Model-based Testing of Operating System-Level Security Mechanisms

Yakoub Nemouchi

To cite this version:

Yakoub Nemouchi. Model-based Testing of Operating System-Level Security Mechanisms. Software Engineering [cs.SE]. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS061 . tel01306992

HAL Id: tel-01306992
https://theses.hal.science/tel-01306992
Submitted on 26 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ecole Doctorale n ${ }^{\circ} 508$
Science et Technologies de l'Information et de la Communication
Spécialité de doctorat : Informatique
Par

M. Yakoub NEMOUCHI

Model-Based Testing of Operating System-Level Security Mechanisms

Thèse présentée et soutenue à Orsay, le 30/03/2016 :
Composition du Jury :

M. Poizat Pascal	Professeur Université Paris Ouest Nanterre Président	
M. Hierons Robert	Professeur Brunel University	Rapporteur
M. Merz Stephan	Directeur de Recherche INRIA Nancy	Rapporteur
M. Boulanger Frédéric	Professeur CentraleSupélec	Examinateur
M. Wolff Burkhart	Professeur Université Paris-Sud	Directeur de thèse

Model-Based Testing of Operating System-level Security Mechanisms

Yakoub Nemouchi

14th April 2016

Contents

I Introduction and Context 1
1 Introduction 2
1.1 Motivations 2
1.2 Contributions 4
1.3 Overview 7
2 Context 10
2.1 Introduction 11
2.2 Formal Testing and Prover-Based Testing 12
2.2.1 On Theorem Proving Based Testing (PBT) 14
2.2.2 A Gentle Introduction to: Sequence Testing 16
2.2.3 Background on Sequence Testing Models 19
2.3 Isabelle/HOL 22
2.3.1 The Isabelle System Architecture 23
2.3.2 Isabelle and its Meta-Logic 25
2.3.3 The Isabelle Methodology and Specification Constructs 26
2.3.4 Isabelle Proofs 32
2.3.5 Isabelle/HOL Code Generation 34
2.3.6 Isabelle/HOL Document Generation 34
2.3.7 Isabelle extensions: HOL-TestGen 35
2.4 The Verified Architecture Microprocessor (VAMP) 37
2.5 PikeOS System Architecture 38
2.6 Conclusions 40
II Contributions 41
3 A sideline : Isabelle/HOL in certification processes A Sys- tem Description and Mandatory Recommendations 42
3.1 Introduction 43
3.2 Common Criteria: Normative Context 44
3.3 Methodological Recommendations for the Evaluator 44
3.3.1 On the use of SML 45
3.3.2 Axioms and Bogus-Proofs 46
3.3.3 On the use of external provers 47
3.4 Extensions of Isabelle: Guidelines for the Evaluator 48
3.4.1 An Example: The Isabelle/Simpl 48
3.5 Recommendations for CC certifications 49
3.5.1 A refinement based approach for CC evaluation 49
3.6 Summary 51
3.6.1 Background References 51
3.6.2 Concluding Remarks and a Summary 51
4 Theoretical and Technical Foundations: Testing Concurrent Programs 53
4.1 Introduction 54
4.2 Monads Theory 55
4.2.1 An Example: MyKeOS. 58
4.3 Conformance Relations Revisited 60
4.4 Coverage Criteria for Interleaving 61
4.5 Sequence Test Scenarios for Concurrent Programs 63
4.6 Symbolic Execution 66
4.7 Test Drivers for Concurrent C Programs 67
4.7.1 The adapter 69
4.7.2 Code generation and Serialisation 70
4.7.3 Building Test Executables 71
4.7.4 GDB and Concurrent Code Testing 72
4.8 Conlusions 73
5 Testing VAMP Processor 75
5.1 Introduction 76
5.2 The VAMP Model 77
5.3 Testing VAMP Processor Conformance 80
5.3.1 Generalities on Model-based Tests 81
5.3.2 Test Specification 82
5.3.3 Testing Load-Store Operations 83
5.3.4 Testing Arithmetic Operations 86
5.3.5 Testing Control-Flow Related Operations 87
5.4 Experiences and First Experimental Data 88
5.4.1 Test Generation 89
5.4.2 Test Execution 89
5.5 Conlusions 91
5.5.1 Related Work 91
5.5.2 Conclusion and Future Work 91
6 Testing PikeOS API 93
6.1 Introduction 94
6.2 PikeOS IPC Protocol 94
6.3 PikeOS Model 95
6.3.1 State 95
6.3.2 Actions 96
6.3.3 Traces, executions and input sequences 97
6.3.4 Aborted Executions 98
6.3.5 IPC Execution Function 100
6.3.6 System Calls 101
6.4 A Generic Shared Memory Model 101
6.5 Testing PikeOS IPC 110
6.5.1 Coverage Criteria for IPC 110
6.5.2 Test Case Generation Process 110
6.5.3 Symbolic Execution Rules 112
6.5.4 Abstract Test Cases 119
6.5.5 Test Data For Sequence-based Test Scenarios 121
6.5.6 Test Drivers 123
6.5.7 Experimental Results 125
6.6 Conclusion 129
6.6.1 Related Work. 129
6.6.2 Conclusion and Future Work. 130
III Conclusions 131
7 Conclusions and Future Works 132
7.1 Summary 132
7.2 Futur Works 134
IV PikeOS IPC Model 135
A Isabelle sources 136
A HOL representation of PikeOS Datatypes 136
A. 1 kernel state 136
A. 2 atomic actions 136
A. 3 traces 137
A. 4 Threads 137
B Shared Memory Model 138
B. 1 Prerequisites 138
B. 2 Definition of the shared-memory type 140
B. 3 Operations on Shared-Memory 140
B. 4 Sharing Relation Definition 146
B. 5 Properties on Sharing Relation 146
B. 6 Memory Domain Definition 148
B. 7 Properties on Memory Domain 148
B. 8 Sharing Relation and Memory Update 152
B. 9 Properties on lookup and update wrt the Sharing Re- lation 154
B. 10 Rules On Sharing and Memory Transfer 156
B. 11 Properties on Memory Transfer and Lookup 159
B. 12 Test on Sharing and Transfer via smt 160
B. 13 Instrumentation of the smt Solver 160
B. 14 Tools for the initialization of the memory 163
B. 15 An Intrastructure for Global Memory Spaces 164
B. 16 Error codes datatype 165
C HOL representation of PikeOS IPC error codes 165
D HOL representation of PikeOS threads type 167
D. 1 interface between thread and memory 167
D. 2 Relation between threads adresses and memory adresses 168
D. 3 Updating thread list in the state 169
D. 4 Get thread by thread ID 170
E HOL representation of state type model for IPC 170
E. 1 informations on threads 170
E. 2 Interface between IPC state and threads 171
E. 3 Interface between IPC state and memory model 171
F HOL representation of IPC preconditions 172
F. 1 IPC conditions on threads parameters 172
F. 2 IPC conditions on threads communication rights 173
F. 3 IPC conditions on threads access rights 173
F. 4 interface between IPC Preconditions and IPC 'a state $i_{i d}$-schem
G HOL representation of PikeOS IPC atomic actions 174
G. 1 Types instantiation 174
G. 2 Atomic actions semantics 175
G. 3 Semantics of atomic actions with thread IDs as argu- ments 175
G. 4 Semantics of atomic actions based on monads 180
G. 5 Execution function for PikeOS IPC atomic actions with thread IDs as arguments 185
G. 6 Predicates on atomic actions 186
G. 7 Lemmas and simplification rules related to atomic ac- tions 187
G. 8 Composition equality on same action 191
G. 9 Composition equality on different same actions: par- tial order reduction 198
H HOL representation of PikeOS IPC traces 201
H. 1 Execution function for PikeOS IPC traces 201
H. 2 Trace refinement 201
H. 3 Execution function for actions with thread ID 201
H. 4 IPC operations with thread ID 206
H. 5 IPC operations with free variables 207
H. 6 Pridicates on operations 208
H. 7 Simplification rules related to traces 208
I IPC Stepping Function and Traces 213
I. 1 Simplification rules related to the stepping function exec-action ${ }_{i d}$-Mon 214
J Atomic Actions Reasoning 232
J. 1 Symbolic Execution Rules of Atomic Actions 232
J. 2 Symbolic Execution Rules for Error Codes Field 235
J. 3 Symbolic Execution Rules for Error Codes field on Pure-level 242
J. 4 Symbolic Execution of Action Informations Field 246
K IPC pre-conditions normalizer 250
L The Core Theory for Symbolic Execution of abort ${ }_{\text {lift }}$ 250
L. 1 mbind and ioprog fail 250
L. 2 Symbolic Execution Rules on PREP stage 257
L. 3 Symbolic Execution rules on WAIT stage 283
L. 4 Symbolic Execution rules on BUF stage 301
L. 5 Symbolic Execution Rules on MAP stage 318
L. 6 Symbolic Execution Rules rules on DONE stage 335
M Rewriting Rules for Symbolic Execution of Sequence Test Scheme 347
M. 1 Symbolic Execution Rules for PREP stage 347
M. 2 Symbolic Execution Rules for WAIT stage 374
M. 3 Symbolic Execution Rules for BUF stage 400
M. 4 Symbolic Execution Rules for MAP stage 425
M. 5 Symbolic Execution Rules for DONE stage 450
N Introduction Rules for Sequence Testing Scheme 456
N. 1 Introduction Rules for PREP stage 456
N. 2 Introduction rules for WAIT stage 458
N. 3 Introduction rules rules for BUF stage 460
N. 4 Introduction rules for MAP stage 461
N. 5 Introduction rules for DONE stage 462
O Elimination rules for Symbolic Execution of a Test Specification46
O. 1 Symbolic Execution rules for PREP SEND 463
O. 2 Symbolic Execution rules for PREP RECV 467
O. 3 Symbolic Execution rules for WAIT SEND 470
O. 4 Symbolic Execution rules for WAIT RECV 474
O. 5 Symbolic Execution rules for BUF SEND 478
O. 6 Symbolic Execution rules for BUF RECV 480
O. 7 Symbolic Execution rules for MAP SEND 482
O. 8 Symbolic Execution rules for MAP RECV 484
O. 9 Symbolic Execution rules for DONE SEND 486
O. 10 Symbolic Execution rules for DONE SEND 488
P Rules with detailed Constraints 489
P. 1 Symbolic Execution rules for PREP SEND 489
P. 2 Symbolic Execution rules for PREP RECV 494
P. 3 Symbolic Execution rules for WAIT SEND 499
P. 4 Symbolic Execution rules for WAIT RECV 504
P. 5 Symbolic Execution rules for BUF SEND 509
P. 6 Symbolic Execution rules for BUF RECV 512
P. 7 Symbolic Execution rules for MAP SEND 516
P. 8 Symbolic Execution rules for MAP RECV 520
P. 9 Symbolic Execution rules for DONE SEND 523
P. 10 Symbolic Execution rules for DONE SEND 524
Q HOL representation of PikeOS IPC system calls 527
Q. 1 System calls with thread ID as argument 527
Q. 2 System calls based on datatype 528
Q. 3 Predicates on system calls 530
Q. 4 Derivation of communication from system calls 531
Q. 5 Partial order theorem 547
Q. 6 ipc communications derivations 547
Q. 7 Lemmas on ipc communications 547
Q. 8 No communications 550

Abstract

Formal methods can be understood as the art of applying mathematical reasoning to the modeling, analysis and verification of computer systems. Three main verification approaches can be distinguished: verification based on deductive proofs, model checking and model-based testing.

Model-based testing, in particular in its radical form of theorem provingbased testing [BW13], bridges seamlessly the gap between the theory, the formal model, and the implementation of a system. Actually, theorem proving based testing techniques offer a possibility to directly interact with "real" systems: via different formal properties, tests can be derived and executed on the system under test. Suitably supported, the entire process can fully automated.

The purpose of this thesis is to create a model-based sequence testing environment for both sequential and concurrent programs. First a generic testing theory based on monads is presented, which is independent of any concrete program or computer system. It turns out that it is still expressive enough to cover all common system behaviours and testing concepts. In particular, we consider here: sequential executions, concurrent executions, synchronised executions, executions with abort. On the conceptual side, it brings notions like test refinements, abstract test cases, concrete test cases, test oracles, test scenarios, test data, test drivers, conformance relations and coverage criteria into one theoretical and practical framework.

In this framework, both behavioural refinement rules and symbolic execution rules are developed for the generic case and then refined and used for specific complex systems. As an application, we will instantiate our framework by an existing sequential model of a microprocessor called VAMP developed during the Verisoft-Project. For the concurrent case, we will use our framework to model and test the IPC API of a real industrial operating system called PikeOS.

Our framework is implemented in Isabelle/HOL. Thus, our approach directly benefits from the existing models, tools, and formal proofs in this system.

Part I

Introduction and Context

Introduction

Contents

1.1 Motivations 2
1.2 Contributions 4
1.3 Overview 7

1.1 Motivations

Formal verification techniques, i.e. a family of methods that establish the correctness of programs wrt. a specification, have seen a remarkable boost in recent years. In particular methods based on deductive code-verification or model-checking can, within the boundaries of certain foundational assumptions, provide an absolute guarantee in a sense for the correctness of programs in a system. It is safe to state that the formal verification of computer systems becomes increasingly relevant due to the critical roles they play in daily human life, and this is reflected by their role in certification processes assuring that certain security or safety requirements are respected by a wider and wider range of products. An example of a critical systems, an embedded system comprising safety critical software components, e.g. the engine controller of an aeroplane.

However, pursuing our thought experiment a little further, we have to admit that flying our just-formally-verified aeroplane would simply be illegal, and for good reasons: The approval of an aeroplane (and other safety critical systems) is legally bound to formal certification process (such as DO178B/C[SR10, Bro11], Common criteria [Mem06], etc.), which requires a combination of tests and verification techniques. One reason is that deduction based verification may establish the correctness of code towards a specification, i.e. a mathematical model, but this doesn't guarantee that the model and its foundational assumptions correspond in sufficient precision to the physical reality in the embedded system. Another reason is that existing certification standards simply did not consider the possibilities of modern formal verification techniques, and certification engineers do not know what guarantees can and cannot be gained from the use of formal methods. Thus, a plane should never fly without verifying both, the code and its underlying modeling assumptions of its critical components, by a combination of test and proof techniques, enforced by an adequate formal certification process.
While certifications of large systems, including fully functional operating systems up to Common Criteria EAL ${ }^{1} 4$ [Com06] are common practice today, higher levels involve the use of formal methods in terms of combined test and proof activities, covering various layers of a system including soft and hardware-components. To reach EAL7, one has to formally specify a security policy model (called SPM), a model of the system operations called functional specification model (the FSP), and a kind of refinement proof between these two. Finally, a battery of tests have to be provided that establish the correspondence between the FSP and the "real" implementation in form of code. One of our goals is to contribute to the test-effort for an EAL 5 or higher certification of PikeOS ${ }^{2}$ operating system by a test-method designed to support this activity. All three, modeling, certification and test effort were pursued the European EURO-MILS ${ }^{3}$ project aiming at an EAL 5 certification for PikeOS, were the organizational context of this work.
At present, specification-level verification and the development of test sets are usually two unrelated tasks. While test sets for certification kits are usually developed manually and independently from the specification, our model-based test case generation approach , developed during this thesis, uses a design model that can already be used for the verification task. Beyond the advantage of natural integration of our model-based testing techniques into a certification process, model-based testing using symbolic evaluation can treat models with complex state, which distinguishes it from popular model checking techniques [Mer01], and connect a model with a real implementation, without additional assumptions (i. e. correctness of the com-

[^0]piler, existence of the model of the underlying hardware, etc.). The latter distinguishes our approach from classical deductive verification techniques [ABGR10].
In formal testing, a branch of model-based testing, the properties of systems are verified by a testing experience based on a formal model. The goal of a test is to establish a conformance relation between the model and a system, which is a kind of a satisfaction relation that must, for practical reasons, be based on a finite test set, i. e. containing a generated set of test cases.
In our view, it is not possible to treat formal models only by paper and pencil notations as is the case in many works and publications. Models and proofs treated in this work i.e. the system model of a real operating system, its complex operational semantics and the resulting very complex symbolic execution rules, developed by a collaborating team comprising several persons routinely changing basic definitions, is out of reach of conventional paper and pencil theory development; a proof assistant for routinely re-checking definitions and re-proving proofs is indispensable in such a development effort. Thus, we will use interactive theorem proof assistant to carry our testing framework.
Interactive theorem proving is a technology of fundamental importance for mathematics and computer-science. It is based on expressive logical foundations and implemented in a highly trustable way. In this thesis, our approach is implemented inside the interactive theorem proving environment Isabelle/HOL extended by a plugin with test generation facilities called HOL-TestGen. The use of Isabelle/HOL as a modeling environment has the following advantages:

1. We inherit all its technical features, e. g., formal modeling and verification, code generation and document generation,
2. Our test case generation algorithm is based on the symbolic computation engine implemented as Isabelle tactics. Thus, can count as highly trustworthy,
3. HOL-TESTGEN allows us to seamlessly integrate formal verification and testing in a unique way.

1.2 Contributions

The main focus of our work is to provide a theorem proving-based sequence testing environment for both sequential and concurrent complex systems ${ }^{4}$.

[^1]In fact, this kind of test environments is advantageous during different certification processes. We will divide the list of our contributions into three groups.
Our theoretical contributions consist in:

- the extension of the monad-based test framework, introduced in [BW13], by new concepts, e.g., executions with abort, interleaving, to express sequence test scenarios for concurrent and sequential programs,
- the derivation of behavioral refinement rules and symbolic execution rules for the new introduced concepts,
- the embedding of the standard test refinement in the monad testing framework, and
- a conformance relation based on observed error codes, to test security properties, e.g. information flow and access control, that links the specification and the implementation using abstract test drivers.

On the technical side we would like to mention:

- the definition of key theories to test computer systems, e.g. a theory on shared memory,
- the introduction of an optimized scheme to derive symbolic execution rules and an efficient way for their implementation in Isabelle/HOL, and
- a proposal to build test drivers that links abstract tests derived on Isabelle level with concrete concurrent code.

On the methodological side, our contributions are:

- a guideline to convert a functional system model to a testable theory, gained from a substantial case study,
- a methodology to control the execution of a concurrent program during our test experience, and
- a high-level mandatory guidelines and recommendations for both developers and evaluators of certification documents containing Isabelle specifications.

In fact, our contribution can be seen as a proposal of a test and proof environment composed of a tool chain Figure 1.1 that goes from the abstract Isabelle/HOL level down to code-level (e.g. C, SML). First, we will introduce a monad based sequence testing theory encoded in Isabelle. It is not

Figure 1.1: The HOL-TestGen Workflow.
restricted to a particular computer system, but we believe that monads are expressive enough to cover all common behavioral concepts (e.g. sequential executions, synchronized executions, etc.) and testing concepts (test oracles, test scenarios, coverage criteria, etc.).
Then the proposed testing theory is extended by a non-standard behavioral concepts (i.e. aborted executions, concurrent executions with abort) and test concepts (i.e. a new coverage criterion to test IPC protocol, error-codes based conformance relation) to express security and functional test scenarios for systems executed in a concurrent context. Moreover, the functional model of both, the operating system PikeOS and the VAMP processor, are embedded in our monadic framework, and a test experience for the two systems was established.
In this thesis, we will also develop a test case generation process that fully relies on a symbolic execution rules established as Isabelle lemmas, i. e. formally derived rules. In fact, each system under test has its own specific operational semantic, which means that, the generic symbolic execution rules on the introduced monads operators are not optimized enough to execute any operational semantic. However, a refined versions of the generic symbolic execution rules are derived for the different case studies presented in this thesis. Moreover, and using Isabelle/ML which is a development environment for ML programming offered by Isabelle, we will develop tactics that help into the automation of the process of the application of symbolic execution rules on a given test scenario designed inside our framework.
Our contribution also covers, the implementation of test drivers to test concrete code. A test driver is composed from three main components: the test
script, the adapter and the test harness. While HOL-TestGen code generator, which is actually a refined version of Isabelle code generator, is used to generate automatically test scripts in SML language, two programs implemented in Isabelle/ML will be used as a test harness and a test adapter for the test driver. Actually, and in order to test C concurrent code, we will add another program to our standard construction of test drivers. The program is also implemented in Isabelle/ML, and it uses the test script to generate a set of gdb files. In fact, during our test experiences, we will show how gdb can be used to control the executions of a given concurrent program implemented in C language. Thus, we avoid putting strong assumptions related to the non-determinism of the system scheduler choices during a concurrent execution. Finally, we will use MLton compiler as an interface to connect our test scripts written in SML level with implementations in C code-level, and build our test executables.

1.3 Overview

The idea behind this thesis is to design a test and proof environment for sequential and concurrent complex systems. In order to present this work, we have organised the document as following:

Part I: Introduction and Context

In the first part of the document we will introduce the context of this thesis. Formal methods, in particular the use of a verification technique based on formal testing approach implemented in a theorem proving environment, is the topic of this thesis. The chapter 2 contain a description of formal methods and its relation with formal testing. The chapter also contains a description for the formal development environment used in this thesis which is Isabelle/hol!. Moreover, the architectures of two systems used in our case studies is presented in this chapter.

Part II: Contributions

The second part of the document contains our contributions during this thesis. This part is devided into four chapters:

chapter 3: Isabelle in Certification Processes

This chapter was published as an internal technical report [YABC15]. The chapter introduce mandatory recommendations for the evaluators of CC documents containing Isabelle theories. Actually it is an instantiation of Eric

Jaeger text[JH08], a document that contain recommendations for evaluators of CC documents.

chapter 4: Theoretical and Technical Foundations

The content of this chapter was partially published in [BHNW15a]. In this chapter, we will introduce our test framework. Our framework is represented by a tool-chain consisting of:

1. The Specification Language: used to express different behaviors of computer programs. The specification language is based on a monad theory formalized on a top of Isabelle/hol!.
2. HOL-TestGen: it is an extension of Isabelle with test case generation facilities, e. g. trace generator based on Isabelle datatypes package, an interface to connect an Isabelle local proof context to constraintsolvers, etc.
3. Test Drivers: they are programs used to execute automatically the generated tests on a given program under test written in a given programming language, in particular we consider programs implemented in: sml, OCaml, scala, haskell, C and F\#. In our approach, test drivers represent a link between the model and the program under test. Their implementation is not fully automatic. While some parts of the test driver is generated automatically, e.g. the test script, a particular part of it, which is the test adapter, is written by hand.

chapter 5: Testing VAMP Processor

The content of this chapter is published in [BFNW13]. In order to meet requirements of a certification process for critical security systems, one has to formally verify properties on the specification as well as test the implementation thoroughly. This includes tests of the used hardware platform underlying a proof architecture to be certified. To this end, in this chapter we present a case study for the model-based generation of test programs (i.e, the basis for a certification kit) for a realistic model of a RISC processor called VAMP. In this case study we use an existing model of VAMP and HOL-TestGEn to develop several conformance test scenarios.

chapter 6: Testing PikeOS API

A part of this chapter was published in [BHNW15a]. The chapter introduces another case study for model-based test generation, but this time, our investigation covers the software layer, more precisely the API of an industrial concurrent embedded system. The chapter introduces a model of PikeOS
embedded in our "monadic" test theory. That covers an extension of the theory to embed interleaving executions with abort, synchronization, and shared memory. Experiments on the IPC API and their results are also the topic of this chapter.

chapter 7: Conclusions

Finally, we sum-up with different achievements of this thesis and our future works related to the topic.

Context

Contents

2.1 Introduction 11
2.2 Formal Testing and Prover-Based Testing 12
2.2.1 On Theorem Proving Based Testing (PBT) 14
2.2.2 A Gentle Introduction to: Sequence Testing 16
2.2.3 Background on Sequence Testing Models 19
2.3 Isabelle/HOL 22
2.3.1 The Isabelle System Architecture 23
2.3.2 Isabelle and its Meta-Logic 25
2.3.3 The Isabelle Methodology and Specification Con- structs 26
2.3.4 Isabelle Proofs 32
2.3.5 Isabelle/HOL Code Generation 34
2.3.6 Isabelle/HOL Document Generation 34
2.3.7 Isabelle extensions: HOL-TestGen 35
2.4 The Verified Architecture Microprocessor (VAMP) 37
2.5 PikeOS System Architecture 38
2.6 Conclusions 40

2.1 Introduction

Formal methods describe a set of mathematically based techniques and tools for specification, analysis and verification of computer systems. They are mainly used to describe and to verify, in a logically consistent way, some properties of these systems.
During a formal testing activity, a well-established branch of formal methods, the properties of systems are verified through a testing experience based on a satisfaction relation between the formal model (the specification) and the implementation of a system. More precisely, the goal of a test experience is to establish a conformance relation between a model and an implementation, that must, for practical reasons, be based on a finite test set. Consequently, testing attempts to run the real system and attempts to establish a verdict on a necessarily finite set of observations. The obvious fundamental limitations of the testing approach can be partly overcome by the following techniques:

1. test sets can be generated and the generation procedure can be designed to generate a different test set for regeneration. So a sequence of a decently organised regression test can increase the confidence in a software development process well enough.
2. the generation of test sets can be guided by a well-chosen coverage criteria whose effectiveness can be established by empirical observations in a concrete software development process.

From our point of view, formal testing is a sub-field of Model-Based Testing (MBT) since often semi-formal languages (e.g. UML[RJB99]) were used to generate tests. Because test suites are derived from models and not from source code, both formal testing and model-based testing are usually seen as a form of black-box testing. In the context of our work, our testing theory is developed in a formal environment, called the testing framework, implemented inside an interactive theorem proving environment.
Interactive theorem proving (ITP) is a technology of fundamental importance for mathematics and computer-science. Applications include very large mathematical proofs and semi-automated verification of complex software systems. ITP systems are based on expressive logical foundations and implemented usually in a highly trustable way; this is due to the architecture of contemporary ITP systems such as Coq [Wie06, §4], Isabelle [NPW02] or the HOL family [Wie06, §1] (HOL4[Kum13], HOL light [Har09], etc.) going back to the influential LCF system [MW79] from 1979, which has pioneered key principles like correctness by construction for primitive inferences and definitions, free programmability in user-space via SML, and top-level command interaction.
The purpose of this chapter is primarily to present preliminaries on formal
testing and on its specific branch: sequence testing. Moreover, we will bring together a body of system information that is generally known in the Isabelle community, but largely scattered in system documentations and papers. This includes a brief introduction into the system, a general overview over the methodology and covers certain aspects of the tool support. Such an introduction into Isabelle and its higher order logic implementation will help the reader to understand the different concepts and approaches proposed in this thesis. In fact, the general context of this thesis is: the implementation of a test and proof environment that relies on Isabelle, with the intention of using it during a certification processes of critical systems. Actually, during our investigations, our testing theory was extended by two substantial case studies, namely a micro-processor called VAMP $\left[B J K^{+} 06\right]$ and a real-time operating system PikeOS ${ }^{1}$ [SYS13a]. Some concepts related to the latter are also presented in this chapter.
The chapter proceeds as follows: A general introduction into formal testing followed by an overview on sequence testing are presented in section 2.2 and subsection 2.2.2. In section 2.3 , we provide a guided tour over the Isabelle system. In subsection 2.3 .7 we describe an extension of Isabelle used for model-based testing, and discuss its advantages and limits in model based testing area. In section 2.4 and section 2.5 , the basic design concepts and the system architectures related to VAMP and PikeOS are presented.

2.2 Formal Testing and Prover-Based Testing

The relation between deductive proof verification, model checking and formal testing is complementary and fruitful in our view, although the three approaches use common formal specifications techniques during the verification process. This relation is sketched in Figure 2.1. The advantages of using formal specifications by the three approaches can be summarized as follow:

- A formal specification language provides a mathematically precise notation to express properties of systems.
- In software engineering, formalizing the syntax and the semantics of specification languages leverages tools for automated reasoning on systems.
- Formal specifications of systems can systematically be refined to code [PS83, Abr96].
- In critical systems, specifications based on interactive theorem-proving tools can be used to prove that an implementation is free of bugs

[^2]

Figure 2.1: A Test and Proof Framework
and that it satisfies its formal specification in every possible execution [Bar03, $\left.\mathrm{CDH}^{+} 09\right]$.

- In testing activity, test cases can be generated automatically from formal specification [Car81, Gau95, BKM02]
- Model-Based test techniques can compile a given formal specification to oracles that determine when a particular test passes or fails [$\left.\mathrm{HBB}^{+} 09\right]$

From a conceptual point of view, a testing activity can be seen as the establishment of a conformance relation between the model and the system under test in order to meet a given test requirements. In fact, in our Prover-Based Test (PBT) approach, the conformance relation is expressed within a formal testing framework. From our view, a formal testing framework is composed from:

1. the test specification: it is a higher order logic formula that express a property for the generated tests. In our framework a test scenario for a given test experience is formally expressed by a test specification. According to the test requirements, and based on the definitions inside the test theory, a test specification is designed under some testing hypothesis and coverage criteria in a form of, a test refinement relation. The latter contains a category of conformance relations that link the model with the real system. The test specification is designed in the logical context of a background theory, called in our terminology the
test theory. The test theory relies on testability hypotheses and contains concepts to express the test requirements for a given model-based test experience. For example a test theory contains: (a) a specification language to express the behavior of the system under test and also a formalization the properties to be checked during the test experience. Note that in our approach, the specification language, also called the model, has to be testable, i. e. can be refined to code, in order to be used for experiments, (b) defintions of concepts needed for the establishment of a given test experience, e.g. conformance relations, coverage criteria, test scenarios etc., and (c) the test strategy, e.g. symbolic execution process, data selection process, test execution process etc.
2. The scenario is technically captured by a test suite, which is a kind of a container comprising: (a) test theorem, (b) abstract tests, (c) concrete tests and (d) other data related to a test scenario,
3. the concrete test cases are executed on the system under test and the test results are derived, and
4. finally, a verdict is established, i.e., the test results are interpreted and some conclusions related to the test experience are stated. Of course, during the evaluation of the test experience, both testability assumptions and test results are used.

Different testing approaches and techniques and several ways of their integration inside a formal context were explored. In our context, we choose PBT approach, it has been applied to unit testing [BW09, BW13, BFNW13, BBW15], and during our work PBT was also applied to sequence test scenarios [BFNW13, BHNW15b].

2.2.1 On Theorem Proving Based Testing (PBT)

The idea of using a test-generation method based on theorem proving environment is particularly attractive for establishing the link between the model and the real implementation. In recent years, HOL-TESTGEN [BW13] has been developed for testing models presented in HOL, in particular for operations with complex data-structures, so data-types comprising lists, sets, trees, records, etc. Tests were generated in the logical context of a background theory and wrt. to a particularly property (called test-specification) formulated in it. At the begin of this thesis, HOL-TESTGEN was mostly geared towards the generation of unit-tests and test-specifications of the form:

$$
\operatorname{pre}(x) \rightarrow \operatorname{post}(x, \operatorname{SUT}(x))
$$

where x is arbitrary input, so possibly also containing an input state, pre and post condition, and SUT an uninterpreted constant symbol representing the system under test. The test-specification schema covers test scenarios where the initial state of the system is known and the result state is returned by the SUT; it is therefore assumed to be accessible in principle. HOL-TESTGEN provides automatic procedures to decompose via data-type splitting rules and a kind of DNF-normalization the initial test-specification into abstract test cases, i.e. clauses containing $\operatorname{SUT}(\mathrm{x})$ plus a collection of logical constraints on x. For example in [BW13], the authors want to express the property "SUT is a sorting algorithm on integer lists" by the test specification:

```
sort (list) = SUT (list)
```

where sort has been specified by, for example, an insertion-sort. A test case generation could yield the test cases in the (complete) test theorem:

```
1. [] = SUT []
2. THYP ([] = SUT [] \(\longrightarrow[]=\) SUT [])
3. \([\mathrm{x}]=\) SUT \([\mathrm{x}]\)
4. \(\operatorname{THYP}((\exists \mathrm{x} .[\mathrm{x}]=\operatorname{SUT}[\mathrm{x}]) \longrightarrow(\forall \mathrm{x} .[\mathrm{x}]=\operatorname{SUT}[\mathrm{x}]))\)
5. PO ( \(\mathrm{x}<\mathrm{xa}\) )
6. [x, xa] = SUT [x, xa]
7. THYP \(((\exists \mathrm{x}\) xa. \(\mathrm{xa}<\mathrm{x} \wedge[\mathrm{xa}, \mathrm{x}]=\operatorname{SUT}[\mathrm{xa}, \mathrm{x}]) \longrightarrow\)
    \((\forall x\) xa. \(x a<x \longrightarrow[x a, x]=\operatorname{SUT}[x a, x]))\)
8. \(\mathrm{PO}(\neg \mathrm{x}<\mathrm{xa})\)
9. \([x a, x]=\operatorname{SUT}[x, x a]\)
    (...)
20. PO ( \((x<x a \wedge x b<x a) \wedge \neg x b<x)\)
21. [x, xb, xa] = SUT [xb, x, xa]
```

where the test hypotheses were marked by THYP, and the constraints on the variables inside the list are marked by PO. If these constraints are satisfiable, a constraint-solver can produce a ground instance for x , say c , and isolate post (c, SUT(c)) as concrete test, if these constraints are unsatisfiable they are infeasible tests that represent impossible (empty) abstract test-cases. Eliminating infeasible test cases as early as possible is primordial for effective test generation; it is also the key advantage over random-based testing which tends to be hopelessly inefficient if pre-conditions are non-trivial. Finally, HOL-TESTGEN offers the possibility to convert concrete test suites via codegenerators into test drivers in a variety of target languages.
HOL-TESTGEN and its methodology is an instance of model-based testing (see $\left[\mathrm{ABC}^{+} 13\right]$ for a recent survey over the field, which was pioneered by M.C. Gaudel at the beginning of the 90ies[GB91, Gau95]). However, its meth-
odology coined "proof-based testing" distinguishes itself from main-stream approaches by the following features:

1. rather than residing on small, decidable data-type theories in a propositional or first-order logic setting, HOL-TESTGEN embraces higherorder logic (HOL) and favors for background theories and test specifications abstract and concise mathematical descriptions rather than indirect problem-encoding;
2. HOL-TestGEn allows for instrumenting the generation processes of abstract and concrete test cases by derived rules, i. e. rules that are short-cuts for the normalization and data selection phases which were justified by formal proof;
3. HOL-TESTGEn leverages the possibility to "massage" of a given model into a testable one; beyond aforementioned instrumentation of the process, an initial model can be refined or restricted to a model that is more suited for test-generation and its underlying needs for a symbolic execution process;
4. HOL-TESTGEN offers the possibility of a semantically controlled, clean integration from models to the test driver generation.

Prior work [BBW15] with HOL-TESTGEn had shown that sequence test scenarios could be treated effectively in principle, if the background theory is geared towards efficient symbolic execution and if the process is decently supported by automated reasoning. However, there is no direct way to generalize the reification technique used in [BBW15] to the PiKeOS model, something that will be tackled by this thesis. In our context, we are particularly interested in sequence tests, which we describe in sequel in more details.

2.2.2 A Gentle Introduction to: Sequence Testing

Sequence testing is a well-established branch of formal testing theory having its roots in automata theory. In formal testing, the model, also called the specification, and the system under test (SUT), also called the implementation, are usually belonging to different worlds (e.g. the specification is a logic based, and the SUT is implemented on C-level). The link between the two worlds is established by the refinement relation expressed on the model-level and complemented by methodological assumptions.

Methodological Assumptions

The methodological assumptions, sometimes called testability hypotheses in the literature, are used to bridge the gap between the model and the system
under test [BGM91, DY96]. An example on testability hypothesis is the test refinement relation, it states that the system under test is a refinement of the model. The main testability assumptions in sequence testing theory are summarized as follows:

1. The tester can reset the system under test (the $S U T$) into a known initial state,
2. the tester can stimulate the SUT only via the operation-calls and input of a known interface; while the internal state of the SUT is hidden to the tester, the SUT is assumed to be only controlled by these stimuli, and
3. the SUT behaves deterministic with respect to an observed sequence of input-output pairs (it is input-output deterministic).

The latter two assumptions assure the reproducibility of test executions. The latter condition does not imply that the SUT is deterministic: for a given input ι, and in a given state σ, SUT may non-deterministically choose between the successor states σ^{\prime} and $\sigma^{\prime \prime}$, provided that the corresponding outputs $\left(o^{\prime}, \sigma^{\prime}\right)$ and $\left(o^{\prime \prime}, \sigma^{\prime \prime}\right)$ are distinguishable. Thus, a SUT may behave non-deterministically, but must make its internal decisions observable by appropriate output. In other words, the relation between a sequence of input-output pairs and the resulting system state must be a function. There is a substantial body of theoretical work replacing the latter testability hypothesis by weaker or alternative ones (and avoiding the strict alternates of input and output, and adding asynchronous communication between tester and SUT, or adding some notion of time), but most practical approaches do assume it as we do throughout this thesis. Moreover note, that there are approaches (including our own paper [BFNW13]) that allow at least a limited form of access to the final (internal) state of the SUT.

Following [CG07], testability hypothesis are fundamental to establish the proof of the conformance relation between the model and the system under test. In [TPHS10] the authors mention that "testing can never be complete: testing can only show the presence of errors, not their absence", which is a famous aphorism of Dijkstra. An answer to this statement was given by [Fel12], when the author mention that formal exhaustive testing can be used to show the correctness i. e. the absence of bugs if the testability hypothesis are satisfied. Since the exhaustive set of tests is generally infinite, other assumptions, called testing hypothesis are needed to complete the proof of the correctness.

Testing hypothesis

In [BGM91, Gau95] two fundamental testing hypothesis, called uniformity and regularity hypothesis were introduced. They have been improved and embedded in Higher Order Logic (hol!) by [BW13]. The latter mention that regularity hypotheses can be used to address the problem of test case generation for universally quantified variables ranging over recursive datatypes such as lists and trees. The author formalized the assumption by the following natural deduction rule:

$$
\begin{gather*}
{[|x|<k]_{x}} \\
\vdots \tag{2.1}\\
\frac{P x}{P y}
\end{gather*}
$$

The rule express that P is always true if, it is true for all data x less than a given depth k. On the other hand side, uniformity assumption is used to bound the set of possible instantiations of a quantified variable, which is usually infinite. The assumption is formalized by the following logical formula:

$$
\begin{equation*}
\left(\exists x_{1} \ldots x_{n} . P x_{1} \ldots x_{n}\right) \longrightarrow\left(\forall x_{1} \ldots x_{n} . P x_{1} \ldots x_{n}\right) \tag{2.2}
\end{equation*}
$$

This formula denote that if P is a true for a given instantiation x_{n} then it is true for all instatiations of the type of the variable x. During our work, we will consider the latter testing hypothesis in connection with coverage criteria.

Coverage Criteria

The concept of coverage is mandatory in testing theory whenever exhaustive tests are impossible. If not all cases can be tested, a test coverage question can be raised. The question that must be answered is, did we test enough? For instance, if the test experience "fails", i.e. does not reveal any bugs under a given coverage, the latter can show to the tester where he can test more. The set of test cases must contain one test sequence for each executable path in the SUT can be seen as an example of a coverage for a given test experience. In [SLZ07] five interesting coverage criteria based on concurrency fault models were introduced. We will adapt, refine and formalize some of these criteria in hol! to test concurrent code inspired by PikeOS.

The Conformance Relation

A conformance relation is a satisfaction relation between a specification and a system under test, for which we assume it behaves like a function. A
conformance relation can be expressed by, e.g. equality, bisimulation, etc. Some conformance relations between a system specification and a SUT are proposed in subsection 2.2.3.

Verdicts

In general, two possible interpretations (verdicts) for the test set are distinguished, the test can pass or fail. If the SUT behaves correctly wrt. the specification by satisfying the established conformance relation then we say that the SUT passes the test with success. On the other hand, if the SUT does not satisfy the conformance relation we say that the SUT fails to pass the test.

In the next sections, we will present the known formal models used for sequence testing activities and discuss their techniques. From our point of view, a formal model is usually oriented towards a description of data and states composed thereof, or behavior in the sense of a set of system traces. In some cases, a model can also describe timing as well as performance. Thus we distinguish the following testing models (specifications) categories:

- Testing approaches based on behavioral models: describe the system by the relationships between states (data). Such a relationships typically describe the associations between system operations (inputs) and the system state, e. g. Kripke structures or Process Algebras.
- Testing approaches based on data abstraction: data abstraction describe the behavior of a system independently of its implementation. For instance, the Input-Output relation is expressed by a function that should preserve a set of properties. The properties on the function are expressed by logical formulas. e.g. Axiomatic Specifications or ProverBased Testing.

2.2.3 Background on Sequence Testing Models

Specification models possesses syntax and semantics for expressing sophisticated behavioral aspects of systems such as synchronisation and concurrency. In the sequel we will highlight some of these specification languages, in particular these are: Input Output Automata (IOA), Axiomatic Specifications.

Background

Specification languages provide a formal system annotations such as pre post conditions and invariants that allow to express the intended behavior of the system. Such specifications are useful precisely in development of computer systems. When used in conjunction with automated analysis and system
verification tools, such specifications can support detection of common vulnerabilities, generation of test cases and test oracles, and formal program verification. In the rest of this section we will first introduce theories related to sequence testing and then focus on specification languages that support concurrency.
Actually, Kripke structures as semantic basis of LTL-like languages, have been widely used as a formal specification formalism and in testing activities. One of the first works that introduces testing techniques on a Kripkelike structure was the experiments done by Moore [Moo56] on Finite State Machines (FSM). The idea of the experiments was based on interactions with a sequential machine in order to describe its behavior with a transition system. Inspired by fault detection experiments for sequential circuits represented by an FSM, Hennine [Hen64] introduced two testing concepts during his work. The first one is called checking sequences, which are a generated input sequences (from a source FSM i.e. the specification) that start from a given initial state. The checking sequences were executed on a target FSM in order to check that the execution of the sequence of inputs by the latter correspond to the execution of the source FSM by the same sequence. In our terminology the checking sequences can be seen as test cases and the satisfaction of the checking sequence by the target FSM can be seen as a kind of conformance relation. The second concept introduced by Hennine is distinguishing sequence. The concept of distinguishing sequence assumes basically that each input sequence starting from a given initial state is bound to an output sequence and the latter is different from all others generated from a different initial state. In our terminology this can be seen as a testability hypotheses. Based on the concepts introduced by Moore and Hennine, other testing theories equipped with new notions, and more complex Kripke structures were developed. For instance, Lee and Yannakasis in their work[LY94, DY96, LM96] discussed the use of distinguishing sequences and Unique Input Ouput sequences (UIO) to detect a non observable initial states. Actually, a lot of testing concepts and works were introduced for testing Finite State Machines, for more details on the story of testing theories, we would mention the remarkable background introduced by Feliachi [Fel12] in his Ph.D thesis and also the following surveys related to this topic [CSCS94, DY96, $\mathrm{HBB}^{+} 09$, Gau10]. In the rest of this section we would like to focus on testing approaches that consider concurrent executions, since one of our contributions belong to the latter field.

IO-Automata Based Testing

An Input/Output Automaton is an automaton with finite number of states where each transition is represented by an alternation of a single occurrence of input or output events. A sequence of input-output pairs through an

(a) IO-Deterministic SUT.

(b) IO-Deterministic SUT.

(c) Non-IO-Determin. SUT.

Figure 2.2: IO-Determinism and Non-IO-Determinism
automaton A is called a trace, the set of traces is written $\operatorname{Trace}(A)$. The function In returns for each trace the set of inputs for which A is enabled after this trace; in 2.2c for example, In $[(" a ", 1)]$ is just $\{" b "\}$. Dually, Out yields for a trace t and input $\iota \in \operatorname{In}(t)$ the set of outputs for which A is enabled after t; in 2.2 b for example, $\operatorname{Out}([(" a ", 1)], " a ")$ this is just $\{1,2\}$.
Many approaches to test concurrent systems based on IOA were explored [BHJJ08, EH08, En-13]. In his work, Bochmann [BHJJ08] proposed a concurrent testing approach based on a new IOA model called Partial Order Input Output Automata (POIOA). A POIOA is a refined model of MultiPort Automaton [LDvB $\left.{ }^{+} 93\right]$, in which concurrency between inputs as well as inputs ordering constraints are considered. The idea behind this work is to define order constraints for inputs, and then based on this order, a set of test cases in a form of checking sequences is derived. Several conformance relations were proposed by the authors, in general the proposed conformance relations are based on the fact that the implementation must provide the same inputs outputs alternation (or a quasi-equivalent one) as the one proposed by the checking sequence derived from the specification. In other words, a trace T is quasi-equivalent to a trace T^{\prime} if either $T=T^{\prime}$ or T is obtained by reducing the input order constraints of T^{\prime} (input-input or input-output), and/or T is obtained by increasing the output-output constraints. Other conformance relations between a specification given as automaton SPEC labelled with input-output pairs and a system under test are introduced in the literature:

- input/output conformance (IOCO) [Tre08b]: for all traces $t \in \operatorname{Traces}(\mathrm{SPEC})$ and all $\iota \in \operatorname{In}(t)$, the observed output of SUT must be in $\operatorname{Out}(t, \iota)$,
- inclusion conformance [PHL12]: all traces in SPEC must be possible in SUT and,
- deadlock conformance [FGWW13]: for all traces $t \in \operatorname{Traces}(\mathrm{SPEC})$ and $b \notin \operatorname{In}(t), b$ must be refused by SUT

Testing Based on axiomatic specifications

The most of approaches allowing the derivation of test cases from a specification are based on behavioral descriptions of the SUT, for example:

- IO-Automa [LT89b].
- Control Flow Graph[All70a, All70b] of a given Program.
- Labeled Transition Systems [Tre08a].

Axiomatic specifications, also called algebraic specifications [BCFG86], are different. Actually, the specification of a system is represented by a a signature $\Sigma=(S, F, V)$ composed from a finite set of types S and a finite set of function names F and a set of variables V. The requirement during a test process based on algebraic specifications is, the satisfaction of the axioms or their consequences, defined on the functions in F by the SUT. In fact, this is different from the approaches adopted by behavioral oriented specifications, where the satisfaction relation is based on the possibility or impossibility of manifesting a given behavior by the SUT. Basically, a test case is an instantiation of the axioms, or their consequences, by the terms(functions and variables) of the SUT. The conformance relation is represented by the satisfaction of the axioms defined in the specification by the terms of SUT. Many test theories based on algebraic specifications were developed [BCFG86, BGM91, DGM93, GLG08]. In the latter works, the authors expressed testability hypotheses as well as several exhaustive test definitions. Moreover note, testing hypotheses were proposed to deal with the problem of infinite test set. As examples of tools used to express algebraic specifications we mention: CASL[MHST08], ACT-ONE[EFH83] and OBJ [GMH81].

2.3 Isabelle/HOL

In the context of certifications of critical hard- and software systems, an understanding of its architecture and the underlying methodology may help to understand why Isabelle, if correctly used, can be trusted to a significantly higher extent than conventional software, even more than other automated theorem proving environments (in fact, Sascha Böhme's work on proof reconstruction [BW10] inside Isabelle revealed errors the SMT solver Z3[dMB08] that is perhaps the most tested conventional system currently on the market ...). Of course, Isabelle as software "contains errors". However, its architecture is designed to exclude that errors allow to infer logically false statements, and methodology may help to exclude that correctly inferred logical statements are just logical artifacts, or logically trivial statements, which can be impressing stunts without any value.

2.3.1 The Isabelle System Architecture

We will describe the layers of the system architecture bottom-up one by one, following the diagram Figure 2.3.

Figure 2.3: The diagram shows the different layers like execution environment, kernel, tactical level and proof-procedures, component level (providing external prover integration like Z3, specification components, and facilities like the code generator, the Scala API to the system bridging to the JVMWorld, and the Prover-IDE (PIDE) layer allowing for asynchronous proof and document checking.

The foundation of system architecture is still the Standard ML (SML,[MTM97]) programming environment; the default PolyML implementation www.polyml.org supports nowadays multi-core hardware which is heavily used in recent versions for parallel and asynchronous proof checking when editing Isabelle theories.
On top of this, the logical kernel is implemented which comprises typechecking, term-implementations and the management of global contexts (keeping, among many other things, signature information and basic logical axioms). The kernel provides the abstract data-types thm, which is essentially the triple (Γ, Θ, ϕ), written $\Gamma \vdash_{\Theta} \phi$, where Γ is a list of meta-level assumptions, Θ the global context, containing, for example, the signature and core axioms of HOL and the signature of group operators, and a conclusion ϕ, i. e.a formula that is established to be derivable in this context (Γ, Θ). Intuitively, a thm of the form $\Gamma \vdash_{\Theta} \phi$ is stating that the kernel certifies that ϕ has been derived in context Θ from the assumptions Γ.
There are only a few operations in the kernel that can establish thm's, and
the system correctness depends only on this trusted kernel. On demand, these operations can also log proof-objects that can be checked, in principle, independently from Isabelle; in contrast to systems like Coq, proof objects do play a less central role for proof checking which just resides on the inductive construction of thm's by kernel inferences shown, for example, in [MW10].
On the next layer, proof procedures were implemented - advanced tactical procedures that search for proofs based on higher-order rewriting like simp, tableau provers such as fast, blast, or metis, and combined procedures such as auto. Constructed proofs were always checked by the inference kernel.
The next layer provides major components - traditionally called packages - that implement the specification constructs such as type abbreviations, type definitions, etc., as discussed in subsection 2.3.3 in more details. Packages may also yield connectors to external provers (be it via the sledgehammer interface or via the smt interface to solvers such as Z3), machinery for (semitrusted) code-generators as well as the Isar-engine that supports structureddeclarative and imperative "apply style" proofs described in subsection 2.3.4. The Isar - engine [Wen02] parses specification constructs and proofs and dispatches their treatment via the corresponding packages. Note that the Isar-Parser is configurable; therefore, the syntax for, say, a data-type statement and its translation into a sequence of logically safe constant definitions (constituting a "model" of the data type) can be modified and adapted, as well as the automated proofs that derive from them the characterizing properties of a data-type (distinctness and injectivity of the constructors, as well as induction principles) as thm's available in the global context Θ thereafter. Specification constructs represent the heart of the methodology behind Isabelle: new specification elements were only introduced by "conservative" mechanisms, i. e. mechanisms that maintain the logical consistency of the theory by construction; internally these constructs introduce declarations and axioms of a particular form. Note that some of these specification constructions, for example type definitions, require proofs of methodological side-conditions (like the non-emptiness of the carrier set defining a new type).
We mention the last layer mostly for completeness: Recent Isabelle versions posses also an API written in Scala, which gives a general system interface in the JVM world and allows to hook-up Isabelle with other JVM-based tools or front-ends like the jEdit client. This API, called the "Prover IDE" or "PIDE" framework, provides an own infrastructure for controlling the concurrent tasks of proof checking. The jEdit-client of this framework is meanwhile customized as default editor of formal Isabelle sessions, i. e. the default userinterface the user has primarily access to. PIDE and its jEdit client manage collections of theory documents containing sequences of specification constructs, proofs, but also structured text, code, and machine-checked results of code-executions. It is natural to provide such theory documents as part of a certification evaluation documentation.

2.3.2 Isabelle and its Meta-Logic

The Isabelle kernel natively supports minimal higher-order logic called Pure. It supports for just one logical type prop the meta-logical primitives for implication \Longrightarrow _ and universal quantification $\Lambda x . P x$. The metalogical primitives can be seen as the constructors of rules for various logical systems that can be represented inside Isabelle; a conventional "rule" in a logical textbook:

$$
\begin{equation*}
\frac{A_{1} \cdots A_{m}}{C} \tag{2.3}
\end{equation*}
$$

can be directly represented via the built-in quantifiers Λ and the built-in implication \Longrightarrow as follows in the Isabelle core logic Pure:

$$
\begin{equation*}
\wedge x_{1} \ldots x_{n} \cdot A_{1} \Longrightarrow \ldots \Longrightarrow A_{m} \Longrightarrow \mathrm{C} \tag{2.4}
\end{equation*}
$$

\ldots where the variables x_{1}, \ldots, x_{n} are called parameters, the premises A_{1}, \ldots, A_{m} assumptions and C the conclusion; note that \Longrightarrow binds to the right. Also more complex forms of rules as occurring in natural deduction style inference systems like:

$$
\begin{gather*}
{[A]} \tag{2.5}\\
\vdots \\
B \\
\hline A \rightarrow B
\end{gather*}
$$

can be represented by $(A \Longrightarrow B) \Longrightarrow A \rightarrow B$. Thus, the built-in logic provided by the Isabelle Kernel is essentially a language to describe (systems of) logical rules and provides primitives to instantiate, combine, and simplify them. Thus, Isabelle is a generic theorem prover. New object logics can be introduced by specifying their syntax and natural deduction inference rules. Among other logics, Isabelle supports first-order logic, Zermelo-Fraenkel set theory and the instance for Church's higher-order logic HOL. Moreover, Isabelle is also a generic system framework (roughly comparable with Eclipse) which offers editing, modeling, code-generation, document generation and of course theorem proving facilities; to the extent that some users use it just as programming environment for sml! or to write papers over checked mathematical content to generate $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ output. Many users know only the theorem proving language isar! for structured proofs and are more or less unaware that this is a particular configuration of the system, that can be easily extended. Note that for all of the aforementioned specification constructs and proofs there are specific syntactic representations in isar!.
Higher-order logic (HOL) [Chu40, And86, And02] is a classical logic based on a simple type system. It is represented as an instance in Pure. HOL
provides the usual logical connectives like $\wedge_{-} \wedge_{-} \rightarrow_{-}, \neg_{-}$as well as the object-logical quantifiers $\forall x . P x$ and $\exists x . P \bar{x}$; in contrast to first-order logic, quantifiers my range over arbitrary types, including total functions $f:: \alpha \Rightarrow$ β. HOL is centred around extensional equality $=_{-}:: \alpha \Rightarrow \alpha \Rightarrow$ bool. HOL is more expressive than first-order logic, since, e. g., induction schemes can be expressed inside the logic. Being based on a polymorphically typed λ-calculus, hol! can be viewed as a combination of a programming language like sml! or Haskel, and a specification language providing powerful logical quantifiers ranging over elementary and function types.
Isabelle/HOL is the session based on the embedding of HOL into Isabelle/Pure. Note The that simple-type system as conceived by Church for HOL has been extended by Hindley/Milner style polymorphism with type-classes similar to Haskel[WB89, Wen97].

2.3.3 The Isabelle Methodology and Specification Constructs

The core of the logic is done via an axiomatization of the core concepts like equality, implication, and the existence of an infinite set, the rest of the library is derived from this core by logically safe ("conservative") extension principles which are syntactically identifiable constructions in Isabelle files. In the following, we will briefly describe the most common conservative extension principles.

Conservative Extensions.

Besides the logic, the instance of Isabelle called Isabelle/HOL offers support for specification constructs mapped to conservative extensions schemes, i. e. a combination of type and constant declarations as well as (internal) axioms of a very particular form. We will briefly describe here type abbreviations, type definitions, constant definitions, datatype definitions, primitive recursive definitions as well-as well-founded recursive definitions. We consider this as the "methodologically safe" core of the Isabelle/HOL system.
Using solely these conservative definition principles, the entire Isabelle/HOL library is built which provides a logically safe language base providing a large collection of theories like sets, lists, Cartesian products $\alpha \times \beta$ and disjoint type sums $\alpha+\beta$, multi-sets, orderings, and various arithmetic theories which only contain rules derived from conservative definitions.

Type Abbreviations (Synonyms).

For example, typed sets are built in the Isabelle libraries via type synonyms on top of hol! as functions to bool; consequently, the constant definitions for
set comprehension and membership are as follows ${ }^{2}$:

```
type_synonym ' }\alpha\mathrm{ set = ' }\alpha=>\mathrm{ bool
```



```
where Collect S = S
definition member:: ' }\alpha=>'\alpha set # boo
where member s S = S s
```

Isabelle's powerful syntax engine is instructed to accept the notation $\{x \mid P\}$ for Collect $\lambda x . P$ and the notation $s \in S$ for member $s S$. As can be inferred from the example, constant definitions are axioms that introduce a fresh constant symbol by some closed, non-recursive expressions; these types of axioms are logically safe since they work like an abbreviation. The syntactic side-conditions of the axioms are mechanically checked, of course. It is straightforward to express the usual operations on sets like $\cup_{-}, \cap_{-}::$ α set $\Rightarrow \alpha$ set $\Rightarrow \alpha$ set as definitions, too, while the rules of typed set-theory are derived by proofs from them.

Datatypes.

Similarly, a logical compiler is invoked for the following statements introducing the types option and list:

```
datatype 'a list = Nil | Cons 'a 'a list
datatype 'a option = None | Some 'a
```

Here, [] and $a \# l$ are alternative syntax for Nil and Cons $a l$; moreover, $[a, b, c]$ is defined as alternative syntax for $a \# b \# c \#[]$. Similarly, the option type shown above is given a different notation: α option is written as α_{\perp}, None as \perp, and Some X as X_{\lrcorner}. Internally, recursive datatype definitions are represented by type- and constant definitions. Besides the constructors None, Some, Nil and Cons, the statement above defines implicitly the match-operation case x of $\perp \Rightarrow F \mid\left\llcorner a_{\lrcorner} \Rightarrow G a\right.$ respectively case x of []$\Rightarrow F \mid$ $(a \# r) \Rightarrow G a r$. From the internal definitions (not shown here) many properties are automatically derived like distinctness []$\neq a \# t$, injectivity of the constructors or induction schemes.

Type definitions.

Type definitions allows for a safe introduction of a new type. Other specification constructs, for example datatype, are based on it. The underlying construction is simple: any non-empty subset of an existing type can be turned into new type. This is achieved by defining an isomorphism between

[^3]this set and the new type; the latter is introduced by two fresh constant symbols (representing the abstraction and the concretization function) and three internally generated axioms. As a simple example, consider the definition of type containing three elements. This type is represented by the first three natural numbers:

```
typedef three = {0::nat,1,2}
    apply (rule_tac x= 0 in exI)
    apply blast
    done
```

In order to enforce that the representing set on the right hand side is non empty, the package requires for this new type a proof of non-emptiness:

```
typedef three = {0::nat,1,2}
    1. \existsx. x }\in{0,1,2
```

To use this new type we need to finish the proof of non empty set started by the use of typedef which can be done differently. For example we can finish the proof using existing theorems on the logical operator \exists in Isabelle/HOL. To see all Isabelle's theorems related to \exists we use the Isabelle command find_theorems. The query searches for theorems whose name contains an "ex" sub-string. One of the results is:

```
find_theorems name : exI
```

HOL.exI: ?P ? $\Longrightarrow \Longrightarrow \exists \mathrm{x}$. ?P x

The searched theorems is applied in the following. In our case, the Isabelle proof method rule_tac is used, a resolution step, which unifies the theorem HOL.exI against the first proof goal in a resolution step:

```
apply (rule exI[where x= 0])
apply blast
done
```

Its application in the proof allows to replace the schematic variable $? x$ by the constant 0 in our proof; this is specified by the key word in followed by the name of the theorem. The other schematic variable $? P$ is automatically filled in (using higher-order unification), which is possible since only one solution remains. The remainder of the proof consists of a call to the highly automated method blast, which does the trick for the necessary set-theoretic proof.
It remains to point out that the same proof can be done by different proofstyle called structured proof or Isar-proof. The same proof can be represented in this style as follows:

```
typedef three = {0::nat,1,2}
    proof
    show 1 \in{0, 1, 2}
        by blast
    qed
```

After finishing the proof about the definition of this new type, many theorems will be deduced automatically by Isabelle. We can check the new deduced theorems related to this new type by using the command find_theorems. In the concrete example, there are 82 new theorems deduced that were related to this type definition.

```
find_theorems name : three.
searched for name: three
found 9 theorems (40 displayed)
```


Well-founded Recursive Function Definitions.

Actually, there is a parser for primitive and well-founded recursive function definition syntax. For example, the sort-operation can be defined by:

```
fun ins ::
    '\alpha:: linorder #' }\alpha\mathrm{ List.list }=>\mp@subsup{}{}{\prime}\alpha\mathrm{ List.list
where
    ins x [] = [x]
| ins x (y#ys) = (if x < y then x #y#(ins x ys) else y#(ins x ys))
fun sort ::'\alpha:: linorder List.list #' }\alpha\mathrm{ List.list
where
    sort [] = []
| sort (x#xs) = ins x (sort xs)
```

which is again compiled internally to constant definitions. Here, $\alpha::$ innorder requires that the type α is a member of the type class linorder. Thus, the operation sort works on arbitrary lists of type ($\alpha::$ linorder) list on which a linear ordering is defined. The internal (non-recursive) constant definition for the operations ins and sort is quite involved and requires a termination proof with respect to a well-founded ordering constructed by a heuristic. Nevertheless, the logical compiler will finally derive all the equations in the statements above from this definition and makes them available for automated simplification.

The theory of partial functions is of particular practical importance. Partial functions $\alpha \rightharpoonup \beta$ are then defined as functions $\alpha \Rightarrow \beta$ option supporting the usual concepts of domain dom $f \equiv\{x \mid f x \neq$ None $\}$) and range ran $f \equiv\{x \mid \exists y . f y=$ Some $x\}$. Partial functions can be viewed as "maps" or dictionaries; the empty map is defined by $\emptyset \equiv \lambda x$. None, and the update operation, written $p(x \mapsto t)$, by λy. if $y=x$ then Some t else $p y$. Finally, the override operation on maps, written $p_{1} \oplus p_{2}$, is defined by λx. case $p_{1} x$ of None $\Rightarrow p_{2} x \mid$ Some $X \Rightarrow$ Some X.

Records

An Isabelle record [Wen15, NWS^{+}] is a data structure that contain a number of fields. In its essence a record are tuples, where the fields are selectors in its components. Internally, Isabelle generates for this specification construct a theory describing records selectors, records update functions, a more field and a records refinement scheme. The Isar syntax for declaring records is:

```
record ('a, 'b) state =
    field1 :: 'a
    field2 :: 'b
```

In this example we had declared an Isabelle record type named state, that contain two fields field1, field2 and supports two types ' a, ' b. After the definition of this record type a set of Isabelle theorems are generated automatically and added to Isabelle gobal context.

```
Record1.state.select_defs(1):
    field1 \equiv
        id o Record.iso_tuple_fst Record.tuple_iso_tuple o
        Record.iso_tuple_fst state_ext
```

This theorem is used to retrieve field named field1 from the record state. Another theorem used to update the same field is generated automatically, example:

```
Record1.state.update_defs(1):
    field1_update \equiv
        Record.iso_tuple_fst_update state_ext}
        (Record.iso_tuple_fst_update Record.tuple_iso_tuple oid)
```

Other operations on records like extending record type are defined too.

Function Definitions

The HOL instantiation for Isabelle contains a theory on total functions [Nip12]. A set of operations and lemmas are defined in this theory. An Isabelle function is seen as an application $f: E \rightarrow F$, where E is the domain
and F is the range of f, in the following some Isabelle definition that exist in this theory are presented:

```
definition id :: 'a #''a where
    id = ( }\lambda\textrm{x}.\textrm{x}
definition comp :: ('b }\mp@subsup{|}{}{\prime}\textrm{c})=('\textrm{a}=>'\textrm{b})
            'a # 'c (infixl o 55)
where f o g = ( }\lambda\textrm{x}.\textrm{f}(\textrm{g}x)
lemma id_apply [simp]: id x = x
    by (simp add: id_def)
lemma comp_apply [simp]: (f o g) x = f (g x)
    by (simp add: comp_def)
```

In those two examples id specify the identity function andcomp (has as infix syntax the symbol o) specify function composition. Actually, the theory Fun.thy is an extension of the Set.thy theory, other definitions like domain of the function, range, image . . . are implemented in Set.thy.

ML Code.

It is possible inside Isabelle documents to directly access the underlying ML-layer of the system architecture, and even extend the environment of the underlying ML interpreter/compiler. One can include the fragment:

1

```
ML {* fun fac x = if x = 0 then 1 else x * fac(x-1); *}
```

in a document and then later on evaluate:

```
ML{* fac 20; *}
```

Since Isabelle itself sits as a collection of ML modules in this SML environment, it is possible to access its kernel and tactical functions:

```
ML{* open Tactic;
    fun mis x = res_inst_tac [(x, x)] {@thm exI} 1*}
```

which defines a new tactic that applies just the existential-introduction rule of hol!. This is the key to build large and own tactic procedures and even tools inside the Isabelle environment. Note that the fragment \{@thm exI\} is called an antiquotation; it is expanded before being passed to the SML compiler with code that accesses the thm exI (see section subsection 2.3.3, pp8.) in the Isabelle database for theorems. By additional SML-code, this tactic can be converted into a Isar-method, which can be bound to own syntax inside the Isar-language. Thus, the proof language is technically extensible by own, user-defined proof-commands (see [Wen15] for the details).

2.3.4 Isabelle Proofs

In addition to types, classes and constants definitions, Isabelle theories can be extended by proving new lemmas and theorems. These lemmas and theorems are derived from other existing theorems in the context of the current theory. Isabelle offers various ways to construct proofs for new theorems, we distinguish two main categories: forward and backward proofs:

Local forward proofs.

The goal of a forward proof is to derive a new theorem from old ones. This is done either by instantiating some unknowns in the old theorems, or by composing different theorems together.
The instantiation can be done using the of and where operators as follows: thm [of inst1 inst2 ...] or thm [where var1=inst1 and var2=inst2 ...]. If we consider for example the existential introduction theorem called exI and given by ?P ? $\mathrm{x} \Longrightarrow \exists \mathrm{x}$. ?P x . The unknown variable x can be instantiated with a fixed variable a using the following command exI[of _ a] which is equivalent to exI [where $\mathrm{x}=\mathrm{a}$]. Note that when using of the instances of the variables appear in the same order of appearance of the unknown variables in the theorems. Consequently, we can avoid instantiating a variable by giving a dummy value in the position of its corresponding instance.
The second way of deriving theorems is by composing different theorems together using the OF or THEN operators. The first operator OF is used to compose one theorem to others. For a theorem th1 given by $A \Longrightarrow B$ and a theorem th2given by A^{\prime}, the theorem th1 [0F th2] results from the unification of A and A' and thus instantiating the unknowns in B. Theorems with multiple premises can be composed to more than one theorem given as arguments to the OF operator. For example, given the conjunction introduction theorem conjI given by ?P $\Longrightarrow ? Q \Longrightarrow ? P \wedge ? Q$ and the reflexivity theorem ref given by $? \mathrm{x}=? \mathrm{x}$, the composition of these theorem conjI [of refl[of a] refl[of bl] results in the following theorem $a=a \wedge b=b$. In a similar way, the THEN operator is used to compose different theorems together. The theorem th1 [THEN th2] is obtained by applying the rule th2 to the theorem th1. For example, composing a theorem th1 given by $\mathrm{a}=\mathrm{b}$ with the symmetry rule sym given by ?s $=$?t \Longrightarrow ? $t=$?s is written th1 [THEN sym] and the result is $\mathrm{b}=\mathrm{a}$.

Global backward proofs.

The usual and mostly used proof style is the backward or goal-directed proof style. First, a proof goal is introduced then the proof is performed by simplifying this goal into different sub-goals and, finally, prove the resulting sub-goals from existing theorems. The proofs are build using natural de-
duction by applying some existing (proved) inference rules. For each logical operator, two kinds of rules are defined: introduction and elimination rules. The backward proofs can be structured in two different ways:

1. Apply style proofs, where the proof goal is simplified using a succession of rules applications. This results in a so-called apply-script, describing the proof steps. An example of such a proof is given in the following:
```
lemma conj_rule: \llbracketP; Q \\LongrightarrowP^(Q ^P)
    apply (rule conjI)
        apply assumption
    apply (rule conjI)
        apply assumption
        apply assumption
    done
```

Although this proof style is easy to apply, long apply-scripts can become unreadable and hard to maintain. A more structured and safe way to write the proofs is by using the Isar language.
2. Structured Isar proofs allow for writing sophisticated and yet still fairly human-readable proofs. The Isar language defines a set of commands and shortcuts that offer more control on the proof state. An example of a structured induction proof is given in the following:

```
lemma
    fixes n::nat
    shows 2 * (\sum i=0..n. i) = n * (n + 1)
    Proof (induct n)
        case 0
            have 2* (\sum i=0..n. i) = (0::nat)
                by simp
            also have (0::nat) = 0 * (0 + 1)
                by simp
            finally show ?case .
    next
        case (Suc n)
            have 2 * (\sum i=0..Suc n. i) = 2*(\sum i=0..n. i) + 2*(n + 1)
                by simp
            also have 2*(\sum i=0..n. i) = n * (n + 1)
                by (rule Suc.hyps)
            also have n * (n + 1) + 2 * (n + 1) = Suc n * (Suc n + 1)
                by simp
            finally show ?case .
    qed
```

For the sake of this presentation, we appeal to an "immediate intuition" of a mathematically knowledgable reader; for detailed introduction into the structured proof language, the reader is referred to the Isar Reference Manual of the System documentation.
In addition to internal Isabelle proof procedures, there are some external proof procedures (blast going back to leantap[BP95], metis existing as a stand-alone first-order paramodulation procedure[Hur03] as well as $\mathrm{CVC} 4\left[\mathrm{BCD}^{+} 11\right]$ and $\mathrm{Z} 3[\mathrm{dMB} 08]$ via the smt interface) that have been integrated into Isabelle in a logically safe way.

2.3.5 Isabelle/HOL Code Generation

Finally, Isabelle/HOL manages a set of executable types and operators, i.e., types and operators for which a compilation to sml!, OCaml, Scala, or Haskel is possible. Setups for arithmetic types such as int have been done allowing for different trade-offs between trust and efficiency. Moreover any datatype and any recursive function are included in this executable set (providing that they only consist of executable operators). Of particular interest for evaluators is the use of the Isar command:

$$
\begin{equation*}
\text { value } \quad \operatorname{sort}[1,7,3] \tag{2.6}
\end{equation*}
$$

In the context of the definitions, it will compile them via the code-generator to SML code, execute it, and output:

$$
\begin{equation*}
[1,3,7] \tag{2.7}
\end{equation*}
$$

This provides an easy means to inspect constructive definitions and to get easy feedback for given test examples for them. See the part "Code generation from Isabelle/HOL theories" by Florian Haftmann from the Isabelle system documentation for further details.

2.3.6 Isabelle/HOL Document Generation

Of particular interest for evaluators or certifications are Isabelle's features for semantically supported typesetting: within the document element:

1
text \{* This is text containing \$\lambda\$'s and \$|beta\$'s ... *\}
for example, arbitrary LaTeX code can be inserted for using technical and mathematical notation of annotations of formal document elements. Inside a text-document, the document antiquotation mechanism already mentioned in 2.3.3 can be applied:

1

```
text{* Text containing theorems like {@thm exI} ... *}
```

which results in a print of theorems directly from their formal Isabelle presentation. Since it is possible to define new antiquotations, one can, for example, track security requirements or security claims in theorems or tests (a detailed description of document antiquotations is found in the "Isar Reference Manual" by Makarius Wenzel from the Isabelle system documentation). Thus it is possible to use this mechanism to support the traceability of the common criteria items like protection profiles, security targets, requirements, security properties etc. For all these entities, be it informal or not, declarations and applications of antiquotations can be used in text fragments that allow for a direct consistency checking over the entire document.
During a certification process, evaluators are encouraged to use the Isabelle/jedit user-interface directly (and not just the generated .pdf documentation), since it allows for an in-depth inspection and exploration of the formal content of a theory: tooltips reveal typing information, evaluations of critical expressions can often be done by the value ... document item, and operator-symbols occurring in HOL-expressions were hyper-linked to referring definitions or binding occurrences. Note, however, that a user-interface is a dozen system layers away from a Isabelle inference kernel which opens the way for implementation errors in display and editing components, increasing the risk of misinterpretations. A final check of an entire document should therefore be made in the (GUI-less) build mode (which enforces also stronger checking).

2.3.7 Isabelle extensions: HOL-TestGen

HOL-TestGen ${ }^{3}$ (see Figure 2.4) is an interactive, i. e., semi-automated, test generation tool for specification-based tests built upon Isabelle/HOL. Instead of using Isabelle/HOL as "proof assistant," it is used as modeling environment for the domain specific background theory of a test (the test theory), for stating and logically transforming test goals (the test specifications), as-well as for the test generation method implemented by Isabelle's tactic procedures. In a nutshell, the test generation method consists of:

1. a test case generation phase, which is essentially an equivalence partitioning procedure of the input/output relation based on a cnf!-like normal form computation,
2. a test data selection phase, which essentially uses a combination of constraint solvers using random test generation and the integrated SMTsolver Z3 [dMB08],
3. a test execution phase, which reuses the Isabelle/HOL code-generators

[^4]

Figure 2.4: An Isabelle session showing the j Edit client as Isabelle Interface. The upper-left sub-window allows one to interactively step through a test theory comprising test specifications while the lower-left sub-window shows the corresponding system state of the spot marked in blue in the upper window.
to convert the instantiated test cases to test driver code that is run against a system under test.

A detailed account on the symbolic computation performed by the test case generation and test selection procedures is contained in [BW13]. The test case generation method is basically an equivalence partitioning combined with a variable splitting technique that can be seen as an (abstract) syntax testing in the sense of the ISO 29199 specification [Int12, Sec. 5.2.1 and 5.2.4].

The equivalence partitioning separates the input/output relation of a program under test (PUT), usually specified by pre- and post-conditions, into classes for which the tester has reasons to believe that $P U T$ will treat them the same.
Of course, the HOL-TestGen approach inherits all glory, but also all limitations of a testing approach: The entire specification is reduced via specific test purposes and underlying test hypothesis ("pick one out of the equivalence class, and it's going to be ok for all class members") to a finite number of tests to be checked. These purposes and hypotheses ' may be difficult to justify and need careful inspection, more difficult than having just a universal statement over the entire input/output relation. On the other hand, testing can establish confidence over the real system, and makes no modeling
assumptions - like the Simpl-approach subsection 3.4.1 - over the underlying hardware, the correct modeling of behavior of hardware components such as sensors, the compiler, and the equivalence of the assumed operational semantics of the used programming language(s) with the actually executed one. For this reason, it can be safely stated that for certifications of the highest-levels, a suitable combination of test and proof techniques will be necessary. Proofs for the higher levels of the models establishing the desired security properties in a Target Of Evaluation TOE, tests for establishing that the assumptions made in the lower levels of the models correspond to the reality in the TOE.

2.4 The Verified Architecture Microprocessor (VAMP)

The Verified Architecture Microprocessor (VAMP) as well as the microkernel VAMOS [Dor10] has been developed and verified in the context of the German research projects Verisoft ${ }^{4}$ and VerisoftXT ${ }^{5}$. The goal in particular of the former project was the pervasive formal verification of computer systems from the application level down to the silicon, i. e., the hardware design.
On the Application Software Layer, this includes foundational proofs justifying a verification approach for system-level concurrent programs that are running as user processes on the micro-kernel VAMOS [Dor10]. On the System Software Layer, VAMOS provides an infrastructure for memory virtualization, for communication with hardware devices, for process (represented as a sequence of assembly instructions), and for inter-process communication (IPC) via synchronous message passing that need to be verified. On the Tools Layer, the correctness of the compiler needs to be verified and, finally, on the Hardware Layer, the functional correctness of the hardware design is formally verified.
These four layers comprise the Verisoft Architecture (see Figure 2.5); each of the layers is in itself structured in several sub-layers.
Our work focuses on the hardware layer, more precisely the assembly-level (VAMPasm), i.e., the instruction set of the Verified Architecture MicroProcessor (VAMP) [BJK $\left.{ }^{+} 06\right]$. VAMP is a pipelined reduced instruction set (RISC) processor based on the out-of-order execution principle (see [HP06] for details). The VAMPasm (section 5.2 presents the formal model we are using in our work) includes 56 instructions: 8 instructions for memory data transfer, 2 instructions for constant data transfer, 2 instructions for register data transfer, 14 instructions for arithmetic and logical operations, 16 instructions for test operations, 6 instructions for shift operations, 6 instruc-

[^5]

Figure 2.5: The Verisoft System Layers.
tions for control operations as well as 2 instructions for interrupt handling. In our unit and sequence test scenarios presented in section 5.3, we generate tests from a formal model of the instruction set, i. e., we test the conformance of the gate level (which corespondents to the implementation in traditional model-based testing) to assembly-level (which corespondents to the model in traditional model-based testing).

2.5 PikeOS System Architecture

PikeOS is a real-time commercial operating system that supervises and ensures the execution and separation between software applications running on the top of various hardware platforms [SYS13a, SYS13b]. It stands in the tradition of so-called separation kernels and follows ideas of the influential L4 kernel project [Lie95]. The PikeOS architecture comprises four layers (see Figure 2.6). The virtual machine initialization table (VMIT) is a database containing the global configuration of the system and its application structure. In the VMIT, partitions (virtual machines), tasks (POSIX-like processes), their threads, their memory-, processor-, and time resources, communication channels as well as access-control rights on these resources were defined. Only at boot-time, partitions, processes and threads can be created via PikeOS System Software (PSSW); at run-time the application structure and its time-scheduling is fixed: PikeOS has no dynamic process creation. In

Figure 2.6: PikeOS architecture.
other words: based on the VMIT configuration, the PikeOS system software (PSSW) will generate a set of virtual machines in the Partitions layer during the boot-phase. In this layer each resource partition is composed from a set of applications, and can be executed under the predefined policy and use the predefined resources of the VMIT. Applications in the resource partitions can also be used for system calls of PikeOS kernel. In kernel layer, the set of resource partitions is seen as a set of PikeOS tasks, that contain PikeOS threads and shares kernel resources (memory, files, processors, communication channels ...).
The kernel provides a set of APIs used by the threads and tasks. As in Unixlike systems, special hardware - the MMU-gives application-level tasks the illusion to live in an own separate memory space: the virtual memory. However, all threads belonging to a task live in the same memory space, namely the memory space of the task they belong to. In contrast, system-level tasks can also access the physical memory and the MMU. Besides memory separation, PikeOS also offers time-separation and multi-core support.
Our work focuses on a particular part of the kernel layer providing interprocess communication (IPC), the PikeOS IPC API.

2.6 Conclusions

In this chapter we have presented the general context of this thesis. First, an overview on formal testing, its background and its relation with the other formal methods techniques were introduced. Actually, formal testing approaches bridge the gap between the formal model and the reality; in certification effort, this can be a valuable contribution to gain confidence over results achieved by deductive verification or model checking, in which, the verification activity is usually done on the model level solely. From the other side, deductive verification and model checking approaches, can be used to refine/adapt an additional model to a testable one, i. e. a model that is suited to symbolic execution and that can therefore be used in the different testing approaches.
Second, we have presented Isabelle/hol! and pointed the essential system features. We believe that a such introduction to Isabelle system will help the reader to understand our contributions explained in the remaining chapters. Finally, the basic notions and the system architecture of VAMP Processor and PikeOS system were described.
The next chapter contain our first contribution during this thesis, in particular we will introduce an instantiation of the text in [JH08] for Isabelle in order to show how Isabelle can be used in certification processes.

Part II

Contributions

A sideline : Isabelle/HOL in certification processes A System Description and Mandatory Recommendations

Contents
3.1 Introduction . 43
3.2 Common Criteria: Normative Context 44
3.3 Methodological Recommendations for the Evaluator44
3.3.1 On the use of SML 45
3.3.2 Axioms and Bogus-Proofs 46
3.3.3 On the use of external provers 47
3.4 Extensions of Isabelle: Guidelines for the Eval- uator 48
3.4.1 An Example: The Isabelle/Simpl 48
3.5 Recommendations for CC certifications 49
3.5.1 A refinement based approach for CC evaluation 49
3.6 Summary 51

```
3.6.1 Background References . . . . . . . . . . . . . . . }5
```

3.6.2 Concluding Remarks and a Summary 51

3.1 Introduction

Recently, theorem proving environments have been widely used in the area of computer systems security and certification and, for instance, in Common Criteria. The Common Criteria (CC) [Mem06] is a well-known and recognized computer security certification standard. The standard is centered around the role of the developer, who provides implementation but also "artefacts of compliance with the level of security targeted", while the evaluator "confirms the compliance of the information supplied" as well as determines "completeness, accuracy and quality" of the deliverables.
Especially wrt. "completeness, accuracy and quality" of specifications and proofs, formal methods and especially mechanically proof checking techniques can push the trust and the reproducibility of the results to levels not obtainable by a human certification expert alone. This explains why at its higher assurance levels, the CC requires the use of formal methods for specification and verification. A well-established formal specification formalism must be used to model the system and of the different security policies. A reliable theorem prover is needed to prove and verify different properties of the specification. Recent theorem provers offer rich and powerful formal environments that are very suitable for both activities.
Among the important number of theorem provers available nowadays, we concentrate on the Isabelle theorem prover ${ }^{1}$. Following [Hal08], the Isabelle System, developed into one of the top five systems for the logically consistent development of formal theories. In particular the instance of the Isabelle system with higher-order logic called Isabelle/HOL is therefore a natural choice as a formal methods tool as required by the Common Criteria on the higher assurance levels EAL5 to EAL7.
In this chapter we present a side-effect of our work that still relevant to its context (a European project aiming at a certification of an industrial operating system), as well as the methodological role of testing a certification process. In particular we contributed to the paper ${ }^{2}$ which was sent to the ANSSI ${ }^{3}$. As a contribution, the chapter culminates in some high-level mandatory guidelines and recommendations for both developers and evaluators of certification documents using Isabelle. It attempts to be a complement to [JH08].

[^6]The chapter proceeds as follows: at first in section 3.2, we give some general information from Common Criteria standard about formal methods, modeling and associated requirements. In section 3.3, we refer to methodological issues of Isabelle/HOL leading to recommendations for evaluators. In section 3.4 we chose a major extensions of Isabelle for code-verification, and discuss its advantages and limits in a high-level certification process. The final discussion contains a little survey on publications on the topic as well as a summary for evaluators.

3.2 Common Criteria: Normative Context

For high levels of certification (i.e. for EAL5 to EAL7) in the Common Criteria [Mem06] some requirements introduce the use of formal methods at diverse phases of the design process. Regarding to the level of security target required, the use of formal methods match different objectives. For deeper explanations on high certification levels related to Common Criteria, i. e. EAL 5 to EAL7, and their requirements we would refer to [YABC15].

3.3 Methodological Recommendations for the Evaluator

There are four potential dangers of a formal proof system that it wrongly accepts the desired theorem "This operating system is secure":

1. Inherent inconsistency of the logics (e.g., hol!) or inconsistent use of the logics (introduction of inconsistent axioms by one way or the other).
2. The incorrect implementation of Isabelle the Isabelle Kernel and of the hol! instance in it.
3. The incorrect package implementation realizing advanced specification constructions like type definitions etc.
4. Since Isabelle is highly configurable, there is a certain danger of obfuscation of bogus-proofs.

Beyond the more philosophical objections ${ }^{4}$, the risk outlined by the by first item is in fact minimal: Higher-order logic is an extremely well studied object of academic interest [And86, GM93], and while there are known limits in proving soundness and completeness inside a hol!-prover, they just stimulated a lot of recent research to come a "formal proof over hol! in hol!" as

[^7]close as possible, e.g. by adding to hol! an axiom over the existence of a sufficiently large cardinal [Har06, MOK13].
The risk outlined by the second item is also very small. The reasons are threefold:

A Some of the aforementioned soundness proofs cover also the implementation aspects of the core of a provers of the hol!-family (hol!-light, ...).

B The specific architecture of provers of the LCF family (HOL4, Isabelle, HOL-light, Coq) enforces that any proof is actually checked by by this fairly small core.

C These core-inferences can optionally be protocoled in an proof-object which can, in principle, in case of serious doubt be checked by another implementation of a hol!-prover. However, since these objects tend to be very large, this approach requires decent engineering. Fortunately, this should only be necessary in exceptional cases.

The risk of the third item is minimal as far as the described standard conservative standard extension schemes such as type_synonym's, datatype's, definition's and fun's, typedef's, specification's, inductive's, typeclasses and locales are concerned. The same holds for diagnostic commands like type, term, value, etc. that do not change the global context of a theory. These are fairly well-understood schemes which have in parts been proven formally correct for similar systems such as the HOL4 system[KAMO14]. These schemes cover the largest parts of the Isabelle/HOL libraries. Here lies the main advantage of the LCF-approach and the methodology to base libraries on conservative (logically safe) definitions.
The risk is small as far as other standard extension schemes are concerned; since extension schemes generate internally axioms, there have been reported consistency problems with combinations of other extension schemes such as consts and defs as well as defs (overloaded); the Isabelle reference manual points out that the internal checks of Isabelle do not guarantee soundness. ${ }^{5}$
It remains the risk of item four, which is concerned with the resulting methodology in "how to use Isabelle". For very large theory documentations, it must be considered non-negligeable. It is the key-issue addressed in the remainder of this section.

3.3.1 On the use of SML

As mentioned earlier, Isabelle is an open environment that allows via

[^8]```
ML{* SML ML code *}
```

to include arbitrary SML programs, in particular programs that make direct inferences on top of the kernel. This use of Isabelle is not unsafe; critical parts of the hol! library use this mechanism. Isabelle is designed to have user land SML code extensions, and the kernel protects itself against logical inconsistencies coming from ML extensions. However, there are a few deliberate opt-outs, and furthermore, it is in principle possible to obfuscate them in Isabelle ML code such that an evaluator may be fooled by a text appearing to be an Isabelle proof but isn't in the sense of the inference kernel. Thus, besides the principle possibility that a pretty-printed theorem does not state what it appears to state by some misuse of mathematical notation (an inherent problem of any formal method), there is the possibility of fake-proofs as a consequence of ML code and (re)-configurations of the ISAR proof language. If SML-code is accepted in an evaluation, it has to be made sure - potentially by extra justifications or external experts with Isabelle implementation expertise - that this code does not implicitly generate axioms, registers oracles and defines proof methods equivalent to sorry (or variants like sorry_fun) to be discussed in the sequel; in any case, the evaluation is substantially simpler if SML-code is strictly avoided.

### 3.3.2 Axioms and Bogus-Proofs

Obviously, when using the Isar axiomatization construct allowing to add an arbitrary axiom, it is immediately possible to bring the system in an inconsistent state. The immediate methodological consequence is to ban it from use in to be evaluated theories completely (such that it is only internally used inside specification constructs in and and in the aforementioned foundational axioms coming with the system distribution) and to restrict theory building on conservative extensions. This is also common practice in scientific conferences addressing formal proof such as ITP.
However, there are more subtle ways to introduce an axiom that leads to inconsistency. First, there is a mechanism in Isabelle to register oracles into the system. They can be used for a particularly simple, but logically unsafe integration of external provers into Isabelle and can be used inside self-defined tactics. Logically, an oracle is a function that produces axioms on the fly. It is an instance of the axiom rule of the kernel, but there is an operational difference: The system always records oracle invocations within proof-objects of theorems by a unique tag. Of course, oracle invocations should again be avoided in a certified proof.
A particular instance of the oracle mechanism is the sorry proof method. This is method is always applicable and closes any (sub)-proof successfully, and a useful means in top-down proof developments in Isabelle. Unneces-
sary to repeat that no sorry statements should remain in a proof document underlying certification. By the way, the system is by default in a mode in which it refuses to generate proof documents containing sorry's, only by explicitly putting it in a mode called quick_and_dirty this can be overcome. There are several ways to activate quick_and_dirty, by it by explicit ML statements like quick_and_dirty:=true, be it in the ROOT.ML-files (till version 2013-1), or be it in the session- configuration files ROOT-files (since version 2013).
Oracles and sorry's are particularly dangerous in methodological foundation proofs (type or type-class is non-empty, recursions well-founded), since the use of the the oracle-tag inside the corresponding proof-objects gets lost on the level of type expressions. Thus, a sorry could introduce inconsistent types whose "effects" could be used in bogus-proofs depending on them.
We will discuss this a little more in detail: Recall that deduction in Isabelle/hol! is centered around the requirement that types and type-classes are nonempty. This is a consequence of the fact that the $\beta$-reduction rule $((\lambda x::$ $\left.\tau . E) E^{\prime} \rightarrow E\left[x:=E^{\prime}\right]\right)$ is executed pervasively during deduction, be in in resolution or rewriting steps. It is well-known however, that $\beta$-reduction is unsound in the presence of empty types ${ }^{6}$. Thus, an obfuscated sorry in a methodological proof leaves no other than very local traces in the proof objects and can be exploited much later via an inconsistent type in a proof based on this type definition; the exploit could again be obfuscated by another self-defined proof-method, say auto' which will be hard to detect by inspection. The only systematic way to rule out obfuscated bogus-proof is either by ruling out ML-constructs or by checking all proof objects of the entire theory.

### 3.3.3 On the use of external provers

The Isabelle distribution comes with a number of external provers, namely:

- sledgehammer : its use is uncritical, since it remains completely extern to proof documentations and is only used for the generation of highlevel Isabelle proofs, that were certified by the kernel.
- blast, metis: these are internal devices but also uncritical, since their results were used via a proof object certification.
- smt: this method uses, for example, the external SMT-solver Z3. The integration is carefully made and uses no oracles - instead, a form

[^9]of tactical proof re-construction mechanism is used [BW10] that is logically safe.

Other external provers have to be considered carefully; in particular integrations using the oracle-mechanism should be ruled out.

### 3.4 Extensions of Isabelle: Guidelines for the Evaluator

Besides HOL-TestGen described in subsection 2.3.7, there are other Isabelle extensions relevent for certification processes, namely Isabelle/simpl.

### 3.4.1 An Example: The Isabelle/Simpl

Isabelle/Simpl is an verification environment built conservatively on Isabelle/HOL. It supports a sequential imperative programming language, for which it defines its syntax, semantics, Hoare Logics and a verification condition generator (again derived), which form together a complete verification environment. Together with an (untrusted) parser that compiles C programs into Isabelle/Simpl[GAK12], this particular environment follows a similar program verification technique like Frama-C/Why / AltErgo ( $\left[\mathrm{CKK}^{+}\right.$12, FP13], alt-ergo. lri.fr) or VCC/Boogie/Z3[BW10].
The entire environment is part of the Isabelle-oriented "Archive of formal Proofs", see afp.sourceforge.net in general and afp.sourceforge.net/entries/ Simpl.shtml in particular.
The environment has been used for one of the most ambitious code-verification projects recently, the verification of the L4-Microkernel
(cf. www.ertos.nicta.com.au/research/l4.verified, $\left[\mathrm{KEH}^{+} 09\right]$ ).
In itself, Isabelle/Simpl can be considered nearly as as "trustable" as Isabelle/HOL itself : the library is built upon conservative extensions of the HOL -kernel, and the ML extensions are done by Isabelle developers themselves and stood the test of the time. Program verification proofs establishing that a Simpl-program is correct with respect its (pre-post-condition) specifications can be handled by the same evaluation procedures as any other Isabelle development.
However, as in any process involving the verification of C programs, the C parser and its transition from "real C" to the idealized imperative language Simpl has to be considered with a wise dose of scepticism. Here is are whole spectrum of different glimpses possible: since the C parser defines a semantics-by-translation for its fragment of C , the question remains unproven that this semantics is faithful to the semantics of the real C compiler generating production-level code (which involves questions on compiler cor-


Figure 3.1: Refinement steps for a formal development approach compliant to CC
rectness, semantic faithfulness of the execution environment, correctness of compilation optimizations, hardware-correctness, etc.). The problem has been addressed via particular validation techniques of the parsing process [GAK12], but is, in full generality, unsolvable.

### 3.5 Recommendations for CC certifications

### 3.5.1 A refinement based approach for CC evaluation

The figure 3.1 presents a refinement scheme which implements different refinement steps from security policy model SPM to implementation. With this approach, the properties demonstrated on an abstract SPM are formally preserved down to the levels of the functional specification model FSP and a TOE specification design model, the TSD. At each level of abstraction the dedicated model and its associated proofs demonstrate the security properties and are compliant with the CC requirement. The use of a formal refinement methodology demonstrates the consistency between each refined model and preserve the properties demonstrated at high level of abstraction. The evaluation of this kind of approach can be conducted in three different phases by the evaluator:

- Phase 1: Verification of the proof of the SPM formal specification. On the initial abstract model, a verification shall be conducted to check the relevance of the security objectives modeling in the formal model with the informal specification. A second point is the verification of the model soundness to assure than the model is not inconsistent (refers
to chapter 3.3.2).
- Phase 2: Refinement of the SPM formal specification. A first step of this phase is the verification of the refinement process and methodology. On each refinement, verification on the properties and on the soundness of the model are conducted. From the initial abstract model, on each intermediate concrete model, the evaluator checks the traceability (i.e. the traceability of the requirements) between models. An informal link can be considered between the last formal model of the TDS and the implementation. A bi-directional detailed traceability of the security requirements shall be managed between this two different artefacts to verify the implementation of the security requirements and than the implementation contains only desired requirements ${ }^{7}$.
- Phase 3: General and transverse activities. This last phase consists mainly of the verification on the proofs and on justifications on the tools used as support for development and design. The complete traceability from the security target to the implementation is verified included traceability between each refinement steps of formal models. During this phase, the evaluator replay the proofs and check the consistency of the formal properties and assumptions defined on the environment and the context (see 2.3.5 last paragraph for details of facilities supplied by Isabelle/HOL. The use of keywords to report the proof of parts of the proof obligations is forbidden (for example the use of the sorry proof method, see chapter 3.3.2 for details).

When formal methods are used, some practices should be applied to facilitate the work of the evaluator and be more efficient.

- Formal models should be defined in accordance with some naming convention informations and is a huge help for traceability.
- Formal models should be define in accordance with "coding" rules ([JH08]). The proofs associated can be replay.
- Documentation and deliveries should respect templates and integrate traceability with requirements or elements from input specifications. From this point, the use of the Isabelle interface should be interesting with regard to its functionalities, refers to 2.3.5.

[^10]
### 3.6 Summary

### 3.6.1 Background References

The most notable text describing the scientific history behind the LCF-family of hol! provers is done by by Mike Gordon[Gor00]. It covers the beginning of the entire research programme from 1972 to the mid-80ies, ranging from foundational issues of the logic over contributions to type-systems (as the "Hindley-Milner-Polymorphism")[Mil78] to the issue of the practical, safe implementation of rewrites and decision procedures [Pau99].
The LCF research programme was in parallel to another notable source of nowadays interactive theorem proving technologies: the Automath-project. In 1968, N.G. de Bruijn designs the first computer program to check the validity of general mathematical proofs, using typed $\lambda$-calculi as a direct means to represent proof objects as such. The emphasis of this programme was initially on proof-checking; de Bruijn's system Automath eventually checked every proposition in a primer that Landau had written for his daughter on the construction of real numbers as Dedekind cuts. A descendant of this family, which also has deeply influenced the Isabelle kernel design (proof objects, core inferences) is the Coq system (see http://coq.inria.fr).
Another notable survey on research programme is contained in the papers contained in A Special Issue on Formal Proof distributed by the American Mathematical Society (see http://www.ams.org/notices/200811/, but also [Hal08]), which presents nicely the relevance of modern ITP technology for purely mathematical problems (an argument, which has been strengthened recently by the formal proof of the Feit-Tompson theorem, whose precise formulation has haunted mathematicians for decades [Gon13], and the formal proof of the Kepler-conjecture, which is a known mathematical problem for about 400 years.).

### 3.6.2 Concluding Remarks and a Summary

We have presented the Isabelle/hol! system and pointed out the essential arguments, why by a particular combination of system-architecture and methodology, the system is suited to give the currently highest possible guarantee on a formal proof in particular and a logical theory development in general. In a sense, Isabelle/hol! offers the same guarantees for logical systems as Coq[JH08], and in some sense better guarantees than, for example, the B method or model-checkers like FDR. Isabelle/hol! is therefore a natural choice for evaluations in the higher certification levels EAL5 to EAL7 in the Common Criteria (CC) [Mem06].
If the methodological side-conditions are respected which can be reduced essentially to an number syntactic checks, the formal consistency of the entire
certification document containing formal specifications, proofs of consistency and the proofs of security properties, refinement-proofs between the different abstraction layers, and finally test-case generations as well as test-results can be guaranteed, and the evaluator can therefore concentrate on the more fundamental questions: does the model represent the right thing? are the modeling assumptions justified?
As "take-home-message" we would summarize these side-conditions as follows:

- Use a trusted, unmodified Isabelle version from the distribution.
- Check the restriction to definitional axioms only, enforce the use of "safe" specification constructs discussed here.
- Rule out axiomatization, sorry, their variants or disguised equivalents (such as oracle declarations).
- In particular sorry's or equivalent constructions in methodological proofs have to be ruled out.
- Check the quick-and-dirty mode status.
- Exploring a TOE interactively, for example by jEdit, which allows for inspecting theories and definitions, their animation, the checking of types and of proof details, is a great means to increase confidence for an evaluator. However, the final check should be done in a non-interactive mode (pretty-printing and display machinery is actually quite far from the kernel and can be erroneous in itself).
- The main theorem in an CC evaluation is presumably of the form: "the security property X stated in the context of the security model Y is satisfied for the functional model $Z$ under some conditions A in some locale B'. A skeptical evaluator may insist on proofs that A and B are actually satisfiable, under circumstances even in a constructive sense.
- A conservative evaluator should restrict or ban ML-statements (with the possible exception of declarations of antiquotations), otherwise inspect ML-statements with particular care.

The internal code generator (also used in code-antiquotations and valuestatements) stood the test of the time, but enjoys not quite the same level of trust as the proof facilities. The generation of proof objects for a complete theory is in principle possible, but should not be necessary except in case of a concrete suspicion of a fraudulent proof attempt.


## Theoretical and Technical Foundations: Testing Concurrent Programs

## Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 54
4.2 Monads Theory . . . . . . . . . . . . . . . . . . . 55
4.2.1 An Example: MyKeOS. . . . . . . . . . . . . . . . 58
4.3 Conformance Relations Revisited . . . . . . . . . 60
4.4 Coverage Criteria for Interleaving . . . . . . . . 61
4.5 Sequence Test Scenarios for Concurrent Programs 63
4.6 Symbolic Execution . . . . . . . . . . . . . . . . . 66
4.7 Test Drivers for Concurrent C Programs . . . . 67
4.7.1 The adapter . . . . . . . . . . . . . . . . . . . . . . 69
4.7.2 Code generation and Serialisation . . . . . . . . . . 70
4.7.3 Building Test Executables . . . . . . . . . . . . . . 71
4.7.4 GDB and Concurrent Code Testing . . . . . . . . 72
4.8 Conlusions . . . . . . . . . . . . . . . . . . . . . . . 73

### 4.1 Introduction

The verification of systems combining soft- and hardware, such as modern avionics systems, asks for combined efforts in test and proof: In the context of certifications such as EAL5 in Common Criteria section 3.2, the required formal security models have to be linked to system models via refinement proofs, and system models to code-level implementations via testing techniques.
Our work complements the testing initiative by a proof-based testing technique linking the formal system model of the PikeOS inter-process communication against the real system. This is a technical challenge for at least the following reasons:

- the system model is a transaction machine over a very rich state,
- system calls were implemented by internal, uninterruptible "atomic actions" reflecting the L4-microkernel concept; atomic actions define the granularity of our concurrency model, and
- the security model is complex and, in case of aborted system calls, leads to non-standard notions of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical foundations.

- We use symbolic execution techniques to cope with the large statespace; their inherent drawback to be limited to relatively short execution traces is outweighed by their expressive power,
- we extend the "monadic test approach" proposed in [BW07, BW13] to a test-method for concurrent code. It combines an IO-automata view [LT89a] with extended finite state machines [Gil62] using abstract transitions, and
- we need an adaption of concurrency notions, a "semantic view" on partial-order reduction and its integration into interleaving-based coverage criteria.

This sums up to a novel, tool-supported, integrated test methodology for concurrent OS-system code, ranging from an abstract system model in Isabelle/HOL, complemented embedding of the latter into our monadic sequence testing framework, our setups for symbolic execution down to generation of test-drivers and the code instrumentation.
In this chapter we will introduce a set of technical and theoretical contributions to test concurrent programs. On theoretical side, we present the monadic test approach from an IO-Automata view in section 4.2 then we
show how it can be used to express concurrent test scenarios in section 4.4. In section 4.3 we state our refinement relation, which help us to express a family of conformance relations to link the abstract model with the concrete implementation. On the technical side, we will show how Isabelle is used as an abstract test case generator in section 4.5. Finally, our techniques to build test drivers for concurrent code are presented in section 4.7.

### 4.2 Monads Theory

The obvious way to model the state transition relation of an automaton $A$ is by a relation of the type $(\sigma \times(\iota \times o) \times \sigma)$ set; isomorphically, one can also model it via:

$$
\iota \Rightarrow(\sigma \Rightarrow(o \times \sigma) \text { set })
$$

or for a case of a deterministic transition function:

$$
\iota \Rightarrow(\sigma \Rightarrow(o \times \sigma) \text { option })
$$

In a theoretic framework based on classical higher-order logic (HOL), the distinction between "deterministic" and "non-deterministic" is actually much more subtle than one might think: since the transition function can be underspecified via the Hilbert-choice operator, a transition function can be represented by

$$
\text { step } \iota \sigma=\left\{\left(o, \sigma^{\prime}\right) \mid \operatorname{post}\left(\sigma, o, \sigma^{\prime}\right)\right\}
$$

or:

$$
\text { step } \iota \sigma=\operatorname{Some}\left(\operatorname{SOME}\left(o, \sigma^{\prime}\right) \cdot \operatorname{post}\left(\sigma, o, \sigma^{\prime}\right)\right)
$$

for some post-condition post. While in the former "truly non-deterministic" case step can and will at run-time choose different results, the latter "underspecified deterministic" version will decide in a given model (so to speak: the implementation) always the same way: a choice that is, however, unknown at specification level and only declaratively described via post. For the system in this paper and our prior work on a processor model [BFNW13], it was possible to opt for an under-specified deterministic stepping function.
We abbreviate functions of type $\sigma \Rightarrow(o \times \sigma)$ set or $\sigma \Rightarrow(o \times \sigma)$ option $\operatorname{MON}_{\mathrm{SBE}}(o, \sigma)$ or $\operatorname{MON}_{\mathrm{SE}}(o, \sigma)$, respectively; thus, the aforementioned state transition functions of io-automata can be typed by $\iota \rightarrow \operatorname{MON}_{\text {SBE }}(o, \sigma)$ for the general and $\iota \rightarrow \operatorname{MON}_{\mathrm{SE}}(o, \sigma)$ for the deterministic setting. If these function spaces were extended by the two operations bind and unit satisfying three algebraic properties, they form the algebraic structure of a monad that is well known to functional programmers as well as category theorists. Popularized by [Wad92], monads became a kind of standard means to incorporate stateful computations into a purely functional world.

Since we have an underspecified deterministic stepping function in our system model, we will concentrate on the latter monad which is called the stateexception monad in the literature.
The operations bind, which represent sequential composition with value passing, and unit, which represent the embedding of a value into a computation, are defined for the special-case of the state-exception monad as follows:


```
 ('O',' '\sigma)MON
where bind_SE f g = (}\lambda\sigma\mathrm{ . case f }\sigma\circ\textrm{of None }=>\mathrm{ (None
```



```
definition unit_SE :: 'O =('O, ' }\sigma\mathrm{)MON ME ((return _) 8)
where unit_SE e = (}\lambda\sigma.\mathrm{ . Some(e, }\sigma)
```

We will write $x \leftarrow m_{1} ; m_{2}$ for the sequential composition of two (monad) computations $m_{1}$ and $m_{2}$ expressed by $\operatorname{bind}_{\text {SE }} m_{1}\left(\lambda x . m_{2}\right)$. Moreover, we will write "return" for unit ${ }_{\text {SE }}$.
This definition of bind ${ }_{\text {SE }}$ and unit ${ }_{\text {SE }}$ satisfy the required monad laws:

```
lemma bind_left_unit [simp]:
 (x \leftarrowreturn c; P x) = P c
 by (simp add: unit_SE_def bind_SE_def)
 lemma bind_right_unit[simp]:
 (x \leftarrowm; return x) = m
 apply (simp add: unit_SE_def bind_SE_def)
 apply (rule ext)
 apply (case_tac m \sigma, simp_all)
 done
```

```
lemma bind_assoc[simp]:
 (y \leftarrow(x \leftarrowm; k x) ; h y) =
 (x \leftarrowm; (y \leftarrowk x; h y))
 apply (simp add: unit_SE_def bind_SE_def, rule ext)
 apply (case_tac m \sigma, simp_all)
 apply (case_tac a, simp_all)
 done
```

On this basis, the concept of a valid monad execution, written $\sigma \models m$, can be expressed: an execution of a Boolean (monad) computation $m$ of type (bool, $\sigma$ ) $\mathrm{MON}_{\mathrm{SE}}$ is valid if and only if its execution is performed from the initial state $\sigma$, no exception occurs and the result of the computation is true.

```
definition valid_SE ::
 '}\sigma=>\mathrm{ (bool,' }\sigma\mathrm{) MON_SE =bool (infix }=15\mathrm{)
 where (\sigma\modelsm) = (m \sigma\not= None ^fst(the (m \sigma)))
```

More formally, $\sigma \models m$ holds if and only if $(m \sigma \neq \operatorname{None} \wedge$ fst $(\operatorname{the}(m \sigma)))$, where fst and snd are the usual first and second projection into a Cartesian product and the is the projection in the Some a variant of the option type.
We define a valid test-sequence as a valid monad execution of a particular format: it consists of a series of monad computations $m_{1} \ldots m_{n}$ applied to inputs $\iota_{1} \ldots \iota_{n}$ and a post-condition $P$ in a return depending on observed output. It is formally defined as follows:

$$
\sigma \models o_{1} \leftarrow m_{1} \iota_{1} ; \ldots ; o_{n} \leftarrow m_{n} \iota_{n} ; \text { return }\left(P o_{1} \cdots o_{n}\right)
$$

The notion of a valid test-sequence has two facets: On the one hand, it is executable, i. e., a program, iff $m_{1}, \ldots, m_{n}, P$ are. Thus, a code-generator can map a valid test-sequence statement to code, where the $m_{i}$ where mapped to operations of the SUT interface. On the other hand, valid test-sequences can be treated by a particular simple family of symbolic executions calculi, characterized by the schema (for all monadic operations $m$ of a system, which can be seen as its step-functions):

$$
\begin{gather*}
\overline{(\sigma \models \operatorname{return} P)=P}  \tag{4.1a}\\
\frac{C_{m} \iota \sigma \quad m \iota \sigma=\text { None }}{\left(\sigma \models\left(\left(s \leftarrow m \iota ; m^{\prime} s\right)\right)\right)=\text { False }}  \tag{4.1b}\\
\frac{C_{m} \iota \sigma \quad m \iota \sigma=\operatorname{Some}\left(b, \sigma^{\prime}\right)}{\left(\sigma \models s \leftarrow m \iota ; m^{\prime} s\right)=\left(\sigma^{\prime} \models m^{\prime} b\right)} \tag{4.1c}
\end{gather*}
$$

Which corresponds to the following Isabelle/HOL implementation:

```
lemma exec_unit_SE [simp]: (}\sigma\models(\mathrm{ return P)) = (P)
 by(auto simp: valid_SE_def unit_SE_def)
```

lemma exec_bind_SE_failure:
A $\sigma=$ None $\Longrightarrow \neg(\sigma \models((\mathrm{s} \leftarrow \mathrm{A} ; \mathrm{M} s)))$
by(simp add: valid_SE_def unit_SE_def bind_SE_def)
lemma exec_bind_SE_success:
$\mathrm{A} \sigma=\operatorname{Some}\left(\mathrm{b}, \sigma^{\prime}\right) \Longrightarrow(\sigma \models((\mathrm{s} \leftarrow \mathrm{A} ; \mathrm{M} \mathrm{s})))=\left(\sigma^{\prime} \vDash(\mathrm{M} \mathrm{b})\right)$
by (simp add: valid_SE_def unit_SE_def bind_SE_def )

This kind of rules is usually specialized for concrete operations $m$; if they contain pre-conditions $C_{m}$ (constraints on $\iota$ and state), this calculus will just accumulate those and construct a constraint system to be treated by constraint solvers used to generate concrete input data in a test.

### 4.2.1 An Example: MyKeOS.

To present the effect of the symbolic rules during symbolic execution, we present a toy OS-model. MyKeOS provides only three atomic actions for allocation and release of a resource (for example a descriptor of a communication channel or a file-descriptor). A status operation returns the number of allocated resources. All operations are assigned to a thread (designated by thread_id) belonging to a task (designated by task_id, a Unix/POSIXlike process); each thread has a thread-local counter in which it stores the number (the status) of the allocated resources. The input is modeled by the data-type:

```
datatype in_c = alloc task_id thread_id nat
 | release task_id thread_id nat
 | status task_id thread_id
```

datatype out_c = alloc_ok | release_ok | status_ok nat
where out_c captures the return-values. Since alloc and release do not have a return value, they signalize just the successful termination of their corresponding system steps. The global table var_tab (corresponding to our symbolic state $\sigma$ ) of thread-local variables is modeled as partial map assigning to each active thread (characterized by the pair of task and thread id) the current status:

```
type_synonym thread_local_var_tab = (task_id ×thread_id) \rightharpoonupint
```

The operation have the precondition that the pair of task and thread id is actually defined and, moreover, that resources can only be released that have been allocated; the initial status of each defined thread is set to 0 . The hol! representation of the preconditions and post-conditions is:

```
fun precond :: thread_local_var_tab # in_c # bool
where
 precond \sigma (alloc taskid thid res) = ((taskid,thid) \indom \sigma)
| precond \sigma (release taskid thid res) = ((taskid,thid) \indom \sigma^
 (int res) \leqthe(\sigma(taskid,thid)))
| precond \sigma (status taskid thid) = ((taskid,thid) \indom \sigma)
```



Figure 4．1：SPEC：An Extended Finite State Machine for MyKeOS．

```
fun postcond :: in_c #thread_local_var_tab }
 (out_c >thread_local_var_tab) set
 where
 postcond (alloc taskid thid res) }\sigma
 {(n,\mp@subsup{\sigma}{}{\prime}). (n = alloc_ok ^
 \sigma'=\sigma((taskid,thid)\mapsto the(\sigma(taskid,thid)) + int res))}
 | postcond (release taskid thid res) }\sigma
 {(n, \sigma'). (n = release_ok ^
 \sigma'=\sigma((taskid,thid)\mapsto the(\sigma(taskid,thid)) - int res))}
 | postcond (status taskid thid) }\sigma
 {(n, 湩). (}\sigma=\mp@subsup{\sigma}{}{\prime}
 (\exists x. status_ok x = n ^x = nat(the(\sigma(taskid,thid)))))}
```

Depicted as an extended finite state－machine（EFSM），the operations of our system model SPEC are specified as shown in Figure 4．1．
A transcription of an EFSM to HOL is scattered here ${ }^{1}$ ．Actually the HOL model of an EFSM is represented by a locale［Bal10］，which is instantiated by the above definitions of pre－post conditions and：

```
definition strong_impl ::
['}\sigma=>\mp@subsup{'}{}{\prime}\iota=>\mathrm{ bool, ' }\iota=>('O,'\sigma)MON_SB] 唈 \iota=>('O, '\sigma)MON_SE
where strong_impl pre post }\iota
 (\lambda \sigma. if pre \sigma \iota
 then Some(SOME(out, 汭). (out, 汭) \inpost }\iota\sigma
 else None)
```

definition SPEC = (strong_impl precond postcond)
where SPEC represent the instantiation of an EFSM with the semantics of MyKeOS．We show a concrete symbolic execution rule derived from the definitions of the SPEC system transition function，e．g．，the instance for Equa－

[^11]tion 4.1 c :
$$
\frac{\left.(\text { tid }, \text { thid }) \in \operatorname{dom}(\sigma) \quad \text { SPEC (alloc tid thid } m) \sigma=\text { Some(alloc_ok, } \sigma^{\prime}\right)}{\left(\sigma \models s \leftarrow \operatorname{SPEC}(\text { alloc tid thid } m) ; m^{\prime} s\right)=\left(\sigma^{\prime} \models m^{\prime}\right. \text { alloc_ok) }}
$$
where $\sigma=v a r \_t a b$ and $\sigma^{\prime}=\sigma((t i d, t h i d):=(\sigma($ tid, thid $)+m))$. Thus, this rule allows for computing $\sigma, \sigma^{\prime}$ in terms of the free variables var_tab, tid, thid and $m$. The rules for release and status are similar. For this rule, SPEC (alloc tid thid $m$ ) is the concrete stepping function for the input event alloc tid thid $m$, and the corresponding constraint $C_{\text {SPEC }}$ of this transition is $($ tid, thid $) \in \operatorname{dom}(\sigma)$.

### 4.3 Conformance Relations Revisited

We state a family of test conformance relations that link the specification and abstract test drivers. The trick is done by a coupling variable res that transport the result of the symbolic execution of the specification SPEC to the expected result of the SUT.

$$
\begin{aligned}
& \sigma \not \models o_{1} \leftarrow \operatorname{SPEC} \iota_{1} ; \ldots ; o_{n} \leftarrow \operatorname{SPEC} \iota_{n} ; \text { return }\left(\text { res }=\left[o_{1} \cdots o_{n}\right]\right) \\
& \quad \sigma \neq o_{1} \leftarrow \operatorname{SUT} \iota_{1} ; \ldots ; o_{n} \leftarrow \operatorname{SUT} \iota_{n} ; \text { return }\left(\text { res }=\left[o_{1} \cdots o_{n}\right]\right)
\end{aligned}
$$

Successive applications of symbolic execution rules allow to reduce the premise of this implication to $C_{\text {SPEC }} \iota_{1} \sigma_{1} \longrightarrow \ldots \longrightarrow C_{\text {SPEC }} \iota_{n} \sigma_{n} \longrightarrow$ res $=$ [ $a_{1} \cdots a_{n}$ ] (where the $a_{i}$ are concrete terms instantiating the bound output variables $o_{i}$ ), i. e., the constrained equation res $=\left[a_{1} \cdots a_{n}\right]$. The latter is substituted into the conclusion of the implication. In our previous example, case-splitting over input-variables $\iota_{1}, \iota_{2}$ and $\iota_{3}$ yields (among other instances) $\iota_{1}=$ alloc $t_{1} t h_{1} m, \iota_{2}=$ release $t_{2} t h_{2} n$ and $\iota_{3}=$ status $t_{3} t h_{3}$, which allows us to derive automatically the constraint:

$$
\begin{gathered}
\left(t_{1}, t h_{1}\right) \in \operatorname{dom}(\sigma) \longrightarrow \\
\left(t_{2}, t h_{2}\right) \in \operatorname{dom}\left(\sigma^{\prime}\right) \wedge n<\sigma^{\prime}\left(t_{2}, t h_{2}\right) \longrightarrow \\
\left(t_{3}, t h_{3}\right) \in \operatorname{dom}\left(\sigma^{\prime \prime}\right) \longrightarrow \text { res }=\left[\text { alloc_ok, release_ok, status_ok }\left(\sigma^{\prime \prime}\left(t_{3}, t h_{3}\right)\right]\right.
\end{gathered}
$$

where $\left.\sigma^{\prime}=\sigma\left(\left(t_{1}, t h_{1}\right):=\left(\sigma\left(t_{1}, t h_{1}\right)+m\right)\right)\right)$ and $\sigma^{\prime \prime}=\sigma^{\prime}\left(\left(t_{2}, t h_{2}\right):=\left(\sigma\left(t_{2}, t h_{2}\right)-\right.\right.$ $n))$ ). In general, the constraint $C_{\mathrm{SPEC}_{i}} \iota_{i} \sigma_{i}$ can be seen as an symbolic abstract test execution; instances of it (produced by a constraint solver such as Z3 integrated into Isabelle) will provide concrete input data for the valid testsequence statement over SUT, which can therefore be compiled to test driver code. In our example here, the witness $t_{1}=t_{2}=t_{3}=0, t h_{1}=t h_{2}=t h_{3}=5$, $m=4$ and $n=2$ satisfies the constraint and would produce (predict) the
output sequence res $=$ [alloc_ok, release_ok,status_ok 2] for SUT according to SUT. Thus, a resulting (abstract) test-driver is:

$$
\begin{aligned}
& \quad \sigma \models o_{1} \leftarrow \operatorname{SUT} \iota_{1} ; \ldots ; o_{3} \leftarrow \operatorname{SUT} \iota_{3} ; \\
& \text { return }\left([\text { alloc_ok, release_ok, status_ok } 2]=\left[o_{1} \cdots o_{3}\right]\right)
\end{aligned}
$$

This schema of a test-driver synthesis can be refined and optimized. First, for iterations of stepping functions an 'mbind' operator can be defined, which is basically a fold over bindse. It takes a list of inputs $\iota s=\left[i_{1}, \ldots, i_{n}\right]$, feeds it subsequently into SPEC and stops when an error occurs. Using mbind, valid test sequences for a stepping-function (be it from the specification SPEC or the SUT) evaluating an input sequence $\iota s$ and satisfying a post-condition $P$ can be reformulated to:

$$
\sigma \models o s \leftarrow \operatorname{mbind} \iota s \mathrm{SPEC} ; \text { return }(P \text { os })
$$

Second, we can now formally define the concept of a test-conformance notion:

$$
\begin{aligned}
& \left(\mathrm{SPEC} \sqsubseteq_{\langle\text {Init,CovCrit,conf }\rangle} \mathrm{SUT}\right)= \\
& \left(\forall \sigma_{0} \in \text { Init. } \forall \iota s \in \text { CovCrit. } \forall \text { res } .\right. \\
& \sigma_{0} \models \text { os } \leftarrow \operatorname{mbind} \iota \text { s } \operatorname{SPEC} ; \text { return }(\text { conf } \iota \text { s os res }) \\
& \left.\longrightarrow \sigma_{0} \models(\text { os } \leftarrow \operatorname{mbind} \iota s \text { sUT; return }(\text { conf } \iota \text { s os res }))\right)
\end{aligned}
$$

For example, if we instantiate the conformance predicate conf by:

$$
\operatorname{conf} \iota s \text { os res }=(\operatorname{length}(\iota s)=\operatorname{length}(o s) \wedge r e s=o s)
$$

we have a precise characterization of inclusion conformance introduced in subsection 2.2.3: We constrain the tests to those test sequences where no exception occurs in the symbolic execution of the model. Symbolic execution fixes possible output-sequence (which must be as long as the input sequence since no exception occurs) in possible symbolic runs with possible inputs, which must be exactly observed in the run of the SUT in the resulting abstract test-driver.
Using pre and post-condition predicates, it is straight-forward to characterize deadlock conformance or IOCO mentioned earlier (recall that our framework assumes synchronous communication between tester and SUT; so this holds only for a IOCO-version without quiescence). Further, we can characterize a set of initial states or express constraints on the set of input-sequences by the coverage criteria CovCrit, which we will discuss in the sequel.

### 4.4 Coverage Criteria for Interleaving

In the following, we consider input sequences $\iota s$ which were built as interleaving of one or more inputs for different processes; for the sake of simplicity,
we will assume that it is always possible to extract from an input event the thread and task id it belongs to. It is possible to represent this interleaving, for example, by the following definition:

```
fun interleave :: 'a list }=>\mathrm{ ''a list }=>\mathrm{ 'a list set
where interleave [] [] = {[]}
 |interleave A [] = {A}
 |interleave [] B = {B}
 |interleave (a # A) (b # B) =
 image (}\lambda\textrm{x}.\textrm{a # x) (interleave A (b # B)) U
 image (\lambdax. b # x) (interleave (a # A) B)
```

and by requiring for the input sequence $\iota s$ to belong to the set of interleaving of two processes P1 and P2: $\iota$ s $\in$ interleave P1 P2. It is well known that the combinatorial explosion of the interleaving space represents fundamental problem of concurrent program verification. Testing, understood as the art of creating finite, well-chosen sub-spaces for large input-output spaces, offers solutions based on adapted coverage criteria [SLZ07] of these spaces, which refers to particular instances of CovCrit in the previous section. A well-defined coverage criterion [ZHM97, FTW04] can reduce a large set of interleaving to a smaller and manageable one. For example, consider the executions of the two threads in MyKeOS: $\mathrm{T}=$ [alloc 312 , release 31 , status 3 1] and $\mathrm{T}^{\prime}=[$ alloc 25 3, release 311 , status 2 5]. Since our simplistic MyKeOS has no shared memory, we simulate the effect by allowing T' to execute a release-action on the local memory of task 3 , thread 1 by using its identity. In general, we are interested in all possible values of a shared program variable $x$ at position $l$ after the execution of a process $P$. To this end we will define two sets of interleaving under two different known criteria.

- Criterion1: standard interleaving (SIN) the interleaving space of actions sequences gets a complete coverage iff all feasible interleaving of the actions of $P$ are covered.
- Criterion2: state variable interleaving (SVI) the interleaving space of actions sequences gets a complete coverage iff all possible states of $x$ at $l$ in $P$ are covered.

Under SIN we derive 10 possible actions sequences, which is reduced under SVI to 3 sequences (where one leads to a crash; recall our assumption that the memory is initially 0 ). Unlike to SIN, SVI has provided a smaller interleaving set that cover all possible states. If we consider var_tab $[3,1]$ for x when executing status 31 , the possible results may be undefined, O or 1 . While SIN has provided a bigger set, that cover all possible 3 states of $x$ with redundant sequences representing the same value. In model-checking, this reduction technique is also known as partial order reduction [Pe193, GW94].

It is a part of a beauty for our test and proof approach, that we can actually formally prove that the test-sets resulting from the test-refinements:

$$
\mathrm{SPEC} \sqsubseteq\langle\text { Init,SIN,conf }\rangle \text { SUT } \quad \text { and } \quad \mathrm{SPEC} \sqsubseteq_{\langle\text {Init }, S V I, c o n f\rangle} \mathrm{SUT}
$$

are equivalent for a given SPEC. The core of such an equivalence proof is, of course, a proof of commutativity of certain step executions, so properties of the form:
$o \leftarrow \operatorname{SPEC} \iota_{i} ; o^{\prime} \leftarrow \operatorname{SPEC} \iota_{j} ; M o o^{\prime}=o^{\prime} \leftarrow \operatorname{SPEC} \iota_{j} ; o \leftarrow \operatorname{SPEC} \iota_{i} ; M o o^{\prime}$,
which are typically resulting from the fact that these executions depend on disjoint parts of the state. In MyKeOS, for example, such a property can be proven automatically for all $\iota_{i}=$ release $t$ th and $\iota_{j}=$ release $t^{\prime} t h^{\prime}$ with $t \neq t^{\prime} \vee t h \neq t h^{\prime}$; such reordering theorems justify a partial order on inputs to reduce the test-space. We are implicitly applying the testability hypothesis that SUT is input-output deterministic; if a input-output sequence is possible in SPEC, the assumed input-output determinism gives us that repeating the test by an equivalent one will produce the same result.

### 4.5 Sequence Test Scenarios for Concurrent Programs

HOL-TESTGEN is a test-generation system based on the Isabelle theorem prover. The main goal of this system is to use the features of Isabelle in order to generate a test set. Using the isar command test_spec from HOL-TestGen framework a test scenario can be represented in form of a test specification. A test specification is an hol! formula, i.e. a valid test sequence, that describe the test set to be generated. Two possible schemes for a test scenario can be expressed by a test specification: unit test scheme, sequence test scheme. In this section we will focus on sequence test scenarios. In sequence test scenarios, a set of input sequences are generated under a given coverage criteria and symbolically executed (see section 4.6 for more details on our symbolic execution process). Actually, a test specification is a lemma which contains our refinement relation (see section 4.3) as a proof statement. The representation of a refinement relation, for a scenario related to MyKeOS system, using Isabelle/isar language can be:

```
test_spec test_status:
```



```
and CovCrit : S \ininterleave (syscall tid 0 m m')
 (syscall tid 1 m', m',')
and SPEC :
 \sigma 0 }==(\textrm{s}\leftarrowmbind S SPEC; return (x = s))
shows }\mp@subsup{\sigma}{0}{
```

In the scenario test_status the assumption account_defined is used to bound the set of threads to 2 members in each task and at least a task exists in the system. The assumption CovCrit represent the set of possible input sequences related to the concurrent execution between syscall tid 0 m m' and syscall tid 1 m ', m','. Moreover, SPEC represent the model of the behaviour of the SUT. Finally, the conclusion $\sigma_{0} \models(\mathrm{~s} \leftarrow \mathrm{mbind}$ S PUT ; return ( $\mathrm{s}=\mathrm{x}$ ) ) is used to link the model with the real system via the free variable PUT. Actually, the free variable PUT will be linked to the actual code of SUT during the execution of the test script (for more details linkage between a model and a SUT see section 4.7).
In fact, the representation of test_status by a lemma offers a way to use the symbolic computation engine of Isabelle, usually used for proofs, as a simulation environment for the behaviour of the SUT. Basically, the simulation is done via the application of symbolic execution rules, e.g. an instance for Equation 4.1c, on the proof statement, which result with a set of sub-goals. Each sub-goal represent an abstract test case, and each abstract test case is a representation of a set of possible executions in the SUT.
The simulation, related to the behavior of MyKeOS specified in the scenario test_status, using symbolic execution on Isabelle, is represented by the following:

```
 (...)
 (**
 Resulting proof statement: ctxt1
 ***************************************)
 1. }\mp@subsup{\sigma}{0}{}\models(\textrm{s}\leftarrowmbind [alloc tid 1 m'', release tid 0 m',
 release tid 1 m',', status tid 1]
 SYS; unit_SE (x = s)) \Longrightarrow
 \sigmao}\models(\textrm{s}\leftarrowmbind S PUT; unit_SE (s = x))
 (******************************
 rules applied on: ctxt1
 ****************************)
 apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E},
 @{thm release.exec_mbindFStop_E},
 @{thm alloc.exec_mbindFStop_E},
 @{thm H1}] 1)
```

```
(**
```

(******************************************
***Resulting proof statement: ctxt2***
***Resulting proof statement: ctxt2***
**************************************)
**************************************)
1.(tid, 1) \indom }\mp@subsup{\sigma}{0}{}
1.(tid, 1) \indom }\mp@subsup{\sigma}{0}{}
\sigma
\sigma
(s \leftarrowmbind [release tid 0 m', release tid 1 m',', status tid 1]
(s \leftarrowmbind [release tid 0 m', release tid 1 m',', status tid 1]
SYS ; unit_SE (x = alloc_ok \# s)) \Longrightarrow
SYS ; unit_SE (x = alloc_ok \# s)) \Longrightarrow
\sigma
\sigma
(******************************
***rules applied on: ctxt2***
*****************************)
apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E},
@{thm release.exec_mbindFStop_E},
@{thm alloc.exec_mbindFStop_E},
@{thm H1}] 1)
(**************************************
***Resulting proof statement: ctst3***
***************************************)
1. (tid, 1) \indom }\mp@subsup{\sigma}{0}{}
(tid, 0) \indom ( }\mp@subsup{\sigma}{0}{\prime}((tid, 1) \mapstothe ( (\sigma0 (tid, 1)) + int m'')) ^
int m' \leq
the ((\sigma0}((tid, 1) \mapstothe ( (\sigma0 (tid, 1)) + int m'')) (tid, 0)) \Longrightarrow,
\sigma0}((tid, 1)\mapstothe ( 的 (tid, 1)) + int m',, (tid, 0) \mapsto
the (( }\mp@subsup{\sigma}{0}{}((tid, 1)\mapstothe (\sigma0 (tid, 1)) + int m'')) (tid, 0)) -
int m') }
( s \leftarrowmbind [release tid 1 m',', status tid 1]
SYS ; unit_SE (x = alloc_ok \# release_ok \# s)) \Longrightarrow
\sigma
(...)

