
HAL Id: tel-01306992
https://theses.hal.science/tel-01306992

Submitted on 26 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based Testing of Operating System-Level
Security Mechanisms

Yakoub Nemouchi

To cite this version:
Yakoub Nemouchi. Model-based Testing of Operating System-Level Security Mechanisms. Software
Engineering [cs.SE]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS061�. �tel-
01306992�

https://theses.hal.science/tel-01306992
https://hal.archives-ouvertes.fr

NNT : 2016SACLS061

THESE DE DOCTORAT
DE

L’UNIVERSITE PARIS-SACLAY

PREPAREE A

“ L’UNIVERSITE PARIS-SUD”

ECOLE DOCTORALE N° 508

Science et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

Par

M. Yakoub NEMOUCHI

Model-Based Testing of Operating System-Level Security Mechanisms

Thèse présentée et soutenue à Orsay, le 30/03/2016 :

Composition du Jury :
M. Poizat Pascal Professeur Université Paris Ouest Nanterre Président

M. Hierons Robert Professeur Brunel University Rapporteur

M. Merz Stephan Directeur de Recherche INRIA Nancy Rapporteur

M. Boulanger Frédéric Professeur CentraleSupélec Examinateur

M. Wolff Burkhart Professeur Université Paris-Sud Directeur de thèse

Model-Based Testing of Operating System-level
Security Mechanisms

Yakoub Nemouchi

14th April 2016

Contents

I Introduction and Context 1

1 Introduction 2
1.1 Motivations . 2
1.2 Contributions . 4
1.3 Overview . 7

2 Context 10
2.1 Introduction . 11
2.2 Formal Testing and Prover-Based Testing 12

2.2.1 On Theorem Proving Based Testing (PBT) 14
2.2.2 A Gentle Introduction to: Sequence Testing 16
2.2.3 Background on Sequence Testing Models 19

2.3 Isabelle/HOL . 22
2.3.1 The Isabelle System Architecture 23
2.3.2 Isabelle and its Meta-Logic 25
2.3.3 The Isabelle Methodology and Specification Constructs 26
2.3.4 Isabelle Proofs . 32
2.3.5 Isabelle/HOL Code Generation 34
2.3.6 Isabelle/HOL Document Generation 34
2.3.7 Isabelle extensions: HOL-TestGen 35

2.4 The Verified Architecture Microprocessor (VAMP) 37
2.5 PikeOS System Architecture 38
2.6 Conclusions . 40

II Contributions 41

3 A sideline : Isabelle/HOL in certification processes A Sys-
tem Description and Mandatory Recommendations 42
3.1 Introduction . 43
3.2 Common Criteria: Normative Context 44
3.3 Methodological Recommendations for the Evaluator 44

3.3.1 On the use of SML . 45

1

3.3.2 Axioms and Bogus-Proofs 46
3.3.3 On the use of external provers 47

3.4 Extensions of Isabelle: Guidelines for the Evaluator 48
3.4.1 An Example: The Isabelle/Simpl 48

3.5 Recommendations for CC certifications 49
3.5.1 A refinement based approach for CC evaluation 49

3.6 Summary . 51
3.6.1 Background References 51
3.6.2 Concluding Remarks and a Summary 51

4 Theoretical and Technical Foundations: Testing Concurrent
Programs 53
4.1 Introduction . 54
4.2 Monads Theory . 55

4.2.1 An Example: MyKeOS. 58
4.3 Conformance Relations Revisited 60
4.4 Coverage Criteria for Interleaving 61
4.5 Sequence Test Scenarios for Concurrent Programs 63
4.6 Symbolic Execution . 66
4.7 Test Drivers for Concurrent C Programs 67

4.7.1 The adapter . 69
4.7.2 Code generation and Serialisation 70
4.7.3 Building Test Executables 71
4.7.4 GDB and Concurrent Code Testing 72

4.8 Conlusions . 73

5 Testing VAMP Processor 75
5.1 Introduction . 76
5.2 The VAMP Model . 77
5.3 Testing VAMP Processor Conformance 80

5.3.1 Generalities on Model-based Tests 81
5.3.2 Test Specification . 82
5.3.3 Testing Load-Store Operations 83
5.3.4 Testing Arithmetic Operations 86
5.3.5 Testing Control-Flow Related Operations 87

5.4 Experiences and First Experimental Data 88
5.4.1 Test Generation . 89
5.4.2 Test Execution . 89

5.5 Conlusions . 91
5.5.1 Related Work . 91
5.5.2 Conclusion and Future Work 91

2

6 Testing PikeOS API 93
6.1 Introduction . 94
6.2 PikeOS IPC Protocol . 94
6.3 PikeOS Model . 95

6.3.1 State . 95
6.3.2 Actions . 96
6.3.3 Traces, executions and input sequences 97
6.3.4 Aborted Executions 98
6.3.5 IPC Execution Function 100
6.3.6 System Calls . 101

6.4 A Generic Shared Memory Model 101
6.5 Testing PikeOS IPC . 110

6.5.1 Coverage Criteria for IPC 110
6.5.2 Test Case Generation Process 110
6.5.3 Symbolic Execution Rules 112
6.5.4 Abstract Test Cases 119
6.5.5 Test Data For Sequence-based Test Scenarios 121
6.5.6 Test Drivers . 123
6.5.7 Experimental Results 125

6.6 Conclusion . 129
6.6.1 Related Work. 129
6.6.2 Conclusion and Future Work. 130

III Conclusions 131

7 Conclusions and Future Works 132
7.1 Summary . 132
7.2 Futur Works . 134

IV PikeOS IPC Model 135

A Isabelle sources 136
A HOL representation of PikeOS Datatypes 136

A.1 kernel state . 136
A.2 atomic actions . 136
A.3 traces . 137
A.4 Threads . 137

B Shared Memory Model . 138
B.1 Prerequisites . 138
B.2 Definition of the shared-memory type 140
B.3 Operations on Shared-Memory 140
B.4 Sharing Relation Definition 146

3

B.5 Properties on Sharing Relation 146
B.6 Memory Domain Definition 148
B.7 Properties on Memory Domain 148
B.8 Sharing Relation and Memory Update 152
B.9 Properties on lookup and update wrt the Sharing Re-

lation . 154
B.10 Rules On Sharing and Memory Transfer 156
B.11 Properties on Memory Transfer and Lookup 159
B.12 Test on Sharing and Transfer via smt 160
B.13 Instrumentation of the smt Solver 160
B.14 Tools for the initialization of the memory 163
B.15 An Intrastructure for Global Memory Spaces 164
B.16 Error codes datatype 165

C HOL representation of PikeOS IPC error codes 165
D HOL representation of PikeOS threads type 167

D.1 interface between thread and memory 167
D.2 Relation between threads adresses and memory adresses168
D.3 Updating thread list in the state 169
D.4 Get thread by thread ID 170

E HOL representation of state type model for IPC 170
E.1 informations on threads 170
E.2 Interface between IPC state and threads 171
E.3 Interface between IPC state and memory model 171

F HOL representation of IPC preconditions 172
F.1 IPC conditions on threads parameters 172
F.2 IPC conditions on threads communication rights . . . 173
F.3 IPC conditions on threads access rights 173
F.4 interface between IPC Preconditions and IPC ′a stateid-scheme173

G HOL representation of PikeOS IPC atomic actions 174
G.1 Types instantiation . 174
G.2 Atomic actions semantics 175
G.3 Semantics of atomic actions with thread IDs as argu-

ments . 175
G.4 Semantics of atomic actions based on monads 180
G.5 Execution function for PikeOS IPC atomic actions with

thread IDs as arguments 185
G.6 Predicates on atomic actions 186
G.7 Lemmas and simplification rules related to atomic ac-

tions . 187
G.8 Composition equality on same action 191
G.9 Composition equality on different same actions: par-

tial order reduction . 198
H HOL representation of PikeOS IPC traces 201

H.1 Execution function for PikeOS IPC traces 201

4

H.2 Trace refinement . 201
H.3 Execution function for actions with thread ID 201
H.4 IPC operations with thread ID 206
H.5 IPC operations with free variables 207
H.6 Pridicates on operations 208
H.7 Simplification rules related to traces 208

I IPC Stepping Function and Traces 213
I.1 Simplification rules related to the stepping function

exec-actionid-Mon . 214
J Atomic Actions Reasoning . 232

J.1 Symbolic Execution Rules of Atomic Actions 232
J.2 Symbolic Execution Rules for Error Codes Field . . . 235
J.3 Symbolic Execution Rules for Error Codes field on

Pure-level . 242
J.4 Symbolic Execution of Action Informations Field . . . 246

K IPC pre-conditions normalizer 250
L The Core Theory for Symbolic Execution of abort lif t 250

L.1 mbind and ioprog fail 250
L.2 Symbolic Execution Rules on PREP stage 257
L.3 Symbolic Execution rules on WAIT stage 283
L.4 Symbolic Execution rules on BUF stage 301
L.5 Symbolic Execution Rules on MAP stage 318
L.6 Symbolic Execution Rules rules on DONE stage 335

M Rewriting Rules for Symbolic Execution of Sequence Test Scheme347
M.1 Symbolic Execution Rules for PREP stage 347
M.2 Symbolic Execution Rules for WAIT stage 374
M.3 Symbolic Execution Rules for BUF stage 400
M.4 Symbolic Execution Rules for MAP stage 425
M.5 Symbolic Execution Rules for DONE stage 450

N Introduction Rules for Sequence Testing Scheme 456
N.1 Introduction Rules for PREP stage 456
N.2 Introduction rules for WAIT stage 458
N.3 Introduction rules rules for BUF stage 460
N.4 Introduction rules for MAP stage 461
N.5 Introduction rules for DONE stage 462

O Elimination rules for Symbolic Execution of a Test Specification463
O.1 Symbolic Execution rules for PREP SEND 463
O.2 Symbolic Execution rules for PREP RECV 467
O.3 Symbolic Execution rules for WAIT SEND 470
O.4 Symbolic Execution rules for WAIT RECV 474
O.5 Symbolic Execution rules for BUF SEND 478
O.6 Symbolic Execution rules for BUF RECV 480
O.7 Symbolic Execution rules for MAP SEND 482
O.8 Symbolic Execution rules for MAP RECV 484

5

O.9 Symbolic Execution rules for DONE SEND 486
O.10 Symbolic Execution rules for DONE SEND 488

P Rules with detailed Constraints 489
P.1 Symbolic Execution rules for PREP SEND 489
P.2 Symbolic Execution rules for PREP RECV 494
P.3 Symbolic Execution rules for WAIT SEND 499
P.4 Symbolic Execution rules for WAIT RECV 504
P.5 Symbolic Execution rules for BUF SEND 509
P.6 Symbolic Execution rules for BUF RECV 512
P.7 Symbolic Execution rules for MAP SEND 516
P.8 Symbolic Execution rules for MAP RECV 520
P.9 Symbolic Execution rules for DONE SEND 523
P.10 Symbolic Execution rules for DONE SEND 524

Q HOL representation of PikeOS IPC system calls 527
Q.1 System calls with thread ID as argument 527
Q.2 System calls based on datatype 528
Q.3 Predicates on system calls 530
Q.4 Derivation of communication from system calls 531
Q.5 Partial order theorem 547
Q.6 ipc communications derivations 547
Q.7 Lemmas on ipc communications 547
Q.8 No communications 550

6

Abstract

Formal methods can be understood as the art of applying mathematical
reasoning to the modeling, analysis and verification of computer systems.
Three main verification approaches can be distinguished: verification based
on deductive proofs, model checking and model-based testing.

Model-based testing, in particular in its radical form of theorem proving-
based testing [BW13], bridges seamlessly the gap between the theory, the
formal model, and the implementation of a system. Actually, theorem prov-
ing based testing techniques offer a possibility to directly interact with "real"
systems: via different formal properties, tests can be derived and executed
on the system under test. Suitably supported, the entire process can fully
automated.

The purpose of this thesis is to create a model-based sequence testing
environment for both sequential and concurrent programs. First a generic
testing theory based on monads is presented, which is independent of any
concrete program or computer system. It turns out that it is still expressive
enough to cover all common system behaviours and testing concepts. In
particular, we consider here: sequential executions, concurrent executions,
synchronised executions, executions with abort. On the conceptual side, it
brings notions like test refinements, abstract test cases, concrete test cases,
test oracles, test scenarios, test data, test drivers, conformance relations and
coverage criteria into one theoretical and practical framework.

In this framework, both behavioural refinement rules and symbolic exe-
cution rules are developed for the generic case and then refined and used for
specific complex systems. As an application, we will instantiate our frame-
work by an existing sequential model of a microprocessor called VAMP de-
veloped during the Verisoft-Project. For the concurrent case, we will use
our framework to model and test the IPC API of a real industrial operating
system called PikeOS.

Our framework is implemented in Isabelle/HOL. Thus, our approach
directly benefits from the existing models, tools, and formal proofs in this
system.

Part I

Introduction and Context

1

1
Introduction

Contents
1.1 Motivations . 2
1.2 Contributions . 4
1.3 Overview . 7

1.1 Motivations

Formal verification techniques, i. e. a family of methods that establish the
correctness of programs wrt. a specification, have seen a remarkable boost
in recent years. In particular methods based on deductive code-verification
or model-checking can, within the boundaries of certain foundational as-
sumptions, provide an absolute guarantee in a sense for the correctness of
programs in a system. It is safe to state that the formal verification of com-
puter systems becomes increasingly relevant due to the critical roles they
play in daily human life, and this is reflected by their role in certification
processes assuring that certain security or safety requirements are respected
by a wider and wider range of products. An example of a critical systems, an
embedded system comprising safety critical software components, e. g. the
engine controller of an aeroplane.

2

However, pursuing our thought experiment a little further, we have to admit
that flying our just-formally-verified aeroplane would simply be illegal, and
for good reasons: The approval of an aeroplane (and other safety critical sys-
tems) is legally bound to formal certification process (such as DO178B/C[SR10,
Bro11], Common criteria [Mem06], etc.), which requires a combination of
tests and verification techniques. One reason is that deduction based veri-
fication may establish the correctness of code towards a specification, i. e.
a mathematical model, but this doesn’t guarantee that the model and its
foundational assumptions correspond in sufficient precision to the physical
reality in the embedded system. Another reason is that existing certification
standards simply did not consider the possibilities of modern formal verific-
ation techniques, and certification engineers do not know what guarantees
can and cannot be gained from the use of formal methods. Thus, a plane
should never fly without verifying both, the code and its underlying mod-
eling assumptions of its critical components, by a combination of test and
proof techniques, enforced by an adequate formal certification process.
While certifications of large systems, including fully functional operating sys-
tems up to Common Criteria EAL1 4 [Com06] are common practice today,
higher levels involve the use of formal methods in terms of combined test
and proof activities, covering various layers of a system including soft and
hardware-components. To reach EAL7, one has to formally specify a se-
curity policy model (called SPM), a model of the system operations called
functional specification model (the FSP), and a kind of refinement proof
between these two. Finally, a battery of tests have to be provided that es-
tablish the correspondence between the FSP and the “real” implementation
in form of code. One of our goals is to contribute to the test-effort for an
EAL 5 or higher certification of PikeOS 2 operating system by a test-method
designed to support this activity. All three, modeling, certification and test
effort were pursued the European EURO-MILS 3 project aiming at an EAL
5 certification for PikeOS, were the organizational context of this work.
At present, specification-level verification and the development of test sets
are usually two unrelated tasks. While test sets for certification kits are
usually developed manually and independently from the specification, our
model-based test case generation approach , developed during this thesis,
uses a design model that can already be used for the verification task. Beyond
the advantage of natural integration of our model-based testing techniques
into a certification process, model-based testing using symbolic evaluation
can treat models with complex state, which distinguishes it from popular
model checking techniques [Mer01], and connect a model with a real im-
plementation, without additional assumptions (i. e. correctness of the com-

1Evaluation Assurance Level
2www.pikeos.com
3www.euromils.eu

3

piler, existence of the model of the underlying hardware, etc.). The latter
distinguishes our approach from classical deductive verification techniques
[ABGR10].
In formal testing, a branch of model-based testing, the properties of systems
are verified by a testing experience based on a formal model. The goal of a
test is to establish a conformance relation between the model and a system,
which is a kind of a satisfaction relation that must, for practical reasons, be
based on a finite test set, i. e. containing a generated set of test cases.
In our view, it is not possible to treat formal models only by paper and pencil
notations as is the case in many works and publications. Models and proofs
treated in this work i. e. the system model of a real operating system, its
complex operational semantics and the resulting very complex symbolic ex-
ecution rules, developed by a collaborating team comprising several persons
routinely changing basic definitions, is out of reach of conventional paper and
pencil theory development; a proof assistant for routinely re-checking defin-
itions and re-proving proofs is indispensable in such a development effort.
Thus, we will use interactive theorem proof assistant to carry our testing
framework.
Interactive theorem proving is a technology of fundamental importance for
mathematics and computer-science. It is based on expressive logical found-
ations and implemented in a highly trustable way. In this thesis, our ap-
proach is implemented inside the interactive theorem proving environment
Isabelle/HOL extended by a plugin with test generation facilities called
HOL-TestGen. The use of Isabelle/HOL as a modeling environment has
the following advantages:

1. We inherit all its technical features, e. g., formal modeling and verific-
ation, code generation and document generation,

2. Our test case generation algorithm is based on the symbolic computa-
tion engine implemented as Isabelle tactics. Thus, can count as highly
trustworthy,

3. HOL-TestGen allows us to seamlessly integrate formal verification
and testing in a unique way.

1.2 Contributions

The main focus of our work is to provide a theorem proving-based sequence
testing environment for both sequential and concurrent complex systems4.

4In this document we will use the term complex systems to designate a computer
program with complex component, e. g. the kernel of an OS

4

In fact, this kind of test environments is advantageous during different cer-
tification processes. We will divide the list of our contributions into three
groups.
Our theoretical contributions consist in:

• the extension of the monad-based test framework, introduced in [BW13],
by new concepts, e. g., executions with abort, interleaving, to express
sequence test scenarios for concurrent and sequential programs,

• the derivation of behavioral refinement rules and symbolic execution
rules for the new introduced concepts,

• the embedding of the standard test refinement in the monad testing
framework, and

• a conformance relation based on observed error codes, to test security
properties, e. g. information flow and access control, that links the
specification and the implementation using abstract test drivers.

On the technical side we would like to mention:

• the definition of key theories to test computer systems, e. g. a theory
on shared memory,

• the introduction of an optimized scheme to derive symbolic execution
rules and an efficient way for their implementation in Isabelle/HOL,
and

• a proposal to build test drivers that links abstract tests derived on
Isabelle level with concrete concurrent code.

On the methodological side, our contributions are:

• a guideline to convert a functional system model to a testable theory,
gained from a substantial case study,

• a methodology to control the execution of a concurrent program during
our test experience, and

• a high-level mandatory guidelines and recommendations for both de-
velopers and evaluators of certification documents containing Isabelle
specifications.

In fact, our contribution can be seen as a proposal of a test and proof en-
vironment composed of a tool chain Figure 1.1 that goes from the abstract
Isabelle/HOL level down to code-level (e. g. C, SML). First, we will intro-
duce a monad based sequence testing theory encoded in Isabelle. It is not

5

Execution Environment

HOL-TestGen

Isabelle/HOL

Specification

Test Generation

Test SpecificationSystem Specification

Verification and Transformation

Test Executable

System under
Test

Test Case Generation

Test Data Generation

Test Script (incl. Test
Oracle) Generation

Inductive
Verification

Verified Model
Transformation

Test Harness
Generated Test Script

and Test Oracle
Test Adapter

Scheduler
Control

Scheduler
Mapping

Figure 1.1: The HOL-TestGen Workflow.

restricted to a particular computer system, but we believe that monads are
expressive enough to cover all common behavioral concepts (e. g. sequential
executions, synchronized executions, etc.) and testing concepts (test oracles,
test scenarios, coverage criteria, etc.).
Then the proposed testing theory is extended by a non-standard behavioral
concepts (i. e. aborted executions, concurrent executions with abort) and
test concepts (i. e. a new coverage criterion to test IPC protocol, error-codes
based conformance relation) to express security and functional test scenarios
for systems executed in a concurrent context. Moreover, the functional model
of both, the operating system PikeOS and the VAMP processor, are embed-
ded in our monadic framework, and a test experience for the two systems
was established.
In this thesis, we will also develop a test case generation process that fully
relies on a symbolic execution rules established as Isabelle lemmas, i. e. form-
ally derived rules. In fact, each system under test has its own specific oper-
ational semantic, which means that, the generic symbolic execution rules on
the introduced monads operators are not optimized enough to execute any
operational semantic. However, a refined versions of the generic symbolic ex-
ecution rules are derived for the different case studies presented in this thesis.
Moreover, and using Isabelle/ML which is a development environment for
ML programming offered by Isabelle, we will develop tactics that help into
the automation of the process of the application of symbolic execution rules
on a given test scenario designed inside our framework.
Our contribution also covers, the implementation of test drivers to test con-
crete code. A test driver is composed from three main components: the test

6

script, the adapter and the test harness. While HOL-TestGen code gener-
ator, which is actually a refined version of Isabelle code generator, is used to
generate automatically test scripts in SML language, two programs imple-
mented in Isabelle/ML will be used as a test harness and a test adapter for
the test driver. Actually, and in order to test C concurrent code, we will add
another program to our standard construction of test drivers. The program
is also implemented in Isabelle/ML, and it uses the test script to generate a
set of gdb files. In fact, during our test experiences, we will show how gdb
can be used to control the executions of a given concurrent program imple-
mented in C language. Thus, we avoid putting strong assumptions related
to the non-determinism of the system scheduler choices during a concurrent
execution. Finally, we will use MLton compiler as an interface to connect our
test scripts written in SML level with implementations in C code-level, and
build our test executables.

1.3 Overview

The idea behind this thesis is to design a test and proof environment for
sequential and concurrent complex systems. In order to present this work,
we have organised the document as following:

Part I: Introduction and Context

In the first part of the document we will introduce the context of this thesis.
Formal methods, in particular the use of a verification technique based on
formal testing approach implemented in a theorem proving environment,
is the topic of this thesis. The chapter 2 contain a description of formal
methods and its relation with formal testing. The chapter also contains a
description for the formal development environment used in this thesis which
is Isabelle/hol!. Moreover, the architectures of two systems used in our case
studies is presented in this chapter.

Part II: Contributions

The second part of the document contains our contributions during this
thesis. This part is devided into four chapters:

chapter 3: Isabelle in Certification Processes

This chapter was published as an internal technical report [YABC15]. The
chapter introduce mandatory recommendations for the evaluators of CC doc-
uments containing Isabelle theories. Actually it is an instantiation of Eric

7

Jaeger text[JH08], a document that contain recommendations for evaluators
of CC documents.

chapter 4: Theoretical and Technical Foundations

The content of this chapter was partially published in [BHNW15a]. In this
chapter, we will introduce our test framework. Our framework is represented
by a tool-chain consisting of:

1. The Specification Language: used to express different behaviors of
computer programs. The specification language is based on a monad
theory formalized on a top of Isabelle/hol!.

2. HOL-TestGen: it is an extension of Isabelle with test case genera-
tion facilities, e. g. trace generator based on Isabelle datatypes package,
an interface to connect an Isabelle local proof context to constraint-
solvers, etc.

3. Test Drivers: they are programs used to execute automatically the
generated tests on a given program under test written in a given pro-
gramming language, in particular we consider programs implemented
in: sml, OCaml, scala, haskell, C and F#. In our approach, test drivers
represent a link between the model and the program under test. Their
implementation is not fully automatic. While some parts of the test
driver is generated automatically, e. g. the test script, a particular part
of it, which is the test adapter, is written by hand.

chapter 5: Testing VAMP Processor

The content of this chapter is published in [BFNW13]. In order to meet
requirements of a certification process for critical security systems, one has
to formally verify properties on the specification as well as test the imple-
mentation thoroughly. This includes tests of the used hardware platform
underlying a proof architecture to be certified. To this end, in this chapter
we present a case study for the model-based generation of test programs (i.e,
the basis for a certification kit) for a realistic model of a RISC processor
called VAMP. In this case study we use an existing model of VAMP and
HOL-TestGen to develop several conformance test scenarios.

chapter 6: Testing PikeOS API

A part of this chapter was published in [BHNW15a]. The chapter introduces
another case study for model-based test generation, but this time, our in-
vestigation covers the software layer, more precisely the API of an industrial
concurrent embedded system. The chapter introduces a model of PikeOS

8

embedded in our "monadic" test theory. That covers an extension of the
theory to embed interleaving executions with abort, synchronization, and
shared memory. Experiments on the IPC API and their results are also the
topic of this chapter.

chapter 7: Conclusions

Finally, we sum-up with different achievements of this thesis and our future
works related to the topic.

9

2
Context

Contents
2.1 Introduction . 11
2.2 Formal Testing and Prover-Based Testing 12

2.2.1 On Theorem Proving Based Testing (PBT) 14
2.2.2 A Gentle Introduction to: Sequence Testing 16
2.2.3 Background on Sequence Testing Models 19

2.3 Isabelle/HOL . 22
2.3.1 The Isabelle System Architecture 23
2.3.2 Isabelle and its Meta-Logic 25
2.3.3 The Isabelle Methodology and Specification Con-

structs . 26
2.3.4 Isabelle Proofs . 32
2.3.5 Isabelle/HOL Code Generation 34
2.3.6 Isabelle/HOL Document Generation 34
2.3.7 Isabelle extensions: HOL-TestGen 35

2.4 The Verified Architecture Microprocessor (VAMP) 37
2.5 PikeOS System Architecture 38
2.6 Conclusions . 40

10

2.1 Introduction

Formal methods describe a set of mathematically based techniques and tools
for specification, analysis and verification of computer systems. They are
mainly used to describe and to verify, in a logically consistent way, some
properties of these systems.
During a formal testing activity, a well-established branch of formal methods,
the properties of systems are verified through a testing experience based on
a satisfaction relation between the formal model (the specification) and the
implementation of a system. More precisely, the goal of a test experience is
to establish a conformance relation between a model and an implementation,
that must, for practical reasons, be based on a finite test set. Consequently,
testing attempts to run the real system and attempts to establish a verdict on
a necessarily finite set of observations. The obvious fundamental limitations
of the testing approach can be partly overcome by the following techniques:

1. test sets can be generated and the generation procedure can be de-
signed to generate a different test set for regeneration. So a sequence
of a decently organised regression test can increase the confidence in a
software development process well enough.

2. the generation of test sets can be guided by a well-chosen coverage cri-
teria whose effectiveness can be established by empirical observations
in a concrete software development process.

From our point of view, formal testing is a sub-field of Model-Based Testing
(MBT) since often semi-formal languages (e. g. UML[RJB99]) were used to
generate tests. Because test suites are derived from models and not from
source code, both formal testing and model-based testing are usually seen
as a form of black-box testing. In the context of our work, our testing
theory is developed in a formal environment, called the testing framework,
implemented inside an interactive theorem proving environment.
Interactive theorem proving (ITP) is a technology of fundamental import-
ance for mathematics and computer-science. Applications include very large
mathematical proofs and semi-automated verification of complex software
systems. ITP systems are based on expressive logical foundations and im-
plemented usually in a highly trustable way; this is due to the architecture of
contemporary ITP systems such as Coq [Wie06, §4], Isabelle [NPW02] or the
HOL family [Wie06, §1] (HOL4[Kum13], HOL light [Har09], etc.) going back
to the influential LCF system [MW79] from 1979, which has pioneered key
principles like correctness by construction for primitive inferences and defin-
itions, free programmability in user-space via SML, and top-level command
interaction.
The purpose of this chapter is primarily to present preliminaries on formal

11

testing and on its specific branch: sequence testing. Moreover, we will bring
together a body of system information that is generally known in the Isa-
belle community, but largely scattered in system documentations and papers.
This includes a brief introduction into the system, a general overview over
the methodology and covers certain aspects of the tool support. Such an
introduction into Isabelle and its higher order logic implementation will help
the reader to understand the different concepts and approaches proposed in
this thesis. In fact, the general context of this thesis is: the implementation
of a test and proof environment that relies on Isabelle, with the intention of
using it during a certification processes of critical systems. Actually, during
our investigations, our testing theory was extended by two substantial case
studies, namely a micro-processor called VAMP[BJK+06] and a real-time
operating system PikeOS1[SYS13a]. Some concepts related to the latter are
also presented in this chapter.
The chapter proceeds as follows: A general introduction into formal testing
followed by an overview on sequence testing are presented in section 2.2 and
subsection 2.2.2. In section 2.3, we provide a guided tour over the Isabelle
system. In subsection 2.3.7 we describe an extension of Isabelle used for
model-based testing, and discuss its advantages and limits in model based
testing area. In section 2.4 and section 2.5, the basic design concepts and
the system architectures related to VAMP and PikeOS are presented.

2.2 Formal Testing and Prover-Based Testing

The relation between deductive proof verification, model checking and formal
testing is complementary and fruitful in our view, although the three ap-
proaches use common formal specifications techniques during the verifica-
tion process. This relation is sketched in Figure 2.1. The advantages of
using formal specifications by the three approaches can be summarized as
follow:

• A formal specification language provides a mathematically precise nota-
tion to express properties of systems.

• In software engineering, formalizing the syntax and the semantics of
specification languages leverages tools for automated reasoning on sys-
tems.

• Formal specifications of systems can systematically be refined to code
[PS83, Abr96].

• In critical systems, specifications based on interactive theorem-proving
tools can be used to prove that an implementation is free of bugs

1PikeOS is a brand-name of SYSGO AG

12

Model LevelImplementation

SUT Testable Model

Specification
Model

(Generic Theory:

Automata, HOL…)

abstraction
Refinement or

instantiation

Bridge

this gape

With

Testing

Theory

Formal Testing goal:

Test Refinement

Relation

Deductive Proof and

Model Checking

Activities

Figure 2.1: A Test and Proof Framework

and that it satisfies its formal specification in every possible execution
[Bar03, CDH+09].

• In testing activity, test cases can be generated automatically from
formal specification [Car81, Gau95, BKM02]

• Model-Based test techniques can compile a given formal specification to
oracles that determine when a particular test passes or fails [HBB+09]
.

From a conceptual point of view, a testing activity can be seen as the estab-
lishment of a conformance relation between the model and the system under
test in order to meet a given test requirements. In fact, in our Prover-Based
Test (PBT) approach, the conformance relation is expressed within a formal
testing framework. From our view, a formal testing framework is composed
from:

1. the test specification: it is a higher order logic formula that express
a property for the generated tests. In our framework a test scenario
for a given test experience is formally expressed by a test specification.
According to the test requirements, and based on the definitions inside
the test theory, a test specification is designed under some testing hy-
pothesis and coverage criteria in a form of, a test refinement relation.
The latter contains a category of conformance relations that link the
model with the real system. The test specification is designed in the
logical context of a background theory, called in our terminology the

13

test theory. The test theory relies on testability hypotheses and con-
tains concepts to express the test requirements for a given model-based
test experience. For example a test theory contains: (a) a specifica-
tion language to express the behavior of the system under test and
also a formalization the properties to be checked during the test ex-
perience. Note that in our approach, the specification language, also
called the model, has to be testable, i. e. can be refined to code, in
order to be used for experiments, (b) defintions of concepts needed for
the establishment of a given test experience, e. g. conformance rela-
tions, coverage criteria, test scenarios etc., and (c) the test strategy,
e. g. symbolic execution process, data selection process, test execution
process etc.

2. The scenario is technically captured by a test suite, which is a kind of a
container comprising: (a) test theorem, (b) abstract tests, (c) concrete
tests and (d) other data related to a test scenario,

3. the concrete test cases are executed on the system under test and the
test results are derived, and

4. finally, a verdict is established, i. e., the test results are interpreted
and some conclusions related to the test experience are stated. Of
course, during the evaluation of the test experience, both testability
assumptions and test results are used.

Different testing approaches and techniques and several ways of their in-
tegration inside a formal context were explored. In our context, we choose
PBT approach, it has been applied to unit testing [BW09, BW13, BFNW13,
BBW15], and during our work PBT was also applied to sequence test scen-
arios [BFNW13, BHNW15b].

2.2.1 On Theorem Proving Based Testing (PBT)

The idea of using a test-generation method based on theorem proving envir-
onment is particularly attractive for establishing the link between the model
and the real implementation. In recent years, HOL-TestGen [BW13] has
been developed for testing models presented in HOL, in particular for op-
erations with complex data-structures, so data-types comprising lists, sets,
trees, records, etc. Tests were generated in the logical context of a back-
ground theory and wrt. to a particularly property (called test-specification)
formulated in it. At the begin of this thesis, HOL-TestGen was mostly
geared towards the generation of unit-tests and test-specifications of the
form:

pre(x)→ post(x,SUT(x))

14

where x is arbitrary input, so possibly also containing an input state, pre
and post condition, and SUT an uninterpreted constant symbol representing
the system under test. The test-specification schema covers test scenarios
where the initial state of the system is known and the result state is re-
turned by the SUT; it is therefore assumed to be accessible in principle.
HOL-TestGen provides automatic procedures to decompose via data-type
splitting rules and a kind of DNF-normalization the initial test-specification
into abstract test cases, i. e. clauses containing SUT(x) plus a collection of
logical constraints on x. For example in [BW13], the authors want to ex-
press the property "SUT is a sorting algorithm on integer lists" by the test
specification:

1 sort (list) = SUT (list)

where sort has been specified by, for example, an insertion-sort. A test case
generation could yield the test cases in the (complete) test theorem:

1 1. [] = SUT []
2 2. THYP ([] = SUT [] −→[] = SUT [])
3 3. [x] = SUT [x]
4 4. THYP ((∃ x. [x] = SUT [x]) −→(∀ x. [x] = SUT [x]))
5 5. PO (x < xa)
6 6. [x, xa] = SUT [x, xa]
7 7. THYP ((∃ x xa. xa < x ∧[xa, x] = SUT [xa, x]) −→
8 (∀ x xa. xa < x −→[xa, x] = SUT [xa, x]))
9 8. PO (¬ x < xa)

10 9. [xa, x] = SUT [x, xa]
11 (...)
12 20. PO ((x < xa ∧xb < xa) ∧¬xb < x)
13 21. [x, xb, xa] = SUT [xb, x, xa]

where the test hypotheses were marked by THYP, and the constraints on the
variables inside the list are marked by PO. If these constraints are satisfiable,
a constraint-solver can produce a ground instance for x, say c, and isolate
post(c, SUT(c)) as concrete test, if these constraints are unsatisfiable they
are infeasible tests that represent impossible (empty) abstract test-cases.
Eliminating infeasible test cases as early as possible is primordial for effective
test generation; it is also the key advantage over random-based testing which
tends to be hopelessly inefficient if pre-conditions are non-trivial. Finally,
HOL-TestGen offers the possibility to convert concrete test suites via code-
generators into test drivers in a variety of target languages.
HOL-TestGen and its methodology is an instance of model-based testing
(see [ABC+13] for a recent survey over the field, which was pioneered by M.C.
Gaudel at the beginning of the 90ies[GB91, Gau95]). However, its meth-

15

odology coined “proof-based testing” distinguishes itself from main-stream
approaches by the following features:

1. rather than residing on small, decidable data-type theories in a propos-
itional or first-order logic setting, HOL-TestGen embraces higher-
order logic (HOL) and favors for background theories and test spe-
cifications abstract and concise mathematical descriptions rather than
indirect problem-encoding;

2. HOL-TestGen allows for instrumenting the generation processes of
abstract and concrete test cases by derived rules, i. e. rules that are
short-cuts for the normalization and data selection phases which were
justified by formal proof;

3. HOL-TestGen leverages the possibility to “massage” of a given model
into a testable one; beyond aforementioned instrumentation of the pro-
cess, an initial model can be refined or restricted to a model that is
more suited for test-generation and its underlying needs for a symbolic
execution process;

4. HOL-TestGen offers the possibility of a semantically controlled, clean
integration from models to the test driver generation.

Prior work [BBW15] with HOL-TestGen had shown that sequence test
scenarios could be treated effectively in principle, if the background theory
is geared towards efficient symbolic execution and if the process is decently
supported by automated reasoning. However, there is no direct way to gen-
eralize the reification technique used in [BBW15] to the PiKeOS model,
something that will be tackled by this thesis. In our context, we are par-
ticularly interested in sequence tests, which we describe in sequel in more
details.

2.2.2 A Gentle Introduction to: Sequence Testing

Sequence testing is a well-established branch of formal testing theory having
its roots in automata theory. In formal testing, the model, also called the
specification, and the system under test (SUT), also called the implementa-
tion, are usually belonging to different worlds (e. g. the specification is a logic
based, and the SUT is implemented on C-level). The link between the two
worlds is established by the refinement relation expressed on the model-level
and complemented by methodological assumptions.

Methodological Assumptions

The methodological assumptions, sometimes called testability hypotheses in
the literature, are used to bridge the gap between the model and the system

16

under test [BGM91, DY96]. An example on testability hypothesis is the test
refinement relation, it states that the system under test is a refinement of
the model. The main testability assumptions in sequence testing theory are
summarized as follows:

1. The tester can reset the system under test (the SUT) into a known
initial state,

2. the tester can stimulate the SUT only via the operation-calls and input
of a known interface; while the internal state of the SUT is hidden to
the tester, the SUT is assumed to be only controlled by these stimuli,
and

3. the SUT behaves deterministic with respect to an observed sequence
of input-output pairs (it is input-output deterministic).

The latter two assumptions assure the reproducibility of test executions.
The latter condition does not imply that the SUT is deterministic: for a
given input ι, and in a given state σ, SUT may non-deterministically choose
between the successor states σ′ and σ′′, provided that the corresponding
outputs (o′, σ′) and (o′′, σ′′) are distinguishable. Thus, a SUT may behave
non-deterministically, but must make its internal decisions observable by
appropriate output. In other words, the relation between a sequence of
input-output pairs and the resulting system state must be a function. There
is a substantial body of theoretical work replacing the latter testability hy-
pothesis by weaker or alternative ones (and avoiding the strict alternates of
input and output, and adding asynchronous communication between tester
and SUT, or adding some notion of time), but most practical approaches
do assume it as we do throughout this thesis. Moreover note, that there
are approaches (including our own paper [BFNW13]) that allow at least a
limited form of access to the final (internal) state of the SUT.
Following [CG07], testability hypothesis are fundamental to establish the
proof of the conformance relation between the model and the system under
test. In [TPHS10] the authors mention that "testing can never be complete:
testing can only show the presence of errors, not their absence", which is
a famous aphorism of Dijkstra. An answer to this statement was given by
[Fel12], when the author mention that formal exhaustive testing can be used
to show the correctness i. e. the absence of bugs if the testability hypothesis
are satisfied. Since the exhaustive set of tests is generally infinite, other
assumptions, called testing hypothesis are needed to complete the proof of
the correctness.

17

Testing hypothesis

In [BGM91, Gau95] two fundamental testing hypothesis, called uniformity
and regularity hypothesis were introduced. They have been improved and
embedded in Higher Order Logic (hol!) by [BW13]. The latter mention that
regularity hypotheses can be used to address the problem of test case genera-
tion for universally quantified variables ranging over recursive datatypes such
as lists and trees. The author formalized the assumption by the following
natural deduction rule: [

|x| < k
]
x···

Px

Py

(2.1)

The rule express that P is always true if, it is true for all data x less than
a given depth k. On the other hand side, uniformity assumption is used
to bound the set of possible instantiations of a quantified variable, which
is usually infinite. The assumption is formalized by the following logical
formula:

(∃ x1 . . . xn . P x1 . . . xn) −→ (∀ x1 . . . xn . P x1 . . . xn) (2.2)

This formula denote that if P is a true for a given instantiation xn then it
is true for all instatiations of the type of the variable x. During our work,
we will consider the latter testing hypothesis in connection with coverage
criteria.

Coverage Criteria

The concept of coverage is mandatory in testing theory whenever exhaustive
tests are impossible. If not all cases can be tested, a test coverage question
can be raised. The question that must be answered is, did we test enough?
For instance, if the test experience "fails", i. e. does not reveal any bugs
under a given coverage, the latter can show to the tester where he can test
more. The set of test cases must contain one test sequence for each executable
path in the SUT can be seen as an example of a coverage for a given test
experience. In [SLZ07] five interesting coverage criteria based on concurrency
fault models were introduced. We will adapt, refine and formalize some of
these criteria in hol! to test concurrent code inspired by PikeOS.

The Conformance Relation

A conformance relation is a satisfaction relation between a specification and
a system under test, for which we assume it behaves like a function. A

18

conformance relation can be expressed by, e. g. equality, bisimulation, etc.
Some conformance relations between a system specification and a SUT are
proposed in subsection 2.2.3.

Verdicts

In general, two possible interpretations (verdicts) for the test set are distin-
guished, the test can pass or fail. If the SUT behaves correctly wrt. the
specification by satisfying the established conformance relation then we say
that the SUT passes the test with success. On the other hand, if the SUT
does not satisfy the conformance relation we say that the SUT fails to pass
the test.
In the next sections, we will present the known formal models used for se-
quence testing activities and discuss their techniques. From our point of
view, a formal model is usually oriented towards a description of data and
states composed thereof, or behavior in the sense of a set of system traces. In
some cases, a model can also describe timing as well as performance. Thus
we distinguish the following testing models (specifications) categories:

• Testing approaches based on behavioral models: describe the system by
the relationships between states (data). Such a relationships typically
describe the associations between system operations (inputs) and the
system state, e. g. Kripke structures or Process Algebras.

• Testing approaches based on data abstraction: data abstraction de-
scribe the behavior of a system independently of its implementation.
For instance, the Input-Output relation is expressed by a function that
should preserve a set of properties. The properties on the function are
expressed by logical formulas. e. g. Axiomatic Specifications or Prover-
Based Testing.

2.2.3 Background on Sequence Testing Models

Specification models possesses syntax and semantics for expressing sophistic-
ated behavioral aspects of systems such as synchronisation and concurrency.
In the sequel we will highlight some of these specification languages, in par-
ticular these are: Input Output Automata (IOA), Axiomatic Specifications.

Background

Specification languages provide a formal system annotations such as pre post
conditions and invariants that allow to express the intended behavior of the
system. Such specifications are useful precisely in development of computer
systems. When used in conjunction with automated analysis and system

19

verification tools, such specifications can support detection of common vul-
nerabilities, generation of test cases and test oracles, and formal program
verification. In the rest of this section we will first introduce theories related
to sequence testing and then focus on specification languages that support
concurrency.
Actually, Kripke structures as semantic basis of LTL-like languages, have
been widely used as a formal specification formalism and in testing activit-
ies. One of the first works that introduces testing techniques on a Kripke-
like structure was the experiments done by Moore [Moo56] on Finite State
Machines (FSM). The idea of the experiments was based on interactions
with a sequential machine in order to describe its behavior with a trans-
ition system. Inspired by fault detection experiments for sequential circuits
represented by an FSM, Hennine [Hen64] introduced two testing concepts
during his work. The first one is called checking sequences, which are a
generated input sequences (from a source FSM i. e. the specification) that
start from a given initial state. The checking sequences were executed on a
target FSM in order to check that the execution of the sequence of inputs
by the latter correspond to the execution of the source FSM by the same
sequence. In our terminology the checking sequences can be seen as test
cases and the satisfaction of the checking sequence by the target FSM can
be seen as a kind of conformance relation. The second concept introduced by
Hennine is distinguishing sequence. The concept of distinguishing sequence
assumes basically that each input sequence starting from a given initial state
is bound to an output sequence and the latter is different from all others gen-
erated from a different initial state. In our terminology this can be seen as
a testability hypotheses. Based on the concepts introduced by Moore and
Hennine, other testing theories equipped with new notions, and more com-
plex Kripke structures were developed. For instance, Lee and Yannakasis in
their work[LY94, DY96, LM96] discussed the use of distinguishing sequences
and Unique Input Ouput sequences (UIO) to detect a non observable initial
states. Actually, a lot of testing concepts and works were introduced for
testing Finite State Machines, for more details on the story of testing the-
ories, we would mention the remarkable background introduced by Feliachi
[Fel12] in his Ph.D thesis and also the following surveys related to this topic
[CSCS94, DY96, HBB+09, Gau10]. In the rest of this section we would like
to focus on testing approaches that consider concurrent executions, since one
of our contributions belong to the latter field.

IO-Automata Based Testing

An Input/Output Automaton is an automaton with finite number of states
where each transition is represented by an alternation of a single occurrence
of input or output events. A sequence of input-output pairs through an

20

(in:”a“,out:1) (in:”a“,out:2)

(in:”a“,out:1)

(a) IO-Deterministic SUT.

(in:”a“,out:1) (in:”a“,out:2)

(in:”a“,out:1)

(b) IO-Deterministic SUT.

(in:”b“,out:2) (in:”b“,out:2)

(in:”a“,out:1)

(c) Non-IO-Determin. SUT.

Figure 2.2: IO-Determinism and Non-IO-Determinism

automaton A is called a trace, the set of traces is written Trace(A). The
function In returns for each trace the set of inputs for which A is enabled
after this trace; in 2.2c for example, In [(“a”, 1)] is just {“b”}. Dually, Out
yields for a trace t and input ι ∈ In(t) the set of outputs for which A is
enabled after t; in 2.2b for example, Out([(“a”, 1)], “a”) this is just {1, 2}.
Many approaches to test concurrent systems based on IOA were explored
[BHJJ08, EH08, En-13]. In his work, Bochmann [BHJJ08] proposed a con-
current testing approach based on a new IOA model called Partial Order
Input Output Automata (POIOA). A POIOA is a refined model of Multi-
Port Automaton [LDvB+93], in which concurrency between inputs as well as
inputs ordering constraints are considered. The idea behind this work is to
define order constraints for inputs, and then based on this order, a set of test
cases in a form of checking sequences is derived. Several conformance rela-
tions were proposed by the authors, in general the proposed conformance re-
lations are based on the fact that the implementation must provide the same
inputs outputs alternation (or a quasi-equivalent one) as the one proposed
by the checking sequence derived from the specification. In other words, a
trace T is quasi-equivalent to a trace T ′ if either T = T ′ or T is obtained
by reducing the input order constraints of T ′ (input-input or input-output),
and/or T is obtained by increasing the output-output constraints. Other
conformance relations between a specification given as automaton SPEC la-
belled with input-output pairs and a system under test are introduced in the
literature:

• input/output conformance (IOCO) [Tre08b]: for all traces t ∈ Traces(SPEC)
and all ι ∈ In(t), the observed output of SUT must be in Out(t, ι),

• inclusion conformance [PHL12]: all traces in SPEC must be possible
in SUT and,

• deadlock conformance [FGWW13]: for all traces t ∈ Traces(SPEC)
and b /∈ In(t), b must be refused by SUT

21

Testing Based on axiomatic specifications

The most of approaches allowing the derivation of test cases from a specific-
ation are based on behavioral descriptions of the SUT, for example:

• IO-Automa [LT89b].

• Control Flow Graph[All70a, All70b] of a given Program.

• Labeled Transition Systems [Tre08a].

Axiomatic specifications, also called algebraic specifications [BCFG86], are
different. Actually, the specification of a system is represented by a a signa-
ture Σ = (S, F, V) composed from a finite set of types S and a finite set
of function names F and a set of variables V . The requirement during a test
process based on algebraic specifications is, the satisfaction of the axioms or
their consequences, defined on the functions in F by the SUT. In fact, this is
different from the approaches adopted by behavioral oriented specifications,
where the satisfaction relation is based on the possibility or impossibility
of manifesting a given behavior by the SUT. Basically, a test case is an
instantiation of the axioms, or their consequences, by the terms(functions
and variables) of the SUT. The conformance relation is represented by the
satisfaction of the axioms defined in the specification by the terms of SUT.
Many test theories based on algebraic specifications were developed [BCFG86,
BGM91, DGM93, GLG08]. In the latter works, the authors expressed test-
ability hypotheses as well as several exhaustive test definitions. Moreover
note, testing hypotheses were proposed to deal with the problem of infinite
test set. As examples of tools used to express algebraic specifications we
mention: CASL[MHST08], ACT-ONE[EFH83] and OBJ [GMH81].

2.3 Isabelle/HOL

In the context of certifications of critical hard- and software systems, an un-
derstanding of its architecture and the underlying methodology may help to
understand why Isabelle, if correctly used, can be trusted to a significantly
higher extent than conventional software, even more than other automated
theorem proving environments (in fact, Sascha Böhme’s work on proof recon-
struction [BW10] inside Isabelle revealed errors the SMT solver Z3[dMB08]
that is perhaps the most tested conventional system currently on the market
...). Of course, Isabelle as software “contains errors”. However, its architec-
ture is designed to exclude that errors allow to infer logically false statements,
and methodology may help to exclude that correctly inferred logical state-
ments are just logical artifacts, or logically trivial statements, which can be
impressing stunts without any value.

22

2.3.1 The Isabelle System Architecture

We will describe the layers of the system architecture bottom-up one by one,
following the diagram Figure 2.3.

Multi-Core Ready SML

Virtual Machines

(Partitions)

System Software

P2

C
o

d
e

 G
e

n
e

ra
ti

o
n

Kernel

HOL-TestGen

Packages

datatype, fun,

records…

Integrators

sledgehammer

Scala System Interface

Proof Procedures

simp, fast, blast, auto …

PIDE Framework + jEdit

Add-on

Tools
Simple

Proof obj

ATP’S
Zchaff

ATP’S
Vampire, E, Spass

Figure 2.3: The diagram shows the different layers like execution environ-
ment, kernel, tactical level and proof-procedures, component level (providing
external prover integration like Z3, specification components, and facilities
like the code generator, the Scala API to the system bridging to the JVM-
World, and the Prover-IDE (PIDE) layer allowing for asynchronous proof
and document checking.

The foundation of system architecture is still the Standard ML (SML,[MTM97])
programming environment; the default PolyML implementation
www.polyml.org supports nowadays multi-core hardware which is heavily
used in recent versions for parallel and asynchronous proof checking when
editing Isabelle theories.
On top of this, the logical kernel is implemented which comprises type-
checking, term-implementations and the management of global contexts (keep-
ing, among many other things, signature information and basic logical ax-
ioms). The kernel provides the abstract data-types thm, which is essentially
the triple (Γ,Θ, φ), written Γ `Θ φ, where Γ is a list of meta-level assump-
tions, Θ the global context, containing, for example, the signature and core
axioms of HOL and the signature of group operators, and a conclusion φ, i. e.a
formula that is established to be derivable in this context (Γ,Θ). Intuitively,
a thm of the form Γ `Θ φ is stating that the kernel certifies that φ has been
derived in context Θ from the assumptions Γ.
There are only a few operations in the kernel that can establish thm’s, and

23

www.polyml.org

the system correctness depends only on this trusted kernel. On demand,
these operations can also log proof-objects that can be checked, in principle,
independently from Isabelle; in contrast to systems like Coq, proof objects do
play a less central role for proof checking which just resides on the inductive
construction of thm’s by kernel inferences shown, for example, in [MW10].
On the next layer, proof procedures were implemented - advanced tactical
procedures that search for proofs based on higher-order rewriting like simp,
tableau provers such as fast, blast, or metis , and combined procedures such
as auto. Constructed proofs were always checked by the inference kernel.
The next layer provides major components — traditionally called packages
— that implement the specification constructs such as type abbreviations, type
definitions, etc., as discussed in subsection 2.3.3 in more details. Packages
may also yield connectors to external provers (be it via the sledgehammer
interface or via the smt interface to solvers such as Z3), machinery for (semi-
trusted) code-generators as well as the Isar-engine that supports structured-
declarative and imperative “apply style” proofs described in subsection 2.3.4.
The Isar - engine [Wen02] parses specification constructs and proofs and
dispatches their treatment via the corresponding packages. Note that the
Isar-Parser is configurable; therefore, the syntax for, say, a data-type state-
ment and its translation into a sequence of logically safe constant definitions
(constituting a “model” of the data type) can be modified and adapted,
as well as the automated proofs that derive from them the characterizing
properties of a data-type (distinctness and injectivity of the constructors,
as well as induction principles) as thm’s available in the global context Θ
thereafter. Specification constructs represent the heart of the methodology
behind Isabelle: new specification elements were only introduced by “conser-
vative” mechanisms, i. e. mechanisms that maintain the logical consistency
of the theory by construction; internally these constructs introduce declara-
tions and axioms of a particular form. Note that some of these specification
constructions, for example type definitions, require proofs of methodological
side-conditions (like the non-emptiness of the carrier set defining a new type).
We mention the last layer mostly for completeness: Recent Isabelle versions
posses also an API written in Scala, which gives a general system inter-
face in the JVM world and allows to hook-up Isabelle with other JVM-based
tools or front-ends like the jEdit client. This API, called the “Prover IDE” or
“PIDE” framework, provides an own infrastructure for controlling the concur-
rent tasks of proof checking. The jEdit-client of this framework is meanwhile
customized as default editor of formal Isabelle sessions, i. e. the default user-
interface the user has primarily access to. PIDE and its jEdit client manage
collections of theory documents containing sequences of specification con-
structs, proofs, but also structured text, code, and machine-checked results
of code-executions. It is natural to provide such theory documents as part
of a certification evaluation documentation.

24

2.3.2 Isabelle and its Meta-Logic

The Isabelle kernel natively supports minimal higher-order logic called Pure.
It supports for just one logical type prop the meta-logical primitives for
implication _ =⇒ _ and universal quantification

∧
x. P x. The meta-

logical primitives can be seen as the constructors of rules for various logical
systems that can be represented inside Isabelle; a conventional “rule” in a
logical textbook:

A1 · · ·Am
C

(2.3)

can be directly represented via the built-in quantifiers
∧

and the built-in
implication =⇒ as follows in the Isabelle core logic Pure:∧

x1 . . . xn . A1 =⇒ . . . =⇒ Am =⇒ C
(2.4)

. . . where the variables x1, . . . , xn are called parameters, the premises A1,

. . . , Am assumptions and C the conclusion; note that =⇒ binds to the right.
Also more complex forms of rules as occurring in natural deduction style
inference systems like: [

A
]
···
B

A→ B

(2.5)

can be represented by (A =⇒ B) =⇒ A→B. Thus, the built-in logic
provided by the Isabelle Kernel is essentially a language to describe (systems
of) logical rules and provides primitives to instantiate, combine, and simplify
them. Thus, Isabelle is a generic theorem prover. New object logics can be
introduced by specifying their syntax and natural deduction inference rules.
Among other logics, Isabelle supports first-order logic, Zermelo-Fraenkel set
theory and the instance for Church’s higher-order logic HOL. Moreover, Isa-
belle is also a generic system framework (roughly comparable with Eclipse)
which offers editing, modeling, code-generation, document generation and of
course theorem proving facilities; to the extent that some users use it just as
programming environment for sml! or to write papers over checked mathem-
atical content to generate LATEX output. Many users know only the theorem
proving language isar! for structured proofs and are more or less unaware
that this is a particular configuration of the system, that can be easily ex-
tended. Note that for all of the aforementioned specification constructs and
proofs there are specific syntactic representations in isar!.
Higher-order logic (HOL) [Chu40, And86, And02] is a classical logic based
on a simple type system. It is represented as an instance in Pure. HOL

25

provides the usual logical connectives like _ ∧ _, _→_, ¬_ as well as the
object-logical quantifiers ∀x. P x and ∃x. P x; in contrast to first-order logic,
quantifiers my range over arbitrary types, including total functions f ::α⇒
β. HOL is centred around extensional equality _ = _ :: α ⇒ α ⇒ bool.
HOL is more expressive than first-order logic, since, e. g., induction schemes
can be expressed inside the logic. Being based on a polymorphically typed
λ-calculus, hol! can be viewed as a combination of a programming language
like sml! or Haskel, and a specification language providing powerful logical
quantifiers ranging over elementary and function types.
Isabelle/HOL is the session based on the embedding of HOL into Isabelle/Pure.
Note The that simple-type system as conceived by Church for HOL has been
extended by Hindley/Milner style polymorphism with type-classes similar to
Haskel[WB89, Wen97].

2.3.3 The Isabelle Methodology and Specification Constructs

The core of the logic is done via an axiomatization of the core concepts
like equality, implication, and the existence of an infinite set, the rest of
the library is derived from this core by logically safe (“conservative”) exten-
sion principles which are syntactically identifiable constructions in Isabelle
files. In the following, we will briefly describe the most common conservative
extension principles.

Conservative Extensions.

Besides the logic, the instance of Isabelle called Isabelle/HOL offers support
for specification constructs mapped to conservative extensions schemes, i. e.
a combination of type and constant declarations as well as (internal) axioms
of a very particular form. We will briefly describe here type abbreviations,
type definitions, constant definitions, datatype definitions, primitive recursive
definitions as well-as well-founded recursive definitions. We consider this as
the “methodologically safe” core of the Isabelle/HOL system.
Using solely these conservative definition principles, the entire Isabelle/HOL
library is built which provides a logically safe language base providing a large
collection of theories like sets, lists, Cartesian products α × β and disjoint
type sums α+β, multi-sets, orderings, and various arithmetic theories which
only contain rules derived from conservative definitions.

Type Abbreviations (Synonyms).

For example, typed sets are built in the Isabelle libraries via type synonyms
on top of hol! as functions to bool; consequently, the constant definitions for

26

set comprehension and membership are as follows2:

1 type_synonym ’α set = ’α ⇒bool
2

3 definition Collect :: (’α ⇒bool) ⇒’α set
4 where Collect S = S
5

6 definition member:: ’α ⇒’α set ⇒bool
7 where member s S = S s

Isabelle’s powerful syntax engine is instructed to accept the notation {x | P}
for Collect λx. P and the notation s ∈ S for member s S. As can be
inferred from the example, constant definitions are axioms that introduce
a fresh constant symbol by some closed, non-recursive expressions; these
types of axioms are logically safe since they work like an abbreviation. The
syntactic side-conditions of the axioms are mechanically checked, of course.
It is straightforward to express the usual operations on sets like _∪_,_∩_ ::
α set⇒ α set⇒ α set as definitions, too, while the rules of typed set-theory
are derived by proofs from them.

Datatypes.

Similarly, a logical compiler is invoked for the following statements introdu-
cing the types option and list:

1 datatype ’a list = Nil | Cons ’a ’a list
2 datatype ’a option = None | Some ’a

Here, [] and a#l are alternative syntax for Nil and Cons a l; moreover,
[a, b, c] is defined as alternative syntax for a#b#c#[]. Similarly, the option
type shown above is given a different notation: αoption is written as α⊥,
None as ⊥, and SomeX as xXy. Internally, recursive datatype definitions
are represented by type- and constant definitions. Besides the construct-
ors None, Some, Nil and Cons, the statement above defines implicitly the
match-operation case x of ⊥⇒F | xay⇒G a respectively case x of []⇒F |
(a#r)⇒G a r. From the internal definitions (not shown here) many prop-
erties are automatically derived like distinctness [] 6= a#t, injectivity of the
constructors or induction schemes.

Type definitions.

Type definitions allows for a safe introduction of a new type. Other spe-
cification constructs, for example datatype, are based on it. The underlying
construction is simple: any non-empty subset of an existing type can be
turned into new type. This is achieved by defining an isomorphism between

2To increase readability, the presentation is slightly simplified.

27

this set and the new type; the latter is introduced by two fresh constant
symbols (representing the abstraction and the concretization function) and
three internally generated axioms. As a simple example, consider the defin-
ition of type containing three elements. This type is represented by the first
three natural numbers:

1 typedef three = {0::nat,1,2}
2 apply (rule_tac x= 0 in exI)
3 apply blast
4 done

In order to enforce that the representing set on the right hand side is non
empty, the package requires for this new type a proof of non-emptiness:

1 typedef three = {0::nat,1,2}
2 1. ∃ x. x ∈{0, 1, 2}

To use this new type we need to finish the proof of non empty set started by
the use of typedef which can be done differently. For example we can finish
the proof using existing theorems on the logical operator ∃ in Isabelle/HOL.
To see all Isabelle’s theorems related to ∃ we use the Isabelle command
find_theorems. The query searches for theorems whose name contains an
“ex” sub-string. One of the results is:

1 find_theorems name : exI
2 HOL.exI: ?P ?x =⇒∃ x. ?P x

The searched theorems is applied in the following. In our case, the Isabelle
proof method rule_tac is used, a resolution step, which unifies the theorem
HOL.exI against the first proof goal in a resolution step:

1 apply (rule exI[where x= 0])
2 apply blast
3 done

Its application in the proof allows to replace the schematic variable ?x by
the constant 0 in our proof; this is specified by the key word in followed by
the name of the theorem. The other schematic variable ?P is automatically
filled in (using higher-order unification), which is possible since only one
solution remains. The remainder of the proof consists of a call to the highly
automated method blast, which does the trick for the necessary set-theoretic
proof.
It remains to point out that the same proof can be done by different proof-
style called structured proof or Isar-proof. The same proof can be represented
in this style as follows:

28

1 typedef three = {0::nat,1,2}
2 proof
3 show 1 ∈{0, 1, 2}
4 by blast
5 qed

After finishing the proof about the definition of this new type, many theorems
will be deduced automatically by Isabelle. We can check the new deduced
theorems related to this new type by using the command find_theorems. In
the concrete example, there are 82 new theorems deduced that were related
to this type definition.

1 find_theorems name : three.
2 searched for name: three
3 found 9 theorems (40 displayed)

Well-founded Recursive Function Definitions.

Actually, there is a parser for primitive and well-founded recursive function
definition syntax. For example, the sort-operation can be defined by:

1 fun ins ::
2 ’α:: linorder ⇒’α List.list ⇒’α List.list
3 where
4 ins x [] = [x]
5 | ins x (y#ys) = (if x < y then x #y#(ins x ys) else y#(ins x ys))
6

7 fun sort ::’α:: linorder List.list ⇒’α List.list
8 where
9 sort [] = []

10 | sort (x#xs) = ins x (sort xs)

which is again compiled internally to constant definitions. Here, α :: linorder
requires that the type α is a member of the type class linorder. Thus, the
operation sort works on arbitrary lists of type (α :: linorder) list on which a
linear ordering is defined. The internal (non-recursive) constant definition
for the operations ins and sort is quite involved and requires a termination
proof with respect to a well-founded ordering constructed by a heuristic.
Nevertheless, the logical compiler will finally derive all the equations in the
statements above from this definition and makes them available for auto-
mated simplification.

29

The theory of partial functions is of particular practical importance. Par-
tial functions α⇀β are then defined as functions α⇒β option supporting
the usual concepts of domain dom f ≡ {x | f x 6= None}) and range
ran f ≡ {x | ∃y. f y = Some x}. Partial functions can be viewed as
“maps” or dictionaries; the empty map is defined by ∅ ≡ λx. None, and the
update operation, written p(x 7→ t), by λ y. if y = x then Some t else p y.
Finally, the override operation on maps, written p1 ⊕ p2, is defined by
λx. case p1 x of None⇒ p2x | Some X ⇒ Some X.

Records

An Isabelle record [Wen15, NWS+] is a data structure that contain a number
of fields. In its essence a record are tuples, where the fields are selectors in
its components. Internally, Isabelle generates for this specification construct
a theory describing records selectors, records update functions, a more field
and a records refinement scheme. The Isar syntax for declaring records is:

1 record (’a, ’b) state =
2 field1 :: ’a
3 field2 :: ’b

In this example we had declared an Isabelle record type named state, that
contain two fields field1, field2 and supports two types ’a, ’b. After the
definition of this record type a set of Isabelle theorems are generated auto-
matically and added to Isabelle gobal context.

1 Record1.state.select_defs(1):
2 field1 ≡
3 id ◦ Record.iso_tuple_fst Record.tuple_iso_tuple ◦
4 Record.iso_tuple_fst state_exttuple_Iso

This theorem is used to retrieve field named field1 from the record state.
Another theorem used to update the same field is generated automatically,
example:

1 Record1.state.update_defs(1):
2 field1_update ≡
3 Record.iso_tuple_fst_update state_exttuple_Iso ◦
4 (Record.iso_tuple_fst_update Record.tuple_iso_tuple ◦id)

Other operations on records like extending record type are defined too.

Function Definitions

The HOL instantiation for Isabelle contains a theory on total functions
[Nip12]. A set of operations and lemmas are defined in this theory. An
Isabelle function is seen as an application f : E → F , where E is the domain

30

and F is the range of f , in the following some Isabelle definition that exist
in this theory are presented:

1 definition id :: ’a ⇒’a where
2 id = (λx. x)
3 definition comp :: (’b ⇒’c) ⇒(’a ⇒’b) ⇒
4 ’a ⇒ ’c (infixl o 55)
5 where f o g = (λx. f (g x))
6

7 lemma id_apply [simp]: id x = x
8 by (simp add: id_def)
9

10 lemma comp_apply [simp]: (f o g) x = f (g x)
11 by (simp add: comp_def)

In those two examples id specify the identity function andcomp (has as infix
syntax the symbol o) specify function composition. Actually, the theory
Fun.thy is an extension of the Set.thy theory, other definitions like domain
of the function, range, image . . . are implemented in Set.thy.

ML Code.

It is possible inside Isabelle documents to directly access the underlying
ML-layer of the system architecture, and even extend the environment of
the underlying ML interpreter/compiler. One can include the fragment:

1 ML{* fun fac x = if x = 0 then 1 else x * fac(x-1); *}

in a document and then later on evaluate:

1 ML{* fac 20; *}

Since Isabelle itself sits as a collection of ML modules in this SML environ-
ment, it is possible to access its kernel and tactical functions:

1 ML{* open Tactic;
2 fun mis x = res_inst_tac [(x, x)] {@thm exI} 1*}

which defines a new tactic that applies just the existential-introduction rule
of hol!. This is the key to build large and own tactic procedures and even
tools inside the Isabelle environment. Note that the fragment {@thm exI}
is called an antiquotation; it is expanded before being passed to the SML
compiler with code that accesses the thm exI (see section subsection 2.3.3,
pp8.) in the Isabelle database for theorems. By additional SML-code, this
tactic can be converted into a Isar-method, which can be bound to own syntax
inside the Isar-language. Thus, the proof language is technically extensible
by own, user-defined proof-commands (see [Wen15] for the details).

31

2.3.4 Isabelle Proofs

In addition to types, classes and constants definitions, Isabelle theories can
be extended by proving new lemmas and theorems. These lemmas and the-
orems are derived from other existing theorems in the context of the current
theory. Isabelle offers various ways to construct proofs for new theorems, we
distinguish two main categories: forward and backward proofs:

Local forward proofs.

The goal of a forward proof is to derive a new theorem from old ones. This
is done either by instantiating some unknowns in the old theorems, or by
composing different theorems together.
The instantiation can be done using the of and where operators as follows:
thm[of inst1 inst2 ...] or thm[where var1=inst1 and var2=inst2 ...]. If
we consider for example the existential introduction theorem called exI and
given by ?P ?x =⇒∃ x. ?P x. The unknown variable x can be instantiated
with a fixed variable a using the following command exI[of _ a] which is
equivalent to exI[where x=a]. Note that when using of the instances of the
variables appear in the same order of appearance of the unknown variables in
the theorems. Consequently, we can avoid instantiating a variable by giving
a dummy value in the position of its corresponding instance.
The second way of deriving theorems is by composing different theorems
together using the OF or THEN operators. The first operator OF is used to
compose one theorem to others. For a theorem th1 given by A =⇒ B and a
theorem th2given by A’, the theorem th1[OF th2] results from the unifica-
tion of A and A’ and thus instantiating the unknowns in B. Theorems with
multiple premises can be composed to more than one theorem given as argu-
ments to the OF operator. For example, given the conjunction introduction
theorem conjI given by ?P =⇒?Q =⇒?P ∧ ?Q and the reflexivity theorem
ref given by ?x = ?x, the composition of these theorem conjI[OF refl[of
a] refl[of b]] results in the following theorem a = a ∧ b = b. In a similar
way, the THEN operator is used to compose different theorems together. The
theorem th1[THEN th2] is obtained by applying the rule th2 to the theorem
th1. For example, composing a theorem th1 given by a = b with the sym-
metry rule sym given by ?s = ?t =⇒?t = ?s is written th1[THEN sym] and
the result is b = a.

Global backward proofs.

The usual and mostly used proof style is the backward or goal-directed proof
style. First, a proof goal is introduced then the proof is performed by sim-
plifying this goal into different sub-goals and, finally, prove the resulting
sub-goals from existing theorems. The proofs are build using natural de-

32

duction by applying some existing (proved) inference rules. For each logical
operator, two kinds of rules are defined: introduction and elimination rules.
The backward proofs can be structured in two different ways:

1. Apply style proofs, where the proof goal is simplified using a succession
of rules applications. This results in a so-called apply-script, describing
the proof steps. An example of such a proof is given in the following:

1 lemma conj_rule: [[P; Q]]=⇒ P∧ (Q ∧P)
2 apply (rule conjI)
3 apply assumption
4 apply (rule conjI)
5 apply assumption
6 apply assumption
7 done

Although this proof style is easy to apply, long apply-scripts can be-
come unreadable and hard to maintain. A more structured and safe
way to write the proofs is by using the Isar language.

