa = (ab, b) thus ?thesis using hyp0 hyp1 hyp2 1 qed next case (ERROR-MEM error-memory) assume hyp4 : ab = ERROR-MEM error-memory thus ?thesis using hyp0 hyp1 hyp2 hyp4 1 thus ?thesis using hyp0 hyp1 hyp2 hyp4 hyp6 1 proof (cases a) fix ad ba assume hyp7 : a = (ad , ba) thus ?thesis using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 1 next case (ERROR-IPC error-IPC) assume hyp5 : ab = ERROR-IPC error-IPC thus ?thesis using hyp0 hyp1 hyp2 hyp5 1 thus ?thesis using hyp0 hyp1 hyp2 hyp5 hyp6 1 proof (cases a) fix ad ba assume hyp7 : a = (ad , ba) thus ?thesis using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 1 proof (cases ac) }qed }qed qed lemma abort-prep-send-obvious9 : qed next case (Some a) thus ?thesis using hyp3 hyp4 hyp5 1assms hyp0 hyp2 proof (cases ac) fix ad ba assume hyp6 : ac = (ad , ba) thus ?thesis using hyp3 hyp4 hyp5 1 assms hyp0 hyp2 by simp qed qed next case (ERROR-MEM error-memory) thus ?thesis using hyp3 1 assms hyp0 hyp2 assume hyp10 : ab = ERROR-IPC error-IPC thus ?thesis using assms hyp9 hyp10 hyp3 1 hyp0 hyp2 proof (cases ac) fix ad ba assume hyp6 : ac = (ad , ba) thus ?thesis using hyp3 hyp9 hyp10 1 assms hyp0 hyp2 by simp qed qed qed qed qed qed qed lemma abort-prep-recv-obvious0 : σ σ) = Some a then show?thesis using assms hyp0 proof (cases a) (set-error-mem-prepr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some aa) then show ?thesis using assms hyp0 hyp1 proof (cases aa) fix ab b assume hyp2 : aa = (ab, b) then show ?thesis using assms hyp0 hyp1 hyp2 by simp qed qed qed Some aa then show ?thesis using assms hyp0 hyp1 proof (cases aa) fix ab b assume hyp2 : aa = (ab, b) then show ?thesis using assms hyp0 hyp1 hyp2 by simp qed qed qed lemma abort-prep-recv-obvious6 : by simp next case (Some ab) qed qed qed qed qed lemma abort-prep-recv-obvious8 : proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by simp next case (Some ab) assume hyp2 :ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac,ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 :ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 next case (Some ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-prepr caller partner σ ba error-memory msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 :ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 : ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 lemma abort-prep-recv-obvious9 : using hyp3 hyp4 hyp5 1 assms hyp0 hyp2 by simp qed qed next case (ERROR-MEM error-memory) thus ?thesis using hyp3 1 assms hyp0 hyp2 = Some ac thus ?thesis thus ?thesis using hyp3 hyp9 hyp10 1 assms hyp0 hyp2 by simp qed qed qed qed qed qed proof (cases mbind thus ?thesis qed
	show ?thesis by simp using assms hyp0 hyp1 hyp4 then show ?thesis proof (cases ab) proof (cases ac) fix ae bb fix aa b lemma abort-prep-recv-obvious5 : proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller by simp using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
	using assms hyp0 hyp1 hyp4 qed proof (cases mbind F ailS av e S (abort lif t ioprog) using assms hyp0 case NO-ERRORS fix ae bb assume hyp8 : ac = (ae, bb) assume hyp1 : a = (aa, b) assumes not-in-err :caller / ∈ dom ((th-flag σ)) ad σ ba)) qed proof (cases ac)	lif t
	by simp by simp qed Some af σ σ)))) assume hyp3 : ab = NO-ERRORS (set-error-ipc-preps caller partner σ σ error-IPC msg)) assume hyp8 : ac = (ae, bb) thus ?thesis IPC then show ?thesis and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ = ioprog) then show ?thesis (set-error-mem-prepr caller partner σ σ case None case None thus ?thesis fix ad ba
	qed qed qed msg))) using assms hyp0 hyp1 case (None) thus ?thesis | Some(ERROR-MEM error-mem, σ)⇒ thus ?thesis thus ?thesis using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 1 fix a b Some(ERROR-IPC error-IPC , σ) (set-error-ipc-prepr caller partner σ σ error-IPC msg))) using assms hyp0 hyp1 hyp2 hyp3 hyp4 error-mem msg))) then show ?thesis then show ?thesis using 1 assms hyp0 hyp2 assume hyp6 : ac = (ad , ba)
	qed qed thus ?thesis assume hyp5 :mbind F ailS av e S (abort lif t ioprog) using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 Some(ERROR-MEM error-mem# using hyp0 hyp1 hyp2 hyp3 1 using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 1 proof (cases mbind F ailS av e S (abort lif t ioprog) | None ⇒ [])) assume hyp3 : aa = (a, b) = Some ac by simp shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog) , proof (cases ad) , by simp by simp proof (cases a) thus ?thesis
	σ (set-error-ipc-preps caller partner σ σ error-IPC msg) = None proof (cases af) using A hyp0 qed fst(the(mbind S (abort lif t ioprog) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ b error-IPC msg)) proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) thus ?thesis thus ?thesis using assms qed σ = snd (the(mbind S (abort lif t ioprog) fix ae bb snd (the(mbind S (abort lif t ioprog) next next fix ab b using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
	error-IPC msg)) lemma abort-prep-send-obvious5 : show ?thesis lemma abort-prep-send-obvious8 : proof (cases a) fix ag bc (set-error-mem-preps caller partner σ σ error-mem msg))) σ b)) (set-error-mem-preps caller partner σ b error-memory msg)) case None case None by simp using hyp3 hyp8 hyp7 1 assms hyp0 hyp2 by simp qed Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-prepr caller partner σ σ error-IPC msg)))) assume hyp5 :ad = (ae,bb) (set-error-mem-prepr caller partner σ σ error-mem msg)))) case (Some ad) case (Some ad) assume hyp3 :a = (ab, b) by simp
	using assms lemma abort-prep-send-obvious4 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) using assms hyp0 hyp1 hyp4 hyp5 fix aa b assume hyp6 : af = (ag, bc) , case None case None thus ?thesis thus ?thesis qed proof (cases ac) (set-error-ipc-prepr caller partner σ σ error-IPC else if ioprog (IPC PREP (RECV caller partner msg)) σ = None then show ?thesis | Some(ERROR-IPC error-IPC , σ)⇒ assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp11 : mbind F ailS av e S (abort lif t ioprog) thus ?thesis thus ?thesis qed
	by simp assumes not-in-err : and ioprog-succes: ioprog (IPC PREP (SEND caller partner msg)) σ = caller / ∈ dom ((th-flag σ)) by simp assume hyp0 : a = (aa, b) thus ?thesis snd (the(mbind S (abort lif t ioprog) thus ?thesis thus ?thesis by simp using assms thus ?thesis fix ad ba lemma abort-prep-recv-obvious1 : lemma abort-prep-recv-obvious4 : msg))), case None then Some([], σ) using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) caller σ ba)= Some ad (set-error-ipc-prepr caller partner σ ba error-IPC msg) = using assms hyp0 hyp1 using hyp3 1 assms hyp0 hyp2 qed
	and Some(ERROR-IPC error-IPC , σ) ioprog-success: ioprog (IPC PREP (SEND caller partner msg))σ = next σ = thus ?thesis using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 (set-error-mem-preps caller partner σ σ error-mem msg)))) by simp by simp next proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using 1 assms hyp0 hyp2 assume hyp6 : ac = (ad , ba) assumes not-in-err :caller / ∈ dom ((th-flag σ)) assumes not-in-err : caller / ∈ dom ((th-flag σ)) snd (the(mbind S (abort lif t ioprog) then show ?thesis else id (mbind ((IPC PREP (RECV caller partner proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer (set-error-ipc-prepr caller partner σ σ error-IPC then show ?thesis Some ad by simp proof (cases ab) next
	Some(ERROR-MEM error-mem,σ) shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) case (Some ab) (if caller ∈ dom ((th-flag σ)) using A hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer | Some(ERROR-IPC error-IPC , σ)⇒ next next case (Some af) case None proof (cases a) thus ?thesis and ioprog-success :ioprog (IPC PREP (RECV caller partner msg)) σ = and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ = (set-error-ipc-prepr caller partner σ σ error-IPC msg)))) by simp msg))#S)(abort lif t ioprog) σ)) caller σ σ)) msg))) using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 then show ?thesis next case (NO-ERRORS) case (ERROR-IPC error-IPC)
	lemma abort-prep-send-obvious3 : shows σ = assume hyp6 : mbind F ailS av e S (abort lif t ioprog) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) caller σ σ)) Some(ERROR-IPC error-IPC # case (Some ac) case (Some af) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = None fix ab b using hyp3 hyp8 hyp7 1 assms hyp0 hyp2 Some(ERROR-MEM error-mem, σ) Some(ERROR-MEM error-mem, σ) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) next proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None , proof (cases ad) using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 case (Some a) thus ?thesis thus ?thesis
	assumes not-in-err :caller / ∈ dom ((th-flag σ)) mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-IPC error-IPC # fst(the(mbind S (abort lif t ioprog) (set-error-ipc-preps caller partner σ σ error-IPC msg) = Some σ)), case None case None fst(the(mbind S (abort lif t ioprog) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-preps caller partner σ b error-IPC msg) = assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = None assume hyp3 :a = (ab, b) by simp shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ = shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog) case None case (Some a) case None then show ?thesis snd (the(mbind S (abort lif t ioprog) fix ae bb proof (cases ad) assume hyp0 : ioprog (IPC PREP (RECV caller partner msg)) σ = None using hyp3 1 assms hyp0 hyp2 using hyp3 1 assms hyp0 hyp2
	and Some(ERROR-MEM error-mem # ioprog-sucess:ioprog (IPC PREP (SEND caller partner msg)) σ = (set-error-ipc-preps caller partner σ σ error-IPC snd (the(mbind S (abort lif t ioprog) σ))) thus ?thesis thus ?thesis (set-error-ipc-preps caller partner σ σ error-IPC msg))) caller σ b) = Some ac ab (set-error-mem-preps caller partner σ b error-memory Some af thus ?thesis thus ?thesis qed Some (ERROR-MEM error-mem, (set-error-mem-prepr caller partner σ σ = then show ?thesis assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis by simp (set-error-ipc-prepr caller partner σ σ error-IPC msg)))) assume hyp8 :ad = (ae, bb) fix ae bb assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = Some a proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog)
	Some(NO-ERRORS , σ) fst(the(mbind S (abort lif t ioprog) msg))), then show ?thesis by simp by simp , thus ?thesis msg) = thus ?thesis using assms hyp0 hyp1 using hyp3 1 assms hyp0 hyp2 qed σ error-mem msg)) Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) by simp then show ?thesis by simp next | None ⇒ Some([], σ))) then show ?thesis assume hyp12 :ad = (ae,bb) thus ?thesis σ b)) (set-error-ipc-prepr caller partner σ b error-IPC msg))	
	shows next by simp using assms next snd (the(mbind S (abort lif t ioprog) (set-error-mem-preps caller partner σ σ error-mem msg))), snd (the(mbind S (abort lif t ioprog) using hyp0 hyp1 hyp2 hyp3 hyp6 1 Some af using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 1 proof (cases ab) next using assms (set-error-mem-prepr caller partner σ σ error-mem next using assms hyp0 next case (Some af) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 then show ?thesis using assms hyp0 hyp1 case None case None

