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Titre :   Etudes de bruit du fond dans le canal H→ZZ*→4l pour le Run 1 du LHC. Perspectives 

du mode bbH(→γγ) et études d'un système de détecteur pixel amélioré pour la mise à 

niveau de l'expérience ATLAS pour la phase HL-LHC 

Mots clés : Higgs, Pixels, ATLAS, CERN, Haute Luminosité, Mise à niveau 

Résumé : La première prise des données 

du LHC (2010 - 2012) a été marquée par la 

découverte du boson scalaire, dit boson de 

Higgs. Sa masse a été mesurée avec une pré-

cision de < 0,2 % en utilisant ses désintégra-

tions en deux photons et celles en deux bosons 

Z donnant quatre leptons dans l’état final. Les 

couplages ont été estimés en combinant plu-

sieurs états finaux, tandis que la précision sur 

leur mesure pourra bénéficier énormément de 

la grande statistique qui sera accumulée pen-

dant les prochaines périodes de prise des don-

nées au LHC (Run 2, Phase II).  

Le canal H→ZZ*→4 leptons, a un rapport 

d'embranchement réduit mais présente un 

faible bruit de fond, ce qui le rend attractif 

pour la détermination des propriétés du nou-

veau boson. Dans cette thèse, l’analyse con-

duite pour la mise en évidence de ce mode 

dans l’expérience ATLAS est détaillée, avec 

un poids particulier porté à la mesure et au 

contrôle du bruit de fond réductible en pré-

sence d’électrons.  

Dans le cadre de la préparation de futures 

prises de données à très haute luminosité, pré- 

vues à partir de 2025, deux études sont me-

nées: 

 La première concerne l’observabilité du 

mode de production du boson de Higgs en 

association avec des quarks b. Une ana-

lyse multivariée, basée sur des données si-

mulées, confirme un très faible signal 

dans le canal H→2 photons.  

 La seconde concerne la conception et le 

développement d’un détecteur interne en 

silicium, adapté à l’environnement hos-

tile, de haute irradiation et de taux d’occu-

pation élevé, attendus pendant la Phase II 

du LHC. Des études  concernant l’optimi-

sation de la géométrie, l’amélioration de 

l’efficacité ainsi que la résistance à l’irra-

diation ont été menées. A travers des me-

sures SIMS et des simulations des 

procédés de fabrication, les profils de do-

page et les caractéristiques électriques at-

tendues pour des technologies innovantes 

sont explorés. Des prototypes ont été tes-

tés sous faisceau et soumis à des irradia-

tions, afin d’évaluer les performances du 

détecteur et celles de son électronique as-

sociée. 
 

 

  



 
 
 

 

Title: Background studies on the H→ZZ→4l channel at LHC Run 1. Prospects of the bbH(→γγ) 

mode and studies for an improved pixel detector system for the ATLAS upgrade towards 

HL-LHC 

Keywords : Higgs, Pixels, ATLAS, CERN, High-Luminosity, Upgrade 

Abstract: The discovery of a scalar 

boson, known as the Higgs boson, marked the 

first LHC data period (2010 - 2012). Using 

mainly di-photon and di-Z decays, with the 

latest leading to a four lepton final state, the 

mass of the boson was measured with a preci-

sion of < 0.2 %. Relevant couplings were esti-

mated by combining several final states, while 

corresponding uncertainties would largely 

benefit from the increased statistics expected 

during coming LHC data periods (Run 2, 

Phase II). 

The H→ZZ*→4l channel, in spite of its 

suppressed brunching ratio, benefits from a 

weak background, making it a prime choice 

for the investigation of the new boson’s prop-

erties. In this thesis, the analysis aimed to the 

observation of this mode with the ALTAS de-

tector is presented, with a focus on the meas-

urement and control of the reducible electron 

background. 

In the context of preparation for future 

high luminosity data periods, foreseen from 

2025 onwards, two distinct studies are 

conducted: 

 The first concerns the observability poten-

tial of the Higgs associated production 

mode in conjunction with two b-quarks. A 

multivariate analysis based on simulated 

data confirms a very weak expected signal 

in the H→di-photon channel. 

 The second revolves around the concep-

tion and development of an inner silicon 

detector capable of operating in the hostile 

environment of high radiation and in-

creased occupancy, expected during LHC 

Phase II. Main studies were concentrated 

on improving radiation hardness, geomet-

rical and detection efficiency. Through 

fabrication process simulation and SIMS 

measurements, doping profiles and elec-

trical characteristics, expected for innova-

tive technologies, are explored. 

Prototypes were designed and evaluated 

in test beams and irradiation experiments 

in order to assess their performances and 

that of associated read-out electronics. 

 



  

 

Introduction 

 
The Standard Model is a unified theory that governs fundamental interactions between ele-

mentary particles. It predicts the existence of the Higgs boson as a manifestation of the electroweak 

symmetry breaking. This long researched for scalar boson is the centerpiece of LHC research pro-

gram and consists the epitome of Run 1 physics results. The announcement of the particle’s discov-

ery took place on the 4th of July 2012. This result is beyond doubt consolidated by the total recorded 

luminosity of 26.425 fb-1, collected during the first two years of operation, while an intensive pro-

gram is under way to further investigate the particle’s properties, measure its couplings and observe 

rare production and decay modes. The program’s 10-year horizon aims at a total of 3000 fb-1 inte-

grated luminosity. 

 

During my thesis, research activities extended to two different domains. The first involves 

data analysis on Higgs Physics related searches. In this context, two analyses are presented, with 

one part of my work devoted to the estimation of the reducible electron background in the 

H→ZZ(*)→4l channel. Using Run 1 data, a more accurate result was obtained for final publications. 

The second analysis was conducted in the framework of the future HL-LHC project. The observa-

bility potential of one of the rarest production modes, that of Higgs associated production with two 

b quarks in its di-photon decay mode, was investigated. 

 

The second half of my thesis is devoted to the development of a pixelated silicon tracker, 

capable of coping with the requirements of the future upgrade of the ATLAS inner detector, towards 

the high luminosity LHC phase. Using production process simulation, geometrical optimization and 

Secondary ion Mass Spectroscopy (SIMS) measurements, the active edge technology is evaluated. 

Electrical characterization of prototypes is presented, while through test beam experiments detection 

efficiency is assessed. 

 

This document is structured in six chapters: 

 

1. In the first chapter, the theoretical basis of the Higgs mechanism are detailed with a 

particular focus on the production and decay mechanisms. Current ATLAS and CMS 

results are presented, including couplings measurements and uncertainties. 
 

2. The second chapter is devoted to the LHC machine, the ATLAS detector and its ge-

ometry as well as data acquisition and particle reconstruction. The detailed geometry 

of individual detector subsystems is presented, followed by a description of the trigger 

system. An introduction to main analysis objects used in the subsequent chapters is 

also given. 
 

3. In the third chapter, the four lepton analysis is presented, including event selection, 

background estimation and final results. A long section is devoted to the reducible 

electron background estimation and in particular to the truth-reco unfolding method 

that constitutes my personal contribution. 
 

4. The upgrade program for the High Luminosity LHC, its physics incentive and the 

considered detector scenarios are detailed in chapter four. Following the detailed 

timetable, the various options are presented as well as the corresponding improve-

ments with respect to the already installed upgrades at the end of Run 1. 
 

5. Chapter five presents my work on the observability potential of the bbH(→γγ) mode 

for the 3000fb-1 expected integrated luminosity at the end of LHC Phase II. Using 

simulated data and applying corrections for expected detector performances, a weak 

significance is observed through a multivariate approach analysis 
 



 
 
 

6. The sixth and final chapter is entirely devoted to the development of a pixel detector 

capable of operating in the harsh radiation and occupancy conditions foreseen during 

Phase II of the LHC. My work is presented for the whole spectrum of the R&D activ-

ities, ranging from design, process simulation and SIMS measurements to evaluate 

production, electrical characterization of prototypes and irradiation testing. Different 

active edge geometries are compared. Finally, Low Gain Avalanche Diode sensors 

are presented, through simulations and SIMS measurements while the potential of a 

gallium implanted structure is particularly investigated. 
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1 The Standard Model and the electroweak symmetry breaking 
mechanism 

 
 
1.1 The Standard model 

 
The Standard Model (SM) of particle physics was developed over the second half of the 20th 

century and took its present form during the 70s. It effectively describes most of the interactions 

between elementary particles and since several decades, numerous experiments have tested and cer-

tified its validity by verifying the predictions with an accuracy reaching 0.1 % in some cases [1]. 

 

The SM is a quantum field theory, based on gauge symmetry and expressed as a combination of 

SU(3)C × SU(2)L × U(1)Y groups [2]. The final product contains the symmetry group of strong in-

teractions, SU(3)C, as well as the one corresponding to electroweak interactions, SU2L × U(1)Y. The 

group corresponding to electromagnetism, U(1)em, is included as a subgroup of the SU(2)L × U(1)Y 

product, since electromagnetic and weak forces are unified thanks to the works of Glashow [3], 

Salam [5] and Weinberg [4]. 

 

Elementary particles are divided into two main categories according to their statistical proper-

ties, fermions and bosons. Fermions, (Figure 1.1 left) obeying Fermi - Dirac statistics are further 

distinguished into three families, whose members have similar properties but different masses. They 

are also classified into two categories, leptons and quarks. While leptons can exist in a free-state and 

exhibit full electrical load, quarks bare a fraction of electric charge in multiples of 1/3. They are 

subject to the strong interaction and are confined within states related to integer electric charge and 

to zero color. An antiparticle is associated with each fermion, with the same mass and statistic rules 

but opposite quantum numbers. Bosons (Figure 1.1 right) are integer spin particles obeying the 

Bose-Einstein statistics, allowing them to coexist in the same quantum state. Two types of bosons 

can be distinguished, with the first being spin s = 1vector fields, convening elementary interactions. 

The second type of bosons, with spin s = 0, has a single member so far, the so-called Higgs boson, 

that is a scalar field responsible for the electroweak symmetry breaking. 

 

   
 

Figure 1.1: Standard Model particles and their properties. The fermions (left table) are the elementary con-
stitutes of matter, while bosons (right table) act as mediators for all interactions. 

 

The standard model gauge sector is composed of: 

 

 Eight gluons, corresponding to the SU(3)C gauge bosons, responsible for the strong interac-

tion that binds quarks together. Because of the color confinement, gluons and quarks cannot 

exist as free particles. Gluons have zero mass and unitary spin. 

 

 The photon and the Z, W±,0 correspond to the gauge bosons of the electroweak interaction. 

The weak interaction is responsible for fission and beta decay. Its intensity is significantly 
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weaker than that of other elementary forces, while the short distance action indicates that 

the mediator bosons W±,0 and Z0 are massive. The electromagnetic interaction, mediated by 

the photon, is responsible for magnetic and electric phenomena. The range of the electro-

magnetic force is infinite in the measure where the photon has a zero mass. 

 

 Higgs boson: An additional - new type - boson, discovered in the summer of 2012, the Higgs 

boson is vital in understanding the spontaneous electroweak symmetry breaking. It has been 

at the epicenter of intense theoretical and experimental research for more than 50 years. 

 

 

1.2 Gauge invariance in QED 

 
To introduce gauge symmetries, the example of the quantum electrodynamics is often used. A 

spin ½ particle with mass m is described by the Dirac equation in its covariant form:   

 

(𝐢𝛄𝝁𝛛𝛍 −𝐦)𝚿 = 𝟎             (1-1) 
 

The corresponding Lagrangian can then be expressed in the following form:  

 

𝐿𝑒 = �̅�(iγ
μ ∂μ −m)     (1-2) 

 

which would consequently remain invariant under a phase transformation: 

 

𝜳 → 𝒆𝒊𝜶𝜳⇔             (1-3) 

 𝑳𝒆 = �̅�(𝐢𝛄
𝛍𝛛𝛍 −𝐦)𝜳 → 𝑳𝒆

′ = 𝒆−𝒊𝜶�̅�(𝐢𝛄𝛍𝛛𝛍 −𝐦)𝒆
𝒊𝜶𝜳⇒             (1-4) 

 𝑳𝒆
′ = 𝒆−𝒊𝜶𝒆𝒊𝜶�̅�(𝐢𝛄𝛍𝛛𝛍 −𝐦)𝜳⇒             (1-5) 

 𝑳𝒆
′ = 𝑳𝒆              (1-6) 

 
On the contrary, if this phase transform is space dependent, then the Lagrangian invariance is 

lost: 

𝜳 → 𝐞𝐢𝛂(𝐱)𝜳⇔             (1-7) 

𝑳𝒆
′ = 𝒆−𝒊𝜶(𝐱)�̅�(𝐢𝛄𝛍𝛛𝛍 −𝐦)𝒆

𝒊𝜶(𝐱)𝜳⇒              (1-8) 

𝑳𝒆
′′ = 𝑳𝒆 + 𝐞

−𝐢𝛂(𝐱)�̅�(𝐢𝛄𝛍(𝛛𝛍𝒆
𝒊𝜶(𝐱)))𝒆𝒊𝜶(𝐱)𝜳             (1-9) 

 

In order to preserve invariance, a covariant derivative introducing a gauge field Aμ is used, with 

respect to the following definition: 

 

𝑫𝝁 = 𝛛𝛍 − 𝐢𝐞𝑨𝝁             (1-10) 

 

where e represents the electron charge and is related to the coupling constant α of electromagnetic 

interaction by α = e2/4π ~ 1/137. 