2. Structured Isar proofs allow for writing sophisticated and yet still fairly
human-readable proofs. The Isar language defines a set of commands
and shortcuts that offer more control on the proof state. An example
of a structured induction proof is given in the following:

1 lemma
2 fixes n::nat
3 shows 2 * (

∑
i=0..n. i) = n * (n + 1)

4 Proof (induct n)
5 case 0
6 have 2 * (

∑
i=0..n. i) = (0::nat)

7 by simp
8 also have (0::nat) = 0 * (0 + 1)
9 by simp

10 finally show ?case .
11 next
12 case (Suc n)
13 have 2 * (

∑
i=0..Suc n. i) = 2*(

∑
i=0..n. i) + 2 *(n + 1)

14 by simp
15 also have 2*(

∑
i=0..n. i) = n * (n + 1)

16 by (rule Suc.hyps)
17 also have n * (n + 1) + 2 * (n + 1) = Suc n * (Suc n + 1)
18 by simp
19 finally show ?case .
20 qed

33

For the sake of this presentation, we appeal to an “immediate intuition”
of a mathematically knowledgable reader; for detailed introduction into the
structured proof language, the reader is referred to the Isar Reference Manual
of the System documentation.
In addition to internal Isabelle proof procedures, there are some external
proof procedures (blast going back to leantap[BP95], metis existing as a
stand-alone first-order paramodulation procedure[Hur03] as well as CVC4[BCD+11]
and Z3[dMB08] via the smt interface) that have been integrated into Isabelle
in a logically safe way.

2.3.5 Isabelle/HOL Code Generation

Finally, Isabelle/HOL manages a set of executable types and operators, i. e.,
types and operators for which a compilation to sml!, OCaml, Scala, or Haskel
is possible. Setups for arithmetic types such as int have been done allowing
for different trade-offs between trust and efficiency. Moreover any datatype
and any recursive function are included in this executable set (providing
that they only consist of executable operators). Of particular interest for
evaluators is the use of the Isar command:

value sort[1, 7, 3] (2.6)

In the context of the definitions, it will compile them via the code-generator
to SML code, execute it, and output:

[1, 3, 7] (2.7)

This provides an easy means to inspect constructive definitions and to get
easy feedback for given test examples for them. See the part “Code generation
from Isabelle/HOL theories” by Florian Haftmann from the Isabelle system
documentation for further details.

2.3.6 Isabelle/HOL Document Generation

Of particular interest for evaluators or certifications are Isabelle’s features
for semantically supported typesetting: within the document element:

1 text{* This is text containing λ’s and β’s ... *}

for example, arbitrary LaTeX code can be inserted for using technical and
mathematical notation of annotations of formal document elements. Inside
a text-document, the document antiquotation mechanism already mentioned
in 2.3.3 can be applied:

1 text{* Text containing theorems like {@thm exI} ... *}

34

which results in a print of theorems directly from their formal Isabelle present-
ation. Since it is possible to define new antiquotations, one can, for ex-
ample, track security requirements or security claims in theorems or tests (a
detailed description of document antiquotations is found in the “Isar Refer-
ence Manual” by Makarius Wenzel from the Isabelle system documentation).
Thus it is possible to use this mechanism to support the traceability of the
common criteria items like protection profiles, security targets, requirements,
security properties etc. For all these entities, be it informal or not, declara-
tions and applications of antiquotations can be used in text fragments that
allow for a direct consistency checking over the entire document.
During a certification process, evaluators are encouraged to use the Isa-
belle/jedit user-interface directly (and not just the generated .pdf document-
ation), since it allows for an in-depth inspection and exploration of the formal
content of a theory: tooltips reveal typing information, evaluations of crit-
ical expressions can often be done by the value ... document item, and
operator-symbols occurring in HOL-expressions were hyper-linked to refer-
ring definitions or binding occurrences. Note, however, that a user-interface
is a dozen system layers away from a Isabelle inference kernel which opens
the way for implementation errors in display and editing components, in-
creasing the risk of misinterpretations. A final check of an entire document
should therefore be made in the (GUI-less) build mode (which enforces also
stronger checking).

2.3.7 Isabelle extensions: HOL-TestGen

HOL-TestGen3(see Figure 2.4) is an interactive, i. e., semi-automated, test
generation tool for specification-based tests built upon Isabelle/HOL. Instead
of using Isabelle/HOL as “proof assistant,” it is used as modeling environ-
ment for the domain specific background theory of a test (the test theory), for
stating and logically transforming test goals (the test specifications), as-well
as for the test generation method implemented by Isabelle’s tactic proced-
ures. In a nutshell, the test generation method consists of:

1. a test case generation phase, which is essentially an equivalence par-
titioning procedure of the input/output relation based on a cnf!-like
normal form computation,

2. a test data selection phase, which essentially uses a combination of con-
straint solvers using random test generation and the integrated SMT-
solver Z3 [dMB08],

3. a test execution phase, which reuses the Isabelle/HOL code-generators
3HOL-TestGen was never used to: test complex real systems, and concurrent code

before this thesis

35

Figure 2.4: An Isabelle session showing the jEdit client as Isabelle Interface.
The upper-left sub-window allows one to interactively step through a test
theory comprising test specifications while the lower-left sub-window shows
the corresponding system state of the spot marked in blue in the upper
window.

to convert the instantiated test cases to test driver code that is run
against a system under test.

A detailed account on the symbolic computation performed by the test case
generation and test selection procedures is contained in [BW13]. The test
case generation method is basically an equivalence partitioning combined
with a variable splitting technique that can be seen as an (abstract) syntax
testing in the sense of the ISO 29199 specification [Int12, Sec. 5.2.1 and
5.2.4].
The equivalence partitioning separates the input/output relation of a pro-
gram under test (PUT), usually specified by pre- and post-conditions, into
classes for which the tester has reasons to believe that PUT will treat them
the same.
Of course, the HOL-TestGen approach inherits all glory, but also all limit-
ations of a testing approach: The entire specification is reduced via specific
test purposes and underlying test hypothesis (“pick one out of the equivalence
class, and it’s going to be ok for all class members”) to a finite number of
tests to be checked. These purposes and hypotheses ’ may be difficult to jus-
tify and need careful inspection, more difficult than having just a universal
statement over the entire input/output relation. On the other hand, test-
ing can establish confidence over the real system, and makes no modeling

36

assumptions — like the Simpl-approach subsection 3.4.1 — over the under-
lying hardware, the correct modeling of behavior of hardware components
such as sensors, the compiler, and the equivalence of the assumed operational
semantics of the used programming language(s) with the actually executed
one. For this reason, it can be safely stated that for certifications of the
highest-levels, a suitable combination of test and proof techniques will be
necessary. Proofs for the higher levels of the models establishing the desired
security properties in a Target Of Evaluation TOE, tests for establishing
that the assumptions made in the lower levels of the models correspond to
the reality in the TOE.

2.4 The Verified Architecture Microprocessor (VAMP)

The Verified Architecture Microprocessor (VAMP) as well as the micro-
kernel VAMOS [Dor10] has been developed and verified in the context of
the German research projects Verisoft4 and VerisoftXT5. The goal in partic-
ular of the former project was the pervasive formal verification of computer
systems from the application level down to the silicon, i. e., the hardware
design.
On the Application Software Layer, this includes foundational proofs justi-
fying a verification approach for system-level concurrent programs that are
running as user processes on the micro-kernel VAMOS [Dor10]. On the Sys-
tem Software Layer, VAMOS provides an infrastructure for memory virtual-
ization, for communication with hardware devices, for process (represented
as a sequence of assembly instructions), and for inter-process communica-
tion (IPC) via synchronous message passing that need to be verified. On the
Tools Layer, the correctness of the compiler needs to be verified and, finally,
on the Hardware Layer, the functional correctness of the hardware design is
formally verified.
These four layers comprise the Verisoft Architecture (see Figure 2.5); each
of the layers is in itself structured in several sub-layers.
Our work focuses on the hardware layer, more precisely the assembly-level
(VAMPasm), i. e., the instruction set of the Verified Architecture Micro-
Processor (VAMP) [BJK+06]. VAMP is a pipelined reduced instruction set
(RISC) processor based on the out-of-order execution principle (see [HP06]
for details). The VAMPasm (section 5.2 presents the formal model we are
using in our work) includes 56 instructions: 8 instructions for memory data
transfer, 2 instructions for constant data transfer, 2 instructions for register
data transfer, 14 instructions for arithmetic and logical operations, 16 in-
structions for test operations, 6 instructions for shift operations, 6 instruc-

4www.verisoft.de
5www.verisoftxt.de

37

Application
Software

System
Software

Hardware

 Micro-Kernel
 (VAMOS)

 CVM

 Operating System
 (SOS)

 App App App

 VAMPasm

 VAMP

 Host System

 C-Level

 Assembly-Level

 Gate-Level

Tools

 Compiler

Figure 2.5: The Verisoft System Layers.

tions for control operations as well as 2 instructions for interrupt handling.
In our unit and sequence test scenarios presented in section 5.3, we generate
tests from a formal model of the instruction set, i. e., we test the conformance
of the gate level (which corespondents to the implementation in traditional
model-based testing) to assembly-level (which corespondents to the model
in traditional model-based testing).

2.5 PikeOS System Architecture

PikeOS is a real-time commercial operating system that supervises and en-
sures the execution and separation between software applications running on
the top of various hardware platforms [SYS13a, SYS13b]. It stands in the
tradition of so-called separation kernels and follows ideas of the influential
L4 kernel project [Lie95]. The PikeOS architecture comprises four layers
(see Figure 2.6). The virtual machine initialization table (VMIT) is a data-
base containing the global configuration of the system and its application
structure. In the VMIT, partitions (virtual machines), tasks (POSIX-like
processes), their threads, their memory-, processor-, and time resources, com-
munication channels as well as access-control rights on these resources were
defined. Only at boot-time, partitions, processes and threads can be created
via PikeOS System Software (PSSW); at run-time the application structure
and its time-scheduling is fixed: PikeOS has no dynamic process creation. In

38

Figure 2.6: PikeOS architecture.

other words: based on the VMIT configuration, the PikeOS system software
(PSSW) will generate a set of virtual machines in the Partitions layer during
the boot-phase. In this layer each resource partition is composed from a set
of applications, and can be executed under the predefined policy and use the
predefined resources of the VMIT. Applications in the resource partitions
can also be used for system calls of PikeOS kernel. In kernel layer, the set
of resource partitions is seen as a set of PikeOS tasks, that contain PikeOS
threads and shares kernel resources (memory, files, processors, communica-
tion channels . . .).
The kernel provides a set of APIs used by the threads and tasks. As in Unix-
like systems, special hardware—the MMU—gives application-level tasks the
illusion to live in an own separate memory space: the virtual memory. How-
ever, all threads belonging to a task live in the same memory space, namely
the memory space of the task they belong to. In contrast, system-level tasks
can also access the physical memory and the MMU. Besides memory separ-
ation, PikeOS also offers time-separation and multi-core support.
Our work focuses on a particular part of the kernel layer providing inter-
process communication (IPC), the PikeOS IPC API.

39

2.6 Conclusions

In this chapter we have presented the general context of this thesis. First,
an overview on formal testing, its background and its relation with the other
formal methods techniques were introduced. Actually, formal testing ap-
proaches bridge the gap between the formal model and the reality; in cer-
tification effort, this can be a valuable contribution to gain confidence over
results achieved by deductive verification or model checking, in which, the
verification activity is usually done on the model level solely. From the other
side, deductive verification and model checking approaches, can be used to
refine/adapt an additional model to a testable one, i. e. a model that is
suited to symbolic execution and that can therefore be used in the different
testing approaches.
Second, we have presented Isabelle/hol! and pointed the essential system
features. We believe that a such introduction to Isabelle system will help the
reader to understand our contributions explained in the remaining chapters.
Finally, the basic notions and the system architecture of VAMP Processor
and PikeOS system were described.
The next chapter contain our first contribution during this thesis, in partic-
ular we will introduce an instantiation of the text in [JH08] for Isabelle in
order to show how Isabelle can be used in certification processes.

40

Part II

Contributions

41

3
A sideline : Isabelle/HOL in
certification processes A
System Description and
Mandatory Recommendations

Contents
3.1 Introduction . 43
3.2 Common Criteria: Normative Context 44
3.3 Methodological Recommendations for the Eval-

uator . 44
3.3.1 On the use of SML 45
3.3.2 Axioms and Bogus-Proofs 46
3.3.3 On the use of external provers 47

3.4 Extensions of Isabelle: Guidelines for the Eval-
uator . 48

3.4.1 An Example: The Isabelle/Simpl 48
3.5 Recommendations for CC certifications 49

3.5.1 A refinement based approach for CC evaluation . . 49
3.6 Summary . 51

42

3.6.1 Background References 51
3.6.2 Concluding Remarks and a Summary 51

3.1 Introduction

Recently, theorem proving environments have been widely used in the area
of computer systems security and certification and, for instance, in Com-
mon Criteria. The Common Criteria (CC) [Mem06] is a well-known and re-
cognized computer security certification standard. The standard is centered
around the role of the developer, who provides implementation but also “arte-
facts of compliance with the level of security targeted”, while the evaluator
“confirms the compliance of the information supplied” as well as determines
“completeness, accuracy and quality” of the deliverables.
Especially wrt. “completeness, accuracy and quality” of specifications and
proofs, formal methods and especially mechanically proof checking tech-
niques can push the trust and the reproducibility of the results to levels
not obtainable by a human certification expert alone. This explains why at
its higher assurance levels, the CC requires the use of formal methods for
specification and verification. A well-established formal specification formal-
ism must be used to model the system and of the different security policies.
A reliable theorem prover is needed to prove and verify different properties
of the specification. Recent theorem provers offer rich and powerful formal
environments that are very suitable for both activities.
Among the important number of theorem provers available nowadays, we
concentrate on the Isabelle theorem prover1. Following [Hal08], the Isabelle
System, developed into one of the top five systems for the logically consistent
development of formal theories. In particular the instance of the Isabelle
system with higher-order logic called Isabelle/HOL is therefore a natural
choice as a formal methods tool as required by the Common Criteria on the
higher assurance levels EAL5 to EAL7.
In this chapter we present a side-effect of our work that still relevant to its
context (a European project aiming at a certification of an industrial oper-
ating system), as well as the methodological role of testing a certification
process. In particular we contributed to the paper2 which was sent to the
ANSSI3. As a contribution, the chapter culminates in some high-level man-
datory guidelines and recommendations for both developers and evaluators
of certification documents using Isabelle. It attempts to be a complement to
[JH08].

1At time writing, the current version is Isabelle2013-2.
2http://www.euromils.eu/downloads/Deliverables/Y2/2015-EM-

UsedFormalMethods-WhitePaper-October2015.pdf
3http://www.ssi.gouv.fr/

43

The chapter proceeds as follows: at first in section 3.2, we give some general
information from Common Criteria standard about formal methods, model-
ing and associated requirements. In section 3.3, we refer to methodological
issues of Isabelle/HOL leading to recommendations for evaluators. In sec-
tion 3.4 we chose a major extensions of Isabelle for code-verification, and
discuss its advantages and limits in a high-level certification process. The
final discussion contains a little survey on publications on the topic as well
as a summary for evaluators.

3.2 Common Criteria: Normative Context

For high levels of certification (i.e. for EAL5 to EAL7) in the Common
Criteria [Mem06] some requirements introduce the use of formal methods
at diverse phases of the design process. Regarding to the level of security
target required, the use of formal methods match different objectives. For
deeper explanations on high certification levels related to Common Criteria,
i. e. EAL 5 to EAL7, and their requirements we would refer to [YABC15].

3.3 Methodological Recommendations for the Eval-
uator

There are four potential dangers of a formal proof system that it wrongly
accepts the desired theorem “This operating system is secure”:

1. Inherent inconsistency of the logics (e. g., hol!) or inconsistent use of the
logics (introduction of inconsistent axioms by one way or the other).

2. The incorrect implementation of Isabelle the Isabelle Kernel and of the
hol! instance in it.

3. The incorrect package implementation realizing advanced specification
constructions like type definitions etc.

4. Since Isabelle is highly configurable, there is a certain danger of obfus-
cation of bogus-proofs.

Beyond the more philosophical objections4, the risk outlined by the by first
item is in fact minimal: Higher-order logic is an extremely well studied ob-
ject of academic interest [And86, GM93], and while there are known limits
in proving soundness and completeness inside a hol!-prover, they just stim-
ulated a lot of recent research to come a “formal proof over hol! in hol!” as

4For example, the fundamental doubt in the existence of infinite sets[And86]...

44

close as possible, e.g. by adding to hol! an axiom over the existence of a
sufficiently large cardinal [Har06, MOK13].
The risk outlined by the second item is also very small. The reasons are
threefold:

A Some of the aforementioned soundness proofs cover also the imple-
mentation aspects of the core of a provers of the hol!-family (hol!-light,
...).

B The specific architecture of provers of the LCF family (HOL4, Isabelle,
HOL-light, Coq) enforces that any proof is actually checked by by this
fairly small core.

C These core-inferences can optionally be protocoled in an proof-object
which can, in principle, in case of serious doubt be checked by another
implementation of a hol!-prover. However, since these objects tend to
be very large, this approach requires decent engineering. Fortunately,
this should only be necessary in exceptional cases.

The risk of the third item is minimal as far as the described standard con-
servative standard extension schemes such as type_synonym’s, datatype’s,
definition’s and fun’s, typedef’s, specification’s, inductive’s, type-
classes and locales are concerned. The same holds for diagnostic commands
like type, term, value, etc. that do not change the global context of a theory.
These are fairly well-understood schemes which have in parts been proven
formally correct for similar systems such as the HOL4 system[KAMO14].
These schemes cover the largest parts of the Isabelle/HOL libraries. Here
lies the main advantage of the LCF-approach and the methodology to base
libraries on conservative (logically safe) definitions.
The risk is small as far as other standard extension schemes are concerned;
since extension schemes generate internally axioms, there have been repor-
ted consistency problems with combinations of other extension schemes such
as consts and defs as well as defs (overloaded); the Isabelle reference
manual points out that the internal checks of Isabelle do not guarantee
soundness.5

It remains the risk of item four, which is concerned with the resulting meth-
odology in “how to use Isabelle”. For very large theory documentations, it
must be considered non-negligeable. It is the key-issue addressed in the
remainder of this section.

3.3.1 On the use of SML

As mentioned earlier, Isabelle is an open environment that allows via
5See Isabelle Isar-Reference Manual (Version 2013-2, pp. 103): “It is at the discretion

of the user to avoid malformed theory specifications!”

45

1 ML{* SML ML code *}

to include arbitrary SML programs, in particular programs that make direct
inferences on top of the kernel. This use of Isabelle is not unsafe; critical
parts of the hol! library use this mechanism. Isabelle is designed to have
user land SML code extensions, and the kernel protects itself against logical
inconsistencies coming from ML extensions. However, there are a few delib-
erate opt-outs, and furthermore, it is in principle possible to obfuscate them
in Isabelle ML code such that an evaluator may be fooled by a text appearing
to be an Isabelle proof but isn’t in the sense of the inference kernel. Thus,
besides the principle possibility that a pretty-printed theorem does not state
what it appears to state by some misuse of mathematical notation (an inher-
ent problem of any formal method), there is the possibility of fake-proofs as a
consequence of ML code and (re)-configurations of the ISAR proof language.
If SML-code is accepted in an evaluation, it has to be made sure — po-
tentially by extra justifications or external experts with Isabelle implement-
ation expertise — that this code does not implicitly generate axioms, re-
gisters oracles and defines proof methods equivalent to sorry (or variants
like sorry_fun) to be discussed in the sequel; in any case, the evaluation is
substantially simpler if SML-code is strictly avoided.

3.3.2 Axioms and Bogus-Proofs

Obviously, when using the Isar axiomatization construct allowing to add
an arbitrary axiom, it is immediately possible to bring the system in an
inconsistent state. The immediate methodological consequence is to ban it
from use in to be evaluated theories completely (such that it is only intern-
ally used inside specification constructs in and and in the aforementioned
foundational axioms coming with the system distribution) and to restrict
theory building on conservative extensions. This is also common practice in
scientific conferences addressing formal proof such as ITP.
However, there are more subtle ways to introduce an axiom that leads to
inconsistency. First, there is a mechanism in Isabelle to register oracles
into the system. They can be used for a particularly simple, but logically
unsafe integration of external provers into Isabelle and can be used inside
self-defined tactics. Logically, an oracle is a function that produces axioms
on the fly. It is an instance of the axiom rule of the kernel, but there is an
operational difference: The system always records oracle invocations within
proof-objects of theorems by a unique tag. Of course, oracle invocations
should again be avoided in a certified proof.
A particular instance of the oracle mechanism is the sorry proof method.
This is method is always applicable and closes any (sub)-proof successfully,
and a useful means in top-down proof developments in Isabelle. Unneces-

46

sary to repeat that no sorry statements should remain in a proof document
underlying certification. By the way, the system is by default in a mode
in which it refuses to generate proof documents containing sorry’s, only by
explicitly putting it in a mode called quick_and_dirty this can be over-
come. There are several ways to activate quick_and_dirty, by it by explicit
ML statements like quick_and_dirty:=true, be it in the ROOT.ML-files (till
version 2013-1), or be it in the session- configuration files ROOT-files (since
version 2013).
Oracles and sorry’s are particularly dangerous in methodological foundation
proofs (type or type-class is non-empty, recursions well-founded), since the
use of the the oracle-tag inside the corresponding proof-objects gets lost on
the level of type expressions. Thus, a sorry could introduce inconsistent
types whose “effects” could be used in bogus-proofs depending on them.
We will discuss this a little more in detail: Recall that deduction in Isabelle/hol!
is centered around the requirement that types and type-classes are non-
empty. This is a consequence of the fact that the β-reduction rule ((λx ::
τ.E)E′ → E[x := E′]) is executed pervasively during deduction, be in in
resolution or rewriting steps. It is well-known however, that β-reduction
is unsound in the presence of empty types6. Thus, an obfuscated sorry in
a methodological proof leaves no other than very local traces in the proof
objects and can be exploited much later via an inconsistent type in a proof
based on this type definition; the exploit could again be obfuscated by an-
other self-defined proof-method, say auto’ which will be hard to detect by
inspection. The only systematic way to rule out obfuscated bogus-proof is
either by ruling out ML-constructs or by checking all proof objects of the
entire theory.

3.3.3 On the use of external provers

The Isabelle distribution comes with a number of external provers, namely:

• sledgehammer : its use is uncritical, since it remains completely extern
to proof documentations and is only used for the generation of high-
level Isabelle proofs, that were certified by the kernel.

• blast, metis: these are internal devices but also uncritical, since their
results were used via a proof object certification.

• smt: this method uses, for example, the external SMT-solver Z3. The
integration is carefully made and uses no oracles - instead, a form

6Consider the case of τ having a semantic interpretation into an empty set I(τ) = :
then the semantic interpretation of the function (λx :: τ.E) must be in the function space:
D = where D is the space of interpretations for the type τ ′ of E. Obviously, there is no
possible result for the application ...

47

of tactical proof re-construction mechanism is used [BW10] that is
logically safe.

Other external provers have to be considered carefully; in particular integ-
rations using the oracle-mechanism should be ruled out.

3.4 Extensions of Isabelle: Guidelines for the Eval-
uator

Besides HOL-TestGen described in subsection 2.3.7, there are other Isa-
belle extensions relevent for certification processes, namely Isabelle/simpl.

3.4.1 An Example: The Isabelle/Simpl

Isabelle/Simpl is an verification environment built conservatively on Isa-
belle/HOL. It supports a sequential imperative programming language, for
which it defines its syntax, semantics, Hoare Logics and a verification condi-
tion generator (again derived), which form together a complete verification
environment. Together with an (untrusted) parser that compiles C programs
into Isabelle/Simpl[GAK12], this particular environment follows a similar
program verification technique like Frama-C/Why/AltErgo ([CKK+12, FP13],alt-ergo.
lri.fr) or VCC/Boogie/Z3[BW10].
The entire environment is part of the Isabelle-oriented “Archive of formal
Proofs”, see afp.sourceforge.net in general and afp.sourceforge.net/entries/
Simpl.shtml in particular.
The environment has been used for one of the most ambitious code-verification
projects recently, the verification of the L4-Microkernel
(cf. www.ertos.nicta.com.au/research/l4.verified, [KEH+09]).
In itself, Isabelle/Simpl can be considered nearly as as “trustable” as Isa-
belle/HOL itself : the library is built upon conservative extensions of the
HOL -kernel, and the ML extensions are done by Isabelle developers them-
selves and stood the test of the time. Program verification proofs estab-
lishing that a Simpl-program is correct with respect its (pre-post-condition)
specifications can be handled by the same evaluation procedures as any other
Isabelle development.
However, as in any process involving the verification of C programs, the
C parser and its transition from “real C” to the idealized imperative lan-
guage Simpl has to be considered with a wise dose of scepticism. Here is
are whole spectrum of different glimpses possible: since the C parser defines
a semantics-by-translation for its fragment of C, the question remains un-
proven that this semantics is faithful to the semantics of the real C compiler
generating production-level code (which involves questions on compiler cor-

48

alt-ergo.lri.fr
alt-ergo.lri.fr
afp.sourceforge.net
afp.sourceforge.net/entries/Simpl.shtml
afp.sourceforge.net/entries/Simpl.shtml
www.ertos.nicta.com.au/research/l4.verified

Figure 3.1: Refinement steps for a formal development approach compliant
to CC

rectness, semantic faithfulness of the execution environment, correctness of
compilation optimizations, hardware-correctness, etc.). The problem has
been addressed via particular validation techniques of the parsing process
[GAK12], but is, in full generality, unsolvable.

3.5 Recommendations for CC certifications

3.5.1 A refinement based approach for CC evaluation

The figure 3.1 presents a refinement scheme which implements different re-
finement steps from security policy model SPM to implementation. With
this approach, the properties demonstrated on an abstract SPM are form-
ally preserved down to the levels of the functional specification model FSP
and a TOE specification design model, the TSD. At each level of abstrac-
tion the dedicated model and its associated proofs demonstrate the security
properties and are compliant with the CC requirement. The use of a formal
refinement methodology demonstrates the consistency between each refined
model and preserve the properties demonstrated at high level of abstraction.
The evaluation of this kind of approach can be conducted in three different
phases by the evaluator:

• Phase 1: Verification of the proof of the SPM formal specification. On
the initial abstract model, a verification shall be conducted to check
the relevance of the security objectives modeling in the formal model
with the informal specification. A second point is the verification of the
model soundness to assure than the model is not inconsistent (refers

49

to chapter 3.3.2).

• Phase 2: Refinement of the SPM formal specification. A first step of
this phase is the verification of the refinement process and methodology.
On each refinement, verification on the properties and on the soundness
of the model are conducted. From the initial abstract model, on each
intermediate concrete model, the evaluator checks the traceability (i.e.
the traceability of the requirements) between models. An informal link
can be considered between the last formal model of the TDS and the
implementation. A bi-directional detailed traceability of the security
requirements shall be managed between this two different artefacts to
verify the implementation of the security requirements and than the
implementation contains only desired requirements 7.

• Phase 3: General and transverse activities. This last phase consists
mainly of the verification on the proofs and on justifications on the tools
used as support for development and design. The complete traceabil-
ity from the security target to the implementation is verified included
traceability between each refinement steps of formal models. During
this phase, the evaluator replay the proofs and check the consistency of
the formal properties and assumptions defined on the environment and
the context (see 2.3.5 last paragraph for details of facilities supplied by
Isabelle/HOL. The use of keywords to report the proof of parts of the
proof obligations is forbidden (for example the use of the sorry proof
method, see chapter 3.3.2 for details).

When formal methods are used, some practices should be applied to facilitate
the work of the evaluator and be more efficient.

• Formal models should be defined in accordance with some naming con-
vention informations and is a huge help for traceability.

• Formal models should be define in accordance with "coding" rules
([JH08]). The proofs associated can be replay.

• Documentation and deliveries should respect templates and integrate
traceability with requirements or elements from input specifications.
From this point, the use of the Isabelle interface should be interesting
with regard to its functionalities, refers to 2.3.5.

7to check than no parts of the code violate the security properties by side effects.

50

3.6 Summary

3.6.1 Background References

The most notable text describing the scientific history behind the LCF-family
of hol! provers is done by by Mike Gordon[Gor00]. It covers the beginning
of the entire research programme from 1972 to the mid-80ies, ranging from
foundational issues of the logic over contributions to type-systems (as the
“Hindley-Milner-Polymorphism”)[Mil78] to the issue of the practical, safe
implementation of rewrites and decision procedures [Pau99].
The LCF research programme was in parallel to another notable source of
nowadays interactive theorem proving technologies: the Automath-project.
In 1968, N.G. de Bruijn designs the first computer program to check the valid-
ity of general mathematical proofs, using typed λ-calculi as a direct means
to represent proof objects as such. The emphasis of this programme was
initially on proof-checking; de Bruijn’s system Automath eventually checked
every proposition in a primer that Landau had written for his daughter on
the construction of real numbers as Dedekind cuts. A descendant of this
family, which also has deeply influenced the Isabelle kernel design (proof
objects, core inferences) is the Coq system (see http://coq.inria.fr).
Another notable survey on research programme is contained in the papers
contained in A Special Issue on Formal Proof distributed by the American
Mathematical Society (see http://www.ams.org/notices/200811/, but also
[Hal08]), which presents nicely the relevance of modern ITP technology for
purely mathematical problems (an argument, which has been strengthened
recently by the formal proof of the Feit-Tompson theorem, whose precise
formulation has haunted mathematicians for decades [Gon13], and the formal
proof of the Kepler-conjecture, which is a known mathematical problem for
about 400 years.).

3.6.2 Concluding Remarks and a Summary

We have presented the Isabelle/hol! system and pointed out the essential ar-
guments, why by a particular combination of system-architecture and meth-
odology, the system is suited to give the currently highest possible guarantee
on a formal proof in particular and a logical theory development in gen-
eral. In a sense, Isabelle/hol! offers the same guarantees for logical systems
as Coq[JH08], and in some sense better guarantees than, for example, the
B method or model-checkers like FDR. Isabelle/hol! is therefore a natural
choice for evaluations in the higher certification levels EAL5 to EAL7 in the
Common Criteria (CC) [Mem06].
If the methodological side-conditions are respected which can be reduced
essentially to an number syntactic checks, the formal consistency of the entire

51

http://coq.inria.fr
http://www.ams.org/notices/200811/

certification document containing formal specifications, proofs of consistency
and the proofs of security properties, refinement-proofs between the different
abstraction layers, and finally test-case generations as well as test-results
can be guaranteed, and the evaluator can therefore concentrate on the more
fundamental questions: does the model represent the right thing? are the
modeling assumptions justified?
As “take-home-message” we would summarize these side-conditions as fol-
lows:

• Use a trusted, unmodified Isabelle version from the distribution.

• Check the restriction to definitional axioms only, enforce the use of
“safe” specification constructs discussed here.

• Rule out axiomatization, sorry, their variants or disguised equivalents
(such as oracle declarations).

• In particular sorry’s or equivalent constructions in methodological
proofs have to be ruled out.

• Check the quick-and-dirty mode status.

• Exploring a TOE interactively, for example by jEdit, which allows
for inspecting theories and definitions, their animation, the checking of
types and of proof details, is a great means to increase confidence for an
evaluator. However, the final check should be done in a non-interactive
mode (pretty-printing and display machinery is actually quite far from
the kernel and can be erroneous in itself).

• The main theorem in an CC evaluation is presumably of the form: "the
security property X stated in the context of the security model Y is
satisfied for the functional model Z under some conditions A in some
locale B". A skeptical evaluator may insist on proofs that A and B are
actually satisfiable, under circumstances even in a constructive sense.

• A conservative evaluator should restrict or ban ML-statements (with the
possible exception of declarations of antiquotations), otherwise inspect
ML-statements with particular care.

The internal code generator (also used in code-antiquotations and value-
statements) stood the test of the time, but enjoys not quite the same level of
trust as the proof facilities. The generation of proof objects for a complete
theory is in principle possible, but should not be necessary except in case of
a concrete suspicion of a fraudulent proof attempt.

52

4
Theoretical and Technical
Foundations: Testing
Concurrent Programs

Contents
4.1 Introduction . 54
4.2 Monads Theory 55

4.2.1 An Example: MyKeOS. 58
4.3 Conformance Relations Revisited 60
4.4 Coverage Criteria for Interleaving 61
4.5 Sequence Test Scenarios for Concurrent Programs 63
4.6 Symbolic Execution 66
4.7 Test Drivers for Concurrent C Programs 67

4.7.1 The adapter . 69
4.7.2 Code generation and Serialisation 70
4.7.3 Building Test Executables 71
4.7.4 GDB and Concurrent Code Testing 72

4.8 Conlusions . 73

53

4.1 Introduction

The verification of systems combining soft- and hardware, such as modern
avionics systems, asks for combined efforts in test and proof: In the context
of certifications such as EAL5 in Common Criteria section 3.2, the required
formal security models have to be linked to system models via refinement
proofs, and system models to code-level implementations via testing tech-
niques.
Our work complements the testing initiative by a proof-based testing tech-
nique linking the formal system model of the PikeOS inter-process commu-
nication against the real system. This is a technical challenge for at least
the following reasons:

• the system model is a transaction machine over a very rich state,

• system calls were implemented by internal, uninterruptible “atomic ac-
tions” reflecting the L4-microkernel concept; atomic actions define the
granularity of our concurrency model, and

• the security model is complex and, in case of aborted system calls,
leads to non-standard notions of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical found-
ations.

• We use symbolic execution techniques to cope with the large state-
space; their inherent drawback to be limited to relatively short execu-
tion traces is outweighed by their expressive power,

• we extend the “monadic test approach” proposed in [BW07, BW13]
to a test-method for concurrent code. It combines an IO-automata
view [LT89a] with extended finite state machines [Gil62] using abstract
transitions, and

• we need an adaption of concurrency notions, a “semantic view” on
partial-order reduction and its integration into interleaving-based cov-
erage criteria.

This sums up to a novel, tool-supported, integrated test methodology for
concurrent OS-system code, ranging from an abstract system model in Isa-
belle/HOL, complemented embedding of the latter into our monadic se-
quence testing framework, our setups for symbolic execution down to gener-
ation of test-drivers and the code instrumentation.
In this chapter we will introduce a set of technical and theoretical contri-
butions to test concurrent programs. On theoretical side, we present the
monadic test approach from an IO-Automata view in section 4.2 then we

54

show how it can be used to express concurrent test scenarios in section 4.4.
In section 4.3 we state our refinement relation, which help us to express a
family of conformance relations to link the abstract model with the concrete
implementation. On the technical side, we will show how Isabelle is used
as an abstract test case generator in section 4.5. Finally, our techniques to
build test drivers for concurrent code are presented in section 4.7.

4.2 Monads Theory

The obvious way to model the state transition relation of an automaton A
is by a relation of the type (σ× (ι× o)× σ) set; isomorphically, one can also
model it via:

ι⇒ (σ ⇒ (o× σ) set)

or for a case of a deterministic transition function:
ι⇒ (σ ⇒ (o× σ) option)

In a theoretic framework based on classical higher-order logic (HOL), the
distinction between “deterministic” and “non-deterministic” is actually much
more subtle than one might think: since the transition function can be under-
specified via the Hilbert-choice operator, a transition function can be rep-
resented by

step ι σ = {(o, σ′)| post(σ, o, σ′)}
or:

step ι σ = Some(SOME(o, σ′). post(σ, o, σ′))

for some post-condition post. While in the former “truly non-deterministic”
case step can and will at run-time choose different results, the latter “under-
specified deterministic” version will decide in a given model (so to speak: the
implementation) always the same way: a choice that is, however, unknown at
specification level and only declaratively described via post. For the system
in this paper and our prior work on a processor model [BFNW13], it was
possible to opt for an under-specified deterministic stepping function.
We abbreviate functions of type σ ⇒ (o × σ) set or σ ⇒ (o × σ) option
MONSBE(o, σ) or MONSE(o, σ), respectively; thus, the aforementioned state
transition functions of io-automata can be typed by ι → MONSBE(o, σ) for
the general and ι → MONSE(o, σ) for the deterministic setting. If these
function spaces were extended by the two operations bind and unit satisfy-
ing three algebraic properties, they form the algebraic structure of a monad
that is well known to functional programmers as well as category theorists.
Popularized by [Wad92], monads became a kind of standard means to incor-
porate stateful computations into a purely functional world.

55

Since we have an underspecified deterministic stepping function in our system
model, we will concentrate on the latter monad which is called the state-
exception monad in the literature.
The operations bind, which represent sequential composition with value
passing, and unit, which represent the embedding of a value into a com-
putation, are defined for the special-case of the state-exception monad as
follows:

1 definition bind_SE :: (’o,’σ)MONSE ⇒(’o ⇒(’o’,’σ)MONSE) ⇒
2 (’o’,’σ)MONSE
3 where bind_SE f g = (λσ. case f σof None ⇒None
4 | Some (out, σ’) ⇒g out σ’)

1 definition unit_SE :: ’o ⇒(’o, ’σ)MONSE ((return _) 8)
2 where unit_SE e = (λσ. Some(e,σ))

We will write x ← m1; m2 for the sequential composition of two (monad)
computations m1 and m2 expressed by bindSEm1(λx.m2). Moreover, we
will write “return” for unitSE.
This definition of bindSE and unitSE satisfy the required monad laws:

1 lemma bind_left_unit [simp]:
2 (x ←return c; P x) = P c
3 by (simp add: unit_SE_def bind_SE_def)

1 lemma bind_right_unit[simp]:
2 (x ←m; return x) = m
3 apply (simp add: unit_SE_def bind_SE_def)
4 apply (rule ext)
5 apply (case_tac m σ, simp_all)
6 done

1 lemma bind_assoc[simp]:
2 (y ←(x ←m; k x); h y) =
3 (x ←m; (y ←k x; h y))
4 apply (simp add: unit_SE_def bind_SE_def, rule ext)
5 apply (case_tac m σ, simp_all)
6 apply (case_tac a, simp_all)
7 done

On this basis, the concept of a valid monad execution, written σ |= m, can
be expressed: an execution of a Boolean (monad) computation m of type
(bool, σ) MONSE is valid if and only if its execution is performed from the
initial state σ, no exception occurs and the result of the computation is true.

1 definition valid_SE ::
2 ’σ ⇒ (bool,’σ) MON_SE ⇒bool (infix |=15)
3 where (σ |=m) = (m σ 6= None ∧fst(the (m σ)))

56

More formally, σ |= m holds if and only if (m σ 6= None∧ fst(the(m σ))),
where fst and snd are the usual first and second projection into a Cartesian
product and the is the projection in the Some a variant of the option type.
We define a valid test-sequence as a valid monad execution of a particular
format: it consists of a series of monad computations m1 . . .mn applied to
inputs ι1 . . . ιn and a post-condition P in a return depending on observed
output. It is formally defined as follows:

σ |= o1 ← m1 ι1; . . . ; on ← mn ιn; return(P o1 · · · on)

The notion of a valid test-sequence has two facets: On the one hand, it is
executable, i. e., a program, iffm1, . . . ,mn, P are. Thus, a code-generator can
map a valid test-sequence statement to code, where the mi where mapped
to operations of the SUT interface. On the other hand, valid test-sequences
can be treated by a particular simple family of symbolic executions calculi,
characterized by the schema (for all monadic operationsm of a system, which
can be seen as its step-functions):

(σ |= returnP) = P (4.1a)

Cm ι σ m ι σ = None

(σ |= ((s← m ι;m′ s))) = False
(4.1b)

Cm ι σ m ι σ = Some(b, σ′)

(σ |= s← m ι;m′ s) = (σ′ |= m′ b)
(4.1c)

Which corresponds to the following Isabelle/HOL implementation:

1 lemma exec_unit_SE [simp]: (σ |=(return P)) = (P)
2 by(auto simp: valid_SE_def unit_SE_def)

1 lemma exec_bind_SE_failure:
2 A σ = None =⇒¬(σ |=((s ←A ; M s)))
3 by(simp add: valid_SE_def unit_SE_def bind_SE_def)

1 lemma exec_bind_SE_success:
2 A σ = Some(b,σ’) =⇒(σ |=((s ←A ; M s))) = (σ’ |=(M b))
3 by(simp add: valid_SE_def unit_SE_def bind_SE_def)

This kind of rules is usually specialized for concrete operations m; if they
contain pre-conditions Cm (constraints on ι and state), this calculus will
just accumulate those and construct a constraint system to be treated by
constraint solvers used to generate concrete input data in a test.

57

4.2.1 An Example: MyKeOS.

To present the effect of the symbolic rules during symbolic execution, we
present a toy OS-model. MyKeOS provides only three atomic actions for
allocation and release of a resource (for example a descriptor of a commu-
nication channel or a file-descriptor). A status operation returns the number
of allocated resources. All operations are assigned to a thread (designated
by thread_id) belonging to a task (designated by task_id, a Unix/POSIX-
like process); each thread has a thread-local counter in which it stores the
number (the status) of the allocated resources. The input is modeled by the
data-type:

1 datatype in_c = alloc task_id thread_id nat
2 | release task_id thread_id nat
3 | status task_id thread_id

1 datatype out_c = alloc_ok | release_ok | status_ok nat

where out_c captures the return-values. Since alloc and release do not
have a return value, they signalize just the successful termination of their
corresponding system steps. The global table var_tab (corresponding to
our symbolic state σ) of thread-local variables is modeled as partial map
assigning to each active thread (characterized by the pair of task and thread
id) the current status:

1 type_synonym thread_local_var_tab = (task_id ×thread_id) ⇀int

The operation have the precondition that the pair of task and thread id is
actually defined and, moreover, that resources can only be released that have
been allocated; the initial status of each defined thread is set to 0. The hol!
representation of the preconditions and post-conditions is:

1 fun precond :: thread_local_var_tab ⇒in_c ⇒bool
2 where
3 precond σ (alloc taskid thid res) = ((taskid,thid) ∈dom σ)
4 | precond σ (release taskid thid res) = ((taskid,thid) ∈dom σ∧
5 (int res) ≤the(σ(taskid,thid)))
6 | precond σ (status taskid thid) = ((taskid,thid) ∈dom σ)

58

event : alloc(tid,thid,m)
guard : (tid,thid) dom(var_tab) �
send : alloc_ok !
action : var_tab[tid,thid]+=m

event : status(tid,thid)
guard : (tid,thid) dom(var_tab) �
send : status(n)!
action : n=var_tab[tid,thid]

event : release(tid,thid,m)
guard : (tid,thid) dom(var_tab) �
 ⋀ var_tab[tid,thid]>m
send : release_ok!
action : var_tab[tid,thid]-=m var_tab

Figure 4.1: SPEC: An Extended Finite State Machine for MyKeOS.

1 fun postcond :: in_c ⇒thread_local_var_tab ⇒
2 (out_c ×thread_local_var_tab) set
3 where
4 postcond (alloc taskid thid res) σ=
5 { (n,σ’). (n = alloc_ok ∧
6 σ ’=σ((taskid,thid)7→ the(σ(taskid,thid)) + int res))}
7 | postcond (release taskid thid res) σ=
8 {(n,σ’). (n = release_ok ∧
9 σ ’=σ((taskid,thid)7→ the(σ(taskid,thid)) - int res))}

10 | postcond (status taskid thid) σ=
11 {(n,σ’). (σ=σ ’ ∧
12 (∃ x. status_ok x = n ∧x = nat(the(σ(taskid,thid)))))}

Depicted as an extended finite state-machine (EFSM), the operations of our
system model SPEC are specified as shown in Figure 4.1.
A transcription of an EFSM to HOL is scattered here1. Actually the HOL
model of an EFSM is represented by a locale[Bal10], which is instantiated
by the above definitions of pre-post conditions and:

1 definition strong_impl ::
2 [’σ⇒’ι⇒bool, ’ι⇒(’o,’σ)MON_SB] ⇒’ι⇒(’o, ’σ)MON_SE
3 where strong_impl pre post ι=
4 (λ σ. if pre σ ι
5 then Some(SOME(out,σ’). (out,σ’) ∈post ισ)
6 else None)

1 definition SPEC = (strong_impl precond postcond)

where SPEC represent the instantiation of an EFSM with the semantics of
MyKeOS. We show a concrete symbolic execution rule derived from the
definitions of the SPEC system transition function, e. g., the instance for Equa-

1It is a theory in HOL-TestGen distribution.

59

tion 4.1c:

(tid , thid) ∈ dom(σ) SPEC (alloc tid thid m) σ = Some(alloc_ok, σ′)

(σ |= s← SPEC (alloc tid thid m);m′ s) = (σ′ |= m′ alloc_ok)

where σ = var_tab and σ′ = σ((tid , thid) := (σ(tid , thid) + m)). Thus,
this rule allows for computing σ, σ′ in terms of the free variables var_tab,
tid , thid and m. The rules for release and status are similar. For this rule,
SPEC (alloc tid thid m) is the concrete stepping function for the input event
alloc tid thid m, and the corresponding constraint CSPEC of this transition
is (tid , thid) ∈ dom(σ).

4.3 Conformance Relations Revisited

We state a family of test conformance relations that link the specification
and abstract test drivers. The trick is done by a coupling variable res that
transport the result of the symbolic execution of the specification SPEC to
the expected result of the SUT.

σ |= o1 ← SPEC ι1; . . . ; on ← SPEC ιn; return(res = [o1 · · · on])

−→
σ |= o1 ← SUT ι1; . . . ; on ← SUT ιn; return(res = [o1 · · · on])

Successive applications of symbolic execution rules allow to reduce the premise
of this implication to CSPEC ι1 σ1 −→ . . . −→ CSPEC ιn σn −→ res =
[a1 · · · an] (where the ai are concrete terms instantiating the bound output
variables oi), i. e., the constrained equation res = [a1 · · · an]. The latter is
substituted into the conclusion of the implication. In our previous example,
case-splitting over input-variables ι1, ι2 and ι3 yields (among other instances)
ι1 = alloc t1 th1 m, ι2 = release t2 th2 n and ι3 = status t3 th3, which allows
us to derive automatically the constraint:

(t1, th1) ∈ dom(σ) −→
(t2, th2) ∈ dom(σ′) ∧ n < σ′(t2, th2) −→

(t3, th3) ∈ dom(σ′′) −→ res = [alloc_ok, release_ok, status_ok(σ′′(t3, th3)]

where σ′ = σ((t1, th1) := (σ(t1, th1)+m))) and σ′′ = σ′((t2, th2) := (σ(t2, th2)−
n))). In general, the constraint CSPECi ιi σi can be seen as an symbolic ab-
stract test execution; instances of it (produced by a constraint solver such as
Z3 integrated into Isabelle) will provide concrete input data for the valid test-
sequence statement over SUT, which can therefore be compiled to test driver
code. In our example here, the witness t1 = t2 = t3 = 0, th1 = th2 = th3 = 5,
m = 4 and n = 2 satisfies the constraint and would produce (predict) the

60

output sequence res = [alloc_ok, release_ok, status_ok 2] for SUT accord-
ing to SUT. Thus, a resulting (abstract) test-driver is:

σ |= o1 ← SUT ι1; . . . ; o3 ← SUT ι3;

return([alloc_ok, release_ok, status_ok 2] = [o1 · · · o3])

This schema of a test-driver synthesis can be refined and optimized. First, for
iterations of stepping functions an ’mbind’ operator can be defined, which is
basically a fold over bindSE. It takes a list of inputs ιs = [i1, . . . , in], feeds it
subsequently into SPEC and stops when an error occurs. Using mbind, valid
test sequences for a stepping-function (be it from the specification SPEC or
the SUT) evaluating an input sequence ιs and satisfying a post-condition P
can be reformulated to:

σ |= os← mbind ιs SPEC; return(P os)

Second, we can now formally define the concept of a test-conformance notion:

(SPEC v〈Init,CovCrit,conf〉 SUT) =

(∀σ0 ∈ Init . ∀ι s ∈ CovCrit . ∀res.
σ0 |= os ← mbind ιs SPEC; return(conf ιs os res)

−→ σ0 |= (os ← mbind ιs SUT ; return(conf ιs os res)))

For example, if we instantiate the conformance predicate conf by:

conf ιs os res = (length(ιs) = length(os) ∧ res = os)

we have a precise characterization of inclusion conformance introduced in
subsection 2.2.3: We constrain the tests to those test sequences where no
exception occurs in the symbolic execution of the model. Symbolic execution
fixes possible output-sequence (which must be as long as the input sequence
since no exception occurs) in possible symbolic runs with possible inputs,
which must be exactly observed in the run of the SUT in the resulting
abstract test-driver.
Using pre and post-condition predicates, it is straight-forward to characterize
deadlock conformance or IOCO mentioned earlier (recall that our framework
assumes synchronous communication between tester and SUT; so this holds
only for a IOCO-version without quiescence). Further, we can characterize
a set of initial states or express constraints on the set of input-sequences by
the coverage criteria CovCrit , which we will discuss in the sequel.

4.4 Coverage Criteria for Interleaving

In the following, we consider input sequences ιs which were built as interleav-
ing of one or more inputs for different processes; for the sake of simplicity,

61

we will assume that it is always possible to extract from an input event the
thread and task id it belongs to. It is possible to represent this interleaving,
for example, by the following definition:

1 fun interleave :: ’a list ⇒’a list ⇒’a list set
2 where interleave [] [] = {[]}
3 |interleave A [] = {A}
4 |interleave [] B = {B}
5 |interleave (a # A) (b # B) =
6 image (λx. a # x) (interleave A (b # B)) ∪
7 image (λx. b # x) (interleave (a # A) B)

and by requiring for the input sequence ιs to belong to the set of interleav-
ing of two processes P1 and P2: ιs ∈ interleave P1 P2. It is well known
that the combinatorial explosion of the interleaving space represents fun-
damental problem of concurrent program verification. Testing, understood
as the art of creating finite, well-chosen sub-spaces for large input-output
spaces, offers solutions based on adapted coverage criteria [SLZ07] of these
spaces, which refers to particular instances of CovCrit in the previous sec-
tion. A well-defined coverage criterion [ZHM97, FTW04] can reduce a large
set of interleaving to a smaller and manageable one. For example, consider
the executions of the two threads in MyKeOS: T = [alloc 3 1 2, release
3 1 1, status 3 1] and T’ = [alloc 2 5 3, release 3 1 1, status 2 5].
Since our simplistic MyKeOS has no shared memory, we simulate the effect
by allowing T’ to execute a release-action on the local memory of task 3,
thread 1 by using its identity. In general, we are interested in all possible
values of a shared program variable x at position l after the execution of
a process P . To this end we will define two sets of interleaving under two
different known criteria.

• Criterion1: standard interleaving (SIN) the interleaving space of
actions sequences gets a complete coverage iff all feasible interleaving
of the actions of P are covered.

• Criterion2: state variable interleaving (SVI) the interleaving space
of actions sequences gets a complete coverage iff all possible states of x
at l in P are covered.

Under SIN we derive 10 possible actions sequences, which is reduced under
SVI to 3 sequences (where one leads to a crash; recall our assumption that the
memory is initially 0). Unlike to SIN, SVI has provided a smaller interleaving
set that cover all possible states. If we consider var_tab[3,1] for x when
executing status 3 1, the possible results may be undefined, O or 1. While
SIN has provided a bigger set, that cover all possible 3 states of x with
redundant sequences representing the same value. In model-checking, this
reduction technique is also known as partial order reduction [Pel93, GW94].

62

It is a part of a beauty for our test and proof approach, that we can actually
formally prove that the test-sets resulting from the test-refinements:

SPEC v〈Init,SIN,conf〉 SUT and SPEC v〈Init,SV I,conf〉 SUT

are equivalent for a given SPEC. The core of such an equivalence proof is,
of course, a proof of commutativity of certain step executions, so properties
of the form:

o← SPEC ιi; o
′ ← SPEC ιj ;M o o′ = o′ ← SPEC ιj ; o← SPEC ιi;M o o′,

which are typically resulting from the fact that these executions depend on
disjoint parts of the state. In MyKeOS, for example, such a property can
be proven automatically for all ιi = release t th and ιj = release t′ th ′ with
t 6= t′∨th 6= th′; such reordering theorems justify a partial order on inputs to
reduce the test-space. We are implicitly applying the testability hypothesis
that SUT is input-output deterministic; if a input-output sequence is possible
in SPEC, the assumed input-output determinism gives us that repeating the
test by an equivalent one will produce the same result.

4.5 Sequence Test Scenarios for Concurrent Pro-
grams

HOL-TestGen is a test-generation system based on the Isabelle theorem
prover. The main goal of this system is to use the features of Isabelle
in order to generate a test set. Using the isar command test_spec from
HOL-TestGen framework a test scenario can be represented in form of a
test specification. A test specification is an hol! formula, i. e. a valid test
sequence, that describe the test set to be generated. Two possible schemes
for a test scenario can be expressed by a test specification: unit test scheme,
sequence test scheme. In this section we will focus on sequence test scenarios.
In sequence test scenarios, a set of input sequences are generated under a
given coverage criteria and symbolically executed (see section 4.6 for more
details on our symbolic execution process). Actually, a test specification is
a lemma which contains our refinement relation (see section 4.3) as a proof
statement. The representation of a refinement relation, for a scenario related
to MyKeOS system, using Isabelle/isar language can be:

1 test_spec test_status:
2 assumes account_defined: (tid,0) ∈dom σ0∧(tid,1) ∈dom σ0

3 and CovCrit : S ∈interleave (syscall tid 0 m m’)
4 (syscall tid 1 m’’ m’’’)
5 and SPEC :
6 σ 0 |=(s ←mbind S SPEC; return (x = s))
7 shows σ 0 |=(s ←mbind S PUT; return (x = s))

63

In the scenario test_status the assumption account_defined is used to
bound the set of threads to 2 members in each task and at least a task
exists in the system. The assumption CovCrit represent the set of possible
input sequences related to the concurrent execution between syscall tid
0 m m’ and syscall tid 1 m’’ m’’’. Moreover, SPEC represent the model of
the behaviour of the SUT. Finally, the conclusion σ 0 |=(s ←mbind S PUT
; return (s = x)) is used to link the model with the real system via the
free variable PUT. Actually, the free variable PUT will be linked to the actual
code of SUT during the execution of the test script (for more details linkage
between a model and a SUT see section 4.7).
In fact, the representation of test_status by a lemma offers a way to use the
symbolic computation engine of Isabelle, usually used for proofs, as a simu-
lation environment for the behaviour of the SUT. Basically, the simulation
is done via the application of symbolic execution rules, e. g. an instance for
Equation 4.1c, on the proof statement, which result with a set of sub-goals.
Each sub-goal represent an abstract test case, and each abstract test case is
a representation of a set of possible executions in the SUT.
The simulation, related to the behavior of MyKeOS specified in the scenario
test_status, using symbolic execution on Isabelle, is represented by the
following:

64

1

2 (...)
3 (**************************************
4 ***Resulting proof statement: ctxt1***
5 **************************************)
6 1. σ 0 |=(s ←mbind [alloc tid 1 m’’, release tid 0 m’,
7 release tid 1 m’’’, status tid 1]
8 SYS; unit_SE (x = s)) =⇒
9 σ 0 |=(s ←mbind S PUT; unit_SE (s = x))

1 (****************************
2 ***rules applied on: ctxt1***
3 ****************************)
4 apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E},
5 @{thm release.exec_mbindFStop_E},
6 @{thm alloc.exec_mbindFStop_E},
7 @{thm H1}] 1)

1 (**************************************
2 ***Resulting proof statement: ctxt2***
3 **************************************)
4 1.(tid, 1) ∈dom σ0 =⇒
5 σ 0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’) |=
6 (s ←mbind [release tid 0 m’, release tid 1 m’’’, status tid 1]
7 SYS ; unit_SE (x = alloc_ok # s)) =⇒
8 σ 0 |=(s ←mbind S PUT; unit_SE (s = x))

1 (****************************
2 ***rules applied on: ctxt2***
3 ****************************)
4 apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E},
5 @{thm release.exec_mbindFStop_E},
6 @{thm alloc.exec_mbindFStop_E},
7 @{thm H1}] 1)

1 (*************************************
2 ***Resulting proof statement: ctxt3***
3 **************************************)
4 1. (tid, 1) ∈dom σ0 =⇒
5 (tid, 0) ∈dom (σ0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’)) ∧
6 int m’ ≤
7 the ((σ0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’)) (tid, 0)) =⇒
8 σ 0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’, (tid, 0) 7→
9 the ((σ0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’)) (tid, 0)) -

10 int m’) |=
11 (s ←mbind [release tid 1 m’’’, status tid 1]
12 SYS ; unit_SE (x = alloc_ok # release_ok # s)) =⇒
13 σ 0 |=(s ←mbind S PUT; unit_SE (s = x))
14 (...)

65

A such proof context refinement process, is executed until the input sequence
of actions is empty, which provide directly for the case of a test specification
of a simple operational semantics, a test normal forms, represented by sub-
goals. Of course, the proof statement can be connected to constraint-solvers
with the HOL-TestGen command gen_test_data, which will instantiate
the free variables,e. g. σ 0, tid in the different subgoals of the proof state-
ment, by a real data that satisfies the derived constraints.

4.6 Symbolic Execution

Symbolic execution rules, are logical inference rules used to simulate the
behavior of a given system (or a program) by showing the effect of the
operational semantics of that system (or program) on the symbolic variables.
Symbolic variables are a typed syntactic names used to refer to a given object
(i. e. a passive entity in the operating system), that may have an infinite set
of representations (values). In general, two kind of variables are distinguished
in an operating system, global variables and local variables. For instance, in
our test specification test_status the variable σ 0 can be seen as a global
variable that refer to the state of the system (i. e. an object which can be
modified by all subjects (threads)).
In order to give a better explanation on the symbolic execution rules used
during the simulation of the behavior of MyKeOS we would introduce the
generic scheme of their hol! representation:

1 lemma exec_mbindFStop_E:
2 assumes A:(σ |=(s ←mbind (in_ev # S) efsm; return (P s)))
3 and B:E σ =⇒
4 ((upd σ) |=(s←mbind S efsm;return(P(out_ev σ# s)))) =⇒
5 Q
6 shows Q
7 by(insert A, rule B, simp_all del: mbind’_bind)

Code 1: A Generic Elimination Rule For Symbolic Execution

If we observe more closely the previous inference rule, we can figure out
that the rule is an elimination rule. An elimination rule is an inference
rule that eliminate a given constructor from the premises, i. e. in the rule
exec_mbindFStop_E we had eliminated in_ev from the input sequence (in_ev
S). Actually, the scheme of an elimination rule matches with the scheme
of our test specifications, i. e. the free variable Q in exec_mbindFStop_E will
match with σ 0 |=(s ←mbind S PUT; return (s = x)) in test_status; the
assumption A of exec_mbindFStop_E will match with the assumption SPEC of
test_status, and the resulting proof context after the application of this

66

elimination inference rule on the test specification test_status will be, the
instatiation of the assumption B of exec_mbindFStop_E by the variables of
SPEC. A such process is used for transforming the proof context, and it
is calles ematching. On Isabelle ematching can be expressed by the tactic
ematch_tac.
Our symbolic execution process, which is actually based on proof context
transformations by ematching, has an enormous performance gain effect on
the symbolic execution engine of Isabelle (see subsection 6.5.7 for the im-
pressive results of a such process of symbolic execution). The performance
gain provided by our process is comming from the fact that, the whole cal-
culation process is technically reduced to a formal syntactic transformation
of the proof context by elimination rules (applied by ematching), instead of
a calculation process based on standard generic substitution rules, rewriting
rules, introduction rules, etc., which involve more calculations in the different
Isabelle layers.

4.7 Test Drivers for Concurrent C Programs

The generation of the test-driver is a non-trivial exercise since it is essentially
two-staged: Firstly, we choose (from the different options the Isabelle code-
generator offers) to generate an SML test-driver, which is then secondly,
compiled to a C program that is linked to the actual program under test. A
test-driver for HOL-TestGen consists of four components:

• main.sml the global controller (a fixed element in the library),
• harness.sml a statistic evaluation library (a fixed element in the lib-

rary),
• X_script.sml the test-script that corresponds merely one-to-one to

the generated test-data (generated)
• X_adapter.sml a hand-written program; in our scenario, it replaces

the usual (black-box) program under test by SML code, that calls the
external C-functions via a foreign function interface.

On all three levels, the HOL-level, the SML-level, and the C-level, there are
different representations of basic data-types possible; the translation process
of data to and from the C-code under test has therefore to be carefully de-
signed (and the sheer space of options is sometimes a pain in the neck).
Integers, for example, are represented in two ways inside Isabelle/HOL;
there is the mathematical quotient construction and a "numerals" repres-
entation providing "bit-string-representation-behind-the-scene" enabling re-
latively efficient symbolic computation on integers. Both representations
can be compiled "natively" to data types in the SML level. By an ap-
propriate configuration, the code-generator can map "int" of HOL to three
different implementations: the SML standard library Int.int, the native-

67

C interfaced by Int32.int, and the IntInf.int from the multi-precision
library gmp underneath the polyml-compiler. We do a three-step compila-
tion of data-representations Model-to-Model, Model-to-SML, SML-to-C. A
basic preparatory step for the initializing the test-environment to enable
test-generation is:

1 test_spec test_status2:
2 assumes system_def : (c0,no) ∈dom σ0

3 and store_finite : σ0 = map_of T
4 and test_purpose : test_purpose [(c0,no),(c0,no’)] S
5 and sym_exec_spec :
6 σ 0 |=(s ←mbind’ S SYS; return (s = x))
7 shows σ 0 |=(s ←mbind’ S PUT; return (s = x))
8 apply(rule rev_mp[OF sym_exec_spec])
9 apply(rule rev_mp[OF system_def])

10 apply(rule rev_mp[OF test_purpose])
11 apply(rule_tac x=x in spec[OF allI])
12 apply(gen_test_cases 3 1 PUT)
13 apply(auto intro: P1’’ P2’’)
14 store_test_thm mykeos_simple
15 gen_test_data mykeos_simple
16 generate_test_script mykeos_simple

The tool store_test_thm is a tool from HOL-TestGen framework. This tool
provide the ability to users to store a given proof context of the test specifica-
tion and refer to this proof context by a label (i. e. mykeos_simple). The tool
gen_test_data from HOL-TestGen provide the ability to users to instantiate
the symbolic variables inside abstract test cases by concrete data. The latter
step is done by sending proof obligations, i. e. constraints on the variables
generated during the symbolic execution, to constraint solvers in order to
instantiate them with satisfiable witnesses. The tool generate_test_script
is provided by HOL-TestGen framework. Basically, the tool provide the abil-
ity to users to transform the proof context stored using store_test_thm to a
code equation; code equations are rewriting rules used as inputs for Isabelle
code generators. For instance, the following code equation is resulting from
the application of gen_test_script on the proof context labeled by the name
mykeos_simple:

68

1 mykeos_simple.test_script ≡
2 [([], lazy ((λa. Some -1) |=
3 (s ←mbind [alloc 3 5 (nat 2), status 3 5]
4 PUT; unit_SE (s = [alloc_ok, status_ok (nat 1)])))),
5 ([], lazy ((λa. if a = (2, 3) then Some 8465 else Some 8) |=
6 (s ←mbind [release 2 3 (nat 8466), status 2 3] PUT;
7 unit_SE (s = [])))),
8 ([], lazy ((λa. Some 8468) |=
9 (s ←mbind [release 2 3 (nat 1), status 2 3]

10 PUT; unit_SE (s = [release_ok, status_ok (nat 8467)])))),
11 ([], lazy ((λa. if a = (2, 3) then Some 8465 else Some 8) |=
12 (s ←mbind [release 2 3 (nat 8466), status 2 3] PUT;
13 unit_SE (s = [])))),
14 ([], lazy ((λa. Some -1) |=
15 (s ←mbind [alloc 2 3 (nat 1), alloc 2 3 (nat 1), status 2 3]
16 PUT;
17 unit_SE (s = [alloc_ok, alloc_ok, status_ok (nat 1)])))),
18 (...)]

4.7.1 The adapter

In the following, we describe the interface of the SML-program under test,
which is in our scenario an adapter to the C code under test. This is the
heart of the Model-to-SML translation. Actually, during the execution of the
test script, the free variable specified inside the test specification under name
PUT will be replaced by an adapter. In fact, the adapter is a function defined
on the HOL-level, and its semantic is based on constant definitions called
stubs. The stubs are replaced later-on by the semantic of the implementation
using code serialisation technique offered by the interface of Isabelle code
generator to link the Model-level with SML-level (see subsection 4.7.2 for
technical details). Then we use a foreign function interface provided by
MLton compiler to link SML-level to C-level(see subsection 4.7.3 for technical
details). The HOL-level stubs for testing MykeOS are declared as follows:

1 (*The definition of the stubs*)
2 consts status_stub :: task_id ⇒int ⇒(int, ’σ)MONSE
3 consts alloc_stub :: task_id ⇒int ⇒int ⇒(unit, ’σ)MONSE
4 consts release_stub:: task_id ⇒int ⇒int ⇒(unit, ’σ)MONSE

On the Model-to-Model level, we provide a global step function that dis-
tributes to individual interface functions via stubs (mapped via the code
generation to SML . . .). This translation also represents uniformly nat by
int’s.

69

1 fun stepAdapter :: (in_c ⇒(out_c, ’σ)MONSE)
2 where
3 stepAdapter(status tid thid) =
4 (x ←status_stub tid thid; return(status_ok (my_nat_conv x)))
5 | stepAdapter(alloc tid thid amount) =
6 (_ ←alloc_stub thid thid (int amount); return(alloc_ok))
7 | stepAdapter(release tid thid amount)=
8 (_ ←release_stub tid thid (int amount); return(release_ok))

The stepAdapter function links the HOL-world and establishes the logical
link to HOL stubs which were mapped by the code-generator to adapter
functions in SML, which call internally to C-code inside X_adapter.sml via
a Foreign Function Interface (FFI).

4.7.2 Code generation and Serialisation

In order to generate concrete code from our theories we will use the code
generator [Haf15] facilities of Isabelle/HOL. It allows to turn a certain class of
HOL specifications into corresponding executable code in a target language
(e. g. SML). In this section, we will show how we build a setup to generate
SML file containing our test script. As an example we will continue to run
MykeOS example via the test specification test_status2.
In the first place, we will generate 2 SML files. The first one containing
all datatypes used in our test specification. The second one containing an
adapter for the variable representing the system under test called PUT in
the test specification test_status2. Therefore, both files will be used as
libraries for the test script and help to increase its readability. Using Isabelle
"serialiser", we configure the code-generator to identify the PUT with the
generated SML code implicitly defined by the above stepAdapter definition.

1 (*Code Setup for Datatypes*)
2

3 (* Setup for input actions *)
4 code_printing
5 type_constructor in_c => (SML) Datatypes.in_c
6 |constant alloc => (SML) !(Datatypes.Alloc (_ , _ , _))
7 |constant release => (SML) !(Datatypes.Release (_ , _ , _))
8 |constant status => (SML) !(Datatypes.Status (_ , _))

70

1 (* Setup for the outputs *)
2 code_printing
3 type_constructor out_c => (SML) Datatypes.out’_c
4 |constant alloc_ok => (SML) Datatypes.Alloc’_ok
5 |constant release_ok => (SML) Datatypes.Release’_ok
6 |constant status_ok => (SML) !(Datatypes.Status’_ok (_))

Basically, the link between the stubs in HOL world and the SML functions
that calls to the C is done by asking Isabelle code generator to replace the
stubs by functions inside a given SML file. Technically this step is resumed
by:

1 (*Serialisation: replacing the HOL stubs by actual semantics
2 represented on SML-level*)
3 code_printing
4 constant status_stub (SML MyKeOSAdapter.status)
5

6 code_printing
7 constant alloc_stub (SML MyKeOSAdapter.alloc)
8

9 code_printing
10 constant release_stub (SML MyKeOSAdapter.release)

By the same technique we ask the code generator to replace the constant
PUT by the function stepAdapter. The latter function, can be generated
automatically, as we will see in the last step, and it contains the calls to the
stubs which are now SML functions:

1 (*Serialisation: Linking the free variable PUTwith
2 the concrete SML-code via stepAdapter*)
3 code_printing
4 constant PUT=> (SML) stepAdapter

And there we go and generate the mykeos_simple:

1 export_code stepAdapter mykeos_simple.test_script in SML
2 module_name TestScript file impl/c/mykeos_simple_test_script.sml

4.7.3 Building Test Executables

Inside the SML file containing the module adapter.sml, we will use again
serialisation technique via the compiler MLton. Actually, MLton provides a for-
eign function interface to C, this interface is used to call the actual semantic

71

of the program under test. MLton compiler provide a command to build the
test executable for our generated test script in SML language, containing
called function from the implementation in C language.