lemma abort-prep-send-obvious0 :

assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success: ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS , σ)

shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ)) using assms by simp lemma abort-prep-send-obvious1 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-MEM error-mem, (set-error-mem-preps caller partner σ σ error-mem msg))

using assms by simp lemma abort-prep-send-obvious2 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-preps caller partner σ assumes in-err : caller ∈ dom ((th-flag σ)) shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) using assms proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case (None) then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assumes A: ∀ act σ . ioprog act σ = None shows mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog) else if ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS , , snd (the(mbind S (abort lif t ioprog) (set-error-mem-preps caller partner σ σ error-mem msg)))) else if ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) then Some(ERROR-IPC error-IPC # fst(the(mbind S (abort lif t ioprog) (set-error-ipc-preps caller partner σ σ error-IPC msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-ipc-preps caller partner σ σ error-IPC msg)))) else if ioprog (IPC PREP (SEND caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case (None) thus ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ σ error-mem msg)) case None thus ?thesis by simp next case (Some af) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ σ error-mem msg) = mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) b) case None thus ?thesis by simp next case (Some ac) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) b = Some ac proof (cases mbind F ailS av e S (abort lif t ioprog) b) case None thus ?thesis by simp next case (Some ac) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) b = Some ac fst(the(mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)) else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))) | Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-preps caller partner σ σ error-mem msg))) | Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-preps caller partner σ σ error-assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some a thus ?thesis using hyp0 proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = None thus ?thesis using assms hyp1 hyp0 by simp next case (Some aa) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some aa thus ?thesis using hyp0 hyp2 assms proofhave 1 : (caller ∈ dom ((th-flag σ)) -→ fst (the (case aa of (outs, σ) ⇒ Some (get-caller-error caller σ # outs, σ))) = get-caller-error caller σ # fst aa) proof (cases aa) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ b error-memory msg)) case None thus ?thesis by simp next case (Some ac) assume hyp7 : ab = ERROR-MEM error-memory assume hyp8 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-preps caller partner σ b error-memory msg) assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-succes:ioprog (IPC PREP (RECV caller partner msg)) σ = assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller assume hyp1 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-prepr caller partner σ σ error-mem msg) = Some aa assumes in-err : caller ∈ dom ((th-flag σ)) shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ = Some(get-caller-error caller σ, σ) using in-err by simp lemma abort-prep-recv-obvious7 : assumes in-err :caller ∈ dom ((th-flag σ)) shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) snd (the(mbind S (abort lif t ioprog) σ))) else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) then Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller

σ σ))))

else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-prepr caller partner σ σ error-mem msg))))

else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)

then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort assume hyp2 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-prepr caller partner σ σ error-IPC msg) = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-prepr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some ad) assume hyp4 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-prepr caller partner σ σ error-mem msg) =Some mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) else (case ioprog (IPC PREP (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

| Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-prepr caller partner σ ba error-IPC msg)) fst(the(mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)) else (case ioprog (IPC PREP (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))) | Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem# fst(the(mbind S (abort lif t ioprog) (set-error-mem-prepr caller partner σ σ error-mem msg))) | Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC # fst(the(mbind S (abort lif t ioprog) (set-error-ipc-prepr caller partner σ σ error-IPC msg))) | None ⇒ [])) proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ) case None thus ?thesis using assms proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None assume hyp0 : ioprog (IPC PREP (RECV caller partner msg)) σ = None assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = None F ailS av e S (abort lif t ioprog) σ) case None assume hyp1 : mbind F ailS av e S (abort lif t ioprog) σ = None thus ?thesis using assms hyp1 hyp0 by simp next case (Some aa) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some aa thus ?thesis using hyp0 hyp2 assms proofhave 1 : (caller ∈ dom ((th-flag σ)) -→ fst (the (case aa of (outs, σ) ⇒ Some (get-caller-error caller σ # outs, σ))) = get-caller-error caller σ # fst aa) proof (cases aa) fix a b assume hyp3 : aa = (a, b) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-prepr caller partner σ b error-memory msg)) case None thus ?thesis by simp next case (Some ac) assume hyp7 : ab = ERROR-MEM error-memory assume hyp8 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-prepr caller partner σ b error-memory msg)

 Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ)) Some(ERROR-IPC error-IPC , σ)shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg))), snd (the(mbind S (abort lif t ioprog)(set-error-ipc-waitr caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ)) else if ioprog (IPC BUF (SEND caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)) shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ))

	case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-send-obvious6 : assumes in-err :caller ∈ dom ((th-flag σ)) shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(get-caller-error caller σ, σ) using assms by simp lemma abort-wait-send-obvious7 : assumes in-err :caller ∈ dom ((th-flag σ)) shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog) σ = using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-send-obvious8 : σ) then Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg)))) else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg))) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg) = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some ad) assume hyp4 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) fix ae bb assume hyp5 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ)) case None then show ?thesis by simp next case (Some af) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some af then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases af) fix ag bc assume hyp7 : af = (ag, bc) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp qed qed qed qed qed qed qed qed lemma abort-wait-send-obvious8 : then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) | Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg)))) then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by simp next case (Some ab) then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 proof (cases ad) fix ae bb assume hyp8 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 by simp qed qed next case (ERROR-MEM error-memory) assume hyp5 :ac = ERROR-MEM error-memory then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ ba error-memory msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 :ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 proof (cases ad) fix ae bb assume hyp12 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 by simp qed qed qed qed qed qed qed lemma abort-wait-send-obvious9 : fst(the(mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)) else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))) | Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waits caller partner σ σ error-mem msg))) | Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg))) | None ⇒ [])) by (simp split: option.split errors.split, auto) lemma abort-wait-recv-obvious0 : error-IPC msg)) using assms by simp lemma abort-wait-recv-obvious3 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog) σ = case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-recv-obvious4 : case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-recv-obvious5 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-recv-obvious6 : assumes in-err :caller ∈ dom ((th-flag σ)) shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(get-caller-error caller σ, σ) using assms by simp lemma abort-wait-recv-obvious7 : assumes in-err :caller ∈ dom ((th-flag σ)) shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a= (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-wait-recv-obvious8 : lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg)))) else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg)))) else if ioprog (IPC WAIT (RECV caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa,b) then show ?thesis using assms hyp0 hyp1 Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some ad) assume hyp4 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) fix ae bb assume hyp5 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ)) case None then show ?thesis by simp next case (Some af) assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) = Some af then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases af) fix ag bc assume hyp7 : af = (ag, bc) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp qed qed qed qed qed qed qed qed lemma abort-wait-recv-obvious8 : else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) | Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg)))) | Some(ERROR-IPC error-IPC , σ)⇒ Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg)))) | None ⇒ Some([], σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) case None then show ?thesis using assms hyp0 hyp1 by simp next case (Some ab) assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 proof (cases ad) fix ae bb assume hyp8 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 by simp qed qed next case (ERROR-MEM error-memory) assume hyp5 :ac = ERROR-MEM error-memory then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 :ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 then show ?thesis by simp next case (Some ad) assume hyp11 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 L.4 Symbolic Execution rules on BUF stage lemma abort-buf-send-obvious0 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS , σ) shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ)) using assms by simp proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-send-obvious4 : snd (the(mbind S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-dones caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) by simp qed qed lemma abort-buf-send-obvious8 : assumes A: ∀ act σ . ioprog act σ = None shows mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), proof (cases a) fix aa b assume hyp1 : a = (aa,b) then show ?thesis using assms hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ σ error-IPC msg)) case None then show ?thesis by simp using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases af) fix ag bc assume hyp7 : af = (ag, bc) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp qed qed qed next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 next case (ERROR-MEM error-memory) assume hyp5 :ac = ERROR-MEM error-memory then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufs caller partner σ ba error-memory msg)) case None then show ?thesis by simp qed qed qed qed qed qed lemma abort-buf-send-obvious9 : by simp lemma abort-buf-recv-obvious2 : assumes not-in-err : caller / ∈ dom ((th-flag σ)) and ioprog-succes: ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-bufr caller partner σ σ error-IPC msg)) using assms msg))), snd (the(mbind S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg)))) using assms proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufr caller partner σ σ error-mem msg)) case None then show ?thesis by simp next then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-recv-obvious6 : assumes in-err :caller ∈ dom ((th-flag σ)) shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ = Some(get-caller-error caller σ, σ) proof (cases mbind case None proof (cases ad) fix ae bb assume hyp12 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 by simp qed qed qed qed qed qed qed lemma abort-wait-recv-obvious9 : σ)⇒ NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))) | Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg))) | Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg))) | None ⇒ [])) by (simp split: option.split errors.split,auto) assumes not-in-err : caller / ∈ dom ((th-flag σ)) (set-error-ipc-dones caller partner σ σ error-IPC msg) = Some a snd (the(mbind S (abort lif t ioprog) σ))) next qed proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ) next fst(the(mbind (IPC BUF (SEND caller partner msg)#S)(abort lif t ioprog) σ)) by simp case (Some a) using assms lemma abort-buf-send-obvious1 : assumes not-in-err : caller / and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ = then show ?thesis case (Some ab) qed case None case (Some ad) = assume hyp0 : mbind F ailS av e S (abort lif t ioprog) by simp ∈ dom ((th-flag σ)) and using assms hyp0 msg))), using assms hyp0 hyp1 using assms hyp0 then show ?thesis by simp qed qed using assms (set-error-mem-bufr caller partner σ σ error-mem assume hyp1 : a = (aa , b) then show ?thesis (set-error-ipc-bufs caller partner σ σ error-IPC then show ?thesis then show ?thesis caller σ σ) = Some af then show ?thesis qed by simp error-mem msg)) Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) fix aa b = Some a Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) assume hyp1 : a = (aa, b) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp6 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer case None by simp using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12 Some (ERROR-MEM error-mem, (set-error-mem-bufr caller partner σ σ σ = proof (cases a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ) σ = fix aa b case (Some a) case (Some af) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8 then show ?thesis shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ = shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog) using assms hyp0 case (Some a) shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog) proof (cases a) next next | None ⇒ Some([], σ))) then show ?thesis assume hyp12 : ad = (ae, bb) Some(ERROR-MEM error-mem, σ) Some(ERROR-MEM error-mem, σ) then show ?thesis next Some(ERROR-IPC error-IPC , σ) using assms hyp0 by simp by simp (set-error-ipc-bufs caller partner σ σ error-IPC msg)))) assume hyp8 : ad = (ae, bb) fix ae bb and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ = and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ = (set-error-ipc-doner caller partner σ σ error-IPC msg) = Some a by simp and ioprog-succes : ioprog (IPC BUF (SEND caller partner msg)) σ = then show ?thesis then show ?thesis then show ?thesis snd (the(mbind S (abort lif t ioprog) fix ae bb proof (cases ad) assumes not-in-err :caller / ∈ dom ((th-flag σ)) assumes not-in-err :caller / ∈ dom ((th-flag σ)) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) then show ?thesis Some(ERROR-MEM error-mem, σ) σ = Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg))), then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-send-obvious5 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) using assms hyp0 fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-send-obvious6 : case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) σ = Some a else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS , case None assume hyp2 : mbind F ailS av e S (abort lif t ioprog) Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 case None then show ?thesis by simp next case (Some ad) assume hyp4 :mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) fix ae bb assume hyp5 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ)) case None qed qed lemma abort-buf-send-obvious8 : mem msg))) , snd (the(mbind S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)))) | Some(ERROR-IPC error-IPC , σ)⇒ Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ σ error-IPC msg))) , then show ?thesis by simp next case (Some ab) assume hyp2 : ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab then show ?thesis using assms hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac,ba) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 proof (cases ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 proof (cases ad) fix ae bb assume hyp10 : ad = (ae, bb) then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10 by simp qed qed next case (ERROR-IPC error-IPC) assume hyp6 :ac = ERROR-IPC error-IPC then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 case None then show ?thesis by simp next case (Some ad) assume hyp11 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some ad then show ?thesis using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 (if caller ∈ dom ((th-flag σ)) using assms by simp lemma abort-buf-recv-obvious1 : lemma abort-buf-recv-obvious3 : σ σ) = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-recv-obvious4 : (set-error-mem-bufr caller partner σ σ error-mem msg) = Some a using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 by simp qed qed lemma abort-buf-recv-obvious5 : case None then show ?thesis by simp next case (Some a) ioprog-case None shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog) proof (cases a) σ) (set-error-ipc-bufs caller partner σ σ error-IPC msg) = qed using assms hyp0 hyp1 (set-error-mem-bufs caller partner σ ba error-memory msg) = assumes not-in-err :caller / then show ?thesis lemma abort-buf-recv-obvious7 :

Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS , , snd (the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg)))) else if ioprog (IPC WAIT (SEND caller partner msg)) σ = None then Some([], σ) else id (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog) σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa,b) then show ?thesis using assms hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg)) mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) | Some(ERROR-IPC error-IPC , σ)⇒ Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-waits caller partner σ σ error-IPC msg)))) | None ⇒ Some([], σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab assume hyp7 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad assume hyp11 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ ba error-IPC msg) = Some assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS , (error-tab-transfer caller σ σ))

using assms by simp lemma abort-wait-recv-obvious1 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success: ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-MEM error-mem, (set-error-mem-waitr caller partner σ σ error-mem msg))

using assms by simp lemma abort-wait-recv-obvious2 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-waitr caller partner σ σ assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg))), snd (the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waitr caller partner σ σ error-mem msg)) (set-error-ipc-waitr caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 :mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg) = Some a mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else

if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS , σ) then Some(NO-ERRORS # fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) then Some(ERROR-MEM error-mem#fst(the(mbind S (abort proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg)) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ σ error-IPC msg) = mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ# fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using assms hyp0 proof (cases a) fix aa b assume hyp1 :a = (aa, b) then show ?thesis using assms hyp0 hyp1 proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waitr caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp9 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waitr caller partner σ ba error-memory msg) = F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ ba error-IPC msg)) fst(the(mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog) σ)) = (if caller ∈ dom ((th-flag σ)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of Some(NO-ERRORS , success: ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ) shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-MEM error-mem, (set-error-mem-bufs caller partner σ σ error-mem msg))

using assms by simp lemma abort-buf-send-obvious2 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , (set-error-ipc-bufs caller partner σ σ error-IPC msg))

using assms by simp lemma abort-buf-send-obvious3 : assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS , σ)

shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) snd (the(mbind S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)= Some a assumes in-err :caller ∈ dom ((th-flag σ)) shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ = Some(get-caller-error caller σ, σ) using assms by simp lemma abort-buf-send-obvious7 : assumes in-err : caller ∈ dom ((th-flag σ))

shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) then Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ error-mem msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)))) else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)

then Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ error-IPC msg)))

, snd (the(mbind S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)) mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t ioprog) σ = (if caller ∈ dom ((th-flag σ)) then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ)))

else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))))

| Some(ERROR-MEM error-mem, σ)⇒ Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ error-proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ ba error-IPC msg)) then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)) else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS , σ)⇒ NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))

| Some(ERROR-MEM error-mem, σ)⇒ ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog) (set-error-mem-bufs caller partner σ σ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ)⇒ ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-bufs caller partner σ σ error-IPC msg)))

| None ⇒ [])) by (simp split: option.split errors.split,auto) lemma abort-buf-recv-obvious0 :

assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS , σ ∈ dom ((th-flag σ)) and ioprog-success : ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS , σ)

shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(NO-ERRORS #fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ))), snd (the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller assumes not-in-err :caller / ∈ dom ((th-flag σ)) and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg))), snd (the(mbind S (abort lif t ioprog) (set-error-ipc-bufr caller partner σ σ error-IPC msg)))) proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-doner caller partner σ σ error-IPC msg)) assumes in-err :caller ∈ dom ((th-flag σ)) shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog) σ = Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)), snd (the(mbind S (abort lif t ioprog) σ))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

 lif t exec-action id -Mon));P (NO-ERRORS # (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t

			assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-IPC error-IPC using hyp0 hyp1 hyp2 hyp3 qed a = ERROR-MEM error-memory -→ case None case None
	ioprog)); P outs)) = then show ?thesis then show ?thesis proof (cases ac) next ioprog (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-MEM then show ?thesis then show ?thesis
	(if caller ∈ dom ((th-flag)σ) using hyp0 hyp1 hyp2 hyp3 hyp4 using hyp0 hyp1 hyp2 hyp3 hyp4 case NO-ERRORS case (ERROR-IPC error-IPC) error-memory, σ) -→ by simp by simp
		then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-IPC error-IPC ((set-error-mem-prepr caller partner σ σ error-memory msg)|= next next
	outs))) σ ba))	(set-error-ipc-prepr caller partner σ ba error-IPC msg)) then show ?thesis then show ?thesis (outs ← (mbind (S)(abort lif t ioprog)); P (ERROR-MEM error-memory case (Some ad) case (Some ad)
	else (case ioprog (IPC PREP (RECV caller partner msg)) σ of case None case None using hyp0 hyp1 hyp2 hyp3 hyp4 using hyp0 hyp1 hyp2 hyp3 hyp4 # outs)))) ∧ assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog)
	Some(NO-ERRORS , σ) ⇒ (error-tab-transfer caller σ σ) |= then show ?thesis then show ?thesis proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) (∀ error-IPC . caller σ ba) = Some ad (set-error-ipc-prepr caller partner σ ba error-IPC msg) =
	(outs ← (mbind (S)(abort lif t ioprog)); P (NO-ERRORS (set-error-ipc-prepr caller partner σ ba error-IPC msg)) a = ERROR-IPC error-IPC -→ by simp by simp then show ?thesis Some ad σ ba))
	# outs)) next next case None case None ioprog (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-IPC using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis
	| Some(ERROR-MEM error-mem, σ)⇒ case (Some ad) case (Some ad) then show ?thesis then show ?thesis error-IPC , σ) -→ proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
			((set-error-mem-prepr caller partner σ σ error-mem msg) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) by simp by simp ((set-error-ipc-prepr caller partner σ σ error-IPC msg) |= fix ae bb proof (cases ad)
	|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem caller σ ba) = Some ad (set-error-ipc-prepr caller partner σ ba error-IPC msg) = next next (outs ← (mbind (S)(abort lif t ioprog)); P (ERROR-IPC error-IPC # assume hyp6 : ad = (ae, bb) fix ae bb
	# outs))) Some ad outs)))))))) then show ?thesis case (Some ad) case (Some ad) then show ?thesis assume hyp6 : ad = (ae, bb)
	| Some(ERROR-IPC error-IPC , σ)⇒ using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis
	((set-error-ipc-prepr caller partner σ σ error-IPC msg) proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 caller σ ba) = Some ad (set-error-ipc-prepr caller partner σ ba error-IPC msg) = case None by(simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # fix ae bb proof (cases ad) then show ?thesis then show ?thesis Some ad qed by(simp add : valid-SE-def bind-SE-def)
	outs))) by simp using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 assume hyp6 : ad = (ae, bb) fix ae bb then show ?thesis qed qed
	next	| None ⇒ (σ |= (P [])))) then show ?thesis assume hyp6 : ad = (ae, bb) proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 next qed
	proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis fix ae bb proof (cases ad) case (Some a) case (ERROR-MEM error-memory) qed
		case None by(auto simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 assume hyp6 : ad = (ae, bb) fix ae bb assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed
		then show ?thesis qed by(simp add : valid-SE-def bind-SE-def) then show ?thesis assume hyp6 : ad = (ae, bb) then show ?thesis then show ?thesis qed
		by simp qed qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed
	next proof (cases a) next qed by(auto simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases mbind F ailS av e S (abort lif t ioprog) qed
		case (Some a) case (ERROR-MEM error-memory) qed qed by(simp add : valid-SE-def bind-SE-def) fix aa b (set-error-mem-prepr caller partner σ ba error-memory msg))
		assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed qed qed assume hyp1 : a = (aa , b) case None
		then show ?thesis then show ?thesis qed next qed then show ?thesis then show ?thesis
		using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed case (ERROR-MEM error-memory) qed using hyp0 hyp1 by simp
	proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) qed assume hyp4 :ac = ERROR-MEM error-memory qed proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ) next
		fix aa b then show ?thesis (set-error-mem-prepr caller partner σ ba error-memory msg)) qed case None case (Some ad)
	assume hyp1 : a = (aa , b) case None lemma abort-prep-recv-obvious12 : using hyp0 hyp1 hyp2 hyp3 hyp4 qed then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog)
	then show ?thesis then show ?thesis (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t proof (cases mbind F ailS av e S (abort lif t ioprog) qed using assms hyp0 hyp1 (set-error-mem-prepr caller partner σ ba error-memory msg)
	using hyp0 hyp1 by simp ioprog)); P outs)) = (set-error-mem-prepr caller partner σ ba error-memory msg)) by (simp add : valid-SE-def bind-SE-def) = Some ad
		proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ) next (if caller ∈ dom ((th-flag)σ) case None next then show ?thesis
		case None case (Some ad) then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # then show ?thesis case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
	then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog) outs))) by simp lemma abort-prep-recv-obvious10 : assume hyp2 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab proof (cases ad)
	using assms hyp0 hyp1 (set-error-mem-prepr caller partner σ ba error-memory msg) else (case ioprog (IPC PREP (RECV caller partner msg)) σ of next (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t then show ?thesis fix ae bb
	by (simp add : valid-SE-def bind-SE-def) = Some ad Some(NO-ERRORS , σ) ⇒ case (Some ad) ioprog)); P outs)) = using hyp0 hyp1 hyp2 assume hyp6 : ad = (ae, bb)
		next ((error-tab-transfer caller σ σ) |= then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog) ((caller ∈ dom ((th-flag)σ) -→ proof (cases ab) then show ?thesis
		case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))∧ (set-error-mem-prepr caller partner σ ba error-memory msg) (σ |= (outs ← (mbind (S)(abort lif t ioprog)); P (get-caller-error caller σ # fix ac ba using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	assume hyp2 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab proof (cases ad) (((th-flag) σ) caller = None) ∧ = Some ad outs)))) ∧ assume hyp3 :ab = (ac, ba) by(simp add : valid-SE-def bind-SE-def)
		then show ?thesis fix ae bb ((th-flag) σ) caller = then show ?thesis (caller / ∈ dom ((th-flag)σ) -→ then show ?thesis qed
		using hyp0 hyp1 hyp2 assume hyp6 : ad = (ae, bb) ((th-flag) (error-tab-transfer caller σ σ)) caller ∧ using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 (ioprog (IPC PREP (RECV caller partner msg)) σ = None -→ (σ |= (P []))) using hyp0 hyp1 hyp2 hyp3 qed
	∧	proof (cases ab) then show ?thesis (th-flag σ = th-flag (error-tab-transfer caller σ σ)) proof (cases ad) proof (cases ac) next
		fix ac ba using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 | Some(ERROR-MEM error-mem, σ)⇒ fix ae bb ((∀ a σ . case NO-ERRORS case (ERROR-IPC error-IPC)
			assume hyp3 :ab = (ac, ba) by(simp add : valid-SE-def bind-SE-def) ((set-error-mem-prepr caller partner σ σ error-mem msg) assume hyp6 : ad = (ae, bb) (a = NO-ERRORS -→ ioprog (IPC PREP (RECV caller partner msg)) σ assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-IPC error-IPC
	then show ?thesis qed |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem then show ?thesis = Some (NO-ERRORS , σ) -→ then show ?thesis then show ?thesis
	using hyp0 hyp1 hyp2 hyp3 qed # outs)))∧ using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 ((error-tab-transfer caller σ σ) |= using hyp0 hyp1 hyp2 hyp3 hyp4 using hyp0 hyp1 hyp2 hyp3 hyp4
			proof (cases ac) next (((th-flag) (set-error-mem-maps caller partner σ σ error-mem msg)) caller by(simp add : valid-SE-def bind-SE-def) (outs ← (mbind (S)(abort lif t ioprog));P (NO-ERRORS # outs)))) ∧ proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog)
	case NO-ERRORS case (ERROR-IPC error-IPC) qed (∀ error-memory. σ ba)) = (set-error-ipc-prepr caller partner σ ba error-IPC msg))

 mbind F ailS av e S (abort lif t exec-action id -Mon) (error-tab-transfer caller σ ba) = NO-ERRORS -→ ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (NO-ERRORS , σ) -→ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, σ) -→ ((set-error-mem-waitr caller partner σ σ error-memory msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , σ) -→ ((set-error-ipc-waitr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))))))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ)