 

The purpose of this new definition is to absorb the second term of the Lagrangian in the equation 

1-9. Under a space dependent phase transformation, individual elements can be expressed in the 

following form:  

𝜳 → 𝒆𝒊𝜶(𝒙)𝜳             (1-11) 
𝑫𝝁 → 𝒆

𝒊𝜶(𝒙)𝑫𝝁             (1-12) 

𝑨𝝁 → 𝑨𝝁 +
𝟏

𝒆
𝛛𝛍𝒂(𝒙)             (1-13) 
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Gauge invariance of the free electron Lagrangian is therefore impossible unless we accept the 

existence of a gauge field Aμ. This would have to be a zero mass field, since a mass term in the form 

of mγ·2·Aμ·Aμ would render the Lagrangian non-invariant. By introducing the corresponding field 

coupling terms, in the form of Ψ(x)·AμΨ(x), one can observe that an interaction is mediated between 

free electrons. In reality, this field corresponds to the photon, mediator of electromagnetic interac-

tions, with zero mass, while its coupling constant is identified as the elementary electromagnetic 

charge. The conclusive step left would be to describe the dynamics of this gauge field by introducing 

an additional term in the Lagrangian. We can define the electromagnetic tensor as: 

 

F   

                   (1-14) 

 

Finally, by expanding all terms, while using the definition of the tensor above, the Lagrangian 

can be expressed as: 

 

 
1

4
eL i m e A F F  

                         (1-15) 

 

 

1.3 Electroweak gauge invariance 

 
In order to fully describe the electroweak interaction, three gauge fields are introduced. Two 

charged currents are needed (W±), as well as a neutral one (W0) to achieve unification with electro-

magnetic interaction. This constraint imposes a representation by the SUL(2) group, being the mini-

mum unitary group with the normal three-dimensional representation. The quantum number 

associated with this group is the weak isospin I. For the electromagnetic part, a unique gauge field 

is sufficient, so the choice of U(1)Y group is natural. The associated quantum number is the hyper-

charge Y, a generalization of the electromagnetic charge. 

 

In the context of the electroweak interaction SU(2)U(1) group, lepton representations corre-

spond to SU(2) doublets:  

 

 ,   ,  
ev v v

e

 

   

     
     
     

             (1-16) 

 

One could further separate these doublets of their right and left helicity by writing the corre-

sponding spinors: 

 

   5 5

1 1
1   ,   R= 1

2 2

e e e e

L R

L
e e e e

   
 

   

       
           

       

             (1-17) 

 

The electroweak interaction doesn’t preserve parity symmetry [6] resulting to the absence of 

right handed particles: 
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             (1-18) 

 

In a similar fashion for quarks, there are no right-handed doublets and we can deduct that: 
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             (1-19) 

 

In order to unify the weak interaction isospin with the electromagnetic charge, a new quantity, 

the hypercharge, has to be introduced:  

 

32 2Y Q I               (1-20) 

 
where Q is the charge and I3 the third component of the isotopic spin [7]. Using this definition, is 

possible to calculate hypercharge eigenvalues: 

 

1 4 21 , 2 ,  ,  , Y
3 3 3i R i R Ri i i

L e Q u dY Y Y Y                     (1-21) 

 

The corresponding gauge fields on the mediator bosons would be the Bμ for Y generators of 

U(1)Y group as well as the three Wμ
1,2,3 fields of the T1,2,3 generators corresponding to the SU(2) 

group. These generators are defined in the following way: 

 

𝑻𝒊 =
𝟏

𝟐
𝝈𝒊   with σi the Pauli matrices              (1-22) 

𝑾𝝁𝝂
𝒊 = 𝝏𝝁𝑾𝝂

𝒊 − 𝝏𝝂𝑾𝝁
𝒊 + 𝒈′𝒈𝝁𝝂𝑾𝝂

𝒋
𝑾𝝁
𝒌𝑩𝝁𝝂 = 𝝏𝝁𝜝𝝂

𝒊 − 𝝏𝝂𝜝𝝁
𝒊              (1-23) 

 

where gμν denotes the anti-symmetric tensor. 

 

In a similar manner as in the quantum electrodynamics case, in order to respect gauge invariance 

it is necessary to introduce a new covariant derivative in the Lagrangian that describes the electro-

weak interaction. One can use: 
 

" '
2

i

i

Y
D ig TW ig B   

 
    
 

             (1-24) 

 

with g΄ et g΄΄ the two coupling coefficients corresponding to the fields Bμ et de Wμ
1,2,3 respectively. 

By continuing this approach, the electroweak Lagrangian can be written in the form of: 

 

a a

EW a a

1 1
L  = - W W  -

4 4

         

         

i i i i

i i

i i

R R i i R R

R R

B B L iD L

e iD e Q iD Q u iD u

d iD d

  

  

  

  







  





  



             (1-25) 

 

In this formula, the neutral bosons Wμ
3 and Bμ correspond to linear combinations of the photon 

and the weak Z boson [8], while charged bosons W2, W3 are equivalent to W± bosons [9]. The ab-

sence of any mass term for all fields and in particular for the Wμ
3 and Bμ components known to be 

massive because of their short action, has been a puzzling issue of the theory for years. 
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1.4 The BEH mechanism and electroweak symmetry breaking 

 
The work of P. Higgs [10], F. Englert and R. Brout [11], G.S. Guralnik et al. [12] resulted in a 

model that explains the appearance of the weak force mediators masses through the spontaneous 

breaking of electroweak symmetry, while keeping photons and gluons massless.  

 

1.4.1 The BEH mechanism  
 

Particles can acquire mass through their interaction with the Higgs field. The mechanism attrib-

utes mass to the bosons by absorption of Nambu - Goldstone bosons, occurring from the spontaneous 

symmetry breaking. In its simplest expression, an additional field, the Higgs, is added to the gauge 

theory. The spontaneous breaking of the underlying local symmetry triggers the conversion of the 

field components to Goldstone bosons, interacting with the other fields of the theory in order to 

produce the mass terms of the gauge bosons. This mechanism leaves behind a scalar elementary 

particle (spin 0), known as the Higgs boson, while respecting the need of a massless photon.  

 

To generate masses for the W and Z bosons while maintaining the U(1)em unchanged, one has 

to break the SU(2)L × U(1)Y symmetry.  To do so, a neutral component of a scalar complex field 

doublet is introduced. 
†

0
   ,   Υ 1





 
   

 
             (1-26) 

 

This new field can be fully described by the following Lagrangian: 

 

     
2†

2 † †

HL D D

                       (1-27) 

 
where Dμ the covariant derivative defined at the electroweak interaction and μ, λ are unknown con-

stants. The kinetic term is already included in the expression [(DμΦ*)(DμΦ)] along with a potential 

term [V=μ2 Φ*Φ+λ(Φ*Φ)2], the most generic possible while respecting SU(2) invariance. By fixing 

one of the parameters assuming λ > 0, we can examine the behavior for different values of μ2. If the 

latest is positive, then the potential nominal value would be zero. On the contrary, if μ2 is considered 

negative, the potential will develop a non-zero vacuum expectation value (Figure 1.2). 

 

The kinetic term of the Lagrangian also contains the mass factor of the boson associated with 

the Higgs field. This originates from the second neutral component of the field. Both components, 

the charged one and one of the neutrals, are Goldstone bosons, acting as the third component of 

longitudinal polarization of massive W± and Z bosons. The remaining neutral component is associ-

ated with the massive Higgs boson. Since the Higgs field is a scalar, the corresponding gauge boson 

has spin zero, no electric charge or color, while its wave function is symmetric. 

 

 
 

Figure 1.2: Form of the Higgs potential in the complex plan for positive (a) or negative μ2 (b) The small 
sphere indicates a possible choice for the direction of the potential vector. 



The Standard Model and Electroweak Mechanism Chapter 1 
 

 18 

The vacuum expectation value can be computed from the potential by applying the operator to 

the wave function:  

^

2
0

0
1

0 0
2





 
 

     
 
 

             (1-28) 

The 1 2 factor is imposed by the normalization requirement. The minimum expected value is 

calculated as the absolute value of 2  , estimated from the Fermi constant to be ~ 246 GeV. This 

form of potential is more commonly known as “The Mexican Hat Potential”, since its initial value, 

or vacuum value, is non-zero. There are infinite possibilities of passing to a stable minimum, which 

causes the symmetry breaking by leaving the initial value. Keeping in mind the demand to maintain 

U(1)em while breaking the SU(2)L × U(1)Y symmetry, from the infinite amount of algebraic solutions 

implied by equation 1-28, an appropriate suggestion for the wave fiction representation is the fol-

lowing: 

𝛗 = (
𝟎
𝐯

√𝟐
)             (1-29) 

 

Although an analytic solution for the Lagrangian (equation 1-27) would not be possible in its 

general form, one can approach the problem by an expansion at the minimum potential value [13]. 

Since the appearance of the Goldstone bosons is intrinsic on the theoretical side, it is convenient to 

use a parameterization that would eliminate the corresponding terms: 

 

𝝋 → 𝝋′ =
𝒆
𝒊𝝈𝒂(𝒙)
𝒗

√𝟐
(

𝟎
𝒗 + 𝒉(𝒙)

)             (1-30) 

 

Expanding the Lagrangian at the minimum potential value using equation 1-30 we can derive at 

the fourth order term approximation: 

 

𝐋 =
𝟏

𝟐
𝛛𝛍𝐡𝛛

𝛍𝐡 −
𝟏

𝟐
𝛌𝐯𝟐𝐡𝟐 − 𝛌𝐯𝐡𝟑 −

𝛌

𝟒
𝐡𝟒 +

+
𝟏

𝟐
[
𝐠′𝟐𝐯𝟑

𝟒
𝐁𝛍𝐁

𝛍 −
𝐠𝐠′𝐯𝟐

𝟐
𝐖𝛍
𝟑𝚩𝛍 +

𝐠𝟐𝐯𝟐

𝟒
𝐖𝛍𝐖

𝛍]

+
𝟏

𝐕
[
𝐠′𝟐𝐯𝟐

𝟒
𝐁𝛍𝐁

𝛍𝐡 −
𝐠𝐠′𝐯𝟐

𝟐
𝐖𝛍
𝟑𝚩𝛍𝐡 +

𝐠𝟐𝐯𝟐

𝟒
𝐖𝛍𝐖

𝛍𝐡]

+
𝟏

𝐯𝟐
[
𝐠′𝟐𝐯𝟐

𝟒
𝐁𝛍𝐁

𝛍𝐡𝟐 −
𝐠𝐠′𝐯𝟐

𝟐
𝐖𝛍
𝟑𝚩𝛍𝐡𝟐 +

𝐠𝟐𝐯𝟐

𝟒
𝐖𝛍𝐖

𝛍𝐡𝟐] + ⋯

              (1-31) 

 

 The first term of equation 1-31 represents the Higgs field dynamics as well as the par-

ticles mass as a function of the potential vacuum expectation value, mH
2=2λv2. 

 

 Subsequent terms on the second line generate W±, Z bosons masses. The Bμ and Wμ
3 

are mixed together in the first two terms, with one of them generating the QED photon 

field Aμ of zero mass. Z boson mass can appear by deagonalizing the mixing matrix 

with the help of the weak interaction angle θw according to the following definition: 

 

𝟏

𝟒
(
𝒈𝟐𝒗𝟐 −𝒈𝒈′𝒗

𝟐

−𝒈′𝒈𝒗𝟐 𝒈′𝟐𝒗𝟐
) = 𝑴−𝟏 (𝒎𝒛

𝟐 𝟎
𝟎 𝟎

)𝑴  ,  𝑴 = (
𝐜𝐨𝐬 (𝜽𝒘) −𝐬𝐢𝐧 (𝜽𝒘)
𝐬𝐢𝐧 (𝜽𝒘) 𝐜𝐨𝐬 (𝜽𝒘)

)  (1-32) 

 

It can be deducted that mz
2= (g2+g’2)v2/4  

 

 The W± is included in the third term of the second line within the multiplication factor: 

 
𝒈𝟐𝒗𝟐

𝟒
𝑾𝝁𝑾

𝝁 →
𝟏

𝟐
𝒗𝒈 |

𝟏

√𝟐
(𝑾`𝟏 ∓𝑾`𝟐)| → 𝒎𝒘 =

𝟏

𝟐
𝒗𝒈             (1-33) 
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 The two last lines of the Lagrangian describe the interaction of the Higgs boson with 

the W, Z and γ boson fields.  