```

A such proof context refinement process, is executed until the input sequence of actions is empty, which provide directly for the case of a test specification of a simple operational semantics, a test normal forms, represented by subgoals. Of course, the proof statement can be connected to constraint-solvers with the HOL-TESTGEN command gen_test_data, which will instantiate the free variables,e. g. \(\sigma_{0}\), tid in the different subgoals of the proof statement, by a real data that satisfies the derived constraints.

\subsection*{4.6 Symbolic Execution}

Symbolic execution rules, are logical inference rules used to simulate the behavior of a given system (or a program) by showing the effect of the operational semantics of that system (or program) on the symbolic variables. Symbolic variables are a typed syntactic names used to refer to a given object (i. e. a passive entity in the operating system), that may have an infinite set of representations (values). In general, two kind of variables are distinguished in an operating system, global variables and local variables. For instance, in our test specification test_status the variable \(\sigma_{0}\) can be seen as a global variable that refer to the state of the system (i.e. an object which can be modified by all subjects (threads)).
In order to give a better explanation on the symbolic execution rules used during the simulation of the behavior of MyKeOS we would introduce the generic scheme of their hol! representation:
```

lemma exec_mbindFStop_E:
assumes A:( }\sigma=(\textrm{s}\leftarrowmbind (in_ev \# S) efsm; return (P s)))
and B:E \sigma\Longrightarrow
((upd \sigma) =(s\leftarrowmbind S efsm;return(P(out_ev \sigma\# s)))) \Longrightarrow
Q
shows Q
by(insert A, rule B, simp_all del: mbind'_bind)

```

Code 1: A Generic Elimination Rule For Symbolic Execution

If we observe more closely the previous inference rule, we can figure out that the rule is an elimination rule. An elimination rule is an inference rule that eliminate a given constructor from the premises, i.e. in the rule exec_mbindFStop_E we had eliminated in_ev from the input sequence (in_ev \# S). Actually, the scheme of an elimination rule matches with the scheme of our test specifications, i.e. the free variable \(Q\) in exec_mbindFStop_E will match with \(\sigma_{0} \models(\mathrm{~s} \leftarrow\) mbind S PUT; return (\(\mathrm{s}=\mathrm{x}\))) in test_status; the assumption A of exec_mbindFStop_E will match with the assumption SPEC of test_status, and the resulting proof context after the application of this
elimination inference rule on the test specification test_status will be, the instatiation of the assumption B of exec_mbindFStop_E by the variables of SPEC. A such process is used for transforming the proof context, and it is calles ematching. On Isabelle ematching can be expressed by the tactic ematch_tac.
Our symbolic execution process, which is actually based on proof context transformations by ematching, has an enormous performance gain effect on the symbolic execution engine of Isabelle (see subsection 6.5.7 for the impressive results of a such process of symbolic execution). The performance gain provided by our process is comming from the fact that, the whole calculation process is technically reduced to a formal syntactic transformation of the proof context by elimination rules (applied by ematching), instead of a calculation process based on standard generic substitution rules, rewriting rules, introduction rules, etc., which involve more calculations in the different Isabelle layers.

\subsection*{4.7 Test Drivers for Concurrent C Programs}

The generation of the test-driver is a non-trivial exercise since it is essentially two-staged: Firstly, we choose (from the different options the Isabelle codegenerator offers) to generate an SML test-driver, which is then secondly, compiled to a C program that is linked to the actual program under test. A test-driver for HOL-TESTGEN consists of four components:
- main.sml the global controller (a fixed element in the library),
- harness.sml a statistic evaluation library (a fixed element in the library),
- X_script.sml the test-script that corresponds merely one-to-one to the generated test-data (generated)
- X_adapter.sml a hand-written program; in our scenario, it replaces the usual (black-box) program under test by SML code, that calls the external C-functions via a foreign function interface.
On all three levels, the HOL-level, the SML-level, and the C-level, there are different representations of basic data-types possible; the translation process of data to and from the C-code under test has therefore to be carefully designed (and the sheer space of options is sometimes a pain in the neck). Integers, for example, are represented in two ways inside Isabelle/HOL; there is the mathematical quotient construction and a "numerals" representation providing "bit-string-representation-behind-the-scene" enabling relatively efficient symbolic computation on integers. Both representations can be compiled "natively" to data types in the SML level. By an appropriate configuration, the code-generator can map "int" of HOL to three different implementations: the SML standard library Int.int, the native-

C interfaced by Int32.int, and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler. We do a three-step compilation of data-representations Model-to-Model, Model-to-SML, SML-to-C. A basic preparatory step for the initializing the test-environment to enable test-generation is:
```

test_spec test_status2:
assumes system_def : (c}\mp@subsup{c}{0}{},\mathrm{ no) }\in\mathrm{ dom }\mp@subsup{\sigma}{0}{
and store_finite : }\mp@subsup{\sigma}{0}{}=\mathrm{ map_of T
and test_purpose : test_purpose [(co,no),(co,no')] S
and sym_exec_spec :
\sigma 0 }=(\textrm{s}\leftarrowmbind' S SYS; return (s = x))
shows }\mp@subsup{\sigma}{0}{
apply(rule rev_mp[OF sym_exec_spec])
apply(rule rev_mp[OF system_def])
apply(rule rev_mp[OF test_purpose])
apply(rule_tac x=x in spec[OF allI])
apply(gen_test_cases 3 1 PUT)
apply(auto intro: P1', P2'')
store_test_thm mykeos_simple
gen_test_data mykeos_simple
generate_test_script mykeos_simple

```

The tool store_test_thm is a tool from HOL-TestGen framework. This tool provide the ability to users to store a given proof context of the test specification and refer to this proof context by a label (i.e. mykeos_simple). The tool gen_test_data from HOL-TestGen provide the ability to users to instantiate the symbolic variables inside abstract test cases by concrete data. The latter step is done by sending proof obligations, i.e. constraints on the variables generated during the symbolic execution, to constraint solvers in order to instantiate them with satisfiable witnesses. The tool generate_test_script is provided by HOL-TestGen framework. Basically, the tool provide the ability to users to transform the proof context stored using store_test_thm to a code equation; code equations are rewriting rules used as inputs for Isabelle code generators. For instance, the following code equation is resulting from the application of gen_test_script on the proof context labeled by the name mykeos_simple:
```

    mykeos_simple.test_script \equiv
    [([], lazy ((\lambdaa. Some -1) \models
( s \leftarrowmbind [alloc 3 5 (nat 2), status 3 5]
PUT; unit_SE (s = [alloc_ok, status_ok (nat 1)])))),
([], lazy ((\lambdaa. if a = (2, 3) then Some 8465 else Some 8) )=
(s \leftarrowmbind [release 2 3 (nat 8466), status 2 3] PUT;
unit_SE (s = [])))),
([], lazy ((\lambdaa. Some 8468) }
( s \leftarrowmbind [release 2 3 (nat 1), status 2 3]
PUT; unit_SE (s = [release_ok, status_ok (nat 8467)])))),
([], lazy (( }\lambda\mathrm{ a. if a = (2, 3) then Some 8465 else Some 8) }
( s \leftarrowmbind [release 2 3 (nat 8466), status 2 3] PUT;
unit_SE (s = [])))),
([], lazy ((\lambdaa. Some -1) \models
( s \leftarrowmbind [alloc 2 3 (nat 1), alloc 2 3 (nat 1), status 2 3]
PUT;
unit_SE (s = [alloc_ok, alloc_ok, status_ok (nat 1)])))),
(...)]

```

\subsection*{4.7.1 The adapter}

In the following, we describe the interface of the SML-program under test, which is in our scenario an adapter to the C code under test. This is the heart of the Model-to-SML translation. Actually, during the execution of the test script, the free variable specified inside the test specification under name PuT will be replaced by an adapter. In fact, the adapter is a function defined on the HOL-level, and its semantic is based on constant definitions called stubs. The stubs are replaced later-on by the semantic of the implementation using code serialisation technique offered by the interface of Isabelle code generator to link the Model-level with SML-level (see subsection 4.7.2 for technical details). Then we use a foreign function interface provided by MLton compiler to link SML-level to C-level(see subsection 4.7.3 for technical details). The HOL-level stubs for testing MykeOS are declared as follows:
```

(*The definition of the stubs*)
consts status_stub :: task_id }=>\mathrm{ int }=>\mathrm{ (int, ' }\sigma\mathrm{ )MONNSE
consts alloc_stub :: task_id => int }=>\mathrm{ int }=>\mathrm{ (unit, ' }\sigma\mathrm{ )MON ME
consts release_stub:: task_id \# int }=>\mathrm{ int }=>\mathrm{ (unit, ' }\sigma\mathrm{ )MONSE

```

On the Model-to-Model level, we provide a global step function that distributes to individual interface functions via stubs (mapped via the code generation to SML ...). This translation also represents uniformly nat by int's.
```

fun stepAdapter :: (in_c = (out_c, ' }\sigma)MO\mp@subsup{N}{SE}{}
where
stepAdapter(status tid thid) =
(x \leftarrowstatus_stub tid thid; return(status_ok (my_nat_conv x)))
| stepAdapter(alloc tid thid amount) =
(_ \leftarrowalloc_stub thid thid (int amount); return(alloc_ok))
| stepAdapter(release tid thid amount)=
(_ \leftarrowrelease_stub tid thid (int amount); return(release_ok))

```

The stepAdapter function links the HOL-world and establishes the logical link to HOL stubs which were mapped by the code-generator to adapter functions in SML, which call internally to C-code inside X_adapter.sml via a Foreign Function Interface (FFI).

\subsection*{4.7.2 Code generation and Serialisation}

In order to generate concrete code from our theories we will use the code generator [Haf15] facilities of Isabelle/HOL. It allows to turn a certain class of HOL specifications into corresponding executable code in a target language (e.g. SML). In this section, we will show how we build a setup to generate SML file containing our test script. As an example we will continue to run MykeOS example via the test specification test_status2.
In the first place, we will generate 2 SML files. The first one containing all datatypes used in our test specification. The second one containing an adapter for the variable representing the system under test called PUT in the test specification test_status2. Therefore, both files will be used as libraries for the test script and help to increase its readability. Using Isabelle "serialiser", we configure the code-generator to identify the PUT with the generated SML code implicitly defined by the above stepAdapter definition.
```

(*Code Setup for Datatypes*)
(* Setup for input actions *)
code_printing
type_constructor in_c => (SML) Datatypes.in_c
|constant alloc => (SML) !(Datatypes.Alloc ( _ , _ , _))
|constant release => (SML) !(Datatypes.Release ( _ , _ , _ ))
|constant status => (SML) !(Datatypes.Status ( _ , _ ))

```
```

(* Setup for the outputs *)
code_printing
type_constructor out_c => (SML) Datatypes.out,_c
|constant alloc_ok => (SML) Datatypes.Alloc'_ok
|constant release_ok => (SML) Datatypes.Release'_ok
|constant status_ok => (SML) !(Datatypes.Status'_ok ( _ ))

```

Basically, the link between the stubs in HOL world and the SML functions that calls to the C is done by asking Isabelle code generator to replace the stubs by functions inside a given SML file. Technically this step is resumed by:
```

(*Serialisation: replacing the HOL stubs by actual semantics
represented on SML-level*)
code_printing
constant status_stub (SML MyKeOSAdapter.status)
code_printing
constant alloc_stub (SML MyKeOSAdapter.alloc)
code_printing
constant release_stub (SML MyKeOSAdapter.release)

```

By the same technique we ask the code generator to replace the constant PUT by the function stepAdapter. The latter function, can be generated automatically, as we will see in the last step, and it contains the calls to the stubs which are now SML functions:
```

(*Serialisation: Linking the free variable PUTwith
the concrete SML-code via stepAdapter*)
code_printing
constant PUT=> (SML) stepAdapter

```

And there we go and generate the mykeos_simple:
```

export_code stepAdapter mykeos_simple.test_script in SML
module_name TestScript file impl/c/mykeos_simple_test_script.sml

```

\subsection*{4.7.3 Building Test Executables}

Inside the SML file containing the module adapter.sml, we will use again serialisation technique via the compiler MLton. Actually, MLton provides a foreign function interface to C , this interface is used to call the actual semantic
of the program under test. MLton compiler provide a command to build the test executable for our generated test script in SML language, containing called function from the implementation in C language.

\subsection*{4.7.4 GDB and Concurrent Code Testing}

Actually the generated build from MLton compiler will contain tests for threads executed in a concurrent context. The problem with executing tests on concurrent code is that: the execution order of the program actions proposed by the system scheduler will not necessarily be the same as the one proposed by the tester, and this because of the non-deterministic choices of the system scheduler. In order to deal with this problem, we have to enforce a certain order for the actions executed by the threads, i. e. a certain scheduling, during test execution. In other words, at run-time, the execution order proposed by the system scheduler must correspond to the execution order provided by the tester. Our solution is, the execution of the test executable within a \(\mathrm{GDB}^{2}\) session. The latter contain features, usually used for debugging, that can be used to control the execution of the concurrent code and make it conform to the generated executions proposed by the tester.
Technically, the gdb features allow the possibility to attach to breack-points within the concurrent code a scripting code that is executed if a break point is reached, and the complete control of thread switches. In order to generate automatically the GDB script that controls an execution of a system under test during a test experience, we had implemented a GDB generator on top of Isabelle/ML. Basically, the generator takes as argument 4 mandatory entries:
1. A function that setup the entry breakpoints switches,
2. A function that setup the exit breakpoints switches,
3. A function that setup the main breakpoint switch,
4. and a list of needed informations containing: thread IDs of the model with a mapping to there creation order inside a gdb session, and informations on the lines numbers for the breakpoints within the concurrent code.

Executed together, these functions implement an algorithm that setup thread switches for the program under test, that is conform to the switches represented by the generated input sequences from a test scenario on the model-level. Moreover note, the algorithm works correctly only if the single-core execution options are activated during the gdb session. In order to execute correctly the generated GDB scripts, the option taskset should be stated. It specifies

\footnotetext{
\({ }^{2}\) https://www.gnu.org/software/gdb/
}
a single core execution for the gdb session. An abstraction of our algorithm used to generate GDB scripts from a test script is introduced in algorithm 1.

\subsection*{4.8 Conlusions}

In this chapter we have presented our major contribution during this thesis. The chapter contains theoretical and technical foundations to test C concurrent program. On the theoretical side, we had presented our test generation framework which relies on a monadic test theory implemented in Isabelle/hol!. Our framework is equipped with a specification language based on monads that contains important definitions for testing and symbolic execution activities. First, in order to show the expressive power of our specification language, an isomorphism between the automata world and monads world was presented. Second, in order to provide a generic framework to express state exception behavior, two monad operators were introduced bind_SE and unit_SE. Based on the latter operators, a new concept called valid test sequence was defined. On the one hand, the notion of a valid test sequence is used to express the behavior of a given system. On the other hand, it is executable and can be treated by a family of symbolic executions calculi. A set of generic symbolic execution rules, for the defined operators, were introduced and in order to show how these concepts are used to model and/or to symbolically execute a given system, a running example on a simple OS called MykeOS was presented. Third, we proposed a generic scheme called test specification, expressed technically by a refinement relation, to link a specification with an implementation, then we had showed how it can be instantiated with a family of test conformance relations. Finally, in order to optimize the symbolic execution process for our test specifications, especially for the case of sequence test scenarios, an approach based on the notion of coverage criteria was proposed.
On the technical side, we highlighted the problem of testing concurent programs, and we proposed an approach to test concurrent C code using scheduler control via GDB scripts. Finally, we had showed how Isabelle/hol! can easily supports and carry our tools, going from symbolic execution on hol! down to test script on code level.
```

set entry breakpoints switches;
if input_seq = empty and
find_thread_ID (info_thread) (input_seq) = i then
switch to thread i
else
if input_seq = empty then
error empty input sequence
else
error thread informations are wrong
end
end
set exit breakpoints switches;
if input_seq = empty and
find_thread_ID (info_thread) (input_seq) = i and
next(input_seq) }=\mathrm{ empty then
switch to the successor of thread i
else
if next(input_seq) = empty then
switch to thread i
else
if input_seq = empty then
error empty input sequence
else
error thread informations are wrong
end
end
end
set main breakpoint switch;
if input_seq = empty and
find_thread_ID (info_thread)(head (input_seq))=i then
switch to thread i
else
if input_seq = empty then
error empty input sequence
else
error thread informations are wrong
end
end

```

Algorithm 1: A pseudo code for the Switches Between Threads Forced by The GDB Script

\section*{Testing VAMP Processor}

\section*{Contents}
5.1 Introduction . 76
5.2 The VAMP Model 77
5.3 Testing VAMP Processor Conformance 80
5.3.1 Generalities on Model-based Tests 81
5.3.2 Test Specification 82
5.3.3 Testing Load-Store Operations 83
5.3.4 Testing Arithmetic Operations 86
5.3.5 Testing Control-Flow Related Operations 87
5.4 Experiences and First Experimental Data 88
5.4.1 Test Generation 89
5.4.2 Test Execution . 89
5.5 Conlusions . 91
5.5.1 Related Work . 91
5.5.2 Conclusion and Future Work 91

\subsection*{5.1 Introduction}

Certifications of critical security or safety system properties are becoming increasingly important for a wide range of products. Certifying large systems like operating systems up to Common Criteria EAL 4 is common practice today, and higher certification levels are at the brink of becoming reality.
To reach EAL 7 one has to formally verify properties on the specification as well as test the implementation thoroughly. This includes tests of the used hardware platform of the architecture to be certified. In this chapter, we address the latter problem: we present a case study that uses a formal model of a microprocessor and generate test programs from it. These test programs validate that a microprocessor implements the specified instruction set correctly.
We built our case study on an existing model that was, together with an operating system, developed in Isabelle/HOL. We use HOL-TestGen, a model-based testing environment which is an extension of Isabelle/HOL. We develop several conformance test scenarios, where processor models were used to synthesize test programs that were run against real hardware in the loop. Our test case generation approach directly benefits from the existing models and formal proofs in Isabelle/HOL.
We present a case study for the model-based generation of test programs (i.e, the basis for a certification kit) for a realistic model of a RISC processor called VAMP. VAMP is inspired by IBM's G5 architecture. In the Verisoft project \({ }^{1}\), a formal model for both the processor and a small operating system has been developed in Isabelle/HOL. We will adapt and reuse the processor model to generate test cases that can be used to check if a given hardware conforms to the model of the VAMP processor. The presented test scenario is of particular interest for the higher levels of certification processes as imposed by Common Criteria EAL 7. Even if the transition from C programs to the processor models has been completely covered by deductive verification methods as in CompCert [Ler09], certification bodies will require test sets checking the conformance of the underlying processor model to real hardware.
At present, specification-level verification and the development of test sets are usually two distinct tasks. Moreover, test sets for certification kits are usually developed manually. In contrast, our model-based test case generation approach uses the design model that was already used for the verification task. In particular, we are using HOL-TestGen to generate test sequences generated from the VAMP model. As HOL-TestGen is built on top of Isabelle/HOL, i. e., test specification are expressed in terms of higher-order logic (HOL), we can directly benefit from the already existing verification

\footnotetext{
\({ }^{1}\) http://www.verisoft.de
}
models. In fact, the tight integration of a verification and a test environment is a distinguishing feature of HOL-TEstGEn.

\subsection*{5.2 The VAMP Model}

The Verified Architecture MicroProcessor (VAMP) [BJK \(\left.{ }^{+} 06\right]\) is a 32 -bit RISC CPU with a DLX-instruction set including floating point instructions, delayed program counter, address translation, and support for maskable nested precise interrupts. The VAMP hardware contains five execution units: the Fixed Point Unit, the Memory Unit, and three Floating Point Units. Instructions have up to six 32-bit source operands and produce up to four 32 -bit results. The memory interface \(\left[\mathrm{BJK}^{+} 06\right]\) of the VAMP consists of two Memory Management Units that access instruction and data caches, which in turn access a physical memory via a bus protocol.
In the context of the Verisoft project, an Isabelle/HOL specification (programmer's model) of the VAMP processor was introduced. The processor consists of a set of transitions defined over the Instruction Set Architecture (ISA) configurations. A configuration is composed of five elements:
1. Program counter (рср): a 30 bit register containing the address of next instruction to be executed, this register is used to fetch an instruction without altering the execution of the current one. This pipelining mechanism is called delayed pc.
2. Delayed program counter (dpc): a 30 bit register for delayed program counter, containing the currently executed instruction. While the fetch of the next instruction is performed in the \(p c p\) register, the \(d c p\) is kept unchanged until the end of the execution of the current instruction.
3. General purpose registers (gprs): a register file consisting of 32 registers of 32 bits each. These registers are used in different operations, and can be addressed by their index \((0-31)\). The first register is always set to 0 .
4. Special purpose registers (sprs): a register file consisting of 32 registers of 32 bits each, used for particular tasks. The first register for instance is the status register, containing the interrupts masks. Some registers are used as flags registers or as condition registers. Each special purpose register is addressed directly by its name.
5. Memory model (mm): a \(2^{32}\) bytes addressable memory. Different caching and virtual memory infrastructures are implemented in the VAMP system.
The transition relation is defined by the execution of the program instructions defined in the initial configuration. The VAMP implements the full DLX instruction set from [HP06]. This set includes load and store operations for double words, words, half words and bytes. It includes also different
shift operations, jump-and-link operations and various arithmetic and logical operations.
To avoid the complex and inconvenient bit vector representation of data and instructions, an assembly language was introduced abstracting the VAMP ISA. In this case addresses are represented by natural numbers and registers and memory contents by integers. Our test specifications and experiments are based on this instruction set (assembler) model.
The Isabelle theory of the assembler model is an abstraction of the instruction set architecture. In addition to the representation of addresses as naturals and values as integers, some other ISA features are abstracted. The instructions are represented in an abstract datatype with readable names. The address translation is not visible at this level, assembler computations live in linear (virtual) memory space. Interrupts are not visible at this level as well. The assembler configuration is an abstraction of the ISA configuration, defined as a record type with the following fields:
- рср: a natural number representing the program counter,
- dcp: a natural number representing the delayed program counter,
- gprs: a list of integers representing the general purpose register file,
- sprs: a list of integers representing the special purpose register file,
- mm: a memory model represented by a mapping from naturals to integers.
The HOL definition of the configuration is given by the ASMcore \({ }_{t}\) record type. The register file type is defined as a list of integers representing the different registers.
```

type_synonym regcont = int -- {* contents of register *}
type_synonym registers = regcont list -- {* register file*}
type_synonym mem
record ASMcore}t=dpc :: na
pcp :: nat
gprs :: registers
sprs :: registers
mm :: mem

```

Since the assembler representation of addresses and values is less restrictive than the bit vector representation, some conversion functions and restriction predicates were defined to reduce the domain of addresses and values to only meaningful values. This was the case also for the configurations, since the number of registers is not mentioned in the definition of the registers type. The well-fomedness of assembler configurations is given by the is_ASMcore predicate. This predicate ensures that register files contain exactly 32 registers each. It also checks that all register and memory cells contain valid values.
```

definition is_ASMcore :: ASMcore }\mp@subsup{|}{t}{\prime}=>\mathrm{ bool where
is_ASMcore st \equiv asm_nat (dpc st) ^
asm_nat (pcp st) ^
length (gprs st) = 32 ^
length (sprs st) = 32 ^
(}\forall\mathrm{ ind < 32. asm_int (reg (gprs st) ind)) ^
(}\forall\mathrm{ ind < 32. asm_int (sreg (sprs st) ind)) ^
(}\forall\mathrm{ ad. asm_int (data_mem_read (mm st) ad))

```

The instruction set of the assembler is defined as an abstract datatype instr in Isabelle. All operations mnemonics are used as datatype constructors, associated to their corresponding operands. Different types of instructions can be distinguished: data transfer commands, arithmetic and logical operations, test operations, shift operations, control operations and some basic interrupts.
```

datatype instr =
-- {* data transfer (memory) *}
Ilb regname regname immed
|...
-- {* data transfer (constant) *}
| ...
- {* data transfer (registers) *}
Imovs2i regname regname
| ...
-- {* arithmetic / logical operations *}
| Iaddio regname regname immed
| Iaddi regname regname immed
| Iaddo regname regname regname
-- {* test operations *}
Iclri regname
| ...
- {* shift operations *}
| Islli regname regname shift_amount
| ...
- {* control operations *}
| Ibeqz regname immed
| ...
-- {* interrupt *}
| Itrap immed
| ...

```

An inductive function is defined over the assembler instructions to provide the semantics of each operation. This function returns for each configuration
and instruction, the configuration resulting from executing the instruction in the initial configuration.
```

fun exec_instr :: [ASMcore
where
-- {* Arithmetic Instructions *}
exec_instr st (Iaddo RD RS1 RS2) =
arith_exec st int_add (reg (gprs st) RS1)
(reg (gprs st) RS2) RD
| ...
-- {* Logical Instructions *}
| exec_instr st (Iand RD RS1 RS2) =
arith_exec st s_and (reg (gprs st) RS1)
(reg (gprs st) RS2) RD
| ...
-- {* Shift Instructions *}
| exec_instr st (Isll RD RS1 RS2) =
arith_exec st sllog (reg (gprs st) RS1)
(reg (gprs st) RS2) RD
| ...

```

The transition relation is defined as a function that takes a configuration and returns its successor. The transitions are defined by the execution of the current program instruction given in the delayed program counter.
```

definition Step :: ASMcore }\mp@subsup{t}{}{\prime}=>\mp@subsup{A}{\mathrm{ ASMcore }}{t
where Step st \equiv exec_instr st (current_instr st)

```

These transition relations are used in our study as the basis of test specifications. The assembler model is more abstract than the processor model, consequently, different complex details are made transparent. Examples are interrupts handling and virtual memory and caching, pipelining and instruction reordering. In a black-box testing scenario, an abstract description of the system under test is used as a basis for test generation. This will be the case in our study, where the processor model is used to extract abstract test cases for the processor. The aim of this testing scenario is to check that the processor behaves as described in the assembler model, independently of the internal implementation details.

\subsection*{5.3 Testing VAMP Processor Conformance}

As motivated earlier, we will apply essentially two testing scenarios: modelbased unit testing and sequence testing. In a unit testing scenario, the test specification is described by pre- and post-conditions on the inputs and results produced by the system under test. This scenario assumes control over
the initial state and the access to the internal states of the SUT after the test. In sequence testing scenario, only the control of the internal state initialization is necessary, and in some cases the reference to the final state. In principle, the test result is inferred from a sequence system inputs and observed outputs. For any given inputs and state, the system - defined as an i/o stepping function-may either fail or produce outputs and a successor state. The unit testing scenario can be seen as a special form of (one step) sequence testing, where the output state is more or less completely accessible for the test.
In our case study, both testing scenarios are useful. The unit testing scenario will be used to test individually each operation or instruction with different data. Sequence testing will be used to test any sequence of instructions up to a given length. We will address subsets of related instructions separately, a combination of different instruction types is possible but not explored here. We studied four types of instructions: 1. memory related load and store operations, 2. arithmetic operations, 3. logic operations and 4. control-flow related operations.

\subsection*{5.3.1 Generalities on Model-based Tests}

A general test specification for unit instruction testing would be the following:
```

test_spec pre \sigma\iota\Longrightarrow SUT \sigma \iota = }

```
where \({ }_{-}{ }_{k}\) _ is a specially defined executable equality that compares the content of the registers and just the top \(k\) memory cells (instead of infinite memory). _ \(=_{k} \quad\) is our standard conformance relation comparing the state controlled according to the model and the state controlled by the SUT; here, we make the testability assumption that we can trust our test environment that reads the external state and converts it to its abstraction. Note that SUT is a free variable that is replaced during the test execution with the system under test.

Each test case is composed of an instruction, an initial configuration and the resulting configuration after the execution of the instruction. From this test specification, HOL-TESTGEN will produce tests for all possible instructions.Subsets of instructions are isolated by adding a pre-condition in the test specification, specifying the type of the instruction.
For instruction sequence testing, based on the combinators from the stateexception monad (see section 4.2) mbind, bind _ \(\leftarrow_{-}\); _ and the assertion assert_SE a test specification can be given specifications of valid test sequences from initial state \(\sigma_{0}\). In general, there are two kinds of sequence test scenarios: those who involve just observations of the executions of the local steps and those who involve a test over the final state. The former class
is irrelevant in our application domain since the local steps are just actions not reporting a computation result. However, the latter scenario may just involve a conformance on the entire state:
```

test_spec
pre \iotas::instr list \Longrightarrow
( }\mp@subsup{\sigma}{0}{}=(_\leftarrowmbind \iotas execcump ; assert_SE ( \lambda\sigma. \sigma = = k SUT 的 \iotas)))

```
or just a bit of it, e. g., where a computation is finally loaded into register 0 which is finally compared:
```

test_spec
pre \iotas::instr list }
( }\mp@subsup{\sigma}{0}{}|=(_\leftarrowmbind (\iotas@[load x 0]) exec vaMP
assert_SE (\lambda\sigma. (gprs \sigma)!0 = (gprs (SUT \sigma0\iotas))! 0)))

```
which requires that the last load action(s) are tested before, but makes less assumptions over the execution environment (i. e., a trustworthy implementation of \(\mathcal{F}_{k}\)). In both schemes \(\sigma_{0}\) is the initial state and \(\iota s\) is the sequence of instructions that will be generated and \(\mathrm{exec}_{\text {vamp }}\) is a lifting of exec_instr into the state exception monad:
```

definition exec.vamP
where exec

```

The pre-conditions pre of our test specifications-also called test purposesare added to the test specifications to reduce the generated instruction sequences to any given subset.
The initial configuration can also be generated as an input of the test cases. This may produce ill-formed configurations due to their abstract representation in the assembler model. We choose for our study to define and use an empty initial configuration \(\sigma_{0}\) that is proved to be well-formed.

\subsection*{5.3.2 Test Specification}

Common analysis techniques such as stuck-at-faults [Hay84] are based on the idea that a given circuit design-thus, an implementation-is modified by mutators capturing a particular fabrication fault model, e. g.: one or \(n\) wires connecting gates in the circuit are broken. This can be seen conceptually as a white-box mutation technique and has, consequently, all advantages and all draw-backs of an implementation-based testing method compared to all draw-backs and all advantages to its specification-based counterparts. Stack-at-faults are very effective for medium-size circuits and use the structure of the given design to construct equivalence classes tests incorporating directly
a fault model. This type of testing technique, however, will not reveal design flaws such as a write-read error under the influence of byte-alignments in the memory.
While we have a VAMP gate-level model in our hands and could have opted for testing technique on this layer, for this thesis, we opted to stay on the design level of the VAMP machine. This does not mean that we can not refine with little effort the equivalence classes underlying our tests further: instead of assuming in our test hypothesis that "one write-read of a memory cell successful, thus all write-reads in this cell successful," one could force hol-TestGen to generate finer test classes, by exploring the byte-or the bit-level representations of registers and memory cells.

\subsection*{5.3.3 Testing Load-Store Operations}

To formalize a test purpose restricting our first test scenario to load and store operations, the test purpose is_load_store is used. This predicate returns for each instruction, if it is a load/store operation or not. It is defined just as a constraint over the syntax of the VAMP assembly language:
```

abbreviation is_load_store_byte' :: instr =bool
where is_load_store_byte' iw 三
(\exists rd rs imm.
(is_register rd ^is_register rs ^is_immediate imm) ^
iw \in{Ilb rd rs imm, Ilbu rd rs imm, Isb rd rs imm})
definition is_load_store :: instr =>bool
where is_load_store iw \equiv
is_load_store_word' iw V
is_load_store_hword' iw V
is_load_store_byte' iw

```
(the analogous test cases for is_load_store_word' and is_load_store_hword' iw are ommited here for space reasons).
Introducing this predicate in the pre-condition of the test specification reduces the domain of the generated tests to load/store operations. The resulting test specification formally stating the test goal for unit test scenario is given by the following:
```

test_spec is_load_store }\iota\Longrightarrow\mathrm{ SUT }\mp@subsup{\sigma}{0}{}\quad\iota\quad=\mp@subsup{}{k}{}\mathrm{ exec_instr }\mp@subsup{\sigma}{0}{}\quad
apply (gen_test_cases 0 1 SUT)
store_test_thm load_store_instr

```

The test case generation procedure defined in HOL-TESTGEN is used to preform an exhaustive case splitting on the instructions datatype. Symbolic operands are generated for each instruction to give a set of symbolic test cases. The test generation produced 8 symbolic test cases, corresponding to the different load and store operations. A uniformity hypothesis is stated on each symbolic test case, which will allow us to select one concrete witness for each symbolic test case. The final generation state contains 8 schematic test cases, associated to 8 uniformity hypotheses. The conjunction of the test cases and the uniformity hypotheses is called a test theorem.
An example of a generated test case and its associated uniformity hypothesis is given in the following. The variables starting with ??X (e. g., ??X4,??X5,) are schematic variables representing one possible witness value.
```

1. SUT }\mp@subsup{\sigma}{0}{}\mathrm{ (Ilb ??X7 ??X6 ??X5)
(...)
2. THYP ((\existsx xa xb. SUT }\mp@subsup{\sigma}{0}{}(Ilb xb xa x) (...)) \longrightarrow <
(\forallx xa xb. SUT }\mp@subsup{\sigma}{0}{(Ilb xb xa x) (...)))
```

The second phase of test generation is the test data instantiation. This is done using the gen_test_data command of HOL-TESTGEN. One possible resulting test case is given by the following:
```

SUT }\mp@subsup{\sigma}{0}{}\mathrm{ (Ilb 1 0 1) }\mp@subsup{\sigma}{_}{\prime

```
where \(\sigma_{-} 1\) is the expected final state after executing the given operation. With this kind of test cases, each operation is tested individually, in a unit test style. This kind of test will reveal design faults i. e.if the result of the operation is not correct. It also detects any undesired state modification, like changing some flags or registers.
In a similar way, load and store instruction sequences are characterized using the same predicate is_load_store which is generalized to entire input sequences to the combinator list_all from the HOL-library. Rather than using a fairly difficult to execute characterization in form of an automaton or an extended finite state-machine that introduce some form of symbolic trace, we use monadic combinators of the state-exception monad directly to define valid test sequences constrained by suitable test purposes.
```

test_spec
list_all is_load_store (\iotas::instr list) \Longrightarrow

```

```

    apply (gen_test_cases SUT)
    store_test_thm load_stre_instr_seq

```

Note that step two is just the call to the automatic test case generation method (declaring the free variable SUT as the system under test of this test case), and while the third command binds the results of this step to a datastructure called test environment with the name load_store_instr_seq. The experimental evaluation of this scenario is discussed in the next section.
One possible generated test case of length 3 is given by the following subgoal:
```

1. }\mp@subsup{\sigma}{0}{}\models(\textrm{s}\leftarrowmbind [Isw ??X597 ??X586 ??X575
Ilbu ??X557 ??X546 ??X535,
Ilbu ??X517 ??X506 ??X595] exec⿱vamP;
assert_SE ( }\lambda\sigma.\sigma=\mp@subsup{=}{k}{}\mathrm{ SUT }\mp@subsup{\sigma}{0}{}\mathrm{ [Isw ??X597 ??X586 ??X575,
Ilbu ??X557 ??X546 ??X535,
Ilbu ??X517 ??X506 ??X595]))
2. THYP (( }\exists\textrm{x}1\textrm{x}2\textrm{x}3\textrm{x}4\times\textrm{x}5\textrm{x}6\textrm{x}7\textrm{x}8\textrm{x}9
\sigma 0}=(\textrm{s}\leftarrowmbind [Isw x1 x2 x3, Ilbu x4 x5 x6
Ilbu x7 x8 x9] exec.vAMP; (...))) \longrightarrow
(\forallx1 x2 x3 x4 x5 x6 x7 x8 x9.
\sigma 0}\models(\textrm{s}\leftarrowmbind [Isw x1 x2 x3, Ilbu x4 x5 x6
Ilbu x7 x8 x9] execvaMp; (...))))
```
where the first subgoal gives the schematic test case, and the second subgoal states the uniformity hypothesis for this case. The generation of test data is done similarly using the gen_test_data command, which instantiate the schematic variables with concrete values.
```

\sigma0}=(\textrm{s}\leftarrowmbind [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8] execvamp
assert_SE ( }\lambda\sigma.\sigma=\mp@subsup{=}{k}{}\mathrm{ SUT }\mp@subsup{\sigma}{0}{}\mathrm{ [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8]))

```
this corresponds to the following assembly code sequence:
```

ISW 0 1 8
LLBU 1 0 -3
LLBU 3 2 8

```

This test programs will eventually reveal errors related to read and write sequences. Even if each operation is realized in a correct way, the sequencing may contain errors, like errors due to byte alignment or information loss due to pipelining.
In this testing scenario, we consider test post-conditions expressed on the final state of the automaton. This post-condition is expressed using the state-exception primitive assert_SE. This scenario is not very realistic in hardware processors, because the final state, in particular the internal processor registers, will not be directly observable. An alternative scenario
would be to consider the state-exception primitive return that introduces a step by step checking of the output values. This output value might be, e.g., retrieved from the updated memory cell. Test specification for this kind of scenarios is as follows:
```

test_spec
list_all is_load_store \iotas \Longrightarrow
( }\mp@subsup{\sigma}{0}{}\models(\textrm{s}\leftarrowmbind \iotaexec vaMP'; return (SUT \iotas)))

```
which require a modified VAMP where individual steps were wrapped into trusted code that makes, e.g., internal register content explicit.

\subsection*{5.3.4 Testing Arithmetic Operations}

Similarly, we set up a unit test scenario, where we constrain by the test purpose is_arith the operations to be tested to arithmetic ones:
```

test_spec \sigma= exec_instr }\mp@subsup{\sigma}{0}{}\mathrm{ i }\Longrightarrow\mathrm{ is_arith i }\Longrightarrow\mathrm{ SUT }\mp@subsup{\sigma}{0}{}\mathrm{ i }
apply (gen_test_cases 0 1 SUT)
store_test_thm arith_instr

```

At this stage, each arithmetic operation is covered by one generated test case, an example is given in the following:
```

1. SUT }\mp@subsup{\sigma}{0}{}\mathrm{ (Iaddi ??X277 ??X266 ??X255) (...)
```
which contains a test case for he addition operation.
A note on the test granularity is at place here: as such, the granularity that HOL-TESTGEN applies to test arithmetic operations is fairly coarse: just one value satisfying all constraints over a variable of type integer is selected. This is a consequence of our model (registers were represented as integers and not as bitvectors of type: 32 word which would be (nowadays) a valuable alternative) as well as the HOL-TESTGEN heuristics to select for each variable just one candidate. The standard workaround would be to introduce in the test purpose definitions more case distinctions, e.g., by \(\mathrm{x} \in\{\) MinInt \(\}\) \(\cup\{-50 \ldots-100\} \cup\{0\} \cup\{50 \ldots 100\}\) which result in finer constraints for each of which a solution in the test selection must be found.

The sequence scenario is analogously:
```

test_spec
list_all is_arith (\iota::instr list) \Longrightarrow
( }\mp@subsup{\sigma}{0}{}\models(\textrm{s}\leftarrowmbind \iotas exec \VAMP; assert_SE ( \lambda\sigma. \sigma=\mp@subsup{k}{k}{}\mathrm{ SUT }\mp@subsup{\sigma}{0}{}\iota))
apply (gen_test_cases SUT)
store_test_thm arith_instr_seq

```

A possible generated sequence is given in the following, resulting from the gen_test_data command.
```

\sigma0}=(s\leftarrowmbind [Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4] exec vaMP

```
assert_SE (\(\lambda \sigma . \sigma={ }_{k}\) SUT \(\sigma_{0}\) [Isub 210 , Iadd 152 , Iadd 104))
which corresponds to the following assembly code sequence:
```

ISUB 2 1 0
IADD 1 5 2
IADD 1 0 4

```

This sequence corresponds to a subtraction followed by two addition operations.

\subsection*{5.3.5 Testing Control-Flow Related Operations}

Also with branching operations we are following the same theme:
```

test_spec is_branch i \LongrightarrowSUT }\mp@subsup{\sigma}{0}{}\mathrm{ i = =}k\mp@code{exec_instr \sigma}\mp@subsup{\sigma}{0}{}\mathrm{ i
apply (gen_test_cases 0 1 SUT)
store_test_thm branch_instr

```

This generates unit test cases for branching operations starting from the initial sate \(\sigma_{0}\). One example of the generated schematic test cases is given by:
```

1. SUT }\mp@subsup{\sigma}{0}{}\mathrm{ (Ijalr ??X27X7) (...)
```

The problem with this scenario is that the initial state is fixed, while the branching operations behavior depends essentially on the flag values. A more interesting scenario would be to consider different initial states, where the flags values are changed for each test case.
In the test sequence generation, the test specification is given as follows:
```

test_spec
list_all is_branch (\iotas::instr list) \Longrightarrow
( }\mp@subsup{\sigma}{0}{}\models(\textrm{s}\leftarrowmbind \iotas exec caMP ; assert_SE ( \lambda\sigma. \sigma= k SUT \sigma 隹 \iotas)))
apply (gen_test_cases SUT)
store_test_thm branch_instr_seq

```

The test sequence and test data generation returns, e.g., this concrete test sequence:
```

\sigma0}=(\textrm{s}\leftarrowmbind [Ij 1, Ijalr 0] exec vaMP ;
assert_SE (\lambda\sigma. \sigma= =}k\mathrm{ SUT }\mp@subsup{\sigma}{0}{}\mathrm{ [Ij 1, Ijalr 0]))

```
which corresponds to the following assembly code sequence:
```

IJ 1
IJALR 0

```

The test data generation in all the considered scenarios is performed by constraint solving and random instantiation. This leads to test sequences with coarsely grained memory access. As such, an underlying fault-model is somewhat arcane (i. e., interferences of operations in distant memory areas). If one is interested in such faults, a more dense test method should be chosen.
Rather, one would adding additional constraints to reduce the uniformity domain again. One could simply bound the range of addresses to be used in test sequences, or define a used-predicate over input sequences that computes the set of addresses that store-operations write to, and constrain the loadoperations to this set, or the like. This kind of constraints can also be used to improve the coverage of our selected data, by dividing the uniformity domain into different interesting sub-domains.

\subsection*{5.4 Experiences and First Experimental Data}

Methodologically, we deliberately refrained in this paper to modify the modelwe took it "as is," and added derived rules to make it executable in test scenarios where we assume a reference implementation running against the SUT. For example, the model describes padding functions for bytes, words, and long-words treating the most significant bit differently in certain load and store operations; in the semantic machine model as it was developed in the Verisoft Project, there are comparisons on these padding functions themselves - this is possible in HOL, but in no functional executable language, had therefore to be replaced by equivalent formulations exploiting the fact there are only three variants of padding functions, thus a finite number, were actually used in the VAMP machine. Another issue is the linear memory in the machine (a total, infinite function from natural numbers to memory cells, i. e., long words); comparisons on memory, as arising in tests where the real state has to be compared against the specified state, had to be weakened to finitized conformance relations.
While as a whole, our approach is done in a pretty generic model-based testing framework, a few adaptions had to be made due to some specialties of this model. For example, since the assembly language has 56 instructions, casesplitting over the language explodes fast over the length of test sequences. While sequence tests are methodologically and pragmatically more desirable (less control over the state is assumed), they are therefore more vulnerable
to state-space explosion: sequences of length 3 generate at some point of the process \(56+56^{2}+56^{3}=178808\) cases. In this situation, a few heuristic adaptions (represented on the tactic level) and more significantly, constraints on the level of the test purposes had to be imposed with respect to state-space explosion, test purposes like list_all is_logic \(\iota\) helps to reduce the test sequences to \(7+7^{2}+7^{3}\), i. e., a perfectly manageable size (see discussion in the next section).

\subsection*{5.4.1 Test Generation}

As mentioned earlier, we opted for a combination of unit and sequence test scenarios. Unit tests have the drawback of imposing stronger assumptions on testability: it is assumed that the test driver has actually access to registers and memory (which essentially boils down to the fact that we trust code in the test driver that consists of store-operations of registers into the memory). Sequence tests rely on the observed behavior of tests and make weaker assumptions on testability, for the price of being more vulnerable to state-space explosion.
The sequence scenarios on load-and store operations in subsection 5.3.3 uses 39 seconds in the test partitioning phase and 42 seconds in the test data selection phase (measurements were made on a Powerbook with a 2.8 Ghz Intel Core 2 Duo). 1170 subgoals were generated, where one third are explicit test hypothesis and two third are actual test cases. The other scenarios in subsection 5.3.5, subsection 5.3.4 and the more basic subsection 5.3.1 use considerably less time (between two and twenty seconds for the entire process).

\subsection*{5.4.2 Test Execution}

Nevertheless, compile time for the model (as part of the test drivers) was less than a second; compilation of the entire test driver in SML depends, of course, drastically on the size of finally generated tests. Since we restrained via test purposes the test cases in each individual scenario to about 1000, the compile time for a test remained below 3 seconds. Scaling up our test plan is essentially playing with a number of control parameters; however this is usually done only at the end of the test plan development for reasons of convenience.
Our study focuses for the moment on test generations; we did not do any experiments against hardware so far. However, there is a hardware-simulator in the sources of the Verisoft-project; in the future, we plan to generate mutants of this simulator and get thus experimental data on the bug-detection capabilities on the generated test sets.
To give an idea on how the test cases will be executed, we did some exper-
iments using the generated executable model. Starting from the abstract model, an executable translation of it in SML is performed using the Isabelle's code-generation facilities. This generated code contains all the type and constant definitions that are needed to execute the different assembler operations on an executable state. A sketch of the generated SML code for the VAMP processor is given in the following:
```

structure VAMP : sig
datatype num = One | Bit0 of num | Bit1 of num
datatype 'a set = Set of 'a list | Coset of 'a list
datatype instr =
Ilb of IntInf.int * IntInf.int * IntInf.int |
Ijr of IntInf.int | Itrap of IntInf.int | Irfe
val int_add : IntInf.int -> IntInf.int -> IntInf.int
val int_sub : IntInf.int -> IntInf.int -> IntInf.int
val cell2data : IntInf.int -> IntInf.int
val exec_instr :
unit aSMcore_t_ext -> instr -> unit aSMcore_t_ext
val sigma_0 : unit aSMcore_t_ext
val execInstrs :
unit aSMcore_t_ext -> instr list ->
unit aSMcore_t_ext

```
where the datatype definition instr is generated from the instruction type definition introduced in section 5.2. the functions definitions are generated from their corresponding constants and functions defined in the model.

Our fist experiment was the application of the generated test cases on this executable model. Using the HOL-TESTGEN test script generation, two test scripts were generated for load/store and arithmetic operations sequence. For both cases, 585 test cases were generated and then transformed to executable testers. Running all these tests did, obviously, not reveal any error, since the same model was used for test generation and execution.
To evaluate the quality our generated test cases, we introduced some changes to the executable model, producing a mutant model. Three changes were introduced in the int_add, int_sub and cell2data operations of the generated SML code. In this case, a majority of tests detected the errors. For testing the arithmetic operations, we obtained:
```

Number of successful test cases: 303 of 585 (ca. 51%)
Number of warning: 0 of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 282 of 585 (ca. 49%)
Number of fatal errors: 0 of 585 (ca. 0%)

```

For testing the load/store operations, we obtained:
```

Number of successful test cases: 54 of 585 (ca. 9%)
Number of warning: 0 of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 531 of 585 (ca. 91%)
Number of fatal errors: 0 of 585 (ca. 0%)

```

\subsection*{5.5 Conlusions}

\subsection*{5.5.1 Related Work}

Formal verification is widely used in the hardware industry since at least ten years (e.g., [Fox03, SV03, BFY \({ }^{+} 97\), Rus99, Har03]). Nevertheless, formal models of complete processors as well as verification approaches that provide an end-to-end verification from the application layer to the hardware design layer are rare. Besides VAMP [Dor10], notably, exceptions are [Fox03] and [AK95]. The closest related work with respect to the processor model is [Fox03] to which our approach should be directly applicable.
Similarly, test program generation approaches for microprocessor instruction sets have been known for a long time (e. g., [FT01, KKV11, MD08, SMZ05]). Among them manual approaches based on informal descriptions of the instruction set such as [FT01] or random testing approaches such as [SMZ05]. Only a few works suggest to use model-based or specification-based test program generation algorithms, e. g., [KKV11] and [MD08]. These works have in common that they are based on dedicated test models that are independently developed from the verification models. [MD08] is the most closely related work; the authors are using the explicit state model checker SMV to generate test programs from a dedicated test model for SMV that concentrates on pipelining faults. In contrast, our approach seamlessly integrates the test program generation into an existing verification tool chain, re-using existing verification models.

\subsection*{5.5.2 Conclusion and Future Work}

We presented an approach for testing the conformance of a processor with respect to an abstract model that captures the instruction set (i.e., the assembly-level) of the processor. This abstraction level is particular important as, first, it is the level of detail that is usually available for commercial off-the-shelf (COTS) processors and, second, it is the target level of high-level compilers.
Thus, our approach can, on the one hand, support the certification of the COTS processors for which the manufacturer is neither willing to certify the
processor itself or to disclose the necessary internal details. Moreover, our approach helps to bridge the gap between the software layer (e. g., in avionics requiring certification according to DO-178 [HB07]) and the hardware layer (e.g., in avionics requiring certification according to DO-254 [HB07]).

As (embedded) systems combining hardware and software components for providing core functionality in safety critical systems (e.g., "fly-by-wire") are used more and more often, we see an increasing need for validation techniques that seamlessly bridge the gap between hardware and software. Consequently, we see this area as the utterly important one for future work: providing a test case generation methodology that can be applied end-toend in the development process and allows for validating each development step. These test cases, called certification kits, are required even if compilers and processors are formally verified: The system builders require them for proving, as part of their certification process, that their are applying the tools correctly (i.e., according to their specification).

\section*{Testing PikeOS API}

\section*{Contents}
6.1 Introduction 94
6.2 PikeOS IPC Protocol 94
6.3 PikeOS Model 95
6.3.1 State 95
6.3.2 Actions 96
6.3.3 Traces, executions and input sequences 97
6.3.4 Aborted Executions 98
6.3.5 IPC Execution Function 100
6.3.6 System Calls 101
6.4 A Generic Shared Memory Model 101
6.5 Testing PikeOS IPC 110
6.5.1 Coverage Criteria for IPC 110
6.5.2 Test Case Generation Process 110
6.5.3 Symbolic Execution Rules 112
6.5.4 Abstract Test Cases 119
6.5.5 Test Data For Sequence-based Test Scenarios 121
6.5.6 Test Drivers 123
6.5.7 Experimental Results 125
6.6 Conclusion 129
6.6.1 Related Work. 129
6.6.2 Conclusion and Future Work. 130

\subsection*{6.1 Introduction}

In the following, we will outline the PikeOS model (the full-blown model developed as part of the EUROMILS project is about 20 kLOC of Isabelle/HOL code), and demonstrate how this model is embedded into our monadic testing theory.
As a foundation for our symbolic computing techniques, we refine the theory of monads to embed interleaving executions with abort, synchronization, and shared memory to a general but still optimized behavioral test framework. This framework is instantiated by a model of PikeOS inter-process communication system-calls. Inheriting a micro-architecture going back to the L4 kernel, the system calls of the IPC-API are internally structured by atomic actions; according to a security model, these actions can fail and must produce error-codes. Thus, our tests reveal errors in the enforcement of the security model.
The chapter proceeds as follow: In section 6.2 an informal description of PikeOS IPC is presented. The section 6.3 contains the formalisation of PikeOS IPC in Isabelle/hol!. In order to catch the behavior of the latter a new monad combinator is introduced in subsection 6.3.4. Moreover, a generic memory model is presented in section 6.4, it is used to specify some of PikeOS IPC atomic actions, i.e. the BUF and MAP atomic actions. In order to test PikeOS IPC, our testing approach is extended by new notions, in particular these are:
- a new coverage criteria is defined in subsection 6.5.1,
- a new symbolic execution rules are derived in subsection 6.5.3,
- a new methodology for building test drivers is presented in subsection 6.5.6.

Finally, our experimental results are presented in subsection 6.5.7.

\subsection*{6.2 PikeOS IPC Protocol}

The IPC mechanism [SYS13a, SYS13b] is the primary means of thread communication in PikeOS. Historically, its efficient implementation in L4 played a major role in the micro-kernel renaissance after the early 1990s. Microkernels had received a bad reputation, as systems built on top were performing poorly, culminating in the billion-dollar failure of the IBM Workplace OS.

A combination of shared memory techniques-the MMU is configured such that parts of virtual memory space are actually represented by identical parts of the physical memory - and a radical redesign of the IPC primitives in L4 resulted in an order-of-magnitude decrease in IPC cost. Also in PikeOS, IPC message transfer can operate between threads which may belong to different tasks. However, the kernel controls the scope of IPC by determining, in each instance, whether the two threads are permitted to communicate with each other. IPC transfer is based on shared memory, which requires an agreement between the sender and receiver of an IPC message. If either the sending or the receiving thread is not ready for message transfer, then the other partner must wait. Both threads can specify a timeout for the maximum time they are prepared to wait and have appropriate access-control rights. Our IPC model includes eight atomic actions, corresponding more-or-less to code sections in the API system calls p4_ipc_buf_send() and p4_ipc_buf_recv() protected by a global system lock. If errors in these actions occur-for example for lacking access-rights - the system call is aborted, which means that all atomic actions belonging to the running system call as well as the call of the communication partner were skipped and execution after the system calls on both sides is continuing as normal. It is the responsibility of the application to act appropriately on error-codes reported as a result of a call. In our sequence test scenarios, and using our symbolic execution process running on the top of HOL-TESTGEN, we show how we generate tests from our formal model of the IPC mechanism, we build a test driver and show how we can run the generated tests against the PikeOS IPC implementation defined in C-level.

\subsection*{6.3 PikeOS Model}

We model the protocol as composition of several operational semantics; this composition is represented by monad-transformers adding, for example, to the basic transition semantics the semantics for abort behavior.

\subsection*{6.3.1 State}

In our model, the system state is an abstraction of the VMIT (which is immutable) and mutable task specific resources. It is presented by the (polymorphic) record type:
```

record
('memory,'thread_id,'thread,'sp_th_th,'sp_th_res,'errors)kstate=
resource :: 'memory
current_thread :: 'thread_id
thread_list :: 'thread list
communication_rights :: 'sp_th_th
access_rights :: 'sp_th_res
error_codes :: 'errors
errors_tab :: 'thread_id \rightharpoonup'errors

```

Note that the syntax is very close to functional programming languages such as SML or OCaml or \(\mathrm{F} \#\). The parameterization is motivated by the need of having different abstraction layers throughout the entire theory; thus, for example, the resource field will be instantiated at different places by abstract shared memory, physical memory, physical memory and devices, etc.-from the viewpoint of an operating system, devices are just another implementation of memory. In the entire theory, these different instantiations of kstate were linked by abstraction relations establishing formal refinements. Similarly, the field current_thread will be instantiated by the model of the \(I D\) of the thread in the execution context and more refined versions thereof. thread_list represents information on threads and there executions. The communication_rights field represent the communication policy defined between the active entities (i.e., threads and tasks). The field access_rights represent the access policy defined between active entities and passive entities (i. e., system resources).
For the purpose of test-case generation, we favor instances of kstate which are as abstract as possible and for which we derived suitable rules for fast symbolic execution.

\subsection*{6.3.2 Actions}

As mentioned earlier, the execution of the system call can be interrupted or aborted at the border-line of code-segments protected by a lock. To avoid the complex representation of interruption points, we model the effect of these lock-protected code-segments as atomic actions. Thus, we will split any system call into a sequence of atomic actions (the problem of addressing these code-segments and influencing their execution order in a test is addressed in the next section). Atomic actions are specified by datatype as follows:
```

datatype ('ipc_stage,'ipc_dir)action ipc = IPC 'ipc_stage 'ipc_dir

```
datatype p4_stage \({ }_{i p c}=\) PREP | WAIT | BUF | MAP | DONE
```

datatype ('thread_id ,'addresses) p4_directipc =
SEND 'thread_id 'thread_id 'addresses
| RECV 'thread_id 'thread_id 'addresses
type_synonym ACTION
(p4_stage ipc, (nat\timesnat\timesnat,nat list)p4_directipc)actionipc

```

Where ACTION \(_{\text {ipc }}\) is type abbreviation for IPC actions instantiated by p4_direct \({ }_{\text {ipc }}\). The type ACTION \(_{\mathrm{ipc}}\) models exactly the input events of our monadic testing framework. Thread IDs are triples of natural numbers that specify the resource partition the thread belongs to as well as the task and the individual id. The stepping function as a whole is too complex to be presented here; we limit ourselves to presenting a portion of an auxiliary function of it that models just the PREP_SEND stage of the IPC protocol; it must check if the task and thread id of the communication partner is allowed in the VMIT, if the memory is shared to this partner, if the sending thread has in fact writing permission to the shared memory, etc. The VMIT is part of the resource, so the memory configuration, and auxiliary functions like is_part_mem_th allow for extracting the relevant information from it. The semantic of the different stages is described using a total functions:
```

definition PREP_SEND ::ACTION ipc state id }=>\mp@subsup{A}{\mathrm{ ACTION ipc }}{\mathrm{ ip }}=\mp@subsup{ACTION ipc state id}{}{\mathrm{ id}
where PREP_SEND \sigma act =
(case act of (IPC PREP (SEND caller partner msg)) =>
if is_part_mem_th (get_thread_by_id', partner \sigma) (resource \sigma)
then
if IPC_params_c1 (get_thread_by_id', partner \sigma)
then ...)

```

Where PREP_SEND, WAIT_SEND, BUF_SEND, and DO NE_SEND define an operational semantic for the atomic actions of the PikeOS IPC protocol.

\subsection*{6.3.3 Traces, executions and input sequences}

During our experiments, we will generate input sequences rather than traces. An input sequence is a list of a datatype capturing atomic action input syntactically. An execution is the application of a transition function over a given input sequence. Using mbind, the execution over a given input sequence is can be immediately constructed.
```

definition execution = ( }\lambda\mathrm{ is ioprog }\sigma.\mathrm{ mbind is ioprog }\sigma\mathrm{ )

```

\subsection*{6.3.4 Aborted Executions}

Our model support the notion of abort. An abort is an action done by the system to stop the execution of a given system call. A system call can be aborted for different reasons:
- timeouts: a system call can not finish its execution because a timeout happened. For instance, a caller tried to access to a given resource and run out of the specified waiting time without success, i. e. the resource was not available at that moment. Or the caller run out of the specified waiting time when he was about to wait for a given input from another call.
- other error codes: a system call can not finish its execution because of a returned error code during its execution, i.e. on of the call conditions was not satisfied, e.g. wrong communication partner. Thus, the system stops the execution of the call.

In all cases, when an abort happen to a given PikeOS call, the remaining atomic actions of the call are canceled (not executed). For the case of the IPC protocol both calls, the one coming from the caller and the one coming from his communication partner, are canceled. To express the behavior of the abort in our model we will add to our specification language a new monad combinator. The behavior expressed by this combinator is abstracted by the pseudo code in algorithm 2.
In the case of an aborted system call, the semantic of our combinator express the same behavior as stutter steps in automata models, i. e. we stay in the same state, only the error table will change. The error table is modeled by the field errors_tab of the record (...) kstate representing the system state, the field is instantiated by a partial function with type error_tab:: thid \(\rightharpoonup\) error, and it is used to save (i. e. marks by a flag) the threads in error state, i. e. threads who cause errors during the execution of their system call. Every thread inside the error table is considered as a thread in an error state, when a given system call executed by a given thread is aborted, i. e. the executed action provide an output error code, we update the thread table by adding the thread and its error. Before executing any atomic action (stage) we will check the error table, if a given thread executing an action different from DONE is in the domain of the function that specify the error table, then we purge his executed action (we do nothing to the state of the system) else we will execute the action. During every DONE action execution, if the thread is in the error table then, we remove it from the domain of the function that specify the error table else, we execute the DONE action.
The hol! representation of the new monad operator is abort \({ }_{\text {lift }}\), the latter express the explained behavior and will be wrapped around our transition function for PikeOS IPC protocol. The wrapper transforms the behavior of
```

if executing DONE stage then
if an error happened then
Update error table by removing the error flag of the current
thread and don't execute the DONE action.
else
Execute the DONE action.
end
else
if Executing a different IPC stage from DONE then
if an error happened then
Update the error table by putting an error flag on both
threads in the IPC communication, the caller and his
partner, and purge the executed action.
else
Execute the action.
end
end
end

```

Algorithm 2: A pseudo code for the Abort operator
the basic transition function related to IPC protocol presented in subsection 6.3.5, to a the behavior abstracted by algorithm 2 .
```

fun abort lift ::
(ACTION ipc }=>\mathrm{ (errors, (ACTION ipc ,'a) state id_scheme)Mon SE ) =
(ACTION ipc }=>\mathrm{ (errors, (ACTION ipc,'a) state id_scheme)Mon SE )
where abort lift ioprog a }\sigma
(case a of
(IPC DONE (SEND caller partner msg)) =
if caller \indom (act_info (th_flag \sigma))
then unitsE (fst (the((act_info (th_flag \sigma)) caller)))
(*shoud be: my error*)
(\sigma(th_flag := (th_flag \sigma)
(act_info := ((act_info (th_flag \sigma))
(caller := None))|) |)
else unit
(...)
| (IPC _ (SEND caller partner msg)) =
if caller \indom (act_info (th_flag \sigma))
then unit SE (get_caller_error caller \sigma(*should be: my error*)) \sigma
(* purge *)
else (case ioprog a \sigmaof
None }=>\mathrm{ None (*never happens in our exec fun*)
| Some(NO_ERRORS, \sigma') \# unit
| Some(out', 生) \# unit SE (out')
(set_caller_partner_error caller partner \sigma\sigma' out' a))
(*both caller and partner were 'informed' to be in error-state.*)
( ...))

```

In subsection 6.5.3 we derive generic symbolic execution rules related to a given monad ioprog that specify an input output program, with the abort operator wrapped around,i.e. abort \({ }_{\text {lift }}\) (ioprog). We refine these rules for the specific case when the operational semantics,i. e. represented by the free variable ioprog, is related to PikeOS IPC.

\subsection*{6.3.5 IPC Execution Function}

To combine the different semantics of IPC atomic actions we can use:
- The Isabelle specification construct fun: Express the semantic with explicit case matching on actions type in a single function.

The transition function is a total function of the form:
```

fun exec_action ::ACTION ipc state id }=>\mp@subsup{ACTION}{ipc}{}=>\mp@subsup{A}{\mathrm{ ACTION ipc }}{\mathrm{ state id}
where
PREP_SEND_run:
exec_action \sigma(IPC PREP (SEND caller partner msg)) =
PREP_SEND \sigma (IPC PREP (SEND caller partner msg))|
(...)

```

The function exec_action is adapted to the monads using the following definition:
```

definition exec_action_Mon
where exec_action_Mon =
(\lambdaact \sigma. Some (error_codes(exec_action \sigmaact),
exec_action \sigma act))

```

The latter function represent the basic operational semantic for PikeOS IPC and it will be combined with the semantic of the abort operator presented in subsection 6.3.4. For instance we wrap around the function exec_action_Mon, the operator abort \(_{\text {lift }}\) in order to get, abort \(_{\text {lift }}\) (exec_action_Mon act \(\sigma\)).

\subsection*{6.3.6 System Calls}

As mentioned earlier, PikeOS system calls are seen as sequence of atomic actions that respect a given ordering. Actually, each system call can perform a set of operations. On system-level, the execution of some operations can be ignored by specifying the corresponding parameters in the call by null. PikeOS IPC API provides seven different calls, the most general one is the call P4_ \(i p c()\). Using \(P 4_{-} i p c()\), five operations can be performed:
1. Send a copied message,
2. Receive a copied message,
3. Receive an event (not modeled),
4. Send a mapped message, and
5. Receive a mapped message.

The corresponding Isabelle model for the call is:
```

datatype ('thread_id, 'msg) P4_IPC_call =
P4_IPC_call 'thread_id 'thread_id 'msg
| P4_IPC_BUF_call 'thread_id 'thread_id 'msg
| P4_IPC_MAP_call 'thread_id 'thread_id 'msg
(...)

```

\subsection*{6.4 A Generic Shared Memory Model}

Shared memory is the key for the L4-like IPC implementations: while the MMU is usually configured to provide a separation of memory spaces for different tasks (a separation that does not exist on the level of physical memory with its physical memory pages, page tables, ...), there is an important exception: physical pages may be attributed to two different tasks allowing to transfer memory content directly from one task to another.

In order to model a such memory implementation, we will use an abstract memory model with a sharing relation between addresses. The sharing relation is used to model the IPC map operation, which establishes that memory spaces of different tasks were actually shared, such that writes in one memory space were directly accessed in the other. Under the sharing relation, our memory operations respect two properties:
1. Read memory on shared addresses returns the same value.
2. All shared addresses has the same value after writing.

In formal methods, the latter two properties are called invariants. An invariant is a property preserved by a class of mathematical object when a certain updates (changes) are performed on that class. The notion of invariants will be used in our model of shared memory. In our memory model, the two listed invariants will be preserved on a tuple type consisting of a pair of two elements: a partial function and an equivalence relation. While the partial function will specify the memory, i. e. the function represent a mapping from its domain consisting of a set of addresses to its range consisting of their corresponding data, the equivalence relation determines the different equivalent classes for addresses. Actually, these equivalent classes are resulting from the different map operations performed by processes of a system. In order to implement this model on top of Isabelle/hol! we will use the specification construct typedef, and this for two reasons:
1. It offers a way to define an abstract type that can be equipped with invariants.
2. A defined operation on that abstract type, can be easily used for code generation and this, only by providing a soundness proof which express that the operation preserve the invariants on the defined type.

The hol! specification for our memory abstract type is done by:
```

typedef (' }\alpha,',\beta) memory =
{(\sigma::'\alpha \rightharpoonup' }\beta,\textrm{R}). equivp R ^(\forall\textrm{x y. R x y }\longrightarrow\sigma\textrm{x}=\sigma\textrm{y})
proof
show (Map.empty, (op =)) \in?memory
by (auto simp: identity_equivp)
qed

```

This type definition defines an isomorphism between the set on the right hand side that contains pairs of the type (\({ }^{\prime} \alpha \rightharpoonup{ }^{\prime} \beta\)) \(\times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool) and the set defined by the new type (' \(\alpha,{ }^{\prime} \beta\)) memory ; the first element of a pair is a
partial function representing a mapping from addresses to data, the second element is an equivalence relation. The type (' \(\alpha,{ }^{\prime} \beta\)) memory is introduced by two fresh constant symbols, the function Abs_memory for abstracting the pairs, and Rep_memory the concretization function that refer to the pairs. The application of a given operation op on the pairs is isomorphically the same as the application of Abs_op on the type (' \(\alpha,{ }^{\prime} \beta\)) memory with the only difference: the use of the type (' \(\alpha,{ }^{\prime} \beta\)) memory for the definition of the different operations assure that the latter talk about representatives which preserve the invariant. Because the set of tuples of type ('a \(\boldsymbol{\prime}\) 'b) \(\times\) ('a \(\Rightarrow{ }^{\prime} \mathrm{a} \Rightarrow \mathrm{bool}\)) is infinite and may contain tuples that does not preserve the desired invariant, thus the direct use of op is not consistent. That is why we will always define a function on representatives in the following, and this in order to get the desired effects on the pairs. Afterwards we implement and use its corresponding abstraction that refers implicitly to representatives preserving the invariant.

Implecitely, five theorems are generated by Isabelle for the functions Abs_memory and Rep_memory, where Rep_memory_inverse, . . . are names for the generated theorems:
```

Rep_memory_inverse:
Abs_memory (Rep_memory x) = x
Abs_memory_inverse:
?y }\in{(\sigma,R). equivp R ^(\forall\textrm{x y. R x y }\longrightarrow\sigma\textrm{x}=\sigma\textrm{y})}
Rep_memory (Abs_memory ?y) = ?y
Rep_memory_inject:
(Rep_memory ?x = Rep_memory ?y) = (?x = ?y)
Rep_memory:
Rep_memory ?x }\in{(\sigma,R). equivp R ^(\forallx y. R x y \longrightarrow max = \sigmay)

```

These theorems will help in the proof of the different lemmas used for reasoning on a defined constant based on the type (' \(\alpha,{ }^{\prime} \beta\)) memory. Using this new defined abstract type we will now specify three main memory operations, which are write denoted by _ :=\$ _ read by _ \$ _ and map by _ (_ \(\bowtie_{-}\)). The hol! specification of these memory operations is represented for instance, for the case of the map operation by:

```

    ('a \rightharpoonup'b) }\times('\textrm{a}=>',\textrm{a}=>\textrm{bool}
    where transfer_rep (m, r) src dst =
    (m o (id (dst := src)),
    (\lambda x y . r ((id (dst := src)) x) ((id (dst := src)) y)))
    ```
```

lift_definition
add_e :: ('a,'b)memory \#'a m'a m ('a, 'b)memory (_ '(_ \bowtie_'))
is transfer_rep using transfer_rep_sound
by simp

```

The function transfer_rep is an update function on representatives, i.e. on the pairs of type (\(\left.{ }^{\prime} \mathrm{a} \rightharpoonup{ }^{\prime} \mathrm{b}\right) \times\left({ }^{\prime} \mathrm{a} \Rightarrow{ }^{\prime} \mathrm{a} \Rightarrow \mathrm{bool}\right)\), and the function add_e is its abstraction defined on the type (\({ }^{\prime} \alpha,{ }^{\prime} \beta\)) memory.
Basically, the function transfer_rep takes a memory represented by the pair (\(\left.{ }^{\mathrm{a}} \rightharpoonup{ }^{\prime} \mathrm{b}\right) \times\left({ }^{\prime} \mathrm{a} \Rightarrow{ }^{\prime} \mathrm{a} \Rightarrow \mathrm{bool}\right)\), a source address src, a destination adress dst and update the pair, in order to express the effect of a memory map on that pair, as follow:
1. the first element of the pair, which is a partial function representing a mapping from addresses to data, is updated by assigning the data of the source address to the destination address
2. the second element of the pair, which is an equivalent relation between addresses, is updated by adding the destination address to the same equivalent class of the source address, and at the same time the relation between the destination and its old equivalent class is destroyed. This definition was validated by PikOS kernel engineers

Actually, we will not directly use transfer_rep, the function will be abstracted by add_e, and this is advantageous for the following reasons; on one hand we make sure that, on model level, add_e will always return pairs that preserve the invariant. On the other hand, the specification constraint lift_definition provide automatically a code generation setup for memory operations based on the type (' \(\alpha\), ' \(\beta\)) memory, i. e. the generated implementation will contain implicitly only pairs that preserve the invariant.
If we look closely, we can observe that a little proof was mandatory to get the definition of add_e. In fact, in order to preserve the consistency of its global context, Isabelle forces a such proof. This proof is used to make sure that the invariant defined in the abstract type is preserved by the definition of add_e. In other words, we have to make sure that the added definition is
sound and its use does not break the invariant, a such soundness proof was provided by the following lemma:
```

lemma transfer_rep_sound:
assumes }\sigma\in{(\sigma,R). equivp R ^(\forall\textrm{x}y.\textrm{y}\textrm{R}\textrm{x y }\longrightarrow\sigma\textrm{x}=\sigma\textrm{y})
shows transfer_rep \sigma src dst }
{(\sigma,R). equivp R }\wedge(\forall\textrm{x}y.\textrm{g}\textrm{R}x\textrm{y}\longrightarrow\mp@code{y}=\sigma\textrm{x}=\sigma)
proof -
obtain mem and R
where P: (mem, R) = \sigmaand
E: equivp R and
M: \forallx y . R x y }\longrightarrow\mathrm{ mem x = mem y
using assms equivpE by auto
obtain mem' and R'
where P': (mem', R') = transfer_rep \sigmasrc dst
by (metis surj_pair)
have D1: mem' = (mem o (id (dst := src)))
and D2: R' = ( }\lambda\textrm{x}\mathrm{ y . R ((id (dst := src)) x)
((id (dst := src)) y))
using P P' by auto
have equivp R'
using E unfolding D2 equivp_def by metis
moreover have }\forall\textrm{y z . R' y z \longrightarrowmem' y = mem' z
using M unfolding D1 D2 by auto
ultimately show ?thesis
using P' by auto
qed

```

In order to simplify the use of these abstract memory operations by constraint solvers, and also in order to simplify the proof of symbolic execution rules related to these operations, lemmas expressing the key properties of our shared memory model were introduced, we will present only the most important lemmas:
```

definition sharing ::
'a m ('a, 'b)memory \#'a mbool ((_ shares()_/ _)
where (x shares (\sigma) y) \equiv(snd(Rep_memory \sigma) x y)

```
```

definition Domain :: ('\alpha, ' }\beta\mathrm{ )memory =' }\alpha\mathrm{ set
where Domain \sigma= dom (fst (Rep_memory \sigma))

```
```

lemma shares_result:
assumes 1: (x shares ( }\sigma\mathrm{ ) y)
shows }\quad\sigma$\textrm{x}=\sigma$\textrm{y
using assms lookup_def shares_result
by metis

```

Sharing is modulo equivalence relation:
```

lemma sharing_refl [simp]: (x shares (\sigma) x)
using insert Rep_memory[of \sigma]
by (auto simp: sharing_def elim: equivp_reflp)

```
```

lemma sharing_sym [sym]:
assumes x shares (\sigma) y
shows y shares ( }\sigma\mathrm{ ) x
using assms Rep_memory[of \sigma]
by (auto simp: sharing_def elim: equivp_symp)

```
```

lemma sharing_trans [trans]:
assumes x shares (\sigma) y
and y shares ( }\sigma\mathrm{ ) z
shows x shares (\sigma) z
using assms insert Rep_memory[of \sigma]
by(auto simp: sharing_def elim: equivp_transp)

```

Sharing relates to memory write as follows:
```

lemma sharing_upd: x shares ( }\sigma(\textrm{a}:=$\textrm{b})) y = x shares ( \sigma) y (*$*
using insert Rep_memory[of \sigma]
by(auto simp: sharing_def update_def
Abs_memory_inverse[OF update_sound])

```
```

lemma update_idem' :
assumes 1: x shares ( }\sigma\mathrm{ ) y
and 2: x \inDomain }
and 3: \sigma \$ x = z
shows }\sigma(y:=\$ z)=
proof -
have * : y \inDomain \sigma
by(simp add: shares_dom[OF 1, symmetric] 2)
have **: \sigma (x :=\$ (\sigma \$ y)) = \sigma
using 1 2 *
by (simp add: update_triv)
also have ( }\sigma\textrm{\$}\textrm{y}\mathrm{ ) = }\sigma\mathrm{ \$ x
by (simp only: lookup_def shares_result [OF 1])
finally show ?thesis
using 1 2 3 sharing_sym update_triv
by fast
qed

```
```

lemma update_share:
assumes z shares ( }\sigma\mathrm{ ) x
shows }\sigma(\textrm{x}:=$\textrm{a})$\textrm{z}=\textrm{a
using assms
by (simp only: update_apply iffrue)

```
```

lemma update_other:
assumes }\neg(\textrm{z}\mathrm{ shares ( }\sigma\mathrm{ ) x)
shows }\sigma(\textrm{x}:=$\textrm{a})$\textrm{z}=\sigma$\textrm{z}(*$*
using assms
by (simp only: update_apply if_False)

```
```

theorem update_cancel:
assumes x shares }\sigma\mathrm{ x'
shows }\sigma(\textrm{x}:=$\textrm{y})(\textrm{x},:=$\textrm{z})=(\sigma(\textrm{x},:=$\textrm{z}))(*$*
proof -
have ** :
R \sigma. equivp R \LongrightarrowR x x' }
fun_upd_equivp R (fun_upd_equivp R \sigmax (Some y)) x' (Some z) =
fun_upd_equivp R }\sigma\textrm{x}\mathrm{ , (Some z)
unfolding fun_upd_equivp_def
using equivp_def
by metis
show ?thesis
using ** Pair_code_eq Pair_upd_lifter.simps assms sharing_charn
sharing_def update' update.rep_eq
by metis
qed

```
```

theorem update_commute:
assumes 1:ᄀ (x shares (\sigma) x')
shows ( }\sigma(\textrm{x}:=$\textrm{y}))(\textrm{x},:=$\textrm{z})
(\sigma (x':=\$ z)(x :=\$ y))
proof -
(...)

```

Sharing relates to domain as follows:
```

lemma Domain_mono:
assumes 1: x \inDomain \sigma
and 2: (x shares (\sigma) y)
shows y \in Domain }
using 1 2 Rep_memory[of \sigma]
by (auto simp add: sharing_def Domain_def )

```
```

lemma update_triv:
assumes 1: x shares (\sigma) y
and 2: y \inDomain }
shows }\quad\sigma(\textrm{x}:=\$(\sigma\mathrm{ \$ y)) =
proof -
{
fix z
assume zx: z shares ( }\sigma\mathrm{ ) x
then have zy: z shares ( }\sigma\mathrm{ ) y
using 1 by (rule sharing_trans)
have F: y \inDomain \sigma\Longrightarrowx shares ( }\sigma\mathrm{ ) y \
Some (the (fst (Rep_memory \sigma) x)) = fst (Rep_memory \sigma) y
by(auto simp: Domain_def dest: shares_result)
have Some (the (fst (Rep_memory \sigma) y)) = fst (Rep_memory \sigma) z
using zx and shares_result [OF zy] shares_result [OF zx]
using F [OF 2 1]
by simp
} note 3 = this
show ?thesis
unfolding update', lookup_def fun_upd_equivp_def
by (simp add: 3 Rep_memory_inverse if_cong)
qed

```
```

lemma update_idem :
assumes 1: x shares ( }\sigma\mathrm{ ) y
and 2: x \inDomain }
and 3: \sigma \$ x = z
shows }\sigma(\textrm{x}:=$\textrm{z})=
proof -
    have * : y \inDomain \sigma
        by(simp add: shares_dom[OF 1, symmetric] 2)
    have }\sigma(\textrm{x}:=$(\sigma\mathrm{ \$ y)) =
using 1 2 * by (simp add: update_triv)
also have ( }\sigma\mathrm{ \$ y) =
by (simp only: lookup_def shares_result [OF 1])
also note 3
finally show ?thesis .
qed

```

Similarly, we prove other rules for memory map and memory read which represent a memory theory modulo sharing. The defined memory operations are used actually to implement the MAP and BUF actions of PikeOS IPC. For more details on our hol! model, and the core theory for shared memory see section B.

\subsection*{6.5 Testing PikeOS IPC}

\subsection*{6.5.1 Coverage Criteria for IPC}

An IPC call defines a communication relation between two threads. In PikeOS, IPC communications can be symmetric, transitive but can not be reflexive (a thread can not send or receive an IPC message for himself). The transitivity or intransitivity of IPC communications depends mainly on the defined communication rights table and access rights table. In this section, we will define input sequences for ipc calls. The defined input sequences express IPC communications between threads. Other definitions, which are almost the same as the ones used for input sequences, will be used to derive the possible communications between threads after the execution of an IPC call. The IPC input sequences will be used in scenarios for testing information flow policy via IPC error codes, and also scenarios on access control policy implemented via the two tables cited before.
The definition of an input sequence of type IPC communication is based on a new coverage criterion. The criterion is based on the functional model of PikeOS IPC (see section 6.2), and also on our technique to reduce the set of interleaving if two actions can commute (see section 4.4).
- Criterion3: IPC communications (\(\mathrm{IPC}_{\text {comm }}\)) the interleaving space of input sequences gets a complete coverage iff all IPC communications of a given SUT are covered.

IPC communications are input sequences derived under IPC comm . They have the form:
```

[IPC PREP (SEND th_id th_id' msg), IPC PREP (RECV th_id' th_id msg),
IPC WAIT (SEND th_id th_id' msg), IPC WAIT (RECV th_id' th_id msg),
IPC BUF (RECV th_id' th_id msg), IPC DONE (RECV th_id' th_id msg),
IPC DONE (SEND th_id th_id' msg)]

```

\subsection*{6.5.2 Test Case Generation Process}

In our model, a test case generation process is applied on the test scenario to generate concrete tests. To apply a such process we will implicitly benefit from implemented tools, proofs and tactics of Isabelle. As explained in section 4.5 , a test scenario is specified by a test specification which is actually a lemma. The goal is not to provide a proof for the lemma, the goal is just to normalize this HOL formula until we get a test normal form (TNF) [BW13], and then we generate concrete test from the TNF. In our approach, the process of test generation is composed of:

\section*{The Symbolic State.}

In our model a symbolic state is the Isabelle lemma proof statement, i.e. a proof context.

\section*{The Symbolic Execution Process.}

Our symbolic execution process can be seen as an exploration of the proof tree resulting from the application of symbolic execution rules to a given test specification. Symbolic execution rules are Isabelle proved lemmas. Those rules are inference rules derived from a given operational semantics. They are used to simulate the execution of a given transition function, which specify the behavior of the system under test. The application of a such rules allows for going from a symbolic state, i.e. a proof statement, to another symbolic state. In sequence test scenarios this step is applied until the input sequence is empty.

\section*{The Normalization Process.}

Normalization rules are Isabelle proved lemmas. Two main goal are distinguished for the normalization process
1. First, normalization rules are used to simplify the abstract test cases generated after the application of symbolic execution rules, in order to get a proof statement containing a set of TNFs that can be easily treated by constraint-solvers.
2. Second, normalization rules are used to eliminate as much as possible unfeasible executions in the proof tree, i. e. proof statements that lead to true, (see subsection 6.5.4 for further explanation).

In our model, the outputs from this step are abstract test cases. Abstract test cases are a normalized proof goals generated from symbolic execution process. Proof goals are normalized, i.e., reduced to clauses over linear arithmetic, list, and map-theories in a format that can be treated by the subsequent constraint solver. Outputs from the normalization process are also called TNFs. In our approach, the step of normalization takes most of the generation time.

\section*{The Test Theorem.}

After the normalization process we generate the test theorem. Actually hol-TestGen provides a tactic for the generation of a test theorem of the
form:
\(\frac{C_{1}\left(a_{1}\right) \Rightarrow P\left(a_{1}, P U T a_{1}\right) \ldots C_{n}\left(a_{n}\right) \Rightarrow P\left(a_{n}, P U T a_{n}\right) \quad T H Y P\left(H_{1} \wedge \cdots \wedge H_{n}\right)}{T S}\)
The test theorem decompose each abstract test case in the local proof context generated from a test specification to 3 parts:
1. Proof Obligations: are the premises of a given abstract test case. e. g. in the previous formula a proof obligation is \(C_{i}\left(a_{i}\right)\).
2. Testing Hypotheses: In addition to testing hypotheses expressed as assumptions of a given test specification, HOL-TESTGEN offer a way to introduce testing hypotheses, e.g. regularity and uniformity hypotheses, to a test specification. In the previous formula testing hypothesis are \(H_{i}\). THYP is a constant definition used as markup for the testing hypothesis during the generation of the test theorem.
3. Abstract Test Cases: also called TNFs, they are represented in the test theorem by \(C_{i}\left(a_{1}\right) \Rightarrow P\left(a_{i}, P U T a_{i}\right)\), where \(P\) is the oracle, and \(a_{i}\) is a concrete instance that must satisfy the constraint \(C_{i}\).

A test theorem state that a concrete test case passes if the application of a program under test PUT on a concrete instance \(a_{i}\) satisfies the oracle \(P\).

\section*{Test Data Generation.}

The proof obligations of each abstract test case are sent to constraint-solvers such as Z3[dMB08], in order to construct a concrete ("ground") data for the variables. These instantiated abstract test cases represent actually execution paths in a program under test; they are used as test cases for this system.

\subsection*{6.5.3 Symbolic Execution Rules}

Symbolic execution rules are inference rules for the elimination of the inputs in the test specification. In our model we distinguish two categories of these rules:
1. The generic ones: they are related to operators of our specification language, i.e. the proposed monad operators in our theory like:bind_SE. These rules are fixed element in the theory, and they represent the generic simulation for the behavior of any state exception monad ioprog, of type (' \(\iota \Rightarrow\) ('○,' \(\sigma\)) MON_SE).
2. The specific ones: they are a refinement, or an instantiation, of the generic ones. These rules represent the simulation of the behavior of a model, which is an intantiation of ioprog by a given operational sematic.

\section*{The Generic Rules.}

Generic rules are elimination rules derived for the generic operational semantics expressed by the different monads operators introduced by our specification language. This kind of rules has the form:

where \(\sigma\) is a symbolic variable that denote the state of a given system, outs is a sequence of outputs resulting from the execution of the transition function ioprog, \(\iota \# \iota s\) is a list of inputs and \(P\) is a post condition on the sequence of outputs. A concrete example of generic symbolic execution rules is the rule 1 presented in section 4.2. In order to catch the behavior of PikeOS, our specification language was extended by a new state exception monad operator called abort lift , an example of a generic symbolic execution rule related to this operator is:
```

lemma abort_wait_send_mbindFSave_E:
assumes valid_exec:
( }\sigma\models\mathrm{ (outs < (mbind ((IPC WAIT (SEND caller partner msg))\#S)
(abort lift ioprog));P outs))
and in_err_state:
caller \indom (act_info (th_flag \sigma)) \Longrightarrow
( }\sigma\models\mathrm{ (outs }\leftarrow\mathrm{ (mbind S (abort lift ioprog));
P (get_caller_error caller \sigma\# outs))) \LongrightarrowQ
(...)
and not_in_err_state_Some3:
\}\mp@subsup{\sigma}{}{\prime}\mathrm{ error_IPC.
(caller }\ddagger\mathrm{ dom (act_info (th_flag }\sigma\mathrm{ ))) \}
ioprog (IPC WAIT (SEND caller partner msg)) }\sigma
Some(ERROR_IPC error_IPC, 钵) \Longrightarrow
((set_error_ipc_waitr caller partner }\sigma\mp@subsup{\sigma}{}{\prime}\mathrm{ error_IPC msg) }
(outs }\leftarrow\mathrm{ (mbind S(abort lift ioprog));
P ( ERROR_IPC error_IPC\# outs))) \LongrightarrowQ
and not_in_err_state_None:
(caller }\ddagger\mathrm{ dom (act_info (th_flag }\sigma\mathrm{ ))) \}
ioprog (IPC WAIT (SEND caller partner msg)) \sigma= None \Longrightarrow
(\sigma }=(\textrm{P}[]))\Longrightarrow
shows Q
proof (cases caller \indom (act_info (th_flag \sigma)))
(...)

```

In order to motivate the use of elimination rules for symbolic execution, we will explain the process of their application on a given proof context. The use of the rule abort_wait_send_mbindFSave_E on a given test specification Test_Scenario is conditioned by the existence of a given assumption in Test_Scenario that have the same scheme of the assumption valid_exec and the existence of a conclusion. For the case of a valid test specification the conclusion will have the same scheme of valid_exec, the only difference will be the FREE variable that represent the model, e.g. ioprog. Actually, it is replaced by a variable, e.g. SUT, that represent the system under test. Once these conditions are brought together for a given test specification Test_Scenario the application of the rule will be performed using the tactic ematch_tac (see section 4.5 for further explanations). The process of the application of rules, such as abort_wait_send_mbindFSave_E, on a valid representation of Test_Scenario is:
1. Each time the input action (IPC WAIT (SEND caller partner msg)) is in the header of a sequence of inputs \(\iota\) s specified in a test specification Test_Scenario, a matching is established between the assumption valid_exec and the assumption that specify a model of a tested system in Test_Scenario, e.g. an assumption that specify a model for a test specification Test_Scenario related to PikeOS can be \(\sigma \models\) (outs \(\leftarrow\) mbind \(\iota\) s \(_{\text {(abort }}^{\text {lift }}\) exec_action_Mon) ;return (outs \(=x\)). The same thing will happen for the conclusion of the rule, which is by the way a free variable \(Q\) that can be instantiated by any boolean formula, of course for the case of a valid test specification the scheme of the conclusion specify a valid test execution for a system under test, e.g.
\(\sigma \vDash\) (outs \(\leftarrow\) mbind \(\iota\) s SUT; return (outs \(=\mathrm{x}\)).
2. After the establishment of the ematching, the proof statement provided by Test_Scenario is transformed to a new proof statement. The latter will contain a set of proof goals, each goal has is a "not matched" assumption specified in the rule, e. g. if Test_Scenario contain only an assumption in the form of valid_exec then the new proof context, after the application of the rule with ematching tactic, will contain the other assumptions of the rule like in_err_state and not_in_err_state_Some3, etc.
3. We repeat the same process with different rules related to different input actions until we got an empty input sequence. The resulting proof statement will receive a normalization process in order to get abstract test cases for Test_Scenario.

A such process, actually based on ematching technique, has an enormous performance gain effect on symbolic execution engine of Isabelle. Because, the whole calculation process is reduced technically to a formal syntactic transformation of the proof context, instead of calculus based on substitution,
rewriting, instantiation, introduction, etc. From another side, the execution of a such process on a sequence of inputs specified in a given test specification can be easily automated by an algorithm. The algorithm basically is represented by an Isabelle tactic, the latter takes the different symbolic execution rules related to the different actions of the specified system and execute the rules on the proof context until no rules can be applied. For instance, a tactic for symbolic execution related to the actions of PikeOS IPC is:
```

val abort_ipc_mbind_TestGen_PureE21_ematch =
(ALLGOALS o TestGen.REPEAT') (CHANGED o TRY o FIRST,
[ematch_tac
[@{thm abort_prep_send_HOL_elim21},
@{thm abort_prep_recv_HOL_elim21},
@{thm abort_wait_send_HOL_elim21},
@{thm abort_wait_recv_HOL_elim21},
@{thm abort_buf_send_HOL_elim21},
@{thm abort_buf_recv_HOL_elim21},
@{thm abort_map_send_HOL_elim2},
@{thm abort_map_recv_HOL_elim2},
@{thm abort_done_send_HOL_elim1'},
@{thm abort_done_recv_HOL_elim1'}]]);

```

The tactic abort_ipc_mbind_testGen_PureE21_ematch is implemented on SML level using the different Isabelle SML libraries, the elements of the tactic are:
- ALLGOALS: a tactic combinator of type tactic * tactic -> tactic from the module Tactical of Isabelle/ML. It applies the tactic on all goals of a proof statement. A proof statement is usually called a proof context.
- TestGen. REPEAT': a tactic combinator of type (int -> tactic)-> int -> tactic. It is an adaptation of REPEAT_ALL_NEW, from the module Tactical of Isabelle/ML for HOL-TestGEn and it is used to repeat the same tactic on a given subgoal.
- CHANGED: a tactic combinator of type tactic -> tactic. Its apply the tactic on a given goal, and if it fails (i. e.the goal is not changed), an Isabelle fail error is raised.
- TRY: a tactic combinator of type tactic -> tactic. its apply the tactic on a given goal, and if it fails, it let the goal unchanged.
- FIRST': a tactic combinator of type ('a -> tactic)list -> 'a -> tactic. Tries a number of tactics, specified actually inside a list, on a given goal.
- ©\{thm _\}: an antiquotation that refers to a given Isabelle theorem. Antiquotations are used as links to the object specified using Isabelle's specification constructs. The objects can be Isabelle theorems, types, theories, etc. Each object has its own type of antiquotation, e.g. in order to refer to a given Isabelle theory we use @\{theory theory_name\}, another antiquotation can be ©\{context\}, it is used to refer to a given local context(proof statement) of a proof. Antiquotations are useful for many activities, e.g. they are useful in order to get formal links of the different objects in a given document generated from Isabelle theories, which helps for instance in the review of the document. Also they are useful for development, e.g. in the development automated tactics.
- abort_prep_send_HOL_elim21: is a symbolic execution rules related to PikeOS IPC model.

For more details on Isabelle tactic development we would refer to [Urb]. Moreover note, for more details on the proofs of symbolic execution rules related to abort \(t_{\text {lift }}\) see section O .

\section*{The Specific Rules.}

These rules are instantiations for the generic ones by a given operational semantics. For the case of PikeOS system, its operational semantics is expressed by a transition function (presented in subsection 6.3.5) over 10 atomic actions which are:
1. PREP SEND/RECV: in this stage some checks related to PikeOS message descriptor, i.e. a file containing details about the communicating threads, are done.
2. WAIT SEND/RECV: The wait stage is mainly used for synchronisation.
3. BUF SEND/RECV : The stage BUF represent data transfer via memory copy.
4. MAP SEND/RECV : The stage MAP data transfer via memory mapping.
5. DONE SEND/RECV: The stage DONE used to finish the IPC communication between the threads.

As mentioned in the previous section and in section 4.5, the role of the symbolic execution rule is to update the proof context according to the execution semantics of the different atomic actions of the IPC protocol. An example of
a symbolic execution rule derived from the operational semantics of PikeOS IPC is:
```

lemma abort_wait_send_HOL_elim21:
assumes
valid_exec:
( }\sigma=(\mathrm{ outs }\leftarrow(mbind ((IPC WAIT (SEND caller partner msg))\#S)
(abortlift exec_actionid_Mon)); P outs))
and in_err_exec:
caller \indom (act_info (th_flag \sigma)) \Longrightarrow
(\sigma \models(outs \leftarrow(mbind S(abort lift exec_action id_Mon));
P (get_caller_error caller \sigma\# outs))) \LongrightarrowQ
and
not_in_err_exec1:
caller \&dom (act_info (th_flag \sigma)) \Longrightarrow
IPC_send_comm_check_stid caller partner \sigma\Longrightarrow
IPC_params_c4 caller partner \Longrightarrow
IPC_params_c5 partner \sigma\Longrightarrow
(\sigma |current_thread := caller,
thread_list := update_th_waiting caller (thread_list \sigma),
error_codes := NO_ERRORS,
th_flag := th_flag \sigma|)
\models(outs }\leftarrow(mbind S(abort lift exec_actionid_Mon))
P (NO_ERRORS \# outs))) \LongrightarrowQ
(...)
not_in_err_exec24:
caller \&dom (act_info (th_flag \sigma)) \Longrightarrow
IPC_send_comm_check_st id caller partner }\sigma
IPC_params_c4 caller partner \Longrightarrow
\negIPC_params_c5 partner }\sigma
\existsth. (thread_list \sigma) caller = Some th }
(\sigma (current_thread := caller ,
thread_list := update_th_current caller (thread_list \sigma),
error_codes := ERROR_IPC error_IPC_5_in_WAIT_SEND,
th_flag := th_flag \sigma
(act_info := act_info (th_flag \sigma)
(caller \mapsto(ERROR_IPC error_IPC_5_in_WAIT_SEND),
partner \mapsto(ERROR_IPC error_IPC_5_in_WAIT_SEND))||) =
(outs }\leftarrow(mbind S(abortlift exec_actionid_Mon));
P (ERROR_IPC error_IPC_5_in_WAIT_SEND\# outs))) \LongrightarrowQ
shows Q

```

Each assumption inside the above elimination rule express a possible execution path for the action appearing in the head of the executed input sequence, e.g. the latter rule is related to the wait stage represented syntaxically by (IPC WAIT (SEND caller partner msg)).

\section*{Other Rules.}

In order to simplify the proof of the symbolic execution rules presented earlier, other rules related to the execution semantics of PikeOS were derived:
```

lemma abort_prep_send_obvious10':
( }\sigma\models\mathrm{ (outs }\leftarrow(mbind ((IPC PREP (SEND caller partner msg))\#S) (
(abort lift exec_actionid_Mon)); P outs)) =
((caller \indom ((act_info o th_flag) \sigma) \longrightarrow
(\sigma = (outs \leftarrow(mbind S(abort lift exec_actionid_Mon));
P (get_caller_error caller \sigma\# outs)))) ^
(caller \#dom ((act_info o th_flag)\sigma) \longrightarrow
(\foralla b. (a = NO_ERRORS }
exec_action_id_Mon (IPC PREP (SEND caller partner msg)) }\sigma
Some (NO_ERRORS, b) }
(\sigma (current_thread := caller,
thread_list := update_th_ready caller (thread_list \sigma),
error_codes := NO_ERRORS,
th_flag := th_flag \sigma)}
(outs }\leftarrow\mathrm{ (mbind S(abort lift exec_actionid_Mon));
P (NO_ERRORS \# outs)))) ^
(\forallerror_memory. a = ERROR_MEM error_memory }
exec_action id_Mon (IPC PREP (SEND caller partner msg)) }\sigma
Some (ERROR_MEM error_memory, b) \longrightarrow
(\sigma(current_thread := caller,
thread_list := update_th_current caller (thread_list \sigma),
error_codes := ERROR_MEM error_memory,
th_flag :=
th_flag \sigma
(act_info := ((act_info o th_flag)\sigma)
(caller \mapsto(ERROR_MEM error_memory),
partner \mapsto(ERROR_MEM error_memory))|)|
(...)

```

Moreover, in order to optimize the process, some rules called behavioral refinement rules are derived:
```

lemma abort_prep_send_obvious0:
assumes not_in_err :
caller \not\indom (act_info (th_flag \sigma))
and ioprog_success:
ioprog (IPC PREP (SEND caller partner msg)) \sigma=
Some(NO_ERRORS, \sigma')
shows abort lift ioprog (IPC PREP (SEND caller partner msg)) }\sigma
Some(NO_ERRORS, (error_tab_transfer caller \sigma\sigma'))
using assms
by simp

```

For more details on these rules we would refer to section L .

\subsection*{6.5.4 Abstract Test Cases}

Abstract test cases are proof goals resulting from the application of symbolic execution and the normalization processes on a given test specification. Abstract test cases represent a possible execution path in the system under test. In our approach, having \(n\) number of abstract test cases does not necessarily mean that all \(n\) paths are feasible. An abstract test case is feasible if and only if there exist a model, i.e. an instatiation of the free variables by a witness, that satisfy the premises of the abstract test case. In our approach, the number of feasible test cases is always less than or equal to the number of abstract test cases resulting from symbolic execution and normalization processes. The number of feasible abstract test cases is not necessarily equal to the number of concrete tests. A concrete test is a witness used to justify that a given abstract test case is feasible. Many witnesses can exist and used for the justification. Actually, in some cases the number of witnesses can be infinite. Of course, if no witnesses can be derived for an abstract test case this means that the abstract test case is infeasible. Thus, in our approach we can clearly end with 0 concrete tests for a given test scenario and this can happen if the constraint-solver can not provide a model that satisfies the proof obligations of the formula that represent an abstract test case. The problems related to detecting feasible abstract test cases, and the elimination of infeasible ones before the test generation, is not tackled during this thesis. An example of an abstract test case is:
```

\z za y.
(...) =
[e, f, g] $\Longrightarrow$
(...) =
[a, b, C] $\Longrightarrow$
IPC_send_comm_check_st ${ }_{\text {id }}$ thID2 thID1 $\sigma_{-} 1 \Longrightarrow$
IPC_params_c4 thID2 thID1 $\Longrightarrow$
IPC_params_c5 thID1 $\sigma_{-} 1 \Longrightarrow$
act_info (th_flag $\sigma$ _1) thID2 $=$ None $\Longrightarrow$
$\neg$ IPC_buf_check_st ${ }_{\text {id }}$ thID2 thID1
( $\sigma$ _1) current_thread $:=$ thID2,
thread_list :=
if thID2 $\in$ dom (thread_list $\sigma_{-} 1$ )
then thread_list $\sigma_{-} 1\left(\right.$ thID2 $\mapsto$ (the othread_list $\left.\sigma_{-} 1\right)$ thID2
(th_state := WAITING())
else thread_list $\sigma_{-} 1$,
error_codes := NO_ERRORS|)) $\Longrightarrow$
thID1 $\neq$ thID2 $\Longrightarrow$
act_info (th_flag $\sigma$ _1) thID1 $=$ Some $\mathrm{y} \Longrightarrow$
$\sigma_{-} 1 \models$
( outs $\leftarrow$ mbind
[IPC WAIT (RECV thID1 thID2 [z, za]),
IPC WAIT (SEND thID2 thID1 [z, za]),
IPC BUF (SEND thID2 thID1 [z, za]),
IPC MAP (SEND thID2 thID1 [z, za]),
IPC DONE (SEND thID2 thID1 [z, za]),
IPC DONE (RECV thID1 thID2 [z, za])]
PUT2; unit ${ }_{\text {SE }}$
(outs =
[y, NO_ERRORS,
ERROR_IPC error_IPC_1_in_BUF_SEND,
ERROR_IPC error_IPC_1_in_BUF_SEND,
ERROR_IPC error_IPC_1_in_BUF_SEND,
ERROR_IPC error_IPC_1_in_BUF_SEND]))

```

In order to get a concrete test case we have to instantiate this abstract test case with witnesses for the variables \(z, z a, y\). The instantiation process is done by sending the formula that contains the conjunction of the premises, e.g. IPC_params_c4 thID2 thID1, to constraint-solvers via an interface provided by HOL-TestGen. In our terminology, the conjunction between the premises of an abstract test case is called Proof Obligation (PO).
Most of the time, a configuration is needed in order to help the constraint solver to reason about proof obligations. The configuration of the constraint solver is basically done by a set of Isabelle lemmas that help in the solving process of the PO. For technical reasons, the lemmas of the configuration
must be written in hol! language, and not in isar or pure language. For example in order to allow the constraint-solver smt to reason about properties related to our abstract memory model, we use the rule:
```

lemma adde_share_charn [simp, code_unfold]:
assumes 1: \neg(i shares ( }\sigma\mathrm{ ) k')
and 2: \neg(k shares (\sigma) k')
shows i shares(\sigma(i' }\ltimes\textrm{k}')) k = i shares ( \sigma) k
using assms fun_upd_apply id_def mem_adde_E sharing_def sharing_refl
by metis

```

In its current form this rule will be refused by the solver smt. The following adaptation is needed:
```

lemma adde_share_charn_smt :
\neg(i shares (\sigma) k') ^
\neg(k shares ( }\sigma\mathrm{ ) k') }
i shares ( }\sigma(\textrm{i},\bowtiek')) k = i shares ( \sigma) k
using adde_share_charn
by simp

```

In our framework, and in order to feed the solver smt with the rule adde_share _charn_smt we use the command:
```

declare adde_share_charn_smt [testgen_smt_facts]

```

We have to notice that we experienced several problems related to solving a PO containing constraints around an abstract type,e.g. the type of our memory model. For example, in some cases the smt solver fails to provide a solution to a PO containing a constraint of the form (i shares (\(\sigma\)) k), and this of course because we do not have yet a perfect lemmas configuration that help the solver to reason about the shares relation correctly.

\subsection*{6.5.5 Test Data For Sequence-based Test Scenarios}

A test scenario is represented by a test specification and can have two main schemes: unit test scheme or sequence test scheme. The specification TS_simple_example2 is an example of a sequence test scenario for PikeOS IPC.
```

test_spec TS_simple_example2:
$\iota$ s $\in$ IPC_communication $\Longrightarrow$
$\sigma_{1} \models$ (outs $\leftarrow$ mbind is (abort lift exec_action_Mon); return(outs = x)
$\longrightarrow \sigma_{1} \vDash$ (outs $\leftarrow$ mbind is SUT; return(outs = x) )

```

For a \(\sigma_{1}\) definition that contains a suitable VMIT configuration, a possible generated values for \(\iota\) s are, e. g.:
```

[IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8])]

```

The sequence is an abstraction of an IPC communication between the thread with the \(I D=(0,0,1)\) and the thread with \(I D=(0,0,2)\) via a message \(m s g=[0,4,5,8]\). Natural numbers inside the message are abstractions on memory addresses. In TS_simple_example2 the execution semantic of the input sequence is represented by our execution function exec_action_Mon. We wrapped around our execution function a monad transformer abort \({ }_{l i f t}\) that express the behavior of an abort. The equality in return (outs \(=\mathrm{x}\)) specify our conformance relation between SUT outputs and the model outputs. After using our symbolic execution process the out of this test case is:
```

[NO_ERRORS,
NO_ERRORS,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV]

```

The error-codes observed in the sequence is related to IPC. The error-codes was returned in the stage \(W A I T_{-} R E C V\). The interpretation of this errorcodes is that the thread has not the rights to communicate with his partner. We can observe the behavior of our abort operator in this sequence of errorcodes; All stages following WAIT_RECV are purged (not executed), and the same error is returned instead. We focus on error-codes in our scenarios, since error-codes represent a potential for undesired information flow: for example, un-masked error-messages may reveal the structure of tasks and threads of a foreign partition in the system; a revelation that the operating system as separation kernel should prevent.

\subsection*{6.5.6 Test Drivers}

In this section we address the problem to compile "abstract test-drivers" as described in the previous sections into concrete code and code instrumentations that actually execute these tests.
HOL-TestGen can generate test scripts (recall Figure 1.1) in SML, Haskell, Scala and F \#. For our application, we generate SML test scripts and use MLton (www.mlton.org) for building the test executable: MLton 1. provides a foreign function interface to C and 2 . is easily portable to small POSIX system (it mainly requires a C compiler, libc, and libm). \({ }^{1}\)
In more detail, we generate two SML structures automatically from the Isabelle theories. The first structure, called Datatypes, contains the datatypes that are used by the interface of the SUT. In our example, this includes, e. g., IPC_protocol and P4_IPC_call. The second structure, called TestScript, contains a list of all generated test cases as well the test oracle, i.e., the algorithms necessary to decide if a test result complies to the specification or not. In addition, HOL-TestGen provides a test harness (as SML structure TestHarness) that 1. takes the list of test cases (from TestScript) and executes them on the SUT, 2. uses the test oracle (also from TestScript) to decide if the actual test results complies to the specification, and 3. provides statistics about the number of successful and failed tests as well as errors (e.g., unexpected exceptions) during test execution.

In addition, for testing \(C\) code, we need to provide a small SML structure (ca. 20 lines of code), called Adapter, that serves two purposes: 1. the configuration of the foreign function, e. g., the mapping from SML datatypes to C datatypes and 2. the concretization of abstractions to bridge the gap between an abstract test model and the concrete SUT.

An example for a concretization would be a test specification using an an enumeration to encode error states while the implementation uses an efficient encoding as bit vector. The Adapter structure only needs to be updated after significant changes to either the system specification or the system under test.
For testing concurrent, i.e., multi-threaded, programs we need to solve a particular challenge: enforcing certain thread execution orders (a certain scheduling) during test execution. There are, in principle, three different options available to control the scheduler during test execution: 1. instrumenting the SUT to make the thread switching deterministic and controllable, 2. using a deterministic scheduler that can be controlled by test driver, or 3. using the features of debuggers, such as the GNU debugger (gdb), for multi-threaded programs.
In our prototype for POSIX compliant systems, we have chosen the third option: we execute the SUT within a gdb session and we use the gdb to

\footnotetext{
\({ }^{1}\) In our code generation setup, we avoid the use of the SML datatype Int. Inf and, by this, we can remove the dependency on the GNU multi-precision library (libgmp).
}
switch between the different threads in a controlled way. We rely on two features of gdb (thus, out approach can be applied to any other debugger with similar features), namely: 1. the possibility to attach to break points in the object code scripting code that is executed if a break point is reached and 2 . the complete control of the threading, i. e., gdb allows to switch explicitly between threads while ensuring that only the currently active thread is executed (using the option set scheduler-locking on).
This approach has the advantage that we neither need to modify the SUT nor do we need to develop a custom scheduler. We only need to generate a configuration for controlling the debugger. The necessary gdb command file is generated automatically by HOL-Testgen based on a mapping of the abstract thread switching points to break points in the object code. The break points at the entry points allows us to control the thread creation, while the remaining break points allow us to control the switching between threads. Thus, we only need the SUT compiled in debugging mode and this mapping. In this sense, we still have a "black-box" testing approach.
Moreover, Using gdb together with taskset, we ensure that all threads are executed on the same core; in our application, we can accept that the actual execution in gdb changes the timing behavior. Moreover, we assume a sequential memory model, so our approach does not cover TLB-related race conditions occurring in multi-core CPU's.

A note on testing small embedded systems and low-level operating system code. This setup works well for mid-size embedded systems to large systems using standard desktop or server operating systems. It does not work for small embedded systems or for testing small operating system kernels or hypervisors. Such system often to neither provide a rich enough libc (or libm) nor enough system resources that allows to run the complete test driver on the system under test. For such systems, we envision a hosttarget setup, where only a very small target library needs to be ported to the target system. This target library serves mainly two purposes: 1. stimulate, remotely controlled from the host system, the functions under test and 2. collect the test result and report it back to the host system. All expensive computation such as comparing test results, creating statistics are executed on the host system.
Finally, for small systems it might be necessary to develop a custom scheduler, e.g., similar to [MQB07], to control the execution order of multithreaded programs.

\subsection*{6.5.7 Experimental Results}

In this section we will discuss our test experiences, the obtained results and the different problems encountered. The table Table 6.1 represent \(5^{2}\) different test specifications related to PikeOS IPC, i.e. test scenarios for PikeOS IPC API, and also the statistics related to the application of the different steps of our test generation process on these scenarios. Four columns are distinguished in Table 6.1:
1. SE: is the step related to the symbolic execution process. During this step the derived symbolic execution rules related to PikeOS IPC are applied on the scenario.
2. Norm: represent the step of our normalization process. During this step we apply tactics like simp and other derived rules from the model in order to eliminate contradictory proof goals resulting from the SE step.
3. TT: is the step of the generation of the test theorem. During this step we use an HOL-TESTGEN tactic to determine the PO and to introduce uniformity testing hypotheses (recall subsection 2.2.2) on the different proof goals resulting from the Norm step. This step can be seen as a preparatory step for the data selection process.
4. TD: represent the step of test data selection. During this step we send the POs in the test theorem to constraint-solvers. Also, after that a given solver choose a model for the POs an Isabelle proof is mandatory in order to make sure that the chosen model satisfies the PO. We have to notice that, for simple models, the process of proving the satisfaction of the PO by the chosen model, is done automatically by an Isabelle tactic but, for complicated models such as PikeOS model, where its symbolic execution results with complicated predicated defined around abstract types, e.g. predicate around our memory model, the proofs need to be done manually. This does not mean that the process can not be automated, but at the moment, we do not have the set of lemmas and the corresponding tactics that help to get a such automatic setup.

Each column in Table 6.1 is composed of two other columns. The columns named Num contain the number of outputs from each step of the generation process, and the columns Time contain the duration of the step by minutes. The scenarios Sc 1 and Sc 2 contain the value undet in their columns, it means that we did not manage to finish the steps of the generation and the experience is done for these scenarios. The judgement undet is different from the

\footnotetext{
\({ }^{2}\) actually we designed 38 scenario, we did not finish all the experiments at submission time, further explanation are presented in the sequel.
}
judgement represented by the symbol -, also contained in the table. The judgement undet is applied to an experience where our process of test generation had failed in a given step, and we are not trying to fix the failed part because, the fixes depends on major changes in the various levels of the tool-chain. The judgement - is applied on an experience which is not finished yet, i. e. we do not have the results of all the steps of the process but, finishing the experience depends on manageable technical problems \({ }^{3}\).
Note that the execution of the steps related to the test generation process is sequential. Thus, if the current step fails the next one can not be executed. For example during the scenario Sc 1 , we had derived actually 69984 symbolic test cases in 2 hours for 1 input sequence that represent an IPC communication (recall subsection 6.5.1) but, we did not manage to normalize a such proof context with a such size, which means that all remaining steps of the process can not be performed because they all depend of the outputs from the Norm step.
As explained in subsection 6.5.4, the generation of 69984 symbolic test cases does not necessarily mean that all the cases, represented by proof goals, are feasible. We have to normalize the proof goals in order to eliminate the contradictory ones. Even if we have managed to normalize a proof context with a such size, we still need to find models for the different normalized goals and prove that, the chosen models satisfy the POs. While the fact of generating almost 70000 goals using our symbolic approach in only 2 hours can be seen as an impressive result, we have failed during the normalization process, and this come back to:
1. The model. the model of PikeOS IPC is heavy, and this because of the branching in the atomic actions, especially the PREP action.
2. The way of modeling. it is the main influential factor. We believe that some changes on the way of modeling can help to make the normalization process lighter. e. g. the definition of meta-predicates that characterize feasible paths only, or at least the elimination of the most of infeasible paths, and accordingly, the definition of the corresponding symbolic execution rules, can actually result with an optimized proof context after the SE step.

In order to execute our tool-chain from top to bottom we have tried other test scenarios to avoid the previous cited problems. For example, the scenario Sc 2 is similar to the scenario Sc 1 but, without including the PREP stage in the input sequence that represent 1 IPC communication. From Sc2, we had derived 1973 symbolic test cases in 2 minutes (which is another impressive result). After 6 hours of normalization process, 27 abstract test case remained. But still we did not manage to get automatically models for the 27

\footnotetext{
\({ }^{3}\) At submission time of this document, we had managed to finish only 4 experiences.
}
abstract test cases, and this because of a failure from the constraint-solvers, such smt, to provide a solution for complicated POs. The failure come back mainly to missing lemmas used as a configuration (recall last paragraphs in subsection 6.5.4) for the constraint solvers and not to the constraints-solver design.
For the scenarios Sc3 to Sc5, we have tried another approach in order to deal with the previous cited problems and also to generate test cases that cover communications with PREP action. Basically the approach is based on a technique that, allows to force a given execution path from the possible ones, resulting from the execution of the PREP action. Actually, after the execution of a PREP action, 6 execution paths are possible (see the symbolic execution rule for PREP action in section O). Since we have 2 PREP actions in the head of a sequence that represent 1 IPC communication, all possible execution paths related to the 2 PREP actions is equal to \(6 \times 6\). Actually, the 2 PREP actions are derived from: the ipc send system call for the PREP SEND action, and the ipc receive system call for PREP RECV. Each system call is executed by a thread. Instead to opt for a standard execution of the 2 PREP actions with rules that simulate all possible executions paths like we did in Sc1, we had opted for rules that force one execution path inside a test scenario. In order to cover all paths, we had designed 36 scenarios, each scenario force a given execution path during the PREP stage. Because we do not have any problems for executing the other actions which are different from PREP, we used the standard rules for their symbolic execution.

In order to apply this new tchnique to our scenarios, new symbolic execution rules were designed to cope with the explosion in the number of the abstract test cases, which influence negatively our normalization process. For example, in the scenario Sc3 we had derived 2 new symbolic execution rules for PREP actions. Each rule characterize one execution path by assuming that the path-predicate that describe the execution path is true. The symbolic execution rules used to simulate the the behavior of the actions PREP_SEND and PREP_RECV in the scenario Sc3 are:
```

lemma abort_prep_send_HOL_elim21'_factor:
assumes valid_exec:
( }\sigma\models\mathrm{ (outs < (mbind ((IPC PREP (SEND caller partner msg))\#S)
(abortlift exec_action_id_Mon)); P outs))
and in_err_exec1: caller \indom (act_info (th_flag \sigma))
and in_err_exec:
(\sigma\models(outs }\leftarrow\mathrm{ (mbind S(abort }\mp@subsup{|}{\mathrm{ lift }}{}\mathrm{ exec_action_id_Mon));
P (get_caller_error caller \sigma\# outs))) \LongrightarrowQ
shows Q
apply (insert valid_exec)
apply (elim abort_prep_send_mbindFSave_E')
apply (simp add: in_err_exec)
apply (simp add: in_err_exec1)+
done

```
```

lemma abort_prep_recv_HOL_elim21'_factor:
assumes valid_exec:
( }\sigma|=(\mathrm{ outs }\leftarrow(mbind ((IPC PREP (RECV caller partner msg))\#S)
(abort}\mp@subsup{l}{\mathrm{ lift exec_action_id_Mon)); P outs))}}{(
and in_err_exec1: caller \indom (act_info (th_flag \sigma))
and in_err_exec:
( }\sigma=\mathrm{ (outs }\leftarrow\mathrm{ (mbind S(abort lift exec_action_id_Mon));
P (get_caller_error caller \sigma

# outs))) \LongrightarrowQ

    shows Q
    apply (insert valid_exec)
    apply (elim abort_prep_recv_mbindFSave_E')
    apply (simp add: in_err_exec)
    apply (simp add: in_err_exec1)+
    done
    ```

Of course the path-predicate in_err_exec1 must be expressed also in the test specification Sc3. This predicate express the fact that the caller of the action (the caller of PREP SEND and also the caller of PREP RECV), was in an error-state (recall subsection 6.3.4).
From another side, we did not manage to execute the generated tests on PikeOS sources, for confidentiality reasons. In order to evaluate our approach we had implemented a PikeOS IPC-like environment using POSIX implementation. We had managed to execute 2 scenarios on this PikeOS demonstrator. Of course, when the state of the PikeOS demonstrator is initialised correctly our tests did not found any bugs. If the state is not ini-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Scenarios & \multicolumn{2}{|c|}{ SE } & \multicolumn{2}{c|}{ Norm } & \multicolumn{2}{c|}{ TT } & \multicolumn{2}{c|}{ TD } \\
\hline & Num & Time & Num & Time & Num & Time & Num & Time \\
\hline Sc1 & 69984 & 120 & undet & undet & undet & undet & undet & undet \\
\hline Sc2 & 1973 & 2 & 27 & 360 & 1 & 162 & undet & undet \\
\hline Sc3 & 1973 & 2 & 2 & 0.01 & 1 & 120 & 2080 & 0.23 \\
\hline Sc4 & 1973 & 2 & - & - & - & - & - & - \\
\hline Sc5 & 1973 & 2 & - & - & - & - & - & - \\
\hline
\end{tabular}

Table 6.1: Statistics for our TestGen Process
tialised correctly our generated tests detect the bugs. Finally, we still have problems to define a program that initialise automatically the state of the demonstrate and bring it to the same value generated by the model. At the moment this step is done manually, and this due to some technical chanllenges like, how to export or import the values of a static array defined on C-level to the sml-level. Finally, another technical challenge is that GDB can not run an executable containing a Main.sml function defined in sml language. In order to deal with this problem, we have to define a Main.c function on C-level and call our harness.sml inside the Main.c, and this using the foreign function interface of MLton.