4.7.4 GDB and Concurrent Code Testing

Actually the generated build from MLton compiler will contain tests for
threads executed in a concurrent context. The problem with executing tests
on concurrent code is that: the execution order of the program actions pro-
posed by the system scheduler will not necessarily be the same as the one
proposed by the tester, and this because of the non-deterministic choices of
the system scheduler. In order to deal with this problem, we have to en-
force a certain order for the actions executed by the threads, i. e. a certain
scheduling, during test execution. In other words, at run-time, the execution
order proposed by the system scheduler must correspond to the execution
order provided by the tester. Our solution is, the execution of the test ex-
ecutable within a GDB2 session. The latter contain features, usually used for
debugging, that can be used to control the execution of the concurrent code
and make it conform to the generated executions proposed by the tester.
Technically, the gdb features allow the possibility to attach to breack-points
within the concurrent code a scripting code that is executed if a break point
is reached, and the complete control of thread switches. In order to generate
automatically the GDB script that controls an execution of a system under
test during a test experience, we had implemented a GDB generator on
top of Isabelle/ML. Basically, the generator takes as argument 4 mandatory
entries:

1. A function that setup the entry breakpoints switches,

2. A function that setup the exit breakpoints switches,

3. A function that setup the main breakpoint switch,

4. and a list of needed informations containing: thread IDs of the model
with a mapping to there creation order inside a gdb session, and inform-
ations on the lines numbers for the breakpoints within the concurrent
code.

Executed together, these functions implement an algorithm that setup thread
switches for the program under test, that is conform to the switches represen-
ted by the generated input sequences from a test scenario on the model-level.
Moreover note, the algorithm works correctly only if the single-core execution
options are activated during the gdb session. In order to execute correctly
the generated GDB scripts, the option taskset should be stated. It specifies

2https://www.gnu.org/software/gdb/

72

a single core execution for the gdb session. An abstraction of our algorithm
used to generate GDB scripts from a test script is introduced in algorithm 1.

4.8 Conlusions

In this chapter we have presented our major contribution during this thesis.
The chapter contains theoretical and technical foundations to test C con-
current program. On the theoretical side, we had presented our test gen-
eration framework which relies on a monadic test theory implemented in
Isabelle/hol!. Our framework is equipped with a specification language based
on monads that contains important definitions for testing and symbolic ex-
ecution activities. First, in order to show the expressive power of our spe-
cification language, an isomorphism between the automata world and mon-
ads world was presented. Second, in order to provide a generic framework
to express state exception behavior, two monad operators were introduced
bind_SE and unit_SE. Based on the latter operators, a new concept called
valid test sequence was defined. On the one hand, the notion of a valid test
sequence is used to express the behavior of a given system. On the other
hand, it is executable and can be treated by a family of symbolic executions
calculi. A set of generic symbolic execution rules, for the defined operat-
ors, were introduced and in order to show how these concepts are used to
model and/or to symbolically execute a given system, a running example on
a simple OS called MykeOS was presented. Third, we proposed a generic
scheme called test specification, expressed technically by a refinement rela-
tion, to link a specification with an implementation, then we had showed how
it can be instantiated with a family of test conformance relations. Finally, in
order to optimize the symbolic execution process for our test specifications,
especially for the case of sequence test scenarios, an approach based on the
notion of coverage criteria was proposed.
On the technical side, we highlighted the problem of testing concurent pro-
grams, and we proposed an approach to test concurrent C code using sched-
uler control via GDB scripts. Finally, we had showed how Isabelle/hol! can
easily supports and carry our tools, going from symbolic execution on hol!
down to test script on code level.

73

set entry breakpoints switches;
if input_seq 6= empty and
find_thread_ID (info_thread) (input_seq) = i then

switch to thread i
else

if input_seq = empty then
error empty input sequence

else
error thread informations are wrong

end
end
set exit breakpoints switches;
if input_seq 6= empty and
find_thread_ID (info_thread) (input_seq) = i and
next(input_seq) 6= empty then

switch to the successor of thread i
else

if next(input_seq) = empty then
switch to thread i

else
if input_seq = empty then

error empty input sequence
else

error thread informations are wrong
end

end
end
set main breakpoint switch;
if input_seq 6= empty and
find_thread_ID (info_thread) (head (input_seq)) = i then

switch to thread i
else

if input_seq = empty then
error empty input sequence

else
error thread informations are wrong

end
end

Algorithm 1: A pseudo code for the Switches Between Threads Forced
by The GDB Script

74

5
Testing VAMP Processor

Contents
5.1 Introduction . 76
5.2 The VAMP Model 77
5.3 Testing VAMP Processor Conformance 80

5.3.1 Generalities on Model-based Tests 81
5.3.2 Test Specification 82
5.3.3 Testing Load-Store Operations 83
5.3.4 Testing Arithmetic Operations 86
5.3.5 Testing Control-Flow Related Operations 87

5.4 Experiences and First Experimental Data 88
5.4.1 Test Generation 89
5.4.2 Test Execution . 89

5.5 Conlusions . 91
5.5.1 Related Work . 91
5.5.2 Conclusion and Future Work 91

75

5.1 Introduction

Certifications of critical security or safety system properties are becoming
increasingly important for a wide range of products. Certifying large systems
like operating systems up to Common Criteria EAL 4 is common practice
today, and higher certification levels are at the brink of becoming reality.
To reach EAL 7 one has to formally verify properties on the specification
as well as test the implementation thoroughly. This includes tests of the
used hardware platform of the architecture to be certified. In this chapter,
we address the latter problem: we present a case study that uses a formal
model of a microprocessor and generate test programs from it. These test
programs validate that a microprocessor implements the specified instruction
set correctly.
We built our case study on an existing model that was, together with an
operating system, developed in Isabelle/HOL. We use HOL-TestGen, a
model-based testing environment which is an extension of Isabelle/HOL.
We develop several conformance test scenarios, where processor models were
used to synthesize test programs that were run against real hardware in the
loop. Our test case generation approach directly benefits from the existing
models and formal proofs in Isabelle/HOL.
We present a case study for the model-based generation of test programs
(i.e, the basis for a certification kit) for a realistic model of a RISC processor
called VAMP. VAMP is inspired by IBM’s G5 architecture. In the Ver-
isoft project1, a formal model for both the processor and a small operating
system has been developed in Isabelle/HOL. We will adapt and reuse the
processor model to generate test cases that can be used to check if a given
hardware conforms to the model of the VAMP processor. The presented
test scenario is of particular interest for the higher levels of certification pro-
cesses as imposed by Common Criteria EAL 7. Even if the transition from C
programs to the processor models has been completely covered by deductive
verification methods as in CompCert [Ler09], certification bodies will require
test sets checking the conformance of the underlying processor model to real
hardware.
At present, specification-level verification and the development of test sets
are usually two distinct tasks. Moreover, test sets for certification kits are
usually developed manually. In contrast, our model-based test case genera-
tion approach uses the design model that was already used for the verification
task. In particular, we are using HOL-TestGen to generate test sequences
generated from the VAMP model. As HOL-TestGen is built on top of
Isabelle/HOL, i. e., test specification are expressed in terms of higher-order
logic (HOL), we can directly benefit from the already existing verification

1http://www.verisoft.de

76

models. In fact, the tight integration of a verification and a test environment
is a distinguishing feature of HOL-TestGen.

5.2 The VAMP Model

The Verified Architecture MicroProcessor (VAMP) [BJK+06] is a 32-bit
RISC CPU with a DLX-instruction set including floating point instructions,
delayed program counter, address translation, and support for maskable nes-
ted precise interrupts. The VAMP hardware contains five execution units:
the Fixed Point Unit, the Memory Unit, and three Floating Point Units.
Instructions have up to six 32-bit source operands and produce up to four
32-bit results. The memory interface [BJK+06] of the VAMP consists of two
Memory Management Units that access instruction and data caches, which
in turn access a physical memory via a bus protocol.
In the context of the Verisoft project, an Isabelle/HOL specification (pro-
grammer’s model) of the VAMP processor was introduced. The processor
consists of a set of transitions defined over the Instruction Set Architecture
(ISA) configurations. A configuration is composed of five elements:

1. Program counter (pcp): a 30 bit register containing the address of next
instruction to be executed, this register is used to fetch an instruction
without altering the execution of the current one. This pipelining
mechanism is called delayed pc.

2. Delayed program counter (dpc): a 30 bit register for delayed program
counter, containing the currently executed instruction. While the fetch
of the next instruction is performed in the pcp register, the dcp is kept
unchanged until the end of the execution of the current instruction.

3. General purpose registers (gprs): a register file consisting of 32 registers
of 32 bits each. These registers are used in different operations, and
can be addressed by their index (0–31). The first register is always set
to 0.

4. Special purpose registers (sprs): a register file consisting of 32 registers
of 32 bits each, used for particular tasks. The first register for instance
is the status register, containing the interrupts masks. Some registers
are used as flags registers or as condition registers. Each special pur-
pose register is addressed directly by its name.

5. Memory model (mm): a 232 bytes addressable memory. Different cach-
ing and virtual memory infrastructures are implemented in the VAMP
system.

The transition relation is defined by the execution of the program instruc-
tions defined in the initial configuration. The VAMP implements the full
DLX instruction set from [HP06]. This set includes load and store opera-
tions for double words, words, half words and bytes. It includes also different

77

shift operations, jump-and-link operations and various arithmetic and logical
operations.
To avoid the complex and inconvenient bit vector representation of data and
instructions, an assembly language was introduced abstracting the VAMP
ISA. In this case addresses are represented by natural numbers and registers
and memory contents by integers. Our test specifications and experiments
are based on this instruction set (assembler) model.
The Isabelle theory of the assembler model is an abstraction of the instruc-
tion set architecture. In addition to the representation of addresses as nat-
urals and values as integers, some other ISA features are abstracted. The
instructions are represented in an abstract datatype with readable names.
The address translation is not visible at this level, assembler computations
live in linear (virtual) memory space. Interrupts are not visible at this level
as well. The assembler configuration is an abstraction of the ISA configura-
tion, defined as a record type with the following fields:

• pcp: a natural number representing the program counter,
• dcp: a natural number representing the delayed program counter,
• gprs: a list of integers representing the general purpose register file,
• sprs: a list of integers representing the special purpose register file,
• mm: a memory model represented by a mapping from naturals to

integers.
The HOL definition of the configuration is given by the ASMcoret record type.
The register file type is defined as a list of integers representing the different
registers.

1 type_synonym regcont = int -- {* contents of register *}
2 type_synonym registers = regcont list -- {* register file *}
3 type_synonym memt = nat ⇒mem_cellt -- {*memory *}
4

5 record ASMcoret = dpc :: nat
6 pcp :: nat
7 gprs :: registers
8 sprs :: registers
9 mm :: memt

Since the assembler representation of addresses and values is less restrictive
than the bit vector representation, some conversion functions and restriction
predicates were defined to reduce the domain of addresses and values to only
meaningful values. This was the case also for the configurations, since the
number of registers is not mentioned in the definition of the registers type.
The well-fomedness of assembler configurations is given by the is_ASMcore
predicate. This predicate ensures that register files contain exactly 32 re-
gisters each. It also checks that all register and memory cells contain valid
values.

78

1 definition is_ASMcore :: ASMcoret ⇒bool where
2 is_ASMcore st ≡ asm_nat (dpc st) ∧
3 asm_nat (pcp st) ∧
4 length (gprs st) = 32 ∧
5 length (sprs st) = 32 ∧
6 (∀ ind < 32. asm_int (reg (gprs st) ind)) ∧
7 (∀ ind < 32. asm_int (sreg (sprs st) ind)) ∧
8 (∀ ad. asm_int (data_mem_read (mm st) ad))

The instruction set of the assembler is defined as an abstract datatype instr
in Isabelle. All operations mnemonics are used as datatype constructors,
associated to their corresponding operands. Different types of instructions
can be distinguished: data transfer commands, arithmetic and logical oper-
ations, test operations, shift operations, control operations and some basic
interrupts.

1 datatype instr =
2 -- {* data transfer (memory) *}
3 Ilb regname regname immed
4 |...
5 -- {* data transfer (constant) *}
6 | ...
7 -- {* data transfer (registers) *}
8 | Imovs2i regname regname
9 | ...

10 -- {* arithmetic / logical operations *}
11 | Iaddio regname regname immed
12 | Iaddi regname regname immed
13 | Iaddo regname regname regname
14 -- {* test operations *}
15 | Iclri regname
16 | ...
17 -- {* shift operations *}
18 | Islli regname regname shift_amount
19 | ...
20 -- {* control operations *}
21 | Ibeqz regname immed
22 | ...
23 -- {* interrupt *}
24 | Itrap immed
25 | ...

An inductive function is defined over the assembler instructions to provide
the semantics of each operation. This function returns for each configuration

79

and instruction, the configuration resulting from executing the instruction
in the initial configuration.

1 fun exec_instr :: [ASMcoret, instr] ⇒ASMcoret
2 where
3 -- {* Arithmetic Instructions *}
4 exec_instr st (Iaddo RD RS1 RS2) =
5 arith_exec st int_add (reg (gprs st) RS1)
6 (reg (gprs st) RS2) RD
7 | ...
8 -- {* Logical Instructions *}
9 | exec_instr st (Iand RD RS1 RS2) =

10 arith_exec st s_and (reg (gprs st) RS1)
11 (reg (gprs st) RS2) RD
12 | ...
13 -- {* Shift Instructions *}
14 | exec_instr st (Isll RD RS1 RS2) =
15 arith_exec st sllog (reg (gprs st) RS1)
16 (reg (gprs st) RS2) RD
17 | ...

The transition relation is defined as a function that takes a configuration
and returns its successor. The transitions are defined by the execution of
the current program instruction given in the delayed program counter.

1 definition Step :: ASMcoret ⇒ ASMcoret
2 where Step st ≡ exec_instr st (current_instr st)

These transition relations are used in our study as the basis of test specific-
ations. The assembler model is more abstract than the processor model,
consequently, different complex details are made transparent. Examples are
interrupts handling and virtual memory and caching, pipelining and instruc-
tion reordering. In a black-box testing scenario, an abstract description of
the system under test is used as a basis for test generation. This will be the
case in our study, where the processor model is used to extract abstract test
cases for the processor. The aim of this testing scenario is to check that the
processor behaves as described in the assembler model, independently of the
internal implementation details.

5.3 Testing VAMP Processor Conformance

As motivated earlier, we will apply essentially two testing scenarios: model-
based unit testing and sequence testing. In a unit testing scenario, the test
specification is described by pre- and post-conditions on the inputs and res-
ults produced by the system under test. This scenario assumes control over

80

the initial state and the access to the internal states of the SUT after the
test. In sequence testing scenario, only the control of the internal state ini-
tialization is necessary, and in some cases the reference to the final state.
In principle, the test result is inferred from a sequence system inputs and
observed outputs. For any given inputs and state, the system—defined as an
i/o stepping function—may either fail or produce outputs and a successor
state. The unit testing scenario can be seen as a special form of (one step)
sequence testing, where the output state is more or less completely accessible
for the test.
In our case study, both testing scenarios are useful. The unit testing scenario
will be used to test individually each operation or instruction with different
data. Sequence testing will be used to test any sequence of instructions up to
a given length. We will address subsets of related instructions separately, a
combination of different instruction types is possible but not explored here.
We studied four types of instructions: 1. memory related load and store
operations, 2. arithmetic operations, 3. logic operations and 4. control-flow
related operations.

5.3.1 Generalities on Model-based Tests

A general test specification for unit instruction testing would be the follow-
ing:

1 test_spec pre σ ι =⇒ SUT σ ι =k exec_instr σ ι

where _ =k _ is a specially defined executable equality that compares the
content of the registers and just the top k memory cells (instead of infinite
memory). _ =k _ is our standard conformance relation comparing the state
controlled according to the model and the state controlled by the SUT; here,
we make the testability assumption that we can trust our test environment
that reads the external state and converts it to its abstraction. Note that SUT
is a free variable that is replaced during the test execution with the system
under test.
Each test case is composed of an instruction, an initial configuration and
the resulting configuration after the execution of the instruction. From this
test specification, HOL-TestGen will produce tests for all possible instruc-
tions.Subsets of instructions are isolated by adding a pre-condition in the
test specification, specifying the type of the instruction.
For instruction sequence testing, based on the combinators from the state-
exception monad (see section 4.2) mbind, bind _ ←_; _ and the assertion
assert_SE a test specification can be given specifications of valid test se-
quences from initial state σ 0. In general, there are two kinds of sequence
test scenarios: those who involve just observations of the executions of the
local steps and those who involve a test over the final state. The former class

81

is irrelevant in our application domain since the local steps are just actions
not reporting a computation result. However, the latter scenario may just
involve a conformance on the entire state:

1 test_spec
2 pre ιs::instr list =⇒
3 (σ 0 |=(_ ←mbind ιs execVAMP; assert_SE (λσ. σ =k SUT σ0 ιs)))

or just a bit of it, e. g., where a computation is finally loaded into register 0
which is finally compared:

1 test_spec
2 pre ιs::instr list =⇒
3 (σ 0 |=(_ ←mbind (ιs@[load x 0]) execVAMP;
4 assert_SE (λσ. (gprs σ)!0 = (gprs (SUT σ0ιs))! 0)))

which requires that the last load action(s) are tested before, but makes less
assumptions over the execution environment (i. e., a trustworthy implement-
ation of _ =k _). In both schemes σ 0 is the initial state and ιs is the
sequence of instructions that will be generated and execVAMP is a lifting of
exec_instr into the state exception monad:

1 definition execVAMP
2 where execVAMP ≡ (λ i σ. Some ((), exec_instr σi))

The pre-conditions pre of our test specifications—also called test purposes—
are added to the test specifications to reduce the generated instruction se-
quences to any given subset.
The initial configuration can also be generated as an input of the test cases.
This may produce ill-formed configurations due to their abstract represent-
ation in the assembler model. We choose for our study to define and use an
empty initial configuration σ 0 that is proved to be well-formed.

5.3.2 Test Specification

Common analysis techniques such as stuck-at-faults [Hay84] are based on the
idea that a given circuit design—thus, an implementation—is modified by
mutators capturing a particular fabrication fault model, e. g.: one or n wires
connecting gates in the circuit are broken. This can be seen conceptually as
a white-box mutation technique and has, consequently, all advantages and
all draw-backs of an implementation-based testing method compared to all
draw-backs and all advantages to its specification-based counterparts. Stack-
at-faults are very effective for medium-size circuits and use the structure of
the given design to construct equivalence classes tests incorporating directly

82

a fault model. This type of testing technique, however, will not reveal design
flaws such as a write-read error under the influence of byte-alignments in the
memory.
While we have a VAMP gate-level model in our hands and could have opted
for testing technique on this layer, for this thesis, we opted to stay on the
design level of the VAMP machine. This does not mean that we can not
refine with little effort the equivalence classes underlying our tests further:
instead of assuming in our test hypothesis that “one write-read of a memory
cell successful, thus all write-reads in this cell successful,” one could force
HOL-TestGen to generate finer test classes, by exploring the byte-or the
bit-level representations of registers and memory cells.

5.3.3 Testing Load-Store Operations

To formalize a test purpose restricting our first test scenario to load and store
operations, the test purpose is_load_store is used. This predicate returns
for each instruction, if it is a load/store operation or not. It is defined just
as a constraint over the syntax of the VAMP assembly language:

1 abbreviation is_load_store_byte’ :: instr ⇒bool
2 where is_load_store_byte’ iw ≡
3 (∃ rd rs imm.
4 (is_register rd ∧is_register rs ∧is_immediate imm) ∧
5 iw ∈{Ilb rd rs imm, Ilbu rd rs imm, Isb rd rs imm})
6

7 definition is_load_store :: instr ⇒bool
8 where is_load_store iw ≡
9 is_load_store_word’ iw ∨

10 is_load_store_hword’ iw ∨
11 is_load_store_byte’ iw

(the analogous test cases for is_load_store_word’ and is_load_store_hword’
iw are ommited here for space reasons).
Introducing this predicate in the pre-condition of the test specification re-
duces the domain of the generated tests to load/store operations. The res-
ulting test specification formally stating the test goal for unit test scenario
is given by the following:

1 test_spec is_load_store ι=⇒SUT σ0 ι =k exec_instr σ0 ι
2 apply (gen_test_cases 0 1 SUT)
3 store_test_thm load_store_instr

83

The test case generation procedure defined in HOL-TestGen is used to
preform an exhaustive case splitting on the instructions datatype. Symbolic
operands are generated for each instruction to give a set of symbolic test
cases. The test generation produced 8 symbolic test cases, corresponding to
the different load and store operations. A uniformity hypothesis is stated on
each symbolic test case, which will allow us to select one concrete witness
for each symbolic test case. The final generation state contains 8 schematic
test cases, associated to 8 uniformity hypotheses. The conjunction of the
test cases and the uniformity hypotheses is called a test theorem.
An example of a generated test case and its associated uniformity hypothesis
is given in the following. The variables starting with ??X (e. g., ??X4,??X5,)
are schematic variables representing one possible witness value.

1 1. SUT σ0 (Ilb ??X7 ??X6 ??X5)
2 (...)
3 2. THYP ((∃ x xa xb. SUT σ0(Ilb xb xa x) (...)) −→
4 (∀ x xa xb. SUT σ0(Ilb xb xa x) (...)))

The second phase of test generation is the test data instantiation. This is
done using the gen_test_data command of HOL-TestGen. One possible
resulting test case is given by the following:

1 SUT σ0 (Ilb 1 0 1) σ_1

where σ _1 is the expected final state after executing the given operation.
With this kind of test cases, each operation is tested individually, in a unit
test style. This kind of test will reveal design faults i. e.if the result of the
operation is not correct. It also detects any undesired state modification,
like changing some flags or registers.
In a similar way, load and store instruction sequences are characterized us-
ing the same predicate is_load_store which is generalized to entire input
sequences to the combinator list_all from the HOL-library. Rather than
using a fairly difficult to execute characterization in form of an automaton
or an extended finite state-machine that introduce some form of symbolic
trace, we use monadic combinators of the state-exception monad directly to
define valid test sequences constrained by suitable test purposes.

1 test_spec
2 list_all is_load_store (ιs::instr list) =⇒
3 (σ 0 |=(s ←mbind ιs execVAMP; assert_SE (λσ. σ =k SUT σ0 ιs)))
4 apply (gen_test_cases SUT)
5 store_test_thm load_stre_instr_seq

84

Note that step two is just the call to the automatic test case generation
method (declaring the free variable SUT as the system under test of this test
case), and while the third command binds the results of this step to a data-
structure called test environment with the name load_store_instr_seq. The
experimental evaluation of this scenario is discussed in the next section.
One possible generated test case of length 3 is given by the following subgoal:

1 1.σ 0 |=(s ←mbind [Isw ??X597 ??X586 ??X575,
2 Ilbu ??X557 ??X546 ??X535,
3 Ilbu ??X517 ??X506 ??X595] execVAMP;
4 assert_SE (λσ. σ =k SUT σ0 [Isw ??X597 ??X586 ??X575,
5 Ilbu ??X557 ??X546 ??X535,
6 Ilbu ??X517 ??X506 ??X595]))
7 2. THYP ((∃ x1 x2 x3 x4 x5 x6 x7 x8 x9.
8 σ 0 |=(s ←mbind [Isw x1 x2 x3, Ilbu x4 x5 x6,
9 Ilbu x7 x8 x9] execVAMP; (...))) −→

10 (∀ x1 x2 x3 x4 x5 x6 x7 x8 x9.
11 σ 0 |=(s ←mbind [Isw x1 x2 x3, Ilbu x4 x5 x6,
12 Ilbu x7 x8 x9] execVAMP; (...))))

where the first subgoal gives the schematic test case, and the second subgoal
states the uniformity hypothesis for this case. The generation of test data
is done similarly using the gen_test_data command, which instantiate the
schematic variables with concrete values.

1 σ 0 |=(s ←mbind [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8] execVAMP;
2 assert_SE (λσ. σ =k SUT σ0 [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8]))

this corresponds to the following assembly code sequence:

ISW 0 1 8
LLBU 1 0 -3
LLBU 3 2 8

This test programs will eventually reveal errors related to read and write
sequences. Even if each operation is realized in a correct way, the sequencing
may contain errors, like errors due to byte alignment or information loss due
to pipelining.
In this testing scenario, we consider test post-conditions expressed on the
final state of the automaton. This post-condition is expressed using the
state-exception primitive assert_SE. This scenario is not very realistic in
hardware processors, because the final state, in particular the internal pro-
cessor registers, will not be directly observable. An alternative scenario

85

would be to consider the state-exception primitive return that introduces a
step by step checking of the output values. This output value might be, e. g.,
retrieved from the updated memory cell. Test specification for this kind of
scenarios is as follows:

1 test_spec
2 list_all is_load_store ιs =⇒
3 (σ 0 |=(s ←mbind ιexecVAMP’; return (SUT ιs)))

which require a modified VAMP where individual steps were wrapped into
trusted code that makes, e. g., internal register content explicit.

5.3.4 Testing Arithmetic Operations

Similarly, we set up a unit test scenario, where we constrain by the test
purpose is_arith the operations to be tested to arithmetic ones:

1 test_spec σ = exec_instr σ0 i =⇒ is_arith i =⇒ SUT σ0 i σ
2 apply (gen_test_cases 0 1 SUT)
3 store_test_thm arith_instr

At this stage, each arithmetic operation is covered by one generated test
case, an example is given in the following:

1 1. SUT σ0 (Iaddi ??X277 ??X266 ??X255) (...)

which contains a test case for he addition operation.
A note on the test granularity is at place here: as such, the granularity that
HOL-TestGen applies to test arithmetic operations is fairly coarse: just
one value satisfying all constraints over a variable of type integer is selected.
This is a consequence of our model (registers were represented as integers
and not as bitvectors of type: 32 word which would be (nowadays) a valuable
alternative) as well as the HOL-TestGen heuristics to select for each vari-
able just one candidate. The standard workaround would be to introduce
in the test purpose definitions more case distinctions, e. g., by x ∈ {MinInt}
∪ {-50 .. -100} ∪{0} ∪ {50 .. 100} which result in finer constraints for
each of which a solution in the test selection must be found.
The sequence scenario is analogously:

1 test_spec
2 list_all is_arith (ι::instr list) =⇒
3 (σ 0 |=(s ←mbind ιs execVAMP; assert_SE (λσ. σ=k SUT σ0 ι)))
4 apply (gen_test_cases SUT)
5 store_test_thm arith_instr_seq

86

A possible generated sequence is given in the following, resulting from the
gen_test_data command.

1 σ 0 |=(s ←mbind [Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4] execVAMP;
2 assert_SE (λσ. σ =k SUT σ0 [Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4]))

which corresponds to the following assembly code sequence:

ISUB 2 1 0
IADD 1 5 2
IADD 1 0 4

This sequence corresponds to a subtraction followed by two addition opera-
tions.

5.3.5 Testing Control-Flow Related Operations

Also with branching operations we are following the same theme:

1 test_spec is_branch i =⇒SUT σ0 i =k exec_instr σ0 i
2 apply (gen_test_cases 0 1 SUT)
3 store_test_thm branch_instr

This generates unit test cases for branching operations starting from the
initial sate σ 0. One example of the generated schematic test cases is given
by:

1 1. SUT σ0 (Ijalr ??X27X7) (...)

The problem with this scenario is that the initial state is fixed, while the
branching operations behavior depends essentially on the flag values. A
more interesting scenario would be to consider different initial states, where
the flags values are changed for each test case.
In the test sequence generation, the test specification is given as follows:

1 test_spec
2 list_all is_branch (ιs::instr list) =⇒
3 (σ 0 |=(s ←mbind ιs execVAMP; assert_SE (λσ. σ=k SUT σ0 ιs)))
4 apply (gen_test_cases SUT)
5 store_test_thm branch_instr_seq

The test sequence and test data generation returns, e. g., this concrete test
sequence:

1 σ 0 |=(s ←mbind [Ij 1, Ijalr 0] execVAMP;
2 assert_SE (λσ. σ =k SUT σ0 [Ij 1, Ijalr 0]))

87

which corresponds to the following assembly code sequence:

IJ 1
IJALR 0

The test data generation in all the considered scenarios is performed by
constraint solving and random instantiation. This leads to test sequences
with coarsely grained memory access. As such, an underlying fault-model is
somewhat arcane (i. e., interferences of operations in distant memory areas).
If one is interested in such faults, a more dense test method should be chosen.
Rather, one would adding additional constraints to reduce the uniformity
domain again. One could simply bound the range of addresses to be used in
test sequences, or define a used-predicate over input sequences that computes
the set of addresses that store-operations write to, and constrain the load-
operations to this set, or the like. This kind of constraints can also be used to
improve the coverage of our selected data, by dividing the uniformity domain
into different interesting sub-domains.

5.4 Experiences and First Experimental Data

Methodologically, we deliberately refrained in this paper to modify the model—
we took it “as is,” and added derived rules to make it executable in test
scenarios where we assume a reference implementation running against the
SUT. For example, the model describes padding functions for bytes, words,
and long-words treating the most significant bit differently in certain load
and store operations; in the semantic machine model as it was developed
in the Verisoft Project, there are comparisons on these padding functions
themselves—this is possible in HOL, but in no functional executable lan-
guage, had therefore to be replaced by equivalent formulations exploiting
the fact there are only three variants of padding functions, thus a finite
number, were actually used in the VAMP machine. Another issue is the
linear memory in the machine (a total, infinite function from natural num-
bers to memory cells, i. e., long words); comparisons on memory, as arising
in tests where the real state has to be compared against the specified state,
had to be weakened to finitized conformance relations.
While as a whole, our approach is done in a pretty generic model-based test-
ing framework, a few adaptions had to be made due to some specialties of this
model. For example, since the assembly language has 56 instructions, case-
splitting over the language explodes fast over the length of test sequences.
While sequence tests are methodologically and pragmatically more desirable
(less control over the state is assumed), they are therefore more vulnerable

88

to state-space explosion: sequences of length 3 generate at some point of the
process 56+562 +563 = 178808 cases. In this situation, a few heuristic adap-
tions (represented on the tactic level) and more significantly, constraints on
the level of the test purposes had to be imposed with respect to state-space
explosion, test purposes like list_all is_logic ι helps to reduce the test
sequences to 7 + 72 + 73, i. e., a perfectly manageable size (see discussion in
the next section).

5.4.1 Test Generation

As mentioned earlier, we opted for a combination of unit and sequence test
scenarios. Unit tests have the drawback of imposing stronger assumptions
on testability: it is assumed that the test driver has actually access to re-
gisters and memory (which essentially boils down to the fact that we trust
code in the test driver that consists of store-operations of registers into the
memory). Sequence tests rely on the observed behavior of tests and make
weaker assumptions on testability, for the price of being more vulnerable to
state-space explosion.
The sequence scenarios on load-and store operations in subsection 5.3.3 uses
39 seconds in the test partitioning phase and 42 seconds in the test data
selection phase (measurements were made on a Powerbook with a 2.8 Ghz
Intel Core 2 Duo). 1170 subgoals were generated, where one third are explicit
test hypothesis and two third are actual test cases. The other scenarios
in subsection 5.3.5, subsection 5.3.4 and the more basic subsection 5.3.1
use considerably less time (between two and twenty seconds for the entire
process).

5.4.2 Test Execution

Nevertheless, compile time for the model (as part of the test drivers) was
less than a second; compilation of the entire test driver in SML depends, of
course, drastically on the size of finally generated tests. Since we restrained
via test purposes the test cases in each individual scenario to about 1000,
the compile time for a test remained below 3 seconds. Scaling up our test
plan is essentially playing with a number of control parameters; however this
is usually done only at the end of the test plan development for reasons of
convenience.
Our study focuses for the moment on test generations; we did not do any ex-
periments against hardware so far. However, there is a hardware-simulator in
the sources of the Verisoft-project; in the future, we plan to generate mutants
of this simulator and get thus experimental data on the bug-detection cap-
abilities on the generated test sets.
To give an idea on how the test cases will be executed, we did some exper-

89

iments using the generated executable model. Starting from the abstract
model, an executable translation of it in SML is performed using the Isa-
belle’s code-generation facilities. This generated code contains all the type
and constant definitions that are needed to execute the different assembler
operations on an executable state. A sketch of the generated SML code for
the VAMP processor is given in the following:

structure VAMP : sig
datatype num = One | Bit0 of num | Bit1 of num
datatype ’a set = Set of ’a list | Coset of ’a list
datatype instr =

5 Ilb of IntInf.int * IntInf.int * IntInf.int |
...
Ijr of IntInf.int | Itrap of IntInf.int | Irfe

val int_add : IntInf.int -> IntInf.int -> IntInf.int
val int_sub : IntInf.int -> IntInf.int -> IntInf.int

10 val cell2data : IntInf.int -> IntInf.int
val exec_instr :

unit aSMcore_t_ext -> instr -> unit aSMcore_t_ext
val sigma_0 : unit aSMcore_t_ext
val execInstrs :

15 unit aSMcore_t_ext -> instr list ->
unit aSMcore_t_ext

...

where the datatype definition instr is generated from the instruction type
definition introduced in section 5.2. the functions definitions are generated
from their corresponding constants and functions defined in the model.
Our fist experiment was the application of the generated test cases on this
executable model. Using the HOL-TestGen test script generation, two test
scripts were generated for load/store and arithmetic operations sequence. For
both cases, 585 test cases were generated and then transformed to executable
testers. Running all these tests did, obviously, not reveal any error, since
the same model was used for test generation and execution.
To evaluate the quality our generated test cases, we introduced some changes
to the executable model, producing a mutant model. Three changes were
introduced in the int_add, int_sub and cell2data operations of the generated
SML code. In this case, a majority of tests detected the errors. For testing
the arithmetic operations, we obtained:

Number of successful test cases: 303 of 585 (ca. 51%)
Number of warning: 0 of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 282 of 585 (ca. 49%)
Number of fatal errors: 0 of 585 (ca. 0%)

90

For testing the load/store operations, we obtained:

Number of successful test cases: 54 of 585 (ca. 9%)
Number of warning: 0 of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 531 of 585 (ca. 91%)
Number of fatal errors: 0 of 585 (ca. 0%)

5.5 Conlusions

5.5.1 Related Work

Formal verification is widely used in the hardware industry since at least ten
years (e. g., [Fox03, SV03, BFY+97, Rus99, Har03]). Nevertheless, formal
models of complete processors as well as verification approaches that provide
an end-to-end verification from the application layer to the hardware design
layer are rare. Besides VAMP [Dor10], notably, exceptions are [Fox03]
and [AK95]. The closest related work with respect to the processor model
is [Fox03] to which our approach should be directly applicable.
Similarly, test program generation approaches for microprocessor instruction
sets have been known for a long time (e. g., [FT01, KKV11, MD08, SMZ05]).
Among them manual approaches based on informal descriptions of the in-
struction set such as [FT01] or random testing approaches such as [SMZ05].
Only a few works suggest to use model-based or specification-based test pro-
gram generation algorithms, e. g., [KKV11] and [MD08]. These works have
in common that they are based on dedicated test models that are independ-
ently developed from the verification models. [MD08] is the most closely
related work; the authors are using the explicit state model checker SMV to
generate test programs from a dedicated test model for SMV that concen-
trates on pipelining faults. In contrast, our approach seamlessly integrates
the test program generation into an existing verification tool chain, re-using
existing verification models.

5.5.2 Conclusion and Future Work

We presented an approach for testing the conformance of a processor with
respect to an abstract model that captures the instruction set (i. e., the
assembly-level) of the processor. This abstraction level is particular import-
ant as, first, it is the level of detail that is usually available for commercial
off-the-shelf (COTS) processors and, second, it is the target level of high-level
compilers.
Thus, our approach can, on the one hand, support the certification of the
COTS processors for which the manufacturer is neither willing to certify the

91

processor itself or to disclose the necessary internal details. Moreover, our
approach helps to bridge the gap between the software layer (e. g., in avionics
requiring certification according to DO-178 [HB07]) and the hardware layer
(e. g., in avionics requiring certification according to DO-254 [HB07]).
As (embedded) systems combining hardware and software components for
providing core functionality in safety critical systems (e. g., “fly-by-wire”)
are used more and more often, we see an increasing need for validation
techniques that seamlessly bridge the gap between hardware and software.
Consequently, we see this area as the utterly important one for future work:
providing a test case generation methodology that can be applied end-to-
end in the development process and allows for validating each development
step. These test cases, called certification kits, are required even if compilers
and processors are formally verified: The system builders require them for
proving, as part of their certification process, that their are applying the
tools correctly (i. e., according to their specification).

92

6
Testing PikeOS API

Contents
6.1 Introduction . 94
6.2 PikeOS IPC Protocol 94
6.3 PikeOS Model . 95

6.3.1 State . 95
6.3.2 Actions . 96
6.3.3 Traces, executions and input sequences 97
6.3.4 Aborted Executions 98
6.3.5 IPC Execution Function 100
6.3.6 System Calls . 101

6.4 A Generic Shared Memory Model 101
6.5 Testing PikeOS IPC 110

6.5.1 Coverage Criteria for IPC 110
6.5.2 Test Case Generation Process 110
6.5.3 Symbolic Execution Rules 112
6.5.4 Abstract Test Cases 119
6.5.5 Test Data For Sequence-based Test Scenarios . . . 121
6.5.6 Test Drivers . 123
6.5.7 Experimental Results 125

6.6 Conclusion . 129

93

6.6.1 Related Work. 129
6.6.2 Conclusion and Future Work. 130

6.1 Introduction

In the following, we will outline the PikeOS model (the full-blown model de-
veloped as part of the EUROMILS project is about 20 kLOC of Isabelle/HOL
code), and demonstrate how this model is embedded into our monadic testing
theory.
As a foundation for our symbolic computing techniques, we refine the theory
of monads to embed interleaving executions with abort, synchronization, and
shared memory to a general but still optimized behavioral test framework.
This framework is instantiated by a model of PikeOS inter-process commu-
nication system-calls. Inheriting a micro-architecture going back to the L4
kernel, the system calls of the IPC-API are internally structured by atomic
actions; according to a security model, these actions can fail and must pro-
duce error-codes. Thus, our tests reveal errors in the enforcement of the
security model.
The chapter proceeds as follow: In section 6.2 an informal description of
PikeOS IPC is presented. The section 6.3 contains the formalisation of
PikeOS IPC in Isabelle/hol!. In order to catch the behavior of the latter
a new monad combinator is introduced in subsection 6.3.4. Moreover, a gen-
eric memory model is presented in section 6.4, it is used to specify some
of PikeOS IPC atomic actions, i. e. the BUF and MAP atomic actions. In
order to test PikeOS IPC, our testing approach is extended by new notions,
in particular these are:

• a new coverage criteria is defined in subsection 6.5.1,

• a new symbolic execution rules are derived in subsection 6.5.3,

• a new methodology for building test drivers is presented in subsec-
tion 6.5.6.

Finally, our experimental results are presented in subsection 6.5.7.

6.2 PikeOS IPC Protocol

The IPC mechanism [SYS13a, SYS13b] is the primary means of thread com-
munication in PikeOS. Historically, its efficient implementation in L4 played
a major role in the micro-kernel renaissance after the early 1990s. Micro-
kernels had received a bad reputation, as systems built on top were perform-
ing poorly, culminating in the billion-dollar failure of the IBMWorkplace OS.

94

A combination of shared memory techniques—the MMU is configured such
that parts of virtual memory space are actually represented by identical parts
of the physical memory—and a radical redesign of the IPC primitives in L4
resulted in an order-of-magnitude decrease in IPC cost. Also in PikeOS, IPC
message transfer can operate between threads which may belong to different
tasks. However, the kernel controls the scope of IPC by determining, in each
instance, whether the two threads are permitted to communicate with each
other. IPC transfer is based on shared memory, which requires an agreement
between the sender and receiver of an IPC message. If either the sending or
the receiving thread is not ready for message transfer, then the other partner
must wait. Both threads can specify a timeout for the maximum time they
are prepared to wait and have appropriate access-control rights. Our IPC
model includes eight atomic actions, corresponding more-or-less to code sec-
tions in the API system calls p4_ipc_buf_send() and p4_ipc_buf_recv()
protected by a global system lock. If errors in these actions occur—for ex-
ample for lacking access-rights—the system call is aborted, which means that
all atomic actions belonging to the running system call as well as the call
of the communication partner were skipped and execution after the system
calls on both sides is continuing as normal. It is the responsibility of the
application to act appropriately on error-codes reported as a result of a call.
In our sequence test scenarios, and using our symbolic execution process
running on the top of HOL-TestGen, we show how we generate tests from
our formal model of the IPC mechanism, we build a test driver and show
how we can run the generated tests against the PikeOS IPC implementation
defined in C-level.

6.3 PikeOS Model

We model the protocol as composition of several operational semantics; this
composition is represented by monad-transformers adding, for example, to
the basic transition semantics the semantics for abort behavior.

6.3.1 State

In our model, the system state is an abstraction of the VMIT (which is im-
mutable) and mutable task specific resources. It is presented by the (poly-
morphic) record type:

95

1 record
2 (’memory,’thread_id,’thread,’sp_th_th,’sp_th_res,’errors)kstate=
3 resource :: ’memory
4 current_thread :: ’thread_id
5 thread_list :: ’thread list
6 communication_rights :: ’sp_th_th
7 access_rights :: ’sp_th_res
8 error_codes :: ’errors
9 errors_tab :: ’thread_id ⇀ ’errors

Note that the syntax is very close to functional programming languages such
as SML or OCaml or F#. The parameterization is motivated by the need
of having different abstraction layers throughout the entire theory; thus,
for example, the resource field will be instantiated at different places by
abstract shared memory, physical memory, physical memory and devices,
etc.—from the viewpoint of an operating system, devices are just another
implementation of memory. In the entire theory, these different instanti-
ations of kstate were linked by abstraction relations establishing formal re-
finements. Similarly, the field current_thread will be instantiated by the
model of the ID of the thread in the execution context and more refined
versions thereof. thread_list represents information on threads and there
executions. The communication _rights field represent the communication
policy defined between the active entities (i. e., threads and tasks). The field
access_rights represent the access policy defined between active entities and
passive entities (i. e., system resources).
For the purpose of test-case generation, we favor instances of kstate which
are as abstract as possible and for which we derived suitable rules for fast
symbolic execution.

6.3.2 Actions

As mentioned earlier, the execution of the system call can be interrupted or
aborted at the border-line of code-segments protected by a lock. To avoid
the complex representation of interruption points, we model the effect of
these lock-protected code-segments as atomic actions. Thus, we will split any
system call into a sequence of atomic actions (the problem of addressing these
code-segments and influencing their execution order in a test is addressed in
the next section). Atomic actions are specified by datatype as follows:

1 datatype (’ipc_stage,’ipc_dir)actionipc = IPC ’ipc_stage ’ipc_dir
2 datatype p4_stageipc = PREP | WAIT | BUF | MAP | DONE

96

1 datatype (’thread_id ,’addresses) p4_directipc =
2 SEND ’thread_id ’thread_id ’addresses
3 | RECV ’thread_id ’thread_id ’addresses
4

5 type_synonym ACTIONipc =
6 (p4_stageipc,(nat×nat×nat,nat list)p4_directipc)actionipc

Where ACTIONipc is type abbreviation for IPC actions instantiated by p4_directipc.
The type ACTIONipc models exactly the input events of our monadic testing
framework. Thread IDs are triples of natural numbers that specify the re-
source partition the thread belongs to as well as the task and the individual
id. The stepping function as a whole is too complex to be presented here;
we limit ourselves to presenting a portion of an auxiliary function of it that
models just the PREP_SEND stage of the IPC protocol; it must check if the task
and thread id of the communication partner is allowed in the VMIT, if the
memory is shared to this partner, if the sending thread has in fact writing
permission to the shared memory, etc. The VMIT is part of the resource, so
the memory configuration, and auxiliary functions like is_part_mem_th allow
for extracting the relevant information from it. The semantic of the different
stages is described using a total functions:

1 definition PREP_SEND ::ACTIONipc stateid⇒ ACTIONipc ⇒ACTIONipc stateid
2 where PREP_SEND σ act =
3 (case act of (IPC PREP (SEND caller partner msg)) ⇒
4 ...
5 if is_part_mem_th (get_thread_by_id’’ partner σ) (resource σ)
6 then
7 if IPC_params_c1 (get_thread_by_id’’ partner σ)
8 then ...)

Where PREP_SEND, WAIT_SEND, BUF_SEND, and DO NE_SEND define an operational
semantic for the atomic actions of the PikeOS IPC protocol.

6.3.3 Traces, executions and input sequences

During our experiments, we will generate input sequences rather than traces.
An input sequence is a list of a datatype capturing atomic action input
syntactically. An execution is the application of a transition function over
a given input sequence. Using mbind, the execution over a given input
sequence is can be immediately constructed.

1 definition execution = (λis ioprog σ. mbind is ioprog σ)

97

6.3.4 Aborted Executions

Our model support the notion of abort. An abort is an action done by the
system to stop the execution of a given system call. A system call can be
aborted for different reasons:

• timeouts: a system call can not finish its execution because a timeout
happened. For instance, a caller tried to access to a given resource and
run out of the specified waiting time without success, i. e. the resource
was not available at that moment. Or the caller run out of the specified
waiting time when he was about to wait for a given input from another
call.

• other error codes: a system call can not finish its execution because of
a returned error code during its execution, i. e. on of the call condi-
tions was not satisfied, e. g. wrong communication partner. Thus, the
system stops the execution of the call.

In all cases, when an abort happen to a given PikeOS call, the remaining
atomic actions of the call are canceled (not executed). For the case of the
IPC protocol both calls, the one coming from the caller and the one coming
from his communication partner, are canceled. To express the behavior of
the abort in our model we will add to our specification language a new monad
combinator. The behavior expressed by this combinator is abstracted by the
pseudo code in algorithm 2.
In the case of an aborted system call, the semantic of our combinator express
the same behavior as stutter steps in automata models, i. e. we stay in the
same state, only the error table will change. The error table is modeled by
the field errors_tab of the record (...) kstate representing the system state,
the field is instantiated by a partial function with type error_tab:: thid ⇀
error, and it is used to save (i. e. marks by a flag) the threads in error state,
i. e. threads who cause errors during the execution of their system call. Every
thread inside the error table is considered as a thread in an error state, when
a given system call executed by a given thread is aborted, i. e. the executed
action provide an output error code, we update the thread table by adding
the thread and its error. Before executing any atomic action (stage) we will
check the error table, if a given thread executing an action different from
DONE is in the domain of the function that specify the error table, then we
purge his executed action (we do nothing to the state of the system) else we
will execute the action. During every DONE action execution, if the thread
is in the error table then, we remove it from the domain of the function that
specify the error table else, we execute the DONE action.
The hol! representation of the new monad operator is abortlift, the latter
express the explained behavior and will be wrapped around our transition
function for PikeOS IPC protocol. The wrapper transforms the behavior of

98

if executing DONE stage then
if an error happened then

Update error table by removing the error flag of the current
thread and don’t execute the DONE action.

else
Execute the DONE action.

end
else

if Executing a different IPC stage from DONE then
if an error happened then

Update the error table by putting an error flag on both
threads in the IPC communication, the caller and his
partner, and purge the executed action.

else
Execute the action.

end
end

end
Algorithm 2: A pseudo code for the Abort operator

the basic transition function related to IPC protocol presented in subsec-
tion 6.3.5, to a the behavior abstracted by algorithm 2.

99

1 fun abortlift ::
2 (ACTIONipc ⇒(errors, (ACTIONipc,’a) stateid_scheme)MonSE) ⇒
3 (ACTIONipc ⇒(errors, (ACTIONipc,’a) stateid_scheme)MonSE)
4 where abortlift ioprog a σ=
5 (case a of
6 (IPC DONE (SEND caller partner msg)) ⇒
7 if caller ∈dom (act_info (th_flag σ))
8 then unitSE (fst (the((act_info (th_flag σ)) caller)))
9 (*shoud be: my error*)

10 (σ (|th_flag := (th_flag σ)
11 (|act_info := ((act_info (th_flag σ))
12 (caller := None))|) |))
13 else unitSE (NO_ERRORS) (σ) (*execute done*)
14 (...)
15 | (IPC _ (SEND caller partner msg)) ⇒
16 if caller ∈dom (act_info (th_flag σ))
17 then unitSE(get_caller_error caller σ(*should be: my error*)) σ
18 (* purge *)
19 else (case ioprog a σof
20 None ⇒None (*never happens in our exec fun*)
21 | Some(NO_ERRORS, σ’) ⇒unitSE(NO_ERRORS) (σ’)
22 | Some(out’, σ’) ⇒unitSE(out’)
23 (set_caller_partner_error caller partner σσ’ out’ a))
24 (*both caller and partner were ’informed’ to be in error-state.*)
25 (...))

In subsection 6.5.3 we derive generic symbolic execution rules related to a
given monad ioprog that specify an input output program, with the abort
operator wrapped around,i. e. abortlift(ioprog). We refine these rules for
the specific case when the operational semantics,i. e. represented by the free
variable ioprog, is related to PikeOS IPC.

6.3.5 IPC Execution Function

To combine the different semantics of IPC atomic actions we can use:

• The Isabelle specification construct fun: Express the semantic with
explicit case matching on actions type in a single function.

The transition function is a total function of the form:

1 fun exec_action ::ACTIONipc stateid⇒ ACTIONipc ⇒ACTIONipc stateid
2 where
3 PREP_SEND_run:
4 exec_action σ (IPC PREP (SEND caller partner msg)) =
5 PREP_SEND σ (IPC PREP (SEND caller partner msg))|
6 (...)

100

The function exec_action is adapted to the monads using the following defin-
ition:

1 definition exec_action_Mon
2 where exec_action_Mon =
3 (λact σ. Some (error_codes(exec_action σact),
4 exec_action σ act))

The latter function represent the basic operational semantic for PikeOS IPC
and it will be combined with the semantic of the abort operator presented in
subsection 6.3.4. For instance we wrap around the function exec_action_Mon,
the operator abortlift in order to get, abortlift(exec_action_Mon act σ).

6.3.6 System Calls

As mentioned earlier, PikeOS system calls are seen as sequence of atomic
actions that respect a given ordering. Actually, each system call can perform
a set of operations. On system-level, the execution of some operations can
be ignored by specifying the corresponding parameters in the call by null.
PikeOS IPC API provides seven different calls, the most general one is the
call P4_ ipc(). Using P4_ ipc(), five operations can be performed:

1. Send a copied message,
2. Receive a copied message,
3. Receive an event (not modeled),
4. Send a mapped message, and
5. Receive a mapped message.

The corresponding Isabelle model for the call is:

1 datatype (’thread_id, ’msg) P4_IPC_call =
2 P4_IPC_call ’thread_id ’thread_id ’msg
3 | P4_IPC_BUF_call ’thread_id ’thread_id ’msg
4 | P4_IPC_MAP_call ’thread_id ’thread_id ’msg
5 (...)

6.4 A Generic Shared Memory Model

Shared memory is the key for the L4-like IPC implementations: while the
MMU is usually configured to provide a separation of memory spaces for dif-
ferent tasks (a separation that does not exist on the level of physical memory
with its physical memory pages, page tables, . . .), there is an important ex-
ception: physical pages may be attributed to two different tasks allowing to
transfer memory content directly from one task to another.

101

In order to model a such memory implementation, we will use an abstract
memory model with a sharing relation between addresses. The sharing rela-
tion is used to model the IPC map operation, which establishes that memory
spaces of different tasks were actually shared, such that writes in one memory
space were directly accessed in the other. Under the sharing relation, our
memory operations respect two properties:

1. Read memory on shared addresses returns the same value.

2. All shared addresses has the same value after writing.

In formal methods, the latter two properties are called invariants. An invari-
ant is a property preserved by a class of mathematical object when a certain
updates (changes) are performed on that class. The notion of invariants will
be used in our model of shared memory. In our memory model, the two
listed invariants will be preserved on a tuple type consisting of a pair of two
elements: a partial function and an equivalence relation. While the partial
function will specify the memory, i. e. the function represent a mapping from
its domain consisting of a set of addresses to its range consisting of their cor-
responding data, the equivalence relation determines the different equivalent
classes for addresses. Actually, these equivalent classes are resulting from
the different map operations performed by processes of a system. In order
to implement this model on top of Isabelle/hol! we will use the specification
construct typedef, and this for two reasons:

1. It offers a way to define an abstract type that can be equipped with
invariants.

2. A defined operation on that abstract type, can be easily used for code
generation and this, only by providing a soundness proof which express
that the operation preserve the invariants on the defined type.

The hol! specification for our memory abstract type is done by:

1 typedef (’α, ’β) memory =
2 {(σ::’α ⇀’β, R). equivp R ∧(∀ x y. R x y −→σx = σy)}
3 proof
4 show (Map.empty, (op =)) ∈?memory
5 by (auto simp: identity_equivp)
6 qed

This type definition defines an isomorphism between the set on the right hand
side that contains pairs of the type (’α⇀ ’β)× (’α⇒ ’α⇒ bool) and the
set defined by the new type (’α, ’β)memory ; the first element of a pair is a

102

partial function representing a mapping from addresses to data, the second
element is an equivalence relation. The type (’α, ’β)memory is introduced
by two fresh constant symbols, the function Abs_memory for abstracting the
pairs, and Rep_memory the concretization function that refer to the pairs.
The application of a given operation op on the pairs is isomorphically the
same as the application of Abs_op on the type (’α, ’β)memory with the
only difference: the use of the type (’α, ’β)memory for the definition of the
different operations assure that the latter talk about representatives which
preserve the invariant. Because the set of tuples of type (’a ⇀ ’b) × (’a
⇒ ’a ⇒ bool) is infinite and may contain tuples that does not preserve the
desired invariant, thus the direct use of op is not consistent. That is why
we will always define a function on representatives in the following, and this
in order to get the desired effects on the pairs. Afterwards we implement
and use its corresponding abstraction that refers implicitly to representatives
preserving the invariant.
Implecitely, five theorems are generated by Isabelle for the functions Abs_memory
and Rep_memory, where Rep_memory_inverse, ... are names for the generated
theorems:

1 Rep_memory_inverse:
2 Abs_memory (Rep_memory x) = x
3

4 Abs_memory_inverse:
5 ?y ∈{(σ, R). equivp R ∧(∀ x y. R x y −→σx = σ y)} =⇒
6 Rep_memory (Abs_memory ?y) = ?y
7

8 Rep_memory_inject:
9 (Rep_memory ?x = Rep_memory ?y) = (?x = ?y)

10

11 Rep_memory:
12 Rep_memory ?x ∈{(σ, R). equivp R ∧(∀ x y. R x y −→σx = σy)}

These theorems will help in the proof of the different lemmas used for reason-
ing on a defined constant based on the type (’α, ’β)memory. Using this new
defined abstract type we will now specify three main memory operations,
which are write denoted by _ :=$ _ read by _ $ _ and map by _ (_ on_).
The hol! specification of these memory operations is represented for instance,
for the case of the map operation by:

103

1 fun transfer_rep ::(’a ⇀’b) ×(’a ⇒’a ⇒bool) ⇒’a ⇒’a ⇒
2 (’a ⇀ ’b) ×(’a ⇒ ’a ⇒ bool)
3 where transfer_rep (m, r) src dst =
4 (m o (id (dst := src)),
5 (λ x y . r ((id (dst := src)) x) ((id (dst := src)) y)))

1 lift_definition
2 add_e :: (’a,’b)memory ⇒’a ⇒’a ⇒ (’a, ’b)memory (_ ’(_ on_’))
3 is transfer_rep using transfer_rep_sound
4 by simp

The function transfer_rep is an update function on representatives, i. e. on
the pairs of type (’a ⇀ ’b) × (’a ⇒ ’a ⇒ bool), and the function add_e is
its abstraction defined on the type (’α, ’β)memory.
Basically, the function transfer_rep takes a memory represented by the pair
(’a ⇀ ’b) × (’a ⇒ ’a ⇒ bool), a source address src, a destination adress
dst and update the pair, in order to express the effect of a memory map on
that pair, as follow:

1. the first element of the pair, which is a partial function representing a
mapping from addresses to data, is updated by assigning the data of
the source address to the destination address

2. the second element of the pair, which is an equivalent relation between
addresses, is updated by adding the destination address to the same
equivalent class of the source address, and at the same time the relation
between the destination and its old equivalent class is destroyed. This
definition was validated by PikOS kernel engineers

Actually, we will not directly use transfer_rep, the function will be ab-
stracted by add_e, and this is advantageous for the following reasons; on
one hand we make sure that, on model level, add_e will always return pairs
that preserve the invariant. On the other hand, the specification constraint
lift_definition provide automatically a code generation setup for memory
operations based on the type (’α, ’β)memory, i. e. the generated implement-
ation will contain implicitly only pairs that preserve the invariant.
If we look closely, we can observe that a little proof was mandatory to get
the definition of add_e. In fact, in order to preserve the consistency of its
global context, Isabelle forces a such proof. This proof is used to make sure
that the invariant defined in the abstract type is preserved by the definition
of add_e. In other words, we have to make sure that the added definition is

104

sound and its use does not break the invariant, a such soundness proof was
provided by the following lemma:

1 lemma transfer_rep_sound:
2 assumes σ ∈ {(σ, R). equivp R ∧(∀ x y. R x y −→σx = σ y)}
3 shows transfer_rep σ src dst ∈
4 {(σ, R). equivp R ∧(∀ x y. R x y −→σx = σ y)}
5 proof -
6 obtain mem and R
7 where P: (mem, R) = σand
8 E: equivp R and
9 M: ∀ x y . R x y −→mem x = mem y

10 using assms equivpE by auto
11 obtain mem’ and R’
12 where P’: (mem’, R’) = transfer_rep σsrc dst
13 by (metis surj_pair)
14 have D1: mem’ = (mem o (id (dst := src)))
15 and D2: R’ = (λ x y . R ((id (dst := src)) x)
16 ((id (dst := src)) y))
17 using P P’ by auto
18 have equivp R’
19 using E unfolding D2 equivp_def by metis
20 moreover have ∀ y z . R’ y z −→mem’ y = mem’ z
21 using M unfolding D1 D2 by auto
22 ultimately show ?thesis
23 using P’ by auto
24 qed

In order to simplify the use of these abstract memory operations by con-
straint solvers, and also in order to simplify the proof of symbolic execution
rules related to these operations, lemmas expressing the key properties of
our shared memory model were introduced, we will present only the most
important lemmas:

1 definition sharing ::
2 ’a ⇒ (’a, ’b)memory ⇒’a ⇒bool ((_ shares()_/ _)
3 where (x shares (σ) y) ≡(snd(Rep_memory σ) x y)

1 definition Domain :: (’α, ’β)memory ⇒’α set
2 where Domain σ = dom (fst (Rep_memory σ))

105

1 lemma shares_result:
2 assumes 1: (x shares (σ) y)
3 shows σ $ x = σ $ y
4 using assms lookup_def shares_result
5 by metis

Sharing is modulo equivalence relation:

1 lemma sharing_refl [simp]: (x shares (σ) x)
2 using insert Rep_memory[of σ]
3 by (auto simp: sharing_def elim: equivp_reflp)

1 lemma sharing_sym [sym]:
2 assumes x shares (σ) y
3 shows y shares (σ) x
4 using assms Rep_memory[of σ]
5 by (auto simp: sharing_def elim: equivp_symp)

1 lemma sharing_trans [trans]:
2 assumes x shares (σ) y
3 and y shares (σ) z
4 shows x shares (σ) z
5 using assms insert Rep_memory[of σ]
6 by(auto simp: sharing_def elim: equivp_transp)

Sharing relates to memory write as follows:

1 lemma sharing_upd: x shares (σ(a :=$b)) y = x shares (σ) y (*$*)
2 using insert Rep_memory[of σ]
3 by(auto simp: sharing_def update_def
4 Abs_memory_inverse[OF update_sound])

106

1 lemma update_idem’ :
2 assumes 1: x shares (σ) y
3 and 2: x ∈Domain σ
4 and 3: σ $ x = z
5 shows σ (y:=$ z) = σ
6 proof -
7 have * : y ∈Domain σ
8 by(simp add: shares_dom[OF 1, symmetric] 2)
9 have **: σ (x :=$ (σ $ y)) = σ

10 using 1 2 *
11 by (simp add: update_triv)
12 also have (σ $ y) = σ $ x
13 by (simp only: lookup_def shares_result [OF 1])
14 finally show ?thesis
15 using 1 2 3 sharing_sym update_triv
16 by fast
17 qed

1 lemma update_share:
2 assumes z shares (σ) x
3 shows σ (x :=$ a) $ z = a
4 using assms
5 by (simp only: update_apply iftrue)

1 lemma update_other:
2 assumes ¬(z shares (σ) x)
3 shows σ (x :=$ a) $ z = σ$ z (*$*)
4 using assms
5 by (simp only: update_apply if_False)

107

1 theorem update_cancel:
2 assumes x sharesσ x’
3 shows σ (x :=$ y)(x’ :=$ z) = (σ(x’ :=$ z)) (*$*)
4 proof -
5 have ** :
6

∧
R σ. equivp R =⇒R x x’ =⇒

7 fun_upd_equivp R (fun_upd_equivp R σx (Some y)) x’ (Some z) =
8 fun_upd_equivp R σx’ (Some z)
9 unfolding fun_upd_equivp_def

10 using equivp_def
11 by metis
12 show ?thesis
13 using ** Pair_code_eq Pair_upd_lifter.simps assms sharing_charn
14 sharing_def update’ update.rep_eq
15 by metis
16 qed

1 theorem update_commute:
2 assumes 1:¬ (x shares (σ) x’)
3 shows (σ (x :=$ y))(x’ :=$ z) =
4 (σ (x’:=$ z)(x :=$ y))
5 proof -
6 (...)

Sharing relates to domain as follows:

1 lemma Domain_mono:
2 assumes 1: x ∈Domain σ
3 and 2: (x shares (σ) y)
4 shows y ∈ Domain σ
5 using 1 2 Rep_memory[of σ]
6 by (auto simp add: sharing_def Domain_def)

108

1 lemma update_triv:
2 assumes 1: x shares (σ) y
3 and 2: y ∈Domain σ
4 shows σ (x :=$ (σ $ y)) = σ
5 proof -
6 {
7 fix z
8 assume zx: z shares (σ) x
9 then have zy: z shares (σ) y

10 using 1 by (rule sharing_trans)
11 have F: y ∈Domain σ =⇒ x shares (σ) y =⇒
12 Some (the (fst (Rep_memory σ) x)) = fst (Rep_memory σ) y
13 by(auto simp: Domain_def dest: shares_result)
14 have Some (the (fst (Rep_memory σ) y)) = fst (Rep_memory σ) z
15 using zx and shares_result [OF zy] shares_result [OF zx]
16 using F [OF 2 1]
17 by simp
18 } note 3 = this
19 show ?thesis
20 unfolding update’’ lookup_def fun_upd_equivp_def
21 by (simp add: 3 Rep_memory_inverse if_cong)
22 qed

1 lemma update_idem :
2 assumes 1: x shares (σ) y
3 and 2: x ∈Domain σ
4 and 3: σ $ x = z
5 shows σ (x:= $ z) = σ
6 proof -
7 have * : y ∈Domain σ
8 by(simp add: shares_dom[OF 1, symmetric] 2)
9 have σ (x := $ (σ $ y)) = σ

10 using 1 2 * by (simp add: update_triv)
11 also have (σ $ y) = σ $ x
12 by (simp only: lookup_def shares_result [OF 1])
13 also note 3
14 finally show ?thesis .
15 qed

Similarly, we prove other rules for memory map and memory read which
represent a memory theory modulo sharing. The defined memory operations
are used actually to implement the MAP and BUF actions of PikeOS IPC.
For more details on our hol! model, and the core theory for shared memory
see section B.

109

6.5 Testing PikeOS IPC

6.5.1 Coverage Criteria for IPC

An IPC call defines a communication relation between two threads. In
PikeOS, IPC communications can be symmetric, transitive but can not be
reflexive (a thread can not send or receive an IPC message for himself). The
transitivity or intransitivity of IPC communications depends mainly on the
defined communication rights table and access rights table. In this section,
we will define input sequences for ipc calls. The defined input sequences
express IPC communications between threads. Other definitions, which are
almost the same as the ones used for input sequences, will be used to derive
the possible communications between threads after the execution of an IPC
call. The IPC input sequences will be used in scenarios for testing inform-
ation flow policy via IPC error codes, and also scenarios on access control
policy implemented via the two tables cited before.
The definition of an input sequence of type IPC communication is based on
a new coverage criterion. The criterion is based on the functional model of
PikeOS IPC (see section 6.2), and also on our technique to reduce the set of
interleaving if two actions can commute (see section 4.4).

• Criterion3: IPC communications (IPCcomm) the interleaving space
of input sequences gets a complete coverage iff all IPC communications
of a given SUT are covered.

IPC communications are input sequences derived under IPCcomm. They
have the form:

1 [IPC PREP (SEND th_id th_id’ msg), IPC PREP (RECV th_id’ th_id msg),
2 IPC WAIT (SEND th_id th_id’ msg), IPC WAIT (RECV th_id’ th_id msg),
3 IPC BUF (RECV th_id’ th_id msg), IPC DONE (RECV th_id’ th_id msg),
4 IPC DONE (SEND th_id th_id’ msg)]

6.5.2 Test Case Generation Process

In our model, a test case generation process is applied on the test scenario
to generate concrete tests. To apply a such process we will implicitly benefit
from implemented tools, proofs and tactics of Isabelle. As explained in
section 4.5, a test scenario is specified by a test specification which is actually
a lemma. The goal is not to provide a proof for the lemma, the goal is just to
normalize this HOL formula until we get a test normal form (TNF) [BW13],
and then we generate concrete test from the TNF. In our approach, the
process of test generation is composed of:

110

The Symbolic State.

In our model a symbolic state is the Isabelle lemma proof statement, i. e. a
proof context.

The Symbolic Execution Process.

Our symbolic execution process can be seen as an exploration of the proof
tree resulting from the application of symbolic execution rules to a given test
specification. Symbolic execution rules are Isabelle proved lemmas. Those
rules are inference rules derived from a given operational semantics. They are
used to simulate the execution of a given transition function, which specify
the behavior of the system under test. The application of a such rules allows
for going from a symbolic state, i. e. a proof statement, to another symbolic
state. In sequence test scenarios this step is applied until the input sequence
is empty.

The Normalization Process.

Normalization rules are Isabelle proved lemmas. Two main goal are distin-
guished for the normalization process

1. First, normalization rules are used to simplify the abstract test cases
generated after the application of symbolic execution rules, in order
to get a proof statement containing a set of TNFs that can be easily
treated by constraint-solvers.

2. Second, normalization rules are used to eliminate as much as possible
unfeasible executions in the proof tree, i. e. proof statements that lead
to true, (see subsection 6.5.4 for further explanation).

In our model, the outputs from this step are abstract test cases. Abstract
test cases are a normalized proof goals generated from symbolic execution
process. Proof goals are normalized, i. e., reduced to clauses over linear
arithmetic, list, and map-theories in a format that can be treated by the
subsequent constraint solver. Outputs from the normalization process are
also called TNFs. In our approach, the step of normalization takes most of
the generation time.

The Test Theorem.

After the normalization process we generate the test theorem. Actually
HOL-TestGen provides a tactic for the generation of a test theorem of the

111

form:
C1(a1) ⇒ P (a1, PUT a1) . . . Cn(an) ⇒ P (an, PUT an) THY P (H1 ∧ · · · ∧Hn)

TS

The test theorem decompose each abstract test case in the local proof context
generated from a test specification to 3 parts:

1. Proof Obligations: are the premises of a given abstract test case.
e. g. in the previous formula a proof obligation is Ci(ai).

2. Testing Hypotheses: In addition to testing hypotheses expressed
as assumptions of a given test specification, HOL-TestGen offer a
way to introduce testing hypotheses, e. g. regularity and uniformity
hypotheses, to a test specification. In the previous formula testing
hypothesis are Hi. THY P is a constant definition used as markup for
the testing hypothesis during the generation of the test theorem.

3. Abstract Test Cases: also called TNFs, they are represented in the
test theorem by Ci(a1) ⇒ P (ai, PUT ai), where P is the oracle, and
ai is a concrete instance that must satisfy the constraint Ci.

A test theorem state that a concrete test case passes if the application of a
program under test PUT on a concrete instance ai satisfies the oracle P .

Test Data Generation.

The proof obligations of each abstract test case are sent to constraint-solvers
such as Z3[dMB08], in order to construct a concrete (“ground”) data for the
variables. These instantiated abstract test cases represent actually execution
paths in a program under test; they are used as test cases for this system.

6.5.3 Symbolic Execution Rules

Symbolic execution rules are inference rules for the elimination of the inputs
in the test specification. In our model we distinguish two categories of these
rules:

1. The generic ones: they are related to operators of our specification lan-
guage, i. e. the proposed monad operators in our theory like:bind_SE.
These rules are fixed element in the theory, and they represent the gen-
eric simulation for the behavior of any state exception monad ioprog,
of type (’ι ⇒ (’o,’σ) MON_SE).