 

Although for the boson case the mass generation is straight-forward appearing in the Lagran-

gian, fermion masses are not explained. Adding a mass term to the theory in the form of 𝑚(𝐿�̅� +
𝑅�̅�) would not be possible since this would violate the SU(2)L gauge invariance. Instead, one can 

introduce indirect interactions with the Higgs field via Yukawa couplings in the initial Lagrangian 

which for the electron case would take the form: 

 

𝑳𝑯 = −𝝀𝒆(�̅�𝒍𝝋𝑹𝒍 +𝑹𝒍̅̅ ̅𝝋
†𝑳𝒍)             (1-34) 

 

By applying the spontaneous symmetry breaking 𝜑 → 𝜑′ =
𝟏

√2
(

0
𝑣 + ℎ(𝑥)

) in the same manner as 

for the bosons equation 1-34 becomes: 

 

𝑳𝑯 = −
𝝀𝒆𝒗

√𝟐
�̅�𝒍𝝍𝒍 −

𝝀𝒆

√𝟐
�̅�𝒍𝝍𝒍𝒉             (1-35) 

 

In this form, the first term corresponds to the electron mass, while the second represents the 

Higgs coupling to the electron and hence proportional to the electro mass. By repeating the same 

process for each lepton all the masses can be generated, whereas a constant g is introduced in each 

case.  

 

In the quark case, the process remains identical with the exception of the up-type particles 

where a rotation of the Higgs field has to be considered in the form of: 

 

𝝋 → 𝝋′ =
𝟏

√𝟐
(
𝒗 + 𝒉(𝒙)
𝟎

)             (1-36) 

 

In a nutshell, the Higgs mechanism introduces the mass for all the gauge bosons and fermions 

as described in Table 1-1. The unavoidable side-effect is the introduction of a new massive field 

associated with a corresponding scalar boson, the Higgs boson. The corresponding couplings are 

proportional to the generated masses and for all intents and purposes are described as λf for the 

fermions, λb for the bosons and λ for the Higgs self-coupling.  

 

Boson masses 𝑚𝑏 =
𝜆𝑏𝑣

2
 

Fermion masses 𝑚𝑓 =
𝜆𝑓𝑣

√2
 

Higgs mass 𝑚𝐻 = √2𝜆𝑣
2 

 
Table 1-1: Generated mass of the Standard Model particles and their corresponding formulas. 

 

1.4.2 The Higgs boson mass 

 
The Higgs boson mass is a free parameter of the model and can be constrained indirectly by 

several higher order effects present in loops, resulting in tiny corrections in various precision meas-

urements of the electroweak parameters. Thus, the fit of the most precise results obtained essentially 

from LEP experiment have been used for a long time to extract a most probable Higgs mass field’s 

value [1]. 

 

The mass of the Higgs boson can be calculated from the following formula: 

 
22Hm                (1-37) 
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Since μ is related to λ with respect to the vacuum expectation value of the potential, 𝑣 = √𝜇2 𝜆⁄  

and λ is not fixed, mH remains unknown. Before the discovery, constraints have been imposed by 

considering the unitarity of the standard model, triviality and the vacuum stability. 

 

Perturbative unitarity: While considering the case of W bosons elastic scattering, the corre-

sponding cross-section increases with respect to scattering energy, violating the principle of unitarity 

around ~ 1 TeV. In order to restore balance to the theory, the Higgs mechanism introduces and 

additional interaction diagram through its coupling with the W boson. This interaction path restores 

equilibrium for the increasing contributions with respect to the energy value for certain values of the 

Higgs mass. The corresponding upper limit is: 

 

  𝒎𝑯 = (
𝟖𝝅√𝟐

𝟑𝑮𝑭
) ≈ 𝟕𝟎𝟎 𝑮𝒆𝑽/ 𝒄𝟐           (1-38) 

 

Triviality: Consideration of higher order relative corrections in Higgs self-coupling constant 

λΗ, introduces an energy dependence of this very constant (“running coupling constant”). This al-

lows the extraction of a limit for the Higgs mass of around ~ 160 GeV [14], for a validity up to the 

1016 GeV scale. 

 

Vacuum stability: The argument of vacuum stability is based on the fact that the Higgs potential 

has to always be limited with respect to its minimal value. This means that the coupling constant 

λ(Q) has to remain positive, introducing a lower limit on the Higgs mass. In fact, if λ becomes 

extremely small, top quark and weak boson loops start to appear due to their strong coupling with 

the Higgs field. As a result, λ could become negative and the vacuum would become unstable since 

no minimum value would exist [15]. The constraint of a positive coupling content λ(Q2) implies that 

mH > 70 GeV/c2 for a validity of the Standard Model up to the TeV scale. Figure 1.3 presents im-

posed limits on the Higgs mass with respect to the validity scale of the Standard Model.  

 

 
 

Figure 1.3: Lower and higher limits of the Higgs mass with respect to the standard models validity scale 
 (μ2 < 0). 

 

 

1.5 Higgs production modes at hadronic colliders 
 

Four main processes exist for the production of the Higgs boson in hadronic colliders: 

 

 Gluon fusion (Figure 1.5 a) 

 Vector boson fusion (VBF) (Figure 1.5 b) 

 Associated production with W or Z bosons, also known as Higgsstrahlung (Figure 1.5 c) 

 Associated production with a quark pair, mainly the 𝑡𝑡̅ (Figure 1.5 d) 
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At LHC energies (Figure 1.4), the dominant Higgs production process is gluon fusion. Since 

the Higgs boson is not coupled with gluons, its production is carried out indirectly through quark 

loops and notably the top. This production mode is at least one order-of-magnitude larger than all 

other production processes because of the gluon component abundance in the colliding protons at 

the LHC energy range. 

 

 
 

Figure 1.4 : Cross section of the various Higgs production modes as a function of the collision energy, for 7 

TeV < √𝒔 < 14 TeV [16]. 

 

The second most important mode is the vector boson fusion (VBF). This process demonstrates 

a particular topology. The quarks interact through a W or Z boson, indicating that this is an electro-

weak process and does not imply a color exchange between the initial and final quark states. The 

two final quarks generate forward jets in opposite hemispheres inside the detector, making a clear 

topology which allows for a very good signal-to-background separation. 

 

A Higgs boson can also be produced in association with a W/Z boson. One of the initial quarks 

of the colliding protons can annihilate with an antiquark, producing in the final state a real Z or W 

in conjunction with a Higgs boson. 

 

The last production mode comes from a heavy quark pair (top or bottom). Quite often, in proton 

collisions, a gluon or quark pair can annihilate generating a pair of heavy quarks. Those can fuse 

generating a Higgs boson in the processes. This phenomenon is quite rare, estimated at least 100 

times less significant with respect to the gluon-gluon fusion mode.  

 

      
 

 
Figure 1.5: Feynman diagrams for the main Higgs production modes. From top left to bottom right: gluon 
fusion process (a), vector boson fusion (b), quark-quark scattering (c) and quark gluon annihilation (d) also 

referred as Higgsstrahlung. 

(d) 

(a) (b) 

(c) 



The Standard Model and Electroweak Mechanism Chapter 1 
 

 22 

The VBF and W/Z or top associated production modes are of different nature with respect to 

the gluon-gluon fusion process, in the sense that the final Higgs boson is produced in association 

with additional objects at the final state. This allows for a better signal to background separation 

although the sensitivity is generally reduced in low luminosity. All production modes are being con-

sidered in the Higgs boson studies. In LHC conditions, due to the proton-proton composition of the 

beam, qq scattering is favored and VBF is the second most important production mode after the 

dominant gluon-gluon fusion mode. 

 

 
 

Figure 1.6: The LHC SM Higgs production cross-section for the five most prominent modes at a √𝒔 = 𝟕 𝑻𝒆𝑽 

(left) and √𝒔 = 𝟏𝟒 𝑻𝒆𝑽 (right) center of mass energy. 

 

Computation of the Higgs boson production cross-section in the various modes requires to take 

into account higher order corrections. Recently, Anastasiou et al. [17] achieved the long-waited 

NNNLO computation of the main production mode gg→H. This major accomplishment permits the 

understanding of gluon-gluon fusion cross-section within a ~ 3 % uncertainty. In this computation, 

an additional source of uncertainty comes from the Parton Density Functions (PDF) used, presently 

known within 2 – 3 % precision [18]. These two major breakthroughs have been achieved after the 

end of Run 1 of LHC. 

 

 

1.6 Higgs decay channels 
 

Higgs decay modes can be distinguished into three main categories:  

 

 Prompt decays to a particle-antiparticle pair (quarks: 𝑐𝑐̅, 𝑠�̅�, 𝑡𝑡̅, 𝑏�̅� and leptons: 𝜇�̅�, 𝜏�̅�)  
 Decays though virtual loops (top, W) 

 Decays to vector bosons WW* and ZZ* 

 

Feynman diagrams for the different Higgs decay modes are illustrated in the following figure 

(Figure 1.7): 

 
 

Figure 1.7: Feynman diagrams of the main Higgs decay modes. 
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As for the mass of the Higgs, the coupling constants for bosons and fermions are not fixed by 

the theory. The branching fractions of the various modes are shown relative to the mass of the boson 

(Figure 1.8). Higgs couples preferentially with the most massive particles, therefore, the most im-

portant branching ratios would be to the heaviest particles allowed by the Higgs mass value. 

 

In the fermion case, the decay width can be expressed using the color factor Nc (Nc= 1 for 

leptons and Nc = 3 for quarks), the original fermion and Higgs particle masses as well as the mini-

mum potential value. The color factor is introduced when final decay products carry color charge in 

order to ensure a colorless fermion - antifermion final state, since the Higgs field is colorless. As a 

result, decay width is formulated in the following way: 

𝜞(𝑯 → 𝒇�̅�) =
𝒎𝑯

𝟖𝝅
(
𝒎𝒇

𝒗
)𝟐𝑵𝒄 (𝟏 −

𝟒𝒎𝒇
𝟐

𝒎𝑯
𝟐 )

𝟑
𝟐⁄

             (1-39) 

 

Except for the top case, where the approximation (mH >> mf) is no longer valid, one can ap-

proximate the formulation by considering the fermion mass significantly smaller with respect to that 

of the Higgs. The last term of the width expression then becomes increasingly close to the unity and 

we can safely assume that the final resonance width or the fermion decay is proportional to the boson 

mass. Conversely, decays to top quarks would only come from a Higgs mass around twice that of 

the quark. For the fermion decays, one can notice that the widths are linear as a function of the Higgs 

mass. 

 

      
 

Figure 1.8: Branching ratio for the different decay  Figure 1.9 : Variation of the natural Higgs width 
modes foreseen in tree-level SM [14].       with respect to the particle mass. 

 

Considering bosonic decays, a slightly altered approach has to be considered for the massive 

electroweak (W± and Z) and massless photon and gluon cases. In the electroweak case, no color 

compensation factor has to be included since there is no possible mediation of color charged objects 

but the indistinguishable nature of the outgoing W± field for a neutral Higgs case impose the intro-

duction of an additional factor of two at the WW decay width. Except for the additional mass change, 

calculations are identical, yielding widths described correspondingly by the representations: 

 

𝜞(𝑯 → 𝒁𝒁) =
𝒎𝑯

𝟑𝟐𝝅
(
𝒎𝑯

𝒗𝟐
)𝟐 (𝟏 −

𝟒𝒎𝒁
𝟐

𝒎𝑯
𝟐 )

𝟏
𝟐⁄

[𝟏 − 𝟒(
𝒎𝒁
𝟐

𝒎𝑯
𝟐 ) + 𝟏𝟐(

𝒎𝒁
𝟐

𝒎𝑯
𝟐 )
𝟐

]             (1-40) 

 

𝜞(𝑯 → 𝑾𝑾) =
𝒎𝑯

𝟏𝟔𝝅
(
𝒎𝑯

𝒗𝟐
)𝟐 (𝟏 −

𝟒𝒎𝑾
𝟐

𝒎𝑯
𝟐 )

𝟏
𝟐⁄

[𝟏 − 𝟒(
𝒎𝑾
𝟐

𝒎𝑯
𝟐 ) + 𝟏𝟐(

𝒎𝑾
𝟐

𝒎𝑯
𝟐 )
𝟐

]             (1-41) 
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As previously stated, in the mH > mw,z case, the second term of the width formulation increas-

ingly tends towards unity, while 1/mH dependence can be derived for the last term when approxi-

mated by a converging sequence. Overall, the width dependence would be proportional to ̴ mH
3, 

rendering the increase in the resonance width faster than in the fermions case.  

 

From the previous width formulas (equations 1-39, 1-40 and 1-41) it can be concluded that 

Higgs decays preferably to the most massive particles allowed by its rest-mass value.  This implies 

zero interaction with massless particles like gluons and photons at tree level. The di-photon final 

state is rare because of solely loop coupling with the photon. This decay is realized through top 

quark and W boson loops. Despite the small branching ratio, this mode remains very important with 

a very clear signal into two photons in the end state. It allows direct measurement of the mass boson.  