\subsection*{6.6 Conclusion}

\subsection*{6.6.1 Related Work.}

There is a wealth of approaches for tests of behavioral models; they differ in the underlying modeling technique, the testability and test hypothesis', the test conformance relation etc.; in subsection 2.2 .3 we mention a few. Unfortunately, many works make the underlying testability hypothesis' not explicit which makes a direct comparison difficult and somewhat vague. For the space of testability assumptions used here (the system is input-output deterministic, is adequately modeled as under-specified deterministic system, synchronous coupling between tester and SUT suffices), to the best of our knowledge, our approach is unique in its integrated process from theory, modeling, symbolic execution down to test-driver generation.
With respect to the test-driver approach, this work undeniably owes a lot Microsoft's CHESS project [MQB07], which promoted the idea to actually control the scheduler of real systems and use partial-order reduction techniques to test systematically concurrent executions for races in applications of realistic size (e.g., IE, Firefox, Apache). For our approach, controlling the scheduler is the key to justify the presentation of the system as underspecified deterministic transition function.

\subsection*{6.6.2 Conclusion and Future Work.}

We see several conceptual and practical advantages of a monadic approach to sequence testing:
1. a monadic approach resists the tendency to surrender to finitism and constructivism at the first-best opportunity; a tendency that is understandably wide-spread in model-checking communities,
2. it provides a sensible shift from syntax to semantics: instead of a firstorder, intentional view in nodes and events in automata, the heart of the calculus is on computations and their compositions,
3. the monadic theory models explicitly the difference between input and output, between data under control of the tester and results under control of the SUT,
4. the theory lends itself for a theoretical and practical framework of numerous conformance notions, even non-standard ones, and which gives
5. ways to new calculi of symbolic evaluation enabling symbolic states (via invariants) and input events (via constraints) as well as a seamless, theoretically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the formal theory of sequence testing (as given in the HOL-TestGen library theories Monad.thy and TestRefinements.thy) providing connections between monads, rules for test-driver optimization, different test refinements, etc., is worth further development. On a test-theoretical level, our approach provides the basis for a comparison on test-methods, in particular ones based on different testability hypothesis'.
Pragmatically, our test driver setup needs to be modified to be executable on the PikeOS system level. For this end, we will need to develop a hosttarget setup (see subsection 6.5.6). Finally, we are interested in extending our techniques to actually test information flow properties; since error-codes in applications may reveal internal information of partitions (as, for example, the number of its tasks and threads), this seems to be a rewarding target. For this purpose, not only action sequences need to be generated during the constraint solving process, but also (abstract) VMITs.

\section*{Part III}

\section*{Conclusions}

\section*{Conclusions and Future Works}

\subsection*{7.1 Summary}

In the different chapters of this, we introduced thesis a test and proof environment for the specification, deductive verification and testing of concurrent programs. Our approach relies on the theorem proving Isabelle/hol!. In the context of this Ph.D thesis, the architecture, features, tools and the underlying methodology of Isabelle were also presented. We believe to have justified our claim that was, if correctly used, Isabelle can be trusted to a significantly higher extent than conventional software used in certification processes and test generation based on symbolic execution. The main problematic tackled by our work was the generation of tests for the certification of complex concurrent systems such operating systems. Our solution was, first of all, the proposition of a monad based test theory for the specification of a such system. Afterwards, we had used symbolic execution approach, based on theorem proving environment in order to generate test cases. Our contributions, results and achievement are:

\section*{Isabelle/hol! in Certification Processes}

In section 2.3, we have presented the Isabelle/hol! system and pointed out the essential arguments, why by a particular combination of system-architecture and methodology, the system is suited to give the currently highest possible
guarantee on a formal proof in particular and a logical theory development in general. In a sense, Isabelle/hol! offers the same guarantees for logical systems as Coq, and in some sense better guarantees than, for example, the B method or model-checkers like FDR. Isabelle/hol! is therefore a natural choice for evaluations in the higher certification levels EAL5 to EAL7 in the Common Criteria (CC). If the methodological side-conditions are respected which can be reduced essentially to a number of syntactic checks, the formal consistency of the entire certification document containing formal specifications, proofs of consistency and the proofs of security properties, refinement-proofs between the different abstraction layers, and finally testcase generations as well as test-results can be guaranteed, and the evaluator can therefore concentrate on the more fundamental questions: does the model represent the right thing? are the modeling assumptions justified?

\section*{A Monad Based Testing Theory}

Our framework is equipped with a specification language (see chapter 4) based on monads that contains important definitions for testing and symbolic execution activities. The expressive power of our specification language was was highlighted by an isomorphism between the automata world and monads world. A set of generic symbolic execution rules, for the defined monad operators was also introduced. Unlike to IO-Automata based specification, it turns out that symbolic execution based on monads specifications and its representation in the hol! language can cope with the large state space; and that was confirmed by the results that we have got from our case studies, where our approach was applied on on two complex systems.

\section*{Sequence Testing For Concurrent Complex Systems}

In order to optimize the symbolic execution process for our test specifications, especially for the case of sequence test scenarios of concurrent systems, an approach based on the notion of coverage criteria was proposed in section 4.4. On the technical side, an approach to build automated test drivers for testing non-deterministic system executions was proposed in section 4.7.

\section*{Testing VAMP Microprocessor}

As a case study, and in order to confirm the efficiency of our test framework, we presented in chapter 5, an approach for testing the conformance of a processor with respect to an abstract model that captures the instruction set (i. e., the assembly-level) of the processor. This abstraction level is of a particular importance for, first, it is the level of detail that is usually available for commercial off-the-shelf (COTS) processors and, second, it is the target level of high-level compilers.

\section*{Testing PikeOS System}

Another achievement of our work was presented in chapter 6. It consist of a case study, containing the formalization and test case generation for the complex operating system PikeOS. The approach allows for testing relatively fine-grained concurrency of atomic actions, which are actually related to system calls of an L4-like micro-kernel. During this case study we focused on the IPC API. The case study was another confirmation of the expressive power and the efficiency of theorem proving based test framework. Especially if the framework is combined with a monad based testing theory.

\subsection*{7.2 Futur Works}

We see several directions for future works: On the model level, the formal theory of sequence testing (as given in the HOL-TestGen library theories Monad.thy and TestRefinements.thy) providing connections between monads, rules for test-driver optimization, different test refinements, etc., is worth further development. On a test-theoretical level, our approach provides the basis for a comparison on test-methods, in particular ones based on different testing hypotheses and a bit indirectly even the underlying hypotheses of testability. Pragmatically, our test driver setup needs to be modified to be executable on systems such as PikeOS. For this end, we will need to develop a host-target setup approach, that can cope with restrictions of low level system code, e. g. limited libraries, limited access to IO. Finally, we are interested in extending our techniques to actually test security properties such as information flow properties; since error-codes in applications may reveal internal information of partitions (as, for example, the number of its tasks and threads), this seems to be a rewarding target. For this purpose, not only action sequences need to be generated during the constraint solving process, but also (abstract) VMITs.

\section*{Part IV}

\section*{PikeOS IPC Model}

\section*{Isabelle sources}

\author{
theory TypeSchemes \\ imports Main \\ begin
}

\section*{A HOL representation of PikeOS Datatypes}

\section*{A. 1 kernel state}
record ('resource, 'thread-id,'thread, 'sp-th-th, 'sp-th-res,' 'errors) kstate \(=\) resource :: 'resource - system ressources: memory, files.. current-thread :: 'thread-id - a thread in the execution context.. thread-list :: 'thread - list of threads in the system.
communication-rights :: 'sp-th-th - security policy between threads.. access-rights :: 'sp-th-res - security policy between threads and ressources..
error-codes :: 'errors - error returned if a system call is aborted..

\section*{A. 2 atomic actions}

Atomic actions can be seen as instructions which can not be interrupted by the system scheduler during there execution. Each API has its own set of atomic actions.
datatype ('ipc-stage, 'ipc-direction) action \(_{i p c}=\)
\(I P C\) 'ipc-stage 'ipc-direction
datatype ('mem-param1, 'mem-param2) action \(_{\text {mem }}=\) MEM 'mem-param1 'mem-param2
datatype ('evn-param1, 'evn-param2) action \(_{\text {evn }}=\) EVN 'evn-param1 'evn-param2
datatype ('ipc-stage, 'ipc-direction,'mem-param1, 'mem-param2, 'evn-param1, 'evn-param2)
action \(=\) atom \(_{\text {ipc }}\left({ }^{\prime}\right.\) ipc-stage, 'ipc-direction) action \({ }_{i p c}\)

| atom \(_{\text {evn }}\) ('evn-param1, 'evn-param2) action \({ }_{\text {evn }}\)

\section*{A. 3 traces}

A trace is sequence of atomic actions..
- An IPC actions trace
type-synonym ('ipc-stage, 'ipc-direction) trace \(_{\text {ipc }}=\) ('ipc-stage, 'ipc-direction) action ipc list
- A memory actions IPC trace
type-synonym ('mem-param1, 'mem-param2) trace \(_{\text {mem }}=\) ('mem-param1, 'mem-param2) action \({ }_{m e m}\) list
- An event actions trace
type-synonym ('evn-param1, 'evn-param2) trace \(_{\text {evn }}=\) ('evn-param1, 'evn-param2) action \({ }_{\text {evn }}\) list
- A trace that contain all atomic actions
type-synonym ('ipc-stage, 'ipc-direction,'mem-param1, 'mem-param2, 'evn-param1, 'evn-param2) trace =
('ipc-stage, 'ipc-direction,'mem-param1, 'mem-param2, 'evn-param1, 'evn-param2) action list

\section*{A. 4 Threads}

A thread is the smallest entity in the operating system.
```

record ('th-id,'thstate,'stipc,'vadress,'cpartner) thread =

```
thread-id :: 'th-id
th-state :: 'thstate
th-ipc-st :: 'stipc
own-vmem-adr :: 'vadress
cpartner :: 'cpartner
```

theory SharedMemoryNew
imports Main
begin

```

\section*{B Shared Memory Model}

\section*{B. 1 Prerequisites}

Prerequisite: a generalization of fun-upd-def: ?f \((? a:=? b) \equiv \lambda x\). if \(x=? a\) then ?b else ?f \(x\). It represents updating modulo a sharing equivalence, i.e. an equivalence relation on parts of the domain of a memory.
definition fun-upd-equivp :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) 'b) where
fun-upd-equivp eq \(f\) a \(b=(\lambda x\). if eq \(x\) a then \(b\) else \(f x)\)
— This lemma is the same as Fun.fun-upd-same: \((? f(? x:=? y)) ? x=? y\); applied on our genralization fun-upd-equivp ?eq ?f ? a ? \(b=(\lambda x\). if \(? e q x\) ?a then ?b else ?f \(x)\) of ? \(f(? a:=? b) \equiv \lambda x\). if \(x=? a\) then ?b else ?f \(x\). This proof tell if our function fun-upd-equivp op \(=f x y\) is equal to \(f\) this is equivalent to the fact that \(f x=y\)
lemma fun-upd-equivp-iff: \(((f u n-u p d-e q u i v p ~(o p=) f x y)=f)=(f x=y)\) by (simp add :fun-upd-equivp-def, safe, erule subst, auto)
- Now we try to proof the same lemma applied on any equivalent relation equivp eqv instead of the equivalent relation \(o p=\). For this case, we had split the lemma to 2 parts. the lemma fun-upd-equivp-iff-part1 to proof the case when eq (fa) \(b \longrightarrow e q\) (fun-upd-equivp eqv \(f a b z)(f z)\), and the second part is the lemma fun-upd-equivp-iff-part2 to proof the case equivp eqv \(\Longrightarrow\) fun-upd-equivp eqv \(f\) a \(b\) \(=f \longrightarrow f a=b\).
lemma fun-upd-equivp-iff-part1:
equivp \(R \Longrightarrow(\bigwedge z . R x z \Longrightarrow R(f z) y) \Longrightarrow R(f u n-u p d-e q u i v p R f x y z)(f z)\)
by (auto simp: fun-upd-equivp-def Equiv-Relations.equivp-reflp Equiv-Relations.equivp-symp)
lemma fun-upd-equivp-iff-part2: equivp \(R \Longrightarrow\) fun-upd-equivp \(R\) fxy=f \(\longrightarrow f\) \(=y\)
apply (simp add :fun-upd-equivp-def, safe)
apply (erule subst, auto simp: Equiv-Relations.equivp-reflp)
done
— Just anotther way to formalise equivp ? \(R \Longrightarrow\) fun-upd-equivp ? \(R\) ?f ? \(x\) ? \(y=\) ?f
\(\longrightarrow\) ?f ? \(x=\) ? \(y\) without using the strong equality
lemma equivp \(R \Longrightarrow(\bigwedge z . R x z \Longrightarrow R(f u n-u p d-e q u i v p R f x y z)(f z)) \Longrightarrow R \quad y\) (\(f x\))
by (simp add: fun-upd-equivp-def Equiv-Relations.equivp-symp equivp-reflp)
— this lemma is the same in 【equivp ? \(R ; \wedge z . ? R\) ? \(x z \Longrightarrow\) ? \(R(? f z) ? y \rrbracket \Longrightarrow\) ?R (fun-upd-equivp ?R ?f ?x ?y ?z) (?f ?z) where \(o p=\) is generalized by another equivalence relation
lemma fun-upd-equivp-idem: \(f x=y \Longrightarrow(f u n-u p d-e q u i v p(o p=) f x y)=f\)
by (simp only: fun-upd-equivp-iff)
lemma fun-upd-equivp-triv: fun-upd-equivp \((o p=) f x(f x)=f\) by (simp only: fun-upd-equivp-iff)
— This is the generalization of fun-upd-equivp op \(=\) ?f ? \(x(? f\) ? \(x)=\) ?f on a given equivalence relation
lemma fun-upd-equivp-triv-part1 :
equivp \(R \Longrightarrow\left(\bigwedge z \cdot R x z \Longrightarrow f u n-u p d\right.\)-equivp \(\left.\left(R^{\prime}\right) f x(f x) z\right) \Longrightarrow f x\)
apply (auto simp:fun-upd-equivp-def)
apply (metis equivp-reflp)
done
lemma fun-upd-equivp-triv-part2 :
equivp \(R \Longrightarrow(\bigwedge z . R x z \Longrightarrow f z) \Longrightarrow\) fun-upd-equivp \(\left(R^{\prime}\right) f x(f x) x\)
by (simp add:fun-upd-equivp-def equivp-reflp split: split-if)
lemma fun-upd-equivp-apply [simp]:
(fun-upd-equivp \((o p=) f x y) z=(\) if \(z=x\) then \(y\) else \(f z)\)
by (simp only: fun-upd-equivp-def)
— This is the generalization of fun-upd-equivp op \(=\) ?f ? \(x\) ? \(y\) ? \(z=(\) if ? \(z=? x\) then ?y else ?f ? z) with e given equivalence relation and not only with \(o p=\)
lemma fun-upd-equivp-apply1 [simp]:
equivp \(R \Longrightarrow(\) fun-upd-equivp \(R\) f \(x y) z=(\) if \(R z x\) then \(y\) else \(f z)\)
by (simp add: fun-upd-equivp-def)
lemma fun-upd-equivp-same: (fun-upd-equivp \((o p=) f x y) x=y\) by (simp only: fun-upd-equivp-def) simp
—This is the generalization of fun-upd-equivp op \(=? f\) ? \(x ? y ? x=? y\) with a given equivalence relation
lemma fun-upd-equivp-same1: equivp \(R \Longrightarrow(\) fun-upd-equivp \(R\) f \(x\) y) \(x=y\) by (simp add: fun-upd-equivp-def equivp-reflp)

For the special case that @term eq is just the equality @term "op =", sharing update and classical update are identical.
lemma fun-upd-equivp-vs-fun-upd: (fun-upd-equivp \((o p=))=\) fun-upd by (rule ext, rule ext, rule ext,simp add:fun-upd-def fun-upd-equivp-def)

\section*{B. 2 Definition of the shared-memory type}
typedef \(\left(' \alpha,{ }^{\prime} \beta\right)\) memory \(=\left\{\left(\sigma::^{\prime} \alpha \rightharpoonup^{\prime} \beta, R\right)\right.\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\) \(\sigma y)\}\)
proof
show (Map.empty, \((o p=)) \in\) ?memory
by (auto simp: identity-equivp)
qed
fun memory-inv :: (' \(a \Rightarrow\) 'b option \() \times\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow\) bool
where memory-inv \((\operatorname{Pair} f R)=(\) equivp \(R \wedge(\forall x y . R x y \longrightarrow f x=f y))\)
lemma Abs-Rep-memory \([\) simp \(]: A b s\)-memory (Rep-memory \(\sigma\)) \(=\sigma\)
by (simp add:Rep-memory-inverse)
lemma memory-invariant [simp]:
memory-inv \(\sigma\)-rep \(=(\) Rep-memory (Abs-memory \(\sigma\)-rep \()=\sigma\)-rep \()\)
using Rep-memory [of Abs-memory \(\sigma\)-rep] Abs-memory-inverse mem-Collect-eq prod-caseE prod-caseI2 memory-inv.simps
by \(s m t\)
lemma Pair-code-eq :
Rep-memory \(\sigma=\operatorname{Pair}(f s t(\) Rep-memory \(\sigma))(\) snd (Rep-memory \(\sigma))\)
by (simp add: Product-Type.surjective-pairing)
lemma snd-memory-equivp [simp]: equivp(snd(Rep-memory \(\sigma))\) by (insert Rep-memory[of \(\sigma\)], auto)

\section*{B. 3 Operations on Shared-Memory}
setup-lifting type-definition-memory
abbreviation mem-init :: (' \(a \Rightarrow\) 'b option \() \times\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.\) bool \()\)
where
mem-init \(\equiv(\) Map.empty, \((o p=))\)
lemma memory-init-eq-sound:
mem-init \(\in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}\)
proof -
obtain mem and \(R\)
where Pair: \((\) mem,\(R)=\) mem-init and Eq: equivp \(R\)
using identity-equivp by auto
have \(D 1\) : \(R=(o p=)\)
and D2: mem \(=\) Map.empty
using Pair prod.inject
by auto
moreover have inv-part2: \(\forall x y . R x y \longrightarrow m e m x=\) mem \(y\)
unfolding D1 D2 by auto
ultimately show ?thesis
using Eq Abs-memory-cases Pair-inject Rep-memory-cases Rep-memory-inverse
identity-equivp memory-inv.elims(3) memory-invariant
by auto
qed
lift-definition init :: (' \(\alpha,{ }^{\prime} \beta\)) memory
is mem-init \(::\left({ }^{\prime} \alpha \Rightarrow\right.\) ' \(\beta\) option \() \times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool \()\)
using memory-init-eq-sound by simp
value init::(nat,int)memory
value map (\(\lambda\) x. the (fst (Rep-memory init) \(x\))) [1 .. 10]
value take (10) (map (Pair Map.empty) \([(o p=)]\))
value replicate 10 init
term Rep-memory \(\sigma\)
term \([(\sigma::\) nat \(\rightharpoonup\) int,\(R)<-x s\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)]\)
definition init-mem-list :: ' \(\alpha\) list \(\Rightarrow(n a t\), ' \(\alpha\)) memory
where init-mem-list \(s=\) Abs-memory (let \(h=\) zip (map nat \([0\).. int (length
s)]) \(s\)
\[
\begin{aligned}
& \text { in foldl }(\lambda x(y, z) . \text { fun-upd } x \text { y (Some } z)) \\
& \quad \text { Map.empty } h, \\
& o p=)
\end{aligned}
\]

\section*{Memory Read Operation}
definition lookup :: (' \(\alpha,{ }^{\prime} \beta\)) memory \(\Rightarrow{ }^{\prime} \alpha \Rightarrow\) ' \(\beta\) (infixl \$ 100)
where \(\quad \sigma \$ x=\) the \((f s t(\) Rep-memory \(\sigma) x)\)

\section*{Memory Update Operation}
fun Pair-upd-lifter:: (' \(a \Rightarrow\) 'b option \() \times\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow\)
\[
\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \text { option }\right) \times\left({ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow \text { bool }\right)
\]
where Pair-upd-lifter \(((f, R)) x y=(\) fun-upd-equivp \(R f x(S o m e ~ y), R)\)
lemma update_sound \({ }^{\prime}\) :
assumes \(\sigma \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}\)
shows Pair-upd-lifter \(\sigma x y \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma\) \(y)\}\)
proof -
obtain mem and \(R\)
where Pair: \((\) mem, \(R)=\sigma\) and Eq: equivp \(R\) and Mem: \(\forall x y . R x y \longrightarrow\) mem \(x=\) mem \(y\)
using assms equivp \(E\) by auto
obtain \(m e m^{\prime}\) and \(R^{\prime}\)
where Pair': \(\left(\right.\) mem \(\left.^{\prime}, R^{\prime}\right)=\) Pair-upd-lifter \(\sigma x y\)
using surjective-pairing by metis
have Def1: \(\mathrm{mem}^{\prime}=\) fun-upd-equivp \(R\) mem \(x\) (Some \(y\))
and Def2: \(R^{\prime}=R\)
using Pair Pair' by auto
have \(E q^{\prime}\) : equivp \(R^{\prime}\)
using Def2 Eq by auto
moreover have \(\forall y z \cdot R^{\prime} y z \longrightarrow\) mem \(^{\prime} y=\) mem \(^{\prime} z\)
using Mem equivp-symp equivp-transp
unfolding Def1 Def2 by (metis Eq fun-upd-equivp-def)
ultimately show ?thesis
using Pair' by auto
qed
lift-definition update :: \(\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)\) memory \(\Rightarrow^{\prime} \alpha \Rightarrow{ }^{\prime} \beta \Rightarrow\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)\) memory \(\left(-{ }^{\prime}(-\right.\) \(:={ }_{\$}-{ }^{-}\)) 100)
is Pair-upd-lifter
using update_sound \({ }^{\prime}\)
by \(\operatorname{simp}\)
lemma update \(: \sigma(x:=\$ y)=A b s\)-memory (fun-upd-equivp (snd (Rep-memory \(\sigma)\))
\[
(f s t(\text { Rep-memory } \sigma)) x(\text { Some } y),(\text { snd (Rep-memory }
\]
\(\sigma)\))
using Rep-memory-inverse surjective-pairing Pair-upd-lifter.simps update.rep-eq by metis
fun update-list-rep :: (' \(\left.\alpha{ }^{\prime} \beta\right) \times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool \() \Rightarrow\left({ }^{\prime} \alpha \times{ }^{\prime} \beta\right)\) list \(\Rightarrow\)
\[
\left({ }^{\prime} \alpha \rightharpoonup^{\prime} \beta\right) \times\left({ }^{\prime} \alpha \Rightarrow '^{\prime} \alpha \Rightarrow \text { bool }\right)
\]
where update-list-rep \((f, R)\) nlist \(=(\) foldl \((\lambda(f, R)(\) addr, val \()\). Pair-upd-lifter \((f\), R) addr val)
\[
\begin{array}{r}
(f, R) \\
\text { nlist })
\end{array}
\]
lemma update-list-rep-p:
assumes 1: \(P \sigma\)
and 2: \(\bigwedge\) src dst \(\sigma . P \sigma \Longrightarrow P\) (Pair-upd-lifter \(\sigma\) src dst)
shows \(P\) (update-list-rep \(\sigma\) list)
using 12
apply (induct list arbitrary: \(\sigma\))
apply (force,safe)
apply (simp del: Pair-upd-lifter.simps)
using surjective-pairing
apply metis
done
lemma update-list-rep-sound:
assumes 1: \(\sigma \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}\)
```

    shows update-list-rep \sigma (nlist) \in{(\sigma,R). equivp R\wedge(\forallxy.Rxy\longrightarrow\sigmax
    =\sigma y)}
using 1
apply (elim update-list-rep-p)
apply (erule update_sound')
done
lift-definition update-list :: ('\alpha, '\beta) memory }=>('\alpha\times'\beta)list => ('\alpha, '\beta) memory
(infixl '/:=\$ 30)
is update-list-rep
using update-list-rep-sound by simp
lemma update-list-Nil[simp]:(\sigma/:=\mp@subsup{}{$}{}[])=\sigma
unfolding update-list-def
by(simp,subst surjective-pairing[of Rep-memory \sigma],subst update-list-rep.simps, simp)
lemma update-list-Cons[simp]:(\sigma/:=$ ((a,b)\#S))=(\sigma(a:=\mp@subsup{$}{$}{}b)/:=\mp@subsup{$}{$}{}S)
unfolding update-list-def
apply(simp,subst surjective-pairing[of Rep-memory \sigma],subst update-list-rep.simps,
simp)
apply(subst surjective-pairing[of Rep-memory (\sigma (a:=\$ b))],subst update-list-rep.simps,
simp)
apply(simp add: update-def)
apply(subst Abs-memory-inverse)
apply (metis (lifting, mono-tags) Rep-memory update_sound')
by simp
Type-invariant:
lemma update_sound:
assumes Rep-memory $\sigma=\left(\sigma^{\prime}\right.$, eq $)$
shows (fun-upd-equivp eq $\sigma^{\prime} x($ Some $y)$, eq) $\in\{(\sigma, R)$. equivp $R \wedge(\forall x y . R x$
$y \longrightarrow \sigma x=\sigma y)\}$
using assms insert Rep-memory[of $\sigma$ ]
apply (auto simp: fun-upd-equivp-def)
apply (rename-tac xa xb, erule contrapos-np)
$\operatorname{apply}($ rule-tac $R=e q$ and $y=x a$ in equivp-transp,simp)
apply(erule equivp-symp, simp-all)
apply (rename-tac xa $x b$, erule contrapos-np)
$\operatorname{apply}($ rule-tac $R=e q$ and $y=x b$ in equivp-transp,simp-all)
done

```

\section*{Memory Transfer Based on Sharing Transformation}
```

fun transfer-rep :: (' $\left.\alpha \rightharpoonup{ }^{\prime} \beta\right) \times\left({ }^{\prime} \alpha \Rightarrow^{\prime} \alpha \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\left({ }^{\prime} \alpha \nabla^{\prime} \beta\right) \times$ (' $\alpha \Rightarrow^{\prime} \alpha \Rightarrow$ bool)
where transfer-rep $(m, r)$ src dst $=(m o(i d(d s t:=s r c))$,

$$
(\lambda x y \cdot r((i d(d s t:=s r c)) x)((i d(d s t:=s r c)) y)))
$$

lemma transfer-rep-simp :

```
transfer-rep \(X\) src dst \(=((\) fst X) o \((i d(d s t:=s r c))\),
\[
(\lambda x y \cdot(\text { snd } X)((i d(d s t:=s r c)) x)((i d(d s t:=s r c))
\]

\section*{y)))}
by (subst surjective-pairing [of X],subst transfer-rep.simps, simp)
lemma transfer-rep-sound:
assumes \(\sigma \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}\)
shows transfer-rep \(\sigma\) src dst \(\in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\) \(\sigma y)\}\)
proof -
obtain mem and \(R\)
where \(P:(m e m, R)=\sigma\) and \(E:\) equivp \(R\) and \(M: \forall x y . R x y \longrightarrow m e m x\) \(=m e m y\)
using assms equivpE by auto
obtain \(\mathrm{mem}^{\prime}\) and \(R^{\prime}\)
where \(P^{\prime}:\left(\right.\) mem \(\left.^{\prime}, R^{\prime}\right)=\) transfer-rep \(\sigma\) src dst
by (metis surj-pair)
have \(D 1:\) mem \(^{\prime}=(\) mem o \((\) id \((d s t:=s r c)))\)
and \(D 2: R^{\prime}=(\lambda x y \cdot R((i d(d s t:=s r c)) x)((i d(d s t:=s r c)) y))\)
using \(P P^{\prime}\) by auto
have equivp \(R^{\prime}\)
using \(E\) unfolding D2 equivp-def by metis
moreover have \(\forall y z . R^{\prime} y z \longrightarrow\) mem \(^{\prime} y=\) mem \(^{\prime} z\)
using \(M\) unfolding D1 D2 by auto
ultimately show ?thesis
using \(P^{\prime}\) by auto
qed
lift-definition transfer :: (' \(\alpha\), , \(\beta\)) memory \(\Rightarrow{ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\left({ }^{\prime} \alpha\right.\), ' \(\beta\) memory \(\quad\left(-{ }^{\prime}(-\bowtie\right.\) \(\left.\left.{ }^{\prime}\right)[0,111,111] 110\right)\)
is transfer-rep
using transfer-rep-sound
by \(\operatorname{simp}\)
lemma transfer-rep-sound2 :
transfer-rep (Rep-memory \(\sigma) a b \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x\) \(=\sigma y)\}\)
by (metis (lifting, mono-tags) Rep-memory transfer-rep-sound)
fun share-list2 :: (' \(\alpha,{ }^{\prime} \beta\)) memory \(\Rightarrow\left({ }^{\prime} \alpha \times{ }^{\prime} \alpha\right)\) list \(\Rightarrow\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)\) memory (infix '/®60)
where \(\sigma / \bowtie S=(\) foldl \((\lambda \sigma(a, b) .(\sigma(a \bowtie b))) \sigma S)\)
lemma sharelist2-Nil[simp]: \(\sigma / \bowtie[]=\sigma\) by \(\operatorname{simp}\)
lemma sharelist2-Cons[simp]: \(\sigma / \bowtie((a, b) \# S)=(\sigma(a \bowtie b) / \bowtie S)\) by simp
fun \(\quad\) share-list-rep \(::\left({ }^{\prime} \alpha \rightharpoonup^{\prime} \beta\right) \times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool \() \Rightarrow\left({ }^{\prime} \alpha \times{ }^{\prime} \alpha\right)\) list \(\Rightarrow\) \(\left(' \alpha \rightharpoonup{ }^{\prime} \beta\right) \times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool \()\)
where share-list-rep \((f, R)\) nlist \(=\) (foldl \((\lambda(f, R)(s r c, d s t)\). transfer-rep \((f, R)\) src dst) \((f, R)\)
nlist)
fun \(\quad\) share-list-rep \(::\left({ }^{\prime} \alpha-\right.\) ' \(\left.\beta\right) \times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool \() \Rightarrow\left({ }^{\prime} \alpha \times{ }^{\prime} \alpha\right)\) list \(\Rightarrow\) \(\left(' \alpha \rightharpoonup{ }^{\prime} \beta\right) \times\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.\) bool \()\)
where share-list-rep \({ }^{\prime}(f, R)[]=(f, R)\)
\(\mid\) share-list-rep \({ }^{\prime}(f, R)(n \#\) nlist \()=\) share-list-rep \({ }^{\prime}(\) transfer-rep \((f, R)(f\) st \(n)(\) snd n)) nlist
lemma share-list-rep \({ }^{\prime}\)-p:
assumes 1: \(P \sigma\)
and 2: \(\bigwedge\) src dst \(\sigma . P \sigma \Longrightarrow P\) (transfer-rep \(\sigma\) src dst)
shows \(P\) (share-list-rep \({ }^{\prime} \sigma\) list \()\)
using 12
apply (induct list arbitrary: \(\sigma \quad P\))
apply force
apply safe
apply (simp del: transfer-rep.simps)
using surjective-pairing
apply metis
done
lemma foldl-preserve-p:
assumes 1: \(P\) mem
and 2: \(\bigwedge y z\) mem.\(P\) mem \(\Longrightarrow P(f\) mem \(y z)\)
shows \(P(\) foldl \((\lambda a(y, z) . f\) mem \(y z)\) mem list \()\)
using 12
apply (induct list arbitrary: f mem, auto)
apply metis
done
lemma share-list-rep-p:
assumes 1: \(P \sigma\)
and 2: \(\bigwedge\) src dst \(\sigma . P \sigma \Longrightarrow P\) (transfer-rep \(\sigma\) src dst)
shows \(P\) (share-list-rep \(\sigma\) list)
using 12
apply (induct list arbitrary: \(\sigma\))
```

    apply force
    apply safe
    apply (simp del: transfer-rep.simps)
    using surjective-pairing
    apply metis
    done

```

The modification of the underlying equivalence relation on adresses is only defined on very strong conditions - which are fulfilled for the empty memory, but difficult to establish on a non-empty-one. And of course, the given relation must be proven to be an equivalence relation. So, the case is geared towards shared-memory scenarios where the sharing is defined initially once and for all.
```

definition update ${ }_{R}::\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)$ memory $\Rightarrow\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.$ bool $) \Rightarrow\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)$ memory $(-$
$:={ }_{R}-100$ )
where $\quad \sigma:={ }_{R} R \equiv$ Abs-memory $(f s t(\operatorname{Rep}-m e m o r y ~ \sigma), R)$
definition lookup $::\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)$ memory $\Rightarrow\left({ }^{\prime} \alpha \Rightarrow{ }^{\prime} \alpha \Rightarrow\right.$ bool $)\left(\$_{R}-100\right)$
where $\quad \$_{R} \sigma \equiv(\operatorname{snd}($ Rep-memory $\sigma))$
lemma update ${ }_{R}$-comp-lookup ${ }_{R}$ :
assumes equiv : equivp $R$
and sharing-conform : $\forall x y . R x y \longrightarrow f s t(R e p-m e m o r y ~ \sigma) x=f s t(R e p-m e m o r y$
б) $y$
shows $\left(\$_{R}\left(\sigma:={ }_{R} R\right)\right)=R$
unfolding lookup $R_{R}$-def update $e_{R}$-def
by (subst Abs-memory-inverse, simp-all add: equiv sharing-conform)

```

\section*{B. 4 Sharing Relation Definition}
definition sharing :: ' \(\alpha \Rightarrow\left({ }^{\prime} \alpha\right.\), ' \(\beta\))memory \(\Rightarrow{ }^{\prime} \alpha \Rightarrow\) bool ((- shares()-/ -) [201, 0, 201] 200)
where \(\quad\left(x\right.\) shares \(\left._{\sigma} y\right) \equiv(\operatorname{snd}(\) Rep-memory \(\sigma) x y)\)
definition Sharing \(::\) ' \(\alpha\) set \(\Rightarrow\left(' \alpha,{ }^{\prime} \beta\right)\) memory \(\Rightarrow\) ' \(\alpha\) set \(\Rightarrow\) bool
((-Shares()-/ -) [201, 0, 201] 200)
where \(\quad\left(X\right.\) Shares \(\left._{\sigma} Y\right) \equiv\left(\exists x \in X . \exists y \in Y . x\right.\) shares \(\left._{\sigma} y\right)\)

\section*{B. 5 Properties on Sharing Relation}
lemma sharing-charn:
equivp (snd (Rep-memory \(\sigma\)))
using Rep-memory[of \(\sigma\)]
unfolding sharing-def
by auto
lemma sharing-charn':
assumes 1: (\(x\) shares \(_{\sigma} y\))
```

shows ( }\exists\textrm{R}\mathrm{ . equivp R}\wedgeRx x
by (auto simp add: sharing-def snd-def equivp-def)
lemma sharing-charn2:
shows }\exists\textrm{x}y.(\mathrm{ equivp (snd (Rep-memory }\sigma))\wedge(snd (Rep-memory \sigma)) x y)
using sharing-charn [THEN equivp-reflp ]
by (simp)fast

- Lemma to show that ?x shares ? }\sigma\mathrm{ ?y 三 snd (Rep-memory ? }\sigma\mathrm{ ) ?x ?y is reflexive
lemma sharing-refl:(x shares\sigma x)
using insert Rep-memory[of \sigma]
by (auto simp: sharing-def elim: equivp-reflp)
- Lemma to show that ?x shares ?\sigma ?y \equiv snd (Rep-memory ? \sigma) ?x ?y is symetric
lemma sharing-sym [sym]:
assumes x shares}\sigma=
shows y shares}\sigma
using assms Rep-memory[of \sigma]
by (auto simp: sharing-def elim: equivp-symp)
lemma sharing-commute : x shares}\sigma\quady=(y\mp@subsup{\mathrm{ shares }}{\sigma}{}x
by(auto intro: sharing-sym)
-Lemma to show that ?x shares ?\sigma ?y \equiv snd (Rep-memory ? \sigma) ?x ?y is transitive
lemma sharing-trans [trans]:
assumes x shares}\sigma\mathrm{ y
and y \mp@subsup{\mathrm{ Shares}}{\sigma}{}z
shows x shares}\sigma\mathrm{ z
using assms insert Rep-memory[of \sigma]
by(auto simp: sharing-def elim: equivp-transp)
lemma shares-result:
assumes x shares}\sigma\mathrm{ y
shows fst (Rep-memory \sigma) x = fst (Rep-memory \sigma) y
using assms
unfolding sharing-def
using Rep-memory[of \sigma]
by auto

```
lemma sharing-init:
```

assumes 1:i\not=k
shows }\neg(i\mp@subsup{\mathrm{ shares }}{init}{}k
unfolding sharing-def init-def
using }
by (auto simp: Abs-memory-inverse identity-equivp)
lemma shares-init[simp]: (x shares }\mp@subsup{\mathrm{ init }}{}{\prime
unfolding sharing-def init-def
by (metis init-def sharing-init sharing-def sharing-refl)
lemma sharing-init-mem-list:
assumes 1:i\not=k
shows }\neg(i\mp@subsup{\mathrm{ shares init-mem-list S }}{\mathrm{ s }}{
unfolding sharing-def init-mem-list-def
using }
by (auto simp: Abs-memory-inverse identity-equivp)

```
definition reset \(::\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)\) memory \(\Rightarrow{ }^{\prime} \alpha\) set \(\Rightarrow\left({ }^{\prime} \alpha,{ }^{\prime} \beta\right)\) memory \(\left(-{ }^{\prime}\left(\right.\right.\) reset \(\left.\left.-{ }^{\prime}\right) 100\right)\)
where \(\quad \sigma(\) reset \(X)=\left(\operatorname{let}\left(\sigma^{\prime}, e q\right)=\right.\) Rep-memory \(\sigma\);
 \(e q^{\prime}=\lambda a b . e q a b \vee(\exists x \in X . e q\) a \(x \vee e q b x)\)
 in if \(X=\{ \}\) then \(\sigma\)
 else Abs-memory (fun-upd-equivp eq' \(\sigma^{\prime}\) (SOME x. \(x \in X\))

None, eq))
lemma reset-mt : \(\sigma(\) reset \(\})=\sigma\)
unfolding reset-def Let-def
by \(\operatorname{simp}\)
lemma reset-sh :
assumes \(*:\left(x\right.\) shares \(\left._{\sigma} y\right)\)
and \(\quad * *: x \in X\)
shows \(\quad \sigma(\) reset \(X) \$ y=\) None
oops

\section*{B. 6 Memory Domain Definition}
definition Domain :: (\(\alpha,{ }^{\prime} \beta\))memory \(\Rightarrow\) ' \(\alpha\) set
where Domain \(\sigma=\operatorname{dom}(f s t(\) Rep-memory \(\sigma))\)

\section*{B. 7 Properties on Memory Domain}
lemma Domain-charn:
assumes 1:x \(\in\) Domain \(\sigma\)
shows \(\exists y\). Some \(y=f s t\) (Rep-memory \(\sigma\)) \(x\)
using 1
by(auto simp: Domain-def)
lemma Domain-charn1:
assumes 1:x Domain \(\sigma\)
shows \(\exists y\). the (Some \(y\)) \(=\sigma \$ x\)
using 1
by(auto simp: Domain-def lookup-def)
- This lemma says that if \(x\) and \(y\) are quivalent this means that they are in the same set of equivalent classes
lemma shares-dom [code-unfold, intro]:
assumes \(x\) shares \(_{\sigma} y\)
shows \(\quad(x \in\) Domain \(\sigma)=(y \in\) Domain \(\sigma)\)
using insert Rep-memory[of \(\sigma\)] assms
by (auto simp: sharing-def Domain-def)
lemma Domain-mono:
assumes \(1: x \in\) Domain \(\sigma\)
and 2: \(\left(x\right.\) shares \(\left._{\sigma} y\right)\)
shows \(\quad y \in\) Domain \(\sigma\)
using 12 Rep-memory[of \(\sigma\)]
by (auto simp add: sharing-def Domain-def)
corollary Domain-nonshares :
assumes 1: \(x \in\) Domain \(\sigma\)
and 2: \(y \notin\) Domain \(\sigma\)
shows \(\quad \neg\left(x\right.\) shares \(\left._{\sigma} y\right)\)
using 12 Domain-mono
by (fast)
lemma Domain-init[simp]: Domain init \(=\{ \}\)
unfolding init-def Domain-def
by (simp-all add:identity-equivp Abs-memory-inverse)
lemma Domain-update \([\) simp \(]\) :Domain \(\left(\sigma\left(x:={ }_{\$} y\right)\right)=(\) Domain \(\sigma) \cup\{y \cdot y\) shares \(\left._{\sigma} x\right\}\)
unfolding update-def Domain-def sharing-def
proof (simp-all)
have * : Pair-upd-lifter (Rep-memory \(\sigma) x y \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R\) \(x y \longrightarrow \sigma x=\sigma y)\}\)
by (simp, metis (lifting, mono-tags) Rep-memory mem-Collect-eq update_sound')
have \(* *\) : snd (Rep-memory \(\sigma\)) \(x x\)
by (metis equivp-reflp sharing-charn2)
show dom (fst (Rep-memory (Abs-memory (Pair-upd-lifter (Rep-memory \(\sigma\)) \(x\) \(y))\)) \(=\)
\[
\operatorname{dom}(f s t(\text { Rep-memory } \sigma)) \cup\{y . \text { snd (Rep-memory } \sigma) \text { y } x\}
\]
apply (simp-all add: Abs-memory-inverse[OF *])
apply (subst surjective-pairing [of (Rep-memory \(\sigma\))])
apply (subst Pair-upd-lifter.simps, simp)
apply (auto simp: ** fun-upd-equivp-def)
done
qed
```

lemma Domain-share1:
assumes 1:a\inDomain \sigma
and 2:b D Domain \sigma
shows Domain (\sigma(a\bowtieb))= Domain \sigma
proof(simp-all add:Set.set-eq-iff,tactic ALLGOALS (rtac@{thm allI}))
fix }
have ***: transfer-rep (Rep-memory \sigma) (id a)(id b) \in{(\sigma,R). equivp R}\wedge(\forall
y.Rxy\longrightarrow\sigmax=\sigma y)}
by (metis (lifting, mono-tags) Rep-memory transfer-rep-sound)
show (x\in Domain (\sigma (a\bowtieb)))=(x\in Domain \sigma)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def
apply(subst Abs-memory-inverse[OF ***])
apply(insert 1 2, simp add: o-def transfer-rep-simp Domain-def )
apply(auto split: split-if split-if-asm )
done
qed
lemma Domain-share-tgt : a \in Domain \sigma\Longrightarrowb\inDomain (\sigma (a\bowtieb))
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(simp add: o-def transfer-rep-simp Domain-def )
by(auto split: split-if )
lemma Domain-share2 :
assumes 1:a\inDomain \sigma
and 2:b\not\inDomain \sigma
shows Domain }(\sigma(a\bowtieb))=(\mathrm{ Domain }\sigma-{x.x\mp@subsup{\mathrm{ shares }}{\sigma}{}b}\cup{b}
proof(simp-all add:Set.set-eq-iff, auto)
fix }
assume 3:x\in Domain (\sigma (a\bowtieb))
and 4:x\not=b
show }x\in\mathrm{ Domain }
apply(insert 3 4)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst (asm) Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1, simp add: o-def transfer-rep-simp Domain-def )
apply(auto split: split-if split-if-asm )
done

```
```

next
fix }
assume 3:x\in Domain (\sigma(a\bowtieb))
and 4:x\not=b
and 5:x shares}\sigma\mathrm{ b
have ** : x \& Domain \sigma using 2 5 Domain-mono by (fast )
show False
apply(insert 34 5, erule contrapos-pp, simp)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1, simp add: o-def transfer-rep-simp Domain-def )
apply(auto split: split-if split-if-asm )
using ** Domain-def domI apply fast
done
next
show b\in Domain (\sigma (a\bowtieb))
using 1 Domain-share-tgt by fast
next
fix }
assume 3:x\in Domain \sigma
and 4 : ᄀx shares
show }\quadx\in\operatorname{Domain}(\sigma(a\bowtieb)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1, simp add: o-def transfer-rep-simp Domain-def )
apply(auto split: split-if split-if-asm )
using 3 Domain-def domD
apply fast
done
qed
lemma Domain-share3:
assumes 1:a\not\in Domain \sigma
shows Domain (\sigma(a\bowtieb))=(\mathrm{ Domain }\sigma-{b})
proof(simp-all add:Set.set-eq-iff, auto)
fix }
assume 3: x \in Domain (\sigma (a\bowtieb))
show }\quadx\in\mathrm{ Domain }
apply(insert 3)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst (asm) Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1, simp add: o-def transfer-rep-simp Domain-def )
apply(auto split: split-if split-if-asm )
done
next
assume 3:b }\in\operatorname{Domain}(\sigma(a\bowtieb)

```
```

show False
apply(insert 1 3)
apply(erule contrapos-pp[of b \inDomain ( }\sigma(a\bowtieb))], simp
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1, simp add:o-def transfer-rep-simp Domain-def )
apply(auto split: split-if )
done
next
fix }
assume 3:x \in Domain \sigma
and 4:x\not=b
show }\quadx\in\operatorname{Domain}(\sigma(a\bowtieb)
apply(insert 3 4)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1, simp add:o-def transfer-rep-simp Domain-def )
apply(auto split: split-if split-if-asm )
done
qed

```
lemma Domain-transfer :
Domain \((\sigma(a \bowtie b))=(\) if \(a \notin\) Domain \(\sigma\) then (Domain \(\sigma-\{b\}\)) else if \(b \notin\) Domain \(\sigma\)
 then \(\left(\right.\) Domain \(\sigma-\left\{x . x\right.\) shares \(\left.\left._{\sigma} b\right\} \cup\{b\}\right)\)
 else Domain \(\sigma\))
using Domain-share1 Domain-share2 Domain-share3
by metis
lemma Domain-transfer-approx : Domain \((\sigma(a \bowtie b)) \subseteq \operatorname{Domain}(\sigma) \cup\{b\}\)
by(auto simp: Domain-transfer)

\section*{B. 8 Sharing Relation and Memory Update}
lemma sharing-upd: \(x \operatorname{shares}_{\left(\sigma\left(a:={ }_{\Phi} b\right)\right)} y=x\) shares \(_{\sigma} y\) using insert Rep-memory[of \(\sigma\)]
by(auto simp: sharing-def update-def Abs-memory-inverse[OF update_sound])
- this lemma says that if we do an update on an adress \(x\) all the elements that are equivalent of \(x\) are updated
lemma update ":
\(\sigma\left(x:={ }_{\$} y\right)=A b s\)-memory (fun-upd-equivp \(\left(\lambda x y . x\right.\) shares \(\left._{\sigma} y\right)\) (fst (Rep-memory
\(\sigma)\)) \(x\) (Some \(y\)),
\[
\text { snd }(\text { Rep-memory } \sigma))
\]
unfolding update-def sharing-def
by (metis update' update-def)
theorem update-cancel:
assumes \(x\) shares \(_{\sigma} x^{\prime}\)
shows \(\sigma(x:=\$ y)\left(x^{\prime}:=\$ z\right)=\left(\sigma\left(x^{\prime}:=\$ z\right)\right)\)
proof -
have \(*:(\) fun-upd-equivp \((\operatorname{snd}(\) Rep-memory \(\sigma))(f s t(\) Rep-memory \(\sigma)) x\) (Some \(y)\),snd (Rep-memory \(\sigma)\))
\(\in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}\)
unfolding fun-upd-equivp-def
by (rule update_sound[simplified fun-upd-equivp-def], simp)
have \(* *: \bigwedge R \sigma\). equivp \(R \Longrightarrow R x x^{\prime} \Longrightarrow\)
fun-upd-equivp \(R\) (fun-upd-equivp \(R \sigma x\) (Some \(y\))) \(x^{\prime}\) (Some \(z\)) \(=\) fun-upd-equivp \(R \sigma x^{\prime}(\) Some \(z)\)
unfolding fun-upd-equivp-def
apply (rule ext)
apply (case-tac \(R\) xa \(x^{\prime}\), auto)
apply (erule contrapos-np, erule equivp-transp, simp-all)
done
show ?thesis
apply (simp add: update)
apply(insert sharing-charn assms[simplified sharing-def])
apply (simp add: Abs-memory-inverse \([O F *] * *\))
done
qed
theorem update-commute:
assumes 1: \(\neg\left(x\right.\) shares \(\left._{\sigma} x^{\prime}\right)\)
shows \(\quad\left(\sigma\left(x:={ }_{\$} y\right)\right)\left(x^{\prime}:={ }_{\$} z\right)=\left(\sigma\left(x^{\prime}:={ }_{\$} z\right)\left(x:={ }_{\$} y\right)\right)\)

\section*{proof -}
have \(*: \bigwedge x y .(f u n-u p d-e q u i v p(s n d(\) Rep-memory \(\sigma))(f s t(\) Rep-memory \(\sigma)) x\)
(Some y),snd (Rep-memory \(\sigma\)))
\[
\in\{(\sigma, R) . \text { equivp } R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}
\]
unfolding fun-upd-equivp-def
by (rule update_sound [simplified fun-upd-equivp-def], simp)
have \(* *: \bigwedge R \sigma\). equivp \(R \Longrightarrow \neg R x x^{\prime} \Longrightarrow\) fun-upd-equivp \(R\) (fun-upd-equivp \(R \sigma x\) (Some \(y)) x^{\prime}\) (Some
z) \(=\)
fun-upd-equivp \(R\) (fun-upd-equivp \(R \sigma x^{\prime}(\) Some \(\left.z)\right) x\) (Some y)
unfolding fun-upd-equivp-def
apply (rule ext)
apply(case-tac \(R\) xa \(x^{\prime}\), auto)
apply (erule contrapos-np)
apply(frule equivp-transp, simp-all)
apply (erule equivp-symp, simp-all)
done
show ?thesis
apply (simp add: update)
apply(insert assms[simplified sharing-def])
```

        apply(simp add: Abs-memory-inverse [OF *] **)
    done
    qed

```

\section*{B. 9 Properties on lookup and update wrt the Sharing Relation}
```

lemma update-triv:
assumes 1: x shares}\sigma
and 2:y }\in\mathrm{ Domain }
shows }\quad\sigma(x:=$(\sigma$y))=
proof -
{
fix z
assume zx: z shares}\sigma
then have zy:z shares}\sigma\mathrm{ y
using 1 by (rule sharing-trans)
have F:y Domain \sigma\Longrightarrowx\mp@subsup{\mathrm{ shares}}{\sigma}{}y
\Longrightarrow Some (the (fst (Rep-memory \sigma ) x ) ) = f s t ( R e p - m e m o r y ~ \sigma ) ~ y ~
by(auto simp: Domain-def dest: shares-result)
have Some (the (fst (Rep-memory \sigma) y)) = fst (Rep-memory \sigma)z
using zx and shares-result [OF zy] shares-result [OF zx]
using F[OF 2 1]
by simp
} note 3 = this
show ?thesis
unfolding update" lookup-def fun-upd-equivp-def
by (simp add: 3 Rep-memory-inverse if-cong)
qed
lemma update-idem':
assumes 1:x shares}
and 2: x E Domain \sigma
and 3: }\sigma$x=
    shows }\sigma(y:=$z)=
proof -
have * : y \in Domain \sigma
by(simp add: shares-dom[OF 1, symmetric] 2)
have **: }\sigma(x:=\mp@subsup{=}{$}{}(\sigma$y))=
using 1 2*
by (simp add: update-triv)
also have (\sigma$y)=\sigma$x
by (simp only: lookup-def shares-result [OF 1])
finally show ?thesis
using 12 3 sharing-sym update-triv
by fast
qed
lemma update-idem:

```

```

    and 3: }\sigma$x=
    shows }\sigma(x:=\mp@subsup{$}{$}{}z)=
    proof -
show ?thesis
using 2 3 sharing-refl update-triv
by fast
qed

```

```

proof -
have *:( }\lambdaz.\mathrm{ if z shares}\sigmax\mathrm{ then Some y else fst (Rep-memory }\sigma)z\mathrm{ , snd
(Rep-memory \sigma))
\in{(\sigma,R). equivp R}\wedge(\forallxy.Rxy\longrightarrow\sigmax=\sigmay)
unfolding sharing-def
by(rule update_sound[simplified fun-upd-equivp-def], simp)
show ?thesis
proof (cases z shares}\sigma=\
case True
assume A: z shares}\sigma
show }\quad\sigma(x:=\mp@subsup{$}{$}{}y)$z=(\mathrm{ if z shares}\sigmax\mathrm{ then y else }\sigma$z
unfolding update" lookup-def fun-upd-equivp-def
by(simp add: Abs-memory-inverse [OF *])
next
case False
assume A: ᄀ z shares}\sigma
show }\quad\sigma(x:=\mp@subsup{$}{$}{}y)$z=(\mathrm{ if z shares}\sigma\mathrm{ 生 then y else }\sigma$z
unfolding update" lookup-def fun-upd-equivp-def
by(simp add: Abs-memory-inverse [OF *])
qed
qed
lemma update-share:
assumes z \mp@subsup{\mathrm{ shares }}{\sigma}{}x
shows }\sigma(x:=\$ a)$z=
    using assms
    by (simp only: update-apply if-True)
lemma update-other:
    assumes }\neg(z\mp@subsup{\mathrm{ shares }}{\sigma}{}x
    shows }\sigma(x:=$a)$z=\sigma$
using assms
by (simp only: update-apply if-False)
lemma lookup-update-rep:
assumes 1:(snd (Rep-memory \sigma}))x
shows (fst (Pair-upd-lifter (Rep-memory \sigma})\mathrm{ src dst)) x=
(fst (Pair-upd-lifter (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{ ) src dst)) y
using 1 shares-result sharing-def sharing-upd update.rep-eq

```
```

by (metis (hide-lams, no-types))
lemma lookup-update-rep '':
assumes 1: x shares}\sigma y
shows (\sigma (src :=\$dst)) \$ x = (\sigma (src :=\$dst)) \$ y
using 1 lookup-def lookup-update-rep sharing-def update.rep-eq
by metis

```
```

theorem memory-ext:

```
theorem memory-ext:
assumes * : \xy.(x\mp@subsup{\mathrm{ shares}}{\sigma}{}y)=(x\mp@subsup{\mathrm{ shares }}{\sigma}{}
assumes * : \xy.(x\mp@subsup{\mathrm{ shares}}{\sigma}{}y)=(x\mp@subsup{\mathrm{ shares }}{\sigma}{}
 and ** :Domain \sigma=Domain \sigma
 and ** :Domain \sigma=Domain \sigma
 and *** : \bigwedgex.\sigma$x= 多$x
 and *** : \bigwedgex.\sigma$x= 多$x
shows }\quad\sigma=\mp@subsup{\sigma}{}{\prime
shows }\quad\sigma=\mp@subsup{\sigma}{}{\prime
apply(subst Rep-memory-inverse[symmetric])
apply(subst Rep-memory-inverse[symmetric])
apply(subst (3) Rep-memory-inverse[symmetric])
apply(subst (3) Rep-memory-inverse[symmetric])
apply(rule arg-cong[of - Abs-memory])
apply(rule arg-cong[of - Abs-memory])
apply(auto simp:Product-Type.prod-eq-iff)
apply(auto simp:Product-Type.prod-eq-iff)
proof -
proof -
 show fst (Rep-memory \sigma) = fst (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{)
 show fst (Rep-memory \sigma) = fst (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{)
 apply(rule ext, insert ** ***, simp add:lookup-def Domain-def)
 apply(rule ext, insert ** ***, simp add:lookup-def Domain-def)
 apply (metis (lifting, no-types) domD domIff the.simps)
 apply (metis (lifting, no-types) domD domIff the.simps)
 done
 done
next
next
 show snd (Rep-memory \sigma) = snd (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{)
 show snd (Rep-memory \sigma) = snd (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{)
 by(rule ext, rule ext, insert *, simp add: sharing-def)
 by(rule ext, rule ext, insert *, simp add: sharing-def)
qed
```

qed

```

Nice connection between sharing relation, domain of the memory and content equaltiy on the one hand and equality on the other; this proves that our memory model is fully abstract in these three operations.
```

corollary memory-ext2: $\left(\sigma=\sigma^{\prime}\right)=\left(\left(\forall x y .\left(x^{\text {shares }_{\sigma}} y\right)=\left(x\right.\right.\right.$ shares $\left.\left._{\sigma^{\prime}} y\right)\right)$
$\wedge$ Domain $\sigma=$ Domain $\sigma^{\prime}$
$\left.\wedge\left(\forall x \cdot \sigma \$ x=\sigma^{\prime} \$ x\right)\right)$
by (auto intro: memory-ext)

```

\section*{B. 10 Rules On Sharing and Memory Transfer}
lemma transfer-rep-inv-E:
 assumes 1: \(\sigma \in\{(\sigma, R)\). equivp \(R \wedge(\forall x y . R x y \longrightarrow \sigma x=\sigma y)\}\)
 and 2: memory-inv (transfer-rep \(\sigma\) src dst) \(\Longrightarrow Q\)
 shows \(Q\)
 using assms transfer-rep-sound \([\) of \(\sigma]\)
 by (auto simp: Abs-memory-inverse)
lemma transfer-rep-fst1:
 assumes 1: \(\sigma=\) fst(transfer-rep (Rep-memory \(\sigma^{\prime}\)) src dst)

```

    using 1 unfolding transfer-rep-simp
    by simp
    lemma transfer-rep-fst2:
assumes 1:\sigma=fst(transfer-rep (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{ ) src dst)
shows }\x.x\not=dst\Longrightarrow\sigmax=(fst(Rep-memory \sigma ) ) (id x)
using 1 unfolding transfer-rep-simp
by simp
lemma lookup-transfer-rep':
(fst (transfer-rep (Rep-memory \sigma}\mp@subsup{\sigma}{}{\prime})\mathrm{ src dst)) src =
(fst (transfer-rep (Rep-memory }\mp@subsup{\sigma}{}{\prime}\mathrm{ ) src dst)) dst
using Rep-memory [of \sigma']
apply (erule-tac src = src and dst = dst in transfer-rep-inv-E)
apply (rotate-tac 1)
apply (subst (asm) surjective-pairing[of (transfer-rep (Rep-memory \sigma') src dst)])
unfolding memory-inv.simps
apply (erule conjE)
apply (erule allE)+
apply (erule impE)
unfolding transfer-rep-simp
apply auto
using equivp-reflp snd-memory-equivp
apply metis
done

```
theorem share-transfer:
\[
\begin{aligned}
x_{\operatorname{shares}_{\sigma(a \bowtie b)} y=}(& (y=b \wedge(x=b \\
& \left.\left.\vee\left(x \neq b \wedge x \operatorname{shares}_{\sigma} a\right)\right)\right) \vee \\
(y \neq b \wedge & \left(\left(x=b \wedge a \operatorname{shares}_{\sigma} y\right)\right. \\
& \left.\left.\left.\vee\left(x \neq b \wedge x \operatorname{shares}_{\sigma} y\right)\right)\right)\right)
\end{aligned}
\]
unfolding sharing-def transfer-def
unfolding transfer-def map-fun-def o-def id-def
apply (subst Abs-memory-inverse[OF transfer-rep-sound2], simp add: transfer-rep-simp)
by (metis equivp-reflp sharing-charn2)
lemma transfer-share: shares \(_{\sigma(a \bowtie b)}\) b by (simp add: share-transfer sharing-refl)
lemma transfer-share-sym:a shares \({ }_{\sigma}(b \bowtie a)\) by (simp add: share-transfer sharing-refl)
lemma transfer-share-mono: \(x\) shares \(_{\sigma} y \Longrightarrow \neg\left(x\right.\) shares \(\left._{\sigma} b\right) \Longrightarrow\left(x\right.\) shares \(_{\sigma}(a \bowtie b)\) y)
by (auto simp: share-transfer sharing-refl)
```

lemma transfer-share-charn:
\neg(x\mp@subsup{\mathrm{ shares}}{\sigma}{}b)\Longrightarrow\neg(y\mp@subsup{\mathrm{ shares}}{\sigma}{}b)\Longrightarrowx\mp@subsup{\operatorname{shares}}{\sigma(a\bowtieb)}{}\mp@code{y=x\mp@subsup{\operatorname{shares}}{\sigma}{}y}\mp@code{y}
by(auto simp: share-transfer sharing-refl)
lemma transfer-share-trans:(a shares}\sigma|)\Longrightarrow(x\mp@subsup{\mathrm{ shares}}{\sigma(a\bowtieb)}{}\mp@subsup{}{}{\prime}
by(auto simp: share-transfer sharing-refl sharing-sym)
lemma transfer-share-trans-sym:(a shares}\sigma=y)\Longrightarrow(b\mp@subsup{\operatorname{shares}}{(\sigma(a\bowtieb))}{}y
using transfer-share-trans sharing-sym by fast
lemma transfer-share-trans': (a shares}(\sigma(a\bowtieb)) z)\Longrightarrow(b\mp@subsup{\operatorname{shares}}{(\sigma(a\bowtieb))}{
using transfer-share sharing-sym sharing-trans by fast
lemma transfer-tri : x shares}\sigma(a\bowtieb) y\Longrightarrowx\mp@subsup{shares}{\sigma}{}b\veeb\mp@subsup{\mathrm{ shares}\sigma}{y}{y}\vee
shares\sigma y
by (metis sharing-sym transfer-share-charn)
lemma transfer-tri': \neg x shares}\sigma(a\bowtieb) y\Longrightarrowy \mp@subsup{\mathrm{ shares}}{\sigma}{}b\vee\negx\mp@subsup{\mathrm{ shares }}{\sigma}{}
by (metis sharing-sym sharing-trans transfer-share-mono)
lemma transfer-dest':
assumes 1:a shares}\sigma(a\bowtieb)
and 2:b}\not=
shows a shares}\sigma
using assms by(auto simp: share-transfer sharing-refl sharing-sym)
lemma transfer-dest :
assumes 1: }\neg(\mp@subsup{x}{\mp@subsup{s}{\mathrm{ shares}}{\sigma}}{}a
and 2 : }x\not=
and 3 : x shares}\sigma\mathrm{ b
shows }\quad\neg(x\mp@subsup{\mathrm{ shares}}{\sigma(a\bowtieb)}{
using assms by(auto simp: share-transfer sharing-refl sharing-sym)
lemma transfer-dest'\prime: }x=b\Longrightarrowy\mp@subsup{\mathrm{ shares}}{\sigma}{}a\Longrightarrowx\mp@subsup{\operatorname{shares}}{\sigma(a\bowtieb)}{}\mp@subsup{}{}{|
by (metis sharing-sym transfer-share-trans-sym)
thm share-transfer
transfer-share
transfer-share-sym

```
```

sharing-sym [THEN transfer-share-trans]
sharing-sym [THEN transfer-share-trans-sym]
transfer-share-trans'
transfer-dest"
transfer-dest'
transfer-tri'
transfer-share-mono
transfer-tri
transfer-share-charn
transfer-dest

```

\section*{B. 11 Properties on Memory Transfer and Lookup}
lemma transfer-share-lookup 1: \((\sigma(x \bowtie y)) \$ x=\sigma \$ x\) using lookup-transfer-rep' transfer-rep-fst1 unfolding lookup-def transfer.rep-eq by metis
lemma transfer-share-lookup2:
\((\sigma(x \bowtie y)) \$ y=\sigma \$ x\)
using transfer-rep-fst1
unfolding transfer.rep-eq lookup-def
by metis
lemma add \(_{e}\)-not-share-lookup:
assumes 1: \(\neg\left(x\right.\) shares \(\left._{\sigma} z\right)\)
and 2: \(\neg\left(y\right.\) shares \(\left._{\sigma} z\right)\)
shows \(\sigma(x \bowtie y) \$ z=\sigma \$ z\)
using assms
unfolding sharing-def lookup-def transfer.rep-eq
using id-def sharing-def sharing-refl transfer-rep-fst2
by metis
lemma transfer-share-dom:
assumes 1: \(z \in\) Domain \(\sigma\)
and 2: \(\neg\left(y\right.\) shares \(\left._{\sigma} z\right)\)
shows \(\quad(\sigma(x \bowtie y)) \$ z=\sigma \$ z\)
using assms
unfolding Domain-def sharing-def lookup-def
using 2 transfer.rep-eq id-apply sharing-refl transfer-rep-fst2
by metis
lemma shares-result':
assumes 1 : \(\left(x^{\text {shares }_{\sigma}} y\right)\)
shows \(\quad \sigma \$ x=\sigma \$ y\)
using assms lookup-def shares-result
by metis
```

lemma transfer-share-cancel1:
assumes 1: (x shares}\sigma\mathrm{ z)
shows }\quad(\sigma(x\bowtiey))$z=\sigma$
using 1 transfer.rep-eq transfer-share-trans lookup-def
transfer-rep-fst1 shares-result
by (metis)

```

\section*{B. 12 Test on Sharing and Transfer via smt ...}
lemma \(\forall x y . x \neq y \longrightarrow \neg\left(x\right.\) shares \(\left._{\sigma} y\right) \Longrightarrow\)
 \(\sigma \$ x>\sigma \$ y \Longrightarrow \sigma(3 \bowtie(4::\) nat \())=\sigma^{\prime} \Longrightarrow\)
 \(\sigma^{\prime \prime}=\left(\sigma^{\prime}\left(3:==_{\$}\left(\left(\sigma^{\prime} \$ 4\right)+2\right)\right)\right) \Longrightarrow\)
 \(x \neq 3 \Longrightarrow x \neq 4 \Longrightarrow y \neq 3 \Longrightarrow y \neq 4\)
 \(\Longrightarrow \sigma^{\prime \prime} \$ x>\sigma^{\prime \prime} \$ y\)
by (smt add \(d_{e}\)-not-share-lookup transfer-share-charn update-apply)

\section*{B. 13 Instrumentation of the smt Solver}
lemma transfer-share-charn-smt :
\[
\begin{aligned}
& \neg\left(i \text { shares }_{\sigma} k^{\prime}\right) \wedge \\
& \neg\left(k \text { shares }_{\sigma} k^{\prime}\right) \longrightarrow \\
& i \text { shares } \\
& \sigma\left(i^{\prime} \bowtie k^{\prime}\right) k=i \text { shares }_{\sigma} k \\
& \text { using transfer-share-charn } \\
& \text { by fast }
\end{aligned}
\]
lemma add \(_{e}\)-not-share-lookup-smt:
\(\neg\left(x\right.\) shares \(\left._{\sigma} z\right) \wedge \neg\left(y\right.\) shares \(\left._{\sigma} z\right) \longrightarrow(\sigma(x \bowtie y) \$ z)=(\sigma \$ z)\)
using add \(e_{e}\)-not-share-lookup
by auto
lemma transfer-share-dom-smt:
\(z \in\) Domain \(\sigma \wedge \neg\left(y\right.\) shares \(\left._{\sigma} z\right) \longrightarrow(\sigma(x \bowtie y)) \$ z=\sigma \$ z\)
using transfer-share-dom
by auto
lemma transfer-share-cancel1-smt:
\(\left(x\right.\) shares \(\left._{\sigma} z\right) \longrightarrow(\sigma(x \bowtie y)) \$ z=\sigma \$ x\)
using transfer-share-cancel1
by auto
lemma lookup-update-rep"-smt:
\(x\) shares \(_{\sigma} y \longrightarrow\left(\sigma\left(s r c:={ }_{\$} d s t\right)\right) \$ x=\left(\sigma\left(\right.\right.\) src \(\left.\left.:={ }_{\$} d s t\right)\right) \$ y\)
using lookup-update-rep \({ }^{\prime \prime}\)
by auto
theorem update-commute-smt:
\(\neg\left(x\right.\) shares \(\left._{\sigma} x^{\prime}\right) \longrightarrow\left((\sigma(x:=\$ y))\left(x^{\prime}:==_{\$} z\right)\right)=\left(\sigma\left(x^{\prime}:=_{\$} z\right)\left(x:={ }_{\$} y\right)\right)\)
using update-commute
by auto
theorem update-cancel-smt:
\(\left(x\right.\) shares \(\left._{\sigma} x^{\prime}\right) \longrightarrow\left(\sigma\left(x:={ }_{\$} y\right)\left(x^{\prime}:={ }_{\$} z\right)\right)=\left(\sigma\left(x^{\prime}:={ }_{\$} z\right)\right)\)
using update-cancel
by auto
lemma update-other-smt:
\(\neg\left(z\right.\) shares \(\left._{\sigma} x\right) \longrightarrow(\sigma(x:=\$ a) \$ z)=\sigma \$ z\)
using update-other
by auto
lemma update-share-smt:
\(\left(z\right.\) shares \(\left._{\sigma} x\right) \longrightarrow\left(\sigma\left(x:={ }_{\$} a\right) \$ z\right)=a\)
using update-share
by auto
lemma update-idem-smt :
\(\left(x\right.\) shares \(\left._{\sigma} y\right) \wedge x \in\) Domain \(\sigma \wedge(\sigma \$ x=z) \longrightarrow(\sigma(x:=\$ z))=\sigma\) using update-idem
by fast
lemma update-triv-smt:
\(\left(x\right.\) shares \(\left._{\sigma} y\right) \wedge y \in\) Domain \(\sigma \longrightarrow(\sigma(x:=\Phi(\sigma \$ y)))=\sigma\)
using update-triv
by auto
lemma shares-result-smt:
\(x\) shares \(_{\sigma} y \longrightarrow \sigma \$ x=\sigma \$ y\)
using shares-result \({ }^{\prime}\)
by fast
lemma shares-dom-smt :
\(x\) shares \(_{\sigma} y \longrightarrow(x \in\) Domain \(\sigma)=(y \in\) Domain \(\sigma)\)
using shares-dom by fast
lemma sharing-sym-smt :
\(x\) shares \(_{\sigma} y \longrightarrow y\) shares \(_{\sigma} x\)
using sharing-sym
by (auto)
lemma sharing-trans-smt:
\(x\) shares \(_{\sigma} y \wedge y\) shares \(_{\sigma} z \longrightarrow x\) shares \(_{\sigma} z\)
using sharing-trans
```

    by(auto)
    lemma nat-0-le-smt: 0\leqz\longrightarrowint (nat z)=z
by transfer clarsimp
lemma nat-le-0-smt: 0>z \longrightarrow int (nat z)=0
by transfer clarsimp
lemma transfer-share-trans-smt:
(x\mp@subsup{shares}{\sigma}{}z)\longrightarrow(z\mp@subsup{\operatorname{shares}}{\sigma(x\bowtiey)}{}\mp@subsup{)}{}{\prime})
using transfer-share-trans
by fast
lemma transfer-share-mono-smt:
(x shares}\sigma y)\wedge\neg(x\mp@subsup{\mathrm{ shares }\sigma}{}{\prime}\mp@subsup{y}{}{\prime})\longrightarrow(x\mp@subsup{\mathrm{ shares }}{\sigma}{}(\mp@subsup{x}{}{\prime}\bowtie\mp@subsup{y}{}{\prime})y
using transfer-share-mono
by fast
lemma transfer-share-trans'-smt:
(x shares}(\sigma(x\bowtiey)) z)\longrightarrow(y\mp@subsup{\operatorname{shares}}{(\sigma(x\bowtiey))}{
using transfer-share-trans'
by fast
lemma transfer-share-old-new-trans-smt:
(x shares}
using transfer-share-trans-sym
by fast
lemma transfer-share-old-new-trans1-smt:
a shares}\sigma\sigma b ^ a shares\sigma c \longrightarrow <
(c shares}(\sigma(a\bowtied)) b
using transfer-share-trans-smt sharing-sym-smt sharing-trans-smt
by metis
lemma Domain-mono-smt:
x\in Domain \sigma^(x shares}\sigma y)\longrightarrowy\in Domain \sigma
using Domain-mono
by fast
lemma sharing-upd-smt: $x \operatorname{shares}_{\left(\sigma\left(a:={ }_{\$} b\right)\right)} y=x$ shares $_{\sigma} y$ using sharing-upd
by fast

```
```

lemma sharing-init-mem-list-smt :
i\not=k\longrightarrow\neg(i shares init-mem-list S k)
using sharing-init-mem-list
by fast

```
lemma mem1-smt: \((\sigma(a \bowtie b) \$ a)=(\sigma(a \bowtie b) \$ b)\)
by (metis transfer-share-lookup1 transfer-share-lookup2)

\section*{B. 14 Tools for the initialization of the memory}
definition memory-fst-eq init \(::\) int list \(\Rightarrow\) int list \(\Rightarrow\) (int, int)memory
where memory-fst-eq init \(A D D V A L=\) \((\) foldl \((\lambda m(x, y) .(m(x:=\$ y)))\) init \((z i p A D D V A L))\)
definition memory-snd-eq init \(::\) int list \(\Rightarrow\) int list \(\Rightarrow\) (int, int) memory \(\Rightarrow\) (int, int)memory
where memory-snd-eq \(q_{\text {init }} S R C D S T m=\) \((\) foldl \((\lambda m(x, y) .(m(x \bowtie y))) m(z i p S R C D S T))\)
definition memory-eq init \(^{\text {: }}\) int list \(\Rightarrow\) int list \(\Rightarrow\) int list \(\Rightarrow\) (int, int)memory
where memory-eq init \(S R C\) VAL DST =
foldl (\(\lambda m\) (SRC, DST). memory-snd-eq \(q_{\text {init }} S R C\) DST m) (memory-fst-eq init \(S R C\) VAL) \([(S R C, D S T)]\)
lemmas sharing-smt \(=\) sharing-refl
sharing-commute transfer-share nat-le-0-smt nat-0-le-smt sharing-sym-smt transfer-share-lookup1 transfer-share-lookup2 sharing-init-mem-list-smt sharing-upd-smt shares-result-smt transfer-share-old-new-trans-smt transfer-share-trans-smt mem1-smt update-share-smt shares-dom-smt Domain-mono-smt sharing-trans-smt transfer-share-cancel1-smt transfer-share-trans'-smt update-apply update-other-smt update-cancel-smt transfer-share-old-new-trans1-smt lookup-update-rep"-smt update-triv-smt transfer-share-mono-smt update-commute-smt transfer-share-dom-smt \(\quad a d d_{e}\)-not-share-lookup-smt update-idem-smt transfer-share-charn-smt
lemmas sharing-refl-smt \(=\) sharing-refl

\section*{B. 15 An Intrastructure for Global Memory Spaces}

Memory spaces are common concepts in Operating System (OS) design since it is a major objective of OS kernels to separate logical, linear memory spaces belonging to different processes (or in other terminologies such as PiKeOS: tasks) from each other. We achieve this goal by modeling the adresses of memory spaces as a pair of a subject (e.g. process or task, denominated by a process-id or task-id) and a location (a conventional adress).

Our model is still generic - we do not impose a particular type for subjects or locations (which could be modeled in a concrete context by an enumeration type as well as integers of bitvector representations); for the latter, however, we require that they are instances of the type class ' \(\alpha\) assuring that there is a minimum of infrastructure for address calculation: there must exist a \(0::^{\prime} a\)-element, a distinct \(1:: ' a\)-element and an addition operation with the usual properties.
```

fun initglobalmem :: (('sub $\times$ 'loc:::comm-semiring-1), ' $\beta$ ) memory
$\Rightarrow($ 'sub $\times$ 'loc $) \Rightarrow$ ' ${ }^{\text {list }}$
$\Rightarrow(($ 'sub $\times$ 'loc), ' $\beta$ ) memory $(-|>-<|-[60,60,60] 70)$
where $\sigma \mid>$ start $<\mid[]=\sigma$
$|\sigma|>(s u b, l o c)<\mid(a \# S)=\left(\left(\sigma\left((s u b, l o c):==_{\text {\& }} a\right)\right)|>(s u b, l o c+1)<| S\right)$
lemma Domain-mem-init-Nil : Domain $(\sigma \mid>$ start $<\mid[])=\operatorname{Domain} \sigma$ by $\operatorname{simp}$

```

\section*{Example}
type-synonym task-id \(=\) int
type-synonym loc \(=i n t\)
```

type-synonym global-mem $=(($ task-id $\times$ loc $)$, int $)$ memory
definition $\sigma_{0}::$ global-mem
where $\quad \sigma_{0} \equiv$ init $|>(0,0)<|[0,0,0,0]$
$1>(2,0)<\mid[0,0]$
$1>(4,0)<\mid[2,0]$

```
lemma \(\sigma_{0}\)-Domain: Domain \(\sigma_{0}=\{(4,1),(4,0),(2,1),(2,0),(0,3),(0,2)\), \((0,1),(0,0)\}\)
unfolding \(\sigma_{0}\)-def
by (simp add: sharing-upd)
notation transfer \(\left(a d d_{e}\right)\)
lemmas \(a d d_{e}-\) def \(=\) transfer-def
lemmas \(a d d_{e}\)-rep-eq \(=\) transfer.rep-eq
lemmas transfer-share-old-new-trans \(=\) transfer-share-trans-sym
```

lemmas sharing-commute-smt = sharing-commute
lemmas update-apply-smt = update-apply
lemmas transfer-share-lookup2-smt = transfer-share-lookup2
lemmas transfer-share-lookup1-smt = transfer-share-lookup1
lemmas transfer-share-smt = transfer-share

```
end
theory IPC-errors-type
 imports ../ TypeSchemes
 ../Memory/SharedMemoryNew
begin

\section*{B. 16 Error codes datatype}

\section*{C HOL representation of PikeOS IPC error codes}
- error codes are returned if an IPC action is aborted, the error codes has the following specificities:
- Must indicates which stage the error was occured.
- Each IPC stage has its own set of error codes
- Errors in the receiving stages does not affect sending stages
- Errors in sending stages affect receiving stages

We have another type of errors which is related to the different memory functionality.
— IPC errors
datatype error-IPC=
no-IPC-error
| error-IPC-4 - if an action is used in stepping function with the wrong stage - errors of the SEND part of IPC
| error-IPC-21-in-PREP-SEND - IF the receiver is an OR
| error-IPC-22-in-PREP-SEND - IF the receiver is an CR and the sender is not the one who can send msg to this receiver
| error-IPC-23-in-PREP-SEND - IF the receiver is an NR
| error-IPC-4-in-PREP-SEND - if an action is used in the wrong stage
| error-IPC-21-in-PREP-RECV - IF the receiver is an OR
| error-IPC-22-in-PREP-RECV - IF the receiver is an CR and the sender is not the one who can send msg to this receiver
| error-IPC-23-in-PREP-RECV - IF the receiver is an NR
| error-IPC-4-in-PREP-RECV- if an action is used in the wrong stage
| error-IPC-1-in-WAIT-SEND - if the thread has no rights to communicate with his partner
| error-IPC-2-in-WAIT-SEND - if the thread has no rights to access to this list of virtual adresses
| error-IPC-3-in-WAIT-SEND - if the thread try to send an IPC msg to him self | error-IPC-4-in-WAIT-SEND - if an action is used in the wrong stage
| error-IPC-5-in-WAIT-SEND - if the receiver dont exist in the list of threads in the systeme
| error-IPC-6-in-WAIT-SEND - if the list of threads in the systeme is Nil
| error-IPC-7-in-WAIT-SEND - if the caller can not communicate with the receiver
|error-IPC-1-in-BUF-SEND - if the thread has no rights to access to this list of virtual adresses
|error-IPC-1-in-BUF-RECV - if the thread has no rights to access to this list of virtual adresses
| error-IPC-1-in-WAIT-RECV - if the thread has no rights to communicate with his partner
| error-IPC-2-in-WAIT-RECV - if the thread has no rights to access to this list of virtual adresses
| error-IPC-3-in-WAIT-RECV - if the thread try to send an IPC msg to him self
| error-IPC-4-in-WAIT-RECV- if an action is used in the wrong stage
| error-IPC-5-in-WAIT-RECV - if the receiver dont exist in the list of threads in the systeme Go to Done stage
| error-IPC-6-in-WAIT-RECV - if the list of threads in the systeme is Nil
| error-IPC-7-in-WAIT-RECV - if the caller can not communicate with the receiver
- memory errors
datatype error-memory \(=\)
no-mem-error - no errors related to memory adresses
| not-valid-sender-addr-in-PREP-SEND - error related to the adresses of the sender
| not-valid-receiver-addr-in-PREP-SEND - error related to the adresses of the receiver
| not-valid-receiver-addr-in-PREP-RECV
| not-valid-sender-addr-in-PREP-RECV
- datatype that contain memory and IPC errors
```

datatype errors =
NO-ERRORS
| ERROR-MEM error-memory
| ERROR-IPC error-IPC

```
```

type-synonym error ipc = errors
end
theory IPC-thread-type
imports ../Memory/SharedMemoryNew

```
 ../ TypeSchemes

\section*{begin}

\section*{D HOL representation of PikeOS threads type}
datatype thread-state \(=C U R R E N T|W A I T I N G| R E A D Y|S T O P P E D| I N\) ACTIVE

In addition to the communication rights, the scope of IPC communication can further constrained by the receiving thread.
- If thread initiates an OR operation, any threads having rights can send msg to this thread.
- If thread initiates CR operation, it limits the IPC sending partner to one specific thread.
- If thread initiates NR operation, no thread can send a message to this thread.
datatype th-ipc-st \(=\)
\(O R\) - Open Receive
| \(C R\) - Close Receive
| NR - Nil Receive
datatype partition \(_{\text {enum }}=\) part0 |part1 |part2
datatype task \(_{\text {enum }}=\) task0 |task1 |task2
datatype thread \({ }_{\text {enum }}=\) th0 |th1 |th2
type-synonym thread \(_{\text {id }}=\left(\right.\) partition \(_{\text {enum }} *\) task \(_{\text {enum }} *\) thread \(\left._{\text {enum }}\right)\)
type-synonym thread \(_{i p c}=\left(\right.\) thread \(_{i d}\), thread-state, th-ipc-st, (int, int) memory ,thread \({ }_{i d}\)) thread

\section*{D. 1 interface between thread and memory}
definition update-th-smm-equiv

\section*{D. 2 Relation between threads adresses and memory adresses}

This section contains some predicate that defines relations between own thread addresses and memory addresses those predicate will be used to define some error codes related to own thread addresses.
— predicate that specify if this list of addresses are part of the addresses of the memory
definition is-part-mem ::
\[
\left(^{\prime} a,^{\prime} b\right) \text { memory } \Rightarrow{ }^{\prime} a \Rightarrow \text { bool }
\]
where \(i s\)-part-mem mem addr \(=(a d d r \in(\) dom ofst o Rep-memory \()\) mem \()\)
definition is-part-mem-th ::
\(\left({ }^{\prime} c,{ }^{\prime} d,,^{\prime} e,\left({ }^{\prime} a, ' b\right)\right.\) memory, \(\left.' f,{ }^{\prime} g\right)\) thread-scheme \(\Rightarrow\left({ }^{\prime} a, ' b\right)\) memory \(\Rightarrow{ }^{\prime} a\) \(\Rightarrow\) bool
where is-part-mem-th th mem addr \(=(\) is-part-mem (own-vmem-adr th) addr \(\longrightarrow\) is-part-mem mem addr)
- predicate that specify if this list of addresses are part of the an other list of addresses
definition is-part-addr-addr ::
\[
\left(^{\prime} a,,^{\prime} b\right) \text { memory } \Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right) \text { memor } y \Rightarrow^{\prime} a \Rightarrow \text { bool }
\]
where \(i s\)-part-addr-addr mem mem' \(a d d r=(\) is-part-mem mem' \(a d d r \longrightarrow\) is-part-mem mem addr)
- This definition assures that a given list of addresses is part of list of addresses of thread
definition is-part-addr-th ::
\(\left(^{\prime} c,{ }^{\prime} d,{ }^{\prime} e,\left({ }^{\prime} a,{ }^{\prime} b\right)\right.\) memory, \(\left.' f,{ }^{\prime} g\right)\) thread-scheme \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool
where \(i s\)-part-addr-th th addr \(=(\) is-part-mem (own-vmem-adr th) \(a d d r)\)
— This predicate assures that a given list of addresses is a part of memory addresses and part of thread addresses and the thread addresses are part of the memory
definition is-part-addr-th-mem ::
\(\left({ }^{\prime} c,{ }^{\prime} d,{ }^{\prime} e,\left({ }^{\prime} a,{ }^{\prime} b\right)\right.\) memory, \(\left.{ }^{\prime} f,{ }^{\prime} g\right)\) thread-scheme \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) memory \(\Rightarrow\) ' \(a \Rightarrow\) bool
where \(i s\)-part-addr-th-mem th mem \(n s=(i s-p a r t-a d d r\)-addr mem (own-vmem-adr th) \(n s\))
lemma [simp]:is-part-addr-th-mem th mem ns \(=\) is-part-mem-th th mem ns unfolding is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def by \(\operatorname{simp}\)

\section*{D. 3 Updating thread list in the state}
- We will specify thread list inside our system by a partial function that takes a thread id and returns thread informations
type-synonym ('th-id, 'th-info) thread-tab \(=\) 'th-id \(\rightharpoonup\) 'th-info
fun thread-tab-update ::
('th-id \(\rightharpoonup\) 'th-info \() \Rightarrow{ }^{\prime}\) th-id \(\Rightarrow\) 'th-info \(\Rightarrow\) ('th-id \({ }^{\prime}\) 'th-info \()\)
where thread-tab-update th-tab th-id th-info \(=\) th-tab \((t h-i d \mapsto t h-i n f o)\)
- Invariant on updating thread table
fun update-th-waiting-true::
('th-id \(\rightharpoonup\left({ }^{\prime} a\right.\), thread-state, \(\left.{ }^{\prime} b,{ }^{\prime} c,{ }^{\prime} d,{ }^{\prime} e\right)\) thread-scheme \() \Rightarrow{ }^{\prime}\) th-id \(\Rightarrow\) bool
where update-th-waiting-true th-tab th-id \(=\)
\((\) th-id \(\in\) dom th-tab \(\wedge((\) th-state o the o th-tab \()\) th-id \()=\) WAITING \()\)
fun update-th-ready-true::
('th-id \(\rightharpoonup\left(' a\right.\), thread-state, \(\left.' b,{ }^{\prime} c,^{\prime} d,{ }^{\prime} e\right)\) thread-scheme \() \Rightarrow{ }^{\prime}\) th-id \(\Rightarrow\) bool where update-th-ready-true th-tab th-id \(=\) (th-id \(\in\) dom th-tab \(\wedge((\) th-state o the o th-tab \()\) th-id \()=R E A D Y)\)
fun update-th-current-true::
\(\left('\right.\) th-id \(\rightharpoonup\left({ }^{\prime} a\right.\), thread-state, \(\left.' b,{ }^{\prime} c,{ }^{\prime} d,{ }^{\prime} e\right)\) thread-scheme \() \Rightarrow\) 'th-id \(\Rightarrow\) bool
where update-th-current-true th-tab th-id \(=\)

fun update-th-stopped-true::
('th-id \(\rightharpoonup\left(' a\right.\), thread-state, \(\left.{ }^{\prime} b,{ }^{\prime} c,{ }^{\prime} d,{ }^{\prime} e\right)\) thread-scheme \() \Rightarrow{ }^{\prime}\) th-id \(\Rightarrow\) bool where update-th-stopped-true th-tab th-id \(=\)
\((\) th-id \(\in\) dom th-tab \(\wedge((\) th-state o the o th-tab \() t h-i d)=S T O P P E D)\)
- update functions for thread state
fun update-th-waiting
where update-th-waiting th-id th-tab \(=\) (if th-id \(\in\) dom th-tab
\[
\begin{aligned}
& \text { then th-tab } \left.\begin{array}{rl}
\text { th-id } & \mapsto((\text { the o th-tab }) \text { th-id }) \\
\text { else th-tab }) &
\end{array} \text { th-state }:=\text { WAITING } \\
right)
\end{aligned}
\]
fun update-th-ready
where update-th-ready th-id th-tab \(=\) (if th-id \(\in\) dom th-tab
\[
\begin{aligned}
\text { then th-tab }(\text { th-id } & \mapsto((\text { the o th-tab }) \text { th-id }) \\
& \\
& \text { (th-state }:=R E A D Y \mid))
\end{aligned}
\]
fun update-th-current
where update-th-current th-id th-tab \(=\) (if th-id \(\in\) dom th-tab then th-tab(th-id \(\mapsto((\) the o th-tab) th-id)
\[
\text { else th-tab) } \quad \text { (th-state }:=C U R R E N T D)
\]
fun update-th-stopped
where update-th-stopped th-id th-tab \(=\) (if th-id \(\in\) dom th-tab
then th-tab(th-id \(\mapsto((\) the o th-tab) th-id)
(th-state \(:=S T O P P E D \mid)\)
else th-tab)

\section*{D. 4 Get thread by thread ID}
- Function that find an element in the list under a given condition
primrec find \(::\left({ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow{ }^{\prime}\) a list \(\Rightarrow{ }^{\prime}\) 'a option where
find - [] = None |
find \(P(x \# x s)=(\) if \(P x\) then Some \(x\) else find \(P x s)\)
- A thread equality procedure ... 2 threads are equal if they have the same ID
definition thread-eq
where thread-eq th-id thread \(=(\) th-id \(=\) thread-id thread \()\)
- An interface that let us to get a thread structure using the thread ID
definition get-thread-by-id
where get-thread-by-id th-id thl= find (thread-eq th-id) thl
end
theory IPC-state-model
imports IPC-errors-type IPC-thread-type
begin

\section*{E HOL representation of state type model for IPC}

\section*{E. 1 informations on threads}
record ('thread-id, 'error) th-info \(=\)
act-info:: 'thread-id \(\boldsymbol{\rightharpoonup}\) 'error
record state \(_{i d}=\left((\right.\) int, int \()\) memory, thread \({ }_{i d}\), thread \(_{i d}\), thread \(\left._{i p c}\right)\) thread-tab, (thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) bool),
(thread \({ }_{i d} \Rightarrow\) (int, int)memory \(\Rightarrow\) bool \()\), errors) kstate + th-flag ::thread \({ }_{i d} \rightharpoonup\) errors

\section*{E. 2 Interface between IPC state and threads}
- An interface that let us to get a thread structure using the thread ID inside a state
definition get-thread-by-id \({ }^{\prime}\)
where get-thread-by-id' th-id \(\sigma=\left(\right.\) thread-list \(\left(\sigma::^{\prime} a^{\prime}\right.\) state \(_{i d}\)-scheme \()\)) th-id

\section*{E. 3 Interface between IPC state and memory model}
definition upd-st-res-equiv
where upd-st-res-equiv \(\sigma\) msg \(=\) (update-th-smm-equiv (current-thread \(\sigma\)) (resource \(\sigma\)) msg)
definition upd-st-res-equiv \({ }_{i d}\)
where upd-st-res-equiv \({ }_{i d}\left(\sigma::\right.\) state \(\left._{i d}\right) m s g=\) update-th-smm-equiv ((the o (get-thread-by-id' o current-thread) \(\sigma\)) \(\sigma\)) msg ((the o (fst o Rep-memory o resource) \(\sigma\)) msg)

\section*{abbreviation}
update-state caller \(\sigma\) f error \(\equiv \sigma(\) current-thread \(:=\) caller,
\[
\begin{array}{ll}
\text { thread-list } & :=f \text { caller (thread-list } \sigma), \\
\text { error-codes } & :=\text { error } \mid
\end{array}
\]

\section*{abbreviation}
init-act-info caller partner \(\sigma \equiv\) \(\sigma(\) th-flag \(:=(\) th-flag \(\sigma)(\) caller \(:=\) None, partner \(:=\) None \() \mid)\)
lemma fun-upd (fun-upd \(f x z) y z^{\prime}=f\left(x:=z, y:=z^{\prime}\right)\)
by auto
lemma
assumes 1:x \(\neq y\)
and 2: fun-upd \(f x z=g\)
shows \(g y=f y\)
using assms
by auto
lemma
assumes \(1: z \neq\) None
and 2:fun-upd \(f x z=g\)
shows the \(z \in(\operatorname{ran} g)\)
using assms
unfolding ran-def
by auto
end
theory IPC-actions-preconditions
imports IPC-state-model
begin

\section*{F HOL representation of IPC preconditions}

\section*{F. 1 IPC conditions on threads parameters}

This definition assures thats the partener thread is an Open Receive thread. If this condition is not satisfied when it is checked in a given IPC stage the corresponding error code error-IPC-21-in-PREP-SEND is returned
definition IPC-params-c1 ::
('a, 'b, th-ipc-st, 'c, 'd, 'e) thread-scheme \(\Rightarrow\) bool
where \(\quad I P C\)-params-c1 th \(=(\) th-ipc-st th \(=O R)\)
lemma IPC-params-c1-direct1[simp]:
IPC-params-c1 (thread-id \(=a_{1}\), th-state \(=a_{2}\),th-ipc-st \(=\) OR, own-vmem-adr \(=a_{3}\), cpartner \(\left.=a_{4} \mid\right)\) by (simp add:IPC-params-c1-def)
lemma IPC-params-c1-direct2[simp] :
\(\neg I P C\)-params-c1 (thread-id \(=a_{1}\), th-state \(=a_{2}\), th-ipc-st \(=C R\), own-vmem-adr \(=a_{3}\), cpartner \(\left.=a_{4} \mid\right)\) by (simp add:IPC-params-c1-def)
lemma IPC-params-c1-direct3[simp]:
\(\neg\) IPC-params-c1 \thread-id \(=a_{1}\), th-state \(=a_{2}\), th-ipc-st \(=N R\), own-vmem-adr \(=a_{3}\), cpartner \(\left.=a_{4} \mid\right)\) by (simp add:IPC-params-c1-def)
the corresponding error code error-IPC-22-in-PREP-SEND is returned
definition IPC-params-c2 ::
('a, 'b, th-ipc-st, 'c, 'd, 'e) thread-scheme \(\Rightarrow\) bool
where \(\quad\) IPC-params-c2 th \(=(\) th-ipc-st th \(=C R)\)
the corresponding error code error-IPC-23-in-PREP-SEND is returned
definition IPC-params-c3 ::
(\({ }^{\prime} a, ~ ' b\), th-ipc-st, \({ }^{\prime} c,{ }^{\prime} d\), 'e) thread-scheme \(\Rightarrow\) bool
where \(\quad I P C\)-params-c3 th \(=(\) th-ipc-st th \(=N R)\)
definition IPC-params-c4
::thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) bool
where \(\quad\) IPC-params-c4 caller partner \(=(\) caller \(\neq\) partner \()\)
definition IPC-params-c6
::thread \({ }_{i d} \Rightarrow\left(\right.\) thread \(_{i d},{ }^{\prime} b\), th-ipc-st, \(^{\prime} c\), thread \(\left._{i d},{ }^{\prime} e\right)\) thread-scheme \(\Rightarrow\) bool
where \(\quad\) IPC-params-c6 caller partner \(=(\) caller \(=\) cpartner partner \()\)
definition IPC-params-c5
::thread \({ }_{i d} \Rightarrow\) 'a state \({ }_{i d}\)-scheme \(\Rightarrow\) bool
where IPC-params-c5 caller \(\sigma=(\) caller \(\in(\) dom \((\) thread-list \(\sigma)) \wedge\)
\((\) th-state o the \()((\) thread-list \(\sigma)\) caller \() \neq\) STOPPED \()\)

\section*{F. 2 IPC conditions on threads communication rights}
definition \(I P C\)-sub-sub-sp
\(::\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\left(\right.\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) bool \() \Rightarrow\left(\right.\) thread \(_{i d} \rightharpoonup\) thread \(\left._{i p c}\right) \Rightarrow\) bool
where IPC-sub-sub-sp caller partner rel thl \(=(\) reflp rel \(\wedge\) rel caller partner \(\wedge\) caller \(\in\) dom thl \(\wedge\) partner \(\in\) dom thl)
definition IPC-send-comm-check
\(::\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\left(\right.\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) bool \() \Rightarrow\left(\right.\) thread \(_{i d} \rightharpoonup\) thread \(\left._{i p c}\right) \Rightarrow\)
bool
where \(\quad I P C\)-send-comm-check caller partner rel thl \(=\)
(IPC-sub-sub-sp caller partner rel thl \(\wedge\) IPC-params-c4 caller partner)
definition IPC-recv-comm-check
:: thread \({ }_{i d} \Rightarrow\) thread \(_{\text {id }} \Rightarrow\left(\right.\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) bool \() \Rightarrow\left(\right.\) thread \(_{i d} \rightharpoonup\) thread \(\left._{i p c}\right) \Rightarrow\) bool
where \(\quad I P C\)-recv-comm-check caller partner rel thl \(=I P C\)-sub-sub-sp caller partner rel thl

\section*{F. 3 IPC conditions on threads access rights}
definition IPC-sub-obj-sp
where IPC-sub-obj-sp \(=\) undefined
definition \(I P C\)-buf-check
\(::\) thread \(_{\text {id }} \Rightarrow\) thread \(_{i d} \Rightarrow(\) int, int \()\) memory \(\Rightarrow\left(\right.\) thread \(_{i d} \Rightarrow(\) int, int \()\) memory
\(\Rightarrow\) bool \() \Rightarrow\)
\(\left(\right.\) thread \(_{\text {id }} \rightharpoonup\) thread \(\left._{\text {ipc }}\right) \Rightarrow\) bool
where \(\quad I P C\)-buf-check caller partner mem rel thl \(=\)
(caller \(\in\) dom thl \(\wedge\) partner \(\in\) dom thl \(\wedge\)
\((\) dom o fst o Rep-memory \()((\) own-vmem-adr o the o thl \()\) caller \() \subseteq\) ((dom o fst o Rep-memory) mem) \(\wedge\) rel partner mem)
definition IPC-map-check
where \(\quad I P C\)-map-check \(=\) undefined

\section*{F. 4 interface between IPC Preconditions and IPC ' \(a\) state id \(^{\text {-scheme }}\)}
definition IPC-send-comm-check-st \({ }_{\text {id }}\)
::thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow{ }^{\prime}\) a state \({ }_{i d}\)-scheme \(\Rightarrow\) bool
where \(\quad I P C\)-send-comm-check-st \({ }_{i d}\) caller partner \(\sigma=\)
definition IPC-recv-comm-check-st \({ }_{i d}\) ::thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) 'a state id \(^{- \text {-scheme } \Rightarrow \text { bool }}\)
where \(\quad I P C\)-recv-comm-check-st \({ }_{i d}\) caller partner \(\sigma=\) IPC-sub-sub-sp caller partner (communication-rights \(\sigma\)) (thread-list \(\sigma\))
definition \(I P C\)-buf-check-st \({ }_{i d}\) ::thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow{ }^{\prime}\) a state id \(^{\text {-scheme }} \Rightarrow\) bool
where \(\quad I P C\)-buf-check-st \(i_{i d}\) caller partner \(\sigma=\) IPC-buf-check caller partner (resource \(\sigma\)) (access-rights \(\sigma\)) (thread-list \(\sigma\))
definition IPC-map-check-st \({ }_{i d}\)
where \(\quad I P C\)-map-check-st \({ }_{i d}=\) undefined
end
theory IPC-atomic-actions
imports IPC-actions-preconditions ../../../../src/TestLib

\section*{begin}

\section*{G HOL representation of PikeOS IPC atomic actions}

\section*{G. 1 Types instantiation}

In order to model PikeOS IPC API atomic actions, we will instantiate types of the parameters of \(a\) by other Isabelle datatypes as following:
```

datatype p4-stage ipc }
PREP - checking file descriptor informations
| WAIT - synchronising
| BUF - MEM COPY
| MAP - MEM MAP
| DONE - IPC end
datatype ('thread-id , 'adresses)
p4-direct ipc =
SEND 'thread-id 'thread-id 'adresses
| RECV 'thread-id 'thread-id 'adresses
datatype ('thread-id, 'adresses ) action ipc-simplified =
IPC-SEND 'thread-id 'thread-id 'adresses

```
| IPC-RECV 'thread-id 'thread-id 'adresses
To avoid the complexe representation of memory, we represent the memory content as a list of integers and the adresses are natural numbers. An id of the thread is represented by a tuple of natural numbers that specify, the task and the partition that the thread belongs to. To use this abstraction on PikeOS IPC API in our nvironment, we will just define a new type and instantiate our free variables \(a\) and \(b\) by Isabelle natural numbers type as follwing:
```

type-synonym p4-action $_{\text {ipc }}$-simplified $=($ nat $\times$ nat $\times$ nat, nat list $)$ action $_{i p c}$-simplified
type-synonym $A C T I O N_{i p c}=\left(\right.$ 4 $_{4}$-stage $_{i p c}$, (thread $_{i d}$, int list $) p_{4}$-direct $\left.{ }_{i p c}\right)$
action $_{i p c}$
type-synonym $\left({ }^{\prime} o,{ }^{\prime} \sigma\right)$ Mon $_{S E}={ }^{\prime} \sigma \rightharpoonup\left({ }^{\prime} o * ' \sigma\right)$

```

\section*{G. 2 Atomic actions semantics}

Actually, PikeOS IPC API provides 7 system calls. An execution of each system call will split it to atomic actions. Those atomic actions are called stages. In order to execute The \(p 4_{_} i p c_{_}\)send call, the kernel will split it into 4 stages:
1. PREP stage
2. WAIT stage
3. BUF stage
4. DONE stage

In addition of providing interruption points, the execution of those stages is used to provide a security model to the IPC mechanism. In each stage and during the execution a set of conditions will be checked by the kernel. If one of the conditions is not satisfied, for example the communication security policy is not respected, the kernel abort the call and return an error code.