	(set-error-mem-waits caller partner σ ba error-memory msg)) assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab proof (cases ad) case NO-ERRORS case (ERROR-MEM error-memory) using assms hyp0 hyp1 (set-error-mem-waitr caller partner σ ba error-memory msg) then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))) then show ?thesis qed
	case None then show ?thesis fix ae bb assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-MEM error-memory by (simp add : valid-SE-def bind-SE-def) = Some ad using assms hyp0 hyp1 (set-error-mem-waitr caller partner σ ba error-memory msg) ∧ using hyp0 hyp1 hyp2 hyp3 qed
	?thesis then show ?thesis lemma abort-wait-send-obvious10 : using hyp0 hyp1 hyp2 assume hyp6 : ad = (ae, bb) then show ?thesis then show ?thesis next then show ?thesis by (simp add : valid-SE-def bind-SE-def) = Some ad (caller / ∈ dom ((th-flag)σ) -→ proof (cases ac) next
	using hyp0 hyp1 by simp (σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t proof (cases ab) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 using hyp0 hyp1 hyp2 hyp3 hyp4 case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 next then show ?thesis (ioprog (IPC WAIT (RECV caller partner msg)) σ = None -→ (σ |= (P []))) case NO-ERRORS case (ERROR-IPC error-IPC)
	proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ) next ioprog)); P outs)) = fix ac ba using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) (error-tab-transfer proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab proof (cases ad) case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 ∧ assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-IPC error-IPC
	case None case (Some ad) ((caller ∈ dom ((th-flag)σ) -→ assume hyp3 :ab = (ac, ba) by(simp add : valid-SE-def bind-SE-def) caller σ ba)) (set-error-mem-waits caller partner σ ba error-memory msg)) then show ?thesis fix ae bb assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab proof (cases ad) ((∀ a σ . then show ?thesis then show ?thesis
	then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-waits caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by (simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (ioprog (IPC WAIT (SEND caller partner msg)) σ = None -→ (σ |= (P []))) ∧ ((∀ a σ . (a = NO-ERRORS -→ ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (NO-ERRORS , σ) -→ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ) -→ ((set-error-mem-waits caller partner σ σ error-memory msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waits caller partner σ ba error-IPC msg) = Some ad then show ?thesis case None then show ?thesis by simp next case (Some ad) assume hyp5 : Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases error-codes ba) case NO-ERRORS assume hyp7 :error-codes ba = NO-ERRORS case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-mem-waits caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def WAIT-SEND id -def split : errors.split option.split option.split-asm split-if-asm) using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis (a = case None by(simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) error-IPC , σ) -→ proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis qed assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) case (Some ad) case (Some ad) then show ?thesis qed by(simp add : valid-SE-def bind-SE-def)
	σ ba)) ((set-error-ipc-waits caller partner σ σ error-IPC msg) (set-error-ipc-waits caller partner σ ba error-IPC msg)) fix ae bb proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 qed caller σ ba) = Some ad (set-error-ipc-waitr caller partner σ ba error-IPC msg) = assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) by simp qed qed
	case None case None |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # assume hyp6 : ad = (ae, bb) fix ae bb by (auto simp add : WAIT-SEND id -def valid-SE-def bind-SE-def next then show ?thesis Some ad caller σ ba) = Some ad (set-error-ipc-waitr caller partner σ ba error-IPC msg) = next next qed
	then show ?thesis then show ?thesis outs)))))))) then show ?thesis assume hyp6 : ad = (ae, bb) exec-action id -Mon-def case (ERROR-IPC error-IPC) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis then show ?thesis Some ad case (Some a) case (ERROR-MEM error-memory) qed
	by simp by simp proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis split: split-if-asm option.split-asm) assume hyp4 :ac = ERROR-IPC error-IPC proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed
	next next case None by(simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 next then show ?thesis fix ae bb proof (cases ad) proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis then show ?thesis qed
	case (Some ad) case (Some ad) then show ?thesis qed by(simp add : valid-SE-def bind-SE-def) case (ERROR-MEM error-memory) using hyp0 hyp1 hyp2 hyp3 hyp4 assume hyp6 : ad = (ae, bb) fix ae bb fix ae bb proof (cases ad) using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed
	assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) by simp qed qed assume hyp7 :error-codes ba = ERROR-MEM error-memory proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) then show ?thesis assume hyp6 : ad = (ae, bb) assume hyp6 : ad = (ae, bb) fix ae bb proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) qed
	caller σ ba) = Some ad next next qed then show ?thesis (set-error-ipc-waits caller partner σ ba error-IPC msg) = (set-error-ipc-waits caller partner σ ba error-IPC msg)) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis then show ?thesis assume hyp6 : ad = (ae, bb) fix aa b (set-error-mem-waitr caller partner σ ba error-memory msg))
	then show ?thesis case (Some a) Some ad case (ERROR-MEM error-memory) qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 case None by(simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis assume hyp1 : a = (aa , b) case None lemma abort-wait-recv-obvious10 :
	using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed by (auto simp add : PREP-SEND id -def valid-SE-def bind-SE-def then show ?thesis qed by(simp add : valid-SE-def bind-SE-def) by (auto simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis then show ?thesis (σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)
	proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis then show ?thesis qed exec-action id -Mon-def by simp qed qed qed by(simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 by simp (abort lif t exec-action id
	fix ae bb proof (cases ad) using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed split: split-if-asm) next next qed qed qed proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ) next
	assume hyp6 : ad = (ae, bb) fix ae bb proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) qed next case (Some ad) case (ERROR-MEM error-memory) qed next qed case None case (Some ad)
	then show ?thesis assume hyp6 : ad = (ae, bb) (set-error-mem-waits caller partner σ ba error-memory msg)) case (ERROR-IPC error-IPC) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) fix aa b assume hyp4 :ac = ERROR-MEM error-memory qed case (ERROR-MEM error-memory) qed then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog)
	using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis assume hyp1 : a = (aa , b) case None lemma abort-wait-send-obvious10 : assume hyp7 :error-codes ba = ERROR-IPC error-IPC (set-error-ipc-waits caller partner σ ba error-IPC msg) = then show ?thesis qed assume hyp4 :ac = ERROR-MEM error-memory qed using assms hyp0 hyp1 (set-error-mem-waitr caller partner σ ba error-memory msg)
	by (auto simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis then show ?thesis (σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S) then show ?thesis Some ad using hyp0 hyp1 hyp2 hyp3 hyp4 qed then show ?thesis qed by (simp add : valid-SE-def bind-SE-def) = Some ad
	qed by (simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 by simp (abort lif t exec-action id -Mon)); P outs)) = using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 then show ?thesis proof (cases mbind F ailS av e S (abort lif t ioprog) qed using hyp0 hyp1 hyp2 hyp3 hyp4 qed next then show ?thesis
	qed qed proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ) next ((caller ∈ dom ((th-flag)σ) -→ by (auto simp add : PREP-SEND id -def valid-SE-def bind-SE-def using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 (set-error-mem-waitr caller partner σ ba error-memory msg)) proof (cases mbind F ailS av e S (abort lif t ioprog) qed case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
	next qed case None case (Some ad) (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error exec-action id -Mon-def proof (cases ad) case None lemma abort-wait-recv-obvious12 : (set-error-mem-waitr caller partner σ ba error-memory msg)) assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab proof (cases ad)
	case (ERROR-MEM error-memory) qed then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog) caller σ # outs)))) ∧ split: split-if-asm) fix ae bb then show ?thesis (σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t case None then show ?thesis fix ae bb
	assume hyp4 :ac = ERROR-MEM error-memory qed using assms hyp0 hyp1 (set-error-mem-waits caller partner σ ba error-memory msg) (caller / ∈ dom ((th-flag)σ) -→ qed assume hyp6 : ad = (ae, bb) by simp ioprog)); P outs)) = then show ?thesis lemma abort-wait-recv-obvious10 : using hyp0 hyp1 hyp2 assume hyp6 : ad = (ae, bb)
	then show ?thesis by (simp add : valid-SE-def bind-SE-def) qed = Some ad (∀ a b. qed then show ?thesis next (if caller ∈ dom ((th-flag)σ) by simp (σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t proof (cases ab) then show ?thesis
	using hyp0 hyp1 hyp2 hyp3 hyp4 next qed then show ?thesis (a = NO-ERRORS -→ qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 case (Some ad) then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ next ioprog)); P outs)) = fix ac ba using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	proof (cases mbind F ailS av e S (abort lif t ioprog) case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 exec-action id -Mon (IPC WAIT (SEND caller partner msg)) σ = Some next by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def assume hyp5 : mbind F ailS av e S (abort lif t ioprog) # outs))) qed case (Some ad) ((caller ∈ dom ((th-flag)σ) -→ assume hyp3 :ab = (ac, ba) by(simp add : valid-SE-def bind-SE-def)