 

In the width calculation, one can use the same approximations for all massless bosons, gluons 

and photons, with the caveat of including the color-factor in the photon case as well as the electric 

charge of the intermediate fermion (Qf), while for gluons the δΑΒ needs to be introduced to ensure 

that the intermediate fermionic pair is colorless. In more detail the corresponding width for the gluon 

decays is: 

 

𝜞(𝑯 → 𝒈𝒈) =
𝒂𝒂𝒔

𝟐𝒎𝑯
𝟑

𝟐𝝅𝟐𝒎𝒘
𝟐 𝒔𝒊𝒏𝟐𝜽𝒘

|∑ 𝑰(
𝒎𝑯
𝟐

𝒎𝒒
𝟐)
𝟐

𝒒 |             (1-42) 

 

Where I is the form factor integral [19]. Concerning the photon case calculations, an additional 

complexity is imposed by the number of available interaction diagrams and the different possible 

topologies (26 in total for the W –loop case). Using the same approach as before one can approxi-

mate: 

 

𝚪(𝐇 → 𝛄𝛄) ≈
𝐚𝟑𝐦𝐇

𝟑

𝟐𝟓𝟔𝛑𝟐𝐦𝐰
𝟐 𝐬𝐢𝐧𝟐𝛉𝐰

|𝟕 −
𝟏𝟔

𝟗
+⋯|

𝟐
             (1-43) 

 

Terms within equation’s 1-42 last factor correspond to W, top, etc. loop contributions respec-

tively, while the most predominant one is the W contribution of the initial term. Given the proximity 

of the W mass value to that of the Higgs (≈ 2/3 of mH) and its region in the mass scale, when appro-

priate approximations are applied to equations 1-43 and 1-34, it is derived that the dependence of 

the Higgs resonance width is proportional to mH
2 in both the gluon and photon case, thus making it 

uniform for all bosonic decay modes.  

 

 
 

Figure 1.10: Variation of the total natural Higgs resonance width with respect to its mass. 
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The relative importance of a decay mode is qualified within the standard model by its branching 

ratio (Figure 1.8): 

ß𝒓𝒊 =
𝚪𝒊

𝚪𝒕𝒐𝒕
             (1-44) 

 

where Γi denotes the Higgs decay width to the ith channel. Figure 1.10 presents the dependence of 

the total Higgs width on its mass, varying from 4.2 MeV at 125 GeV to 100 GeV at 500 GeV. The 

125 GeV mass of the discovered boson allows for a narrow total width, far below any achievable 

detector resolution, making experimental performances the most dominant effect in any combined 

Higgs mass or decay width measurement.  

 

 

1.7 Current Status of Higgs measurements 
 

1.7.1 Mass measurement 

 

The final result on the mass of the new boson was published by the ATLAS collaboration in 

July 2014, considering all available Run 1 data. Using a total integrated luminosity of 25 fb-1, im-

proved analysis approaches and better control of systematics, the H→γγ and the H→ZZ*→4l chan-

nels were combined to extract the most precise mass estimation. In the di-photon channel, 475.9 

events are expected following the Standard Model prediction, while for the four lepton final state, 

this number is reduced to 26.5 events. By combining the corresponding measurements, the ATLAS 

measured mass value is estimated at: 

 

mH= 125.36±0.37(stat)±0.18(syst) GeV            (1-45) 
 

where the total uncertainty is dominated by the statistical term [20]. Figure 1.11 presents the ratio 

of the profiled likelihood defined as:  

 

𝜦(𝒎𝑯) =
𝑳(𝒎𝑯,�̂�𝜸𝜸(𝒎𝑯),�̂�𝟒𝒍(𝒎𝑯),�̂�(𝒎𝑯))

𝑳(𝒎𝑯,�̂�𝜸𝜸,�̂�𝟒𝒍,�̂�)
             (1-46) 

 

where mH represents the probed Higgs mass and μγγ – μ4l are the signal strengths for the di-photon 

and four lepton channels respectively, treated as nuisance parameters in the final fit [21]. The pro-

filed likelihood variations in the two individual channels and the combination are profiled as a func-

tion of the mH. The Higgs boson masses estimated with the di-photon and the four-lepton channels 

are compatible within 1.98 sigma (δmH=1.47±0.72 GeV). 

 

 
Figure 1.11: Scans of the negative log likelihood with respect of the Higgs mass for ATLAS experiment in 

each channel and the total combination, in black. Dashed curves show the results accounted for statistical 
uncertainties. 
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A corresponding combination was also published by the CMS experiment evaluating all avail-

able data on the di-photon and the four lepton channels. The two collaborations use diverse detector 

technologies and analogous analyses approaches. A similar combination campaign has been driven 

among the two collaborations to fully exploit the total LHC statistics [22]. Theoretical and model 

uncertainties, which are identical to both experiment, are considered to be completely correlated, 

while uncertainties connected to detector design, specifically the momentum scale and the resolution 

of objects, are unique to each experiment and are considered uncorrelated. Combining all available 

data, the mass of the Higgs boson at LHC is found to be: 

 

mH = 125.09±0.24 GeV  

= 125.09±0.21(stat)±0.11(system) GeV             (1-47) 
 

The impact of each uncertainty category can be assessed by fixing the corresponding nuisance 

parameters to their best fit values increased or decreased by 1 σ, while the rest are being profiled. In 

a breakdown it can be calculated:  

 

mH = 125.09 ± 0.21 (stat.) ± 0.11 (scale) ± 0.02 (other) ± 0.01 (theory) GeV             (1-48) 
 

Although both collaborations have improved the understanding of their detector and its perfor-

mance since Run 1, it is clear that the scale uncertainties dominate the systematic term. 

 
The mass evaluation of the individual channels (H→γγ and H→ZZ) have also been combined 

between the two experiments. Figure 1.12 presents the summary of the individual and combined 

channels. Small tensions are observed between the ATLAS and CMS H→γγ and H→ZZ* masses 

at the level of less than 1.5 sigma. The final mass value is again limited by statistics, while the most 

important systematic uncertainty is related to the energy and momentum precision in both experi-

ments.   

 

 
Figure 1.12: Consistency between different results of the ATLAS and CMS collaborations in the two com-

bined channels for Run 1 data. 

 
1.7.2 Couplings Estimation  

 

Measurement or constraint of the Higgs production and decay modes has been performed by 

both ATLAS and CMS. Main production processes include gluon-gluon fusion, VBF component 

and associated production with mainly top quark. The studied decay channels concern bosonic final 

states (ZZ, WW, γγ) and fermionic ones (bb, ττ, μμ). In the following table significances and limits 
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for each treated mode are presented with corresponding uncertainties from both ATLAS and CMS 

collaborations (Table 1-2). 

 

Channel 
Signal Strength (μ) Signal Significance (σ) 

ATLAS CMS ATLAS CMS 

H→γγ 1.15−0.25
+0.27 1.12−0.23

+0.25 5.0 5.6 

H→ΖΖ*→4l 1.51−0.34
+0.39 1.05−0.27

+0.32 6.6 7.0 

H→WW 1.23−0.21
+0.23 0.91−0.21

+0.24 6.8 4.8 

H→ττ 1.41−0.35
+0.40 0.89−0.28

+0.31 4.4 3.4 

H→bb 0.62−0.36
+0.37 0.81−0.42

+0.45 1.7 2.0 

H→μμ −0.7−3.6
+3.6 0.8−3.5

+3.5  

ttH 1.9−0.7
+0.8 2.9−0.9

+1.0 2.7 3.6 

 
Table 1-2: Measured significances and signal strength for all Higgs primary decay modes by both ATLAS 

and CMS collaborations. 

 

In the hypothesis that the Higgs boson width (predicted to be 4 MeV for the SM) is sufficiently 

small for the narrow width approximation to be valid, production and decay processes can be de-

composed and factorized. Using this factorization, a specific process i→H→f, where i denotes the 

initial state and f the final product, can be described by the product of the production mode cross-

section multiplied by the branching ration of the final state in the following manner (equation 1-49): 

 

σi×BRf= σi× ( Γf / ΓH )            (1-49) 

 

where σi is the cross-section of the production process, BRf the branching ratio of the final state, 

ΓH the total natural width of the Higgs and Γf the Higgs decay width in the probed final state. 

 

Combination of the coupling results from the two collaborations has been performed to increase 

the testing sensitivity of the SM predictions. Because measurement of the yield of a Higgs decay 

channel is not enough to determine the cross-section and the branching ratio independently, various 

methods have been developed in LHC to probe the compatibility of the results with SM expectations. 

To bypass the lack of full information, one of the parameterizations applied in the combination uses 

normalized yields of i→H→f to the gg→H→ZZ rate. This choice is driven by the fact that the 

corresponding cross-section presents the smallest overall uncertainty. Calculating ratios of cross-

sections and branching ratios yields results independent from any theoretical uncertainties on abso-

lute rates.  

 

The observed number of H→ZZ*→4l events are expressed as the product of the gluon-gluon 

fusion Higgs production cross-section multiplied by the ZZ* channel branching ratio (equation1-

50):  

𝜎𝑧𝑧 = 𝜎𝑔𝑔𝐹
𝐻 × 𝐵𝑅𝑍𝑍  

 
⇒ 𝜎𝑔𝑔𝐹

𝐻 =
𝜎𝑧𝑧

𝐵𝑅𝑍𝑍
              (1-50) 

 
Using this definition, the cross-sections of all other processes can be expressed as yields with 

respect to the four lepton channel. For the di-photon case it would be (equation 1-51): 

 

𝜎𝛾𝛾 =
𝜎𝑧𝑧

𝐵𝑅𝑍𝑍
× 𝐵𝑅𝛾𝛾  

 
⇒𝜎𝛾𝛾 =

𝐵𝑅𝛾𝛾

𝐵𝑅𝑍𝑍
 × 𝜎𝑧𝑧             (1-51) 

 

In that way, one can evaluate all cross-sections as yields with respect to the ZZ production 

channel. 

 

Figure 1.13 presents the per-experiment and the combined values of the cross-sections and of 

the branching ratios for various production and decay modes. Each ratio is normalized to the SM 

prediction such as, assuming model validity, all ratios would be unitary. All available Run 1 data (at 

7 and 8 TeV) are included in the fit with the global compatibility hypothesis to SM (ratios ≈ 1) 
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having a p-value of 10-6. In this figure, the most precise measurements are indeed in agreement with 

the SM within less than 2 sigma [23]. The largest deviations are due to the ttH channel (2.3 sigma 

deviation) and to the ZH (excess observed only in CMS data [25]). The smallest ratio is observed in 

the Brbb/BrZZ case. For bb analyses, the proper associated production mode (ZH(→bb)) is studied, 

since it allows an increased rejection of the continuum b-quark QCD background through the use of 

the Z decay leptons. The cross-section in this case is expressed as (equation 1-52): 

 

𝜎𝑏𝑏
𝑍𝐻 = 𝜎𝑍𝐻

𝐻 × 𝐵𝑅𝑏𝑏  
 
⇒ 𝜎𝑏𝑏

𝑍𝐻 = 𝜎𝑍𝐻
𝐻 ×

𝜎𝑧𝑧

𝐵𝑅𝑍𝑍
×
𝐵𝑅𝑏𝑏

𝜎𝑔𝑔𝐹
𝐻  

 
⇒𝜎𝑏𝑏

𝑍𝐻 = 𝜎𝑍𝐻
𝐻 ×

𝐵𝑅𝑏𝑏

𝐵𝑅𝑍𝑍
×

𝜎𝑧𝑧

𝜎𝑔𝑔𝐹
𝐻              (1-52) 

 
The measured cross-section ratio σZH / σZZ is quite significant (close to 3) as shown in the same 

figure. As a result, the branching ratio of bb decay over the ZZ channel branching ratio is found to 

be reduced with respect to SM predictions, in order to keep the measured number of events to the 

observed rate. Search for the H→bb decay by both collaborations yields signals with low signifi-

cances [24, 25], of 1.7 and 2.0 sigma for ATLAS and CMS respectively.  

 

 
 

Figure 1.13: Best fit values for cross-sections, ratios of cross-sections and branching ratios from ATLAS and 
CMS experiments data. The ATLAS and CMS combined values are shown in black. 

 

 

1.8 Conclusions 
 

It is a triviality to emphasize the impressive harvest of results on the Higgs Boson research 

achieved by the LHC experiments using Run 1 data samples. This is however only the beginning of 

the Higgs era, since a lot of information concerning the properties of the new boson is still missing: 

not all not all production modes nor all decay channels have been identified. The jump in energy 

and in luminosity expected at Run 2 will allow to collect a gigantic amount of Higgs data, which 

will be utilized to enrich the available anthology of the boson properties.  

 

During the next phases of the accelerator, the LHC collaboration will be able to examine to an 

unprecedented detail the nature of the Higgs mechanism and to probe the existence of new sectors 

of physics.   
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2 LHC and the ATLAS experiment 
 
2.1 The Large Hadron Collider 

 
The construction of a new accelerator was necessary in order to achieve energies up to several 

TeV. The LHC, whose design began in 1980, was placed at CERN in Geneva, within the preexisting 

LEP tunnel. The accelerator, designed to perform proton collisions at a center of mass energy of 14 

TeV with an instantaneous luminosity of 1034 cm-2s-1, started its operation at 7 TeV in summer 2010. 