\section*{G. 3 Semantics of atomic actions with thread IDs as arguments}
lemma is-part-addr-th-mem abceis-part-mem-th abc
unfolding is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def
by (simp)
definition \(P R E P-S E N D_{i d}\)
\(::^{\prime}\) a state \({ }_{i d}\)-scheme \(\Rightarrow\) ACTION \(_{\text {ipc }} \Rightarrow{ }^{\prime}\) 'a state \({ }_{i d}\)-scheme
where \(\operatorname{PREP}-S E N D_{i d} \sigma\) act \(=\)
```

(case act of (IPC PREP (SEND caller partner msg)) =>
if list-all ((is-part-mem-th o the) ((thread-list \sigma) caller) (resource \sigma))msg
then
if IPC-params-c1 ((the o thread-list \sigma) partner)
then \sigma(current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS|
else
(if IPC-params-c2 ((the o thread-list \sigma) partner)
then
if IPC-params-c6 caller ((the o thread-list \sigma) partner)
then \sigma(|current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes :=NO-ERRORS|)
else
\sigma(current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|
else \sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|))
else \sigma( current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|))

```
definition \(P R E P-R E C V_{i d}\)
 \(::{ }^{\prime}\) a state \(_{i d}\)-scheme \(\Rightarrow\) ACTION \(_{i p c} \Rightarrow\) 'a state \({ }_{i d}\)-scheme
where \(\quad P R E P-R E C V_{i d} \sigma\) act \(=(\)
 case act of (IPC PREP (RECV caller partner msg)) \(\Rightarrow\)
 if list-all ((is-part-mem-th o the) ((thread-list \(\sigma\)) caller) (resource \(\sigma)) \mathrm{msg}\)
 then
 if IPC-params-c1 ((the o thread-list \(\sigma\)) partner)
 then \(\sigma(\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-ready caller (thread-list \(\sigma\)),
 error-codes \(:=\) NO-ERRORS)
 else
 (if IPC-params-c2 ((the o thread-list \(\sigma\)) partner)
 then
 if IPC-params-c6 caller ((the o thread-list \(\sigma\)) partner)
 then \(\sigma(\) current-thread \(:=\) caller,
 thread-list \(\quad:=\) update-th-ready caller (thread-list \(\sigma\)),
 error-codes \(:=\) NO-ERRORS \()\)
 else
 \(\sigma(\) current-thread \(:=\) caller ,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(\quad:=E R R O R-I P C\) error-IPC-22-in-PREP-RECV \()\)
 else \(\sigma(\) current-thread \(:=\) caller ,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(\quad:=E R R O R-I P C\) error-IPC-23-in-PREP-RECV \(\mid\))
else \(\sigma(\) current-thread \(:=\) caller ,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(:=E R R O R-M E M\) not-valid-receiver-addr-in-PREP-RECVD)
```

definition WAIT-SEND id
::'a state id-scheme }=>\mathrm{ ACTIONN ipc }=>\mp@subsup{|}{}{\prime}a\mathrm{ state id-scheme
where WAIT-SEND id \sigma act =
(case act of (IPC WAIT (SEND caller partner msg)) =>
if \negIPC-send-comm-check-stid caller partner }
then \sigma \ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|)
else
if ᄀIPC-params-c4 caller partner
then \sigma (current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|)
else
if }\negIPC-params-c5 partner \sigma
then
(case (thread-list \sigma) caller of None }
\sigma ( current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=ERROR-IPC error-IPC-6-in-WAIT-SENDD
Some th }=>\sigma|\mathrm{ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|))
else
\sigma\current-thread := caller ,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes := NO-ERRORS\)
definition WAIT-RECV id

```

```

where WAIT-RECV Vid \sigma act =
(case act of (IPC WAIT (RECV caller partner msg)) =>
if ᄀIPC-recv-comm-check-stid caller partner \sigma
then \sigma(current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=ERROR-IPC error-IPC-1-in-WAIT-RECVD
else
if ᄀIPC-params-c4 caller partner
then \sigma|current-thread := caller ,

```
```

            thread-list := update-th-current caller (thread-list \sigma),
            error-codes }:==\mathrm{ ERROR-IPC error-IPC-3-in-WAIT-RECV\)
    else
if ᄀIPC-params-c5 partner \sigma
then
(case (thread-list \sigma) caller of None }
\sigma(current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECVD
Some th }=>\sigma||\mathrm{ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV ())
else
\sigma\current-thread := caller ,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes :=NO-ERRORS|))

```

\section*{abbreviation}
get-th-addrs th \(\sigma \equiv(*\) thread adresses to be updated \(*\))
((sorted-list-of-set.F o Domain) ((own-vmem-adr o the o thread-list \(\sigma)\) th))

\section*{abbreviation}
get-msg-values msg \(\sigma \equiv\) (*the value of the addresses in a message*)
(map \(((\) the o (fst o Rep-memory) (resource \(\sigma)))\) msg)
definition BUF-SEND \({ }_{i d}\)
 \(::^{\prime} a\) state \(_{i d}\)-scheme \(\Rightarrow\) ACTION \(_{i p c} \Rightarrow{ }^{\prime}\) 'a state \({ }_{i d}\)-scheme
where \(\quad B U F-S E N D_{i d} \sigma\) act \(=\)
 (case act of (IPC BUF (SEND caller partner msg)) \(\Rightarrow\)
 if \(\neg\) IPC-buf-check-st \(t_{i d}\) caller partner \(\sigma\)
 then \(\sigma(\) current-thread \(:=\) caller ,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(\quad:=\) ERROR-IPC error-IPC-1-in-BUF-SEND ()
 else
 \(\sigma(\) current-thread \(:=\) caller
 resource :=
 foldl (\(\lambda m\) (addr,val). \(\left(m\right.\) (addr: \(={ }_{\$}\) val))) (resource \(\sigma\))
 (zip (get-th-addrs partner \(\sigma\)) (get-msg-values msg \(\sigma\))),
 thread-list \(:=\) update-th-ready caller (update-th-ready partner (thread-list
\(\sigma)\)),
 error-codes \(:=\) NO-ERRORS \(\mid\)
 (*if a BUF op is execute this means that there are no errors
 in check stages*))
definition \(B U F-R E C V_{i d}\)
```

    ::'a state id-scheme }=>\mathrm{ ACTIONN ipc }=>\mp@subsup{|}{}{\prime}\mathrm{ 'a state id
    where
BUF-RECV id \sigma act =
(case act of (IPC BUF (RECV caller partner msg)) =>
if \neg IPC-buf-check-stid caller partner \sigma
then \sigma(|urrent-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|)
else
\sigma|current-thread := caller,
resource :=
foldl (\lambdam (addr,val). (m (addr:=\$ val))) (resource \sigma)
(zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes :=NO-ERRORS|))
definition MAP-SEND id
::'a state id-scheme }=>\mathrm{ ACTION
where MAP-SEND id \sigma act =
(case act of (IPC MAP (SEND caller partner msg)) =>
\sigma\current-thread := caller,
resource :=foldl (\lambdam (src,dst). (m (src \bowtiedst))) (resource \sigma)
(zip msg (get-th-addrs partner \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS|
(*if a MAP op is execute this means that BUF was executed without
errors*))
definition MAP-RECV id
::'a state id
where MAP-RECV id \sigma act =
(case act of (IPC MAP (RECV caller partner msg)) )
\sigma\ current-thread := caller,
resource : foldl ( }\lambdam(src,dst).(m(\operatorname{src}\bowtiedst)))(resource \sigma
(zip msg (get-th-addrs caller \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORSD
(*if a MAP op is execute this means that BUF was executed without
errors*))

```

\section*{definition \(D O N E-S E N D_{i d}\)}
\(:: ' a\) state \({ }_{i d}\)-scheme \(\Rightarrow\) ACTION \(_{i p c} \Rightarrow{ }^{\prime}\) 'a state \({ }_{i d}\)-scheme
where \(D O N E-S E N D_{i d} \sigma\) act \(=\sigma\)
definition DONE-RECV \({ }_{i d}\)
\[
::^{\prime} \text { a state } \text { sd }^{-s c h e m e ~} \Rightarrow \text { ACTION }_{i p c} \Rightarrow \text { 'a state }{ }_{i d} \text {-scheme }
\]
where \(D O N E-R E C V_{i d} \sigma\) act \(=\sigma\)

\section*{G. 4 Semantics of atomic actions based on monads}
fun PREP-SEND \(D_{M O N}:: A C T I O N_{i p c} \Rightarrow{ }^{\prime} a\) state \(_{i d}\)-scheme \(\Rightarrow\) (errors \(*^{\prime}\) 'a state \({ }_{i d}\)-scheme) option where

PREP-SEND MON \((\) IPC PREP (SEND caller partner msg)) \(\sigma=\)
(if list-all ((is-part-addr-th-mem o the) ((thread-list \(\sigma)\) caller) (resource \(\sigma)\)) msg
then
if list-all ((is-part-mem-th o the) ((thread-list \(\sigma)\) partner \()(\) resource \(\sigma)) \mathrm{msg}\) then
if IPC-params-c1 ((the o thread-list \(\sigma\)) partner)
then unit SE \((\) NO-ERRORS)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-ready caller (thread-list \(\sigma\)),
error-codes \(\quad:=N O-E R R O R S D)\)
else
(if IPC-params-c2 ((the o thread-list \(\sigma\)) partner)
then
if IPC-params-c6 caller ((the o thread-list \(\sigma\)) partner) then unit SE \((\) NO-ERRORS)
(\(\sigma(\) current-thread \(:=\) caller, thread-list \(:=\) update-th-ready caller (thread-list \(\sigma\)),
error-codes \(\quad:=\) NO-ERRORS|))
else
unit \(_{S E}\) (ERROR-IPC error-IPC-22-in-PREP-SEND)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-22-in-PREP-SEND|))
else unit SE (ERROR-IPC error-IPC-23-in-PREP-SEND)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(\quad:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(\quad:=E R R O R-I P C\) error-IPC-23-in-PREP-SEND (1))
else unit SE (ERROR-MEM not-valid-receiver-addr-in-PREP-SEND)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-M E M\) not-valid-receiver-addr-in-PREP-SENDD))
else unit SE (ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
(\(\sigma(\) current-thread \(:=\) caller,
```

            thread-list := update-th-current caller (thread-list \sigma),
            error-codes :=ERROR-MEM not-valid-sender-addr-in-PREP-SEND|))
    (*hy\tilde{Alpothese: all other atomic actions have no purge*)}
    | PREP-SEND MON a \sigma = unitSE (error-codes \sigma)\sigma
fun PREP-RECV MON :: ACTION Nipc }\mp@subsup{=>}{}{\prime}\mathrm{ 'a state }\mp@subsup{\mathrm{ id}}{}{\prime}\mathrm{ -scheme }=>\mathrm{ (errors *'a state id-scheme)
option
where
PREP-RECV MON (IPC PREP (RECV caller partner msg)) \sigma=
(if list-all ((is-part-addr-th-mem o the) ((thread-list \sigma) caller) (resource \sigma))msg
then
if list-all ((is-part-mem-th o the) ((thread-list \sigma) partner) (resource \sigma))msg
then
if IPC-params-c1 ((the o thread-list \sigma) partner)
then unit SE (NO-ERRORS)
(\sigma(current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes :=NO-ERRORS|))
else
(if IPC-params-c2 ((the o thread-list \sigma) partner)
then
if IPC-params-c6 caller ((the o thread-list \sigma) partner)
then unit SE (NO-ERRORS)
(\sigma() current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes :=NO-ERRORSD)
else
unit SE (ERROR-IPC error-IPC-22-in-PREP-RECV)
(\sigma| current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECVD)
else
unit SE (ERROR-IPC error-IPC-23-in-PREP-RECV)
(\sigma| current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECVD))
else
unit SE (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV)
(\sigma\ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes :=ERROR-MEM not-valid-receiver-addr-in-PREP-RECVD)
else
unit }\mp@subsup{S}{E}{}(ERROR-MEM not-valid-sender-addr-in-PREP-RECV
(\sigma|current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),

```
(*hyÃlpothese: all other atomic actions have no purge*)
```

| PREP-RECV MON a \sigma=\mp@subsup{unitSE (error-codes \sigma) \sigma}{}{\prime}|

```

```

option
where
WAIT-SEND MON (IPC WAIT (SEND caller partner msg)) \sigma=
(if ᄀIPC-send-comm-check-stid caller partner \sigma
then unit }\mp@subsup{S}{E}{}(ERROR-IPC error-IPC-1-in-WAIT-SEND)
(\sigma) current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|)
else
if ᄀIPC-params-c4 caller partner
then unit SE (ERROR-IPC error-IPC-3-in-WAIT-SEND)
(\sigma (current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|)
else
if \negIPC-params-c5 partner \sigma
then
(case (thread-list \sigma) caller of None }
unit}\mp@subsup{S}{E}{}(ERROR-IPC error-IPC-6-in-WAIT-SEND)
(\sigma \ current-thread := caller,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SENDD)

```

```

                                    (\sigma) current-thread := caller ,
                                    thread-list := update-th-current caller (thread-list \sigma),
                                    error-codes }:=\mathrm{ ERROR-IPC error-IPC-5-in-WAIT-SENDD))
            else
                        unit }\mp@subsup{S}{E}{}(NO-ERRORS)(\sigma|current-thread := caller ,
                                    thread-list := update-th-waiting caller (thread-list \sigma),
                                    error-codes :=NO-ERRORS|)))
    | WAIT-SEND MON a \sigma= unit SE (error-codes \sigma)\sigma
fun WAIT-RECV MON ::ACTIONN ipc }=>\mp@subsup{|}{}{\prime}a\mp@subsup{\mathrm{ state }}{id}{}-\mathrm{ -scheme }=>\mathrm{ (errors * 'a state id-scheme)
option
where WAIT-RECV MON (IPC WAIT (RECV caller partner msg)) }\sigma
( if ᄀIPC-recv-comm-check-stid caller partner \sigma
then unit SE (ERROR-IPC error-IPC-1-in-WAIT-RECV)
(\sigma) current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }\quad:=ERROR-IPC error-IPC-1-in-WAIT-RECV|))
else

```
```

        if ᄀIPC-params-c4 caller partner
        then unit SE (ERROR-IPC error-IPC-3-in-WAIT-RECV)
            (\sigma|current-thread := caller ,
                thread-list := update-th-current caller (thread-list \sigma),
            error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|))
        else
    if \negIPC-params-c5 partner }
    then
    (case (thread-list \sigma) caller of None }
        unit SE (ERROR-IPC error-IPC-6-in-WAIT-RECV)
            (\sigma| current-thread := caller ,
                            thread-list := update-th-current caller (thread-list \sigma),
            error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV|))
    ```

```

                                    (\sigma\ current-thread := caller
                                thread-list := update-th-current caller (thread-list
    \sigma),
error-codes :=ERROR-IPC error-IPC-5-in-WAIT-RECV|)))
else
unit SE (NO-ERRORS)
(\sigma\ current-thread := caller ,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes :=NO-ERRORS|))

```

```

fun BUF-SEND MON ::ACTIONN ipc }=>\mp@subsup{|}{}{\prime}\mp@subsup{A}{\mathrm{ state }}{id
option
where
BUF-SEND MON (IPC BUF (SEND caller partner msg)) \sigma=
(if \negIPC-buf-check-stid caller partner \sigma
then unit SE (ERROR-IPC error-IPC-1-in-BUF-RECV)
(\sigma) current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }\quad:=ERROR-IPC error-IPC-1-in-BUF-RECV|))
else
unit SE (NO-ERRORS)
(\sigma) current-thread := caller,
resource := update-list (resource \sigma)
(zip ((sorted-list-of-set.F o dom o fst o
Rep-memory)
((own-vmem-adr o the o thread-list \sigma) partner))
(map ((the o (fst o Rep-memory) (resource
\sigma))) msg)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),

```
```

        error-codes := NO-ERRORS\))
    | BUF-SEND MON a \sigma = unit SE (error-codes \sigma) \sigma

```

```

option
where
BUF-RECV Mon (IPC BUF (RECV caller partner msg)) \sigma=
( if \negIPC-buf-check-stid caller partner \sigma
then
unit SE (ERROR-IPC error-IPC-1-in-BUF-RECV)
(\sigma\ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECVD)
else
unit SE (NO-ERRORS)
(\sigma(current-thread := caller,
resource := update-list (resource \sigma)
(zip ((sorted-list-of-set.F o dom o fst o
Rep-memory)
((own-vmem-adr o the o thread-list \sigma) caller))
(map ((the o (fst o Rep-memory) (resource \sigma)))
msg)),
thread-list := update-th-ready caller
(update-th-ready partner
thread-list \sigma)),
error-codes := NO-ERRORS|)))
| BUF-RECV MON a \sigma= unitSE (error-codes \sigma)\sigma
fun MAP-SEND MON ::ACTION Nipc }=>\mp@subsup{|}{}{\prime
option
where MAP-SEND MON (IPC MAP (SEND caller partner msg)) \sigma=
unit SE (NO-ERRORS ) (\sigma| current-thread := caller,
resource := foldl (\lambdam (src,dst). (m (src \bowtie dst)))
(resource \sigma)
(zip msg (get-th-addrs partner \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORSD)
|MAP-SEND MON a }\sigma=\mp@subsup{|}{Mit}{SE}(\mathrm{ (error-codes }\sigma)
fun MAP-RECV MON ::ACTION Nipc }=>\mp@subsup{|}{}{\prime
option
where MAP-RECV MON (IPC MAP (SEND caller partner msg)) \sigma=
unit SE (NO-ERRORS)
(\sigma()current-thread := caller,
resource := foldl (\lambdam (src,dst). (m (src\bowtiedst)))(resource \sigma)

```
\[
\left.\begin{array}{rl}
& (\text { zip msg (get-th-addrs caller } \sigma)), \\
\text { thread-list }:= & \text { update-th-ready caller } \\
& \text { (update-th-ready partner } \\
& (\text { thread-list } \sigma) \text {), }
\end{array}\right\} \begin{aligned}
\text { error-codes }:= & \text { NO-ERRORS }) \text {) } \\
\text { MAP-RECV MON } a \sigma= & \text { unit }_{S E}(\text { error-codes } \sigma) \sigma
\end{aligned}
\]
fun \(D O N E-S E N D_{M O N}:: A C T I O N_{i p c} \Rightarrow{ }^{\prime}\) a state \({ }_{i d}\)-scheme \(\Rightarrow\left(\right.\) errors \(*^{\prime}\) 'a state \({ }_{i d}\)-scheme \()\) option
where \(D O N E-S E N D_{M O N} \quad a \sigma=\) unit \(_{S E}(\) error-codes \(\sigma) \sigma\)
fun \(D O N E-R E C V_{M O N}:: A C T I O N_{i p c} \Rightarrow\) 'a state \({ }_{i d}\)-scheme \(\Rightarrow\) (errors *'a state \({ }_{i d}\)-scheme) option
where \(D O N E-R E C V_{M O N} \quad\) a \(\sigma=\) unit \(_{S E}(\) error-codes \(\sigma) \sigma\)
definition IPC-protocol \(a=\)
\(\left(\right.\) out \(1 \leftarrow P R E P-S E N D D_{M O N} a ;\left(\right.\) out2 \(\leftarrow P R E P-R E C V_{M O N} a ;(\) out3 \(\leftarrow\) WAIT-SEND MON \(a\);
\(\left(\right.\) out \(4 \leftarrow\) WAIT-RECV MON \(A ;\left(\right.\) out \(5 \leftarrow B U F-S E N D_{M O N} a ;\left(\right.\) out \(6 \leftarrow B U F-R E C V_{M O N}\) \(a\);
\(\left(\right.\) out' \(\left.\left.\left.\left.\left.\left.^{\leftarrow} \leftarrow D O N E-S E N D_{M O N} a ; D O N E-R E C V_{M O N} a\right)\right)\right)\right)\right)\right)\)

\section*{G. 5 Execution function for PikeOS IPC atomic actions with thread IDs as arguments}
fun exec-action \({ }_{i d}\)
::'a state \({ }_{i d}\)-scheme \(\Rightarrow\) ACTION \(_{\text {ipc }} \Rightarrow{ }^{\prime}\) a state \(_{i d}\)-scheme where
PREP-SEND-run': exec-action \({ }_{i d} \sigma(\) IPC PREP \((S E N D\) caller partner msg \())=\) PREP-SEND \({ }_{i d} \sigma\) (IPC PREP (SEND caller partner msg))|

PREP-RECV-run': exec-actionid \(\sigma(\) IPC PREP \((\) RECV caller partner msg \())=\) PREP-RECV \(V_{i d} \sigma\) (IPC PREP (RECV caller partner msg))

WAIT-SEND-run': exec-action \({ }_{i d} \sigma(I P C\) WAIT(SEND caller partner msg)) \(=\) WAIT-SEND id \(\sigma\) (IPC WAIT (SEND caller partner msg))

WAIT-RECV-run': exec-action \({ }_{i d} \sigma(\) IPC WAIT \((\) RECV caller partner msg \())=\) WAIT-RECV \(V_{i d} \sigma\) (IPC WAIT (RECV caller partner msg))

BUF-SEND-run' :exec-action \(_{i d} \sigma(\) IPC BUF (SEND caller partner msg \()\)) = BUF-SEND \({ }_{i d} \sigma\) (IPC BUF (SEND caller partner msg)) |

BUF-RECV-run' : exec-action \({ }_{i d} \sigma(\) IPC BUF (RECV caller partner msg \()\)) = BUF-RECV \({ }_{i d} \sigma\) (IPC BUF(RECV caller partner msg)) |
MAP-SEND-run' : exec-actionid \(\sigma(\) IPC MAP \((S E N D\) caller partner \(m s g))=\) MAP-SEND \({ }_{i d} \sigma(\) IPC MAP (SEND caller partner msg)) |

MAP-RECV-run' :exec-action \(_{\text {id }} \sigma(\) IPC MAP \((\) RECV caller partner msg \())=\)

DONE-SEND-run' :exec-action \(_{i d} \sigma(\) IPC DONE \((S E N D\) caller partner \(m s g))=\) \(\sigma \quad \mid\)

DONE-RECV-run' :exec-action \(_{i d} \sigma(\) IPC DONE \((\) RECV caller partner msg \())=\) \(\sigma\)

\section*{G. 6 Predicates on atomic actions}

Different cases of send action
definition actions-send-cases a caller partner msg \(=(a=I P C\) PREP \((S E N D ~ c a l l e r ~\) partner msg) \(\vee\)
\(a=\) IPC WAIT (SEND caller partner
\(m s g) \vee\)
\(a=I P C\) BUF (SEND caller partner
\(m s g) \vee\)
\(a=\) IPC DONE (SEND caller partner
\(m s g)\))
Different cases of receive action
definition actions-receiv-cases a caller partner msg \(=(a=I P C\) PREP (RECV caller partner msg) \(\vee\)
\(a=I P C\) WAIT (RECV caller partner
\(m s g) \vee\)
\(a=I P C\) BUF (\(R E C V\) caller partner
\(m s g) \vee\)
\(a=I P C\) DONE (RECV caller partner
\(m s g)\))
A comparison procedure between actions. Used to indentify actions that can reply to an aborted system call.
definition actioneq-op \(a a^{\prime}=(\) case \(a\) of
\((I P C P R E P(S E N D\) caller partner msg)) \(\Rightarrow\) (actions-receiv-cases a' partner caller msg)
| (IPC PREP (RECV caller partner msg)) \(\Rightarrow\) (actions-send-cases a' partner caller msg)
| (IPC WAIT (SEND caller partner msg)) \(\Rightarrow\) (actions-receiv-cases \(a^{\prime}\) partner caller msg)
\(\mid(I P C\) WAIT \((R E C V\) caller partner \(m s g)) \Rightarrow\) (actions-send-cases a' partner caller msg)
| (IPC BUF (SEND caller partner msg)) \(\Rightarrow\) (actions-receiv-cases a' partner caller msg)
\(\mid(I P C\) BUF \((R E C V\) caller partner msg \()) \Rightarrow\) (actions-send-cases \(a^{\prime}\) partner caller \(m s g\))
| (IPC DONE (SEND caller partner msg)) \(\Rightarrow\) (actions-receiv-cases a' partner caller msg)
```

| (IPC DONE (RECV caller partner msg)) =>
(actions-send-cases a' partner caller msg)
)

```

A comparison procedure between actions. Used to indentify actions that will be aborted.
```

definition actioneq a a'=(case a of
(IPC PREP (SEND caller partner msg)) =>
(actions-send-cases a' caller partner msg)
| (IPC PREP (RECV caller partner msg)) =>
(actions-receiv-cases a' caller partner msg)
| (IPC WAIT (SEND caller partner msg)) =>
(actions-send-cases a' caller partner msg)
| (IPC WAIT (RECV caller partner msg)) =>
(actions-receiv-cases a' caller partner msg)
| (IPC BUF (SEND caller partner msg)) =>
(actions-send-cases a' caller partner msg)
| (IPC BUF (RECV caller partner msg)) =>
(actions-receiv-cases a' caller partner msg)
| (IPC DONE (SEND caller partner msg)) =>
(actions-send-cases a' caller partner msg)
| (IPC DONE (RECV caller partner msg)) =>
(actions-receiv-cases a' caller partner msg)
)

```

\section*{G. 7 Lemmas and simplification rules related to atomic actions}
```

lemma mem-inv1[simp]:
resource (exec-actionid $\sigma($ IPC WAIT(SEND caller partener $m s g)))=$ resource
$\sigma$
apply (auto simp : WAIT-SEND ${ }_{i d}$-def)
apply (cases thread-list $\sigma$ caller,auto)
done
lemma mem-inv2[simp]:
resource (exec-action id $\sigma$ (IPC WAIT(RECV caller partener msg) $)$ ) =resource
$\sigma$
apply (auto simp : WAIT-RECV id-def)
apply (cases thread-list $\sigma$ caller,auto)
done
lemma mem-inv3 [simp]:
resource (exec-actionid $\sigma(\operatorname{IPC} \operatorname{PREP}($ RECV caller partener msg $)))=$ resource
$\sigma$
by (auto simp : PREP-RECV $V_{i d^{-}}$def)
lemma mem-inv4 [simp]:

```
```

    resource (exec-actionid \sigma (IPC PREP(SEND caller partener msg))) = resource
    \sigma
by (auto simp : PREP-SEND id-def)
lemma mem-inv5[simp]:
resource (exec-actionid \sigma (IPC BUF(RECV caller partner msg))) =
(if \negIPC-buf-check-stid caller partner \sigma
then resource \sigma
else foldl (\lambdam (addr,val). (m (addr:=\$ val))) (resource \sigma)
(zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)))
by (auto simp : BUF-RECV id
lemma mem-inv5-E:
assumes 1: }\mp@subsup{\sigma}{}{\prime}=\mathrm{ resource (exec-actionid }\sigma\mathrm{ (IPC BUF(RECV caller partner
msg)))
and 2: ᄀIPC-buf-check-st id caller partner }\sigma\Longrightarrow\mp@subsup{\sigma}{}{\prime}=\mathrm{ resource }\sigma\Longrightarrow
and 3:IPC-buf-check-stid caller partner \sigma\Longrightarrow
\sigma}=\mathrm{ foldl (\m (addr,val).(m (addr:=\$ val))) (resource }\sigma
(zip (get-th-addrs caller }\sigma)(\mathrm{ get-msg-values msg }\sigma))\Longrightarrow
shows Q
proof -
show ?thesis
using 1 unfolding mem-inv5
proof (cases \negIPC-buf-check-stid caller partner \sigma )
case True
show ?thesis
using True 1 unfolding mem-inv5
by (simp, elim 2)
next
case False
show ?thesis
using False 1 unfolding mem-inv5
by (simp, elim 3, simp)
qed
qed
lemma mem-inv6[simp]:
resource (exec-actionid \sigma (IPC BUF(SEND caller partner msg))) =
(if ᄀ IPC-buf-check-stid caller partner \sigma
then resource \sigma
else foldl (\lambdam (addr,val). (m (addr:=\$ val))) (resource \sigma)
(zip (get-th-addrs partner \sigma) (get-msg-values msg \sigma)))
by (auto simp :BUF-SEND id-def)
lemma mem-inv6-E:
assumes 1: }\mp@subsup{\sigma}{}{\prime}=\mathrm{ resource (exec-actionid }\sigma\mathrm{ (IPC BUF(SEND caller partner
msg)))

```

```

    and 3:IPC-buf-check-stid caller partner \sigma\Longrightarrow
    ```
```

        \sigma}=\mathrm{ foldl ( }\lambdam(addr,val).(m(addr:=$ val)))(resource \sigma)
            (zip (get-th-addrs partner \sigma) (get-msg-values msg \sigma)) \LongrightarrowQ
        shows Q
    proof -
show ?thesis
using 1 unfolding mem-inv5
proof (cases \negIPC-buf-check-stid caller partner \sigma )
case True
show ?thesis
using True 1 unfolding mem-inv6
by (simp, elim 2)
next
case False
show ?thesis
using False 1 unfolding mem-inv6
by (simp, elim 3, simp)
qed
qed
lemma mem-inv7[simp]:
resource (exec-actionid \sigma (IPC DONE(SEND caller partener msg))) = resource
\sigma
by simp
lemma mem-inv8[simp]:
resource (exec-actionid \sigma (IPC DONE(RECV caller partener msg))) = resource
\sigma
by simp
lemma mem-inv9[simp]:
resource (exec-actionid \sigma (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid \sigma (IPC PREP(RECV caller partener msg)))
unfolding mem-inv3 mem-inv4
by simp
lemma mem-inv10[simp]:
resource (exec-actionid }\sigma(IPC PREP(SEND caller partener msg))) =
resource (exec-actionid \sigma (IPC WAIT(SEND caller partener msg)))
unfolding mem-inv4 mem-inv1
by simp
lemma mem-inv11[simp]:
resource (exec-actionid \sigma (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid \sigma (IPC WAIT(RECV caller partener msg)))
unfolding mem-inv2 mem-inv4
by simp
lemma mem-inv12[simp]:
resource (exec-actionid \sigma (IPC PREP(SEND caller partener msg))) =

```
resource (exec-actionid \(\sigma\) (IPC DONE (SEND caller partener msg))) unfolding mem-inv4
by \(\operatorname{simp}\)
lemma mem-inv13[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(\operatorname{IPC} \operatorname{PREP}(S E N D\) caller partener msg \(\left.))\right)=\) resource (exec-action \({ }_{i d} \sigma\) (IPC DONE (RECV caller partener msg)))
unfolding mem-inv4
by \(\operatorname{simp}\)
lemma mem-inv14[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(\operatorname{IPC} \operatorname{PREP}(\) RECV caller partener msg \(\left.))\right)=\) resource (exec-action \({ }_{i d} \sigma(I P C\) WAIT(SEND caller partener msg)))
unfolding mem-inv3 mem-inv1
by \(\operatorname{simp}\)
lemma mem-inv15[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(\operatorname{IPC} \operatorname{PREP}(\) RECV caller partener \(\left.m s g))\right)=\) resource (exec-action \({ }_{i d} \sigma(\operatorname{IPC} \operatorname{WAIT}(R E C V\) caller partener msg) \()\))
unfolding mem-inv2 mem-inv3
by \(\operatorname{simp}\)
lemma mem-inv16[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(\operatorname{IPC} \operatorname{PREP}(\) RECV caller partener msg \(\left.))\right)=\) resource (exec-action \({ }_{i d} \sigma(\) IPC DONE (SEND caller partener msg)))
unfolding mem-inv3
by simp
lemma mem-inv17[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(\operatorname{IPC} \operatorname{WAIT}(S E N D\) caller partener msg \(\left.))\right)=\) resource (exec-action \({ }_{i d} \sigma\) (IPC DONE (RECV caller partener msg)))
unfolding mem-inv1
by \(\operatorname{simp}\)
lemma mem-inv18[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(\) IPC WAIT(SEND caller partener msg) \(\left.)\right)=\) resource (exec-action id \(\sigma\) (IPC DONE (SEND caller partener msg)))
unfolding mem-inv1
by \(\operatorname{simp}\)
lemma mem-inv19[simp]: resource (exec-action id \(\sigma(\) IPC WAIT \((\) RECV caller partener \(m s g)))=\) resource (exec-action id \(\sigma\) (IPC DONE (SEND caller partener msg)))
unfolding mem-inv2
by \(\operatorname{simp}\)
lemma mem-inv20[simp]:
resource \(\left(\right.\) exec-action \(_{\text {id }} \sigma(I P C\) WAIT \((R E C V\) caller partener \(\left.m s g))\right)=\)
resource (exec-action id \(\sigma\) (IPC DONE(RECV caller partener msg))) unfolding mem-inv2
by \(\operatorname{simp}\)
lemma mem-inv21[simp]:
resource (exec-action id \(\sigma(\) IPC DONE \((\) SEND caller partener msg \()))=\) resource (exec-actionid \(\sigma\) (IPC DONE (RECV caller partener msg)))
by \(\operatorname{simp}\)

\section*{G. 8 Composition equality on same action}

For the general case the order of the executions of PikeOS matter iff executed on the same action, because the semantics of the execution related to each action is separated
lemma sem-comp-prep-send1:
\(\left(\right.\) out1 \(\left.\leftarrow P R E P-S E N D_{M O N} a ; P R E P-R E C V_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow P R E P-R E C V_{M O N}\) \(\left.a ; P R E P-S E N D D_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct ipc .induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send2:
\(\left(\right.\) out \(1 \leftarrow P R E P-S E N D_{M O N} a ;\) WAIT-SEND MON \(\left.a\right)=\left(\right.\) out \(1 \leftarrow\) WAIT-SEND \({ }_{M O N}\)
\(a ;\) PREP-SEND MON \(a)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \(i_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule \(p_{4}\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send3:
\(\left(\right.\) out \(1 \leftarrow P R E P-S E N D_{M O N} a ;\) WAIT-RECV MON \(\left.a\right)=\left(\right.\) out \(1 \leftarrow\) WAIT-RECV \(V_{M O N}\) \(a ;\) PREP-SEND MON \(a)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule \(p 4\)-direct \(i_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send4:
\(\left(\right.\) out \(1^{\left.\leftarrow P R E P-S E N D_{M O N} a ; B U F-S E N D_{M O N} a\right)=\left(\text { out } 1 \leftarrow B U F-S E N D_{M O N}\right) ~}\)
\(\left.a ; \operatorname{PREP}-S E N D_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule \(p_{4}\)-direct \({ }_{\text {ipc }}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send5:
\(\left(\right.\) out \(\left.1 \leftarrow P R E P-S E N D_{M O N} a ; B U F-R E C V_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow B U F-R E C V_{M O N}\)
\(a ; \operatorname{PREP}-S_{E N D}^{M O N}\) a)
by (rule ext, induct a, rule p4-stage \(i p c^{i p .}\) induct, rule \(p_{4}\)-direct \({ }_{i p c}\). induct, simp-all add: unit-SE-def bind-SE-def, rule \(p_{4}\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
```

lemma sem-comp-prep-send6:

```

```

a;PREP-SEND MON a)
by (rule ext, induct a, rule p4-stage ipc.induct, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def,
rule p4-direct tipc.induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send7:

```

```

a;PREP-SEND MON a)
by (rule ext, induct a, rule p4-stage ipc.induct, rule p4-direct }\mp@subsup{\mp@code{qpc.}}{induct,}{
simp-all add: unit-SE-def bind-SE-def,
rule p4-direct tipc.induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send8:
(out1 \leftarrowPREP-SEND MON }a;DONE-SEND MON a) =(out1 \leftarrow DONE-SEND MON
a;PREP-SEND MON a)

```

```

        simp-all add: unit-SE-def bind-SE-def split:option.split)
    lemma sem-comp-prep-send9:
(out1 \leftarrowPREP-SEND MON }a;DONE-RECV MON a) =(out1 \leftarrow DONE-RECV MON
a;PREP-SEND MON a)

```

```

        simp-all add: unit-SE-def bind-SE-def split:option.split)
    ```
 lemma sem-comp-prep-recv2:
 \(\left(\right.\) out \(1 \leftarrow P R E P-R E C V_{M O N} a ;\) WAIT-SEND MON \(\left.a\right)=\left(\right.\) out \(1 \leftarrow\) WAIT-SEND \(_{\text {MON }}\)
 \(\left.a ; P R E P-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-prep-recv3:
 \(\left(\right.\) out1 \(\leftarrow P R E P-R E C V_{M O N} a ;\) WAIT-RECV MON \(\left.a\right)=\left(\right.\) out1 \(\leftarrow W A I T-R E C V_{M O N}\)
\(\left.a ; P R E P-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule \(p_{4}\)-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \(i_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-prep-recv4:
 \(\left(\right.\) out \(\left.1 \leftarrow P R E P-R E C V_{M O N} a ; B U F-S E N D_{M O N} a\right)=\left(\right.\) out1 \(1 \leftarrow B U F-S E N D_{M O N}\)
\(\left.a ; P R E P-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)

\section*{lemma sem-comp-prep-recv5:}
\[
\begin{aligned}
& \left(\text { out } 1 \leftarrow P R E P-R E C V_{M O N} a ; B U F-R E C V_{M O N} a\right)=\left(\text { out1 } \leftarrow B U F-R E C V_{M O N}\right. \\
& a ; P R E P-R E C V_{\text {Mon }} \text { a) } \\
& \text { by (rule ext, induct a, rule p4-stage }{ }_{i p c} \text {.induct, rule } \text { p4-direct }_{i p c} \text {.induct, } \\
& \text { simp-all add: unit-SE-def bind-SE-def, rule p4-direct }{ }_{i p c} \text {.induct, } \\
& \text { simp-all add: unit-SE-def bind-SE-def split:option.split) }
\end{aligned}
\]
lemma sem-comp-prep-recv6:
\(\left(\right.\) out \(\left.1 \leftarrow P R E P-R E C V_{M O N} a ; M A P-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow M A P-S E N D_{M O N}\) \(\left.a ; P R E P-R E C V_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule \(p 4\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-recv7:
\(\left(\right.\) out1 \(\left.\leftarrow P R E P-R E C V_{M O N} a ; M A P-R E C V_{M O N} a\right)=\left(\right.\) out1 \(^{\operatorname{MO}} \leftarrow M A P-R E C V_{M O N}\)
\(\left.a ; P R E P-R E C V_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-recv8:
\(\left(\right.\) out \(\left.1 \leftarrow P R E P-R E C V_{M O N} a ; D O N E-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(\left.a ; \operatorname{PREP}-R E C V_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-recv9:
\(\left(\right.\) out \(\left.1 \leftarrow P R E P-R E C V_{M O N} a ; D O N E-R E C V_{M O N} a\right)=\left(\right.\) out1 \(^{\operatorname{Lon}} \leftarrow D O N E-R E C V_{M O N}\)
\(\left.a ; \operatorname{PREP}-R E C V_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-send4:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-SEND MON \(\left.a ; B U F-S E N D_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow B U F-S E N D_{M O N}\)
\(a ;\) WAIT-SEND \(M O N a)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule \(p 4\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule \(p 4\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-send5:
\(\left(\right.\) out1 \(\leftarrow\) WAIT-SEND MON \(\left.a ; B U F-R E C V_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow B U F-R E C V_{M O N}\)
\(a ;\) WAIT-SEND MON \(a)\)
by (rule ext, induct a, rule p4-stage \({ }_{\text {ipc }}\).induct, rule p4-direct \(_{i p c}\).induct,
simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-send6:
\(\left(\right.\) out \(\left.1 \leftarrow W A I T-S E N D_{M O N} a ; M A P-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow M A P-S E N D_{M O N}\) \(a ;\) WAIT-SEND MON \(a\))
by (rule ext, induct a, rule p4-stage \(e_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\). induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-send7:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-SEND MON \(\left.a ; M A P-R E C V_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow M A P-R E C V_{M O N}\) \(a ;\) WAIT-SEND MON \(a)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)

\section*{lemma sem-comp-wait-send8:}
\((\) out \(1 \leftarrow\) WAIT-SEND MON \(a ;\) DONE-SEND MON \(a)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D D_{M O N}\) \(a ;\) WAIT-SEND MON a)
by (rule ext, induct a, rule p4-stage \(i_{\text {ip. }}\).induct, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-send9:
\((\) out1 \(\leftarrow\) WAIT-SEND MON \(a ;\) DONE-RECV MON \(a)=\left(\right.\) out \(1 \leftarrow D O N E-R E C V_{M O N}\) \(a ;\) WAIT-SEND MON \(a)\)
by (rule ext, induct a, rule p4-stage \(i_{\text {ipc }} . i n d u c t\), rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv4:
\(\left(\right.\) out1 \(\leftarrow\) WAIT-RECV MON \(\left.a ; B U F-S E N D_{M O N} a\right)=\left(\right.\) out1 \(^{\text {MO }} \leftarrow B U F-S E N D_{M O N}\)
\(a ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule p4-stage \(_{i p c}\).induct, rule \(p_{4}\)-direct ipc. \(_{\text {.induct }}\), simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv5:
\(\left(\right.\) out1 \(\leftarrow\) WAIT-RECV \(\left.V_{M O N} a ; B U F-R E C V_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow B U F-R E C V_{M O N}\) \(a ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct ipc \(^{\text {.induct, }}\) simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv6:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-RECV MON \(\left.a ; M A P-S E N D_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow M A P-S E N D_{M O N}\) \(a ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv7:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-RECV MON \(\left.a ; M A P-R E C V_{M O N} a\right)=\left(\right.\) out \(1^{\text {M }} \leftarrow\) MAP-RECV \(_{\text {MON }}\)
\(a ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\). induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv8:
\(\left(\right.\) out1 \(\leftarrow\) WAIT-RECV MON \(\left.a ; D O N E-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(a ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule p4-stage \(e_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv9:
\(\left(\right.\) out1 \(\leftarrow\) WAIT-RECV MON \(\left.a ; D O N E-R E C V_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-R E C V_{M O N}\)
\(a ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule \(p_{4}\)-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-buf-send6:
\(\left(\right.\) out1 \(\left.\leftarrow B U F-S E N D_{M O N} a ; D O N E-S E N D_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow \leftarrow D_{O N E-S E N D}^{M O N}\)
\(\left.a ; B U F-S E N D_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)

\section*{lemma sem-comp-buf-send7:}

```

a;BUF-SEND MON a)
by (rule ext, induct a, rule p4-stage ipc.induct, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def, rule p4-direct }\mp@subsup{\mathrm{ ipc. .induct,}}{}{\mathrm{ .}
simp-all add: unit-SE-def bind-SE-def split:option.split)

```
lemma sem-comp-buf-send8:
 \(\left(\right.\) out1 \(\left.\leftarrow B U F-S E N D_{M O N} a ; M A P-S E N D_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow M A P-S E N D_{M O N}\)
\(\left.a ; B U F-S E N D_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule \(p 4\)-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-buf-send9:
 \(\left(\right.\) out \(\left.1 \leftarrow B U F-S E N D_{M O N} a ; M A P-R E C V_{M O N} a\right)=\left(\right.\) out1 \(^{\text {M }} \leftarrow M A P-R E C V_{M O N}\)
\(\left.a ; B U F-S E N D{ }_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-buf-recv6:
 \(\left(\right.\) out \(\left.1 \leftarrow B U F-R E C V_{M O N} a ; D O N E-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(\left.a ; B U F-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-buf-recv7:
 \(\left(\right.\) out \(\left.1 \leftarrow B U F-R E C V_{M O N} a ; D O N E-R E C V_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-R E C V_{M O N}\)
\(\left.a ; B U F-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-buf-recv8:
 \(\left(\right.\) out \(\left.1 \leftarrow B U F-R E C V_{M O N} a ; M A P-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow M A P-S E N D D_{M O N}\)
\(\left.a ; B U F-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage ipc .induct, rule p4-direct \(t_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)
```

lemma sem-comp-buf-recv9:
$\left(\right.$ out $\left.1 \leftarrow B U F-R E C V_{M O N} a ; M A P-R E C V_{M O N} a\right)=\left(\right.$ out1 $\leftarrow M A P-R E C V_{M O N}$
$\left.a ; B U F-R E C V_{M O N} a\right)$
by (rule ext, induct a, rule p4-stage ${ }_{i p c}$.induct, rule p4-direct $_{i p c}$.induct,
simp-all add: unit-SE-def bind-SE-def, rule p4-direct ${ }_{i p c}$.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule $p 4$-direct ${ }_{i p c}$.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

```
 lemma sem-comp-map-send6:
 \(\left(\right.\) out \(\left.1 \leftarrow M A P-S E N D_{M O N} a ; D O N E-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(\left.a ; M A P-S E N D D_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage ipc. induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c} . i n d u c t\),
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-map-send7:
 \(\left(\right.\) out \(\left.1 \leftarrow M A P-S E N D_{M O N} a ; D O N E-R E C V_{M O N} a\right)=\left(\right.\) out1 \(\leftarrow D O N E-R E C V_{M O N}\)
\(\left.a ; M A P-S E N D D_{M O N} a\right)\)
 by (rule ext, induct a, rule \(p 4\)-stage \(i_{i p c}\).induct, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-map-send8:
 \(\left(\right.\) out1 \(\left.\leftarrow M A P-S E N D_{M O N} a ; B U F-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow B U F-S E N D_{M O N}\)
\(\left.a ; M A P-S E N D_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule \(p 4\)-direct \({ }_{i p c}\). induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-map-send9:
 \(\left(\right.\) out \(1 \leftarrow\) MAP-SEND \(\left._{\text {MON }} a ; B U F-R E C V_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow B U F-R E C V_{M O N}\)
\(\left.a ; M A P-S E N D_{M O N} a\right)\)
 by (rule ext, induct a, rule \(p 4\)-stage \(i_{i p c}\).induct, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-map-recv6:
 \(\left(\right.\) out \(\left.1 \leftarrow M A P-R E C V_{M O N} a ; D O N E-S E N D_{M O N} a\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
```

a;MAP-RECV MON a)
by (rule ext, induct a, rule p4-stage ipc.induct, rule p4-direct }\mp@subsup{}{ipc}{}.\mathrm{ .induct,
simp-all add: unit-SE-def bind-SE-def, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

```
```

lemma sem-comp-map-recv7:
(out1 }\leftarrowMAP-REC\mp@subsup{V}{MON}{}a;DONE-RECV MON a) = (out1 \leftarrow DONE-RECV MON
a;MAP-RECV MON a)
by (rule ext, induct a, rule p4-stage }\mp@subsup{i}{\mathrm{ pc. }}{}\mathrm{ .induct, rule p4-direct }\mp@subsup{\mp@code{fipc}}{\mathrm{ .induct,}}{
simp-all add: unit-SE-def bind-SE-def, rule p4-direct }\mp@subsup{}{\mathrm{ ipc. .induct,}}{
simp-all add: unit-SE-def bind-SE-def split:option.split)

```

\section*{G. 9 Composition equality on different same actions: partial order reduction}

For the specific case of IPC protocol the order of the executions of PikeOS does matter iff executed on different actions, because the semantics of the execution related to each action can react in some cases on the same field of the state, eg: the field related to erro codes... So the switch between the execution order related to IPC actions can be done but under some assumptions and only for a subset of actions
```

lemma sem-comp-prep-send10:
$\left(\right.$ out $\left.1 \leftarrow P R E P-S E N D_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.$ out $1 \leftarrow D O N E-S E N D_{M O N}$
$\left.b ; P R E P-S E N D_{M O N} a\right)$
by (rule ext, induct a, rule p4-stage $i_{i p c}$.induct, rule p4-direct $_{i p c}$.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-prep-send11:
$\left(\right.$ out $\left.1 \leftarrow P R E P-S E N D_{M O N} a ; D O N E-R E C V_{M O N} b\right)=\left(\right.$ out1 $\leftarrow D O N E-R E C V_{M O N}$
$\left.b ; P R E P-S E N D_{M O N} a\right)$
by (rule ext, induct a, rule p4-stage $i_{i p c}$.induct, rule p4-direct $_{i p c}$.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

```
 lemma sem-comp-prep-recv10:
 \(\left(\right.\) out \(\left.1 \leftarrow P R E P-R E C V_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(\left.b ; P R E P-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-prep-recv11:
 \(\left(\right.\) out \(\left.1 \leftarrow P R E P-R E C V_{M O N} a ; D O N E-R E C V_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-R E C V_{M O N}\)
\(\left.b ; P R E P-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule \(p_{4}\)-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
term (resource o snd o the) \(\left(\left(\right.\right.\) out1 \(\leftarrow\) WAIT-SEND \(_{\text {MON }} a ;\) WAIT-RECV \(V_{M O N}\) b) \(\sigma\))
lemma WAIT-SEND MON-None: WAIT-SEND \(_{\text {MON }}(I P C\) WAIT a) \(\sigma \neq\) None by (induct a, auto simp add: unit-SE-def split:option.split)
lemma WAIT-RECV MON-None: WAIT-RECV MON \((I P C\) WAIT a) \(\sigma \neq\) None by (induct a, auto simp add: unit-SE-def split:option.split)
lemma sem-comp-wait-send10:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-SEND MON \(\left.a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(b\); WAIT-SEND MON \(^{\text {O }}\))
by (rule ext, induct a, rule p4-stage \({ }_{\text {ipc }}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-send11:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-SEND MON \(\left.a ; D O N E-R E C V_{M O N} b\right)=\left(\right.\) out1 \(\leftarrow D O N E-R E C V_{M O N}\) \(b\); WAIT-SEND MON \(a\))
by (rule ext, induct a, rule \(p_{4}\)-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct ipc. \(_{\text {. induct }}\), simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv10:
\(\left(\right.\) out \(1 \leftarrow\) WAIT-RECV \(\left.V_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(b\); WAIT-RECV MON \(a\))
by (rule ext, induct a, rule p4-stage \(e_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-wait-recv11:
\(\left(\right.\) out1 \(\leftarrow\) WAIT-RECV MON \(\left.a ; D O N E-R E C V_{M O N} b\right)=\left(\right.\) out1 \(\leftarrow D O N E-R E C V_{M O N}\)
\(b ;\) WAIT-RECV MON \(a)\)
by (rule ext, induct a, rule \(p_{4}\)-stage \({ }_{i p c}\).induct, rule \(p_{4}\)-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-buf-send10:
\(\left(\right.\) out \(\left.1 \leftarrow B U F-S E N D_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out1 \(^{\operatorname{Lon}} \leftarrow\) DONE-SEND \(_{M O N}\)
\(\left.b ; B U F-S E N D_{M O N} a\right)\)
by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct, simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-buf-send11:

```

b;BUF-SEND MON a)
by (rule ext, induct a, rule p4-stage ipc.induct, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

```
 lemma sem-comp-buf-recv10:
 \(\left(\right.\) out1 \(\left.1 \leftarrow B U F-R E C V_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out1 \(\leftarrow\) DONE-SEND \(_{M O N}\)
\(b\); BUF-RECV MON \(a\))
 by (rule ext, induct a, rule p4-stage \({ }_{\text {ipc }}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-buf-recv11:
 \(\left(\right.\) out \(\left.1 \leftarrow B U F-R E C V_{M O N} a ; D O N E-R E C V_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-R E C V_{M O N}\)
\(b\); BUF-RECV MON \(a\))
 by (rule ext, induct a, rule p4-stage ipc. induct, rule p4-direct \(_{\text {ipc }}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-map-send10:
 \(\left(\right.\) out \(\left.1 \leftarrow M A P-S E N D_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(\left.b ; M A P-S E N D ~_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \({ }_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
 lemma sem-comp-map-send11:
 \(\left(\right.\) out \(\left.1 \leftarrow M A P-S E N D_{M O N} a ; D O N E-R E C V_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-R E C V_{M O N}\)
\(\left.b ; M A P-S E N D_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct ipc \(_{\text {.induct, }}\)
 simp-all add: unit-SE-def bind-SE-def, rule \(p_{4}\)-direct ipc .induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
lemma sem-comp-map-recv8:
 \(\left(\right.\) out \(\left.1 \leftarrow M A P-R E C V_{M O N} a ; D O N E-S E N D_{M O N} b\right)=\left(\right.\) out \(1 \leftarrow D O N E-S E N D_{M O N}\)
\(\left.b ; M A P-R E C V_{M O N} a\right)\)
 by (rule ext, induct a, rule p4-stage \(i_{i p c}\).induct, rule p4-direct \(_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def, rule p4-direct \({ }_{i p c}\).induct,
 simp-all add: unit-SE-def bind-SE-def split:option.split)
```

lemma sem-comp-map-recv9:
(out1}\leftarrowMAP-REC\mp@subsup{V}{MON}{}a;DONE-REC\mp@subsup{V}{MON}{}b)=(\mathrm{ out 1 }\leftarrowDONE-REC\mp@subsup{V}{MON}{
b;MAP-RECV MON a)
by (rule ext, induct a, rule p4-stage ipc.induct, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def, rule p4-direct ipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)
end
theory IPC-traces
imports IPC-atomic-actions
begin

```

\section*{H HOL representation of PikeOS IPC traces}
type-synonym trace \(_{i p c}=A C T I O N_{i p c}\) list

\section*{H. 1 Execution function for PikeOS IPC traces}
definition exec-action \({ }_{i d}-\) Mon
where exec-action \({ }_{i d}-\) Mon \(=\left(\lambda\right.\) actl st. Some \(\left(\right.\) error-codes \(\left(\right.\) exec-action \(_{i d}\) st actl \()\),
```

exec-actionid st actl))

```

\section*{H. 2 Trace refinement}

\section*{H. 3 Execution function for actions with thread ID}
lemma \((((\) th-flag \(\sigma)\) caller \()=\) None \()=(\) caller \(\notin \operatorname{dom}(\) th-flag \(\sigma))\)
by auto
lemma
assumes caller \(\in\) dom (th-flag \(\sigma\))
shows the \(((\) th-flag \(\sigma)\) caller \() \in\) ran (th-flag \(\sigma\))
using assms
by (auto simp: ranI)
abbreviation
get-caller-error caller \(\sigma \equiv\) (the o(th-flag) \(\sigma\)) caller
abbreviation
```

remove-caller-error caller $\sigma \equiv \sigma($ th-flag $:=($ th-flag $\sigma)($ caller $:=$ None $)$

```
 D
abbreviation
```

set-caller-partner-error caller partner \sigma 尔 out' \equiv
\sigma}(th\mathrm{ th-flag := (th-flag }\sigma
(caller := Some(out'(*just (a,out') ?*)),
partner:= Some (out'(*just (a,out')?*)))
|)

```

\section*{abbreviation}
error-tab-transfer caller \(\sigma \sigma^{\prime} \equiv \sigma^{\prime}\left(\begin{array}{l}\text { th-flag } \\ :=(\text { th-flag } \sigma) \mid)\end{array}\right.\)

\section*{abbreviation}
```

set-no-error-preps caller partner $\sigma \sigma^{\prime} m s g \equiv$

```
\(\sigma^{\prime}\left(\right.\) state \(_{i d}\). th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma(\) caller \(\left.\mapsto N O-E R R O R S)\right)\)

\section*{abbreviation}
set-no-error-waits caller partner \(\sigma \sigma^{\prime}\) msg \(\equiv\) \(\sigma^{\prime}\left(\right.\) state \(_{i d}\). th-flag \(:=\) state \(_{i d}\). th-flag \(\sigma(\) caller \(\left.\mapsto N O-E R R O R S)\right)\)

\section*{abbreviation}
```

set-no-error-bufs caller partner $\sigma \sigma^{\prime} m s g \equiv$
$\sigma^{\prime}\left(\right.$ state $_{i d}$.th-flag $:=$ state $_{i d}$.th-flag $\sigma($ caller $\left.\mapsto N O-E R R O R S)\right)$

```

\section*{abbreviation}
```

set-no-error-dones caller partner $\sigma \sigma^{\prime} \mathrm{msg} \equiv$
$\sigma^{\prime}\left(\mid\right.$ state $_{i d}$. th-flag $:=$ state $_{i d}$.th-flag $\sigma($ caller $\left.\mapsto N O-E R R O R S)\right)$

```

\section*{abbreviation}
```

set-no-error-prepr caller partner \sigma 㐌 msg \equiv
\sigma

```

\section*{abbreviation}
```

set-no-error-waitr caller partner \sigma \sigma' msg \equiv
\sigma

```

\section*{abbreviation}
set-no-error-bufr caller partner \(\sigma \sigma^{\prime} m s g \equiv\) \(\sigma^{\prime}\left(\mid\right.\) state \(_{i d}\).th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma(\) caller \(\left.\mapsto N O-E R R O R S) \mid\right)\)

\section*{abbreviation}
```

set-no-error-doner caller partner $\sigma \sigma^{\prime} m s g \equiv$
$\sigma^{\prime}\left(\right.$ state $_{i d}$.th-flag $:=$ state $_{i d}$.th-flag $\sigma($ caller $\mapsto$ NO-ERRORS $\left.)\right)$

```

\section*{abbreviation}
\[
\begin{aligned}
& \text { set-error-mem-preps caller partner } \sigma \sigma^{\prime} \text { error-mem } m s g \equiv \\
& \sigma^{\prime}\left(\mid \text { state }_{i d} \text {.th-flag }:=\text { state }_{\text {id }} \text {.th-flag } \sigma(\text { caller } \mapsto E R R O R-M E M \text { error-mem },\right. \\
& \text { partner } \mapsto E R R O R-M E M \text { error-mem }))
\end{aligned}
\]

\section*{abbreviation}
set-error-mem-waits caller partner \(\sigma \sigma^{\prime}\) error-mem msg \(\equiv\)
```

$\sigma^{\prime}\left(\right.$ state $_{i d}$.th-flag $:=$ state $_{i d}$.th-flag $\sigma$
(caller $\mapsto$ ERROR-MEM error-mem,
partner $\mapsto E R R O R-M E M$ error-mem) D

```

\section*{abbreviation}
```

set-error-mem-bufs caller partner $\sigma \sigma^{\prime}$ error-mem msg $\equiv$
$\sigma^{\prime}\left(\mid\right.$ state $_{i d}$.th-flag $:=$ state $_{i d}$.th-flag $\sigma($ caller $\mapsto E R R O R-M E M$ error-mem,
partner $\mapsto E R R O R-M E M$ error-mem) |)

```

\section*{abbreviation}
```

set-error-mem-maps caller partner \sigma \sigma' error-mem msg \equiv
\sigma
partner }\mapsto\mathrm{ ERROR-MEM error-mem)D

```

\section*{abbreviation}
```

set-error-mem-dones caller partner \sigma \sigma' error-mem msg \equiv
\sigma
partner }\mapsto\mathrm{ ERROR-MEM error-mem)|

```

\section*{abbreviation}
```

set-error-mem-prepr caller partner $\sigma \sigma^{\prime}$ error-mem msg $\equiv$
$\sigma^{\prime}\left(\right.$ state $_{i d}$.th-flag $:=$ state $_{i d}$.th-flag $\sigma($ caller $\mapsto$ ERROR-MEM error-mem,
partner $\mapsto$ ERROR-MEM error-mem)|)

```

\section*{abbreviation}
```

set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem msg $\equiv$
$\sigma^{\prime}\left(\right.$ state $_{i d}$. th-flag $:=$ state $_{i d}$. th-flag $\sigma$ (caller $\mapsto$ ERROR-MEM error-mem,
partner $\mapsto$ ERROR-MEM error-mem)|)

```

\section*{abbreviation}
set-error-mem-bufr caller partner \(\sigma \sigma^{\prime}\) error-mem msg \(\equiv\)
\[
\begin{array}{r}
\sigma^{\prime}\left(\text { state }_{\text {id }} . \text { th-flag }:=\text { state }_{i d} \text {.th-flag } \sigma(\text { caller } \mapsto E R R O R \text {-MEM error-mem },\right. \\
\text { partner } \mapsto E R R O R-M E M \text { error-mem }))
\end{array}
\]

\section*{abbreviation}
\[
\begin{array}{r}
\text { set-error-mem-mapr caller partner } \sigma \sigma^{\prime} \text { error-mem msg } \equiv \\
\sigma^{\prime}\left(\text { state }_{i d} \text {.th-flag }:=\text { state }_{i d} \text {.th-flag } \sigma(\text { caller } \mapsto E R R O R \text {-MEM error-mem, }\right. \\
\text { partner } \mapsto E R R O R-M E M \text { error-mem }))
\end{array}
\]

\section*{abbreviation}
\[
\begin{aligned}
& \text { set-error-mem-doner caller partner } \sigma \sigma^{\prime} \text { error-mem msg } \equiv \\
& \sigma^{\prime}\left(\mid \text { state }_{\text {id }} \text {.th-flag }:=\text { state }_{\text {id }} \text {.th-flag } \sigma(\text { caller } \mapsto E R R O R-M E M \text { error-mem },\right. \\
& \text { partner } \mapsto E R R O R-M E M \text { error-mem }))
\end{aligned}
\]

\section*{abbreviation}
set-error-ipc-preps caller partner \(\sigma \sigma^{\prime}\) error-ipc msg \(\equiv\) \(\sigma^{\prime}\left(\mid\right.\) state \(_{i d}\).th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma(\) caller \(\mapsto E R R O R-I P C\) error-ipc, partner \(\mapsto\) ERROR-IPC error-ipc)|)

\section*{abbreviation}
```

set-error-ipc-waits caller partner \sigma 尔 error-ipc msg \equiv
\sigma
partner }\mapsto\mathrm{ ERROR-IPC error-ipc)|

```

\section*{abbreviation}
```

set-error-ipc-bufs caller partner \sigma \sigma' error-ipc msg \equiv
\sigma
partner }\mapsto\mathrm{ ERROR-IPC error-ipc)D

```

\section*{abbreviation}
```

set-error-ipc-maps caller partner $\sigma \sigma^{\prime}$ error-ipc msg $\equiv$
$\sigma^{\prime}\left(\right.$ state $_{i d}$.th-flag $:=$ state $_{i d}$. th-flag $\sigma($ caller $\mapsto E R R O R-I P C$ error-ipc,

```
 partner \(\mapsto E R R O R-I P C\) error-ipc)D

\section*{abbreviation}
set－error－ipc－dones caller partner \(\sigma \sigma^{\prime}\) error－ipc msg \(\equiv\)
\[
\sigma^{\prime}\left(\text { state }_{\text {id }} . \text { th-flag }:=\text { state }_{i d} \text {.th-flag } \sigma(\text { caller } \mapsto E R R O R-I P C \text { error-ipc, }\right.
\] partner \(\mapsto\) ERROR－IPC error－ipc）｜）

\section*{abbreviation}
set－error－ipc－prepr caller partner \(\sigma \sigma^{\prime}\) error－ipc msg \(\equiv\) \(\sigma^{\prime} \mid\) state \(_{i d}\) ．th－flag \(:=\) state \(_{i d}\) ．th－flag \(\sigma(\) caller \(\mapsto E R R O R-I P C\) error－ipc， partner \(\mapsto E R R O R-I P C\) error－ipc）D

\section*{abbreviation}
```

set-error-ipc-waitr caller partner \sigma 尔 error-ipc msg \equiv
\sigma}(|\mp@subsup{\mathrm{ state id}}{id}{}.th-flag := state id.th-flag \sigma(caller \mapstoERROR-IPC error-ipc,
partner }\mapstoERROR-IPC error-ipc)|

```

\section*{abbreviation}
```

set-error-ipc-bufr caller partner \sigma \sigma' error-ipc msg \equiv
\sigma}\mp@subsup{|}{}{\prime}\mp@subsup{\mathrm{ state }}{id}{}.th-flag := state id.th-flag \sigma(caller \mapstoERROR-IPC error-ipc
partner }\mapsto\mathrm{ ERROR-IPC error-ipc)|

```

\section*{abbreviation}
```

set-error-ipc-mapr caller partner \sigma 尔 error-ipc msg \equiv
\sigma}|(\mp@subsup{state id}{id}{*}.th-flag := state id.th-flag \sigma(caller \mapsto ERROR-IPC error-ipc
partner }\mapsto\mathrm{ ERROR-IPC error-ipc)|

```

\section*{abbreviation}
\[
\begin{aligned}
& \text { set-error-ipc-doner caller partner } \sigma \sigma^{\prime} \text { error-ipc msg } \equiv \\
& \sigma^{\prime}\left(\text { state }_{i d} \text {.th-flag }:=\text { state }_{i d} \text {.th-flag } \sigma(\text { caller } \mapsto E R R O R \text {-IPC error-ipc, },\right. \\
& \text { partner } \mapsto E R R O R-I P C \text { error-ipc }) \mid)
\end{aligned}
\]
fun abort \(_{\text {lift }}::\left(\right.\) ACTION \(_{\text {ipc }} \Rightarrow\left(\right.\) errors,\({ }^{\prime}{ }^{\prime}\) state \(_{\text {id }}\)－scheme \()\) Mon \(\left._{S E}\right) \Rightarrow\) \(\left(A^{\prime} T I O N_{i p c} \Rightarrow\left(\right.\right.\) errors，\({ }^{\prime} a\) state \(_{i d}\)－scheme \()\) Mon \(\left._{S E}\right)\)
where abort \(_{\text {lift }}\) ioprog a \(\sigma=\)
（case a of
（IPC DONE（SEND caller partner msg））\(\Rightarrow\)
if caller \(\in\) dom \((\) th－flag \(\sigma)(*\) should add the condition：in which action
ID
the error occurs＊）
then Some \(((\) the \(((\) th－flag \(\sigma)\) caller \())(*\) shoud be：my error＊\()\) ，
```

            \(\sigma(\) th-flag \(:=(\) th-flag \(\sigma)(\) caller \(:=\) None \()\)
                    D)
    else (case ioprog a \(\sigma\) of
            None \(\Rightarrow\) None ( \(*\) never happens in our exec fun*)
            \(\mid \operatorname{Some}\left(\right.\) out \(\left.\left.^{\prime}, \sigma^{\prime}\right) \Rightarrow \operatorname{Some}(N O-E R R O R S, \sigma)\right)(*\) execute done*)
    \(\mid(I P C\) DONE (RECV caller partner msg)) \(\Rightarrow\)
    if caller \(\in\) dom (th-flag \(\sigma\) )
    then Some \(((\) the \(((\) th-flag \(\sigma)\) caller \())(*\) shoud be: my error* \()\),
            \(\sigma(\) th-flag \(:=(\) th-flag \(\sigma)(\) caller \(:=\) None \() \mid))\)
        else (case ioprog a \(\sigma\) of
            None \(\Rightarrow\) None ( \(*\) never happens in our exec fun*)
            | Some \(\left(\right.\) out \(\left.\left.^{\prime}, \sigma^{\prime}\right) \Rightarrow \operatorname{Some}(N O-E R R O R S, \sigma)\right)(* e x e c u t e ~ d o n e *)\)
    \(\mid(I P C-(S E N D\) caller partner \(m s g)) \Rightarrow\)
    if caller \(\in\) dom (th-flag \(\sigma\) )
    then Some (get-caller-error caller \(\sigma(*\) should be: my error*), \(\sigma\) ) (* purge
    *)
else (case ioprog a $\sigma$ of
None $\Rightarrow$ None (*never happens in our exec fun $*$ )
$\mid \operatorname{Some}\left(N O-E R R O R S, \sigma^{\prime}\right) \Rightarrow \operatorname{Some}(N O-E R R O R S$, error-tab-transfer
caller $\sigma \sigma^{\prime}$ )
| Some(ERROR-MEM error-memory, $\left.\sigma^{\prime}\right) \Rightarrow$
Some(ERROR-MEM error-memory,
set-caller-partner-error caller partner $\sigma \sigma^{\prime}(E R R O R-M E M$
error-memory) )
| Some(ERROR-IPC error-IPC, $\left.\sigma^{\prime}\right) \Rightarrow$
Some(ERROR-IPC error-IPC,
set-caller-partner-error caller partner $\sigma \sigma^{\prime}(E R R O R-I P C$
error-IPC) ))
(*both caller and partner were 'informed' to be in error-state.*)
$\mid(I P C-(R E C V$ caller partner $m s g)) \Rightarrow$
if caller $\in$ dom (th-flag $\sigma$ )
then Some (get-caller-error caller $\sigma(*$ should be: my error $*), \sigma)(* p u r g e *)$
else (case ioprog a $\sigma$ of
None $\Rightarrow$ None (*never happens in our exec fun*)
| Some(NO-ERRORS,$\left.\sigma^{\prime}\right) \Rightarrow \operatorname{Some}($ NO-ERRORS, error-tab-transfer
caller $\sigma \sigma^{\prime}$ )
| Some (ERROR-MEM error-memory, $\left.\sigma^{\prime}\right) \Rightarrow$
Some(ERROR-MEM error-memory,
set-caller-partner-error caller partner $\sigma \sigma^{\prime}$ (ERROR-MEM
error-memory) )
| Some(ERROR-IPC error-IPC, $\left.\sigma^{\prime}\right) \Rightarrow$
Some(ERROR-IPC error-IPC,
set-caller-partner-error caller partner $\sigma \sigma^{\prime}(E R R O R-I P C$
error-IPC) ))
(*both caller and partner were 'informed' to be in error-state.*)
(*hypothese: all other atomic actions have no purge*)
)

```
```

lemma exec-action ${ }_{i d}$-Mon-th-flag0:
$a=I P C$ ipc-stage $(i p c$-direction $) \Longrightarrow$ ipc-stage $\neq D O N E \Longrightarrow$
exec-action id $^{-}$-Mon a $\sigma=$ Some $\left(N O-E R R O R S, \sigma^{\prime}\right) \Longrightarrow t h$-flag $\sigma=$ th-flag $\sigma^{\prime}$
unfolding exec-action ${ }_{i d}$-Mon-def
apply auto
apply (cases ipc-stage)
apply (case-tac ipc-direction)
apply simp-all
unfolding $P R E P-S E N D_{i d}$-def $P R E P-R E C V_{i d}$-def
apply simp-all
apply (case-tac ipc-direction)
apply simp-all
unfolding WAIT-SEND ${ }_{i d}$-def
apply simp-all
apply safe
apply (case-tac thread-list $\sigma(a, a a, b))$
apply simp-all
unfolding WAIT-RECV $V_{i d}$-def
apply simp-all
apply safe
apply simp-all
apply (case-tac thread-list $\sigma(a, a a, b))$
apply simp-all
apply (case-tac ipc-direction)
apply simp-all
unfolding BUF-SEND id $^{\text {-def }}$
apply simp-all
unfolding BUF-RECV $V_{i d}$-def
apply simp-all
apply (cases ipc-direction)
apply (simp-all add: MAP-SEND ${ }_{i d}$-def MAP-RECV $V_{i d}$-def)
done

```

\section*{H. 4 IPC operations with thread ID}

We define an operation as a trace with a given order on atomic actions. For the IPC API we will define two types of operations, we call the first type request and the second type reply. Following this terminology a given PikeOS thread can request to communicate with another thread or reply to a communication request. The Isabelle specification of operations is as
following:
definition ipc-send-request \({ }_{i d}\)
\[
:: \text { thread }_{i d} \Rightarrow \text { int list } \Rightarrow \text { thread }_{i d} \Rightarrow \text { trace }_{i p c}\left(\left(-\triangleright_{i d}-\triangleright_{i d} /-\right)[201,0,201]\right.
\]
200)
where
caller \(\triangleright_{i d} m s g \triangleright_{i d}\) partner \(\equiv[\) IPC PREP \((S E N D\) caller partner msg), IPC WAIT (SEND caller partner msg)]
definition \(i p c\)-recv-request \({ }_{i d}\)
\[
:: \text { thread }_{i d} \Rightarrow \text { int list } \Rightarrow \text { thread }_{i d} \Rightarrow \text { trace }_{i p c}\left(\left(-\triangleleft_{i d}-\triangleleft_{i d} /-\right)[201,0,201]\right.
\]
200)
where
caller \(\triangleleft_{i d} m s g \triangleleft_{i d}\) partner \(\equiv[I P C\) PREP \((\) RECV caller partner msg), IPC WAIT (RECV caller partner msg)]
- A thread can do response operation to sending or receiving message response
definition ipc-send-response \({ }_{i d}\)
\[
:: \text { thread }_{i d} \Rightarrow \text { int list } \Rightarrow \text { thread }_{i d} \Rightarrow \text { trace }_{i p c}\left(\left(-\unrhd_{i d}-\unrhd_{i d} /-\right)[201,0,201]\right.
\]
200)
where
caller \(\unrhd_{i d} m s g \unrhd_{i d}\) partner \(\equiv[\) IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC DONE (RECV partner caller msg)]
definition ipc-recv-response \({ }_{i d}\)
:: thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) thread \(_{i d} \Rightarrow\) trace \(_{i p c}\left(\left(-\unlhd_{i d}-\unlhd_{i d} /-\right)[201,0,201]\right.\) 200)
where
caller \(\unlhd_{i d} m s g \unlhd_{i d}\) partner \(\equiv[I P C\) PREP \((R E C V\) caller partner \(m s g)\),
IPC WAIT (RECV caller partner msg),
IPC BUF (\(R E C V\) caller partner msg),
IPC DONE (SEND partner caller msg),
IPC DONE (RECV caller partner msg)]
lemmas request-normalizer \(=\)
\(i_{i p c-s e n d-r e s p o n s e ~}^{i d}\)-def ipc-recv-response \({ }_{i d}\)-def ipc-send-request \(_{i d}\)-def ipc-recv-request \(_{i d}\)-def

\section*{H. 5 IPC operations with free variables}
abbreviation ipc-send-request ((- \(\triangleright-\triangleright /-)[201,0,201] 200)\)
where caller \(\triangleright\) msg \(\triangleright\) partner \(\equiv[I P C\) PREP \((S E N D\) caller partner msg \()\), IPC WAIT (SEND caller partner msg)]
abbreviation ipc-recv-request \(((-\triangleleft-\triangleleft /-)\) [201, 0, 201] 200)
where caller \(\triangleleft m s g \triangleleft\) partner \(\equiv[I P C\) PREP \((\) RECV caller partner \(m s g)\), IPC WAIT (RECV caller partner msg)]
abbreviation ipc-send-response ((- \(\unrhd-\unrhd /-)[201,0,201]\) 200)
where caller \(\unrhd m s g \unrhd\) partner \(\equiv[I P C\) PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC DONE (RECV partner caller msg)]
abbreviation ipc-recv-response \(((-\unlhd-\unlhd /-)[201,0,201] 200)\) where
caller \(\unlhd m s g \unlhd\) partner \(\equiv[I P C\) PREP \((\) RECV caller partner msg \()\), IPC WAIT (RECV caller partner msg),
IPC BUF (\(R E C V\) caller partner \(m s g\)),
IPC MAP (RECV caller partner msg),
IPC DONE (SEND partner caller msg),
IPC DONE (RECV caller partner msg)]

\section*{H. 6 Pridicates on operations}
definition is-ipc-trace
where \(\quad i s\)-ipc-trace actl \(=\left(\forall a \in \operatorname{set}\left(\right.\right.\) actl::trace \(\left.{ }_{i p c}\right) . \exists\) caller partner msg.
\(a=I P C\) PREP (RECV caller partner msg) \() \vee\)
\(a=I P C\) WAIT (\(R E C V\) caller partner msg \() \vee\)
\(a=I P C\) BUF \(\quad(R E C V\) caller partner \(m s g) \vee\)
\(a=I P C\) DONE (\(R E C V\) caller partner msg \() \vee\)
\(a=\) IPC PREP (SEND caller partner msg) \(\vee\)
\(a=I P C\) WAIT (SEND caller partner msg) \(\vee\)
\(a=I P C\) BUF \(\quad(S E N D\) caller partner \(m s g) \vee\)
\(a=I P C D O N E \quad(S E N D\) caller partner \(m s g))\)
definition is-ipc-trace \(_{i d}\)
where \(\quad i s\) - ipc-trace \(i_{i d}\) actl \(=\left(\forall a \in \operatorname{set}\left(a c t l:: t r a c e_{i p c}\right) . \exists\right.\) caller partner msg.
\(a=I P C\) PREP (RECV caller partner msg \() \vee\)
\(a=I P C\) WAIT (RECV caller partner msg) \(\vee\)
\(a=\) IPC BUF \(\quad(\) RECV caller partner msg \() \vee\)
\(a=I P C\) DONE (\(R E C V\) caller partner msg \() \vee\)
\(a=I P C\) PREP (SEND caller partner \(m s g) \vee\)
\(a=\) IPC WAIT (SEND caller partner msg) \(\vee\)
\(a=I P C\) BUF (SEND caller partner msg) \()\)
\(a=I P C\) DONE (SEND caller partner msg))

\section*{H. 7 Simplification rules related to traces}
lemma prep-send-comp-mbind-eq2:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow P R E P-S E N D_{M O N} a ; \operatorname{PREP}-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow P R E P-R E C V_{M O N} a ; P R E P-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send1)
lemma prep-send-comp-mbind-eq3:
mbind is \((\lambda a .(\) out \(1 \leftarrow\) PREP-SEND \(M O N ~ a ; ~ W A I T-S E N D ~ M O N ~ a) ~) ~ \sigma=~\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow W A I T-S E N D_{M O N} a ;\) PREP-SEND \(\left.\left._{\text {MON }} a\right)\right) \sigma\) by (simp only: sem-comp-prep-send2)
lemma prep-send-comp-mbind-eq4:
mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow P R E P-S E N D_{M O N} a ;\) WAIT-RECV \(\left.\left.V_{M O N} a\right)\right) \sigma=\) mbind is \((\lambda a\). (out1 \(\leftarrow\) WAIT-RECV MON \(a ;\) PREP-SEND MON \(a)) \sigma\)
by (simp only: sem-comp-prep-send3)
lemma prep-send-comp-mbind-eq5:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow P R E P-S E N D_{M O N} a ; B U F-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow B U F-S E N D_{M O N} a ; P R E P-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send4)
lemma prep-send-comp-mbind-eq6:
mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out \(\left.\left.1 \leftarrow P R E P-S E N D_{M O N} a ; B U F-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow B U F-R E C V_{M O N} a ; P R E P-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send5)
lemma prep-send-comp-mbind-eq7:
mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out \(\left.\left.1 \leftarrow P R E P-S E N D_{M O N} a ; M A P-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow M A P-S E N D_{M O N} a ; P R E P-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send6)
lemma prep-send-comp-mbind-eq8:
mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out1 \(\left.\left.\leftarrow P R E P-S E N D_{M O N} a ; M A P-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow M A P-R E C V_{M O N} a ; P R E P-S E N D D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send7)
lemma prep-send-comp-mbind-eq9:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow P R E P-S E N D D_{M O N} a ; D O N E-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow\) DONE-SEND \(_{\text {MON }} a ; \operatorname{PREP-SEND}\) MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send8)
lemma prep-send-comp-mbind-eq10:
mbind is \(\left(\lambda a\right.\). (out \(\left.\left.1 \leftarrow P R E P-S E N D D_{M O N} a ; D O N E-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow D O N E-R E C V_{M O N} a ; \operatorname{PREP-SEND} D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-send9)
lemma prep-recv-comp-mbind-eq1:
mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow P R E P-R E C V_{M O N} a ;\) WAIT-SEND \(\left.\left.M O N a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out1 \(\leftarrow\) WAIT-SEND \(\left.\left.M O N ~ a ; P R E P-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv2)
lemma prep-recv-comp-mbind-eq2:
mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow P R E P-R E C V_{\text {MON }} a ;\) WAIT-RECV MON \(\left.\left.a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow\) WAIT-RECV MON \(\left.\left.a ; \operatorname{PREP}-R E C V_{M O N} a\right)\right) \sigma\)
```

    by (simp only: sem-comp-prep-recv3)
    ```
lemma prep-recv-comp-mbind-eq3:
mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\left.\left.\leftarrow P R E P-R E C V_{M O N} a ; B U F-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow B U F-S E N D_{M O N} a ; P R E P-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv4)
lemma prep-recv-comp-mbind-eq4:
mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow P R E P-R E C V_{M O N} a ; B U F-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow B U F-R E C V_{M O N} a ; P R E P-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv5)
lemma prep-recv-comp-mbind-eq5:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow P R E P-R E C V_{M O N} a ; M A P-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow M A P-S E N D_{M O N} a ; P R E P-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv6)
lemma prep-recv-comp-mbind-eq6:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow P R E P-R E C V_{M O N} a ; M A P-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow M A P-R E C V_{M O N} a ; P R E P-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv7)
lemma prep-recv-comp-mbind-eq7:
mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out \(\left.\left.1 \leftarrow P R E P-R E C V_{M O N} a ; D O N E-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow D O N E-S E N D_{M O N} a ; \operatorname{PREP}-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv8)
lemma prep-recv-comp-mbind-eq8:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow P R E P-R E C V_{M O N} a ; D O N E-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow D O N E-R E C V_{\text {MON }} a ; P R E P-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-prep-recv9)
lemma wait-send-comp-mbind-eq1:
mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow\) WAIT-SEND \(\left.\left.M O N ~ a ; B U F-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow B U F-S E N D_{M O N} a ;\) WAIT-SEND \(\left.\left.M O N a\right)\right) \sigma\)
by (simp only: sem-comp-wait-send4)
lemma wait-send-comp-mbind-eq2: mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow\) WAIT-SEND \(\left.\left.M O N a ; B U F-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow B U F-R E C V_{M O N} a ;\) WAIT-SEND MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-wait-send5)
lemma wait-send-comp-mbind-eq3: mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow\) WAIT-SEND \(\left.\left.M O N a ; M A P-S E N D D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow M A P-S E N D_{M O N} a ;\) WAIT-SEND \(\left.\left.M O N a\right)\right) \sigma\)
by (simp only: sem-comp-wait-send6)
lemma wait-send-comp-mbind-eq4:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow\) WAIT-SEND \(\left.\left._{\text {MON }} a ; M A P-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow M A P-R E C V_{M O N} a ;\) WAIT-SEND \(\left.\left.{ }_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-wait-send7)
lemma wait-send-comp-mbind-eq5:
mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow\) WAIT-SEND \(_{\text {MON }} a ;\) DONE-SEND \(\left.\left._{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out \(1 \leftarrow\) DONE-SEND \(_{\text {MON }} a ;\) WAIT-SEND \(\left.\left.M O N a\right)\right) \sigma\)
by (simp only: sem-comp-wait-send8)
lemma wait-send-comp-mbind-eq6:
mbind is \((\lambda a .(\) out1 \(\leftarrow\) WAIT-SEND MON \(a ;\) DONE-RECV MON \(a)) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow D O N E-R E C V_{M O N} a ;\) WAIT-SEND MON a) \() \sigma\) by (simp only: sem-comp-wait-send9)
lemma wait-recv-comp-mbind-eq1: mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow\) WAIT-RECV MON \(\left.\left.a ; B U F-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow B U F-S E N D_{M O N} a ;\) WAIT-RECV MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-wait-recv4)
lemma wait-recv-comp-mbind-eq2
mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow\) WAIT-RECV MON \(\left.\left.a ; B U F-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow B U F-R E C V_{M O N} a ;\) WAIT-RECV MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-wait-recv5)
lemma wait-recv-comp-mbind-eq3:
mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow\) WAIT-RECV MON \(\left.\left.a ; M A P-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow M A P-S E N D_{M O N} a ;\) WAIT-RECV MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-wait-recv6)
lemma wait-recv-comp-mbind-eq4:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow\) WAIT-RECV MON \(\left.\left.a ; M A P-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow M A P-R E C V_{M O N} a ;\) WAIT-RECV MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-wait-recv7)
lemma wait-recv-comp-mbind-eq5:
mbind is \((\lambda a .(\) out1 \(\leftarrow\) WAIT-RECV MON \(a ;\) DONE-SEND \(M O N a)) \sigma=\) mbind is \((\lambda a\). (out1 \(\leftarrow\) DONE-SEND MON \(a ;\) WAIT-RECV MON \(a)) \sigma\)
by (simp only: sem-comp-wait-recv8)
lemma wait-recv-comp-mbind-eq6:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow\) WAIT-RECV MON \(\left.\left.a ; D O N E-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\leftarrow D O N E-R E C V_{\text {MON }} a ;\) WAIT-RECV MON \(\left.\left.a\right)\right) \sigma\)
by (simp only: sem-comp-wait-recv9)
lemma buf-send-comp-mbind-eq1:
mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\left.\left.\leftarrow B U F-S E N D_{M O N} a ; D O N E-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\left.\left.\leftarrow D O N E-S E N D_{M O N} a ; B U F-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-buf-send6)
lemma buf-send-comp-mbind-eq2:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow B U F-S E N D_{M O N} a ; D O N E-R E C V_{M O N} a\right)\right) \sigma=\)
mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow D O N E-R E C V_{M O N} a ; B U F-S E N D D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-buf-send7)
lemma buf-send-comp-mbind-eq3:
mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out \(\left.\left.1 \leftarrow B U F-S E N D_{M O N} a ; M A P-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out1 \(\left.\left.\leftarrow M A P-S E N D_{M O N} a ; B U F-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-buf-send8)
lemma buf-send-comp-mbind-eq4:
mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out \(\left.\left.1 \leftarrow B U F-S E N D_{M O N} a ; M A P-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). \(\left(\right.\) out \(\left.\left.1 \leftarrow M A P-R E C V_{M O N} a ; B U F-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-buf-send9)
lemma map-send-comp-mbind-eq1:
mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow M A P-S E N D_{M O N} a ; D O N E-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\left.\left.\leftarrow D O N E-S E N D_{M O N} a ; M A P-S E N D D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-map-send6)
lemma map-send-comp-mbind-eq2:
mbind is \(\left(\lambda a\right.\). (out \(\left.\left.1 \leftarrow M A P-S E N D_{M O N} a ; D O N E-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow D O N E-R E C V_{M O N} a ; M A P-S E N D_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-map-send7)
lemma buf-recv-comp-mbind-eq1:
mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow B U F-R E C V_{M O N} a ; D O N E-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out1 \(\left.\left.\leftarrow D O N E-S E N D_{M O N} a ; B U F-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-buf-recv6)
lemma buf-recv-comp-mbind-eq2:
mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow\) BUF-RECV MON \(\left.\left.a ; D O N E-R E C V_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a\right.\). (out1 \(\left.\left.\leftarrow D O N E-R E C V_{M O N} a ; B U F-R E C V_{M O N} a\right)\right) \sigma\)
by (simp only: sem-comp-buf-recv7)
lemma buf-recv-comp-mbind-eq3:
mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow B U F-R E C V_{M O N} a ; M A P-S E N D_{M O N} a\right)\right) \sigma=\) mbind is \(\left(\lambda a .\left(\right.\right.\) out \(1 \leftarrow\) MAP-SEND \(\left.\left._{\text {MON }} a ; B U F-R E C V_{M O N} a\right)\right) \sigma\)
```

by (simp only: sem-comp-buf-recv8)
lemma buf-recv-comp-mbind-eq4:
mbind is (\lambdaa.(out1 \leftarrow BUF-RECV MON a;MAP-RECV MON a)) }\sigma
mbind is (\lambdaa.(out1 \leftarrowMAP-RECVMON a;BUF-RECVMON a))\sigma
by (simp only: sem-comp-buf-recv9)
lemma map-recv-comp-mbind-eq1:
mbind is (\lambdaa. (out1 \leftarrowMAP-RECV MON a;DONE-SEND MON a)) }\sigma
mbind is (\lambdaa. (out1 \leftarrow DONE-SEND MON a;MAP-RECV MON a)) \sigma
by (simp only: sem-comp-map-recv6)
lemma map-recv-comp-mbind-eq2:
mbind is (\lambdaa.(out1 }\leftarrowMAP-REC\mp@subsup{V}{MON}{}a;DONE-RECV MON a)) \sigma
mbind is (\lambdaa. (out1 \leftarrow DONE-RECV MON a;MAP-RECV MON a)) \sigma
by (simp only: sem-comp-map-recv7)
end
theory IPC-step-normalizer
imports IPC-traces

```

\section*{begin}

\section*{I IPC Stepping Function and Traces}

\section*{definition}
```

exec-action id $^{\text {-Mon-prep-fact0 }}$ caller partner $\sigma$ msg $=$

```
exec-action id \(^{\text {-Mon-prep-fact0 }}\) caller partner \(\sigma\) msg \(=\)
 (list-all ((is-part-mem-th o the) ((thread-list \(\sigma)\) caller) (resource \(\sigma)\))msg)
```

    (list-all ((is-part-mem-th o the) ((thread-list \(\sigma)\) caller) (resource \(\sigma)\) )msg)
    ```

\section*{definition}
```

exec-action ${ }_{i d}$-Mon-prep-fact1 caller partner $\sigma=$
( $\neg$ IPC-params-c1 ((the o thread-list $\sigma$ ) partner) $\longrightarrow$
(IPC-params-c2 ((the o thread-list $\sigma)$ partner) $\wedge$ IPC-params-c6 caller ((the o thread-list $\sigma$ ) partner $)$ ))

```

\section*{definition}
```

exec-action id $^{\text {-Mon-prep-fact2 caller partner } \sigma=}$ $(\neg$ IPC-params-c1 ( $($ the o thread-list $\sigma)$ partner $) \wedge$ IPC-params-c2 ((the o thread-list $\sigma$ ) partner $) \wedge$ $\neg I P C$-params-c6 caller ((the o thread-list $\sigma$ ) partner $)$ )

```

\section*{definition}
```

exec-action ${ }_{i d}$-Mon-prep-send-fact3 caller error-mem $\sigma$ msg $=$ $(\neg($ list-all $(($ is-part-addr-th-mem o the $)(($ thread-list $\sigma)$ caller $)($ resource $\sigma)) m s g)$
$\wedge$

```
\[
\text { error-mem }=\text { not-valid-sender-addr-in-PREP-SEND) }
\]

\section*{definition}
exec-action \({ }_{i d}\)-Mon-prep-send-fact4 caller partner error-mem \(\sigma\) msg \(=\) ((list-all ((is-part-addr-th-mem o the) ((thread-list \(\sigma)\) caller) (resource \(\sigma)) \mathrm{msg})\)
\(\wedge\)
\(\neg(\) list-all \(((\) is-part-mem-th o the \()((\) thread-list \(\sigma)\) partner \()(\) resource \(\sigma)) m s g) \wedge\) error-mem \(=\) not-valid-receiver-addr-in-PREP-SEND)

\section*{definition}
```

exec-actionid-Mon-prep-recv-fact3 caller error-mem \sigma msg=
(\neg(list-all ((is-part-addr-th-mem o the) ((thread-list \sigma) caller) (resource \sigma))msg)
^
error-mem = not-valid-sender-addr-in-PREP-RECV)

```

\section*{definition}
```

exec-actionid-Mon-prep-recv-fact4 caller partner error-mem \sigma msg =
((list-all ((is-part-addr-th-mem o the) ((thread-list \sigma) caller) (resource \sigma))msg)
\wedge
\neg ( l i s t - a l l ~ ( ( i s - p a r t - m e m - t h ~ o ~ t h e ) ~ ( ( t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ ( r e s o u r c e ~ \sigma ) ) m s g )
^
error-mem = not-valid-receiver-addr-in-PREP-RECV)

```

\section*{definition}
exec-action \({ }_{\text {id }}\)-Mon-prep-fact5 caller partner \(\sigma=\) \((\neg I P C\)-params-c1 ((the o thread-list \(\sigma\)) partner \() \vee\)
 (IPC-params-c2 ((the o thread-list \(\sigma\)) partner \() \wedge\)
 IPC-params-c4 caller partner) \(\wedge\)
 IPC-params-c3 ((the o thread-list \(\sigma\)) partner))

\section*{definition}
```

exec-actionid-Mon-prep-fact6 caller partner \sigma =
(\negIPC-params-c1 ((the o thread-list \sigma) partner)\vee
(IPC-params-c2 ((the o thread-list \sigma) partner)^
IPC-params-c4 caller partner ) ^
\neg I P C - p a r a m s - c 3 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ) ,

```

\section*{definition}
```

exec-actionid-Mon-prep-fact7 caller partner \sigma=
(\negIPC-params-c1 ((the o thread-list \sigma) partner)\vee
(IPC-params-c2 ((the o thread-list \sigma) partner)^
IPC-params-c4 caller partner))

```

\section*{I. 1 Simplification rules related to the stepping function exec-action id \(_{\text {- }}\)-Mon}

\section*{lemma exec-action \({ }_{i d}\)-Mon-mbind-obvious:}
\(\bigwedge \sigma S\). mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.{ }_{i d}-M o n\right) \sigma \neq\) None
unfolding exec-action \({ }_{i d}\)-Mon-def
by \(\operatorname{simp}\)
```

lemma exec-action}\mp@subsup{}{id}{}-\mp@subsup{M}{Mon-mbind-obvious':}{
(case mbind S (abort lift exec-action id
None }=>\mathrm{ Some ([get-caller-error caller }\sigma],\sigma
| Some (outs, 敪)}{\prime\prime}{m}=a)=a
proof (cases mbind FailSave S (abort lift exec-actionid-Mon) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift exec-actionid-Mon)\sigma=Some a
then show ?thesis
using hyp0
by simp
qed
lemma exec-actionid-Mon-all-obvious1:
\foralla \sigma.\exists errors }\mp@subsup{\sigma}{}{\prime}\mathrm{ . exec-actionid-Mon a }\sigma=\mathrm{ Some (errors, }\mp@subsup{\sigma}{}{\prime}\mathrm{ )
by (auto, rule actionipc.induct, auto simp:exec-actionid-Mon-def)

```

\section*{Simplification rules on \(P R E P\) action}
```

lemma exec-actionid-Mon-prep-send-obvious0:

```
lemma exec-actionid-Mon-prep-send-obvious0:
 \bigwedge\sigma. exec-actionid-Mon (IPC PREP (SEND caller partner msg)) }\sigma\not=NoN
 unfolding exec-actionid-Mon-def
 by simp
```

lemma exec-action ${ }_{i d}$-Mon-prep-send-obvious1:
(exec-action ${ }_{\text {id }}-$ Mon $(I P C \operatorname{PREP}(S E N D$ caller partner msg $\left.)) \sigma\right)=$
(if (list-all $(($ is-part-mem-th o the) $(($ thread-list $\sigma)$ caller $)($ resource $\sigma)) \mathrm{msg})$
then
if IPC-params-c1 ((the o thread-list $\sigma$ ) partner)
then Some (NO-ERRORS,
$\sigma($ current-thread $:=$ caller,
thread-list $\quad:=$ update-th-ready caller (thread-list $\sigma$ ),
error-codes $\quad:=$ NO-ERRORS $\mid$ )
else
if IPC-params-c2 ((the o thread-list $\sigma$ ) partner)
then
if IPC-params-c6 caller ((the o thread-list $\sigma$ ) partner)
then Some (NO-ERRORS,
$\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-ready caller (thread-list $\sigma$ ),
error-codes $\quad:=$ NO-ERRORS $\mid$ )
else

```
 Some(ERROR-IPC error-IPC-22-in-PREP-SEND,
 | current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes }:=E\mathrm{ ERROR-IPC error-IPC-22-in-PREP-SEND|))
 else Some (ERROR-IPC error-IPC-23-in-PREP-SEND,
 \sigma|current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes }:=E\mathrm{ ERROR-IPC error-IPC-23-in-PREP-SEND|))
 else Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND,
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes :=ERROR-MEM not-valid-sender-addr-in-PREP-SEND|))
by (simp add: exec-action}\mp@subsup{|}{id}{-Mon-def PREP-SEND id-def)
lemma exec-actionid-Mon-prep-send-obvious2:
 (fst o the)(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) \sigma)=
 (if (list-all ((is-part-mem-th o the) ((thread-list \sigma) caller) (resource \sigma))msg)
 then
 if IPC-params-c1 ((the o thread-list \sigma) partner)
 then NO-ERRORS
 else
 (if IPC-params-c2 ((the o thread-list \sigma) partner)
 then
 if IPC-params-c6 caller ((the o thread-list \sigma) partner)
 then NO-ERRORS
 else
 ERROR-IPC error-IPC-22-in-PREP-SEND
 else ERROR-IPC error-IPC-23-in-PREP-SEND)
 else ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
 by (simp add:exec-actionid-Mon-def PREP-SENDD id-def)
lemma exec-actionid-Mon-prep-send-obvious3:
 (exec-actionid-Mon (IPC PREP (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma}))
 (}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread := caller,
 thread-list := update-th-ready caller (thread-list \sigma),
 error-codes := NO-ERRORS|) ^
 exec-action id-Mon-prep-fact0 caller partner \sigma msg ^
 exec-actionid-Mon-prep-fact1 caller partner \sigma)
 by (auto simp add: exec-action id-Mon-def PREP-SEND id-def exec-actionid-Mon-prep-fact0-def
 exec-action}\mp@subsup{i}{id}{-Mon-prep-fact1-def
 split: errors.split split-if split-if-asm)
lemma exec-actionid-Mon-prep-send-obvious4:
 (exec-actionid-Mon (IPC PREP (SEND caller partner msg)) \sigma = Some(ERROR-MEM
```

```
error-mem, \sigma}))
 ((}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread }:=\mathrm{ caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SENDD^
 \neg (l i s t - a l l ~ ((i s - p a r t - m e m - t h ~ o ~ t h e) ~ ((t h r e a d - l i s t ~ \sigma) ~ c a l l e r) ~ (r e s o u r c e ~ \sigma)) m s g) ~ \wedge ~
 error-mem = not-valid-sender-addr-in-PREP-SEND))
 by (auto simp add: exec-actionid-Mon-def PREP-SEND (}\mp@subsup{}{id}{}\mathrm{ -def
 split:errors.split split-if split-if-asm)
lemma exec-actionid-Mon-prep-send-obvious5:
 (exec-action id}\mp@subsup{}{\mathrm{ -Mon (IPC PREP (SEND caller partner msg)) }\sigma=Some(ERROR-IPC}{
error-IPC, 生))=
 ((}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread }:=\mathrm{ caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-22-in-PREP-SENDD^
 exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 IPC-params-c2 ((the o thread-list \sigma) partner) ^
 IPC-params-c6 caller ((the o thread-list \sigma) partner) ^
 error-IPC = error-IPC-22-in-PREP-SEND) \vee
 (}\mp@subsup{\sigma}{}{\prime}=\sigma\\mathrm{ current-thread := caller
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-23-in-PREP-SENDD^
 exec-action}\mp@subsup{}{id}{}-\mp@subsup{M}{0}{\prime}-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 \negIPC-params-c2 ((the o thread-list \sigma) partner) ^
 error-IPC = error-IPC-23-in-PREP-SEND))
by (auto simp add: exec-action id-Mon-def PREP-SEND id-def exec-actionid-Mon-prep-fact2-def
 exec-action}\mp@subsup{}{\mathrm{ id}}{}\mathrm{ -Mon-prep-fact0-def
 split: errors.split split-if split-if-asm)
```

lemma exec-action ${ }_{i d}$-Mon-prep-recv-obvious0:
$\forall \sigma$. exec-action ${ }_{i d}$-Mon (IPC PREP (RECV caller partner msg)) $\sigma \neq$ None
unfolding exec-action ${ }_{i d}$-Mon-def
by $\operatorname{simp}$
lemma exec-action ${ }_{i d}$-Mon-prep-recv-obvious1:
(exec-action ${ }_{i d}-M o n(I P C \operatorname{PREP}(R E C V$ caller partner msg)) $\sigma)=$
(if (list-all ((is-part-mem-th o the) ((thread-list $\sigma)$ caller) (resource $\sigma)) \mathrm{msg})$
then
if IPC-params-c1 ((the o thread-list $\sigma$ ) partner)
then Some(NO-ERRORS,
$\sigma($ current-thread $:=$ caller,

```
 thread-list := update-th-ready caller (thread-list \sigma),
 error-codes :=NO-ERRORS|)
 else
 (if IPC-params-c2 ((the o thread-list \sigma) partner)
 then
 if IPC-params-c6 caller ((the o thread-list \sigma) partner)
 then Some(NO-ERRORS,
 \sigma(current-thread := caller,
 thread-list := update-th-ready caller (thread-list \sigma),
 error-codes := NO-ERRORS\)
 else
 Some(ERROR-IPC error-IPC-22-in-PREP-RECV,
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|))
 else Some(ERROR-IPC error-IPC-23-in-PREP-RECV,
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-23-in-PREP-RECVD))
 else Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV,
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes :=ERROR-MEM not-valid-receiver-addr-in-PREP-RECVD))
by(simp add: exec-actionid-Mon-def PREP-RECV id
```

lemma exec-action ${ }_{i d}$-Mon-prep-recv-obvious2:
fst $\left(\right.$ the $\left(\right.$ exec-action ${ }_{i d}-M o n(\operatorname{IPC} \operatorname{PREP}(R E C V$ caller partner msg $\left.\left.)) \sigma\right)\right)=$
(if (list-all ((is-part-mem-th o the) ((thread-list $\sigma)$ caller) (resource $\sigma)) \mathrm{msg})$
then
if IPC-params-c1 ((the o thread-list $\sigma$ ) partner)
then NO-ERRORS
else
(if IPC-params-c2 ((the o thread-list $\sigma$ ) partner)
then
if IPC-params-c6 caller ((the o thread-list $\sigma$ ) partner)
then NO-ERRORS
else
ERROR-IPC error-IPC-22-in-PREP-RECV
else ERROR-IPC error-IPC-23-in-PREP-RECV)
else ERROR-MEM not-valid-receiver-addr-in-PREP-RECV)
unfolding exec-action ${ }_{i d}$-Mon-def
by (simp add: exec-action ${ }_{i d}$-Mon-def PREP-RECV id $^{\text {-def }}$ )
lemma exec-action ${ }_{i d}$-Mon-prep-recv-obvious3:
(exec-action id $^{-}$-Mon (IPC PREP (RECV caller partner msg)) $\sigma=\operatorname{Some}(N O-E R R O R S$,

```
\sigma}))
 (\sigma'=\sigma| current-thread := caller,
 thread-list := update-th-ready caller (thread-list \sigma),
 error-codes := NO-ERRORS|) ^
 exec-actionid-Mon-prep-fact0 caller partner \sigma msg^
 exec-actionid-Mon-prep-fact1 caller partner \sigma)
by (auto simp add: exec-actionid-Mon-def PREP-RECV id-def exec-action id-Mon-prep-fact0-def
 exec-action}\mp@subsup{\mathrm{ id}}{\mathrm{ -Mon-prep-fact1-def}}{
 split: errors.split split-if split-if-asm)
lemma exec-actionid-Mon-prep-recv-obvious4:
 (exec-actionid-Mon (IPC PREP (RECV caller partner msg)) }\sigma=\mathrm{ Some(ERROR-MEM
error-mem, \sigma}))
 ((}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread }:=\mathrm{ caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECVD^
 \neglist-all ((is-part-mem-th o the) ((thread-list \sigma) caller) (resource \sigma))msg) ^
 error-mem = not-valid-receiver-addr-in-PREP-RECV))
 by (auto simp add: exec-actionid-Mon-def PREP-RECV id-def
 split: errors.split split-if split-if-asm)
lemma exec-actionid-Mon-prep-recv-obvious5:
 (exec-action id-Mon (IPC PREP (RECV caller partner msg)) \sigma=Some(ERROR-IPC
error-IPC, \sigma}\mp@subsup{\sigma}{}{\prime})
 ((}\mp@subsup{\sigma}{}{\prime}=\sigma\\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-22-in-PREP-RECVD)^
 exec-action}\mp@subsup{\mathrm{ id}}{}{-Mon-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 IPC-params-c2 ((the o thread-list \sigma) partner) ^
 \negIPC-params-c6 caller ((the o thread-list \sigma) partner) ^
 error-IPC = error-IPC-22-in-PREP-RECV) \vee
 (}\mp@subsup{\sigma}{}{\prime}=\sigma\\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)^
 exec-action id-Mon-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 \negIPC-params-c2 ((the o thread-list \sigma) partner) ^
 error-IPC = error-IPC-23-in-PREP-RECV))
by (auto simp add: exec-actionid-Mon-def PREP-RECV id-def exec-actionid-Mon-prep-fact2-def
 exec-actionid-Mon-prep-fact0-def
 split: errors.split split-if split-if-asm)
```


## Simplification rules on WAIT action

lemma exec-action ${ }_{i d}$-Mon-wait-send-obvious0:
$\bigwedge \sigma$. exec-action ${ }_{i d}-$ Mon (IPC WAIT (SEND caller partner msg)) $\sigma \neq$ None
unfolding exec-action ${ }_{i d}$-Mon-def

## by $\operatorname{simp}$

## definition

```
exec-action}\mp@subsup{}{id}{}-Mon-wait-send-upd caller \sigma
(case (thread-list \sigma) caller of None }
 \sigma (current-thread := caller,
 thread-list := update-th-waiting caller (thread-list \sigma),
 error-codes }:=E\mathrm{ ERROR-IPC error-IPC-6-in-WAIT-SEND|)
 Some th }=>\sigma|\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-5-in-WAIT-SENDD)
```

lemma exec-action ${ }_{i d}$-Mon-wait-send-obvious1:
(exec-action ${ }_{i d}-$ Mon $^{(I P C}$ WAIT $^{(S E N D}$ caller partner msg)) $\sigma$ ) $=$
(if $\neg I P C$-send-comm-check-st ${ }_{i d}$ caller partner $\sigma$
then Some(ERROR-IPC error-IPC-1-in-WAIT-SEND ,
$\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=$ ERROR-IPC error-IPC-1-in-WAIT-SENDD)
else
if $\neg$ IPC-params-c4 caller partner
then Some (ERROR-IPC error-IPC-3-in-WAIT-SEND,
$\sigma$ ( current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-I P C$ error-IPC-3-in-WAIT-SEND|)
)
else
if $\neg$ IPC-params-c5 partner $\sigma$
then
(case (thread-list $\sigma$ ) caller of None $\Rightarrow$
Some (ERROR-IPC error-IPC-6-in-WAIT-SEND,
$\sigma$ ( current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-6-in-WAIT-SEND|))
Some th $\Rightarrow$ Some (ERROR-IPC error-IPC-5-in-WAIT-SEND ,
$\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=$ ERROR-IPC error-IPC-5-in-WAIT-SENDD))
else
Some(NO-ERRORS,
$\sigma \mid$ current-thread $:=$ caller,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $\quad:=N O-E R R O R S| |)$ )
by (simp add: exec-action ${ }_{i d}$-Mon-def WAIT-SEND ${ }_{i d}$-def list.induct split: option.split)

```
lemma exec-actionid-Mon-wait-send-obvious2:
 fst (the(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) \sigma)) =
 (if \negIPC-send-comm-check-st id caller partner \sigma
 then ERROR-IPC error-IPC-1-in-WAIT-SEND
 else
 if \negIPC-params-c4 caller partner
 then ERROR-IPC error-IPC-3-in-WAIT-SEND
 else
 if ᄀIPC-params-c5 partner \sigma
 then
 (case (thread-list \sigma) caller of None }
 ERROR-IPC error-IPC-6-in-WAIT-SEND
 | Some th }=>\mathrm{ ERROR-IPC error-IPC-5-in-WAIT-SEND)
 else
 NO-ERRORS)
 by (simp add: exec-actionid-Mon-def WAIT-SEND id
 split: option.split)
lemma exec-actionid-Mon-wait-send-obvious3:
 (exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) \sigma = Some(NO-ERRORS,
\sigma}))
 (}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread := caller ,
 thread-list := update-th-waiting caller (thread-list \sigma),
 error-codes := NO-ERRORS|) ^
 IPC-send-comm-check-stid caller partner \sigma ^
 IPC-params-c4 caller partner ^
 IPC-params-c5 partner \sigma)
by (auto simp add: exec-actionid-Mon-def WAIT-SENDDid-def split:option.split-asm)
definition
update-state-wait-send-params5 \sigma caller =
 (case (thread-list \sigma) caller of None }
 \sigma|current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND|)
 Some th }=>\sigma|\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|))
```


## definition

```
update-state-wait-recv-params \(5 \sigma\) caller \(=\)
```

update-state-wait-recv-params $5 \sigma$ caller $=$
(case (thread-list $\sigma$ ) caller of None $\Rightarrow$
(case (thread-list $\sigma$ ) caller of None $\Rightarrow$
$\sigma($ current-thread $:=$ caller ,
$\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-6-in-WAIT-RECV $\mid$ )
error-codes $:=E R R O R-I P C$ error-IPC-6-in-WAIT-RECV $\mid$ )
$\mid$ Some $t h \Rightarrow \sigma($ current-thread $:=$ caller ,
$\mid$ Some $t h \Rightarrow \sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-I P C$ error-IPC-5-in-WAIT-RECVD)

```
 error-codes \(\quad:=E R R O R-I P C\) error-IPC-5-in-WAIT-RECVD)
```

```
lemma exec-actionid-Mon-wait-send-obvious4:
```



```
error-IPC, \sigma}))
 ((\neg IPC-send-comm-check-stid caller partner \sigma\longrightarrow
 \sigma}=\sigma(|\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND) ^
 error-IPC = error-IPC-1-in-WAIT-SEND) ^
 (IPC-send-comm-check-stid caller partner \sigma\longrightarrow
 ((\negIPC-params-c4 caller partner \longrightarrow
 \sigma}=\sigma(|\mathrm{ current-thread }:=\mathrm{ caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND| ^
 error-IPC = error-IPC-3-in-WAIT-SEND) ^
 (IPC-params-c4 caller partner }
 ((\negIPC-params-c5 partner \sigma\longrightarrow
 \sigma'= update-state-wait-send-params5 \sigma caller }
 error-codes (update-state-wait-send-params5 \sigma caller) = ERROR-IPC
error-IPC) ^
 \negIPC-params-c5 partner \sigma)))))
 by (auto simp add: update-state-wait-send-params5-def exec-action_dd-Mon-def
WAIT-SEND id
 split: split-if-asm option.split-asm)
```

lemma exec-action ${ }_{i d}$-Mon-wait-recv-obvious 0 :
$\bigwedge \sigma$. exec-action ${ }_{i d}-M o n$ (IPC WAIT (RECV caller partner msg)) $\sigma \neq$ None
unfolding exec-action ${ }_{i d}$-Mon-def
by $\operatorname{simp}$
lemma exec-action ${ }_{i d}$-Mon-wait-recv-obvious1:
(exec-action ${ }_{i d}-$ Mon (IPC WAIT (RECV caller partner msg)) $\sigma$ ) =
(if ᄀIPC-recv-comm-check-stid caller partner $\sigma$
then Some(ERROR-IPC error-IPC-1-in-WAIT-RECV,
$\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-1-in-WAIT-RECVD)
else
if $\neg$ IPC-params-c4 caller partner
then Some(ERROR-IPC error-IPC-3-in-WAIT-RECV,
$\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-3-in-WAIT-RECV $\mid$ ))
else

```
if ᄀIPC-params-c5 partner \sigma
then
 (case (thread-list \sigma) caller of None }
 Some(ERROR-IPC error-IPC-6-in-WAIT-RECV,
 \sigma(current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV|))
 | Some th }=>\mathrm{ Some(ERROR-IPC error-IPC-5-in-WAIT-RECV,
 \sigma|current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECVD))
 else
 Some(NO-ERRORS,
 \sigma\current-thread := caller ,
 thread-list := update-th-waiting caller (thread-list \sigma),
 error-codes :=NO-ERRORS|)))
```

    by (simp add: exec-actionid-Mon-def WAIT-RECV \({ }_{i d}\)-def list.induct split: op-
    tion.split)
lemma exec-action $i_{i d}$-Mon-wait-recv-obvious2:
fst $\left(\right.$ the $\left(\right.$ exec-action ${ }_{i d}$-Mon $(I P C$ WAIT $($ RECV caller partner $\left.\left.m s g)) \sigma\right)\right)=$
(if $\neg I P C$-recv-comm-check-st ${ }_{i d}$ caller partner $\sigma$
then ERROR-IPC error-IPC-1-in-WAIT-RECV
else
if $\neg$ IPC-params-c4 caller partner
then ERROR-IPC error-IPC-3-in-WAIT-RECV
else
if $\neg$ IPC-params-c5 partner $\sigma$
then
(case (thread-list $\sigma$ ) caller of None $\Rightarrow$
ERROR-IPC error-IPC-6-in-WAIT-RECV
| Some th $\Rightarrow$ ERROR-IPC error-IPC-5-in-WAIT-RECV)
else
NO-ERRORS)
by (simp add: exec-actionid-Mon-def WAIT-RECV ${ }_{i d}$-def list.induct split: option.split)
lemma exec-action ${ }_{i d}$-Mon-wait-recv-obvious3:
(exec-action ${ }_{i d}$-Mon (IPC WAIT (RECV caller partner msg)) $\sigma=$ Some (NO-ERRORS,
$\left.\left.\sigma^{\prime}\right)\right)=$
$\left(\sigma^{\prime}=\sigma \mid\right.$ current-thread $:=$ caller,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $:=N O-E R R O R S \mid) \wedge$
IPC-recv-comm-check-st ${ }_{i d}$ caller partner $\sigma \wedge$
IPC-params-c4 caller partner $\wedge$
IPC-params-c5 partner $\sigma$ )
by (auto simp add: exec-action ${ }_{i d}$-Mon-def WAIT-RECV id $_{\text {-def }}$ split: list.split-asm)

```
lemma exec-actionid-Mon-wait-recv-obvious4:
 (exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) \sigma=Some(ERROR-IPC
error-IPC, \sigma}))
 ((\negIPC-recv-comm-check-stid caller partner \sigma\longrightarrow
 \sigma}=\sigma\\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|) ^
 error-IPC = error-IPC-1-in-WAIT-RECV) ^
 (IPC-recv-comm-check-stid caller partner \sigma\longrightarrow
 ((\neg IPC-params-c4 caller partner }
 \sigma}=\sigma\\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|) ^
 error-IPC = error-IPC-3-in-WAIT-RECV) ^
 (IPC-params-c4 caller partner }
 ((\neg IPC-params-c5 partner \sigma\longrightarrow
 \sigma'= update-state-wait-recv-params5 \sigma caller ^
 error-codes (update-state-wait-recv-params5 \sigma caller) = ERROR-IPC error-IPC)
^
 \neg IPC-params-c5 partner \sigma)))))
 by (auto simp add: update-state-wait-recv-params5-def exec-actionid-Mon-def
WAIT-RECV Vid
 split: split-if-asm list.split-asm)
```


## Simplification rules on BUF action

```
lemma exec-action \({ }_{i d}\)-Mon-buf-send-obvious0:
\(\bigwedge \sigma\). exec-action \({ }_{i d}-\) Mon (IPC BUF (SEND caller partner msg)) \(\sigma \neq\) None unfolding exec-action \({ }_{i d}\)-Mon-def
by \(\operatorname{simp}\)
```

lemma exec-action ${ }_{i d}$-Mon-buf-send-obvious1:
(exec-action ${ }_{i d}-$ Mon $^{-1 P C ~ B U F ~(S E N D ~ c a l l e r ~ p a r t n e r ~ m s g)) ~} \sigma$ ) =
(if $\neg I P C$-buf-check-stid caller partner $\sigma$
then Some (ERROR-IPC error-IPC-1-in-BUF-SEND, $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-I P C$ error-IPC-1-in-BUF-SEND $\mid$ ))
else
Some(NO-ERRORS,
$\sigma($ current-thread $:=$ caller, resource $\quad:=$ foldl $(\lambda m(a d d r, v a l) .(m(a d d r:=\$ v a l))($ resource $\sigma)$
(zip (get-th-addrs partner $\sigma$ ) (get-msg-values msg $\sigma$ )),
thread-list $:=$ update-th-ready caller

```
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORSD))
by (simp add: exec-actionid-Mon-def BUF-SEND (id-def)
```

lemma exec-action ${ }_{i d}$-Mon-buf-send-obvious2:
fst $\left(\right.$ the $\left(\right.$ exec-action id $^{-M o n}($ IPC BUF $\left.\left.(S E N D ~ c a l l e r ~ p a r t n e r ~ m s g)) ~ \sigma\right)\right) ~=~$
(if $\neg$ IPC-buf-check-stid caller partner $\sigma$
then ERROR-IPC error-IPC-1-in-BUF-SEND
else NO-ERRORS)
by (simp add: exec-action ${ }_{i d}$-Mon-def BUF-SEND ${ }_{i d}$-def)
lemma exec-action ${ }_{i d}$-Mon-buf-send-obvious3:
(exec-action id $^{-M o n}$ (IPC BUF (SEND caller partner msg)) $\sigma=$ Some(error, $\left.\sigma^{\prime}\right)$ )
$=$
(( $\neg$ IPC-buf-check-st ${ }_{i d}$ caller partner $\sigma \longrightarrow$
$\sigma^{\prime}=\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=$ ERROR-IPC error-IPC-1-in-BUF-SEND|) $\wedge$
error $=E R R O R-I P C$ error-IPC-1-in-BUF-SEND $) \wedge$
((IPC-buf-check-stid caller partner $\sigma \longrightarrow$
( $\sigma^{\prime}=\sigma($ current-thread $:=$ caller,
resource $\quad:=$ foldl $\left(\lambda m(a d d r, v a l) .\left(m\left(a d d r:={ }_{\$}\right.\right.\right.$ val $\left.)\right)$ (resource $\left.\sigma\right)$
(zip (get-th-addrs partner $\sigma$ ) (get-msg-values msg $\sigma$ )),
thread-list $:=$ update-th-ready caller
( update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=N O-E R R O R S \mid) \wedge$
error $=N O-E R R O R S)) \vee$
(IPC-buf-check-stid caller partner $\sigma \longrightarrow$
( $m s g=[] \wedge$
$\sigma^{\prime}=\sigma($ current-thread $:=$ caller,
resource $:=$ resource $\sigma$,
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORS $\mid) \wedge$
error $=N O-E R R O R S)))$ )
by (auto simp add: exec-action ${ }_{i d}$-Mon-def BUF-SEND id $_{\text {-def }}$ )
lemma exec-action id $^{-M o n-b u f-r e c v-o b v i o u s 0: ~}$
$\forall \sigma$. exec-action ${ }_{i d}-$ Mon (IPC BUF (RECV caller partner msg)) $\sigma \neq$ None
unfolding exec-action ${ }_{i d}$-Mon-def
by $\operatorname{simp}$

```
lemma exec-actionid-Mon-buf-recv-obvious1:
 (exec-actionid-Mon (IPC BUF (RECV caller partner msg)) \sigma)=
 (if ᄀIPC-buf-check-stid caller partner \sigma
 then Some (ERROR-IPC error-IPC-1-in-BUF-RECV,
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes }:=E\mathrm{ ERROR-IPC error-IPC-1-in-BUF-RECVD)
 else
 Some(NO-ERRORS,
 (\sigma| current-thread := caller,
 resource :=foldl (}\lambdam(addr,val).(m(addr:=\mp@subsup{=}{$}{}\mathrm{ val))) (resource }\sigma
 (zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)),
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes :=NO-ERRORS(D)))
 by (simp add: exec-actionid-Mon-def BUF-RECV id
lemma exec-actionid-Mon-buf-recv-obvious2:
 fst(the(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) \sigma)) =
 (if \negIPC-buf-check-stid caller partner \sigma
 then ERROR-IPC error-IPC-1-in-BUF-RECV
 else NO-ERRORS)
 by (simp add: exec-actionid-Mon-def BUF-RECV id-def)
lemma exec-actionid-Mon-buf-recv-obvious3:
 (exec-actionid-Mon (IPC BUF (RECV caller partner msg)) \sigma = Some(error,
\sigma}))
 ((\negIPC-buf-check-stid caller partner \sigma }
 \sigma}=\sigma(\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-1-in-BUF-RECVD) ^
 error = ERROR-IPC error-IPC-1-in-BUF-RECV) ^
 ((IPC-buf-check-stid caller partner \sigma\longrightarrow
 (}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread := caller,
 resource :=
 foldl (\lambdam (addr,val). (m (addr:=$ val))) (resource \sigma)
 (zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)),
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORS|) ^
 error =NO-ERRORS)) \vee
 (IPC-buf-check-stid caller partner \sigma\longrightarrow
```

```
 (msg= []^
 \sigma}=\sigma(\mathrm{ current-thread := caller,
 resource :=resource \sigma,
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORS|) ^
 error =NO-ERRORS))))
by (auto simp add: exec-actionid-Mon-def BUF-RECV id
```


## Simplification rules on MAP action

```
lemma exec-actionid-Mon-map-send-obvious0:
 \\sigma. exec-actionid-Mon (IPC MAP (SEND caller partner msg)) }\sigma\not=\mathrm{ None
 unfolding exec-actionid-Mon-def
 by simp
lemma exec-actionid-Mon-map-send-obvious1:
 (exec-actionid-Mon (IPC MAP (SEND caller partner msg)) \sigma)=
 Some(NO-ERRORS,
 \sigma\urrent-thread := caller,
 resource : foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
 (zip msg (get-th-addrs partner \sigma)),
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORS|)
 by (simp add: exec-actionid-Mon-def MAP-SENDD id
```

lemma exec-action ${ }_{i d}$-Mon-map-send-obvious2:

by (simp add: exec-actionid-Mon-def MAP-SEND ${ }_{i d}$-def)
lemma exec-actionid-Mon-map-send-obvious3:
(exec-action ${ }_{i d}-$ Mon (IPC MAP (SEND caller partner msg)) $\sigma=$ Some (error,
$\left.\left.\sigma^{\prime}\right)\right)=$
$\left(\left(\sigma^{\prime}=\sigma \\right.\right.$ current-thread $:=$ caller,
resource $\quad:=$ foldl $(\lambda m(s r c, d s t) .(m(\operatorname{src} \bowtie d s t)))($ resource $\sigma)$
(zip msg (get-th-addrs partner $\sigma$ )),
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORS $\mid \wedge$
error $=$ NO-ERRORS) $\vee$
$(m s g=[] \wedge$

```
 \sigma}=\sigma\\mathrm{ current-thread := caller,
 resource := resource \sigma,
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORS|) ^
 error =NO-ERRORS))
by (auto simp add: exec-action}\mp@subsup{i}{id}{}-Mon-def MAP-SENDD id-def
lemma exec-actionid-Mon-map-recv-obvious0:
\\sigma. exec-action}\mp@subsup{i}{id}{-Mon (IPC MAP (RECV caller partner msg)) }\sigma\not=\mathrm{ None
unfolding exec-actionid-Mon-def
by simp
lemma exec-actionid-Mon-map-recv-obvious1:
 (exec-actionid-Mon (IPC MAP (RECV caller partner msg)) \sigma)=
 Some(NO-ERRORS,
 \sigma\current-thread := caller,
 resource := foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
 (zip msg (get-th-addrs caller \sigma)),
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORS\)
 by (simp add: exec-actionid-Mon-def MAP-RECV id-def)
```

lemma exec-action ${ }_{i d}$-Mon-map-recv-obvious2:
fst (the (exec-actionid-Mon (IPC MAP (RECV caller partner msg)) $\sigma))=$ NO-ERRORS
by (simp add: exec-action ${ }_{i d}$-Mon-def MAP-RECV $V_{i d}$-def)
lemma exec-action ${ }_{i d}$-Mon-map-recv-obvious3:
(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) $\sigma=$ Some (error,
$\left.\left.\sigma^{\prime}\right)\right)=$
( $\sigma^{\prime}=\sigma \$ current-thread $:=$ caller,
resource $\quad:=$ foldl $(\lambda m(\operatorname{src}, d s t) .(m(\operatorname{src} \bowtie d s t)))($ resource $\sigma)$
(zip msg (get-th-addrs caller $\sigma$ )),
thread-list $:=$ update-th-ready caller
( update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORS $) \wedge$
error $=N O-E R R O R S) \vee$
( $\mathrm{msg}=[] \wedge$
$\sigma^{\prime}=\sigma($ current-thread $:=$ caller,
resource $\quad:=($ resource $\sigma)$,

```
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORS|)^
 error =NO-ERRORS))
by (auto simp add: exec-actionid
```