2. The specific ones: they are a refinement, or an instantiation, of the
generic ones. These rules represent the simulation of the behavior
of a model, which is an intantiation of ioprog by a given operational
sematic.

112

The Generic Rules.

Generic rules are elimination rules derived for the generic operational se-
mantics expressed by the different monads operators introduced by our spe-
cification language. This kind of rules has the form:

(σ |= outs← ioprog (ι#ιs);P s)

[ioprog ι σ = Some (oι, σ
′)

(σ′ |= outs← ioprog ιs;P (oι#s))

]
oι,σ′

···
Q

Q

where σ is a symbolic variable that denote the state of a given system, outs is
a sequence of outputs resulting from the execution of the transition function
ioprog, ι#ιs is a list of inputs and P is a post condition on the sequence
of outputs. A concrete example of generic symbolic execution rules is the
rule 1 presented in section 4.2. In order to catch the behavior of PikeOS,
our specification language was extended by a new state exception monad
operator called abortlift, an example of a generic symbolic execution rule
related to this operator is:

1 lemma abort_wait_send_mbindFSave_E:
2 assumes valid_exec:
3 (σ |=(outs ←(mbind ((IPC WAIT (SEND caller partner msg))#S)
4 (abortlift ioprog));P outs))
5 and in_err_state:
6 caller ∈dom (act_info (th_flag σ)) =⇒
7 (σ |=(outs ←(mbind S (abortlift ioprog));
8 P (get_caller_error caller σ# outs))) =⇒Q
9 (...)

10 and not_in_err_state_Some3:
11

∧
σ’ error_IPC.

12 (caller /∈dom (act_info (th_flag σ))) =⇒
13 ioprog (IPC WAIT (SEND caller partner msg)) σ=

Some(ERROR_IPC error_IPC, σ’) =⇒
14 ((set_error_ipc_waitr caller partner σσ’ error_IPC msg) |=
15 (outs ←(mbind S(abortlift ioprog));
16 P (ERROR_IPC error_IPC# outs))) =⇒Q
17 and not_in_err_state_None:
18 (caller /∈dom (act_info (th_flag σ))) =⇒
19 ioprog (IPC WAIT (SEND caller partner msg)) σ= None =⇒
20 (σ |=(P [])) =⇒Q
21 shows Q
22 proof (cases caller ∈dom (act_info (th_flag σ)))
23 (...)

113

In order to motivate the use of elimination rules for symbolic execution,
we will explain the process of their application on a given proof context.
The use of the rule abort_wait_send_mbindFSave_E on a given test specific-
ation Test_Scenario is conditioned by the existence of a given assumption
in Test_Scenario that have the same scheme of the assumption valid_exec
and the existence of a conclusion. For the case of a valid test specification
the conclusion will have the same scheme of valid_exec, the only difference
will be the FREE variable that represent the model, e. g. ioprog. Actu-
ally, it is replaced by a variable, e. g. SUT, that represent the system under
test. Once these conditions are brought together for a given test specifica-
tion Test_Scenario the application of the rule will be performed using the
tactic ematch_tac (see section 4.5 for further explanations). The process of
the application of rules , such as abort_wait_send_mbindFSave_E, on a valid
representation of Test_Scenario is:

1. Each time the input action (IPC WAIT (SEND caller partner msg)) is
in the header of a sequence of inputs ιs specified in a test specific-
ation Test_Scenario, a matching is established between the assump-
tion valid_exec and the assumption that specify a model of a tested
system in Test_Scenario, e. g. an assumption that specify a model
for a test specification Test_Scenario related to PikeOS can be σ |=
(outs ←mbind ιs(abortliftexec_action_Mon);return(outs = x). The
same thing will happen for the conclusion of the rule, which is by the
way a free variable Q that can be instantiated by any boolean formula,
of course for the case of a valid test specification the scheme of the
conclusion specify a valid test execution for a system under test, e. g.
σ |=(outs ←mbind ιs SUT;return(outs = x).

2. After the establishment of the ematching, the proof statement provided
by Test_Scenario is transformed to a new proof statement. The latter
will contain a set of proof goals, each goal has is a "not matched"
assumption specified in the rule, e. g. if Test_Scenario contain only an
assumption in the form of valid_exec then the new proof context, after
the application of the rule with ematching tactic, will contain the other
assumptions of the rule like in_err_state and not_in_err_state_Some3,
etc.

3. We repeat the same process with different rules related to different
input actions until we got an empty input sequence. The resulting
proof statement will receive a normalization process in order to get
abstract test cases for Test_Scenario.

A such process, actually based on ematching technique, has an enormous per-
formance gain effect on symbolic execution engine of Isabelle. Because, the
whole calculation process is reduced technically to a formal syntactic trans-
formation of the proof context, instead of calculus based on substitution,

114

rewriting, instantiation, introduction, etc. From another side, the execution
of a such process on a sequence of inputs specified in a given test specification
can be easily automated by an algorithm. The algorithm basically is repres-
ented by an Isabelle tactic, the latter takes the different symbolic execution
rules related to the different actions of the specified system and execute the
rules on the proof context until no rules can be applied. For instance, a
tactic for symbolic execution related to the actions of PikeOS IPC is:

val abort_ipc_mbind_TestGen_PureE21_ematch =
(ALLGOALS o TestGen.REPEAT ’) (CHANGED o TRY o FIRST ’
[ematch_tac
[@{thm abort_prep_send_HOL_elim21},

5 @{thm abort_prep_recv_HOL_elim21},
@{thm abort_wait_send_HOL_elim21},
@{thm abort_wait_recv_HOL_elim21},
@{thm abort_buf_send_HOL_elim21},
@{thm abort_buf_recv_HOL_elim21},

10 @{thm abort_map_send_HOL_elim2},
@{thm abort_map_recv_HOL_elim2},
@{thm abort_done_send_HOL_elim1 ’},
@{thm abort_done_recv_HOL_elim1 ’}]]);

The tactic abort_ipc_mbind_testGen_PureE21_ematch is implemented on SML
level using the different Isabelle SML libraries, the elements of the tactic are:

• ALLGOALS: a tactic combinator of type tactic * tactic -> tactic from
the module Tactical of Isabelle/ML. It applies the tactic on all goals of
a proof statement. A proof statement is usually called a proof context.

• TestGen.REPEAT’: a tactic combinator of type (int -> tactic)-> int
-> tactic. It is an adaptation of REPEAT_ALL_NEW, from the module
Tactical of Isabelle/ML for HOL-TestGen and it is used to repeat
the same tactic on a given subgoal.

• CHANGED: a tactic combinator of type tactic -> tactic. Its apply the
tactic on a given goal, and if it fails (i. e.the goal is not changed), an
Isabelle fail error is raised.

• TRY: a tactic combinator of type tactic -> tactic. its apply the tactic
on a given goal, and if it fails, it let the goal unchanged.

• FIRST’: a tactic combinator of type (’a -> tactic)list -> ’a ->
tactic. Tries a number of tactics, specified actually inside a list, on a
given goal.

115

• @{thm _}: an antiquotation that refers to a given Isabelle theorem.
Antiquotations are used as links to the object specified using Isabelle’s
specification constructs. The objects can be Isabelle theorems, types,
theories, etc. Each object has its own type of antiquotation, e. g. in
order to refer to a given Isabelle theory we use @{theory theory_name},
another antiquotation can be @{context}, it is used to refer to a given
local context(proof statement) of a proof. Antiquotations are useful
for many activities, e. g. they are useful in order to get formal links
of the different objects in a given document generated from Isabelle
theories, which helps for instance in the review of the document. Also
they are useful for development, e. g. in the development automated
tactics.

• abort_prep_send_HOL_elim21: is a symbolic execution rules related to
PikeOS IPC model.

For more details on Isabelle tactic development we would refer to [Urb].
Moreover note, for more details on the proofs of symbolic execution rules
related to abortlift see section O.

The Specific Rules.

These rules are instantiations for the generic ones by a given operational
semantics. For the case of PikeOS system, its operational semantics is
expressed by a transition function (presented in subsection 6.3.5) over 10
atomic actions which are:

1. PREP SEND/RECV: in this stage some checks related to PikeOS mes-
sage descriptor, i. e. a file containing details about the communicating
threads, are done.

2. WAIT SEND/RECV: The wait stage is mainly used for synchronisa-
tion.

3. BUF SEND/RECV : The stage BUF represent data transfer via memory
copy.

4. MAP SEND/RECV : The stage MAP data transfer via memory map-
ping.

5. DONE SEND/RECV: The stage DONE used to finish the IPC com-
munication between the threads.

As mentioned in the previous section and in section 4.5, the role of the sym-
bolic execution rule is to update the proof context according to the execution
semantics of the different atomic actions of the IPC protocol. An example of

116

a symbolic execution rule derived from the operational semantics of PikeOS
IPC is:

1 lemma abort_wait_send_HOL_elim21:
2 assumes
3 valid_exec:
4 (σ |=(outs ←(mbind ((IPC WAIT (SEND caller partner msg))#S)
5 (abortlift exec_actionid_Mon)); P outs))
6 and in_err_exec:
7 caller ∈dom (act_info (th_flag σ)) =⇒
8 (σ |=(outs ←(mbind S(abortlift exec_actionid_Mon));
9 P (get_caller_error caller σ# outs))) =⇒Q

10 and
11 not_in_err_exec1:
12 caller /∈dom (act_info (th_flag σ)) =⇒
13 IPC_send_comm_check_stid caller partner σ=⇒
14 IPC_params_c4 caller partner =⇒
15 IPC_params_c5 partner σ=⇒
16 (σ (|current_thread := caller,
17 thread_list := update_th_waiting caller (thread_list σ),
18 error_codes := NO_ERRORS,
19 th_flag := th_flag σ|)
20 |=(outs ←(mbind S(abortlift exec_actionid_Mon));
21 P (NO_ERRORS # outs))) =⇒Q
22 (...)
23 not_in_err_exec24:
24 caller /∈dom (act_info (th_flag σ)) =⇒
25 IPC_send_comm_check_stid caller partner σ=⇒
26 IPC_params_c4 caller partner =⇒
27 ¬IPC_params_c5 partner σ=⇒
28 ∃ th. (thread_list σ) caller = Some th =⇒
29 (σ (|current_thread := caller ,
30 thread_list := update_th_current caller (thread_list σ),
31 error_codes := ERROR_IPC error_IPC_5_in_WAIT_SEND,
32 th_flag := th_flag σ
33 (|act_info := act_info (th_flag σ)
34 (caller 7→(ERROR_IPC error_IPC_5_in_WAIT_SEND),
35 partner 7→(ERROR_IPC error_IPC_5_in_WAIT_SEND))|)|) |=
36 (outs ←(mbind S(abortlift exec_actionid_Mon));
37 P (ERROR_IPC error_IPC_5_in_WAIT_SEND# outs)))=⇒Q
38 shows Q

Each assumption inside the above elimination rule express a possible execu-
tion path for the action appearing in the head of the executed input sequence,
e. g. the latter rule is related to the wait stage represented syntaxically by
(IPC WAIT (SEND caller partner msg)).

117

Other Rules.

In order to simplify the proof of the symbolic execution rules presented
earlier, other rules related to the execution semantics of PikeOS were de-
rived:

1 lemma abort_prep_send_obvious10’:
2 (σ |=(outs ←(mbind ((IPC PREP (SEND caller partner msg))#S)
3 (abortlift exec_actionid_Mon)); P outs)) =
4 ((caller ∈dom ((act_info o th_flag)σ) −→
5 (σ |=(outs ←(mbind S(abortlift exec_actionid_Mon));
6 P (get_caller_error caller σ# outs)))) ∧
7 (caller /∈dom ((act_info o th_flag)σ) −→
8 (∀ a b. (a = NO_ERRORS −→
9 exec_action_id_Mon (IPC PREP (SEND caller partner msg)) σ=

10 Some (NO_ERRORS, b) −→
11 (σ (|current_thread := caller,
12 thread_list := update_th_ready caller (thread_list σ),
13 error_codes := NO_ERRORS,
14 th_flag := th_flag σ|)|=
15 (outs ←(mbind S(abortlift exec_actionid_Mon));
16 P (NO_ERRORS # outs)))) ∧
17 (∀ error_memory. a = ERROR_MEM error_memory −→
18 exec_actionid_Mon (IPC PREP (SEND caller partner msg)) σ=
19 Some (ERROR_MEM error_memory, b) −→
20 (σ (|current_thread := caller,
21 thread_list := update_th_current caller (thread_list σ),
22 error_codes := ERROR_MEM error_memory,
23 th_flag :=
24 th_flag σ
25 (|act_info := ((act_info o th_flag)σ)
26 (caller 7→(ERROR_MEM error_memory),
27 partner 7→(ERROR_MEM error_memory))|)|)
28 (...)

Moreover, in order to optimize the process, some rules called behavioral
refinement rules are derived:

118

1 lemma abort_prep_send_obvious0:
2 assumes not_in_err :
3 caller /∈dom (act_info (th_flag σ))
4 and ioprog_success:
5 ioprog (IPC PREP (SEND caller partner msg)) σ=
6 Some(NO_ERRORS, σ’)
7 shows abortlift ioprog (IPC PREP (SEND caller partner msg)) σ=
8 Some(NO_ERRORS, (error_tab_transfer caller σσ’))
9 using assms

10 by simp

For more details on these rules we would refer to section L.

6.5.4 Abstract Test Cases

Abstract test cases are proof goals resulting from the application of symbolic
execution and the normalization processes on a given test specification. Ab-
stract test cases represent a possible execution path in the system under test.
In our approach, having n number of abstract test cases does not necessarily
mean that all n paths are feasible. An abstract test case is feasible if and
only if there exist a model, i. e. an instatiation of the free variables by a
witness, that satisfy the premises of the abstract test case. In our approach,
the number of feasible test cases is always less than or equal to the number
of abstract test cases resulting from symbolic execution and normalization
processes. The number of feasible abstract test cases is not necessarily equal
to the number of concrete tests. A concrete test is a witness used to justify
that a given abstract test case is feasible. Many witnesses can exist and used
for the justification. Actually, in some cases the number of witnesses can be
infinite. Of course, if no witnesses can be derived for an abstract test case
this means that the abstract test case is infeasible. Thus, in our approach
we can clearly end with 0 concrete tests for a given test scenario and this
can happen if the constraint-solver can not provide a model that satisfies the
proof obligations of the formula that represent an abstract test case. The
problems related to detecting feasible abstract test cases, and the elimina-
tion of infeasible ones before the test generation, is not tackled during this
thesis. An example of an abstract test case is:

119

1
∧
z za y.

2 (...) =
3 [e, f, g] =⇒
4 (...) =
5 [a, b, C] =⇒
6 IPC_send_comm_check_stid thID2 thID1 σ_1 =⇒
7 IPC_params_c4 thID2 thID1 =⇒
8 IPC_params_c5 thID1 σ_1 =⇒
9 act_info (th_flag σ_1) thID2 = None =⇒

10 ¬ IPC_buf_check_stid thID2 thID1
11 (σ _1(|current_thread := thID2,
12 thread_list :=
13 if thID2 ∈dom (thread_list σ_1)
14 then thread_list σ_1(thID2 7→(the ◦thread_list σ_1) thID2
15 (|th_state := WAITING|))
16 else thread_list σ_1,
17 error_codes := NO_ERRORS|)) =⇒
18 thID1 6= thID2 =⇒
19 act_info (th_flag σ_1) thID1 = Some y =⇒
20 σ _1 |=
21 (outs ←mbind
22 [IPC WAIT (RECV thID1 thID2 [z, za]),
23 IPC WAIT (SEND thID2 thID1 [z, za]),
24 IPC BUF (SEND thID2 thID1 [z, za]),
25 IPC MAP (SEND thID2 thID1 [z, za]),
26 IPC DONE (SEND thID2 thID1 [z, za]),
27 IPC DONE (RECV thID1 thID2 [z, za])]
28 PUT2; unitSE
29 (outs =
30 [y, NO_ERRORS,
31 ERROR_IPC error_IPC_1_in_BUF_SEND,
32 ERROR_IPC error_IPC_1_in_BUF_SEND,
33 ERROR_IPC error_IPC_1_in_BUF_SEND,
34 ERROR_IPC error_IPC_1_in_BUF_SEND]))

In order to get a concrete test case we have to instantiate this abstract
test case with witnesses for the variables z, za, y. The instantiation pro-
cess is done by sending the formula that contains the conjunction of the
premises, e. g. IPC_params_c4 thID2 thID1, to constraint-solvers via an in-
terface provided by HOL-TestGen. In our terminology, the conjunction
between the premises of an abstract test case is called Proof Obligation
(PO).
Most of the time, a configuration is needed in order to help the constraint
solver to reason about proof obligations. The configuration of the constraint
solver is basically done by a set of Isabelle lemmas that help in the solving
process of the PO. For technical reasons, the lemmas of the configuration

120

must be written in hol! language, and not in isar or pure language. For
example in order to allow the constraint-solver smt to reason about properties
related to our abstract memory model, we use the rule:

1 lemma adde_share_charn [simp, code_unfold]:
2 assumes 1: ¬(i shares (σ) k’)
3 and 2: ¬(k shares (σ) k’)
4 shows i shares(σ(i’ onk’)) k = i shares (σ) k
5 using assms fun_upd_apply id_def mem_adde_E sharing_def sharing_refl
6 by metis

In its current form this rule will be refused by the solver smt. The following
adaptation is needed:

1 lemma adde_share_charn_smt :
2 ¬(i shares (σ) k’) ∧
3 ¬(k shares (σ) k’) −→
4 i shares (σ(i’ onk’)) k = i shares (σ) k
5 using adde_share_charn
6 by simp

In our framework, and in order to feed the solver smt with the rule adde_share
_charn_smt we use the command:

1 declare adde_share_charn_smt [testgen_smt_facts]

We have to notice that we experienced several problems related to solving
a PO containing constraints around an abstract type,e. g. the type of our
memory model. For example, in some cases the smt solver fails to provide a
solution to a PO containing a constraint of the form (i shares (σ) k), and
this of course because we do not have yet a perfect lemmas configuration
that help the solver to reason about the shares relation correctly.

6.5.5 Test Data For Sequence-based Test Scenarios

A test scenario is represented by a test specification and can have two
main schemes: unit test scheme or sequence test scheme. The specification
TS_simple_example2 is an example of a sequence test scenario for PikeOS
IPC.

1 test_spec TS_simple_example2:
2 ιs ∈ IPC_communication =⇒
3 σ 1 |=(outs ←mbind is(abortlift exec_action_Mon);return(outs = x)
4 −→σ1 |=(outs ←mbind is SUT; return(outs = x))

121

For a σ 1 definition that contains a suitable VMIT configuration, a possible
generated values for ιs are, e. g.:

1 [IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]),
2 IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]),
3 IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]),
4 IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]),
5 IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),
6 IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),
7 IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8])]

The sequence is an abstraction of an IPC communication between the thread
with the ID = (0, 0, 1) and the thread with ID = (0, 0, 2) via a message
msg = [0, 4, 5, 8]. Natural numbers inside the message are abstractions on
memory addresses. In TS_simple_example2 the execution semantic of the
input sequence is represented by our execution function exec_action_Mon.
We wrapped around our execution function a monad transformer abortlift
that express the behavior of an abort. The equality in return(outs = x)
specify our conformance relation between SUT outputs and the model out-
puts. After using our symbolic execution process the out of this test case
is:

1 [NO_ERRORS,
2 NO_ERRORS,
3 ERROR_IPC error_IPC_1_in_WAIT_RECV,
4 ERROR_IPC error_IPC_1_in_WAIT_RECV,
5 ERROR_IPC error_IPC_1_in_WAIT_RECV,
6 ERROR_IPC error_IPC_1_in_WAIT_RECV,
7 ERROR_IPC error_IPC_1_in_WAIT_RECV]

The error-codes observed in the sequence is related to IPC. The error-codes
was returned in the stage WAIT_ RECV. The interpretation of this error-
codes is that the thread has not the rights to communicate with his partner.
We can observe the behavior of our abort operator in this sequence of error-
codes; All stages following WAIT_RECV are purged (not executed), and the
same error is returned instead. We focus on error-codes in our scenarios,
since error-codes represent a potential for undesired information flow: for
example, un-masked error-messages may reveal the structure of tasks and
threads of a foreign partition in the system; a revelation that the operating
system as separation kernel should prevent.

122

6.5.6 Test Drivers

In this section we address the problem to compile "abstract test-drivers" as
described in the previous sections into concrete code and code instrumenta-
tions that actually execute these tests.
HOL-TestGen can generate test scripts (recall Figure 1.1) in SML, Haskell,
Scala and F#. For our application, we generate SML test scripts and use
MLton (www.mlton.org) for building the test executable: MLton 1. provides
a foreign function interface to C and 2. is easily portable to small POSIX
system (it mainly requires a C compiler, libc, and libm).1

In more detail, we generate two SML structures automatically from the Isa-
belle theories. The first structure, called Datatypes, contains the datatypes
that are used by the interface of the SUT. In our example, this includes, e. g.,
IPC_protocol and P4_IPC_call. The second structure, called TestScript,
contains a list of all generated test cases as well the test oracle, i. e., the
algorithms necessary to decide if a test result complies to the specification
or not. In addition, HOL-TestGen provides a test harness (as SML structure
TestHarness) that 1. takes the list of test cases (from TestScript) and ex-
ecutes them on the SUT, 2. uses the test oracle (also from TestScript) to
decide if the actual test results complies to the specification, and 3. provides
statistics about the number of successful and failed tests as well as errors
(e. g., unexpected exceptions) during test execution.
In addition, for testing C code, we need to provide a small SML structure
(ca. 20 lines of code), called Adapter, that serves two purposes: 1. the
configuration of the foreign function, e. g., the mapping from SML datatypes
to C datatypes and 2. the concretization of abstractions to bridge the gap
between an abstract test model and the concrete SUT.
An example for a concretization would be a test specification using an an
enumeration to encode error states while the implementation uses an efficient
encoding as bit vector. The Adapter structure only needs to be updated after
significant changes to either the system specification or the system under test.
For testing concurrent, i. e., multi-threaded, programs we need to solve a
particular challenge: enforcing certain thread execution orders (a certain
scheduling) during test execution. There are, in principle, three different
options available to control the scheduler during test execution: 1. instru-
menting the SUT to make the thread switching deterministic and control-
lable, 2. using a deterministic scheduler that can be controlled by test driver,
or 3. using the features of debuggers, such as the GNU debugger (gdb), for
multi-threaded programs.
In our prototype for POSIX compliant systems, we have chosen the third
option: we execute the SUT within a gdb session and we use the gdb to

1In our code generation setup, we avoid the use of the SML datatype Int.Inf and, by
this, we can remove the dependency on the GNU multi-precision library (libgmp).

123

www.mlton.org

switch between the different threads in a controlled way. We rely on two
features of gdb (thus, out approach can be applied to any other debugger
with similar features), namely: 1. the possibility to attach to break points
in the object code scripting code that is executed if a break point is reached
and 2. the complete control of the threading, i. e., gdb allows to switch ex-
plicitly between threads while ensuring that only the currently active thread
is executed (using the option set scheduler-locking on).
This approach has the advantage that we neither need to modify the SUT
nor do we need to develop a custom scheduler. We only need to generate
a configuration for controlling the debugger. The necessary gdb command
file is generated automatically by HOL-Testgen based on a mapping of the
abstract thread switching points to break points in the object code. The
break points at the entry points allows us to control the thread creation,
while the remaining break points allow us to control the switching between
threads. Thus, we only need the SUT compiled in debugging mode and this
mapping. In this sense, we still have a “black-box” testing approach.
Moreover, Using gdb together with taskset, we ensure that all threads are
executed on the same core; in our application, we can accept that the ac-
tual execution in gdb changes the timing behavior. Moreover, we assume a
sequential memory model, so our approach does not cover TLB-related race
conditions occurring in multi-core CPU’s.

A note on testing small embedded systems and low-level operat-
ing system code. This setup works well for mid-size embedded systems
to large systems using standard desktop or server operating systems. It does
not work for small embedded systems or for testing small operating system
kernels or hypervisors. Such system often to neither provide a rich enough
libc (or libm) nor enough system resources that allows to run the complete
test driver on the system under test. For such systems, we envision a host-
target setup, where only a very small target library needs to be ported to
the target system. This target library serves mainly two purposes: 1. stimu-
late, remotely controlled from the host system, the functions under test and
2. collect the test result and report it back to the host system. All expensive
computation such as comparing test results, creating statistics are executed
on the host system.
Finally, for small systems it might be necessary to develop a custom sched-
uler, e. g., similar to [MQB07], to control the execution order of multi-
threaded programs.

124

6.5.7 Experimental Results

In this section we will discuss our test experiences, the obtained results and
the different problems encountered. The table Table 6.1 represent 52 different
test specifications related to PikeOS IPC , i. e. test scenarios for PikeOS
IPC API, and also the statistics related to the application of the different
steps of our test generation process on these scenarios. Four columns are
distinguished in Table 6.1:

1. SE: is the step related to the symbolic execution process. During this
step the derived symbolic execution rules related to PikeOS IPC are
applied on the scenario.

2. Norm: represent the step of our normalization process. During this
step we apply tactics like simp and other derived rules from the model
in order to eliminate contradictory proof goals resulting from the SE
step.

3. TT: is the step of the generation of the test theorem. During this step
we use an HOL-TestGen tactic to determine the PO and to introduce
uniformity testing hypotheses (recall subsection 2.2.2) on the different
proof goals resulting from the Norm step. This step can be seen as a
preparatory step for the data selection process.

4. TD: represent the step of test data selection. During this step we send
the POs in the test theorem to constraint-solvers. Also, after that a
given solver choose a model for the POs an Isabelle proof is mandatory
in order to make sure that the chosen model satisfies the PO. We have
to notice that, for simple models, the process of proving the satisfaction
of the PO by the chosen model, is done automatically by an Isabelle
tactic but, for complicated models such as PikeOS model, where its
symbolic execution results with complicated predicated defined around
abstract types, e. g. predicate around our memory model, the proofs
need to be done manually. This does not mean that the process can not
be automated, but at the moment, we do not have the set of lemmas
and the corresponding tactics that help to get a such automatic setup.

Each column in Table 6.1 is composed of two other columns. The columns
named Num contain the number of outputs from each step of the generation
process, and the columns Time contain the duration of the step by minutes.
The scenarios Sc1 and Sc2 contain the value undet in their columns, it means
that we did not manage to finish the steps of the generation and the exper-
ience is done for these scenarios. The judgement undet is different from the

2actually we designed 38 scenario, we did not finish all the experiments at submission
time, further explanation are presented in the sequel.

125

judgement represented by the symbol −, also contained in the table. The
judgement undet is applied to an experience where our process of test gen-
eration had failed in a given step, and we are not trying to fix the failed
part because, the fixes depends on major changes in the various levels of
the tool-chain. The judgement − is applied on an experience which is not
finished yet, i. e. we do not have the results of all the steps of the process
but, finishing the experience depends on manageable technical problems 3.
Note that the execution of the steps related to the test generation process is
sequential. Thus, if the current step fails the next one can not be executed.
For example during the scenario Sc1, we had derived actually 69984 symbolic
test cases in 2 hours for 1 input sequence that represent an IPC communic-
ation (recall subsection 6.5.1) but, we did not manage to normalize a such
proof context with a such size, which means that all remaining steps of the
process can not be performed because they all depend of the outputs from
the Norm step.
As explained in subsection 6.5.4, the generation of 69984 symbolic test cases
does not necessarily mean that all the cases, represented by proof goals, are
feasible. We have to normalize the proof goals in order to eliminate the
contradictory ones. Even if we have managed to normalize a proof context
with a such size, we still need to find models for the different normalized
goals and prove that, the chosen models satisfy the POs. While the fact of
generating almost 70000 goals using our symbolic approach in only 2 hours
can be seen as an impressive result, we have failed during the normalization
process, and this come back to:

1. The model. the model of PikeOS IPC is heavy, and this because of
the branching in the atomic actions, especially the PREP action.

2. The way of modeling. it is the main influential factor. We believe
that some changes on the way of modeling can help to make the nor-
malization process lighter. e. g. the definition of meta-predicates that
characterize feasible paths only, or at least the elimination of the most
of infeasible paths, and accordingly, the definition of the corresponding
symbolic execution rules, can actually result with an optimized proof
context after the SE step.

In order to execute our tool-chain from top to bottom we have tried other test
scenarios to avoid the previous cited problems. For example, the scenario
Sc2 is similar to the scenario Sc1 but, without including the PREP stage in
the input sequence that represent 1 IPC communication. From Sc2, we had
derived 1973 symbolic test cases in 2 minutes (which is another impressive
result). After 6 hours of normalization process, 27 abstract test case re-
mained. But still we did not manage to get automatically models for the 27

3At submission time of this document, we had managed to finish only 4 experiences.

126

abstract test cases, and this because of a failure from the constraint-solvers,
such smt, to provide a solution for complicated POs. The failure come back
mainly to missing lemmas used as a configuration (recall last paragraphs in
subsection 6.5.4) for the constraint solvers and not to the constraints-solver
design.
For the scenarios Sc3 to Sc5, we have tried another approach in order to
deal with the previous cited problems and also to generate test cases that
cover communications with PREP action. Basically the approach is based
on a technique that, allows to force a given execution path from the possible
ones, resulting from the execution of the PREP action. Actually, after the
execution of a PREP action, 6 execution paths are possible (see the symbolic
execution rule for PREP action in section O). Since we have 2 PREP actions
in the head of a sequence that represent 1 IPC communication, all possible
execution paths related to the 2 PREP actions is equal to 6 × 6. Actually,
the 2 PREP actions are derived from: the ipc send system call for the PREP
SEND action, and the ipc receive system call for PREP RECV. Each system
call is executed by a thread. Instead to opt for a standard execution of the
2 PREP actions with rules that simulate all possible executions paths like
we did in Sc1, we had opted for rules that force one execution path inside a
test scenario. In order to cover all paths, we had designed 36 scenarios, each
scenario force a given execution path during the PREP stage. Because we
do not have any problems for executing the other actions which are different
from PREP, we used the standard rules for their symbolic execution.
In order to apply this new tchnique to our scenarios, new symbolic execu-
tion rules were designed to cope with the explosion in the number of the
abstract test cases, which influence negatively our normalization process.
For example, in the scenario Sc3 we had derived 2 new symbolic execution
rules for PREP actions. Each rule characterize one execution path by assum-
ing that the path-predicate that describe the execution path is true. The
symbolic execution rules used to simulate the the behavior of the actions
PREP_SEND and PREP_RECV in the scenario Sc3 are:

127

1 lemma abort_prep_send_HOL_elim21’_factor:
2 assumes valid_exec:
3 (σ |=(outs ←(mbind ((IPC PREP (SEND caller partner msg))#S)
4 (abortlift exec_action_id_Mon)); P outs))
5 and in_err_exec1: caller ∈dom (act_info (th_flag σ))
6 and in_err_exec:
7 (σ |=(outs ←(mbind S(abortlift exec_action_id_Mon));
8 P (get_caller_error caller σ# outs))) =⇒Q
9

10 shows Q
11 apply (insert valid_exec)
12 apply (elim abort_prep_send_mbindFSave_E’)
13 apply (simp add: in_err_exec)
14 apply (simp add: in_err_exec1)+
15 done

1 lemma abort_prep_recv_HOL_elim21’_factor:
2 assumes valid_exec:
3 (σ |=(outs ←(mbind ((IPC PREP (RECV caller partner msg))#S)
4 (abortlift exec_action_id_Mon)); P outs))
5 and in_err_exec1: caller ∈dom (act_info (th_flag σ))
6 and in_err_exec:
7 (σ |=(outs ←(mbind S(abortlift exec_action_id_Mon));
8 P (get_caller_error caller σ
outs))) =⇒Q

9

10 shows Q
11 apply (insert valid_exec)
12 apply (elim abort_prep_recv_mbindFSave_E’)
13 apply (simp add: in_err_exec)
14 apply (simp add: in_err_exec1)+
15 done

Of course the path-predicate in_err_exec1 must be expressed also in the test
specification Sc3. This predicate express the fact that the caller of the action
(the caller of PREP SEND and also the caller of PREP RECV), was in an
error-state (recall subsection 6.3.4).
From another side, we did not manage to execute the generated tests on
PikeOS sources, for confidentiality reasons. In order to evaluate our ap-
proach we had implemented a PikeOS IPC-like environment using POSIX
implementation. We had managed to execute 2 scenarios on this PikeOS
demonstrator. Of course, when the state of the PikeOS demonstrator is
initialised correctly our tests did not found any bugs. If the state is not ini-

128

Scenarios SE Norm TT TD
Num Time Num Time Num Time Num Time

Sc1 69984 120 undet undet undet undet undet undet

Sc2 1973 2 27 360 1 162 undet undet

Sc3 1973 2 2 0.01 1 120 2080 0.23
Sc4 1973 2 - - - - - -
Sc5 1973 2 - - - - - -

Table 6.1: Statistics for our TestGen Process

tialised correctly our generated tests detect the bugs. Finally, we still have
problems to define a program that initialise automatically the state of the
demonstrate and bring it to the same value generated by the model. At the
moment this step is done manually, and this due to some technical chan-
llenges like, how to export or import the values of a static array defined on
C-level to the sml-level. Finally, another technical challenge is that GDB
can not run an executable containing a Main.sml function defined in sml
language. In order to deal with this problem, we have to define a Main.c
function on C-level and call our harness.sml inside the Main.c, and this
using the foreign function interface of MLton.

6.6 Conclusion

6.6.1 Related Work.

There is a wealth of approaches for tests of behavioral models; they differ
in the underlying modeling technique, the testability and test hypothesis’,
the test conformance relation etc.; in subsection 2.2.3 we mention a few.
Unfortunately, many works make the underlying testability hypothesis’ not
explicit which makes a direct comparison difficult and somewhat vague. For
the space of testability assumptions used here (the system is input-output
deterministic, is adequately modeled as under-specified deterministic system,
synchronous coupling between tester and SUT suffices), to the best of our
knowledge, our approach is unique in its integrated process from theory,
modeling, symbolic execution down to test-driver generation.
With respect to the test-driver approach, this work undeniably owes a lot
Microsoft’s CHESS project [MQB07], which promoted the idea to actually
control the scheduler of real systems and use partial-order reduction tech-
niques to test systematically concurrent executions for races in applications
of realistic size (e. g., IE, Firefox, Apache). For our approach, controlling
the scheduler is the key to justify the presentation of the system as under-
specified deterministic transition function.

129

6.6.2 Conclusion and Future Work.

We see several conceptual and practical advantages of a monadic approach
to sequence testing:

1. a monadic approach resists the tendency to surrender to finitism and
constructivism at the first-best opportunity; a tendency that is under-
standably wide-spread in model-checking communities,

2. it provides a sensible shift from syntax to semantics: instead of a first-
order, intentional view in nodes and events in automata, the heart of
the calculus is on computations and their compositions,

3. the monadic theory models explicitly the difference between input and
output, between data under control of the tester and results under
control of the SUT,

4. the theory lends itself for a theoretical and practical framework of
numerous conformance notions, even non-standard ones, and which
gives

5. ways to new calculi of symbolic evaluation enabling symbolic states
(via invariants) and input events (via constraints) as well as a seamless,
theoretically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the formal
theory of sequence testing (as given in the HOL-TestGen library theor-
ies Monad.thy and TestRefinements.thy) providing connections between
monads, rules for test-driver optimization, different test refinements, etc.,
is worth further development. On a test-theoretical level, our approach
provides the basis for a comparison on test-methods, in particular ones based
on different testability hypothesis’.
Pragmatically, our test driver setup needs to be modified to be executable
on the PikeOS system level. For this end, we will need to develop a host-
target setup (see subsection 6.5.6). Finally, we are interested in extending
our techniques to actually test information flow properties; since error-codes
in applications may reveal internal information of partitions (as, for example,
the number of its tasks and threads), this seems to be a rewarding target.
For this purpose, not only action sequences need to be generated during the
constraint solving process, but also (abstract) VMITs.

130

Part III

Conclusions

131

7
Conclusions and Future Works

7.1 Summary

In the different chapters of this, we introduced thesis a test and proof envir-
onment for the specification, deductive verification and testing of concurrent
programs. Our approach relies on the theorem proving Isabelle/hol!. In
the context of this Ph.D thesis, the architecture, features, tools and the un-
derlying methodology of Isabelle were also presented. We believe to have
justified our claim that was, if correctly used, Isabelle can be trusted to a
significantly higher extent than conventional software used in certification
processes and test generation based on symbolic execution. The main prob-
lematic tackled by our work was the generation of tests for the certification
of complex concurrent systems such operating systems. Our solution was,
first of all, the proposition of a monad based test theory for the specification
of a such system. Afterwards, we had used symbolic execution approach,
based on theorem proving environment in order to generate test cases. Our
contributions, results and achievement are:

Isabelle/hol! in Certification Processes

In section 2.3, we have presented the Isabelle/hol! system and pointed out the
essential arguments, why by a particular combination of system-architecture
and methodology, the system is suited to give the currently highest possible

132

guarantee on a formal proof in particular and a logical theory development
in general. In a sense, Isabelle/hol! offers the same guarantees for logical
systems as Coq, and in some sense better guarantees than, for example, the
B method or model-checkers like FDR. Isabelle/hol! is therefore a natural
choice for evaluations in the higher certification levels EAL5 to EAL7 in the
Common Criteria (CC). If the methodological side-conditions are respec-
ted which can be reduced essentially to a number of syntactic checks, the
formal consistency of the entire certification document containing formal
specifications, proofs of consistency and the proofs of security properties,
refinement-proofs between the different abstraction layers, and finally test-
case generations as well as test-results can be guaranteed, and the evalu-
ator can therefore concentrate on the more fundamental questions: does the
model represent the right thing? are the modeling assumptions justified?

A Monad Based Testing Theory

Our framework is equipped with a specification language (see chapter 4)
based on monads that contains important definitions for testing and symbolic
execution activities. The expressive power of our specification language was
was highlighted by an isomorphism between the automata world and monads
world. A set of generic symbolic execution rules, for the defined monad
operators was also introduced. Unlike to IO-Automata based specification,
it turns out that symbolic execution based on monads specifications and its
representation in the hol! language can cope with the large state space; and
that was confirmed by the results that we have got from our case studies,
where our approach was applied on on two complex systems.

Sequence Testing For Concurrent Complex Systems

In order to optimize the symbolic execution process for our test specifications,
especially for the case of sequence test scenarios of concurrent systems, an
approach based on the notion of coverage criteria was proposed in section 4.4.
On the technical side, an approach to build automated test drivers for testing
non-deterministic system executions was proposed in section 4.7.

Testing VAMP Microprocessor

As a case study, and in order to confirm the efficiency of our test framework,
we presented in chapter 5, an approach for testing the conformance of a
processor with respect to an abstract model that captures the instruction
set (i. e., the assembly-level) of the processor. This abstraction level is
of a particular importance for, first, it is the level of detail that is usually
available for commercial off-the-shelf (COTS) processors and, second, it is
the target level of high-level compilers.

133

Testing PikeOS System

Another achievement of our work was presented in chapter 6. It consist of
a case study, containing the formalization and test case generation for the
complex operating system PikeOS. The approach allows for testing relatively
fine-grained concurrency of atomic actions, which are actually related to
system calls of an L4-like micro-kernel. During this case study we focused
on the IPC API. The case study was another confirmation of the expressive
power and the efficiency of theorem proving based test framework. Especially
if the framework is combined with a monad based testing theory.

7.2 Futur Works

We see several directions for future works: On the model level, the formal
theory of sequence testing (as given in the HOL-TestGen library theories
Monad.thy and TestRefinements.thy) providing connections between mon-
ads, rules for test-driver optimization, different test refinements, etc., is
worth further development. On a test-theoretical level, our approach provides
the basis for a comparison on test-methods, in particular ones based on dif-
ferent testing hypotheses and a bit indirectly even the underlying hypotheses
of testability. Pragmatically, our test driver setup needs to be modified to be
executable on systems such as PikeOS. For this end, we will need to develop
a host-target setup approach, that can cope with restrictions of low level
system code, e. g. limited libraries, limited access to IO. Finally, we are in-
terested in extending our techniques to actually test security properties such
as information flow properties; since error-codes in applications may reveal
internal information of partitions (as, for example, the number of its tasks
and threads), this seems to be a rewarding target. For this purpose, not only
action sequences need to be generated during the constraint solving process,
but also (abstract) VMITs.

134

Part IV

PikeOS IPC Model

135

A
Isabelle sources

theory TypeSchemes
imports Main

begin

A HOL representation of PikeOS Datatypes

A.1 kernel state

record (′resource, ′thread-id , ′thread , ′sp-th-th, ′sp-th-res, ′errors) kstate =
resource :: ′resource — system ressources: memory, files..
current-thread :: ′thread-id — a thread in the execution context..
thread-list :: ′thread — list of threads in the system.
communication-rights :: ′sp-th-th — security policy between threads..
access-rights :: ′sp-th-res — security policy between threads and ressources..

error-codes :: ′errors — error returned if a system call is aborted..

A.2 atomic actions

Atomic actions can be seen as instructions which can not be interrupted by
the system scheduler during there execution. Each API has its own set of
atomic actions.

datatype (′ipc-stage, ′ipc-direction) actionipc =

136

IPC ′ipc-stage ′ipc-direction

datatype (′mem-param1 , ′mem-param2) actionmem =
MEM ′mem-param1 ′mem-param2

datatype (′evn-param1 , ′evn-param2) actionevn =
EVN ′evn-param1 ′evn-param2

datatype (′ipc-stage, ′ipc-direction, ′mem-param1 , ′mem-param2 , ′evn-param1 , ′evn-param2)
action =

atomipc (′ipc-stage, ′ipc-direction) actionipc

| atommem (′mem-param1 , ′mem-param2) actionmem

| atomevn (′evn-param1 , ′evn-param2) actionevn

A.3 traces

A trace is sequence of atomic actions..

— An IPC actions trace

type-synonym (′ipc-stage, ′ipc-direction) traceipc =
(′ipc-stage, ′ipc-direction) actionipc list

— A memory actions IPC trace

type-synonym (′mem-param1 , ′mem-param2) tracemem =
(′mem-param1 , ′mem-param2) actionmem list

— An event actions trace

type-synonym (′evn-param1 , ′evn-param2) traceevn =
(′evn-param1 , ′evn-param2) actionevn list

— A trace that contain all atomic actions

type-synonym (′ipc-stage, ′ipc-direction, ′mem-param1 , ′mem-param2 , ′evn-param1 ,
′evn-param2) trace =

(′ipc-stage, ′ipc-direction, ′mem-param1 , ′mem-param2 , ′evn-param1 ,
′evn-param2) action list

A.4 Threads

A thread is the smallest entity in the operating system.

record (′th-id , ′thstate, ′stipc, ′vadress, ′cpartner) thread =
thread-id :: ′th-id
th-state :: ′thstate
th-ipc-st :: ′stipc
own-vmem-adr :: ′vadress
cpartner :: ′cpartner

137

end

theory SharedMemoryNew
imports Main
begin

B Shared Memory Model

B.1 Prerequisites

Prerequisite: a generalization of fun-upd-def : ?f (?a := ?b) ≡ λx . if x = ?a
then ?b else ?f x. It represents updating modulo a sharing equivalence, i.e.
an equivalence relation on parts of the domain of a memory.

definition fun-upd-equivp :: (′a ⇒ ′a ⇒ bool) ⇒ (′a ⇒ ′b) ⇒ ′a ⇒ ′b ⇒ (′a ⇒
′b) where

fun-upd-equivp eq f a b = (λx . if eq x a then b else f x)

— This lemma is the same as Fun.fun-upd-same: (?f (?x := ?y)) ?x = ?y ; applied
on our genralization fun-upd-equivp ?eq ?f ?a ?b = (λx . if ?eq x ?a then ?b else ?f
x) of ?f (?a := ?b) ≡ λx . if x = ?a then ?b else ?f x. This proof tell if our function
fun-upd-equivp op = f x y is equal to f this is equivalent to the fact that f x = y

lemma fun-upd-equivp-iff : ((fun-upd-equivp (op =) f x y) = f) = (f x = y)
by (simp add :fun-upd-equivp-def , safe, erule subst , auto)

— Now we try to proof the same lemma applied on any equivalent relation equivp
eqv instead of the equivalent relation op =. For this case, we had split the lemma
to 2 parts. the lemma fun-upd-equivp-iff-part1 to proof the case when eq (f a)
b −→ eq (fun-upd-equivp eqv f a b z) (f z), and the second part is the lemma
fun-upd-equivp-iff-part2 to proof the case equivp eqv =⇒ fun-upd-equivp eqv f a b
= f −→ f a = b.

lemma fun-upd-equivp-iff-part1 :
equivp R =⇒ (

∧
z . R x z =⇒ R (f z) y) =⇒ R (fun-upd-equivp R f x y z) (f z)

by (auto simp: fun-upd-equivp-def Equiv-Relations.equivp-reflp Equiv-Relations.equivp-symp)

lemma fun-upd-equivp-iff-part2 : equivp R =⇒ fun-upd-equivp R f x y = f −→ f x
= y
apply (simp add :fun-upd-equivp-def , safe)
apply (erule subst , auto simp: Equiv-Relations.equivp-reflp)

done

— Just anotther way to formalise equivp ?R =⇒ fun-upd-equivp ?R ?f ?x ?y = ?f
−→ ?f ?x = ?y without using the strong equality

138

lemma equivp R =⇒ (
∧
z . R x z =⇒ R (fun-upd-equivp R f x y z) (f z)) =⇒ R y

(f x)
by (simp add : fun-upd-equivp-def Equiv-Relations.equivp-symp equivp-reflp)

— this lemma is the same in Jequivp ?R;
∧
z . ?R ?x z =⇒ ?R (?f z) ?yK =⇒

?R (fun-upd-equivp ?R ?f ?x ?y ?z) (?f ?z) where op = is generalized by another
equivalence relation

lemma fun-upd-equivp-idem: f x = y =⇒ (fun-upd-equivp (op =) f x y) = f
by (simp only : fun-upd-equivp-iff)

lemma fun-upd-equivp-triv : fun-upd-equivp (op =) f x (f x) = f
by (simp only : fun-upd-equivp-iff)

— This is the generalization of fun-upd-equivp op = ?f ?x (?f ?x) = ?f on a given
equivalence relation

lemma fun-upd-equivp-triv-part1 :
equivp R =⇒ (

∧
z . R x z =⇒fun-upd-equivp (R ′) f x (f x) z) =⇒ f x

apply (auto simp:fun-upd-equivp-def)
apply (metis equivp-reflp)

done

lemma fun-upd-equivp-triv-part2 :
equivp R =⇒ (

∧
z . R x z =⇒ f z) =⇒ fun-upd-equivp (R ′) f x (f x) x

by (simp add :fun-upd-equivp-def equivp-reflp split : split-if)

lemma fun-upd-equivp-apply [simp]:
(fun-upd-equivp (op =) f x y) z = (if z = x then y else f z)
by (simp only : fun-upd-equivp-def)

— This is the generalization of fun-upd-equivp op = ?f ?x ?y ?z = (if ?z = ?x then
?y else ?f ?z) with e given equivalence relation and not only with op =

lemma fun-upd-equivp-apply1 [simp]:
equivp R =⇒(fun-upd-equivp R f x y) z = (if R z x then y else f z)
by (simp add : fun-upd-equivp-def)

lemma fun-upd-equivp-same: (fun-upd-equivp (op =) f x y) x = y
by (simp only : fun-upd-equivp-def)simp

— This is the generalization of fun-upd-equivp op = ?f ?x ?y ?x = ?y with a given
equivalence relation

lemma fun-upd-equivp-same1 : equivp R =⇒ (fun-upd-equivp R f x y) x = y
by (simp add : fun-upd-equivp-def equivp-reflp)

For the special case that @term eq is just the equality @term "op =", sharing
update and classical update are identical.

139

lemma fun-upd-equivp-vs-fun-upd : (fun-upd-equivp (op =)) = fun-upd
by(rule ext , rule ext , rule ext ,simp add :fun-upd-def fun-upd-equivp-def)

B.2 Definition of the shared-memory type

typedef (′α, ′β) memory = {(σ:: ′α ⇀ ′β, R). equivp R ∧ (∀ x y . R x y −→ σ x =
σ y)}
proof
show (Map.empty , (op =)) ∈ ?memory
by (auto simp: identity-equivp)

qed

fun memory-inv :: (′a ⇒ ′b option) × (′a ⇒ ′a ⇒ bool) ⇒ bool
where memory-inv (Pair f R) = (equivp R ∧ (∀ x y . R x y −→ f x = f y))

lemma Abs-Rep-memory [simp]:Abs-memory (Rep-memory σ) = σ
by (simp add :Rep-memory-inverse)

lemma memory-invariant [simp]:
memory-inv σ-rep = (Rep-memory (Abs-memory σ-rep) = σ-rep)

using Rep-memory [of Abs-memory σ-rep] Abs-memory-inverse mem-Collect-eq
prod-caseE prod-caseI2 memory-inv .simps

by smt

lemma Pair-code-eq :
Rep-memory σ = Pair (fst (Rep-memory σ)) (snd (Rep-memory σ))
by (simp add : Product-Type.surjective-pairing)

lemma snd-memory-equivp [simp]: equivp(snd(Rep-memory σ))
by(insert Rep-memory [of σ], auto)

B.3 Operations on Shared-Memory

setup-lifting type-definition-memory
abbreviation mem-init :: (′a ⇒ ′b option) × (′a ⇒ ′a ⇒ bool)
where
mem-init ≡ (Map.empty , (op =))

lemma memory-init-eq-sound :
mem-init ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}

proof −
obtain mem and R
where Pair : (mem, R) =mem-init and Eq : equivp R
using identity-equivp by auto

have D1 : R = (op =)
and D2 : mem = Map.empty
using Pair prod .inject
by auto

moreover have inv-part2 : ∀ x y . R x y −→ mem x = mem y

140

unfolding D1 D2 by auto
ultimately show ?thesis
using Eq Abs-memory-cases Pair-inject Rep-memory-cases Rep-memory-inverse

identity-equivp memory-inv .elims(3) memory-invariant
by auto

qed

lift-definition init :: (′α, ′β) memory
is mem-init :: (′α ⇒ ′β option) × (′α ⇒ ′α ⇒ bool)
using memory-init-eq-sound by simp

value init ::(nat ,int)memory
value map (λx . the (fst (Rep-memory init)x)) [1 .. 10]
value take (10) (map (Pair Map.empty) [(op =)])
value replicate 10 init
term Rep-memory σ
term [(σ::nat ⇀ int , R)<−xs . equivp R ∧ (∀ x y . R x y −→ σ x = σ y)]

definition init-mem-list :: ′α list ⇒ (nat , ′α) memory
where init-mem-list s = Abs-memory (let h = zip (map nat [0 .. int(length
s)]) s

in foldl (λx (y ,z). fun-upd x y (Some z))
Map.empty h,

op =)

Memory Read Operation

definition lookup :: (′α, ′β) memory ⇒ ′α ⇒ ′β (infixl $ 100)
where σ $ x = the (fst (Rep-memory σ) x)

Memory Update Operation

fun Pair-upd-lifter :: (′a ⇒ ′b option) × (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′b ⇒
(′a ⇒ ′b option) × (′a ⇒ ′a ⇒ bool)

where Pair-upd-lifter ((f , R)) x y = (fun-upd-equivp R f x (Some y), R)

lemma update-sound ′:
assumes σ ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}
shows Pair-upd-lifter σ x y ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ

y)}
proof −
obtain mem and R
where Pair : (mem, R) = σ and Eq : equivp R and Mem: ∀ x y . R x y −→

mem x = mem y
using assms equivpE by auto

obtain mem ′ and R ′

where Pair ′: (mem ′, R ′) = Pair-upd-lifter σ x y

141

using surjective-pairing by metis
have Def1 : mem ′ = fun-upd-equivp R mem x (Some y)
and Def2 : R ′ = R
using Pair Pair ′ by auto

have Eq ′: equivp R ′

using Def2 Eq by auto
moreover have ∀ y z . R ′ y z −→ mem ′ y = mem ′ z
using Mem equivp-symp equivp-transp
unfolding Def1 Def2 by (metis Eq fun-upd-equivp-def)

ultimately show ?thesis
using Pair ′ by auto

qed

lift-definition update :: (′α, ′β) memory ⇒ ′α ⇒ ′β ⇒ (′α, ′β) memory (- ′(-
:=$ - ′) 100)
is Pair-upd-lifter
using update-sound ′

by simp

lemma update ′: σ (x :=$ y) = Abs-memory (fun-upd-equivp (snd (Rep-memory
σ))

(fst (Rep-memory σ)) x (Some y), (snd (Rep-memory
σ)))
using Rep-memory-inverse surjective-pairing Pair-upd-lifter .simps update.rep-eq
by metis

fun update-list-rep :: (′α ⇀ ′β) × (′α ⇒ ′α ⇒ bool) ⇒ (′α × ′β)list ⇒
(′α ⇀ ′β) × (′α ⇒ ′α ⇒ bool)

where update-list-rep (f , R) nlist = (foldl (λ(f , R)(addr ,val). Pair-upd-lifter (f ,
R) addr val)

(f , R)
nlist)

lemma update-list-rep-p:
assumes 1 : P σ
and 2 :

∧
src dst σ. P σ =⇒ P (Pair-upd-lifter σ src dst)

shows P (update-list-rep σ list)
using 1 2
apply (induct list arbitrary : σ)
apply (force,safe)
apply (simp del : Pair-upd-lifter .simps)
using surjective-pairing
apply metis

done

lemma update-list-rep-sound :
assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}

142

shows update-list-rep σ (nlist) ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x
= σ y)}
using 1
apply (elim update-list-rep-p)
apply (erule update-sound ′)

done

lift-definition update-list :: (′α, ′β) memory ⇒ (′α × ′β)list ⇒ (′α, ′β) memory
(infixl ′/:=$ 30)
is update-list-rep
using update-list-rep-sound by simp

lemma update-list-Nil [simp]: (σ /:=$ []) = σ
unfolding update-list-def
by(simp,subst surjective-pairing [of Rep-memory σ],subst update-list-rep.simps, simp)

lemma update-list-Cons[simp] : (σ /:=$ ((a,b)#S)) = (σ(a :=$ b) /:=$ S)
unfolding update-list-def
apply(simp,subst surjective-pairing [of Rep-memory σ],subst update-list-rep.simps,
simp)
apply(subst surjective-pairing [of Rep-memory (σ (a :=$ b))],subst update-list-rep.simps,
simp)
apply(simp add : update-def)
apply(subst Abs-memory-inverse)
apply (metis (lifting , mono-tags) Rep-memory update-sound ′)
by simp

Type-invariant:

lemma update-sound :
assumes Rep-memory σ = (σ ′, eq)
shows (fun-upd-equivp eq σ ′ x (Some y), eq) ∈ {(σ, R). equivp R ∧ (∀ x y . R x

y −→ σ x = σ y)}
using assms insert Rep-memory [of σ]
apply(auto simp: fun-upd-equivp-def)
apply(rename-tac xa xb, erule contrapos-np)
apply(rule-tac R=eq and y=xa in equivp-transp,simp)
apply(erule equivp-symp, simp-all)
apply(rename-tac xa xb, erule contrapos-np)
apply(rule-tac R=eq and y=xb in equivp-transp,simp-all)

done

Memory Transfer Based on Sharing Transformation

fun transfer-rep :: (′α ⇀ ′β) × (′α⇒ ′α ⇒ bool) ⇒ ′α ⇒ ′α ⇒ (′α⇀ ′β) ×
(′α⇒ ′α ⇒ bool)
where transfer-rep (m, r) src dst = (m o (id (dst := src)),

(λ x y . r ((id (dst := src)) x) ((id (dst := src)) y)))

lemma transfer-rep-simp :

143

transfer-rep X src dst = ((fst X) o (id (dst := src)),
(λ x y . (snd X) ((id (dst := src)) x) ((id (dst := src))

y)))
by(subst surjective-pairing [of X],subst transfer-rep.simps, simp)

lemma transfer-rep-sound :
assumes σ ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}
shows transfer-rep σ src dst ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x =

σ y)}
proof −
obtain mem and R
where P : (mem, R) = σ and E : equivp R and M : ∀ x y . R x y −→ mem x

= mem y
using assms equivpE by auto

obtain mem ′ and R ′

where P ′: (mem ′, R ′) = transfer-rep σ src dst
by (metis surj-pair)

have D1 : mem ′ = (mem o (id (dst := src)))
and D2 : R ′ = (λ x y . R ((id (dst := src)) x) ((id (dst := src)) y))
using P P ′ by auto

have equivp R ′

using E unfolding D2 equivp-def by metis
moreover have ∀ y z . R ′ y z −→ mem ′ y = mem ′ z
using M unfolding D1 D2 by auto

ultimately show ?thesis
using P ′ by auto

qed

lift-definition transfer :: (′α, ′β)memory ⇒ ′α ⇒ ′α ⇒ (′α, ′β)memory (- ′(- on
- ′) [0 ,111 ,111]110)

is transfer-rep
using transfer-rep-sound
by simp

lemma transfer-rep-sound2 :
transfer-rep (Rep-memory σ) a b ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x

= σ y)}
by (metis (lifting , mono-tags) Rep-memory transfer-rep-sound)

fun share-list2 :: (′α, ′β) memory ⇒ (′α × ′α)list ⇒ (′α, ′β) memory (infix
′/on 60)

144

where σ /on S = (foldl (λ σ (a,b). (σ (aonb))) σ S)

lemma sharelist2-Nil [simp] : σ /on [] = σ by simp

lemma sharelist2-Cons[simp] : σ /on ((a,b)#S) = (σ(aonb) /on S) by simp

fun share-list-rep :: (′α ⇀ ′β) × (′α ⇒ ′α ⇒ bool) ⇒ (′α × ′α)list ⇒
(′α ⇀ ′β) × (′α ⇒ ′α ⇒ bool)

where share-list-rep (f , R) nlist =
(foldl (λ(f , R) (src,dst). transfer-rep (f , R) src dst) (f , R)

nlist)

fun share-list-rep ′ :: (′α ⇀ ′β) × (′α ⇒ ′α ⇒ bool) ⇒ (′α × ′α)list ⇒
(′α ⇀ ′β) × (′α ⇒ ′α ⇒ bool)

where share-list-rep ′ (f , R) [] = (f , R)
| share-list-rep ′ (f , R) (n#nlist) = share-list-rep ′ (transfer-rep(f ,R)(fst n)(snd

n)) nlist

lemma share-list-rep ′-p:
assumes 1 : P σ
and 2 :

∧
src dst σ. P σ =⇒ P (transfer-rep σ src dst)

shows P (share-list-rep ′ σ list)
using 1 2
apply (induct list arbitrary : σ P)
apply force
apply safe
apply (simp del : transfer-rep.simps)
using surjective-pairing
apply metis

done

lemma foldl-preserve-p:
assumes 1 : P mem
and 2 :

∧
y z mem . P mem =⇒ P (f mem y z)

shows P (foldl (λa (y , z). f mem y z) mem list)
using 1 2
apply (induct list arbitrary : f mem , auto)
apply metis

done

lemma share-list-rep-p:
assumes 1 : P σ
and 2 :

∧
src dst σ. P σ =⇒ P (transfer-rep σ src dst)

shows P (share-list-rep σ list)
using 1 2
apply (induct list arbitrary : σ)

145

apply force
apply safe
apply (simp del : transfer-rep.simps)
using surjective-pairing
apply metis

done

The modification of the underlying equivalence relation on adresses is only
defined on very strong conditions — which are fulfilled for the empty memory,
but difficult to establish on a non-empty-one. And of course, the given
relation must be proven to be an equivalence relation. So, the case is geared
towards shared-memory scenarios where the sharing is defined initially once
and for all.

definition updateR :: (′α, ′β)memory ⇒ (′α ⇒ ′α ⇒ bool) ⇒ (′α, ′β)memory (-
:=R - 100)
where σ :=R R ≡ Abs-memory (fst(Rep-memory σ), R)

definition lookupR :: (′α, ′β)memory ⇒ (′α ⇒ ′α ⇒ bool) ($R - 100)
where $R σ ≡ (snd(Rep-memory σ))

lemma updateR-comp-lookupR:
assumes equiv : equivp R
and sharing-conform : ∀ x y . R x y −→ fst(Rep-memory σ) x = fst(Rep-memory

σ) y
shows ($R (σ :=R R)) = R
unfolding lookupR-def updateR-def
by(subst Abs-memory-inverse, simp-all add : equiv sharing-conform)

B.4 Sharing Relation Definition

definition sharing :: ′α ⇒ (′α, ′β)memory ⇒ ′α ⇒ bool
((- shares()-/ -) [201 , 0 , 201] 200)

where (x sharesσ y) ≡ (snd(Rep-memory σ) x y)

definition Sharing :: ′α set ⇒ (′α, ′β)memory ⇒ ′α set ⇒ bool
((- Shares()-/ -) [201 , 0 , 201] 200)

where (X Sharesσ Y) ≡ (∃ x∈X . ∃ y∈Y . x sharesσ y)

B.5 Properties on Sharing Relation

lemma sharing-charn:
equivp (snd (Rep-memory σ))
using Rep-memory [of σ]
unfolding sharing-def
by auto

lemma sharing-charn ′:
assumes 1 : (x sharesσ y)

146

shows (∃R. equivp R ∧ R x y)
by (auto simp add : sharing-def snd-def equivp-def)

lemma sharing-charn2 :
shows∃ x y . (equivp (snd (Rep-memory σ)) ∧ (snd (Rep-memory σ)) x y)
using sharing-charn [THEN equivp-reflp]
by (simp)fast

— Lemma to show that ?x shares?σ ?y ≡ snd (Rep-memory ?σ) ?x ?y is reflexive

lemma sharing-refl : (x sharesσ x)
using insert Rep-memory [of σ]
by (auto simp: sharing-def elim: equivp-reflp)

— Lemma to show that ?x shares?σ ?y ≡ snd (Rep-memory ?σ) ?x ?y is symetric

lemma sharing-sym [sym]:
assumes x sharesσ y
shows y sharesσ x
using assms Rep-memory [of σ]
by (auto simp: sharing-def elim: equivp-symp)

lemma sharing-commute : x sharesσ y = (y sharesσ x)
by(auto intro: sharing-sym)

— Lemma to show that ?x shares?σ ?y ≡ snd (Rep-memory ?σ) ?x ?y is transitive

lemma sharing-trans [trans]:
assumes x sharesσ y
and y sharesσ z
shows x sharesσ z
using assms insert Rep-memory [of σ]
by(auto simp: sharing-def elim: equivp-transp)

lemma shares-result :
assumes x sharesσ y
shows fst (Rep-memory σ) x = fst (Rep-memory σ) y
using assms
unfolding sharing-def
using Rep-memory [of σ]
by auto

lemma sharing-init :

147

assumes 1 : i 6= k
shows ¬(i sharesinit k)
unfolding sharing-def init-def
using 1
by (auto simp: Abs-memory-inverse identity-equivp)

lemma shares-init [simp]: (x sharesinit y) = (x=y)
unfolding sharing-def init-def
by (metis init-def sharing-init sharing-def sharing-refl)

lemma sharing-init-mem-list :
assumes 1 : i 6= k
shows ¬(i sharesinit-mem-list S k)
unfolding sharing-def init-mem-list-def
using 1
by (auto simp: Abs-memory-inverse identity-equivp)

definition reset :: (′α, ′β) memory ⇒ ′α set⇒ (′α, ′β)memory (- ′(reset - ′) 100)
where σ (reset X) = (let (σ ′,eq) = Rep-memory σ;

eq ′ = λ a b. eq a b ∨ (∃ x∈X . eq a x ∨ eq b x)
in if X={} then σ

else Abs-memory (fun-upd-equivp eq ′ σ ′ (SOME x . x∈X)
None, eq))

lemma reset-mt : σ (reset {}) = σ
unfolding reset-def Let-def
by simp

lemma reset-sh :
assumes ∗ : (x sharesσ y)
and ∗∗: x ∈ X
shows σ (reset X) $ y = None
oops

B.6 Memory Domain Definition

definition Domain :: (′α, ′β)memory ⇒ ′α set
where Domain σ = dom (fst (Rep-memory σ))

B.7 Properties on Memory Domain

lemma Domain-charn:
assumes 1 :x ∈ Domain σ
shows ∃ y . Some y = fst (Rep-memory σ) x
using 1
by(auto simp: Domain-def)

148

lemma Domain-charn1 :
assumes 1 :x ∈ Domain σ
shows ∃ y . the (Some y) = σ $ x
using 1
by(auto simp: Domain-def lookup-def)

— This lemma says that if x and y are quivalent this means that they are in the
same set of equivalent classes

lemma shares-dom [code-unfold , intro]:
assumes x sharesσ y
shows (x ∈ Domain σ) = (y ∈ Domain σ)
using insert Rep-memory [of σ] assms
by (auto simp: sharing-def Domain-def)

lemma Domain-mono:
assumes 1 : x ∈ Domain σ
and 2 : (x sharesσ y)
shows y ∈ Domain σ
using 1 2 Rep-memory [of σ]
by (auto simp add : sharing-def Domain-def)

corollary Domain-nonshares :
assumes 1 : x ∈ Domain σ
and 2 : y /∈ Domain σ
shows ¬(x sharesσ y)
using 1 2 Domain-mono

by(fast)

lemma Domain-init [simp] : Domain init = {}
unfolding init-def Domain-def
by(simp-all add :identity-equivp Abs-memory-inverse)

lemma Domain-update[simp] :Domain (σ (x :=$ y)) = (Domain σ) ∪ {y . y
sharesσ x}
unfolding update-def Domain-def sharing-def
proof (simp-all)
have ∗ : Pair-upd-lifter (Rep-memory σ) x y ∈ {(σ, R). equivp R ∧ (∀ x y . R

x y −→ σ x = σ y)}
by (simp, metis (lifting , mono-tags) Rep-memory mem-Collect-eq

update-sound ′)
have ∗∗ : snd (Rep-memory σ) x x

by(metis equivp-reflp sharing-charn2)
show dom (fst (Rep-memory (Abs-memory (Pair-upd-lifter (Rep-memory σ) x

y)))) =
dom (fst (Rep-memory σ)) ∪ {y . snd (Rep-memory σ) y x}

149

apply(simp-all add : Abs-memory-inverse[OF ∗])
apply(subst surjective-pairing [of (Rep-memory σ)])
apply(subst Pair-upd-lifter .simps, simp)
apply(auto simp: ∗∗ fun-upd-equivp-def)
done

qed

lemma Domain-share1 :
assumes 1 : a ∈ Domain σ
and 2 : b ∈ Domain σ

shows Domain (σ(aonb)) = Domain σ
proof(simp-all add :Set .set-eq-iff , tactic ALLGOALS (rtac @{thm allI }))
fix x

have ∗∗∗: transfer-rep (Rep-memory σ) (id a) (id b) ∈ {(σ, R). equivp R ∧ (∀ x
y . R x y −→ σ x = σ y)}

by (metis (lifting , mono-tags) Rep-memory transfer-rep-sound)
show (x ∈ Domain (σ (a on b))) = (x ∈ Domain σ)

unfolding sharing-def Domain-def transfer-def map-fun-def o-def
apply(subst Abs-memory-inverse[OF ∗∗∗])
apply(insert 1 2 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if split-if-asm)
done

qed

lemma Domain-share-tgt : a ∈ Domain σ =⇒ b ∈ Domain (σ (a on b))
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(simp add : o-def transfer-rep-simp Domain-def)
by(auto split : split-if)

lemma Domain-share2 :
assumes 1 : a ∈ Domain σ
and 2 : b /∈ Domain σ

shows Domain (σ(aonb)) = (Domain σ − {x . x sharesσ b} ∪ {b})
proof(simp-all add :Set .set-eq-iff , auto)
fix x
assume 3 : x ∈ Domain (σ (a on b))
and 4 : x 6= b

show x ∈ Domain σ
apply(insert 3 4)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst (asm) Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if split-if-asm)
done

150

next
fix x
assume 3 : x ∈ Domain (σ (a on b))
and 4 : x 6= b
and 5 : x sharesσ b
have ∗∗ : x /∈ Domain σ using 2 5 Domain-mono by (fast)

show False
apply(insert 3 4 5 , erule contrapos-pp, simp)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if split-if-asm)
using ∗∗ Domain-def domI apply fast
done

next
show b ∈ Domain (σ (a on b))

using 1 Domain-share-tgt by fast
next

fix x
assume 3 : x ∈ Domain σ
and 4 : ¬ x sharesσ b

show x ∈ Domain (σ (a on b))
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if split-if-asm)
using 3 Domain-def domD
apply fast
done

qed

lemma Domain-share3 :
assumes 1 : a /∈ Domain σ
shows Domain (σ(aonb)) = (Domain σ − {b})
proof(simp-all add :Set .set-eq-iff , auto)
fix x
assume 3 : x ∈ Domain (σ (a on b))
show x ∈ Domain σ
apply(insert 3)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst (asm) Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if split-if-asm)
done

next
assume 3 : b ∈ Domain (σ (a on b))