Although mainly proton-proton collisions are studied, ion beams are also provided (including Pb) 

with an energy of 2.8 ATEV and maximum instantaneous luminosity of 1027 cm-2s-1. 

 

2.1.1 Structure 

 

The large Hadron Collider is a hadron accelerator, consists of two concentric rings, installed at 

the pre-existing LEP tunnel. Composed of eight straight sections and an equal number of arcs, it is 

placed in a depth between 45 m and 175 m under the surface, in a geologically stable plane of  

1.4 % incline. Two existing beam transport lines of 2.5 km long connect the LHC ring with the 

existing CERN accelerator complex. The initial tunnel geometry was conceived for LEP, where RF 

cavities were installed in the straight sections to compensate synchrotron radiation losses of the 

electron - positron beams, circulating in opposite directions. Since for the LHC the main constraint 

is imposed by the elevated proton mass requiring an increased magnetic field, in contrast the arcs 

have been extended to accommodate for the enlarged beam transport magnets. Experiments are 

placed in four of the tunnel straight sections. Since installation of two separate rings was impossible 

given the limited dimensions of the preexisting structure (3.7 m diameter), a single superconductive 

magnet was used with double boring [1].  

 

 
 
Figure 2.1: Positioning of the four major experiments with respect to LHC ring geometry and structure of the 

accelerator ring. 
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A total of 1232, 15 m long, dipole magnets are installed, capable of maintaining a maximum 

field of 8.33 T at a temperature of 1.9 K, to provide the necessary angular acceleration for transport-

ing the proton beam within the ring circumference. Layout has been optimized to have the minimum 

possible number of transport magnets with the least possible interconnection points [2]. Focalization 

is assured by the 392, 5 – 7 m long, quadruple magnets, while higher order k-pole elements close to 

the interaction points further focalize the beam and limit its transverse dimensions to increase colli-

sion probability during bunch crossing. LHC arc sections, accounting for the majority of the rings 

perimeter, are each comprised of 23 elementary unit cells, corresponding to 106 cells for the entire 

ring. Each lattice unit cell follows the FODO geometry (a magnet structure consisting of alternating 

focusing and defocusing quadruple lenses interleaved with transport elements), composed of a hor-

izontally focusing dipole, three beam transfer dipole magnets and a vertically focusing quadruplet 

followed by the last three beam transfer dipoles [3]. Small straight sections are interleaved between 

the cells for smooth coupling and geometry adaptation to the LEP tunnel. Finally, a dispersion sup-

pressor is located at the intersection point between each straight section and an arc, yielding a total 

of 18 units across the entire ring. Except from adapting the LHC reference orbit to the LEP tunnel 

geometry, their main purpose is to cancel horizontal dispersions from the transition between the 

sections and to match the insertion optics to the periodic lattice of the arc [4].  

 

The two independent beam pipes constitute two separate continuous vacuum systems, present 

over the entire length of the cryostat but segmented at the ends of each arc with a distance of  

194 mm between them. Two distinct power circuits are implemented per arc, one for the focusing 

elements (quadruples) and one for the beam transfer optics. In that way, no coupling is imposed 

between the longitudinal and transverse plane. Cryogenics are segmented by arc, with only one sys-

tem installed per section, used for both transfer lines. 

 

The diagram in Figure 2.1 shows the arrangement of the four LHC experiments with respect 

to the collision point of the accelerator. ATLAS and CMS are general purpose experiments, designed 

to search for the Higgs boson and new physics research. The LHCb experiment is designed to study 

the matter-antimatter asymmetry (CP violation) and rare physical processes in the B mesons decay. 

The aim of the ALICE experiment is to study the quark-gluon plasma during heavy-ion collisions, 

especially lead (Pb) nuclei. 

 

 

2.1.2 Acceleration 

 

The LHC ring is the last piece of the CERN accelerator complex (Figure 2.2). A number of 

injectors and boosters pre-accelerate and adjust beam parameters prior to injection at the main ring. 

An initial 350 mA proton beam is produced by a duoplasmatron source at the beginning of the 

LINAC 2 linear accelerator. The beam is accelerated to 120 MeV and reshaped to 30 nsec pulses of 

180 mA output current before injected to the Proton-Synchrotron Booster (PSB) [5]. There, the pro-

tons are further accelerated to 1.4 GeV prior injection into the PS ring. Within the PS, the beam is 

shaped into 25 ns spaced bunches and reaches an energy of 26 GeV for Run 2 operations, while a 

50 ns bunch spacing was maintained during Run1 [6]. Seventy-two bunches are provided at the 

output forming a so-called bunch - train every 3.6 s and are subsequently injected to the final pre-

acceleration step before the LHC, the Super Proton Synchrotron ring. To correctly synchronize with 

the 200 MHz SPS acceleration cavity, bunches are reshaped to a 4nsec length while maintaining the 

original 25 ns spacing [7]. Before final injection to LHC ring, four trains of 72 bunches are grouped 

and accelerated to 450 GeV. 

 

Once within the LHC tunnel, the beam is directed to one of the two beam pipes where it reaches 

the final target energy of 13 TeV (2015). Acceleration is performed at straight section 4, where 8 

klystrons per beam are responsible for providing the required power.  
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Figure 2.2: Complete CERN accelerator complex structure. 

 

 

2.1.3 Luminosity 

 

In accelerator design the most important factor to account for is the number of generated 

events per second in collisions. For the case of the Higgs, this would be equal to (equation 2.1):  

 

𝑵𝒆𝒗𝒆𝒏𝒕𝒔 = 𝑳𝝈𝑯              (2-1) 
 

where σH is the total Higgs event cross-section and L is the luminosity of the machine which only 

depends on the beam parameters. This corresponds to the number of interactions produced per sec-

ond per area, and for a Gaussian beam distribution can be expressed as (equation 2.2):   

 
2

*4

b b rev

n

N n f
L F



 
              (2-2) 

 

where Nb is the number of particles per bunch 

nb the number of bunches in the tube 

 γ the Lorentz factor 

εn the beam transverse emmitance  

β* the β function on the interaction point  

F the luminosity reduction factor due to the beam crossing angle at the interaction point 

(285mrad) approximately estimated to be 0.9 for the LHC. 
 
To increase event rate and to probe new physics, both high energy and high delivered lumi-

nosity are mandatory. For the two general purpose experiments of LHC, ATLAS and CMS, peak 

values of 1034 cm-2sec-1 are recorded during current operations.  

 
A more convenient estimation of the total number of expected events at a certain period of 

time can be achieved by calculating the time integral of the instantaneous luminosity. At the begin-

ning of each run, a total of 1374 bunches are injected in LHC in trains of 72. As time elapses, the 

number of particles in the beam decreases due to collisions, dispersion effects, scattering and space 
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charge effects. The total beam lifetime is estimated to be around 14 h, while a refill operation (turn-

around time) requires between 1.2 – 7 h. Given the exponential decrease of the number of particles, 

the total luminosity in a run can be calculated by integrating equation 2.2 as (equation 2.3): 

 

𝑳𝒊𝒏𝒕 = 𝑳𝟎𝒕𝑳 (𝟏 − 𝒆
−𝒕𝒓𝒖𝒏

𝒕𝑳
⁄
)             (2-3) 

 
where tL and trun are the beam lifetime and run time respectively while L0 is the initial injected lumi-

nosity. Beam lifetime is affected by different processes in the longitudinal and transverse plane. 

Collisions with residual in the beam tube gas, deliberate beam collisions at the interaction points and 

interactions with the electron cloud, created on the adjacent conductive beam pipe walls following 

packet movement, are the main causes for transverse instabilities. In the longitudinal direction, the 

Tuschek effect, consisting of coulomb scattering of particle within the same bunch and RF non-

linarites reduce beam lifetime. Sudden beam losses have also been observed from fallouts within the 

vacuum tube, mostly conglomerates of particles, referred as UFO (unidentified Falling Objects) [8]. 

If the introduced perturbation in the beam cannot be recovered then a controlled dump is performed. 

Assuming stable operations for 200 days per year and 24 h per day, the total per year integrated 

luminosity can be estimated by equation 2.4, where the run time and the turnaround time (necessary 

period for the beam to restart and reach optimal conditions after the dump) are in the denominator: 

 

𝑳𝒕𝒐𝒕 =
𝟐𝟎𝟎 (𝒅𝒂𝒚𝒔)×𝟐𝟒(𝒉𝒐𝒖𝒓𝒔)

𝒕𝒓𝒖𝒏+𝒕𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅
𝑳𝒊𝒏𝒕             (2-4) 

 

In practice, at the startup of LHC during 2010, only 45.0 pb-1 of integrated luminosity was 

collected while, the value for 2011 was 5.08 fb-1. The bulk of the luminosity was recorded in 2012 

with a value of 21.3 fb-1, accounting for a total Run 1 integrated luminosity of 26.425 fb-1, with 99 

% of the data being used for physics analysis (Figure 2.3) [9]. During LHC Run 1, the collision 

energy was limited to 7 TeV for the first year (2011) and 8 TeV the following (2012), with a bunch 

spacing of 50 ns. This corresponds to twice the design values of 25 ns, foreseen for later runs.  

 

 
 

Figure 2.3: Integrated delivered, measured and physics luminosity for the ATLAS detector during the two 
main years of LHC operation. 

 
2.1.4 Beam Crossing and Pile-Up 

 

To obtain as many collisions as possible at the interaction points, the beams are squeezed to 

very small sizes. The beam squeezing parameter, known as β*, corresponds to a measure of the 

distance from the interaction point at which the beam has twice the size of that at the collision spot. 

The smaller the ß*, the stronger the squeezing and the more increased the interaction probability 
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becomes. β* at the ATLAS point was set at 1m at the beginning of Run 1, whereas latter values were 

largely improved, achieving a value of 0.6 m in 2012, extremely close to the design definition of 

0.55 m. It has to be noted that, in contrast with the strong beam squeezing at the interaction points, 

an average value of 11 m is achieved at the arcs sections of the LHC [10]. Because of the repulsive 

coulomb forces from the space charge effect, the smaller the beam size at the interaction point, the 

faster the rise of the beta function (and thus the beam size) when fending off from it. In practice, the 

aperture of the beam line elements (e.g. focusing magnets) around the interaction point limits how 

small β* can be made. 

 

 
 

Figure 2.4: An ATLAS Z→μμ event candidate with 22 reconstructed primary vertexes from LHC Run 1 at  
7 TeV. 

 

Although a tighter beam at the interaction point and increased instantaneous luminosity favor 

physics data, they are also accompanied by an important downside; in general, more than one colli-

sion-per-bunch crossing can occur, making detector readout and event reconstruction complicated 

(Figure 2.4). When the readout of the detector includes information of more than one primary beam 

interaction, this is referred to as PileUp. These multiple interactions may either occur when several 

protons of the crossing bunches interact together (in-time) or when protons from crossing beams 

interact with remnants of previous collisions or even particles from preceding bunches (off-time). 

 

The average number of interactions per crossing is defined as the μ value. The following figure 

(Figure 2.5) demonstrates the number of interactions during Run 1 where for the 7 TeV period a  

μ ≈ 7 was observed while for the 8 TeV, the average μ was ~ 25 with a maximum value of 70. In 

general, the expected number of per-event reconstructed primary vertexes is estimated to be 44 % 

of the μ value. Since up to ten colliding bunch pairs can contribute to a calorimetric signal because 

of its integration time (~ 600 ns long), challenging pile-up rejection techniques are applied.  

 

 
 

Figure 2.5: Number of interactions per crossing during the 7 and 8TeV beams of Run 1. 

 

 

2.2 The ATLAS Detector 
 

The ATLAS (A Toroidal LHC ApparatuS) detector is a general purpose experiment aiming at 

studying the Standard Model physics precisely. Specifically, this includes finding the Higgs boson, 
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exploring the electroweak symmetry breaking sector and searching for new physics. Constraints 

with respect to the design of the detector are imposed by the strong radiation and the high rate of 

expected events, especially during the second phase of the LHC. Devices and readout systems ca-

pable of copping with an elevated equivalent dose and provide stable operation are required, in ad-

dition to highly segmented detectors. The search for the Higgs boson was very demanding in terms 

of energy and momentum resolution and stability of the detector response. 

 

 
 

Figure 2.6: General geometry of the ATLAS detector. 

 

The total assembly is a cylindrical geometry detector, 46 m in length and 22 m in height, having 

a total weight of 7000 tones. It is the largest experimental setup installed at CERN. Figure 2.6 

demonstrates the various subsystems of the experiment. The inner detector containing the pixel de-

tector, the semiconductor tracker and the transition radiation tracker, is surrounded by a solenoid. 

The electromagnetic liquid argon calorimeter and hadron calorimeter are placed outside, followed 

by the muon spectrometer with a large toroid magnet [11]. 