P

 (ERROR-IPC error-IPC # outs))))))) proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS , σ) ⇒ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs

			then show ?thesis by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def ((set-error-ipc-bufr caller partner σ σ error-IPC msg) |= proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
			using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 BUF-SEND id -def (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # fix ae bb proof (cases ad)
	case None proof (cases error-codes ba) split : errors.split option.split list.split-asm split-if-asm) outs))) assume hyp6 : ad = (ae, bb) fix ae bb
	then show ?thesis case NO-ERRORS qed | None ⇒ (σ |= (P [])))) then show ?thesis assume hyp6 : ad = (ae, bb)
	by simp qed proof (cases mbind F ailS av e S (abort lif t ioprog) σ) assume hyp7 :error-codes ba = NO-ERRORS using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis
	next case None next by(simp add : valid-SE-def bind-SE-def) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	case (Some a) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 case (ERROR-IPC error-IPC) then show ?thesis qed by(simp add : valid-SE-def bind-SE-def)
	assume hyp0 : mbind F ailS av e S (abort lif t exec-action id -Mon) σ = Some a by (auto simp add : BUF-SEND id -def valid-SE-def bind-SE-def assume hyp4 :ac = ERROR-IPC error-IPC by simp qed qed
	then show ?thesis exec-action id -Mon-def then show ?thesis next next qed
	using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 split: split-if-asm option.split-asm) case (Some a) case (ERROR-MEM error-memory) qed
	proof (cases a) next proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed
	fix aa b then show ?thesis case (ERROR-MEM error-memory) (set-error-ipc-bufs caller partner σ ba error-IPC msg)) then show ?thesis qed
	assume hyp1 : a = (aa , b) assume hyp7 :error-codes ba = ERROR-MEM error-memory case None using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed
	then show ?thesis then show ?thesis then show ?thesis proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) qed
		using hyp0 hyp1 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp fix aa b (set-error-mem-bufr caller partner σ ba error-memory msg))
	proof (cases exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ) by (auto simp add : valid-SE-def bind-SE-def exec-action id -Mon-def next assume hyp1 : a = (aa , b) case None lemma abort-buf-recv-obvious12 :
	case None case (Some ad) split: split-if-asm) then show ?thesis then show ?thesis (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t
	then show ?thesis next assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) using hyp0 hyp1 by simp ioprog)); P outs)) =
		using assms hyp0 hyp1 case (ERROR-IPC error-IPC) (set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ) next (if caller ∈ dom ((th-flag)σ)
	ad	by(simp add : exec-action id -Mon-def valid-SE-def bind-SE-def) assume hyp7 :error-codes ba = ERROR-IPC error-IPC case None case (Some ad) then (σ
		next then show ?thesis then show ?thesis then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog)
		case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 using assms hyp0 hyp1 (set-error-mem-bufr caller partner σ ba error-memory msg)
	assume hyp2 : exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ by (auto simp add : valid-SE-def bind-SE-def exec-action id -Mon-def proof (cases ad) by (simp add : valid-SE-def bind-SE-def) = Some ad
	= Some ab next then show ?thesis split: split-if-asm) fix ae bb
		then show ?thesis qed assume hyp6 : ad = (ae, bb) case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
		using hyp0 hyp1 hyp2 qed then show ?thesis assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab proof (cases ad)
		proof (cases ab) qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis fix ae bb
		fix ac ba next by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def using hyp0 hyp1 hyp2 assume hyp6 : ad = (ae, bb)
		assume hyp3 :ab = (ac, ba) case (ERROR-MEM error-memory) BUF-SEND id -def proof (cases ab) then show ?thesis
		then show ?thesis assume hyp4 :ac = ERROR-MEM error-memory split : errors.split option.split list.split-asm split-if-asm) fix ac ba using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
		using hyp0 hyp1 hyp2 hyp3 then show ?thesis qed assume hyp3 :ab = (ac, ba) by(simp add : valid-SE-def bind-SE-def)
		proof (cases ac) using hyp0 hyp1 hyp2 hyp3 hyp4 qed then show ?thesis qed
		case NO-ERRORS proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) qed using hyp0 hyp1 hyp2 hyp3 qed
		assume hyp4 : ac = NO-ERRORS (set-error-mem-bufs caller partner σ ba error-memory msg)) qed proof (cases ac) next
		qed	then show ?thesis case None case NO-ERRORS case (ERROR-IPC error-IPC)
	qed	using hyp0 hyp1 hyp2 hyp3 hyp4 then show ?thesis assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-IPC error-IPC
	qed	proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) ba) by simp then show ?thesis then show ?thesis
			case None next using hyp0 hyp1 hyp2 hyp3 hyp4 using hyp0 hyp1 hyp2 hyp3 hyp4
	then show ?thesis case (Some ad) lemma abort-buf-send-obvious11 : proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog)
	by simp assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S) σ ba)) (set-error-ipc-bufr caller partner σ ba error-IPC msg))
			next case None case None	(set-error-mem-bufs caller partner σ ba error-memory msg) (abort lif t exec-action id -Mon)); P outs)) =
	case (Some ad) = Some ad ((caller ∈ dom ((th-flag)σ) -→ then show ?thesis then show ?thesis
		assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) ba = then show ?thesis (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); by simp by simp
	Some ad next using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 P (get-caller-error caller σ # outs)))) ∧ next
		then show ?thesis proof (cases ad) (caller / ∈ dom ((th-flag)σ) -→ case (Some ad) case (Some ad)
		using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 fix ae bb (∀ a b. assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog)
	proof (cases ad) assume hyp6 : ad = (ae, bb) (a = NO-ERRORS -→ IPC-buf-check-st id caller partner σ -→ caller σ ba) = Some ad (set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some
	ad	fix ae bb then show ?thesis ((σ(|current-thread := caller , then show ?thesis
			assume hyp6 : ad = (ae, bb) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 resource := foldl (λm (addr ,val). (m (addr := $ val))) (resource σ) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis

 abort lif t ioprog) σ)

	proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) then show ?thesis next assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon)
		fix ae bb proof (cases ad) fix aa b (set-error-mem-bufr caller partner σ ba error-memory msg)) using assms hyp0 hyp1 case (ERROR-IPC error-IPC) (set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some
	ad	assume hyp6 : ad = (ae, bb) fix ae bb assume hyp1 : a = (aa , b) case None by(simp add : exec-action id -Mon-def valid-SE-def bind-SE-def) assume hyp7 :error-codes ba = ERROR-IPC error-IPC
		then show ?thesis assume hyp6 : ad = (ae, bb) then show ?thesis then show ?thesis next then show ?thesis then show ?thesis
		using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis using hyp0 hyp1 by simp case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
	case None by(auto simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ) next assume hyp2 : exec-action id -Mon (IPC BUF (RECV caller partner msg)) σ by (auto simp add : valid-SE-def bind-SE-def exec-action id -Mon-def proof (cases ad)
	then show ?thesis qed by(simp add : valid-SE-def bind-SE-def) case None case (Some ad) = Some ab split: split-if-asm) fix ae bb
	by simp qed qed then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t ioprog) then show ?thesis qed assume hyp6 : ad = (ae, bb)
	next using assms hyp0 hyp1 next qed (set-error-mem-bufr caller partner σ ba error-memory msg) using hyp0 hyp1 hyp2 qed then show ?thesis
	case (Some a) case (ERROR-MEM error-memory) qed by (simp add : valid-SE-def bind-SE-def) = Some ad proof (cases ab) qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed next then show ?thesis fix ac ba next by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def
	then show ?thesis then show ?thesis qed case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 assume hyp3 :ab = (ac, ba) case (ERROR-MEM error-memory) BUF-RECV id -def
	using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab proof (cases ad) then show ?thesis assume hyp4 :ac = ERROR-MEM error-memory split : errors.split option.split list.split-asm split-if-asm)
	proof (cases a) proof (cases mbind F ailS av e S (abort lif t ioprog) qed then show ?thesis fix ae bb using hyp0 hyp1 hyp2 hyp3 then show ?thesis qed
		fix aa b using hyp0 hyp1 hyp2 (set-error-mem-bufr caller partner σ ba error-memory msg)) assume hyp6 : ad = (ae, bb) proof (cases ac) using hyp0 hyp1 hyp2 hyp3 hyp4 qed
	assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 case None then show ?thesis by simp next case (Some ad) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 lemma abort-buf-recv-obvious10 : proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 qed qed qed qed qed proof (cases mbind = Some ad lemma abort-buf-recv-obvious11 :
			proof (cases ad) proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) then show ?thesis
	then show ?thesis fix ae bb σ ba)) (set-error-ipc-bufr caller partner σ ba error-IPC msg)) Some ad using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
		using hyp0 hyp1 hyp2 assume hyp6 : ad = (ae, bb) case None case None then show ?thesis proof (cases ad)
		proof (cases ab) then show ?thesis then show ?thesis then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 fix ae bb
			fix ac ba using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by simp by simp proof (cases ad) assume hyp6 : ad = (ae, bb)
			assume hyp3 :ab = (ac, ba) by(simp add : valid-SE-def bind-SE-def) next next fix ae bb then show ?thesis
			then show ?thesis qed case (Some ad) case (Some ad) assume hyp6 : ad = (ae, bb) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
			using hyp0 hyp1 hyp2 hyp3 qed assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) then show ?thesis by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def
	proof (cases ac) next caller σ ba) = Some ad (set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 BUF-RECV id -def
	ad		case NO-ERRORS case (ERROR-IPC error-IPC) then show ?thesis proof (cases error-codes ba) split : errors.split option.split list.split-asm split-if-asm)
			assume hyp4 : ac = NO-ERRORS assume hyp4 :ac = ERROR-IPC error-IPC using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis case NO-ERRORS qed
			then show ?thesis then show ?thesis proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 assume hyp7 :error-codes ba = NO-ERRORS qed
			using hyp0 hyp1 hyp2 hyp3 hyp4 using hyp0 hyp1 hyp2 hyp3 hyp4 fix ae bb proof (cases ad) then show ?thesis next
			proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller proof (cases mbind F ailS av e S (abort lif t ioprog) assume hyp6 : ad = (ae, bb) fix ae bb using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 case (ERROR-IPC error-IPC)
	σ ba)) outs)))))))) assume hyp4 :ac = ERROR-IPC error-IPC (set-error-ipc-bufr caller partner σ ba error-IPC msg)) then show ?thesis assume hyp6 : ad = (ae, bb) by (auto simp add : BUF-RECV id -def valid-SE-def bind-SE-def
	case None case None proof (cases mbind F ailS av e S (abort lif t ioprog) σ) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis exec-action id -Mon-def then show ?thesis
	then show ?thesis then show ?thesis case None by(simp add : valid-SE-def bind-SE-def) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 split: split-if-asm) using hyp0 hyp1 hyp2 hyp3 hyp4
	by simp by simp then show ?thesis qed by(simp add : valid-SE-def bind-SE-def) next proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon)
	next next by simp qed qed case (ERROR-MEM error-memory) (set-error-ipc-bufr caller partner σ ba error-IPC msg))
	next	case (Some ad) case (Some ad) next qed assume hyp7 :error-codes ba = ERROR-MEM error-memory case None
	assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer assume hyp5 : mbind F ailS av e S (abort lif t ioprog) case (Some a) case (ERROR-MEM error-memory) qed then show ?thesis then show ?thesis
	caller σ ba) = Some ad (set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a assume hyp4 :ac = ERROR-MEM error-memory qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 by simp
	then show ?thesis then show ?thesis ad then show ?thesis qed by (auto simp add : valid-SE-def bind-SE-def exec-action id -Mon-def next
	using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed split: split-if-asm) case (Some ad)

proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-bufr caller partner σ ba error-memory msg) (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller

σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (ioprog (IPC BUF (RECV caller partner msg)) σ = None -→ (σ |= (P []))) ∧ ((∀ a σ .