151

show False
apply(insert 1 3)
apply(erule contrapos-pp[of b ∈ Domain (σ (a on b))], simp)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if)
done

next
fix x
assume 3 : x ∈ Domain σ
and 4 : x 6= b
show x ∈ Domain (σ (a on b))
apply(insert 3 4)
unfolding sharing-def Domain-def transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2])
apply(insert 1 , simp add : o-def transfer-rep-simp Domain-def)
apply(auto split : split-if split-if-asm)
done

qed

lemma Domain-transfer :
Domain (σ(aonb)) = (if a /∈ Domain σ

then (Domain σ − {b})
else if b /∈ Domain σ

then (Domain σ − {x . x sharesσ b} ∪ {b})
else Domain σ)

using Domain-share1 Domain-share2 Domain-share3
by metis

lemma Domain-transfer-approx : Domain (σ(aonb)) ⊆ Domain (σ) ∪ {b}
by(auto simp: Domain-transfer)

B.8 Sharing Relation and Memory Update

lemma sharing-upd : x shares(σ(a :=$ b)) y = x sharesσ y
using insert Rep-memory [of σ]
by(auto simp: sharing-def update-def Abs-memory-inverse[OF update-sound])

— this lemma says that if we do an update on an adress x all the elements that
are equivalent of x are updated

lemma update ′′:
σ (x :=$ y) = Abs-memory(fun-upd-equivp (λx y . x sharesσ y) (fst (Rep-memory

σ)) x (Some y),
snd (Rep-memory σ))

unfolding update-def sharing-def

152

by (metis update ′ update-def)

theorem update-cancel :
assumes x sharesσ x ′

shows σ(x :=$ y)(x ′ :=$ z) = (σ(x ′ :=$ z))
proof −
have ∗ : (fun-upd-equivp(snd(Rep-memory σ))(fst(Rep-memory σ)) x (Some

y),snd (Rep-memory σ))
∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}

unfolding fun-upd-equivp-def
by(rule update-sound [simplified fun-upd-equivp-def], simp)

have ∗∗ :
∧

R σ. equivp R =⇒ R x x ′ =⇒
fun-upd-equivp R (fun-upd-equivp R σ x (Some y)) x ′ (Some z)

= fun-upd-equivp R σ x ′ (Some z)
unfolding fun-upd-equivp-def
apply(rule ext)
apply(case-tac R xa x ′, auto)
apply(erule contrapos-np, erule equivp-transp, simp-all)
done

show ?thesis
apply(simp add : update ′)
apply(insert sharing-charn assms[simplified sharing-def])
apply(simp add : Abs-memory-inverse [OF ∗] ∗∗)
done

qed

theorem update-commute:
assumes 1 :¬ (x sharesσ x ′)
shows (σ(x :=$ y))(x ′ :=$ z) = (σ(x ′:=$ z)(x :=$ y))
proof −
have ∗ :

∧
x y .(fun-upd-equivp(snd(Rep-memory σ))(fst(Rep-memory σ)) x

(Some y),snd (Rep-memory σ))
∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}

unfolding fun-upd-equivp-def
by(rule update-sound [simplified fun-upd-equivp-def], simp)

have ∗∗ :
∧

R σ. equivp R =⇒ ¬ R x x ′ =⇒
fun-upd-equivp R (fun-upd-equivp R σ x (Some y)) x ′ (Some

z) =
fun-upd-equivp R (fun-upd-equivp R σ x ′ (Some z)) x (Some y)

unfolding fun-upd-equivp-def
apply(rule ext)
apply(case-tac R xa x ′, auto)
apply(erule contrapos-np)
apply(frule equivp-transp, simp-all)
apply(erule equivp-symp, simp-all)
done

show ?thesis
apply(simp add : update ′)
apply(insert assms[simplified sharing-def])

153

apply(simp add : Abs-memory-inverse [OF ∗] ∗∗)
done

qed

B.9 Properties on lookup and update wrt the Sharing Rela-
tion

lemma update-triv :
assumes 1 : x sharesσ y
and 2 : y ∈ Domain σ

shows σ (x :=$ (σ $ y)) = σ
proof −
{
fix z
assume zx : z sharesσ x
then have zy : z sharesσ y
using 1 by (rule sharing-trans)

have F : y ∈ Domain σ =⇒ x sharesσ y
=⇒ Some (the (fst (Rep-memory σ) x)) = fst (Rep-memory σ) y

by(auto simp: Domain-def dest : shares-result)
have Some (the (fst (Rep-memory σ) y)) = fst (Rep-memory σ) z
using zx and shares-result [OF zy] shares-result [OF zx]
using F [OF 2 1]
by simp

} note 3 = this
show ?thesis
unfolding update ′′ lookup-def fun-upd-equivp-def
by (simp add : 3 Rep-memory-inverse if-cong)

qed

lemma update-idem ′ :
assumes 1 : x sharesσ y
and 2 : x ∈ Domain σ
and 3 : σ $ x = z
shows σ(y :=$ z) = σ

proof −
have ∗ : y ∈ Domain σ

by(simp add : shares-dom[OF 1 , symmetric] 2)
have ∗∗: σ (x :=$ (σ $ y)) = σ
using 1 2 ∗
by (simp add : update-triv)

also have (σ $ y) = σ $ x
by (simp only : lookup-def shares-result [OF 1])

finally show ?thesis
using 1 2 3 sharing-sym update-triv
by fast

qed

lemma update-idem :

154

assumes 2 : x ∈ Domain σ
and 3 : σ $ x = z
shows σ(x :=$ z) = σ

proof −
show ?thesis
using 2 3 sharing-refl update-triv
by fast
qed

lemma update-apply : (σ(x :=$ y)) $ z = (if z sharesσ x then y else σ $ z)
proof −

have ∗: (λz . if z sharesσ x then Some y else fst (Rep-memory σ) z , snd
(Rep-memory σ))

∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}
unfolding sharing-def
by(rule update-sound [simplified fun-upd-equivp-def], simp)

show ?thesis
proof (cases z sharesσ x)
case True

assume A: z sharesσ x
show σ (x :=$ y) $ z = (if z sharesσ x then y else σ $ z)

unfolding update ′′ lookup-def fun-upd-equivp-def
by(simp add : Abs-memory-inverse [OF ∗])

next
case False

assume A: ¬ z sharesσ x
show σ (x :=$ y) $ z = (if z sharesσ x then y else σ $ z)

unfolding update ′′ lookup-def fun-upd-equivp-def
by(simp add : Abs-memory-inverse [OF ∗])

qed
qed

lemma update-share:
assumes z sharesσ x
shows σ(x :=$ a) $ z = a
using assms
by (simp only : update-apply if-True)

lemma update-other :
assumes ¬(z sharesσ x)
shows σ(x :=$ a) $ z = σ $ z
using assms
by (simp only : update-apply if-False)

lemma lookup-update-rep:
assumes 1 : (snd (Rep-memory σ ′)) x y
shows (fst (Pair-upd-lifter (Rep-memory σ ′) src dst)) x =

(fst (Pair-upd-lifter (Rep-memory σ ′) src dst)) y
using 1 shares-result sharing-def sharing-upd update.rep-eq

155

by (metis (hide-lams, no-types))

lemma lookup-update-rep ′′:
assumes 1 : x sharesσ y
shows (σ (src :=$ dst)) $ x = (σ (src :=$ dst)) $ y
using 1 lookup-def lookup-update-rep sharing-def update.rep-eq
by metis

theorem memory-ext :
assumes ∗ :

∧
x y . (x sharesσ y) = (x sharesσ ′ y)

and ∗∗ : Domain σ = Domain σ ′

and ∗∗∗ :
∧

x . σ $ x = σ ′ $ x
shows σ = σ ′

apply(subst Rep-memory-inverse[symmetric])
apply(subst (3) Rep-memory-inverse[symmetric])
apply(rule arg-cong [of - - Abs-memory])
apply(auto simp:Product-Type.prod-eq-iff)
proof −
show fst (Rep-memory σ) = fst (Rep-memory σ ′)

apply(rule ext , insert ∗∗ ∗∗∗, simp add : lookup-def Domain-def)
apply (metis (lifting , no-types) domD domIff the.simps)
done

next
show snd (Rep-memory σ) = snd (Rep-memory σ ′)

by(rule ext , rule ext , insert ∗, simp add : sharing-def)
qed

Nice connection between sharing relation, domain of the memory and content
equaltiy on the one hand and equality on the other; this proves that our
memory model is fully abstract in these three operations.

corollary memory-ext2 : (σ = σ ′) = ((∀ x y . (x sharesσ y) = (x sharesσ ′ y))
∧ Domain σ = Domain σ ′

∧ (∀ x . σ $ x = σ ′ $ x))
by(auto intro: memory-ext)

B.10 Rules On Sharing and Memory Transfer

lemma transfer-rep-inv-E :
assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y . R x y −→ σ x = σ y)}
and 2 : memory-inv (transfer-rep σ src dst) =⇒ Q
shows Q
using assms transfer-rep-sound [of σ]
by (auto simp: Abs-memory-inverse)

lemma transfer-rep-fst1 :
assumes 1 : σ = fst(transfer-rep (Rep-memory σ ′) src dst)

156

shows
∧
x . x = dst =⇒ σ x = (fst (Rep-memory σ ′)) src

using 1 unfolding transfer-rep-simp
by simp

lemma transfer-rep-fst2 :
assumes 1 : σ = fst(transfer-rep (Rep-memory σ ′) src dst)
shows

∧
x . x 6= dst =⇒ σ x = (fst (Rep-memory σ ′)) (id x)

using 1 unfolding transfer-rep-simp
by simp

lemma lookup-transfer-rep ′:
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst

using Rep-memory [of σ ′]
apply (erule-tac src= src and dst = dst in transfer-rep-inv-E)
apply (rotate-tac 1)
apply (subst (asm) surjective-pairing [of (transfer-rep (Rep-memory σ ′) src dst)])
unfolding memory-inv .simps
apply (erule conjE)
apply (erule allE)+
apply (erule impE)
unfolding transfer-rep-simp
apply auto
using equivp-reflp snd-memory-equivp
apply metis

done

theorem share-transfer :
x sharesσ(a on b) y = ((y = b ∧ (x = b

∨ (x 6= b ∧ x sharesσ a))) ∨
(y 6= b ∧ ((x = b ∧ a sharesσ y)

∨ (x 6= b ∧ x sharesσ y))))
unfolding sharing-def transfer-def
unfolding transfer-def map-fun-def o-def id-def
apply(subst Abs-memory-inverse[OF transfer-rep-sound2], simp add : transfer-rep-simp)
by (metis equivp-reflp sharing-charn2)

lemma transfer-share:a sharesσ(a on b) b by(simp add : share-transfer sharing-refl)

lemma transfer-share-sym:a sharesσ (b on a) b by(simp add : share-transfer sharing-refl)

lemma transfer-share-mono:x sharesσ y =⇒ ¬(x sharesσ b) =⇒ (x sharesσ (a on b)
y)
by(auto simp: share-transfer sharing-refl)

157

lemma transfer-share-charn:
¬(x sharesσ b) =⇒ ¬(y sharesσ b) =⇒ x sharesσ(a on b) y = x sharesσ y
by(auto simp: share-transfer sharing-refl)

lemma transfer-share-trans:(a sharesσ x) =⇒ (x sharesσ(a on b) b)

by(auto simp: share-transfer sharing-refl sharing-sym)

lemma transfer-share-trans-sym:(a sharesσ y) =⇒ (b shares(σ(a on b)) y)

using transfer-share-trans sharing-sym by fast

lemma transfer-share-trans ′: (a shares(σ(a on b)) z) =⇒ (b shares(σ(a on b)) z)

using transfer-share sharing-sym sharing-trans by fast

lemma transfer-tri : x sharesσ (a on b) y =⇒ x sharesσ b ∨ b sharesσ y ∨ x
sharesσ y
by (metis sharing-sym transfer-share-charn)

lemma transfer-tri ′ : ¬ x sharesσ (a on b) y =⇒ y sharesσ b ∨ ¬ x sharesσ y
by (metis sharing-sym sharing-trans transfer-share-mono)

lemma transfer-dest ′ :
assumes 1 : a sharesσ (a on b) y
and 2 : b 6= y

shows a sharesσ y
using assms by(auto simp: share-transfer sharing-refl sharing-sym)

lemma transfer-dest :
assumes 1 : ¬(x sharesσ a)
and 2 : x 6= b
and 3 : x sharesσ b

shows ¬(x sharesσ (a on b) b)

using assms by(auto simp: share-transfer sharing-refl sharing-sym)

lemma transfer-dest ′′:x = b =⇒ y sharesσ a =⇒ x sharesσ(a on b) y
by (metis sharing-sym transfer-share-trans-sym)

thm share-transfer
transfer-share
transfer-share-sym

158

sharing-sym [THEN transfer-share-trans]

sharing-sym [THEN transfer-share-trans-sym]

transfer-share-trans ′

transfer-dest ′′
transfer-dest ′
transfer-tri ′
transfer-share-mono
transfer-tri
transfer-share-charn
transfer-dest

B.11 Properties on Memory Transfer and Lookup

lemma transfer-share-lookup1 : (σ(x on y)) $ x = σ $ x
using lookup-transfer-rep ′ transfer-rep-fst1
unfolding lookup-def transfer .rep-eq
by metis

lemma transfer-share-lookup2 :
(σ(x on y)) $ y = σ $ x

using transfer-rep-fst1
unfolding transfer .rep-eq lookup-def
by metis

lemma adde-not-share-lookup:
assumes 1 : ¬(x sharesσ z)
and 2 : ¬(y sharesσ z)
shows σ (x on y) $ z = σ $ z
using assms
unfolding sharing-def lookup-def transfer .rep-eq
using id-def sharing-def sharing-refl transfer-rep-fst2
by metis

lemma transfer-share-dom:
assumes 1 : z ∈ Domain σ
and 2 : ¬(y sharesσ z)
shows (σ(x on y)) $ z = σ $ z
using assms
unfolding Domain-def sharing-def lookup-def
using 2 transfer .rep-eq id-apply sharing-refl transfer-rep-fst2
by metis

lemma shares-result ′:
assumes 1 : (x sharesσ y)
shows σ $ x = σ $ y
using assms lookup-def shares-result
by metis

159

lemma transfer-share-cancel1 :
assumes 1 : (x sharesσ z)
shows (σ(x on y)) $ z = σ $ x
using 1 transfer .rep-eq transfer-share-trans lookup-def

transfer-rep-fst1 shares-result
by (metis)

B.12 Test on Sharing and Transfer via smt ...

lemma ∀ x y . x 6= y −→ ¬(x sharesσ y) =⇒
σ $ x > σ $ y =⇒ σ(3 on (4 ::nat))= σ ′ =⇒
σ ′′ = (σ ′(3 :=$ ((σ ′ $ 4) + 2))) =⇒
x 6= 3 =⇒ x 6= 4 =⇒ y 6= 3 =⇒ y 6= 4
=⇒ σ ′′ $ x > σ ′′ $ y

by (smt adde-not-share-lookup transfer-share-charn update-apply)

B.13 Instrumentation of the smt Solver

lemma transfer-share-charn-smt :
¬(i sharesσ k ′) ∧
¬(k sharesσ k ′) −→
i sharesσ(i ′ on k ′) k = i sharesσ k
using transfer-share-charn
by fast

lemma adde-not-share-lookup-smt :
¬(x sharesσ z)∧ ¬(y sharesσ z)−→ (σ (x on y) $ z) = (σ $ z)
using adde-not-share-lookup
by auto

lemma transfer-share-dom-smt :
z ∈ Domain σ ∧ ¬(y sharesσ z)−→ (σ(x on y)) $ z = σ $ z
using transfer-share-dom
by auto

lemma transfer-share-cancel1-smt :
(x sharesσ z)−→ (σ(x on y)) $ z = σ $ x
using transfer-share-cancel1
by auto

lemma lookup-update-rep ′′-smt :
x sharesσ y−→(σ (src :=$ dst)) $ x = (σ (src :=$ dst)) $ y
using lookup-update-rep ′′

by auto

theorem update-commute-smt :
¬ (x sharesσ x ′) −→ ((σ(x :=$ y))(x ′ :=$ z)) = (σ(x ′:=$ z)(x :=$ y))

160

using update-commute
by auto

theorem update-cancel-smt :
(x sharesσ x ′)−→ (σ(x :=$ y)(x ′ :=$ z)) = (σ(x ′ :=$ z))
using update-cancel
by auto

lemma update-other-smt :
¬(z sharesσ x)−→ (σ(x :=$ a) $ z) = σ $ z
using update-other
by auto

lemma update-share-smt :
(z sharesσ x) −→ (σ(x :=$ a) $ z) = a
using update-share
by auto

lemma update-idem-smt :
(x sharesσ y)∧ x ∈ Domain σ ∧ (σ $ x = z) −→ (σ(x :=$ z)) = σ
using update-idem
by fast

lemma update-triv-smt :
(x sharesσ y) ∧ y ∈ Domain σ −→ (σ (x :=$ (σ $ y))) = σ
using update-triv
by auto

lemma shares-result-smt :
x sharesσ y−→ σ $ x = σ $ y
using shares-result ′
by fast

lemma shares-dom-smt :
x sharesσ y −→ (x ∈ Domain σ) = (y ∈ Domain σ)
using shares-dom by fast

lemma sharing-sym-smt :
x sharesσ y−→y sharesσ x
using sharing-sym
by (auto)

lemma sharing-trans-smt :
x sharesσ y ∧ y sharesσ z −→ x sharesσ z
using sharing-trans

161

by(auto)

lemma nat-0-le-smt : 0 ≤ z −→ int (nat z) = z
by transfer clarsimp

lemma nat-le-0-smt : 0 > z −→ int (nat z) = 0
by transfer clarsimp

lemma transfer-share-trans-smt :
(x sharesσ z) −→(z sharesσ(x on y) y)

using transfer-share-trans
by fast

lemma transfer-share-mono-smt :
(x sharesσ y)∧ ¬(x sharesσ y ′)−→ (x sharesσ (x ′ on y ′) y)

using transfer-share-mono
by fast

lemma transfer-share-trans ′-smt :
(x shares(σ(x on y)) z)−→(y shares(σ(x on y)) z)

using transfer-share-trans ′

by fast

lemma transfer-share-old-new-trans-smt :
(x sharesσ z)−→(y shares(σ(x on y)) z)

using transfer-share-trans-sym
by fast

lemma transfer-share-old-new-trans1-smt :
a sharesσ b ∧ a sharesσ c −→
(c shares(σ (a on d)) b)

using transfer-share-trans-smt sharing-sym-smt sharing-trans-smt
by metis

lemma Domain-mono-smt :
x ∈ Domain σ ∧ (x sharesσ y)−→y ∈ Domain σ
using Domain-mono
by fast

lemma sharing-upd-smt : x shares(σ(a :=$ b)) y = x sharesσ y
using sharing-upd
by fast

162

lemma sharing-init-mem-list-smt :
i 6= k −→ ¬(i sharesinit-mem-list S k)
using sharing-init-mem-list
by fast

lemma mem1-smt :(σ(aonb) $ a) = (σ(aonb) $ b)
by (metis transfer-share-lookup1 transfer-share-lookup2)

B.14 Tools for the initialization of the memory

definition memory-fst-eq init :: int list ⇒ int list ⇒ (int , int)memory
where memory-fst-eq init ADD VAL =

(foldl (λ m (x , y). (m (x :=$y))) init (zip ADD VAL))

definition memory-snd-eq init :: int list ⇒ int list ⇒(int , int)memory ⇒(int ,
int)memory
where memory-snd-eq init SRC DST m =

(foldl (λm (x , y). (m (xony))) m (zip SRC DST))

definition memory-eq init :: int list ⇒ int list ⇒ int list ⇒(int , int)memory
where memory-eq init SRC VAL DST =

foldl (λ m (SRC , DST). memory-snd-eq init SRC DST m)
(memory-fst-eq init SRC VAL) [(SRC , DST)]

lemmas sharing-smt = sharing-refl transfer-share
sharing-commute nat-le-0-smt
nat-0-le-smt sharing-sym-smt
transfer-share-lookup1 transfer-share-lookup2
sharing-init-mem-list-smt sharing-upd-smt
shares-result-smt transfer-share-old-new-trans-smt
transfer-share-trans-smt mem1-smt
update-share-smt shares-dom-smt
Domain-mono-smt sharing-trans-smt
transfer-share-cancel1-smt transfer-share-trans ′-smt
update-apply update-other-smt
update-cancel-smt transfer-share-old-new-trans1-smt
lookup-update-rep ′′-smt update-triv-smt
transfer-share-mono-smt update-commute-smt
transfer-share-dom-smt adde-not-share-lookup-smt
update-idem-smt transfer-share-charn-smt

lemmas sharing-refl-smt = sharing-refl

163

B.15 An Intrastructure for Global Memory Spaces

Memory spaces are common concepts in Operating System (OS) design since
it is a major objective of OS kernels to separate logical, linear memory spaces
belonging to different processes (or in other terminologies such as PiKeOS:
tasks) from each other. We achieve this goal by modeling the adresses of
memory spaces as a pair of a subject (e.g. process or task, denominated by
a process-id or task-id) and a location (a conventional adress).

Our model is still generic - we do not impose a particular type for subjects or
locations (which could be modeled in a concrete context by an enumeration
type as well as integers of bitvector representations); for the latter, however,
we require that they are instances of the type class ′α assuring that there
is a minimum of infrastructure for address calculation: there must exist a
0 :: ′a-element, a distinct 1 :: ′a-element and an addition operation with the
usual properties.

fun initglobalmem :: ((′sub× ′loc::comm-semiring-1), ′β) memory
⇒ (′sub× ′loc) ⇒ ′β list
⇒ ((′sub× ′loc), ′β) memory (- |> - <| - [60 ,60 ,60] 70)

where σ |> start <| [] = σ
| σ |> (sub,loc) <| (a # S) = ((σ((sub,loc):=$ a)) |> (sub, loc+1)<| S)

lemma Domain-mem-init-Nil : Domain(σ |> start <| []) = Domain σ
by simp

Example

type-synonym task-id = int
type-synonym loc = int

type-synonym global-mem = ((task-id×loc), int)memory

definition σ0 :: global-mem
where σ0 ≡ init |> (0 ,0) <| [0 ,0 ,0 ,0]

|> (2 ,0) <| [0 ,0]
|> (4 ,0) <| [2 ,0]

lemma σ0-Domain: Domain σ0 = {(4 , 1), (4 , 0), (2 , 1), (2 , 0), (0 , 3), (0 , 2),
(0 , 1), (0 , 0)}
unfolding σ0-def
by(simp add : sharing-upd)

notation transfer (adde)
lemmas adde-def = transfer-def
lemmas adde-rep-eq = transfer .rep-eq
lemmas transfer-share-old-new-trans = transfer-share-trans-sym

164

lemmas sharing-commute-smt = sharing-commute
lemmas update-apply-smt = update-apply
lemmas transfer-share-lookup2-smt = transfer-share-lookup2
lemmas transfer-share-lookup1-smt = transfer-share-lookup1
lemmas transfer-share-smt = transfer-share

end

theory IPC-errors-type
imports ../TypeSchemes

../Memory/SharedMemoryNew

begin

B.16 Error codes datatype

C HOL representation of PikeOS IPC error codes

— error codes are returned if an IPC action is aborted, the error codes has the
following specificities:

• Must indicates which stage the error was occured.

• Each IPC stage has its own set of error codes

• Errors in the receiving stages does not affect sending stages

• Errors in sending stages affect receiving stages

We have another type of errors which is related to the different memory function-
ality.

— IPC errors
datatype error-IPC =

no-IPC-error
| error-IPC-4 — if an action is used in stepping function with the wrong stage
— errors of the SEND part of IPC

| error-IPC-21-in-PREP-SEND — IF the receiver is an OR
| error-IPC-22-in-PREP-SEND — IF the receiver is an CR and the sender is not
the one who can send msg to this receiver
| error-IPC-23-in-PREP-SEND — IF the receiver is an NR
| error-IPC-4-in-PREP-SEND— if an action is used in the wrong stage

| error-IPC-21-in-PREP-RECV — IF the receiver is an OR
| error-IPC-22-in-PREP-RECV — IF the receiver is an CR and the sender is not
the one who can send msg to this receiver
| error-IPC-23-in-PREP-RECV — IF the receiver is an NR
| error-IPC-4-in-PREP-RECV— if an action is used in the wrong stage

165

| error-IPC-1-in-WAIT-SEND — if the thread has no rights to communicate with
his partner
| error-IPC-2-in-WAIT-SEND — if the thread has no rights to access to this list
of virtual adresses
| error-IPC-3-in-WAIT-SEND — if the thread try to send an IPC msg to him self
| error-IPC-4-in-WAIT-SEND— if an action is used in the wrong stage
| error-IPC-5-in-WAIT-SEND — if the receiver dont exist in the list of threads in
the systeme
| error-IPC-6-in-WAIT-SEND — if the list of threads in the systeme is Nil
| error-IPC-7-in-WAIT-SEND — if the caller can not communicate with the re-
ceiver

|error-IPC-1-in-BUF-SEND — if the thread has no rights to access to this list of
virtual adresses

|error-IPC-1-in-BUF-RECV — if the thread has no rights to access to this list of
virtual adresses

| error-IPC-1-in-WAIT-RECV — if the thread has no rights to communicate with
his partner
| error-IPC-2-in-WAIT-RECV — if the thread has no rights to access to this list
of virtual adresses
| error-IPC-3-in-WAIT-RECV — if the thread try to send an IPC msg to him self
| error-IPC-4-in-WAIT-RECV— if an action is used in the wrong stage
| error-IPC-5-in-WAIT-RECV — if the receiver dont exist in the list of threads in
the systeme Go to Done stage
| error-IPC-6-in-WAIT-RECV — if the list of threads in the systeme is Nil
| error-IPC-7-in-WAIT-RECV — if the caller can not communicate with the re-
ceiver

— memory errors
datatype error-memory =
no-mem-error — no errors related to memory adresses
| not-valid-sender-addr-in-PREP-SEND — error related to the adresses of the
sender
| not-valid-receiver-addr-in-PREP-SEND — error related to the adresses of the
receiver
| not-valid-receiver-addr-in-PREP-RECV
| not-valid-sender-addr-in-PREP-RECV

— datatype that contain memory and IPC errors

datatype errors =
NO-ERRORS
| ERROR-MEM error-memory
| ERROR-IPC error-IPC

166

type-synonym error ipc = errors
end

theory IPC-thread-type
imports ../Memory/SharedMemoryNew

../TypeSchemes

begin

D HOL representation of PikeOS threads type

datatype thread-state = CURRENT | WAITING | READY | STOPPED | IN-
ACTIVE

In addition to the communication rights, the scope of IPC communication
can further constrained by the receiving thread.

• If thread initiates an OR operation, any threads having rights can send
msg to this thread.

• If thread initiates CR operation, it limits the IPC sending partner to
one specific thread.

• If thread initiates NR operation, no thread can send a message to this
thread.

datatype th-ipc-st =
OR — Open Receive
| CR — Close Receive
| NR — Nil Receive

datatype partitionenum =
part0 |part1 |part2

datatype taskenum =
task0 |task1 |task2

datatype threadenum =
th0 |th1 |th2

type-synonym thread id = (partitionenum ∗ taskenum ∗ threadenum)

type-synonym thread ipc = (thread id, thread-state, th-ipc-st , (int , int) memory
,thread id) thread

D.1 interface between thread and memory

definition update-th-smm-equiv

167

where update-th-smm-equiv th addr val = update (own-vmem-adr th) addr val

D.2 Relation between threads adresses and memory adresses

This section contains some predicate that defines relations between own
thread addresses and memory addresses those predicate will be used to define
some error codes related to own thread addresses.

— predicate that specify if this list of addresses are part of the addresses of the
memory

definition is-part-mem ::
(′a, ′b) memory ⇒ ′a ⇒ bool

where is-part-mem mem addr = (addr ∈ (dom o fst o Rep-memory) mem)

definition is-part-mem-th ::
(′c, ′d , ′e, (′a, ′b) memory , ′f , ′g) thread-scheme ⇒(′a, ′b) memory ⇒ ′a

⇒ bool
where is-part-mem-th th mem addr = (is-part-mem (own-vmem-adr th) addr −→
is-part-mem mem addr)

— predicate that specify if this list of addresses are part of the an other list of
addresses

definition is-part-addr-addr ::
(′a, ′b) memory ⇒ (′a, ′b) memory ⇒ ′a ⇒ bool

where is-part-addr-addr mem mem ′ addr= (is-part-mem mem ′ addr −→ is-part-mem
mem addr)

— This definition assures that a given list of addresses is part of list of addresses
of thread
definition is-part-addr-th ::

(′c, ′d , ′e, (′a, ′b) memory , ′f , ′g) thread-scheme ⇒ ′a ⇒ bool
where is-part-addr-th th addr = (is-part-mem (own-vmem-adr th) addr)

—This predicate assures that a given list of addresses is a part of memory addresses
and part of thread addresses and the thread addresses are part of the memory

definition is-part-addr-th-mem ::
(′c, ′d , ′e, (′a, ′b) memory , ′f , ′g) thread-scheme ⇒ (′a, ′b) memory ⇒

′a ⇒ bool
where is-part-addr-th-mem th mem ns = (is-part-addr-addr mem (own-vmem-adr
th) ns)

lemma [simp]:is-part-addr-th-mem th mem ns = is-part-mem-th th mem ns
unfolding is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def
by simp

168

D.3 Updating thread list in the state

— We will specify thread list inside our system by a partial function that takes a
thread id and returns thread informations

type-synonym (′th-id , ′th-info) thread-tab = ′th-id ⇀ ′th-info

fun thread-tab-update ::
(′th-id ⇀ ′th-info) ⇒ ′th-id ⇒ ′th-info ⇒ (′th-id ⇀ ′th-info)

where thread-tab-update th-tab th-id th-info = th-tab(th-id 7→ th-info)

— Invariant on updating thread table

fun update-th-waiting-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d , ′e) thread-scheme) ⇒ ′th-id ⇒ bool

where update-th-waiting-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = WAITING)

fun update-th-ready-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d , ′e) thread-scheme) ⇒ ′th-id ⇒ bool

where update-th-ready-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = READY)

fun update-th-current-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d , ′e) thread-scheme) ⇒ ′th-id ⇒ bool

where update-th-current-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = CURRENT)

fun update-th-stopped-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d , ′e) thread-scheme) ⇒ ′th-id ⇒ bool

where update-th-stopped-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = STOPPED)

— update functions for thread state

fun update-th-waiting
where update-th-waiting th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := WAITING |))

else th-tab)

fun update-th-ready
where update-th-ready th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := READY |))

else th-tab)

fun update-th-current
where update-th-current th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)

169

(|th-state := CURRENT |))
else th-tab)

fun update-th-stopped
where update-th-stopped th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := STOPPED |))

else th-tab)

D.4 Get thread by thread ID

— Function that find an element in the list under a given condition

primrec find :: (′a ⇒ bool) ⇒ ′a list ⇒ ′a option where
find - [] = None |
find P (x#xs) = (if P x then Some x else find P xs)

— A thread equality procedure ... 2 threads are equal if they have the same ID

definition thread-eq
where thread-eq th-id thread = (th-id = thread-id thread)

— An interface that let us to get a thread structure using the thread ID

definition get-thread-by-id
where get-thread-by-id th-id thl= find (thread-eq th-id) thl

end

theory IPC-state-model

imports IPC-errors-type IPC-thread-type

begin

E HOL representation of state type model for IPC

E.1 informations on threads

record (′thread-id , ′error) th-info =
act-info:: ′thread-id ⇀ ′error

record stateid = ((int , int)memory , thread id, (thread id, thread ipc) thread-tab,
(thread id⇒ thread id ⇒ bool),
(thread id⇒ (int , int)memory ⇒ bool), errors) kstate +
th-flag ::thread id ⇀ errors

170

E.2 Interface between IPC state and threads

— An interface that let us to get a thread structure using the thread ID inside a
state

definition get-thread-by-id ′

where get-thread-by-id ′ th-id σ = (thread-list (σ:: ′a stateid-scheme)) th-id

E.3 Interface between IPC state and memory model

definition upd-st-res-equiv
where upd-st-res-equiv σ msg = (update-th-smm-equiv (current-thread σ)
(resource σ) msg)

definition upd-st-res-equiv id

where upd-st-res-equiv id (σ::stateid) msg =
update-th-smm-equiv ((the o (get-thread-by-id ′ o current-thread) σ) σ) msg

((the o (fst o Rep-memory o resource) σ) msg)

abbreviation
update-state caller σ f error ≡ σ(|current-thread := caller ,

thread-list := f caller (thread-list σ),
error-codes := error |)

abbreviation
init-act-info caller partner σ ≡
σ(|th-flag := (th-flag σ) (caller := None, partner := None)|)

lemma fun-upd (fun-upd f x z) y z ′ = f (x :=z ,y :=z ′)
by auto

lemma
assumes 1 :x 6= y
and 2 : fun-upd f x z = g
shows g y = f y
using assms
by auto

lemma
assumes 1 :z 6= None
and 2 :fun-upd f x z = g
shows the z ∈ (ran g)
using assms
unfolding ran-def
by auto

end

theory IPC-actions-preconditions

171

imports IPC-state-model
begin

F HOL representation of IPC preconditions

F.1 IPC conditions on threads parameters

This definition assures thats the partener thread is an Open Receive thread.
If this condition is not satisfied when it is checked in a given IPC stage the
corresponding error code error-IPC-21-in-PREP-SEND is returned

definition IPC-params-c1 ::
(′a, ′b, th-ipc-st , ′c, ′d , ′e) thread-scheme ⇒ bool

where IPC-params-c1 th = (th-ipc-st th = OR)

lemma IPC-params-c1-direct1 [simp] :
IPC-params-c1 (|thread-id = a1, th-state = a2,th-ipc-st = OR, own-vmem-adr

= a3,cpartner = a4|)
by(simp add :IPC-params-c1-def)

lemma IPC-params-c1-direct2 [simp] :
¬IPC-params-c1 (|thread-id = a1, th-state = a2,th-ipc-st = CR, own-vmem-adr

= a3,cpartner = a4|)
by(simp add :IPC-params-c1-def)

lemma IPC-params-c1-direct3 [simp] :
¬IPC-params-c1 (|thread-id = a1, th-state = a2,th-ipc-st = NR, own-vmem-adr

= a3,cpartner = a4|)
by(simp add :IPC-params-c1-def)

the corresponding error code error-IPC-22-in-PREP-SEND is returned

definition IPC-params-c2 ::
(′a, ′b, th-ipc-st , ′c, ′d , ′e) thread-scheme ⇒ bool

where IPC-params-c2 th = (th-ipc-st th = CR)

the corresponding error code error-IPC-23-in-PREP-SEND is returned

definition IPC-params-c3 ::
(′a, ′b, th-ipc-st , ′c, ′d , ′e) thread-scheme ⇒ bool

where IPC-params-c3 th = (th-ipc-st th = NR)

definition IPC-params-c4
::thread id ⇒ thread id ⇒ bool

where IPC-params-c4 caller partner = (caller 6= partner)

definition IPC-params-c6
::thread id ⇒ (thread id,

′b, th-ipc-st , ′c, thread id,
′e) thread-scheme ⇒ bool

where IPC-params-c6 caller partner = (caller = cpartner partner)

172

definition IPC-params-c5
::thread id ⇒ ′a stateid-scheme ⇒ bool

where IPC-params-c5 caller σ = (caller ∈ (dom (thread-list σ)) ∧
(th-state o the)((thread-list σ) caller) 6= STOPPED)

F.2 IPC conditions on threads communication rights

definition IPC-sub-sub-sp
::thread id ⇒thread id ⇒ (thread id⇒thread id⇒ bool)⇒(thread id ⇀ thread ipc)⇒

bool
where IPC-sub-sub-sp caller partner rel thl = (reflp rel ∧ rel caller partner ∧

caller ∈ dom thl ∧ partner ∈ dom thl)

definition IPC-send-comm-check
::thread id ⇒thread id ⇒ (thread id⇒thread id⇒ bool)⇒(thread id ⇀ thread ipc)⇒

bool
where IPC-send-comm-check caller partner rel thl =

(IPC-sub-sub-sp caller partner rel thl ∧ IPC-params-c4 caller partner)

definition IPC-recv-comm-check
::thread id ⇒thread id ⇒ (thread id⇒thread id⇒ bool)⇒(thread id ⇀ thread ipc)⇒

bool
where IPC-recv-comm-check caller partner rel thl = IPC-sub-sub-sp caller
partner rel thl

F.3 IPC conditions on threads access rights

definition IPC-sub-obj-sp
where IPC-sub-obj-sp = undefined

definition IPC-buf-check
:: thread id ⇒thread id ⇒ (int , int) memory ⇒ (thread id ⇒ (int , int) memory

⇒bool)⇒
(thread id ⇀ thread ipc) ⇒bool

where IPC-buf-check caller partner mem rel thl =
(caller ∈ dom thl ∧ partner ∈ dom thl ∧
(dom o fst o Rep-memory)((own-vmem-adr o the o thl) caller) ⊆
((dom o fst o Rep-memory) mem) ∧ rel partner mem)

definition IPC-map-check
where IPC-map-check = undefined

F.4 interface between IPC Preconditions and IPC ′a state id-scheme

definition IPC-send-comm-check-st id
::thread id ⇒ thread id ⇒ ′a stateid-scheme⇒ bool

where IPC-send-comm-check-st id caller partner σ =

173

(IPC-sub-sub-sp caller partner (communication-rights σ) (thread-list σ)
∧

IPC-params-c4 caller partner)

definition IPC-recv-comm-check-st id
::thread id ⇒ thread id ⇒ ′a stateid-scheme⇒ bool

where IPC-recv-comm-check-st id caller partner σ =
IPC-sub-sub-sp caller partner (communication-rights σ) (thread-list σ)

definition IPC-buf-check-st id
::thread id ⇒ thread id ⇒ ′a stateid-scheme⇒ bool

where IPC-buf-check-st id caller partner σ =
IPC-buf-check caller partner (resource σ) (access-rights σ) (thread-list σ)

definition IPC-map-check-st id
where IPC-map-check-st id = undefined

end

theory IPC-atomic-actions
imports IPC-actions-preconditions ../../../../src/TestLib

begin

G HOL representation of PikeOS IPC atomic ac-
tions

G.1 Types instantiation

In order to model PikeOS IPC API atomic actions, we will instantiate types
of the parameters of a by other Isabelle datatypes as following:

datatype p4-stageipc =
PREP — checking file descriptor informations
| WAIT — synchronising
| BUF — MEM COPY
| MAP — MEM MAP
| DONE — IPC end

datatype (′thread-id , ′adresses)
p4-direct ipc =
SEND ′thread-id ′thread-id ′adresses
| RECV ′thread-id ′thread-id ′adresses

datatype (′thread-id , ′adresses) actionipc-simplified =
IPC-SEND ′thread-id ′thread-id ′adresses

174

| IPC-RECV ′thread-id ′thread-id ′adresses

To avoid the complexe representation of memory, we represent the memory
content as a list of integers and the adresses are natural numbers. An id
of the thread is represented by a tuple of natural numbers that specify, the
task and the partition that the thread belongs to. To use this abstraction
on PikeOS IPC API in our nvironment, we will just define a new type and
instantiate our free variables a and b by Isabelle natural numbers type as
follwing:

type-synonym p4-actionipc-simplified = (nat × nat × nat , nat list) actionipc-simplified

type-synonym ACTION ipc = (p4-stageipc, (thread id, int list) p4-direct ipc)
actionipc

type-synonym (′o, ′σ)MonSE = ′σ ⇀ (′o ∗ ′σ)

G.2 Atomic actions semantics

Actually, PikeOS IPC API provides 7 system calls. An execution of each
system call will split it to atomic actions. Those atomic actions are called
stages. In order to execute The p4_ipc_send call, the kernel will split it
into 4 stages:

1. PREP stage

2. WAIT stage

3. BUF stage

4. DONE stage

In addition of providing interruption points, the execution of those stages is
used to provide a security model to the IPC mechanism. In each stage and
during the execution a set of conditions will be checked by the kernel. If one
of the conditions is not satisfied, for example the communication security
policy is not respected, the kernel abort the call and return an error code.

G.3 Semantics of atomic actions with thread IDs as argu-
ments

lemma is-part-addr-th-mem a b c= is-part-mem-th a b c
unfolding is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def
by (simp)

definition PREP-SEND id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where PREP-SEND id σ act =

175

(case act of (IPC PREP (SEND caller partner msg)) ⇒
if list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg
then

if IPC-params-c1 ((the o thread-list σ) partner)
then σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |)

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |)

else
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |)

else σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |))

else σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |))

definition PREP-RECV id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where PREP-RECV id σ act = (

case act of (IPC PREP (RECV caller partner msg)) ⇒
if list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg

then
if IPC-params-c1 ((the o thread-list σ) partner)
then σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |)

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |)

else
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |)
else σ(|current-thread := caller ,

176

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |))

else σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |))

definition WAIT-SEND id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where WAIT-SEND id σ act =

(case act of (IPC WAIT (SEND caller partner msg)) ⇒
if ¬ IPC-send-comm-check-st id caller partner σ
then σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |)

else
if ¬ IPC-params-c4 caller partner
then σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |)

else
if ¬IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒
σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND |)

| Some th ⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND |))

else
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |))

definition WAIT-RECV id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where WAIT-RECV id σ act =

(case act of (IPC WAIT (RECV caller partner msg)) ⇒
if ¬ IPC-recv-comm-check-st id caller partner σ
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |)

else
if ¬ IPC-params-c4 caller partner
then σ(|current-thread := caller ,

177

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |)

else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV |)

| Some th ⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV |))

else
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |))

abbreviation
get-th-addrs th σ ≡ (∗thread adresses to be updated∗)
((sorted-list-of-set .F o Domain) ((own-vmem-adr o the o thread-list σ) th))

abbreviation
get-msg-values msg σ ≡ (∗the value of the addresses in a message∗)
(map ((the o (fst o Rep-memory) (resource σ))) msg)

definition BUF-SEND id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where BUF-SEND id σ act =

(case act of (IPC BUF (SEND caller partner msg)) ⇒
if ¬ IPC-buf-check-st id caller partner σ
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND |)

else
σ(|current-thread := caller ,
resource :=
foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller (update-th-ready partner (thread-list

σ)),
error-codes := NO-ERRORS |)

(∗if a BUF op is execute this means that there are no errors
in check stages∗))

definition BUF-RECV id

178

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where BUF-RECV id σ act =

(case act of (IPC BUF (RECV caller partner msg)) ⇒
if ¬ IPC-buf-check-st id caller partner σ
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |)

else
σ(|current-thread := caller ,

resource :=
foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))

definition MAP-SEND id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where MAP-SEND id σ act =

(case act of (IPC MAP (SEND caller partner msg)) ⇒
σ(|current-thread := caller ,

resource :=foldl (λm (src,dst). (m (src on dst))) (resource σ)
(zip msg (get-th-addrs partner σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |)
(∗if a MAP op is execute this means that BUF was executed without

errors∗))

definition MAP-RECV id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where MAP-RECV id σ act =

(case act of (IPC MAP (RECV caller partner msg)) ⇒
σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs caller σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |)
(∗if a MAP op is execute this means that BUF was executed without

errors∗))

179

definition DONE-SEND id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where DONE-SEND id σ act = σ

definition DONE-RECV id

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where DONE-RECV id σ act = σ

G.4 Semantics of atomic actions based on monads

fun PREP-SENDMON :: ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where

PREP-SENDMON (IPC PREP (SEND caller partner msg)) σ =
(if list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg

then
if list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg
then
if IPC-params-c1 ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),

error-codes := NO-ERRORS |))
else

unitSE (ERROR-IPC error-IPC-22-in-PREP-SEND)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |))

else unitSE (ERROR-IPC error-IPC-23-in-PREP-SEND)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |)))

else unitSE (ERROR-MEM not-valid-receiver-addr-in-PREP-SEND)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-SEND |))

else unitSE (ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
(σ(|current-thread := caller ,

180

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |)))

(∗hyÃĺpothese: all other atomic actions have no purge∗)
| PREP-SENDMON a σ = unitSE (error-codes σ) σ

fun PREP-RECVMON :: ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where
PREP-RECVMON (IPC PREP (RECV caller partner msg)) σ =
(if list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg

then
if list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg
then
if IPC-params-c1 ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

else
(if IPC-params-c2 ((the o thread-list σ) partner)

then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),

error-codes := NO-ERRORS |))
else
unitSE (ERROR-IPC error-IPC-22-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |))
else
unitSE (ERROR-IPC error-IPC-23-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)))

else
unitSE (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |))
else
unitSE (ERROR-MEM not-valid-sender-addr-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

181

error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-RECV |)))

(∗hyÃĺpothese: all other atomic actions have no purge∗)

| PREP-RECVMON a σ = unitSE (error-codes σ) σ

funWAIT-SENDMON :: ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where

WAIT-SENDMON (IPC WAIT (SEND caller partner msg)) σ =
(if ¬ IPC-send-comm-check-st id caller partner σ
then unitSE (ERROR-IPC error-IPC-1-in-WAIT-SEND)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |))

else
if ¬ IPC-params-c4 caller partner
then unitSE (ERROR-IPC error-IPC-3-in-WAIT-SEND)

(σ (|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |))

else
if ¬IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒
unitSE (ERROR-IPC error-IPC-6-in-WAIT-SEND)
(σ (|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND |))

| Some th ⇒ unitSE (ERROR-IPC error-IPC-5-in-WAIT-SEND)
(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND |)))

else
unitSE (NO-ERRORS) (σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |)))

| WAIT-SENDMON a σ = unitSE (error-codes σ) σ

funWAIT-RECVMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where WAIT-RECVMON (IPC WAIT (RECV caller partner msg)) σ =

(if ¬ IPC-recv-comm-check-st id caller partner σ
then unitSE (ERROR-IPC error-IPC-1-in-WAIT-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |))

else

182

if ¬ IPC-params-c4 caller partner
then unitSE (ERROR-IPC error-IPC-3-in-WAIT-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |))

else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒

unitSE (ERROR-IPC error-IPC-6-in-WAIT-RECV)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV |))

| Some th ⇒ unitSE (ERROR-IPC error-IPC-5-in-WAIT-RECV)
(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list

σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV |)))

else
unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |)))

| WAIT-RECVMON a σ = unitSE (error-codes σ) σ

fun BUF-SENDMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where
BUF-SENDMON (IPC BUF (SEND caller partner msg)) σ =

(if ¬ IPC-buf-check-st id caller partner σ
then unitSE (ERROR-IPC error-IPC-1-in-BUF-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |))

else
unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
resource := update-list (resource σ)

(zip ((sorted-list-of-set .F o dom o fst o
Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource

σ))) msg)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

183

error-codes := NO-ERRORS |)))
| BUF-SENDMON a σ = unitSE (error-codes σ) σ

fun BUF-RECVMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where
BUF-RECVMON (IPC BUF (RECV caller partner msg)) σ =

(if ¬ IPC-buf-check-st id caller partner σ
then
unitSE (ERROR-IPC error-IPC-1-in-BUF-RECV)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |))

else
unitSE (NO-ERRORS)
(σ(|current-thread := caller ,

resource := update-list (resource σ)
(zip ((sorted-list-of-set .F o dom o fst o

Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ)))

msg)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |)))
| BUF-RECVMON a σ = unitSE (error-codes σ) σ

funMAP-SENDMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where MAP-SENDMON (IPC MAP (SEND caller partner msg)) σ =

unitSE (NO-ERRORS) (σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (src on dst)))

(resource σ)
(zip msg (get-th-addrs partner σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
| MAP-SENDMON a σ = unitSE (error-codes σ) σ

funMAP-RECVMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where MAP-RECVMON (IPC MAP (SEND caller partner msg)) σ =

unitSE (NO-ERRORS)
(σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

184

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
| MAP-RECVMON a σ = unitSE (error-codes σ) σ

fun DONE-SENDMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where DONE-SENDMON a σ = unitSE (error-codes σ) σ

fun DONE-RECVMON ::ACTION ipc ⇒ ′a stateid-scheme ⇒ (errors ∗ ′a stateid-scheme)
option
where DONE-RECVMON a σ = unitSE (error-codes σ) σ

definition IPC-protocol a =
(out1 ← PREP-SENDMON a ; (out2 ← PREP-RECVMON a ; (out3 ←

WAIT-SENDMON a ;
(out4 ←WAIT-RECVMON a; (out5 ← BUF-SENDMON a; (out6 ← BUF-RECVMON

a ;
(out7 ←DONE-SENDMON a ; DONE-RECVMON a)))))))

G.5 Execution function for PikeOS IPC atomic actions with
thread IDs as arguments

fun exec-actionid

:: ′a stateid-scheme ⇒ ACTION ipc ⇒ ′a stateid-scheme
where
PREP-SEND-run ′:exec-actionid σ (IPC PREP (SEND caller partner msg)) =

PREP-SEND id σ (IPC PREP (SEND caller partner msg))|

PREP-RECV-run ′:exec-actionid σ (IPC PREP (RECV caller partner msg)) =
PREP-RECV id σ (IPC PREP (RECV caller partner msg))|

WAIT-SEND-run ′:exec-actionid σ (IPC WAIT (SEND caller partner msg)) =
WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))|

WAIT-RECV-run ′:exec-actionid σ (IPC WAIT (RECV caller partner msg)) =
WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))|

BUF-SEND-run ′ :exec-actionid σ (IPC BUF (SEND caller partner msg)) =
BUF-SEND id σ (IPC BUF (SEND caller partner msg)) |

BUF-RECV-run ′ :exec-actionid σ (IPC BUF (RECV caller partner msg)) =
BUF-RECV id σ (IPC BUF (RECV caller partner msg)) |

MAP-SEND-run ′ :exec-actionid σ (IPC MAP (SEND caller partner msg)) =
MAP-SEND id σ (IPC MAP (SEND caller partner msg)) |

MAP-RECV-run ′ :exec-actionid σ (IPC MAP (RECV caller partner msg)) =

185

MAP-RECV id σ (IPC MAP (RECV caller partner msg))
|

DONE-SEND-run ′ :exec-actionid σ (IPC DONE (SEND caller partner msg)) =
σ |

DONE-RECV-run ′ :exec-actionid σ (IPC DONE (RECV caller partner msg)) =
σ

G.6 Predicates on atomic actions

Different cases of send action

definition actions-send-cases a caller partner msg =(a = IPC PREP (SEND caller
partner msg) ∨

a = IPC WAIT (SEND caller partner
msg) ∨

a = IPC BUF (SEND caller partner
msg) ∨

a = IPC DONE (SEND caller partner
msg))

Different cases of receive action

definition actions-receiv-cases a caller partner msg =(a = IPC PREP (RECV
caller partner msg) ∨

a = IPC WAIT (RECV caller partner
msg) ∨

a = IPC BUF (RECV caller partner
msg) ∨

a = IPC DONE (RECV caller partner
msg))

A comparison procedure between actions. Used to indentify actions that can
reply to an aborted system call.

definition actioneq-op a a ′ = (case a of
(IPC PREP (SEND caller partner msg)) ⇒

(actions-receiv-cases a ′ partner caller msg)
| (IPC PREP (RECV caller partner msg)) ⇒

(actions-send-cases a ′ partner caller msg)
| (IPC WAIT (SEND caller partner msg)) ⇒

(actions-receiv-cases a ′ partner caller msg)
| (IPC WAIT (RECV caller partner msg)) ⇒

(actions-send-cases a ′ partner caller msg)
| (IPC BUF (SEND caller partner msg)) ⇒

(actions-receiv-cases a ′ partner caller msg)
| (IPC BUF (RECV caller partner msg)) ⇒

(actions-send-cases a ′ partner caller msg)
| (IPC DONE (SEND caller partner msg)) ⇒

(actions-receiv-cases a ′ partner caller msg)

186

| (IPC DONE (RECV caller partner msg)) ⇒
(actions-send-cases a ′ partner caller msg)

)

A comparison procedure between actions. Used to indentify actions that will
be aborted.

definition actioneq a a ′ = (case a of
(IPC PREP (SEND caller partner msg)) ⇒

(actions-send-cases a ′ caller partner msg)
| (IPC PREP (RECV caller partner msg)) ⇒

(actions-receiv-cases a ′ caller partner msg)
| (IPC WAIT (SEND caller partner msg)) ⇒

(actions-send-cases a ′ caller partner msg)
| (IPC WAIT (RECV caller partner msg)) ⇒

(actions-receiv-cases a ′ caller partner msg)
| (IPC BUF (SEND caller partner msg)) ⇒

(actions-send-cases a ′ caller partner msg)
| (IPC BUF (RECV caller partner msg)) ⇒

(actions-receiv-cases a ′ caller partner msg)
| (IPC DONE (SEND caller partner msg)) ⇒

(actions-send-cases a ′ caller partner msg)
| (IPC DONE (RECV caller partner msg)) ⇒

(actions-receiv-cases a ′ caller partner msg)
)

G.7 Lemmas and simplification rules related to atomic ac-
tions

lemma mem-inv1 [simp]:
resource (exec-actionid σ (IPC WAIT (SEND caller partener msg))) = resource

σ
apply (auto simp : WAIT-SEND id-def)
apply (cases thread-list σ caller ,auto)
done

lemma mem-inv2 [simp]:
resource (exec-actionid σ (IPC WAIT (RECV caller partener msg))) = resource

σ
apply (auto simp : WAIT-RECV id-def)
apply (cases thread-list σ caller ,auto)
done

lemma mem-inv3 [simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) = resource

σ
by (auto simp : PREP-RECV id-def)

lemma mem-inv4 [simp]:

187

resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) = resource
σ
by (auto simp : PREP-SEND id-def)

lemma mem-inv5 [simp]:
resource (exec-actionid σ (IPC BUF (RECV caller partner msg))) =
(if ¬ IPC-buf-check-st id caller partner σ
then resource σ
else foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)))
by (auto simp : BUF-RECV id-def)

lemma mem-inv5-E :
assumes 1 : σ ′ = resource (exec-actionid σ (IPC BUF (RECV caller partner

msg)))
and 2 : ¬ IPC-buf-check-st id caller partner σ =⇒ σ ′ = resource σ =⇒ Q
and 3 : IPC-buf-check-st id caller partner σ =⇒

σ ′ = foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs caller σ) (get-msg-values msg σ)) =⇒ Q

shows Q
proof −
show ?thesis
using 1 unfolding mem-inv5
proof (cases ¬ IPC-buf-check-st id caller partner σ)
case True
show ?thesis
using True 1 unfolding mem-inv5
by (simp, elim 2)

next
case False
show ?thesis
using False 1 unfolding mem-inv5
by (simp, elim 3 , simp)

qed
qed

lemma mem-inv6 [simp]:
resource (exec-actionid σ (IPC BUF (SEND caller partner msg))) =
(if ¬ IPC-buf-check-st id caller partner σ
then resource σ
else foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)))
by (auto simp :BUF-SEND id-def)

lemma mem-inv6-E :
assumes 1 : σ ′ = resource (exec-actionid σ (IPC BUF (SEND caller partner

msg)))
and 2 : ¬ IPC-buf-check-st id caller partner σ =⇒ σ ′ = resource σ =⇒ Q
and 3 : IPC-buf-check-st id caller partner σ =⇒

188

σ ′ = foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs partner σ) (get-msg-values msg σ)) =⇒ Q

shows Q
proof −
show ?thesis
using 1 unfolding mem-inv5
proof (cases ¬ IPC-buf-check-st id caller partner σ)
case True
show ?thesis
using True 1 unfolding mem-inv6
by (simp, elim 2)

next
case False
show ?thesis
using False 1 unfolding mem-inv6
by (simp, elim 3 , simp)

qed
qed

lemma mem-inv7 [simp]:
resource (exec-actionid σ (IPC DONE (SEND caller partener msg))) = resource

σ
by simp

lemma mem-inv8 [simp]:
resource (exec-actionid σ (IPC DONE (RECV caller partener msg))) = resource

σ
by simp

lemma mem-inv9 [simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC PREP(RECV caller partener msg)))

unfolding mem-inv3 mem-inv4
by simp

lemma mem-inv10 [simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC WAIT (SEND caller partener msg)))

unfolding mem-inv4 mem-inv1
by simp

lemma mem-inv11 [simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC WAIT (RECV caller partener msg)))

unfolding mem-inv2 mem-inv4
by simp

lemma mem-inv12 [simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =

189

resource (exec-actionid σ (IPC DONE (SEND caller partener msg)))
unfolding mem-inv4
by simp

lemma mem-inv13 [simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE (RECV caller partener msg)))

unfolding mem-inv4
by simp

lemma mem-inv14 [simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) =
resource (exec-actionid σ (IPC WAIT (SEND caller partener msg)))

unfolding mem-inv3 mem-inv1
by simp

lemma mem-inv15 [simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) =
resource (exec-actionid σ (IPC WAIT (RECV caller partener msg)))

unfolding mem-inv2 mem-inv3
by simp

lemma mem-inv16 [simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) =
resource (exec-actionid σ (IPC DONE (SEND caller partener msg)))

unfolding mem-inv3
by simp

lemma mem-inv17 [simp]:
resource (exec-actionid σ (IPC WAIT (SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE (RECV caller partener msg)))

unfolding mem-inv1
by simp

lemma mem-inv18 [simp]:
resource (exec-actionid σ (IPC WAIT (SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE (SEND caller partener msg)))

unfolding mem-inv1
by simp

lemma mem-inv19 [simp]:
resource (exec-actionid σ (IPC WAIT (RECV caller partener msg))) =
resource (exec-actionid σ (IPC DONE (SEND caller partener msg)))

unfolding mem-inv2
by simp

lemma mem-inv20 [simp]:
resource (exec-actionid σ (IPC WAIT (RECV caller partener msg))) =

190

resource (exec-actionid σ (IPC DONE (RECV caller partener msg)))
unfolding mem-inv2
by simp

lemma mem-inv21 [simp]:
resource (exec-actionid σ (IPC DONE (SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE (RECV caller partener msg)))

by simp

G.8 Composition equality on same action

For the general case the order of the executions of PikeOS matter iff executed
on the same action, because the semantics of the execution related to each
action is separated

lemma sem-comp-prep-send1 :
(out1 ← PREP-SENDMON a ; PREP-RECVMON a) = (out1 ← PREP-RECVMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send2 :
(out1 ← PREP-SENDMON a ; WAIT-SENDMON a) = (out1 ←WAIT-SENDMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send3 :
(out1 ← PREP-SENDMON a ; WAIT-RECVMON a) = (out1 ←WAIT-RECVMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send4 :
(out1 ← PREP-SENDMON a ; BUF-SENDMON a) = (out1 ← BUF-SENDMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def ,
rule p4-direct ipc.induct , simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send5 :
(out1 ← PREP-SENDMON a ; BUF-RECVMON a) = (out1 ← BUF-RECVMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def ,
rule p4-direct ipc.induct , simp-all add : unit-SE-def bind-SE-def split :option.split)

191

lemma sem-comp-prep-send6 :
(out1 ← PREP-SENDMON a ; MAP-SENDMON a) = (out1 ←MAP-SENDMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def ,
rule p4-direct ipc.induct , simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send7 :
(out1 ← PREP-SENDMON a ; MAP-RECVMON a) = (out1 ←MAP-RECVMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def ,
rule p4-direct ipc.induct , simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send8 :
(out1 ← PREP-SENDMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send9 :
(out1 ← PREP-SENDMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv2 :
(out1 ← PREP-RECVMON a ; WAIT-SENDMON a) = (out1 ←WAIT-SENDMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv3 :
(out1 ← PREP-RECVMON a ; WAIT-RECVMON a) = (out1 ←WAIT-RECVMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv4 :
(out1 ← PREP-RECVMON a ; BUF-SENDMON a) = (out1 ← BUF-SENDMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

192

lemma sem-comp-prep-recv5 :
(out1 ← PREP-RECVMON a ; BUF-RECVMON a) = (out1 ← BUF-RECVMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv6 :
(out1 ← PREP-RECVMON a ; MAP-SENDMON a) = (out1 ←MAP-SENDMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv7 :
(out1 ← PREP-RECVMON a ; MAP-RECVMON a) = (out1 ←MAP-RECVMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv8 :
(out1 ← PREP-RECVMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv9 :
(out1 ← PREP-RECVMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send4 :
(out1 ←WAIT-SENDMON a ; BUF-SENDMON a) = (out1 ← BUF-SENDMON

a ; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send5 :
(out1 ←WAIT-SENDMON a ; BUF-RECVMON a) = (out1 ← BUF-RECVMON

a ; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

193

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send6 :
(out1 ←WAIT-SENDMON a ; MAP-SENDMON a) = (out1 ←MAP-SENDMON

a ; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send7 :
(out1 ←WAIT-SENDMON a ;MAP-RECVMON a) = (out1 ←MAP-RECVMON

a ; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send8 :
(out1 ←WAIT-SENDMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send9 :
(out1 ←WAIT-SENDMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv4 :
(out1 ←WAIT-RECVMON a ; BUF-SENDMON a) = (out1 ← BUF-SENDMON

a ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv5 :

194

(out1 ←WAIT-RECVMON a ; BUF-RECVMON a) = (out1 ← BUF-RECVMON

a ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv6 :
(out1 ←WAIT-RECVMON a ; MAP-SENDMON a) = (out1 ←MAP-SENDMON

a ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv7 :
(out1 ←WAIT-RECVMON a ; MAP-RECVMON a) = (out1 ←MAP-RECVMON

a ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv8 :
(out1 ←WAIT-RECVMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv9 :
(out1 ←WAIT-RECVMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-send6 :
(out1 ← BUF-SENDMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; BUF-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

195

lemma sem-comp-buf-send7 :
(out1 ← BUF-SENDMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a; BUF-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-send8 :
(out1 ← BUF-SENDMON a ; MAP-SENDMON a) = (out1 ←MAP-SENDMON

a ; BUF-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-send9 :
(out1 ← BUF-SENDMON a ; MAP-RECVMON a) = (out1 ←MAP-RECVMON

a ; BUF-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-recv6 :
(out1 ← BUF-RECVMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; BUF-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-recv7 :
(out1 ← BUF-RECVMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a ; BUF-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-recv8 :
(out1 ← BUF-RECVMON a ; MAP-SENDMON a) = (out1 ←MAP-SENDMON

a ; BUF-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

196

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-recv9 :
(out1 ← BUF-RECVMON a ; MAP-RECVMON a) = (out1 ←MAP-RECVMON

a ; BUF-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-send6 :
(out1 ←MAP-SENDMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

a ; MAP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-send7 :
(out1 ←MAP-SENDMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a ; MAP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-send8 :
(out1 ←MAP-SENDMON a ; BUF-SENDMON a) = (out1 ← BUF-SENDMON

a ; MAP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-send9 :
(out1 ←MAP-SENDMON a ; BUF-RECVMON a) = (out1 ← BUF-RECVMON

a ; MAP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-recv6 :
(out1 ←MAP-RECVMON a ; DONE-SENDMON a) = (out1 ← DONE-SENDMON

197

a ; MAP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-recv7 :
(out1 ←MAP-RECVMON a ; DONE-RECVMON a) = (out1 ← DONE-RECVMON

a ; MAP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

G.9 Composition equality on different same actions: partial
order reduction

For the specific case of IPC protocol the order of the executions of PikeOS
does matter iff executed on different actions, because the semantics of the
execution related to each action can react in some cases on the same field
of the state, eg: the field related to erro codes... So the switch between
the execution order related to IPC actions can be done but under some
assumptions and only for a subset of actions

lemma sem-comp-prep-send10 :
(out1 ← PREP-SENDMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-send11 :
(out1 ← PREP-SENDMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b ; PREP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv10 :
(out1 ← PREP-RECVMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-prep-recv11 :
(out1 ← PREP-RECVMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b ; PREP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def split :option.split)

198

term (resource o snd o the) ((out1 ← WAIT-SENDMON a ; WAIT-RECVMON

b) σ)

lemma WAIT-SENDMON -None: WAIT-SENDMON (IPC WAIT a) σ 6= None
by (induct a, auto simp add : unit-SE-def split :option.split)

lemma WAIT-RECVMON -None: WAIT-RECVMON (IPC WAIT a) σ 6= None
by (induct a, auto simp add : unit-SE-def split :option.split)

lemma sem-comp-wait-send10 :
(out1 ←WAIT-SENDMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-send11 :
(out1 ←WAIT-SENDMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b; WAIT-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv10 :
(out1 ←WAIT-RECVMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-wait-recv11 :
(out1 ←WAIT-RECVMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b ; WAIT-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-send10 :
(out1 ← BUF-SENDMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; BUF-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

199

lemma sem-comp-buf-send11 :
(out1 ← BUF-SENDMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b; BUF-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-recv10 :
(out1 ← BUF-RECVMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; BUF-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-buf-recv11 :
(out1 ← BUF-RECVMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b ; BUF-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-send10 :
(out1 ←MAP-SENDMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; MAP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-send11 :
(out1 ←MAP-SENDMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b ; MAP-SENDMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

lemma sem-comp-map-recv8 :
(out1 ←MAP-RECVMON a ; DONE-SENDMON b) = (out1 ← DONE-SENDMON

b ; MAP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

200

lemma sem-comp-map-recv9 :
(out1 ←MAP-RECVMON a ; DONE-RECVMON b) = (out1 ← DONE-RECVMON

b ; MAP-RECVMON a)
by (rule ext , induct a, rule p4-stageipc.induct , rule p4-direct ipc.induct ,

simp-all add : unit-SE-def bind-SE-def , rule p4-direct ipc.induct ,
simp-all add : unit-SE-def bind-SE-def split :option.split)

end

theory IPC-traces

imports IPC-atomic-actions

begin

H HOL representation of PikeOS IPC traces

type-synonym traceipc = ACTION ipc list

H.1 Execution function for PikeOS IPC traces

definition exec-actionid-Mon
where exec-actionid-Mon = (λactl st . Some (error-codes(exec-actionid st actl),

exec-actionid st actl))

H.2 Trace refinement

H.3 Execution function for actions with thread ID

lemma (((th-flag σ) caller) = None) = (caller /∈dom (th-flag σ))
by auto

lemma
assumes caller ∈dom (th-flag σ)
shows the((th-flag σ) caller) ∈ ran (th-flag σ)
using assms
by (auto simp: ranI)

abbreviation
get-caller-error caller σ ≡ (the o(th-flag) σ) caller

abbreviation
remove-caller-error caller σ ≡ σ(|th-flag := (th-flag σ) (caller := None)

|)

abbreviation

201

set-caller-partner-error caller partner σ σ ′ out ′ ≡
σ ′(|th-flag := (th-flag σ)

(caller := Some(out ′(∗just (a,out ′)?∗)),
partner := Some (out ′(∗just (a,out ′)?∗)))

|)

abbreviation
error-tab-transfer caller σ σ ′ ≡ σ ′(|th-flag := (th-flag σ)|)

abbreviation
set-no-error-preps caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ NO-ERRORS)|)

abbreviation
set-no-error-waits caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ NO-ERRORS)|)

abbreviation
set-no-error-bufs caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ NO-ERRORS)|)

abbreviation
set-no-error-dones caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ NO-ERRORS)|)

abbreviation
set-no-error-prepr caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ NO-ERRORS)|)

abbreviation
set-no-error-waitr caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ NO-ERRORS)|)

abbreviation
set-no-error-bufr caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→NO-ERRORS)|)

abbreviation
set-no-error-doner caller partner σ σ ′ msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ NO-ERRORS)|)

abbreviation
set-error-mem-preps caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-waits caller partner σ σ ′ error-mem msg ≡

202

σ ′ (|stateid.th-flag := stateid.th-flag σ
(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-bufs caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-maps caller partner σ σ ′ error-mem msg ≡
σ ′ (|th-flag :=th-flag σ (caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-dones caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-prepr caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-waitr caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-bufr caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-mapr caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-mem-doner caller partner σ σ ′ error-mem msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)

abbreviation
set-error-ipc-preps caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)
abbreviation

203

set-error-ipc-waits caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)

abbreviation
set-error-ipc-bufs caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)
abbreviation
set-error-ipc-maps caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)
abbreviation
set-error-ipc-dones caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)

abbreviation
set-error-ipc-prepr caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ (caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)
abbreviation
set-error-ipc-waitr caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)

abbreviation
set-error-ipc-bufr caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)
abbreviation
set-error-ipc-mapr caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)
abbreviation
set-error-ipc-doner caller partner σ σ ′ error-ipc msg ≡
σ ′ (|stateid.th-flag := stateid.th-flag σ(caller 7→ ERROR-IPC error-ipc,

partner 7→ ERROR-IPC error-ipc)|)

fun abort lif t :: (ACTION ipc ⇒ (errors, ′a stateid-scheme)MonSE) ⇒
(ACTION ipc ⇒ (errors, ′a stateid-scheme)MonSE)

where abort lif t ioprog a σ =
(case a of

(IPC DONE (SEND caller partner msg)) ⇒
if caller ∈ dom (th-flag σ) (∗should add the condition: in which action