 
2.2.1 Magnetic System 

 
The ATLAS magnetic system is comprised of the central solenoid, providing the magnetic field 

for the inner detector, the barrel and end-cap toroid with no solid cores, responsible for the magnetic 

field at the muon chambers. The total size of the complete system is 26 m long by 20 m high and is 

the largest component of the ATLAS detector [12].  

 

The central solenoid magnet consists of a single superconductive coil layer wrapped internally 

around a support cylinder. The 5.3 m long structure has an internal radius of 2.3 m and is hosted 

within the cryostat of the liquid argon calorimeter, at the inner side. The superconductive coil is 

organized in flat cables wrapped in a hardened aluminum alloy support and cooled to 4.5 K. The 

maximum magnetic field value is 2 T while it can peak to 2.6 T on the superconductor windings. 

Power requirements are satisfied by an independent 8kA supply unit while refrigeration is assured 

via a Dewars coupled to the refrigerator. 

 

The barrel toroid magnet is situated after the calorimeters and is composed of eight supercon-

ductive coils equally distributed along the periphery of the inner cylindrical structure, running the 

entire length of the detector. The peak magnetic field is 3.9 T with an average value in the order of 

0.5 -1 T. The inner system diameter is 9.4 m and the outer is 20.1 m, with a total length of 25.3 m. 
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Individual coils use a NbTi superconductor housed in aluminum casing to support the induced mag-

netic stress. An outer cryostat is then added which also serves as mechanical support of the complete 

coil. Finally, the eight coils are linked together via a final support structure around the detector center 

(Figure 2.7). Services to the individual coils are provided by a ring-shaped cryostat included in the 

final support structure, directly linked to the powering and refrigerating circuits. 

 

             
 

Figure 2.7: Layout of the complete ATLAS magnetic system Figure 2.8: Schematic view of the end-cap 
with all the support structures removed.  toroid assembly. 

 

The end-cap toroid is equally made of eight toroids placed at either end of the central barrel 

detector and rotated by an angle of 20.5 degrees along the z axis with respect to the central magnet 

assembly. The toroids are assembled radially and symmetrically with respect to the beam axis with 

an inner diameter of 1.65 m and an outer of 10.7 m. Total axial length of each of the two assemblies 

is 5 m and are placed inside each end of the central toroid. The magnetic field value is 4.1 T while 

the same NbTi superconductor is used as for the barrel system [13]. A common cryostat, reinforced 

with perpendicular rods to sustain the magnetic forces, is used for all height coils which serves as 

the vacuum vessel and thermal radiation shield (Figure 2.8). Services are provided through a turret 

at the highest point of the cryostat while powering in each side is independently assured by a serial 

circuit. 

 
2.2.2 Inner Detector 

 

The inner detector is the first element located immediately around the beam tube. It is a tracker 

designed to effectively reconstruct charge, particle momentum and direction with a fine resolution 

over a wide dynamic range. Good resolution vertex is also required to identify the primary and sec-

ondary vertex which appear for instance in the case of B mesons [14]. Housed in a 3.5 m long and 

1.2 m radius cylinder, within the 2 T solenoid magnet, it is composed of three subsystems made with 

different and complementary targets. Each system is composed of a central portion (the barrel) and 

two end-cap regions (one on each side of the barrel), as shown in Figure 2.9. 

 

2.2.2.1  The Pixel detector 

 

The pixel detector provides an accurate measurement of charged particles near the interaction 

point providing an eta coverage of |η| < 2.5 with a transverse momentum (PT) resolution of less than 

30 % for a 500 GeV particle. A 90% track reconstruction efficiency is attained for particles with  

PT ̴ 5 GeV while, in the range of P T ̴ 100 Gev, a transverse momentum resolution (σ[PT]/PT) of 5% 

is achieved for charged particles reconstruction. The pixel detector not only provides an accurate 

position of primary vertex with a 110 μm resolution in the z direction (along the beam axis) and 12 

μm in azimuth (rφ) [15] and is essential for jet flavor tagging and level 2 triggering (Figure 2.10).  

 

Three pixel layers of cylindrical shape are installed in the central region (|η| < 1.37), radially 

symmetrical to the beam axis, at radii of 50.5, 88.5 and 122.5 mm respectively. The inner most pixel 

layer, called the b-physics layer, as well as the second layer extend up to z = 350.4 mm from the 
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center of the detector in both z-directions, while the third layer  extends up to 414.2 mm. Three end-

cap pixel disks are placed at each side at z-distances of 499 mm, 554 mm and 799 mm with respect 

to the detector center. All discs are identical with an inner radius of 115 mm and an outer of 212 mm 

[16]. Total length of the entire detector is 1.6 m, providing a three hit system for particles within  

|η| < 2.5.  

 
 

Figure 2.9 : The ATLAS inner detector with its three distinct stations. 
 

The basic building unit of the pixel detector is a module. A module is comprised of 8 double 

pixel sensor matrixes directly coupled to 16 readout Front End chips (designated FE-I3). Pixel are 

defined as 50 μ × 400 μm rectangular shaped diopdes, with the larger dimension oriented along the 

beam axis. The sensors were fabricated with the n+ technology on an n-substrate, such as after irra-

diation, a type inversion will occur. The introduced defects are primarily of p-type, transforming the 

sensor for n-in-n to p-in-n, while the junction will be moved from the back-side to the front, keeping 

the matrix operational [17]. One sensor matrix consists of 18 × 160 individual pixels interconnected 

to the readout FE using individual bump bonds in a pixel level [15]. The entire assembly of the 8 

double pixel matrixes with the 16 readout chips is then placed at a copper polyamide flex, equipped 

with a multiplexer and control chip. Connection to the FE integrated circuits is assured through wire 

bonds while a moral flex cable is attached at the center of the hybrid board providing services and 

high voltage (Figure 2.11). 

 

                    
 

Figure 2.10: Schematics of the ATLAS pixel detector Figure 2.11: ATLAS pixel module assembly.  
with the central and end cap regions  Pixel sensors are placed between  
 visible and support frames.  the flex and the read-out chips  
   connected to the flex board. 



Chapter 2 LHC and the ATLAS experiment 
 

 39 

All modules of the pixel detector are identical. In the barrel region, they are placed in an over-

lapping arrangement so that the dead regions at the edge of one module overlap with the active 

region of the next, using a slight inclination angle of 14 degrees. A turbofan arrangement is used for 

the end caps, maintaining the same inclination angle in a circular geometry. Approximately a total 

of 80 million pixels are used corresponding to 1744 modules of 10 cm2 surface each and a total of 

46,080 readout channels. End-cap disks account for 13 million pixels using 1,456 modules in the 

three disks of each side. The pixel detector covers a surface of 1.7 m2 and is maintained at a constant 

temperature of -15 0C by evaporative C3F8 based bi-phase cooling, to reduce excessive leakage cur-

rent caused by the irradiation, while 15 kW powering is provided [17]. 

 

2.2.2.2  The SemiConductor Tracker (SCT) 

 

The ATLAS SemiConductor Tracker (SCT) is located after the pixel detector. It is composed 

of silicon strip sensors arranged in eight layers in the central region, which produce up to four spe-

cific points in 2-D space by charged particles. The end-cap assembly is composed of eighteen discs, 

with silicon strips extending radially at a distance varying from 80 to 280 cm from the interaction 

point (z = 0). Each module consists of two slightly inclined detectors at 40 mrad for measuring the 

z position. In total 4088 modules are used, representing a surface are of 63 m2 for the SCT with 

approximately 6.3 million readout channels.  

 

The strip tracker occupies the radial region extending from 30 to 52 cm around the beam pipe 

and extends to a total length of 2.7 m in each side of the central point along the z-axis, providing the 

same eta coverage as the pixel detector. The design requirements include a strip efficiency greater 

than 99 % and an occupancy of less than 5 × 10-4 per read out [18]. With a resolution of 580 μm in 

the z direction and 17 μm in the azimuthal (rφ) plane, it complements trajectory information pro-

vided by the inner pixel layers. An evaporative cooling system [19] of C3F8 is used with a normal 

operating point of -25 oC, while temperatures at the silicon surface are in the order of -2 oC.  

 

2.2.2.3  The Transition Radiation Tracker (TRT) 

 

The ATLAS Transition Radiation Tracker (TRT) is the final element of the inner detector and 

is placed after the SCT at a radial distance between 0.75 cm < r < 202 cm from the interaction point 

and a total length of 6.8 m [20]. Its goal is to provide continuous tracking up to high distances from 

the interaction point, enhancing particle identification through transition radiation effect and to offer 

fast information to the level 2 trigger system. It is a drift tube system consisting of 370 thousand 

cylindrical, 4mm diameter tubes that run along the entire length of the barrel region. It is also used 

to discriminate the electron from heavier charged particles, such as π±. Each tube is made of kapton 

with an internal conductive coating, while a 30 μm diameter gold plated tungsten wire runs along 

the center of the structure. The outer region is kept in a negative high voltage active as a cathode 

and a mixture of 70 % xenon, 20 % methane and 10 % CO2 is used as ionization gas. After the 

ionization of the gas by the passage of a charged particle, electrons are collected via the central wire 

at both ends of the tube providing timing information. 

 

Tubes are interleaved with layers of radiators (polypropylene foils or fibers) [21]. The central 

portion consists of three layers of straw-tubes, 150 cm long, while the two end-caps are made of the 

eighteen wheels containing straw-tubes of lengths from 39 to 55 cm, radially oriented. TRT coverage 

allows trajectory reconstruction of up to |η| ~ 2.1, while a total of 351,000 readout channels are used. 

 
2.2.3 Calorimeters 

 

The role of a calorimeter in a generic particle physics detector is the energy measurement of 

the particles. Depending on their design, calorimeters can also provide information on the direction 

of the particles and can contribute on missing transverse energy measurement. Because of the high 

expected occupancy, fine segmentation and increased granularity are required in both the time and 
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spatial dimensions. Constraints are also imposed with respect to radiation hardness as well as pile-

up robustness, especially in a high-frequency collision environment. 

 

The ATLAS electromagnetic calorimeter (EM), located after the inner detector, is used to 

measure energy of photons and electrons in a wide dynamic range of energy (several MeV to 2 - 3 

TeV). The hadron calorimeter, which follows the EM Calorimneter, measures the energy and direc-

tion of jets from quarks and gluons. Both calorimeters are separated in a central region covering  

|η| < 1.5, and two end-caps corresponding to the region of pseudorapidity ranging from |η| > 1.5 to 

|η| < 3.2. Finally, dedicated calorimeters are used in the forward (3.1 ≤ |η| ≤ 4.9) regions to ensure 

complete calorimetric coverage up to |η| < 5 (Figure 2.12). 

 

 
 

Figure 2.12: Structure of the ATLAS calorimeter with the different calorimetric stations. 

 
2.2.3.1 Liquid Argon Electromagnetic Calorimeter (LAr) 

 
The ATLAS electromagnetic calorimeter is a sampling calorimeter, consisting of alternating 

lead absorbers with liquid argon (LAr). An electrode is placed in the space between the two absorb-

ers to collect the ionization signal. Absorbers are accordion shaped, following the detector radius to 

ensure hermiticity of the calorimeter. The detector consists of two parts, a central barrel region and 

two end-caps, using different cryostats to ensure a stable LAr temperature of 88.5 K. The barrel 

portion (|η| < 1.37) consists of two symmetrical pieces in the z-direction, having an inner radius  

Rin = 1.15 m and outer Rout = 2.25 m respectively. Each half-cylinder of the barrel portion consists 

of 16 azimuth modules (size 2π / 16), containing 64 absorbers of 3.2 m in length (Figure 2.13). The 

end-caps are wheel-shaped, 63 cm thick assemblies, covering a rapidity area of 1.475 <|η|<3.2 with 

an inner and outer radii of Rin = 30 cm and Rout = 2.1 m respectively. Each wheel is in fact composed 

of an inner and an outer section, perpendicularly divided into η = 2.5 with a gap size, d, between the 

electrodes varying from d = 2.2 mm to d = 1.7 mm, respectively [22]. 

 

This two part architecture introduces a discontinuity at the calorimeter at |η| = 1.5, where the 

barrel meets the two end-caps. In the central region, particles having a high incident eta value are 

confronted with a higher material budget. In order to compensate this effect, thinner absorbers were 

used in |η| > 0.8 regions. 

 

Particle identification is possible by studying shower characteristics, lateral dimensions and 

longitudinal dimensions and isolation. To allow for a precise particle identification, in the radial 

direction, the calorimeter is divided into four regions (Figure 2.14): 
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1. The pre-sampler, placed in front of the calorimetric volume, corrects for energy losses while 

traversing passive materials situated before the calorimeter, such as cryostats, or structural 

components. It is independent of other detector sections, covers a region up to |η| < 1.8 and 

has a coarse granularity. 

2. The finely segmented first sampling region allows for the separation of close showers, as in 

the case of two photons originating from a π0 decay. In this way, an efficient photon – π0 

separation is achieved. 