## Simplification rules on DONE action

```
lemma exec-action id \(^{-M o n-d o n e-s e n d-o b v i o u s 0: ~}\) \(\forall \sigma\). exec-action \({ }_{i d}\)-Mon (IPC DONE (SEND caller partner msg)) \(\sigma \neq\) None unfolding exec-action \({ }_{i d}\)-Mon-def by \(\operatorname{simp}\)
```

lemma exec-action ${ }_{i d}$-Mon-done-send-obvious1:
(exec-action ${ }_{i d}-$ Mon (IPC DONE (SEND caller partner msg)) $\sigma$ ) $=$ Some(error-codes $\sigma, \sigma$ )
unfolding exec-action ${ }_{i d}$-Mon-def
by $\operatorname{simp}$
lemma exec-action id $^{-M o n-d o n e-s e n d-o b v i o u s 2: ~}$
fst $\left(\right.$ the $^{(\text {exec-action }}{ }_{i d}-$ Mon (IPC DONE $(S E N D$ caller partner msg $\left.\left.\left.)\right) \sigma\right)\right)=$ error-codes $\sigma$
unfolding exec-actionid-Mon-def
by $\operatorname{simp}$
lemma exec-action id $^{-M o n-d o n e-s e n d-o b v i o u s 3: ~}$
(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) $\sigma=$ Some(error,
$\left.\left.\sigma^{\prime}\right)\right)=$
( $\sigma^{\prime}=\sigma \wedge$ error-codes $\sigma=$ error $)$
by (auto simp add: exec-action ${ }_{i d}$-Mon-def)
lemma exec-action ${ }_{i d}$-Mon-done-recv-obvious0:
$\bigwedge \sigma$. exec-action ${ }_{i d}-$ Mon $^{(I P C D O N E ~(R E C V ~ c a l l e r ~ p a r t n e r ~ m s g)) ~} \sigma \neq$ None unfolding exec-action ${ }_{i d}$-Mon-def
by $\operatorname{simp}$
lemma exec-action ${ }_{i d}$-Mon-done-recv-obvious1:
(exec-action ${ }_{i d}-$ Mon (IPC DONE (RECV caller partner msg)) $\sigma$ ) $=$ Some (error-codes $\sigma, \sigma$ )
unfolding exec-action ${ }_{i d}$-Mon-def
lemma exec-action id $^{-M o n-d o n e-r e c v-o b v i o u s 2: ~}$
fst $\left(\right.$ the $\left(\right.$ exec-action id $^{-M o n}($ IPC DONE $($ RECV caller partner msg $\left.\left.)) \sigma\right)\right)=$ error-codes $\sigma$
unfolding exec-action ${ }_{i d}$-Mon-def
by $\operatorname{simp}$
lemma exec-action ${ }_{i d}$-Mon-done-recv-obvious3:
(exec-action ${ }_{i d}-$ Mon (IPC DONE (RECV caller partner msg)) $\sigma=$ Some(error, $\left.\left.\sigma^{\prime}\right)\right)=$
( $\sigma^{\prime}=\sigma \wedge$ error-codes $\sigma=$ error $)$
by (auto simp add: exec-action id $^{-M o n-d e f) ~}$
lemma exec-action ${ }_{i d}$-Mon-act-info-obvious0:
(exec-action ${ }_{i d}-$ Mon a $\sigma=\operatorname{Some}\left(\right.$ error,$\left.\left.\sigma^{\prime}\right)\right) \Longrightarrow$
(state ${ }_{i d}$.th-flag $\sigma=$ state $_{i d}$.th-flag $\sigma^{\prime}$ )
unfolding exec-action ${ }_{i d}$-Mon-def
by (auto, rule action $i_{i p c}$.induct, rule p4-stage $_{i p c}$.induct, rule p4-direct $_{i p c}$.induct, auto, rule action ${ }_{i p c}$.induct, simp-all, rule p4-stage ${ }_{i p c}$.induct, rule p4-direct ${ }_{i p c}$.induct, auto simp: PREP-SEND id-def $^{\text {-dREP-RECV }}{ }_{\text {id }}$-def, rule p4-direct ${ }_{i p c}$.induct, auto,
simp add: WAIT-SEND id -def split: option.split, simp add: WAIT-RECV ${ }_{\text {id }}$-def split: option.split,
rule p4-direct ${ }_{i p c}$.induct, auto simp add: BUF-SEND ${ }_{i d}$-def BUF-RECV $V_{i d}$-def, rule p4-direct ${ }_{i p c}$.induct, auto simp add: MAP-SEND id $^{\text {-def } M A P-R E C V} V_{i d}$-def, rule $p_{4}$-direct ${ }_{i p c}$.induct, auto)
lemma exec-action ${ }_{i d}$-Mon-act-info-obvious0':
(exec-action ${ }_{i d}-$ Mon a $\sigma=\operatorname{Some}\left(\right.$ error,$\left.\left.\sigma^{\prime}\right)\right)=$
(state ${ }_{i d}$.th-flag $\sigma=$ state $_{i d}$.th-flag $\sigma^{\prime} \wedge$ error-codes $\left(\right.$ exec-action $\left._{i d} \sigma a\right)=$ error $\wedge$ exec-action $_{i d} \sigma \quad a=\sigma^{\prime}$ )
unfolding exec-action ${ }_{i d}$-Mon-def
by (auto, rule action $i_{i p c}$.induct, rule p4-stage $i_{i p c}$.induct,rule $p 4$-direct ${ }_{i p c}$.induct, auto, rule action $i_{i p c}$.induct, simp-all, rule p4-stage ${ }_{i p c}$.induct, rule p4-direct ${ }_{i p c}$.induct, auto simp: PREP-SEND id-def PREP-RECV $V_{i d}$-def, rule p4-direct ipc $^{\text {.induct }}$, auto, simp add: WAIT-SEND ${ }_{i d}$-def split: option.split, simp add: WAIT-RECV ${ }_{i d}$-def split: option.split, rule p4-direct ${ }_{i p c}$.induct, auto simp add: BUF-SEND ${ }_{i d}$-def BUF-RECV $V_{i d}$-def,
rule p4-direct $_{i p c}$.induct, auto simp add: MAP-SEND id $^{\text {-def } M A P-R E C V} V_{i d}$-def, rule p4-direct $_{i p c}$.induct, auto)
lemma exec-action ${ }_{i d}$-Mon-act-info-obvious1:
exec-action $_{i d}$-Mon (IPC PREP (RECV caller partner msg)) $\sigma=$ Some(error, $\left.\sigma^{\prime}\right) \Longrightarrow$
$\left(\right.$ state $_{i d}$.th-flag $\left.\sigma\right)$ caller $=\left(\right.$ state $_{i d}$. th-flag $\left.\sigma^{\prime}\right)$ caller
by (auto simp:exec-action id $^{-M o n-d e f ~ P R E P-R E C V ~} V_{i d}$-def)
lemma exec-action ${ }_{i d}$-Mon-act-info-obvious2:
$\left(\right.$ state $_{i d}$.th-flag $\left.\sigma\right)$ caller $=$
(th-flag(snd (the (exec-action ${ }_{i d}-$ Mon (IPC PREP (RECV caller partner msg))
$\sigma))$ )) caller
unfolding exec-action id $_{\text {-Mon-def }}$
by ( simp add: PREP-RECV $V_{i d}$-def)
lemma exec-errors-obvious0: (exec-action id $^{-M o n}$ a $\left.\sigma\right)=$ Some (NO-ERRORS,$\left.\sigma^{\prime}\right)$

$$
\Longrightarrow
$$

error-codes $\sigma^{\prime}=N O-E R R O R S$
by (auto simp only: exec-action ${ }_{i d}$-Mon-def prod.inject the.simps)
lemma exec-errors-obvious1: (exec-actionid-Mon a $\sigma$ ) $=$ Some $\left(N O-E R R O R S, \sigma^{\prime}\right)$
$\qquad$
error-codes $\sigma^{\prime} \neq E R R O R$-MEM error-mem
by (auto simp only: exec-action ${ }_{i d}$-Mon-def prod.inject the.simps)
lemma exec-errors-obvious2: (exec-action id $^{-M o n}$ a $\left.\sigma\right)=$ Some (NO-ERRORS,$\left.\sigma^{\prime}\right)$
$\qquad$
error-codes $\sigma^{\prime} \neq E R R O R$-IPC error-ipc
by (auto simp only: exec-action ${ }_{i d}$-Mon-def prod.inject the.simps)
lemmas step-normalizer-None $=$
exec-action ${ }_{i d}$-Mon-prep-send-obvious0 exec-action id $^{-M o n-p r e p-r e c v-o b v i o u s 0 ~}$ exec-action ${ }_{i d}$-Mon-wait-send-obvious0 exec-action ${ }_{i d}$-Mon-wait-recv-obvious0 exec-action ${ }_{i d}$-Mon-buf-send-obvious0 exec-actionid-Mon-buf-recv-obvious0 exec-action $_{\text {id }}$-Mon-done-send-obvious0 exec-action ${ }_{\text {id }}$-Mon-done-recv-obvious0
lemmas step-normalizer-Some $=$ exec-action $_{\text {id }}$-Mon-act-info-obvious0 ${ }^{\prime}$
end
theory IPC-atomic-action-normalizer
imports IPC-step-normalizer
begin

## J Atomic Actions Reasoning

## J. 1 Symbolic Execution Rules of Atomic Actions

lemma prep-send-obvious:
$\left(\right.$ PREP-SEND ${ }_{i d} \sigma($ IPC PREP $(S E N D$ caller partner $\left.m s g))=\sigma^{\prime}\right)=$ $\left(\left(\left(\sigma^{\prime}=\sigma \mid\right.\right.\right.$ current-thread $:=$ caller, thread-list $\quad:=$ update-th-ready caller (thread-list $\sigma$ ), error-codes $:=$ NO-ERRORS $\mid$ ) $\wedge$
exec-action $_{\text {id }}$-Mon-prep-fact0 caller partner $\sigma$ msg $\wedge$
exec-action ${ }_{i d}$-Mon-prep-fact1 caller partner $\sigma$ ))V
$((\neg($ list-all $(($ is-part-mem-th o the $)(($ thread-list $\sigma)$ caller $)($ resource $\sigma)) \mathrm{msg})$
$\wedge$
$\sigma^{\prime}=\sigma(\mid$ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-M E M$ not-valid-sender-addr-in-PREP-SENDD())V

```
 ((}\mp@subsup{\sigma}{}{\prime}=\sigma\\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|) ^
 exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 IPC-params-c2 ((the o thread-list \sigma) partner) ^
 \neg I P C - p a r a m s - c 6 ~ c a l l e r ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r)) ~ \vee ~
 (}\mp@subsup{\sigma}{}{\prime}=\sigma(|\mathrm{ current-thread }:=\mathrm{ caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|) ^
 exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
\neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
\neg I P C - p a r a m s - c 2 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r)))) ,
by (auto simp add: PREP-SEND id-def exec-actionid-Mon-prep-fact0-def
 exec-action}\mp@subsup{\mathrm{ id}}{\mathrm{ -Mon-prep-fact1-def}}{
 exec-actionid-Mon-prep-fact2-def)
```

lemma wait-send-obvious:
$\left(\right.$ WAIT-SEND $_{i d} \sigma($ IPC WAIT (SEND caller partner msg $\left.\left.)\right)=\sigma^{\prime}\right)=$ ( $\sigma^{\prime}=\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $:=$ NO-ERRORSD $\wedge$
IPC-send-comm-check-stid caller partner $\sigma \wedge$
IPC-params-c4 caller partner $\wedge$
IPC-params-c5 partner $\sigma$ ) $\vee$
(( $\neg$ IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \longrightarrow$

```
 \sigma}=\sigma (current-thread := caller
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|))^
 (IPC-send-comm-check-stid caller partner \sigma\longrightarrow
 ((\neg IPC-params-c4 caller partner }
 \sigma}=\sigma (current-thread := caller
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|))))
by (auto simp add: update-state-wait-send-params5-def WAIT-SEND id-def
 split: split-if-asm option.split-asm)
```

lemma buf-send-obvious:
$\left(B U F-S E N D_{i d} \sigma(\right.$ IPC BUF $(S E N D$ caller partner $\left.m s g))=\sigma^{\prime}\right)=$
( $\neg$ IPC-buf-check-stid caller partner $\sigma \longrightarrow$
$\sigma^{\prime}=\sigma($ current-thread $:=$ caller,
thread-list $\quad:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-1-in-BUF-SEND $\mid) \wedge$
(IPC-buf-check-stid caller partner $\sigma \longrightarrow$
( $\sigma^{\prime}=\sigma($ current-thread $:=$ caller,
resource $\quad:=$
foldl $(\lambda m(a d d r, v a l) .(m(a d d r:=\$$ val $)))($ resource $\sigma)$
(zip (get-th-addrs partner $\sigma$ ) (get-msg-values msg $\sigma$ )),
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=N O-E R R O R S(1)))$
by (auto simp add:BUF-SEND id $^{-d e f}$ )
lemma map-send-obvious:
$\left(M A P-S E N D D_{i d} \sigma(I P C\right.$ MAP $(S E N D$ caller partner $\left.m s g))=\sigma^{\prime}\right)=$
( $\sigma^{\prime}=\sigma($ current-thread $:=$ caller, resource $\quad:=$ foldl $(\lambda m(s r c, d s t) .(m(s r c \bowtie d s t)))($ resource $\sigma)$
(zip msg (get-th-addrs partner $\sigma$ )),
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORSD)
by (auto simp add: MAP-SEND ${ }_{i d}$-def)
lemma prep-recv-obvious:
$\left(P R E P-R E C V_{i d} \sigma(I P C\right.$ PREP $(R E C V$ caller partner $\left.m s g))=\sigma^{\prime}\right)=$

```
 (((}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread := caller,
 thread-list := update-th-ready caller (thread-list \sigma),
 error-codes := NO-ERRORS|) ^
 exec-action}\mp@subsup{\mathrm{ id}}{}{-Mon-prep-fact0 caller partner \sigma msg ^
 exec-actionid-Mon-prep-fact1 caller partner \sigma))V
 ((}\neg(\mathrm{ list-all ((is-part-mem-th o the))((thread-list }\sigma)\mathrm{ caller) (resource }\sigma))\textrm{msg}
^
 \sigma'=\sigma\ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes :=ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|)))V
 ((}\mp@subsup{\sigma}{}{\prime}=\sigma\\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|) ^
 exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 IPC-params-c2 ((the o thread-list \sigma) partner) ^
 \neg I P C - p a r a m s - c 6 ~ c a l l e r ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r)) ~ \vee ~
(\sigma'}=\sigma(\mathrm{ current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)
 exec-action}\mp@subsup{}{id}{}-Mon-prep-fact0 caller partner \sigma msg ^
 \negPC-params-c1 ((the o thread-list \sigma) partner) ^
 \neg I P C - p a r a m s - c 2 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r)))) ~
by (auto simp add: PREP-RECV id-def exec-actionid-Mon-prep-fact2-def
 exec-action id-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def)
lemma wait-recv-obvious:
 (WAIT-RECV id \sigma (IPC WAIT (RECV caller partner msg)) = \sigma')=
 (}\mp@subsup{\sigma}{}{\prime}=\sigma|\mathrm{ current-thread }:=\mathrm{ caller ,
 thread-list := update-th-waiting caller (thread-list \sigma),
 error-codes := NO-ERRORSD)^
 IPC-recv-comm-check-stid caller partner \sigma ^
 IPC-params-c4 caller partner ^
 IPC-params-c5 partner \sigma) \vee
 ((ᄀIPC-recv-comm-check-stid caller partner \sigma\longrightarrow
 \sigma}=\sigma (current-thread := caller
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|))^
 (IPC-recv-comm-check-stid caller partner \sigma\longrightarrow
 ((\neg IPC-params-c4 caller partner }
 \sigma}=\sigma (|current-thread := caller
 thread-list := update-th-current caller (thread-list \sigma),
```

$$
\text { error-codes } \quad:=E R R O R-I P C \text { error-IPC-3-in-WAIT-RECV } \mid)))) \text { ) }
$$ by (auto simp add: update-state-wait-recv-params5-def WAIT-RECV ${ }_{i d}$-def split: split-if-asm)

lemma buf-recv-obvious:

```
\(\left(B U F-R E C V_{i d} \sigma(\right.\) IPC BUF (RECV caller partner msg \(\left.\left.)\right)=\sigma^{\prime}\right)=\)
(\(\neg\) IPC-buf-check-st \({ }_{\text {id }}\) caller partner \(\sigma \longrightarrow\)
 \(\sigma^{\prime}=\sigma(\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-I P C\) error-IPC-1-in-BUF-RECV \()) \wedge\)
 (IPC-buf-check-st \({ }_{i d}\) caller partner \(\sigma \longrightarrow\)
 (\(\sigma^{\prime}=\sigma(\) current-thread \(:=\) caller,
 resource \(\quad:=\)
 foldl \((\lambda m(a d d r, v a l) .(m(a d d r:=\$\) val \()))(\) resource \(\sigma)\)
 (zip (get-th-addrs caller \(\sigma\)) (get-msg-values msg \(\sigma\))),
 thread-list \(:=\) update-th-ready caller
 (update-th-ready partner
 (thread-list \(\sigma\))),
 error-codes \(:=\) NO-ERRORS \(\mid\)))))
by (auto simp add: BUF-RECV \(V_{i d}-d e f\))
```

lemma map-recv-obvious:
$\left(\right.$ MAP-RECV $V_{i d} \sigma($ IPC MAP $(R E C V$ caller partner msg $\left.))=\sigma^{\prime}\right)=$
$\left(\sigma^{\prime}=\sigma\right)$ current-thread $:=$ caller,
resource $\quad:=$
foldl $(\lambda m(s r c, d s t) .(m(s r c \bowtie d s t)))($ resource $\sigma)$
(zip msg (get-th-addrs caller $\sigma$ )),
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ ),
error-codes $:=$ NO-ERRORS $\mid)$
by (auto simp add: MAP-RECV $V_{i d}$-def)

## J. 2 Symbolic Execution Rules for Error Codes Field

lemma PREP-SEND id $^{\text {-obvious0: }}$
(error-codes $\left(P R E P-S E N D_{i d} \sigma(\operatorname{IPC} \operatorname{PREP}(S E N D\right.$ caller partner $\left.m s g))\right)=$ NO-ERRORS $)=$
(exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma$ msg $\wedge$
exec-action ${ }_{i d}$-Mon-prep-fact1 caller partner $\sigma \wedge$
$\left(\right.$ PREP-SEND $_{i d} \sigma($ IPC PREP $(S E N D$ caller partner msg $))=$ $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-ready caller (thread-list $\sigma$ ),
error-codes $\quad:=N O-E R R O R S \mid))$ )
by (auto simp add: PREP-SEND id $^{\text {-def exec-action }}{ }_{i d}$-Mon-prep-fact0-def exec-action $_{\text {id }}$-Mon-prep-fact1-def split: errors.split split-if split-if-asm)

## lemma PREP-SEND id $^{\text {-obvious1: }}$

$\left(\right.$ error-codes $\left(P R E P-S E N D_{i d} \sigma(I P C\right.$ PREP $(S E N D$ caller partner $\left.m s g))\right)=$ ERROR-MEM error-mem $)=$

$$
(\neg((\text { list-all }((\text { is-part-mem-th o the })((\text { thread-list } \sigma) \text { caller })(\text { resource } \sigma)) m s g))
$$

$\wedge$
error-mem $=$ not-valid-sender-addr-in-PREP-SEND $\wedge$
$\left(\right.$ PREP-SEND ${ }_{i d} \sigma($ IPC PREP $(S E N D$ caller partner $m s g))=$
$\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-M E M$ not-valid-sender-addr-in-PREP-SENDD))
by (auto simp add: PREP-SEND ${ }_{i d}$-def split: errors.split split-if split-if-asm)
lemma PREP-SEND ${ }_{\text {id }}$-obvious2:
(error-codes $\left(P R E P-S E N D_{i d} \sigma(I P C \operatorname{PREP}(S E N D\right.$ caller partner $\left.m s g))\right)=$
ERROR-IPC error-IPC $)=$
$\left(\neg\left(\right.\right.$ exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma$ msg $\wedge$
$\neg I P C$-params-c1 ((the o thread-list $\sigma$ ) partner) $\wedge$
IPC-params-c2 ((the o thread-list $\sigma$ ) partner) $\wedge$
$\neg I P C$-params-c6 caller ( $($ the o thread-list $\sigma$ ) partner $) \wedge$ error-IPC $=$ error-IPC-22-in-PREP-SEND $\wedge$ $\left(\right.$ PREP-SEND $_{i d} \sigma($ IPC PREP $(S E N D ~ c a l l e r ~ p a r t n e r ~ m s g ~) ~) ~=~$ $\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-I P C$ error-IPC-22-in-PREP-SEND $\mid))$ ) $\longrightarrow$
(exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma$ msg $\wedge$
$\neg$ IPC-params-c1 ((the o thread-list $\sigma$ ) partner) $\wedge$
$\neg$ IPC-params-c2 ((the o thread-list $\sigma$ ) partner) $\wedge$
error-IPC $=$ error-IPC-23-in-PREP-SEND $\wedge$
$\left(P^{2} E P-S E N D D_{i d} \sigma(\right.$ IPC PREP $(S E N D$ caller partner msg $))=$
$\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=$ ERROR-IPC error-IPC-23-in-PREP-SEND $|\mid)$ )
)
by (auto simp add: PREP-SEND id $^{\text {-def exec-action }}{ }_{i d}$-Mon-prep-fact2-def exec-action id $_{\text {-Mon-prep-fact1-def }}$ exec-action ${ }_{\text {id }}$-Mon-prep-fact0-def
split: errors.split split-if split-if-asm)
lemma WAIT-SEND id-obvious0:
(error-codes $\left(\right.$ WAIT-SEND ${ }_{i d} \sigma($ IPC WAIT $(S E N D$ caller partner $\left.m s g))\right)=$
NO-ERRORS $)=$
(IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \wedge$
IPC-params-c4 caller partner $\wedge$
IPC-params-c5 partner $\sigma \wedge$
$\left(\right.$ WAIT-SEND $_{i d} \sigma($ IPC WAIT $($ SEND caller partner msg $))=$ $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $\quad:=$ NO-ERRORS $\mid$ ))
by (auto simp add: WAIT-SEND ${ }_{i d}$-def
split: errors.split split-if split-if-asm option.split-asm)
lemma WAIT-SEND ${ }_{i d}$-obvious1:
(error-codes $\left(W A I T-S E N D_{i d} \sigma(I P C\right.$ WAIT $(S E N D$ caller partner $\left.m s g))\right)=$ ERROR-IPC error-IPC) $=$
(( $\neg$ IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \longrightarrow$
$\left(W_{\text {WIT-SEND }}^{i d}\right.$ $\sigma($ IPC WAIT $(S E N D$ caller partner $\left.m s g))\right)=$
$\sigma$ ( current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=$ ERROR-IPC error-IPC-1-in-WAIT-SEND $) \wedge$
error-IPC $=$ error-IPC-1-in-WAIT-SEND) $\wedge$
(IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \longrightarrow$
(( $\neg$ IPC-params-c4 caller partner $\longrightarrow$
$\left(\right.$ WAIT-SEND $_{i d} \sigma($ IPC WAIT $($ SEND caller partner msg $\left.))\right)=$
$\sigma$ (current-thread $:=$ caller, thread-list $:=$ update-th-current caller (thread-list $\sigma$ ), error-codes $\quad:=E R R O R-I P C$ error-IPC-3-in-WAIT-SEND $) \wedge$
error-IPC $=$ error-IPC-3-in-WAIT-SEND) $\wedge$
(IPC-params-c4 caller partner $\longrightarrow$
(( $\neg$ IPC-params-c5 partner $\sigma \longrightarrow$
$\left(\right.$ WAIT-SEND $_{i d} \sigma($ IPC WAIT $(S E N D$ caller partner msg $\left.))\right)=$
update-state-wait-send-params5 $\sigma$ caller $\wedge$
error-codes (update-state-wait-send-params5 $\sigma$ caller) $=E R R O R-I P C$
error- $-(P C) \wedge$
$\neg$ IPC-params-c5 partner $\sigma$ )))))
by (auto simp add: update-state-wait-send-params5-def WAIT-SEND ${ }_{i d}$-def split: errors.split split-if split-if-asm option.split-asm)
lemma WAIT-SEND id $_{\text {-obvious2: }}$
$\neg\left(\right.$ error-codes $\left(\right.$ WAIT-SEND ${ }_{i d} \sigma($ IPC WAIT $($ SEND caller partner $\left.m s g))\right)=$ ERROR-MEM error-IPC)
by (auto simp add:WAIT-SEND ${ }_{i d}$-def split: errors.split split-if split-if-asm op-tion.split-asm)
lemma BUF-SEND id $_{\text {-obvious0: }}$
(error-codes $\left(B U F-S E N D_{i d} \sigma(I P C\right.$ BUF $(S E N D$ caller partner msg $\left.))\right)=$ NO-ERRORS $)=$
(IPC-buf-check-stid caller partner $\sigma \wedge$
BUF-SEND ${ }_{i d} \sigma($ IPC BUF $(S E N D$ caller partner $m s g))=$
$\sigma($ current-thread $:=$ caller,
resource $\quad:=$

```
 foldl (\lambdam (addr,val). (m (addr:=$ val))) (resource \sigma)
 (zip (get-th-addrs partner \sigma) (get-msg-values msg \sigma)),
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes:= NO-ERRORSD)
 by (auto simp add: BUF-SENDDid
lemma BUF-SEND id-obvious1:
 (error-codes (BUF-SEND id \sigma (IPC BUF (SEND caller partner msg))) =
 ERROR-IPC error-IPC-1-in-BUF-SEND) =
 (\neg IPC-buf-check-stid caller partner \sigma ^
 BUF-SEND id \sigma (IPC BUF (SEND caller partner msg)) =
 \sigma(current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes }:=ERROR-IPC error-IPC-1-in-BUF-SEND|))
 by (auto simp add: BUF-SENDD id
lemma MAP-SEND id
 (error-codes (MAP-SEND id \sigma (IPC MAP (SEND caller partner msg))) =
error) =
 (error = NO-ERRORS ^
 MAP-SEND id \sigma (IPC MAP (SEND caller partner msg)) =
 \sigma| current-thread := caller,
 resource := foldl (\lambdam (src,dst). (m (src\bowtie dst))) (resource \sigma)
 (zip msg (get-th-addrs partner \sigma)),
 thread-list := update-th-ready caller
 (update-th-ready partner
 (thread-list \sigma)),
 error-codes := NO-ERRORSD)
 by (auto simp add: MAP-SEND id-def)
lemma DONE-SEND id \(_{\text {-obvious0: }}\)
(error-codes (exec-actionid \(\sigma(\) IPC DONE \((S E N D\) caller partner msg) \())=\)
```



```
\(\left(\left(\right.\right.\) exec-action \({ }_{i d} \sigma(\) IPC DONE \((S E N D\) caller partner msg \(\left.))\right)=\sigma \wedge\) error-codes \(\sigma=\) error \()\)
by \(\operatorname{simp}\)
```

lemma $\operatorname{PREP}$-RECV ${ }_{i d}$-obvious0:
(error-codes $\left(P R E P-R E C V_{i d} \sigma(I P C P R E P(R E C V\right.$ caller partner $\left.m s g))\right)=$ NO-ERRORS $)=$
(exec-actionid-Mon-prep-fact0 caller partner $\sigma$ msg $\wedge$

```
 exec-actionid-Mon-prep-fact1 caller partner \sigma ^
 (PREP-RECV id \sigma (IPC PREP (RECV caller partner msg)) =
 \sigma\current-thread := caller,
 thread-list := update-th-ready caller (thread-list \sigma),
 error-codes := NO-ERRORS|))
)
by (auto simp add: PREP-RECVV}\mp@subsup{V}{id}{-def exec-actionid-Mon-prep-fact0-def
 exec-action}\mp@subsup{\mathrm{ id}}{\mathrm{ -Mon-prep-fact1-def}}{
 split: errors.split split-if split-if-asm)
lemma PREP-RECV id-obvious1:
 (error-codes (PREP-RECV id \sigma (IPC PREP (RECV caller partner msg))) =
ERROR-MEM error-mem)=
 (\neg((list-all ((is-part-mem-th o the) ((thread-list \sigma) caller) (resource \sigma))msg))
^
 error-mem = not-valid-receiver-addr-in-PREP-RECV ^
 (PREP-RECV id \sigma (IPC PREP (RECV caller partner msg)) =
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECVD))
by (auto simp add: PREP-RECV id-def split: errors.split split-if split-if-asm)
lemma PREP-RECV (id-obvious2:
 (error-codes (PREP-RECV id \sigma (IPC PREP (RECV caller partner msg))) =
ERROR-IPC error-IPC)=
 (}\neg(\mathrm{ exec-action id
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 IPC-params-c2 ((the o thread-list \sigma) partner) ^
 \neg I P C - p a r a m s - c 6 ~ c a l l e r ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 error-IPC = error-IPC-22-in-PREP-RECV ^
 (PREP-RECV id \sigma (IPC PREP (RECV caller partner msg)) =
 \sigma\current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-22-in-PREP-RECVD))
\longrightarrow
 (exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
 \neg I P C - p a r a m s - c 1 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 \neg I P C - p a r a m s - c 2 ~ ((t h e ~ o ~ t h r e a d - l i s t ~ \sigma) ~ p a r t n e r) ~ \wedge ~
 error-IPC = error-IPC-23-in-PREP-RECV ^
 (PREP-RECV id \sigma (IPC PREP (RECV caller partner msg)) =
 \sigma|current-thread := caller ,
 thread-list := update-th-current caller (thread-list \sigma),
 error-codes := ERROR-IPC error-IPC-23-in-PREP-RECVD))
)
 by (auto simp add: PREP-RECVV}\mp@subsup{V}{\mathrm{ id}}{\mathrm{ -def exec-action id-Mon-prep-fact0-def}
 exec-action_(d-Mon-prep-fact1-def exec-action_-Mon-prep-fact2-def
 split: errors.split split-if split-if-asm)
```

lemma WAIT-RECV id $^{\text {-obvious0: }}$
(error-codes $\left(W A I T-R E C V_{i d} \sigma(I P C\right.$ WAIT $(R E C V$ caller partner $\left.m s g))\right)=$ NO-ERRORS $)=$
(IPC-recv-comm-check-stid caller partner $\sigma \wedge$
IPC-params-c4 caller partner $\wedge$
IPC-params-c5 partner $\sigma \wedge$
$\left(\right.$ WAIT-RECV ${ }_{i d} \sigma($ IPC WAIT (RECV caller partner msg $\left.)\right)=$
$\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $:=$ NO-ERRORS $\mid$ ))
by (auto simp add: WAIT-RECV $V_{i d}$-def
split: errors.split split-if split-if-asm option.split-asm)
lemma WAIT-RECV ${ }_{i d}$-obvious1:
(error-codes $\left(W A I T-R E C V_{i d} \sigma(I P C\right.$ WAIT $(R E C V$ caller partner $\left.m s g))\right)=$ ERROR-IPC error-IPC) $=$
( $\neg$ IPC-recv-comm-check-st ${ }_{i d}$ caller partner $\sigma \longrightarrow$
$\left(\right.$ WAIT-RECV $V_{i d} \sigma($ IPC WAIT $($ RECV caller partner $\left.m s g))\right)=$ $\sigma \|$ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-1-in-WAIT-RECV $) \wedge$ error-IPC $=$ error-IPC-1-in-WAIT-RECV $) \wedge$ (IPC-recv-comm-check-stid caller partner $\sigma \longrightarrow$ ( $\neg$ IPC-params-c4 caller partner $\longrightarrow$
$\left(\right.$ WAIT-RECV ${ }_{i d} \sigma(I P C$ WAIT $($ RECV caller partner $\left.m s g))\right)=$ $\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-3-in-WAIT-RECVD $\wedge$
error-IPC $=$ error-IPC-3-in-WAIT-RECV) $\wedge$
$(\neg \neg$ IPC-params-c4 caller partner $\longrightarrow$
(( $\neg$ IPC-params-c5 partner $\sigma \longrightarrow$
$\left(\right.$ WAIT-RECV $V_{i d} \sigma(I P C$ WAIT $(R E C V$ caller partner msg $\left.))\right)=$
update-state-wait-recv-params5 $\sigma$ caller $\wedge$
error-codes (update-state-wait-recv-params5 $\sigma$ caller) $=E R R O R-I P C$
error-IPC) ^
$\neg$ IPC-params-c5 partner $\sigma)$ ))))
by (auto simp add: update-state-wait-recv-params5-def WAIT-RECV $V_{\text {id-def }}$ split: errors.split split-if split-if-asm option.split-asm)
lemma WAIT-RECV id $^{\text {-obvious2: }}$
$\neg\left(\right.$ error-codes $\left(W A I T-R E C V_{i d} \sigma(I P C\right.$ WAIT $(R E C V$ caller partner $\left.m s g))\right)=$ ERROR-MEM error-mem)
by (auto simp add: WAIT-RECV $V_{i d}$-def split: errors.split split-if split-if-asm option.split-asm)
lemma BUF-RECV $V_{\text {id-obvious0: }}$
(error-codes (BUF-RECV $V_{i d} \sigma(\operatorname{IPC}$ BUF $(R E C V$ caller partner $\left.m s g))\right)=$
NO-ERRORS $)=$
(IPC-buf-check-st ${ }_{i d}$ caller partner $\sigma \wedge$
BUF-RECV ${ }_{i d} \sigma($ IPC BUF $(R E C V$ caller partner $m s g))=$ $\sigma($ current-thread $:=$ caller,
resource $\quad:=$
foldl ( $\lambda m$ (addr,val). $\left(m\left(a d d r:={ }_{\$}\right.\right.$ val) $\left.)\right)($ resource $\sigma)$
(zip (get-th-addrs caller $\sigma$ ) (get-msg-values msg $\sigma$ )),
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORSD)
by (auto simp add: BUF-RECV id $^{\text {-def }}$ )
lemma BUF-RECV id-obvious1: $^{\text {- }}$
(error-codes $\left(B U F-R E C V_{i d} \sigma(I P C\right.$ BUF $(R E C V$ caller partner $\left.m s g))\right)=$ ERROR-IPC error-IPC-1-in-BUF-RECV) =
( $\neg$ IPC-buf-check-st ${ }_{i d}$ caller partner $\sigma \wedge$
$B U F-R E C V_{i d} \sigma(I P C$ BUF $(R E C V$ caller partner $m s g))=$ $\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-I P C$ error-IPC-1-in-BUF-RECVD)
by (auto simp add: BUF-RECV ${ }_{\text {id }}$-def)
lemma MAP-RECV id $_{\text {-obvious0: }}$

```
 (error-codes (MAP-RECV \({ }_{i d} \sigma(I P C M A P(R E C V\) caller partner msg \(\left.))\right)=\) error \()\)
\(=\)
 (error \(=\) NO-ERRORS \(\wedge\)
 MAP-RECV \({ }_{\text {id }} \sigma(I P C\) MAP \((R E C V\) caller partner msg \())=\)
 \(\sigma \mid\) current-thread \(:=\) caller,
 resource :=
 foldl \((\lambda m(s r c, d s t) .(m(s r c \bowtie d s t)))(r e s o u r c e ~ \sigma)\)
 (zip msg (get-th-addrs caller \(\sigma\))),
 thread-list \(:=\) update-th-ready caller
 (update-th-ready partner
 (thread-list \(\sigma\))),
 error-codes \(:=\) NO-ERRORS |)
by (auto simp add: MAP-RECV \({ }_{\text {id }}\)-def)
```

lemma $D O N E-R E C V_{i d}$-obvious0:
(error-codes (exec-action ${ }_{i d} \sigma($ IPC DONE $(R E C V$ caller partner $\left.m s g))\right)=$ error $)=$
$\left(\left(\right.\right.$ exec-action ${ }_{i d} \sigma($ IPC DONE $(R E C V$ caller partner $\left.m s g))\right)=\sigma \wedge$ error-codes $\sigma=$ error $)$
by $\operatorname{simp}$

## J. 3 Symbolic Execution Rules for Error Codes field on Purelevel

lemma PREP-SEND ${ }_{\text {id }}$-Pure-obvious0:
(error-codes $\left(P R E P-S E N D D_{i d} \sigma(\operatorname{IPC} \operatorname{PREP}(S E N D\right.$ caller partner msg $\left.))\right)=$ $\mathrm{NO}-\mathrm{ERRORS} \Longrightarrow P) \equiv$ (exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma$ msg \&\&\& exec-action ${ }_{i d}$-Mon-prep-fact1 caller partner $\sigma$ \&\&\& $\left(\right.$ PREP-SEND ${ }_{i d} \sigma($ IPC PREP $(S E N D$ caller partner msg $))=$ $\sigma($ current-thread $:=$ caller,
thread-list $\quad:=$ update-th-ready caller (thread-list $\sigma$ ), error-codes $:=$ NO-ERRORS $\mid) \Longrightarrow P$ )
find-theorems name:Pure.
apply (rule equal-intr-rule)
apply (elim meta-impE)
apply (drule conjunctionD2)
apply (drule conjunctionD2)
apply (auto simp add: PREP-SEND ${ }_{i d}$-def exec-action ${ }_{i d}$-Mon-prep-fact0-def exec-action ${ }_{i d}$-Mon-prep-fact1-def split: errors.split split-if split-if-asm)
done
lemma PREP-SEND ${ }_{\text {id }}$-Pure-obvious1:
(error-codes $\left(\right.$ PREP-SEND ${ }_{i d} \sigma($ IPC PREP $\left.(S E N D ~ c a l l e r ~ p a r t n e r ~ m s g ~) ~)\right) ~=~$ ERROR-MEM error-mem $\Longrightarrow P) \equiv$ $(\neg(($ list-all $)(($ is-part-mem-th o the $)(($ thread-list $\sigma)$ caller $)($ resource $\sigma)) m s g))$
\&\&\&
error-mem $=$ not-valid-sender-addr-in-PREP-SEND \&\&\&
$\left(\right.$ PREP-SEND ${ }_{i d} \sigma($ IPC PREP $(S E N D$ caller partner msg $))=$
$\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-M E M$ not-valid-sender-addr-in-PREP-SEND()) $\Longrightarrow P$
)
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (auto simp add: PREP-SEND ${ }_{\text {id }}$-def split: errors.split split-if split-if-asm)
lemma WAIT-SEND ${ }_{i d}$-Pure-obvious0:
(error-codes $\left(W A I T-S E N D_{i d} \sigma(I P C\right.$ WAIT $(S E N D$ caller partner $\left.m s g))\right)=$ NO-ERRORS $\Longrightarrow P) \equiv$
(IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \& \& \&$
IPC-params-c4 caller partner \&\&\&

IPC-params-c5 partner $\sigma$ \&\&\&
$\left(\right.$ WAIT-SEND ${ }_{i d} \sigma($ IPC WAIT $(S E N D$ caller partner msg $))=$ $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $:=$ NO-ERRORS $\mid$ ))
$\Longrightarrow P$ )
apply (rule equal-intr-rule)
apply (drule conjunctionD2)+
by (auto simp add:WAIT-SEND ${ }_{i d}$-def split: errors.split split-if split-if-asm op-tion.split-asm)
lemma WAIT-SEND ${ }_{i d}$-Pure-obvious1:
(error-codes $\left(W A I T-S E N D_{i d} \sigma(I P C\right.$ WAIT $(S E N D$ caller partner $\left.m s g))\right)=$ ERROR-IPC error-IPC $\Longrightarrow P) \equiv$
( $\neg$ IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \Longrightarrow$
$\left(\right.$ WAIT-SEND ${ }_{i d} \sigma($ IPC WAIT $(S E N D$ caller partner msg $\left.))\right)=$
$\sigma$ (current-thread $:=$ caller, thread-list $:=$ update-th-current caller (thread-list $\sigma$ ), error-codes $:=E R R O R-I P C$ error-IPC-1-in-WAIT-SEND|) \&\&\&
error-IPC = error-IPC-1-in-WAIT-SEND ) \&\&\&
(IPC-send-comm-check-st ${ }_{i d}$ caller partner $\sigma \Longrightarrow$
(( $\neg$ IPC-params-c4 caller partner $\Longrightarrow$
$\left(\right.$ WAIT-SEND $_{i d} \sigma($ IPC WAIT $($ SEND caller partner msg $\left.))\right)=$
$\sigma$ ( current-thread $:=$ caller, thread-list $:=$ update-th-current caller (thread-list $\sigma$ ), error-codes $\quad:=E R R O R-I P C$ error-IPC-3-in-WAIT-SEND|) \&\&\&
error-IPC $=$ error-IPC-3-in-WAIT-SEND) \&\&\&
(IPC-params-c4 caller partner $\Longrightarrow$
( ( $\neg$ IPC-params-c5 partner $\sigma \Longrightarrow$
$\left(\right.$ WAIT-SEND $D_{i d} \sigma($ IPC WAIT $(S E N D$ caller partner $\left.m s g))\right)=$ update-state-wait-send-params 5
$\sigma$ caller \&\&\& error-codes (update-state-wait-send-params5 $\sigma$ caller $)=E R R O R-I P C$
error-IPC) \&\&\&
$\neg$ IPC-params-c5 partner $\sigma$ ))))
$\Longrightarrow P$ )
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (simp-all add: update-state-wait-send-params5-def WAIT-SEND ${ }_{i d}$-def split: errors.split split-if split-if-asm option.split option.split-asm)
lemma DONE-SEND ${ }_{i d}$-Pure-obvious0:
(error-codes (exec-action ${ }_{i d} \sigma($ IPC DONE $(S E N D$ caller partner msg $\left.))\right)=$ error $\Longrightarrow P) \equiv$
$\left(\left(\right.\right.$ exec-action ${ }_{i d} \sigma($ IPC DONE $(S E N D$ caller partner $\left.m s g))\right)=\sigma \Longrightarrow$ error-codes $\sigma=$ error $\Longrightarrow P)$
lemma PREP-RECV id $_{\text {-Pure-obvious0: }}$
(error-codes $\left(P R E P-R E C V_{i d} \sigma(I P C\right.$ PREP $(R E C V$ caller partner $\left.m s g))\right)=$ NO-ERRORS $\Longrightarrow P) \equiv$
(exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma \mathrm{msg} \Longrightarrow$
exec-action ${ }_{i d}$-Mon-prep-fact1 caller partner $\sigma \Longrightarrow$
$\left(P R E P-R E C V_{i d} \sigma(I P C\right.$ PREP $($ RECV caller partner $m s g))=$
$\sigma($ current-thread $:=$ caller,
thread-list $\quad:=$ update-th-ready caller (thread-list $\sigma$ ),
error-codes $\quad:=$ NO-ERRORS $\mid$ )
$\Longrightarrow P$ )
apply (rule equal-intr-rule)
by (auto simp add: PREP-RECV id $^{\text {-def exec-action }}{ }_{i d}$-Mon-prep-fact0-def exec-action ${ }_{i d}$-Mon-prep-fact1-def
split: errors.split split-if split-if-asm)
lemma PREP-RECV $V_{i d}$-Pure-obvious1:
(error-codes $\left(P R E P-R E C V_{i d} \sigma(I P C\right.$ PREP $(R E C V$ caller partner $\left.m s g))\right)=$ ERROR-MEM error-mem $\Longrightarrow P) \equiv$
$(\neg(($ list-all $(($ is-part-mem-th o the $)(($ thread-list $\sigma)$ caller $)($ resource $\sigma)) \mathrm{msg}))$
\&\&\&
error-mem $=$ not-valid-receiver-addr-in-PREP-RECV \&\&\&
$\left(P R E P-R E C V_{i d} \sigma(I P C P R E P(R E C V\right.$ caller partner $m s g))=$ $\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $\quad:=E R R O R-M E M$ not-valid-receiver-addr-in-PREP-RECVD)

$$
\Longrightarrow P)
$$

apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (auto simp add: PREP-RECV $V_{\text {id }}$-def split: errors.split split-if split-if-asm)
lemma WAIT-RECV $V_{\text {id }}$-Pure-obvious0:
(error-codes $\left(W A I T-R E C V_{i d} \sigma(\right.$ IPC WAIT $(R E C V$ caller partner $\left.m s g))\right)=$ NO-ERRORS $\Longrightarrow P) \equiv$
(IPC-recv-comm-check-st ${ }_{i d}$ caller partner $\sigma \& \& \&$
IPC-params-c4 caller partner \&\&\&
IPC-params-c5 partner $\sigma \& \& \&$
$\left(W A I T-R E C V_{i d} \sigma(I P C\right.$ WAIT $(R E C V$ caller partner $m s g))=$
$\sigma \mid$ current-thread $:=$ caller ,
thread-list $:=$ update-th-waiting caller (thread-list $\sigma$ ),
error-codes $:=$ NO-ERRORS $\mid$ )
$\Longrightarrow P$ )
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (auto simp add:WAIT-RECV $V_{i d}$-def split: errors.split split-if split-if-asm op-tion.split-asm)
lemma WAIT-RECV ${ }_{\text {id }}$-Pure-obvious1:
(error-codes $\left(W A I T-R E C V_{i d} \sigma(I P C\right.$ WAIT $(R E C V$ caller partner $\left.m s g))\right)=$ ERROR-IPC error-IPC $\Longrightarrow P) \equiv$
( $\neg$ IPC-recv-comm-check-st ${ }_{\text {id }}$ caller partner $\sigma \Longrightarrow$
$\left(W A I T-R E C V_{i d} \sigma(I P C\right.$ WAIT $(R E C V$ caller partner $\left.m s g))\right)=$ $\sigma($ current-thread $:=$ caller , thread-list $:=$ update-th-current caller (thread-list $\sigma$ ), error-codes $\quad:=E R R O R-I P C$ error-IPC-1-in-WAIT-RECV $)$
\&\&\&
error-IPC $=$ error-IPC-1-in-WAIT-RECV) \&\&\&
(IPC-recv-comm-check-st id $_{\text {caller partner } \sigma \Longrightarrow}$
( $\neg$ IPC-params-c4 caller partner $\Longrightarrow$
$\left(\right.$ WAIT-RECV ${ }_{\text {id }} \sigma($ IPC WAIT $($ RECV caller partner msg $\left.))\right)=\sigma($ current-thread
:= caller ,

$$
\begin{aligned}
\text { thread-list } & :=\text { update-th-current caller (thread-list } \sigma \text { ), } \\
\text { error-codes } & :=\text { ERROR-IPC error-IPC-3-in-WAIT-RECV })
\end{aligned}
$$

\&\&\&
error-IPC $=$ error-IPC-3-in-WAIT-RECV) \&\&\&
(IPC-params-c4 caller partner $\Longrightarrow$
((ᄀIPC-params-c5 partner $\sigma \Longrightarrow$
(WAIT-RECV $V_{i d} \sigma($ IPC WAIT (RECV caller partner msg) $)$ ) update-state-wait-recv-params5
$\sigma$ caller \&\&\&
error-codes (update-state-wait-recv-params5 $\sigma$ caller) $=E R R O R-I P C$
error-IPC) \&\&\&
$\neg I P C$-params-c5 partner $\sigma)))) \Longrightarrow P$ )
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (simp-all add: update-state-wait-recv-params5-def WAIT-RECV id-def split: errors.split split-if split-if-asm list.split-asm)
lemma DONE-RECV ${ }_{\text {id }}$-Pure-obvious0:
(error-codes (exec-actionid $\sigma($ IPC DONE $(R E C V$ caller partner msg $)))=$ error $\Longrightarrow P) \equiv$
$\left(\left(\right.\right.$ exec-action ${ }_{i d} \sigma($ IPC DONE $(R E C V$ caller partner $\left.m s g))\right)=\sigma \Longrightarrow$ error-codes $\sigma=$ error $\Longrightarrow P)$
by simp

## J. 4 Symbolic Execution of Action Informations Field

```
lemma act-info-obvious0:
 ((th-flag (update-state caller \sigma f error)) =
 (th-flag \sigma)(caller := None)) =
 ((state id}.th-flag \sigma)=(\mp@subsup{state id}{id}{\mathrm{ .th-flag }\sigma)(caller := None)}
 by simp
lemma act-info-obvious1:
 (th-flag (update-state caller (init-act-info caller partner \sigma) f error)) =
 ((th-flag \sigma) (caller := None, partner }:=\mathrm{ None))
 by simp
lemma act-info-obvious2:
 (th-flag (update-state caller (remove-caller-error caller \sigma) f error)) =
 ((th-flag \sigma) (caller := None))
 by simp
lemma act-info-prep-send-obvious0:
 (th-flag (PREP-SEND id (init-act-info caller partner \sigma)
 (IPC PREP (SEND caller partner msg)))) =
 (state id.th-flag \sigma)(caller := None, partner := None)
 by (simp add: PREP-SENDD id
lemma act-info-prep-send-obvious1:
 (state id.th-flag \sigma)(caller := None, partner := None) =
 (th-flag(PREP-SEND id (init-act-info caller partner
 \sigma(current-thread := caller,
 thread-list := th-list,
 error-codes := error|))
 (IPC PREP (SEND caller partner msg))))
 by (simp add: PREP-SENDD id
lemma act-info-wait-send-obvious0:
 (th-flag (WAIT-SEND id (init-act-info caller partner \sigma)
 (IPC WAIT (SEND caller partner msg)))) =
 (th-flag \sigma)(caller := None, partner := None)
 by (simp add: WAIT-SEND (d-def split: option.split)
lemma act-info-wait-send-obvious1:
 (state id.th-flag \sigma)(caller := None, partner := None) =
 (th-flag(WAIT-SEND id (init-act-info caller partner
 \sigma|current-thread := caller,
 thread-list := th-list,
 error-codes := error|))
 (IPC WAIT (SEND caller partner msg))))
```

```
lemma act-info-buf-send-obvious0:
 (th-flag (BUF-SEND \({ }_{i d}\) (init-act-info caller partner \(\sigma\))
 \((\) IPC BUF \((S E N D\) caller partner \(m s g))))=\)
 \(\left(\right.\) state \(_{i d}\).th-flag \(\left.\sigma\right)(\) caller \(:=\) None, partner \(:=\) None \()\)
 by (simp add: BUF-SEND \({ }_{i d}-\) def)
lemma act-info-buf-send-obvious1:
 \(\left(\right.\) state \(_{i d} \cdot\) th-flag \(\left.\sigma\right)(\) caller \(:=\) None, partner \(:=\) None \()=\)
 (th-flag (BUF-SEND \({ }_{\text {id }}\) (init-act-info caller partner
 \(\sigma \mid\) current-thread \(:=\) caller,
 thread-list \(:=\) th-list,
 error-codes \(:=\) error \(\mid\)))
 (IPC BUF (SEND caller partner msg))))
 by (simp add: BUF-SEND \({ }_{i d}\)-def)
lemma act-info-done-send-obvious0:
 (th-flag (exec-action id (init-act-info caller partner \(\sigma\))
 \((\) IPC DONE \((S E N D\) caller partner msg) \()))=\)
 \(\left(\right.\) state \(_{i d}\).th-flag \(\left.\sigma\right)(\) caller \(:=\) None, partner \(:=\) None \()\)
 by \(\operatorname{simp}\)
lemma act-info-done-send-obvious1:
 \(\left(\right.\) state \(_{i d} \cdot\) th-flag \(\left.\sigma\right)(\) caller \(:=\) None, partner \(:=\) None \()=\)
 (th-flag (exec-action \({ }_{i d}\) (init-act-info caller partner
 \(\sigma(\) current-thread \(:=\) caller,
 thread-list \(:=\) th-list,
 error-codes \(:=\) error \(\mid\)))
 (IPC DONE (SEND caller partner msg))))
 by \(\operatorname{simp}\)
```

lemma act-info-prep-recv-obvious0:
state $_{\text {id }}$.th-flag (PREP-RECV ${ }_{\text {id }}$ (init-act-info caller partner $\sigma$ )
$(I P C \operatorname{PREP}(R E C V$ caller partner $m s g)))=$
$\left(\right.$ state $_{i d}$. th-flag $\left.\sigma\right)($ caller $:=$ None, partner $:=$ None)
by (simp add: PREP-RECV $V_{i d}-d e f$ )
lemma act-info-prep-recv-obvious1:
$\left(\left(\right.\right.$ state $_{i d} \cdot$ th-flag $\left.\left.\sigma\right)\right)($ caller $:=$ None, partner $:=$ None $)=$
( (th-flag (PREP-RECV ${ }_{\text {id }}$ (init-act-info caller partner
$\sigma($ current-thread $:=$ caller,
thread-list $:=$ th-list,
error-codes $\quad:=$ error $\mid$ ))
(IPC PREP (RECV caller partner msg)))))
by (simp add: PREP-RECV $\left.V_{i d}-d e f\right)$
lemma act-info-wait-recv-obvious0:
(th-flag (WAIT-RECV ${ }_{i d}$ (init-act-info caller partner $\sigma$ )
$($ IPC WAIT $(R E C V$ caller partner msg) $)))=$
$(($ th-flag $\sigma))($ caller $:=$ None, partner $:=$ None $)$
by (simp add: WAIT-RECV $V_{i d}$-def split: option.split)
lemma act-info-wait-recv-obvious1:
$\left(\left(\right.\right.$ state $_{\text {id }}$. th-flag $\left.\left.\sigma\right)\right)($ caller $:=$ None, partner $:=$ None $)=$
( $\left(\right.$ th-flag (WAIT-RECV ${ }_{i d}$ (init-act-info caller partner
$\sigma($ current-thread $:=$ caller,
thread-list $:=$ th-list,
error-codes $\quad:=$ error $\mid$ ))
(IPC WAIT (RECV caller partner msg)))))
by (simp add: WAIT-RECV $V_{\text {id }}$-def split: option.split)
lemma act-info-buf-recv-obvious0:
(th-flag (BUF-RECV ${ }_{\text {id }}$ (init-act-info caller partner $\sigma$ )
$($ IPC BUF $($ RECV caller partner $m s g))))=$
$(($ th-flag $\sigma))($ caller $:=$ None, partner $:=$ None $)$
by (simp add: BUF-RECV $V_{i d}$-def)
lemma act-info-buf-recv-obvious1:
$(($ th-flag $\sigma))($ caller $:=$ None, partner $:=$ None $)=$
((th-flag (BUF-RECV ${ }_{i d}$ (init-act-info caller partner $\sigma($ current-thread $:=$ caller, thread-list $:=$ th-list, error-codes $:=$ error $\mid$ ))
(IPC BUF (RECV caller partner msg)))))
by (simp add: BUF-RECV $V_{i d}$-def)
lemma act-info-done-recv-obvious0:
(th-flag (exec-action ${ }_{i d}$ (init-act-info caller partner $\sigma$ )
$(I P C$ DONE $(R E C V$ caller partner $m s g))))=$
$(($ th-flag $\sigma))($ caller $:=$ None, partner $:=$ None $)$
by $\operatorname{simp}$
lemma act-info-done-recv-obvious1:
$(($ th-flag $\sigma))($ caller $:=$ None, partner $:=$ None $)=$
((th-flag (exec-action ${ }_{i d}($ init-act-info caller partner $\sigma($ current-thread $:=$ caller, thread-list $:=$ th-list, error-codes $\quad:=$ error $\mid$ )
(IPC DONE (RECV caller partner msg)))))
lemmas atomic-action-normalizer-errors $=$
PREP-RECV $V_{i d}$-obvious0 PREP-RECV id-obvious1 PREP-RECV $_{\text {id-obvious2 }}$
PREP-SEND ${ }_{\text {id }}{ }^{\text {-obvious0 }}$ PREP-SEND id $_{\text {-obvious1 }}$ PREP-SEND id $_{\text {-obvious2 }}$
WAIT-RECV $V_{i d}$-obvious0 WAIT-RECV $V_{\text {id-obvious1 WAIT-RECV }}^{\text {id-obvious2 }}$
WAIT-SEND id-obvious0 WAIT-SEND $_{\text {id-obvious1 WAIT-SEND }}^{\text {id }}$-obvious2
BUF-RECV ${ }_{i d}$-obvious0 BUF-SEND ${ }_{\text {id }}$-obvious0 DONE-SEND ${ }_{i d}$-obvious0 DONE-RECV ${ }_{i d}$-obvious0
lemmas atomic-action-normalizer-errors-Pure $=$
PREP-RECV ${ }_{\text {id }}$-Pure-obvious0 PREP-RECV $V_{\text {id }}$-Pure-obvious1
PREP-SEND ${ }_{i d}$-Pure-obvious0 PREP-SEND ${ }_{\text {id }}$-Pure-obvious1
WAIT-RECV id-Pure-obvious0 WAIT-RECV id $_{\text {-Pure-obvious1 }}$
WAIT-SEND ${ }_{\text {id }}$-Pure-obvious0
DONE-SEND ${ }_{\text {id }}$-Pure-obvious0
DONE-RECV id-Pure-obvious0
lemmas atomic-action-normalizer-act-info $=$ act-info-obvious0 act-info-obvious1 act-info-obvious2 act-info-prep-send-obvious0 act-info-prep-recv-obvious0 act-info-wait-send-obvious0 act-info-wait-recv-obvious0 act-info-buf-send-obvious0 act-info-buf-recv-obvious0 act-info-done-send-obvious0 act-info-done-recv-obvious0
lemmas atomic-action-normalizer $=$
prep-send-obvious prep-recv-obvious wait-send-obvious wait-recv-obvious buf-send-obvious buf-recv-obvious
lemmas PREP-SEND ${ }_{i d}$-normalizer-hyps $=$
thread-eq-def
exec-action ${ }_{\text {id }}$-Mon-prep-fact0-def exec-action ${ }_{i d}$-Mon-prep-fact1-def IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def is-part-mem-th-def
is-part-addr-addr-def is-part-mem-def Product-Type.split-beta
lemmas PREP-RECV $V_{\text {id-normalizer-hyps }}=$
thread-eq-def Product-Type.split-beta
exec-action ${ }_{i d}$-Mon-prep-fact0-def exec-action ${ }_{i d}$-Mon-prep-fact1-def IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def is-part-mem-th-def
is-part-addr-addr-def is-part-mem-def
lemmas WAIT-SEND ${ }_{i d}$-normalizer-hyps $=$
thread-eq-def Product-Type.split-beta

IPC-send-comm-check-stid-def IPC-params-c4-def IPC-buf-check-stid-def
lemmas WAIT-RECV $V_{\text {id-normalizer-hyps }}=$ thread-eq-def Product-Type.split-beta IPC-recv-comm-check-stid-def IPC-params-c4-def IPC-buf-check-stid-def
lemmas $B U F-S E N D_{i d}$-normalizer-hyps $=$
thread-eq-def Product-Type.split-beta HOL.split-if HOL.split-if-asm
upd-st-res-equiv ${ }_{i d}$-def update-th-smm-equiv-def
equiv-def sym-def refl-on-def
lemmas BUF-RECV $V_{i d}$-normalizer-hyps $=B^{\text {n }}$-SEND ${ }_{\text {id }}$-normalizer-hyps

```
lemmas splitter =
 option.split errors.split
 split-if list.split
lemmas splitter-asm =
 option.split-asm errors.split-asm
 split-if-asm list.split-asm
```


## K IPC pre-conditions normalizer

lemmas pre-conditions-defs $=$
IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def IPC-params-c5-def

IPC-send-comm-check-st $i_{i d}$-def IPC-recv-comm-check-st ${ }_{i d}$-def IPC-buf-check-st ${ }_{i d}$-def
Product-Type.split-beta is-part-addr-th-mem-def is-part-addr-addr-def
end
theory IPC-trace-normalizer
imports IPC-atomic-action-normalizer
begin

## L The Core Theory for Symbolic Execution of abort $_{\text {lift }}$

## L. 1 mbind and ioprog fail

lemma mbind FailSave-ioprog-None1:
assumes ioprog-fail: ioprog a $\sigma=$ None

```
shows mbind FailSave (a#S) ioprog \sigma = Some ([],\sigma)
using assms
by(simp add: Product-Type.split-beta)
lemma mbind FailSave-ioprog-None2:
 assumes exec-fail: mbind (ailSave (a#S) ioprog \sigma=Some ([], \sigma)
 shows ioprog a }\sigma=N=Non
 using exec-fail
 by(simp add: Product-Type.split-beta split:option.split-asm)
lemma mbind FailSave-ioprog-None:
 (ioprog a \sigma = None) =(mbind FailSave (a# S) ioprog \sigma = Some ([], \sigma))
 by (auto simp: mbind FailSave-ioprog-None1 mbind FailSave-ioprog-None\mathcal{Z}
```

Here is a collection of generic symbolic execution rules for for our Monadtransformer abort $_{\text {lift }}$. They make the specific semantics of aborting atomic actions explicit on the level of a side-calculus.

```
lemma abort-None1:
 assumes ioprog-fail: ioprog a \(\sigma=\) None
 shows mbind \((a \# S)\left(\right.\) abort \(_{l i f t}\) ioprog \() \sigma=\)
 Some ([], \(\sigma\))
oops
lemma abort-None2:
 assumes exec-fail : mbind \((a \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog \() \sigma=\)
 Some([], \(\sigma\))
 shows ioprog a \(\sigma=\) None
proof (cases a)
 case (IPC ipc-stage ipc-direction)
 assume hyp \(0: a=I P C\) ipc-stage ipc-direction
 then show ?thesis
 using assms
 proof (cases ipc-stage)
 case PREP
 assume hyp1:ipc-stage \(=P R E P\)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ipc-direction)
 case (SEND thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction \(=\) SEND thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 next
 case (RECV thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction \(=\) RECV thread-id1 thread-id2 adresses
 then show?thesis
 using assms hyp0 hyp1 hyp2
```

```
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 qed
next
 case WAIT
 assume hyp1:ipc-stage = WAIT
 then show ?thesis
 using assms hyp0 hyp1
proof (cases ipc-direction)
 case (SEND thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 next
 case (RECV thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 qed
next
 case BUF
 assume hyp1:ipc-stage = BUF
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ipc-direction)
 case (SEND thread-id1 thread-id2 adresses)
 assume hyp2:ipc-direction = SEND thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 next
 case (RECV thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 qed
next
 case MAP
 assume hyp1:ipc-stage = MAP
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ipc-direction)
```

```
 case (SEND thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 next
 case (RECV thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 qed
next
 case DONE
 assume hyp1: ipc-stage = DONE
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ipc-direction)
 case (SEND thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 next
 case (RECV thread-id1 thread-id2 adresses)
 assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp-all add: Product-Type.split-beta
 split: split-if-asm option.split-asm errors.split-asm)
 qed
 qed
qed
lemma abort-None':
 assumes not-in-err : caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{id}{}.th-flag \sigma)
 and not-done-act: stages }\not=\mathrm{ DONE
 and ioprog-fail:ioprog (IPC stages (SEND caller partner msg)) \sigma=None
 shows (abort lift ioprog) (IPC stages (SEND caller partner msg)) \sigma=None
 using assms
 by(simp add: split: p4-stage ipc.split,safe, simp-all)
lemma abort-None":
 assumes not-in-err : \caller. caller }\not=dom ((stateid.th-flag \sigma))
 and not-done-act: stages }=\mathrm{ DONE
```

```
 and ioprog-fail : ioprog (IPC stages direction) \(\sigma=\) None
 shows (abort lift ioprog) (IPC stages direction) \(\sigma=\) None
proof (cases stages)
 case (PREP)
 then show abort \(l_{\text {lift }}\) ioprog (IPC stages direction) \(\sigma=\) None
 using assms
 proof (cases direction)
 case (SEND thread-id1 thread-id2 adresses)
 fix caller
 show
 stages \(=P R E P \Longrightarrow\)
 caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(_{i d}\).th-flag \(\left.\left.\sigma\right)\right) \Longrightarrow\)
 stages \(\neq D O N E \Longrightarrow\)
 ioprog (IPC stages direction) \(\sigma=\) None \(\Longrightarrow\)
 direction \(=\) SEND thread-id1 thread-id2 adresses \(\Longrightarrow\)
 abort \(_{\text {lift }}\) ioprog (IPC stages direction) \(\sigma=\) None
 using assms
 by \(\operatorname{simp}\)
 next
 case (\(R E C V\) thread-id1 thread-id2 adresses)
 fix caller
 show
 stages \(=P R E P \Longrightarrow\)
 caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(_{\text {id }}\).th-flag \(\left.\left.\sigma\right)\right) \Longrightarrow\)
 stages \(\neq\) DONE \(\Longrightarrow\)
 ioprog (IPC stages direction) \(\sigma=\) None \(\Longrightarrow\)
 direction \(=\) RECV thread-id1 thread-id2 adresses \(\Longrightarrow\)
 abort \(l_{\text {lift }}\) ioprog (IPC stages direction) \(\sigma=\) None
 using assms
 by simp
 qed
next
 case (WAIT)
 then show abort \(l_{\text {lift }}\) ioprog (IPC stages direction) \(\sigma=\) None
 using assms
 proof (cases direction)
 case (SEND thread-id1 thread-id2 adresses)
 fix caller
 show
 stages \(=W A I T \Longrightarrow\)
 caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(_{\text {id }}\).th-flag \(\left.\left.\sigma\right)\right) \Longrightarrow\)
 stages \(\neq\) DONE \(\Longrightarrow\)
 ioprog (IPC stages direction) \(\sigma=\) None \(\Longrightarrow\)
 direction \(=\) SEND thread-id1 thread-id2 adresses \(\Longrightarrow\)
 abort \(_{\text {lift }}\) ioprog (IPC stages direction) \(\sigma=\) None
 using assms
 by \(\operatorname{simp}\)
 next
 case (RECV thread-id1 thread-id2 adresses)
```

```
 fix caller
 show
 stages = WAIT \Longrightarrow
 caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{\mathrm{ ith-flag }\sigma))}{\Longrightarrow
 stages }=\mathrm{ DONE }
 ioprog (IPC stages direction) }\sigma=None
 direction = RECV thread-id1 thread-id2 adresses \Longrightarrow
 abort lift ioprog (IPC stages direction) }\sigma=\mathrm{ None
 using assms
 by simp
 qed
next
 case (BUF)
 then show abort lift ioprog (IPC stages direction) }\sigma=Non
 using assms
 proof (cases direction)
 case (SEND thread-id1 thread-id2 adresses)
 fix caller
 show
 stages = BUF\Longrightarrow
 caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{\mathrm{ d}}{\mathrm{ .th-flag }\sigma))}
 stages }\not=\mathrm{ DONE }
 ioprog (IPC stages direction) }\sigma=\mathrm{ None "
 direction = SEND thread-id1 thread-id2 adresses }
 abort lift ioprog (IPC stages direction) }\sigma=\mathrm{ None
 using assms
 by simp
 next
 case (RECV thread-id1 thread-id2 adresses)
 fix caller
 show
 stages = BUF \Longrightarrow
 caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{\mathrm{ id}}{\mathrm{ .th-flag }\sigma)))\Longrightarrow
 stages }\not=\mathrm{ DONE }
 ioprog (IPC stages direction) }\sigma=None
 direction = RECV thread-id1 thread-id2 adresses \Longrightarrow
 abort lift ioprog (IPC stages direction) }\sigma=\mathrm{ None
 using assms
 by simp
 qed
next
 case (MAP)
 then show abort lift ioprog (IPC stages direction) }\sigma=\mathrm{ None
 using assms
 proof (cases direction)
 case (SEND thread-id1 thread-id2 adresses)
 fix caller
 show
 stages = MAP \Longrightarrow
```

```
 caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{\mathrm{ .th-flag }\sigma))}{\Longrightarrow
 stages }\not=\mathrm{ DONE }
 ioprog (IPC stages direction) }\sigma=None
 direction = SEND thread-id1 thread-id2 adresses \Longrightarrow
 abort lift ioprog (IPC stages direction) \sigma=None
 using assms
 by simp
 next
 case (RECV thread-id1 thread-id2 adresses)
 fix caller
 show
 stages = MAP \Longrightarrow
 caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{\mathrm{ id}}{\mathrm{ th-flag }\sigma))}
 stages }\not=\mathrm{ DONE }
 ioprog (IPC stages direction) }\sigma=\mathrm{ None "
 direction = RECV thread-id1 thread-id2 adresses \Longrightarrow
 abort lift ioprog (IPC stages direction) }\sigma=\mathrm{ None
 using assms
 by simp
 qed
next
case (DONE)
then show abort lift ioprog (IPC stages direction) }\sigma=\mathrm{ None
using assms
 by simp
qed
lemma abort-None0:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ (th-flag }\sigma)
 and not-done-act:stages }\not=\mathrm{ DONE
 and ioprog-fail :ioprog (IPC stages (SEND caller partner msg)) \sigma=None
 shows (abort lift ioprog) (IPC stages (SEND caller partner msg)) }\sigma
 ioprog (IPC stages (SEND caller partner msg)) \sigma
 using not-in-err not-done-act ioprog-fail
 by(simp add: split:IPC-atomic-actions.p4-stage }\mp@subsup{i}{\mathrm{ ipc.split,safe, simp-all)}}{\mathrm{ (}
lemma abort-None1:
 assumes not-in-err :caller # dom ((state id.th-flag \sigma))
 and ioprog-fail: ioprog (IPC PREP (SEND caller partner msg)) \sigma=None
 shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some ([],\sigma)
 using assms
 by simp
lemma mbind-exec-action \({ }_{i d}\)-Mon-None:
mbind \((a \# S)\) exec-action \({ }_{i d}-\) Mon \(\sigma \neq\) None
by(rule Monads.mbind-nofailure)
```


## lemma mbind-exec-actionid-Mon-Some:

$\exists$ outs $\sigma^{\prime}$. mbind $(a \# S)$ exec-action ${ }_{i d}-M o n \sigma=$ Some (outs,$\left.\sigma^{\prime}\right)$
by (insert mbind-exec-action id $^{-M o n-N o n e, ~ a u t o) ~}$
lemma mbindef-exec-action ${ }_{i d}$-Mon-None:
mbind $(a \# S)$ exec-action ${ }_{i d}-$ Mon $\sigma \neq$ None
by(rule mbind-exec-actionid-Mon-None)
lemma mbindef-exec-action ${ }_{i d}$-Mon-Some:
$\exists$ outs $\sigma^{\prime}$. mbind $(a \# S)$ exec-action ${ }_{i d}-$ Mon $\sigma=$ Some (outs, $\sigma^{\prime}$ )
by (auto, rule action ${ }_{i p c}$.induct, simp split: option.split)

## L. 2 Symbolic Execution Rules on PREP stage

```
lemma abort-prep-send-obvious0:
 assumes not-in-err : caller & dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) \sigma=
Some(NO-ERRORS, \sigma')
 shows abort lift ioprog (IPC PREP (SEND caller partner msg)) \sigma=
 Some(NO-ERRORS, (error-tab-transfer caller \sigma \sigma})
 using assms
 by simp
```

lemma abort-prep-send-obvious1:
assumes not-in-err :caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$
Some (ERROR-MEM error-mem, $\sigma^{\prime}$ )
shows abort ${ }_{l i f t}$ ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$
Some (ERROR-MEM error-mem, (set-error-mem-preps caller partner $\sigma$
$\sigma^{\prime}$ error-mem msg))
using assms
by $\operatorname{simp}$
lemma abort-prep-send-obvious2:
assumes not-in-err $\quad:$ caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$
Some (ERROR-IPC error-IPC, $\sigma^{\prime}$ )
shows abort ${ }_{l i f t}$ ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$
Some (ERROR-IPC error-IPC, (set-error-ipc-preps caller partner $\sigma \sigma^{\prime}$
error-IPC msg))
using assms
by $\operatorname{simp}$
lemma abort-prep-send-obvious3:
assumes not-in-err :caller $\notin$ dom $(($ th-flag $\sigma))$
and ioprog-sucess:ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$
Some(NO-ERRORS, $\sigma^{\prime}$ )
shows

```
 mbind ((IPC PREP (SEND caller partner msg))#S) (abort lift ioprog) }\sigma
 Some(NO-ERRORS# fst(the(mbind S (abortlift ioprog) (error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller \sigma \sigma
proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
 case (None)
 then show ?thesis
 using assms
 by simp
next
 case (Some a)
 assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a = (aa,b)
 show ?thesis
 using assms hyp0 hyp1
 proof (case-tac aa)
 assume hyp2: aa=NO-ERRORS
 show ?thesis
 using assms hyp0 hyp1 hyp2
 by (simp split: option.split)
 next
 fix error-memory
 assume hyp3: aa = ERROR-MEM error-memory
 show ?thesis
 using assms hyp0 hyp1 hyp3
 by simp
 next
 fix error-IPC
 assume hyp4: aa=ERROR-IPC error-IPC
 show ?thesis
 using assms hyp0 hyp1 hyp4
 by simp
 qed
 qed
qed
lemma abort-prep-send-obvious4:
 assumes not-in-err: caller # dom ((th-flag \sigma))
 and ioprog-success: ioprog (IPC PREP(SEND caller partner msg)) }\sigma
Some(ERROR-MEM error-mem,\sigma')
 shows
 mbind ((IPC PREP (SEND caller partner msg))#S) (abort lift ioprog) }\sigma
 Some(ERROR-MEM error-mem #
 fst(the(mbind S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma 尔 error-mem msg))),
```

```
snd(the(mbind S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma \sigma' error-mem msg))))
 proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
 case (None)
 then show ?thesis
 using assms
 by simp
next
 case (Some a)
 assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) \sigma= Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a = (aa,b)
 show ?thesis
 using assms hyp0 hyp1
 proof (case-tac aa)
 assume hyp2: aa = NO-ERRORS
 show ?thesis
 using assms hyp0 hyp1 hyp2
 by simp
 next
 fix error-memory
 assume hyp3: aa = ERROR-MEM error-memory
 show ?thesis
 using assms hyp0 hyp1 hyp3
 by (simp split: option.split)
 next
 fix error-IPC
 assume hyp4: aa = ERROR-IPC error-IPC
 show ?thesis
 using assms hyp0 hyp1 hyp4
 by simp
 qed
 qed
qed
```

lemma abort-prep-send-obvious5:
assumes not-in-err : caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-succes: ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$
Some (ERROR-IPC error-IPC, $\sigma^{\prime}$ )
shows mbind ((IPC PREP (SEND caller partner msg)) \#S) (abort lift $\left._{\text {ioprog }}\right)$
$\sigma=$
Some (ERROR-IPC error-IPC\# fst(the (mbind $S$ (abort ${ }_{l i f t}$ ioprog)
(set-error-ipc-preps caller partner $\sigma \sigma^{\prime}$ error-IPC
$m s g))$ ),

$$
\text { snd (the (mbind } S \text { (abort lift ioprog) }
$$

$m s g))$ ))
proof (cases ioprog (IPC PREP (SEND caller partner msg)) $\sigma$ )
case (None)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$ None
then show?thesis
using assms hyp0
by $\operatorname{simp}$
next
case (Some a)
assume hyp0:ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$ Some a
then show?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
show ?thesis
using assms hyp0 hyp1
proof (case-tac aa)
assume hyp2: $a a=$ NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by $\operatorname{simp}$

## next

fix error-memory
assume hyp3: aa = ERROR-MEM error-memory
show ?thesis
using assms hyp0 hyp1 hyp3
by simp
next
fix error-IPCa
assume hyp4: $a a=E R R O R-I P C$ error-IPCa
show ?thesis
using assms hyp0 hyp 1 hyp 4
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }}$
(set-error-ipc-preps caller partner $\sigma \sigma^{\prime}$ error-IPC msg))
case (None)
assume hyp5:mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-ipc-preps caller partner $\sigma \sigma^{\prime}$ error-IPC msg) $=$ None
show ?thesis
using assms hyp0 hyp1 hyp 4 hyp5
by $\operatorname{simp}$
next
case (Some ab)
assume hyp 6: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog }}$ )
(set-error-ipc-preps caller partner $\sigma \sigma^{\prime}$ error-IPC msg) $=$ Some
$a b$
then show ?thesis
using assms

```
 by (simp add: Product-Type.split-beta)
 qed
 qed
 qed
qed
lemma abort-prep-send-obvious6:
 assumes in-err:caller }\in\operatorname{dom}((th-flag \sigma)
 shows abort lift ioprog (IPC PREP (SEND caller partner msg)) \sigma=
 Some(get-caller-error caller \sigma,\sigma)
 using assms
 by simp
lemma abort-prep-send-obvious7:
 assumes in-err:caller \in dom ((th-flag \sigma))
 shows mbind ((IPC PREP (SEND caller partner msg))#S) (abortlift
ioprog) }\sigma
 Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog)
\sigma)),
 snd(the(mbind S(abort lift ioprog) \sigma)))
 using assms
proof (cases mbind FailSave S(abort lift ioprog) \sigma)
 case (None)
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0
 by simp
 qed
qed
lemma abort-prep-send-obvious8:
 assumes A: }\forall\mathrm{ act }\sigma\mathrm{ . ioprog act }\sigma\not=\mathrm{ None
 shows mbind ((IPC PREP (SEND caller partner msg))#S)(abort lift ioprog)
\sigma=
 (if caller }\in\operatorname{dom}((th-flag \sigma)
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog)
\sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else if ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
```

```
\sigma')
 then Some(NO-ERRORS#
 fst(the(mbind S (abort tift ioprog) (error-tab-transfer caller
\sigma \sigma
 snd(the(mbind S (abortlift ioprog)(error-tab-transfer caller
\sigma \sigma
 else if ioprog (IPC PREP (SEND caller partner msg)) \sigma =
Some(ERROR-MEM error-mem, \sigma')
 then Some(ERROR-MEM error-mem#
 fst(the(mbind S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma \sigma' error-mem
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma \sigma' error-mem
msg))))
 else if ioprog (IPC PREP (SEND caller partner msg)) \sigma=
Some(ERROR-IPC error-IPC, \sigma')
 then Some(ERROR-IPC error-IPC#
 fst(the(mbind S (abortlift ioprog)
 (set-error-ipc-preps caller partner \sigma \sigma' error-IPC
msg)))
 snd(the(mbind S (abortlift ioprog)
 (set-error-ipc-preps caller partner \sigma \sigma' error-IPC
msg))))
 else if ioprog (IPC PREP (SEND caller partner msg)) \sigma=None
 then Some([], \sigma)
 else id (mbind ((IPC PREP (SEND caller partner
msg))#S)(\mp@subsup{abort lift ioprog) \sigma))}{}{\prime}=\mp@code{log}
proof (cases mbind FailSave }S\mathrm{ (abort (ifft ioprog) }\sigma\mathrm{)
 case (None)
 thus ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
 thus ?thesis
 using A hyp0
 proof (cases a)
 fix aa b
 assume hyp0 : a = (aa,b)
 thus ?thesis
 using A hyp0
 proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 thus ?thesis
 by simp
 next
```

```
 case (Some ab)
 assume hyp1: mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma=\mathrm{ Some ab
 thus ?thesis
 using A hyp0 hyp1
 proof (cases ab)
 fix ac ba
 assume hyp2:ab=(ac, ba)
 thus ?thesis
 using A hyp0 hyp1 hyp2
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-preps caller partner \sigma \sigma' error-IPC msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some ad)
 assume hyp3: mbind FailSave S (abort lift ioprog)(set-error-ipc-preps
caller partner \sigma \sigma' error-IPC msg) =
 Some ad
 thus ?thesis
 using A hyp0 hyp1 hyp2 hyp3
 proof (cases ad)
 fix ae bb
 assume hyp4:ad=(ae,bb)
 thus ?thesis
 using A hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-preps caller partner \sigma \sigma' error-mem msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some af)
 assume hyp 5: mbind FailSave S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma \sigma' error-mem msg)=
Some af
 thus ?thesis
 using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases af)
 fix ag bc
 assume hyp6:af}=(ag,bc
 thus ?thesis
 using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 case None
 thus ?thesis
 by simp
 next
```

```
 case (Some ah)
 assume hyp7:mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma \sigma
 thus ?thesis
 using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 proof (cases ah)
 fix ai bd
 assume hyp8: ah=(ai,bd)
 thus ?thesis
 using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 hyp8
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-prep-send-obvious8':
 mbind ((IPC PREP (SEND caller partner msg))#S)(abortlift ioprog) }\sigma
 (if caller }\in\operatorname{dom}((th-flag \sigma))
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else (case ioprog (IPC PREP (SEND caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 Some(NO-ERRORS#
 fst(the(mbind S (abort lift ioprog) (error-tab-transfer caller \sigma
\sigma
\sigma}\mp@subsup{\sigma}{}{\prime})))
| Some(ERROR-MEM error-mem, 䭫)=>
 Some(ERROR-MEM error-mem#
 fst(the(mbind S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma 㐌 error-mem msg)))
 ,
 snd(the(mbind S (abortlift ioprog)
 (set-error-mem-preps caller partner \sigma 尔 error-mem msg))))
 | Some(ERROR-IPC error-IPC, 生) =>
 Some(ERROR-IPC error-IPC #
 fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-preps caller partner \sigma 的 error-IPC msg)))
 ,
 snd(the(mbind S (abort lift ioprog)
```

```
 (set-error-ipc-preps caller partner \sigma \sigma' error-IPC msg))))
 | None = Some([], \sigma)))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
 case None
 thus ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
 thus ?thesis
 proof -
 {have 1:caller \in dom ((th-flag \sigma)) \longrightarrow
```



```
 Some (get-caller-error caller \sigma # fst a, snd a)
 by (simp add: Product-Type.split-beta)
 thus ?thesis
 using hyp0 1
 proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
 { case None
 thus ?thesis
 using hyp0 1
 by simp
 next
 case (Some aa)
 assume hyp 1: ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some
aa
 thus ?thesis
 using hyp0 hyp1 1
 proof (cases aa)
 fix ab b
 assume hyp2: aa = (ab,b)
 thus ?thesis
 using hyp0 hyp1 hyp2 1
 proof (cases ab)
 case NO-ERRORS
 assume hyp3: ab = NO-ERRORS
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp3 1
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma b))
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp 6: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma b) = Some ac
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp6 1
```

```
 proof (cases a)
 fix ad ba
 assume hyp7: a=(ad, ba)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 1
 proof (cases ac)
 fix ae bb
 assume hyp8:ac=(ae,bb)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 hyp8 1
 by simp
 qed
 qed
 qed
next
case (ERROR-MEM error-memory)
assume hyp 4: ab = ERROR-MEM error-memory
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 1
proof (cases mbind FailSave S (abort lift ioprog)b)
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp6: mbind FailSave S (abort lift ioprog) b = Some ac
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp4 hyp6 1
 proof (cases a)
 fix ad ba
 assume hyp7: a=(ad,ba)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 1
 proof (cases ac)
 fix ae bb
 assume hyp8: ac = (ae,bb)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 1
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-preps caller partner \sigma b error-memory msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some af)
 assume hyp9: mbind FailSave}S\mathrm{ (abort (ifft ioprog)
 (set-error-mem-preps caller partner \sigma b error-memory
```

$m s g)=$

Some af

```
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 1
 proof (cases af)
 fix ag bc
 assume hyp10: af = (ag, bc)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 hyp10 1
 by simp
 qed
 qed
 qed
 qed
 qed
next
 case (ERROR-IPC error-IPC)
 assume hyp5: ab = ERROR-IPC error-IPC
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp5 1
 proof (cases mbind FailSave S (abort lift ioprog)b)
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp6: mbind FailSave S (abort lift ioprog) b = Some ac
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp5 hyp6 1
 proof (cases a)
 fix ad ba
 assume hyp7: a= (ad,ba)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 1
 proof (cases ac)
 fix ae bb
 assume hyp8:ac=(ae,bb)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 1
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-preps caller partner \sigma b error-IPC msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some af)
 assume hyp 9: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-preps caller partner \sigma b error-IPC msg) =
 Some af
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 1
```

```
 proof (cases af)
 fix ag bc
 assume hyp10: af = (ag,bc)
 thus ?thesis
 using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 hyp10 1
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
 }qed
 }qed
qed
```

lemma abort-prep-send-obvious9:
fst $\left(\right.$ the $\left(\right.$ mbind $\left(\left(I P C\right.\right.$ PREP (SEND caller partner msg)) \#S)(abort ${ }_{\text {lift }}$ ioprog)
$\sigma)=$
(if caller $\in \operatorname{dom}(($ th-flag $\sigma))$
then get-caller-error caller $\sigma \# f s t\left(t h e\left(m b i n d ~ S\left(\right.\right.\right.$ abort $_{l i f t}$ ioprog) $\left.\left.\sigma\right)\right)$
else (case ioprog (IPC PREP (SEND caller partner msg)) $\sigma$ of Some(NO-ERRORS,
$\left.\sigma^{\prime}\right) \Rightarrow$
NO-ERRORS\#
$f s t\left(\right.$ the (mbind $S$ ( abort $_{l i f t}$ ioprog) (error-tab-transfer caller $\left.\left.\sigma \sigma^{\prime}\right)\right)$ )
| Some (ERROR-MEM error-mem, $\left.\sigma^{\prime}\right) \Rightarrow$
ERROR-MEM error-mem\#fst (the (mbind $S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-mem-preps caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g)$ ))
| Some(ERROR-IPC error-IPC,$\left.\sigma^{\prime}\right) \Rightarrow$
ERROR-IPC error-IPC \#fst (the(mbind $S$ (abort lift ioprog)
(set-error-ipc-preps caller partner $\sigma \sigma^{\prime}$ error-IPC
$m s g))$ )
| None $\Rightarrow[])$ )
proof (cases ioprog (IPC PREP (SEND caller partner msg)) $\sigma$ )
case None
thus ?thesis
using assms
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma$ )
case None
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$ None
assume hyp 1: mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma=$ None
thus ?thesis
using assms hyp0 hyp1
by $\operatorname{simp}$

```
 next
 case (Some a)
 assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) \sigma=None
 assume hyp 1: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 thus ?thesis
 using assms hyp0 hyp1
 proof (cases a)
 fix aa b
 assume hyp2: a = (aa,b)
 thus ?thesis
 using assms hyp0 hyp1 hyp2
 by simp
 qed
 qed
next
case (Some a)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) \sigma= Some a
thus ?thesis
using hyp0
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma\mathrm{)
 case None
 assume hyp1: mbind FailSave S (abortlift ioprog) }\sigma=\mathrm{ None
 thus ?thesis
 using assms hyp1 hyp0
 by simp
next
 case (Some aa)
 assume hyp2: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some aa
 thus ?thesis
 using hyp0 hyp2 assms
 proof -
 have 1:(caller \in dom ((th-flag \sigma))}
 fst (the (case aa of (outs, 哖) => Some (get-caller-error caller \sigma #
outs, 海))) =
 get-caller-error caller \sigma # fst aa)
 proof (cases aa)
 fix ab
 assume hyp3: aa=(a,b)
 thus ?thesis
 by simp
 qed
 thus ?thesis
 using 1 assms hyp0 hyp2
 proof (cases a)
 fix ab b
 assume hyp3:a=(ab,b)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases ab)
```

```
 case (NO-ERRORS)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma b))
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp4:ab=NO-ERRORS
 assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma b) = Some ac
 thus ?thesis
 using hyp3 hyp4 hyp5 1assms hyp0 hyp2
 proof (cases ac)
 fix ad ba
 assume hyp6:ac=(ad, ba)
 thus ?thesis
 using hyp3 hyp4 hyp5 1 assms hyp0 hyp2
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-preps caller partner \sigma b error-memory msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp7: ab = ERROR-MEM error-memory
 assume hyp8: mbind FailSave S (abort lift ioprog)
 (set-error-mem-preps caller partner \sigma b error-memory msg)
= Some ac
 thus ?thesis
 using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
 proof (cases ac)
 fix ad ba
 assume hyp6: ac = (ad, ba)
 thus ?thesis
 using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
 by simp
 qed
 qed
 next
```

```
 case (ERROR-IPC error-IPC)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-preps caller partner \sigma b error-IPC msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp9: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-preps caller partner \sigma b error-IPC msg) =Some
ac
 assume hyp 10: ab = ERROR-IPC error-IPC
 thus ?thesis
 using assms hyp9 hyp10 hyp3 1 hyp0 hyp2
 proof (cases ac)
 fix ad ba
 assume hyp6:ac=(ad, ba)
 thus ?thesis
 using hyp3 hyp9 hyp10 1 assms hyp0 hyp2
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-prep-recv-obvious0:
 assumes not-in-err : caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-succes:ioprog (IPC PREP (RECV caller partner msg)) \sigma=
Some(NO-ERRORS, \sigma')
 shows abort lift ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
(error-tab-transfer caller \sigma \sigma
 using assms
 by simp
lemma abort-prep-recv-obvious1:
 assumes not-in-err :caller & dom ((th-flag \sigma))
 and ioprog-success :ioprog (IPC PREP (RECV caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, \sigma')
 shows abortlift ioprog (IPC PREP (RECV caller partner msg)) \sigma=
 Some (ERROR-MEM error-mem, (set-error-mem-prepr caller partner \sigma
\sigma' error-mem msg))
 using assms
```

```
 by simp
lemma abort-prep-recv-obvious2:
 assumes not-in-err : caller & dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) \sigma =
 Some(ERROR-IPC error-IPC, \sigma')
 shows abort lift ioprog (IPC PREP (RECV caller partner msg)) \sigma=
 Some (ERROR-IPC error-IPC, (set-error-ipc-prepr caller partner \sigma \sigma'
error-IPC msg))
 using assms
 by simp
lemma abort-prep-recv-obvious3:
 assumes not-in-err : caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) \sigma=
Some(NO-ERRORS, \sigma')
 shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(NO-ERRORS# fst(the(mbind S (abort lift ioprog) (error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller
\sigma \sigma
proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller \sigma \sigma
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abortlift ioprog)(error-tab-transfer caller \sigma
\sigma})=\mathrm{ Some a
 then show?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-prep-recv-obvious4:
 assumes not-in-err : caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, \sigma}
 shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem
```

```
msg))),
 snd(the(mbind S (abort lift ioprog) (set-error-mem-prepr caller partner \sigma
\sigma
proof (cases mbind FailSave }S\mathrm{ (abort (aft ioprog) }\sigma\mathrm{)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some aa)
 assume hyp1: mbind FailSave S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem msg)=Some aa
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases aa)
 fix ab b
 assume hyp2: aa= (ab,b)
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by simp
 qed
 qed
qed
lemma abort-prep-recv-obvious5:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) }\sigma
 Some(ERROR-IPC error-IPC, \sigma')
 shows mbind ((IPC PREP (RECV caller partner msg))#S) (abortlift ioprog)
\sigma=
 Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma 尔 error-IPC msg))))
proof (cases mbind FailSave}S\mathrm{ (abort (ift ioprog) }\sigma\mathrm{)
 case None
 then show ?thesis
 by simp
next
```

```
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma 尔 error-IPC msg))
 case None
 then show ?thesis
 by simp
next
 case (Some aa)
 assume hyp1: mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg) =
 Some aa
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases aa)
 fix ab b
 assume hyp2: aa= (ab,b)
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 by simp
 qed
 qed
qed
lemma abort-prep-recv-obvious6:
 assumes in-err: caller }\in\mathrm{ dom ((th-flag }\sigma)
 shows abortlift ioprog (IPC PREP (RECV caller partner msg)) }\sigma
 Some(get-caller-error caller \sigma, \sigma)
 using in-err
 by simp
lemma abort-prep-recv-obvious7:
 assumes in-err:caller }\in\mathrm{ dom ((th-flag }\sigma)\mathrm{)
 shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lift
ioprog)}\sigma
 Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog)
\sigma)),
 snd(the(mbind S (abortlift ioprog) \sigma)))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
```

```
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-prep-recv-obvious8:
 mbind ((IPC PREP (RECV caller partner msg))#S)(abort lift ioprog) }\sigma
 (if caller \in dom ((th-flag \sigma))
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else if ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma')
 then Some(NO-ERRORS#
 fst(the(mbind S (abort lift ioprog) (error-tab-transfer caller \sigma
\sigma
 snd(the(mbind S (abort lift ioprog) (error-tab-transfer caller
\sigma}\mp@subsup{\sigma}{}{\prime})))
 else if ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, \sigma')
 then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift
ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem
msg))))
 else if ioprog (IPC PREP (RECV caller partner msg)) \sigma=
Some(ERROR-IPC error-IPC, \sigma')
 then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift
ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma 㐌 error-IPC msg))))
 else if ioprog (IPC PREP (RECV caller partner msg)) \sigma=None
 then Some([], \sigma)
 else id (mbind ((IPC PREP (RECV caller partner
msg))#S)(abort lift ioprog) \sigma))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
next
```

```
case (Some a)
assume hyp0:mbind FailSave}S\mathrm{ (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using assms hyp0
proof (cases a)
 fix aa b
 assume hyp1: a= (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ab)
 assume hyp2: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg) = Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp 4: mbind FailSave S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem msg)=Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases ad)
 fix ae bb
 assume hyp5:ad=(ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma'))
 case None
 then show ?thesis
 by simp
 next
 case (Some af)
```

```
 assume hyp6:mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases af)
 fix ag bc
 assume hyp7:af = (ag,bc)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-prep-recv-obvious8':
 mbind ((IPC PREP (RECV caller partner msg))#S)(abort lift ioprog) }\sigma
 (if caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else (case ioprog (IPC PREP (RECV caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 Some(NO-ERRORS#
 fst(the(mbind S (abort lift ioprog) (error-tab-transfer caller \sigma
\sigma})))
 snd(the(mbind S (abort lift ioprog) (error-tab-transfer caller
\sigma \sigma
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma'
error-mem msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma \sigma' error-mem msg))))
 | Some(ERROR-IPC error-IPC, 的) =>
 Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC
msg)))
 ,
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg))))
 | None = Some([],\sigma)))
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma\mathrm{)
```

```
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ioprog (IPC PREP (RECV caller partner msg)) \sigma)
 case None
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 next
 case (Some ab)
 assume hyp2:ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some ab
 then show ?thesis
 using hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3:ab=(ac,ba)
 then show ?thesis
 using hyp0 hyp1 hyp2 hyp3
 proof (cases ac)
 case NO-ERRORS
 assume hyp4:ac = NO-ERRORS
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp7: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer
caller \sigma ba)= Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
 proof (cases ad)
 fix ae bb
 assume hyp8:ad= (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
```

```
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 assume hyp5: ac = ERROR-MEM error-memory
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-prepr caller partner \sigma ba error-memory msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp9: mbind FailSave S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma ba error-memory msg)
= Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
 proof (cases ad)
 fix ae bb
 assume hyp10:ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp6: ac = ERROR-IPC error-IPC
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma ba error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp11: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma ba error-IPC msg) =
Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
 proof (cases ad)
 fix ae bb
 assume hyp12:ad=(ae,bb)
 then show ?thesis
```

```
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-prep-recv-obvious9:
fst (the (mbind ((IPC PREP (RECV caller partner msg)) \#S)(abort lift ioprog)
\(\sigma)=\)
(if caller \(\in \operatorname{dom}((\) th-flag \(\sigma))\)
then get-caller-error caller \(\sigma \# f s t\left(t h e\left(m b i n d ~ S\left(\right.\right.\right.\) abort \(_{l i f t} \quad\) ioprog \(\left.\left.) \sigma\right)\right)\)
else (case ioprog (IPC PREP (RECV caller partner msg)) \(\sigma\) of Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Rightarrow\)
NO-ERRORS \#
fst (the (mbind \(S\) (abort \(_{l i f t}\) ioprog) (error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right)\)))
| Some(ERROR-MEM error-mem, \(\left.\sigma^{\prime}\right) \Rightarrow\)
ERROR-MEM error-mem \#
fst(the(mbind \(S\) (abort \({ }_{\text {lift }}\) ioprog)
(set-error-mem-prepr caller partner \(\sigma \sigma^{\prime}\) error-mem msg)))
| Some (ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \Rightarrow\)
ERROR-IPC error-IPC \#
fst (the (mbind \(S\) (abort lift ioprog)
(set-error-ipc-prepr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)))
| None \(\Rightarrow[])\))
proof (cases ioprog (IPC PREP (RECV caller partner msg)) \(\sigma\))
case None
thus ?thesis
using assms
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma\))
case None
assume hyp0: ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) None
assume hyp 1: mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) None
thus ?thesis
using assms hyp0 hyp1
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp0: ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) None
assume hyp 1: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some a
thus ?thesis
using assms hyp0 hyp1
```

```
 proof (cases a)
 fix aa b
 assume hyp2: }a=(aa,b
 thus ?thesis
 using assms hyp0 hyp1 hyp2
 by simp
 qed
 qed
next
 case (Some a)
 assume hyp0: ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some a
 thus ?thesis
 using hyp0
 proof (cases mbind FailSave S (abort lift ioprog) \sigma)
 case None
 assume hyp1: mbind FailSave S (abortlift ioprog)\sigma=None
 thus ?thesis
 using assms hyp1 hyp0
 by simp
 next
 case (Some aa)
 assume hyp2: mbind FailSave S (abort (ift ioprog) }\sigma=\mathrm{ Some aa
 thus ?thesis
 using hyp0 hyp2 assms
 proof -
 have 1:(caller \in dom ((th-flag \sigma)) \longrightarrow
 fst (the (case aa of (outs, 哖) => Some (get-caller-error caller \sigma #
outs, }\mp@subsup{\sigma}{}{\prime\prime})))
 get-caller-error caller \sigma # fst aa)
 proof (cases aa)
 fix ab
 assume hyp3: aa=(a,b)
 thus ?thesis
 by simp
 qed
 thus ?thesis
 using 1 assms hyp0 hyp2
 proof (cases a)
 fix ab b
 assume hyp3:a = (ab,b)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases ab)
 case (NO-ERRORS)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
 \sigma b))
 case None
```

```
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp4:ab=NO-ERRORS
 assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma b) = Some ac
 thus ?thesis
 using hyp3 hyp4 hyp5 1assms hyp0 hyp2
 proof (cases ac)
 fix ad ba
 assume hyp6: ac = (ad, ba)
 thus ?thesis
 using hyp3 hyp4 hyp5 1 assms hyp0 hyp2
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-prepr caller partner \sigma b error-memory msg))
 case None
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp7: ab = ERROR-MEM error-memory
 assume hyp8: mbind FailSave S (abort lift ioprog)
 (set-error-mem-prepr caller partner \sigma b error-memory msg)
= Some ac
 thus ?thesis
 using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
 proof (cases ac)
 fix ad ba
 assume hyp6: ac = (ad, ba)
 thus ?thesis
 using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 thus ?thesis
 using hyp3 1 assms hyp0 hyp2
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma b error-IPC msg))
 case None
```

```
 thus ?thesis
 by simp
 next
 case (Some ac)
 assume hyp9: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-prepr caller partner \sigma b error-IPC msg) = Some
ac
 assume hyp 10: ab = ERROR-IPC error-IPC
 thus ?thesis
 using assms hyp9 hyp10 hyp3 1 hyp0 hyp2
 proof (cases ac)
 fix ad ba
 assume hyp6:ac=(ad,ba)
 thus ?thesis
 using hyp3 hyp9 hyp10 1 assms hyp0 hyp2
 by simp
 qed
 qed
 qed
 qed
 qed
qed
qed
```


## L. 3 Symbolic Execution rules on WAIT stage

lemma abort-wait-send-obvious0:
assumes not-in-err $\quad$ :caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=$
Some (NO-ERRORS, $\sigma^{\prime}$ )
shows abort ${ }_{l i f t}$ ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=\operatorname{Some}($ NO-ERRORS,
(error-tab-transfer caller $\sigma \sigma^{\prime}$ ))
using assms
by $\operatorname{simp}$
lemma abort-wait-send-obvious1:
assumes not-in-err :caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-succes:ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=$
Some(ERROR-MEM error-mem, $\sigma^{\prime}$ )
shows abort ${ }_{\text {lift }}$ ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=$
Some (ERROR-MEM error-mem, (set-error-mem-waits caller partner $\sigma$
$\sigma^{\prime}$ error-mem msg))
using assms
by $\operatorname{simp}$
lemma abort-wait-send-obvious2:
assumes not-in-err :caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=$ Some (ERROR-IPC error-IPC, $\sigma^{\prime}$ )

```
 shows abort lift ioprog (IPC WAIT (SEND caller partner msg)) }\sigma
 Some (ERROR-IPC error-IPC, (set-error-ipc-waits caller partner \sigma \sigma'
error-IPC msg))
 using assms
 by simp
lemma abort-wait-send-obvious3:
 assumes not-in-err: caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-sucess:ioprog (IPC WAIT (SEND caller partner msg)) \sigma =
Some(NO-ERRORS, \sigma')
 shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(NO-ERRORS# fst(the(mbind S (abort lift ioprog) (error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller
\sigma}\mp@subsup{\sigma}{}{\prime})))
 using assms
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller }\sigma\mp@subsup{\sigma}{}{\prime})
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)(error-tab-transfer caller \sigma
\sigma})=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a = (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-wait-send-obvious4:
 assumes not-in-err: caller }\ddagger\mathrm{ dom ((th-flag }\sigma)\mathrm{)
 and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, \sigma')
 shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma 自 error-mem
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma \sigma' error-mem msg))))
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma \sigma' error-mem msg))
```

```
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0:mbind FailSave S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma 知 error-mem msg)=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a= (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-wait-send-obvious5:
 assumes not-in-err: caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) \sigma =
 Some(ERROR-IPC error-IPC, \sigma')
 shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abortlift ioprog)
\sigma=
 Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC msg))))
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0:mbind FailSave S (abortlift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC msg) =
Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
```


## qed

lemma abort-wait-send-obvious6:

## assumes in-err:caller $\in$ dom ( (th-flag $\sigma)$ )

shows abort ${ }_{l i f t}$ ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=$ Some(get-caller-error caller $\sigma, \sigma)$
using assms
by $\operatorname{simp}$
lemma abort-wait-send-obvious7:
assumes in-err:caller $\in \operatorname{dom}(($ th-flag $\sigma))$
shows mbind ((IPC WAIT (SEND caller partner msg))\#S) (abort ${ }_{\text {lift }}$ ioprog)
$\sigma=$
Some (get-caller-error caller $\sigma \# f s t\left(\right.$ the $\left(\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ ),
snd(the (mbind $S$ (abort lift $\left._{\text {ioprog }) ~}^{\sigma}\right)$ ))
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma$ )
case None
then show? ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp 0:mbind FailSave $S$ (abort lift $_{\text {ioprog) }} \sigma=$ Some a
then show?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
by $\operatorname{simp}$
qed
qed
lemma abort-wait-send-obvious8:
mbind $((I P C$ WAIT (SEND caller partner $m s g)) \# S)\left(\right.$ abort $_{\text {lift }}$ ioprog) $\sigma=$
(if caller $\in \operatorname{dom}(($ th-flag $\sigma))$
then Some(get-caller-error caller $\sigma \# f s t\left(t h e\left(m b i n d S\left(\right.\right.\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ ),
snd (the (mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog) $\left.\left.\sigma\right)\right)$ )
else if ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=\operatorname{Some}(N O-E R R O R S$, $\sigma^{\prime}$ )
then Some(NO-ERRORS\#
fst (the (mbind $S$ (abort ${ }_{\text {lift }}$ ioprog) (error-tab-transfer caller $\sigma$
$\left.\left.\sigma^{\prime}\right)\right)$ ),
snd (the (mbind $S$ (abortlift ioprog) (error-tab-transfer caller $\sigma$
$\left.\left.\sigma^{\prime}\right)\right)$ )
else if ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=\operatorname{Some}(E R R O R-M E M$ error-mem, $\sigma^{\prime}$ )
then Some(ERROR-MEM error-mem\#fst $($ the (mbind $S$ (abort lift

```
ioprog)
 (set-error-mem-waits caller partner \sigma \sigma' error-mem
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma 自 error-mem
msg))))
 else if ioprog (IPC WAIT (SEND caller partner msg)) \sigma=
Some(ERROR-IPC error-IPC, \sigma')
 then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift
ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC msg))))
 else if ioprog (IPC WAIT (SEND caller partner msg)) }\sigma=\mathrm{ None
 then Some([],\sigma)
 else id (mbind ((IPC WAIT (SEND caller partner
msg))#S)(abort lift ioprog) \sigma))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a= (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ab)
 assume hyp2: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma 尔 error-IPC msg)=
Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
```

```
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp4:mbind FailSave S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma 自 error-mem msg)=Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases ad)
 fix ae bb
 assume hyp5: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma \sigma})
 case None
 then show ?thesis
 by simp
 next
 case (Some af)
 assume hyp6: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases af)
 fix ag bc
 assume hyp7:af = (ag,bc)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
```

lemma abort-wait-send-obvious8':
mbind $((I P C$ WAIT $(S E N D$ caller partner $m s g)) \# S)\left(\right.$ abort $_{l i f t}$ ioprog) $\sigma=$

## (if caller $\in \operatorname{dom}(($ th-flag $\sigma))$

then Some (get-caller-error caller $\sigma \#$ fst (the(mbind $S$ (abort lift $\left._{\text {ioprog })} \sigma\right)$ ), $\operatorname{snd}\left(\right.$ the $\left(\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ ioprog $\left.\left.) \sigma\right)\right)$ )
else (case ioprog (IPC WAIT (SEND caller partner msg)) $\sigma$ of Some(NO-ERRORS, $\left.\sigma^{\prime}\right) \Rightarrow$ Some (NO-ERRORS\#
fst (the (mbind $S$ ( abort lift $\left._{\text {ioprog }}\right)\left(\right.$ error-tab-transfer caller $\left.\left.\sigma \sigma^{\prime}\right)\right)$ ), snd (the (mbind $S$ (abort lift ioprog) (error-tab-transfer caller $\sigma$
$\left.\left.\sigma^{\prime}\right)\right)$ ))
| Some (ERROR-MEM error-mem, $\left.\sigma^{\prime}\right) \Rightarrow$ Some (ERROR-MEM error-mem\#fst(the(mbind S (abort lift $_{\text {ioprog })}$
(set-error-mem-waits caller partner $\sigma \sigma^{\prime}$
error-mem msg)))
$\operatorname{snd}\left(\right.$ the $\left(\right.$ mbind $S$ (abort $_{l i f t}$ ioprog)
(set-error-mem-waits caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g))$ )

$$
\mid \operatorname{Some}\left(E R R O R-I P C \text { error-IPC }, \sigma^{\prime}\right) \Rightarrow
$$

Some (ERROR-IPC error-IPC \#fst (the (mbind S (abort ${ }_{l i f t}$ ioprog) (set-error-ipc-waits caller partner $\sigma \sigma^{\prime}$ error-IPC
$m s g)$ )

```
 snd(the(mbind S (abort lift ioprog)
```

(set-error-ipc-waits caller partner $\sigma \sigma^{\prime}$ error-IPC msg))))
$\mid$ None $\Rightarrow \operatorname{Some}([], \sigma)))$
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp 0: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma=$ Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) $\sigma$ )
case None
then show ?thesis
using assms hyp0 hyp 1
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) $\sigma=$ Some ab

```
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab=(ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases ac)
 case NO-ERRORS
 assume hyp4:ac = NO-ERRORS
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp7: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
 proof (cases ad)
 fix ae bb
 assume hyp8: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 assume hyp5:ac = ERROR-MEM error-memory
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-waits caller partner \sigma ba error-memory msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp9: mbind FailSave S (abort lift ioprog)
 (set-error-mem-waits caller partner \sigma ba error-memory msg)=
Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
 proof (cases ad)
```

```
 fix ae bb
 assume hyp 10:ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp6:ac = ERROR-IPC error-IPC
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-ipc-waits caller partner \sigma ba error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp11: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma ba error-IPC msg) = Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
 proof (cases ad)
 fix ae bb
 assume hyp12: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-wait-send-obvious9:
 fst(the(mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lift ioprog)
\sigma))=
 (if caller }\in\operatorname{dom}((th-flag \sigma)
 then get-caller-error caller \sigma#fst(the(mbind S (abortlift ioprog) \sigma))
 else (case ioprog (IPC WAIT (SEND caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 NO-ERRORS#
```

```
 fst(the(mbind S (abortlift ioprog)(error-tab-transfer caller \sigma \sigma
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 ERROR-MEM error-mem#fst(the(mbind S (abortlift ioprog)
 (set-error-mem-waits caller partner \sigma \sigma' error-mem
msg)))
 | Some(ERROR-IPC error-IPC, 的)=>
 ERROR-IPC error-IPC #fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-waits caller partner \sigma \sigma' error-IPC
msg)))
 | None = []))
 by (simp split: option.split errors.split, auto)
lemma abort-wait-recv-obvious0:
 assumes not-in-err :caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) \sigma =
Some(NO-ERRORS, \sigma')
 shows abort lift ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
(error-tab-transfer caller \sigma \sigma
 using assms
 by simp
lemma abort-wait-recv-obvious1:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success: ioprog (IPC WAIT (RECV caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime}\mathrm{)
 shows abortlift ioprog (IPC WAIT (RECV caller partner msg)) \sigma=
 Some (ERROR-MEM error-mem, (set-error-mem-waitr caller partner \sigma
\sigma
 using assms
 by simp
lemma abort-wait-recv-obvious2:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) }\sigma
 Some(ERROR-IPC error-IPC, \sigma')
 shows abort lift ioprog (IPC WAIT (RECV caller partner msg)) \sigma=
 Some (ERROR-IPC error-IPC, (set-error-ipc-waitr caller partner \sigma \sigma'
error-IPC msg))
 using assms
 by simp
lemma abort-wait-recv-obvious3:
 assumes not-in-err: caller }\not\in\mathrm{ dom ((th-flag }\sigma)
 and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) \sigma=
Some(NO-ERRORS, \sigma')
 shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
```

Some(NO-ERRORS\# fst(the (mbind S (abort $_{\text {lift }}$ ioprog) (error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ ),
snd(the (mbind $S$ (abort $t_{\text {ift }}$ ioprog) (error-tab-transfer caller

$$
\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)
$$

proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) (error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )
case None
then show?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0: mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }}$ (error-tab-transfer caller $\sigma$
$\left.\sigma^{\prime}\right)=$ Some $a$
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
by $\operatorname{simp}$
qed
qed
lemma abort-wait-recv-obvious4:
assumes not-in-err : caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) $\sigma=$ Some (ERROR-MEM error-mem, $\sigma^{\prime}$ )
shows mbind ((IPC WAIT (RECV caller partner msg)) \#S) (abort ${ }_{\text {lift }}$ ioprog)
$\sigma=$
Some(ERROR-MEM error-mem $\# f s t\left(t h e\left(m b i n d S\right.\right.$ (abort lift $_{\text {ioprog }}$ )
(set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g)$ ) ,
snd (the (mbind $S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem msg))))
proof (cases mbind FailSave $S$ (abort lift $_{\text {ioprog }}$ )
(set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem msg))
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp 0:mbind FailSave ( abort $_{\text {lift }}$ ioprog) (set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem msg) $=$ Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$
then show?thesis
using assms hyp0 hyp1
by $\operatorname{simp}$
qed
qed
lemma abort-wait-recv-obvious5:
assumes not-in-err: caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) $\sigma=$ Some (ERROR-IPC error-IPC, $\sigma^{\prime}$ )
shows mbind ((IPC WAIT (RECV caller partner msg)) \#S ) (abort ${ }_{\text {lift }}$ ioprog )
$\sigma=$
Some (ERROR-IPC error-IPC\#fst (the (mbind $S$ ( abort $_{l i f t}$ ioprog)
(set-error-ipc-waitr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))),
snd (the (mbind $S$ (abort lift $_{\text {ioprog }}$ )
(set-error-ipc-waitr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))))
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort ${ }_{\text {lift }}$ ioprog)
(set-error-ipc-waitr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))
case None
then show? ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0:mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-ipc-waitr caller partner $\sigma \sigma^{\prime}$ error-IPC msg) $=$ Some $a$
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
by $\operatorname{simp}$
qed
qed
lemma abort-wait-recv-obvious6:
assumes in-err:caller $\in$ dom ( (th-flag $\sigma)$ )
shows abort $l_{\text {lift }}$ ioprog (IPC WAIT (RECV caller partner msg)) $\sigma=$ Some(get-caller-error caller $\sigma, \sigma)$
using assms
by $\operatorname{simp}$
lemma abort-wait-recv-obvious7:
assumes in-err:caller $\in \operatorname{dom}(($ th-flag $\sigma))$
shows mbind ((IPC WAIT (RECV caller partner msg))\#S) (abort ${ }_{\text {lift }}$ ioprog)
$\sigma=$
Some (get-caller-error caller $\sigma \# f s t\left(t h e\left(\right.\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ ), snd(the (mbind $S$ (abort lift $\left._{\text {ioprog }} \sigma\right)$ ))
proof (cases mbind FailSave $S$ (abort lift $_{\text {ioprog) }} \sigma$ )

```
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a= (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-wait-recv-obvious8:
 mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lift ioprog) }\sigma
 (if caller \in dom ((th-flag \sigma))
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abortlift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else if ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma')
 then Some(NO-ERRORS#
 fst(the(mbind S (abortlift ioprog) (error-tab-transfer caller \sigma
\sigma
 snd(the(mbind S (abortlift ioprog) (error-tab-transfer caller \sigma
\sigma
 else if ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, \sigma')
 then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift
ioprog)
 (set-error-mem-waitr caller partner \sigma \sigma' error-mem
msg)))
snd (the (mbind \(S\) (abort \(_{l i f t}\) ioprog) (set-error-mem-waitr caller partner \(\sigma \sigma^{\prime}\) error-mem msg))))
else if ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) Some (ERROR-IPC error-IPC, \(\sigma^{\prime}\))
then Some(ERROR-IPC error-IPC\#fst the (mbind \(S\) (abort \({ }_{\text {lift }}\) ioprog)
(set-error-ipc-waitr caller partner \(\sigma \sigma^{\prime}\) error-IPC
\(m s g)\)))
snd(the (mbind \(S\) (abort lift \(_{\text {ioprog) }}\) (set-error-ipc-waitr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))))
else if ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) None
```

$m s g)) \# S)\left(\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$
)
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma$ )
case None
then show?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0: mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma=$ Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-ipc-waitr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog }}$ )
(set-error-ipc-waitr caller partner $\sigma \sigma^{\prime}$ error-IPC msg) $=$
Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp3: $a b=(a c, b a)$
then show?thesis
using assms hyp 0 hyp 1 hyp 2 hyp3
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }}$
(set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem msg))
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some ad)
assume hyp $4:$ mbind $_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-mem-waitr caller partner $\sigma \sigma^{\prime}$ error-mem msg) $=$ Some
ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases ad)
fix $a e b b$

```
 assume hyp5: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller
\sigma 的)
 case None
 then show ?thesis
 by simp
 next
 case (Some af)
 assume hyp6: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma})=\mathrm{ Some af
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases af)
 fix ag bc
 assume hyp7:af = (ag,bc)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-wait-recv-obvious8':
 mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lift ioprog) }\sigma
 (if caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 then Some(get-caller-error caller \sigma#
 fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else (case ioprog (IPC WAIT (RECV caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 Some(NO-ERRORS#
 fst(the(mbind S (abort lift ioprog) (error-tab-transfer caller \sigma
\sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller \sigma
\sigma
 | Some(ERROR-MEM error-mem, \sigma})
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-waitr caller partner \sigma \sigma' error-mem
msg)))
```

```
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-waitr caller partner \sigma \sigma' error-mem
msg))))
 Some(ERROR-IPC error-IPC, 䭫)=>
 Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-waitr caller partner \sigma \sigma' error-IPC
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-waitr caller partner \sigma 尔 error-IPC
msg))))
 | None = Some([],\sigma)))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ioprog (IPC WAIT (RECV caller partner msg)) \sigma)
 case None
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 next
 case (Some ab)
 assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases ac)
 case NO-ERRORS
 assume hyp4:ac = NO-ERRORS
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases mbind FailSave S (abortlift ioprog)(error-tab-transfer caller
\sigma ba))
```

```
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp 7: mbind FailSave S (abort (ifft ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
 proof (cases ad)
 fix ae bb
 assume hyp8: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 assume hyp5:ac = ERROR-MEM error-memory
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-waitr caller partner \sigma ba error-memory msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp9: mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-mem-waitr caller partner \sigma ba error-memory msg) =
Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
 proof (cases ad)
 fix ae bb
 assume hyp 10:ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp6:ac=ERROR-IPC error-IPC
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-ipc-waitr caller partner \sigma ba error-IPC msg))
```

```
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp11: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-waitr caller partner \sigma ba error-IPC msg) = Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
 proof (cases ad)
 fix ae bb
 assume hyp12: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-wait-recv-obvious9:
 fst(the(mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lift ioprog)
\sigma))=
 (if caller }\in\operatorname{dom}((th-flag \sigma)
 then get-caller-error caller \sigma#fst(the(mbind S (abortlift ioprog) \sigma))
 else (case ioprog (IPC WAIT (RECV caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 NO-ERRORS#
 fst(the(mbind S (abort lift ioprog)(error-tab-transfer caller \sigma \sigma
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-waitr caller partner \sigma \sigma' error-mem
msg)))
 | Some(ERROR-IPC error-IPC, 浐)=>
 ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog) (
 set-error-ipc-waitr caller partner \sigma \sigma' error-IPC
msg)))
 | None = []))
 by (simp split: option.split errors.split,auto)
```


## L. 4 Symbolic Execution rules on BUF stage

```
lemma abort-buf-send-obvious0:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) }\sigma
Some(NO-ERRORS, \sigma')
 shows abort lift ioprog (IPC BUF (SEND caller partner msg)) \sigma = Some(NO-ERRORS,
(error-tab-transfer caller \sigma \sigma
 using assms
 by simp
lemma abort-buf-send-obvious1:
 assumes not-in-err : caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, \sigma')
 shows abort lift ioprog (IPC BUF (SEND caller partner msg)) \sigma=
 Some (ERROR-MEM error-mem, (set-error-mem-bufs caller partner \sigma \sigma'
error-mem msg))
 using assms
 by simp
lemma abort-buf-send-obvious2:
 assumes not-in-err :caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) \sigma=
 Some(ERROR-IPC error-IPC, \sigma')
 shows abort lift ioprog (IPC BUF (SEND caller partner msg)) }\sigma
 Some (ERROR-IPC error-IPC, (set-error-ipc-bufs caller partner \sigma \sigma'
error-IPC msg))
 using assms
 by simp
lemma abort-buf-send-obvious3:
 assumes not-in-err :caller & dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) \sigma =
Some(NO-ERRORS, \sigma')
 shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(NO-ERRORS#fst(the(mbind S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller \sigma \sigma
proof (cases mbind FailSave S (abortlift ioprog)(error-tab-transfer caller \sigma \sigma
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0:mbind FailSave S (abort lift ioprog)(error-tab-transfer caller \sigma \sigma')
= Some a
 then show ?thesis
 using assms hyp0
```

```
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-buf-send-obvious4:
 assumes not-in-err: caller & dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) \sigma =
 Some(ERROR-MEM error-mem, \sigma
 shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma 尔 error-mem msg))))
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma 尔 error-mem msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem msg)=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-buf-send-obvious5:
 assumes not-in-err :caller # dom ((th-flag \sigma))
 and ioprog-succes:ioprog (IPC BUF (SEND caller partner msg)) \sigma=
 Some(ERROR-IPC error-IPC, \sigma')
 shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma 尔 error-IPC
msg))),
```

```
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma 尔 error-IPC msg))))
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-dones caller partner \sigma 自 error-IPC msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-dones caller partner \sigma 㐌 error-IPC msg)= Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-buf-send-obvious6:
 assumes in-err:caller }\in\mathrm{ dom ((th-flag }\sigma)\mathrm{)
 shows abort lift ioprog (IPC BUF (SEND caller partner msg)) }\sigma
 Some(get-caller-error caller \sigma,\sigma)
 using assms
 by simp
lemma abort-buf-send-obvious%:
 assumes in-err: caller \in dom ((th-flag \sigma))
 shows mbind ((IPC BUF (SEND caller partner msg))#S) (abortlift ioprog)
\sigma=
 Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0:mbind FailSave S (abort lift ioprog) \sigma=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
```

```
 by simp
 qed
qed
lemma abort-buf-send-obvious8:
 assumes A: }\forall\mathrm{ act }\sigma.\mathrm{ ioprog act }\sigma\not=Non
 shows mbind ((IPC BUF (SEND caller partner msg))#S)(abort lift ioprog)
\sigma=
 (if caller \in dom ((th-flag \sigma))
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort tift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else if ioprog (IPC BUF (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma')
 then Some(NO-ERRORS#fst(the(mbind S (abort lift ioprog) (error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma))))
 else if ioprog (IPC BUF (SEND caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, \sigma')
 then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlift
ioprog)
(set-error-mem-bufs caller partner \(\sigma \sigma^{\prime}\) error-mem
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem msg))))
 else if ioprog (IPC BUF (SEND caller partner msg)) \sigma=
Some(ERROR-IPC error-IPC, \sigma')
 then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift
ioprog)
 (set-error-ipc-bufs caller partner \sigma \sigma}\mathrm{ 'error-IPC
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma \sigma' error-IPC msg))))
 else if ioprog (IPC BUF (SEND caller partner msg)) \sigma=None
 then Some([],\sigma)
 else id (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lift
ioprog) \sigma))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
```

```
proof (cases a)
 fix aa b
 assume hyp1: a= (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma 尔 error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ab)
 assume hyp2: mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma \sigma' error-IPC msg) =
Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab=(ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp 4:mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem msg)=Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases ad)
 fix ae bb
 assume hyp5: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller
\sigma \sigma
 case None
 then show ?thesis
 by simp
 next
 case (Some af)
 assume hyp6: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma') = Some af
 then show ?thesis
```

```
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases af)
 fix agbc
 assume hyp7:af = (ag, bc)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-buf-send-obvious8':
 mbind ((IPC BUF (SEND caller partner msg))#S)(abort lift ioprog) }\sigma
 (if caller }\in\mathrm{ dom ((th-flag }\sigma)
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else (case ioprog (IPC BUF (SEND caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 Some(NO-ERRORS#fst(the(mbind S (abortlift ioprog)
(error-tab-transfer caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller
\sigma \sigma
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem msg))))
```



```
 Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma \sigma' error-IPC msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma \sigma' error-IPC msg))))
 | None }=>\mathrm{ Some([], }\sigma))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
```

```
next
 case (Some a)
 assume hyp 0: mbind FailSave \(S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix \(a a b\)
 assume hyp 1: \(a=(a a, b)\)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ioprog (IPC BUF (SEND caller partner msg)) \(\sigma\))
 case None
 then show ?thesis
 using assms hyp0 hyp1
 by \(\operatorname{simp}\)
 next
 case (Some ab)
 assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix \(a c b a\)
 assume hyp3: \(a b=(a c, b a)\)
 then show? thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases ac)
 case \(N O\)-ERRORS
 assume hyp4: ac \(=\) NO-ERRORS
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp 4
 proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }}\) (error-tab-transfer caller
\(\sigma \quad b a)\)
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp7: mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }}\) (error-tab-transfer
caller \(\sigma\) ba) \(=\) Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp 4 hyp \({ }^{\prime}\)
 proof (cases ad)
 fix \(a e b b\)
 assume hyp8: ad \(=(a e, b b)\)
 then show ?thesis
 using assms hyp0 hyp 1 hyp2 hyp3 hyp 4 hyp 7 hyp 8
 by \(\operatorname{simp}\)
 qed
 qed
```