ID
the error occurs∗)

then Some((the((th-flag σ) caller))(∗shoud be: my error∗),

204

σ(|th-flag := (th-flag σ)(caller := None)
|))

else (case ioprog a σ of
None ⇒ None (∗never happens in our exec fun∗)
| Some(out ′, σ ′) ⇒ Some(NO-ERRORS , σ)) (∗execute done∗)

| (IPC DONE (RECV caller partner msg)) ⇒
if caller ∈ dom (th-flag σ)
then Some((the((th-flag σ) caller))(∗shoud be: my error∗),

σ(|th-flag := (th-flag σ) (caller := None)|))
else (case ioprog a σ of

None ⇒ None (∗never happens in our exec fun∗)
| Some(out ′, σ ′) ⇒ Some(NO-ERRORS , σ)) (∗execute done∗)

| (IPC - (SEND caller partner msg)) ⇒
if caller ∈ dom (th-flag σ)
then Some(get-caller-error caller σ(∗should be: my error∗), σ) (∗ purge

∗)
else (case ioprog a σ of

None ⇒ None (∗never happens in our exec fun∗)
| Some(NO-ERRORS , σ ′) ⇒ Some(NO-ERRORS , error-tab-transfer

caller σ σ ′)
| Some(ERROR-MEM error-memory , σ ′) ⇒

Some(ERROR-MEM error-memory ,
set-caller-partner-error caller partner σ σ ′ (ERROR-MEM

error-memory))
| Some(ERROR-IPC error-IPC , σ ′) ⇒

Some(ERROR-IPC error-IPC ,
set-caller-partner-error caller partner σ σ ′ (ERROR-IPC

error-IPC)))
(∗both caller and partner were ′informed ′ to be in error−state.∗)

| (IPC - (RECV caller partner msg)) ⇒
if caller ∈ dom (th-flag σ)

then Some(get-caller-error caller σ (∗should be: my error∗), σ) (∗purge∗)

else (case ioprog a σ of
None ⇒ None (∗never happens in our exec fun∗)

| Some(NO-ERRORS , σ ′) ⇒ Some(NO-ERRORS , error-tab-transfer
caller σ σ ′)

| Some(ERROR-MEM error-memory , σ ′) ⇒
Some(ERROR-MEM error-memory ,

set-caller-partner-error caller partner σ σ ′ (ERROR-MEM
error-memory))

| Some(ERROR-IPC error-IPC , σ ′) ⇒
Some(ERROR-IPC error-IPC ,

set-caller-partner-error caller partner σ σ ′ (ERROR-IPC
error-IPC)))

(∗both caller and partner were ′informed ′ to be in error−state.∗)

(∗hypothese: all other atomic actions have no purge∗)
)

205

lemma exec-actionid-Mon-th-flag0 :
a = IPC ipc-stage (ipc-direction) =⇒ ipc-stage 6= DONE =⇒
exec-actionid-Mon a σ = Some (NO-ERRORS ,σ ′) =⇒ th-flag σ = th-flag σ ′

unfolding exec-actionid-Mon-def
apply auto
apply (cases ipc-stage)
apply (case-tac ipc-direction)
apply simp-all
unfolding PREP-SEND id-def PREP-RECV id-def
apply simp-all
apply (case-tac ipc-direction)
apply simp-all
unfolding WAIT-SEND id-def
apply simp-all
apply safe
apply (case-tac thread-list σ (a, aa, b))
apply simp-all
unfolding WAIT-RECV id-def
apply simp-all
apply safe
apply simp-all
apply (case-tac thread-list σ (a, aa, b))
apply simp-all
apply (case-tac ipc-direction)
apply simp-all
unfolding BUF-SEND id-def
apply simp-all
unfolding BUF-RECV id-def
apply simp-all
apply (cases ipc-direction)
apply (simp-all add : MAP-SEND id-def MAP-RECV id-def)
done

H.4 IPC operations with thread ID

We define an operation as a trace with a given order on atomic actions.
For the IPC API we will define two types of operations, we call the first
type request and the second type reply. Following this terminology a given
PikeOS thread can request to communicate with another thread or reply
to a communication request. The Isabelle specification of operations is as

206

following:

definition ipc-send-request id
:: thread id⇒ int list⇒ thread id⇒ traceipc ((- Bid - Bid/ -) [201 , 0 , 201]

200)
where

caller Bid msg Bid partner ≡ [IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg)]

definition ipc-recv-request id
:: thread id⇒ int list⇒ thread id⇒ traceipc ((- Cid - Cid/ -) [201 , 0 , 201]

200)
where

caller Cid msg Cid partner ≡ [IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg)]

— A thread can do response operation to sending or receiving message response

definition ipc-send-responseid
::thread id⇒ int list⇒ thread id⇒ traceipc ((- Did - Did/ -) [201 , 0 , 201]

200)
where

caller Did msg Did partner ≡ [IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC DONE (RECV partner caller msg)]

definition ipc-recv-responseid
::thread id⇒ int list⇒ thread id⇒ traceipc ((- Eid - Eid/ -) [201 , 0 , 201]

200)
where

caller Eid msg Eid partner ≡ [IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC DONE (SEND partner caller msg),
IPC DONE (RECV caller partner msg)]

lemmas request-normalizer =
ipc-send-responseid-def ipc-recv-responseid-def ipc-send-request id-def ipc-recv-request id-def

H.5 IPC operations with free variables

abbreviation ipc-send-request ((- B - B/ -) [201 , 0 , 201] 200)
where caller B msg B partner ≡ [IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg)]

abbreviation ipc-recv-request ((- C - C/ -) [201 , 0 , 201] 200)
where caller C msg C partner ≡ [IPC PREP (RECV caller partner msg),

IPC WAIT (RECV caller partner msg)]

207

abbreviation ipc-send-response ((- D - D/ -) [201 , 0 , 201] 200)
where caller D msg D partner ≡ [IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC DONE (RECV partner caller msg)]

abbreviation ipc-recv-response ((- E - E/ -) [201 , 0 , 201] 200)
where

caller E msg E partner ≡ [IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (SEND partner caller msg),
IPC DONE (RECV caller partner msg)]

H.6 Pridicates on operations

definition is-ipc-trace
where is-ipc-trace actl = (∀ a∈set(actl ::traceipc).∃ caller partner msg .

a = IPC PREP (RECV caller partner msg)∨
a = IPC WAIT (RECV caller partner msg)∨
a = IPC BUF (RECV caller partner msg)∨
a = IPC DONE (RECV caller partner msg)∨
a = IPC PREP (SEND caller partner msg)∨
a = IPC WAIT (SEND caller partner msg)∨
a = IPC BUF (SEND caller partner msg)∨
a = IPC DONE (SEND caller partner msg))

definition is-ipc-traceid
where is-ipc-traceid actl = (∀ a∈set(actl ::traceipc).∃ caller partner msg .

a = IPC PREP (RECV caller partner msg)∨
a = IPC WAIT (RECV caller partner msg)∨
a = IPC BUF (RECV caller partner msg)∨
a = IPC DONE (RECV caller partner msg)∨
a = IPC PREP (SEND caller partner msg)∨
a = IPC WAIT (SEND caller partner msg)∨
a = IPC BUF (SEND caller partner msg)∨
a = IPC DONE (SEND caller partner msg))

H.7 Simplification rules related to traces

lemma prep-send-comp-mbind-eq2 :
mbind is (λa. (out1 ← PREP-SENDMON a ; PREP-RECVMON a)) σ =
mbind is (λa. (out1 ← PREP-RECVMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send1)

lemma prep-send-comp-mbind-eq3 :

208

mbind is (λa. (out1 ← PREP-SENDMON a ; WAIT-SENDMON a)) σ =
mbind is (λa. (out1 ← WAIT-SENDMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send2)

lemma prep-send-comp-mbind-eq4 :
mbind is (λa. (out1 ← PREP-SENDMON a ; WAIT-RECVMON a)) σ =
mbind is (λa. (out1 ← WAIT-RECVMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send3)

lemma prep-send-comp-mbind-eq5 :
mbind is (λa. (out1 ← PREP-SENDMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1 ← BUF-SENDMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send4)

lemma prep-send-comp-mbind-eq6 :
mbind is (λa. (out1 ← PREP-SENDMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1 ← BUF-RECVMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send5)

lemma prep-send-comp-mbind-eq7 :
mbind is (λa. (out1 ← PREP-SENDMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1 ← MAP-SENDMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send6)

lemma prep-send-comp-mbind-eq8 :
mbind is (λa. (out1 ← PREP-SENDMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1 ← MAP-RECVMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send7)

lemma prep-send-comp-mbind-eq9 :
mbind is (λa. (out1 ← PREP-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send8)

lemma prep-send-comp-mbind-eq10 :
mbind is (λa. (out1 ← PREP-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; PREP-SENDMON a)) σ

by (simp only : sem-comp-prep-send9)

lemma prep-recv-comp-mbind-eq1 :
mbind is (λa. (out1 ← PREP-RECVMON a ; WAIT-SENDMON a)) σ =
mbind is (λa. (out1 ← WAIT-SENDMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv2)

lemma prep-recv-comp-mbind-eq2 :
mbind is (λa. (out1 ← PREP-RECVMON a ; WAIT-RECVMON a)) σ =
mbind is (λa. (out1 ← WAIT-RECVMON a ; PREP-RECVMON a)) σ

209

by (simp only : sem-comp-prep-recv3)

lemma prep-recv-comp-mbind-eq3 :
mbind is (λa. (out1 ← PREP-RECVMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1 ← BUF-SENDMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv4)

lemma prep-recv-comp-mbind-eq4 :
mbind is (λa. (out1 ← PREP-RECVMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1 ← BUF-RECVMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv5)

lemma prep-recv-comp-mbind-eq5 :
mbind is (λa. (out1 ← PREP-RECVMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1 ← MAP-SENDMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv6)

lemma prep-recv-comp-mbind-eq6 :
mbind is (λa. (out1 ← PREP-RECVMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1 ← MAP-RECVMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv7)

lemma prep-recv-comp-mbind-eq7 :
mbind is (λa. (out1 ← PREP-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv8)

lemma prep-recv-comp-mbind-eq8 :
mbind is (λa. (out1 ← PREP-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; PREP-RECVMON a)) σ

by (simp only : sem-comp-prep-recv9)

lemma wait-send-comp-mbind-eq1 :
mbind is (λa. (out1 ← WAIT-SENDMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1 ← BUF-SENDMON a ; WAIT-SENDMON a)) σ

by (simp only : sem-comp-wait-send4)

lemma wait-send-comp-mbind-eq2 :
mbind is (λa. (out1 ← WAIT-SENDMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1 ← BUF-RECVMON a ; WAIT-SENDMON a)) σ

by (simp only : sem-comp-wait-send5)

lemma wait-send-comp-mbind-eq3 :
mbind is (λa. (out1 ← WAIT-SENDMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1 ← MAP-SENDMON a ; WAIT-SENDMON a)) σ

by (simp only : sem-comp-wait-send6)

210

lemma wait-send-comp-mbind-eq4 :
mbind is (λa. (out1 ← WAIT-SENDMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1 ← MAP-RECVMON a ; WAIT-SENDMON a)) σ

by (simp only : sem-comp-wait-send7)

lemma wait-send-comp-mbind-eq5 :
mbind is (λa. (out1 ← WAIT-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; WAIT-SENDMON a)) σ

by (simp only : sem-comp-wait-send8)

lemma wait-send-comp-mbind-eq6 :
mbind is (λa. (out1 ← WAIT-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; WAIT-SENDMON a)) σ

by (simp only : sem-comp-wait-send9)

lemma wait-recv-comp-mbind-eq1 :
mbind is (λa. (out1 ← WAIT-RECVMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1 ← BUF-SENDMON a ; WAIT-RECVMON a)) σ

by (simp only : sem-comp-wait-recv4)

lemma wait-recv-comp-mbind-eq2 :
mbind is (λa. (out1 ← WAIT-RECVMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1 ← BUF-RECVMON a ; WAIT-RECVMON a)) σ

by (simp only : sem-comp-wait-recv5)

lemma wait-recv-comp-mbind-eq3 :
mbind is (λa. (out1 ← WAIT-RECVMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1 ← MAP-SENDMON a ; WAIT-RECVMON a)) σ

by (simp only : sem-comp-wait-recv6)

lemma wait-recv-comp-mbind-eq4 :
mbind is (λa. (out1 ← WAIT-RECVMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1 ← MAP-RECVMON a ; WAIT-RECVMON a)) σ

by (simp only : sem-comp-wait-recv7)

lemma wait-recv-comp-mbind-eq5 :
mbind is (λa. (out1 ← WAIT-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; WAIT-RECVMON a)) σ

by (simp only : sem-comp-wait-recv8)

lemma wait-recv-comp-mbind-eq6 :
mbind is (λa. (out1 ← WAIT-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; WAIT-RECVMON a)) σ

by (simp only : sem-comp-wait-recv9)

211

lemma buf-send-comp-mbind-eq1 :
mbind is (λa. (out1 ← BUF-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; BUF-SENDMON a)) σ

by (simp only : sem-comp-buf-send6)

lemma buf-send-comp-mbind-eq2 :
mbind is (λa. (out1 ← BUF-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; BUF-SENDMON a)) σ

by (simp only : sem-comp-buf-send7)

lemma buf-send-comp-mbind-eq3 :
mbind is (λa. (out1 ← BUF-SENDMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1 ← MAP-SENDMON a ; BUF-SENDMON a)) σ

by (simp only : sem-comp-buf-send8)

lemma buf-send-comp-mbind-eq4 :
mbind is (λa. (out1 ← BUF-SENDMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1 ← MAP-RECVMON a ; BUF-SENDMON a)) σ

by (simp only : sem-comp-buf-send9)

lemma map-send-comp-mbind-eq1 :
mbind is (λa. (out1 ← MAP-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; MAP-SENDMON a)) σ

by (simp only : sem-comp-map-send6)

lemma map-send-comp-mbind-eq2 :
mbind is (λa. (out1 ← MAP-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; MAP-SENDMON a)) σ

by (simp only : sem-comp-map-send7)

lemma buf-recv-comp-mbind-eq1 :
mbind is (λa. (out1 ← BUF-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; BUF-RECVMON a)) σ

by (simp only : sem-comp-buf-recv6)

lemma buf-recv-comp-mbind-eq2 :
mbind is (λa. (out1 ← BUF-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; BUF-RECVMON a)) σ

by (simp only : sem-comp-buf-recv7)

lemma buf-recv-comp-mbind-eq3 :
mbind is (λa. (out1 ← BUF-RECVMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1 ← MAP-SENDMON a ; BUF-RECVMON a)) σ

212

by (simp only : sem-comp-buf-recv8)

lemma buf-recv-comp-mbind-eq4 :
mbind is (λa. (out1 ← BUF-RECVMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1 ← MAP-RECVMON a ; BUF-RECVMON a)) σ

by (simp only : sem-comp-buf-recv9)

lemma map-recv-comp-mbind-eq1 :
mbind is (λa. (out1 ← MAP-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1 ← DONE-SENDMON a ; MAP-RECVMON a)) σ

by (simp only : sem-comp-map-recv6)

lemma map-recv-comp-mbind-eq2 :
mbind is (λa. (out1 ← MAP-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1 ← DONE-RECVMON a ; MAP-RECVMON a)) σ

by (simp only : sem-comp-map-recv7)

end

theory IPC-step-normalizer

imports IPC-traces

begin

I IPC Stepping Function and Traces

definition
exec-actionid-Mon-prep-fact0 caller partner σ msg =
(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)

definition
exec-actionid-Mon-prep-fact1 caller partner σ =

(¬IPC-params-c1 ((the o thread-list σ) partner) −→
(IPC-params-c2 ((the o thread-list σ) partner) ∧
IPC-params-c6 caller ((the o thread-list σ) partner)))

definition
exec-actionid-Mon-prep-fact2 caller partner σ =
(¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner)∧
¬IPC-params-c6 caller ((the o thread-list σ) partner))

definition
exec-actionid-Mon-prep-send-fact3 caller error-mem σ msg =
(¬(list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg)
∧

213

error-mem = not-valid-sender-addr-in-PREP-SEND)

definition
exec-actionid-Mon-prep-send-fact4 caller partner error-mem σ msg =
((list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg)

∧
¬(list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg) ∧
error-mem = not-valid-receiver-addr-in-PREP-SEND)

definition
exec-actionid-Mon-prep-recv-fact3 caller error-mem σ msg =
(¬(list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg)

∧
error-mem = not-valid-sender-addr-in-PREP-RECV)

definition
exec-actionid-Mon-prep-recv-fact4 caller partner error-mem σ msg =

((list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg)
∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg)
∧

error-mem = not-valid-receiver-addr-in-PREP-RECV)

definition
exec-actionid-Mon-prep-fact5 caller partner σ =

(¬IPC-params-c1 ((the o thread-list σ) partner)∨
(IPC-params-c2 ((the o thread-list σ) partner)∧
IPC-params-c4 caller partner) ∧
IPC-params-c3 ((the o thread-list σ) partner))

definition
exec-actionid-Mon-prep-fact6 caller partner σ =

(¬IPC-params-c1 ((the o thread-list σ) partner)∨
(IPC-params-c2 ((the o thread-list σ) partner)∧
IPC-params-c4 caller partner) ∧
¬IPC-params-c3 ((the o thread-list σ) partner))

definition
exec-actionid-Mon-prep-fact7 caller partner σ =

(¬IPC-params-c1 ((the o thread-list σ) partner)∨
(IPC-params-c2 ((the o thread-list σ) partner)∧
IPC-params-c4 caller partner))

I.1 Simplification rules related to the stepping function exec-action id-Mon

lemma exec-actionid-Mon-mbind-obvious:∧
σ S . mbind S (abort lif t exec-actionid-Mon) σ 6= None

unfolding exec-actionid-Mon-def
by simp

214

lemma exec-actionid-Mon-mbind-obvious ′:
(case mbind S (abort lif t exec-actionid-Mon) σ of

None ⇒ Some ([get-caller-error caller σ], σ)
| Some (outs, σ ′′) ⇒ a) = a

proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
by simp

qed

lemma exec-actionid-Mon-all-obvious1 :
∀ a σ.∃ errors σ ′. exec-actionid-Mon a σ = Some (errors, σ ′)
by (auto, rule actionipc.induct , auto simp:exec-actionid-Mon-def)

Simplification rules on PREP action

lemma exec-actionid-Mon-prep-send-obvious0 :∧
σ. exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-prep-send-obvious1 :
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ) =

(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then Some (NO-ERRORS ,

σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

else
if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then Some (NO-ERRORS ,

σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),

error-codes := NO-ERRORS |))
else

215

Some(ERROR-IPC error-IPC-22-in-PREP-SEND ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |))

else Some (ERROR-IPC error-IPC-23-in-PREP-SEND ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |))

else Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |)))
by (simp add : exec-actionid-Mon-def PREP-SEND id-def)

lemma exec-actionid-Mon-prep-send-obvious2 :
(fst o the)(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ) =

(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then NO-ERRORS
else
(if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then NO-ERRORS
else

ERROR-IPC error-IPC-22-in-PREP-SEND
else ERROR-IPC error-IPC-23-in-PREP-SEND)

else ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
by (simp add :exec-actionid-Mon-def PREP-SEND id-def)

lemma exec-actionid-Mon-prep-send-obvious3 :
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)) =

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ)

by (auto simp add : exec-actionid-Mon-def PREP-SEND id-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split : errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-send-obvious4 :
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM

216

error-mem, σ ′)) =
((σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |)∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-mem = not-valid-sender-addr-in-PREP-SEND))

by (auto simp add : exec-actionid-Mon-def PREP-SEND id-def
split : errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-send-obvious5 :
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′)) =
((σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬ IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-SEND) ∨

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬ IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-SEND))

by (auto simp add : exec-actionid-Mon-def PREP-SEND id-def exec-actionid-Mon-prep-fact2-def
exec-actionid-Mon-prep-fact0-def

split : errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-recv-obvious0 :
∀σ. exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-prep-recv-obvious1 :
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ) =
(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then Some(NO-ERRORS ,

σ(|current-thread := caller ,

217

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then Some(NO-ERRORS ,

σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

else
Some(ERROR-IPC error-IPC-22-in-PREP-RECV ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |))
else Some(ERROR-IPC error-IPC-23-in-PREP-RECV ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)))

else Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |)))
by(simp add : exec-actionid-Mon-def PREP-RECV id-def)

lemma exec-actionid-Mon-prep-recv-obvious2 :
fst(the(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ)) =
(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then NO-ERRORS
else
(if IPC-params-c2 ((the o thread-list σ) partner)
then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then NO-ERRORS
else
ERROR-IPC error-IPC-22-in-PREP-RECV

else ERROR-IPC error-IPC-23-in-PREP-RECV)
else ERROR-MEM not-valid-receiver-addr-in-PREP-RECV)

unfolding exec-actionid-Mon-def
by (simp add : exec-actionid-Mon-def PREP-RECV id-def)

lemma exec-actionid-Mon-prep-recv-obvious3 :
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

218

σ ′)) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg∧
exec-actionid-Mon-prep-fact1 caller partner σ)

by (auto simp add : exec-actionid-Mon-def PREP-RECV id-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def

split : errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-recv-obvious4 :
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′)) =
((σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |)∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-mem = not-valid-receiver-addr-in-PREP-RECV))

by (auto simp add : exec-actionid-Mon-def PREP-RECV id-def
split : errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-recv-obvious5 :
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′)) =
((σ ′=σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-RECV) ∨

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬ IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-RECV))

by (auto simp add : exec-actionid-Mon-def PREP-RECV id-def exec-actionid-Mon-prep-fact2-def
exec-actionid-Mon-prep-fact0-def

split : errors.split split-if split-if-asm)

Simplification rules on WAIT action

lemma exec-actionid-Mon-wait-send-obvious0 :∧
σ. exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def

219

by simp

definition
exec-actionid-Mon-wait-send-upd caller σ =
(case (thread-list σ) caller of None ⇒
σ (|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND |)

| Some th ⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND |))

lemma exec-actionid-Mon-wait-send-obvious1 :
(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ) =

(if ¬ IPC-send-comm-check-st id caller partner σ
then Some(ERROR-IPC error-IPC-1-in-WAIT-SEND ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |))

else
if ¬ IPC-params-c4 caller partner
then Some(ERROR-IPC error-IPC-3-in-WAIT-SEND ,

σ (|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |)

)
else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒

Some (ERROR-IPC error-IPC-6-in-WAIT-SEND ,
σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND |))

| Some th ⇒ Some (ERROR-IPC error-IPC-5-in-WAIT-SEND ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND |)))

else
Some(NO-ERRORS ,

σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |)))

by (simp add : exec-actionid-Mon-def WAIT-SEND id-def list .induct split : op-
tion.split)

220

lemma exec-actionid-Mon-wait-send-obvious2 :
fst (the(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ)) =

(if ¬ IPC-send-comm-check-st id caller partner σ
then ERROR-IPC error-IPC-1-in-WAIT-SEND
else
if ¬ IPC-params-c4 caller partner
then ERROR-IPC error-IPC-3-in-WAIT-SEND
else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒

ERROR-IPC error-IPC-6-in-WAIT-SEND
| Some th ⇒ ERROR-IPC error-IPC-5-in-WAIT-SEND)

else
NO-ERRORS)

by (simp add : exec-actionid-Mon-def WAIT-SEND id-def list .induct
split : option.split)

lemma exec-actionid-Mon-wait-send-obvious3 :
(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)) =

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

IPC-send-comm-check-st id caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ)

by (auto simp add : exec-actionid-Mon-def WAIT-SEND id-def split : option.split-asm)

definition
update-state-wait-send-params5 σ caller =

(case (thread-list σ) caller of None ⇒
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND |)
| Some th ⇒ σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND |))

definition
update-state-wait-recv-params5 σ caller =

(case (thread-list σ) caller of None ⇒
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV |)
| Some th ⇒ σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV |))

221

lemma exec-actionid-Mon-wait-send-obvious4 :
(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′)) =
((¬ IPC-send-comm-check-st id caller partner σ −→

σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |) ∧

error-IPC = error-IPC-1-in-WAIT-SEND) ∧
(IPC-send-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |) ∧

error-IPC = error-IPC-3-in-WAIT-SEND) ∧
(IPC-params-c4 caller partner −→

((¬ IPC-params-c5 partner σ −→
σ ′= update-state-wait-send-params5 σ caller ∧

error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC
error-IPC) ∧

¬ IPC-params-c5 partner σ)))))
by (auto simp add : update-state-wait-send-params5-def exec-actionid-Mon-def

WAIT-SEND id-def
split : split-if-asm option.split-asm)

lemma exec-actionid-Mon-wait-recv-obvious0 :∧
σ. exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-wait-recv-obvious1 :
(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ) =
(if ¬ IPC-recv-comm-check-st id caller partner σ
then Some(ERROR-IPC error-IPC-1-in-WAIT-RECV ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |))

else
if ¬ IPC-params-c4 caller partner
then Some(ERROR-IPC error-IPC-3-in-WAIT-RECV ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |))

else

222

if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒

Some(ERROR-IPC error-IPC-6-in-WAIT-RECV ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV |))

| Some th ⇒ Some(ERROR-IPC error-IPC-5-in-WAIT-RECV ,
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV |)))

else
Some(NO-ERRORS ,

σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |)))

by (simp add : exec-actionid-Mon-def WAIT-RECV id-def list .induct split : op-
tion.split)

lemma exec-actionid-Mon-wait-recv-obvious2 :
fst(the(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ)) =
(if ¬ IPC-recv-comm-check-st id caller partner σ
then ERROR-IPC error-IPC-1-in-WAIT-RECV
else
if ¬ IPC-params-c4 caller partner
then ERROR-IPC error-IPC-3-in-WAIT-RECV
else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None ⇒

ERROR-IPC error-IPC-6-in-WAIT-RECV
| Some th ⇒ ERROR-IPC error-IPC-5-in-WAIT-RECV)

else
NO-ERRORS)

by (simp add : exec-actionid-Mon-def WAIT-RECV id-def list .induct split : op-
tion.split)

lemma exec-actionid-Mon-wait-recv-obvious3 :
(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)) =

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

IPC-recv-comm-check-st id caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ)

223

by (auto simp add : exec-actionid-Mon-def WAIT-RECV id-def split : list .split-asm)

lemma exec-actionid-Mon-wait-recv-obvious4 :
(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′)) =
((¬ IPC-recv-comm-check-st id caller partner σ −→

σ ′=σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |) ∧

error-IPC = error-IPC-1-in-WAIT-RECV) ∧
(IPC-recv-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |) ∧

error-IPC = error-IPC-3-in-WAIT-RECV) ∧
(IPC-params-c4 caller partner −→

((¬ IPC-params-c5 partner σ −→
σ ′= update-state-wait-recv-params5 σ caller ∧

error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC)
∧

¬ IPC-params-c5 partner σ)))))
by (auto simp add : update-state-wait-recv-params5-def exec-actionid-Mon-def

WAIT-RECV id-def
split : split-if-asm list .split-asm)

Simplification rules on BUF action

lemma exec-actionid-Mon-buf-send-obvious0 :∧
σ. exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-buf-send-obvious1 :
(exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ) =
(if ¬ IPC-buf-check-st id caller partner σ
then Some (ERROR-IPC error-IPC-1-in-BUF-SEND ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND |))

else
Some(NO-ERRORS ,

σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

224

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |)))
by (simp add : exec-actionid-Mon-def BUF-SEND id-def)

lemma exec-actionid-Mon-buf-send-obvious2 :
fst (the(exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ)) =

(if ¬ IPC-buf-check-st id caller partner σ
then ERROR-IPC error-IPC-1-in-BUF-SEND
else NO-ERRORS)

by (simp add : exec-actionid-Mon-def BUF-SEND id-def)

lemma exec-actionid-Mon-buf-send-obvious3 :
(exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some(error , σ ′))

=
((¬ IPC-buf-check-st id caller partner σ −→

σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND |) ∧

error = ERROR-IPC error-IPC-1-in-BUF-SEND) ∧
((IPC-buf-check-st id caller partner σ −→

(σ ′ = σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS)) ∨

(IPC-buf-check-st id caller partner σ −→
(msg = [] ∧
σ ′ = σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS))))

by (auto simp add : exec-actionid-Mon-def BUF-SEND id-def)

lemma exec-actionid-Mon-buf-recv-obvious0 :
∀σ. exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ 6= None
unfolding exec-actionid-Mon-def
by simp

225

lemma exec-actionid-Mon-buf-recv-obvious1 :
(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ) =
(if ¬ IPC-buf-check-st id caller partner σ
then Some (ERROR-IPC error-IPC-1-in-BUF-RECV ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |))

else
Some(NO-ERRORS ,

(σ(|current-thread := caller ,
resource :=foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))))
by (simp add : exec-actionid-Mon-def BUF-RECV id-def)

lemma exec-actionid-Mon-buf-recv-obvious2 :
fst(the(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ)) =
(if ¬ IPC-buf-check-st id caller partner σ
then ERROR-IPC error-IPC-1-in-BUF-RECV
else NO-ERRORS)

by (simp add : exec-actionid-Mon-def BUF-RECV id-def)

lemma exec-actionid-Mon-buf-recv-obvious3 :
(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some(error ,

σ ′)) =
((¬ IPC-buf-check-st id caller partner σ −→

σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |) ∧

error = ERROR-IPC error-IPC-1-in-BUF-RECV) ∧
((IPC-buf-check-st id caller partner σ −→
(σ ′ = σ(|current-thread := caller ,

resource :=
foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS)) ∨

(IPC-buf-check-st id caller partner σ −→

226

(msg = [] ∧
σ ′ = σ(|current-thread := caller ,

resource :=resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS))))

by (auto simp add : exec-actionid-Mon-def BUF-RECV id-def)

Simplification rules on MAP action

lemma exec-actionid-Mon-map-send-obvious0 :∧
σ. exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-map-send-obvious1 :
(exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ) =
Some(NO-ERRORS ,

σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs partner σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (simp add : exec-actionid-Mon-def MAP-SEND id-def)

lemma exec-actionid-Mon-map-send-obvious2 :
fst (the(exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ)) = NO-ERRORS
by (simp add : exec-actionid-Mon-def MAP-SEND id-def)

lemma exec-actionid-Mon-map-send-obvious3 :
(exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ = Some(error ,

σ ′)) =
((σ ′ = σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs partner σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS) ∨
(msg = [] ∧

227

σ ′ = σ(|current-thread := caller ,
resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS))

by (auto simp add : exec-actionid-Mon-def MAP-SEND id-def)

lemma exec-actionid-Mon-map-recv-obvious0 :∧
σ. exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-map-recv-obvious1 :
(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ) =
Some(NO-ERRORS ,

σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (simp add : exec-actionid-Mon-def MAP-RECV id-def)

lemma exec-actionid-Mon-map-recv-obvious2 :
fst (the(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ)) = NO-ERRORS
by (simp add : exec-actionid-Mon-def MAP-RECV id-def)

lemma exec-actionid-Mon-map-recv-obvious3 :
(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ = Some(error ,

σ ′)) =
((σ ′ = σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs caller σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS) ∨

(msg = [] ∧
σ ′ = σ(|current-thread := caller ,

resource := (resource σ),

228

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) ∧
error =NO-ERRORS))

by (auto simp add : exec-actionid-Mon-def MAP-RECV id-def)

Simplification rules on DONE action

lemma exec-actionid-Mon-done-send-obvious0 :
∀σ. exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ 6= None
unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-send-obvious1 :
(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ) =
Some(error-codes σ, σ)

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-send-obvious2 :
fst (the(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ)) =
error-codes σ

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-send-obvious3 :
(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ = Some(error ,

σ ′)) =
(σ ′= σ ∧ error-codes σ = error)
by (auto simp add : exec-actionid-Mon-def)

lemma exec-actionid-Mon-done-recv-obvious0 :∧
σ. exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-recv-obvious1 :
(exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ) =
Some(error-codes σ, σ)
unfolding exec-actionid-Mon-def

229

by simp

lemma exec-actionid-Mon-done-recv-obvious2 :
fst(the(exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ)) =
error-codes σ

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-recv-obvious3 :
(exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ = Some(error ,

σ ′)) =
(σ ′= σ ∧ error-codes σ = error)
by (auto simp add : exec-actionid-Mon-def)

lemma exec-actionid-Mon-act-info-obvious0 :
(exec-actionid-Mon a σ = Some(error , σ ′)) =⇒
(stateid.th-flag σ = stateid.th-flag σ ′)
unfolding exec-actionid-Mon-def
by (auto, rule actionipc.induct , rule p4-stageipc.induct ,rule p4-direct ipc.induct ,
auto, rule actionipc.induct , simp-all , rule p4-stageipc.induct , rule p4-direct ipc.induct ,
auto simp: PREP-SEND id-def PREP-RECV id-def ,rule p4-direct ipc.induct ,

auto,
simp add : WAIT-SEND id-def split : option.split , simp add : WAIT-RECV id-def

split : option.split ,
rule p4-direct ipc.induct , auto simp add : BUF-SEND id-def BUF-RECV id-def ,

rule p4-direct ipc.induct ,auto simp add : MAP-SEND id-def MAP-RECV id-def ,

rule p4-direct ipc.induct , auto)

lemma exec-actionid-Mon-act-info-obvious0 ′:
(exec-actionid-Mon a σ = Some(error , σ ′)) =
(stateid.th-flag σ = stateid.th-flag σ ′ ∧ error-codes (exec-actionid σ a) = error

∧
exec-actionid σ a = σ ′)
unfolding exec-actionid-Mon-def
by (auto, rule actionipc.induct , rule p4-stageipc.induct ,rule p4-direct ipc.induct ,
auto, rule actionipc.induct , simp-all , rule p4-stageipc.induct , rule p4-direct ipc.induct ,
auto simp: PREP-SEND id-def PREP-RECV id-def ,rule p4-direct ipc.induct ,

auto,
simp add : WAIT-SEND id-def split : option.split , simp add : WAIT-RECV id-def

split : option.split ,
rule p4-direct ipc.induct , auto simp add : BUF-SEND id-def BUF-RECV id-def ,

230

rule p4-direct ipc.induct ,auto simp add : MAP-SEND id-def MAP-RECV id-def ,

rule p4-direct ipc.induct , auto)

lemma exec-actionid-Mon-act-info-obvious1 :
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(error ,

σ ′) =⇒
(stateid.th-flag σ) caller = (stateid.th-flag σ ′) caller

by (auto simp:exec-actionid-Mon-def PREP-RECV id-def)

lemma exec-actionid-Mon-act-info-obvious2 :
(stateid.th-flag σ) caller =

(th-flag(snd(the(exec-actionid-Mon (IPC PREP (RECV caller partner msg))
σ)))) caller

unfolding exec-actionid-Mon-def
by (simp add : PREP-RECV id-def)

lemma exec-errors-obvious0 : (exec-actionid-Mon a σ) = Some (NO-ERRORS ,σ ′)
=⇒

error-codes σ ′ = NO-ERRORS
by (auto simp only : exec-actionid-Mon-def prod .inject the.simps)

lemma exec-errors-obvious1 : (exec-actionid-Mon a σ) = Some (NO-ERRORS ,σ ′)
=⇒

error-codes σ ′ 6= ERROR-MEM error-mem
by (auto simp only : exec-actionid-Mon-def prod .inject the.simps)

lemma exec-errors-obvious2 : (exec-actionid-Mon a σ) = Some (NO-ERRORS ,σ ′)
=⇒

error-codes σ ′ 6= ERROR-IPC error-ipc
by (auto simp only : exec-actionid-Mon-def prod .inject the.simps)

lemmas step-normalizer-None =
exec-actionid-Mon-prep-send-obvious0 exec-actionid-Mon-prep-recv-obvious0
exec-actionid-Mon-wait-send-obvious0 exec-actionid-Mon-wait-recv-obvious0
exec-actionid-Mon-buf-send-obvious0 exec-actionid-Mon-buf-recv-obvious0
exec-actionid-Mon-done-send-obvious0 exec-actionid-Mon-done-recv-obvious0

lemmas step-normalizer-Some = exec-actionid-Mon-act-info-obvious0 ′

end

theory IPC-atomic-action-normalizer

imports IPC-step-normalizer

begin

231

J Atomic Actions Reasoning

J.1 Symbolic Execution Rules of Atomic Actions

lemma prep-send-obvious:
(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =σ ′) =
(((σ ′ = σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ))∨

((¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
∧

σ ′ =σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |)))∨

((σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner)) ∨

(σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner))))

by (auto simp add : PREP-SEND id-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def
exec-actionid-Mon-prep-fact2-def)

lemma wait-send-obvious:
(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)) = σ ′) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

IPC-send-comm-check-st id caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ) ∨

((¬ IPC-send-comm-check-st id caller partner σ −→

232

σ ′= σ (|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |)) ∧

(IPC-send-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

σ ′= σ (|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |)))))

by (auto simp add : update-state-wait-send-params5-def WAIT-SEND id-def
split : split-if-asm option.split-asm)

lemma buf-send-obvious:
(BUF-SEND id σ (IPC BUF (SEND caller partner msg)) = σ ′) =
((¬ IPC-buf-check-st id caller partner σ −→
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND |)) ∧

(IPC-buf-check-st id caller partner σ −→
(σ ′ = σ(|current-thread := caller ,

resource :=
foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))))
by (auto simp add :BUF-SEND id-def)

lemma map-send-obvious:
(MAP-SEND id σ (IPC MAP (SEND caller partner msg)) = σ ′) =
(σ ′ = σ(|current-thread := caller ,

resource :=
foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs partner σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (auto simp add : MAP-SEND id-def)

lemma prep-recv-obvious:
(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =σ ′) =

233

(((σ ′ = σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ))∨

((¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
∧

σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |)))∨

((σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner)) ∨

(σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner))))

by (auto simp add : PREP-RECV id-def exec-actionid-Mon-prep-fact2-def
exec-actionid-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def)

lemma wait-recv-obvious:
(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)) = σ ′) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |) ∧

IPC-recv-comm-check-st id caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ) ∨

((¬ IPC-recv-comm-check-st id caller partner σ −→
σ ′= σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |)) ∧

(IPC-recv-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

σ ′= σ (|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

234

error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |)))))
by (auto simp add : update-state-wait-recv-params5-def WAIT-RECV id-def

split : split-if-asm)

lemma buf-recv-obvious:
(BUF-RECV id σ (IPC BUF (RECV caller partner msg)) = σ ′) =
((¬ IPC-buf-check-st id caller partner σ −→
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |)) ∧

(IPC-buf-check-st id caller partner σ −→
(σ ′ = σ(|current-thread := caller ,

resource :=
foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))))
by (auto simp add : BUF-RECV id-def)

lemma map-recv-obvious:
(MAP-RECV id σ (IPC MAP (RECV caller partner msg)) = σ ′) =
(σ ′ = σ(|current-thread := caller ,

resource :=
foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (auto simp add : MAP-RECV id-def)

J.2 Symbolic Execution Rules for Error Codes Field

lemma PREP-SEND id-obvious0 :
(error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) =

NO-ERRORS) =
(exec-actionid-Mon-prep-fact0 caller partner σ msg∧
exec-actionid-Mon-prep-fact1 caller partner σ ∧
(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |)))

235

by (auto simp add : PREP-SEND id-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def

split : errors.split split-if split-if-asm)

lemma PREP-SEND id-obvious1 :
(error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) =

ERROR-MEM error-mem) =
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg))

∧
error-mem = not-valid-sender-addr-in-PREP-SEND ∧
(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |)))

by (auto simp add : PREP-SEND id-def split : errors.split split-if split-if-asm)

lemma PREP-SEND id-obvious2 :
(error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) =

ERROR-IPC error-IPC) =
(¬(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧

error-IPC = error-IPC-22-in-PREP-SEND ∧
(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |))) −→

(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-SEND ∧

(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |)))

)
by (auto simp add : PREP-SEND id-def exec-actionid-Mon-prep-fact2-def exec-actionid-Mon-prep-fact1-def

exec-actionid-Mon-prep-fact0-def
split : errors.split split-if split-if-asm)

lemma WAIT-SEND id-obvious0 :
(error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) =

NO-ERRORS) =
(IPC-send-comm-check-st id caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ ∧

236

(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |)))

by (auto simp add : WAIT-SEND id-def
split : errors.split split-if split-if-asm option.split-asm)

lemma WAIT-SEND id-obvious1 :
(error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) =

ERROR-IPC error-IPC) =
((¬ IPC-send-comm-check-st id caller partner σ −→

(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |) ∧

error-IPC = error-IPC-1-in-WAIT-SEND) ∧
(IPC-send-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |) ∧

error-IPC = error-IPC-3-in-WAIT-SEND) ∧
(IPC-params-c4 caller partner −→

((¬ IPC-params-c5 partner σ −→
(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))=
update-state-wait-send-params5 σ caller ∧
error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC

error-IPC) ∧
¬ IPC-params-c5 partner σ)))))

by (auto simp add : update-state-wait-send-params5-def WAIT-SEND id-def
split : errors.split split-if split-if-asm option.split-asm)

lemma WAIT-SEND id-obvious2 :
¬(error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) =

ERROR-MEM error-IPC)
by (auto simp add :WAIT-SEND id-def split : errors.split split-if split-if-asm op-

tion.split-asm)

lemma BUF-SEND id-obvious0 :
(error-codes (BUF-SEND id σ (IPC BUF (SEND caller partner msg))) =

NO-ERRORS) =
(IPC-buf-check-st id caller partner σ ∧
BUF-SEND id σ (IPC BUF (SEND caller partner msg)) =

σ(|current-thread := caller ,
resource :=

237

foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs partner σ) (get-msg-values msg σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (auto simp add : BUF-SEND id-def)

lemma BUF-SEND id-obvious1 :
(error-codes (BUF-SEND id σ (IPC BUF (SEND caller partner msg))) =
ERROR-IPC error-IPC-1-in-BUF-SEND) =

(¬ IPC-buf-check-st id caller partner σ ∧
BUF-SEND id σ (IPC BUF (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND |))

by (auto simp add : BUF-SEND id-def)

lemma MAP-SEND id-obvious0 :
(error-codes (MAP-SEND id σ (IPC MAP (SEND caller partner msg))) =

error) =
(error = NO-ERRORS ∧
MAP-SEND id σ (IPC MAP (SEND caller partner msg)) =
σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs partner σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (auto simp add : MAP-SEND id-def)

lemma DONE-SEND id-obvious0 :
(error-codes (exec-actionid σ (IPC DONE (SEND caller partner msg))) =

error) =
((exec-actionid σ (IPC DONE (SEND caller partner msg)))= σ ∧ error-codes

σ = error)
by simp

lemma PREP-RECV id-obvious0 :
(error-codes (PREP-RECV id σ (IPC PREP (RECV caller partner msg))) =

NO-ERRORS) =
(exec-actionid-Mon-prep-fact0 caller partner σ msg∧

238

exec-actionid-Mon-prep-fact1 caller partner σ ∧
(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

)
by (auto simp add : PREP-RECV id-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split : errors.split split-if split-if-asm)

lemma PREP-RECV id-obvious1 :
(error-codes (PREP-RECV id σ (IPC PREP (RECV caller partner msg))) =

ERROR-MEM error-mem) =
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg))

∧
error-mem = not-valid-receiver-addr-in-PREP-RECV ∧
(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |)))

by (auto simp add : PREP-RECV id-def split : errors.split split-if split-if-asm)

lemma PREP-RECV id-obvious2 :
(error-codes (PREP-RECV id σ (IPC PREP (RECV caller partner msg))) =

ERROR-IPC error-IPC) =
(¬(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-RECV ∧

(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |)))

−→
(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-RECV ∧
(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)))

)
by (auto simp add : PREP-RECV id-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def exec-actionid-Mon-prep-fact2-def
split : errors.split split-if split-if-asm)

239

lemma WAIT-RECV id-obvious0 :
(error-codes (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))) =

NO-ERRORS) =
(IPC-recv-comm-check-st id caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ ∧
(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |)))

by (auto simp add : WAIT-RECV id-def
split : errors.split split-if split-if-asm option.split-asm)

lemma WAIT-RECV id-obvious1 :
(error-codes (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))) =

ERROR-IPC error-IPC) =
((¬ IPC-recv-comm-check-st id caller partner σ −→

(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))=
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |) ∧

error-IPC = error-IPC-1-in-WAIT-RECV) ∧
(IPC-recv-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))=
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |) ∧

error-IPC = error-IPC-3-in-WAIT-RECV) ∧
(¬ ¬ IPC-params-c4 caller partner −→

((¬ IPC-params-c5 partner σ −→
(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))=
update-state-wait-recv-params5 σ caller ∧
error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC

error-IPC) ∧
¬ IPC-params-c5 partner σ)))))

by (auto simp add : update-state-wait-recv-params5-def WAIT-RECV id-def
split : errors.split split-if split-if-asm option.split-asm)

lemma WAIT-RECV id-obvious2 :
¬(error-codes (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))) =

ERROR-MEM error-mem)
by (auto simp add : WAIT-RECV id-def

split : errors.split split-if split-if-asm option.split-asm)

240

lemma BUF-RECV id-obvious0 :
(error-codes (BUF-RECV id σ (IPC BUF (RECV caller partner msg))) =

NO-ERRORS) =
(IPC-buf-check-st id caller partner σ ∧
BUF-RECV id σ (IPC BUF (RECV caller partner msg)) =

σ(|current-thread := caller ,
resource :=
foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (auto simp add : BUF-RECV id-def)

lemma BUF-RECV id-obvious1 :
(error-codes (BUF-RECV id σ (IPC BUF (RECV caller partner msg))) =
ERROR-IPC error-IPC-1-in-BUF-RECV) =

(¬ IPC-buf-check-st id caller partner σ ∧
BUF-RECV id σ (IPC BUF (RECV caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV |))

by (auto simp add : BUF-RECV id-def)

lemma MAP-RECV id-obvious0 :
(error-codes (MAP-RECV id σ (IPC MAP (RECV caller partner msg))) = error)

=
(error = NO-ERRORS ∧
MAP-RECV id σ (IPC MAP (RECV caller partner msg)) =
σ(|current-thread := caller ,
resource :=
foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |))
by (auto simp add : MAP-RECV id-def)

lemma DONE-RECV id-obvious0 :
(error-codes (exec-actionid σ (IPC DONE (RECV caller partner msg))) =

error) =

241

((exec-actionid σ (IPC DONE (RECV caller partner msg)))= σ ∧ error-codes
σ = error)
by simp

J.3 Symbolic Execution Rules for Error Codes field on Pure-
level

lemma PREP-SEND id-Pure-obvious0 :
(error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) =

NO-ERRORS =⇒ P) ≡
(exec-actionid-Mon-prep-fact0 caller partner σ msg &&&
exec-actionid-Mon-prep-fact1 caller partner σ &&&
(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))=⇒ P)

find-theorems name:Pure.
apply (rule equal-intr-rule)
apply (elim meta-impE)
apply (drule conjunctionD2)
apply (drule conjunctionD2)
apply (auto simp add : PREP-SEND id-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split : errors.split split-if split-if-asm)

done

lemma PREP-SEND id-Pure-obvious1 :
(error-codes (PREP-SEND id σ (IPC PREP (SEND caller partner msg))) =

ERROR-MEM error-mem =⇒P) ≡
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg))

&&&
error-mem = not-valid-sender-addr-in-PREP-SEND &&&
(PREP-SEND id σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |))

=⇒ P
)

apply (rule equal-intr-rule)
apply (simp-all add : conjunction-imp Pure.imp-conjunction)
by (auto simp add : PREP-SEND id-def split : errors.split split-if split-if-asm)

lemma WAIT-SEND id-Pure-obvious0 :
(error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) =

NO-ERRORS =⇒ P) ≡
(IPC-send-comm-check-st id caller partner σ &&&
IPC-params-c4 caller partner &&&

242

IPC-params-c5 partner σ &&&
(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)) =
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |))

=⇒ P)
apply (rule equal-intr-rule)
apply (drule conjunctionD2)+
by (auto simp add :WAIT-SEND id-def split : errors.split split-if split-if-asm op-

tion.split-asm)

lemma WAIT-SEND id-Pure-obvious1 :
(error-codes (WAIT-SEND id σ (IPC WAIT (SEND caller partner msg))) =

ERROR-IPC error-IPC =⇒ P) ≡
((¬ IPC-send-comm-check-st id caller partner σ =⇒

(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND |) &&&

error-IPC = error-IPC-1-in-WAIT-SEND) &&&
(IPC-send-comm-check-st id caller partner σ =⇒
((¬ IPC-params-c4 caller partner =⇒

(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |) &&&

error-IPC = error-IPC-3-in-WAIT-SEND) &&&
(IPC-params-c4 caller partner =⇒

((¬ IPC-params-c5 partner σ =⇒
(WAIT-SEND id σ (IPC WAIT (SEND caller partner msg)))= update-state-wait-send-params5

σ caller &&&
error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC

error-IPC) &&&
¬ IPC-params-c5 partner σ))))

=⇒ P)
apply (rule equal-intr-rule)
apply (simp-all add : conjunction-imp Pure.imp-conjunction)
by (simp-all add : update-state-wait-send-params5-def WAIT-SEND id-def

split : errors.split split-if split-if-asm option.split option.split-asm)

lemma DONE-SEND id-Pure-obvious0 :
(error-codes (exec-actionid σ (IPC DONE (SEND caller partner msg))) =

error =⇒P) ≡
((exec-actionid σ (IPC DONE (SEND caller partner msg)))= σ =⇒ error-codes

σ = error =⇒P)

243

by simp

lemma PREP-RECV id-Pure-obvious0 :
(error-codes (PREP-RECV id σ (IPC PREP (RECV caller partner msg))) =

NO-ERRORS =⇒ P) ≡
(exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |))

=⇒ P)
apply (rule equal-intr-rule)
by (auto simp add : PREP-RECV id-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split : errors.split split-if split-if-asm)

lemma PREP-RECV id-Pure-obvious1 :
(error-codes (PREP-RECV id σ (IPC PREP (RECV caller partner msg))) =

ERROR-MEM error-mem =⇒ P) ≡
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg))

&&&
error-mem = not-valid-receiver-addr-in-PREP-RECV &&&
(PREP-RECV id σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |))

=⇒ P)
apply (rule equal-intr-rule)
apply (simp-all add : conjunction-imp Pure.imp-conjunction)
by (auto simp add : PREP-RECV id-def split : errors.split split-if split-if-asm)

lemma WAIT-RECV id-Pure-obvious0 :
(error-codes (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))) =

NO-ERRORS =⇒ P) ≡
(IPC-recv-comm-check-st id caller partner σ &&&
IPC-params-c4 caller partner &&&
IPC-params-c5 partner σ &&&
(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |))

=⇒ P)
apply (rule equal-intr-rule)

244

apply (simp-all add : conjunction-imp Pure.imp-conjunction)
by (auto simp add :WAIT-RECV id-def split : errors.split split-if split-if-asm op-

tion.split-asm)

lemma WAIT-RECV id-Pure-obvious1 :
(error-codes (WAIT-RECV id σ (IPC WAIT (RECV caller partner msg))) =

ERROR-IPC error-IPC =⇒ P)≡
((¬ IPC-recv-comm-check-st id caller partner σ =⇒

(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))=
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV |)

&&&
error-IPC = error-IPC-1-in-WAIT-RECV) &&&

(IPC-recv-comm-check-st id caller partner σ =⇒
((¬ IPC-params-c4 caller partner =⇒
(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))= σ(|current-thread

:= caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |)

&&&
error-IPC = error-IPC-3-in-WAIT-RECV) &&&

(IPC-params-c4 caller partner =⇒
((¬ IPC-params-c5 partner σ =⇒
(WAIT-RECV id σ (IPC WAIT (RECV caller partner msg)))= update-state-wait-recv-params5

σ caller &&&
error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC

error-IPC) &&&
¬ IPC-params-c5 partner σ)))) =⇒ P)

apply (rule equal-intr-rule)
apply (simp-all add : conjunction-imp Pure.imp-conjunction)
by (simp-all add : update-state-wait-recv-params5-def WAIT-RECV id-def

split : errors.split split-if split-if-asm list .split-asm)

lemma DONE-RECV id-Pure-obvious0 :
(error-codes (exec-actionid σ (IPC DONE (RECV caller partner msg))) =

error =⇒ P) ≡
((exec-actionid σ (IPC DONE (RECV caller partner msg)))= σ =⇒ error-codes

σ = error =⇒ P)
by simp

245

J.4 Symbolic Execution of Action Informations Field

lemma act-info-obvious0 :
((th-flag (update-state caller σ f error)) =
(th-flag σ)(caller := None)) =
((stateid.th-flag σ) = (stateid.th-flag σ)(caller := None))

by simp

lemma act-info-obvious1 :
(th-flag (update-state caller (init-act-info caller partner σ) f error)) =
((th-flag σ) (caller := None, partner := None))

by simp

lemma act-info-obvious2 :
(th-flag (update-state caller (remove-caller-error caller σ) f error)) =
((th-flag σ) (caller := None))

by simp

lemma act-info-prep-send-obvious0 :
(th-flag (PREP-SEND id (init-act-info caller partner σ)
(IPC PREP (SEND caller partner msg)))) =
(stateid.th-flag σ)(caller := None, partner := None)

by (simp add : PREP-SEND id-def)

lemma act-info-prep-send-obvious1 :
(stateid.th-flag σ)(caller := None, partner := None) =
(th-flag(PREP-SEND id(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC PREP (SEND caller partner msg))))
by (simp add : PREP-SEND id-def)

lemma act-info-wait-send-obvious0 :
(th-flag (WAIT-SEND id (init-act-info caller partner σ)
(IPC WAIT (SEND caller partner msg)))) =
(th-flag σ)(caller := None, partner := None)

by (simp add : WAIT-SEND id-def split : option.split)

lemma act-info-wait-send-obvious1 :
(stateid.th-flag σ)(caller := None, partner := None) =
(th-flag(WAIT-SEND id(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC WAIT (SEND caller partner msg))))

246

by (simp add : WAIT-SEND id-def split : option.split)

lemma act-info-buf-send-obvious0 :
(th-flag (BUF-SEND id (init-act-info caller partner σ)
(IPC BUF (SEND caller partner msg)))) =
(stateid.th-flag σ)(caller := None, partner := None)

by (simp add : BUF-SEND id-def)

lemma act-info-buf-send-obvious1 :
(stateid.th-flag σ)(caller := None, partner := None) =
(th-flag(BUF-SEND id(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC BUF (SEND caller partner msg))))
by (simp add : BUF-SEND id-def)

lemma act-info-done-send-obvious0 :
(th-flag (exec-actionid (init-act-info caller partner σ)
(IPC DONE (SEND caller partner msg)))) =
(stateid.th-flag σ)(caller := None, partner := None)

by simp

lemma act-info-done-send-obvious1 :
(stateid.th-flag σ)(caller := None, partner := None) =
(th-flag(exec-actionid(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC DONE (SEND caller partner msg))))
by simp

lemma act-info-prep-recv-obvious0 :
stateid.th-flag (PREP-RECV id (init-act-info caller partner σ)
(IPC PREP (RECV caller partner msg))) =
(stateid.th-flag σ)(caller := None, partner := None)

by (simp add : PREP-RECV id-def)

lemma act-info-prep-recv-obvious1 :
((stateid.th-flag σ))(caller := None, partner := None) =
((th-flag(PREP-RECV id(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

247

(IPC PREP (RECV caller partner msg)))))
by (simp add : PREP-RECV id-def)

lemma act-info-wait-recv-obvious0 :
(th-flag (WAIT-RECV id (init-act-info caller partner σ)
(IPC WAIT (RECV caller partner msg)))) =
((th-flag σ))(caller := None, partner := None)

by (simp add : WAIT-RECV id-def split : option.split)

lemma act-info-wait-recv-obvious1 :
((stateid.th-flag σ))(caller := None, partner := None) =
((th-flag(WAIT-RECV id(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC WAIT (RECV caller partner msg)))))
by (simp add : WAIT-RECV id-def split : option.split)

lemma act-info-buf-recv-obvious0 :
(th-flag (BUF-RECV id (init-act-info caller partner σ)

(IPC BUF (RECV caller partner msg)))) =
((th-flag σ))(caller := None, partner := None)

by (simp add : BUF-RECV id-def)

lemma act-info-buf-recv-obvious1 :
((th-flag σ))(caller := None, partner := None) =
((th-flag(BUF-RECV id(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC BUF (RECV caller partner msg)))))
by (simp add : BUF-RECV id-def)

lemma act-info-done-recv-obvious0 :
(th-flag (exec-actionid (init-act-info caller partner σ)
(IPC DONE (RECV caller partner msg)))) =
((th-flag σ))(caller := None, partner := None)

by simp

lemma act-info-done-recv-obvious1 :
((th-flag σ))(caller := None, partner := None) =
((th-flag(exec-actionid(init-act-info caller partner
σ(|current-thread := caller ,
thread-list := th-list ,
error-codes := error |))

(IPC DONE (RECV caller partner msg)))))

248

by simp

lemmas atomic-action-normalizer-errors =
PREP-RECV id-obvious0 PREP-RECV id-obvious1 PREP-RECV id-obvious2
PREP-SEND id-obvious0 PREP-SEND id-obvious1 PREP-SEND id-obvious2
WAIT-RECV id-obvious0 WAIT-RECV id-obvious1 WAIT-RECV id-obvious2
WAIT-SEND id-obvious0 WAIT-SEND id-obvious1 WAIT-SEND id-obvious2
BUF-RECV id-obvious0 BUF-SEND id-obvious0 DONE-SEND id-obvious0
DONE-RECV id-obvious0

lemmas atomic-action-normalizer-errors-Pure =
PREP-RECV id-Pure-obvious0 PREP-RECV id-Pure-obvious1
PREP-SEND id-Pure-obvious0 PREP-SEND id-Pure-obvious1
WAIT-RECV id-Pure-obvious0 WAIT-RECV id-Pure-obvious1
WAIT-SEND id-Pure-obvious0
DONE-SEND id-Pure-obvious0

DONE-RECV id-Pure-obvious0

lemmas atomic-action-normalizer-act-info =
act-info-obvious0 act-info-obvious1 act-info-obvious2
act-info-prep-send-obvious0 act-info-prep-recv-obvious0
act-info-wait-send-obvious0 act-info-wait-recv-obvious0
act-info-buf-send-obvious0 act-info-buf-recv-obvious0
act-info-done-send-obvious0 act-info-done-recv-obvious0

lemmas atomic-action-normalizer =
prep-send-obvious prep-recv-obvious wait-send-obvious wait-recv-obvious
buf-send-obvious buf-recv-obvious

lemmas PREP-SEND id-normalizer-hyps =
thread-eq-def
exec-actionid-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def IPC-params-c1-def
IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def

is-part-mem-th-def
is-part-addr-addr-def is-part-mem-def Product-Type.split-beta

lemmas PREP-RECV id-normalizer-hyps =
thread-eq-def Product-Type.split-beta
exec-actionid-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def IPC-params-c1-def
IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def

is-part-mem-th-def
is-part-addr-addr-def is-part-mem-def

lemmas WAIT-SEND id-normalizer-hyps =
thread-eq-def Product-Type.split-beta

249

IPC-send-comm-check-st id-def IPC-params-c4-def IPC-buf-check-st id-def

lemmas WAIT-RECV id-normalizer-hyps =
thread-eq-def Product-Type.split-beta
IPC-recv-comm-check-st id-def IPC-params-c4-def IPC-buf-check-st id-def

lemmas BUF-SEND id-normalizer-hyps =
thread-eq-def Product-Type.split-beta HOL.split-if HOL.split-if-asm
upd-st-res-equiv id-def update-th-smm-equiv-def
equiv-def sym-def refl-on-def

lemmas BUF-RECV id-normalizer-hyps = BUF-SEND id-normalizer-hyps

lemmas splitter =
option.split errors.split
split-if list .split

lemmas splitter-asm =
option.split-asm errors.split-asm
split-if-asm list .split-asm

K IPC pre-conditions normalizer

lemmas pre-conditions-defs =
IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def

IPC-params-c5-def
IPC-send-comm-check-st id-def IPC-recv-comm-check-st id-def IPC-buf-check-st id-def
Product-Type.split-beta is-part-addr-th-mem-def is-part-addr-addr-def

end

theory IPC-trace-normalizer

imports IPC-atomic-action-normalizer

begin

L The Core Theory for Symbolic Execution of abort lif t

L.1 mbind and ioprog fail

lemma mbindF ailSave-ioprog-None1 :
assumes ioprog-fail : ioprog a σ = None

250

shows mbindF ailSave (a # S) ioprog σ = Some ([], σ)
using assms
by(simp add : Product-Type.split-beta)

lemma mbindF ailSave-ioprog-None2 :
assumes exec-fail : mbindF ailSave (a # S) ioprog σ = Some ([], σ)
shows ioprog a σ = None
using exec-fail
by(simp add : Product-Type.split-beta split : option.split-asm)

lemma mbindF ailSave-ioprog-None:
(ioprog a σ = None) = (mbindF ailSave (a # S) ioprog σ = Some ([], σ))
by (auto simp: mbindF ailSave-ioprog-None1 mbindF ailSave-ioprog-None2)

Here is a collection of generic symbolic execution rules for for our Monad-
transformer abort lif t. They make the specific semantics of aborting atomic
actions explicit on the level of a side-calculus.

lemma abort-None1 :
assumes ioprog-fail : ioprog a σ = None
shows mbind (a # S)(abort lif t ioprog) σ =

Some ([], σ)
oops

lemma abort-None2 :
assumes exec-fail : mbind (a # S)(abort lif t ioprog) σ =

Some([], σ)
shows ioprog a σ = None

proof (cases a)
case (IPC ipc-stage ipc-direction)
assume hyp0 : a = IPC ipc-stage ipc-direction
then show ?thesis
using assms
proof (cases ipc-stage)
case PREP
assume hyp1 :ipc-stage = PREP
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)
case (SEND thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
next
case (RECV thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2

251

by (simp-all add : Product-Type.split-beta
split : split-if-asm option.split-asm errors.split-asm)

qed
next
case WAIT
assume hyp1 :ipc-stage = WAIT
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)
case (SEND thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
next
case (RECV thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
qed

next
case BUF
assume hyp1 :ipc-stage = BUF
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)
case (SEND thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
next
case (RECV thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
qed

next
case MAP
assume hyp1 :ipc-stage = MAP
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)

252

case (SEND thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
next
case (RECV thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
qed

next
case DONE
assume hyp1 : ipc-stage = DONE
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)
case (SEND thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
next
case (RECV thread-id1 thread-id2 adresses)
assume hyp2 : ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add : Product-Type.split-beta

split : split-if-asm option.split-asm errors.split-asm)
qed

qed
qed

lemma abort-None ′:
assumes not-in-err : caller /∈ dom ((stateid.th-flag σ))
and not-done-act : stages 6= DONE
and ioprog-fail : ioprog (IPC stages (SEND caller partner msg)) σ = None
shows (abort lif t ioprog) (IPC stages (SEND caller partner msg)) σ = None
using assms
by(simp add : split : p4-stageipc.split ,safe, simp-all)

lemma abort-None ′′:
assumes not-in-err :

∧
caller . caller /∈ dom ((stateid.th-flag σ))

and not-done-act : stages 6= DONE

253

and ioprog-fail : ioprog (IPC stages direction) σ = None
shows (abort lif t ioprog) (IPC stages direction) σ = None

proof (cases stages)
case (PREP)
then show abort lif t ioprog (IPC stages direction) σ = None
using assms
proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = PREP =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = SEND thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = PREP =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

qed
next
case (WAIT)
then show abort lif t ioprog (IPC stages direction) σ = None
using assms
proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = WAIT =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = SEND thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)

254

fix caller
show
stages = WAIT =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

qed
next
case (BUF)
then show abort lif t ioprog (IPC stages direction) σ = None
using assms
proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = BUF =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = SEND thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = BUF =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

qed
next
case (MAP)
then show abort lif t ioprog (IPC stages direction) σ = None
using assms
proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = MAP =⇒

255

caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = SEND thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = MAP =⇒
caller /∈ dom ((stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

qed
next
case (DONE)
then show abort lif t ioprog (IPC stages direction) σ = None
using assms
by simp

qed

lemma abort-None0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and not-done-act :stages 6= DONE
and ioprog-fail :ioprog (IPC stages (SEND caller partner msg)) σ = None
shows (abort lif t ioprog) (IPC stages (SEND caller partner msg)) σ =

ioprog (IPC stages (SEND caller partner msg)) σ
using not-in-err not-done-act ioprog-fail
by(simp add : split : IPC-atomic-actions.p4-stageipc.split ,safe, simp-all)

lemma abort-None1 :
assumes not-in-err :caller /∈ dom ((stateid.th-flag σ))
and ioprog-fail : ioprog (IPC PREP (SEND caller partner msg)) σ = None
shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some ([], σ)
using assms
by simp

lemma mbind-exec-actionid-Mon-None:
mbind (a # S) exec-actionid-Mon σ 6= None
by(rule Monads.mbind-nofailure)

256

lemma mbind-exec-actionid-Mon-Some:
∃ outs σ ′. mbind (a # S) exec-actionid-Mon σ = Some (outs,σ ′)

by(insert mbind-exec-actionid-Mon-None, auto)

lemma mbindef-exec-actionid-Mon-None:
mbind (a # S) exec-actionid-Mon σ 6= None
by(rule mbind-exec-actionid-Mon-None)

lemma mbindef-exec-actionid-Mon-Some:
∃ outs σ ′. mbind (a # S) exec-actionid-Mon σ = Some (outs,σ ′)
by (auto, rule actionipc.induct , simp split : option.split)

L.2 Symbolic Execution Rules on PREP stage

lemma abort-prep-send-obvious0 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success: ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(NO-ERRORS , (error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-prep-send-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-preps caller partner σ
σ ′ error-mem msg))
using assms
by simp

lemma abort-prep-send-obvious2 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-preps caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-prep-send-obvious3 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-sucess:ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows

257

mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) σ =
Some(NO-ERRORS# fst(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (None)
then show ?thesis
using assms
by simp

next
case (Some a)
assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
show ?thesis
using assms hyp0 hyp1
proof (case-tac aa)
assume hyp2 : aa= NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by (simp split : option.split)

next
fix error-memory
assume hyp3 : aa = ERROR-MEM error-memory
show ?thesis
using assms hyp0 hyp1 hyp3
by simp
next
fix error-IPC
assume hyp4 : aa = ERROR-IPC error-IPC
show ?thesis
using assms hyp0 hyp1 hyp4
by simp

qed
qed

qed

lemma abort-prep-send-obvious4 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success: ioprog (IPC PREP(SEND caller partner msg))σ =

Some(ERROR-MEM error-mem,σ ′)
shows

mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog) σ =
Some(ERROR-MEM error-mem #

fst(the(mbind S (abort lif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg))),

258

snd(the(mbind S (abort lif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg))))

proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (None)
then show ?thesis
using assms
by simp

next
case (Some a)
assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
show ?thesis
using assms hyp0 hyp1
proof (case-tac aa)
assume hyp2 : aa = NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by simp

next
fix error-memory
assume hyp3 : aa = ERROR-MEM error-memory
show ?thesis
using assms hyp0 hyp1 hyp3
by (simp split : option.split)
next
fix error-IPC
assume hyp4 : aa = ERROR-IPC error-IPC
show ?thesis
using assms hyp0 hyp1 hyp4
by simp

qed
qed

qed

lemma abort-prep-send-obvious5 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-succes: ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some(ERROR-IPC error-IPC# fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC

msg))),
snd(the(mbind S (abort lif t ioprog)

259

(set-error-ipc-preps caller partner σ σ ′ error-IPC
msg))))
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (None)
assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp0 :ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
show ?thesis
using assms hyp0 hyp1
proof(case-tac aa)
assume hyp2 : aa = NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by simp

next
fix error-memory
assume hyp3 : aa = ERROR-MEM error-memory
show ?thesis
using assms hyp0 hyp1 hyp3
by simp

next
fix error-IPCa
assume hyp4 : aa = ERROR-IPC error-IPCa
show ?thesis
using assms hyp0 hyp1 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))
case (None)
assume hyp5 :mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg) = None
show ?thesis
using assms hyp0 hyp1 hyp4 hyp5
by simp

next
case (Some ab)
assume hyp6 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg) = Some
ab

then show ?thesis
using assms

260

by (simp add : Product-Type.split-beta)
qed

qed
qed

qed

lemma abort-prep-send-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-prep-send-obvious7 :
assumes in-err : caller ∈ dom ((th-flag σ))
shows mbind ((IPC PREP (SEND caller partner msg))#S) (abort lif t

ioprog) σ =
Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog)