3. The second layer has a much coarser segmentation and covers the biggest part of the calo-

rimeter’s radial volume. It is in this layer that electromagnetic particles deposit most of their 

energy. 

4. The fourth layer allows to estimate the energy loss at the end of the electromagnetic shower. 

 

           
 

Figure 2.13: Electromagnetic calorimeter module. Figure 2.14: Granularity and depth of the 
three sampling regions. 

 

Layer segmentation varies with respect to the η position of each cell as shown in (Table 2-1). 

 

The Energy resolution of the calorimeter can be expressed as (equation 2.5):  

 
𝜟𝑬

𝑬
=

𝜶

√𝜠
⊕

𝒃

𝑬
⊕𝒄             (2-5) 

 
where α is the sampling or stochastic term, connected to the calorimeter structure. It originates from 

fluctuations of the physical processes involved in the charge generation of the deposited 

energy in the calorimeter and of the shower development. In the Liquid Argon Calorimeter 

of ATLAS, the sampling term is ~ 10% while, its dimensions are expressed in √GeV. 

b is the energy independent noise term, taking into account electronic treatment noise as well 

as pile-up effects. It can be estimated at 0.3 GeV. 

c represents the constant term taking into account the global non-uniformity of the detector 

as well as short distance inhomogeneity effects. It was measured at 0.007 and becomes the 

dominant term in high energy conditions (> 100 GeV). 

 

An angular resolution of 50 - 60 mrad/√E (GeV) can be obtained by taking advantage of the 

high granularity of the different layers, while optimal time resolution in the electromagnetic calo-

rimeter is in the order of 100 ps. In the end-cap region (3.1 < |η| < 4) the Forward Calorimeter is 

installed (FCal), consisting of cylindrical copper electrodes oriented in parallel with the beam axis, 

while a 250 μm spacing is implemented. Liquid argon is introduced within the electrode gaps which 

is subsequently ionized by conversion photons. Generated primary electrons drift towards the 

readout electrodes at the outer end of the cylinder where the signal is collected. 
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Calorimeter 

region 

|η| region 

0 < |η| < 1.8 1.8 < |η| < 2.0 2.0 < |η| < 2.5 2.5 < |η| < 3.2 

Pre-sampler 0.025 × 0.1  

1st Layer 0.0031 × 0.1 0.004 × 0.1 0.006 × 0.1 0.1 × 0.1 

2nd Layer 0.025 × 0.025 0.1 × 0.1 

3rd Layer 0.050 × 0.025  

 
Table 2-1: η × φ granularity of the various compartments of the electromagnetic calorimeter. 

 

The current generated by a particle in the calorimeter is translated to energy following test beam 

studies and signal pulse calibrations. An initial adjustment of the energy scale was performed at the 

beginning of Run 1, based on test beam results. The final energy scale is set by investigating the 

position of the reconstructed Z mass peak using Z→e+e- decays. During Run 1, a huge work has 

been driven to control the energy scale and the related systematics to an unprecedented level [23]. 

This work allowed the achievement of a calibration accurate to 0.05 % in most of the detector ac-

ceptance, rising to 0.2 % in regions with large amounts of passive material above 500 GeV (Figure 

2.15). In parallel, the amount of material budget in the front region of the calorimeter was precisely 

defined and consequently detector simulation was updated. Figure 2.15 presents the data-MC com-

parison of Z mass reconstructed in e+e- decays, after applying the calibration constants.   

 

 
 

Figure 2.15: Top: electron pair invariant mass distribution for Z→ ee decays in data and improved simula-
tion. Energy scale corrections are applied to the data. The improved simulation is shown before and after 

energy resolution corrections, and is normalized to the number of events in data. Bottom: ratio of the data 
and uncorrected MC distributions to the corrected MC distribution with the calibration uncertainty band 

[22]. 

 

2.2.3.2 Tile hadronic Calorimeter 

 

The hadronic calorimeter (Figure 2.16) is situated outside and around the Liquid Argon Elec-

tromagnetic Calorimeter. The detector is divided into three distinct sections using different technol-

ogies. The barrel section, which covers the central part (|η| < 1.6) and consists of three interlocking 

cylindrical pieces, one covering the rapidity region of |η| < 0.7 and two on the extremities for the 

regions of 0.8 < |η| < 1.6, uses an alternation of steel absorber with scintillating fibers. The Hadronic 

End Cap calorimeter (HEC), covering the regions of 0.5 < |η| < 3.2, uses liquid argon alternating 

with cooper absorbers for increased radiation hardness. Finally, for the last section, the Forward 

Calorimeter (FCal) covering 3.1 < |η| < 4.9, a similar technology as in the electromagnetic end-cap 

calorimeter is used with tungsten as the absorbing medium alternated with liquid argon [24]. The 
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hadronic calorimeter measures jet energy and is responsible for the identification of gluon and quark 

experimental signatures. 

 

The barrel part is a sampling calorimeter composed of steel absorber interchanged with scintil-

lating tile modules as an active medium. Scintillating photons are extracted at each extremity of the 

module using wavelength shifting optical fibers (Figure 2.17). Photomultiplier response time is in 

the order of 23.5 nsec, which allows precise identification of the collision from which the observed 

hadrons originate. Beam tests associating hadronic and electromagnetic calorimeter demonstrated 

that pion energy resolution can be parameterized by the same equation used for the electromagnetic 

energy resolution (equation 2-5), with a sampling term of (52.0±1.0) %, a noise term of  

1.6 GeV±0.1 % and a constant term of about (3.0±0.1) %. 

 

The end-cap region calorimeter (HEC) is a sampling liquid argon and copper calorimeter over 

the range of 1.5 < |η| < 3.2. The HEC is comprised of an inner wheel made of 25 copper absorbers 

25 mm thick, separated by a liquid argon gap of 8.5 mm, and an outer wheel, made up of 17 copper 

absorbers doubling the gap between them. The corresponding sampling term was identified by beam 

tests to be 56 % while the constant term is in the order of 2 %. 

 

Small angle Calorimeters or Forward Calorimeters (FCALs) are relatively far from the inter-

action point (4.7 m) and cover a wide rapidity range 3.1 < |η| < 4.9. They are composed of three 

different modules, commonly using liquid argon as active material while absorbers and electrode 

spacing differ for each module between tungsten and copper. Combined beam test of the hadronic 

and electromagnetic forward calorimeters determined the sampling term at (94.2±1.6) % and the 

constant part at (7.5±0.4) %. 

 

            
 

Figure 2.16: Structure of the central region of the ATLAS  Figure 2.17: Structure of a single tile module  
hadronic calorimeter.   of the central region. 

 
2.2.4 Muon Spectrometer 

 

The muon chambers (Figure 2.18) and the superconducting coils constitute the outer part of 

the ATLAS detector and contribute to its impressive size. The spectrometer was constructed with 

the aim of producing an accurate measurement of muon momentum in a wide dynamic range. Muon 

trajectories are curved while crossing the 2 T toroid magnetic field delivered by the outer coils while 

traversing the detectors. The system’s geometry includes a cylinder at the central part and two end-

caps for the forward regions while two types of chambers are used: precision chambers optimized 

for accurate position resolution and trigger chambers for fast event triggering. 

 

Precision chambers are placed between the eight toroid magnet rings in the barrel and behind 

the two magnet end-caps. They allow a precise determination of muon momentum by measuring the 
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curvature of the corresponding track inside the magnetic field. In the central region, chambers are 

radially installed in two layers of inner radius r = 5.75 m and 10 m with respect to the beam axis 

while, two wheels are used for the end caps, placed at 7 m and 22 m from the interaction point in 

each side. Each muon chamber is divided into two areas with overlapping lateral extensions used for 

relative alignment of adjacent sectors and dead space minimization. In order to account for the large 

rate variation with respect to η position, two kinds of detectors are used. Monitored Drift Tubes are 

used in the central region, where low rates are expected, orientated orthogonally to the magnetic 

lines. At the forward region, 2.0 < |η| < 2.7, Cathode Strip Chambers (CSC) are installed, which are 

multi-wire proportional chambers with segmented cathodes, allowing position determination. 

 

 
 

Figure 2.18: Structure of the ATLAS muon spectrometer. 

 

For |η| < 1.4, trajectory deviation is achieved by the central toroid, in the 1.6 < |η| < 2.7 region, 

the end-cap toroids provide the required magnetic field while, for the intermediate region of  

1.4 < |η| < 1.6, combination of the two fields create a more complex geometry. Triggering chambers 

have to be capable of discriminating rapidly on muon transverse momentum, measure non-curved 

quantities in conjunction with Muon Drift Tube (MDT) detector information and be resistive with 

respect to the random flux of neutrons and photons in the cavern. In the high pseudorapidity region 

1.05 < |η| < 2.4 Thin Gap Chambers are used while for the central region Resistive Plate chambers 

have been installed.  
 

Muon momentum resolution in the ATLAS detector heavily depends on the incoming particles’ 

η, φ and transverse momentum [25]. When using information provided only from the muon spec-

trometer, the PT dependence of the muon momentum resolution can be parameterized to a good ap-

proximation as the quadratic sum of three terms in the following way (equation 2-6): 

 
𝜎𝑆𝐴(𝑃𝑇)

𝑃𝑇
= 𝑎𝑀𝑆(𝜂, 𝜑) ⊕ 𝑏𝑀𝑆(𝜂, 𝜑) ∙ 𝑃𝑇⊕

𝑐(𝜂,𝜑)

𝑃𝑇
              (2-6) 

 

The first term parameterizes multiple scattering effects, whilst the second the Muon Spectrom-

eter intrinsic momentum resolution. The final term corresponds to the effect of muon energy loss 

fluctuations in the calorimeters. This final contribution is small for the momentum range of interest 

and the corresponding term is fixed by MC simulation.  
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In order to evaluate high energy muon momentum resolution, a special dataset was used with 

no toroidal magnetic field in the muon spectrometer region. In that way, the low curvature of ener-

getic tracks was emulated to estimate a bMS(η, φ)  value of∼ 0.2 TeV−1 in the barrel and the MDT 

end-cap region (excluding the transition region) and ∼ 0.4 TeV−1 in the CSC end-cap region. The 

estimated accuracy was in the order of 10 %, while the special dataset allowed for an improved 

alignment of the muon chambers, leading to a final values of bMS(η, φ) ≤ 0.2 TeV−1 for all regions 

in 2011 [26].  

. 

The dimuon invariant mass resolution from Z →µ+µ− decays as a function of pseudorapidity 

intervals is presented in Figure 2-19 middle. Both muons are required to be within the same interval, 

while the resolution corresponds to the width of the Gaussian, which when convoluted with genera-

tor level dimuon invariant mass distribution, reproduces the invariant mass distribution observed in 

data. Due to the form of the toroidal magnetic field the resulting resolution of the di-muon mass is 

expected to be independent of the η of the decay muons. Exceptions are observed in the magnet 

transition region (1.05 < |η| < 1.7), where the field is highly non-uniform [25], as well as in the region 

1.05 < |η| < 1.3 where several chambers are not installed. This translates to a measurement relying 

in only two layers of chambers, explaining for the observed degradation.  

 

Figure 2-19 middle also demonstrates that Muon Spectrometer derived dimuon invariant mass 

resolution is consistently worse in data than in simulation (typically between 30% and 50%, depend-

ing on η region). Two sources for this effect can be identified.  

 

1. Asymmetry of the magnetic field: in the MC simulation, a perfectly aligned detector is 

assumed. In reality, the two end-cap toroid systems are not symmetric with respect to the 

plane orthogonal to the major axis of the ID, and situated at the center of the detector. This 

small asymmetry translates into an asymmetry of the magnetic field integrals, in particular 

in the transition regions.  

2. Residual misalignment of the muon chambers: even after the MS alignment procedures are 

applied, residual misalignments remain, which limit the attainable momentum resolution.  

 

An alternative for muon momentum measurement is the use of information provided by the 

inner detector. Contrary to the Muon Spectrometer case, the relative momentum resolution can be 

parameterized as the quadratic sum of two terms [27], one corresponding to multiple scattering ef-

fects and a secondary describing the intrinsic resolution of the detector (equations 2-7 and 2-8): 

 
𝜎𝐼𝐷(𝑃𝑇)

𝑃𝑇
= 𝑎𝐼𝐷(𝜂)⊕ 𝑏𝐼𝐷(𝜂) ∙ 𝑃𝑇    for 0 < |η| < 2.0             (2-7) 

 
𝜎𝐼𝐷(𝑃𝑇)

𝑃𝑇
= 𝑎𝐼𝐷(𝜂)⊕

𝑏𝐼𝐷(𝜂)∙𝑃𝑇

tan2(𝜃)
    for 0 < |η| < 2.             (2-8) 

 

Intrinsic resolution effects are mainly due to the imperfect knowledge of the magnetic field in 

the Inner Detector as well as due to misalignment and resolution of individual detector components. 

For the region of |η| > 2.0, the best parameterization of the second term is given by bID(η)·PT/tan2(θ), 

while measurements of the material distribution in the Inner Detector contain aID(η) parameter to 

values that agree with MC simulation to within 5% in the barrel and 10% in the end-caps. [28, 29]. 