(a = NO-ERRORS -→ ioprog (IPC BUF (RECV caller partner msg)) σ = Some (NO-ERRORS , σ) -→ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, σ) -→ ((set-error-mem-bufr caller partner σ σ error-memory msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC , σ) -→ ((set-error-ipc-bufr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) ba) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) ba = F ailS av e S (abort lif t exec-action id -Mon) (set-error-mem-bufr caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-mem-bufr caller partner σ ba error-memory msg) (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t exec-action id

 S (abort lif t ioprog) σ) NO-ERRORS -→ exec-action id -Mon (IPC MAP (SEND caller partner msg)) σ = assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon)

	using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4 qed case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 ((set-error-ipc-mapr caller partner σ σ error-IPC msg) proof (cases ad) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
	case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(auto simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed qed qed qed lemma abort-map-send-obvious10 : (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (ioprog (IPC MAP (SEND caller partner msg)) σ = None -→ (σ |= (P []))) ∧ ((∀ a σ . outs)))))))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg) = Some ad proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed qed qed qed qed qed lemma abort-map-send-obvious10 : (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def MAP-SEND id -def split : errors.split option.split list.split-asm split-if-asm) qed qed case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def MAP-SEND id -def split : errors.split option.split list.split-asm split-if-asm) qed qed qed qed qed qed qed |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) | None ⇒ (σ |= (P [])))) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b then show ?thesis using hyp0 hyp1 then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba) = Some ad then show ?thesis fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-MEM error-memory) assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg)) then show ?thesis by simp next case (Some ad) = Some ad then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed next case (ERROR-IPC error-IPC) assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad proof (cases ad) fix ae bb assume hyp6 : ad = (ae, bb) then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by(simp add : valid-SE-def bind-SE-def) qed qed qed qed qed qed qed (∀ a b. (a = (set-error-mem-maps caller partner σ ba error-memory msg) next assume hyp1 : a = (aa , b) case None lemma abort-map-recv-obvious12 :
	then show ?thesis then show ?thesis qed next then show ?thesis lemma abort-map-send-obvious11 : using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 then show ?thesis

(a = NO-ERRORS -→ ioprog (IPC MAP (SEND caller partner msg)) σ = Some (NO-ERRORS , σ) -→ ((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧ (∀ error-memory. a = ERROR-MEM error-memory -→ ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ) -→ ((set-error-mem-maps caller partner σ σ error-memory msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧ (∀ error-IPC . a = ERROR-IPC error-IPC -→ ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC , σ) -→ ((set-error-ipc-maps caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg) = proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-ipc-maps caller partner σ ba error-IPC msg)) case None then show ?thesis by simp next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon) (set-error-ipc-maps caller partner σ ba error-IPC msg) = proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg) (σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog)); P outs)) = (if caller ∈ dom ((th-flag σ)) then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS , σ) ⇒ (((error-tab-transfer caller σ σ) |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs

 |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (NO-ERRORS # outs))))))) proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) σ)

	qed	then show ?thesis then show ?thesis qed using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
	qed	using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 using hyp0 hyp1 hyp2 hyp3 hyp4 next by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def
	qed		proof (cases ad) proof (cases mbind F ailS av e S (abort lif t ioprog) case (ERROR-MEM error-memory) MAP-RECV id -def
			fix ae bb (set-error-mem-maps caller partner σ ba error-memory msg)) assume hyp4 :ac = ERROR-MEM error-memory split : errors.split option.split list.split-asm split-if-asm)
	assume hyp6 : ad = (ae, bb) case None lemma abort-map-recv-obvious10 : then show ?thesis qed
	then show ?thesis then show ?thesis (σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S) using hyp0 hyp1 hyp2 hyp3 hyp4 qed
			using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by simp (abort lif t exec-action id -Mon)); P outs)) = proof (cases mbind F ailS av e S (abort lif t exec-action id -Mon) qed
	by(auto simp add : valid-SE-def bind-SE-def) next ((caller ∈ dom ((th-flag)σ) -→ (set-error-mem-maps caller partner σ ba error-memory msg)) qed
	qed case (Some ad) (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); case None qed
	qed	qed assume hyp5 : mbind F ailS av e S (abort lif t ioprog) P (get-caller-error caller σ # outs)))) ∧ then show ?thesis
	qed	next (caller / ∈ dom ((th-flag)σ) -→ (set-error-mem-maps caller partner σ ba error-memory msg) by simp
	case (ERROR-MEM error-memory) = Some ad (∀ a b. (a = NO-ERRORS -→ exec-action id -Mon (IPC MAP (RECV caller next
	assume hyp4 :ac = ERROR-MEM error-memory then show ?thesis partner msg)) σ = case (Some ad) lemma abort-map-recv-obvious11 :
			then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 Some (NO-ERRORS , b) -→ assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon)
			using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) ((σ(|current-thread := caller , (set-error-mem-maps caller partner σ ba error-memory msg)
	proof (cases mbind F ailS av e S (abort lif t ioprog) fix ae bb resource := foldl (λm (src,dst). (m (src dst))) (resource σ) = Some ad
			(set-error-mem-maps caller partner σ ba error-memory msg)) assume hyp6 : ad = (ae, bb) (zip msg (get-th-addrs caller σ)), then show ?thesis
			case None then show ?thesis thread-list := update-th-ready caller using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
			then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 (update-th-ready partner proof (cases ad)
			by simp by(simp add : valid-SE-def bind-SE-def) (thread-list σ)), fix ae bb
			next qed error-codes := NO-ERRORS , assume hyp6 : ad = (ae, bb)
			case (Some ad) qed th-flag := th-flag σ|)) then show ?thesis
			next using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
			case (ERROR-IPC error-IPC) by(auto simp add : exec-action id -Mon-def valid-SE-def bind-SE-def
	= Some ad assume hyp4 :ac = ERROR-IPC error-IPC MAP-RECV id -def
	then show ?thesis then show ?thesis case None split : errors.split option.split list.split-asm split-if-asm)
	using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 using hyp0 hyp1 hyp2 hyp3 hyp4 then show ?thesis qed
	proof (cases ad) proof (cases mbind F ailS av e S (abort lif t ioprog) by simp qed
	next	fix ae bb (set-error-ipc-maps caller partner σ ba error-IPC msg)) next
	assume hyp6 : ad = (ae, bb) case None case (Some a) case (ERROR-IPC error-IPC)
	then show ?thesis then show ?thesis assume hyp0 : mbind F ailS av e S (abort lif t exec-action id -Mon) σ = Some a assume hyp4 :ac = ERROR-IPC error-IPC
	using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 by simp then show ?thesis then show ?thesis
	by(auto simp add : valid-SE-def bind-SE-def) next using hyp0 using hyp0 hyp1 hyp2 hyp3 hyp4
	qed qed next case (Some ad) assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-ipc-maps caller partner σ ba error-IPC msg) = proof (cases a) fix aa b assume hyp1 : a = (aa , b) proof (cases mbind case None
	case (ERROR-IPC error-IPC) Some ad then show ?thesis then show ?thesis
	assume hyp4 :ac = ERROR-IPC error-IPC then show ?thesis using hyp0 hyp1 by simp
	then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 proof (cases exec-action id -Mon (IPC MAP (RECV caller partner msg)) σ) next
		using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases ad) case None case (Some ad)
		proof (cases mbind F ailS av e S (abort lif t ioprog) fix ae bb then show ?thesis assume hyp5 : mbind F ailS av e S (abort lif t exec-action id -Mon)
		(set-error-ipc-maps caller partner σ ba error-IPC msg)) assume hyp6 : ad = (ae, bb) using assms hyp0 hyp1 (set-error-ipc-maps caller partner σ ba error-IPC msg) =
	case None then show ?thesis by(simp add : exec-action id -Mon-def valid-SE-def bind-SE-def) Some ad
	next	then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 then show ?thesis
		by simp by(simp add : valid-SE-def bind-SE-def) case (Some ab) using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
		next qed assume hyp2 : exec-action id -Mon (IPC MAP (RECV caller partner msg)) σ proof (cases ad)
	case (Some ad) qed = Some ab fix ae bb
		assume hyp5 : mbind F ailS av e S (abort lif t ioprog) qed then show ?thesis assume hyp6 : ad = (ae, bb)
		(set-error-ipc-maps caller partner σ ba error-IPC msg) = using hyp0 hyp1 hyp2 qed then show ?thesis

assume hyp5 : mbind F ailS av e S (abort lif t ioprog) (set-error-mem-maps caller partner σ ba error-memory msg) F ailS av e S (abort lif t exec-action id -Mon) (set-error-ipc-maps caller partner σ ba error-IPC msg)) (σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind S (abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)))) ∧ (caller / ∈ dom ((th-flag)σ) -→ (∀ a b.

 (remove-caller-error caller σ)) partner = None))) else (if ioprog (IPC DONE (SEND caller partner msg)) σ = None then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) else (σ |= (P [])))) proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ)) DONE (SEND caller partner msg)) σ = None -→ (σ |=(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))))∧ (caller / ∈ dom ((th-flag σ)) ∧ ioprog (IPC DONE (SEND caller partner msg)) σ = None -→ (σ |=(P []))))proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ)) proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ)) proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ))

	(σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t using hyp0 hyp1 hyp2 hyp3 using hyp0 hyp1 hyp2 hyp3 using hyp0 hyp1 hyp2 hyp3 by simp next
	ioprog)); P outs)) = by (auto simp add : valid-SE-def bind-SE-def split: option.split) by (simp add : valid-SE-def bind-SE-def split: option.split) by (auto simp add : valid-SE-def bind-SE-def split: option.split) next case (Some ab) lemma abort-done-send-obvious11 : (if caller ∈ dom ((th-flag)σ) qed qed qed case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t then ((((remove-caller-error caller σ) |= qed qed qed assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab then show ?thesis ioprog)); P outs)) = (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # qed qed qed then show ?thesis using hyp0 hyp1 hyp2 (if caller ∈ dom ((th-flag)σ) outs))) ∧ qed qed qed using hyp0 hyp1 hyp2 proof (cases ab) then ((remove-caller-error caller σ) |= (((th-flag) (remove-caller-error caller σ)) caller = None) ∧ proof (cases ab) fix ac ba (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # caller = partner ∧ lemma abort-done-send-obvious11 : lemma abort-done-recv-obvious12 : fix ac ba assume hyp3 : ab = (ac, ba) outs))) (((th-flag) σ) partner = (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t assume hyp3 : ab = (ac, ba) then show ?thesis else (if ioprog (IPC DONE (SEND caller partner msg)) σ = None ((th-flag) (remove-caller-error caller σ)) partner)) ∨ ioprog)); P outs)) = lemma abort-done-recv-obvious11 : ioprog)); P outs)) = then show ?thesis using hyp0 hyp1 hyp2 hyp3 then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # (((remove-caller-error caller σ) |= ((caller ∈ dom ((th-flag)σ) -→ (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t (if caller ∈ dom ((th-flag σ)) using hyp0 hyp1 hyp2 hyp3 by (simp add : valid-SE-def bind-SE-def split:option.split) outs))) (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # ((remove-caller-error caller σ) |= ioprog)); P outs)) = then ((((remove-caller-error caller σ) |= by (auto simp add : valid-SE-def bind-SE-def split: option.split) qed else (σ |= (P [])))) outs))) ∧ (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))) (if caller ∈ dom ((th-flag σ)) (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # qed qed proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ)) (((th-flag) (remove-caller-error caller σ)) caller = None) ∧ ∧ outs))) ∧ qed qed case None by simp next case (Some a) = Some a assume hyp3 : ab = (ac, ba) assume hyp3 : ab = (ac, ba) assume hyp3 : ab = (ac, ba) case None then show ?thesis qed fix ac ba fix ac ba fix ac ba proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None qed proof (cases ab) proof (cases ab) proof (cases ab) using hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) σ) qed using hyp0 hyp1 hyp2 using hyp0 hyp1 hyp2 using hyp0 hyp1 hyp2 then show ?thesis using hyp0 hyp1 qed then show ?thesis then show ?thesis then show ?thesis assume hyp1 : a = (aa, b) then show ?thesis by (auto simp add : valid-SE-def bind-SE-def split: option.split) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab fix aa b assume hyp1 : a = (aa, b) using hyp0 hyp1 hyp2 hyp3 case (Some ab) case (Some ab) case (Some ab) proof (cases a) fix aa b then show ?thesis next next next using hyp0 proof (cases a) assume hyp3 : ab = (ac, ba) by simp by simp by simp then show ?thesis using hyp0 fix ac ba then show ?thesis then show ?thesis then show ?thesis Some a then show ?thesis proof (cases ab) case None case None case None = Some a using hyp0 hyp1 hyp2 proof (cases mbind F ailS av e S (abort lif t ioprog) σ) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = then show ?thesis using hyp0 hyp1 using hyp0 hyp1 using hyp0 hyp1 case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab then show ?thesis then show ?thesis then show ?thesis next case (Some a) case (Some ab) assume hyp1 : a = (aa, b) assume hyp1 : a = (aa, b) assume hyp1 : a = (aa, b) by simp next next fix aa b fix aa b fix aa b then show ?thesis by simp by simp proof (cases a) proof (cases a) proof (cases a) case None then show ?thesis then show ?thesis using hyp0 using hyp0 using hyp0 case None case None then show ?thesis then show ?thesis then show ?thesis proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ)) proof (cases mbind F ailS av e S (abort lif t ioprog) σ) Some a Some a Some a ioprog (IPC DONE (RECV caller partner msg)) σ = None -→ (σ |= (P [])))) using hyp0 hyp1 = = = (caller / ∈ dom ((th-flag σ)) ∧ then show ?thesis assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) (σ |=(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))) ∧ assume hyp1 : a = (aa, b) case (Some a) case (Some a) case (Some a) ioprog (IPC DONE (RECV caller partner msg)) σ = None -→ fix aa b next next next (caller / ∈ dom ((th-flag)σ) ∧ proof (cases a) by simp by simp by simp ∧ using hyp0 then show ?thesis then show ?thesis then show ?thesis then show ?thesis (((th-flag) case None case None (((th-flag) σ) partner = ((th-flag) (remove-caller-error caller σ)) partner)) ∨ lemma abort-done-recv-obvious11 : ioprog (IPC case None caller = partner ∧ qed then show ?thesis caller = partner ∧ (caller / ∈ dom ((th-flag)σ) ∧ (((th-flag) (remove-caller-error caller σ)) caller = None) ∧ qed qed
	lemma abort-done-send-obvious12 : then show ?thesis then show ?thesis then show ?thesis then show ?thesis by simp

assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) then ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) else (if ioprog (IPC DONE (RECV caller partner msg)) σ = None then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) else (σ |= (P [])))) (((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) ∧ (((th-flag) (remove-caller-error caller σ)) caller = None) ∧ caller = partner ∧ (((th-flag) (remove-caller-error caller σ)) partner = None))) else (if ioprog (IPC DONE (RECV caller partner msg)) σ = None then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) else (σ |= (P [])))) (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog)); P outs)) = ((caller ∈ dom ((th-flag)σ) -→ ((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))

 in-err-state: caller ∈ dom ((th-flag σ)) =⇒ (remove-caller-error caller σ) |= (outs ← (mbind (S)(abort lif t exec-action id -Mon)); P (get-caller-error caller σ # outs)) and not-in-err-state1 : caller / ∈ dom ((state id .th-flag σ)) =⇒ σ |= (outs ← (mbind (S)(abort lif t exec-action id -Mon));P (NO-ERRORS # outs))apply (simp add : not-in-err-exec2 exec-action id -Mon-prep-fact0-def) apply (simp add : exec-action id -Mon-prep-send-obvious5)

	ioprog));P outs)) caller / ∈ dom ((th-flag σ)) =⇒ caller ∈ dom ((th-flag σ)) =⇒
	and in-err-state: exec-action id -Mon-prep-fact0 caller partner σ msg =⇒ (σ |=
	caller ∈ dom ((th-flag σ)) =⇒ apply auto ¬IPC-params-c1 ((the o thread-list σ) partner) =⇒ (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
	(σ |= apply (erule contrapos-np) IPC-params-c2 ((the o thread-list σ) partner) =⇒ =⇒ Q
	(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) apply simp IPC-params-c6 caller ((the o thread-list σ) partner)=⇒ and not-in-err-state-Some1 :
	=⇒ Q apply (fold update-th-current.simps) (σ(|current-thread := caller , σ .
	and not-in-err-state-Some1 : apply (subst (asm) threa-table-obvious) thread-list := update-th-ready caller (thread-list σ), (caller / ∈ dom ((th-flag σ))) =⇒
	σ . apply (simp add : not-in-err-exec31) error-codes := NO-ERRORS |) |= ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS ,
	(caller / ∈ dom ((th-flag σ))) =⇒ apply (erule contrapos-np) (outs ← (mbind S (abort lif t exec-action id -Mon));P (NO-ERRORS # σ) =⇒
	ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS , apply simp outs)))=⇒Q ((error-tab-transfer caller σ σ) |=
	σ) =⇒ apply (fold update-th-current.simps) shows Q (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q
	((error-tab-transfer caller σ σ) apply (subst (asm) threa-table-obvious) apply (insert valid-exec) and not-in-err-state-Some2 :
	|= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) apply (simp add : not-in-err-exec32) apply (elim abort-prep-recv-mbindFSave-E) σ error-mem.
	=⇒Q apply (simp add : exec-action id -Mon-def) (caller / ∈ dom ((th-flag σ))) =⇒
	and not-in-err-state-Some2 : done ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM
	σ error-mem. error-mem, σ) =⇒
	(caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM O.2 Symbolic Execution rules for PREP RECV
	error-mem, σ) =⇒
	end	
	theory IPC-symbolic-exec-elims =⇒ Q =⇒Q
	imports IPC-symbolic-exec-rewriting IPC-symbolic-exec-intros ../../../../src/TestLib and not-in-err-state-Some1 : and not-in-err-state-None:
	begin (caller / σ . ∈ dom ((th-flag σ))) =⇒
	=⇒Q	(caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC WAIT (SEND caller partner msg)) σ = None =⇒
	and not-in-err-state-None: ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS , (σ |= (P [])) =⇒ Q O Elimination rules for Symbolic Execution of a (caller / ∈ dom ((th-flag σ))) =⇒ σ) =⇒ shows Q
	ioprog (IPC PREP (SEND caller partner msg)) σ = None =⇒ ((error-tab-transfer caller σ σ) |= proof (cases caller ∈ dom ((th-flag σ))) Test Specification (σ |= (P [])) =⇒ Q (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q case True
	shows Q and not-in-err-state-Some2 : then show ?thesis lemma threa-table-obvious: (caller / proof (cases caller ∈ dom ((th-flag σ))) σ error-mem. using valid-exec ∈ dom ((th-flag σ))) = ((th-flag σ) caller = None) case True (caller / ∈ dom ((th-flag σ))) =⇒ by (subst (asm) abort-wait-send-obvious10 , elim in-err-state, simp) by auto then show ?thesis ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM next
	using valid-exec error-mem, σ) =⇒ case False lemma threa-table-obvious : ((th-flag σ) caller = None) = (caller / by (subst (asm) abort-prep-send-obvious10 , elim in-err-state, simp) ((set-error-mem-waitr caller partner σ σ error-mem msg) |= then show ?thesis ∈ dom ((th-flag σ))) next (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # using valid-exec by auto case False outs))) =⇒Q proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
	O.1 Symbolic Execution rules for PREP SEND then show ?thesis using valid-exec and not-in-err-state-Some3 : σ error-IPC . case (Some a) O.3 Symbolic Execution rules for WAIT SEND then show ?thesis
	proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) (caller / ∈ dom ((th-flag σ))) =⇒ lemma abort-wait-send-mbindFSave-E : using valid-exec False HOL representation case (Some a) ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC assumes valid-exec: by (subst (asm) abort-wait-send-obvious10 , simp, case-tac a, simp,
	lemma abort-prep-send-mbindFSave-E : then show ?thesis error-IPC , σ) =⇒ (σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t simp split: errors.split-asm, elim not-in-err-state-Some1 ,
	assumes valid-exec: using valid-exec False ((set-error-ipc-waitr caller partner σ σ error-IPC msg) |= ioprog));P outs)) auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
	and in-err-state: next

shows σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t exec-action id -Mon)); P outs) using assms by (simp add : abort-done-recv-obvious11 exec-action id -Mon-def) (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ((set-error-mem-waitr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((set-error-ipc-waitr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) by (subst (asm) abort-prep-send-obvious10 , simp, case-tac a, simp, lemma abort-prep-recv-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs))) apply (simp add : in-err-exec) apply (simp add : exec-action id -Mon-prep-recv-obvious3) apply auto apply (erule contrapos-np) apply simp apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec1) apply (simp add : exec-action id -Mon-prep-recv-obvious4) apply auto apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec2 exec-action id -Mon-prep-fact0-def) apply (simp add : exec-action id -Mon-prep-recv-obvious5) apply auto apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec31) apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec32) apply (simp add : exec-action id -Mon-def) done ((set-error-mem-waitr caller partner σ σ error-mem msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q and not-in-err-state-Some3 : σ error-IPC . (caller / ∈ dom ((th-flag σ))) =⇒ ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ) =⇒ ((set-error-ipc-waitr caller partner σ σ error-IPC msg) |= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC # outs)))

 apply (erule contrapos-np) apply simp apply (simp add : update-state-wait-recv-params5-def split:option.split-asm split-if-asm) apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec21) apply (erule contrapos-np) apply simp apply (simp add : update-state-wait-recv-params5-def split:option.split-asm split-if-asm) apply (simp add : exec-action id -Mon-def) done O.5 Symbolic Execution rules for BUF SEND lemma abort-buf-send-mbindFSave-E : assumes valid-exec: (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t ioprog));P outs)) and in-err-state: caller ∈ dom ((th-flag σ)) =⇒ (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q and not-in-err-state-Some1 : σ .

option.split-asm) apply (simp only: exec-action id -Mon-wait-recv-obvious4) apply (auto) apply (erule contrapos-np) apply (simp) apply (subst (asm) threa-table-obvious) apply (simp add : update-state-wait-recv-params5-def split:option.split-asm split-if-asm) apply (simp add : domIff) apply (elim not-in-err-exec23) apply simp-all apply (simp add : not-in-err-exec24) + apply (erule contrapos-np) apply (simp) apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec22)

 type-synonym behaviour ipc = trace ipc set type-synonym behaviour ipc = trace ipc list Q.1 System calls with thread ID as argument type-synonym behaviour id = trace ipc list definition P4-IPC-BUF id ::thread id ⇒ thread id ⇒ int list ⇒ behaviour id where P4-IPC-BUF id caller partner msg ≡ [caller id msg id partner , caller id msg id partner , caller id msg id partner , caller id msg id partner] definition P4-IPC-BUF-SEND id ::thread id ⇒ thread id ⇒ int list ⇒ behaviour id where P4-IPC-BUF-SEND id caller partner msg ≡ [caller id msg id partner , caller id msg id partner] definition P4-IPC-BUF-RECV id ::thread id ⇒ thread id ⇒ int list ⇒ behaviour id where P4-IPC-BUF-RECV id caller partner msg ≡ [caller id msg id partner , caller id msg id partner] definition P4-IPC-SEND id ::thread id ⇒ thread id ⇒ int list ⇒ behaviour id where P4-IPC-SEND id caller partner msg ≡ [caller id msg id partner , caller id msg id partner] definition P4-IPC-RECV id ::thread id ⇒ thread id ⇒ int list ⇒ behaviour id where P4-IPC-RECV id caller partner msg ≡ [caller id msg id partner , caller id msg id partner] definition P4-IPC id ::thread id ⇒ thread id ⇒ int list ⇒ behaviour id where P4-IPC id caller partner msg ≡ [caller id msg id partner , caller id msg id partner , caller id msg id partner , caller id msg id partner]

In this document we will use the term complex systems to designate a computer program with complex component, e. g. the kernel of an OS

To increase readability, the presentation is slightly simplified.

text{* Text containing theorems like {@thm exI} ... *}

HOL-TestGen was never used to: test complex real systems, and concurrent code before this thesis

www.verisoft.de

www.verisoftxt.de

At time writing, the current version is Isabelle2013-2.

http://www.euromils.eu/downloads/Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf

3 http://www.ssi.gouv.fr/

For example, the fundamental doubt in the existence of infinite sets[START_REF] Peter | An introduction to mathematical logic and type theory: to truth through proof[END_REF]...