## next

case (ERROR-MEM error-memory)
assume hyp5:ac =ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-mem-bufs caller partner $\sigma$ ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 9: mbind FailSave $S$ (abort lift $_{\text {ioprog) }}$
(set-error-mem-bufs caller partner $\sigma$ ba error-memory msg) $=$
Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix $a e b b$
assume hyp10: $a d=(a e, b b)$
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by $\operatorname{simp}$
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp6:ac $=E R R O R-I P C$ error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift ioprog) $^{\text {in }}$
(set-error-ipc-bufs caller partner $\sigma$ ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp11: mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog }}$ ) (set-error-ipc-bufs caller partner $\sigma$ ba error-IPC msg) $=$ Some
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix $a e b b$
assume hyp12: $a d=(a e, b b)$
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by $\operatorname{simp}$
qed

```
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-buf-send-obvious9:
 fst(the(mbind (IPC BUF (SEND caller partner msg)#S)(abortlift ioprog) \sigma))
=
 (if caller \in dom ((th-flag \sigma))
 then get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma))
 else (case ioprog (IPC BUF (SEND caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 NO-ERRORS#fst(the(mbind S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-bufs caller partner \sigma \sigma' error-mem msg)))
 | Some(ERROR-IPC error-IPC, \sigma')}
 ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufs caller partner \sigma \sigma' error-IPC msg)))
 | None = []))
 by (simp split: option.split errors.split,auto)
lemma abort-buf-recv-obvious0:
 assumes not-in-err :caller # dom((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) \sigma=
 Some(NO-ERRORS, \sigma')
 shows abort lift ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
(error-tab-transfer caller \sigma \sigma
 using assms
 by simp
lemma abort-buf-recv-obvious1:
 assumes not-in-err :caller # dom((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime}\mathrm{)
 shows abortlift ioprog (IPC BUF (RECV caller partner msg)) \sigma=
 Some (ERROR-MEM error-mem, (set-error-mem-bufr caller partner \sigma \sigma'
error-mem msg))
 using assms
```


## by simp

lemma abort-buf-recv-obvious2:
assumes not-in-err: caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-succes: ioprog (IPC BUF (RECV caller partner msg)) $\sigma=$ Some (ERROR-IPC error-IPC, $\sigma^{\prime}$ )
 Some (ERROR-IPC error-IPC, (set-error-ipc-bufr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))
using assms
by $\operatorname{simp}$
lemma abort-buf-recv-obvious3:
assumes not-in-err $\quad$ :caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success : ioprog (IPC BUF (RECV caller partner msg)) $\sigma=$
Some (NO-ERRORS, $\sigma^{\prime}$ )
shows mbind ((IPC BUF (RECV caller partner msg))\#S) (abort ${ }_{\text {lift }}$ ioprog)
$\sigma=$
Some(NO-ERRORS\#fst(the (mbind $S$ ( abort ${ }_{\text {lift }}$ ioprog) (error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ ),
snd (the (mbind $S$ (abort ${ }_{l i f t}$ ioprog) (error-tab-transfer caller
$\left.\left.\sigma \sigma^{\prime}\right)\right)$ )
proof (cases mbind $_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) (error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp 0: mbind FailSave $S$ (abortlift ioprog) (error-tab-transfer caller $\sigma$ $\left.\sigma^{\prime}\right)=$ Some $a$
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
by $\operatorname{simp}$
qed
qed
lemma abort-buf-recv-obvious4:
assumes not-in-err $\quad$ :caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) $\sigma=$ Some (ERROR-MEM error-mem, $\sigma^{\prime}$ )
shows mbind ((IPC BUF (RECV caller partner msg))\#S) (abort lift $_{\text {ioprog }}$ ) $\sigma=$

```
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma' error-mem msg))))
 using assms
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma' error-mem msg) = Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-buf-recv-obvious5:
 assumes not-in-err :caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) \sigma=
 Some(ERROR-IPC error-IPC, \sigma')
 shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufr caller partner \sigma \sigma' error-IPC
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufr caller partner \sigma 尔 error-IPC msg))))
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-doner caller partner \sigma 自 error-IPC msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog)
 (set-error-ipc-doner caller partner \sigma \sigma' error-IPC msg)=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp 1: a = (aa,b)
```

```
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-buf-recv-obvious6:
 assumes in-err:caller }\in\mathrm{ dom ((th-flag }\sigma)\mathrm{)
 shows abort lift ioprog (IPC BUF (RECV caller partner msg)) \sigma=
 Some(get-caller-error caller \sigma,\sigma)
 using assms
 by simp
lemma abort-buf-recv-obvious7:
 assumes in-err:caller \in dom ((th-flag \sigma))
 shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a = (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-buf-recv-obvious8:
 mbind ((IPC BUF (RECV caller partner msg))#S)(abort lift ioprog) }\sigma
 (if caller }\in\mathrm{ dom ((th-flag }\sigma)
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else if ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma
 then Some(NO-ERRORS#fst(the(mbind S (abort lift ioprog) (error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog) (error-tab-transfer
```

caller $\left.\sigma \sigma^{\prime}\right)$ ))
else if ioprog (IPC BUF (RECV caller partner msg)) $\sigma=\operatorname{Some}(E R R O R-M E M$ error-mem, $\sigma^{\prime}$ )
then Some(ERROR-MEM error-mem\#fst(the (mbind $S$ (abort lift ioprog)
(set-error-mem-bufr caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g)$ ))

$$
\operatorname{snd}\left(\text { the }\left(\text { mbind } S \text { (abort }_{\text {lift }} \text { ioprog }\right)\right.
$$

(set-error-mem-bufr caller partner $\sigma \sigma^{\prime}$ error-mem msg)))) else if ioprog (IPC BUF (RECV caller partner msg)) $\sigma=$ Some(ERROR-IPC error-IPC, $\sigma^{\prime}$ ) then Some(ERROR-IPC error-IPC\#fst the (mbind $S$ (abort ${ }_{\text {lift }}$ ioprog) (set-error-ipc-bufr caller partner $\sigma \sigma^{\prime}$ error-IPC $m s g)$ ))

$$
\text { snd(the (mbind } S \text { (abort lift ioprog) }
$$

(set-error-ipc-bufr caller partner $\sigma \sigma^{\prime}$ error-IPC msg)))) else if ioprog (IPC BUF (RECV caller partner msg)) $\sigma=$ None then Some ([], $\sigma$ )
else id (mbind ((IPC BUF (RECV caller partner msg))\#S)(abort ${ }_{l i f t}$
ioprog) $\sigma$ )
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp 0: mbind $_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma=$ Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$
then show? thesis
using assms hyp0 hyp1
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }}$
(set-error-ipc-bufr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: mbind FailSave $S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-ipc-bufr caller partner $\sigma \sigma^{\prime}$ error-IPC msg) $=$
Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2

```
 proof (cases ab)
 fix ac ba
 assume hyp3: ab=(ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma}\mathrm{ 'error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp4:mbind FailSave S(abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma 㐌 error-mem msg)=Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases ad)
 fix ae bb
 assume hyp5:ad=(ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma \sigma})
 case None
 then show ?thesis
 by simp
 next
 case (Some af)
 assume hyp6: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases af)
 fix ag bc
 assume hyp7:af = (ag, bc)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
```

```
lemma abort-buf-recv-obvious8':
 mbind ((IPC BUF (RECV caller partner msg))#S)(abort lift ioprog) \sigma=
 (if caller \in dom ((th-flag \sigma))
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else (case ioprog (IPC BUF (RECV caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 Some(NO-ERRORS#fst(the(mbind S (abort lift ioprog)
(error-tab-transfer caller \sigma \sigma}))\mathrm{),
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma'))))
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 Some(ERROR-MEM error-mem#fst(the(mbind S (abortlift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma' error-mem msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma' error-mem msg))))
 | Some(ERROR-IPC error-IPC, 的)=>
 Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufr caller partner \sigma \sigma' error-IPC
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufr caller partner \sigma \sigma' error-IPC
msg))))
 | None = Some([],\sigma)))
proof (cases mbind FailSave S (abortlift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ioprog (IPC BUF (RECV caller partner msg)) \sigma)
 case None
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 next
```

```
 case (Some ab)
 assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases ac)
 case NO-ERRORS
 assume hyp4:ac=NO-ERRORS
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp 7: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
 proof (cases ad)
 fix ae bb
 assume hyp8: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 assume hyp5:ac = ERROR-MEM error-memory
 then show?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-bufr caller partner \sigma ba error-memory msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp9: mbind (FailSave S (abort lift ioprog)
 (set-error-mem-bufr caller partner \sigma ba error-memory msg)=
Some ad
 then show ?thesis
```

```
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
 proof (cases ad)
 fix ae bb
 assume hyp10:ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp6:ac = ERROR-IPC error-IPC
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-ipc-bufr caller partner \sigma ba error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp11: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-bufr caller partner \sigma ba error-IPC msg) = Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
 proof (cases ad)
 fix ae bb
 assume hyp12: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-buf-recv-obvious9:
fst (the(mbind ((IPC BUF (RECV caller partner msg)) \#S) (abort lift \(\left._{\text {ioprog }}\right)\)
\(\sigma))=\)
(if caller \(\in\) dom \(((\) th-flag \(\sigma))\)
 then get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma))
else (case ioprog (IPC BUF (RECV caller partner msg)) \(\sigma\) of Some(NO-ERRORS,
```

```
\sigma})
 NO-ERRORS#fst(the(mbind S (abort lift ioprog)(error-tab-transfer
caller }\sigma\mp@subsup{\sigma}{}{\prime})\mathrm{))
 | Some(ERROR-MEM error-mem, 䭫)}
 ERROR-MEM error-mem#fst(the(mbind S (abortlift ioprog)
 (set-error-mem-bufr caller partner \sigma \sigma' error-mem
msg)))
 | Some(ERROR-IPC error-IPC, \sigma') =>
 ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-bufr caller partner \sigma \sigma' error-IPC
msg)))
 | None = []))
 by(simp split: option.split errors.split,auto)
```


## L. 5 Symbolic Execution Rules on MAP stage

```
lemma abort-map-send-obvious0:
assumes not-in-err \(\quad\) :caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))\)
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some(NO-ERRORS, \(\sigma^{\prime}\))
shows abort lift ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\operatorname{Some}(\) NO-ERRORS,
(error-tab-transfer caller \(\sigma \sigma^{\prime}\)))
using assms
by \(\operatorname{simp}\)
lemma abort-map-send-obvious1:
assumes not-in-err : caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))\)
and ioprog-success: ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some(ERROR-MEM error-mem, \(\sigma^{\prime}\))
shows abort \({ }_{l i f t}\) ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some (ERROR-MEM error-mem, (set-error-mem-maps caller partner \(\sigma\) \(\sigma^{\prime}\) error-mem msg))
using assms
by \(\operatorname{simp}\)
lemma abort-map-send-obvious2:
assumes not-in-err :caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))\)
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some (ERROR-IPC error-IPC, \(\sigma^{\prime}\))
shows abort lift ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\)
Some (ERROR-IPC error-IPC, (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\)
error-IPC msg))
using assms
by \(\operatorname{simp}\)
lemma abort-map-send-obvious3:
assumes not-in-err :caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))\)
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\)
Some(NO-ERRORS, \(\sigma^{\prime}\))
```

shows mbind ((IPC MAP (SEND caller partner msg))\#S) (abort ${ }_{l i f t}$ ioprog) $\sigma=$

Some(NO-ERRORS\#fst(the (mbind S (abort lift ioprog) (error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )),
$\operatorname{snd}\left(\right.$ the $\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog) (error-tab-transfer caller $\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)$ )
proof (cases mbind FailSave $S$ (abort lift $\left.^{\text {ioprog }}\right)\left(\right.$ error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )
case None
then show? ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0:mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) (error-tab-transfer caller $\sigma \sigma^{\prime}$ )
$=$ Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
by simp
qed
qed
lemma abort-map-send-obvious4:
assumes not-in-err: caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) $\sigma=$ Some (ERROR-MEM error-mem, $\sigma^{\prime}$ )
shows mbind ((IPC MAP (SEND caller partner msg))\#S) (abort ${ }_{l i f t}$ ioprog) $\sigma=$ Some(ERROR-MEM error-mem\#fst(the(mbind S (abort ${ }_{l i f t}$ ioprog) (set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g))$ ),

$$
\operatorname{snd}\left(\text { the } \left(\text { mbind } S \text { (abort }{ }_{\text {lift }}\right.\right. \text { ioprog) }
$$

(set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg))))
proof (cases mbind FailSave ( abort $_{\text {lift }}$ ioprog)
(set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg))
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }}$
(set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg) $=$ Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$

```
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-map-send-obvious5:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-succes : ioprog (IPC MAP (SEND caller partner msg)) }\sigma
 Some(ERROR-IPC error-IPC, \sigma')
 shows mbind ((IPC MAP (SEND caller partner msg))#S) (abortlift ioprog)
\sigma=
 Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma \sigma' error-IPC
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg))))
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-ipc-dones caller partner \sigma \sigma' error-IPC msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-dones caller partner \sigma \sigma' error-IPC msg)=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-map-send-obvious6:
 assumes in-err:caller }\in\mathrm{ dom ((th-flag }\sigma)\mathrm{)
 shows abort lift ioprog (IPC MAP (SEND caller partner msg)) \sigma=
 Some(get-caller-error caller \sigma, \sigma)
 using assms
 by simp
lemma abort-map-send-obvious7:
 assumes in-err:caller }\in\operatorname{dom}((th-flag \sigma)
 shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
```

```
 snd(the(mbind S (abort lift ioprog) \sigma)))
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma\mathrm{)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0:mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-map-send-obvious8:
 assumes A: }\forall\mathrm{ act }\sigma\mathrm{ . ioprog act }\sigma\not=\mathrm{ None
 shows mbind ((IPC MAP (SEND caller partner msg))#S)(abort lift ioprog)
\sigma=
 (if caller \in dom ((th-flag \sigma))
 then Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
 else if ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma')
 then Some(NO-ERRORS#fst(the(mbind S (abort lift ioprog)
(error-tab-transfer caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 else if ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, \sigma')
 then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift
ioprog)
 (set-error-mem-maps caller partner \sigma \sigma' error-mem
msg)))
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-maps caller partner \sigma \sigma}\mp@subsup{\sigma}{}{\prime}\mathrm{ error-mem
msg))))
 else if ioprog (IPC MAP (SEND caller partner msg)) \sigma=
Some(ERROR-IPC error-IPC, \sigma')
 then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lift
ioprog)
 (set-error-ipc-maps caller partner \sigma 尔 error-IPC
msg)))
```

```
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))))
 else if ioprog (IPC MAP (SEND caller partner msg)) \sigma=None
 then Some([], \sigma)
 else id (mbind ((IPC MAP (SEND caller partner
msg))#S)(abort lift ioprog) \sigma))
```



```
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a = (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma 自 error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ab)
 assume hyp2: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma 自 error-IPC msg)=
Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp4:mbind FailSave S (abort (lift ioprog)
 (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)=Some
ad
 then show ?thesis
```

using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix $a e b b$
assume hyp5: $a d=(a e, b b)$
then show?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift ioprog) (error-tab-transfer caller $\left.\left.\sigma \sigma^{\prime}\right)\right)$
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some af)
assume hyp 6: mbind FailSave ( abort $_{\text {lift }}$ ioprog) (error-tab-transfer
caller $\sigma \sigma^{\prime}$ ) $=$ Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix $a g b c$
assume hyp7: af $=(a g, b c)$
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by $\operatorname{simp}$
qed
qed
qed
qed
qed
qed
qed
qed
lemma abort-map-send-obvious8':
mbind $((I P C$ MAP $(S E N D$ caller partner $m s g)) \# S)\left(\right.$ abort $_{l i f t}$ ioprog $) ~ \sigma=$ (if caller $\in \operatorname{dom}(($ th-flag $\sigma))$
then Some (get-caller-error caller $\sigma \# f s t\left(t h e\left(m b i n d S\left(\right.\right.\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ ), $\operatorname{snd}\left(\right.$ the $\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog) $\left.\left.\left.\sigma\right)\right)\right)$
else (case ioprog (IPC MAP (SEND caller partner msg)) $\sigma$ of Some(NO-ERRORS,
$\left.\sigma^{\prime}\right) \Rightarrow$
Some(NO-ERRORS\#fst(the(mbind S (abort lift ioprog)
(error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )),
snd (the(mbind $S$ ( abort ${ }_{l i f t}$ ioprog) (error-tab-transfer caller $\sigma$
$\left.\left.\sigma^{\prime}\right)\right)$ ))
| Some (ERROR-MEM error-mem, $\left.\sigma^{\prime}\right) \Rightarrow$
Some(ERROR-MEM error-mem\#fst(the(mbind S (abort ${ }_{\text {lift }}$ ioprog)
snd(the (mbind $S$ ( abort $_{l i f t}$ ioprog)
(set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g))$ )
| Some(ERROR-IPC error-IPC, $\left.\sigma^{\prime}\right) \Rightarrow$ Some(ERROR-IPC error-IPC\#fst(the (mbind $S$ ( abort $_{\text {lift }}$ ioprog) (set-error-ipc-maps caller partner $\sigma \sigma^{\prime}$ error-IPC msg)))
$\operatorname{snd}\left(\right.$ the $\left(\right.$ mbind $S$ ( abort $_{l i f t}$ ioprog) (set-error-ipc-maps caller partner $\sigma \sigma^{\prime}$ error-IPC msg))))
| None $\Rightarrow \operatorname{Some}([], \sigma)))$
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0: mbind FailSave $S$ ( abort $_{\text {lift }}$ ioprog) $\sigma=$ Some a
then show?thesis
using assms hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) $\sigma$ )
case None
then show ?thesis
using assms hyp0 hyp 1
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) $\sigma=$ Some ab then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp3: $a b=(a c, b a)$
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp 4 : ac $=N O-E R R O R S$
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind ${ }_{F a i l S a v e} S$ (abort lift $^{\text {ioprog) }}$ (error-tab-transfer caller $\sigma b a)$ )

```
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp 7: mbind FailSave S (abort (ifft ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
 proof (cases ad)
 fix ae bb
 assume hyp8: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 assume hyp5:ac = ERROR-MEM error-memory
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-mem-maps caller partner \sigma ba error-memory msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp9: mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-mem-maps caller partner \sigma ba error-memory msg)=
Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
 proof (cases ad)
 fix ae bb
 assume hyp 10:ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp6:ac=ERROR-IPC error-IPC
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-ipc-maps caller partner \sigma ba error-IPC msg))
```

```
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp11: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma ba error-IPC msg) = Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
 proof (cases ad)
 fix ae bb
 assume hyp12: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-map-send-obvious9:
 fst(the(mbind (IPC MAP (SEND caller partner msg)#S)(abort lift ioprog) \sigma))
 (if caller }\in\operatorname{dom}((th-flag \sigma)
 then get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma))
 else (case ioprog (IPC MAP (SEND caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 NO-ERRORS#fst(the(mbind S (abort lift ioprog) (error-tab-transfer
caller \sigma \sigma
 | Some(ERROR-MEM error-mem, 看)=>
 ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)))
 | Some(ERROR-IPC error-IPC, 㤱)=>
 ERROR-IPC error-IPC #fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)))
 | None }=>[])
by (simp split: option.split errors.split,auto)
```

```
lemma abort-map-recv-obvious0:
 assumes not-in-err :caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some(NO-ERRORS, \sigma')
 shows abort lift ioprog (IPC MAP (RECV caller partner msg)) \sigma=Some(NO-ERRORS,
(error-tab-transfer caller \sigma \sigma'))
 using assms
 by simp
lemma abort-map-recv-obvious1:
 assumes not-in-err :caller }\ddagger\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, \sigma}
 shows abort lift ioprog (IPC MAP (RECV caller partner msg)) }\sigma
 Some (ERROR-MEM error-mem, (set-error-mem-mapr caller partner \sigma
\sigma' error-mem msg))
 using assms
 by simp
lemma abort-map-recv-obvious2:
 assumes not-in-err:caller }\not=\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-succes: ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some(ERROR-IPC error-IPC, \sigma')
 shows abort lift ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some (ERROR-IPC error-IPC, (set-error-ipc-mapr caller partner \sigma \sigma'
error-IPC msg))
 using assms
 by simp
lemma abort-map-recv-obvious3:
 assumes not-in-err :caller & dom ((th-flag \sigma))
 and ioprog-success : ioprog (IPC MAP (RECV caller partner msg)) \sigma=
Some(NO-ERRORS, \sigma')
 shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(NO-ERRORS#fst(the(mbind S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma
 snd(the(mbind S (abort lift ioprog)(error-tab-transfer caller
\sigma}\mp@subsup{\sigma}{}{\prime})))
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller }\sigma\quad\mp@subsup{\sigma}{}{\prime})
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abortlift ioprog) (error-tab-transfer caller \sigma
\sigma})=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
```

```
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-map-recv-obvious4:
 assumes not-in-err :caller }\ddagger\operatorname{dom}((\mathrm{ th-flag }\sigma)
 and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some(ERROR-MEM error-mem, \sigma}
 shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma 尔 error-mem
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma \sigma' error-mem msg))))
 using assms
proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma \sigma' error-mem msg)=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-map-recv-obvious5:
 assumes not-in-err :caller # dom ((th-flag \sigma))
 and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some(ERROR-IPC error-IPC, \sigma')
 shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lift ioprog)
\sigma=
 Some(ERROR-IPC error-IPC #fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-mapr caller partner \sigma \sigma' error-IPC
```

```
msg))),
 snd(the(mbind S (abort lift ioprog)
 (set-error-ipc-mapr caller partner \sigma \sigma' error-IPC msg))))
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-ipc-doner caller partner \sigma \sigma' error-IPC msg))
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-doner caller partner \sigma \sigma' error-IPC msg)=Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp 1: a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 qed
qed
lemma abort-map-recv-obvious6:
 assumes in-err:caller }\in\mathrm{ dom ((th-flag }\sigma)\mathrm{)
 shows abort lift ioprog (IPC MAP (RECV caller partner msg)) \sigma=
 Some(get-caller-error caller \sigma,\sigma)
 using assms
 by simp
lemma abort-map-recv-obvious7:
 assumes in-err:caller \in dom ((th-flag \sigma))
 shows mbind ((IPC MAP (RECV caller partner msg))#S) (abortlift ioprog)
\sigma =
 Some(get-caller-error caller \sigma#fst(the(mbind S (abort lift ioprog) \sigma)),
 snd(the(mbind S (abort lift ioprog) \sigma)))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a = (aa,b)
 then show ?thesis
```

```
 using assms hyp0 hyp1
 by simp
 qed
qed
```

lemma abort-map-recv-obvious8:
mbind $((I P C M A P(R E C V$ caller partner $m s g)) \# S)\left(\right.$ abort $_{\text {lift }}$ ioprog $) \sigma=$ (if caller $\in \operatorname{dom}(($ th-flag $\sigma))$
then Some (get-caller-error caller $\sigma \# f s t\left(t h e\left(m b i n d S\left(\right.\right.\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ ), snd(the (mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog) $\left.\left.\sigma\right)\right)$ )
else if ioprog (IPC MAP (RECV caller partner msg)) $\sigma=\operatorname{Some}($ NO-ERRORS, $\sigma^{\prime}$ )
then Some(NO-ERRORS\#fst(the(mbind S (abort ${ }_{\text {lift }}$ ioprog)
(error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )),
snd(the (mbind $S$ (abort ${ }_{\text {lift }}$ ioprog) (error-tab-transfer
caller $\left.\sigma \sigma^{\prime}\right)$ )))
else if ioprog (IPC MAP (RECV caller partner msg)) $\sigma=\operatorname{Some}(E R R O R-M E M$ error-mem, $\sigma^{\prime}$ )
then $\operatorname{Some}(E R R O R-M E M$ error-mem\#fst(the (mbind $S$ (abort lift ioprog)
(set-error-mem-mapr caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g)$ )
snd(the (mbind $S$ (abort ${ }_{\text {lift }}$ ioprog)
(set-error-mem-mapr caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g))$ ))
else if ioprog (IPC MAP (RECV caller partner msg)) $\sigma=$ Some (ERROR-IPC error-IPC, $\sigma^{\prime}$ )
then Some(ERROR-IPC error-IPC\#fst the (mbind $S$ (abort lift ioprog)
(set-error-ipc-mapr caller partner $\sigma \sigma^{\prime}$ error-IPC
$m s g)$ )
snd(the (mbind $S$ ( abort $_{l i f t}$ ioprog)
(set-error-ipc-mapr caller partner $\sigma \sigma^{\prime}$ error-IPC msg))))
else if ioprog (IPC MAP (RECV caller partner msg)) $\sigma=$ None then Some ([], $\sigma$ )
else id (mbind ((IPC MAP (RECV caller partner
$m s g)) \# S)\left(\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ )
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0: mbind $_{\text {FailSave }} S$ ( abort $_{l_{\text {lift }}}$ ioprog) $\sigma=$ Some a
then show? thesis

```
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1: a = (aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-ipc-mapr caller partner \sigma \sigma' error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ab)
 assume hyp2: mbind FailSave}S\mathrm{ (abort lift ioprog)
 (set-error-ipc-mapr caller partner \sigma \sigma' error-IPC msg)=
Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma \sigma' error-mem msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp4:mbind FailSave S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma 㐌 error-mem msg)=Some
ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases ad)
 fix ae bb
 assume hyp5: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma \sigma
 case None
 then show ?thesis
 by simp
 next
 case (Some af)
 assume hyp6: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma \sigma') = Some af
```

```
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 proof (cases af)
 fix ag bc
 assume hyp7:af = (ag, bc)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
```

lemma abort-map-recv-obvious8 ':
mbind $((I P C$ MAP $(R E C V$ caller partner $m s g)) \# S)\left(\right.$ abort $_{\text {lift }}$ ioprog $) \sigma=$
(if caller $\in \operatorname{dom}(($ th-flag $\sigma))$
then Some(get-caller-error caller $\sigma \# f s t\left(t h e\left(m b i n d S\left(\right.\right.\right.$ abort $_{l i f t}$ ioprog) $\left.\sigma\right)$ ),
$\operatorname{snd}\left(\right.$ the $\left(\right.$ mbind $S$ ( abort $_{l i f t}$ ioprog) $\left.\left.\sigma\right)\right)$ )
else (case ioprog (IPC MAP (RECV caller partner msg)) $\sigma$ of Some(NO-ERRORS,
$\left.\sigma^{\prime}\right) \Rightarrow$
Some(NO-ERRORS\#fst(the(mbind S (abort lift $_{\text {ioprog })}$
(error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right)$ )),
snd(the (mbind $S$ ( abort $_{l i f t}$ ioprog) (error-tab-transfer
caller $\left.\sigma \sigma^{\prime}\right)$ ))
| Some (ERROR-MEM error-mem, $\left.\sigma^{\prime}\right) \Rightarrow$
Some (ERROR-MEM error-mem $\# f s t\left(t h e\left(m b i n d S\right.\right.$ (abort lift $\left._{\text {ioprog }}\right)$
(set-error-mem-mapr caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g)$ )
snd (the (mbind $S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-mem-mapr caller partner $\sigma \sigma^{\prime}$ error-mem
$m s g))$ ))
| Some (ERROR-IPC error-IPC, $\left.\sigma^{\prime}\right) \Rightarrow$
Some (ERROR-IPC error-IPC\#fst (the (mbind $S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-ipc-mapr caller partner $\sigma \sigma^{\prime}$ error-IPC
$m s g))$ )
'snd(the(mbind $S$ ( abort $_{\text {lift }}$ ioprog)
(set-error-ipc-mapr caller partner $\sigma \sigma^{\prime}$ error-IPC
$m s g))$ ))
$\mid$ None $\Rightarrow \operatorname{Some}([], \sigma)))$

```
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
 case None
 then show ?thesis
 by simp
next
 case (Some a)
 assume hyp0: mbind FailSave S (abortlift ioprog) }\sigma=\mathrm{ Some a
 then show ?thesis
 using assms hyp0
 proof (cases a)
 fix aa b
 assume hyp1:a=(aa,b)
 then show ?thesis
 using assms hyp0 hyp1
 proof (cases ioprog (IPC MAP (RECV caller partner msg)) \sigma)
 case None
 then show ?thesis
 using assms hyp0 hyp1
 by simp
 next
 case (Some ab)
 assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) \sigma=Some ab
 then show ?thesis
 using assms hyp0 hyp1 hyp2
 proof (cases ab)
 fix ac ba
 assume hyp3: ab = (ac,ba)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3
 proof (cases ac)
 case NO-ERRORS
 assume hyp4:ac=NO-ERRORS
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4
 proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp7: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
 proof (cases ad)
 fix ae bb
 assume hyp8: ad = (ae, bb)
 then show ?thesis
```

```
 using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
 by simp
 qed
 qed
 next
 case (ERROR-MEM error-memory)
 assume hyp5:ac = ERROR-MEM error-memory
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5
 proof (cases mbind FailSave S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma ba error-memory msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp9: mbind FailSave S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma ba error-memory msg)=
Some ad
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
 proof (cases ad)
 fix ae bb
 assume hyp 10: ad = (ae,bb)
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
 by simp
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp6:ac = ERROR-IPC error-IPC
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6
 proof (cases mbind FailSave S (abortlift ioprog)
 (set-error-ipc-mapr caller partner \sigma ba error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp11: mbind FailSave S (abort lift ioprog)
 (set-error-ipc-mapr caller partner \sigma ba error-IPC msg) = Some
ad
then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
 proof (cases ad)
 fix ae bb
 assume hyp12: ad = (ae,bb)
```

```
 then show ?thesis
 using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
 by simp
 qed
 qed
 qed
 qed
 qed
 qed
qed
lemma abort-map-recv-obvious9:
 fst(the(mbind ((IPC MAP (RECV caller partner msg))#S)(abort lift ioprog)
\sigma))=
 (if caller }\in\operatorname{dom}((th-flag \sigma))
 then get-caller-error caller \sigma#fst(the(mbind S (abortlift ioprog) \sigma))
 else (case ioprog (IPC MAP (RECV caller partner msg)) \sigma of Some(NO-ERRORS,
\sigma})
 NO-ERRORS#fst(the(mbind S (abort lift ioprog) (error-tab-transfer
caller }\sigma\mp@subsup{\sigma}{}{\prime})\mathrm{))
 | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
 ERROR-MEM error-mem#fst(the(mbind S (abort lift ioprog)
 (set-error-mem-mapr caller partner \sigma \sigma' error-mem
msg)))
 | Some(ERROR-IPC error-IPC, 䭫)=>
 ERROR-IPC error-IPC#fst(the(mbind S (abort lift ioprog)
 (set-error-ipc-mapr caller partner \sigma \sigma' error-IPC
msg)))
 | None = []))
 by(simp split: option.split errors.split,auto)
```


## L. 6 Symbolic Execution Rules rules on DONE stage

```
lemma abort-done-send-obvious0:
```

lemma abort-done-send-obvious0:
assumes not-in-err:
caller }\not\in\mathrm{ dom ((th-flag) }\sigma
assumes ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) \sigma\not=
None
shows abort lift ioprog (IPC DONE (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma)
using assms
by (simp split:option.split)
lemma abort-done-send-obvious1:
assumes not-in-err:caller \& dom ((th-flag) \sigma)

```
and exec-success: mbind ((IPC DONE (SEND caller partner msg))\#S)
(abort lift ioprog) \(\sigma=\) Some (out \({ }^{\prime \prime}, \sigma^{\prime \prime}\))
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) \(\sigma \neq\) None
and exec-success':mbind \(S\) (abortlift ioprog) \(\sigma=\operatorname{Some}\left(\right.\) out \(\left.^{\prime}, \sigma^{\prime}\right)\)
shows \(\quad \sigma^{\prime}=\sigma^{\prime \prime}\)
using assms
by auto
lemma abort-done-send-obvious2:
assumes not-in-err:caller \(\notin \operatorname{dom}((\) th-flag \() \sigma)\)
and exec-success: mbind ((IPC DONE (SEND caller partner msg)) \#S
(abortlift ioprog) \(\sigma=\)
Some(out \(\left.{ }^{\prime \prime}, \sigma^{\prime \prime}\right)\)
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) \(\sigma \neq\) None shows mbind \(S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma=\) Some \(\left(\right.\) out \(\left.^{\prime}, \sigma^{\prime}\right) \Longrightarrow\) out \(^{\prime \prime}=(\) NO-ERRORS\#out \()\)
using assms
by auto
lemma abort-done-send-obvious3:
assumes in-err:caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
shows abort \(l_{\text {lift }}\) ioprog (IPC DONE (SEND caller partner msg)) \(\sigma=\) Some(get-caller-error caller \(\sigma\), remove-caller-error caller \(\sigma\))
using assms
by \(\operatorname{simp}\)
lemma abort-done-send-obvious4:
assumes in-err:caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
and exec-success:mbind ((IPC DONE (SEND caller partner msg)) \#S) (abort \({ }_{\text {lift }}\)
ioprog) \(\sigma=\)
\[
\text { Some }\left(\text { out }{ }^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
shows \(h d\) out \({ }^{\prime \prime}=\) get-caller-error caller \(\sigma\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\)))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0:mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\))
\(=\) Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show ?thesis
using assms hyp0 hyp1
by (simp, elim conjE, simp add: HOL.eq-sym-conv)
qed

\section*{qed}
lemma abort-done-send-obvious5:
assumes in-err:caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
and exec-success:mbind ((IPC DONE (SEND caller partner msg))\#S)
(abort \({ }_{\text {lift }}\) ioprog) \(\sigma=\)
\[
\text { Some }\left(o u t^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
and exec-success':mbind \(S\) (abort \({ }_{l i f t}\) ioprog) \((\sigma(\) th-flag \(:=(\) th-flag \(\sigma)\) \((\) caller \(:=\) None \() \mid)=\operatorname{Some}\left(\right.\) out \(\left.^{\prime}, \sigma^{\prime}\right)\)
shows out \({ }^{\prime \prime}=\) the \((((\) th-flag \() \sigma)\) caller \() \#\) out \(^{\prime}\)
using assms
by \(\operatorname{simp}\)
lemma abort-done-send-obvious6:
assumes in-err:caller \(\in\) dom ((th-flag \(\sigma)\))
and exec-success: mbind ((IPC DONE (SEND caller partner msg))\#S)
(abort lift ioprog) \(\sigma=\)
\[
\text { Some }\left(\text { out }^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
and exec-success': mbind \(S\) (abort \({ }_{\text {lift }}\) ioprog) (remove-caller-error caller \(\sigma\)) \(=\) Some (out \({ }^{\prime}, \sigma^{\prime}\))
shows \(\sigma^{\prime \prime}=\sigma^{\prime}\)
using assms
by \(\operatorname{simp}\)
lemma abort-done-send-obvious 7 :
assumes exec-success : mbind ((IPC DONE (SEND caller partner msg)) \#S \()\left(\right.\) abort \(_{\text {lift }}\)
ioprog) \(\sigma=\)
Some (out', \(\sigma^{\prime}\))
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) \(\sigma \neq\) None shows \((\) if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
then (case mbind \(S\) (abort lift \(\left._{\text {ioprog }}\right)(\) remove-caller-error caller \(\sigma\)) of Some (out \(\left.{ }^{\prime \prime}, \sigma^{\prime \prime}\right) \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}\))
else (case mbind \(S\) (abort lift \(_{\text {ioprog }} \sigma\)
of Some \(\left(\right.\) out \(\left.\left.^{\prime \prime}, \sigma^{\prime \prime}\right) \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}\right)\))
proof (cases caller \(\in \operatorname{dom}((\) th-flag \(\sigma)))\)
case True
assume hyp 0: caller \(\in \operatorname{dom}((\) th-flag \(\sigma))\)
then show?thesis
using assms hyp0
proof (cases mbind FailSave \(S\) (abort lift \(\left.^{\text {ioprog }) ~(r e m o v e-c a l l e r-e r r o r ~ c a l l e r ~} \sigma\right)\))
case None
then show?thesis
using assms hyp0
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp1:mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) (remove-caller-error caller
\(\sigma)=\)
Some a
```

    then show ?thesis
    using assms hyp0 hyp1
    proof (cases a)
        fix aa b
        assume hyp2: a = (aa,b)
        then show ?thesis
        using assms hyp0 hyp1 hyp2
        by simp
    qed
    qed
    next
case False
assume hyp0: caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
then show ?thesis
using assms hyp0
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma\mathrm{ )
case None
then show ?thesis
using assms hyp0
by simp
next
case (Some a)
assume hyp1: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto
qed
qed
qed
lemma abort-done-send-obvious8:
assumes execu-success : mbind ((IPC DONE (SEND caller partner msg)) \#S $)\left(\right.$ abort $_{\text {lift }}$
ioprog) $\sigma=$
Some (out', $\sigma^{\prime}$ )
and ioprog-success: ioprog (IPC DONE (SEND caller partner msg)) $\sigma \neq$ None shows
(if caller $\in$ dom $(($ th-flag $) \sigma)$
then (case mbind $S$ (abort lift ioprog)(remove-caller-error caller $\sigma$ )
of Some $\left(\right.$ out $\left.^{\prime \prime}, \sigma^{\prime \prime}\right) \Rightarrow$ out $^{\prime}=\left(\right.$ get-caller-error caller $\sigma \#$ out $\left.\left.^{\prime \prime}\right)\right)$
else (case mbind $S$ (abort lift $_{\text {ioprog) }} \sigma$
of Some $\left(\right.$ out $\left.^{\prime \prime}, \sigma^{\prime \prime}\right) \Rightarrow$ out $^{\prime}=\left(\right.$ NO-ERRORS\#out $\left.\left.\left.{ }^{\prime \prime}\right)\right)\right)$
proof (cases caller $\in$ dom $(($ th-flag $\sigma)))$
case True

```
```

assume hyp0: caller }\in\operatorname{dom}((th-flag \sigma)
then show ?thesis
using assms hyp0
proof (cases mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp1: mbind FailSave}S\mathrm{ (abort lift ioprog)(remove-caller-error caller
\sigma)=

```

\section*{Some a}
```

then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix $a a b$
assume hyp2: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1 hyp2
by $\operatorname{simp}$
qed
qed
next
case False
assume hyp0 : caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
then show?thesis
using assms hyp0
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp1: mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma=$ Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix $a a b$
assume hyp2: $a=(a a, b)$
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto
qed
qed
qed
lemma abort-done-send-obvious9:
mbind $((I P C$ DONE $(S E N D$ caller partner $m s g)) \# S)\left(\right.$ abort $_{l i f t}$ ioprog $) \sigma=$

```
 (if caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
then Some (get-caller-error caller \(\sigma \#\)
 fst(the(mbind \(S\) (abort \(_{l i f t}\) ioprog)(remove-caller-error caller \(\left.\sigma\right)\))),
 snd (the (mbind \(S\) (abort \(_{\text {lift }}\) ioprog) (remove-caller-error caller \(\left.\left.\sigma\right)\right)\)))
else (case ioprog (IPC DONE (SEND caller partner msg)) \(\sigma\) of None \(\Rightarrow\) Some ([], \(\sigma\))
 | Some (out',\(\left.\sigma^{\prime}\right) \Rightarrow\)
 Some (NO-ERRORS\# (fst o the)(mbind \(S\) (abort lift \(_{\text {ioprog }) ~} \sigma\)),
 (snd o the)(mbind \(S\) (abort lift \(\left._{\text {ioprog }) ~}^{\sigma}\right)\))))
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\)))
 case None
 then show ?thesis
 by \(\operatorname{simp}\)
next
 case (Some a)
 assume hyp0: mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\))
\(=\)

Some a
then show ?thesis
using hyp0
 proof (cases a)
 fix \(a a b\)
 assume hyp 1: \(a=(a a, b)\)
 then show ?thesis
 using hyp0 hyp1
 proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma\))
 case None
 then show ?thesis
 by \(\operatorname{simp}\)
 next
 case (Some ab)
 assume hyp2: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some ab
 then show ?thesis
 using hyp0 hyp 1 hyp2
 proof (cases ab)
 fix \(a c b a\)
 assume hyp3: \(a b=(a c, b a)\)
 then show ?thesis
 using hyp0 hyp1 hyp2 hyp3
 by (simp add: split: option.split)
 qed
 qed
 qed
qed
lemma abort-done-send-obvious10:
\((f s t\) o the \()\left(\right.\) mbind \(\left((I P C\right.\) DONE (SEND caller partner msg)) \#S \()\left(\right.\) abort \(_{\text {lift }}\) ioprog) \(\sigma\)) \(=\)
```

        (if caller \in dom (( th-flag) \sigma)
        then get-caller-error caller \sigma#
            (fst o the)(mbind S (abort lift ioprog)(remove-caller-error caller \sigma))
        else
        (case ioprog (IPC DONE (SEND caller partner msg)) \sigma of
        None = []
        | Some (out',}\mp@subsup{\sigma}{}{\prime})=>NO-ERRORS# (fst o the)(mbind S (abort lift ioprog) 
    \sigma)))
proof (cases mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abortlift ioprog)(remove-caller-error caller \sigma)
=
Some a
then show ?thesis
using hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using hyp0 hyp 1
proof (cases mbind $_{\text {FailSave }} S$ (abort liff $_{\text {ioprog) }} \sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma=$ Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp3: $a b=(a c, b a)$
then show? ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp split: option.split)
qed
qed
qed
qed

```
lemma abort-done-recv-obvious0:
assumes no-inerr:caller \(\notin\) dom ((th-flag) \(\sigma\))
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None
shows abort \({ }_{\text {lift }}\) ioprog (IPC DONE (RECV caller partner msg)) \(\sigma=\operatorname{Some}(N O-E R R O R S\), \(\sigma\))
using assms
by (simp split:option.split)
lemma abort-done-recv-obvious1:
assumes not-in-err:caller \(\notin \operatorname{dom}((t h-f l a g) \sigma)\)
and exec-success:mbind ((IPC DONE (RECV caller partner msg)) \#S)
(abort lift ioprog) \(\sigma=\)
\[
\text { Some }\left(\text { out }{ }^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None shows mbind \(S\) (abort \({ }_{\text {lift }}\) ioprog) \(\sigma=\operatorname{Some}\left(\right.\) out \(\left.^{\prime}, \sigma^{\prime}\right) \Longrightarrow \sigma^{\prime}=\sigma^{\prime \prime}\)
using assms
by auto
lemma abort-done-recv-obvious2:
assumes not-inerr \(\quad\) :caller \(\notin\) dom \(((\) th-flag \() \sigma)\)
and exec-success :mbind ((IPC DONE (RECV caller partner msg))\#S)
(abort \({ }_{l i f t}\) ioprog) \(\sigma=\)
Some (out \(\left.{ }^{\prime \prime}, \sigma^{\prime \prime}\right)\)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None shows mbind \(S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma=\operatorname{Some}\left(\right.\) out \(\left.^{\prime}, \sigma^{\prime}\right) \Longrightarrow\) out \(^{\prime \prime}=(\) NO-ERRORS\#out' \()\)
using assms
by auto
lemma abort-done-recv-obvious3:
assumes in-err: caller \(\in \operatorname{dom}((t h-f l a g) \sigma)\)
shows abort \({ }_{\text {lift }}\) ioprog (IPC DONE (RECV caller partner msg)) \(\sigma=\) Some(get-caller-error caller \(\sigma\), remove-caller-error caller \(\sigma\))
using assms
by \(\operatorname{simp}\)
lemma abort-done-recv-obvious4:
assumes in-err:caller \(\in\) dom ((th-flag) \(\sigma\))
and exec-success:mbind ((IPC DONE (RECV caller partner msg)) \#S) (abort lift
ioprog) \(\sigma=\)
\[
\text { Some }\left(\text { out }{ }^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
shows \(\quad h d\) out \({ }^{\prime \prime}=\) get-caller-error caller \(\sigma\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\)))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0:mbind FailSave \(S\) (abort lift \(_{\text {ioprog }}\) (remove-caller-error caller \(\sigma\))
\(=\) Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show ?thesis
using assms hyp0 hyp1
by (simp, elim conjE, simp add: HOL.eq-sym-conv)
qed
qed
lemma abort-done-recv-obvious5:
assumes in-err:caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
and exec-success: mbind ((IPC DONE (RECV caller partner msg)) \#S) (abort \({ }_{\text {lift }}\) ioprog) \(\sigma=\)
\[
\text { Some }\left(\text { out }^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
and exec-success':mbind \(S\) (abort lift \(^{\text {ioprog }) ~(r e m o v e-c a l l e r-e r r o r ~ c a l l e r ~} \sigma\)) = Some (out \({ }^{\prime}, \sigma^{\prime}\))
shows \(\quad\) out \(^{\prime \prime}=\left(\right.\) get-caller-error caller \(\sigma \#\) out \(\left.{ }^{\prime}\right)\)
using assms
by \(\operatorname{simp}\)
lemma abort-done-recv-obvious6:
assumes in-err:caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
and exec-success:mbind ((IPC DONE (RECV caller partner msg)) \#S) (abort \({ }_{\text {lift }}\) ioprog) \(\sigma=\)
\[
\text { Some (out } \left.{ }^{\prime \prime}, \sigma^{\prime \prime}\right)
\]
and exec-success':mbind \(S\) (abort \({ }_{l i f t}\) ioprog) (remove-caller-error caller \(\sigma\)) \(=\) Some(out', \(\sigma^{\prime}\))
shows \(\quad \sigma^{\prime \prime}=\sigma^{\prime}\)
using assms
by \(\operatorname{simp}\)
lemma abort-done-recv-obvious 7 :
assumes exec-success: mbind \(((\) IPC DONE (RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\)
ioprog) \(\sigma=\)
Some (out', \(\sigma^{\prime}\))
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None shows (if caller \(\in \operatorname{dom}((t h-f l a g) \sigma)\)
then (case mbind \(S\) (abortlift ioprog)(remove-caller-error caller \(\sigma\)) of Some (out \(\left.{ }^{\prime \prime}, \sigma^{\prime \prime}\right) \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}\))
else (case mbind \(S\) (abort \({ }_{l i f t}\) ioprog) \(\sigma\) of Some \(\left(\right.\) out \(\left.\left.^{\prime \prime}, \sigma^{\prime \prime}\right) \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}\right)\))
proof (cases caller \(\in \operatorname{dom}((\) th-flag \() \sigma))\)
case True
assume hyp0: caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
then show ?thesis
using assms hyp0
proof (cases mbind FailSave \(S\) (abort \(_{l i f t}\) ioprog) (remove-caller-error caller \(\sigma\)))
case None
then show?thesis
using assms hyp0
```

    by simp
    next
    case (Some a)
        assume hyp1:mbind FailSave S (abort lift ioprog)(remove-caller-error caller
    \sigma)=
Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2: }a=(aa,b
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp
qed
qed
next
case False
assume hyp0: caller }\not\in\operatorname{dom}((th-flag)\sigma
then show ?thesis
using assms hyp0
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
using assms hyp0
by simp
next
case (Some a)
assume hyp1: mbind FailSave S (abortlift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2: }a=(aa,b
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto
qed
qed
qed
lemma abort-done-recv-obvious8:
assumes exec-success : mbind ((IPC DONE (RECV caller partner msg))\#S)(abort lift
ioprog) \sigma=
Some (out', \sigma')
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) \sigma\not=None
shows (if caller }\in\mathrm{ dom ((th-flag) }\sigma\mathrm{ )
then (case mbind S (abortlift ioprog)(remove-caller-error caller \sigma)
of Some (out'\prime},\mp@subsup{\sigma}{}{\prime\prime})=>\mathrm{ out' = (get-caller-error caller }\sigma\mathrm{ \#out'`))

```
```

        else (case mbind S (abort lift ioprog) \sigma
        of Some (out'\prime},\mp@subsup{\sigma}{}{\prime\prime})=>\mp@subsup{out}{}{\prime}=(NO-ERRORS#out'\prime))
    proof (cases caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
case True
assume hyp0:caller \in dom ((th-flag \sigma))
then show ?thesis
using assms hyp0
proof (cases mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
using assms hyp0
by simp
next
case (Some a)
assume hyp1:mbind FailSave S (abort lift ioprog)(remove-caller-error caller
\sigma)=

```

\section*{Some a}
```

then show ?thesis
using assms hyp0 hyp 1
proof (cases a)
fix $a a b$
assume hyp2: $a=(a a, b)$
then show? ?thesis
using assms hyp0 hyp1 hyp2
by simp
qed
qed
next
case False
assume hyp 0: caller $\notin \operatorname{dom}(($ th-flag $\sigma))$
then show ?thesis
using assms hyp0
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma$ )
case None
then show ?thesis
using assms hyp0
by $\operatorname{simp}$
next
case (Some a)
assume hyp1: mbind FailSave $S$ ( abort $_{l_{i f t}}$ ioprog) $\sigma=$ Some $a$
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix $a a b$
assume hyp2: $a=(a a, b)$
then show? ?thesis
using assms hyp0 hyp1 hyp2
by auto
qed

```
qed
qed
lemma abort-done-recv-obvious9:
mbind \(((I P C\) DONE (RECV caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \(\sigma=\) (if caller \(\in \operatorname{dom}((\) th-flag \() \sigma)\)
then Some ((get-caller-error caller \(\sigma \#\)
fst \(\left(\right.\) the \(\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \()(\) remove-caller-error caller \(\left.\left.\sigma)\right)\right)\)),
snd (the (mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog) (remove-caller-error caller \(\left.\left.\left.\sigma\right)\right)\right)\))
else(case ioprog (IPC DONE (RECV caller partner msg)) \(\sigma\) of None \(\Rightarrow\) Some ([], \(\sigma\))
 | Some (out',\(\left.\sigma^{\prime}\right) \Rightarrow\)
 Some (NO-ERRORS\# (fst o the)(mbind S (abort lift ioprog) \(\sigma\)),
 (snd o the)(mbind \(S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma\)))))
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\left.\sigma\right)\))
case None
then show? ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp0: mbind \(_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\))
\(=\)

Some a
then show ?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp1: \(a=(a a, b)\)
then show?thesis
using hyp0 hyp1
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog })} \sigma\))
case None
then show? ?thesis
by \(\operatorname{simp}\)
next
case (Some ab)
assume hyp2: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog }} \sigma=\) Some ab
then show ?thesis
using hyp0 hyp 1 hyp2
proof (cases ab)
fix \(a c b a\)
assume hyp3: \(a b=(a c, b a)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp split: option.split)
qed
qed
qed
qed
lemma abort-done-recv-obvious10:
\(f s t\left(t h e\left(m b i n d ~((I P C ~ D O N E ~(R E C V ~ c a l l e r ~ p a r t n e r ~ m s g)) \# S)\left(\right.\right.\right.\) abort \(_{\text {lift }}\) ioprog)
\(\sigma))=\)
(if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
then (get-caller-error caller \(\sigma \#\)
fst \(\left(\right.\) the \(\left(\right.\) mbind \(S\) (abort \(_{l i f t}\) ioprog) (remove-caller-error caller \(\left.\left.\sigma\right)\right)\)))
else
(case ioprog (IPC DONE (RECV caller partner msg)) \(\sigma\) of None \(\Rightarrow\) []
\(\mid\) Some \(\left(\right.\) out \(\left.^{\prime}, \sigma^{\prime}\right) \Rightarrow\) NO-ERRORS\# (fst o the)(mbind \(S\) (abort \({ }_{\text {lift }}\) ioprog)
\(\sigma)\))
by (simp split: option.split)
lemmas trace-normalizer-errors-case \(=\)
abort-prep-send-obvious9 abort-prep-recv-obvious9 abort-wait-send-obvious9 abort-wait-recv-obvious9 abort-buf-send-obvious9 abort-buf-recv-obvious9 abort-done-send-obvious10 abort-done-recv-obvious10
end
theory IPC-symbolic-exec-rewriting
imports IPC-trace-normalizer
begin

\section*{M Rewriting Rules for Symbolic Execution of Sequence Test Scheme}

\section*{M. 1 Symbolic Execution Rules for PREP stage}
lemma abort-prep-send-obvious10:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((I P C\) PREP \((S E N D\) caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \() ;(\) outs \())=\)
(if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
then \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P\) (get-caller-error caller \(\sigma \#\)
outs)))
 else (case ioprog (IPC PREP (SEND caller partner msg)) \(\sigma\) of
 Some(NO-ERRORS, \(\left.\sigma^{\prime}\right) \Rightarrow\)
 (error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
 (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.)\right)\)
| Some (ERROR-MEM error-mem, \(\left.\sigma^{\prime}\right) \Rightarrow\)
((set-error-mem-preps caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem
```


# outs)))

    | Some(ERROR-IPC error-IPC, 竹)=>
                ((set-error-ipc-preps caller partner \sigma \sigma' error-IPC msg)
                        \vDash ( o u t s ~ \leftarrow ( m b i n d ~ S ( a b o r t ~ l i f t ~ i o p r o g ) ) ; ~ P ~ ( E R R O R - I P C ~ e r r o r - I P C \# ~
    outs)))
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer

```
caller \(\sigma\) ba) \(=\) Some ad then show? ?thesis using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5 proof (cases ad)
fix \(a e b b\)
assume hyp6: \(a d=(a e, b b)\)
then show? ?hesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp 4 :ac \(=E R R O R-M E M\) error-memory
then show? ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)
(set-error-mem-preps caller partner \(\sigma\) ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog }}\))
(set-error-mem-preps caller partner \(\sigma\) ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp6: ad \(=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp \(4: a c=E R R O R-I P C\) error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }}\)
(set-error-ipc-preps caller partner \(\sigma\) ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave \(S\) (abort lift \(_{\text {ioprog }}\))
（set－error－ipc－preps caller partner \(\sigma\) ba error－IPC msg）\(=\)
```

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-prep-send-obvious12:
(\sigma\vDash(outs \leftarrow (mbind ((IPC PREP (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller \in dom ((th-flag)\sigma)
then }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P (get-caller-error caller }\sigma
outs)))
else (case ioprog (IPC PREP (SEND caller partner msg)) \sigma of
Some(NO-ERRORS, \sigma') =>
((error-tab-transfer caller \sigma \sigma})|
(outs \leftarrow (mbind S(abort lift ioprog));P(NO-ERRORS \# outs)))^
((( th-flag) \sigma) caller = None ) }
(( th-flag) \sigma) caller =
(( th-flag) (error-tab-transfer caller \sigma \sigma')) caller ^
(th-flag \sigma = th-flag (error-tab-transfer caller \sigma \sigma
| Some(ERROR-MEM error-mem, \sigma') =>
((set-error-mem-preps caller partner \sigma \sigma' error-mem msg)
\models}\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P (ERROR-MEM error-mem \#
outs)))^
((( th-flag) (set-error-mem-maps caller partner \sigma 的 error-mem msg)) caller
=
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner
=
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma 尔 error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner)
Some(ERROR-IPC error-IPC, 竹)=>
((set-error-ipc-preps caller partner \sigma 尔 error-IPC msg)
\vDash ( outs \leftarrow ( mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC\#
outs)))^

```
```

    ((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
        Some (ERROR-IPC error-IPC))^
        ((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner
    =
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
(( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner)
None }=>(\sigma|=(P[])))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC PREP (SEND caller partner msg)) \sigma = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp 4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next

```
```

        case (Some ad)
            assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer
    caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-preps caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-preps caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-preps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next

```
```

                    case (Some ad)
                    assume hyp5: mbind FailSave}S\mathrm{ (abort (ifft ioprog)
                            (set-error-ipc-preps caller partner \sigma ba error-IPC msg)=
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-prep-send-obvious10':
(\sigma = (outs \leftarrow (mbind ((IPC PREP (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
((caller }\in\operatorname{dom}(( th-flag)\sigma)
(\sigma\models(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(get-caller-error caller }\sigma\#\mathrm{ \#outs ))))
^
(caller \# dom (( th-flag)\sigma) \longrightarrow
(ioprog (IPC PREP (SEND caller partner msg)) \sigma=None \longrightarrow (\sigma\models (P[])))^
((\foralla \sigma'.
(a=NO-ERRORS \longrightarrow ioprog (IPC PREP (SEND caller partner msg)) \sigma=
Some (NO-ERRORS, \sigma')}
((error-tab-transfer caller \sigma \sigma})
(outs \leftarrow(mbind S(abort lift ioprog));P(NO-ERRORS \# outs))))^
(\forall error-memory. a = ERROR-MEM error-memory \longrightarrow
ioprog (IPC PREP (SEND caller partner msg)) \sigma = Some (ERROR-MEM
error-memory, }\mp@subsup{\sigma}{}{\prime})
((set-error-mem-preps caller partner \sigma 尔 error-memory msg) }
(outs \leftarrow(mbind S(abortlift ioprog)); P(ERROR-MEM error-memory \#
outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC }
ioprog (IPC PREP (SEND caller partner msg)) \sigma = Some (ERROR-IPC
error-IPC, 的)\longrightarrow
((set-error-ipc-preps caller partner \sigma \sigma' error-IPC msg) }
(outs }\leftarrow(\mp@subsup{m}{\mathrm{ mind S S(abort lift ioprog))})P(ERROR-IPC error-IPC\# outs))))))))}{
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp

```
```

next
case (Some a)
assume hyp 0: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma=$ Some $a$
then show ?thesis
using hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show? thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) $\sigma$ )
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC PREP (SEND caller partner msg)) $\sigma=$ Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case $N O$-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) (error-tab-transfer caller
$\sigma \quad b a)$
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }}$ (error-tab-transfer
caller $\sigma$ ba) $=$ Some ad
then show? ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5
proof (cases ad)
fix $a e b b$
assume hyp6: $a d=(a e, b b)$
then show ?thesis
using hyp 0 hyp1 hyp2 hyp3 hyp 4 hyp 5 hyp6
by (simp add: valid-SE-def bind-SE-def )
qed
qed

```

\section*{next}
case (ERROR-MEM error-memory)
assume hyp 4 :ac \(=E R R O R-M E M\) error-memory
then show? thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)
(set-error-mem-preps caller partner \(\sigma\) ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave \(S\) (abort lift \(_{\text {ioprog) }}\)
(set-error-mem-preps caller partner \(\sigma\) ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: ad \(=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac \(=E R R O R-I P C\) error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }}\)
(set-error-ipc-preps caller partner \(\sigma\) ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave (abort \(_{\text {lift }}\) ioprog)
(set-error-ipc-preps caller partner \(\sigma\) ba error-IPC msg) \(=\)
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: \(a d=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)
qed
```

                    qed
            qed
        qed
    qed
    qed
    qed
lemma abort-prep-send-obvious10':
(\sigma\models(outs \leftarrow (mbind ((IPC PREP (SEND caller partner msg))\#S)
(abort lift exec-action id
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(mbind S(abort lift exec-action id-Mon)); P (get-caller-error
caller \sigma \# outs)))) ^
(caller \& dom (( th-flag)\sigma)\longrightarrow
(\forallab. (a=NO-ERRORS }
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) }\sigma
Some (NO-ERRORS,b)}
(\sigma| current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|)\models
(outs }\leftarrow(mbind S(abort lift exec-actionid-Mon));P (NO-ERRORS \#
outs)))) ^
(\forall error-memory. a = ERROR-MEM error-memory \longrightarrow
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) }\sigma
Some (ERROR-MEM error-memory,b)}
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM error-memory,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-MEM error-memory)
partner }\mapsto(ERROR-MEM error-memory)))

```

```

error-memory \# outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC\longrightarrow
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) }\sigma
Some (ERROR-IPC error-IPC, b)}
(\sigma| current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state }\mp@subsup{i}{d}{}.th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))|
\vDash ( outs \leftarrow ( mbind S(abortlift exec-actionid-Mon)); P( ERROR-IPC
error-IPC\# outs)))))))
proof (cases mbind FailSave}S\mathrm{ (abort lift exec-action id-Mon) }\sigma\mathrm{ )
case None
then show ?thesis
by simp

```
```

next
case (Some a)
assume hyp0: mbind FailSave S (abort lift exec-actionid-Mon) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: }a=(aa,b
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC PREP (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC PREP (SEND caller partner msg)) \sigma
= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift exec-actionid-Mon) ba)
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abortlift exec-actionid-Mon) ba=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS

```
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SEND \({ }_{i d}\)-def valid-SE-def bind-SE-def exec-action \({ }_{i d}\)-Mon-def
split: split-if-asm)
next
case (ERROR-MEM error-memory)
assume hyp 7 :error-codes \(b a=E R R O R-M E M\) error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SEND id \(^{\text {-def }}\) valid-SE-def bind-SE-def exec-action \({ }_{i d}\)-Mon-def
split: split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp 7:error-codes ba \(=\) ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp 5 hyp6 hyp 7
by (auto simp add: PREP-SEND \({ }_{\text {id }}\)-def valid-SE-def bind-SE-def exec-actionid-Mon-def split: split-if-asm)
qed
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp 4 :ac \(=\) ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind FailSave (abort \(_{\text {lift }}\) exec-action \(_{\text {id }}\)-Mon)
(set-error-mem-preps caller partner \(\sigma\) ba error-memory msg))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some ad)
assume hyp5: mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) exec-action \(\left._{\text {id }}-M o n\right)\)
(set-error-mem-preps caller partner \(\sigma\) ba error-memory msg)
\(=\) Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp6: ad \(=(a e, b b)\)
then show? thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp 5 hyp 6
by (auto simp add: exec-action id \(^{-M o n-d e f ~ v a l i d-S E-d e f ~ b i n d-S E-d e f ~}\) PREP-SEND \({ }_{i d}\)-def
split : errors.split option.split split-if-asm)
```

            qed
            qed
        next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift exec-actionid-Mon)
                                    (set-error-ipc-preps caller partner \sigma ba error-IPC msg))
            case None
            then show ?thesis
            by simp
            next
            case (Some ad)
            assume hyp5: mbind FailSave}S(\mp@subsup{\mathrm{ abort lift exec-actionid}}{\mathrm{ -Mon)}}{\mathrm{ (all}
                                    (set-error-ipc-preps caller partner \sigma ba error-IPC msg)=
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
PREP-SEND id
split : errors.split option.split split-if-asm)
qed
qed
qed
qed
qed
qed
qed
lemma abort-prep-send-obvious11:
(\sigma\models(outs \leftarrow (mbind ((IPC PREP (SEND caller partner msg))\#S)
(abortlift exec-actionid-Mon)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mp@subsup{mbind S S(abort lift exec-action id}{\mathrm{ -Mon)); P (get-caller-error}}{
caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma) \longrightarrow
(\forallab. (exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
exec-actionid-Mon-prep-fact1 caller partner \sigma\longrightarrow
(\sigma| current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes :=NO-ERRORS,
th-flag := th-flag \sigma|)}
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));P(NO-ERRORS \#

```
```

outs)))) $\wedge$
( $\forall$ error-memory. $a=$ ERROR-MEM error-memory $\longrightarrow$
$((b=\sigma)$ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-M E M$ not-valid-sender-addr-in-PREP-SENDD^
$\neg($ list-all $(($ is-part-mem-th o the $)(($ thread-list $\sigma)$ caller $)($ resource $\sigma)) m s g)$
$\wedge$
error-memory $=$ not-valid-sender-addr-in-PREP-SEND $)) \longrightarrow$
( $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-M E M$ error-memory,
th-flag $\quad:=$ th-flag $\sigma$
(caller $\mapsto$ (ERROR-MEM error-memory),
partner $\mapsto(E R R O R-M E M$ error-memory $))$ )
$=\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right) ; P(E R R O R-M E M$
error-memory \# outs)))) $\wedge$
$(\forall$ error-IPC. $a=$ ERROR-IPC error-IPC $\longrightarrow$
( $(b=\sigma)$ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-22-in-PREP-SENDD)^
exec-action id $^{-M o n-p r e p-f a c t 0 ~ c a l l e r ~ p a r t n e r ~} \sigma$ msg $\wedge$
$\neg I P C$-params-c1 ((the o thread-list $\sigma$ ) partner) $\wedge$
IPC-params-c2 ((the o thread-list $\sigma$ ) partner) $\wedge$
$\neg I P C$-params-c6 caller ((the o thread-list $\sigma$ ) partner) $\wedge$
error-IPC $=$ error-IPC-22-in-PREP-SEND) $\vee$
$(b=\sigma \mid$ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-23-in-PREP-SENDD)^
exec-action $_{\text {id }}$-Mon-prep-fact0 caller partner $\sigma$ msg $\wedge$
$\neg$ IPC-params-c1 ((the o thread-list $\sigma$ ) partner) $\wedge$
$\neg$ IPC-params-c2 ((the o thread-list $\sigma$ ) partner) $\wedge$
error-IPC $=$ error-IPC-23-in-PREP-SEND)) $\longrightarrow$
( $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC,
th-flag $\quad:=$ th-flag $\sigma$
(caller $\mapsto(E R R O R-I P C$ error-IPC),
partner $\mapsto(E R R O R-I P C$ error-IPC $)) \mid$
$\vDash\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{\text {id }}-M o n\right)\right) ; P($ ERROR-IPC
error-IPC\# outs)))))))

```
by (auto simp add: abort-prep-send-obvious10' exec-action \({ }_{i d}\)-Mon-prep-send-obvious3 exec-action id \(^{-}\)-Mon-prep-send-obvious 4 exec-actionid-Mon-prep-send-obvious5)
lemma abort-prep-recv-obvious10:
```

    (\sigma\models(outs \leftarrow(mbind ((IPC PREP (RECV caller partner msg))#S)(abort lift
    ioprog)); P outs)) =
(if caller \in dom (( th-flag)\sigma)
then ( }\sigma\models\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(get-caller-error caller }\sigma
outs)))
else (case ioprog (IPC PREP (RECV caller partner msg)) \sigma of
Some(NO-ERRORS, 的) => (error-tab-transfer caller \sigma \sigma
(outs}\leftarrow(mbind (S)(\mp@subsup{abort lift ioprog)); P(NO-ERRORS}{}{\prime

# outs))

        Some(ERROR-MEM error-mem, 沙)=>
                        ((set-error-mem-prepr caller partner \sigma 尔 error-mem msg)
                =(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem
    
# outs)))

    | Some(ERROR-IPC error-IPC, \sigma') =>
    ((set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg)
        =(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P( ERROR-IPC error-IPC#
    outs)))
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave}S\mathrm{ (abortlift ioprog) }\sigma\mathrm{ )
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog)}\sigma=S\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a= (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS

```
```

    assume hyp4:ac=NO-ERRORS
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-prepr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-mem-prepr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)

```
```

                    assume hyp4:ac=ERROR-IPC error-IPC
                    then show ?thesis
                using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-prepr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-prepr caller partner \sigma ba error-IPC msg)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-prep-recv-obvious12:
(\sigma\models(outs }\leftarrow(\mathrm{ mbind ((IPC PREP (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller }\in\mathrm{ dom (( th-flag) %)
then }(\sigma|\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(get-caller-error caller }\sigma
outs)))
else (case ioprog (IPC PREP (RECV caller partner msg)) \sigma of
Some(NO-ERRORS, \sigma') =>
((error-tab-transfer caller \sigma 尔) =
(outs \leftarrow(mbind S(abortlift ioprog)); P (NO-ERRORS \# outs)))^
((( th-flag) \sigma) caller = None ) }
(( th-flag) \sigma) caller =
(( th-flag) (error-tab-transfer caller \sigma \sigma')) caller ^
(th-flag \sigma= th-flag (error-tab-transfer caller \sigma \sigma
| Some(ERROR-MEM error-mem, 䭫)=>
((set-error-mem-prepr caller partner \sigma \sigma' error-mem msg)
|}\mathrm{ (outs }\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(ERROR-MEM error-mem

# outs)))^

            ((( th-flag) (set-error-mem-maps caller partner \sigma 的 error-mem msg)) caller
    =

```
```

            Some (ERROR-MEM error-mem))^
    ((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner
    =
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma 㐌 error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, 竹) }
((set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg) }
(outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P( ERROR-IPC error-IPC\#
outs)))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller
=
Some (ERROR-IPC error-IPC))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner
=
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller
=
(( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner)
| None = (\sigma\models (P[]))))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis

```
```

    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
    case NO-ERRORS
    assume hyp4:ac = NO-ERRORS
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abortlift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-mem-prepr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-prepr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed

```
```

        qed
        next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abortlift ioprog)
                                    (set-error-ipc-prepr caller partner \sigma ba error-IPC msg))
            case None
            then show ?thesis
            by simp
            next
            case (Some ad)
            assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
                                    (set-error-ipc-prepr caller partner \sigma ba error-IPC msg) =
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed

```
lemma abort-prep-recv-obvious10":
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC PREP \((\) RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog \()\)) \(P\) outs \())=\)
((caller \(\in\) dom \(((\) th-flag \() \sigma) \longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P\) (get-caller-error caller \(\sigma \#\) outs)))) \(\wedge\)
(caller \(\notin \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\)
(ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) None \(\longrightarrow(\sigma \models(P[])))\)
\(\wedge\)
\(\left(\left(\forall a \sigma^{\prime}\right.\right.\).
\((a=\) NO-ERRORS \(\longrightarrow i o p r o g ~(I P C ~ P R E P ~(R E C V ~ c a l l e r ~ p a r t n e r ~ m s g)) ~ \sigma ~\) \(=\) Some \(\left(\right.\) NO-ERRORS,\(\left.\sigma^{\prime}\right) \longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.\left.)\right)\right)\right) \wedge\)
(\(\forall\) error-memory.
```

    a = ERROR-MEM error-memory }
    ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some (ERROR-MEM
    error-memory,}\mp@subsup{\sigma}{}{\prime})
((set-error-mem-prepr caller partner \sigma \sigma' error-memory msg) }
(outs }\leftarrow(mbind (S)(\mp@subsup{abort lift ioprog)); P (ERROR-MEM error-memory}{}{\prime

# outs)))) ^

    (\forall error-IPC.
    a=ERROR-IPC error-IPC}
    ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some (ERROR-IPC
    error-IPC, 生)}
((set-error-ipc-prepr caller partner \sigma \sigma' error-IPC msg) \models
(outs }\leftarrow(\mathrm{ mbind }(S)(\mp@subsup{\mathrm{ abortlift ioprog)}); P (ERROR-IPC error-IPC\#}{}{\prime
outs)))))))
proof (cases mbind FailSave}S(\mp@subsup{\mathrm{ abort lift ioprog) }\sigma)}{}{\mathrm{ ( )}
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1: a=(aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))

```
```

            case None
            then show ?thesis
            by simp
            next
            case (Some ad)
                assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer
    caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-prepr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-mem-prepr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-prepr caller partner \sigma ba error-IPC msg))

```
```

            case None
            then show ?thesis
            by simp
    next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-prepr caller partner \sigma ba error-IPC msg)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-prep-recv-obvious10':
(\sigma\models(outs \leftarrow (mbind ((IPC PREP (RECV caller partner msg))\#S)(abort lift
exec-actionid-Mon)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mp@subsup{mbind S S(abort lift exec-action}{id}{\prime-Mon)); P(get-caller-error caller
\sigma \# \# ~ o u t s ) ) ) ) ~ \wedge ~
(caller \& dom (( th-flag)\sigma)\longrightarrow
((\forallab.
( a = NO-ERRORS \longrightarrow
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) \sigma = Some (NO-ERRORS,
b)}
(\sigma| current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma) \models
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));P(NO-ERRORS \#
outs)))) ^
(\forall error-memory.
a=ERROR-MEM error-memory }
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) \sigma = Some
(ERROR-MEM error-memory,b)}
(\sigma| current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM error-memory,
state id.th-flag := th-flag \sigma

```
```

        (caller }\mapsto(ERROR-MEM error-memory),
            partner }\mapsto(ERROR-MEM error-memory))|
        =(outs}\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon)); P(ERROR-MEM
    error-memory \# outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) \sigma = Some
(ERROR-IPC error-IPC, b)}
(\sigma) current-thread }:=\mathrm{ caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state id.th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))|
=(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action }}{\mathrm{ id}
error-IPC\# outs))))))))
proof (cases mbind FailSave S (abort (ift exec-action id
case None
then show ?thesis
by simp
next
case (Some a)

```

```

    then show ?thesis
    using hyp0
    proof (cases a)
        fix aa b
        assume hyp 1: a = (aa,b)
    then show ?thesis
    using hyp0 hyp1
    proof (cases exec-actionid-Mon (IPC PREP (RECV caller partner msg)) \sigma)
        case None
        then show ?thesis
        using assms hyp0 hyp1
        by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
    next
            case (Some ab)
            assume hyp2: exec-actionid-Mon (IPC PREP (RECV caller partner msg))
    \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis

```
```

            using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave}S\mathrm{ (abort lift exec-actionid-Mon)(error-tab-transfer
    caller \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S(\mp@subsup{\mathrm{ abort }}{lift}{}\mp@subsup{\mathrm{ exec-actionid}}{\mathrm{ -Mon) (error-tab-transfer}}{
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm)
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm )
next
case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
qed
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon)

```
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave \(S\) (abort \(_{\text {lift }}\) exec-action \(_{\text {id }}\)-Mon)
(set-error-mem-prepr caller partner \(\sigma\) ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: ad \(=(a e, b b)\)
then show?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add: exec-action id \(^{-M o n-d e f ~ v a l i d-S E-d e f ~ b i n d-S E-d e f ~}\) PREP-RECV \(V_{i d}\)-def
split : errors.split option.split split-if-asm)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp 4 :ac \(=E R R O R-I P C\) error-IPC
then show? thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {exec-action }}^{\text {id }}\)-Mon) (set-error-ipc-prepr caller partner \(\sigma\) ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave \(S\) (abort \(_{\text {lift }^{\prime}}\) exec-action \(_{\text {id }}\)-Mon)
(set-error-ipc-prepr caller partner \(\sigma\) ba error-IPC msg) \(=\)
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: ad \(=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add: exec-action id \(^{-M o n-d e f ~ v a l i d-S E-d e f ~ b i n d-S E-d e f ~}\)
PREP-RECV id-def \(^{\text {-d }}\)
split : errors.split option.split split-if-asm)
qed
qed
qed
```

        qed
    qed
    qed
    qed
lemma abort-prep-recv-obvious11:
(\sigma\models(outs \leftarrow (mbind ((IPC PREP (RECV caller partner msg))\#S)(abort lift
exec-actionid-Mon)); P outs)) =
((caller }\in\mathrm{ dom (( th-flag) ) )}
(\sigma\models(outs }\leftarrow(\mp@subsup{mbind S S(abort lift exec-action id}{\mathrm{ -Mon)}); P (get-caller-error caller}{
\sigma \# outs)))) ^
(caller }\not\in\mathrm{ dom (( th-flag) %)}
((\forallab.
( a = NO-ERRORS }
exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
exec-actionid-Mon-prep-fact1 caller partner \sigma\longrightarrow
(\sigma() current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma)\models
(outs }\leftarrow(\mp@subsup{m}{mind S(abort lift exec-action}{id}\mathrm{ -Mon));P (NO-ERRORS \#
outs)))) ^
(\forall error-memory.
a=ERROR-MEM error-memory \longrightarrow
((b=\sigma\current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECVD^
\neg(list-all ((is-part-mem-th o the) ((thread-list \sigma) caller) (resource \sigma))msg) ^
error-memory = not-valid-receiver-addr-in-PREP-RECV))}
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM error-memory,
state id.th-flag := th-flag \sigma
(caller }\mapsto(ERROR-MEM error-memory)
partner }\mapsto(ERROR-MEM error-memory))|
\vDash(outs}\leftarrow(mbind S(\mp@subsup{abort lift exec-actionid-Mon)); P(ERROR-MEM}{l}{\mathrm{ in}
error-memory \# outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
((b=\sigma\ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECVD^
exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
\neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \wedge ~
IPC-params-c2 ((the o thread-list \sigma) partner) ^
\neg I P C - p a r a m s - c 6 ~ c a l l e r ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \wedge ~
error-IPC = error-IPC-22-in-PREP-RECV) \vee
(b=\sigma|current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),

```
```

        error-codes := ERROR-IPC error-IPC-23-in-PREP-RECVD)^
        exec-actionid-Mon-prep-fact0 caller partner \sigma msg ^
        \neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \wedge ~
        \neg I P C - p a r a m s - c 2 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \wedge ~
        error-IPC = error-IPC-23-in-PREP-RECV))}
        (\sigma| current-thread := caller,
        thread-list := update-th-current caller (thread-list \sigma),
        error-codes :=ERROR-IPC error-IPC,
        state id
            (caller }\mapsto(ERROR-IPC error-IPC)
            partner }\mapsto(ERROR-IPC error-IPC))D
        \vDash(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action id}}{\mathrm{ -Mon )}); P( ERROR-IPC
    error-IPC\# outs))))))))
by (auto simp add: abort-prep-recv-obvious10' exec-actionid-Mon-prep-recv-obvious3
exec-actionid-Mon-prep-recv-obvious4 exec-actionid-Mon-prep-recv-obvious5)

```

\section*{M. 2 Symbolic Execution Rules for WAIT stage}
lemma abort-wait-send-obvious10:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((I P C\) WAIT \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{l i f t}\) ioprog \()\)) \(P\) outs \())=\)
(if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
then \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P\) (get-caller-error caller \(\sigma\) \# outs)))
else (case ioprog (IPC WAIT (SEND caller partner msg)) \(\sigma\) of
Some \(\left(\right.\) NO-ERRORS,\(\left.\sigma^{\prime}\right) \Rightarrow\left(\right.\) error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right)\)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P\)
(NO-ERRORS \# outs))
\(\mid \operatorname{Some}\left(E R R O R-M E M\right.\) error-mem, \(\left.\sigma^{\prime}\right) \Rightarrow\)
((set-error-mem-waits caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \# outs)))
| Some(ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \Rightarrow\)
((set-error-ipc-waits caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\)
outs)))
\(\mid\) None \(\Rightarrow(\sigma \models(P[]))))\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma\))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp0: mbind \(_{\text {FailSave }} S\) (abort \(_{l_{\text {lift }} \text { ioprog) }} \sigma=\) Some a
then show ?thesis
using hyp0
proof (cases a)
fix \(a a b\)
```

    assume hyp 1: a = (aa,b)
    then show ?thesis
    using hyp0 hyp1
    proof (cases ioprog (IPC WAIT (SEND caller partner msg)) \sigma)
    case None
    then show ?thesis
    using assms hyp0 hyp1
    by (simp add: valid-SE-def bind-SE-def)
    next
    case (Some ab)
    assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) \sigma=Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
        fix ac ba
        assume hyp3:ab=(ac,ba)
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3
        proof (cases ac)
            case NO-ERRORS
            assume hyp4:ac = NO-ERRORS
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-waits caller partner \sigma ba error-memory msg))

```
```

            case None
            then show ?thesis
            by simp
    next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-waits caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-waits caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-waits caller partner \sigma ba error-IPC msg) =
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed

```
```

lemma abort-wait-send-obvious12:
(\sigma\vDash(outs \leftarrow (mbind ((IPC WAIT (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller }\in\mathrm{ dom (( th-flag) }\sigma\mathrm{ )
then }(\sigma\models\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P (get-caller-error caller }

# outs)))

    else (case ioprog (IPC WAIT (SEND caller partner msg)) \sigma of
                Some(NO-ERRORS, \sigma})
            ((error-tab-transfer caller \sigma \sigma})
            (outs \leftarrow (mbind S (abort lift ioprog)); P(NO-ERRORS # outs)))^
            ((( th-flag) \sigma) caller = None) }
                (( th-flag) \sigma) caller =
                (( th-flag) (error-tab-transfer caller \sigma \sigma}))\mathrm{ caller ^
                (th-flag \sigma=th-flag (error-tab-transfer caller \sigma \sigma
            | Some(ERROR-MEM error-mem, 竹)=>
            ((set-error-mem-waits caller partner \sigma \sigma' error-mem msg) }
                (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P (ERROR-MEM error-mem #
    outs)))^
((( th-flag) (set-error-mem-maps caller partner \sigma 㐌 error-mem msg)) caller
=
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma 尔 error-mem msg)) partner
=
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma 的 error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma 自 error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, 竹)=>
((set-error-ipc-waits caller partner \sigma \sigma' error-IPC msg) }
(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-IPC error-IPC\# outs )))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))^
((( th-flag) (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)) partner
=
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
(( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner)
| None }=>(\sigma|=(P[])))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)

```
```

    fix aa b
    assume hyp1: a = (aa,b)
    then show ?thesis
    using hyp0 hyp1
    proof (cases ioprog (IPC WAIT (SEND caller partner msg)) \sigma)
    case None
    then show ?thesis
    using assms hyp0 hyp1
    by (simp add: valid-SE-def bind-SE-def)
    next
    case (Some ab)
    assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) \sigma=Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
        fix ac ba
        assume hyp3:ab=(ac, ba)
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3
        proof (cases ac)
            case NO-ERRORS
            assume hyp4:ac=NO-ERRORS
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)

```
 case None
 then show ?thesis
 by simp
next
 case (Some ad)
 assume hyp5: mbind FailSave \(S\) (abort lift \(\left._{\text {ioprog }}\right)\)
 (set-error-mem-waits caller partner \(\sigma\) ba error-memory msg)
= Some ad
 then show ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
 proof (cases ad)
 fix \(a e b b\)
 assume hyp 6: ad \(=(a e, b b)\)
 then show ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 by (simp add: valid-SE-def bind-SE-def)
 qed
 qed
 next
 case (ERROR-IPC error-IPC)
 assume hyp 4 :ac \(=E R R O R-I P C\) error-IPC
 then show ?thesis
 using hyp0 hyp 1 hyp2 hyp3 hyp 4
 proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)
 (set-error-ipc-waits caller partner \(\sigma\) ba error-IPC msg))
 case None
 then show ?thesis
 by simp
 next
 case (Some ad)
 assume hyp5: mbind FailSave (abort \(_{\text {lift }}\) ioprog)
 (set-error-ipc-waits caller partner \(\sigma\) ba error-IPC msg) \(=\)
Some ad
 then show ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5
 proof (cases ad)
 fix \(a e b b\)
 assume hyp 6: ad \(=(a e, b b)\)
 then show ?thesis
 using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
 by (simp add: valid-SE-def bind-SE-def)
 qed
 qed
 qed
 qed
 qed
 qed
qed
```

lemma abort-wait-send-obvious10'':
(\sigma = (outs \leftarrow (mbind ((IPC WAIT (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog )); P(get-caller-error caller }\sigma\#\mathrm{ \#outs ))))
^
(caller }\not\in\mathrm{ dom (( th-flag) ))}
(ioprog (IPC WAIT (SEND caller partner msg)) \sigma=None \longrightarrow (\sigma\models (P[])))^
((\foralla \sigma'.
(a=NO-ERRORS\longrightarrow
ioprog (IPC WAIT (SEND caller partner msg)) \sigma=Some (NO-ERRORS, \sigma')
\longrightarrow
((error-tab-transfer caller \sigma \sigma})\models
(outs \leftarrow(mbind S(abort lift ioprog));P(NO-ERRORS \# outs))))^
(\forall error-memory. a = ERROR-MEM error-memory \longrightarrow
ioprog (IPC WAIT (SEND caller partner msg)) \sigma = Some (ERROR-MEM
error-memory,}\mp@subsup{\sigma}{}{\prime})
((set-error-mem-waits caller partner \sigma 尔 error-memory msg)
|(outs}\leftarrow(mbind S(\mp@subsup{abort lift ioprog)); P(ERROR-MEM error-memory \#}{\#}{\prime
outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
ioprog (IPC WAIT (SEND caller partner msg)) \sigma = Some (ERROR-IPC
error-IPC, \sigma')}
((set-error-ipc-waits caller partner \sigma 尔 error-IPC msg)
|(outs}\leftarrow(mbind S(\mp@subsup{abort lift ioprog)); P( ERROR-IPC error-IPC\#}{l}{|
outs))\)))))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a=(aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)

```
```

    assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) \sigma= Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
    fix ac ba
    assume hyp3:ab=(ac, ba)
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
        case NO-ERRORS
        assume hyp4:ac=NO-ERRORS
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-waits caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-waits caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

```
```

            proof (cases ad)
                    fix ae bb
                    assume hyp6:ad=(ae,bb)
                    then show ?thesis
                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
                    by(simp add: valid-SE-def bind-SE-def)
                    qed
                qed
                next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)
                                    (set-error-ipc-waits caller partner \sigma ba error-IPC msg))
            case None
            then show ?thesis
            by simp
                next
                    case (Some ad)
                    assume hyp5: mbind FailSave S (abort lift ioprog)
                        (set-error-ipc-waits caller partner \sigma ba error-IPC msg)=
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-wait-send-obvious10':
(\sigma\models(outs }\leftarrow(\mathrm{ mbind ((IPC WAIT (SEND caller partner msg))\#S)
(abort lift exec-actionid-Mon)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(mbind S(\mp@subsup{abort lift exec-actionid-Mon)); P (get-caller-error}{}{\prime
caller \sigma \# outs)))) ^
(caller }\not\in\operatorname{dom}(( th-flag)\sigma)
(}\forallab\mathrm{ .
(a = NO-ERRORS }
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) \sigma = Some

```
```

(NO-ERRORS,b)}
((\sigma| current-thread := caller,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|))
=(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action id}}{\mathrm{ -Mon)}); P(NO-ERRORS \#
outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC }
exec-actionid}-Mon (IPC WAIT (SEND caller partner msg)) \sigma=Som
(ERROR-IPC error-IPC,b) \longrightarrow
((\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state id.th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))|)
\vDash(outs}\leftarrow(\mp@subsup{mbind S(\mp@subsup{abort lift exec-actionid}{i-Mon))}{});P(ERROR-IPC}{}{\prime
error-IPC\# outs)))))))
proof (cases mbind FailSave}S\mathrm{ (abort lift exec-action}\mp@subsup{\mp@code{Id}}{\mathrm{ -Mon) }\sigma)}{
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift exec-actionid-Mon) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1: a= (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) \sigma
= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

```
```

            case NO-ERRORS
            assume hyp4: ac=NO-ERRORS
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift exec-actionid-Mon)(error-tab-transfer
    caller \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S (abort lift exec-actionid-Mon) (error-tab-transfer
caller \sigma ba)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp%:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: WAIT-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SEND (id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split:split-if-asm )
next
case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm )
qed
qed
qed
next

```
case (ERROR-MEM error-memory)
assume hyp 4 :ac \(=E R R O R-M E M\) error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {exec-action }}^{\text {id }}\)-Mon)
(set-error-mem-waits caller partner \(\sigma\) ba error-memory msg))
case None
then show?thesis
by \(\operatorname{simp}\)
next
case (Some ad)
assume hyp5: mbind FailSave \(S\) (abort \(_{\text {lift }}\) exec-action \(\left._{\text {id }}-M o n\right)\)
(set-error-mem-waits caller partner \(\sigma\) ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp6: \(a d=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp 5 hyp6
by(auto simp add: exec-action \({ }_{i d}\)-Mon-def valid-SE-def bind-SE-def WAIT-SEND \({ }_{i d}\)-def
split : errors.split option.split option.split-asm split-if-asm)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp 4 :ac \(=E R R O R-I P C\) error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {exec-action }}^{\text {id }}\)-Mon)
(set-error-ipc-waits caller partner \(\sigma\) ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind \(_{\text {FailSave }} S\) (abort \(_{\text {lift }^{\prime}}\) exec-action \(_{\text {id }}\)-Mon)
(set-error-ipc-waits caller partner \(\sigma\) ba error-IPC msg) \(=\)
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: ad \(=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp 5 hyp6
by (auto simp add: exec-action id \(^{-M o n-d e f ~ v a l i d-S E-d e f ~ b i n d-S E-d e f ~}\)

WAIT-SEND \({ }_{i d}\)-def
split : errors.split option.split option.split-asm split-if-asm) qed qed qed
qed
qed
qed
qed
lemma abort-wait-send-obvious11:
\((\sigma \models(\) outs \(\leftarrow(\) mbind \(((\) IPC WAIT \((S E N D\) caller partner msg \()) \# S)\)
\(\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}-\) Mon \(\left.)\right) ; P\) outs \(\left.)\right)=\)
((caller \(\in \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ;\)
\(P(\) get-caller-error caller \(\sigma \#\) outs \()))) \wedge\)
(caller \(\notin \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\)
(\(\forall\) ab. (IPC-send-comm-check-st \({ }_{i d}\) caller partner \(\sigma \wedge\)
IPC-params-c4 caller partner \(\wedge\) IPC-params-c5 partner \(\sigma \longrightarrow\)
(\(\sigma \backslash\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-waiting caller (thread-list \(\sigma\)),
error-codes \(:=\) NO-ERRORS, th-flag \(\quad:=\) th-flag \(\sigma \mid)\))
\(\models\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ; P(\) NO-ERRORS \(\#\) outs)))) \(\wedge\)
(\(\forall\) error-IPC.
(
\(\neg\) IPC-send-comm-check-stid caller partner \(\sigma \longrightarrow\)
(\(\sigma \mid\) current-thread \(:=\) caller , thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(\quad:=E R R O R-I P C\) error-IPC-1-in-WAIT-SEND, th-flag \(\quad:=\) th-flag \(\sigma\) (caller \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-SEND), partner \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-SEND \()) \mid \models\) (outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.{ }_{i d}-M o n\right)\));
\(P(E R R O R-I P C\) error-IPC-1-in-WAIT-SEND\# outs \()))) \wedge\)
(\(a=\) ERROR-IPC error-IPC \(\longrightarrow\)
IPC-send-comm-check-stid caller partner \(\sigma \longrightarrow\)
((ᄀIPC-params-c4 caller partner \(\longrightarrow\)
\(b=\sigma(\mid\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-3-in-WAIT-SEND \() \wedge\)
error-IPC \(=\) error-IPC-3-in-WAIT-SEND) \(\wedge\)
(IPC-params-c4 caller partner \(\longrightarrow\)
(\(\neg\) IPC-params-c5 partner \(\sigma \longrightarrow\)
\(b=\) update-state-wait-send-params \(5 \sigma\) caller \(\wedge\)
error-codes (update-state-wait-send-params5 \(\sigma\) caller) \(=E R R O R-I P C\)
error-IPC) \(\wedge\)
\(\neg\) IPC-params-c5 partner \(\sigma))\)) \(\longrightarrow\)
```

    ((\sigma) current-thread := caller,
    thread-list := update-th-current caller (thread-list \sigma),
    error-codes := ERROR-IPC error-IPC,
    th-flag := th-flag \sigma
    (caller \mapsto(ERROR-IPC error-IPC),
    partner }\mapsto(ERROR-IPC error-IPC))D)
        F(outs}\leftarrow(\mp@subsup{m}{\mathrm{ bind S S abort lift exec-action id}}{\mathrm{ -Mon)});
                        P( ERROR-IPC error-IPC# outs))))))))
    ```
by (auto simp add: abort-wait-send-obvious10' exec-action \({ }_{\text {id }}\)-Mon-wait-send-obvious3
 exec-action \({ }_{i d}\)-Mon-wait-send-obvious4)
lemma abort-wait-recv-obvious10:
 \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(\left((I P C\right.\) WAIT \((R E C V\) caller partner msg) \() \# S)\left(\right.\) abort \(_{\text {lift }}\)
ioprog) \() ; P\) outs \()=\)
 (if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
 then \(\left(\sigma \models\right.\) (outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \()\)); \(P\) (get-caller-error caller \(\sigma\)
\# outs)))
 else (case ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma\) of
 Some (NO-ERRORS, \(\sigma^{\prime}\)) \(\Rightarrow\)
 (error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
 (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.)\right)\)
 \(\mid \operatorname{Some}\left(E R R O R-M E M\right.\) error-mem,\(\left.\sigma^{\prime}\right) \Rightarrow\)
 ((set-error-mem-waitr caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem
\# outs)))
 | Some (ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \Rightarrow\)
 ((set-error-ipc-waitr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\)
outs)))
 \(\mid\) None \(\Rightarrow(\sigma \mid=(P[]))))\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma\))
 case None
 then show ?thesis
 by \(\operatorname{simp}\)
next
 case (Some a)
 assume hyp0: mbind \(_{\text {FailSave }} S\) (abort \(_{l_{\text {lift }} \text { ioprog) }} \sigma=\) Some a
 then show ?thesis
 using hyp0
 proof (cases a)
 fix \(a a b\)
 assume hyp 1: \(a=(a a, b)\)
 then show?thesis
 using hyp0 hyp1
 proof (cases ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma\))
 case None
 then show ?thesis
```

    using assms hyp0 hyp1
    by (simp add: valid-SE-def bind-SE-def)
    next
        case (Some ab)
    assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
        fix ac ba
        assume hyp3:ab=(ac, ba)
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3
        proof (cases ac)
            case NO-ERRORS
            assume hyp4:ac = NO-ERRORS
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-mem-waitr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)

```
```

= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-waitr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-ipc-waitr caller partner \sigma ba error-IPC msg)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-wait-recv-obvious12:
(\sigma\models(outs }\leftarrow(\mathrm{ mbind }((IPC WAIT (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller }\in\mathrm{ dom (( th-flag) %)
then }(\sigma\models\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(get-caller-error caller }

# outs)))

```
```

    else (case ioprog (IPC WAIT (RECV caller partner msg)) \sigma of
            Some(NO-ERRORS, \sigma') =>
    ((error-tab-transfer caller \sigma \sigma})\models
        (outs \leftarrow (mbind S(abort lift ioprog));P(NO-ERRORS # outs)))^
    ((( th-flag) \sigma) caller = None ) ^
        (( th-flag) \sigma) caller =
        (( th-flag) (error-tab-transfer caller \sigma \sigma
        (th-flag \sigma = th-flag (error-tab-transfer caller \sigma \sigma
        | Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime}\mathrm{ ) }
    ((set-error-mem-waitr caller partner \sigma 尔 error-mem msg)
        \vDash(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-MEM error-mem #
    outs)))^
((( th-flag) (set-error-mem-maps caller partner \sigma 的 error-mem msg)) caller
=
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma 的 error-mem msg)) partner
=
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, \sigma')}
((set-error-ipc-waitr caller partner \sigma \sigma' error-IPC msg)
|(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-IPC error-IPC\#
outs)))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))^
((( th-flag) (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)) partner
=
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
(( th-flag) (set-error-ipc-maps caller partner \sigma 的 error-IPC msg)) partner)
| None }=>(\sigma|=(P[])))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aab
assume hyp 1: }a=(aa,b
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) \sigma)
case None

```
```

        then show ?thesis
        using assms hyp0 hyp1
        by (simp add: valid-SE-def bind-SE-def)
    next
    case (Some ab)
    assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
        fix ac ba
        assume hyp3:ab=(ac, ba)
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3
        proof (cases ac)
            case NO-ERRORS
            assume hyp4:ac = NO-ERRORS
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-mem-waitr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)

```
```

            assume hyp5: mbind FailSave S (abort lift ioprog)
                                    (set-error-mem-waitr caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-waitr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-waitr caller partner \sigma ba error-IPC msg) =
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-wait-recv-obvious $10^{\prime \prime}$ :
$\left(\sigma \models\left(\right.\right.$ outs $\leftarrow\left(\right.$ mbind $((I P C$ WAIT $(R E C V$ caller partner $m s g)) \# S)\left(\right.$ abort $_{\text {lift }}$ ioprog $)$ ); P outs $)$ ) $=$
$(($ caller $\in \operatorname{dom}(($ th-flag $) \sigma) \longrightarrow$

```
```

    (\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(get-caller-error caller }\sigma#\mathrm{ #uts ))))
    ^
(caller \# dom (( th-flag)\sigma) \longrightarrow
(ioprog (IPC WAIT (RECV caller partner msg)) \sigma=None \longrightarrow(\sigma\models(P[])))
^
((\foralla \sigma'.
(a=NO-ERRORS \longrightarrowioprog (IPC WAIT (RECV caller partner msg)) \sigma=
Some (NO-ERRORS, \sigma})
((error-tab-transfer caller \sigma \sigma )}
(outs \leftarrow(mbind S(abort lift ioprog));P(NO-ERRORS \# outs)))) ^
(\forall error-memory. a = ERROR-MEM error-memory \longrightarrow
ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some (ERROR-MEM
error-memory,}\mp@subsup{\sigma}{}{\prime})
((set-error-mem-waitr caller partner \sigma \sigma' error-memory msg)
\vDash ( o u t s ~ \leftarrow ( m b i n d ~ S ( a b o r t ~ l i f t ~ i o p r o g ) ) ; ~ P ( E R R O R - M E M ~
error-memory \# outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some (ERROR-IPC
error-IPC, \sigma')\longrightarrow
((set-error-ipc-waitr caller partner \sigma 尔 error-IPC msg)
=(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-IPC error-IPC\#
outs))\)))\)
proof (cases mbind FailSave}S(\mp@subsup{\mathrm{ abort lift ioprog) }\sigma)}{}{\mathrm{ ( }
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)

```
```

    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
    case NO-ERRORS
    assume hyp4:ac=NO-ERRORS
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-mem-waitr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-waitr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

```
```

            qed
            qed
        next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)
                                    (set-error-ipc-waitr caller partner \sigma ba error-IPC msg))
            case None
            then show ?thesis
            by simp
            next
            case (Some ad)
            assume hyp5: mbind FailSave S (abortlift ioprog)
                                    (set-error-ipc-waitr caller partner \sigma ba error-IPC msg) =
    Some ad
then show?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-wait-recv-obvious10':
(\sigma\models(outs }\leftarrow(\mathrm{ mbind ((IPC WAIT (RECV caller partner msg))\#S)
(abortlift exec-action id}\mp@subsup{|}{}{-Mon)});P\mathrm{ outs ))=
((caller \in dom (( th-flag)\sigma)\longrightarrow
(\sigma\models(outs }\leftarrow(\mp@subsup{m}{\mathrm{ bind S S (abort lift exec-action id}}{\mathrm{ -Mon) );}
P(get-caller-error caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma)\longrightarrow
(\forallab. (a)=NO-ERRORS \longrightarrow exec-actionid-Mon (IPC WAIT (RECV caller
partner msg)) }\sigma
Some (NO-ERRORS, b)}
((\sigma| current-thread := caller,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma D)
\vDash ( o u t s ~ \leftarrow ( m b i n d ~ S ( a b o r t l i f t ~ e x e c - a c t i o n i d _ { i d } ^ { - M o n ) ) ; ~ P ~ ( N O - E R R O R S ~ \# }
outs)))) ^

```
```

    (\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
    exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) \sigma=Some
    (ERROR-IPC error-IPC,b)}
((\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state id.th-flag := state id.th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))D)
=(outs }\leftarrow(\mp@subsup{m}{\mathrm{ bind S S (abort lift exec-actionid}}{\mathrm{ -Mon )}
P( ERROR-IPC error-IPC\# outs)))))))
proof (cases mbind FailSave}S(\mp@subsup{\mathrm{ abort lift exec-actionid}}{\mathrm{ -Mon) }}{~
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift exec-actionid-Mon) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC WAIT (RECV caller partner msg))
\sigma = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon)(error-tab-transfer
caller \sigma ba))
case None

```
```

            then show ?thesis
            by simp
        next
            case (Some ad)
    assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon) (error-tab-transfer
    caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7:error-codes ba =NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: WAIT-RECV id-def valid-SE-def bind-SE-def
exec-action}\mp@subsup{i}{id}{-Mon-def
split: split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
next
case (ERROR-IPC error-IPC)
assume hyp%:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
qed
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp 4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-mem-waitr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next

```
```

            case (Some ad)
            assume hyp5: mbind FailSave S (abort lift exec-action id-Mon)
                                    (set-error-mem-waitr caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
WAIT-RECV id-def
split : errors.split option.split option.split-asm split-if-asm)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-ipc-waitr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-ipc-waitr caller partner \sigma ba error-IPC msg)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
WAIT-RECV id-def
split : errors.split option.split option.split-asm split-if-asm)
qed
qed
qed
qed
qed
qed
qed

```
lemma abort-wait-recv-obvious11:
```

    \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) WAIT \((\) RECV caller partner \(m s g)) \# S)\)
                            \(\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\)-Mon \(\left.)\right) ; P\) outs \(\left.)\right)=\)
    ((caller \(\in\) dom \(((\) th-flag \() \sigma) \longrightarrow\)
        \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right)\);
                        \(P(\) get-caller-error caller \(\sigma \#\) outs \()))) \wedge\)
    (caller \(\notin\) dom \(((\) th-flag \() \sigma) \longrightarrow\)
        ( \(\forall a b\). (IPC-recv-comm-check-st \(i_{i d}\) caller partner \(\sigma \wedge\)
            IPC-params-c4 caller partner \(\wedge\) IPC-params-c5 partner \(\sigma \longrightarrow\)
            ( \(\sigma \mid\) current-thread \(:=\) caller ,
                thread-list \(:=\) update-th-waiting caller (thread-list \(\sigma\) ),
                error-codes \(:=\) NO-ERRORS,
                th-flag \(\quad:=\) th-flag \(\sigma \mid)\) )
                \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \#
    outs)))) $\wedge$

```
 \((\forall\) error-IPC.
 (
 \(\neg\) IPC-recv-comm-check-stid caller partner \(\sigma \longrightarrow\)
 (\(\sigma(\) current-thread \(:=\) caller ,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-I P C\) error-IPC-1-in-WAIT-RECV,
 th-flag \(\quad:=\) th-flag \(\sigma\)
 (caller \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-RECV),
 partner \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-RECV \()) \mid) \vDash\)
 (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.{ }_{i d}-M o n\right)\));
 \(P(E R R O R-I P C\) error-IPC-1-in-WAIT-RECV \# outs \()))) \wedge\)
 (\(a=\) ERROR-IPC error-IPC \(\longrightarrow\)
 IPC-recv-comm-check-st id \(_{\text {caller partner } \sigma \longrightarrow} \longrightarrow\)
 (\((\neg\) IPC-params-c4 caller partner \(\longrightarrow\)
 \(b=\sigma \mid\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=\) ERROR-IPC error-IPC-3-in-WAIT-RECV \() \wedge\)
 error-IPC \(=\) error-IPC-3-in-WAIT-RECV) \(\wedge\)
 (IPC-params-c4 caller partner \(\longrightarrow\)
 ((\(\neg\) IPC-params-c5 partner \(\sigma \longrightarrow\)
 \(b=\) update-state-wait-recv-params \(5 \sigma\) caller \(\wedge\)
 error-codes (update-state-wait-recv-params5 \(\sigma\) caller) \(=\) ERROR-IPC
error-IPC) \(\wedge\)
 \(\neg\) IPC-params-c5 partner \(\sigma))) \longrightarrow\)
 (\(\sigma(\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-I P C\) error-IPC,
 state \(_{\text {id }}\). th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma\)
 (caller \(\mapsto(E R R O R-I P C\) error-IPC),
 partner \(\mapsto(E R R O R-I P C\) error-IPC \()) \|)\)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}\)-Mon \(\left.)\right)\);
 \(P(E R R O R-I P C\) error-IPC \# outs \())))))))\)
 by (auto simp add: abort-wait-recv-obvious10' exec-action \({ }_{i d}\)-Mon-wait-recv-obvious3
 exec-action id \(^{\text {-Mon-wait-recv-obvious4) }}\)

\section*{M. 3 Symbolic Execution Rules for BUF stage}
```

lemma abort-buf-send-obvious10:
$\left(\sigma \models\left(\right.\right.$ outs $\leftarrow\left(\right.$ mbind $((I P C$ BUF $(S E N D$ caller partner $m s g)) \# S)\left(\right.$ abort $_{l i f t}$
ioprog) $) ;($ outs $))=$
(if caller $\in$ dom ( $($ th-flag $\sigma)$ )
then $\left(\sigma \models\right.$ (outs $\leftarrow$ (mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $)$ ); $P$ (get-caller-error caller $\sigma \#$
outs)))
else (case ioprog (IPC BUF (SEND caller partner msg)) $\sigma$ of
Some (NO-ERRORS, $\sigma^{\prime}$ ) $\Rightarrow$
(error-tab-transfer caller $\sigma \sigma^{\prime}$ ) $=$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P($ NO-ERRORS \# outs $\left.)\right)$
| Some (ERROR-MEM error-mem, $\left.\sigma^{\prime}\right) \Rightarrow$
((set-error-mem-bufs caller partner $\sigma \sigma^{\prime}$ error-mem msg)
$\models\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ ioprog $\left.)\right) ; P(E R R O R$-MEM error-mem
\# outs)))
| Some (ERROR-IPC error-IPC, $\left.\sigma^{\prime}\right) \Rightarrow$
((set-error-ipc-bufs caller partner $\sigma \sigma^{\prime}$ error-IPC msg)
$\vDash\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P(E R R O R-I P C$ error-IPC $\#$
outs)))
$\mid$ None $\Rightarrow(\sigma \models(P[]))))$
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma$ )
case None
then show?thesis
by $\operatorname{simp}$
next
case (Some a)
assume hyp0: mbind $_{\text {FailSave }} S$ ( abort $_{l_{\text {lift }} \text { ioprog) }} \sigma=$ Some a
then show ?thesis
using hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$
then show?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) $\sigma$ )
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) $\sigma=$ Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp $3: a b=(a c, b a)$
then show ?thesis
using hyp0 hyp1 hyp2 hyp3

```
```

    proof (cases ac)
            case NO-ERRORS
            assume hyp4:ac=NO-ERRORS
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
                            proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-mem-bufs caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-bufs caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed

```
```

            next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac=ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)
                                    (set-error-ipc-bufs caller partner \sigma ba error-IPC msg))
                case None
                then show ?thesis
                by simp
            next
                case (Some ad)
                    assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
                        (set-error-ipc-bufs caller partner \sigma ba error-IPC msg)=Some
    ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-buf-send-obvious12:
(\sigma\models(outs \leftarrow(mbind ((IPC BUF (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma)
then }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(get-caller-error caller }\sigma
outs)))
else (case ioprog (IPC BUF (SEND caller partner msg)) \sigma of
Some(NO-ERRORS, \sigma') =>
((error-tab-transfer caller \sigma \sigma})\models
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(NO-ERRORS \# outs)))^
((( th-flag)\sigma) caller = None ) ^
(( th-flag) \sigma) caller =
(( th-flag) (error-tab-transfer caller \sigma \sigma
(th-flag \sigma=th-flag (error-tab-transfer caller \sigma \sigma
| Some(ERROR-MEM error-mem, }\mp@subsup{\sigma}{}{\prime})
((set-error-mem-bufs caller partner \sigma \sigma' error-mem msg)
\vDash(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P (ERROR-MEM error-mem \#
outs)))^

```
```

    ((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) caller
    =
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner
=
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, 竹)=>
((set-error-ipc-bufs caller partner \sigma 尔 error-IPC msg)
|}\mathrm{ (outs }\leftarrow(mbind S(abort lift ioprog)); P( ERROR-IPC error-IPC\#
outs)))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))^
((( th-flag) (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)) partner
=
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
(( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner)
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave S(abort lift ioprog) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) \sigma = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis

```
```

    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
    case NO-ERRORS
    assume hyp4:ac = NO-ERRORS
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-bufs caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-bufs caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed

```
```

            qed
                next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)
                                    (set-error-ipc-bufs caller partner \sigma ba error-IPC msg))
                case None
                then show ?thesis
                by simp
            next
                case (Some ad)
                    assume hyp5: mbind FailSave S (abort lift ioprog)
                        (set-error-ipc-bufs caller partner \sigma ba error-IPC msg)=Some
    ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-buf-send-obvious10'':
(\sigma \models(outs \leftarrow (mbind ((IPC BUF (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
((caller \in dom (( th-flag)\sigma)}
(\sigma\models(outs }\leftarrow(\mp@subsup{mbind S S(abort lift ioprog )}{)}{\prime};P(\mathrm{ get-caller-error caller }\sigma\#\mathrm{ outs )}))
^
(caller }\not\in\mathrm{ dom (( th-flag) %) }
(ioprog (IPC BUF (SEND caller partner msg)) \sigma=None \longrightarrow (\sigma\models(P[])))^
((\foralla \sigma'.
(a=NO-ERRORS \longrightarrow ioprog (IPC BUF (SEND caller partner msg)) \sigma=
Some (NO-ERRORS, }\mp@subsup{\sigma}{}{\prime}\mathrm{ ) }
((error-tab-transfer caller \sigma \sigma})
(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog));P(NO-ERRORS \# outs))))^
(\forall error-memory. a = ERROR-MEM error-memory \longrightarrow
ioprog (IPC BUF (SEND caller partner msg)) \sigma=Some (ERROR-MEM
error-memory, }\mp@subsup{\sigma}{}{\prime})
((set-error-mem-bufs caller partner \sigma 尔 error-memory msg)

```
\(=\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-memory \# outs)))) \(\wedge\)
\((\forall\) error-IPC. \(a=\) ERROR-IPC error-IPC \(\longrightarrow\) ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some (ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \longrightarrow\)
((set-error-ipc-bufs caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\) outs))))))))
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma\))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some a
then show?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) \(\sigma\))
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some ab then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix \(a c b a\)
assume hyp \(3: a b=(a c, b a)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp 4 : ac \(=\) NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(^{\text {ioprog) }}\) (error-tab-transfer caller
\(\sigma b a)\))
case None
then show ?thesis
by simp
next
case (Some ad)
```

            assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
    caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-bufs caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind FailSave S (abort lift ioprog)
(set-error-mem-bufs caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-bufs caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)

```
```

                    assume hyp5: mbind FailSave S (abort lift ioprog)
                            (set-error-ipc-bufs caller partner \sigma ba error-IPC msg)=Some
    ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-buf-send-obvious10':
(\sigma\models(outs \leftarrow(mbind ((IPC BUF (SEND caller partner msg)) \#S)
(abortlift exec-actionid-Mon)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-action id
P(get-caller-error caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma) \longrightarrow
(\forallab. (a = NO-ERRORS \longrightarrow exec-actionid-Mon (IPC BUF (SEND caller
partner msg)) }\sigma
Some (NO-ERRORS,b)}
(( }\sigma|\mathrm{ current-thread := caller,
resource := foldl (\lambdam (addr,val). (m (addr:=\$ val))) (resource \sigma)
(zip (get-th-addrs partner \sigma) (get-msg-values msg \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|)
\models(outs}\leftarrow(\mathrm{ mbind S(abortlift exec-action id-Mon)); P(NO-ERRORS \#
outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC }
exec-actionid-Mon (IPC BUF (SEND caller partner msg)) \sigma = Some
(ERROR-IPC error-IPC,b)}
((\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state id.th-flag := state id.th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))|)
F(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon));

```
```

        P( ERROR-IPC error-IPC # outs )))))))
    proof (cases mbind FailSave}S(\mp@subsup{\mathrm{ abort lift exec-action}}{\mathrm{ id}}{}-Mon) \sigma
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift exec-actionid-Mon) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC BUF (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC BUF (SEND caller partner msg)) \sigma
= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon) ba)
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort (lift exec-actionid
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)

```
```

            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
            proof (cases error-codes ba)
                        case NO-ERRORS
                            assume hyp7:error-codes ba =NO-ERRORS
                            then show ?thesis
                            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
                            by (auto simp add: BUF-SEND (id
    exec-actionid-Mon-def
split: split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
next
case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
qed
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-mem-bufs caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-mem-bufs caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6

```
```

                    by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
                                    BUF-SEND (id
                    split : errors.split option.split list.split-asm split-if-asm)
                qed
            qed
        next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac=ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift exec-actionid-Mon)
                                    (set-error-ipc-bufs caller partner \sigma ba error-IPC msg))
                    case None
                    then show ?thesis
                by simp
                    next
                    case (Some ad)
                    assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon)
                        (set-error-ipc-bufs caller partner \sigma ba error-IPC msg)=Some
    ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
BUF-SEND id-def
split : errors.split option.split list.split-asm split-if-asm)
qed
qed
qed
qed
qed
qed
qed
lemma abort-buf-send-obvious11:
(\sigma\models(outs \leftarrow(mbind ((IPC BUF (SEND caller partner msg))\#S)
(\mp@subsup{abort lift exec-action}{id}{}-Mon)});P\mathrm{ outs )) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action id}}{\mathrm{ -Mon )});
P(get-caller-error caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma) \longrightarrow
(}\forallab\mathrm{ .
( a = NO-ERRORS \longrightarrowIPC-buf-check-stid caller partner \sigma\longrightarrow
((\sigma\ current-thread := caller,
resource := foldl ( }\lambdam(addr,val).(m(addr:=\mp@subsup{=}{\$}{}\mathrm{ val ))) (resource }\sigma

```
```

                                    (zip (get-th-addrs partner \sigma) (get-msg-values msg \sigma)),
            thread-list := update-th-ready caller
                        (update-th-ready partner
                        (thread-list \sigma)),
                            error-codes := NO-ERRORS,
                th-flag := th-flag \sigma|))
                            \models(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action }}{\mathrm{ id}
    outs))))}^
(a=NO-ERRORS ^msg= []\longrightarrowIPC-buf-check-stid caller partner \sigma\longrightarrow
((\sigma\ current-thread := caller,
resource := resource \sigma,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|))
\models(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-actionid-Mon)); P (NO-ERRORS \#}}{l
outs)))) ^
( a = ERROR-IPC error-IPC-1-in-BUF-SEND \longrightarrow
\negIPC-buf-check-stid caller partner \sigma\longrightarrow
((\sigma\current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND,
state}\mp@subsup{}{id}{}.th-flag := state id.th-flag \sigma
(caller \mapsto( ERROR-IPC error-IPC-1-in-BUF-SEND),
partner }\mapsto(ERROR-IPC error-IPC-1-in-BUF-SEND))|)
=(outs}\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon));
P( ERROR-IPC error-IPC-1-in-BUF-SEND\# outs)))))))
by (simp add: abort-buf-send-obvious10' exec-actionid-Mon-buf-send-obvious3, auto)

```
lemma abort-buf-recv-obvious10:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((I P C\) BUF \((R E C V\) caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \() ;\) P outs) \()=\)
(if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
then \(\left(\sigma \models\right.\) (outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) (get-caller-error caller \(\sigma\) \# outs)))
else (case ioprog (IPC BUF (RECV caller partner msg)) \(\sigma\) of
Some (NO-ERRORS,\(\left.\sigma^{\prime}\right) \Rightarrow\)
(error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
(outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.)\right)\)
| Some(ERROR-MEM error-mem, \(\left.\sigma^{\prime}\right) \Rightarrow\)
((set-error-mem-bufr caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \# outs)))
| Some(ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \Rightarrow\)
```

                ((set-error-ipc-bufr caller partner \sigma \sigma' error-IPC msg) \models
                            (outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC#
    outs)))
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog)\sigma=Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4: ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)(error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

```
```

    proof (cases ad)
            fix ae bb
            assume hyp6:ad=(ae,bb)
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
            by(simp add: valid-SE-def bind-SE-def)
        qed
    qed
    next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-bufr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-bufr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg)=Some
ad
then show ?thesis

```
```

                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
                    proof (cases ad)
                    fix ae bb
                    assume hyp6: ad = (ae,bb)
                    then show ?thesis
                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
                    by(simp add: valid-SE-def bind-SE-def)
                qed
                qed
            qed
            qed
    qed
    qed
    qed
lemma abort-buf-recv-obvious12:
(\sigma\models(outs \leftarrow (mbind ((IPC BUF (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller }\in\mathrm{ dom (( th-flag) %)
then }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P (get-caller-error caller }

# outs)))

    else (case ioprog (IPC BUF (RECV caller partner msg)) \sigma of
        Some(NO-ERRORS, \sigma') =>
        ((error-tab-transfer caller \sigma \sigma})
                (outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog));P(NO-ERRORS # outs)))^
                ((( th-flag) \sigma) caller = None ) ^
                (( th-flag) \sigma) caller =
                (( th-flag) (error-tab-transfer caller \sigma \sigma
                (th-flag \sigma= th-flag(error-tab-transfer caller \sigma \sigma
            | Some(ERROR-MEM error-mem, \sigma') =>
        ((set-error-mem-bufr caller partner \sigma \sigma' error-mem msg)
            |(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem #
    outs)))^
((( th-flag) (set-error-mem-maps caller partner \sigma 尔 error-mem msg)) caller
=
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner
=
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma 㐌 error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, 的) =>
((set-error-ipc-bufr caller partner \sigma 尔 error-IPC msg) }
(outs \leftarrow(mbind S(abort lift ioprog)); P( ERROR-IPC error-IPC\# outs)))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))^
((( th-flag) (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)) partner
=