σ)),
snd(the(mbind S (abort lif t ioprog) σ)))

using assms
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case (None)
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0
by simp

qed
qed

lemma abort-prep-send-obvious8 :
assumes A: ∀ act σ . ioprog act σ 6= None
shows mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog)
σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog)

σ)),
snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS ,

261

σ ′)
then Some(NO-ERRORS#

fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))

else if ioprog (IPC PREP (SEND caller partner msg)) σ =
Some(ERROR-MEM error-mem, σ ′)

then Some(ERROR-MEM error-mem#
fst(the(mbind S (abort lif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem
msg))))

else if ioprog (IPC PREP (SEND caller partner msg)) σ =
Some(ERROR-IPC error-IPC , σ ′)

then Some(ERROR-IPC error-IPC#
fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC
msg))))

else if ioprog (IPC PREP (SEND caller partner msg)) σ = None
then Some([], σ)

else id (mbind ((IPC PREP (SEND caller partner
msg))#S)(abort lif t ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case (None)
thus ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
thus ?thesis
using A hyp0
proof (cases a)
fix aa b
assume hyp0 : a = (aa, b)
thus ?thesis
using A hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
thus ?thesis
by simp

next

262

case (Some ab)
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
thus ?thesis
using A hyp0 hyp1
proof (cases ab)
fix ac ba
assume hyp2 : ab = (ac, ba)
thus ?thesis
using A hyp0 hyp1 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))
case None
thus ?thesis
by simp

next
case (Some ad)
assume hyp3 : mbindF ailSave S (abort lif t ioprog) (set-error-ipc-preps

caller partner σ σ ′ error-IPC msg) =
Some ad

thus ?thesis
using A hyp0 hyp1 hyp2 hyp3
proof (cases ad)
fix ae bb
assume hyp4 : ad = (ae, bb)
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg))
case None
thus ?thesis
by simp

next
case (Some af)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg) =
Some af

thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases af)
fix ag bc
assume hyp6 : af = (ag , bc)
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))
case None
thus ?thesis
by simp

next

263

case (Some ah)
assume hyp7 :mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some ah
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
proof (cases ah)
fix ai bd
assume hyp8 : ah= (ai , bd)
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 hyp8
by simp

qed
qed

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-prep-send-obvious8 ′:
mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS ,

σ ′)⇒
Some(NO-ERRORS#

fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ
σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#

fst(the(mbind S (abort lif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC , σ ′)⇒

Some(ERROR-IPC error-IPC#
fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abort lif t ioprog)

264

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))))
| None ⇒ Some([], σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
thus ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
thus ?thesis
proof −
{have 1 : caller ∈ dom ((th-flag σ)) −→

(case a of (outs, σ ′′) ⇒ Some (get-caller-error caller σ # outs, σ ′′)) =
Some (get-caller-error caller σ # fst a, snd a)

by (simp add : Product-Type.split-beta)
thus ?thesis
using hyp0 1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
{ case None
thus ?thesis
using hyp0 1
by simp

next
case (Some aa)
assume hyp1 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some

aa
thus ?thesis
using hyp0 hyp1 1
proof (cases aa)
fix ab b
assume hyp2 : aa = (ab, b)
thus ?thesis
using hyp0 hyp1 hyp2 1
proof (cases ab)
case NO-ERRORS
assume hyp3 : ab = NO-ERRORS
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 1

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ b))

case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ b) = Some ac
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp6 1

265

proof (cases a)
fix ad ba
assume hyp7 : a = (ad , ba)
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 1
proof (cases ac)
fix ae bb
assume hyp8 : ac = (ae, bb)
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 hyp8 1
by simp

qed
qed

qed
next
case (ERROR-MEM error-memory)
assume hyp4 : ab = ERROR-MEM error-memory
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 1
proof (cases mbindF ailSave S (abort lif t ioprog) b)
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) b = Some ac
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp6 1
proof (cases a)
fix ad ba
assume hyp7 : a = (ad , ba)
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 1
proof (cases ac)
fix ae bb
assume hyp8 : ac = (ae, bb)
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg))
case None
thus ?thesis
by simp

next
case (Some af)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ b error-memory
msg) =

Some af

266

thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 1
proof (cases af)
fix ag bc
assume hyp10 : af = (ag , bc)
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 hyp10 1
by simp

qed
qed

qed
qed

qed
next
case (ERROR-IPC error-IPC)
assume hyp5 : ab = ERROR-IPC error-IPC
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 1
proof (cases mbindF ailSave S (abort lif t ioprog) b)
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) b = Some ac
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp6 1
proof (cases a)
fix ad ba
assume hyp7 : a = (ad , ba)
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 1
proof (cases ac)
fix ae bb
assume hyp8 : ac = (ae, bb)
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg))
case None
thus ?thesis
by simp

next
case (Some af)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg) =
Some af

thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 1

267

proof (cases af)
fix ag bc
assume hyp10 : af = (ag , bc)
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 hyp10 1
by simp

qed
qed

qed
qed

qed
qed

qed
}qed

}qed
qed

lemma abort-prep-send-obvious9 :
fst(the(mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem
msg)))

| Some(ERROR-IPC error-IPC , σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC
msg)))

| None ⇒ []))
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
thus ?thesis
using assms
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = None
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = None
thus ?thesis
using assms hyp0 hyp1
by simp

268

next
case (Some a)
assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = None
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some a
thus ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
thus ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case (Some a)
assume hyp0 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
thus ?thesis
using hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = None
thus ?thesis
using assms hyp1 hyp0
by simp

next
case (Some aa)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some aa
thus ?thesis
using hyp0 hyp2 assms
proof −
have 1 : (caller ∈ dom ((th-flag σ)) −→

fst (the (case aa of (outs, σ ′′) ⇒ Some (get-caller-error caller σ #
outs, σ ′′))) =

get-caller-error caller σ # fst aa)
proof (cases aa)
fix a b
assume hyp3 : aa = (a, b)
thus ?thesis
by simp

qed
thus ?thesis
using 1 assms hyp0 hyp2
proof (cases a)
fix ab b
assume hyp3 :a = (ab, b)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases ab)

269

case (NO-ERRORS)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ b))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp4 :ab = NO-ERRORS
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ b) = Some ac
thus ?thesis
using hyp3 hyp4 hyp5 1assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6 : ac = (ad , ba)
thus ?thesis
using hyp3 hyp4 hyp5 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-MEM error-memory)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp7 : ab = ERROR-MEM error-memory
assume hyp8 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg)
= Some ac

thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6 : ac = (ad , ba)
thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
by simp

qed
qed

next

270

case (ERROR-IPC error-IPC)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg) = Some
ac

assume hyp10 : ab = ERROR-IPC error-IPC
thus ?thesis
using assms hyp9 hyp10 hyp3 1 hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6 : ac = (ad , ba)
thus ?thesis
using hyp3 hyp9 hyp10 1 assms hyp0 hyp2
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious0 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-succes:ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-prep-recv-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success :ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-prepr caller partner σ
σ ′ error-mem msg))
using assms

271

by simp

lemma abort-prep-recv-obvious2 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success: ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-prepr caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-prep-recv-obvious3 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog)
σ =

Some(NO-ERRORS# fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′) = Some a
then show?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-prep-recv-obvious4 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog)
σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)
(set-error-mem-prepr caller partner σ σ ′ error-mem

272

msg))),
snd(the(mbind S (abort lif t ioprog) (set-error-mem-prepr caller partner σ

σ ′ error-mem msg))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some aa)
assume hyp1 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg) = Some aa
then show ?thesis
using assms hyp0 hyp1
proof (cases aa)
fix ab b
assume hyp2 : aa = (ab, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

qed

lemma abort-prep-recv-obvious5 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next

273

case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some aa)
assume hyp1 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg) =
Some aa

then show ?thesis
using assms hyp0 hyp1
proof (cases aa)
fix ab b
assume hyp2 : aa = (ab, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

qed

lemma abort-prep-recv-obvious6 :
assumes in-err : caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using in-err
by simp

lemma abort-prep-recv-obvious7 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abort lif t

ioprog) σ =
Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog)

σ)),
snd(the(mbind S (abort lif t ioprog) σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0

274

proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-prep-recv-obvious8 :
mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller

σ σ ′))))
else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t

ioprog)
(set-error-mem-prepr caller partner σ σ ′ error-mem

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem
msg))))

else if ioprog (IPC PREP (RECV caller partner msg)) σ =
Some(ERROR-IPC error-IPC , σ ′)

then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t
ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC PREP (RECV caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC PREP (RECV caller partner

msg))#S)(abort lif t ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next

275

case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg) =Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5 :ad = (ae,bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some af)

276

assume hyp6 :mbindF ailSave S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′) = Some af

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 :af = (ag ,bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-prep-recv-obvious8 ′:
mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of Some(NO-ERRORS ,

σ ′)⇒
Some(NO-ERRORS#

fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ
σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′

error-mem msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC , σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-prepr caller partner σ σ ′ error-IPC

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))))
| None ⇒ Some([], σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)

277

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a= (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2 :ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac,ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 :ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba)= Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 :ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8

278

by simp
qed

qed
next
case (ERROR-MEM error-memory)
assume hyp5 : ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10 :ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 : ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 :ad = (ae,bb)
then show ?thesis

279

using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious9 :
fst(the(mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC PREP (RECV caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#
fst(the(mbind S (abort lif t ioprog)
(set-error-mem-prepr caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ ′)⇒
ERROR-IPC error-IPC#
fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)))

| None ⇒ []))
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case None
thus ?thesis
using assms
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
assume hyp0 : ioprog (IPC PREP (RECV caller partner msg)) σ = None
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = None
thus ?thesis
using assms hyp0 hyp1
by simp

next
case (Some a)
assume hyp0 : ioprog (IPC PREP (RECV caller partner msg)) σ = None
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some a
thus ?thesis
using assms hyp0 hyp1

280

proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
thus ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case (Some a)
assume hyp0 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some a
thus ?thesis
using hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = None
thus ?thesis
using assms hyp1 hyp0
by simp

next
case (Some aa)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some aa
thus ?thesis
using hyp0 hyp2 assms
proof −
have 1 : (caller ∈ dom ((th-flag σ)) −→

fst (the (case aa of (outs, σ ′′) ⇒ Some (get-caller-error caller σ #
outs, σ ′′))) =

get-caller-error caller σ # fst aa)
proof (cases aa)
fix a b
assume hyp3 : aa = (a, b)
thus ?thesis
by simp

qed
thus ?thesis
using 1 assms hyp0 hyp2
proof (cases a)
fix ab b
assume hyp3 :a = (ab, b)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases ab)
case (NO-ERRORS)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ b))
case None

281

thus ?thesis
by simp

next
case (Some ac)
assume hyp4 :ab = NO-ERRORS
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ b) = Some ac
thus ?thesis
using hyp3 hyp4 hyp5 1assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6 : ac = (ad , ba)
thus ?thesis
using hyp3 hyp4 hyp5 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-MEM error-memory)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ b error-memory msg))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp7 : ab = ERROR-MEM error-memory
assume hyp8 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ b error-memory msg)
= Some ac

thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6 : ac = (ad , ba)
thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ b error-IPC msg))
case None

282

thus ?thesis
by simp

next
case (Some ac)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ b error-IPC msg) = Some
ac

assume hyp10 : ab = ERROR-IPC error-IPC
thus ?thesis
using assms hyp9 hyp10 hyp3 1 hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6 : ac = (ad , ba)
thus ?thesis
using hyp3 hyp9 hyp10 1 assms hyp0 hyp2
by simp

qed
qed

qed
qed

qed
qed

qed

L.3 Symbolic Execution rules on WAIT stage

lemma abort-wait-send-obvious0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-wait-send-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-succes:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-waits caller partner σ
σ ′ error-mem msg))
using assms
by simp

lemma abort-wait-send-obvious2 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)

283

shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ =
Some (ERROR-IPC error-IPC , (set-error-ipc-waits caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-wait-send-obvious3 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-sucess:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some(NO-ERRORS# fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))
using assms

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-send-obvious4 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)
(set-error-mem-waits caller partner σ σ ′ error-mem

msg))),
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg))))
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg))

284

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a= (aa,b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-send-obvious5 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC

msg))),
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))))
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg) =
Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed

285

qed

lemma abort-wait-send-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-wait-send-obvious7 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),
snd(the(mbind S (abort lif t ioprog) σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-send-obvious8 :
mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))))
else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t

286

ioprog)
(set-error-mem-waits caller partner σ σ ′ error-mem

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem
msg))))

else if ioprog (IPC WAIT (SEND caller partner msg)) σ =
Some(ERROR-IPC error-IPC , σ ′)

then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t
ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC WAIT (SEND caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC WAIT (SEND caller partner

msg))#S)(abort lif t ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg) =
Some ab

then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)

287

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 : af = (ag , bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-wait-send-obvious8 ′:
mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog) σ =

288

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

Some(NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ
σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′

error-mem msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem
msg))))

| Some(ERROR-IPC error-IPC , σ ′)⇒
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))))
| None ⇒ Some([], σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab

289

then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5 :ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg) =
Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)

290

fix ae bb
assume hyp10 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 :ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious9 :
fst(the(mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#

291

fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′)))
| Some(ERROR-MEM error-mem, σ ′)⇒

ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)
(set-error-mem-waits caller partner σ σ ′ error-mem

msg)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC

msg)))
| None ⇒ []))

by (simp split : option.split errors.split , auto)

lemma abort-wait-recv-obvious0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-wait-recv-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success: ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-waitr caller partner σ
σ ′ error-mem msg))
using assms
by simp

lemma abort-wait-recv-obvious2 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-waitr caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-wait-recv-obvious3 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog)
σ =

292

Some(NO-ERRORS# fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious4 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-mem-waitr caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-mem-waitr caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis

293

using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious5 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog)
σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-wait-recv-obvious7 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abort lif t ioprog)
σ =

Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),
snd(the(mbind S (abort lif t ioprog) σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)

294

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a= (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious8 :
mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))))
else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t

ioprog)
(set-error-mem-waitr caller partner σ σ ′ error-mem

msg)))
,
snd(the(mbind S (abort lif t ioprog) (set-error-mem-waitr caller

partner σ σ ′ error-mem msg))))
else if ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t

ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC

msg)))
,
snd(the(mbind S (abort lif t ioprog) (set-error-ipc-waitr caller

partner σ σ ′ error-IPC msg))))
else if ioprog (IPC WAIT (RECV caller partner msg)) σ = None

295

then Some([], σ)
else id (mbind ((IPC WAIT (RECV caller partner

msg))#S)(abort lif t ioprog) σ)
)

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) =
Some ab

then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb

296

assume hyp5 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 : af = (ag , bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-wait-recv-obvious8 ′:
mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#

fst(the(mbind S (abort lif t ioprog) σ)),
snd(the(mbind S (abort lif t ioprog) σ)))

else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

Some(NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′))))
| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem
msg)))

297

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem
msg))))

| Some(ERROR-IPC error-IPC , σ ′)⇒
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC
msg))))

| None ⇒ Some([], σ)))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))

298

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5 :ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg) =
Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 :ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))

299

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious9 :
fst(the(mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem
msg)))

| Some(ERROR-IPC error-IPC , σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog) (

set-error-ipc-waitr caller partner σ σ ′ error-IPC
msg)))

| None ⇒ []))
by (simp split : option.split errors.split ,auto)

300

L.4 Symbolic Execution rules on BUF stage

lemma abort-buf-send-obvious0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-buf-send-obvious1 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success: ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-bufs caller partner σ σ ′

error-mem msg))
using assms
by simp

lemma abort-buf-send-obvious2 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-bufs caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-buf-send-obvious3 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′)

= Some a
then show ?thesis
using assms hyp0

301

proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious4 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg)= Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious5 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-succes : ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC
msg))),

302

snd(the(mbind S (abort lif t ioprog)
(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-ipc-dones caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-dones caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-buf-send-obvious7 :
assumes in-err : caller ∈ dom ((th-flag σ))
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1

303

by simp
qed

qed

lemma abort-buf-send-obvious8 :
assumes A: ∀ act σ . ioprog act σ 6= None
shows mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t ioprog)

σ =
(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))))

else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM
error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t
ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t

ioprog)
(set-error-ipc-bufs caller partner σ σ ′ error-IPC

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC BUF (SEND caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t

ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0

304

proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg) =
Some ab

then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some af
then show ?thesis

305

using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 : af = (ag , bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-buf-send-obvious8 ′:
mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog)
(error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC , σ ′)⇒
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))))
| None ⇒ Some([], σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

306

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

307

next
case (ERROR-MEM error-memory)
assume hyp5 :ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg) =
Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 :ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed

308

qed
qed

qed
qed

qed
qed

lemma abort-buf-send-obvious9 :
fst(the(mbind (IPC BUF (SEND caller partner msg)#S)(abort lif t ioprog) σ))

=
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)))

| None ⇒ []))
by (simp split : option.split errors.split ,auto)

lemma abort-buf-recv-obvious0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-buf-recv-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-bufr caller partner σ σ ′

error-mem msg))
using assms

309

by simp

lemma abort-buf-recv-obvious2 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-succes: ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-bufr caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-buf-recv-obvious3 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success : ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller

σ σ ′))))
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious4 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem

310

msg))),
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))))
using assms

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious5 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-ipc-doner caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-doner caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)

311

then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-buf-recv-obvious7 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious8 :
mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer

312

caller σ σ ′))))
else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t

ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t

ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC BUF (RECV caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t

ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg) =
Some ab

then show ?thesis
using assms hyp0 hyp1 hyp2

313

proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 : af = (ag , bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

314

lemma abort-buf-recv-obvious8 ′:
mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS ,

σ ′)⇒
Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog)

(error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))))
| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC , σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC

msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC
msg))))

| None ⇒ Some([], σ)))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next

315

case (Some ab)
assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5 :ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg) =
Some ad

then show ?thesis

316

using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 :ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious9 :
fst(the(mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS ,

317

σ ′)⇒
NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′)))
| Some(ERROR-MEM error-mem, σ ′)⇒

ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem

msg)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC

msg)))
| None ⇒ []))

by(simp split : option.split errors.split ,auto)

L.5 Symbolic Execution Rules on MAP stage

lemma abort-map-send-obvious0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-map-send-obvious1 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success: ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-maps caller partner σ
σ ′ error-mem msg))
using assms
by simp

lemma abort-map-send-obvious2 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-maps caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-map-send-obvious3 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(NO-ERRORS , σ ′)

318

shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog)
σ =

Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))))
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′)

= Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious4 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg)= Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)

319

then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious5 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-succes : ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-ipc-dones caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-dones caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-map-send-obvious7 :
assumes in-err : caller ∈ dom ((th-flag σ))
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abort lif t ioprog)

σ =
Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

320

snd(the(mbind S (abort lif t ioprog) σ)))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious8 :
assumes A: ∀ act σ . ioprog act σ 6= None
shows mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog)

σ =
(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog)
(error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))))

else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM
error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t
ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem
msg))))

else if ioprog (IPC MAP (SEND caller partner msg)) σ =
Some(ERROR-IPC error-IPC , σ ′)

then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t
ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC
msg)))

321

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC MAP (SEND caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC MAP (SEND caller partner

msg))#S)(abort lif t ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg) =
Some ab

then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg) = Some
ad

then show ?thesis

322

using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 : af = (ag , bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-map-send-obvious8 ′:
mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog)
(error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller σ
σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

323

(set-error-mem-maps caller partner σ σ ′

error-mem msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem
msg))))

| Some(ERROR-IPC error-IPC , σ ′)⇒
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))))
| None ⇒ Some([], σ)))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))

324

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5 :ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) =
Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 :ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))

325

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious9 :
fst(the(mbind (IPC MAP (SEND caller partner msg)#S)(abort lif t ioprog) σ))

=
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC , σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg)))

| None ⇒ []))
by (simp split : option.split errors.split ,auto)

326

lemma abort-map-recv-obvious0 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

(error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-map-recv-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-mapr caller partner σ
σ ′ error-mem msg))
using assms
by simp

lemma abort-map-recv-obvious2 :
assumes not-in-err : caller /∈ dom ((th-flag σ))
and ioprog-succes: ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC , (set-error-ipc-mapr caller partner σ σ ′

error-IPC msg))
using assms
by simp

lemma abort-map-recv-obvious3 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success : ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(NO-ERRORS , σ ′)
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer caller

σ σ ′))))
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller σ

σ ′) = Some a
then show ?thesis
using assms hyp0

327

proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious4 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem
msg))),

snd(the(mbind S (abort lif t ioprog)
(set-error-mem-mapr caller partner σ σ ′ error-mem msg))))

using assms
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious5 :
assumes not-in-err :caller /∈ dom ((th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC , σ ′)
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC

328

msg))),
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))))
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-doner caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-doner caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows abort lif t ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-map-recv-obvious7 :
assumes in-err :caller ∈ dom ((th-flag σ))
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abort lif t ioprog)

σ =
Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis

329

using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious8 :
mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))

else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ ′)

then Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog)
(error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′))))

else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM
error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t
ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem
msg))))

else if ioprog (IPC MAP (RECV caller partner msg)) σ =
Some(ERROR-IPC error-IPC , σ ′)

then Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t
ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC MAP (RECV caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC MAP (RECV caller partner

msg))#S)(abort lif t ioprog) σ))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis

330

using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg) =
Some ab

then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4 :mbindF ailSave S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller
σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′) = Some af

331

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7 : af = (ag , bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-map-recv-obvious8 ′:
mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ)),

snd(the(mbind S (abort lif t ioprog) σ)))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS ,

σ ′)⇒
Some(NO-ERRORS#fst(the(mbind S (abort lif t ioprog)

(error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abort lif t ioprog) (error-tab-transfer

caller σ σ ′))))
| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem
msg))))

| Some(ERROR-IPC error-IPC , σ ′)⇒
Some(ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC
msg)))

,
snd(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC
msg))))

| None ⇒ Some([], σ)))

332

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 :a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8 : ad = (ae, bb)
then show ?thesis

333

using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5 :ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ ba error-memory msg) =
Some ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10 : ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6 :ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12 : ad = (ae, bb)

334

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious9 :
fst(the(mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag σ))

then get-caller-error caller σ#fst(the(mbind S (abort lif t ioprog) σ))

else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS ,
σ ′)⇒

NO-ERRORS#fst(the(mbind S (abort lif t ioprog) (error-tab-transfer
caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abort lif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem
msg)))

| Some(ERROR-IPC error-IPC , σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abort lif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC
msg)))

| None ⇒ []))
by(simp split : option.split errors.split ,auto)

L.6 Symbolic Execution Rules rules on DONE stage

lemma abort-done-send-obvious0 :
assumes not-in-err :

caller /∈ dom ((th-flag) σ)
assumes ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6=

None
shows abort lif t ioprog (IPC DONE (SEND caller partner msg)) σ = Some(NO-ERRORS ,
σ)
using assms
by (simp split :option.split)

lemma abort-done-send-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag) σ)

335

and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S)
(abort lif t ioprog) σ =

Some(out ′′,σ ′′)
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
and exec-success ′:mbind S (abort lif t ioprog) σ = Some(out ′,σ ′)
shows σ ′ = σ ′′

using assms
by auto

lemma abort-done-send-obvious2 :
assumes not-in-err :caller /∈ dom ((th-flag) σ)
and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S)

(abort lif t ioprog) σ =
Some(out ′′,σ ′′)

and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
shows mbind S (abort lif t ioprog) σ = Some(out ′,σ ′) =⇒ out ′′ = (NO-ERRORS#out ′)
using assms
by auto

lemma abort-done-send-obvious3 :
assumes in-err :caller ∈ dom ((th-flag) σ)
shows abort lif t ioprog (IPC DONE (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, remove-caller-error caller σ)
using assms
by simp

lemma abort-done-send-obvious4 :
assumes in-err :caller ∈ dom ((th-flag) σ)
and exec-success:mbind ((IPC DONE (SEND caller partner msg))#S) (abort lif t

ioprog) σ =
Some(out ′′,σ ′′)

shows hd out ′′ = get-caller-error caller σ
proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

= Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by (simp, elim conjE , simp add : HOL.eq-sym-conv)

qed

336

qed

lemma abort-done-send-obvious5 :
assumes in-err :caller ∈ dom ((th-flag) σ)
and exec-success:mbind ((IPC DONE (SEND caller partner msg))#S)

(abort lif t ioprog) σ =
Some(out ′′,σ ′′)

and exec-success ′:mbind S (abort lif t ioprog) (σ(|th-flag := (th-flag σ)
(caller := None)|)) = Some(out ′,σ ′)

shows out ′′ = the (((th-flag) σ) caller) #out ′
using assms
by simp

lemma abort-done-send-obvious6 :
assumes in-err :caller ∈ dom ((th-flag σ))
and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S)

(abort lif t ioprog) σ =
Some(out ′′,σ ′′)

and exec-success ′: mbind S (abort lif t ioprog) (remove-caller-error caller σ) =
Some(out ′,σ ′)

shows σ ′′ = σ ′

using assms
by simp

lemma abort-done-send-obvious7 :
assumes exec-success : mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t

ioprog) σ =
Some (out ′,σ ′)

and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
shows(if caller ∈ dom ((th-flag) σ)

then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ)
of Some (out ′′,σ ′′) ⇒ σ ′ = σ ′′)

else (case mbind S (abort lif t ioprog) σ
of Some (out ′′,σ ′′) ⇒ σ ′ = σ ′′))

proof (cases caller ∈ dom ((th-flag σ)))
case True
assume hyp0 : caller ∈ dom ((th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) (remove-caller-error caller σ))
case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1 :mbindF ailSave S (abort lif t ioprog) (remove-caller-error caller

σ) =
Some a

337

then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0 : caller /∈ dom ((th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-send-obvious8 :
assumes execu-success : mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t

ioprog) σ =
Some (out ′,σ ′)

and ioprog-success: ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
shows

(if caller ∈ dom ((th-flag) σ)
then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ)

of Some (out ′′,σ ′′) ⇒ out ′ = (get-caller-error caller σ #out ′′))

else (case mbind S (abort lif t ioprog) σ
of Some (out ′′,σ ′′) ⇒ out ′ = (NO-ERRORS#out ′′)))

proof (cases caller ∈ dom ((th-flag σ)))
case True

338

assume hyp0 : caller ∈ dom ((th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp1 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller

σ) =
Some a

then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0 : caller /∈ dom ((th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-send-obvious9 :
mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t ioprog) σ =

339

(if caller ∈ dom ((th-flag) σ)
then Some (get-caller-error caller σ#

fst(the(mbind S (abort lif t ioprog)(remove-caller-error caller σ))),
snd(the(mbind S (abort lif t ioprog) (remove-caller-error caller σ))))

else (case ioprog (IPC DONE (SEND caller partner msg)) σ of None ⇒
Some ([], σ)

| Some (out ′, σ ′) ⇒
Some (NO-ERRORS# (fst o the)(mbind S (abort lif t ioprog) σ),

(snd o the)(mbind S (abort lif t ioprog) σ))))
proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp add : split : option.split)

qed
qed

qed
qed

lemma abort-done-send-obvious10 :
(fst o the)(mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t

ioprog) σ) =

340

(if caller ∈ dom ((th-flag) σ)
then get-caller-error caller σ#

(fst o the)(mbind S (abort lif t ioprog) (remove-caller-error caller σ))
else
(case ioprog (IPC DONE (SEND caller partner msg)) σ of

None ⇒ []
| Some (out ′, σ ′)⇒ NO-ERRORS# (fst o the)(mbind S (abort lif t ioprog)

σ)))
proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp split : option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious0 :
assumes no-inerr :caller /∈ dom ((th-flag) σ)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None

341

shows abort lif t ioprog (IPC DONE (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ)
using assms
by (simp split :option.split)

lemma abort-done-recv-obvious1 :
assumes not-in-err :caller /∈ dom ((th-flag) σ)
and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S)

(abort lif t ioprog) σ =
Some(out ′′,σ ′′)

and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows mbind S (abort lif t ioprog) σ = Some(out ′,σ ′) =⇒ σ ′ = σ ′′

using assms
by auto

lemma abort-done-recv-obvious2 :
assumes not-inerr :caller /∈ dom ((th-flag) σ)
and exec-success :mbind ((IPC DONE (RECV caller partner msg))#S)

(abort lif t ioprog) σ =
Some(out ′′,σ ′′)

and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows mbind S (abort lif t ioprog) σ = Some(out ′,σ ′) =⇒ out ′′ = (NO-ERRORS#out ′)
using assms
by auto

lemma abort-done-recv-obvious3 :
assumes in-err : caller ∈ dom ((th-flag) σ)
shows abort lif t ioprog (IPC DONE (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, remove-caller-error caller σ)
using assms
by simp

lemma abort-done-recv-obvious4 :
assumes in-err :caller ∈ dom ((th-flag) σ)
and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t

ioprog) σ =
Some(out ′′,σ ′′)

shows hd out ′′ = get-caller-error caller σ
proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 :mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

= Some a
then show ?thesis
using assms hyp0
proof (cases a)

342

fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by (simp, elim conjE , simp add : HOL.eq-sym-conv)

qed
qed

lemma abort-done-recv-obvious5 :
assumes in-err :caller ∈ dom ((th-flag) σ)
and exec-success: mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t

ioprog) σ =
Some(out ′′,σ ′′)

and exec-success ′:mbind S (abort lif t ioprog) (remove-caller-error caller σ) =
Some(out ′,σ ′)
shows out ′′ = (get-caller-error caller σ #out ′)
using assms
by simp

lemma abort-done-recv-obvious6 :
assumes in-err :caller ∈ dom ((th-flag) σ)
and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abort lif t

ioprog) σ =
Some(out ′′,σ ′′)

and exec-success ′:mbind S (abort lif t ioprog) (remove-caller-error caller σ) =
Some(out ′,σ ′)

shows σ ′′ = σ ′

using assms
by simp

lemma abort-done-recv-obvious7 :
assumes exec-success: mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t

ioprog) σ =
Some (out ′,σ ′)

and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows (if caller ∈ dom ((th-flag) σ)

then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ)
of Some (out ′′,σ ′′) ⇒ σ ′ = σ ′′)

else (case mbind S (abort lif t ioprog) σ
of Some (out ′′,σ ′′) ⇒ σ ′ = σ ′′))

proof (cases caller ∈ dom ((th-flag) σ))
case True
assume hyp0 : caller ∈ dom ((th-flag) σ)
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) (remove-caller-error caller σ))
case None
then show ?thesis
using assms hyp0

343

by simp
next
case (Some a)
assume hyp1 :mbindF ailSave S (abort lif t ioprog) (remove-caller-error caller

σ) =
Some a

then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0 : caller /∈ dom ((th-flag) σ)
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-recv-obvious8 :
assumes exec-success : mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t

ioprog) σ =
Some (out ′,σ ′)

and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows (if caller ∈ dom ((th-flag) σ)

then (case mbind S (abort lif t ioprog)(remove-caller-error caller σ)
of Some (out ′′,σ ′′) ⇒ out ′ = (get-caller-error caller σ #out ′′))

344

else (case mbind S (abort lif t ioprog) σ
of Some (out ′′,σ ′′) ⇒ out ′ = (NO-ERRORS#out ′′)))

proof (cases caller ∈ dom ((th-flag σ)))
case True
assume hyp0 : caller ∈ dom ((th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) (remove-caller-error caller σ))
case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1 :mbindF ailSave S (abort lif t ioprog) (remove-caller-error caller

σ) =
Some a

then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0 : caller /∈ dom ((th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2 : a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed

345

qed
qed

lemma abort-done-recv-obvious9 :
mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog) σ =

(if caller ∈ dom ((th-flag) σ)
then Some ((get-caller-error caller σ#

fst(the(mbind S (abort lif t ioprog) (remove-caller-error caller σ)))),

snd(the(mbind S (abort lif t ioprog) (remove-caller-error caller σ))))

else(case ioprog (IPC DONE (RECV caller partner msg)) σ of None ⇒
Some ([], σ)

| Some (out ′, σ ′) ⇒
Some (NO-ERRORS# (fst o the)(mbind S (abort lif t ioprog) σ),

(snd o the)(mbind S (abort lif t ioprog) σ))))
proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp split : option.split)

qed
qed

346

qed
qed

lemma abort-done-recv-obvious10 :
fst(the(mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t ioprog)

σ)) =
(if caller ∈ dom ((th-flag) σ)
then (get-caller-error caller σ#

fst(the(mbind S (abort lif t ioprog) (remove-caller-error caller σ))))

else
(case ioprog (IPC DONE (RECV caller partner msg)) σ of

None ⇒ []
| Some (out ′, σ ′)⇒ NO-ERRORS# (fst o the)(mbind S (abort lif t ioprog)

σ)))
by (simp split : option.split)

lemmas trace-normalizer-errors-case =
abort-prep-send-obvious9 abort-prep-recv-obvious9 abort-wait-send-obvious9
abort-wait-recv-obvious9 abort-buf-send-obvious9 abort-buf-recv-obvious9
abort-done-send-obvious10 abort-done-recv-obvious10

end

theory IPC-symbolic-exec-rewriting
imports IPC-trace-normalizer
begin

M Rewriting Rules for Symbolic Execution of Se-
quence Test Scheme

M.1 Symbolic Execution Rules for PREP stage

lemma abort-prep-send-obvious10 :
(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-preps caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

347

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-preps caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))

| None ⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

348

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

349

(set-error-ipc-preps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-send-obvious12 :
(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))∧

(((th-flag) σ) caller = None) ∧
((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-preps caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
Some (ERROR-MEM error-mem))∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner
=

Some (ERROR-MEM error-mem)) ∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-preps caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))∧

350

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner
=

Some (ERROR-IPC error-IPC)) ∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)

| None ⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next

351

case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next

352

case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-send-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC PREP (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC PREP (SEND caller partner msg)) σ =
Some (NO-ERRORS , σ ′) −→

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-preps caller partner σ σ ′ error-memory msg)|=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory #
outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC −→
ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-IPC

error-IPC , σ ′) −→
((set-error-ipc-preps caller partner σ σ ′ error-IPC msg)|=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

353

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

354

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed

355

qed
qed

qed
qed

qed
qed

lemma abort-prep-send-obvious10 ′:
(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error
caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =
Some (NO-ERRORS , b) −→
(σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =
Some (ERROR-MEM error-memory , b) −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory ,
th-flag := th-flag σ

(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-MEM
error-memory # outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =
Some (ERROR-IPC error-IPC , b) −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-IPC
error-IPC# outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

356

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ

= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) ba)
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) ba =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS

357

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-preps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-SEND id-def
split : errors.split option.split split-if-asm)

358

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-preps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-SEND id-def
split : errors.split option.split split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-send-obvious11 :
(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error
caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (exec-actionid-Mon-prep-fact0 caller partner σ msg ∧

exec-actionid-Mon-prep-fact1 caller partner σ −→
(σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #

359

outs)))) ∧
(∀ error-memory . a = ERROR-MEM error-memory −→

((b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND |)∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
∧

error-memory = not-valid-sender-addr-in-PREP-SEND)) −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory ,
th-flag := th-flag σ
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-MEM

error-memory # outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

((b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND |)∧
exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬ IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-SEND) ∨

(b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND |)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬ IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-SEND)) −→

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-IPC
error-IPC# outs)))))))

by (auto simp add : abort-prep-send-obvious10 ′ exec-actionid-Mon-prep-send-obvious3
exec-actionid-Mon-prep-send-obvious4 exec-actionid-Mon-prep-send-obvious5)

lemma abort-prep-recv-obvious10 :

360

(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒ (error-tab-transfer caller σ σ ′) |=
(outs ← (mbind (S)(abort lif t ioprog)); P (NO-ERRORS

outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-prepr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS

361

assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)

362

assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious12 :
(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))∧

(((th-flag) σ) caller = None) ∧
((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-prepr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=

363

Some (ERROR-MEM error-mem))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner

=
Some (ERROR-MEM error-mem)) ∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller
=

((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒
((set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)|=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs)))∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller
=

Some (ERROR-IPC error-IPC))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner

=
Some (ERROR-IPC error-IPC)) ∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller
=

((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis

364

using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed

365

qed
next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind (S)(abort lif t ioprog)); P (get-caller-error caller σ #

outs)))) ∧
(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC PREP (RECV caller partner msg)) σ = None −→ (σ |= (P [])))

∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC PREP (RECV caller partner msg)) σ
= Some (NO-ERRORS , σ ′) −→

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind (S)(abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory .

366

a = ERROR-MEM error-memory −→
ioprog (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-prepr caller partner σ σ ′ error-memory msg)|=

(outs ← (mbind (S)(abort lif t ioprog)); P (ERROR-MEM error-memory
outs)))) ∧

(∀ error-IPC .
a = ERROR-IPC error-IPC −→
ioprog (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-IPC

error-IPC , σ ′) −→
((set-error-ipc-prepr caller partner σ σ ′ error-IPC msg) |=

(outs ← (mbind (S)(abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))

367

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))

368

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious10 ′:
(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t
exec-actionid-Mon)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error caller

σ # outs)))) ∧
(caller /∈ dom ((th-flag)σ) −→
((∀ a b.
(a = NO-ERRORS −→
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some (NO-ERRORS ,

b) −→
(σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs)))) ∧

(∀ error-memory .
a = ERROR-MEM error-memory −→
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some

(ERROR-MEM error-memory , b) −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory ,
stateid.th-flag := th-flag σ

369

(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-MEM
error-memory # outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some

(ERROR-IPC error-IPC , b) −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-IPC
error-IPC# outs))))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC PREP (RECV caller partner msg))

σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis

370

using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) (error-tab-transfer

caller σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)

assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) (error-tab-transfer
caller σ ba) = Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

371

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-prepr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-RECV id-def
split : errors.split option.split split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-RECV id-def
split : errors.split option.split split-if-asm)

qed
qed

qed

372

qed
qed

qed
qed

lemma abort-prep-recv-obvious11 :
(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t
exec-actionid-Mon)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error caller

σ # outs)))) ∧
(caller /∈ dom ((th-flag)σ) −→
((∀ a b.
(a = NO-ERRORS −→
exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ −→
(σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs)))) ∧

(∀ error-memory .
a = ERROR-MEM error-memory −→

((b= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV |)∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-memory = not-valid-receiver-addr-in-PREP-RECV)) −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory ,
stateid.th-flag := th-flag σ

(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-MEM
error-memory # outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC −→
((b = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV |)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-RECV) ∨

(b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

373

error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV |)∧
exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-RECV)) −→

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-IPC
error-IPC# outs))))))))
by (auto simp add : abort-prep-recv-obvious10 ′ exec-actionid-Mon-prep-recv-obvious3

exec-actionid-Mon-prep-recv-obvious4 exec-actionid-Mon-prep-recv-obvious5)

M.2 Symbolic Execution Rules for WAIT stage

lemma abort-wait-send-obvious10 :
(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))
else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒ (error-tab-transfer caller σ σ ′)
|= (outs ← (mbind (S)(abort lif t ioprog)); P

(NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-waits caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-waits caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))

| None ⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b

374

assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))

375

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

376

lemma abort-wait-send-obvious12 :
(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))
else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
((error-tab-transfer caller σ σ ′)|=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))∧
(((th-flag) σ) caller = None) ∧
((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-waits caller partner σ σ ′ error-mem msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
Some (ERROR-MEM error-mem))∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner
=

Some (ERROR-MEM error-mem)) ∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-waits caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner

=
Some (ERROR-IPC error-IPC)) ∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)

| None ⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

377

fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

378

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

379

lemma abort-wait-send-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC WAIT (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (NO-ERRORS , σ ′)

−→
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-waits caller partner σ σ ′ error-memory msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory #

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-IPC

error-IPC , σ ′) −→
((set-error-ipc-waits caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)

380

assume hyp2 : ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

381

proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious10 ′:
(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error
caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b.
(a = NO-ERRORS −→

exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some

382

(NO-ERRORS , b) −→
((σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some
(ERROR-IPC error-IPC , b) −→

((σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (ERROR-IPC

error-IPC# outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ

= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

383

case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4

proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) (error-tab-transfer
caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)

assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) (error-tab-transfer
caller σ ba) =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : WAIT-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : PREP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next

384

case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-waits caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-SEND id-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-waits caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

385

WAIT-SEND id-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious11 :
(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (IPC-send-comm-check-st id caller partner σ ∧

IPC-params-c4 caller partner ∧ IPC-params-c5 partner σ −→
((σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧
(∀ error-IPC .
(
¬ IPC-send-comm-check-st id caller partner σ −→

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-WAIT-SEND# outs)))) ∧

(a = ERROR-IPC error-IPC −→
IPC-send-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND |) ∧

error-IPC = error-IPC-3-in-WAIT-SEND) ∧
(IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→

b = update-state-wait-send-params5 σ caller ∧
error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC

error-IPC) ∧
¬ IPC-params-c5 partner σ))) −→

386

((σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs))))))))
by (auto simp add : abort-wait-send-obvious10 ′ exec-actionid-Mon-wait-send-obvious3

exec-actionid-Mon-wait-send-obvious4)

lemma abort-wait-recv-obvious10 :
(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))
else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-waitr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis

387

using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

388

(set-error-mem-waitr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious12 :
(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))

389

else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of
Some(NO-ERRORS , σ ′) ⇒

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))∧

(((th-flag) σ) caller = None) ∧
((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-waitr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
Some (ERROR-MEM error-mem))∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner
=

Some (ERROR-MEM error-mem)) ∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner

=
Some (ERROR-IPC error-IPC)) ∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None

390

then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)

391

assume hyp5 : mbindF ailSave S (abort lif t ioprog)
(set-error-mem-waitr caller partner σ ba error-memory msg)

= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→

392

(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC WAIT (RECV caller partner msg)) σ = None −→ (σ |= (P [])))

∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC WAIT (RECV caller partner msg)) σ =
Some (NO-ERRORS , σ ′) −→

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-waitr caller partner σ σ ′ error-memory msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM
error-memory # outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC −→
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-IPC

error-IPC , σ ′) −→
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)

393

then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

394

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious10 ′:
(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC WAIT (RECV caller

partner msg)) σ =
Some (NO-ERRORS , b) −→

((σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ |))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧

395

(∀ error-IPC . a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some

(ERROR-IPC error-IPC , b) −→
((σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC WAIT (RECV caller partner msg))

σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4

proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) (error-tab-transfer
caller σ ba))

case None

396

then show ?thesis
by simp

next
case (Some ad)

assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) (error-tab-transfer
caller σ ba) = Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : WAIT-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next

397

case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-waitr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-RECV id-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-RECV id-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

398

lemma abort-wait-recv-obvious11 :
(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (IPC-recv-comm-check-st id caller partner σ ∧

IPC-params-c4 caller partner ∧ IPC-params-c5 partner σ −→
((σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧
(∀ error-IPC .
(
¬ IPC-recv-comm-check-st id caller partner σ −→

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-WAIT-RECV# outs)))) ∧

(a = ERROR-IPC error-IPC −→
IPC-recv-comm-check-st id caller partner σ −→
((¬ IPC-params-c4 caller partner −→

b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV |) ∧

error-IPC = error-IPC-3-in-WAIT-RECV) ∧
(IPC-params-c4 caller partner −→

((¬ IPC-params-c5 partner σ −→
b = update-state-wait-recv-params5 σ caller ∧
error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC

error-IPC) ∧
¬ IPC-params-c5 partner σ))) −→

((σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs))))))))
by (auto simp add : abort-wait-recv-obvious10 ′ exec-actionid-Mon-wait-recv-obvious3

exec-actionid-Mon-wait-recv-obvious4)

399

M.3 Symbolic Execution Rules for BUF stage

lemma abort-buf-send-obvious10 :
(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC BUF (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufs caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3

400

proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

401

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious12 :
(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC BUF (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))∧

(((th-flag) σ) caller = None) ∧
((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufs caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs)))∧

402

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller
=

Some (ERROR-MEM error-mem))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner

=
Some (ERROR-MEM error-mem)) ∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller
=

((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner

=
Some (ERROR-IPC error-IPC)) ∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis

403

using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed

404

qed
next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC BUF (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC BUF (SEND caller partner msg)) σ =
Some (NO-ERRORS , σ ′) −→

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-bufs caller partner σ σ ′ error-memory msg)

405

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory
outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC −→
ioprog (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC

error-IPC , σ ′) −→
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)

406

assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer
caller σ ba) = Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)

407

assume hyp5 : mbindF ailSave S (abort lif t ioprog)
(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some

ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious10 ′:
(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC BUF (SEND caller

partner msg)) σ =
Some (NO-ERRORS , b) −→

((σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some
(ERROR-IPC error-IPC , b) −→

((σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

408

P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ

= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) ba)
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) ba =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)

409

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : BUF-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-bufs caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6

410

by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def
BUF-SEND id-def

split : errors.split option.split list .split-asm split-if-asm)
qed

qed
next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

BUF-SEND id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious11 :
(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b.
(a = NO-ERRORS −→ IPC-buf-check-st id caller partner σ −→
((σ(|current-thread := caller ,

resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

411

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧

(a = NO-ERRORS ∧ msg = [] −→ IPC-buf-check-st id caller partner σ −→
((σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧

(a = ERROR-IPC error-IPC-1-in-BUF-SEND −→
¬ IPC-buf-check-st id caller partner σ −→
((σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))))))
by (simp add : abort-buf-send-obvious10 ′ exec-actionid-Mon-buf-send-obvious3 , auto)

lemma abort-buf-recv-obvious10 :
(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

412

((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

413

proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis

414

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious12 :
(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))∧
(((th-flag) σ) caller = None) ∧
((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))

| Some(ERROR-MEM error-mem, σ ′)⇒
((set-error-mem-bufr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
Some (ERROR-MEM error-mem))∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner
=

Some (ERROR-MEM error-mem)) ∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner

=

415

Some (ERROR-IPC error-IPC)) ∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

416

proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis

417

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC BUF (RECV caller partner msg)) σ = None −→ (σ |= (P []))) ∧

((∀ a σ ′.
(a = NO-ERRORS −→ ioprog (IPC BUF (RECV caller partner msg)) σ =

Some (NO-ERRORS , σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-bufr caller partner σ σ ′ error-memory msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory #

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC
error-IPC , σ ′) −→

((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0

418

proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4

419

proof (cases mbindF ailSave S (abort lif t ioprog)
(set-error-mem-bufr caller partner σ ba error-memory msg))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some
ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

420

qed

lemma abort-buf-recv-obvious10 ′:
(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC BUF (RECV caller

partner msg)) σ =
Some (NO-ERRORS , b) −→

((σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some
(ERROR-IPC error-IPC , b) −→

((σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ)
case None

421

then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ

= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) ba)
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) ba =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : BUF-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)

422

next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-bufr caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

BUF-RECV id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)

423

assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)
(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some

ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

BUF-RECV id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious11 :
(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b.
(a = NO-ERRORS −→ IPC-buf-check-st id caller partner σ −→

((σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧

(a = NO-ERRORS ∧ msg = [] −→ IPC-buf-check-st id caller partner σ −→
((σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,

424

th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))) ∧

(∀ error-IPC . a = ERROR-IPC error-IPC-1-in-BUF-RECV −→
¬IPC-buf-check-st id caller partner σ −→
((σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV))|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-RECV# outs)))))))
by (simp add : abort-buf-recv-obvious10 ′ exec-actionid-Mon-buf-recv-obvious3 , auto)

M.4 Symbolic Execution Rules for MAP stage

lemma abort-map-send-obvious10 :
(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC MAP (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-maps caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)

425

then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None

426

then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious12 :

427

(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

(if caller ∈ dom ((th-flag σ))
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC MAP (SEND caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) ∧
(((th-flag) σ) caller = None) ∧
(((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller) ∧

(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-maps caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg))

caller =
Some (ERROR-MEM error-mem))∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg))
partner =

Some (ERROR-MEM error-mem)) ∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg))

caller =
((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg))

partner)
| Some(ERROR-IPC error-IPC , σ ′)⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller

=
Some (ERROR-IPC error-IPC))∧

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner
=

Some (ERROR-IPC error-IPC)) ∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller

=
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis

428

using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis

429

using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed

430

qed
qed

lemma abort-map-send-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC MAP (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC MAP (SEND caller partner msg)) σ =
Some (NO-ERRORS , σ ′) −→

((error-tab-transfer caller σ σ ′) |= (outs ← (mbind S (abort lif t ioprog));P
(NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-maps caller partner σ σ ′ error-memory msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-IPC
error-IPC , σ ′) −→

((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next

431

case (Some ab)
assume hyp2 : ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis

432

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious10 ′:
(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC MAP (SEND caller

partner msg)) σ =

433

Some (NO-ERRORS , b) −→
((σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs partner σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ

= Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) ba)
case None
then show ?thesis

434

by simp
next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) ba =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : MAP-SEND id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)

435

assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)
(set-error-mem-maps caller partner σ ba error-memory msg)

= Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-SEND id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-SEND id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious11 :

436

(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)
(abort lif t exec-actionid-Mon)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→

((σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs partner σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS ∧msg = [] −→

((σ(|current-thread := caller ,
resource := (resource σ) ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))))))
by (auto simp add : abort-map-send-obvious10 ′ exec-actionid-Mon-map-send-obvious3)

lemma abort-map-recv-obvious10 :
(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs)))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-mapr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs)))
| Some(ERROR-IPC error-IPC , σ ′)⇒

437

((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

438

proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis

439

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious12 :
(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ

outs)))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of

Some(NO-ERRORS , σ ′) ⇒
(((error-tab-transfer caller σ σ ′) |=

(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))∧
(((th-flag) σ) caller = None) ∧
(((th-flag) σ) caller =
((th-flag) (error-tab-transfer caller σ σ ′)) caller) ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
(((set-error-mem-mapr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs)))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller

=
Some (ERROR-MEM error-mem))∧
(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg))

partner =
Some (ERROR-MEM error-mem)) ∧

(((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller
=

((th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg))
partner))

| Some(ERROR-IPC error-IPC , σ ′)⇒
(((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs)))∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧

440

(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner
=

Some (ERROR-IPC error-IPC)) ∧
(((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner))
| None ⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad

441

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =

442

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious10 ′′:
(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

((caller ∈ dom ((th-flag)σ) −→
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))
∧

(caller /∈ dom ((th-flag)σ) −→
(ioprog (IPC MAP (RECV caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC MAP (RECV caller partner msg)) σ =
Some (NO-ERRORS , σ ′) −→

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory . a = ERROR-MEM error-memory −→
ioprog (IPC MAP (RECV caller partner msg)) σ = Some (ERROR-MEM

error-memory , σ ′) −→
((set-error-mem-maps caller partner σ σ ′ error-memory msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-memory #

outs)))) ∧
(∀ error-IPC . a = ERROR-IPC error-IPC −→

ioprog (IPC MAP (RECV caller partner msg)) σ = Some (ERROR-IPC
error-IPC , σ ′) −→

((set-error-ipc-maps caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))))))))
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog) σ = Some a

443

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add : valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog) (error-tab-transfer caller

σ ba))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog) (error-tab-transfer

caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory

444

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add : valid-SE-def bind-SE-def)

qed
qed

qed
qed

445

qed
qed

qed

lemma abort-map-recv-obvious10 ′:
(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC MAP (RECV caller

partner msg)) σ =
Some (NO-ERRORS , b) −→

((σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))))))
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2 : exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ

= Some ab
then show ?thesis
using hyp0 hyp1 hyp2

446

proof (cases ab)
fix ac ba
assume hyp3 :ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)
case NO-ERRORS
assume hyp4 : ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon) ba)
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon) ba =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)
case NO-ERRORS
assume hyp7 :error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7

by (auto simp add : MAP-RECV id-def valid-SE-def bind-SE-def
exec-actionid-Mon-def

split : split-if-asm option.split-asm)
next
case (ERROR-MEM error-memory)
assume hyp7 :error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
next
case (ERROR-IPC error-IPC)
assume hyp7 :error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add : valid-SE-def bind-SE-def exec-actionid-Mon-def

split : split-if-asm)
qed

qed

447

qed
next
case (ERROR-MEM error-memory)
assume hyp4 :ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg)
= Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-RECV id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4 :ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5 : mbindF ailSave S (abort lif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg) =
Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6 : ad = (ae, bb)
then show ?thesis

448

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add : exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-RECV id-def
split : errors.split option.split list .split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious11 :
(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((th-flag)σ) −→
(∀ a b.
(a = NO-ERRORS −→
((σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs caller σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))))) ∧

(caller /∈ dom ((th-flag)σ) ∧ msg = [] −→
(∀ a b.
(a = NO-ERRORS −→
((σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs)))))))
by (auto simp add :abort-map-recv-obvious10 ′ exec-actionid-Mon-map-recv-obvious3)

449

M.5 Symbolic Execution Rules for DONE stage

lemma abort-done-send-obvious11 :
(σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag)σ)
then ((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #
outs)))

else (if ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS #

outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add : valid-SE-def bind-SE-def split : option.split)

qed
qed

qed
qed

lemma abort-done-send-obvious12 :

450

(σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t
ioprog)); P outs)) =

(if caller ∈ dom ((th-flag)σ)
then ((((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #
outs))) ∧

(((th-flag) (remove-caller-error caller σ)) caller = None) ∧
caller 6= partner ∧

(((th-flag) σ) partner =
((th-flag) (remove-caller-error caller σ)) partner)) ∨

(((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs))) ∧
(((th-flag) (remove-caller-error caller σ)) caller = None) ∧

caller = partner ∧
(((th-flag) (remove-caller-error caller σ)) partner = None)))

else (if ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS #

outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis

451

using hyp0 hyp1 hyp2 hyp3
by (auto simp add : valid-SE-def bind-SE-def split : option.split)

qed
qed

qed
qed

lemma abort-done-send-obvious11 ′:
(σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))

∧
(caller /∈ dom ((th-flag)σ) ∧
ioprog (IPC DONE (SEND caller partner msg)) σ 6= None −→
(σ |=(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))))∧

(caller /∈ dom ((th-flag σ)) ∧
ioprog (IPC DONE (SEND caller partner msg)) σ = None −→
(σ |=(P []))))

proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis

452

using hyp0 hyp1 hyp2 hyp3
by (simp add : valid-SE-def bind-SE-def split : option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious11 :
(σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then ((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #
outs)))

else
(if ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis

453

using hyp0 hyp1 hyp2 hyp3
by (auto simp add : valid-SE-def bind-SE-def split : option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious12 :
(σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
(if caller ∈ dom ((th-flag σ))
then ((((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #
outs))) ∧

(((th-flag) (remove-caller-error caller σ)) caller = None) ∧
caller 6= partner ∧
(((th-flag) σ) partner =
((th-flag) (remove-caller-error caller σ)) partner)) ∨

(((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ #

outs))) ∧
(((th-flag) (remove-caller-error caller σ)) caller = None) ∧

caller = partner ∧
(((th-flag) (remove-caller-error caller σ)) partner = None)))

else
(if ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
then (σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis

454

by simp
next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add : valid-SE-def bind-SE-def split : option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious11 ′:
(σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t

ioprog)); P outs)) =
((caller ∈ dom ((th-flag)σ) −→

((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs))))

∧
(caller /∈ dom ((th-flag)σ) ∧
ioprog (IPC DONE (RECV caller partner msg)) σ 6= None −→
(σ |=(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))) ∧

(caller /∈ dom ((th-flag σ)) ∧
ioprog (IPC DONE (RECV caller partner msg)) σ = None −→ (σ |= (P []))))

proof (cases mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0 : mbindF ailSave S (abort lif t ioprog)(remove-caller-error caller σ)

=
Some a

then show ?thesis
using hyp0
proof (cases a)
fix aa b
assume hyp1 : a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abort lif t ioprog) σ)
case None
then show ?thesis
by simp

455

next
case (Some ab)
assume hyp2 : mbindF ailSave S (abort lif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3 : ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp add : valid-SE-def bind-SE-def split :option.split)

qed
qed

qed
qed

lemmas trace-normalizer-errors-TestGen =
abort-prep-send-obvious10 abort-prep-recv-obvious10 abort-wait-send-obvious10

abort-wait-recv-obvious10 abort-buf-send-obvious10 abort-buf-recv-obvious10
abort-done-send-obvious11 abort-done-recv-obvious11 valid-SE-def bind-SE-def
unit-SE-def

lemmas trace-normalizer-errors-exec-conj-imp-TestGen =
abort-prep-send-obvious10 ′ abort-prep-recv-obvious10 ′ abort-wait-send-obvious10 ′

abort-wait-recv-obvious10 ′ abort-buf-send-obvious10 ′ abort-buf-recv-obvious10 ′

abort-done-send-obvious11 ′ abort-done-recv-obvious11 ′

end

theory IPC-symbolic-exec-intros
imports IPC-symbolic-exec-rewriting
begin

N Introduction Rules for Sequence Testing Scheme

N.1 Introduction Rules for PREP stage

lemma abort-prep-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |= (outs ← (mbind (S)(abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs)))
and not-in-err-state1 :∧

a b. caller /∈ dom ((stateid.th-flag σ)) =⇒
a = NO-ERRORS =⇒

456

exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some
(NO-ERRORS , b) =⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs)))
and not-in-err-state2 :∧

a b error-memory . caller /∈ dom ((stateid.th-flag σ)) =⇒
a = ERROR-MEM error-memory =⇒
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =

Some (ERROR-MEM error-memory , b) =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory ,
stateid.th-flag := stateid.th-flag σ

(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)

|= (outs ← (mbind (S)(abort lif t exec-actionid-Mon));
P (ERROR-MEM error-memory # outs)))

and not-in-err-state3 :∧
a b error-IPC . caller /∈ dom ((stateid.th-flag σ)) =⇒

a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some

(ERROR-IPC error-IPC , b) =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)

|= (outs ← (mbind (S)(abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC# outs)))

shows (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)
(abort lif t exec-actionid-Mon)); P outs))

using assms
by (simp add : abort-prep-send-obvious10 ′)

lemma abort-prep-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |= (outs ← (mbind (S)(abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs)))
and not-in-err-state1 :∧

b. caller /∈ dom ((stateid.th-flag σ)) =⇒
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some

457

(NO-ERRORS , b) =⇒
(σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs)))

and not-in-err-state2 :∧
b error-memory .
caller /∈ dom ((stateid.th-flag σ)) =⇒
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ =

Some (ERROR-MEM error-memory , b) =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory ,
stateid.th-flag := stateid.th-flag σ

(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)

|= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-MEM error-memory # outs)))

and not-in-err-state3 :∧
b error-IPC . caller /∈ dom ((stateid.th-flag σ)) =⇒

exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some
(ERROR-IPC error-IPC , b) =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)
|= (outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (

ERROR-IPC error-IPC# outs)))
shows (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
using assms
by (simp add : abort-prep-recv-obvious10 ′)

N.2 Introduction rules for WAIT stage

lemma abort-wait-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
σ |= (outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (get-caller-error

caller σ # outs))
and not-in-err-state1 :∧

a b. caller /∈ dom ((stateid.th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some

(NO-ERRORS , b) =⇒
σ(|current-thread := caller ,

458

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs))
and not-in-err-state3 :∧

a b error-IPC . caller /∈ dom ((stateid.th-flag σ)) =⇒
a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some

(ERROR-IPC error-IPC , b) =⇒
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ

(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)
|= (outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (

ERROR-IPC error-IPC# outs))
shows σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t

exec-actionid-Mon)); P outs)
using assms
by (simp add : abort-wait-send-obvious10 ′)

lemma abort-wait-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
σ |= (outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (get-caller-error

caller σ # outs))
and not-in-err-state1 :∧

a b. caller /∈ dom ((stateid.th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some

(NO-ERRORS , b) =⇒
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS |) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs))
and not-in-err-state2 :∧

a b error-IPC . caller /∈ dom ((stateid.th-flag σ)) =⇒
a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some

(ERROR-IPC error-IPC , b) =⇒
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ

(caller 7→ (ERROR-IPC error-IPC),

459

partner 7→ (ERROR-IPC error-IPC))|)
|= (outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (

ERROR-IPC error-IPC# outs))
shows σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t

exec-actionid-Mon)); P outs)
using assms
by (auto simp: abort-wait-recv-obvious10 ′ in-err-state)

N.3 Introduction rules rules for BUF stage

lemma abort-buf-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1 :∧

a b. caller /∈ dom ((th-flag σ)) =⇒
a = NO-ERRORS =⇒

exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some
(NO-ERRORS , b) =⇒

σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) |=
(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS #

outs))
and not-in-err-state2 :∧

a b error-IPC . caller /∈ dom ((th-flag σ)) =⇒
a = ERROR-IPC error-IPC =⇒

exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some
(ERROR-IPC error-IPC , b) =⇒

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (ERROR-IPC
error-IPC # outs))
shows σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)
using assms
by (auto simp : abort-buf-send-obvious10 ′)

460

lemma abort-buf-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1 :∧

a b. caller /∈ dom ((th-flag σ)) =⇒
a = NO-ERRORS =⇒

exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some
(NO-ERRORS , b) =⇒

σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |)|=
(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS

outs))
and not-in-err-state2 :∧

a b error-IPC . caller /∈ dom ((th-flag σ)) =⇒
a = ERROR-IPC error-IPC =⇒

exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some
(ERROR-IPC error-IPC , b) =⇒

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC ,
stateid.th-flag := stateid.th-flag σ
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (ERROR-IPC
error-IPC # outs))
shows σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)
using assms
by (auto simp: abort-buf-recv-obvious10 ′)

N.4 Introduction rules for MAP stage

lemma abort-map-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1 :∧

a b. caller /∈ dom ((th-flag σ)) =⇒
a = NO-ERRORS =⇒

exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ = Some
(NO-ERRORS , b) =⇒

461

σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs partner σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |) |=
(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS #

outs))
shows σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)
using assms
by (auto simp : abort-map-send-obvious10 ′)

lemma abort-map-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1 :∧

a b. caller /∈ dom ((th-flag σ)) =⇒
a = NO-ERRORS =⇒

exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ = Some
(NO-ERRORS , b) =⇒

σ(|current-thread := caller ,
resource :=foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS |)|=
(outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS

outs))
shows σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)
using assms
by (auto simp: abort-map-recv-obvious10 ′)

N.5 Introduction rules for DONE stage

lemma abort-done-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

(caller ∈ dom ((th-flag σ)) =⇒
(remove-caller-error caller σ) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (get-caller-error
caller σ # outs)))
and not-in-err-state1 :

462

(caller /∈ dom ((stateid.th-flag σ)) =⇒
σ |= (outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS

outs)))
shows σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)
using assms
by (simp add : abort-done-send-obvious11 exec-actionid-Mon-def)

lemma abort-done-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(remove-caller-error caller σ) |=

(outs ← (mbind (S)(abort lif t exec-actionid-Mon)); P (get-caller-error
caller σ # outs))
and not-in-err-state1 :

caller /∈ dom ((stateid.th-flag σ)) =⇒
σ |= (outs ← (mbind (S)(abort lif t exec-actionid-Mon));P (NO-ERRORS

outs))
shows σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs)
using assms
by (simp add : abort-done-recv-obvious11 exec-actionid-Mon-def)

end

theory IPC-symbolic-exec-elims
imports IPC-symbolic-exec-rewriting IPC-symbolic-exec-intros ../../../../src/TestLib
begin

O Elimination rules for Symbolic Execution of a
Test Specification

lemma threa-table-obvious:
(caller /∈ dom ((th-flag σ))) = ((th-flag σ) caller = None)
by auto

lemma threa-table-obvious ′:
((th-flag σ) caller = None) = (caller /∈ dom ((th-flag σ)))
by auto

O.1 Symbolic Execution rules for PREP SEND

HOL representation

lemma abort-prep-send-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t

463

ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′)
|= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))

=⇒Q
and not-in-err-state-Some2 :∧

σ ′ error-mem.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10 , simp, case-tac a, simp,

464

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-prep-send-HOL-elim21 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))
=⇒ Q
and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND ,
stateid.th-flag := th-flag σ
(caller 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND),
partner 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-MEM not-valid-sender-addr-in-PREP-SEND # outs)))=⇒

Q
and
not-in-err-exec31 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒

465

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec32 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec33 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒
IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q
shows Q
apply (insert valid-exec)
apply (elim abort-prep-send-mbindFSave-E)
apply (simp add : in-err-exec)
apply (simp add : exec-actionid-Mon-prep-send-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec1)
apply (simp add : exec-actionid-Mon-prep-send-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)

466

apply (simp add : not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add : exec-actionid-Mon-prep-send-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec32)
apply (simp add : exec-actionid-Mon-def)
done

O.2 Symbolic Execution rules for PREP RECV

lemma abort-prep-recv-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

467

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-prep-recv-HOL-elim21 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :

caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))

468

=⇒ Q
and
not-in-err-exec2 :

caller /∈ dom ((th-flag σ)) =⇒
¬exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV ,
stateid.th-flag := th-flag σ
(caller 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV),
partner 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV))|) |=
(outs ← (mbind S (abort lif t exec-actionid-Mon));

P (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV #
outs)))=⇒ Q
and
not-in-err-exec31 :

caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec32 :

caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec33 :

469

caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒
IPC-params-c6 caller ((the o thread-list σ) partner)=⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS |) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs)))=⇒Q
shows Q
apply (insert valid-exec)
apply (elim abort-prep-recv-mbindFSave-E)
apply (simp add : in-err-exec)
apply (simp add : exec-actionid-Mon-prep-recv-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec1)
apply (simp add : exec-actionid-Mon-prep-recv-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add : exec-actionid-Mon-prep-recv-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec32)
apply (simp add : exec-actionid-Mon-def)
done

O.3 Symbolic Execution rules for WAIT SEND

lemma abort-wait-send-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

470

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next

471

case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-send-HOL-elim21 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :

caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒

(σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
and
not-in-err-exec21 :

caller /∈ dom ((th-flag σ)) =⇒
¬IPC-send-comm-check-st id caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-WAIT-SEND# outs)))=⇒ Q

and
not-in-err-exec22 :

caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

472

error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-3-in-WAIT-SEND# outs)))=⇒Q

and
not-in-err-exec23 :

caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-6-in-WAIT-SEND# outs)))=⇒Q

and
not-in-err-exec24 :

caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-5-in-WAIT-SEND# outs)))=⇒Q

shows Q
apply (insert valid-exec)
apply (elim abort-wait-send-mbindFSave-E)
apply (simp only : in-err-exec)
apply (simp only : exec-actionid-Mon-wait-send-obvious3)
apply (simp add : not-in-err-exec1)
apply (simp add : exec-actionid-Mon-def WAIT-SEND id-def split : split-if-asm

option.split-asm)
apply (simp only : exec-actionid-Mon-wait-send-obvious4)
apply (auto)
apply (erule contrapos-np)

473

apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : update-state-wait-send-params5-def split :option.split-asm split-if-asm)
apply (simp add : domIff)
apply (elim not-in-err-exec23)
apply simp-all
apply (simp add : not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-send-params5-def split :option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-send-params5-def split :option.split-asm split-if-asm)
apply (simp add : exec-actionid-Mon-def)
done

O.4 Symbolic Execution rules for WAIT RECV

lemma abort-wait-recv-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒

474

((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-recv-HOL-elim21 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and

475

not-in-err-exec1 :

caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒

(σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
and
not-in-err-exec21 :

caller /∈ dom ((th-flag σ)) =⇒
¬IPC-recv-comm-check-st id caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-WAIT-RECV# outs)))=⇒ Q

and
not-in-err-exec22 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-3-in-WAIT-RECV# outs)))=⇒Q

and
not-in-err-exec23 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV ,
th-flag := th-flag σ

476

(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-6-in-WAIT-RECV# outs)))=⇒Q

and
not-in-err-exec24 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-5-in-WAIT-RECV# outs)))=⇒Q

shows Q
apply (insert valid-exec)
apply (elim abort-wait-recv-mbindFSave-E)
apply (simp only : in-err-exec)
apply (simp only : exec-actionid-Mon-wait-recv-obvious3)
apply (simp add : not-in-err-exec1)
apply (simp add : exec-actionid-Mon-def WAIT-RECV id-def split : split-if-asm

option.split-asm)
apply (simp only : exec-actionid-Mon-wait-recv-obvious4)
apply (auto)
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : update-state-wait-recv-params5-def split :option.split-asm split-if-asm)
apply (simp add : domIff)
apply (elim not-in-err-exec23)
apply simp-all
apply (simp add : not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-recv-params5-def split :option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)