See Isabelle Isar-Reference Manual (Version 2013-2, pp. 103): "It is at the discretion of the user to avoid malformed theory specifications!"

Consider the case of τ having a semantic interpretation into an empty set I(τ) = : then the semantic interpretation of the function (λ x :: τ.E) must be in the function space: D = where D is the space of interpretations for the type τ of E. Obviously, there is no possible result for the application ...

to check than no parts of the code violate the security properties by side effects.

It is a theory in HOL-TestGen distribution.

https://www.gnu.org/software/gdb/

http://www.verisoft.de

In our code generation setup, we avoid the use of the SML datatype Int.Inf and, by this, we can remove the dependency on the GNU multi-precision library (libgmp).

actually we designed

scenario, we did not finish all the experiments at submission time, further explanation are presented in the sequel.

At submission time of this document, we had managed to finish only

experiences.

datatype p4-stage ipc = PREP -checking file descriptor informations | WAIT -synchronising | BUF -MEM COPY | MAP -MEM MAP | DONE -IPC end datatype (thread-id , adresses) p4-direct ipc =SEND thread-id thread-id adresses | RECV thread-id thread-id adresses datatype (thread-id , adresses) action ipc -simplified = IPC-SEND thread-id thread-id adresses

Some(ERROR-IPC error-IPC-22-in-PREP-SEND,

value int(card (interleave ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg)]) ([IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (RECV caller partner msg), IPC MAP (RECV caller partner msg), IPC DONE (RECV caller partner msg)]))) fun IPC-call-sem::(thread-id , msg) P4-IPC-call ⇒ ((p4-stage ipc , (thread-id , msg) p4-direct ipc)action ipc list) where IPC-call-sem (P4-IPC-call caller partner msg) = ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (RECV caller partner msg), IPC MAP (RECV caller partner msg), IPC DONE (RECV caller partner msg)])| IPC-call-sem (P4-IPC-SEND-call caller partner msg) = ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg)]) | IPC-call-sem (P4-IPC-RECV-call caller partner msg) = ([IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (RECV caller partner msg), IPC MAP (RECV caller partner msg), IPC DONE (RECV caller partner msg)])| IPC-call-sem (P4-IPC-BUF-call caller partner msg) = ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (RECV caller partner msg), IPC DONE (RECV caller partner msg)])| IPC-call-sem (P4-IPC-BUF-SEND-call caller partner msg) = ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC DONE (SEND caller partner msg)]) | IPC-call-sem (P4-IPC-BUF-RECV-call caller partner msg) = ([IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (RECV caller partner msg), IPC DONE (RECV caller partner msg)])| IPC-call-sem (P4-IPC-MAP-call caller partner msg) = ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC MAP (RECV caller partner msg), IPC DONE (RECV caller partner msg)])| IPC-call-sem (P4-IPC-MAP-SEND-call caller partner msg) = ([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg)])| IPC-call-sem (P4-IPC-MAP-RECV-call caller partner msg) = ([IPC PREP (RECV caller partner msg),

lemma exec-action id -Mon-wait-send-obvious4 : (exec-action id -Mon (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC , σ)) = ((¬ IPC-send-comm-check-st id caller partner σ -→ σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|) ∧ error-IPC = error-IPC-1-in-WAIT-SEND) ∧ (IPC-send-comm-check-st id caller partner σ -→ ((¬ IPC-params-c4 caller partner -→ σ = σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|) ∧ error-IPC = error-IPC-3-in-WAIT-SEND) ∧ (IPC-params-c4 caller partner -→ ((¬ IPC-params-c5 partner σ -→ σ = update-state-wait-send-params5 σ caller ∧ error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC error-IPC) ∧ ¬ IPC-params-c5 partner σ))))) by (auto simp add : update-state-wait-send-params5-def exec-action id -Mon-def WAIT-SEND id -def split: split-if-asm option.split-asm) lemma exec-action id -Mon-wait-recv-obvious0 : σ. exec-action id -Mon (IPC WAIT (RECV caller partner msg)) σ = None unfolding exec-action id -Mon-def by simp lemma exec-action id -Mon-wait-recv-obvious1 :

(exec-action id -Mon (IPC WAIT (RECV caller partner msg)) σ) = (if ¬ IPC-recv-comm-check-st id caller partner σ then Some(ERROR-IPC error-IPC-1-in-WAIT-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |)) else if ¬ IPC-params-c4 caller partner then Some(ERROR-IPC error-IPC-3-in-WAIT-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |)) else if ¬ IPC-params-c5 partner σ then (case (thread-list σ) caller of None ⇒ Some(ERROR-IPC error-IPC-6-in-WAIT-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV |)) | Some th ⇒ Some(ERROR-IPC error-IPC-5-in-WAIT-RECV , σ(|current-thread := caller , thread-list := update-th-current caller (thread-list σ), error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV |)))

else Some(NO-ERRORS , σ(|current-thread := caller , thread-list := update-th-waiting caller (thread-list σ), error-codes := NO-ERRORS |))) by (simp add : exec-action id -Mon-def WAIT-RECV id -def list.induct split: option.split) lemma exec-action id -Mon-wait-recv-obvious2 :

fst(the(exec-action id -Mon (IPC WAIT (RECV caller partner msg)) σ)) = (if ¬ IPC-recv-comm-check-st id caller partner σ then ERROR-IPC error-IPC-1-in-WAIT-RECV else if ¬ IPC-params-c4 caller partner then ERROR-IPC error-IPC-3-in-WAIT-RECV else if ¬ IPC-params-c5 partner σ then (case (thread-list σ) caller of None ⇒ ERROR-IPC error-IPC-6-in-WAIT-RECV | Some th ⇒ ERROR-IPC error-IPC-5-in-WAIT-RECV) else NO-ERRORS) by (simp add : exec-action id -Mon-def WAIT-RECV id -def list.induct split: option.split) lemma exec-action id -Mon-wait-recv-obvious3 :

(exec-action id -Mon (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS , σ)) = (σ = σ(|current-thread := caller , thread-list := update-th-waiting caller (thread-list σ), error-codes := NO-ERRORS |) ∧ IPC-recv-comm-check-st id caller partner σ ∧ IPC-params-c4 caller partner ∧ IPC-params-c5 partner σ) (update-th-ready partner (thread-list σ)), error-codes := NO-ERRORS |))) by (simp add : exec-action id -Mon-def BUF-SEND id -def) lemma exec-action id -Mon-buf-send-obvious2 :

fst (the(exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ)) = (if ¬ IPC-buf-check-st id caller partner σ then ERROR-IPC error-IPC-1-in-BUF-SEND else NO-ERRORS) by (simp add : exec-action id -Mon-def BUF-SEND id -def) lemma exec-action id -Mon-buf-send-obvious3 :

(exec-action id -Mon (IPC BUF (SEND caller partner msg)) σ = Some(error , σ | Some (out , σ) ⇒ Some (NO-ERRORS # (fst o the)(mbind S (abort lif t ioprog) σ), (snd o the)(mbind S (abort lif t ioprog) σ)))) proof (cases mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ))

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog)(remove-caller-error caller σ) = Some a then show ?thesis using hyp0 proof (cases a)

fix aa b assume hyp1 : a = (aa, b) then show ?thesis using hyp0 hyp1 proof (cases mbind F ailS av e S (abort lif t ioprog) σ) case None then show ?thesis by simp next case (Some ab) assume hyp2 : mbind F ailS av e S (abort lif t ioprog) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 : ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 by (simp split: option.split) qed qed (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = Some (ERROR-IPC error-IPC))∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner = Some (ERROR-IPC error-IPC)) ∧ (((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) caller = ((th-flag) (set-error-ipc-maps caller partner σ σ error-IPC msg)) partner)

case None then show ?thesis by simp next case (Some a) assume hyp0 : mbind F ailS av e S (abort lif t ioprog) σ = Some a then show ?thesis using hyp0 proof (cases a) fix aa b assume hyp1 : a = (aa , b) then show ?thesis using hyp0 hyp1 proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) case None then show ?thesis using assms hyp0 hyp1 by (simp add : valid-SE-def bind-SE-def) next case (Some ab) assume hyp2 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab then show ?thesis using hyp0 hyp1 hyp2 proof (cases ab) fix ac ba assume hyp3 :ab = (ac, ba) then show ?thesis using hyp0 hyp1 hyp2 hyp3 proof (cases ac) case NO-ERRORS assume hyp4 : ac = NO-ERRORS then show ?thesis using hyp0 hyp1 hyp2 hyp3 hyp4 proof (cases mbind F ailS av e S (abort lif t ioprog) (error-tab-transfer caller σ ba))

case None then show ?thesis by simp next and not-in-err-state-None:

case True then show ?thesis using valid-exec by (subst (asm) abort-prep-send-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ) case (Some a)

then show ?thesis using valid-exec False by (subst (asm) abort-prep-send-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-prep-send-obvious10 , simp, elim not-in-err-state-None) qed qed lemma abort-prep-send-HOL-elim21 : shows Q apply (insert valid-exec) apply (elim abort-prep-send-mbindFSave-E) apply (simp add : in-err-exec) apply (simp only: exec-action id -Mon-prep-send-obvious3) apply auto apply (erule contrapos-np) apply simp apply (subst (asm) threa-table-obvious) apply (rule not-in-err-exec1) apply (simp-all add : threa-table-obvious) apply (simp add : exec-action id -Mon-prep-send-obvious4) apply auto apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec2 exec-action id -Mon-prep-fact0-def) apply (simp add : exec-action id -Mon-prep-send-obvious5) apply auto apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec31) apply (erule contrapos-np) apply simp apply (fold update-th-current.simps) apply (subst (asm) threa-table-obvious) apply (simp add : not-in-err-exec32) apply (simp add : exec-action id -Mon-def) done and not-in-err-state-None:

P.2 Symbolic Execution rules for PREP RECV

case True then show ?thesis using valid-exec by (subst (asm) abort-prep-recv-obvious10 , elim in-err-state, simp) next case False then show ?thesis using valid-exec proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False by (subst (asm) abort-prep-recv-obvious10 , simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1 , auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))=⇒ Q shows Q apply(insert valid-exec) apply (elim abort-buf-send-HOL-elim21) using in-err-exec not-in-err-exec1 not-in-err-exec2 not-in-err-exec12 apply auto done P. 6 case True then show ?thesis using valid-exec by (subst (asm) abort-map-send-obvious10 , elim in-err-state, simp) next case False then show ?thesis proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ) case (Some a) then show ?thesis using valid-exec False Some by (subst (asm) abort-map-send-obvious10 , case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1 , simp, auto intro: not-in-err-state-Some2 not-in-err-state-Some3) next case None then show ?thesis using valid-exec False by (subst (asm) abort-map-send-obvious10 , simp, elim not-in-err-state-None) qed qed lemma mem-share-list-E :