```
```

            Some (ERROR-IPC error-IPC)) ^
            ((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
                    (( th-flag) (set-error-ipc-maps caller partner \sigma 㐌 error-IPC msg)) partner)
            | None }=>(\sigma\models(P[])))
    proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

```
```

    proof (cases ad)
            fix ae bb
            assume hyp6:ad=(ae,bb)
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
            by(auto simp add: valid-SE-def bind-SE-def)
        qed
    qed
    next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-bufr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-bufr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg)=Some
ad
then show ?thesis

```
```

                using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
                    proof (cases ad)
                    fix ae bb
                    assume hyp6:ad=(ae,bb)
                    then show ?thesis
                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
                    by(simp add: valid-SE-def bind-SE-def)
                qed
                qed
            qed
            qed
    qed
    qed
    qed
lemma abort-buf-recv-obvious10':
(\sigma\models(outs \leftarrow (mbind ((IPC BUF (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
((caller }\in\operatorname{dom}(( th-flag)\sigma)
(\sigma\models(outs}\leftarrow(mbind S(\mp@subsup{abort lift ioprog)}{)}{*};P(\mathrm{ get-caller-error caller }\sigma\#\mathrm{ \#outs ))))
\wedge
(caller \# dom (( th-flag)\sigma) \longrightarrow
(ioprog (IPC BUF (RECV caller partner msg)) \sigma=None \longrightarrow (\sigma\models(P[])))^
((\foralla \sigma .
(a=NO-ERRORS \longrightarrowioprog (IPC BUF (RECV caller partner msg)) \sigma=
Some (NO-ERRORS, 尔)\longrightarrow
((error-tab-transfer caller \sigma \sigma})
(outs \leftarrow(mbind S(abort lift ioprog));P(NO-ERRORS \# outs)))) ^
(
ioprog (IPC BUF (RECV caller partner msg)) \sigma = Some (ERROR-MEM
error-memory, 生)\longrightarrow
((set-error-mem-bufr caller partner \sigma \sigma' error-memory msg)
|(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-memory \#
outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
ioprog (IPC BUF (RECV caller partner msg)) \sigma = Some (ERROR-IPC
error-IPC, 尔)\longrightarrow
((set-error-ipc-bufr caller partner \sigma \sigma' error-IPC msg)
\vDash ( outs \leftarrow ( mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC\#
outs)))))))
proof (cases mbind FailSave S (abort lift ioprog) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0

```
```

proof (cases a)
fix aa b
assume hyp1: a= (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)(error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4

```
```

            proof (cases mbind FailSave S (abortlift ioprog)
                    (set-error-mem-bufr caller partner \sigma ba error-memory msg))
            case None
            then show ?thesis
            by simp
                next
            case (Some ad)
            assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
                    (set-error-mem-bufr caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg)=Some
ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp\& hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed

```

\section*{qed}
lemma abort-buf-recv-obvious10':
\((\sigma \vDash(\) outs \(\leftarrow(\) mbind \(((I P C\) BUF \((\) RECV caller partner \(m s g)) \# S)\) \(\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ; P\) outs \(\left.)\right)=\)
((caller \(\in \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\) \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\) (abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ;\) \(P(\) get-caller-error caller \(\sigma \#\) outs \()))) \wedge\)
(caller \(\notin\) dom \(((\) th-flag \() \sigma) \longrightarrow\)
(\(\forall\) a b. \(\left(a=\right.\) NO-ERRORS \(\longrightarrow\) exec-action \({ }_{i d}-M o n\) (IPC BUF (RECV caller
partner msg)) \(\sigma=\)
Some \((\) NO-ERRORS,\(b) \longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \(\left(\lambda m(a d d r, v a l) .\left(m\left(a d d r:=_{\$}\right.\right.\right.\) val \(\left.\left.)\right)\right)(\) resource \(\sigma)\)
(zip (get-th-addrs caller \(\sigma\)) (get-msg-values msg \(\sigma\))),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
(thread-list \(\sigma\)),
error-codes \(:=\) NO-ERRORS,
th-flag \(:=\) th-flag \(\sigma \mid\))
\(\models\left(\right.\) outs \(\left.\left.^{\leftarrow\left(\text { mbind } S\left(\text { abort }_{\text {lift }} \text { exec-action }\right.\right.}{ }_{\text {id }}-M o n\right)\right) ; P(\) NO-ERRORS \#
outs)))) \(\wedge\)
(\(\forall\) error-IPC. \(a=\) ERROR-IPC error-IPC \(\longrightarrow\)
exec-action \({ }_{i d}\)-Mon (IPC BUF (RECV caller partner msg)) \(\sigma=\) Some
(ERROR-IPC error-IPC, b) \(\longrightarrow\)
((\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC,
state \(_{i d}\).th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC),
partner \(\mapsto(E R R O R-I P C\) error-IPC \()) \mid)\)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}\)-Mon \(\left.)\right)\);
\(P(E R R O R-I P C\) error-IPC \# outs \()))))))\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {exec-action }}^{\text {id }}\)-Mon) \(\sigma\))
case None
then show?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0: mbind FailSave \(S\) (abort \(_{\text {lift }}\) exec-action \(_{\text {id }}\)-Mon) \(\sigma=\) Some \(a\)
then show ?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show ?thesis
using hyp0 hyp 1
proof (cases exec-action id \(^{-M o n}\) (IPC BUF (RECV caller partner msg)) \(\sigma\))
case None
```

        then show ?thesis
        using assms hyp0 hyp1
        by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
    next
    case (Some ab)
    assume hyp2: exec-actionid-Mon (IPC BUF (RECV caller partner msg)) \sigma
    = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon) ba)
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind FailSave S (abort lift exec-actionid-Mon) ba=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7:error-codes ba =NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: BUF-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm )
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )

```
```

            next
            case (ERROR-IPC error-IPC)
            assume hyp7:error-codes ba = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
            by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
                    split:split-if-asm )
            qed
        qed
    qed
    next
case (ERROR-MEM error-memory)
assume hyp4:ac=ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift exec-action id-Mon)
(set-error-mem-bufr caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-mem-bufr caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
BUF-RECV id
split : errors.split option.split list.split-asm split-if-asm)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift exec-actionid-Mon)
(set-error-ipc-bufr caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)

```

```

                            (set-error-ipc-bufr caller partner \sigma ba error-IPC msg)=Some
    ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
BUF-RECV id
split : errors.split option.split list.split-asm split-if-asm)
qed
qed
qed
qed
qed
qed
qed
lemma abort-buf-recv-obvious11:
(\sigma\models(outs \leftarrow(mbind ((IPC BUF (RECV caller partner msg)) \#S)
(\mp@subsup{abort lift exec-action}{id}{}-Mon)});P\mathrm{ outs )})
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(get-caller-error caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma)\longrightarrow
(}\forallab\mathrm{ .
(a=NO-ERRORS \longrightarrowIPC-buf-check-stid caller partner }\sigma
((\sigma\ current-thread := caller,
resource }:=\mathrm{ foldl ( }\lambdam(addr,val).(m(addr:=\$ val))) (resource \sigma)
(zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|))
\vDash ( outs _ { \leftarrow ( m _ { mind S S (abort lift exec-action id } ^ { -Mon ) ) ; ~ P ~ ( N O - E R R O R S ~ \# } }
outs))))}^
(a=NO-ERRORS ^msg= []\longrightarrowIPC-buf-check-stid caller partner }\sigma
((\sigma\current-thread := caller,
resource := resource \sigma,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,

```
```

            th-flag := th-flag \sigma|))
        =(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action id}}{\mathrm{ -Mon )}); P (NO-ERRORS #
    outs))))}^

```
 (\(\forall\) error-IPC. \(a=\) ERROR-IPC error-IPC-1-in-BUF-RECV \(\longrightarrow\)
 \(\neg I P C\)-buf-check-st \({ }_{\text {id }}\) caller partner \(\sigma \longrightarrow\)
 (\(\sigma \mid\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-I P C\) error-IPC-1-in-BUF-RECV,
 state \(_{\text {id }}\). th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma\)
 (caller \(\mapsto(E R R O R-I P C\) error-IPC-1-in-BUF-RECV \()\),
 partner \(\mapsto(E R R O R-I P C\) error-IPC-1-in-BUF-RECV \()) \mid)\)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ;\)
 \(P(E R R O R-I P C\) error-IPC-1-in-BUF-RECV \# outs \()\)))))) \()\)
by (simp add: abort-buf-recv-obvious10' exec-action \({ }_{i d}\)-Mon-buf-recv-obvious3, auto)

\section*{M. 4 Symbolic Execution Rules for MAP stage}
lemma abort-map-send-obvious10:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC MAP \((S E N D\) caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog \()) ;\) P outs) \()=\)
(if caller \(\in \operatorname{dom}((\) th-flag \(\sigma))\)
then \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\)
outs)))
 else (case ioprog (IPC MAP (SEND caller partner msg)) \(\sigma\) of
 Some (NO-ERRORS,\(\left.\sigma^{\prime}\right) \Rightarrow\)
 (error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
 \(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.)\right)\)
 \(\mid \operatorname{Some}\left(E R R O R-M E M\right.\) error-mem, \(\left.\sigma^{\prime}\right) \Rightarrow\)
 ((set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem
\# outs)))
 | Some(ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \Rightarrow\)
 ((set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\)
outs)))
 \(\mid\) None \(\Rightarrow(\sigma \models(P[]))))\)
proof (cases mbind \({ }_{F \text { FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma\))
 case None
 then show ?thesis
 by \(\operatorname{simp}\)
next
 case (Some a)
 assume hyp0: mbind \(_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma=\) Some a
 then show ?thesis
 using hyp0
 proof (cases a)
 fix \(a a b\)
 assume hyp 1: \(a=(a a, b)\)
```

    then show ?thesis
    using hyp0 hyp1
    proof (cases ioprog (IPC MAP (SEND caller partner msg)) \sigma)
    case None
    then show ?thesis
    using assms hyp0 hyp1
    by (simp add: valid-SE-def bind-SE-def)
    next
    case (Some ab)
    assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
        fix ac ba
    assume hyp3:ab=(ac, ba)
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
        case NO-ERRORS
        assume hyp 4:ac=NO-ERRORS
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3 hyp4
        proof (cases mbind FailSave S (abort lift ioprog) (error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-maps caller partner \sigma ba error-memory msg))
case None

```
```

            then show ?thesis
            by simp
                next
            case (Some ad)
            assume hyp5: mbind FailSave S (abort lift ioprog)
                (set-error-mem-maps caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg) =
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-map-send-obvious12:

```
```

    (\sigma\models(outs \leftarrow(mbind ((IPC MAP (SEND caller partner msg))#S)(abort lift
    ioprog)});P\mathrm{ outs) ) =
(if caller }\in\mathrm{ dom ( (th-flag }\sigma)
then }(\sigma\models\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(get-caller-error caller }\sigma
outs)))
else (case ioprog (IPC MAP (SEND caller partner msg)) \sigma of
Some(NO-ERRORS, \sigma')}
((error-tab-transfer caller \sigma \sigma})|
(outs \leftarrow (mbind S(abortlift ioprog)); P(NO-ERRORS \# outs))) ^
((( th-flag) \sigma) caller = None) }
((( th-flag) \sigma) caller =
(( th-flag) (error-tab-transfer caller \sigma \sigma')) caller) ^
(th-flag \sigma=th-flag (error-tab-transfer caller \sigma \sigma
| Some(ERROR-MEM error-mem, 䭫)=>
((set-error-mem-maps caller partner \sigma \sigma' error-mem msg)
=(outs \leftarrow(mbind S(abortlift ioprog)); P(ERROR-MEM error-mem

# outs)))^

                            ((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))
    caller =
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma 尔 error-mem msg))
partner =
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma 尔 error-mem msg))
caller =
(( th-flag) (set-error-mem-maps caller partner \sigma 㐌 error-mem msg))
partner)
| Some(ERROR-IPC error-IPC, 泘) =>
((set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)
|}(\mathrm{ outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-IPC error-IPC\#
outs)))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller
=
Some (ERROR-IPC error-IPC))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner
=
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller
=
(( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) partner)
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis

```
```

using hyp0
proof (cases a)
fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac,ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog) (error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba)=Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis

```
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog }}\))
(set-error-mem-maps caller partner \(\sigma\) ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog }}\)) (set-error-mem-maps caller partner \(\sigma\) ba error-memory msg)
\(=\) Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: ad \(=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp 5 hyp6
by (simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp 4 :ac \(=E R R O R-I P C\) error-IPC
then show? thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) (set-error-ipc-maps caller partner \(\sigma\) ba error-IPC msg))
case None
then show?thesis
by simp
next
case (Some ad)
assume hyp 5: mbind \(_{\text {FailSave }} S\) (abort lift \(\left._{\text {ioprog }}\right)\)
(set-error-ipc-maps caller partner \(\sigma\) ba error-IPC msg) \(=\)
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp 4 hyp5
proof (cases ad)
fix \(a e b b\)
assume hyp 6: ad \(=(a e, b b)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-map-send-obvious10':
\(\left(\sigma \vDash\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(\left((I P C\right.\) MAP \((S E N D\) caller partner msg) \() \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \() ; P\) outs \()=\)
\(((\) caller \(\in \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.\left.)\right)\right)\right)\) \(\wedge\)
(caller \(\notin \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\)
(ioprog (IPC MAP \((\) SEND caller partner msg \()) \sigma=\) None \(\longrightarrow(\sigma \models(P[]))) \wedge\) (\(\forall a \sigma^{\prime}\).
\((a=\) NO-ERRORS \(\longrightarrow \operatorname{ioprog}(I P C\) MAP \((S E N D\) caller partner \(m s g)) \sigma=\) Some (NO-ERRORS, \(\sigma^{\prime}\)) \(\longrightarrow\)
\(\left(\left(\right.\right.\) error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \({ }_{\text {lift }}\) ioprog \()\)); \(P\) \((\) NO-ERRORS \# outs \()))) \wedge\)
(\(\forall\) error-memory. \(a=E R R O R\)-MEM error-memory \(\longrightarrow\)
ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some (ERROR-MEM error-memory, \(\left.\sigma^{\prime}\right) \longrightarrow\)
((set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-memory msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-memory \# outs)))) \(\wedge\)
\((\forall\) error-IPC. \(a=E R R O R-I P C\) error-IPC \(\longrightarrow\) ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some (ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \longrightarrow\)
((set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
\(\equiv\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\) outs))))))))
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog) \(\sigma\))
case None
then show?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some a
then show?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) \(\sigma\))
case None
then show? ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
```

    case (Some ab)
    assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) \sigma = Some ab
    then show ?thesis
    using hyp0 hyp1 hyp2
    proof (cases ab)
    fix ac ba
    assume hyp3:ab=(ac, ba)
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
        case NO-ERRORS
        assume hyp4:ac=NO-ERRORS
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abort lift ioprog) (error-tab-transfer caller
    \sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-mem-maps caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-mem-maps caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis

```
```

            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
            proof (cases ad)
                    fix ae bb
                    assume hyp6: ad = (ae,bb)
                    then show ?thesis
                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
                    by(simp add: valid-SE-def bind-SE-def)
            qed
        qed
        next
            case (ERROR-IPC error-IPC)
            assume hyp4:ac = ERROR-IPC error-IPC
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
            proof (cases mbind FailSave S (abort lift ioprog)
                                    (set-error-ipc-maps caller partner \sigma ba error-IPC msg))
            case None
            then show ?thesis
            by simp
            next
                case (Some ad)
                    assume hyp5: mbind FailSave S (abort lift ioprog)
                    (set-error-ipc-maps caller partner \sigma ba error-IPC msg)=
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-map-send-obvious10':
(\sigma\models(outs \leftarrow (mbind ((IPC MAP (SEND caller partner msg))\#S)
(abort lift exec-actionid-Mon)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(get-caller-error caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma)}
(\forallab. (a = NO-ERRORS \longrightarrow exec-actionid-Mon (IPC MAP (SEND caller
partner msg)) }\sigma

```
```

                            Some (NO-ERRORS,b) \longrightarrow
    (( }\sigma|\mathrm{ current-thread := caller,
resource := foldl (\lambdam (src,dst). (m(src\bowtiedst))) (resource \sigma)
(zip msg (get-th-addrs partner \sigma)),
thread-list := update-th-ready caller
( update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|))
\models ( outs \leftarrow ( m _ { mind S S(abort lift exec-action id } ^ { -Mon) ) ; ~ P ( N O - E R R O R S ~ \# }
outs))))\))
proof (cases mbind FailSave}S(\mp@subsup{\mathrm{ abort lift exec-actionid}}{\mathrm{ -Mon) }}{
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift exec-actionid-Mon) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC MAP (SEND caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC MAP (SEND caller partner msg)) \sigma
= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-action}\mp@subsup{\mathrm{ id}}{}{\prime}-Mon) ba)
case None
then show ?thesis

```
```

    by simp
    next
        case (Some ad)
            assume hyp5: mbind FailSave S (abort lift exec-actionid
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7:error-codes ba =NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: MAP-SEND (id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
next
case (ERROR-IPC error-IPC)
assume hyp%:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
qed
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-mem-maps caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)

```
```

            assume hyp5: mbind FailSave}S(\mp@subsup{\mathrm{ abort lift exec-actionid-Mon)}}{\mathrm{ ( }}{\mathrm{ ( }
                                    (set-error-mem-maps caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
MAP-SEND id-def
split : errors.split option.split list.split-asm split-if-asm)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift exec-actionid-Mon)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
MAP-SEND id-def
split : errors.split option.split list.split-asm split-if-asm)
qed
qed
qed
qed
qed
qed
qed
lemma abort-map-send-obvious11:

```
```

$(\sigma \models($ outs $\leftarrow($ mbind $(($ IPC MAP $(S E N D$ caller partner $m s g)) \# S)$
$\left(\right.$ abort $_{\text {lift }}$ exec-action ${ }_{i d}-$ Mon $\left.)\right) ; P$ outs $\left.)\right)=$
((caller $\in \operatorname{dom}(($ th-flag $) \sigma) \longrightarrow$
$\left(\sigma \models\left(\right.\right.$ outs $\leftarrow\left(\right.$ mbind $S$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{\text {id }}-M o n\right)\right) ;$
$P($ get-caller-error caller $\sigma \#$ outs $)))) \wedge$
(caller $\notin$ dom $(($ th-flag $) \sigma) \longrightarrow$
( $\forall$ a b. $(a=$ NO-ERRORS $\longrightarrow$
( $\sigma($ current-thread $:=$ caller,
resource $\quad:=$ foldl $(\lambda m(s r c, d s t) .(m(\operatorname{src} \bowtie d s t)))($ resource $\sigma)$
(zip msg (get-th-addrs partner $\sigma$ )),
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORS,
th-flag $\quad:=$ th-flag $\sigma \mid)$ )
$\models\left(\right.$ outs $\left.\left.^{\leftarrow\left(\text { mbind } S\left(\text { abort }_{\text {lift }} \text { exec-action }\right.\right.}{ }_{\text {id }}-M o n\right)\right) ; P($ NO-ERRORS \#
outs) $)$ )) ) $) \wedge$
(caller $\notin$ dom $(($ th-flag $) \sigma) \longrightarrow$
( $\forall a b .(a=N O-E R R O R S \wedge m s g=[] \longrightarrow$
( $\sigma \backslash$ current-thread $:=$ caller,
resource $:=($ resource $\sigma)$,
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORS,
th-flag $\quad:=$ th-flag $\sigma \mid)$ )
$\models\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right) ; P($ NO-ERRORS \#
outs)) )) )) )
by (auto simp add: abort-map-send-obvious10' exec-action id $^{\prime}$-Mon-map-send-obvious3)

```
lemma abort-map-recv-obvious10:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC MAP \((\) RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \() ;(\) outs \())=\)
(if caller \(\in\) dom \(((\) th-flag \(\sigma))\)
then \(\left(\sigma \models\right.\) (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs)))
else (case ioprog (IPC MAP (RECV caller partner msg)) \(\sigma\) of
Some (NO-ERRORS,\(\left.\sigma^{\prime}\right) \Rightarrow\)
(error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
(outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.)\right)\)
| Some(ERROR-MEM error-mem, \(\left.\sigma^{\prime}\right) \Rightarrow\)
((set-error-mem-mapr caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \# outs)))
| Some(ERROR-IPC error-IPC, \(\left.\sigma^{\prime}\right) \Rightarrow\)
```

((set-error-ipc-mapr caller partner \sigma 尔 error-IPC msg)
\models(outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-IPC error-IPC \#
outs)))
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave S (abort lift ioprog)\sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog) (error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

```
```

    proof (cases ad)
            fix ae bb
            assume hyp6:ad=(ae,bb)
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
            by(simp add: valid-SE-def bind-SE-def)
        qed
    qed
    next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-mem-maps caller partner \sigma ba error-memory msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-mem-maps caller partner \sigma ba error-memory msg)
= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg) =
Some ad
then show ?thesis

```
```

                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
                    proof (cases ad)
                    fix ae bb
                    assume hyp6: ad = (ae,bb)
                    then show ?thesis
                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
                    by(simp add: valid-SE-def bind-SE-def)
                qed
                qed
            qed
            qed
    qed
    qed
    qed
lemma abort-map-recv-obvious12:
(\sigma\models(outs \leftarrow(mbind ((IPC MAP (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller }\in\mathrm{ dom ( (th-flag }\sigma)
then ( }\sigma\models\mathrm{ (outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P (get-caller-error caller }

# outs)))

    else (case ioprog (IPC MAP (RECV caller partner msg)) \sigma of
        Some(NO-ERRORS, \sigma})
        (((error-tab-transfer caller \sigma \sigma})
                (outs \leftarrow (mbind S(abortlift ioprog)); P (NO-ERRORS # outs)))^
                ((( th-flag)\sigma) caller = None) ^
                ((( th-flag) \sigma) caller =
                (( th-flag) (error-tab-transfer caller \sigma \sigma}))\mathrm{ caller ) ^
                    (th-flag \sigma=th-flag (error-tab-transfer caller \sigma \sigma
            |ome(ERROR-MEM error-mem, \sigma')}
        (((set-error-mem-mapr caller partner \sigma 的 error-mem msg)
            =(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(ERROR-MEM error-mem #
    outs)))^
((( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)) caller
=
Some (ERROR-MEM error-mem))^
((( th-flag) (set-error-mem-maps caller partner \sigma 的 error-mem msg))
partner =
Some (ERROR-MEM error-mem)) ^
((( th-flag) (set-error-mem-maps caller partner \sigma 尔 error-mem msg)) caller
=
(( th-flag) (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))
partner))
Some(ERROR-IPC error-IPC, \sigma})
(((set-error-ipc-mapr caller partner \sigma \sigma' error-IPC msg)
|(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC\#
outs)))^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))^

```
```

    ((( th-flag) (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)) partner
    =
Some (ERROR-IPC error-IPC)) ^
((( th-flag) (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg)) caller =
(( th-flag) (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)) partner))
| None }=>(\sigma\models(P[])))
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma\mathrm{ )
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort (lift ioprog) }\sigma=\mathrm{ Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp 1: a=(aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac,ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog) (error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog) (error-tab-transfer
caller \sigma ba) = Some ad

```
```

    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
    proof (cases ad)
        fix ae bb
        assume hyp6: ad = (ae,bb)
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
        by(auto simp add: valid-SE-def bind-SE-def )
        qed
    qed
    next
        case (ERROR-MEM error-memory)
    assume hyp4:ac=ERROR-MEM error-memory
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abort lift ioprog)
                (set-error-mem-maps caller partner \sigma ba error-memory msg))
        case None
        then show ?thesis
        by simp
    next
        case (Some ad)
        assume hyp5: mbind FailSave S (abort lift ioprog)
                (set-error-mem-maps caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg) =

```
```

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed
qed
qed
qed
lemma abort-map-recv-obvious10':
(\sigma =(outs }\leftarrow(\mathrm{ mbind ((IPC MAP (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
(\sigma\models(outs \leftarrow(mbind S(abortlift ioprog)); P(get-caller-error caller \sigma \# outs))))
^
(caller }\not\in\mathrm{ dom (( th-flag) ) )}
(ioprog (IPC MAP (RECV caller partner msg)) \sigma=None \longrightarrow (\sigma\models (P[])))^
((\foralla \sigma'.
(a=NO-ERRORS \longrightarrow ioprog (IPC MAP (RECV caller partner msg)) \sigma=
Some (NO-ERRORS, \sigma')}
((error-tab-transfer caller \sigma \sigma})
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog));P(NO-ERRORS \# outs)))) ^
(\forall error-memory. }a=ERROR-MEM error-memory \longrightarrow
ioprog (IPC MAP (RECV caller partner msg)) \sigma = Some (ERROR-MEM
error-memory, }\mp@subsup{\sigma}{}{\prime})
((set-error-mem-maps caller partner \sigma 尔 error-memory msg) }
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P (ERROR-MEM error-memory \#
outs)))) ^
(\forall error-IPC. a = ERROR-IPC error-IPC \longrightarrow
ioprog (IPC MAP (RECV caller partner msg)) \sigma = Some (ERROR-IPC
error-IPC, \sigma')}
((set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg) }
(outs }\leftarrow(mbind S(abort lift ioprog)); P( ERROR-IPC error-IPC\#
outs))))))))
proof (cases mbind FailSave S (abort (ift ioprog) \sigma)
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog) }\sigma=\mathrm{ Some a

```
```

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) \sigma)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)
next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) \sigma=Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3:ab=(ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4:ac=NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)(error-tab-transfer caller
\sigma ba))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave}S\mathrm{ (abort lift ioprog)(error-tab-transfer
caller \sigma ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def )
qed
qed
next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory

```
```

    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3 hyp4
    proof (cases mbind FailSave S (abortlift ioprog)
                                    (set-error-mem-maps caller partner \sigma ba error-memory msg))
    case None
    then show ?thesis
    by simp
    next
    case (Some ad)
    assume hyp5: mbind FailSave S (abort lift ioprog)
                (set-error-mem-maps caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abortlift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift ioprog)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg)=
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)
qed
qed
qed
qed

```
```

qed
qed
qed

```
lemma abort-map-recv-obvious10':
\((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) MAP \((\) RECV caller partner msg \()) \# S)\)
\(\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ; P\) outs \(\left.)\right)=\)
\(((\) caller \(\in \operatorname{dom}((\) th-flag \() \sigma) \longrightarrow\) \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ;\) \(P(\) get-caller-error caller \(\sigma \#\) outs \()))) \wedge\)
(caller \(\notin\) dom \(((\) th-flag \() \sigma) \longrightarrow\)
(\(\forall\) a b. \(\left(a=\right.\) NO-ERRORS \(\longrightarrow\) exec-action \({ }_{i d}-\) Mon (IPC MAP (RECV caller partner msg)) \(\sigma=\)

Some \((N O-E R R O R S, b) \longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \((\lambda m(s r c, d s t) .(m(\operatorname{src} \bowtie d s t)))(\) resource \(\sigma)\)
(zip msg (get-th-addrs caller \(\sigma\))),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
(thread-list \(\sigma\))),
error-codes \(:=\) NO-ERRORS,
th-flag \(\quad:=\) th-flag \(\sigma \mid\))
\(\models\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \# outs) \()\)))))
proof (cases mbind \(_{\text {FailSave }} S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(_{\text {id }}-\) Mon) \(\sigma\))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0: mbind \(_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) exec-action \(_{i d}\)-Mon) \(\sigma=\) Some a
then show?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show ?thesis
using hyp0 hyp1
proof (cases exec-action \({ }_{i d}-\) Mon (IPC MAP (RECV caller partner msg)) \(\sigma\))
case None
then show ?thesis
using assms hyp0 hyp1

next
case (Some ab)
assume hyp2: exec-action \({ }_{i d}-\) Mon \(^{\text {(IPC MAP (RECV caller partner msg) }) ~} \sigma\) \(=\) Some \(a b\)
then show ?thesis
using hyp0 hyp1 hyp2
```

    proof (cases ab)
        fix ac ba
    assume hyp3:ab=(ac, ba)
    then show ?thesis
    using hyp0 hyp1 hyp2 hyp3
    proof (cases ac)
        case NO-ERRORS
        assume hyp4:ac=NO-ERRORS
        then show ?thesis
        using hyp0 hyp1 hyp2 hyp3 hyp4
        proof (cases mbind FailSave S (abortlift exec-actionid-Mon) ba)
            case None
            then show ?thesis
            by simp
        next
            case (Some ad)
                assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon) ba=
    Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad = (ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: MAP-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def
split: split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
next
case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def
split: split-if-asm )
qed
qed

```
```

        qed
        next
            case (ERROR-MEM error-memory)
            assume hyp4:ac = ERROR-MEM error-memory
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3 hyp4
    ```

```

                            (set-error-mem-maps caller partner \sigma ba error-memory msg))
        case None
        then show ?thesis
        by simp
    next
        case (Some ad)
        assume hyp5: mbind FailSave S (abort lift exec-action id-Mon)
                (set-error-mem-maps caller partner \sigma ba error-memory msg)
    = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6:ad=(ae,bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
MAP-RECV Vid-def
split : errors.split option.split list.split-asm split-if-asm)
qed
qed
next
case (ERROR-IPC error-IPC)
assume hyp4:ac=ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbind FailSave S (abort lift exec-action_dd-Mon)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg))
case None
then show ?thesis
by simp
next
case (Some ad)
assume hyp5: mbind FailSave S (abort lift exec-actionid-Mon)
(set-error-ipc-maps caller partner \sigma ba error-IPC msg) =
Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae,bb)
then show ?thesis

```
```

                    using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
                    by(auto simp add: exec-action}\mp@subsup{\mathrm{ id}}{}{-Mon-def valid-SE-def bind-SE-def
                                    MAP-RECV id
                            split : errors.split option.split list.split-asm split-if-asm)
                qed
                qed
            qed
        qed
    qed
    qed
    qed
lemma abort-map-recv-obvious11:
(\sigma\models(outs \leftarrow(mbind ((IPC MAP (RECV caller partner msg))\#S)
(abort lift exec-actionid-Mon)); P outs)) =
((caller }\in\operatorname{dom}((\mathrm{ th-flag) ) )}
(\sigma\models(outs }\leftarrow(mbind S(\mp@subsup{abort lift exec-action id}{\}{\prime}-Mon))
P(get-caller-error caller \sigma \# outs)))) ^
(caller \# dom (( th-flag)\sigma)\longrightarrow
(}\forallab\mathrm{ .
(a = NO-ERRORS \longrightarrow
((\sigma| current-thread := caller,
resource := foldl (\lambdam (src,dst). (m (src\bowtiedst)))(resource \sigma)
(zip msg (get-th-addrs caller \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|))
\models(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S(abort lift exec-actionid-Mon)); P (NO-ERRORS \#}}{l
outs)))))) ^
(caller }\not=\operatorname{dom}(( th-flag)\sigma)\wedge msg= []
(}\forallab\mathrm{ .
(a=NO-ERRORS \longrightarrow
((\sigma\ current-thread := caller,
resource := resource }\sigma\mathrm{ ,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|))
\vDash ( outs \leftarrow ( m b i n d ~ S ( a b o r t ~ l i f t ~ e x e c - a c t i o n ~ i d - M o n ) ) ; ~ P ( N O - E R R O R S ~ \# ^ { mb }
outs)))))))
by (auto simp add:abort-map-recv-obvious10' exec-actionid-Mon-map-recv-obvious3)

```

\section*{M. 5 Symbolic Execution Rules for DONE stage}
lemma abort-done-send-obvious11:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC DONE \((S E N D\) caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog \()\)) \(P\) outs \())=\)
(if caller \(\in\) dom \(((\) th-flag \() \sigma)\)
then ((remove-caller-error caller \(\sigma) \vDash\)
(outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog)); \(P\) (get-caller-error caller \(\sigma \#\)
outs)))
else (if ioprog (IPC DONE (SEND caller partner msg)) \(\sigma \neq\) None
then \(\left(\sigma \models\right.\) (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \#
outs)))
else \((\sigma \models(P[]))))\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift ioprog)(remove-caller-error caller \(\sigma\))) case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some a)
assume hyp 0: mbind \(_{\text {FailSave }} S\) (abort lift \(^{\text {ioprog })(\text { remove-caller-error caller } \sigma)}\)
=
Some a
then show ?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp1: \(a=(a a, b)\)
then show? thesis
using hyp0 hyp 1
proof (cases mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma\))
case None
then show ?thesis
by \(\operatorname{simp}\)
next
case (Some ab)
assume hyp2: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some ab
then show ?thesis
using hyp0 hyp 1 hyp2
proof (cases ab)
fix \(a c b a\)
assume hyp3: \(a b=(a c, b a)\)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add: valid-SE-def bind-SE-def split: option.split)
 qed
 qed
 qed
qed
lemma abort-done-send-obvious12:
```

    (\sigma\models(outs \leftarrow(mbind ((IPC DONE (SEND caller partner msg))#S)(\mp@subsup{abort lift}{l}{}|=\mp@code{m}
    ioprog)); P outs)) =
(if caller }\in\mathrm{ dom (( th-flag) %)
then ((((remove-caller-error caller \sigma) }
(outs }\leftarrow(mbind S(abort lift ioprog)); P(get-caller-error caller \sigma \#
outs))) ^
((( th-flag) (remove-caller-error caller \sigma)) caller = None) }\wedge
caller }\not=\mathrm{ partner }
((( th-flag) \sigma) partner =
(( th-flag) (remove-caller-error caller \sigma)) partner)) \vee
(((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P(get-caller-error caller }\sigma
outs))) ^
((( th-flag) (remove-caller-error caller \sigma)) caller = None) }\wedge
caller = partner ^
((( th-flag) (remove-caller-error caller \sigma)) partner = None)))
else (if ioprog (IPC DONE (SEND caller partner msg)) \sigma\not= None
then }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P (NO-ERRORS \#
outs)))
else (\sigma\models(P[]))))
proof (cases mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma)
=

```

\section*{Some a}
```

then show ?thesis
using hyp0
proof (cases a)
fix $a a b$
assume hyp 1: $a=(a a, b)$
then show ?thesis
using hyp0 hyp 1
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog })} \sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: mbind ${ }_{\text {FailSave }} S$ ( abort $_{\text {lift }}$ ioprog) $\sigma=$ Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp 3: $a b=(a c, b a)$
then show ?thesis

```
```

                using hyp0 hyp1 hyp2 hyp3
            by (auto simp add: valid-SE-def bind-SE-def split:option.split)
        qed
    qed
    qed
    qed
lemma abort-done-send-obvious11':
(\sigma\models(outs \leftarrow(mbind ((IPC DONE (SEND caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
((caller \in dom (( th-flag)\sigma) \longrightarrow
((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(get-caller-error caller }\sigma\#\mathrm{ outs ))))
^
(caller }\not\in\operatorname{dom}(( th-flag)\sigma)
ioprog (IPC DONE (SEND caller partner msg)) \sigma\not= None \longrightarrow
(\sigma\models(outs \leftarrow(mbind S(abort lift ioprog)); P(NO-ERRORS \# outs))))^
(caller \& dom ( (th-flag \sigma)) ^
ioprog (IPC DONE (SEND caller partner msg)) \sigma= None }
(\sigma\models(P[]))))
proof (cases mbind FailSave S (abortlift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma)
=

```

\section*{Some a}
```

then show?thesis
using hyp0
proof (cases a)
fix $a a b$
assume hyp1: $a=(a a, b)$
then show ?thesis
using hyp0 hyp 1
proof (cases mbind ${ }_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma$ )
case None
then show ?thesis
by $\operatorname{simp}$
next
case (Some ab)
assume hyp2: mbind $_{\text {FailSave }} S$ (abort lift $_{\text {ioprog) }} \sigma=$ Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix $a c b a$
assume hyp3: $a b=(a c, b a)$
then show ?thesis

```
```

                using hyp0 hyp1 hyp2 hyp3
            by (simp add: valid-SE-def bind-SE-def split:option.split)
        qed
    qed
    qed
    qed

```
lemma abort-done-recv-obvious11:
 \(\left(\sigma \mid=\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC DONE \((R E C V\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\)
ioprog) \() ;(\) outs \())=\)
 (if caller \(\in \operatorname{dom}((\) th-flag \(\sigma))\)
 then ((remove-caller-error caller \(\sigma) \models\)
 (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\)
outs)))
 else
 (if ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None
 then \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right)\)
 else \((\sigma \models(P[]))))\)
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\)))
 case None
 then show ?thesis
 by \(\operatorname{simp}\)
next
 case (Some a)
 assume hyp0: mbind \({ }_{\text {FailSave }} S\) (abort \(_{\text {lift }}\) ioprog)(remove-caller-error caller \(\sigma\))
\(=\)

\section*{Some a}
then show?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp1: \(a=(a a, b)\)
then show ?thesis
using hyp0 hyp1
proof (cases mbind \({ }_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma\))
case None
then show ?thesis
by simp
next
case (Some ab)
assume hyp2: mbind \(_{\text {FailSave }} S\) (abort lift \(_{\text {ioprog) }} \sigma=\) Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix \(a c b a\)
assume hyp3: \(a b=(a c, b a)\)
then show ?thesis
```

            using hyp0 hyp1 hyp2 hyp3
            by (auto simp add: valid-SE-def bind-SE-def split:option.split)
        qed
    qed
    qed
    qed
lemma abort-done-recv-obvious12:
(\sigma\models(outs \leftarrow (mbind ((IPC DONE (RECV caller partner msg))\#S)(abort lift
ioprog)); P outs)) =
(if caller \in dom ( (th-flag \sigma))
then ((((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mathrm{ mbind S (abort lift ioprog)); P(get-caller-error caller }\sigma
outs))) ^
((( th-flag) (remove-caller-error caller \sigma)) caller = None )
(((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(get-caller-error caller }\sigma
outs))) ^
((( th-flag) (remove-caller-error caller \sigma)) caller = None )}\wedge
caller = partner ^
((( th-flag) (remove-caller-error caller \sigma)) partner = None)))
else
(if ioprog (IPC DONE (RECV caller partner msg)) \sigma\not= None
then }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind S (abort lift ioprog)});P(NO-ERRORS \# outs))
else (\sigma\models(P[]))))
proof (cases mbind FailSave S (abortlift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma)

```
\(=\)

Some a
then show ?thesis
using hyp0
proof (cases a)
fix \(a a b\)
assume hyp 1: \(a=(a a, b)\)
then show?thesis
using hyp0 hyp 1

case None
then show?thesis
```

        by simp
    next
        case (Some ab)
        assume hyp2: mbind FailSave}S\mathrm{ (abort (ifft ioprog) }\sigma=\mathrm{ Some ab
        then show ?thesis
        using hyp0 hyp1 hyp2
        proof (cases ab)
            fix ac ba
            assume hyp3: ab = (ac, ba)
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3
            by (auto simp add: valid-SE-def bind-SE-def split:option.split)
        qed
    qed
    qed
    qed
lemma abort-done-recv-obvious11':
(\sigma\models(outs }\leftarrow(\mathrm{ mbind }((IPC DONE (RECV caller partner msg))\#S)(\mp@subsup{abort lift}{l}{l
ioprog)); P outs)) =
((caller \in dom (( th-flag)\sigma)}
((remove-caller-error caller \sigma) \models
(outs}\leftarrow(\mathrm{ mbind S (abort lift ioprog)); P(get-caller-error caller }\sigma\#\mathrm{ outs ))))
^
(caller }\not\in\operatorname{dom}(( th-flag)\sigma)
ioprog (IPC DONE (RECV caller partner msg)) \sigma\not= None \longrightarrow
(\sigma\models(outs \leftarrow(mbind S (abort lift ioprog)); P(NO-ERRORS \# outs))))}
(caller \#dom ( (th-flag \sigma))^
ioprog (IPC DONE (RECV caller partner msg)) \sigma=None \longrightarrow(\sigma\models(P[]))))
proof (cases mbind FailSave S (abortlift ioprog)(remove-caller-error caller \sigma))
case None
then show ?thesis
by simp
next
case (Some a)
assume hyp0: mbind FailSave S (abort lift ioprog)(remove-caller-error caller \sigma)
=
Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1:a=(aa,b)
then show ?thesis
using hyp0 hyp1
proof (cases mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma\mathrm{ )
case None
then show ?thesis
by simp

```
```

    next
            case (Some ab)
            assume hyp2: mbind FailSave}S\mathrm{ (abort lift ioprog) }\sigma=\mathrm{ Some ab
            then show ?thesis
            using hyp0 hyp1 hyp2
            proof (cases ab)
            fix ac ba
            assume hyp3: ab=(ac, ba)
            then show ?thesis
            using hyp0 hyp1 hyp2 hyp3
            by (simp add: valid-SE-def bind-SE-def split:option.split)
        qed
    qed
    qed
    qed

```
lemmas trace-normalizer-errors-TestGen \(=\)
abort-prep-send-obvious10 abort-prep-recv-obvious10 abort-wait-send-obvious10
abort-wait-recv-obvious10 abort-buf-send-obvious10 abort-buf-recv-obvious10 abort-done-send-obvious11 abort-done-recv-obvious11 valid-SE-def bind-SE-def unit-SE-def
lemmas trace-normalizer-errors-exec-conj-imp-TestGen \(=\)
abort-prep-send-obvious10' abort-prep-recv-obvious10' abort-wait-send-obvious10'
abort-wait-recv-obvious10' abort-buf-send-obvious10' abort-buf-recv-obvious10' abort-done-send-obvious11' abort-done-recv-obvious11'
end
theory IPC-symbolic-exec-intros
imports IPC-symbolic-exec-rewriting
begin

\section*{N Introduction Rules for Sequence Testing Scheme}

\section*{N. 1 Introduction Rules for PREP stage}
lemma abort-prep-send-mbind-TestGen-Pure-intro:
assumes in-err-state:
\[
\begin{aligned}
& \text { caller } \in \operatorname{dom}((\text { th-flag } \sigma)) \Longrightarrow \\
& \left(\sigma \models \left(\text { outs } \leftarrow\left(\text { mbind }^{(S)}\left(\text { abort }_{\text {lift }} \text { exec-action }{ }_{\text {id }} \text {-Mon }\right)\right) ;\right.\right. \\
& P(\text { get-caller-error caller } \sigma \# \text { outs })))
\end{aligned}
\]
and not-in-err-state1:
\(\bigwedge a b\). caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(_{\text {id }}\).th-flag \(\left.\left.\sigma\right)\right) \Longrightarrow\) \(a=N O-E R R O R S \Longrightarrow\)
```

        exec-actionid-Mon (IPC PREP (SEND caller partner msg)) \sigma = Some
    (NO-ERRORS,b) \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|)\models
(outs}\leftarrow(mbind (S)(\mp@subsup{abort lift exec-action id-Mon));P (NO-ERRORS \#}{}{*
outs)))
and not-in-err-state2:
\ab error-memory.caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state }}{\mathrm{ id}}{}.th-flag \sigma))
a=ERROR-MEM error-memory \Longrightarrow
exec-actionid}\mp@subsup{\mp@code{Mon (IPC PREP (SEND caller partner msg)) }\sigma=}{}{-M
Some (ERROR-MEM error-memory,b) \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM error-memory,
state id.th-flag := stateid.th-flag \sigma
(caller }\mapsto(ERROR-MEM error-memory)
partner }\mapsto(ERROR-MEM error-memory))) (
|(outs}\leftarrow(mbind (S)(\mp@subsup{abort lift exec-action id}{\mathrm{ -Mon )});}{
P(ERROR-MEM error-memory \# outs)))

```
 and not-in-err-state3:
 \(\bigwedge a b\) error-IPC. caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(_{i d}\).th-flag \(\left.\left.\sigma\right)\right) \Longrightarrow\)
 \(a=E R R O R-I P C\) error-IPC \(\Longrightarrow\)
 exec-action \({ }_{i d}\)-Mon (IPC PREP (SEND caller partner msg)) \(\sigma=\) Some
(ERROR-IPC error-IPC,b) \(\Longrightarrow\)
 (\(\sigma(\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-I P C\) error-IPC,
 state \(_{i d}\). th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma\)
 (caller \(\mapsto(E R R O R-I P C\) error-IPC),
 partner \(\mapsto(E R R O R-I P C\) error-IPC \()) D\)
 \(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}\)-Mon \(\left.)\right)\);
 \(P(E R R O R-I P C\) error-IPC\# outs \())\))
shows \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) PREP \((S E N D\) caller partner msg \()) \# S)\)
 (abort lift exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ; P\) outs \()\))
using assms
by (simp add: abort-prep-send-obvious10')
lemma abort-prep-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:
```

    caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
    \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{\text {lift }} \quad\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right)\);
    \(P(\) get-caller-error caller \(\sigma \#\) outs \())\) )
    ```
and not-in-err-state1:
\(\bigwedge\) b. caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(\left.\left._{i d} . t h-f l a g ~ \sigma\right)\right) \Longrightarrow\) exec-action \({ }_{i d}-M o n(I P C P R E P(R E C V ~ c a l l e r ~ p a r t n e r ~ m s g)) ~ \sigma=S o m e ~\)
```

(NO-ERRORS,b) \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORSD) }
(outs }\leftarrow(mbind (S)(\mp@subsup{abort lift exec-action id-Mon));P(NO-ERRORS \#}{}{\prime
outs)))
and not-in-err-state2:
\ error-memory.
caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state }}{\mathrm{ id}}{}.th-flag \sigma))
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) \sigma=
Some (ERROR-MEM error-memory,b) \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM error-memory,
state id.th-flag := stateid.th-flag \sigma
(caller }\mapsto(ERROR-MEM error-memory)
partner }\mapsto(ERROR-MEM error-memory))|
\models(outs}\leftarrow(\mathrm{ mbind S (abort lift exec-action id-Mon));
P(ERROR-MEM error-memory \# outs)))
and not-in-err-state3:
\ error-IPC.caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id.th-flag }\sigma))}{}{\mathrm{ . }
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) \sigma=Some
(ERROR-IPC error-IPC,b) \Longrightarrow
(\sigma| current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes :=ERROR-IPC error-IPC,
state id.th-flag := stateid.th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))D
|(outs }\leftarrow(\mathrm{ mbind }(S)(\mp@subsup{\mathrm{ abort lift lexec-actionid}}{\mathrm{ -Mon )}); P(}{
ERROR-IPC error-IPC\# outs)))
shows }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC PREP (RECV caller partner msg))\#S)
(abortlift exec-actionid-Mon)); P outs))
using assms
by (simp add: abort-prep-recv-obvious10')

```

\section*{N. 2 Introduction rules for WAIT stage}
lemma abort-wait-send-mbind-TestGen-Pure-intro:
assumes in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\sigma \models\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left._{\text {id }}-M o n\right)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs))
and not-in-err-state1:
\(\bigwedge a b\). caller \(\notin \operatorname{dom}\left(\left(\right.\right.\) state \(_{\text {id }}\).th-flag \(\left.\left.\sigma\right)\right) \Longrightarrow\) \(a=\) NO-ERRORS \(\Longrightarrow\)
exec-action \(_{\text {id }}-\) Mon (IPC WAIT (SEND caller partner msg)) \(\sigma=\) Some
(NO-ERRORS, b) \(\Longrightarrow\) \(\sigma(\) current-thread \(:=\) caller,
```

    thread-list := update-th-waiting caller (thread-list \sigma),
    error-codes := NO-ERRORSD) }
        (outs}\leftarrow(mbind (S)(\mp@subsup{abort lift exec-action id-Mon));P (NO-ERRORS #}{}{*
    outs))
and not-in-err-state3:
\ab error-IPC.caller }\not=\operatorname{dom}((\mp@subsup{\mathrm{ state }}{id}{}.th-flag \sigma))
a=ERROR-IPC error-IPC \Longrightarrow
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) \sigma=Some
(ERROR-IPC error-IPC,b) \Longrightarrow
\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state id.th-flag := state id.th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)
partner }\mapsto(ERROR-IPC error-IPC))D
\| ( outs \leftarrow ( mbind ( S ) ( abort lift exec-action id-Mon)); P( _ { l } ^ { -M }
ERROR-IPC error-IPC\# outs))
shows }\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC WAIT (SEND caller partner msg))\#S)(abort lift
exec-actionid-Mon)); P outs)
using assms
by (simp add: abort-wait-send-obvious10')
lemma abort-wait-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))

```

```

caller \sigma \# outs))
and not-in-err-state1:
\ab.caller }\not=\mathrm{ dom ( (state id.th-flag }\sigma))
a=NO-ERRORS \Longrightarrow
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) \sigma = Some
(NO-ERRORS,b) \Longrightarrow
\sigma|current-thread := caller,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes := NO-ERRORSD) \models
(outs }\leftarrow(mbind (S)(\mp@subsup{abort lift exec-actionid-Mon));P (NO-ERRORS \#}{l}{\mathrm{ m }
outs))
and not-in-err-state2:
\ab error-IPC.caller }\not\in\mathrm{ dom ( (stateid.th-flag }\sigma))
a=ERROR-IPC error-IPC \Longrightarrow
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) \sigma = Some
(ERROR-IPC error-IPC,b) \Longrightarrow
\sigma(current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC,
state id.th-flag := state id.th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC)

```
```

partner }\mapsto(ERROR-IPC error-IPC))D
F(outs }\leftarrow(\mathrm{ mbind }(S)(\mp@subsup{\mathrm{ abort lift lexec-action id}}{\mathrm{ -Mon )}); P(}{
ERROR-IPC error-IPC\# outs))

```

```

exec-actionid-Mon)); P outs)
using assms
by (auto simp: abort-wait-recv-obvious10' in-err-state)

```

\section*{N. 3 Introduction rules rules for BUF stage}
lemma abort-buf-send-mbind-TestGen-Pure-intro:
assumes in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\sigma \models\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}\)-Mon \(\left.)\right) ;\)
\(P(\) get-caller-error caller \(\sigma \#\) outs \())\)
and not-in-err-state1:
\(\bigwedge a b\). caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(a=\) NO-ERRORS \(\Longrightarrow\)
exec-action \(_{\text {id }}-\) Mon (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some
(NO-ERRORS, b) \(\Longrightarrow\)
\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \((\lambda m(\) addr, val \() .(m(\) addr \(:=\$\) val \()))(\) resource \(\sigma)\)
(zip (get-th-addrs partner \(\sigma\)) (get-msg-values msg \(\sigma\))),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
(thread-list \(\sigma\))),
error-codes :=NO-ERRORS \() \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \((S)\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \#
outs))
and not-in-err-state2:
\(\bigwedge a b\) error-IPC. caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(a=E R R O R-I P C\) error-IPC \(\Longrightarrow\) exec-action \({ }_{i d}-M o n(I P C\) BUF (SEND caller partner msg)) \(\sigma=\) Some
(ERROR-IPC error-IPC, b) \(\Longrightarrow\)
\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC,
state \(_{i d}\).th-flag \(:=\) state \(_{i d}\).th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC),
partner \(\mapsto(E R R O R-I P C\) error-IPC \()) \mid) \models\)
(outs \(\leftarrow\left(\right.\) mbind \((S)\) abort \(_{\text {lift }} \quad\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(E R R O R-I P C\) error-IPC \# outs))
shows \(\sigma \models\) (outs \(\leftarrow\) (mbind \(((\) IPC BUF \((S E N D\) caller partner \(m s g)) \# S)\)
(abort \({ }_{\text {lift }}\) exec-action \({ }_{i d}\)-Mon)); P outs)
using assms
by (auto simp : abort-buf-send-obvious10')
```

lemma abort-buf-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:
caller $\in \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
$\sigma \models\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S$ abort $_{\text {lift }}$ exec-action ${ }_{i d}$-Mon $)$ );
$P($ get-caller-error caller $\sigma \#$ outs $))$
and not-in-err-state1
$\bigwedge a b$. caller $\notin \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
$a=N O-E R R O R S \Longrightarrow$
exec-action ${ }_{i d}-$ Mon (IPC BUF (RECV caller partner msg)) $\sigma=$ Some
(NO-ERRORS,$b) \Longrightarrow$
$\sigma($ current-thread $:=$ caller,
resource $\quad:=$ foldl $(\lambda m(a d d r, v a l) .(m(a d d r:=\$$ val $)))($ resource $\sigma)$
(zip (get-th-addrs caller $\sigma$ ) (get-msg-values msg $\sigma$ )),
thread-list $:=$ update-th-ready caller
( update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORSD) $=$
(outs $\leftarrow\left(\right.$ mbind $(S)$ abort $_{l i f t}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right) ; P($ NO-ERRORS
\# outs))
and not-in-err-state2:
$\bigwedge a b$ error-IPC. caller $\notin \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
$a=$ ERROR-IPC error-IPC $\Longrightarrow$
exec-action ${ }_{i d}$-Mon (IPC BUF (RECV caller partner msg)) $\sigma=$ Some
$(E R R O R-I P C$ error-IPC,$b) \Longrightarrow$
$\sigma \mid$ current-thread $:=$ caller,
thread-list $\quad:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC,
state $_{\text {id }}$.th-flag $:=$ state $_{i d}$.th-flag $\sigma$
(caller $\mapsto(E R R O R-I P C$ error-IPC),
partner $\mapsto(E R R O R-I P C$ error-IPC $)) D)=$
(outs $\leftarrow\left(\right.$ mbind $(S)$ abort $_{l i f t}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right) ; P(E R R O R-I P C$
error-IPC \# outs))
shows $\sigma \models$ (outs $\leftarrow($ mbind $((I P C$ BUF $(R E C V$ caller partner $m s g)) \# S)$
(abort ${ }_{\text {lift }}$ exec-action ${ }_{i d}$-Mon) $) ;$ P outs)
using assms
by (auto simp: abort-buf-recv-obvious10')

```

\section*{N. 4 Introduction rules for MAP stage}
lemma abort-map-send-mbind-TestGen-Pure-intro:
assumes in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\sigma \models\left(\right.\) outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right)\);
\(P(\) get-caller-error caller \(\sigma \#\) outs \())\)
and not-in-err-state1:
\(\bigwedge a b\). caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\) \(a=\) NO-ERRORS \(\Longrightarrow\)
exec-action \({ }_{i d}\)-Mon (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some
(NO-ERRORS, b) \(\Longrightarrow\)
```

    \sigma(current-thread := caller,
        resource := foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
                                (zip msg (get-th-addrs partner \sigma)),
        thread-list := update-th-ready caller
                        (update-th-ready partner
                            (thread-list \sigma)),
            error-codes := NO-ERRORSD) }
        (outs}\leftarrow(\mathrm{ mbind }(S)(\mp@subsup{\mathrm{ abort lift exec-action id}}{\mathrm{ -Mon)});P(NO-ERRORS #}{#
    outs))
shows }\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC MAP (SEND caller partner msg))\#S)
(abortlift exec-actionid-Mon)); P outs)
using assms
by (auto simp : abort-map-send-obvious10')

```
lemma abort-map-recv-mbind-TestGen-Pure-intro:
 assumes in-err-state:
 caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 \(\sigma \models\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right)\);
 \(P(\) get-caller-error caller \(\sigma \#\) outs \())\)
and not-in-err-state1:
 \(\bigwedge a b\). caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 \(a=N O-E R R O R S \Longrightarrow\)
 exec-action \(_{\text {id }}\)-Mon (IPC MAP (RECV caller partner msg)) \(\sigma=\) Some
(NO-ERRORS, b) \(\Longrightarrow\)
 \(\sigma(\) current-thread \(:=\) caller,
 resource \(\quad:=\) foldl \((\lambda m(s r c, d s t) .(m(\operatorname{src} \bowtie d s t)))(\) resource \(\sigma)\)
 (zip msg (get-th-addrs caller \(\sigma\))),
 thread-list \(:=\) update-th-ready caller
 (update-th-ready partner
 (thread-list \(\sigma\))),
 error-codes \(:=\) NO-ERRORS \()=\)
 (outs \(\leftarrow\left(\right.\) mbind \((S)\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS
\# outs))
 shows \(\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) MAP \((R E C V\) caller partner \(m s g)) \# S)\)
 (abort \({ }_{\text {lift }}\) exec-action \({ }_{i d}\)-Mon) \() ; P\) outs)
 using assms
 by (auto simp: abort-map-recv-obvious10')

\section*{N. 5 Introduction rules for DONE stage}
lemma abort-done-send-mbind-TestGen-Pure-intro: assumes in-err-state:
\((\) caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(remove-caller-error caller \(\sigma\)) \(=\) (outs \(\leftarrow\left(\right.\) mbind \((S)\) abort \(_{l i f t}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P\) (get-caller-error caller \(\sigma\) \# outs)))
and not-in-err-state1:
```

    (caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{id}{}.th-flag \sigma)) 
    ```

```


# outs)))

    shows }\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC DONE (SEND caller partner msg))#S)
                            (abortlift exec-actionid-Mon)); P outs)
    using assms
    by (simp add: abort-done-send-obvious11 exec-actionid-Mon-def)
    lemma abort-done-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:
caller }\in\operatorname{dom}((th-flag \sigma))
(remove-caller-error caller \sigma) }
(outs }\leftarrow(mbind (S)(abort lift exec-actionid-Mon)); P (get-caller-error
caller \sigma \# outs))
and not-in-err-state1:
caller }\not\in\operatorname{dom}((\mp@subsup{\mathrm{ state id}}{\mathrm{ d}}{\mathrm{ .th-flag }\sigma))}
\sigma}=(\mathrm{ outs }\leftarrow(mbind (S)(\mp@subsup{abort lift exec-actionid}{l-Mon));P(NO-ERRORS}{

# outs))

    shows }\sigma\models(\mathrm{ outs }\leftarrow(mbind ((IPC DONE (RECV caller partner msg))#S)
                                    (abort lift exec-actionid-Mon)); P outs)
    using assms
    by (simp add: abort-done-recv-obvious11 exec-actionid-Mon-def)
    end

```
theory IPC-symbolic-exec-elims
imports IPC-symbolic-exec-rewriting IPC-symbolic-exec-intros ../../../../src/TestLib begin

\section*{O Elimination rules for Symbolic Execution of a Test Specification}
lemma threa-table-obvious:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)))=((\) th-flag \(\sigma)\) caller \(=\) None \()\)
by auto
lemma threa-table-obvious':
\(((\) th-flag \(\sigma)\) caller \(=\) None \()=(\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)))\)
by auto

\section*{O. 1 Symbolic Execution rules for PREP SEND}

\section*{HOL representation}
lemma abort-prep-send-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC PREP \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\)
```

ioprog));P outs))
and in-err-state:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
(\sigma =
(outs}\leftarrow(\mathrm{ mbind S (abort lift ioprog)); P(get-caller-error caller }\sigma\#\mathrm{ \# outs )))
C
and not-in-err-state-Some1:
\
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma})
((error-tab-transfer caller \sigma \sigma}
\vDash ( outs \leftarrow ( mbind S (abortlift ioprog ) ) ; P ( N O - E R R O R S ~ \# ~ o u t s ) ) )
\Longrightarrow Q
and not-in-err-state-Some2:
\}\mp@subsup{\sigma}{}{\prime}\mathrm{ error-mem.
(caller \#dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, 生)\Longrightarrow
((set-error-mem-waitr caller partner \sigma \sigma' error-mem msg) }
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem \#
outs))) \LongrightarrowQ
and not-in-err-state-Some3:
\ \sigma ^ { \prime } error-IPC.
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC PREP (SEND caller partner msg)) \sigma= Some(ERROR-IPC
error-IPC, 的)\Longrightarrow
((set-error-ipc-waitr caller partner \sigma 尔 error-IPC msg) \models
(outs}\leftarrow(\mathrm{ mbind S(abort lift ioprog)); P( ERROR-IPC error-IPC\# outs)))
\Longrightarrow Q
and not-in-err-state-None:
(caller \& dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC PREP (SEND caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller \in dom ((th-flag \sigma)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-send-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10, simp, case-tac a, simp,

```
```

                simp split: errors.split-asm, elim not-in-err-state-Some1,
                auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
    next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-prep-send-HOL-elim21:
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind }((IPC PREP (SEND caller partner msg))\#S
(abort lift exec-action}\mp@subsup{}{\mathrm{ id}}{
and in-err-exec:
caller }\in\operatorname{dom}((th-flag \sigma)))
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
exec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
exec-actionid-Mon-prep-fact1 caller partner \sigma\Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|)\models
(outs }\leftarrow(\mp@subsup{m}{\mathrm{ bind S S(abortlift exec-actionid}}{\mathrm{ -Mon)}});P(NO-ERRORS \# outs)))
Q
and
not-in-err-exec2:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
\negexec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND,
state id.th-flag := th-flag \sigma
(caller }\mapsto(ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
partner }\mapsto(ERROR-MEM not-valid-sender-addr-in-PREP-SEND))| \models
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-MEM not-valid-sender-addr-in-PREP-SEND \# outs)))\Longrightarrow
Q
and
not-in-err-exec31:
caller }\not\in\operatorname{dom}((th-flag \sigma)))
exec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
\neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) \Longrightarrow
IPC-params-c2 ((the o thread-list \sigma) partner)\Longrightarrow
IPC-params-c6 caller ((the o thread-list \sigma) partner) \Longrightarrow

```
```

( $\sigma($ current-thread $:=$ caller,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-22-in-PREP-SEND,
th-flag $:=$ th-flag $\sigma$
(caller $\mapsto$ (ERROR-IPC error-IPC-22-in-PREP-SEND),
partner $\mapsto(E R R O R-I P C$ error-IPC-22-in-PREP-SEND $)) \mid) \models$
(outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ exec-action $\left.{ }_{i d}-M o n\right)$ );
$P(E R R O R-I P C$ error-IPC-22-in-PREP-SEND\# outs $))) \Longrightarrow Q$
and
not-in-err-exec32:
caller $\notin \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma \mathrm{msg} \Longrightarrow$
$\neg I P C$-params-c1 ( $($ the o thread-list $\sigma$ ) partner) $\Longrightarrow$
$\neg I P C$-params-c2 $(($ the o thread-list $\sigma)$ partner $) \Longrightarrow$
( $\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-current caller (thread-list $\sigma$ ),
error-codes $:=E R R O R-I P C$ error-IPC-23-in-PREP-SEND,
th-flag $:=$ th-flag $\sigma$
(caller $\mapsto(E R R O R-I P C$ error-IPC-23-in-PREP-SEND),
partner $\mapsto($ ERROR-IPC error-IPC-23-in-PREP-SEND $)) \mid \models$
(outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right)$;
$P(E R R O R-I P C$ error-IPC-23-in-PREP-SEND\# outs $))) \Longrightarrow Q$
and
not-in-err-exec33:
caller $\notin \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
exec-action ${ }_{i d}$-Mon-prep-fact0 caller partner $\sigma \mathrm{msg} \Longrightarrow$
$\neg I P C$-params-c1 ((the o thread-list $\sigma$ ) partner) $\Longrightarrow$
IPC-params-c2 ((the o thread-list $\sigma$ ) partner) $\Longrightarrow$
IPC-params-c6 caller ( $($ the o thread-list $\sigma$ ) partner $) \Longrightarrow$
( $\sigma($ current-thread $:=$ caller ,
thread-list $:=$ update-th-ready caller (thread-list $\sigma$ ),
error-codes $\quad:=N O-E R R O R S \mid) \models$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right) ; P($ NO-ERRORS $\#$ outs $\left.\left.)\right)\right) \Longrightarrow Q$
shows $Q$
apply (insert valid-exec)
apply (elim abort-prep-send-mbindFSave-E)
apply (simp add: in-err-exec)
apply (simp add: exec-action id $^{\text {-Mon-prep-send-obvious3) }}$
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec1)
apply (simp add: exec-action id $^{-M o n-p r e p-s e n d-o b v i o u s 4) ~}$
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')

```
```

apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-action}\mp@subsup{i}{id}{}\mathrm{ -Mon-prep-send-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec32)
apply (simp add: exec-action}\mp@subsup{\mathrm{ id}}{}{-}-\mp@subsup{Mon-def)}{}{\prime
done

```

\section*{O. 2 Symbolic Execution rules for PREP RECV}
lemma abort-prep-recv-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC PREP \((\) RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\Lambda \sigma^{\prime}\)
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) Some (NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
and not-in-err-state-Some2:
\(\Lambda \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) Some(ERROR-MEM
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((set-error-mem-waitr caller partner \(\sigma \sigma^{\prime}\) error-mem msg) \(\models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \#
outs) \()) \Longrightarrow Q\)
and not-in-err-state-Some3:
\(\bigwedge \sigma^{\prime}\) error-IPC.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) Some(ERROR-IPC
error-IPC, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((set-error-ipc-waitr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg) \(\vDash\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC\# outs \(\left.\left.)\right)\right)\)
```

\Longrightarrow Q
and not-in-err-state-None:
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC PREP (RECV caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller }\in\mathrm{ dom ((th-flag }\sigma))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-recv-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (RECV caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-prep-recv-HOL-elim21:
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind }((IPC PREP (RECV caller partner msg))\#S
(abortlift exec-actionid-Mon)); P outs))
and in-err-exec:
caller }\in\operatorname{dom}((th-flag \sigma)))
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
exec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
exec-actionid-Mon-prep-fact1 caller partner }\sigma
(\sigma\ current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|) }
(outs }\leftarrow(\mp@subsup{m}{\mathrm{ mind S S(abort lift exec-action id}}{\mathrm{ -Mon )});P (NO-ERRORS \# outs)))

```
```

C
and
not-in-err-exec2:
caller }\not\in\operatorname{dom}((th-flag \sigma))
\negexec-action}\mp@subsup{\mathrm{ id}}{}{-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV,
state id.th-flag := th-flag \sigma
(caller }\mapsto(ERROR-MEM not-valid-receiver-addr-in-PREP-RECV),
partner }\mapsto(ERROR-MEM not-valid-receiver-addr-in-PREP-RECV))|)
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV \#
outs)))\LongrightarrowQ
and
not-in-err-exec31:
caller }\not\in\operatorname{dom}((th-flag \sigma))
exec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
\neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) \Longrightarrow
IPC-params-c2 ((the o thread-list \sigma) partner) }
\negIPC-params-c6 caller ((the o thread-list \sigma) partner) \Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-22-in-PREP-RECV)
partner }\mapsto(ERROR-IPC error-IPC-22-in-PREP-RECV)))
(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P( ERROR-IPC error-IPC-22-in-PREP-RECV \# outs)))\LongrightarrowQ
and
not-in-err-exec32:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
exec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
\neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \Longrightarrow ~
\neg I P C - p a r a m s - c 2 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \Longrightarrow
(\sigma| current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=ERROR-IPC error-IPC-23-in-PREP-RECV
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-23-in-PREP-RECV)
partner }\mapsto(ERROR-IPC error-IPC-23-in-PREP-RECV)))
(outs }\leftarrow(mbind S(abort lift exec-actionid-Mon));
P}(ERROR-IPC error-IPC-23-in-PREP-RECV\# outs)) )\LongrightarrowQ
and
not-in-err-exec33:

```
```

    caller #dom ( (th-flag \sigma)) \Longrightarrow
    exec-action id}\mp@subsup{}{\mathrm{ -Mon-prep-fact0 caller partner }\sigma\textrm{msg}\Longrightarrow}{\Longrightarrow
    \neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \Longrightarrow
    IPC-params-c2 ((the o thread-list \sigma) partner) \Longrightarrow
    IPC-params-c6 caller ((the o thread-list \sigma) partner) }
    (\sigma\ current-thread := caller,
    thread-list := update-th-ready caller (thread-list \sigma),
    error-codes :=NO-ERRORS ) \models
        (outs }\leftarrow(mbind S(\mp@subsup{abort lift exec-actionid-Mon));P(NO-ERRORS #}{l}{\mathrm{ m }
    outs)))\LongrightarrowQ
shows Q
apply (insert valid-exec)
apply (elim abort-prep-recv-mbindFSave-E)
apply (simp add: in-err-exec)
apply (simp add: exec-actionid-Mon-prep-recv-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-prep-recv-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-actionid-Mon-prep-recv-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec32)
apply (simp add: exec-actionid-Mon-def)
done

```

\section*{O. 3 Symbolic Execution rules for WAIT SEND}
lemma abort-wait-send-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC WAIT \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs)
and in-err-state:
```

    caller }\in\operatorname{dom}((th-flag \sigma))
    ( }\sigma|
    (outs}\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(get-caller-error caller }\sigma##\mathrm{ outs )))
    \Longrightarrow Q
and not-in-err-state-Some1:
\
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC WAIT (SEND caller partner msg)) \sigma=Some(NO-ERRORS,
\sigma})
((error-tab-transfer caller \sigma \sigma})
(outs \leftarrow(mbind S (abort lift ioprog)); P(NO-ERRORS \# outs))) \LongrightarrowQ
and not-in-err-state-Some2:
\}\mp@subsup{\sigma}{}{\prime}\mathrm{ error-mem.
(caller \& dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC WAIT (SEND caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, 生)\Longrightarrow
((set-error-mem-waitr caller partner \sigma \sigma' error-mem msg) \models
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem \#
outs))) \LongrightarrowQ
and not-in-err-state-Some3:
\ \sigma ^ { \prime } error-IPC.
(caller }\not=\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC WAIT (SEND caller partner msg)) \sigma = Some(ERROR-IPC
error-IPC, \sigma')\Longrightarrow
((set-error-ipc-waitr caller partner \sigma \sigma' error-IPC msg) \models
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC\# outs )))
\Longrightarrow Q
and not-in-err-state-None:
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC WAIT (SEND caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller \in dom ((th-flag \sigma)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-send-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next

```
```

    case None
    then show ?thesis
    using valid-exec False
    by (subst (asm) abort-wait-send-obvious10, simp, elim not-in-err-state-None)
    qed
    qed
lemma abort-wait-send-HOL-elim21:
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC WAIT (SEND caller partner msg))\#S)
(abortlift exec-actionid-Mon)); P outs))
and in-err-exec:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
(\sigma}=(\mathrm{ outs }\leftarrow(\mathrm{ mbind S S(abort lift exec-action }\mp@subsup{}{\mathrm{ id}}{
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller }\not\in\operatorname{dom}((th-flag \sigma)))
IPC-send-comm-check-stid caller partner }\sigma
IPC-params-c4 caller partner \Longrightarrow
IPC-params-c5 partner \sigma\Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-waiting caller (thread-list \sigma),
error-codes :=NO-ERRORS,
th-flag := th-flag \sigma|
\vDash(outs}\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon)); P(NO-ERRORS \#
outs))) \LongrightarrowQ
and
not-in-err-exec21:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
\neg I P C - s e n d - c o m m - c h e c k - s t i d ~ c a l l e r ~ p a r t n e r ~ \sigma \Longrightarrow
(\sigma| current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND,
th-flag := th-flag \sigma
(caller \mapsto(ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner }\mapsto(ERROR-IPC error-IPC-1-in-WAIT-SEND))|)
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-IPC error-IPC-1-in-WAIT-SEND\# outs)))\LongrightarrowQ
and
not-in-err-exec22:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
IPC-send-comm-check-stid caller partner }\sigma
\neg I P C - p a r a m s - c 4 ~ c a l l e r ~ p a r t n e r ~ \Longrightarrow ~
(\sigma) current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),

```
```

    error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND,
    th-flag := th-flag \sigma
    (caller }\mapsto(ERROR-IPC error-IPC-3-in-WAIT-SEND)
    partner }\mapsto(ERROR-IPC error-IPC-3-in-WAIT-SEND))D 
    (outs }\leftarrow(\mp@subsup{mbind S(abort lift exec-action id-Mon));}{}{\prime
    P (ERROR-IPC error-IPC-3-in-WAIT-SEND# outs))) \LongrightarrowQ
    and
not-in-err-exec23:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
IPC-send-comm-check-stid caller partner \sigma\Longrightarrow
IPC-params-c4 caller partner }
\neg I P C - p a r a m s - c 5 ~ p a r t n e r ~ \sigma \Longrightarrow
(thread-list \sigma) caller = None \Longrightarrow
(\sigma)current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=E\mathrm{ ERROR-IPC error-IPC-6-in-WAIT-SEND,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-6-in-WAIT-SEND)
partner }\mapsto(ERROR-IPC error-IPC-6-in-WAIT-SEND))D
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-IPC error-IPC-6-in-WAIT-SEND\# outs))) \LongrightarrowQ
and
not-in-err-exec24:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
IPC-send-comm-check-stid caller partner \sigma\Longrightarrow
IPC-params-c4 caller partner }
\neg I P C - p a r a m s - c 5 ~ p a r t n e r ~ \sigma \Longrightarrow
\existsth.(thread-list \sigma) caller = Some th \Longrightarrow
(\sigma)current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-5-in-WAIT-SEND)
partner }\mapsto(ERROR-IPC error-IPC-5-in-WAIT-SEND))D
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-IPC error-IPC-5-in-WAIT-SEND\# outs))) \LongrightarrowQ
shows Q
apply (insert valid-exec)
apply (elim abort-wait-send-mbindFSave-E)
apply (simp only: in-err-exec)
apply (simp only: exec-actionid-Mon-wait-send-obvious3)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-action}\mp@subsup{i}{id}{}-Mon-def WAIT-SEND id-def split: split-if-asm
option.split-asm)
apply (simp only: exec-actionid-Mon-wait-send-obvious4)
apply (auto)
apply (erule contrapos-np)

```
```

apply (simp )
apply (subst (asm) threa-table-obvious')
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (elim not-in-err-exec23)
apply simp-all
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps )
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

```

\section*{O. 4 Symbolic Execution rules for WAIT RECV}
lemma abort-wait-recv-mbindFSave-E: assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC WAIT \((\) RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \((\) outs)
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\Lambda \sigma^{\prime}\).
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
and not-in-err-state-Some2:
\(\Lambda \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) Some(ERROR-MEM
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
```

            ((set-error-mem-waitr caller partner \sigma \sigma' error-mem msg) }
            (outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem #
    outs))) \LongrightarrowQ
and not-in-err-state-Some3:
\ \sigma ^ { \prime } error-IPC.
(caller \#dom ((th-flag \sigma))) \Longrightarrow
ioprog (IPC WAIT (RECV caller partner msg)) \sigma = Some(ERROR-IPC
error-IPC, \sigma')\Longrightarrow
((set-error-ipc-waitr caller partner \sigma 尔 error-IPC msg) }
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P( ERROR-IPC error-IPC \# outs )))
\Longrightarrow Q
and not-in-err-state-None:
(caller \# dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC WAIT (RECV caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller }\in\mathrm{ dom (( (h-flag }\sigma))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-recv-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-wait-recv-HOL-elim21:
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC WAIT (RECV caller partner msg))\#S)
(abort lift exec-actionid-Mon)); P outs))
and in-err-exec:
caller }\in\operatorname{dom}((th-flag \sigma))
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S S(abort lift exec-action }\mp@subsup{\mp@code{id}}{}{\prime}-Mon))
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and

```
```

    not-in-err-exec1:
    caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
    IPC-recv-comm-check-stid caller partner \sigma\Longrightarrow
    IPC-params-c4 caller partner \Longrightarrow
    IPC-params-c5 partner \sigma\Longrightarrow
    (\sigma\ current-thread := caller,
        thread-list := update-th-waiting caller (thread-list \sigma),
        error-codes := NO-ERRORS,
        th-flag := th-flag \sigma|
            \vDash ( \text { outs } \leftarrow ( \text { mbind S(abort lift exec-action id-Mon)); P(NO-ERRORS \#}
    outs))) \LongrightarrowQ
and
not-in-err-exec21:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
\neg I P C - r e c v - c o m m - c h e c k - s t i d ~ c a l l e r ~ p a r t n e r ~ \sigma \Longrightarrow
(\sigma\current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV,
th-flag := th-flag \sigma
(caller \mapsto(ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner }\mapsto(ERROR-IPC error-IPC-1-in-WAIT-RECV))| |
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-IPC error-IPC-1-in-WAIT-RECV\# outs )))\LongrightarrowQ
and
not-in-err-exec22:
caller \# dom ( (th-flag \sigma)) \Longrightarrow
IPC-recv-comm-check-stid caller partner \sigma\Longrightarrow
\neg I P C - p a r a m s - c 4 ~ c a l l e r ~ p a r t n e r ~ \Longrightarrow ~
(\sigma)current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=E\mathrm{ ERROR-IPC error-IPC-3-in-WAIT-RECV,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-3-in-WAIT-RECV),
partner }\mapsto(ERROR-IPC error-IPC-3-in-WAIT-RECV))D
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-IPC error-IPC-3-in-WAIT-RECV \# outs))) \LongrightarrowQ
and
not-in-err-exec23:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
IPC-recv-comm-check-stid caller partner \sigma\Longrightarrow
IPC-params-c4 caller partner \Longrightarrow
\neg I P C - p a r a m s - c 5 ~ p a r t n e r ~ \sigma \Longrightarrow
(thread-list \sigma) caller = None \Longrightarrow
( }\sigma|\mathrm{ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV,
th-flag := th-flag \sigma

```
```

(caller }\mapsto(ERROR-IPC error-IPC-6-in-WAIT-RECV),
partner }\mapsto(ERROR-IPC error-IPC-6-in-WAIT-RECV))D
(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-action id-Mon));
P(ERROR-IPC error-IPC-6-in-WAIT-RECV \# outs))) \LongrightarrowQ

```
 and
 not-in-err-exec24:
 caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 IPC-recv-comm-check-st id \(^{\text {caller partner } \sigma \Longrightarrow}\)
 IPC-params-c4 caller partner \(\Longrightarrow\)
 \(\neg I P C\)-params-c5 partner \(\sigma \Longrightarrow\)
 \(\exists\) th. \((\) thread-list \(\sigma)\) caller \(=\) Some th \(\Longrightarrow\)
 (\(\sigma(\) current-thread \(:=\) caller ,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-I P C\) error-IPC-5-in-WAIT-RECV,
 th-flag \(\quad:=\) th-flag \(\sigma\)
 (caller \(\mapsto(E R R O R-I P C\) error-IPC-5-in-WAIT-RECV),
 partner \(\mapsto(E R R O R-I P C\) error-IPC-5-in-WAIT-RECV \()) \mid \vDash\)
 (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}\)-Mon) \()\);
 \(P(E R R O R-I P C\) error-IPC-5-in-WAIT-RECV \(\#\) outs \())) \Longrightarrow Q\)
 shows \(Q\)
 apply (insert valid-exec)
 apply (elim abort-wait-recv-mbindFSave-E)
 apply (simp only: in-err-exec)
 apply (simp only: exec-action \({ }_{\text {id }}\)-Mon-wait-recv-obvious3)
 apply (simp add: not-in-err-exec1)
 apply (simp add: exec-action \({ }_{i d}\)-Mon-def WAIT-RECV \({ }_{i d}\)-def split: split-if-asm
option.split-asm)
 apply (simp only: exec-action \({ }_{i d}\)-Mon-wait-recv-obvious4)
 apply (auto)
 apply (erule contrapos-np)
 apply (\(\operatorname{simp}\))
 apply (subst (asm) threa-table-obvious')
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (elim not-in-err-exec23)
apply simp-all
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply \(\operatorname{simp}\)
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-action \({ }_{i d}-\) Mon-def)
done

\section*{O.5 Symbolic Execution rules for BUF SEND}
lemma abort-buf-send-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC BUF \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{l i f t}\) ioprog)); \(P\) outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma=\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\wedge \sigma^{\prime}\).
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\operatorname{Some}\left(\right.\) NO-ERRORS,\(\left.\sigma^{\prime}\right)\)
\(\Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
and not-in-err-state-Some2:
\(\bigwedge \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some(ERROR-MEM
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((set-error-mem-bufs caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \(\#\) outs \())=Q\)
and not-in-err-state-Some3:
\(\bigwedge \sigma^{\prime}\) error-IPC.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some(ERROR-IPC
error-IPC, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((set-error-ipc-bufs caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
\(\models\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\) outs \())\)) \(\Longrightarrow Q\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) None \(\Longrightarrow\)
\((\sigma \models(P[])) \Longrightarrow Q\)

\section*{shows \(Q\)}
proof (cases caller \(\in \operatorname{dom}((\) th-flag \(\sigma)))\)
case True
then show? thesis
using valid-exec
by (subst (asm) abort-buf-send-obvious10, elim in-err-state, simp)

\section*{next}
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (SEND caller partner msg)) \(\sigma\))
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1, auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next

\section*{case None}
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-buf-send-HOL-elim21:
assumes
valid-exec: \((\sigma \models\) (outs \(\leftarrow(\) mbind \(((I P C\) BUF \((S E N D\) caller partner msg \()) \# S)\)
\(\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{\text {id }}-M o n\right)\right) ; P\) outs \(\left.)\right)\)
and in-err-exec:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ;\)
\(P(\) get-caller-error caller \(\sigma \#\) outs \())) \Longrightarrow Q\)
and
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-buf-check-stid caller partner \(\sigma \Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \((\lambda m(\) addr,\(v a l) .(m(a d d r:=\$\) val \())\) (resource \(\sigma)\)
(zip (get-th-addrs partner \(\sigma\)) (get-msg-values msg \(\sigma\))),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
(thread-list \(\sigma\))),
error-codes \(:=\) NO-ERRORS,
th-flag \(\quad:=\) th-flag \(\sigma\))
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \#
outs \()\)) \() \Longrightarrow Q\)
and
not-in-err-exec12:
caller \(\notin\) dom (th-flag \(\sigma) \Longrightarrow\)
IPC-buf-check-st \({ }_{i d}\) caller partner \(\sigma \Longrightarrow\)
\(m s g=[] \Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
```

    resource := resource \sigma,
    thread-list := update-th-ready caller
                        (update-th-ready partner
                            (thread-list \sigma)),
    error-codes := NO-ERRORS,
    th-flag := th-flag \sigma|
    ```

```

outs))) \LongrightarrowQ
and
not-in-err-exec2:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
\negIPC-buf-check-stid caller partner \sigma \Longrightarrow
( }\sigma|\mathrm{ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-1-in-BUF-SEND)
partner }\mapsto(ERROR-IPC error-IPC-1-in-BUF-SEND )))
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P( ERROR-IPC error-IPC-1-in-BUF-SEND\# outs))) \LongrightarrowQ
shows Q
apply(insert valid-exec)
apply (subst (asm) abort-buf-send-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec2
apply auto
done

```

\section*{O. 6 Symbolic Execution rules for BUF RECV}
lemma abort-buf-recv-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models(\right.\) outs \() \leftarrow\left(\right.\) mbind \(((\) IPC BUF \((\) RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\Lambda \sigma^{\prime}\).
(caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (RECV caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
and not-in-err-state-Some2:
\(\wedge \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (RECV caller partner msg)) \(\sigma=\) Some(ERROR-MEM error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((set-error-mem-bufr caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R\)-MEM error-mem \(\#\) outs \())) \Longrightarrow Q\)
and not-in-err-state-Some3:
\(\bigwedge \sigma^{\prime}\) error-IPC.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (RECV caller partner msg)) \(\sigma=\operatorname{Some}(E R R O R-I P C\) error-IPC, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((set-error-ipc-bufr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
\(=\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC \(\#\) outs \())=\Longrightarrow\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (RECV caller partner msg)) \(\sigma=\) None \(\Longrightarrow\)
\((\sigma \models(P[])) \Longrightarrow Q\)
shows \(Q\)
proof (cases caller \(\in \operatorname{dom}((\) th-flag \(\sigma)))\)
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-recv-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (RECV caller partner msg)) \(\sigma\))
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-buf-recv-HOL-elim21:
assumes
valid-exec: \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) BUF \((R E C V\) caller partner \(m s g)) \# S)\)
(abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{\text {id }}-M o n\right)\right) ;\) Pouts) \()\)
and in-err-exec:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(^{\leftarrow} \leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(_{\text {id }}-\) Mon \(\left.)\right) ;\)
\[
P(\text { get-caller-error caller } \sigma \# \text { outs }))) \Longrightarrow Q
\]
and
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-buf-check-stid caller partner \(\sigma \Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \((\lambda m(a d d r, v a l) .(m(a d d r:=\$\) val \()))(\) resource \(\sigma)\)
(zip (get-th-addrs caller \(\sigma\)) (get-msg-values msg \(\sigma\))),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
(thread-list \(\sigma\))),
error-codes \(:=\) NO-ERRORS,
th-flag \(\quad:=\) th-flag \(\sigma \mid)\)
\(\vDash\left(\right.\) outs \(^{\leftarrow}\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}-\) Mon \(\left.)\right) ; P(\) NO-ERRORS \(\#\)
outs) \()) \Longrightarrow Q\)
and
not-in-err-exec2:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\neg\) IPC-buf-check-st \({ }_{i d}\) caller partner \(\sigma \Longrightarrow\)
(\(\sigma \\) current-thread \(:=\) caller ,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-1-in-BUF-RECV,
th-flag \(\quad:=\) th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC-1-in-BUF-RECV \()\),
partner \(\mapsto(E R R O R-I P C\) error-IPC-1-in-BUF-RECV \()) \mid=\) (outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.{ }_{i d}-M o n\right)\));
\(P(E R R O R-I P C\) error-IPC-1-in-BUF-RECV\# outs \())) \Longrightarrow Q\)
shows \(Q\)
apply (insert valid-exec)
apply (subst (asm) abort-buf-recv-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec2
apply auto
done

\section*{O. 7 Symbolic Execution rules for MAP SEND}
lemma abort-map-send-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC MAP \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \() ; P\) outs) \()\)
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\((\sigma)=\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\wedge \sigma^{\prime}\).
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
```

\sigma})
((error-tab-transfer caller \sigma \sigma})
(outs}\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(NO-ERRORS \# outs))) }\Longrightarrow
and not-in-err-state-Some2:
\ \sigma ^ { \prime } error-mem.
(caller \#dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, 生)\Longrightarrow
((set-error-mem-maps caller partner \sigma \sigma' error-mem msg)
=(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem

# outs))) \LongrightarrowQ

    and not-in-err-state-Some3:
            \ \sigma ^ { \prime } \text { error-IPC.}
            (caller # dom ( (th-flag \sigma))) \Longrightarrow
            ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some(ERROR-IPC
    error-IPC, 的)\Longrightarrow
((set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)
=(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC\#
outs))) \LongrightarrowQ
and not-in-err-state-None:
(caller \#dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC MAP (SEND caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows }
proof (cases caller \in dom ((th-flag \sigma)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-send-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (SEND caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-send-obvious10,
case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1,
simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-send-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-map-send-HOL-elim2:

```
```

assumes
valid-exec: }(\sigma\models\mathrm{ (outs }\leftarrow(\mathrm{ mbind ((IPC MAP (SEND caller partner msg))\#S)
(abort lift exec-action id-Mon)); P outs))
and in-err-exec:
caller }\in\operatorname{dom}((th-flag \sigma))
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon));
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller \#dom ( (th-flag \sigma)) \Longrightarrow
(\sigma\ current-thread := caller,
resource := foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
(zip msg (get-th-addrs partner \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|) }
(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon)); P(NO-ERRORS \# outs)))
\Longrightarrow Q
and
not-in-err-exec12:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))\Longrightarrowmsg=[]
(\sigma\ current-thread := caller,
resource := resource \sigma,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes :=NO-ERRORS,
th-flag := th-flag \sigma|) }
(outs}\leftarrow(mbind S(\mp@subsup{abort lift exec-actionid-Mon)); P(NO-ERRORS \# outs)))}{}{\mathrm{ ( }
C
shows Q
apply(insert valid-exec)
apply (subst (asm) abort-map-send-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

```

\section*{O. 8 Symbolic Execution rules for MAP RECV}
lemma abort-map-recv-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC MAP \((\) RECV caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma \vDash\)
```

    (outs}\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(get-caller-error caller }\sigma##\mathrm{ outs )))
    C
and not-in-err-state-Some1:
\ '
(caller \& dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC MAP (RECV caller partner msg)) \sigma = Some(NO-ERRORS,
\sigma})
((error-tab-transfer caller \sigma \sigma})
(outs }\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift ioprog)}); P(NO-ERRORS \# outs))) \LongrightarrowQ}{C
and not-in-err-state-Some2:
\}\mp@subsup{\sigma}{}{\prime}\mathrm{ error-mem.
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC MAP (RECV caller partner msg)) \sigma = Some(ERROR-MEM
error-mem, \sigma')\Longrightarrow
((set-error-mem-mapr caller partner \sigma 尔 error-mem msg)
\vDash(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem

# outs))) \LongrightarrowQ

    and not-in-err-state-Some3:
        \ \sigma ^ { \prime } \text { error-IPC.}
        (caller #dom ( (th-flag \sigma))) \Longrightarrow
        ioprog (IPC MAP (RECV caller partner msg)) \sigma=Some(ERROR-IPC
    error-IPC, 的)\Longrightarrow
((set-error-ipc-mapr caller partner \sigma \sigma' error-IPC msg)
|(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC \#
outs))) \LongrightarrowQ
and not-in-err-state-None:
(caller \& dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC MAP (RECV caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller \in dom ((th-flag \sigma)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-recv-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (RECV caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-recv-obvious10,
case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1,
simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis

```
```

    using valid-exec False
    by (subst (asm) abort-map-recv-obvious10, simp, elim not-in-err-state-None)
    qed
    qed
lemma abort-map-recv-HOL-elim2:
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind }((IPC MAP (RECV caller partner msg))\#S)
(abort lift exec-actionid-Mon)); P outs))
and in-err-exec:
caller \in dom ((th-flag \sigma)) \Longrightarrow
(\sigma\models(outs }\leftarrow(\mp@subsup{mbind S S(abort lift exec-action }{id}{}-Mon))
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
(\sigma\ current-thread := caller,
resource := foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
(zip msg (get-th-addrs caller \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|
\vDash ( outs \leftarrow ( mbind S(abort lift exec-action id-Mon)); P(NO-ERRORS \#
outs))) \LongrightarrowQ
and
not-in-err-exec12:
caller }\not\in\operatorname{dom}((th-flag \sigma))\Longrightarrowmsg= []
(\sigma| current-thread := caller,
resource := resource \sigma,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|
\vDash ( outs \leftarrow ( mbind S(abort lift exec-action id-Mon)); P(NO-ERRORS \#
outs))) \LongrightarrowQ
shows Q
apply(insert valid-exec)
apply (subst (asm) abort-map-recv-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

```

\section*{O. 9 Symbolic Execution rules for DONE SEND}
lemma abort-done-send-mbindFSave-E:
```

    assumes valid-exec:
    (\sigma\models(outs \leftarrow(mbind ((IPC DONE (SEND caller partner msg))#S)(abort lift
    ioprog));P outs))
and in-err-state:
caller }\in\operatorname{dom}((th-flag \sigma))
((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(get-caller-error caller }\sigma\#\mathrm{ \#outs)))
Q
and not-in-err-state-Some:
(caller \& dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC DONE (SEND caller partner msg)) \sigma\not= None \Longrightarrow

```

```

\Longrightarrow Q
and not-in-err-state-None:
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC DONE (SEND caller partner msg)) \sigma= None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-done-send-obvious11, elim in-err-state, simp)
next
case False
then show ?thesis
proof (cases ioprog (IPC DONE (SEND caller partner msg)) \sigma\not= None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-send-obvious11, simp only: False comp-apply)
next
case False
then show ?thesis
using assms not-in-err-state-None
by (metis (mono-tags) comp-apply in-err-state False abort-done-send-obvious11)
qed
qed
lemma abort-done-send-HOL-elim1:

```
```

    assumes
        valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC DONE (SEND caller partner msg))#S)
                        (abort lift exec-actionid-Mon)); P outs))
    and in-err-exec:
        caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
        (((remove-caller-error caller }\sigma)\vDash(\mp@subsup{\mathrm{ outs }}{\leftarrow}{\leftarrow(\mp@subsup{mbind S (abort lift exec-action }{id}{\prime-Mon));}
            P(get-caller-error caller \sigma # outs))) \LongrightarrowQ)
    ```
and
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }} \quad\) exec-action \(\left.\left._{\text {id }}-M o n\right)\right) ; P(\) NO-ERRORS \# outs) \()) \Longrightarrow Q\)
shows \(Q\)
using assms
by (rule abort-done-send-mbindFSave-E, simp-all add: exec-action \({ }_{i d}\)-Mon-def)

\section*{O. 10 Symbolic Execution rules for DONE SEND}
lemma abort-done-recv-mbindFSave-E:
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC DONE \((\) RECV caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog) \() ;(\) outs \())\)
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
((remove-caller-error caller \(\sigma) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None \(\Longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC DONE (RECV caller partner msg)) \(\sigma=\) None \(\Longrightarrow\) \((\sigma \models(P[])) \Longrightarrow Q\)
shows \(Q\)
proof (cases caller \(\in\) dom \(((\) th-flag \(\sigma)))\)
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-done-recv-obvious11, elim in-err-state, simp)
next
case False
then show ?thesis
proof (cases ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-recv-obvious11, simp only: False)
next
case False
then show ?thesis
using assms not-in-err-state-None
by (metis (mono-tags) in-err-state False abort-done-recv-obvious11)
qed

\section*{qed}
lemma abort-done-recv-HOL-elim1:
assumes
valid-exec: \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C D O N E(R E C V\) caller partner \(m s g)) \# S)\)
(abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ;\) Pouts))
and in-err-exec:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\left(\left((\right.\right.\) remove-caller-error caller \(\sigma) \models\left(\right.\) outs \(^{\leftarrow} \leftarrow\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \(_{\text {id }}\)-Mon \(\left.)\right)\);
\[
P(\text { get-caller-error caller } \sigma \# \text { outs }))) \Longrightarrow Q)
\]
and
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(^{\leftarrow}{\text { mbind } S\left(\text { abort }_{\text {lift }} \quad \text { exec-action }\right.}_{\text {id }}-\) Mon \(\left.)\right) ; P(\) NO-ERRORS \#
outs) \()) \Longrightarrow Q\)
shows \(Q\)
using assms
by (rule abort-done-recv-mbindFSave-E, simp-all add: exec-action \({ }_{i d}\)-Mon-def)

\section*{P Rules with detailed Constraints}

\section*{P. 1 Symbolic Execution rules for PREP SEND}

\section*{HOL representation}
lemma abort-prep-send-mbindFSave- \(E^{\prime}\) :
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC PREP \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\wedge \sigma^{\prime}\).
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC PREP (SEND caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(\left(\left(\right.\right.\) th-flag \(\left(\right.\) error-tab-transfer caller \(\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)\) caller \(=\)
(\((\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma^{\prime}\)) \(=\) th-flag \(\sigma \Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \(\#\) outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
and not-in-err-state-Some2:
\(\wedge \sigma^{\prime}\) error-mem.
```

    (caller # dom ( (th-flag \sigma))) \Longrightarrow
    ioprog (IPC PREP (SEND caller partner msg)) \sigma= Some(ERROR-MEM
    error-mem, }\mp@subsup{\sigma}{}{\prime})
((th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))) caller
=
Some (ERROR-MEM error-mem) \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))) partner
=
Some (ERROR-MEM error-mem) \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))) caller
=
( (th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg)))
partner \Longrightarrow
((set-error-mem-waitr caller partner \sigma \sigma' error-mem msg) }
(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem \#
outs))) \LongrightarrowQ
and not-in-err-state-Some3:
\ ' error-IPC.
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC PREP (SEND caller partner msg)) \sigma=Some(ERROR-IPC
error-IPC, 竹)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
=
Some (ERROR-IPC error-IPC)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma 的 error-IPC msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
\Longrightarrow
((set-error-ipc-waitr caller partner \sigma \sigma' error-IPC msg) \models
(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P( ERROR-IPC error-IPC\# outs)))
\Longrightarrow Q
and not-in-err-state-None:
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC PREP (SEND caller partner msg)) \sigma= None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller \in dom ((th-flag \sigma)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-send-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (SEND caller partner msg)) \sigma)
case (Some a)

```
```

    then show ?thesis
    using valid-exec False
    by (subst (asm) abort-prep-send-obvious10, simp, case-tac a, simp,
        simp split: errors.split-asm, elim not-in-err-state-Some1,
        auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
    next
    case None
    then show ?thesis
    using valid-exec False
    by (subst (asm) abort-prep-send-obvious10, simp, elim not-in-err-state-None)
    qed
qed
lemma abort-prep-send-HOL-elim21':
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC PREP (SEND caller partner msg))\#S)
(abort lift exec-actionid-Mon)); P outs))
and in-err-exec:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S S(abort lift exec-action id-Mon));
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller }\not\in\operatorname{dom}((th-flag\sigma))
exec-actionid}\mp@subsup{}{id}{}\mathrm{ -Mon-prep-fact0 caller partner }\sigma\textrm{msg}
exec-actionid-Mon-prep-fact1 caller partner }\sigma
(( th-flag \sigma)) caller = None \Longrightarrow
( (th-flag (error-tab-transfer caller \sigma \sigma))) caller =
( (th-flag \sigma)) caller \Longrightarrow
th-flag(error-tab-transfer caller \sigma \sigma)=th-flag \sigma\Longrightarrow
(\sigma\ current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|) }
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-action id}-Mon));P(NO-ERRORS \# outs))
Q
and
not-in-err-exec2:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
\negexec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma \sigma
not-valid-sender-addr-in-PREP-SEND msg)))
caller =
Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND) \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma \sigma
not-valid-sender-addr-in-PREP-SEND msg)))
partner =
Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND) \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma \sigma

```
not-valid-sender-addr-in-PREP-SEND msg)))
caller \(=\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma\) not-valid-sender-addr-in-PREP-SEND msg)))
partner \(\Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(:=E R R O R-M E M\) not-valid-sender-addr-in-PREP-SEND, th-flag \(\quad:=\) th-flag \(\sigma\) (caller \(\mapsto(E R R O R-M E M\) not-valid-sender-addr-in-PREP-SEND), partner \(\mapsto(E R R O R-M E M\) not-valid-sender-addr-in-PREP-SEND \())) \models\) (outs \(\leftarrow\left(\right.\) mbind \(S\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}-\) Mon \()\));
\(P(E R R O R-M E M\) not-valid-sender-addr-in-PREP-SEND \# outs \())) \Longrightarrow\) \(Q\)
and
not-in-err-exec31:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
exec-action \({ }_{i d}\)-Mon-prep-fact0 caller partner \(\sigma \mathrm{msg} \Longrightarrow\)
\(\neg\) IPC-params-c1 ((the o thread-list \(\sigma\)) partner \() \Longrightarrow\)
IPC-params-c2 ((the o thread-list \(\sigma\)) partner \() \Longrightarrow\)
\(\neg\) IPC-params-c6 caller \(((\) the o thread-list \(\sigma)\) partner \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-SEND msg))) caller \(=\) Some (ERROR-IPC error-IPC-22-in-PREP-SEND) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-SEND msg))) partner
\(=\)
Some \((E R R O R-I P C\) error-IPC-22-in-PREP-SEND \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-SEND msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-SEND msg))) partner
\(\Longrightarrow\)
(\(\sigma\) (current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(:=E R R O R-I P C\) error-IPC-22-in-PREP-SEND, th-flag \(:=\) th-flag \(\sigma\)
(caller \(\mapsto\) (ERROR-IPC error-IPC-22-in-PREP-SEND),
partner \(\mapsto(E R R O R-I P C\) error-IPC-22-in-PREP-SEND \()) \mid) \models\) (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.{ }_{\text {id }}-M o n\right)\));
\(P(E R R O R-I P C\) error-IPC-22-in-PREP-SEND\# outs \())) \Longrightarrow Q\)
and
not-in-err-exec32:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
exec-action \({ }_{i d}\)-Mon-prep-fact0 caller partner \(\sigma \mathrm{msg} \Longrightarrow\)
\(\neg I P C\)-params-c1 (\((\) the o thread-list \(\sigma\)) partner) \(\Longrightarrow\)
\(\neg I P C\)-params-c2 \(((\) the o thread-list \(\sigma)\) partner \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-SEND msg))) caller \(=\)

Some (ERROR-IPC error-IPC-23-in-PREP-SEND) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-SEND msg))) partner \(=\) Some (ERROR-IPC error-IPC-23-in-PREP-SEND) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-SEND msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-SEND msg))) partner \(\Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-23-in-PREP-SEND,
th-flag \(:=\) th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC-23-in-PREP-SEND),
partner \(\mapsto(\) ERROR-IPC error-IPC-23-in-PREP-SEND \()) \mid \vDash\)
(outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{l i f t}\) exec-action \(\left.{ }_{i d}-M o n\right)\));
\(P(E R R O R-I P C\) error-IPC-23-in-PREP-SEND\# outs \()\)) \() \Longrightarrow Q\)

\section*{and}
not-in-err-exec33:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
exec-action \({ }_{i d}\)-Mon-prep-fact0 caller partner \(\sigma \mathrm{msg} \Longrightarrow\)
\(\neg I P C\)-params-c1 ((the o thread-list \(\sigma\)) partner) \(\Longrightarrow\)
IPC-params-c2 ((the o thread-list \(\sigma\)) partner \() \Longrightarrow\)
IPC-params-c6 caller (\((\) the o thread-list \(\sigma\)) partner \() \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(((\) th-flag \((\) error-tab-transfer caller \(\sigma \sigma)))\) caller \(=\)
(\((\) th-flag \(\sigma)\)) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma\)) \(=\) th-flag \(\sigma \Longrightarrow\)
(\(\sigma \\) current-thread \(:=\) caller, thread-list \(:=\) update-th-ready caller (thread-list \(\sigma\)), error-codes \(:=N O-E R R O R S\), th-flag \(\quad:=\) th-flag \(\sigma \mid) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \(\#\) outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
shows \(Q\)
apply (insert valid-exec)
apply (elim abort-prep-send-mbindFSave-E')
apply (simp add: in-err-exec)
apply (simp only: exec-action \({ }_{i d}\)-Mon-prep-send-obvious3)
apply auto
apply (erule contrapos- \(n p\))
apply simp
apply (subst (asm) threa-table-obvious')
apply (rule not-in-err-exec1)
apply (simp-all add: threa-table-obvious')
apply (simp add: exec-action id \(^{-M o n-p r e p-s e n d-o b v i o u s 4) ~}\)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
```

apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-action}\mp@subsup{i}{id}{}\mathrm{ -Mon-prep-send-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec32)
apply (simp add: exec-action}\mp@subsup{\mathrm{ id}}{}{-}-\mp@subsup{Mon-def)}{}{\prime
done

```

\section*{P. 2 Symbolic Execution rules for PREP RECV}
lemma abort-prep-recv-mbindFSave- \(E^{\prime}\) :
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC PREP \((\) RECV caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs) \()\)
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\) (\(\sigma \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\) \(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\wedge \sigma^{\prime}\)
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(\left(\left(\right.\right.\) th-flag \(\left(\right.\) error-tab-transfer caller \(\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)\) caller \(=\)
(\((\) th-flag \(\sigma)\)) caller \(\Longrightarrow\)
th-flag \(\sigma=\) th-flag (error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \(\#\) outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
and not-in-err-state-Some2:
\(\wedge \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC PREP (RECV caller partner msg)) \(\sigma=\operatorname{Some}(E R R O R-M E M\)
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
Some (ERROR-MEM error-mem) \(\Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner
\(=\)
Some (ERROR-MEM error-mem) \(\Longrightarrow\)
```

    ( (th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))) caller
    =
( (th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))) partner
\Longrightarrow
((set-error-mem-waitr caller partner \sigma 尔 error-mem msg) \models
(outs }\leftarrow(mbind S(\mp@subsup{abort lift ioprog)); P (ERROR-MEM error-mem \#}{\#}{\prime
outs))) \LongrightarrowQ
and not-in-err-state-Some3:
\ \sigma ^ { \prime } error-IPC.
(caller \& dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC PREP (RECV caller partner msg)) \sigma=Some(ERROR-IPC
error-IPC, 生)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
=
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma}\mp@subsup{\sigma}{}{\prime}\mathrm{ error-IPC msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
\Longrightarrow
((set-error-ipc-waitr caller partner \sigma 尔 error-IPC msg) \models
(outs}\leftarrow(mbind S(\mp@subsup{abort lift ioprog)); P( ERROR-IPC error-IPC\# outs)))}{}{\prime
\Longrightarrow Q
and not-in-err-state-None:
(caller }\not=\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC PREP (RECV caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-recv-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (RECV caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False

```
```

    by (subst (asm) abort-prep-recv-obvious10, simp, elim not-in-err-state-None)
    qed
    qed

```
lemma abort-prep-recv-HOL-elim21':
 assumes
 valid-exec: \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) PREP \((R E C V\) caller partner \(m s g)) \# S)\)
 \(\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ; P\) outs \(\left.)\right)\)
 and in-err-exec:
 caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ;\)
 \(P(\) get-caller-error caller \(\sigma \#\) outs \())) \Longrightarrow Q\)
 and
 not-in-err-exec1:
 caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 exec-action id \(^{\text {-Mon-prep-fact0 caller partner } \sigma m s g \Longrightarrow}\)
 exec-action \({ }_{i d}\)-Mon-prep-fact1 caller partner \(\sigma \Longrightarrow\)
 \(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
 \(((\) th-flag \((\) error-tab-transfer caller \(\sigma \sigma)))\) caller \(=\)
 ((th-flag \(\sigma)\)) caller \(\Longrightarrow\)
 th-flag (error-tab-transfer caller \(\sigma \sigma\)) \(=\) th-flag \(\sigma \Longrightarrow\)
 (\(\sigma\)) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-ready caller (thread-list \(\sigma\)),
 error-codes \(:=N O-E R R O R S\),
 th-flag \(\quad:=\) th-flag \(\sigma \mid) \models\)
 \(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }} \quad\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
 and
 not-in-err-exec2:
 caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 \(\neg\) exec-action \({ }_{i d}\)-Mon-prep-fact0 caller partner \(\sigma \mathrm{msg} \Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma\)
 not-valid-receiver-addr-in-PREP-RECV msg)))
caller \(=\)
 Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) \(\Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma\)
 not-valid-receiver-addr-in-PREP-RECV msg)))
partner \(=\)
 Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) \(\Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma\)
 not-valid-receiver-addr-in-PREP-RECV msg)))
caller \(=\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma\)
 not-valid-receiver-addr-in-PREP-RECV msg)))
partner \(\Longrightarrow\)
 (\(\sigma(\) current-thread \(:=\) caller,
 thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
 error-codes \(:=E R R O R-M E M\) not-valid-receiver-addr-in-PREP-RECV,
 th-flag \(\quad:=\) th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-M E M\) not-valid-receiver-addr-in-PREP-RECV), partner \(\mapsto(E R R O R-M E M\) not-valid-receiver-addr-in-PREP-RECV))D \(\models\) (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) exec-action \(\left.{ }_{i d}-M o n\right)\));
\(P\) (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV \# outs \()) \Longrightarrow Q\)
and
not-in-err-exec31:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
exec-action \({ }_{i d}\)-Mon-prep-fact0 caller partner \(\sigma \mathrm{msg} \Longrightarrow\)
\(\neg\) IPC-params-c1 ((the o thread-list \(\sigma\)) partner \() \Longrightarrow\)
IPC-params-c2 ((the o thread-list \(\sigma\)) partner \() \Longrightarrow\)
\(\neg\) IPC-params-c6 caller \(((\) the o thread-list \(\sigma)\) partner \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-RECV msg))) caller \(=\)
Some (ERROR-IPC error-IPC-22-in-PREP-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\) error-IPC-22-in-PREP-RECV msg))) partner \(=\)
Some (ERROR-IPC error-IPC-22-in-PREP-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-RECV msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-22-in-PREP-RECV msg))) partner \(\Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-22-in-PREP-RECV, th-flag \(:=\) th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC-22-in-PREP-RECV),
partner \(\mapsto(E R R O R-I P C\) error-IPC-22-in-PREP-RECV \()) \mid) \vDash\) (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \({ }_{i d}-\) Mon \()\));
\(P(E R R O R-I P C\) error-IPC-22-in-PREP-RECV \(\#\) outs \())) \Longrightarrow Q\)
and
not-in-err-exec32:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
exec-action \({ }_{i d}\)-Mon-prep-fact0 caller partner \(\sigma \mathrm{msg} \Longrightarrow\)
\(\neg I P C\)-params-c1 (\((\) the o thread-list \(\sigma\)) partner) \(\Longrightarrow\)
\(\neg I P C\)-params-c2 \(((\) the o thread-list \(\sigma)\) partner \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-RECV msg))) caller \(=\) Some (ERROR-IPC error-IPC-23-in-PREP-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-RECV msg))) partner
\(=\)
Some (ERROR-IPC error-IPC-23-in-PREP-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-RECV msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-23-in-PREP-RECV msg))) partner \(\Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
```

thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=ERROR-IPC error-IPC-23-in-PREP-RECV
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-23-in-PREP-RECV)
partner \mapsto(ERROR-IPC error-IPC-23-in-PREP-RECV))D }
(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P(ERROR-IPC error-IPC-23-in-PREP-RECV\# outs ) ) }\Longrightarrow
and
not-in-err-exec33:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
exec-actionid-Mon-prep-fact0 caller partner \sigma msg \Longrightarrow
\neg I P C - p a r a m s - c 1 ~ ( ( t h e ~ o ~ t h r e a d - l i s t ~ \sigma ) ~ p a r t n e r ) ~ \Longrightarrow
IPC-params-c2 ((the o thread-list \sigma) partner) \Longrightarrow
IPC-params-c6 caller ((the o thread-list \sigma) partner) \Longrightarrow
(( th-flag \sigma)) caller = None \Longrightarrow
((th-flag (error-tab-transfer caller \sigma \sigma
((th-flag \sigma)) caller
th-flag \sigma = th-flag (error-tab-transfer caller \sigma \sigma')\Longrightarrow
(\sigma( current-thread := caller,
thread-list := update-th-ready caller (thread-list \sigma),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|)\models

```

```

shows Q
apply (insert valid-exec)
apply (elim abort-prep-recv-mbindFSave-E')
apply (simp add: in-err-exec)
apply (simp only: exec-actionid-Mon-prep-recv-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious')
apply (rule not-in-err-exec1)
apply (simp-all add: threa-table-obvious')
apply (simp add: exec-actionid-Mon-prep-recv-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-actionid-Mon-prep-recv-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec31)

```
```

apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec32)
apply (simp add: exec-actionid-Mon-def)
done

```

\section*{P. 3 Symbolic Execution rules for WAIT SEND}
lemma abort-wait-send-mbindFSave- \(E^{\prime}\) :
 assumes valid-exec:
 \(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC WAIT \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\)
ioprog)); \(P\) outs) \()\)
 and in-err-state:
 caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
 (\(\sigma=\)
 \(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
 and not-in-err-state-Some1:
 \(\wedge \sigma^{\prime}\).
 \((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
 ioprog (IPC WAIT (SEND caller partner msg)) \(\sigma=\operatorname{Some}(N O-E R R O R S\),
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
 \(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
 \(\left(\quad\left(\right.\right.\) th-flag \(\left(\right.\) error-tab-transfer caller \(\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)\) caller \(=\)
 (\((\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
 th-flag (error-tab-transfer caller \(\sigma \sigma^{\prime}\)) \(=\) th-flag \(\sigma \Longrightarrow\)
 ((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
 \(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
 and not-in-err-state-Some2:
 \(\Lambda \sigma^{\prime}\) error-mem.
 \((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
 ioprog (IPC WAIT (SEND caller partner msg)) \(\sigma=\) Some(ERROR-MEM
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
 Some (ERROR-MEM error-mem) \(\Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner
\(=\)
 Some \((E R R O R-M E M\) error-mem \() \Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner
\(\Longrightarrow\)
 ((set-error-mem-waitr caller partner \(\sigma \sigma^{\prime}\) error-mem msg) \(\models\)
 (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \#
outs))) \(\Longrightarrow Q\)
 and not-in-err-state-Some3:
\(\bigwedge \sigma^{\prime}\) error-IPC.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC WAIT (SEND caller partner msg)) \(\sigma=\) Some(ERROR-IPC error-IPC,\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) caller \(=\)
Some (ERROR-IPC error-IPC) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) partner \(=\)

Some \((E R R O R-I P C\) error-IPC) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) partner \(\Longrightarrow\)
((set-error-ipc-waitr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg) \(\models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC\# outs \(\left.\left.)\right)\right)\) \(\Longrightarrow Q\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC WAIT (SEND caller partner msg)) \(\sigma=\) None \(\Longrightarrow\)
\((\sigma \models(P[])) \Longrightarrow Q\)
shows \(Q\)
proof (cases caller \(\in \operatorname{dom}((\) th-flag \(\sigma)))\)
case True
then show?thesis
using valid-exec
by (subst (asm) abort-wait-send-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) \(\sigma\))
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1, auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-wait-send-HOL-elim21':
assumes
valid-exec: \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((\) IPC WAIT \((\) SEND caller partner \(m s g)) \# S)\)
(abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ; P\) outs \(\left.)\right)\)
and in-err-exec:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\[
\begin{array}{r}
\left(\sigma \models \left(\text { outs } \leftarrow\left(\text { mbind } S\left(\text { abort }_{\text {lift }} \text { exec-action } \text { id }^{\text {-Mon })}\right)\right) ;\right.\right. \\
P(\text { get-caller-error caller } \sigma \# \text { outs }))) \Longrightarrow Q
\end{array}
\]
and
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-send-comm-check-st id \(^{\text {caller partner }} \sigma \Longrightarrow\)
IPC-params-c4 caller partner \(\Longrightarrow\)
IPC-params-c5 partner \(\sigma \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(((\) th-flag \((\) error-tab-transfer caller \(\sigma \sigma)))\) caller \(=\)
(\((\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma\)) \(=\) th-flag \(\sigma \Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
thread-list \(:=\) update-th-waiting caller (thread-list \(\sigma\)),
error-codes \(:=\) NO-ERRORS,
th-flag \(\quad:=\) th-flag \(\sigma\))
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \(\#\) outs))) \(\Longrightarrow Q\)
and
not-in-err-exec21:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\neg I P C\)-send-comm-check-stid caller partner \(\sigma \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\) error-IPC-1-in-WAIT-SEND msg))) caller \(=\) Some (ERROR-IPC error-IPC-1-in-WAIT-SEND) \(\Longrightarrow\) ((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-1-in-WAIT-SEND msg))) partner \(=\) Some (ERROR-IPC error-IPC-1-in-WAIT-SEND) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-1-in-WAIT-SEND msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-1-in-WAIT-SEND msg))) partner
\(\longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller ,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(\quad:=E R R O R-I P C\) error-IPC-1-in-WAIT-SEND, th-flag \(\quad:=\) th-flag \(\sigma\) (caller \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-SEND), partner \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-SEND \()) \mid) \vDash\) (outs \(\leftarrow\left(\right.\) mbind \(S\) abort \(_{l i f t}\) exec-action \({ }_{i d}\)-Mon));
\[
P(E R R O R-I P C \text { error-IPC-1-in-WAIT-SEND\# outs }))) \Longrightarrow Q
\]
and
not-in-err-exec22:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-send-comm-check-st \({ }_{i d}\) caller partner \(\sigma \Longrightarrow\)
\(\neg\) IPC-params-c4 caller partner \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
```

                            error-IPC-3-in-WAIT-SEND msg))) caller =
        Some (ERROR-IPC error-IPC-3-in-WAIT-SEND) \Longrightarrow
    ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                                    error-IPC-3-in-WAIT-SEND msg))) partner =
    Some (ERROR-IPC error-IPC-3-in-WAIT-SEND)\Longrightarrow
    ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-3-in-WAIT-SEND msg))) caller =
    ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-3-in-WAIT-SEND msg))) partner
    \Longrightarrow
(\sigma| current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes :=ERROR-IPC error-IPC-3-in-WAIT-SEND,
th-flag := th-flag \sigma
(caller \mapsto(ERROR-IPC error-IPC-3-in-WAIT-SEND),
partner }\mapsto(ERROR-IPC error-IPC-3-in-WAIT-SEND))| |
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P}(ERROR-IPC error-IPC-3-in-WAIT-SEND\# outs)))\LongrightarrowQ
and
not-in-err-exec23:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
IPC-send-comm-check-stid caller partner \sigma\Longrightarrow
IPC-params-c4 caller partner }
\neg I P C - p a r a m s - c 5 ~ p a r t n e r ~ \sigma \Longrightarrow
(thread-list \sigma) caller = None }
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-6-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-6-in-WAIT-SEND) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-6-in-WAIT-SEND msg))) partner =
Some (ERROR-IPC error-IPC-6-in-WAIT-SEND)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-6-in-WAIT-SEND msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-6-in-WAIT-SEND msg))) partner
C
(\sigma| current-thread := caller,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-6-in-WAIT-SEND)
partner }\mapsto(ERROR-IPC error-IPC-6-in-WAIT-SEND))| |
(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P}(ERROR-IPC error-IPC-6-in-WAIT-SEND\# outs )) )\LongrightarrowQ
and
not-in-err-exec24:
caller }\not\in\operatorname{dom}((th-flag \sigma)))
IPC-send-comm-check-stid caller partner \sigma\Longrightarrow
IPC-params-c4 caller partner }

```
```