477

apply (simp add : not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-recv-params5-def split :option.split-asm split-if-asm)
apply (simp add : exec-actionid-Mon-def)
done

O.5 Symbolic Execution rules for BUF SEND

lemma abort-buf-send-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS , σ ′)

=⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((set-error-mem-bufs caller partner σ σ ′ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis

478

using valid-exec
by (subst (asm) abort-buf-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-buf-send-HOL-elim21 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-buf-check-st id caller partner σ =⇒

(σ(|current-thread := caller ,
resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs partner σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
and
not-in-err-exec12 :
caller /∈ dom (th-flag σ) =⇒
IPC-buf-check-st id caller partner σ =⇒
msg = [] =⇒

(σ(|current-thread := caller ,

479

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q

and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬ IPC-buf-check-st id caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))=⇒ Q

shows Q
apply(insert valid-exec)
apply (subst (asm) abort-buf-send-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec2
apply auto
done

O.6 Symbolic Execution rules for BUF RECV

lemma abort-buf-recv-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒

480

ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM
error-mem, σ ′) =⇒

((set-error-mem-bufr caller partner σ σ ′ error-mem msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem

outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-buf-recv-HOL-elim21 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

481

P (get-caller-error caller σ # outs))) =⇒ Q
and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-buf-check-st id caller partner σ =⇒
(σ(|current-thread := caller ,

resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs caller σ) (get-msg-values msg σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬ IPC-buf-check-st id caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-BUF-RECV# outs)))=⇒ Q

shows Q
apply(insert valid-exec)
apply (subst (asm) abort-buf-recv-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec2
apply auto
done

O.7 Symbolic Execution rules for MAP SEND

lemma abort-map-send-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS ,

482

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((set-error-mem-maps caller partner σ σ ′ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-send-obvious10 ,

case-tac a,simp split : errors.split-asm, simp, elim not-in-err-state-Some1 ,
simp,

auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-send-HOL-elim2 :

483

assumes
valid-exec: (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
(σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs partner σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS # outs)))
=⇒ Q

and
not-in-err-exec12 :
caller /∈ dom ((th-flag σ)) =⇒ msg = [] =⇒
(σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS # outs)))
=⇒ Q
shows Q
apply(insert valid-exec)
apply (subst (asm) abort-map-send-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

O.8 Symbolic Execution rules for MAP RECV

lemma abort-map-recv-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

484

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((set-error-mem-mapr caller partner σ σ ′ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-recv-obvious10 ,

case-tac a,simp split : errors.split-asm, simp, elim not-in-err-state-Some1 ,
simp,

auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis

485

using valid-exec False
by (subst (asm) abort-map-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-recv-HOL-elim2 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
(σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs caller σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q

and
not-in-err-exec12 :
caller /∈ dom ((th-flag σ)) =⇒ msg = [] =⇒
(σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
shows Q
apply(insert valid-exec)
apply (subst (asm) abort-map-recv-obvious11)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

O.9 Symbolic Execution rules for DONE SEND

lemma abort-done-send-mbindFSave-E :

486

assumes valid-exec:
(σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t

ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ 6= None =⇒
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-done-send-obvious11 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC DONE (SEND caller partner msg)) σ 6= None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-send-obvious11 , simp only : False comp-apply)

next
case False
then show ?thesis
using assms not-in-err-state-None
by (metis (mono-tags) comp-apply in-err-state False abort-done-send-obvious11)
qed

qed

lemma abort-done-send-HOL-elim1 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))) =⇒ Q)

487

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs))) =⇒ Q
shows Q
using assms
by (rule abort-done-send-mbindFSave-E , simp-all add : exec-actionid-Mon-def)

O.10 Symbolic Execution rules for DONE SEND

lemma abort-done-recv-mbindFSave-E :
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ 6= None =⇒
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-done-recv-obvious11 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC DONE (RECV caller partner msg)) σ 6= None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-recv-obvious11 , simp only : False)

next
case False
then show ?thesis
using assms not-in-err-state-None
by (metis (mono-tags) in-err-state False abort-done-recv-obvious11)

qed

488

qed

lemma abort-done-recv-HOL-elim1 :
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(((remove-caller-error caller σ) |= (outs ← (mbind S (abort lif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))) =⇒ Q)
and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #
outs))) =⇒ Q
shows Q
using assms
by (rule abort-done-recv-mbindFSave-E , simp-all add : exec-actionid-Mon-def)

P Rules with detailed Constraints

P.1 Symbolic Execution rules for PREP SEND

HOL representation

lemma abort-prep-send-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

489

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg)))

partner=⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

Some (ERROR-IPC error-IPC) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=
Some (ERROR-IPC error-IPC)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (Some a)

490

then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-prep-send-HOL-elim21 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC PREP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))
=⇒ Q
and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
((th-flag (set-error-mem-maps caller partner σ σ

not-valid-sender-addr-in-PREP-SEND msg)))
caller =

Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND) =⇒
((th-flag (set-error-mem-maps caller partner σ σ

not-valid-sender-addr-in-PREP-SEND msg)))
partner =

Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND) =⇒
((th-flag (set-error-mem-maps caller partner σ σ

491

not-valid-sender-addr-in-PREP-SEND msg)))
caller =

((th-flag (set-error-mem-maps caller partner σ σ
not-valid-sender-addr-in-PREP-SEND msg)))

partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND),
partner 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-MEM not-valid-sender-addr-in-PREP-SEND # outs)))=⇒

Q
and
not-in-err-exec31 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-SEND msg))) caller =
Some (ERROR-IPC error-IPC-22-in-PREP-SEND) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-22-in-PREP-SEND msg))) partner

=
Some (ERROR-IPC error-IPC-22-in-PREP-SEND)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-22-in-PREP-SEND msg))) caller =

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-22-in-PREP-SEND msg))) partner

=⇒
(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec32 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-23-in-PREP-SEND msg))) caller =

492

Some (ERROR-IPC error-IPC-23-in-PREP-SEND) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-SEND msg))) partner =
Some (ERROR-IPC error-IPC-23-in-PREP-SEND)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-23-in-PREP-SEND msg))) caller =

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-23-in-PREP-SEND msg))) partner =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec33 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒
IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q
shows Q
apply (insert valid-exec)
apply (elim abort-prep-send-mbindFSave-E ′)
apply (simp add : in-err-exec)
apply (simp only : exec-actionid-Mon-prep-send-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (rule not-in-err-exec1)
apply (simp-all add : threa-table-obvious ′)
apply (simp add : exec-actionid-Mon-prep-send-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)

493

apply (simp add : not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add : exec-actionid-Mon-prep-send-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec32)
apply (simp add : exec-actionid-Mon-def)
done

P.2 Symbolic Execution rules for PREP RECV

lemma abort-prep-recv-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag σ = th-flag (error-tab-transfer caller σ σ ′)=⇒

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒

494

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller
=

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=⇒

((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #

outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

Some (ERROR-IPC error-IPC) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=
Some (ERROR-IPC error-IPC)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False

495

by (subst (asm) abort-prep-recv-obvious10 , simp, elim not-in-err-state-None)
qed

qed

lemma abort-prep-recv-HOL-elim21 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC PREP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))
=⇒ Q
and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬ exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
((th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg)))
caller =

Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) =⇒
((th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg)))
partner =

Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) =⇒
((th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg)))
caller =

((th-flag (set-error-mem-maps caller partner σ σ
not-valid-receiver-addr-in-PREP-RECV msg)))

partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV ,
th-flag := th-flag σ

496

(caller 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV),
partner 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV #

outs)))=⇒ Q
and
not-in-err-exec31 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) caller =
Some (ERROR-IPC error-IPC-22-in-PREP-RECV) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-22-in-PREP-RECV msg))) partner =

Some (ERROR-IPC error-IPC-22-in-PREP-RECV)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec32 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-RECV msg))) caller =
Some (ERROR-IPC error-IPC-23-in-PREP-RECV) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-23-in-PREP-RECV msg))) partner

=
Some (ERROR-IPC error-IPC-23-in-PREP-RECV)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-23-in-PREP-RECV msg))) caller =

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-23-in-PREP-RECV msg))) partner

=⇒
(σ(|current-thread := caller ,

497

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV ,
th-flag := th-flag σ

(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec33 :
caller /∈ dom ((th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒
IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller
=⇒
th-flag σ = th-flag (error-tab-transfer caller σ σ ′) =⇒

(σ(|current-thread := caller ,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q
shows Q
apply (insert valid-exec)
apply (elim abort-prep-recv-mbindFSave-E ′)
apply (simp add : in-err-exec)
apply (simp only : exec-actionid-Mon-prep-recv-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (rule not-in-err-exec1)
apply (simp-all add : threa-table-obvious ′)
apply (simp add : exec-actionid-Mon-prep-recv-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add : exec-actionid-Mon-prep-recv-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec31)

498

apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec32)
apply (simp add : exec-actionid-Mon-def)
done

P.3 Symbolic Execution rules for WAIT SEND

lemma abort-wait-send-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner

=⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #
outs))) =⇒Q
and not-in-err-state-Some3 :

499

∧
σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

Some (ERROR-IPC error-IPC) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=
Some (ERROR-IPC error-IPC)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-send-HOL-elim21 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))

500

and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ=⇒

(σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
and
not-in-err-exec21 :
caller /∈ dom ((th-flag σ)) =⇒
¬IPC-send-comm-check-st id caller partner σ =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-1-in-WAIT-SEND) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-1-in-WAIT-SEND msg))) partner =

Some (ERROR-IPC error-IPC-1-in-WAIT-SEND)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) partner
=⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-WAIT-SEND# outs)))=⇒ Q

and
not-in-err-exec22 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

501

error-IPC-3-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-3-in-WAIT-SEND) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-3-in-WAIT-SEND msg))) partner =

Some (ERROR-IPC error-IPC-3-in-WAIT-SEND)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-SEND msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-SEND msg))) partner
=⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-3-in-WAIT-SEND# outs)))=⇒Q

and
not-in-err-exec23 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-6-in-WAIT-SEND) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-6-in-WAIT-SEND msg))) partner =

Some (ERROR-IPC error-IPC-6-in-WAIT-SEND)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-SEND msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-SEND msg))) partner
=⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-6-in-WAIT-SEND# outs)))=⇒Q

and
not-in-err-exec24 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-send-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒

502

¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-5-in-WAIT-SEND) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-5-in-WAIT-SEND msg))) partner =

Some (ERROR-IPC error-IPC-5-in-WAIT-SEND)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) partner
=⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-5-in-WAIT-SEND# outs)))=⇒Q

shows Q
apply (insert valid-exec)
apply (elim abort-wait-send-mbindFSave-E ′)
apply (simp only : in-err-exec)
apply (simp only : exec-actionid-Mon-wait-send-obvious3)
apply (simp add : not-in-err-exec1)
apply (simp add : exec-actionid-Mon-def WAIT-SEND id-def split : split-if-asm

option.split-asm)
apply (auto)
apply (simp only : exec-actionid-Mon-wait-send-obvious4)
apply auto
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : update-state-wait-send-params5-def split :option.split-asm split-if-asm)
apply (simp add : domIff)
apply (simp-all add : not-in-err-exec23)
apply (simp add : not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-send-params5-def split :option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp

503

apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-send-params5-def split :option.split-asm split-if-asm)
apply (simp add : exec-actionid-Mon-def)
done

P.4 Symbolic Execution rules for WAIT RECV

lemma abort-wait-recv-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner

=⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

(outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem #
outs))) =⇒Q

504

and not-in-err-state-Some3 :∧
σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller

=
Some (ERROR-IPC error-IPC) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner
=

Some (ERROR-IPC error-IPC)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller

=
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC# outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-recv-HOL-elim21 ′:
assumes

505

valid-exec: (σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)
(abort lif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS # outs)))
=⇒ Q
and
not-in-err-exec21 :
caller /∈ dom ((th-flag σ)) =⇒
¬IPC-recv-comm-check-st id caller partner σ =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-RECV msg))) caller =
Some (ERROR-IPC error-IPC-1-in-WAIT-RECV) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-1-in-WAIT-RECV msg))) partner =

Some (ERROR-IPC error-IPC-1-in-WAIT-RECV)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-RECV msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-WAIT-RECV# outs)))=⇒ Q

and
not-in-err-exec22 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒

506

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-3-in-WAIT-RECV msg))) caller =

Some (ERROR-IPC error-IPC-3-in-WAIT-RECV) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-RECV msg))) partner =
Some (ERROR-IPC error-IPC-3-in-WAIT-RECV)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-3-in-WAIT-RECV msg))) caller =

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-3-in-WAIT-RECV msg))) partner

=⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-3-in-WAIT-RECV# outs)))=⇒Q

and
not-in-err-exec23 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-RECV msg))) caller =
Some (ERROR-IPC error-IPC-6-in-WAIT-RECV) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-6-in-WAIT-RECV msg))) partner =

Some (ERROR-IPC error-IPC-6-in-WAIT-RECV)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-RECV msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-6-in-WAIT-RECV# outs)))=⇒Q

and
not-in-err-exec24 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-recv-comm-check-st id caller partner σ =⇒
IPC-params-c4 caller partner =⇒

507

¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-5-in-WAIT-RECV msg))) caller =

Some (ERROR-IPC error-IPC-5-in-WAIT-RECV) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-RECV msg))) partner =
Some (ERROR-IPC error-IPC-5-in-WAIT-RECV)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-5-in-WAIT-RECV msg))) caller =

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-5-in-WAIT-RECV msg))) partner =⇒

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-5-in-WAIT-RECV# outs)))=⇒Q

shows Q
apply (insert valid-exec)
apply (elim abort-wait-recv-mbindFSave-E ′)
apply (simp only : in-err-exec)
apply (simp only : exec-actionid-Mon-wait-recv-obvious3)
apply (simp add : not-in-err-exec1)
apply (simp add : exec-actionid-Mon-def WAIT-RECV id-def split : split-if-asm

option.split-asm)
apply auto
apply (simp only : exec-actionid-Mon-wait-recv-obvious4)
apply (auto)
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : update-state-wait-recv-params5-def split :option.split-asm split-if-asm)
apply (simp add : domIff)
apply (simp-all add : not-in-err-exec23)
apply (simp add : not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current .simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-recv-params5-def split :option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current .simps)

508

apply (subst (asm) threa-table-obvious ′)
apply (simp add : not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add : update-state-wait-recv-params5-def split :option.split-asm split-if-asm)
apply (simp add : exec-actionid-Mon-def)
done

P.5 Symbolic Execution rules for BUF SEND

lemma abort-buf-send-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=
(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))

=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg)))
partner =

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg)))

partner =⇒
((set-error-mem-bufs caller partner σ σ ′ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :

509

∧
σ ′ error-IPC .

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller

=
Some (ERROR-IPC error-IPC) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner
=

Some (ERROR-IPC error-IPC)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller

=
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) part-

ner=⇒
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#

outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-buf-send-HOL-elim21 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC BUF (SEND caller partner msg))#S)

510

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-buf-check-st id caller partner σ =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller ,

resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs partner σ) (get-msg-values msg σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒
Rep-memory
(resource(σ(|current-thread := caller ,

resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource
σ)

(zip (get-th-addrs partner σ) (get-msg-values msg
σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))) =

Rep-memory (foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs partner σ) (get-msg-values msg σ))) =⇒ Q

and
not-in-err-exec12 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-buf-check-st id caller partner σ =⇒ msg = [] =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner

511

(thread-list σ)),
error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q

and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬ IPC-buf-check-st id caller partner σ =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) caller =
Some (ERROR-IPC error-IPC-1-in-BUF-SEND) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-1-in-BUF-SEND msg))) partner =

Some (ERROR-IPC error-IPC-1-in-BUF-SEND)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND ,
th-flag := th-flag σ
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))=⇒ Q

shows Q
apply(insert valid-exec)
apply (elim abort-buf-send-HOL-elim21)
using in-err-exec not-in-err-exec1 not-in-err-exec2 not-in-err-exec12
apply auto
done

P.6 Symbolic Execution rules for BUF RECV

lemma abort-buf-recv-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒

512

ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS ,
σ ′) =⇒

((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner

=⇒
((set-error-mem-bufr caller partner σ σ ′ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

Some (ERROR-IPC error-IPC) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=
Some (ERROR-IPC error-IPC)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))

513

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10 , simp, case-tac a, simp,

simp split : errors.split-asm, elim not-in-err-state-Some1 ,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-buf-recv-HOL-elim21 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-buf-check-st id caller partner σ =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
resource :=foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)

(zip (get-th-addrs caller σ) (get-msg-values msg σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

514

outs))) =⇒
Rep-memory
(resource(σ(|current-thread := caller ,

resource := foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs caller σ) (get-msg-values msg σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))) =

Rep-memory (foldl (λm (addr ,val). (m (addr :=$ val))) (resource σ)
(zip (get-th-addrs caller σ) (get-msg-values msg σ))) =⇒Q

and
not-in-err-exec12 :
caller /∈ dom ((th-flag σ)) =⇒
IPC-buf-check-st id caller partner σ =⇒
msg = [] =⇒

((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q

and
not-in-err-exec2 :
caller /∈ dom ((th-flag σ)) =⇒
¬ IPC-buf-check-st id caller partner σ =⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-RECV msg))) caller =
Some (ERROR-IPC error-IPC-1-in-BUF-RECV) =⇒

((th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-1-in-BUF-RECV msg))) partner =

Some (ERROR-IPC error-IPC-1-in-BUF-RECV)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-RECV msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV ,
th-flag := th-flag σ

515

(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV))|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-1-in-BUF-RECV# outs)))=⇒ Q

shows Q
apply(insert valid-exec)
apply (elim abort-buf-recv-HOL-elim21)
using in-err-exec not-in-err-exec1 not-in-err-exec2 not-in-err-exec12
apply auto
done

P.7 Symbolic Execution rules for MAP SEND

lemma abort-map-send-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg)))

partner=⇒
((set-error-mem-maps caller partner σ σ ′ error-mem msg)

516

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

Some (ERROR-IPC error-IPC) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=
Some (ERROR-IPC error-IPC)=⇒

((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-send-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-send-obvious10 ,

case-tac a,simp split : errors.split-asm, simp, elim not-in-err-state-Some1 ,
simp,

auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-send-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma mem-share-list-E :

517

assumes 1 : resource σ ′ =
(foldl (λm (src,dst). (m (srcon dst))) (resource σ) (n#ns))

and 2 : (fst n) shares(resource σ)((fst n) on (snd n)) (snd n) =⇒
((resource σ)((fst n) on (snd n)) $ (fst n)) =
((resource σ)((fst n) on (snd n)) $ (snd n)) =⇒
((resource σ)((fst n) on (snd n)) $ (fst n)) = ((resource σ) $ (fst n))

=⇒
resource σ ′ =
(foldl (λm (src,dst). (m (srcon dst))) ((resource σ)((fst n) on (snd n)))

ns) =⇒Q
shows Q
using 1
using transfer-share [of fst n, of (resource σ), of snd n]

transfer-share-lookup2 [of (resource σ), of fst n, of snd n]
transfer-share-lookup1 [of (resource σ), of fst n, of snd n]

apply (elim 2)
apply (simp-all add : Product-Type.split-beta)
done

lemma mem-share-list-I :
(fst n) shares(resource σ)((fst n) on (snd n)) (snd n) =⇒

((resource σ)((fst n) on (snd n)) $ (fst n)) =
((resource σ)((fst n) on (snd n)) $ (snd n)) =⇒
((resource σ)((fst n) on (snd n)) $ (fst n)) = ((resource σ) $ (fst n))

=⇒
resource σ ′ =
(foldl (λm (src,dst). (m (srcon dst))) ((resource σ)((fst n) on (snd n)))

ns) =⇒
resource σ ′ =

(foldl (λm (src,dst). (m (srcon dst))) (resource σ) (n#ns))
using transfer-share [of fst n, of (resource σ), of snd n]

transfer-share-lookup2 [of (resource σ), of fst n, of snd n]
transfer-share-lookup1 [of (resource σ), of fst n, of snd n]

apply (simp-all add : Product-Type.split-beta)
done

lemma abort-map-send-HOL-elim2 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC MAP (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =

518

((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs partner σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS # outs)))
=⇒

(resource(σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs partner σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))) =

(foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs partner σ)))=⇒ Q

and
not-in-err-exec12 :
caller /∈ dom ((th-flag σ)) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
msg = [] =⇒
(σ(|current-thread := caller ,

resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|) |=

(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS # outs)))
=⇒ Q

shows Q
apply(insert valid-exec)
apply (elim abort-map-send-HOL-elim2)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

519

P.8 Symbolic Execution rules for MAP RECV

lemma abort-map-recv-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state:

caller ∈ dom ((th-flag σ)) =⇒
(σ |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some1 :∧

σ ′.
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS ,

σ ′) =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ ′))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒

((error-tab-transfer caller σ σ ′) |=
(outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2 :∧
σ ′ error-mem.

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM

error-mem, σ ′) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
Some (ERROR-MEM error-mem) =⇒

((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner
=

Some (ERROR-MEM error-mem) =⇒
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller

=
((th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner

=⇒
((set-error-mem-mapr caller partner σ σ ′ error-mem msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-MEM error-mem
outs))) =⇒Q
and not-in-err-state-Some3 :∧

σ ′ error-IPC .
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC

error-IPC , σ ′) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

Some (ERROR-IPC error-IPC) =⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=

520

Some (ERROR-IPC error-IPC)=⇒
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
((th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner

=⇒
((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)

|= (outs ← (mbind S (abort lif t ioprog)); P (ERROR-IPC error-IPC#
outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-recv-obvious10 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-recv-obvious10 ,

case-tac a,simp split : errors.split-asm, simp, elim not-in-err-state-Some1 ,
simp,

auto intro: not-in-err-state-Some2 not-in-err-state-Some3)
next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-recv-obvious10 , simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-recv-HOL-elim2 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-exec:
caller ∈ dom ((th-flag σ)) =⇒

(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
((th-flag σ)) caller = None =⇒

521

((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)

(zip msg (get-th-addrs caller σ)),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒
Rep-memory
(resource(σ(|current-thread := caller ,

resource := foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs caller σ)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|))) =

Rep-memory (foldl (λm (src,dst). (m (srcon dst))) (resource σ)
(zip msg (get-th-addrs caller σ))) =⇒ Q

and
not-in-err-exec12 :
caller /∈ dom ((th-flag σ)) =⇒ msg = [] =⇒
((th-flag σ)) caller = None =⇒
((th-flag (error-tab-transfer caller σ σ))) caller =
((th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒

(σ(|current-thread := caller ,
resource := resource σ,
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS ,
th-flag := th-flag σ|)
|= (outs ← (mbind S (abort lif t exec-actionid-Mon)); P (NO-ERRORS #

outs))) =⇒ Q
shows Q
apply(insert valid-exec)
apply (elim abort-map-recv-HOL-elim2)
using in-err-exec not-in-err-exec1 not-in-err-exec12
apply auto
done

522

P.9 Symbolic Execution rules for DONE SEND

lemma abort-done-send-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)(abort lif t
ioprog));P outs))
and in-err-state1 :

caller ∈ dom ((th-flag σ)) =⇒ caller 6= partner =⇒
(((th-flag σ)) partner =
(((th-flag (remove-caller-error caller σ)))) partner) =⇒
((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and in-err-state2 :

caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒
(((th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q
and not-in-err-state-Some:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ 6= None =⇒
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))

=⇒Q
and not-in-err-state-None:

(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
apply (subst (asm) abort-done-send-obvious12 , simp)
apply (erule disjE)
apply (erule conjE)+
apply (simp add : in-err-state1)
apply (erule conjE)+
apply (simp add : in-err-state2)
done

next
case False
assume hyp1 : caller /∈ dom ((th-flag σ))
then show ?thesis
proof (cases ioprog (IPC DONE (SEND caller partner msg)) σ 6= None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-send-obvious11 , simp only : False comp-apply)

next

523

case False
then show ?thesis
using valid-exec False hyp1
apply (subst (asm) abort-done-send-obvious11)
apply (simp only : if-False comp-apply split : bool .split-asm)
apply (elim not-in-err-state-None)
apply (erule contrapos-np)
apply (simp-all)
done

qed
qed

lemma abort-done-send-HOL-elim1 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC DONE (SEND caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))

and in-err-state1 :
caller ∈ dom ((th-flag σ)) =⇒ caller 6= partner =⇒
(((th-flag (remove-caller-error caller σ)))) partner =
((th-flag σ)) partner =⇒
((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error caller

σ # outs)))
=⇒ Q

and in-err-state2 :
caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒
(((th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error caller

σ # outs))) =⇒ Q

and not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #

outs))) =⇒ Q

shows Q
using valid-exec
by (rule abort-done-send-mbindFSave-E ′,
simp-all add : exec-actionid-Mon-def in-err-state1 in-err-state2 not-in-err-exec1)

P.10 Symbolic Execution rules for DONE SEND

lemma abort-done-recv-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)(abort lif t
ioprog));P outs))

524

and in-err-state1 :
caller ∈ dom ((th-flag σ)) =⇒ caller 6= partner =⇒
(((th-flag σ)) partner =
(((th-flag (remove-caller-error caller σ)))) partner) =⇒
((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q

and in-err-state2 :
caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒
(((th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=

(outs ← (mbind S (abort lif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q

and not-in-err-state-Some:
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ 6= None =⇒
(σ |= (outs ← (mbind S (abort lif t ioprog)); P (NO-ERRORS # outs)))

=⇒Q

and not-in-err-state-None:
(caller /∈ dom ((th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom ((th-flag σ)))
case True
then show ?thesis
using valid-exec
apply (subst (asm) abort-done-recv-obvious12 , simp)
apply (erule disjE)
apply (erule conjE)+
apply (simp add : in-err-state1)
apply (erule conjE)+
apply (simp add : in-err-state2)
done

next
case False
assume hyp1 : caller /∈ dom ((th-flag σ))
then show ?thesis
proof (cases ioprog (IPC DONE (RECV caller partner msg)) σ 6= None)
case True
then show ?thesis
using assms
by (subst (asm) abort-done-recv-obvious11 , simp only : False)

next

525

case False
then show ?thesis
using valid-exec False hyp1
apply (subst (asm) abort-done-recv-obvious11)
apply (simp only : if-False split : bool .split-asm)
apply (elim not-in-err-state-None)
apply (erule contrapos-np)
apply (simp-all)
done

qed
qed

lemma abort-done-recv-HOL-elim1 ′:
assumes
valid-exec: (σ |= (outs ← (mbind ((IPC DONE (RECV caller partner msg))#S)

(abort lif t exec-actionid-Mon)); P outs))
and in-err-state1 :
caller ∈ dom ((th-flag σ)) =⇒ caller 6= partner =⇒

(th-flag (remove-caller-error caller σ)) partner =
(th-flag σ) partner =⇒

((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error caller

σ # outs)))
=⇒ Q

and in-err-state2 :
caller ∈ dom ((th-flag σ)) =⇒ caller = partner =⇒
(th-flag (remove-caller-error caller σ)) partner = None =⇒
((remove-caller-error caller σ) |=
(outs ← (mbind S (abort lif t exec-actionid-Mon)); P (get-caller-error caller

σ # outs))) =⇒
Q

and not-in-err-exec1 :
caller /∈ dom ((th-flag σ)) =⇒
(σ |= (outs ← (mbind S (abort lif t exec-actionid-Mon));P (NO-ERRORS #

outs))) =⇒ Q
shows Q
using valid-exec
by (rule abort-done-recv-mbindFSave-E ′,
simp-all add : exec-actionid-Mon-def in-err-state1 in-err-state2 not-in-err-exec1)

end

theory IPC-system-calls

imports IPC-symbolic-exec-intros IPC-symbolic-exec-elims

begin

526

Q HOL representation of PikeOS IPC system calls

We define a system call by a set of operations. PikeOS IPC API contain 7
system calls, each system call can do a set of operations. In this section we
will just present the most general one called p4_ipc:

type-synonym behaviour ipc = traceipc set
type-synonym behaviour ipc ′= traceipc list

Q.1 System calls with thread ID as argument

type-synonym behaviour id= traceipc list

definition P4-IPC-BUF id

::thread id ⇒ thread id ⇒ int list ⇒ behaviour id
where
P4-IPC-BUF id caller partner msg ≡

[caller Bid msg Bid partner , caller Cid msg Cid partner ,
caller Did msg Did partner , caller Eid msg Eid partner]

definition P4-IPC-BUF-SEND id

::thread id ⇒ thread id ⇒ int list ⇒ behaviour id
where
P4-IPC-BUF-SEND id caller partner msg ≡ [caller Bid msg Bid partner , caller
Did msg Did partner]

definition P4-IPC-BUF-RECV id

::thread id ⇒ thread id ⇒ int list ⇒ behaviour id
where
P4-IPC-BUF-RECV id caller partner msg ≡ [caller Cid msg Cid partner , caller
Eid msg Eid partner]

definition P4-IPC-SEND id

::thread id ⇒ thread id ⇒ int list ⇒ behaviour id
where
P4-IPC-SEND id caller partner msg ≡ [caller Bid msg Bid partner , caller Did

msg Did partner]

definition P4-IPC-RECV id

::thread id ⇒ thread id ⇒ int list ⇒ behaviour id
where
P4-IPC-RECV id caller partner msg ≡ [caller Cid msg Cid partner , caller Eid

527

msg Eid partner]

definition P4-IPC id

::thread id ⇒ thread id ⇒ int list ⇒ behaviour id
where
P4-IPC id caller partner msg ≡

[caller Bid msg Bid partner , caller Cid msg Cid partner ,
caller Did msg Did partner , caller Eid msg Eid partner]

Q.2 System calls based on datatype

datatype (′thread-id , ′msg) P4-IPC-call =
P4-IPC-call ′thread-id ′thread-id ′msg

| P4-IPC-SEND-call ′thread-id ′thread-id ′msg
| P4-IPC-RECV-call ′thread-id ′thread-id ′msg
| P4-IPC-BUF-call ′thread-id ′thread-id ′msg
| P4-IPC-BUF-SEND-call ′thread-id ′thread-id ′msg
| P4-IPC-BUF-RECV-call ′thread-id ′thread-id ′msg
| P4-IPC-MAP-call ′thread-id ′thread-id ′msg
| P4-IPC-MAP-SEND-call ′thread-id ′thread-id ′msg
| P4-IPC-MAP-RECV-call ′thread-id ′thread-id ′msg

value int(card(interleave ([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])

([IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])))

fun IPC-call-sem::(′thread-id , ′msg) P4-IPC-call ⇒
((p4-stageipc, (′thread-id , ′msg) p4-direct ipc)actionipc list)

where
IPC-call-sem (P4-IPC-call caller partner msg) =

([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

528

IPC-call-sem (P4-IPC-SEND-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])

|
IPC-call-sem (P4-IPC-RECV-call caller partner msg) =

([IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-BUF-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-BUF-SEND-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])

|
IPC-call-sem (P4-IPC-BUF-RECV-call caller partner msg) =

([IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-MAP-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-MAP-SEND-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])|

IPC-call-sem (P4-IPC-MAP-RECV-call caller partner msg) =
([IPC PREP (RECV caller partner msg),

529

IPC WAIT (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])

Q.3 Predicates on system calls

definition is-ipc-system-call id
where is-ipc-system-call id sc = (∃ caller partner msg . sc = P4-IPC id caller
partner msg)

lemmas system-calls-normalizer =
is-ipc-system-call id-def P4-IPC id-def

end

theory IPC-coverage

imports IPC-system-calls

begin

fun sync-communication
:: ′a list ⇒ ′a list ⇒ ′a list ⇒ ′a list set ((- /b-c/ -) [201 , 0 , 201] 200)

where
[] b[]c [] = {[]}|
A b[]c B = interleave A B |

[] bN c [] = {[]}|
A b[n1 , n2]c [] = (if n1 ∈ set A ∨ n2 ∈ set A then {} else {A})|
[] b[n1 ,n2]c (B) = (if n1 ∈ set B ∨ n2 ∈ set B then {} else {B})|
(a#A) b[n1 ,n2]c (b#B) = (if (a = n1 ∧ b = n2)

then image (λ x . n1 #n2# x) (A b[n1 ,n2]c B)
else
if a 6= n1 ∧ b = n2
then image (λ x . a # x) (A b[n1 ,n2]c (b#B))
else
if a = n1 ∧ b 6= n2
then image (λ x . b # x) ((a#A) b[n1 ,n2]c B)
else (image(λ x . a # x) (A b[n1 ,n2]c (b#B)) ∪

(image (λ x . b # x) ((a#A) b[n1 ,n2]c B))))|
A bN c B = A b[]c B

datatype (′th-id , ′sclist)criterion =
interleave-all (′th-id × ′sclist) list
|TPAIR ′th-id ′th-id ′th-id ⇀ ′sclist
|COMM ′th-id ′th-id ′th-id ⇀ ′sclist

530

Q.4 Derivation of communication from system calls

— Definition that let us to derive PikeOS ipc communication from the different
system calls

definition
[simp]:
sc-cases-IPC-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′

and
th is his partner and msg msg ′ are equal∗)

then {}
else ((th B msg B th ′)

b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′) ∪
(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′ D msg D th)))

|P4-IPC-SEND-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′ D msg D th)))

|P4-IPC-RECV-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′))

|P4-IPC-BUF-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),

531

IPC DONE (RECV th ′ th msg)]) ∪
(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),

532

IPC DONE (RECV th ′ th msg)]) ∪
(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′′ msg ′⇒
(if (th2 ′′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)])))

definition
[simp]:
sc-cases-IPC-SEND-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

533

th is his partner and msg msg ′ are equal∗)
then {}
else ((th B msg B th ′)

b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′)))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

534

IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)])))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|- ⇒ {})

definition
[simp]:
sc-cases-IPC-RECV-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′ D msg D th)))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′ D msg D th)))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((

535

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

536

|- ⇒ {})

definition
[simp]:
sc-cases-IPC-BUF-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

537

IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

538

IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|- ⇒ {})

definition
[simp]:
sc-cases-IPC-BUF-SEND-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg), IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg), IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)

539

b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|- ⇒ {})

definition
[simp]:
sc-cases-IPC-BUF-RECV-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),

540

IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|- ⇒ {})

definition
[simp]:
sc-cases-IPC-MAP-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

541

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

542

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|- ⇒ {})

definition
[simp]:
sc-cases-IPC-MAP-SEND-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg), IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

543

IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg), IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′ C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|- ⇒ {})

definition

544

[simp]:
sc-cases-IPC-MAP-RECV-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′ B msg B th)

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((

(th ′ B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′ B msg B th)

545

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|- ⇒ {})
definition
[simp]:
comm-cases th th ′ sc sc ′ =

(case sc of P4-IPC-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′) (∗check if th is caller of sc and th ′

is his partner∗)
then {}
else sc-cases-IPC-call th msg th ′ sc ′)
|P4-IPC-SEND-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-SEND-call th msg th ′ sc ′)
|P4-IPC-RECV-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-RECV-call th msg th ′ sc ′)
|P4-IPC-BUF-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-BUF-call th msg th ′ sc ′)
|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-BUF-SEND-call th msg th ′ sc ′)
|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ⇒

(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-BUF-RECV-call th msg th ′ sc ′)

|P4-IPC-MAP-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-MAP-call th msg th ′ sc ′)
|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-MAP-SEND-call th msg th ′ sc ′)
|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ⇒
(if (th2 ′ 6= th ′) ∨ (th1 ′ 6= th) ∨ (th = th ′)
then {}

546

else sc-cases-IPC-MAP-RECV-call th msg th ′ sc ′))

fun criteria :: (′th-id , (′th-id , ′msg) P4-IPC-call)criterion ⇒
((p4-stageipc, (′th-id , ′msg) p4-direct ipc)actionipc list) set

where
criteria (interleave-all S) = undefined

|criteria (COMM th th ′ scTab) =
(case scTab th of None ⇒ {}
| Some sc ⇒

(case scTab th ′ of None ⇒ {}
| Some sc ′⇒ comm-cases th th ′ sc sc ′))

|criteria (TPAIR th th ′ scTab) =
(case scTab th of None ⇒

(case scTab th ′ of None ⇒ {}
| Some sc ⇒
{IPC-call-sem sc})

| Some sc ⇒
(case scTab th ′ of None ⇒ {IPC-call-sem sc}
| Some sc ′⇒ interleave (IPC-call-sem sc) (IPC-call-sem sc ′)))

Q.5 Partial order theorem

lemma partial-order-ipc-instance-resource:
assumes 1 : th 6= th ′

shows
image (λ is. mbind is (λa. (out1 ← BUF-RECVMON a ; MAP-RECVMON a))
σ)

(criteria (COMM th th ′ [th 7→ P4-IPC-call th th ′ msg ,
th ′ 7→ P4-IPC-call th ′ th msg])) =

image (λ is. mbind is (λa. (out1 ← BUF-RECVMON a ; MAP-RECVMON

a)) σ)
(interleave (th C msg C th ′) (th ′ D msg D th))

oops

lemma (int o card) (criteria (COMM th th ′ [th 7→ P4-IPC-call th th ′ msg ,
th ′ 7→ P4-IPC-call th ′ th msg])) <

(int o card) ((interleave (th C msg C th ′) (th ′ D msg D th)))
by simp

Q.6 ipc communications derivations

Q.7 Lemmas on ipc communications

lemma comm-with-P4-IPC-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-call th ′ th msg)

547

and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

fix scTab th
case None
from this
show ?thesis
using assms
by auto

next
case (Some a)
from this
show ?thesis
using assms
by auto

qed

lemma comm-with-P4-IPC-BUF-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma comm-with-P4-IPC-BUF-SEND-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-SEND-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms

548

by auto
next

case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma comm-with-P4-IPC-BUF-RECV-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-RECV-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma comm-with-P4-IPC-MAP-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

549

lemma comm-with-P4-IPC-MAP-SEND-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-SEND-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma comm-with-P4-IPC-MAP-RECV-call-Some:
assumes 1 :(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-RECV-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

Q.8 No communications

lemma not-comm-SEND-SEND :
assumes 1 :(the o scTab) th = (P4-IPC-SEND-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-SEND-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

550

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma not-comm-SEND-SEND-BUF :
assumes 1 :(the o scTab) th = (P4-IPC-SEND-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-SEND-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma not-comm-SEND-SEND-MAP :
assumes 1 :(the o scTab) th = (P4-IPC-SEND-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-SEND-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis

551

using assms
by (auto simp: split :option.split)

qed

lemma not-comm-RECV-RECV :
assumes 1 :(the o scTab) th = (P4-IPC-RECV-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-RECV-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma not-comm-RECV-RECV-BUF :
assumes 1 :(the o scTab) th = (P4-IPC-RECV-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-RECV-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

lemma not-comm-RECV-RECV-MAP :
assumes 1 :(the o scTab) th = (P4-IPC-RECV-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-RECV-call th ′ th msg)
and 2 : th ∈ dom scTab ∧ th ′ ∈ dom scTab
and 3 : th 6= th ′

552

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1 : scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1 : scTab th = Some a
then show ?thesis
using assms
by (auto simp: split :option.split)

qed

end

553

Bibliography

[ABC+13] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John
Clark, Myra B. Cohen, Wolfgang Grieskamp, Mark Harman,
Mary Jean Harrold, and Phil Mcminn. An orchestrated survey
of methodologies for automated software test case generation.
J. Syst. Softw., 86(8):1978–2001, August 2013.

[ABGR10] Wolfgang Ahrendt, Bernhard Beckert, Martin Giese, and Phil-
ipp Rümmer. Practical aspects of automated deduction for
program verification. KI, 24(1):43–49, 2010.

[Abr96] J.-R. Abrial. The B-book: Assigning Programs to Meanings.
Cambridge University Press, New York, NY, USA, 1996.

[AK95] D.P. Appenzeller and A. Kuehlmann. Formal verification of
a powerpc microprocessor. In Computer Design: VLSI in
Computers and Processors, 1995. ICCD ’95. Proceedings., 1995
IEEE International Conference on, pages 79–84, oct 1995.

[All70a] Frances E. Allen. Control flow analysis. In Proceedings of a
Symposium on Compiler Optimization, pages 1–19, New York,
NY, USA, 1970. ACM.

[All70b] Frances E. Allen. Control flow analysis. SIGPLAN Not.,
5(7):1–19, July 1970.

[And86] Peter B. Andrews. An introduction to mathematical logic and
type theory: to truth through proof. Academic Press Profes-
sional, Inc., San Diego, CA, USA, 1986.

[And02] Peter B. Andrews. Introduction to Mathematical Logic and
Type Theory: To Truth through Proof. Kluwer Academic Pub-
lishers, Dordrecht, 2002.

[Bal10] Clemens Ballarin. Tutorial to Locales and Locale Interpretation,
2010.

554

[Bar03] John Barnes. High Integrity Software: The SPARK Approach
to Safety and Security. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[BBW15] Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Formal
firewall conformance testing: an application of test and proof
techniques. Softw. Test., Verif. Reliab., 25(1):34–71, 2015.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. Cvc4. In Proceedings of the 23rd International
Conference on Computer Aided Verification, CAV’11, pages
171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[BCFG86] L Bougé, N Choquet, L Fribourg, and M C Gaudel. Test sets
generation from algebraic specifications using logic program-
ming. J. Syst. Softw., 6(4):343–360, Nov 1986.

[BFNW13] Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi,
and Burkhart Wolff. Test program generation for a micropro-
cessor. Lecture Notes in Computer Science, 7942:76–95, 2013.

[BFY+97] P. Biswas, A. Freeman, K. Yamada, N. Nakagawa, and
K. Uchiyama. Functional verification of the superscalar sh-
4 microprocessor. In Compcon ’97. Proceedings, IEEE, pages
115–120, feb 1997.

[BGM91] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Soft-
ware Testing Based on Formal Specifications: A Theory and a
Tool. Softw. Eng. J., 6(6):387–405, Nov 1991.

[BHJJ08] Gregorv. Bochmann, Stefan Haar, Claude Jard, and Guy-
Vincent Jourdan. Testing systems specified as partial order
input/output automata. In Kenji Suzuki, Teruo Higashino, An-
dreas Ulrich, and Toru Hasegawa, editors, Testing of Software
and Communicating Systems, volume 5047 of Lecture Notes in
Computer Science, pages 169–183. Springer Berlin Heidelberg,
2008.

[BHNW15a] Achim D. Brucker, Oto Havle, Yakoub Nemouchi, and
Burkhart Wolff. Testing the IPC protocol for a real-time op-
erating system. In Verified Software: Theories, Tools, and Ex-
periments - 7th International Conference, VSTTE 2015, San
Francisco, CA, USA, July 18-19, 2015. Revised Selected Pa-
pers, pages 40–60, 2015.

555

[BHNW15b] Achim D. Brucker, Oto Havle, Yakoub Nemouchi, and
Burkhart Wolff. Testing the IPC protocol for a real-time oper-
ating system. In Arie Gurfinkel and Sanjit A. Seshia, editors,
Working Conference on Verified Software: Theories, Tools, and
Experiments, Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, 2015.

[BJK+06] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinen-
bach, and Wolfgang J. Paul. Putting it all together – Formal
verification of the VAMP. International Journal on Software
Tools for Technology Transfer, 8(4):411–430, 2006.

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: Automated Testing Based on Java Predic-
ates. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’02, pages
123–133, New York, NY, USA, 2002. ACM.

[BP95] Bernhard Beckert and Joachim Posegga. leanTAP : Lean
tableau-based deduction. Journal of Automated Reasoning,
15(3):339–358, 1995.

[Bro11] Benjamin Brosgol. Do-178c: The next avionics safety stand-
ard. In Proceedings of the 2011 ACM Annual International
Conference on Special Interest Group on the Ada Programming
Language, SIGAda ’11, pages 5–6, New York, NY, USA, 2011.
ACM.

[BW07] Achim D. Brucker and Burkhart Wolff. Test-sequence genera-
tion with hol-testgen with an application to firewall testing. In
Tests and Proofs, pages 149–168, 2007.

[BW09] Achim D. Brucker and Burkhart Wolff. HOL-TestGen: An
interactive test-case generation framework. In Marsha Chechik
and Martin Wirsing, editors, Fundamental Approaches to Soft-
ware Engineering (FASE), number 5503 in Lecture Notes in
Computer Science, pages 417–420. Springer-Verlag, 2009.

[BW10] Sascha Böhme and Tjark Weber. Fast LCF-Style Proof Recon-
struction for Z3. In ITP, pages 179–194, 2010.

[BW13] Achim D. Brucker and Burkhart Wolff. On Theorem Prover-
based Testing. Formal Asp. Comput. (FAOC), 25(5):683–721,
2013.

[Car81] Robert Cartwright. Formal program testing. In Proceedings of
the 8th ACM SIGPLAN-SIGACT Symposium on Principles of

556

Programming Languages, POPL ’81, pages 125–132, New York,
NY, USA, 1981. ACM.

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Lein-
enbach, MichalĆ Moskal, Thomas Santen, Wolfram Schulte,
and Stephan Tobies. VCC: A Practical System for Verifying
Concurrent C. In Stefan Berghofer, Tobias Nipkow, Chris-
tian Urban, and Makarius Wenzel, editors, Theorem Proving
in Higher Order Logics, volume 5674 of Lecture Notes in Com-
puter Science, pages 23–42. Springer Berlin Heidelberg, 2009.

[CG07] Ana Cavalcanti and Marie-Claude Gaudel. Testing for re-
finement in CSP. In Proceedings of the Formal Engineering
Methods 9th International Conference on Formal Methods and
Software Engineering, pages 151–170, Berlin, Heidelberg, 2007.
Springer-Verlag.

[Chu40] Alonzo Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, pages 56–68, June 1940.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Pre-
vosto, Julien Signoles, and Boris Yakobowski. Frama-C: a soft-
ware analysis perspective. In International Conference on Soft-
ware Engineering and Formal Methods (SEFM’12), pages 233–
247. Springer, October 2012.

[Com06] Common criteria. Common criteria for information techno-
logy security evaluation ((version 3.1), Part: Security assur-
ance components, September 2006.

[CSCS94] David Carrington, Phil Stocks, D. Carrington, and P. Stocks.
A tale of two paradigms: Formal methods and software testing.
1994.

[DGM93] P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic spe-
cifications in software testing: A case study on the software of
an automatic subway. J. Syst. Softw., 21(3), Jun 1993.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In TACAS, 2008.

[Dor10] Jan Dorrenbacher. Formal Specification and Verification of Mi-
crokernel. PhD thesis, Saarland University, Saarbrücken, Ger-
many, 2010.

[DY96] D.Lee and M. Yannakakis. Principles and method of testing
finite state machines- a survey. In Proceedings of the IEEE,
volume 84, pages 1090–1123. IEEE, Aug 1996.

557

[EFH83] Hartmut Ehrig, Werner Fey, and Horst Hansen. ACT ONE -
an algebraic specification language with two levels of semantics.
In ADT, 1983.

[EH08] Abdeslam En-Nouaary and Abdelwahab Hamou-Lhadj. A
boundary checking technique for testing real-time systems
modeled as timed input output automata (short paper). In
Proceedings of the Eighth International Conference on Quality
Software, QSIC 2008, 12-13 August 2008, Oxford, UK, pages
209–215, 2008.

[En-13] Abdeslam En-Nouaary. A test purpose-based approach for test-
ing timed input output automata. Softw. Test., Verif. Reliab.,
23(1):53–76, 2013.

[Fel12] Abderrahmane Feliachi. Semantics-Based Testing for Circus.
Theses, Université Paris Sud - Paris XI, December 2012.

[FGWW13] Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wen-
zel, and Burkhart Wolff. The circus testing theory revisited in
Isabelle/HOL. In Formal Methods and Software Engineering,
pages 131–147, 2013.

[Fox03] Anthony C. J. Fox. Formal specification and verification of
arm6. In TPHOLs, pages 25–40, 2003.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 —
where programs meet provers. In Matthias Felleisen and Phil-
ippa Gardner, editors, Proceedings of the 22nd European Sym-
posium on Programming, volume 7792 of Lecture Notes in Com-
puter Science, pages 125–128. Springer, March 2013.

[FT01] F. Fallah and K. Takayama. A new functional test program
generation methodology. In Computer Design, 2001. ICCD
2001. Proceedings. 2001 International Conference on, pages 76–
81, 2001.

[FTW04] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test
generation based on symbolic specifications. In FATES, pages
1–15, 2004.

[GAK12] David Greenaway, June Andronick, and Gerwin Klein.
Bridging the gap: Automatic verified abstraction of C. In ITP,
pages 99–115, 2012.

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Proceed-
ings of the 6th International Joint Conference CAAP/FASE

558

on Theory and Practice of Software Development, pages 82–96.
Springer-Verlag, 1995.

[Gau10] Marie-Claude Gaudel. Software testing based on formal spe-
cification. In Paulo Borba, Ana Cavalcanti, Augusto Sampaio,
and Jim Woodcook, editors, Testing Techniques in Software
Engineering, volume 6153 of Lecture Notes in Computer Sci-
ence, pages 215–242. Springer Berlin Heidelberg, 2010.

[GB91] M.-C Gaudel G.Bernot and B.Marre. Software testing based on
formal specification: Atheory and a tool. Software Engeneering
Journal, 6(6):387–405, November 1991.

[Gil62] Arthur Gill. Introduction to the theory of finite-state machines.
McGraw-Hill, 1962.

[GLG08] Marie-Claude Gaudel and Pascale Le Gall. Testing data types
implementations from algebraic specifications. In Robert M.
Hierons, Jonathan P. Bowen, and Mark Harman, editors,
Formal Methods and Testing, pages 209–239. Springer-Verlag,
2008.

[GM93] Mike J. C. Gordon and Tom F. Melham. Introduction to HOL.
Cambridge University Press, 1993.

[GMH81] John Gannon, Paul McMullin, and Richard Hamlet. Data
abstraction, implementation, specification, and testing. ACM
Trans. Program. Lang. Syst., 3(3):211–223, July 1981.

[Gon13] Georges Gonthier. Engineering mathematics: the odd order
theorem proof. In POPL, pages 1–2, 2013.

[Gor00] Mike Gordon. From lcf to hol: a short history. In Proof, Lan-
guage, and Interaction, pages 169–185. MIT Press, 2000.

[GW94] P. Godefroid and P. Wolper. A partial approach to model check-
ing. In Papers Presented at the IEEE Symposium on Logic in
Computer Science, number 22, pages 305–326, Orlando, FL,
USA, 1994. Academic Press, Inc.

[Haf15] Florian Haftmann. Code generation from Isabelle/HOL theor-
ies, May 2015.

[Hal08] Thomas C Hales. Formal proof. Notices of the AMS,
55(11):1370–1380, 2008.

[Har03] John Harrison. Formal verification at Intel. In LICS, pages
45–. IEEE Computer Society, 2003.

559

[Har06] John Harrison. Towards self-verification of HOL Light. In
IJCAR, pages 177–191, 2006.

[Har09] John Harrison. HOL Light: An overview. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, edit-
ors, Proceedings of the 22nd International Conference on The-
orem Proving in Higher Order Logics, TPHOLs 2009, volume
5674 of Lecture Notes in Computer Science, pages 60–66, Mu-
nich, Germany, 2009. Springer-Verlag.

[Hay84] John P. Hayes. Fault modeling for digital MOS integrated cir-
cuits. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 3(3):200–208, 1984.

[HB07] Vance Hilderman and Tony Baghai. Avionics Certification: A
Complete Guide to DO-178 (Software), DO-254 (Hardware).
Avionics Communications Inc., 2007.

[HBB+09] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen,
Rance Cleaveland, John Derrick, Jeremy Dick, Marian Ghe-
orghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald
Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R.
Woodward, and Hussein Zedan. Using formal specifications to
support testing. ACM Comput. Surv., 41(2):9:1–9:76, February
2009.

[Hen64] F. C. Hennine. Fault detecting experiments for sequential
circuits. In Proceedings of the 1964 Proceedings of the Fifth
Annual Symposium on Switching Circuit Theory and Logical
Design, SWCT ’64, pages 95–110, Washington, DC, USA, 1964.
IEEE Computer Society.

[HP06] John L. Hennessy and David A. Patterson. Computer Archi-
tecture, Fourth Edition: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., 2006.

[Hur03] Joe Hurd. First-order proof tactics in higher-order logic the-
orem provers. In Design and Application of Strategies/Tactics
in Higher Order Logics, number NASA/CP-2003-212448 in
NASA Technical Reports, pages 56–68, 2003.

[Int12] ISO/IEC DIS 29119: Software and Systems Engineering—
Software Testing. ISO Draft International Standard, July 2012.

[JH08] Éric Jaeger and Thérèse Hardin. A few remarks about formal
development of secure systems. In 11th IEEE High Assurance
Systems Engineering Symposium, HASE 2008, Nanjing, China,
December 3 - 5, 2008, pages 165–174, 2008.

560

[KAMO14] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott
Owens. HOL with definitions: Semantics, soundness, and a
verified implementation. In Interactive Theorem Proving - 5th
International Conference, ITP 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings, pages 308–324, 2014.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. sel4: Formal verification of
an os kernel. In ACM SYMPOSIUM ON OPERATING SYS-
TEMS PRINCIPLES, pages 207–220. ACM, 2009.

[KKV11] Alexander Kamkin, Eugene Kornykhin, and Dmitry Vorobyev.
Reconfigurable model-based test program generator for micro-
processors. Software Testing Verification and Validation Work-
shop, IEEE International Conference on, 0:47–54, 2011.

[Kum13] Ramana Kumar. Challenges in using opentheory to trans-
port harrison’s HOL model from HOL light to HOL4. In Jas-
min Christian Blanchette and Josef Urban, editors, PxTP 2013.
Third International Workshop on Proof Exchange for Theorem
Proving, volume 14 of EPiC Series in Computing, pages 110–
116. EasyChair, 2013.

[LDvB+93] Gang Luo, Rachida Dssouli, Gregor von Bochmann, Pallapa
Venkataram, and Abderrazak Ghedamsi. Generating synchron-
izable test sequences based on finite state machine with dis-
tributed ports. In Protocol Test Systems, VI, Proceedings of
the IFIP TC6/WG6.1 Sixth International Workshop on Pro-
tocol Test systems, Pau, France, 28-30 September, 1993, pages
139–153, 1993.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Com-
mun. ACM, 52(7):107–115, 2009.

[Lie95] Liedtke. on ţ-kernel construction. 15th SOSP, Copper Moun-
tain, CO, USA, pages 237–250, December 1995.

[LM96] D. Lee and M.Yannakakis. Principles and method of test-
ing finite state machines- a survey. Proceeding of the IEEE,
84(8):1090–1126, 1996.

[LT89a] Nancy Lynch and Mark Tuttle. An introduction to input/out-
put automata. CWI-Quarterly, 2(3):219–246, 1989.

561

[LT89b] Nancy A. Lynch and Mark R. Tuttle. An introduction to in-
put/output automata. CWI Quarterly, 2:219–246, 1989.

[LY94] D. Lee and M. Yannakakis. Testing finite-state machines:
State identification and verification. IEEE Trans. Comput.,
43(3):306–320, Mar 1994.

[MD08] Prabhat Mishra and Nikil Dutt. Specification-driven directed
test generation for validation of pipelined processors. ACM
Trans. Design Autom. Electr. Syst., 13(3), 2008.

[Mem06] The Common Criteria Recognition Agreement Members. Com-
mon criteria for information technology security evaluation.
http://www.commoncriteriaportal.org/, Sep 2006.

[Mer01] Stephan Merz. Model checking: A tutorial overview. In Model-
ing and Verification of Parallel Processes, volume 2067 of Lec-
ture Notes in Computer Science, pages 3–38. Springer-verlag,
June 2001.

[MHST08] Till Mossakowski, AnneE. Haxthausen, Donald Sannella, and
Andrezj Tarlecki. Casl âĂŤ the common algebraic specification
language. In Dines BjÃÿrner and MartinC. Henson, editors,
Logics of Specification Languages, Monographs in Theoretical
Computer Science, pages 241–298. Springer Berlin Heidelberg,
2008.

[Mil78] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348 – 375,
1978.

[MOK13] Magnus O. Myreen, Scott Owens, and Ramana Kumar. Steps
towards verified implementations of HOL Light. In ITP, pages
490–495, 2013.

[Moo56] Edward F. Moore. Gedanken-experiments on sequential ma-
chines. In Claude Shannon and John McCarthy, editors, Auto-
mata Studies, pages 129–153. Princeton University Press, Prin-
ceton, NJ, 1956.

[MQB07] Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball. Chess:
A systematic testing tool for concurrent software. Technical Re-
port MSR-TR-2007-149, Microsoft Research, November 2007.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Defini-
tion of Standard ML. MIT Press, Cambridge, MA, USA, 1997.

562

[MW79] R. Milner and C.P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation. Lecture Notes in Computer Science.
Springer, 1979.

[MW10] David C. J. Matthews and Makarius Wenzel. Efficient parallel
programming in poly/ml and isabelle/ml. In Proceedings of
the POPL 2010 Workshop on Declarative Aspects of Multicore
Programming, DAMP 2010, Madrid, Spain, January 19, 2010,
pages 53–62, 2010.

[Nip12] Tobias Nipkow. Theory fun, 2012.

[NPW02] Tobias Nipkow, Larry C. Paulson, and Markus Wen-
zel. Isabelle/hol!—A Proof Assistant for Higher-Order Logic,
volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, 2002.

[NWS+] Wolfgang Naraschewski, Markus Wenzel, Norbert Schirmer,
Thomas Sewell, and Florian Haftmann. Theory record.

[Pau99] Lawrence C. Paulson. A generic tableau prover and its integ-
ration with isabelle. J. UCS, 5(3):73–87, 1999.

[Pel93] Doron Peled. All from one, one for all: on model checking using
representatives. In Computer Aided Verification, 5th Interna-
tional Conference, CAV ’93, Elounda, Greece, June 28 - July
1, 1993, Proceedings, pages 409–423, 1993.

[PHL12] Hernán Ponce de León, Stefan Haar, and Delphine Longuet.
Conformance relations for labeled event structures. In Tests
and Proofs - 6th International Conference, TAP 2012, Prague,
Czech Republic, May 31 - June 1, 2012. Proceedings, volume
7305, pages 83–98, 2012.

[PS83] H. Partsch and R. Steinbrüggen. Program transformation sys-
tems. ACM Comput. Surv., 15(3):199–236, September 1983.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch, editors.
The Unified Modeling Language Reference Manual. Addison-
Wesley Longman Ltd., Essex, UK, UK, 1999.

[Rus99] David M. Russinoff. A mechanically checked proof of correct-
ness of the amd k5 floating point square root microcode. Formal
Methods in System Design, 14(1):75–125, 1999.

[SLZ07] Weihang Jiang Shan Lu and Yuanyuan Zhou. A study of
interleaving coverage criteria. In The 6th Joint Meeting on

563

European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering:
Companion Papers, pages 533–536, September 2007.

[SMZ05] Haihua Shen, Lin Ma, and Heng Zhang. Crpg: a configur-
able random test-program generator for microprocessors. In
Circuits and Systems, 2005. ISCAS 2005. IEEE International
Symposium on, pages 4171–4174 Vol. 4, may 2005.

[SR10] Heiko Stallbaum and Mark Rzepka. Toward do-178b-compliant
test models. In Proceedings of the 7th Workshop on Model-
Driven Engineering, Verification and Validation, MoDeVVa
2010, at 13th Intl. Conference on Model Driven Engineering
Languages and Systems, Models 2010 (Oslo, Norway, 3rd of
October 2010), October 2010.

[SV03] Sudarshan K. Srinivasan and Miroslav N. Velev. Formal veri-
fication of an intel xscale processor model with scoreboarding,
specialized execution pipelines, and impress data-memory ex-
ceptions. In MEMOCODE, pages 65–74. IEEE Computer So-
ciety, 2003.

[SYS13a] SYSGO. PikeOS Fundamentals. SYSGO, 2013.

[SYS13b] SYSGO. PikeOS Kernel. SYSGO, 2013.

[TPHS10] Jan Tretmans, Florian Prester, Philipp Helle, and Wladimir
Schamai. Model-based testing 2010: Short abstracts. Electr.
Notes Theor. Comput. Sci., 264(3):85–99, 2010.

[Tre08a] Jan Tretmans. Formal methods and testing. chapter Model
Based Testing with Labelled Transition Systems, pages 1–38.
Springer-Verlag, Berlin, Heidelberg, 2008.

[Tre08b] Jan Tretmans. Model based testing with labelled transition
systems. In Robert M. Hierons, Jonathan P. Bowen, and Mark
Harman, editors, Formal Methods and Testing, volume 4949,
pages 1–38. Springer-Verlag, 2008.

[Urb] Christian Urban. The isabelle cookbook: A gentle tutorial for
programming on the ml-level of isabelle, July.

[Wad92] Philip Wadler. Comprehending monads. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming,
pages 61–78, New York, NY, USA, 1992.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc poly-
morphism less ad-hoc. In POPL, pages 60–76, 1989.

564

[Wen97] Markus Wenzel. Type classes and overloading in higher-order
logic. In TPHOLs, pages 307–322, 1997.

[Wen02] Markus M Wenzel. Isabelle/Isar—a versatile environment for
human-readable formal proof documents. PhD thesis, Technis-
che Universität München, Universitätsbibliothek, 2002.

[Wen15] Makarius Wenzel. The Isabelle/Isar Reference Manual, May
2015.

[Wie06] Freek Wiedijk. The Seventeen Provers of the World: Foreword
by Dana S. Scott (Lecture Notes in Computer Science / Lecture
Notes in Artificial Intelligence). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[YABC15] Y.Nemouchi, A.Feliachi, B.Wolff, and C.Proch. Isabelle in cer-
tification processes, Dec 2015.

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software
unit test coverage and adequacy. ACM Computing Surveys
(CSUR), 29(4):366–427, 1997.

565

	I Introduction and Context
	Introduction
	Motivations
	Contributions
	Overview

	Context
	Introduction
	Formal Testing and Prover-Based Testing
	On Theorem Proving Based Testing (PBT)
	A Gentle Introduction to: Sequence Testing
	Background on Sequence Testing Models

	Isabelle/HOL
	The Isabelle System Architecture
	Isabelle and its Meta-Logic
	The Isabelle Methodology and Specification Constructs
	Isabelle Proofs
	Isabelle/HOL Code Generation
	Isabelle/HOL Document Generation
	Isabelle extensions: HOL-TestGen

	The Verified Architecture Microprocessor (VAMP)
	PikeOS System Architecture
	Conclusions

	II Contributions
	A sideline : Isabelle/HOL in certification processes A System Description and Mandatory Recommendations
	Introduction
	Common Criteria: Normative Context
	Methodological Recommendations for the Evaluator
	On the use of SML
	Axioms and Bogus-Proofs
	On the use of external provers

	Extensions of Isabelle: Guidelines for the Evaluator
	An Example: The Isabelle/Simpl

	Recommendations for CC certifications
	A refinement based approach for CC evaluation

	Summary
	Background References
	Concluding Remarks and a Summary

	Theoretical and Technical Foundations: Testing Concurrent Programs
	Introduction
	Monads Theory
	An Example: MyKeOS.

	Conformance Relations Revisited
	Coverage Criteria for Interleaving
	Sequence Test Scenarios for Concurrent Programs
	Symbolic Execution
	Test Drivers for Concurrent C Programs
	The adapter
	Code generation and Serialisation
	Building Test Executables
	GDB and Concurrent Code Testing

	Conlusions

	Testing VAMP Processor
	Introduction
	The VAMP Model
	Testing VAMP Processor Conformance
	Generalities on Model-based Tests
	Test Specification
	Testing Load-Store Operations
	Testing Arithmetic Operations
	Testing Control-Flow Related Operations

	Experiences and First Experimental Data
	Test Generation
	Test Execution

	Conlusions
	Related Work
	Conclusion and Future Work

	Testing PikeOS API
	Introduction
	PikeOS IPC Protocol
	PikeOS Model
	State
	Actions
	Traces, executions and input sequences
	Aborted Executions
	IPC Execution Function
	System Calls

	A Generic Shared Memory Model
	Testing PikeOS IPC
	Coverage Criteria for IPC
	Test Case Generation Process
	Symbolic Execution Rules
	Abstract Test Cases
	Test Data For Sequence-based Test Scenarios
	Test Drivers
	Experimental Results

	Conclusion
	Related Work.
	Conclusion and Future Work.

	III Conclusions
	Conclusions and Future Works
	Summary
	Futur Works

	IV PikeOS IPC Model
	Isabelle sources
	HOL representation of PikeOS Datatypes
	kernel state
	atomic actions
	traces
	Threads

	Shared Memory Model
	Prerequisites
	Definition of the shared-memory type
	Operations on Shared-Memory
	Sharing Relation Definition
	Properties on Sharing Relation
	Memory Domain Definition
	Properties on Memory Domain
	Sharing Relation and Memory Update
	Properties on lookup and update wrt the Sharing Relation
	Rules On Sharing and Memory Transfer
	Properties on Memory Transfer and Lookup
	Test on Sharing and Transfer via smt ...
	Instrumentation of the smt Solver
	Tools for the initialization of the memory
	An Intrastructure for Global Memory Spaces
	Error codes datatype

	HOL representation of PikeOS IPC error codes
	HOL representation of PikeOS threads type
	interface between thread and memory
	Relation between threads adresses and memory adresses
	Updating thread list in the state
	Get thread by thread ID

	HOL representation of state type model for IPC
	informations on threads
	Interface between IPC state and threads
	Interface between IPC state and memory model

	HOL representation of IPC preconditions
	IPC conditions on threads parameters
	IPC conditions on threads communication rights
	IPC conditions on threads access rights
	interface between IPC Preconditions and IPC 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua stateid-scheme

	HOL representation of PikeOS IPC atomic actions
	Types instantiation
	Atomic actions semantics
	Semantics of atomic actions with thread IDs as arguments
	Semantics of atomic actions based on monads
	Execution function for PikeOS IPC atomic actions with thread IDs as arguments
	Predicates on atomic actions
	Lemmas and simplification rules related to atomic actions
	Composition equality on same action
	Composition equality on different same actions: partial order reduction

	HOL representation of PikeOS IPC traces
	Execution function for PikeOS IPC traces
	Trace refinement
	Execution function for actions with thread ID
	IPC operations with thread ID
	IPC operations with free variables
	Pridicates on operations
	Simplification rules related to traces

	IPC Stepping Function and Traces
	Simplification rules related to the stepping function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 exec-actionid-Mon

	Atomic Actions Reasoning
	Symbolic Execution Rules of Atomic Actions
	Symbolic Execution Rules for Error Codes Field
	Symbolic Execution Rules for Error Codes field on Pure-level
	Symbolic Execution of Action Informations Field

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IPC pre-conditions normalizer
	The Core Theory for Symbolic Execution of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 abortlift
	mbind and ioprog fail
	Symbolic Execution Rules on PREP stage
	Symbolic Execution rules on WAIT stage
	Symbolic Execution rules on BUF stage
	Symbolic Execution Rules on MAP stage
	Symbolic Execution Rules rules on DONE stage

	Rewriting Rules for Symbolic Execution of Sequence Test Scheme
	Symbolic Execution Rules for PREP stage
	Symbolic Execution Rules for WAIT stage
	Symbolic Execution Rules for BUF stage
	Symbolic Execution Rules for MAP stage
	Symbolic Execution Rules for DONE stage

	Introduction Rules for Sequence Testing Scheme
	Introduction Rules for PREP stage
	Introduction rules for WAIT stage
	Introduction rules rules for BUF stage
	Introduction rules for MAP stage
	Introduction rules for DONE stage

	Elimination rules for Symbolic Execution of a Test Specification
	Symbolic Execution rules for PREP SEND
	Symbolic Execution rules for PREP RECV
	Symbolic Execution rules for WAIT SEND
	Symbolic Execution rules for WAIT RECV
	Symbolic Execution rules for BUF SEND
	Symbolic Execution rules for BUF RECV
	Symbolic Execution rules for MAP SEND
	Symbolic Execution rules for MAP RECV
	Symbolic Execution rules for DONE SEND
	Symbolic Execution rules for DONE SEND

	Rules with detailed Constraints
	Symbolic Execution rules for PREP SEND
	Symbolic Execution rules for PREP RECV
	Symbolic Execution rules for WAIT SEND
	Symbolic Execution rules for WAIT RECV
	Symbolic Execution rules for BUF SEND
	Symbolic Execution rules for BUF RECV
	Symbolic Execution rules for MAP SEND
	Symbolic Execution rules for MAP RECV
	Symbolic Execution rules for DONE SEND
	Symbolic Execution rules for DONE SEND

	HOL representation of PikeOS IPC system calls
	System calls with thread ID as argument
	System calls based on datatype
	Predicates on system calls
	Derivation of communication from system calls
	Partial order theorem
	ipc communications derivations
	Lemmas on ipc communications
	No communications