    \neg I P C - p a r a m s - c 5 ~ p a r t n e r ~ \sigma \Longrightarrow
    \exists th. (thread-list \sigma) caller = Some th \Longrightarrow
    ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                        error-IPC-5-in-WAIT-SEND msg))) caller =
        Some (ERROR-IPC error-IPC-5-in-WAIT-SEND) \Longrightarrow
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-5-in-WAIT-SEND msg))) partner =
        Some (ERROR-IPC error-IPC-5-in-WAIT-SEND)\Longrightarrow
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-5-in-WAIT-SEND msg))) caller =
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-5-in-WAIT-SEND msg))) partner
    \Longrightarrow
(\sigma\ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes }:=E\mathrm{ ERROR-IPC error-IPC-5-in-WAIT-SEND,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-5-in-WAIT-SEND)
partner }\mapsto(ERROR-IPC error-IPC-5-in-WAIT-SEND ))|
(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
P(ERROR-IPC error-IPC-5-in-WAIT-SEND\# outs))) \LongrightarrowQ
shows Q
apply (insert valid-exec )
apply (elim abort-wait-send-mbindFSave-E')
apply (simp only: in-err-exec)
apply (simp only: exec-actionid-Mon-wait-send-obvious3)
apply (simp add: not-in-err-exec1)
apply ( simp add: exec-actionid-Mon-def WAIT-SEND id-def split: split-if-asm
option.split-asm)
apply (auto)
apply (simp only: exec-actionid-Mon-wait-send-obvious4)
apply auto
apply (erule contrapos-np)
apply (simp )
apply (subst (asm) threa-table-obvious')
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (simp-all add: not-in-err-exec23)
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp

```
```

apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

```

\section*{P. 4 Symbolic Execution rules for WAIT RECV}
lemma abort-wait-recv-mbindFSave-E':
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((I P C\) WAIT \((\) RECV caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); P outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\((\sigma)=\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
 and not-in-err-state-Some1:
 \(\Lambda \sigma^{\prime}\).
 \((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
 ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
 \(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
 \(\left(\quad\left(\right.\right.\) th-flag \(\left(\right.\) error-tab-transfer caller \(\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)\) caller \(=\)
 (\((\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
 th-flag (error-tab-transfer caller \(\sigma \sigma^{\prime}\)) \(=\) th-flag \(\sigma \Longrightarrow\)
 ((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
 \(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\)
 and not-in-err-state-Some2:
 \(\wedge \sigma^{\prime}\) error-mem.
 \((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
 ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) Some(ERROR-MEM
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
 Some (ERROR-MEM error-mem) \(\Longrightarrow\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner
\(=\)
 Some (ERROR-MEM error-mem) \(\Longrightarrow\)
 (\(\left(\right.\) th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
 ((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner
\(\Longrightarrow\)
 ((set-error-mem-waitr caller partner \(\sigma \sigma^{\prime}\) error-mem msg) \(\models\)
 (outs \(\leftarrow\) (mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \()\)) \(P(E R R O R-M E M\) error-mem \#
outs \())\)) \(\Longrightarrow Q\)
and not-in-err-state-Some3:
\(\bigwedge \sigma^{\prime}\) error-IPC.
(caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) Some(ERROR-IPC error-IPC,\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) caller
\(=\)
Some \((E R R O R-I P C\) error-IPC) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) partner
\(=\)
Some \((\) ERROR-IPC error-IPC \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) caller
\(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) partner
\(\Longrightarrow\)
((set-error-ipc-waitr caller partner \(\sigma \sigma^{\prime}\) error-IPC msg) \(\models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(E R R O R-I P C\) error-IPC\# outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma=\) None \(\Longrightarrow\) \((\sigma \models(P[])) \Longrightarrow Q\)

\section*{shows \(Q\)}
proof (cases caller \(\in\) dom \(((\) th-flag \(\sigma)))\)
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-recv-obvious10, elim in-err-state, simp)
next
case False
then show?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) \(\sigma\))
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-wait-recv-HOL-elim21':
assumes
valid-exec: \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) WAIT \((R E C V\) caller partner \(m s g)) \# S)\)
(abort \(_{\text {lift }}\) exec-action \({ }_{\text {id }}-\) Mon \(\left.)\right) ;\) Pouts \()\))
and in-err-exec:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\[
\begin{array}{r}
\left(\sigma \models \left(\text { outs }^{\left.\leftarrow\left(\text { mbind } S_{\left(\text {abort }_{\text {lift }}\right. \text { exec-action }}^{\text {id }} \text {-Mon }\right)\right)} ;\right.\right. \\
P(\text { get-caller-error caller } \sigma \# \text { outs }))) \Longrightarrow Q
\end{array}
\]

\section*{and}
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-recv-comm-check-stid caller partner \(\sigma \Longrightarrow\)
IPC-params-c4 caller partner \(\Longrightarrow\)
IPC-params-c5 partner \(\sigma \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(((\) th-flag \((\) error-tab-transfer caller \(\sigma \sigma)))\) caller \(=\)
(\((\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma\)) \(=\) th-flag \(\sigma \Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller , thread-list \(:=\) update-th-waiting caller (thread-list \(\sigma\)), error-codes \(:=N O-E R R O R S\), th-flag \(\quad:=\) th-flag \(\sigma \mid) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and
not-in-err-exec21:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\(\neg I P C\)-recv-comm-check-st id \(^{\text {caller partner } \sigma \Longrightarrow}\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-1-in-WAIT-RECV msg))) caller \(=\)
Some (ERROR-IPC error-IPC-1-in-WAIT-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-1-in-WAIT-RECV msg))) partner \(=\)
Some (ERROR-IPC error-IPC-1-in-WAIT-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-1-in-WAIT-RECV msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\) error-IPC-1-in-WAIT-RECV msg))) partner \(\Longrightarrow\)
(\(\sigma \mid\) current-thread \(:=\) caller ,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-1-in-WAIT-RECV,
th-flag \(\quad:=\) th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-RECV),
partner \(\mapsto(E R R O R-I P C\) error-IPC-1-in-WAIT-RECV \()) \mid \models\)
(outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) exec-action \({ }_{i d}\)-Mon) \()\);
\(P(E R R O R-I P C\) error-IPC-1-in-WAIT-RECV \# outs \())) \Longrightarrow Q\)
and
not-in-err-exec22:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-recv-comm-check-stid caller partner \(\sigma \Longrightarrow\)
\(\neg\) IPC-params-c4 caller partner \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-3-in-WAIT-RECV msg))) caller \(=\) Some (ERROR-IPC error-IPC-3-in-WAIT-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\) error-IPC-3-in-WAIT-RECV msg))) partner \(=\) Some (ERROR-IPC error-IPC-3-in-WAIT-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-3-in-WAIT-RECV msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-3-in-WAIT-RECV msg))) partner \(\Longrightarrow\)
(\(\sigma\)) current-thread \(:=\) caller , thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)), error-codes \(:=E R R O R-I P C\) error-IPC-3-in-WAIT-RECV, th-flag \(\quad:=\) th-flag \(\sigma\) (caller \(\mapsto(E R R O R-I P C\) error-IPC-3-in-WAIT-RECV), partner \(\mapsto(E R R O R-I P C\) error-IPC-3-in-WAIT-RECV \()) \mid \vDash\) (outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) exec-action \(\left.\left.{ }_{i d}-M o n\right)\right)\);
\(P(E R R O R-I P C\) error-IPC-3-in-WAIT-RECV \(\#\) outs \())) \Longrightarrow Q\)
and
not-in-err-exec23:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-recv-comm-check-st id \(^{\text {caller partner } \sigma \Longrightarrow}\)
IPC-params-c4 caller partner \(\Longrightarrow\)
\(\neg I P C\)-params-c5 partner \(\sigma \Longrightarrow\)
(thread-list \(\sigma\)) caller \(=\) None \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-6-in-WAIT-RECV msg))) caller \(=\)
Some (ERROR-IPC error-IPC-6-in-WAIT-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-6-in-WAIT-RECV msg))) partner \(=\)
Some (ERROR-IPC error-IPC-6-in-WAIT-RECV) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\)
error-IPC-6-in-WAIT-RECV msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma\) error-IPC-6-in-WAIT-RECV msg))) partner \(\Longrightarrow\)
(\(\sigma \mid\) current-thread \(:=\) caller ,
thread-list \(:=\) update-th-current caller (thread-list \(\sigma\)),
error-codes \(:=E R R O R-I P C\) error-IPC-6-in-WAIT-RECV,
th-flag \(\quad:=\) th-flag \(\sigma\)
(caller \(\mapsto(E R R O R-I P C\) error-IPC-6-in-WAIT-RECV),
partner \(\mapsto(E R R O R-I P C\) error-IPC- 6 -in-WAIT-RECV \()) \mid \models\)
(outs \(\leftarrow\) (mbind S abort \(_{\text {lift }}\) exec-action \(\left.{ }_{i d}-M o n\right)\));
\(P(E R R O R-I P C\) error-IPC-6-in-WAIT-RECV \# outs \())) \Longrightarrow Q\)
and
not-in-err-exec24:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-recv-comm-check-stid caller partner \(\sigma \Longrightarrow\)
IPC-params-c4 caller partner \(\Longrightarrow\)
```

    \neg I P C - p a r a m s - c 5 ~ p a r t n e r ~ \sigma \Longrightarrow
    \exists th. (thread-list \sigma) caller = Some th \Longrightarrow
    ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                        error-IPC-5-in-WAIT-RECV msg))) caller =
        Some (ERROR-IPC error-IPC-5-in-WAIT-RECV) \Longrightarrow
    ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-5-in-WAIT-RECV msg))) partner =
        Some (ERROR-IPC error-IPC-5-in-WAIT-RECV)\Longrightarrow
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                        error-IPC-5-in-WAIT-RECV msg))) caller =
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
                            error-IPC-5-in-WAIT-RECV msg))) partner \Longrightarrow
    ( }\sigma|\mathrm{ current-thread }:= caller ,
        thread-list := update-th-current caller (thread-list \sigma),
        error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV,
        th-flag := th-flag \sigma
        (caller }\mapsto(ERROR-IPC error-IPC-5-in-WAIT-RECV),
        partner }\mapsto(ERROR-IPC error-IPC-5-in-WAIT-RECV )) ) 
        (outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
                P(ERROR-IPC error-IPC-5-in-WAIT-RECV# outs)))\LongrightarrowQ
    shows Q
apply (insert valid-exec )
apply (elim abort-wait-recv-mbindFSave-E')
apply (simp only: in-err-exec)
apply (simp only: exec-action}\mp@subsup{}{id}{}-Mon-wait-recv-obvious3
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-def WAIT-RECV id-def split: split-if-asm
option.split-asm)
apply auto
apply (simp only: exec-actionid-Mon-wait-recv-obvious4)
apply (auto)
apply (erule contrapos-np)
apply (simp )
apply (subst (asm) threa-table-obvious')
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (simp-all add: not-in-err-exec23)
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps )
apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)

```
```

apply (subst (asm) threa-table-obvious')
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

```

\section*{P. 5 Symbolic Execution rules for BUF SEND}
lemma abort-buf-send-mbindFSave- \(E^{\prime}\) :
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC BUF \((S E N D\) caller partner msg \()) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); P outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
(\(\sigma 1=\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\wedge \sigma^{\prime}\).
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(\left(\left(\right.\right.\) th-flag \(\left(\right.\) error-tab-transfer caller \(\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)\) caller \(=\)
(\((\) th-flag \(\sigma)\)) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma^{\prime}\)) \(=\) th-flag \(\sigma \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some(NO-ERRORS,
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \(\#\) outs \(\left.\left.)\right)\right) \Longrightarrow Q\) and not-in-err-state-Some2:
\(\wedge \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some(ERROR-MEM error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller \(=\)

Some (ERROR-MEM error-mem) \(\Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner \(=\)

Some \((E R R O R-M E M\) error-mem \() \Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller \(=\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner \(\Longrightarrow\)
((set-error-mem-bufs caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
\(=\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(E R R O R-M E M\) error-mem \(\#\) outs \())\)) \(\Longrightarrow Q\)
and not-in-err-state-Some3:
\(\bigwedge \sigma^{\prime}\) error-IPC.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) Some (ERROR-IPC error-IPC,\(\left.\sigma^{\prime}\right) \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) caller
\(=\)
Some (ERROR-IPC error-IPC) \(\Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) partner \(=\)

Some \((\) ERROR-IPC error-IPC \() \Longrightarrow\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) caller \(=\)
((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) part-
\(n e r \Longrightarrow\)
((set-error-ipc-bufs caller partner \(\sigma \sigma^{\prime}\) error-IPC msg)
\(\vDash\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) ERROR-IPC error-IPC \(\#\)
outs \())=Q\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC BUF (SEND caller partner msg)) \(\sigma=\) None \(\Longrightarrow\) \((\sigma \models(P[])) \Longrightarrow Q\)
shows \(Q\)
proof (cases caller \(\in \operatorname{dom}((\) th-flag \(\sigma)))\)
case True
then show?thesis
using valid-exec
by (subst (asm) abort-buf-send-obvious10, elim in-err-state, simp)

\section*{next}
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (SEND caller partner msg)) \(\sigma\))
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, case-tac a, simp, simp split: errors.split-asm, elim not-in-err-state-Some1, auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-buf-send-HOL-elim21':
assumes
valid-exec: \((\sigma \models(\) outs \(\leftarrow(\) mbind \(((I P C\) BUF \((S E N D\) caller partner \(m s g)) \# S)\)
\[
\left.\left.\left.\left(\text { abort }_{l i f t} \text { exec-action }{ }_{i d}-\text { Mon }\right)\right) ; P \text { outs }\right)\right)
\]
and in-err-exec:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\[
\begin{array}{r}
\left(\sigma \equiv \left(\text { outs } \leftarrow\left(\text { mbind }^{(} \quad S\left(\text { abort }_{l i f t} \text { exec-action }{ }_{i d}-\text { Mon }\right)\right)\right.\right. \\
P(\text { get-caller-error caller } \sigma \# \text { outs }))) \Longrightarrow Q
\end{array}
\]

\section*{and}
not-in-err-exec1:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-buf-check-st \({ }_{i d}\) caller partner \(\sigma \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
(\((\) th-flag \((\) error-tab-transfer caller \(\sigma \sigma)))\) caller \(=\)
\((\quad\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma\)) \(=\) th-flag \(\sigma \Longrightarrow\)
(\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \((\lambda m(a d d r, v a l) .(m(a d d r:=\$\) val \()))(\) resource \(\sigma)\)
(zip (get-th-addrs partner \(\sigma\)) (get-msg-values msg \(\sigma)\)),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
(thread-list \(\sigma\))),
error-codes \(:=N O-E R R O R S\),
th-flag \(\quad:=\) th-flag \(\sigma\))
\(\vDash\left(\right.\) outs \(_{\leftarrow}^{\leftarrow\left(\text { mbind } S\left(\text { abort }_{\text {lift }} \text { exec-action }_{i d}-M o n\right)\right) ; P(N O-E R R O R S \#, ~}\) outs \()\)) \(\Longrightarrow\)

Rep-memory
(resource (\(\sigma(\) current-thread \(:=\) caller,
resource \(\quad:=\) foldl \((\lambda m(a d d r, v a l) .(m(a d d r:=\$\) val \()))(\) resource
\(\sigma)\)
(zip (get-th-addrs partner \(\sigma\)) (get-msg-values msg
\(\sigma)\)),
\[
\begin{aligned}
& \text { thread-list }:=\text { update-th-ready caller } \\
&(\text { update-th-ready partner } \\
&(\text { thread-list } \sigma)) \\
& \text { error-codes }:=N O-E R R O R S, \\
&\text { th-flag }:=\text { th-flag } \sigma \mid))= \\
& \text { Rep-memory }(\text { foldl }(\lambda m(\text { addr }, \text { val }) .(\text { m }(\text { addr }:=\$ \text { val })))(\text { resource } \sigma) \\
&\quad(\text { zip }(\text { get-th-addrs partner } \sigma)(\text { get-msg-values msg } \sigma))) \Longrightarrow Q
\end{aligned}
\]

\section*{and}
not-in-err-exec12:
caller \(\notin \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
IPC-buf-check-stid caller partner \(\sigma \Longrightarrow m s g=[] \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\((\quad(\) th-flag \((\) error-tab-transfer caller \(\sigma \sigma)))\) caller \(=\)
\((\quad(\) th-flag \(\sigma))\) caller \(\Longrightarrow\)
th-flag (error-tab-transfer caller \(\sigma \sigma\)) \(=\) th-flag \(\sigma \Longrightarrow\)
(\(\sigma \mid\) current-thread \(:=\) caller,
resource \(:=\) resource \(\sigma\),
thread-list \(:=\) update-th-ready caller
(update-th-ready partner
```

            (thread-list \sigma)),
    error-codes := NO-ERRORS
    th-flag := th-flag \sigma)
    =(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-actionid-Mon)); P (NO-ERRORS #}}{l
    outs))) \LongrightarrowQ
and
not-in-err-exec2:
caller \# dom ( (th-flag \sigma)) \Longrightarrow
\neg IPC-buf-check-stid caller partner \sigma \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-SEND msg))) caller =
Some (ERROR-IPC error-IPC-1-in-BUF-SEND) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-SEND msg))) partner =
Some (ERROR-IPC error-IPC-1-in-BUF-SEND)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-SEND msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-SEND msg))) partner \Longrightarrow
(\sigma\ current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND,
th-flag := th-flag \sigma
(caller }\mapsto(ERROR-IPC error-IPC-1-in-BUF-SEND)
partner }\mapsto(ERROR-IPC error-IPC-1-in-BUF-SEND))|
(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P( ERROR-IPC error-IPC-1-in-BUF-SEND\# outs))) \LongrightarrowQ
shows Q
apply(insert valid-exec)
apply (elim abort-buf-send-HOL-elim21)
using in-err-exec not-in-err-exec1 not-in-err-exec2 not-in-err-exec12
apply auto
done

```

\section*{P. 6 Symbolic Execution rules for BUF RECV}
```

lemma abort-buf-recv-mbindFSave-E':
assumes valid-exec:
(\sigma\models(outs }\leftarrow(\mathrm{ mbind ((IPC BUF (RECV caller partner msg)) \#S)(abort lift
ioprog));P outs))
and in-err-state:
caller }\in\operatorname{dom}((th-flag \sigma))
(\sigma =
(outs}\leftarrow(\mp@subsup{mbind S (abort lift ioprog)); P(get-caller-error caller \sigma \# outs)))}{}{\prime
Q
and not-in-err-state-Some1:
\ ' .
(caller }\not=\operatorname{dom}((\mathrm{ th-flag }\sigma)))

```
```

    ioprog (IPC BUF (RECV caller partner msg)) \sigma = Some(NO-ERRORS,
    \sigma})
( ( th-flag \sigma)) caller = None \Longrightarrow
( (th-flag (error-tab-transfer caller \sigma \sigma
( (th-flag \sigma)) caller \Longrightarrow
th-flag (error-tab-transfer caller \sigma \sigma') = th-flag \sigma\Longrightarrow
((error-tab-transfer caller \sigma \sigma})
(outs }\leftarrow(\mathrm{ mbind S (abortlift ioprog)); P(NO-ERRORS \# outs))) }\Longrightarrow
and not-in-err-state-Some2:
\}\mp@subsup{\sigma}{}{\prime}\mathrm{ error-mem.
(caller \#dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC BUF (RECV caller partner msg)) \sigma=Some(ERROR-MEM
error-mem, 生)\Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma \sigma' error-mem msg))) caller
=
Some (ERROR-MEM error-mem) \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma 的 error-mem msg))) partner
=
Some (ERROR-MEM error-mem) \Longrightarrow
( (th-flag (set-error-mem-maps caller partner \sigma 尔 error-mem msg))) caller
=
( (th-flag (set-error-mem-maps caller partner \sigma 自 error-mem msg))) partner
\Longrightarrow
((set-error-mem-bufr caller partner \sigma 尔 error-mem msg)
=(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-MEM error-mem

# outs))) \LongrightarrowQ

    and not-in-err-state-Some3:
            \ ' error-IPC.
            (caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
            ioprog (IPC BUF (RECV caller partner msg)) \sigma = Some(ERROR-IPC
    error-IPC, \sigma')\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
=
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
\Longrightarrow
((set-error-ipc-bufr caller partner \sigma \sigma' error-IPC msg)
=(outs}\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC \#
outs))) \LongrightarrowQ
and not-in-err-state-None:
(caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma)))
ioprog (IPC BUF (RECV caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller \in dom ((th-flag \sigma)))

```
```

    case True
    then show ?thesis
    using valid-exec
    by (subst (asm) abort-buf-recv-obvious10, elim in-err-state, simp)
    next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (RECV caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, case-tac a, simp,
simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-buf-recv-HOL-elim21':
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC BUF (RECV caller partner msg))\#S)
(abortlift exec-actionid-Mon)); P outs))
and in-err-exec:
caller }\in\operatorname{dom}((th-flag \sigma)))
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon));
P(get-caller-error caller \sigma \# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
IPC-buf-check-stid caller partner \sigma\Longrightarrow
(( th-flag \sigma)) caller = None \Longrightarrow
( (th-flag (error-tab-transfer caller \sigma \sigma))) caller =
( (th-flag \sigma)) caller \Longrightarrow
th-flag (error-tab-transfer caller \sigma \sigma) = th-flag \sigma\Longrightarrow
(\sigma\current-thread := caller,
resource :=foldl (\lambdam (addr,val). (m (addr:=\$ val))) (resource \sigma)
(zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma)
\vDash(outs }\leftarrow(mbind S(\mp@subsup{abort lift exec-action id}{l-Mon)); P(NO-ERRORS \#}{

```
```

outs))) \Longrightarrow
Rep-memory
(resource( }\sigma<br>mathrm{ current-thread := caller,
resource := foldl ( }\lambdam(addr,val).(m(addr:=$val)))(resource \sigma)
                            (zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma)),
                thread-list := update-th-ready caller
                        (update-th-ready partner
                        (thread-list \sigma)),
                error-codes := NO-ERRORS,
                th-flag := th-flag \sigma|)))=
    Rep-memory (foldl (\lambdam (addr,val). (m (addr:=$ val))) (resource \sigma)
(zip (get-th-addrs caller \sigma) (get-msg-values msg \sigma))) \LongrightarrowQ
and
not-in-err-exec12:
caller \#dom ( (th-flag \sigma)) \Longrightarrow
IPC-buf-check-stid caller partner \sigma\Longrightarrow
msg=[]\Longrightarrow
((th-flag \sigma)) caller = None \Longrightarrow
( (th-flag (error-tab-transfer caller \sigma\sigma))) caller =
( (th-flag \sigma)) caller \Longrightarrow
th-flag (error-tab-transfer caller \sigma \sigma) = th-flag \sigma\Longrightarrow
(\sigma| current-thread := caller,
resource := resource \sigma,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma)
F(outs}\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon)); P(NO-ERRORS \#
outs))) \LongrightarrowQ
and
not-in-err-exec2:
caller }\not\in\operatorname{dom}((\mathrm{ th-flag }\sigma))
\neg I P C - b u f - c h e c k - s t i d ~ c a l l e r ~ p a r t n e r ~ \sigma \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-RECV msg))) caller =
Some (ERROR-IPC error-IPC-1-in-BUF-RECV)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-RECV msg))) partner =
Some (ERROR-IPC error-IPC-1-in-BUF-RECV)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-RECV msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma
error-IPC-1-in-BUF-RECV msg))) partner \Longrightarrow
(\sigma\current-thread := caller ,
thread-list := update-th-current caller (thread-list \sigma),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV,
th-flag := th-flag \sigma

```
```

    (caller }\mapsto(ERROR-IPC error-IPC-1-in-BUF-RECV)
    partner }\mapsto(ERROR-IPC error-IPC-1-in-BUF-RECV))D \vDash
    (outs }\leftarrow(\mathrm{ mbind S(abort lift exec-actionid-Mon));
        P( ERROR-IPC error-IPC-1-in-BUF-RECV# outs ))})\Longrightarrow
    shows Q
apply(insert valid-exec)
apply (elim abort-buf-recv-HOL-elim21)
using in-err-exec not-in-err-exec1 not-in-err-exec2 not-in-err-exec12
apply auto
done

```

\section*{P. 7 Symbolic Execution rules for MAP SEND}
lemma abort-map-send-mbindFSave- \(E^{\prime}\) :
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC MAP \((S E N D\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs))
and in-err-state:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\)
\((\sigma)=\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some1:
\(\Lambda \sigma^{\prime}\).
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\operatorname{Some}(N O-E R R O R S\),
\(\left.\sigma^{\prime}\right) \Longrightarrow\)
\(((\) th-flag \(\sigma))\) caller \(=\) None \(\Longrightarrow\)
\(\left(\left(\right.\right.\) th-flag \(\left(\right.\) error-tab-transfer caller \(\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)\) caller \(=\)
(\((\) th-flag \(\sigma)\)) caller \(\Longrightarrow\) th-flag (error-tab-transfer caller \(\sigma \sigma^{\prime}\)) \(=\) th-flag \(\sigma \Longrightarrow\) ((error-tab-transfer caller \(\left.\sigma \sigma^{\prime}\right) \models\) \(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right) \Longrightarrow Q\) and not-in-err-state-Some2:
\(\wedge \sigma^{\prime}\) error-mem.
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC MAP (SEND caller partner msg)) \(\sigma=\) Some(ERROR-MEM
error-mem, \(\left.\sigma^{\prime}\right) \Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
Some \((E R R O R-M E M\) error-mem \() \Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) partner
\(=\)
Some \((E R R O R-M E M\) error-mem \() \Longrightarrow\)
((th-flag (set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg))) caller
\(=\)
partner \(\Longrightarrow\)
((set-error-mem-maps caller partner \(\sigma \sigma^{\prime}\) error-mem msg)
```

                =(outs}\leftarrow(mbind S(\mp@subsup{abort lift ioprog)); P(ERROR-MEM error-mem}{}{\mathrm{ m}
    
# outs))) \LongrightarrowQ

    and not-in-err-state-Some3:
        \\sigma' error-IPC.
        (caller & dom ( (th-flag \sigma))) \Longrightarrow
            ioprog (IPC MAP (SEND caller partner msg)) \sigma=Some(ERROR-IPC
    error-IPC, 的)\Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma 尔 error-IPC msg))) partner
=
Some (ERROR-IPC error-IPC) \Longrightarrow
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
\Longrightarrow
((set-error-ipc-maps caller partner \sigma 尔 error-IPC msg)
|(outs }\leftarrow(\mathrm{ mbind S(abortlift ioprog)); P(ERROR-IPC error-IPC \#
outs))) \LongrightarrowQ
and not-in-err-state-None:
(caller \#dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC MAP (SEND caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller }\in\mathrm{ dom ((th-flag }\sigma))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-send-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (SEND caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-send-obvious10,
case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1,
simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-send-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma mem-share-list-E:

```
```

assumes 1: resource $\sigma^{\prime}=$
$($ foldl $(\lambda m(s r c, d s t) .(m(s r c \bowtie d s t)))($ resource $\sigma)(n \# n s))$
and 2: $(f$ st $\left.n) \operatorname{shares}_{(\text {resource }} \sigma\right)(($ fst $n) \bowtie(s n d n))($ snd $n) \Longrightarrow$
$(($ resource $\sigma)(($ fst $n) \bowtie($ snd $n)) \$($ fst $n))=$
$(($ resource $\sigma)(($ fst $n) \bowtie($ snd $n)) \$($ snd $n)) \Longrightarrow$
$(($ resource $\sigma)(($ fst $n) \bowtie($ snd $n)) \$($ fst $n))=(($ resource $\sigma) \$($ fst $n))$
$\Longrightarrow$
resource $\sigma^{\prime}=$
$($ foldl $(\lambda m(s r c, d s t) .(m(\operatorname{src} \bowtie d s t)))((r e s o u r c e ~ \sigma)((f s t n) \bowtie(s n d n)))$
$n s) \Longrightarrow Q$
shows $Q$
using 1
using transfer-share [of fst $n$, of (resource $\sigma$ ), of snd $n$ ]
transfer-share-lookup2[of (resource $\sigma$ ), of fst $n$, of snd $n]$
transfer-share-lookup1 [of (resource $\sigma$ ), of fst $n$, of snd $n$ ]
apply (elim 2)
apply (simp-all add: Product-Type.split-beta)
done
lemma mem-share-list-I:
$(f$ st $n)$ shares $\left._{(\text {resource }} \sigma\right)(($ fst $n) \bowtie($ snd $n))($ snd $n) \Longrightarrow$
$(($ resource $\sigma)(($ fst $n) \bowtie($ snd $n)) \$($ fst $n))=$
$(($ resource $\sigma)(($ fst $n) \bowtie($ snd $n)) \$($ snd $n)) \Longrightarrow$
$(($ resource $\sigma)(($ fst $n) \bowtie($ snd $n)) \$($ fst $n))=(($ resource $\sigma) \$($ fst $n))$
$\Longrightarrow$
resource $\sigma^{\prime}=$
$(f o l d l(\lambda m(s r c, d s t) .(m(\operatorname{src} \bowtie d s t)))(($ resource $\sigma)((f s t n) \bowtie(s n d n)))$
$n s) \Longrightarrow$
resource $\sigma^{\prime}=$
$(f o l d l(\lambda m(s r c, d s t) .(m(s r c \bowtie d s t)))($ resource $\sigma)(n \# n s))$
using transfer-share [of fst $n$, of (resource $\sigma$ ), of snd $n$ ]
transfer-share-lookup2[of (resource $\sigma$ ), of fst $n$, of snd $n$ ]
transfer-share-lookup1 [of (resource $\sigma$ ), of fst $n$, of snd $n$ ]
apply (simp-all add: Product-Type.split-beta)
done
lemma abort-map-send-HOL-elim2':
assumes
valid-exec: $(\sigma \models($ outs $\leftarrow($ mbind $((I P C M A P(S E N D$ caller partner $m s g)) \# S)$
(abort ${ }_{\text {lift }}$ exec-action $\left.{ }_{i d}-M o n\right)$ ); P outs))
and in-err-exec:
caller $\in \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
$\left(\sigma \models\left(\right.\right.$ outs $^{\leftarrow} \leftarrow\left(\right.$ mbind $S$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{\text {id }}-M o n\right)\right)$;
$P($ get-caller-error caller $\sigma \#$ outs $))) \Longrightarrow Q$
and
not-in-err-exec 1:
caller $\notin \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
$(($ th-flag $\sigma))$ caller $=$ None $\Longrightarrow$
$(($ th-flag $($ error-tab-transfer caller $\sigma \sigma)))$ caller $=$

```
```

    ((th-flag \sigma)) caller \Longrightarrow
    th-flag (error-tab-transfer caller \sigma \sigma) = th-flag \sigma \Longrightarrow
    (\sigma\current-thread := caller,
        resource := foldl (\lambdam (src,dst). (m(src\bowtiedst))) (resource \sigma)
                            (zip msg (get-th-addrs partner \sigma)),
        thread-list := update-th-ready caller
                        (update-th-ready partner
                        (thread-list \sigma)),
        error-codes := NO-ERRORS,
        th-flag := th-flag \sigma|) }
    (outs }\leftarrow(\mp@subsup{m}{\mathrm{ bind S S(abortlift exec-action id-Mon)); P(NO-ERRORS # outs)))}}{\mathrm{ ( }
    (resource( }\sigma\\mathrm{ current-thread := caller,
        resource := foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
                                (zip msg (get-th-addrs partner \sigma)),
        thread-list := update-th-ready caller
                        (update-th-ready partner
                                (thread-list \sigma)),
            error-codes := NO-ERRORS,
            th-flag := th-flag \sigma )))=
        (foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
                            (zip msg (get-th-addrs partner \sigma)))\LongrightarrowQ
    ```

\section*{and}
```

not-in-err-exec12:
caller $\notin \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
$(($ th-flag $\sigma))$ caller $=$ None $\Longrightarrow$
$(($ th-flag $($ error-tab-transfer caller $\sigma \sigma)))$ caller $=$
( $($ th-flag $\sigma)$ ) caller $\Longrightarrow$
th-flag (error-tab-transfer caller $\sigma \sigma$ ) $=$ th-flag $\sigma \Longrightarrow$
$m s g=[] \Longrightarrow$
( $\sigma($ current-thread $:=$ caller,
resource $\quad:=$ resource $\sigma$,
thread-list $:=$ update-th-ready caller
(update-th-ready partner
(thread-list $\sigma$ )),
error-codes $:=$ NO-ERRORS, th-flag $\quad:=$ th-flag $\sigma \mid) \models$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ exec-action $\left.\left.{ }_{i d}-M o n\right)\right) ; P($ NO-ERRORS \# outs $\left.\left.)\right)\right)$
$\Longrightarrow Q$
shows $Q$
apply (insert valid-exec)
apply (elim abort-map-send-HOL-elim2)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

```

\section*{P. 8 Symbolic Execution rules for MAP RECV}
```

lemma abort-map-recv-mbindFSave- $E^{\prime}$ :
assumes valid-exec:
$\left(\sigma \models\left(\right.\right.$ outs $\leftarrow\left(\right.$ mbind $((I P C$ MAP $($ RECV caller partner msg $)) \# S)\left(\right.$ abort $_{\text {lift }}$
ioprog));P outs))
and in-err-state:
caller $\in \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$
( $\sigma \xlongequal{=}$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{l i f t}$ ioprog $\left.)\right) ; P($ get-caller-error caller $\sigma \#$ outs $\left.\left.)\right)\right)$
$\Longrightarrow Q$
and not-in-err-state-Some1:
$\wedge \sigma^{\prime}$.
$($ caller $\notin \operatorname{dom}(($ th-flag $\sigma))) \Longrightarrow$
ioprog (IPC MAP (RECV caller partner msg)) $\sigma=\operatorname{Some}(N O-E R R O R S$,
$\left.\sigma^{\prime}\right) \Longrightarrow$
$(($ th-flag $\sigma))$ caller $=$ None $\Longrightarrow$
$\left(\left(\right.\right.$ th-flag $\left(\right.$ error-tab-transfer caller $\left.\left.\left.\sigma \sigma^{\prime}\right)\right)\right)$ caller $=$
( $($ th-flag $\sigma))$ caller $\Longrightarrow$
th-flag (error-tab-transfer caller $\sigma \sigma^{\prime}$ ) $=$ th-flag $\sigma \Longrightarrow$
((error-tab-transfer caller $\left.\sigma \sigma^{\prime}\right) \models$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P($ NO-ERRORS \# outs $\left.\left.)\right)\right) \Longrightarrow Q$
and not-in-err-state-Some2:
$\wedge \sigma^{\prime}$ error-mem.
$($ caller $\notin \operatorname{dom}(($ th-flag $\sigma))) \Longrightarrow$
ioprog (IPC MAP (RECV caller partner msg)) $\sigma=\operatorname{Some}(E R R O R-M E M$
error-mem, $\left.\sigma^{\prime}\right) \Longrightarrow$
( (th-flag (set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg))) caller
$=$
Some (ERROR-MEM error-mem) $\Longrightarrow$
( (th-flag (set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg))) partner
$=$
Some (ERROR-MEM error-mem) $\Longrightarrow$
( (th-flag (set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg))) caller
$=$
( (th-flag (set-error-mem-maps caller partner $\sigma \sigma^{\prime}$ error-mem msg $)$ )) partner
$\Longrightarrow$
((set-error-mem-mapr caller partner $\sigma \sigma^{\prime}$ error-mem msg)
$\vDash\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P(E R R O R-M E M$ error-mem
$\#$ outs $))=Q$
and not-in-err-state-Some3:
$\wedge \sigma^{\prime}$ error-IPC.
$($ caller $\notin \operatorname{dom}(($ th-flag $\sigma))) \Longrightarrow$
ioprog (IPC MAP (RECV caller partner msg)) $\sigma=$ Some(ERROR-IPC
error-IPC, $\left.\sigma^{\prime}\right) \Longrightarrow$
( (th-flag (set-error-ipc-maps caller partner $\sigma \sigma^{\prime}$ error-IPC msg))) caller $=$

```
 Some (ERROR-IPC error-IPC) \(\Longrightarrow\)
 ((th-flag (set-error-ipc-maps caller partner \(\sigma \sigma^{\prime}\) error-IPC msg))) partner
\(=\)
```

        Some (ERROR-IPC error-IPC)\Longrightarrow
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) caller =
        ( (th-flag (set-error-ipc-maps caller partner \sigma \sigma' error-IPC msg))) partner
    \Longrightarrow
((set-error-ipc-mapr caller partner \sigma 尔 error-IPC msg)
|}(\mathrm{ outs }\leftarrow(\mathrm{ mbind S(abort lift ioprog) ); P(ERROR-IPC error-IPC \#
outs))) \LongrightarrowQ
and not-in-err-state-None:
(caller \#dom ( (th-flag \sigma))) \Longrightarrow
ioprog (IPC MAP (RECV caller partner msg)) \sigma=None \Longrightarrow
(\sigma\models(P[]))\LongrightarrowQ
shows Q
proof (cases caller }\in\mathrm{ dom ((th-flag }\sigma))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-recv-obvious10, elim in-err-state, simp)
next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (RECV caller partner msg)) \sigma)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-recv-obvious10,
case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1,
simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-recv-obvious10, simp, elim not-in-err-state-None)
qed
qed
lemma abort-map-recv-HOL-elim2':
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind }((IPC MAP (RECV caller partner msg))\#S
(abort lift exec-action id-Mon)); P outs))
and in-err-exec:
caller \in dom ( (th-flag \sigma)) \Longrightarrow
(\sigma\models(outs }\leftarrow(\mathrm{ mbind S(abortlift exec-actionid-Mon));
P(get-caller-error caller \sigma\# outs))) \LongrightarrowQ
and
not-in-err-exec1:
caller \#dom ( (th-flag \sigma)) \Longrightarrow
(( th-flag \sigma)) caller = None }

```
```

    ( (th-flag (error-tab-transfer caller \sigma \sigma))) caller =
    ( (th-flag \sigma)) caller \Longrightarrow
    th-flag (error-tab-transfer caller \sigma \sigma) = th-flag \sigma\Longrightarrow
    (\sigma\ current-thread := caller,
    resource := foldl (\lambdam (src,dst). (m (src\bowtiedst)))(resource \sigma)
                                    (zip msg (get-th-addrs caller \sigma)),
    thread-list := update-th-ready caller
                                    (update-th-ready partner
                                    (thread-list \sigma)),
    error-codes := NO-ERRORS,
    th-flag := th-flag \sigma|
        \models(outs}\leftarrow(\mathrm{ mbind S(abort lift exec-action id-Mon)); P(NO-ERRORS #
    outs))) \Longrightarrow
Rep-memory
(resource( }\sigma|\mathrm{ current-thread := caller,
resource := foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
(zip msg (get-th-addrs caller \sigma)),
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|)))=
Rep-memory (foldl (\lambdam (src,dst). (m (src\bowtiedst))) (resource \sigma)
(zip msg (get-th-addrs caller \sigma))) \LongrightarrowQ
and
not-in-err-exec12:
caller }\not=\operatorname{dom}((\mathrm{ th-flag }\sigma))\Longrightarrowmsg= []
( ( th-flag \sigma)) caller = None }
( (th-flag (error-tab-transfer caller \sigma \sigma))) caller =
( (th-flag \sigma)) caller \Longrightarrow
th-flag (error-tab-transfer caller \sigma \sigma) = th-flag \sigma\Longrightarrow
(\sigma\ current-thread := caller,
resource := resource \sigma,
thread-list := update-th-ready caller
(update-th-ready partner
(thread-list \sigma)),
error-codes := NO-ERRORS,
th-flag := th-flag \sigma|
=(outs}\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-action id-Mon)); P(NO-ERRORS \#}}{l
outs))) \LongrightarrowQ
shows Q
apply(insert valid-exec)
apply (elim abort-map-recv-HOL-elim2)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

```

\section*{P. 9 Symbolic Execution rules for DONE SEND}
```

lemma abort-done-send-mbindFSave- $E^{\prime}$ :
assumes valid-exec:
$\left(\sigma \models\left(\right.\right.$ outs $\leftarrow\left(\right.$ mbind $(($ IPC DONE $(S E N D$ caller partner $m s g)) \# S)\left(\right.$ abort $_{\text {lift }}$
ioprog)); $($ outs $)$ )
and in-err-state1:
caller $\in \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$ caller $\neq$ partner $\Longrightarrow$
(( (th-flag $\sigma))$ partner $=$
$((($ th-flag (remove-caller-error caller $\sigma))))$ partner $) \Longrightarrow$
( (remove-caller-error caller $\sigma) \models$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P($ get-caller-error caller $\sigma \#$ outs $\left.\left.)\right)\right)$
$\Longrightarrow Q$
and in-err-state2:
caller $\in \operatorname{dom}(($ th-flag $\sigma)) \Longrightarrow$ caller $=$ partner $\Longrightarrow$
$((($ th-flag $($ remove-caller-error caller $\sigma))))$ partner $=$ None $\Longrightarrow$
((remove-caller-error caller $\sigma) \models$
$\left(\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P($ get-caller-error caller $\sigma \#$ outs $\left.\left.)\right)\right)$
$\Longrightarrow Q$
and not-in-err-state-Some:
$($ caller $\notin \operatorname{dom}(($ th-flag $\sigma))) \Longrightarrow$
ioprog (IPC DONE (SEND caller partner msg)) $\sigma \neq$ None $\Longrightarrow$
$\left(\sigma \vDash\left(\right.\right.$ outs $\leftarrow\left(\right.$ mbind $S\left(\right.$ abort $_{\text {lift }}$ ioprog $\left.)\right) ; P($ NO-ERRORS \# outs $\left.\left.)\right)\right)$
$\Longrightarrow Q$
and not-in-err-state-None:
$($ caller $\notin \operatorname{dom}(($ th-flag $\sigma))) \Longrightarrow$
ioprog (IPC DONE (SEND caller partner msg)) $\sigma=$ None $\Longrightarrow$
$(\sigma \models(P[])) \Longrightarrow Q$
shows $Q$
proof (cases caller $\in \operatorname{dom}(($ th-flag $\sigma)))$
case True
then show ?thesis
using valid-exec
apply (subst (asm) abort-done-send-obvious12, simp)
apply (erule disjE)
apply (erule conjE)+
apply (simp add: in-err-state1)
apply (erule conjE)+
apply (simp add: in-err-state2)
done
next
case False
assume hyp 1: caller $\notin \operatorname{dom}$ ( (th-flag $\sigma)$ )
then show ?thesis
proof (cases ioprog (IPC DONE (SEND caller partner msg)) $\sigma \neq$ None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-send-obvious11, simp only: False comp-apply)
next

```
```

    case False
    then show ?thesis
    using valid-exec False hyp1
        apply (subst (asm) abort-done-send-obvious11)
        apply (simp only: if-False comp-apply split: bool.split-asm )
    apply (elim not-in-err-state-None)
    apply (erule contrapos-np)
    apply (simp-all)
    done
    qed
qed
lemma abort-done-send-HOL-elim1':
assumes
valid-exec: }(\sigma\models(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC DONE (SEND caller partner msg))\#S)
(abort lift exec-action id-Mon)); P outs))
and in-err-state1:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))\Longrightarrow\mathrm{ caller }\not=\mathrm{ partner }
(( (th-flag (remove-caller-error caller \sigma)))) partner =
((th-flag \sigma)) partner \Longrightarrow
((remove-caller-error caller \sigma) \models
(outs }\leftarrow(mbind S (abortlift exec-actionid-Mon)); P (get-caller-error caller
\sigma \# outs)))
\Longrightarrow Q
and in-err-state2:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))\Longrightarrow\mathrm{ caller = partner }
(((th-flag (remove-caller-error caller \sigma)))) partner = None \Longrightarrow
((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mp@subsup{mbind S (abortlift exec-actionid}{\mathrm{ -Mon)); P (get-caller-error caller}}{
\sigma \# outs))) \LongrightarrowQ
and not-in-err-exec1:
caller }\not=\operatorname{dom}((th-flag \sigma))
(\sigma\models (outs }\leftarrow(\mathrm{ mbind S(abortlift exec-action id-Mon));P(NO-ERRORS \#
outs))) \LongrightarrowQ

```
shows \(Q\)
using valid-exec
by (rule abort-done-send-mbindFSave- \(E^{\prime}\),
simp-all add: exec-action \({ }_{i d}\)-Mon-def in-err-state1 in-err-state2 not-in-err-exec1)

\section*{P. 10 Symbolic Execution rules for DONE SEND}
lemma abort-done-recv-mbindFSave- \(E^{\prime}\) :
assumes valid-exec:
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(((\) IPC DONE \((R E C V\) caller partner \(m s g)) \# S)\left(\right.\) abort \(_{\text {lift }}\) ioprog)); \(P\) outs))
and in-err-state1:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\) caller \(\neq\) partner \(\Longrightarrow\)
(((th-flag \(\sigma))\) partner \(=\)
\((((\) th-flag (remove-caller-error caller \(\sigma))))\) partner \() \Longrightarrow\)
((remove-caller-error caller \(\sigma) \models\)
(outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{l i f t}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and in-err-state2:
caller \(\in \operatorname{dom}((\) th-flag \(\sigma)) \Longrightarrow\) caller \(=\) partner \(\Longrightarrow\)
\((((\) th-flag \((\) remove-caller-error caller \(\sigma))))\) partner \(=\) None \(\Longrightarrow\) ((remove-caller-error caller \(\sigma) \models\)
\(\left(\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) get-caller-error caller \(\sigma \#\) outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-Some:
(caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None \(\Longrightarrow\)
\(\left(\sigma \models\left(\right.\right.\) outs \(\leftarrow\left(\right.\) mbind \(S\left(\right.\) abort \(_{\text {lift }}\) ioprog \(\left.)\right) ; P(\) NO-ERRORS \# outs \(\left.\left.)\right)\right)\)
\(\Longrightarrow Q\)
and not-in-err-state-None:
\((\) caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))) \Longrightarrow\)
ioprog (IPC DONE (RECV caller partner msg)) \(\sigma=\) None \(\Longrightarrow\) \((\sigma \models(P[])) \Longrightarrow Q\)
shows \(Q\)
proof (cases caller \(\in \operatorname{dom}((\) th-flag \(\sigma)))\)
case True
then show ?thesis
using valid-exec
apply (subst (asm) abort-done-recv-obvious12, simp)
apply (erule disjE)
apply (erule conjE)+
apply (simp add: in-err-state1)
apply (erule conjE)+
apply (simp add: in-err-state2)
done
next
case False
assume hyp1: caller \(\notin \operatorname{dom}((\) th-flag \(\sigma))\)
then show ?thesis
proof (cases ioprog (IPC DONE (RECV caller partner msg)) \(\sigma \neq\) None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-recv-obvious11, simp only: False)
next
```

    case False
    then show ?thesis
    using valid-exec False hyp1
        apply (subst (asm) abort-done-recv-obvious11)
        apply (simp only: if-False split: bool.split-asm )
        apply (elim not-in-err-state-None)
        apply (erule contrapos-np)
        apply (simp-all)
        done
    qed
    qed
lemma abort-done-recv-HOL-elim1':
assumes
valid-exec: }(\sigma\models=(\mathrm{ outs }\leftarrow(\mathrm{ mbind ((IPC DONE (RECV caller partner msg))\#S)
(abort lift exec-action id-Mon)); P outs))
and in-err-state1:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))\Longrightarrow\mathrm{ caller }\not=\mathrm{ partner }
(th-flag (remove-caller-error caller \sigma)) partner =
(th-flag \sigma) partner \Longrightarrow
((remove-caller-error caller \sigma) \models
(outs }\leftarrow(mbind S (abortlift exec-actionid-Mon)); P (get-caller-error caller
\sigma \# outs)))
\Longrightarrow Q
and in-err-state2:
caller }\in\operatorname{dom}((\mathrm{ th-flag }\sigma))\Longrightarrow\mathrm{ caller = partner }
(th-flag (remove-caller-error caller \sigma)) partner = None \Longrightarrow
((remove-caller-error caller \sigma) \models
(outs }\leftarrow(\mp@subsup{mbind S (abortlift exec-actionid}{\mathrm{ -Mon)); P (get-caller-error caller}}{
\sigma\# outs))) \Longrightarrow
Q
and not-in-err-exec1:
caller \& dom ( (th-flag \sigma)) \Longrightarrow
(\sigma\models(outs }\leftarrow(\mp@subsup{m}{\mathrm{ mind S S (abort lift exec-actionid-Mon));P(NO-ERRORS \#}}{\mathrm{ \# }
outs))) \LongrightarrowQ
shows Q
using valid-exec
by (rule abort-done-recv-mbindFSave-E',
simp-all add: exec-action}\mp@subsup{}{id}{}-Mon-def in-err-state1 in-err-state2 not-in-err-exec1

```
end
theory IPC-system-calls
imports IPC-symbolic-exec-intros IPC-symbolic-exec-elims

\section*{begin}

\section*{Q HOL representation of PikeOS IPC system calls}

We define a system call by a set of operations. PikeOS IPC API contain 7 system calls, each system call can do a set of operations. In this section we will just present the most general one called \(p 4 _i p c\) :
type-synonym behaviour \({ }_{i p c}=\) trace \(_{i p c}\) set
type-synonym behaviour \({ }_{i p c}{ }^{\prime}=\) trace \(_{\text {ipc }}\) list

\section*{Q. 1 System calls with thread ID as argument}
type-synonym behaviour \({ }_{i d}=\) trace \(_{i p c}\) list
definition \(P_{4}-I P C-B U F_{i d}\)
\(::\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) behaviour \(_{i d}\)
where
P4-IPC-BUF id caller partner \(m s g \equiv\)
[caller \(\triangleright_{i d} m s g \triangleright_{i d}\) partner, caller \(\triangleleft_{i d} m s g \triangleleft_{i d}\) partner, caller \(\unrhd_{i d} m s g \unrhd_{i d}\) partner, caller \(\unlhd_{i d} m s g \unlhd_{i d}\) partner \(]\)
definition \(P_{4-I P C-B U F-S E N D ~}^{i d}\)
::thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) behaviour \(_{i d}\)
where
P4-IPC-BUF-SEND \({ }_{i d}\) caller partner msg \(\equiv\left[\right.\) caller \(\triangleright_{i d} m s g \triangleright_{i d}\) partner, caller \(\unrhd_{i d} m s g \unrhd_{i d}\) partner \(]\)
definition \(P_{4}-I P C-B U F-R E C V_{i d}\)
:: thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) behaviour \(_{i d}\)
where
P4-IPC-BUF-RECV \(V_{i d}\) caller partner \(m s g \equiv\left[\right.\) caller \(\triangleleft_{i d} m s g \triangleleft_{i d}\) partner, caller \(\unlhd_{i d} m s g \unlhd_{i d}\) partner]
definition \(P_{4}-I P C-S E N D_{i d}\)
::thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) behaviour \(_{i d}\)
where
P4-IPC-SEND \(D_{i d}\) caller partner \(m s g \equiv\left[\right.\) caller \(\triangleright_{i d} m s g \triangleright_{i d}\) partner, caller \(\unrhd_{i d}\) \(m s g \unrhd_{i d}\) partner]
definition \(P_{4}-I P C-R E C V_{i d}\)
:: thread \({ }_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) behaviour \(_{i d}\)
where
P4-IPC-RECV \(V_{i d}\) caller partner \(m s g \equiv\left[\right.\) caller \(\triangleleft_{i d} m s g \triangleleft_{i d}\) partner, caller \(\unlhd_{i d}\)
```

msg \unlhdid partner]

```
definition \(P_{4}-I P C_{i d}\)
\(::\) thread \(_{i d} \Rightarrow\) thread \(_{i d} \Rightarrow\) int list \(\Rightarrow\) behaviour \(_{i d}\)
where
P4-IPC id \(_{\text {caller partner }} \mathrm{msg} \equiv\)
\(\left[\right.\) caller \(\triangleright_{i d}\) msg \(\triangleright_{i d}\) partner, caller \(\triangleleft_{i d} m s g \triangleleft_{i d}\) partner, caller \(\unrhd_{i d} m s g \unrhd_{i d}\) partner, caller \(\unlhd_{i d} m s g \unlhd_{i d}\) partner \(]\)

\section*{Q. 2 System calls based on datatype}
datatype ('thread-id, 'msg) P4-IPC-call \(=\) P4-IPC-call 'thread-id 'thread-id 'msg
P4-IPC-SEND-call 'thread-id 'thread-id 'msg
P4-IPC-RECV-call 'thread-id 'thread-id 'msg
P4-IPC-BUF-call 'thread-id 'thread-id 'msg
P4-IPC-BUF-SEND-call 'thread-id 'thread-id 'msg
| P4-IPC-BUF-RECV-call 'thread-id 'thread-id 'msg
P4-IPC-MAP-call 'thread-id 'thread-id 'msg
| P4-IPC-MAP-SEND-call 'thread-id 'thread-id 'msg
| P4-IPC-MAP-RECV-call 'thread-id 'thread-id 'msg
value int (card(interleave ([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg)])
([IPC PREP (RECV caller partner msg), IPC WAIT (\(R E C V\) caller partner msg), IPC BUF (\(R E C V\) caller partner msg), IPC MAP (\(R E C V\) caller partner \(m s g\)), IPC DONE (RECV caller partner msg)])))
fun \(I P C\)-call-sem::('thread-id, ' \(m s g\)) \(P 4\)-IPC-call \(\Rightarrow\) ((p4-stage \({ }_{i p c}\), ('thread-id , 'msg) p4-direct \(\left.{ }_{i p c}\right)\) action \(_{i p c}\) list \()\)
where
IPC-call-sem (P4-IPC-call caller partner msg) \(=\)
([IPC PREP (SEND caller partner msg), IPC WAIT (SEND caller partner msg), IPC BUF (SEND caller partner msg), IPC MAP (SEND caller partner msg), IPC DONE (SEND caller partner msg), IPC PREP (RECV caller partner msg), IPC WAIT (RECV caller partner msg), IPC BUF (\(R E C V\) caller partner \(m s g\)), IPC MAP (RECV caller partner msg), IPC DONE (\(R E C V\) caller partner msg)])|

IPC WAIT (RECV caller partner msg),
IPC MAP (\(R E C V\) caller partner msg),
IPC DONE (\(R E C V\) caller partner msg)])

\section*{Q. 3 Predicates on system calls}

\section*{definition is-ipc-system-call \({ }_{i d}\)}
where \(\quad i s\)-ipc-system-call \(i d s c=\left(\exists\right.\) caller partner \(m s g . s c=P 4-I P C_{i d}\) caller partner msg)
lemmas system-calls-normalizer \(=\) \(i s-i p c-s y s t e m-c a l l ~_{i d}\)-def P4-IPC \(C_{i d}\)-def
end
theory IPC-coverage
imports IPC-system-calls

\section*{begin}
fun sync-communication
\(::\) 'a list \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list set \(((-/ L-J /-)[201,0,201] 200)\)
where
```

[] L[]」[] $=\{[]\} \mid$
$A\lfloor[]\rfloor B \quad=$ interleave $A B \mid$
[]$\lfloor N\rfloor[] \quad=\{[]\} \mid$
$A\lfloor[n 1, n 2]\rfloor[]=($ if n1 $\in \operatorname{set} A \vee n 2 \in \operatorname{set} A$ then $\{ \}$ else $\{A\}) \mid$
[] $\lfloor[n 1, n 2]\rfloor(B)=($ if $n 1 \in \operatorname{set} B \vee n 2 \in$ set $B$ then $\{ \}$ else $\{B\}) \mid$
$(a \# A)\lfloor[n 1, n 2]\rfloor(b \# B)=($ if $(a=n 1 \wedge b=n 2)$
then image $(\lambda x . n 1 \# n 2 \# x)(A\lfloor[n 1, n 2]\rfloor B)$
else
if $a \neq n 1 \wedge b=n 2$
then image $(\lambda x . a \# x)(A\lfloor[n 1, n 2]\rfloor(b \# B))$
else
if $a=n 1 \wedge b \neq n 2$
then image $(\lambda x . b \# x)((a \# A)\lfloor[n 1, n 2]\rfloor B)$
else $($ image $(\lambda x . a \# x)(A\lfloor[n 1, n 2]\rfloor(b \# B)) \cup$
(image $(\lambda x . b \# x)((a \# A)\lfloor[n 1, n 2]\rfloor B)))) \mid$
$A\lfloor N\rfloor B=A\lfloor[]\rfloor B$

```
datatype ('th-id, 'sclist)criterion \(=\)
 interleave-all ('th-id \(\times\) 'sclist) list
 \(\mid T P A I R ~ ' t h-i d ~ ' t h-i d ~ ' t h-i d ~ \rightharpoonup ' s c l i s t ~\)
 |COMM 'th-id 'th-id 'th-id \(\rightharpoonup\) 'sclist

\section*{Q． 4 Derivation of communication from system calls}
－Definition that let us to derive PikeOS ipc communication from the different system calls

\section*{definition}

\section*{［simp］：}
sc－cases－IPC－call th msg th＇ \(\mathrm{sc}^{\prime}=\)
 (case sc' of P4-IPC-call th1 \({ }^{\prime}\) th2 \({ }^{\prime \prime} \mathrm{msg}^{\prime} \Rightarrow\)
 (if \(\left(t h 2^{\prime \prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\left(*\right.\) check if \(t h^{\prime}\) is caller of \(s c^{\prime}\)
and
th is his partner and \(m s g \mathrm{msg}^{\prime}\) are equal＊）
then \(\}\)
else \(\left(\left(t h \triangleright m s g \triangleright t h^{\prime}\right)\right.\)
\［IPC WAIT（SEND th th＇msg），IPC WAIT（RECV th＇th msg）］」
\(\left(t h^{\prime} \unlhd m s g \unlhd t h\right) \cup\)
（ \(t h^{\prime} \triangleleft m s g \triangleleft t h\) ）
\(\lfloor[I P C\) WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇ msg ）］」
\(\left(t h \unrhd m s g \unrhd t h^{\prime}\right) \cup\)
\(\left(t h^{\prime} \triangleright m s g \triangleright t h\right)\)
［［IPC WAIT（SEND th＇th msg），IPC WAIT（RECV th th＇msg）］」
\(\left(t h \unlhd m s g \unlhd t h^{\prime}\right) \cup\)
（th \(\left.\triangleleft m s g \triangleleft t h^{\prime}\right)\)
\(\lfloor[I P C\) WAIT（RECV th th＇msg），IPC WAIT（SEND th＇th msg）］」
\(\left.\left.\left(t h^{\prime} \unrhd m s g \unrhd t h\right)\right)\right)\)
｜P4－IPC－SEND－call th1＇\({ }^{\prime}\) th2 \({ }^{\prime \prime} \mathrm{msg}^{\prime} \Rightarrow\)
（if \(\left(t h 2^{\prime \prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(\left(t h^{\prime} \triangleright m s g \triangleright t h\right)\right.\)
\(\lfloor[I P C\) WAIT（SEND th＇th msg），IPC WAIT（RECV th th＇ msg ）\(]\rfloor\)
\(\left(t h \unlhd m s g \unlhd t h^{\prime}\right) \cup\)
\(\left(t h \triangleleft m s g \triangleleft t h^{\prime}\right)\)
\(\lfloor[I P C\) WAIT（RECV th th＇msg），IPC WAIT（SEND th＇th msg）］」
\(\left.\left.\left(t h^{\prime} \unrhd m s g \unrhd t h\right)\right)\right)\)
\(\mid P 4-I P C-R E C V\)－call th1 \({ }^{\prime}\) th2 \({ }^{\prime \prime} \mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime \prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h{ }^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \｛\}
else \((t h \triangleright m s g \triangleright t h\) ）
\(\lfloor[I P C\) WAIT（SEND th th＇msg），IPC WAIT（RECV th＇th msg）］」
\(\left(t h^{\prime} \unlhd m s g \unlhd t h\right) \cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
\(\left\lfloor\left[I P C\right.\right.\) WAIT（RECV th \({ }^{\prime}\) th msg），IPC WAIT（SEND th th＇ msg ）\(\left.]\right\rfloor\)
\(\left.\left(t h \unrhd m s g \unrhd t h^{\prime}\right)\right)\)
｜P4－IPC－BUF－call th1＇th2 \({ }^{\prime \prime} \mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime \prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h{ }^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(\left(\left(t h \triangleright m s g \triangleright t h^{\prime}\right)\right.\right.\)
\［IPC WAIT（SEND th th msg），IPC WAIT（RECV th＇th msg）］」
（［IPC PREP（RECV th＇th msg），IPC WAIT（RECV th＇th msg），
IPC BUF（RECV th＇th msg），IPC DONE（SEND th＇th msg），
```

        IPC DONE (RECV th' th msg)]) \cup
    (th'}\triangleleftmsg\triangleleftth
    L[IPC WAIT (RECV th' th msg),IPC WAIT (SEND th th' msg)]」
    ([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
        IPC BUF (SEND th th' msg), IPC DONE (SEND th th' msg),
        IPC DONE (RECV th th' msg)]) \cup
    (th'}\triangleright msg\triangleright th
    \[IPC WAIT (SEND th' th msg),IPC WAIT (RECV th th' msg)]\rfloor
    ([IPC PREP (RECV th th' msg),IPC WAIT (RECV th th' msg),
        IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
        IPC DONE (RECV th th' msg)]) \cup
    (th}\triangleleftmsg\triangleleftth'
    \[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]\rfloor
    ([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
        IPC BUF (SEND th'th msg), IPC DONE (SEND th' th msg),
        IPC DONE (RECV th' th msg)]))))
    |P4-IPC-BUF-SEND-call th1' th2'" msg' }
(if (th\mp@subsup{\mathcal{R}}{}{\prime\prime}\not=th)\vee (th\mp@subsup{1}{}{\prime}\not=th')\vee ( msg\not= msg')
then {}
else (th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
IPC BUF (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))
|P4-IPC-BUF-RECV-call th1' th2'' msg' }
(if (th2'"}=th)\vee(th1'\not=th')\vee (msg\not= msg'
then {}
else (th\triangleright msg \triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC BUF (SEND th th' msg),IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))
|P4-IPC-MAP-call th1' th2'" msg' }
(if (th\mp@subsup{2}{}{\prime\prime}\not=th)\vee (th1'\not=th')\vee (msg\not= msg')
then {}
else ((th\triangleright msg\triangleright th')
\lfloor[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),

```
```

            IPC DONE (RECV th' th msg)]) \cup
            (th'\triangleleft msg}\triangleleftth
            L[IPC WAIT (RECV th' th msg),IPC WAIT (SEND th th' msg)]」
            ([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
                        IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
                IPC DONE (RECV th th' msg)]) \cup
                    (th'}\triangleright msg\triangleright th
                    \[IPC WAIT (SEND th' th msg),IPC WAIT (RECV th th' msg)]\rfloor
                    ([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
                        IPC MAP (RECV th th' msg),IPC DONE (SEND th th' msg),
                        IPC DONE (RECV th th' msg)]) \cup
                            (th }\triangleleftmsg\triangleleftth'
                            L[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
                    ([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),
                        IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
        IPC DONE (RECV th' th msg)])))
    |P4-IPC-MAP-SEND-call th1' th2'' msg' }
(if (th\mp@subsup{\mathcal{R}}{}{\prime\prime}\not=th)\vee (th\mp@subsup{1}{}{\prime}\not=th')\vee (msg\not= msg')
then {}
else (th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))
|P4-IPC-MAP-RECV-call th1' th2'' msg' }
(if (th2'"}=th)\vee(th1'\not=th')\vee (msg\not= msg'
then {}
else (th\triangleright msg \triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)])))

```

\section*{definition}
［simp］：
 sc-cases-IPC-SEND-call th msg th' \(\mathrm{sc}^{\prime}=\)
(case sc' of P4-IPC-call th1' th2' \(\mathrm{msg}^{\prime} \Rightarrow\)
 (if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(\right.\) th1 \(\left.{ }^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\left(*\right.\) check if \(t h^{\prime}\) is caller of \(s c^{\prime}\) and
```

then {}
else ((th\triangleright msg\triangleright th')
L[IPC WAIT (SEND th th' msg),IPC WAIT (RECV th' th msg) ]」
(th'\unlhdmsg \unlhdth)\cup
(th'}\triangleleftmsg\triangleleftth

\[IPC WAIT (RECV th'th msg), IPC WAIT (SEND th th' msg)]」
(th \unrhdmsg\unrhdth')))
|P4-IPC-RECV-call th1' th2' msg' }
(if (th2' = th) \vee (th1'\not=th')\vee (msg f= msg')
then {}
else (th\triangleright msg \triangleright th')
\[IPC WAIT (SEND th th' msg), IPC WAIT (RECV th' th msg) ]」
(th'\unlhd msg \unlhdth)\cup
(th'\triangleleftmsg}\triangleleftth
\lfloor[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
(th\unrhdmsg\unrhdth'))
P4-IPC-BUF-call th1' th2' msg' }
(if }(th\mp@subsup{\mathcal{N}}{}{\prime}\not=th)\vee(th\mp@subsup{1}{}{\prime}\not=th')\vee (msg\not= msg'
then {}
else (((th \triangleright msg \triangleright th')
\[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC BUF (SEND th th' msg),IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))))
P4-IPC-BUF-RECV-call th1' th2' msg' }
(if (th2' = th)\vee (th1'\not=th')\vee (msg \not= msg')
then {}
else (th\triangleright msg\triangleright th')
\IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th'th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th'th msg),IPC WAIT (SEND th th' msg)]」
([IPC PREP (SEND th th' msg),IPC WAIT (SEND th th' msg),
IPC BUF (SEND th th' msg),IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))
P4-IPC-MAP-call th1' th2' msg' }
(if (th2'\not= th)\vee (th1'\not=th')\vee (msg\not= msg')
then {}
else ((th\triangleright msg\triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg),IPC WAIT (RECV th' th msg),

```
```

            IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
            IPC DONE (RECV th' th msg)]) \cup
            (th'}\triangleleftmsg\triangleleftth
            L[IPC WAIT (RECV th' th msg),IPC WAIT (SEND th th' msg)]」
            ([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
                IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
                IPC DONE (RECV th th' msg)])))
    P4-IPC-MAP-RECV-call th1' th2' msg' }
(if (th2' }=th)\vee(th\mp@subsup{1}{}{\prime}\not=th')\vee (msg\not= msg'
then {}
else (th\triangleright msg \triangleright th')
L[IPC WAIT (SEND th th msg),IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))
|- = {})

```

\section*{definition}
［simp］：
```

sc-cases-IPC-RECV-call th msg th' sc' =

```
(case sc' of P4-IPC-call th1' th2' \(\mathrm{msg}^{\prime} \Rightarrow\)
 \(\left(\right.\) if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\left(*\right.\) check if \(t h^{\prime}\) is caller of \(s c^{\prime}\) and
 th is his partner and \(m s g \mathrm{msg}^{\prime}\) are equal*)
 then \(\}\)
 else \(\left(\left(t^{\prime} \triangleright m s g \triangleright t h\right)\right.\)
 \(\lfloor[I P C\) WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg)]」
 \(\left(t h \unlhd m s g \unlhd t h^{\prime}\right) \cup\)
 (th \(\triangleleft m s g \triangleleft t h^{\prime}\))
 Ł[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
 \(\left.\left(t h^{\prime} \unrhd m s g \unrhd t h\right)\right)\))
|P4-IPC-SEND-call th1' th2' \(\mathrm{msg}^{\prime} \Rightarrow\)
 (if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h{ }^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
 then \(\}\)
 else \(\left(\left(t h^{\prime} \triangleright m s g \triangleright t h\right)\right.\)
 \[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg)]」
 \(\left(t h \unlhd m s g \unlhd t h^{\prime}\right) \cup\)
 (th \(\left.\triangleleft m s g \triangleleft t h^{\prime}\right)\)
 \(\lfloor[I P C\) WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg) \(]\rfloor\)
 \(\left.\left.\left(t h^{\prime} \unrhd m s g \unrhd t h\right)\right)\right)\)
|P4-IPC-BUF-call th1' th2' \(\mathrm{msg}^{\prime} \Rightarrow\)
 (if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
 then \(\}\)
 else ((
```

    (th'\triangleright msg\triangleright th)
    [[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg)]\rfloor
    ([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
    IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
    IPC DONE (RECV th th' msg)]) \cup
    (th }\triangleleftmsg\triangleleftth'
    \[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
    ([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
    IPC BUF (SEND th' th msg), IPC DONE (SEND th'th msg),
    IPC DONE (RECV th' th msg)]))))
    |P4-IPC-BUF-SEND-call th1' th2' msg' }
(if (th2' = th)\vee (th1'\not= th')\vee (msg\not= msg')
then {}
else (th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th m msg}\mp@subsup{|}{}{\prime}\mp@subsup{h}{}{\prime}
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th'th msg), IPC WAIT (SEND th' th msg),
IPC BUF (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))
P4-IPC-MAP-call th1' th2' msg' }
(if (th\mp@subsup{\mathcal{N}}{}{\prime}\not=th)\vee (th1'\not=th')\vee (msg\not= msg')
then {}
else ((th'\triangleright msg\triangleright th)
\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]\rfloor
([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)])))
|P4-IPC-MAP-SEND-call th1' th2' msg' }
(if (th\mp@subsup{2}{}{\prime}\not=th)\vee (th1'\not=th')\vee (msg \not= msg')
then {}
else (th'\triangleright msg\triangleright th)
\[IPC WAIT (SEND th' th msg),IPC WAIT (RECV th th' msg) ]」
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th msg}\triangleleftth'
\[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))

```
```

    |- = {})
    definition
[simp]:
sc-cases-IPC-BUF-call th msg th' sc' =
(case sc' of P4-IPC-call th1' th2' msg' }
(if }(th\mp@subsup{2}{}{\prime}\not=th)\vee(th\mp@subsup{1}{}{\prime}\not=th')\vee(msg\not=msg')(*check if th' is caller of sc' and
th is his partner and msg msg' are equal*)
then {}
else (((th\triangleright msg\triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC BUF (SEND th th' msg),IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleft\textrm{msg}\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
IPC BUF (SEND th' th msg),IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))))
|P4-IPC-SEND-call th1' th2' msg' }
(if (th2' = th) \vee (th1' = th')\vee (msg 看 msg')
then {}
else ((th'\triangleright msg\triangleright th)
[[IPC WAIT (SEND th' th msg),IPC WAIT (RECV th th' msg)]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
\[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),
IPC BUF (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)])))
|P4-IPC-RECV-call th1' th2' msg' }
(if (th2' = th)\vee (th1'\not=th')\vee (msg f= msg')
then {}
else (th\triangleright msg\triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg),IPC WAIT (RECV th' th msg),

```

IPC BUF（RECV th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
［［IPC WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇msg）］」
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇msg）， IPC BUF（SEND th th＇msg），IPC DONE（SEND th th＇ msg ）， IPC DONE（RECV th th＇ msg ）］））
\(\mid P 4-I P C-B U F-\) call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
（if \(\left(\right.\) th2 \(\left.{ }^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h{ }^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(\left(\left(t h \triangleright m s g \triangleright t h^{\prime}\right)\right.\right.\)
L［IPC WAIT（SEND th th msg），IPC WAIT（RECV th＇th msg）］\(\rfloor\)
（［IPC PREP（RECV th＇th msg），IPC WAIT（RECV th＇th msg）， IPC BUF（RECV th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t^{\prime} \triangleleft m s g \triangleleft t h\right)\)
\(\lfloor[I P C\) WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇ msg ）\(]\rfloor\)
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇msg）， IPC BUF（SEND th th＇ msg ），IPC DONE（SEND th th＇ msg ）， IPC DONE（RECV th th＇msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleright m s g \triangleright t h\right)\)
\［IPC WAIT（SEND th＇th msg），IPC WAIT（RECV th th＇msg）］」
（［IPC PREP（RECV th th＇msg），IPC WAIT（RECV th th＇ msg ），
IPC BUF（RECV th th＇msg），IPC DONE（SEND th th＇ msg ），
IPC DONE（RECV th th＇ msg ）］\() \cup\)
（th \(\left.\triangleleft m s g \triangleleft t h^{\prime}\right)\)
L［IPC WAIT（RECV th th＇msg），IPC WAIT（SEND th＇th msg）］」
（［IPC PREP（SEND th＇th msg），IPC WAIT（SEND th＇th msg）， IPC BUF（SEND th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］））））
｜P4－IPC－BUF－SEND－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
（if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h{ }^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(t h^{\prime} \triangleright ~ m s g \triangleright t h\right)\)
\［IPC WAIT（SEND th＇th msg），IPC WAIT（RECV th th＇msg）］」
（［IPC PREP（RECV th th＇msg），IPC WAIT（RECV th th＇ msg ），
IPC BUF（RECV th th＇msg），IPC DONE（SEND th th＇msg），
IPC DONE（RECV th th＇msg）］）\(\cup\)
\(\left(t h \triangleleft m s g \triangleleft t h^{\prime}\right)\)
Ł［IPC WAIT（RECV th th＇msg），IPC WAIT（SEND th＇th msg）］」
（［IPC PREP（SEND th＇th msg），IPC WAIT（SEND th＇th msg），
IPC BUF（SEND th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］））
｜P4－IPC－BUF－RECV－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
（if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \｛\}
else（th \(\triangleright m s g \triangleright t h^{\prime}\) ）
\(\lfloor[I P C\) WAIT（SEND th th msg），IPC WAIT（RECV th＇th msg）］」
（［IPC PREP（ \(R E C V\) th＇th \(m s g\) ），IPC WAIT（ \(R E C V\) th＇th msg ），

IPC BUF（RECV th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
L［IPC WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇msg）］」
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇msg）， IPC BUF（SEND th th＇msg），IPC DONE（SEND th th＇msg）， IPC DONE（RECV th th＇msg）］））
\[
\mid-\Rightarrow\{ \})
\]

\section*{definition}

\section*{［simp］：}
sc－cases－IPC－BUF－SEND－call th msg th \({ }^{\prime} \mathrm{sc}^{\prime}=\)
（case sc＇of P4－IPC－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\left(*\right.\) check if \(t h^{\prime}\) is caller of \(s c^{\prime}\) and
th is his partner and msg msg＇are equal＊）
```

    then \(\}\)
    else \(\left(\left(\left(t h \triangleright m s g \triangleright t h^{\prime}\right)\right.\right.\)
        \(\lfloor[I P C\) WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) \(]\rfloor\)
        ([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
            IPC BUF ( \(R E C V\) th' th msg ), IPC DONE (SEND th' th msg),
            IPC DONE (RECV th' th msg)]) \(\cup\)
        \(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
        [[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]」
        ([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg ),
            IPC BUF (SEND th th' msg), IPC DONE (SEND th th' msg ),
            IPC DONE (RECV th th' msg)]))))
    |P4-IPC-RECV-call th1' th2' $\mathrm{msg}^{\prime} \Rightarrow$
(if $\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)$
then $\}$
else $(t h \triangleright m s g \triangleright t h ')$
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]」
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE $(R E C V$ th' th $m s g)]) \cup$
$\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)$
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]」
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC BUF (SEND th th' msg), IPC DONE (SEND th th' msg ),
IPC DONE (RECV th th' msg )]))
$\mid P 4-I P C$-BUF-call th1' th2' $\mathrm{msg}^{\prime} \Rightarrow$
$\left(\right.$ if $\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)$
then $\}$
else $\left(\left(\left(t h \triangleright m s g \triangleright t h{ }^{\prime}\right)\right.\right.$
$\lfloor[I P C$ WAIT (SEND th th msg) , IPC WAIT (RECV th' th msg) ] $\rfloor$
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) $\cup$
$\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)$

```
```

    L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]」
    ([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
        IPC BUF (SEND th th' msg), IPC DONE (SEND th th' msg),
        IPC DONE (RECV th th' msg)]))))
    |P4-IPC-BUF-RECV-call th1' th2' msg' }
(if (th2'
then {}
else (th }\triangleright msg\triangleright th'
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC BUF (RECV th' th msg),IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth

\[IPC WAIT (RECV th' th msg),IPC WAIT (SEND th th' msg)]」
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC BUF (SEND th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))
|-=> {})

```

\section*{definition}
```

[simp]:
sc-cases-IPC-BUF-RECV-call th msg th' sc'=
(case sc' of P4-IPC-call th1' th2' msg' }
(if (th\mp@subsup{2}{}{\prime}}\not=th)\vee(th\mp@subsup{1}{}{\prime}\not=th')\vee (msg\not= msg') (*check if th' is caller of s\mp@subsup{c}{}{\prime} and
th is his partner and msg msg' are equal*)
then {}
else ((
(th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg),IPC WAIT (RECV th th' msg)]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
\[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
IPC BUF (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))))
|P4-IPC-SEND-call th1' th2' msg' }
(if (th\mp@subsup{2}{}{\prime}\not=th)\vee (th\mp@subsup{1}{}{\prime}\not=th')\vee (msg\not= msg')
then {}
else ((th'\triangleright msg\triangleright th)
\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC BUF (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]\rfloor
([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),

```

IPC BUF（SEND th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）））
｜P4－IPC－BUF－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \｛\}
else（（
\(\left(t h^{\prime} \triangleright m s g \triangleright t h\right)\)
\［IPC WAIT（SEND th＇th msg），IPC WAIT（RECV th th＇msg）］」
（［IPC PREP（RECV th th＇msg），IPC WAIT（RECV th th＇ msg ），
IPC BUF（RECV th th＇msg），IPC DONE（SEND th th＇ msg ），
IPC DONE（RECV th th＇msg）］）\(\cup\)
\(\left(t h \triangleleft m s g \triangleleft t h^{\prime}\right)\)
L［IPC WAIT（RECV th th＇ msg ），IPC WAIT（SEND th＇th msg）］」
（［IPC PREP（SEND th＇th msg），IPC WAIT（SEND th＇th msg）， IPC BUF（SEND th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］））））
｜P4－IPC－BUF－SEND－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(t^{\prime} \triangleright m s g \triangleright t h\right)\)
［［IPC WAIT（SEND th＇th msg），IPC WAIT（RECV th th＇msg）］」
（［IPC PREP（RECV th th＇msg），IPC WAIT（RECV th th＇msg）， IPC BUF（RECV th th＇ msg ），IPC DONE（SEND th th＇ msg ）， IPC DONE（RECV th th＇msg）］）\(\cup\)
\(\left(t h \triangleleft m s g \triangleleft t h^{\prime}\right)\)
L［IPC WAIT（RECV th th＇msg），IPC WAIT（SEND th＇th msg）］」
（［IPC PREP（SEND th＇th msg），IPC WAIT（SEND th＇th msg）， IPC BUF（SEND th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］））
\(\mid-\Rightarrow\{ \})\)

\section*{definition}
［simp］：
sc－cases－IPC－MAP－call th msg th \({ }^{\prime} c^{\prime}=\)
（case sc＇of P4－IPC－call th1 \({ }^{\prime}\) th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\left(*\right.\) check if \(t h^{\prime}\) is caller of \(s c^{\prime}\) and
th is his partner and msg \(\mathrm{msg}^{\prime}\) are equal＊）
```

then $\}$
else $\left(\left(\begin{array}{ll} \\ \triangleright\end{array} \mathrm{msg} \triangleright \mathrm{th}^{\prime}\right)\right.$
L[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th th msg) ]」
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) $\cup$
$\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)$
$\lfloor[I P C$ WAIT (RECV th' th msg) , IPC WAIT (SEND th th' msg) $]\rfloor$
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg ),
IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg ),
IPC DONE (RECV th th' msg)]) $\cup$

```
```

    (th'\triangleright msg\triangleright th)
    [[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg)]\rfloor
    ([IPC PREP (RECV th th' msg),IPC WAIT (RECV th th' msg),
    IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
    IPC DONE (RECV th th' msg)]) \cup
    (th }\triangleleftmsg\triangleleftt\mp@subsup{h}{}{\prime}
    L[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
    ([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
    IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
    IPC DONE (RECV th' th msg)]))))
    |P4-IPC-SEND-call th1' th2' msg' }
(if (th2' = th)\vee (th1'\not= th')\vee (msg\not= msg')
then {}
else ((th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th m msg}\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th'th msg), IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)])))
|P4-IPC-RECV-call th1' th2' msg' }
(if (th\mp@subsup{\mathcal{N}}{}{\prime}\not=th)\vee (th\mp@subsup{1}{}{\prime}\not=th')\vee (msg\not= msg')
then {}
else (th\triangleright msg\triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))
|P4-IPC-MAP-call th1' th2' msg' }
(if (th2' }= th)\vee(th\mp@subsup{1}{}{\prime}\not=th')\vee (msg f= msg'
then {}
else (((th\triangleright msg\triangleright th')
\[IPC WAIT (SEND th th msg),IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th'th msg),IPC WAIT (SEND th th' msg)]」
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup

```
```

    (th'\triangleright msg\triangleright th)
    [IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg)]\rfloor
    ([IPC PREP (RECV th th' msg),IPC WAIT (RECV th th' msg),
    IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
    IPC DONE (RECV th th' msg)]) U
    (th }\triangleleft\textrm{msg}\triangleleftth'
    L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
    ([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
    IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
    IPC DONE (RECV th' th msg)]))))
    |P4-IPC-MAP-SEND-call th1' th2' msg' }

```

```

    then {}
    else (th'\triangleright msg\triangleright th)
            [[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]」
            ([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
                IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
                    IPC DONE (RECV th th' msg)]) \cup
            (th m msg}\triangleleftth'
            L[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
            ([IPC PREP (SEND th'th msg), IPC WAIT (SEND th' th msg),
                IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
                IPC DONE (RECV th' th msg)]))
    P4-IPC-MAP-RECV-call th1' th2' msg' }
(if (th\mp@subsup{2}{}{\prime}\not=th)\vee (th1'\not=th')\vee (msg\not= msg')
then {}
else (th\triangleright msg\triangleright th')
L[IPC WAIT (SEND th th msg), IPC WAIT (RECV th' th msg) ]\rfloor
([IPC PREP (RECV th' th msg), IPC WAIT (RECV th' th msg),
IPC MAP (RECV th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]) \cup
(th'}\triangleleftmsg\triangleleftth
L[IPC WAIT (RECV th' th msg), IPC WAIT (SEND th th' msg)]\rfloor
([IPC PREP (SEND th th' msg), IPC WAIT (SEND th th' msg),
IPC MAP (SEND th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]))
|- = {})

```

\section*{definition}
```

［simp］：
sc－cases－IPC－MAP－SEND－call th msg th＇ $\mathrm{sc}^{\prime}=$
（case sc＇of P4－IPC－call th1＇th2＇ $\mathrm{msg}^{\prime} \Rightarrow$
$\left(\right.$ if $\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\left(*\right.$ check if $t h^{\prime}$ is caller of $s c^{\prime}$ and
th is his partner and $m s g \mathrm{msg}^{\prime}$ are equal＊）
then $\}$
else $\left(\left(\left(t h \triangleright m s g \triangleright t h^{\prime}\right)\right.\right.$
$\lfloor[I P C$ WAIT（SEND th th msg），IPC WAIT（RECV th＇th msg）$]\rfloor$
（［IPC PREP（RECV th＇th msg），IPC WAIT（RECV th＇th msg），

```

IPC MAP（RECV th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
［［IPC WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇msg）］」
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇msg）， IPC MAP（SEND th th＇msg），IPC DONE（SEND th th＇msg）， IPC DONE（RECV th th＇msg）］））））
｜P4－IPC－RECV－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\) （if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(t h \triangleright m s g \triangleright t h{ }^{\prime}\right)\)
ᄂ［IPC WAIT（SEND th th msg），IPC WAIT（RECV th＇th msg）］」
（［IPC PREP（RECV th＇th msg），IPC WAIT（RECV th＇th msg）， IPC MAP（ \(R E C V t^{\prime}\) th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
L［IPC WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇msg）］」
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇ msg ）， IPC MAP（SEND th th＇ msg ），IPC DONE（SEND th th＇ msg ）， IPC DONE（RECV th th＇msg）］））
｜P4－IPC－MAP－call th1＇th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\) （if \(\left(t h \mathcal{2}^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else \(\left(\left(\left(t h \triangleright m s g \triangleright t h^{\prime}\right)\right.\right.\)
L［IPC WAIT（SEND th th msg），IPC WAIT（RECV th th msg）］」
（［IPC PREP（RECV th＇th msg），IPC WAIT（RECV th＇th msg）， IPC MAP（RECV th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
L［IPC WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇msg）］」
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇msg）， IPC MAP（SEND th th＇msg），IPC DONE（SEND th th＇msg）， IPC DONE（RECV th th＇msg）］））））
｜P4－IPC－MAP－RECV－call th1 \({ }^{\prime}\) th2＇ \(\mathrm{msg}^{\prime} \Rightarrow\)
\(\left(\right.\) if \(\left(t h 2^{\prime} \neq t h\right) \vee\left(t h 1^{\prime} \neq t h^{\prime}\right) \vee\left(m s g \neq m s g^{\prime}\right)\)
then \(\}\)
else（th \(\triangleright m s g \triangleright t h^{\prime}\) ）
\(\lfloor[I P C\) WAIT（SEND th th msg），IPC WAIT（RECV th＇th msg）］」
（［IPC PREP（RECV th＇th msg），IPC WAIT（RECV th＇th msg）， IPC MAP（RECV th＇th msg），IPC DONE（SEND th＇th msg）， IPC DONE（RECV th＇th msg）］）\(\cup\)
\(\left(t h^{\prime} \triangleleft m s g \triangleleft t h\right)\)
Ł［IPC WAIT（RECV th＇th msg），IPC WAIT（SEND th th＇msg）］」
（［IPC PREP（SEND th th＇msg），IPC WAIT（SEND th th＇msg）， IPC MAP（SEND th th＇msg），IPC DONE（SEND th th＇msg）， IPC DONE（RECV th th＇msg）］））
\(\mid-\Rightarrow\{ \})\)

\section*{definition}
```

[simp]:
sc-cases-IPC-MAP-RECV-call th msg th' sc' =
(case sc' of P4-IPC-call th1' th2' msg' }
(if (th2' }\mp@subsup{}{}{\prime}=th)\vee(th\mp@subsup{1}{}{\prime}\not=t\mp@subsup{t}{}{\prime})\vee(msg\not=ms\mp@subsup{g}{}{\prime})(*\mathrm{ check if th' is caller of sc' and
th is his partner and msg msg' are equal*)
then {}
else ((
(th'\triangleright msg\triangleright th)

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
\[IPC WAIT (RECV th th' msg),IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th'th msg),
IPC DONE (RECV th' th msg)]))))
|P4-IPC-SEND-call th1' th2' msg' }
(if (th2' }=\mathrm{ th) }\vee(th1'\not=th) \vee (msg = msg'
then {}
else ((th'\triangleright msg\triangleright th)
\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]\rfloor
([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)])))
|P4-IPC-MAP-call th1' th2' msg' }
(if (th2' = th)\vee (th1'\not=th')\vee (msg f= msg')
then {}
else ((
(th'\triangleright msg\triangleright th)
\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleft\textrm{msg}\triangleleftt\mp@subsup{h}{}{\prime}
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]」
([IPC PREP (SEND th' th msg),IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))))
|P4-IPC-MAP-SEND-call th1' th2' msg' }
(if (th2' }=th)\vee(th1'\not=th')\vee (msg \not= msg'
then {}
else (th'\triangleright msg\triangleright th)

```
```

\[IPC WAIT (SEND th' th msg), IPC WAIT (RECV th th' msg) ]\rfloor
([IPC PREP (RECV th th' msg), IPC WAIT (RECV th th' msg),
IPC MAP (RECV th th' msg), IPC DONE (SEND th th' msg),
IPC DONE (RECV th th' msg)]) \cup
(th }\triangleleftmsg\triangleleftth'
L[IPC WAIT (RECV th th' msg), IPC WAIT (SEND th' th msg)]\rfloor
([IPC PREP (SEND th' th msg), IPC WAIT (SEND th' th msg),
IPC MAP (SEND th' th msg), IPC DONE (SEND th' th msg),
IPC DONE (RECV th' th msg)]))
|-=> {})

```
```

definition
[simp]:
comm-cases th th' sc sc' =
(case sc of P4-IPC-call th1' th2' msg }
(if (th\mp@subsup{2}{}{\prime}\not=th')\vee (th\mp@subsup{1}{}{\prime}\not=th)\vee(th=th') (*check if th is caller of sc and th'
is his partner*)
then {}
else sc-cases-IPC-call th msg th' sc')
P4-IPC-SEND-call th1' th2' msg }
(if (th2' = th') \vee (th1' }=th)\vee(th=th'
then {}
else sc-cases-IPC-SEND-call th msg th' sc')
|P4-IPC-RECV-call th1' th2' msg }
(if }(th\mp@subsup{2}{}{\prime}\not=th')\vee (th\mp@subsup{1}{}{\prime}\not=th)\vee(th=th'
then {}
else sc-cases-IPC-RECV-call th msg th' sc')
|P4-IPC-BUF-call th1' th2' msg =>
(if (th2' }= th')\vee (th1'\not= th) \vee (th=th'
then {}
else sc-cases-IPC-BUF-call th msg th' sc')
|P4-IPC-BUF-SEND-call th1' th2' msg }
(if (th2' }= th')\vee (th1'\not= th) \vee (th= th'
then {}
else sc-cases-IPC-BUF-SEND-call th msg th' sc')
|P4-IPC-BUF-RECV-call th1' th2' msg }
(if (th\mp@subsup{2}{}{\prime}}
then {}
else sc-cases-IPC-BUF-RECV-call th msg th' sc')
|P4-IPC-MAP-call th1' th2' msg =>
(if (th2'\not= th')\vee (th1'\not= th) \vee (th= th')
then {}
else sc-cases-IPC-MAP-call th msg th' sc')
|P4-IPC-MAP-SEND-call th1' th2' msg }
(if (th2' }= th')\vee (th1'\not= th) \vee (th=th'
then {}
else sc-cases-IPC-MAP-SEND-call th msg th' sc')
|P4-IPC-MAP-RECV-call th1' th2' msg }
(if (th2' }= th')\vee (th1'\not= th) \vee (th=th'
then {}

```
```

fun criteria :: ('th-id, ('th-id,'msg) P4-IPC-call)criterion =
((p4-stage ipc }, ('th-id,'msg ) p4-direct ipc )action ipc list) se
where
criteria (interleave-all S)=undefined
|riteria (COMM th th' scTab) =
(case scTab th of None }=>{
| Some sc =
(case scTab th' of None }=>{
Some sc' }=>\mathrm{ comm-cases th th'sc sc'))
|riteria (TPAIR th th' scTab) =
(case scTab th of None }
(case scTab th' of None }=>{
Some sc =
{IPC-call-sem sc})
| Some sc =
(case scTab th' of None }=>{IPC-call-sem sc
| Some sc' }=>\mathrm{ interleave (IPC-call-sem sc) (IPC-call-sem sc')))

```

\section*{Q. 5 Partial order theorem}
lemma partial-order-ipc-instance-resource:
assumes 1: th \(\neq t h^{\prime}\)
shows
image \(\left(\lambda\right.\) is. mbind is \(\left(\lambda a .\left(\right.\right.\) out \(\left.\left.1 \leftarrow B U F-R E C V_{M O N} a ; M A P-R E C V_{M O N} a\right)\right)\)
\(\sigma)\)
(criteria (COMM th th' \(\left[\right.\) th \(\mapsto P 4-I P C\)-call th th \({ }^{\prime} \mathrm{msg}\), \(t h^{\prime} \mapsto P 4-I P C\)-call th' th msg])) \(=\)
image \(\left(\lambda\right.\) is. mbind is \(\left(\lambda a\right.\). (out1 \(\leftarrow B U F-R E C V_{M O N} a ; M A P-R E C V_{M O N}\)
a)) \(\sigma\))
(interleave \(\left.\left(t h \triangleleft m s g \triangleleft t h^{\prime}\right)\left(t h^{\prime} \unrhd m s g \unrhd t h\right)\right)\)
oops
lemma (int o card) (criteria (COMM th th \({ }^{\prime}\left[\right.\) th \(\mapsto P 4-I P C\)-call th th \({ }^{\prime}\) msg, \(t h^{\prime} \mapsto P 4-I P C\)-call th \({ }^{\prime}\) th msg])) \(<\)
\((\) int ocard \()\left(\left(\right.\right.\) interleave \(\left.\left.\left(t h \triangleleft m s g \triangleleft t h^{\prime}\right)\left(t h^{\prime} \unrhd m s g \unrhd t h\right)\right)\right)\)
by \(\operatorname{simp}\)

\section*{Q. 6 ipc communications derivations}

\section*{Q. 7 Lemmas on ipc communications}
lemma comm-with-P4-IPC-call-Some:
assumes \(1:\left(\right.\) the o scTab) th \(=\left(P 4-I P C\right.\)-call th \(\left.t h^{\prime} m s g\right) \wedge\) (the o scTab) \(t h^{\prime}=\left(\right.\) P4-IPC-call \(t h^{\prime}\) th \(\left.m s g\right)\)
and 2: th \(\in\) dom scTab \(\wedge t h^{\prime} \in \operatorname{dom} s c T a b\)
and \(3: t h \neq t h^{\prime}\)
shows criteria (COMM th th' \(s c T a b) \neq\{ \}\)
proof (cases scTab th)
fix \(s c T a b\) th
case None
from this
show ?thesis
using assms
by auto
next
case (Some a)
from this
show ?thesis
using assms
by auto
qed
lemma comm-with-P4-IPC-BUF-call-Some:
assumes 1:(the o scTab) th \(=(\) P4-IPC-call th th' msg\() \wedge\) (the o scTab) th' \(=(\) P4-IPC-BUF-call th' th msg\()\) and 2: th \(\in \operatorname{dom}\) scTab \(\wedge t h^{\prime} \in \operatorname{dom}\) scTab and \(3: t h \neq t h^{\prime}\)
shows criteria \(\left(\right.\) COMM th \(\left.t h^{\prime} s c T a b\right) \neq\{ \}\)
proof (cases scTab th)
case None
assume 1: scTab th \(=\) None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th \(=\) Some a
then show ?thesis
using assms
by (auto simp: split:option.split)
qed
lemma comm-with-P4-IPC-BUF-SEND-call-Some:
assumes \(1:\left(\right.\) the o scTab) th \(=\left(P 4-I P C\right.\)-call th \(\left.t h^{\prime} m s g\right) \wedge\)

and 2: \(t h \in \operatorname{dom} s c T a b \wedge t h^{\prime} \in d o m s c T a b\)
and 3: th \(\neq t h^{\prime}\)
shows criteria (COMM th th' \(s c T a b) \neq\{ \}\)
proof (cases scTab th)
case None
assume 1: scTab th \(=\) None
then show?thesis
using assms
```

    by auto
    next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma comm-with-P4-IPC-BUF-RECV-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th' msg) }
(the o scTab) th' = (P4-IPC-BUF-RECV-call th' th msg)
and 2: th \in dom scTab ^th'\in dom scTab
and 3: th f th'
shows criteria (COMM th th' scTab) }\not={
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma comm-with-P4-IPC-MAP-call-Some:
assumes 1:(the o scTab) th =(P4-IPC-call th th' msg) ^
(the o scTab) th'}=(P4-IPC-MAP-call th' th msg)
and 2: th \in dom scTab ^ th' \in dom scTab
and 3: th f th'
shows criteria (COMM th th' scTab) }\not={
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)
qed

```
```

lemma comm-with-P4-IPC-MAP-SEND-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th' msg)}
(the o scTab) th' = (P4-IPC-MAP-SEND-call th' th msg)
and 2: th \in dom scTab }\wedget\mp@subsup{t}{}{\prime}\in\operatorname{dom scTab
and 3: th f th'
shows criteria (COMM th th' scTab) }\not={{
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma comm-with-P4-IPC-MAP-RECV-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th' msg) }
(the o scTab) th' = (P4-IPC-MAP-RECV-call th' th msg)
and 2: th \in dom scTab ^th'\in dom scTab
and 3: th \# th'
shows criteria (COMM th th' scTab) }\not={
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed

```

\section*{Q. 8 No communications}
lemma not-comm-SEND-SEND:
assumes 1:(the o scTab) th \(=(\) P4-IPC-SEND-call th th' msg\() \wedge\)
(the o scTab) \(t^{\prime}=(\) P4-IPC-SEND-call th' th msg)
and 2: th \(\in \operatorname{dom} s c T a b \wedge t h^{\prime} \in \operatorname{dom} s c T a b\)
and 3 : \(t h \neq t h^{\prime}\)
shows \(\quad\) criteria (COMM th th' \(s c T a b)=\{ \}\)
proof (cases scTab th)
```

    case None
    assume 1: scTab th = None
    then show ?thesis
    using assms
    by auto
    next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma not-comm-SEND-SEND-BUF:
assumes 1:(the o scTab) th=(P4-IPC-SEND-call th th' msg)^
(the o scTab) th' = (P4-IPC-BUF-SEND-call th' th msg)
and 2: th \in dom scTab ^ th' \in dom scTab
and 3: th f th'
shows criteria (COMM th th' scTab) = {}
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma not-comm-SEND-SEND-MAP:
assumes 1:(the o scTab) th=(P4-IPC-SEND-call th th' msg)}
(the o scTab) th' = (P4-IPC-MAP-SEND-call th' th msg)
and 2: th \in dom scTab }\wedget\mp@subsup{th}{}{\prime}\indom scTa
and 3: th f th'
shows criteria (COMM th th' scTab) = {}
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis

```
```

    using assms
    by (auto simp: split:option.split )
    qed
lemma not-comm-RECV-RECV:
assumes 1:(the o scTab) th=(P4-IPC-RECV-call th th' msg)}
(the o scTab) th' = (P4-IPC-RECV-call th' th msg)
and 2: th \in dom scTab }\wedge th'\in dom scTa
and 3: th f th'
shows criteria (COMM th th' scTab) = {}
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma not-comm-RECV-RECV-BUF:
assumes 1:(the o scTab) th=(P4-IPC-RECV-call th th' msg)}
(the o scTab) th' = (P4-IPC-BUF-RECV-call th' th msg)
and 2: th \in dom scTab ^ th' \in dom scTab
and 3: th f th'
shows criteria (COMM th th' scTab) = {}
proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split )
qed
lemma not-comm-RECV-RECV-MAP:
assumes 1:(the o scTab) th=(P4-IPC-RECV-call th th' msg)^
(the o scTab) th' = (P4-IPC-MAP-RECV-call th' th msg)
and 2: th \in dom scTab }\wedget\mp@subsup{th}{}{\prime}\indom scTa
and 3: th f th'

```
```

    shows criteria (COMM th th' scTab) = {}
    proof (cases scTab th)
case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto
next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)
qed
end

```

\section*{Bibliography}
\(\left[\mathrm{ABC}^{+} 13\right]\) Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil Mcminn. An orchestrated survey of methodologies for automated software test case generation. J. Syst. Softw., 86(8):1978-2001, August 2013.
[ABGR10] Wolfgang Ahrendt, Bernhard Beckert, Martin Giese, and Philipp Rümmer. Practical aspects of automated deduction for program verification. KI, 24(1):43-49, 2010.
[Abr96] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University Press, New York, NY, USA, 1996.
[AK95] D.P. Appenzeller and A. Kuehlmann. Formal verification of a powerpe microprocessor. In Computer Design: VLSI in Computers and Processors, 1995. ICCD '95. Proceedings., 1995 IEEE International Conference on, pages 79-84, oct 1995.
[All70a] Frances E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler Optimization, pages 1-19, New York, NY, USA, 1970. ACM.
[All70b] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1-19, July 1970.
[And86] Peter B. Andrews. An introduction to mathematical logic and type theory: to truth through proof. Academic Press Professional, Inc., San Diego, CA, USA, 1986.
[And02] Peter B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Kluwer Academic Publishers, Dordrecht, 2002.
[Bal10] Clemens Ballarin. Tutorial to Locales and Locale Interpretation, 2010.
[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
[BBW15] Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Formal firewall conformance testing: an application of test and proof techniques. Softw. Test., Verif. Reliab., 25(1):34-71, 2015.
\(\left[B C D^{+} 11\right]\) Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Proceedings of the 23rd International Conference on Computer Aided Verification, CAV'11, pages 171-177, Berlin, Heidelberg, 2011. Springer-Verlag.
[BCFG86] L Bougé, N Choquet, L Fribourg, and M C Gaudel. Test sets generation from algebraic specifications using logic programming. J. Syst. Softw., 6(4):343-360, Nov 1986.
[BFNW13] Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi, and Burkhart Wolff. Test program generation for a microprocessor. Lecture Notes in Computer Science, 7942:76-95, 2013.
\(\left[B F Y^{+} 97\right]\) P. Biswas, A. Freeman, K. Yamada, N. Nakagawa, and K. Uchiyama. Functional verification of the superscalar sh4 microprocessor. In Compcon '97. Proceedings, IEEE, pages 115-120, feb 1997.
[BGM91] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Software Testing Based on Formal Specifications: A Theory and a Tool. Softw. Eng. J., 6(6):387-405, Nov 1991.
[BHJJ08] Gregorv. Bochmann, Stefan Haar, Claude Jard, and GuyVincent Jourdan. Testing systems specified as partial order input/output automata. In Kenji Suzuki, Teruo Higashino, Andreas Ulrich, and Toru Hasegawa, editors, Testing of Software and Communicating Systems, volume 5047 of Lecture Notes in Computer Science, pages 169-183. Springer Berlin Heidelberg, 2008.
[BHNW15a] Achim D. Brucker, Oto Havle, Yakoub Nemouchi, and Burkhart Wolff. Testing the IPC protocol for a real-time operating system. In Verified Software: Theories, Tools, and Experiments - 7th International Conference, VSTTE 2015, San Francisco, CA, USA, July 18-19, 2015. Revised Selected Papers, pages 40-60, 2015.
[BHNW15b] Achim D. Brucker, Oto Havle, Yakoub Nemouchi, and Burkhart Wolff. Testing the IPC protocol for a real-time operating system. In Arie Gurfinkel and Sanjit A. Seshia, editors, Working Conference on Verified Software: Theories, Tools, and Experiments, Lecture Notes in Computer Science. SpringerVerlag, Heidelberg, 2015.
\(\left[\mathrm{BJK}^{+} 06\right]\) Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolfgang J. Paul. Putting it all together - Formal verification of the VAMP. International Journal on Software Tools for Technology Transfer, 8(4):411-430, 2006.
[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated Testing Based on Java Predicates. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA '02, pages 123-133, New York, NY, USA, 2002. ACM.
[BP95] Bernhard Beckert and Joachim Posegga. lean \(T^{A} P\) : Lean tableau-based deduction. Journal of Automated Reasoning, 15(3):339-358, 1995.
[Bro11] Benjamin Brosgol. Do-178c: The next avionics safety standard. In Proceedings of the 2011 ACM Annual International Conference on Special Interest Group on the Ada Programming Language, SIGAda '11, pages 5-6, New York, NY, USA, 2011. ACM.
[BW07] Achim D. Brucker and Burkhart Wolff. Test-sequence generation with hol-testgen with an application to firewall testing. In Tests and Proofs, pages 149-168, 2007.
[BW09] Achim D. Brucker and Burkhart Wolff. HOL-TestGen: An interactive test-case generation framework. In Marsha Chechik and Martin Wirsing, editors, Fundamental Approaches to Software Engineering (FASE), number 5503 in Lecture Notes in Computer Science, pages 417-420. Springer-Verlag, 2009.
[BW10] Sascha Böhme and Tjark Weber. Fast LCF-Style Proof Reconstruction for Z3. In ITP, pages 179-194, 2010.
[BW13] Achim D. Brucker and Burkhart Wolff. On Theorem Proverbased Testing. Formal Asp. Comput. (FAOC), 25(5):683-721, 2013.
[Car81] Robert Cartwright. Formal program testing. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL '81, pages 125-132, New York, NY, USA, 1981. ACM.
\(\left[\mathrm{CDH}^{+} 09\right]\) Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, MichalĆ Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A Practical System for Verifying Concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in Computer Science, pages 23-42. Springer Berlin Heidelberg, 2009.
[CG07] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in CSP. In Proceedings of the Formal Engineering Methods 9th International Conference on Formal Methods and Software Engineering, pages 151-170, Berlin, Heidelberg, 2007. Springer-Verlag.
[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, pages 56-68, June 1940.
\(\left[\mathrm{CKK}^{+} 12\right]\) Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. Frama-C: a software analysis perspective. In International Conference on Software Engineering and Formal Methods (SEFM'12), pages 233247. Springer, October 2012.
[Com06] Common criteria. Common criteria for information technology security evaluation ((version 3.1), Part: Security assurance components, September 2006.
[CSCS94] David Carrington, Phil Stocks, D. Carrington, and P. Stocks. A tale of two paradigms: Formal methods and software testing. 1994.
[DGM93] P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic specifications in software testing: A case study on the software of an automatic subway. J. Syst. Softw., 21(3), Jun 1993.
[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS, 2008.
[Dor10] Jan Dorrenbacher. Formal Specification and Verification of Microkernel. PhD thesis, Saarland University, Saarbrücken, Germany, 2010.
[DY96] D.Lee and M. Yannakakis. Principles and method of testing finite state machines- a survey. In Proceedings of the IEEE, volume 84, pages 1090-1123. IEEE, Aug 1996.
[EFH83] Hartmut Ehrig, Werner Fey, and Horst Hansen. ACT ONE an algebraic specification language with two levels of semantics. In \(A D T, 1983\).
[EH08] Abdeslam En-Nouaary and Abdelwahab Hamou-Lhadj. A boundary checking technique for testing real-time systems modeled as timed input output automata (short paper). In Proceedings of the Eighth International Conference on Quality Software, QSIC 2008, 12-13 August 2008, Oxford, UK, pages 209-215, 2008.
[En-13] Abdeslam En-Nouaary. A test purpose-based approach for testing timed input output automata. Softw. Test., Verif. Reliab., 23(1):53-76, 2013.
[Fel12] Abderrahmane Feliachi. Semantics-Based Testing for Circus. Theses, Université Paris Sud - Paris XI, December 2012.
[FGWW13] Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel, and Burkhart Wolff. The circus testing theory revisited in Isabelle/HOL. In Formal Methods and Software Engineering, pages 131-147, 2013.
[Fox03] Anthony C. J. Fox. Formal specification and verification of arm6. In TPHOLs, pages 25-40, 2003.
[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 where programs meet provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the 22nd European Symposium on Programming, volume 7792 of Lecture Notes in Computer Science, pages 125-128. Springer, March 2013.
[FT01] F. Fallah and K. Takayama. A new functional test program generation methodology. In Computer Design, 2001. ICCD 2001. Proceedings. 2001 International Conference on, pages 7681, 2001.
[FTW04] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test generation based on symbolic specifications. In FATES, pages 1-15, 2004.
[GAK12] David Greenaway, June Andronick, and Gerwin Klein. Bridging the gap: Automatic verified abstraction of C. In ITP, pages 99-115, 2012.
[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Proceedings of the 6th International Joint Conference CAAP/FASE
on Theory and Practice of Software Development, pages 82-96. Springer-Verlag, 1995.
[Gau10] Marie-Claude Gaudel. Software testing based on formal specification. In Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcook, editors, Testing Techniques in Software Engineering, volume 6153 of Lecture Notes in Computer Science, pages 215-242. Springer Berlin Heidelberg, 2010.
[GB91] M.-C Gaudel G.Bernot and B.Marre. Software testing based on formal specification: Atheory and a tool. Software Engeneering Journal, 6(6):387-405, November 1991.
[Gil62] Arthur Gill. Introduction to the theory of finite-state machines. McGraw-Hill, 1962.
[GLG08] Marie-Claude Gaudel and Pascale Le Gall. Testing data types implementations from algebraic specifications. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Testing, pages 209-239. Springer-Verlag, 2008.
[GM93] Mike J. C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge University Press, 1993.
[GMH81] John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction, implementation, specification, and testing. ACM Trans. Program. Lang. Syst., 3(3):211-223, July 1981.
[Gon13] Georges Gonthier. Engineering mathematics: the odd order theorem proof. In \(P O P L\), pages \(1-2,2013\).
[Gor00] Mike Gordon. From lcf to hol: a short history. In Proof, Language, and Interaction, pages 169-185. MIT Press, 2000.
[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. In Papers Presented at the IEEE Symposium on Logic in Computer Science, number 22, pages 305-326, Orlando, FL, USA, 1994. Academic Press, Inc.
[Haf15] Florian Haftmann. Code generation from Isabelle/HOL theories, May 2015.
[Hal08] Thomas C Hales. Formal proof. Notices of the AMS, 55(11):1370-1380, 2008.
[Har03] John Harrison. Formal verification at Intel. In LICS, pages 45-. IEEE Computer Society, 2003.
[Har06] John Harrison. Towards self-verification of HOL Light. In IJCAR, pages 177-191, 2006.
[Har09] John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science, pages 60-66, Munich, Germany, 2009. Springer-Verlag.
[Hay84] John P. Hayes. Fault modeling for digital MOS integrated circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 3(3):200-208, 1984.
[HB07] Vance Hilderman and Tony Baghai. Avionics Certification: A Complete Guide to DO-178 (Software), DO-254 (Hardware). Avionics Communications Inc., 2007.
[\(\left.\mathrm{HBB}^{+} 09\right]\) Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and Hussein Zedan. Using formal specifications to support testing. ACM Comput. Surv., 41(2):9:1-9:76, February 2009.
[Hen64] F. C. Hennine. Fault detecting experiments for sequential circuits. In Proceedings of the 1964 Proceedings of the Fifth Annual Symposium on Switching Circuit Theory and Logical Design, SWCT '64, pages 95-110, Washington, DC, USA, 1964. IEEE Computer Society.
[HP06] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., 2006.
[Hur03] Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Design and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical Reports, pages 56-68, 2003.
[Int12] ISO/IEC DIS 29119: Software and Systems EngineeringSoftware Testing. ISO Draft International Standard, July 2012.
[JH08] Éric Jaeger and Thérèse Hardin. A few remarks about formal development of secure systems. In 11th IEEE High Assurance Systems Engineering Symposium, HASE 2008, Nanjing, China, December 3-5, 2008, pages 165-174, 2008.
[KAMO14] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. HOL with definitions: Semantics, soundness, and a verified implementation. In Interactive Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages 308-324, 2014.
\(\left[\mathrm{KEH}^{+} 09\right]\) Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of an os kernel. In ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, pages 207-220. ACM, 2009.
[KKV11] Alexander Kamkin, Eugene Kornykhin, and Dmitry Vorobyev. Reconfigurable model-based test program generator for microprocessors. Software Testing Verification and Validation Workshop, IEEE International Conference on, 0:47-54, 2011.
[Kum13] Ramana Kumar. Challenges in using opentheory to transport harrison's HOL model from HOL light to HOL4. In Jasmin Christian Blanchette and Josef Urban, editors, PxTP 2013. Third International Workshop on Proof Exchange for Theorem Proving, volume 14 of EPiC Series in Computing, pages 110116. EasyChair, 2013.
[LDvB \(\left.{ }^{+} 93\right]\) Gang Luo, Rachida Dssouli, Gregor von Bochmann, Pallapa Venkataram, and Abderrazak Ghedamsi. Generating synchronizable test sequences based on finite state machine with distributed ports. In Protocol Test Systems, VI, Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test systems, Pau, France, 28-30 September, 1993, pages 139-153, 1993.
[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115, 2009.
[Lie95] Liedtke. on t-kernel construction. 15th SOSP, Copper Mountain, CO, USA, pages 237-250, December 1995.
[LM96] D. Lee and M.Yannakakis. Principles and method of testing finite state machines- a survey. Proceeding of the IEEE, 84(8):1090-1126, 1996.
[LT89a] Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219-246, 1989.
[LT89b] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI Quarterly, 2:219-246, 1989.
[LY94] D. Lee and M. Yannakakis. Testing finite-state machines: State identification and verification. IEEE Trans. Comput., 43(3):306-320, Mar 1994.
[MD08] Prabhat Mishra and Nikil Dutt. Specification-driven directed test generation for validation of pipelined processors. ACM Trans. Design Autom. Electr. Syst., 13(3), 2008.
[Mem06] The Common Criteria Recognition Agreement Members. Common criteria for information technology security evaluation. http://www.commoncriteriaportal.org/, Sep 2006.
[Mer01] Stephan Merz. Model checking: A tutorial overview. In Modeling and Verification of Parallel Processes, volume 2067 of Lecture Notes in Computer Science, pages 3-38. Springer-verlag, June 2001.
[MHST08] Till Mossakowski, AnneE. Haxthausen, Donald Sannella, and Andrezj Tarlecki. Casl âĂŤ the common algebraic specification language. In Dines BjÃ̈̈rner and MartinC. Henson, editors, Logics of Specification Languages, Monographs in Theoretical Computer Science, pages 241-298. Springer Berlin Heidelberg, 2008.
[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences, 17(3):348-375, 1978.
[MOK13] Magnus O. Myreen, Scott Owens, and Ramana Kumar. Steps towards verified implementations of HOL Light. In ITP, pages 490-495, 2013.
[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. In Claude Shannon and John McCarthy, editors, Automata Studies, pages 129-153. Princeton University Press, Princeton, NJ, 1956.
[MQB07] Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball. Chess: A systematic testing tool for concurrent software. Technical Report MSR-TR-2007-149, Microsoft Research, November 2007.
[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML. MIT Press, Cambridge, MA, USA, 1997.
[MW79] R. Milner and C.P. Wadsworth. Edinburgh LCF: A Mechanized Logic of Computation. Lecture Notes in Computer Science. Springer, 1979.
[MW10] David C. J. Matthews and Makarius Wenzel. Efficient parallel programming in poly \(/ \mathrm{ml}\) and isabelle \(/ \mathrm{ml}\). In Proceedings of the POPL 2010 Workshop on Declarative Aspects of Multicore Programming, DAMP 2010, Madrid, Spain, January 19, 2010, pages 53-62, 2010.
[Nip12] Tobias Nipkow. Theory fun, 2012.
[NPW02] Tobias Nipkow, Larry C. Paulson, and Markus Wenzel. Isabelle/hol!-A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. SpringerVerlag, Heidelberg, 2002.
[NWS \({ }^{+}\)] Wolfgang Naraschewski, Markus Wenzel, Norbert Schirmer, Thomas Sewell, and Florian Haftmann. Theory record.
[Pau99] Lawrence C. Paulson. A generic tableau prover and its integration with isabelle. J. UCS, 5(3):73-87, 1999.
[Pel93] Doron Peled. All from one, one for all: on model checking using representatives. In Computer Aided Verification, 5th International Conference, CAV '93, Elounda, Greece, June 28-July 1, 1993, Proceedings, pages 409-423, 1993.
[PHL12] Hernán Ponce de León, Stefan Haar, and Delphine Longuet. Conformance relations for labeled event structures. In Tests and Proofs - 6th International Conference, TAP 2012, Prague, Czech Republic, May 31 - June 1, 2012. Proceedings, volume 7305, pages 83-98, 2012.
[PS83] H. Partsch and R. Steinbrüggen. Program transformation systems. ACM Comput. Surv., 15(3):199-236, September 1983.
[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified Modeling Language Reference Manual. AddisonWesley Longman Ltd., Essex, UK, UK, 1999.
[Rus99] David M. Russinoff. A mechanically checked proof of correctness of the amd k5 floating point square root microcode. Formal Methods in System Design, 14(1):75-125, 1999.
[SLZ07] Weihang Jiang Shan Lu and Yuanyuan Zhou. A study of interleaving coverage criteria. In The 6th Joint Meeting on

European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering: Companion Papers, pages 533-536, September 2007.
[SMZ05] Haihua Shen, Lin Ma, and Heng Zhang. Crpg: a configurable random test-program generator for microprocessors. In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, pages 4171-4174 Vol. 4, may 2005.
[SR10] Heiko Stallbaum and Mark Rzepka. Toward do-178b-compliant test models. In Proceedings of the 7th Workshop on ModelDriven Engineering, Verification and Validation, MoDeVVa 2010, at 13th Intl. Conference on Model Driven Engineering Languages and Systems, Models 2010 (Oslo, Norway, 3rd of October 2010), October 2010.
[SV03] Sudarshan K. Srinivasan and Miroslav N. Velev. Formal verification of an intel xscale processor model with scoreboarding, specialized execution pipelines, and impress data-memory exceptions. In \(M E M O C O D E\), pages 65-74. IEEE Computer Society, 2003.
[SYS13a] SYSGO. PikeOS Fundamentals. SYSGO, 2013.
[SYS13b] SYSGO. PikeOS Kernel. SYSGO, 2013.
[TPHS10] Jan Tretmans, Florian Prester, Philipp Helle, and Wladimir Schamai. Model-based testing 2010: Short abstracts. Electr. Notes Theor. Comput. Sci., 264(3):85-99, 2010.
[Tre08a] Jan Tretmans. Formal methods and testing. chapter Model Based Testing with Labelled Transition Systems, pages 1-38. Springer-Verlag, Berlin, Heidelberg, 2008.
[Tre08b] Jan Tretmans. Model based testing with labelled transition systems. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Testing, volume 4949, pages 1-38. Springer-Verlag, 2008.
[Urb] Christian Urban. The isabelle cookbook: A gentle tutorial for programming on the ml-level of isabelle, July.
[Wad92] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming, pages 61-78, New York, NY, USA, 1992.
[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In POPL, pages 60-76, 1989.
[Wen97] Markus Wenzel. Type classes and overloading in higher-order logic. In TPHOLs, pages 307-322, 1997.
[Wen02] Markus M Wenzel. Isabelle/Isar - a versatile environment for human-readable formal proof documents. PhD thesis, Technische Universität München, Universitätsbibliothek, 2002.
[Wen15] Makarius Wenzel. The Isabelle/Isar Reference Manual, May 2015.
[Wie06] Freek Wiedijk. The Seventeen Provers of the World: Foreword by Dana S. Scott (Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
[YABC15] Y.Nemouchi, A.Feliachi, B.Wolff, and C.Proch. Isabelle in certification processes, Dec 2015.
[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and adequacy. ACM Computing Surveys (CSUR), 29(4):366-427, 1997.```

[^0]: ${ }^{1}$ Evaluation Assurance Level
 ${ }^{2}$ www.pikeos.com
 ${ }^{3}$ www.euromils.eu

[^1]: ${ }^{4}$ In this document we will use the term complex systems to designate a computer program with complex component, e.g. the kernel of an OS

[^2]: ${ }^{1}$ PikeOS is a brand-name of SYSGO AG

[^3]: ${ }^{2}$ To increase readability, the presentation is slightly simplified.

[^4]: ${ }^{3} \mathrm{HOL}$-TestGen was never used to: test complex real systems, and concurrent code before this thesis

[^5]: ${ }^{4}$ www.verisoft.de
 ${ }^{5}$ www.verisoftxt.de

[^6]: ${ }^{1}$ At time writing, the current version is Isabelle2013-2.
 ${ }^{2} \mathrm{http}: / / \mathrm{www} . e u r o m i l s . e u / d o w n l o a d s / D e l i v e r a b l e s / Y 2 / 2015-E M-$ UsedFormalMethods-WhitePaper-October2015.pdf
 ${ }^{3}$ http://www.ssi.gouv.fr/

[^7]: ${ }^{4}$ For example, the fundamental doubt in the existence of infinite sets[And86]...

[^8]: ${ }^{5}$ See Isabelle Isar-Reference Manual (Version 2013-2, pp. 103): "It is at the discretion of the user to avoid malformed theory specifications!"

[^9]: ${ }^{6}$ Consider the case of τ having a semantic interpretation into an empty set $I(\tau)=$: then the semantic interpretation of the function $(\lambda x:: \tau . E)$ must be in the function space: ${ }^{D}=$ where D is the space of interpretations for the type τ^{\prime} of E. Obviously, there is no possible result for the application ...

[^10]: ${ }^{7}$ to check than no parts of the code violate the security properties by side effects.

[^11]: ${ }^{1}$ It is a theory in HOL－TestGen distribution．