 

The Inner Detector dimuon invariant mass resolution (Figure 2.19 left) is best in the barrel, 

where it is about 2 GeV, is better than 3 GeV for |η| < 2.0 and degrades to about 6 GeV for 2.0 < |η| 

< 2.5. The degradation of the mass resolution with increasing |η| is primarily caused by a lower field 

integral per track in that region. The fact that the di-muon invariant mass resolution measured in 

experimental data is worse than predicted (typically by about 30 %), is attributed to residual in ther-

mal misalignments of the ID.  
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A third option is the combination of both Inner Detector and Muon Spectrometer information 

for a more accurate measurement. The resulting di-muon invariant mass resolution obtained profits 

from the complementary momentum measurements of the ID and MS. An invariant mass resolution 

between 1.4 GeV and 2.5 GeV is achieved, with little η dependence (Figure 2.19 right). 

 

 
 

Figure 2.19: Dimuon invariant mass (mµµ) resolutions for Z → µ+µ− decays in the data and in the MC as a 
function of η region with both decay muons in the same η region, using information from inner detector 

only (left hand), Muon Spectrometer only (center) and combining both (right). Simulations assumes a per-
fect t alignment of the ATLAS detector. 

 
 
2.3 Event Trigger and reconstruction 

 
In normal LHC conditions, a 40 MHz collision rate is maintained with 25 nsec spacing, ac-

counting for 109 events per second. Only a very small fraction of occurring events are of interest in 

the rare physics searches and in studies of properties of existing particles. Given the total amount of 

available channels (108 for the inner detector, 105 for the calorimeters and 106 for the muon cham-

bers) it is practically impossible to extract all available data from the detector at a 25 nsec rate. Signal 

propagations around the detector alone would require several microseconds and an efficient reduc-

tion scheme is necessary. The trigger system is in charge of reducing the produced data rate to man-

ageable quantities while maintaining events with interesting information for physics analysis. Once 

an event has been stored, information from different detector subsystems are combined to form a 

complete picture, a snapshot of the event. The energy, trajectory and momentum of each particle is 

calculated and traced back to its vertex of origin. Off-line reconstruction algorithms use events saved 

after satisfying trigger requirements to provide useful physical quantities and identify particles that 

can be used from the various physics analyses.  

 

2.3.1 Event Triggering 

 
The ATLAS trigger system is a three stage implementation, using custom electronics to select 

events (snapshots of the detector) for final recording at a rate of approximately 300 Hz [30]. The 

first stage, Level 1 (L1) trigger, reduces the 40 MHz initial rate to less than 75 kHz. Signals from 

subsections of the calorimeter and the muon chambers are primarily used while event information 

is stored in pipelines pending the L1 trigger decision. When an event is accepted by L1, data on the 

detector are transferred to dedicated read-out buffers and are made available to the High Level Trig-

ger processing farms for further analysis. The Layer 2 (L2) trigger is based on fast custom algorithms 

which focuses on processing partial event data within a Region of Interest (RoI) provided by the 

initial L1 decision. L2 achieves a final rate of 3 kHz with 40 ms/events processing time. The final 

trigger stage is mostly based on off-line algorithms using advanced calibrations to reconstruct data 

with an increased precision with respect to L2. The final output rate is ~ 200 Hz with a 4 s/event 

processing time. 
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The Level 1 trigger decision is formed by the Central Trigger Processor (CTP), receiving data 

from the calorimetric regions referred to as trigger towers, the muon chambers and several other 

subsystems like the forward detectors, the fast Cherenkov detectors and scintillators. A total of 160 

inputs are considered by the CTP which forms 256 distinct trigger decisions. After an individual 

pre-scaling of each of the obtained results, if one is accepted, a single bit is issued and distributed 

across all detector systems. Meanwhile, a dead time is introduced by the CTP by vetoing subsequent 

triggers, for overflow protection of the event buffer, until the data are cleared and transferred to the 

Level 2 processing farms. For most of the events a simple dead time of 125 nsec was set following 

a Level 1 trigger while a most complex dead time allowing 8 triggers in 80 μsec: This amount is 

adjusted using rate calculations prior to any triggering while individual electronic systems may also 

send busy flags to the CTP [31]. 

 

 
 

Figure 2.20: A calorimetric trigger tower with the region of interest in the electromagnetic and hadronic 
part.  

 

Calorimetric towers (Figure 2.20) are analog sums of specific calorimeter cells in a Δη × Δφ = 

0.1 × 0.1 region which are subsequently digitized and sent to the CTP [32]. The algorithms are 

looking for a specific set of energy deposit clusters which are higher than the set threshold. For 

electron and photon triggering, electromagnetic clusters are formed by the L1 trigger by summing 

trigger towers in a 2 × 2 region at the electromagnetic calorimeter (equivalent to Δη × Δφ = 0.2 × 
0.2). The clusters’ transverse energy (ET) is calculated and compared to a programmable threshold 

while additional requirements are applied for lateral and longitudinal isolation. In a similar manner, 

tower clusters are constructed, combining information from the electromagnetic and hadronic sec-

tions in a 2 × 2 region. These can use a 4x4, 6x6 or 8x8 window in the |η| < 3.2, while for the forward 

part more options are available. In order to remove fake signals and to optimize noise rejection, 

trigger towers are calibrated to 1.2 GeV minimum ET threshold, while timing has been synchronized 

to the global LHC clock with a 2 ns precision. 
 

The High Level Trigger (HLT) corresponds to layer two and three of the trigger system and is 

composed of farms of commodity processors running specialized algorithms at 2.4 Ghz. Upon a 

favorable trigger one decision, data are transferred to dedicated detector readout buffers pending the 

Level 2 outcome. Level 2 algorithms only transfer data from the buffers corresponding to the detec-

tor elements within the region of interest provided by Level 1 trigger [33]. Only 2 – 6 % of the event 

data are used at a level two decision. The L2 provides a sufficient event rejection to reduce the rate 

to 3 kHz at 40 ms/event processing time. Upon a positive L2 decision, the event builder, assembles 

data from all readout buffers and provides them to the final trigger level. This will further reduce the 
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rate to 200 Hz with an average processing time of 0.4 s/event and an event size of 1.2 Mb. Final 

output rate is limited by the storing speed of off-line commuter resources. 

 

2.3.2 Electron - Photon reconstruction and identification 

 
Analog calorimetric signals from individual cells are initially digitized and preprocessed to 

calculate deposited energy, while noise and PileUp filtering is applied. Computed energies are sub-

sequently corrected for localized defects and forwarded to the reconstruction algorithm. The initial 

step of the reconstruction is the formation of cell clusters using the sliding window algorithm. For 

both electromagnetic and combined objects (objects including information on the hadronic and elec-

tromagnetic calorimeter), the calorimeter surface in the η x φ space is divided into elementary cells 

of Δη × Δφ dimensions [34]. While φ boundaries are the same for combined and electromagnetic 

objects and include the entire detector, |η| coverage is limited to 2.5 for EM objects and extended up 

to 5 for combined. Inside a single element, the energy of all longitudinal calorimetric cells is summed 

to what is defined as the tower energy. In case a cell is considered in more than one of the elementary 

Δη × Δφ regions, its energy is divided with respect to the cell area that covers each element.  

 

Once the towers have been defined, a window of fixed dimensions containing five elementary 

cells in each direction, is seeded across the entire η × φ grid. If the transverse energy of the towers 

within the window exceeds a certain threshold or a local maximum is observed, an initial cluster is 

formed. To calculate the position of this pre-cluster, the energy barycenter of the η × φ cells enclosed 

within a smaller window (3 × 3 cells in each direction) around the maxima is calculated. This smaller 

window used for position determination makes the procedure less sensitive to noise fluctuations. 

Once the initial position has been defined, cells are assigned to this pre-cluster by considering all 

elements within the window dimensions in the different layers of the calorimeter. Since layer seg-

mentation is different in each layer, the central position is recalculated for the strips layer, the pre-

sampler and the back of the calorimeter [35]. The total size of the cluster is optimized in order to 

include enough cells to account for the entire energy of the particle while reducing the number of 

noise. Electrons in the barrel have a longitudinally more extensive expansion with respect to pho-

tons. 

 

 
 

Figure 2.21: Measured reconstruction efficiencies as a function of η for 15 GeV < ET < 50 GeV for the 2011 
(triangles) and the 2012 (circles) datasets. 

 
Electron candidates are reconstructed by combining information from the calorimetric clusters 

and the inner detector [36]. A suitable object is required to have a track with PT>0.5GeV in the inner 

detector, situated within a Δη × Δφ window of 0.05 × 0.10 with respect to the center of the corre-

sponding cluster [37]. Selected candidates are subsequently submitted to an identification process to 

ensure uniform efficiency and rejection of background electrons from photon conversions and fake 
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QCD jets. For |η| > 2.5, where no tracker is implemented, a different identification process is used. 

The introduction of the Gaussian filter Sum algorithm in 2012, widening the area used to seek the 

track of the electrons, accounts for deflections due to multiple scattering and Bremsstrahlung which 

can significantly alter the curvature of the track within the magnetic field in the case of high radiative 

losses. Combined with an improved track pairing algorithm, this allowed for a significant increase 

of electron reconstruction efficiency with respect to 2011, especially at low ET (Figure 2.21). After 

reconstruction, the resulting collection of electron candidates is highly polluted by jets. A series of 

identification criteria, based on shower dimensions in the calorimeter and track quality, are applied, 

offering various levels of electron efficiency and background rejection. In 2012 a likelihood method 

has been also used in parallel with cut-based criteria. The following figures present obtained effi-

ciencies for the various identifications of the cut based (Figure 2.22) and two likelihood (Figure 

2.23) menus with respect to electron ET.  

 

 
 

Figure 2.22: Measured identification efficiencies as a  Figure 2.23: Measured identification efficie-  
function of ET integrated over the full pseudo-  ncies as a function of ET integrated  
rapidity range for various cut based electron  over the full pseudorapidity range  
identification menus. Empty markers repre-  for various likelihood based menus-  
sent MC data while data are plotted as solid  Empty markers represent MC data 
points.  while actual data are plotted as  
  solid points. 

 

Photon candidates are reconstructed from the final clusters if there is no matching inner detector 

track to the cluster barycenter or if a matching electron track from photon conversion is found. At a 

momentum region over 1 GeV, photon conversion is possible by interaction with detector material. 

The process yield can be considered independent of the original photon energy. Because of the 

asymmetric differential cross-section with respect to the energy ratios of the photon vs. electron and 

photon vs. proton, one of the two products in some fraction of the conversions will be produced with 

extremely low energy. If this is lower than the ATLAS electron reconstruction threshold, then the 

converted photon will be seen to have only one track (single conversion) [38]. The effect becomes 

important at low energies, as the proportion of conversion asymmetric enough to cause the loss of 

one product increases with decrease of the photon energy. Photon correction for conversion effects 

is necessary for high mass di-photon analyses searches, such as the Higgs and graviton channels. 

High identification efficiency on conversion electron candidates can be achieved if the conversion 

radius is greater than 800 mm while single conversion can also be accounted for by considering 

single tracks at the TRT without any pixel hits. The photon reconstruction efficiency for unconverted 

photons is at 60 % at the ET < 20 GeV range and quickly increases to the optimal 96% after the  

40 GeV transverse energy value (Figure 2.24) in all η regions. For converted photons (Figure 2.25), 
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reconstruction efficiency is reduced by 10 % at the lower ET channels because of the single conver-

sion effects, but reaches a higher value with respect to unconverted photons at increased energy 

since both converted electrons have high enough energies to be reconstructed. 

 

A fraction of converted photons are also reconstructed as electrons. Approximately 2.1 % of 

electrons with ET > 20 GeV are reconstructed as photons while 10.1 % of the reconstructed ones are 

ambiguous and are also considered as photons [39].  

 

 
 

Figure 2.24: Combination of the data-driven measurements of εID for unconverted photons in the transverse 
energy range 10 GeV < ET < 500 GeV. The εID curves are shown in four different η regions. The error bars 

show the statistical and systematic uncertainties from the combination of the measurements in the overlap-
ping ET regions. 

 

 
 

Figure 2.25: Combination of the data-driven measurements of εID for converted photons in the transverse 
energy range 10 GeV < ET < 500 GeV. The εID curves are shown in four different η regions. The error bars 
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show the statistical and systematic uncertainties from the combination of the measurements in the overlap-
ping ET regions. 

2.3.3 Muon reconstruction and identification 

 

Muon candidates are reconstructed by associating an inner detector track with one built by the 

muon spectrometer. Four different types of muons are available to analyses:  

 

1. Stand-Alone (SA) muons, reconstructed exclusively from tracks recorded by the muon 

spectrometer. Final particle parameters are obtained by track extrapolation to the inter-

action point taking into account diffusion effects and energy losses in the intermediate 

material. 

2. Segment-Tagged (ST) muons, where a track from the inner detector can be associated 

to a partial track at the muon spectrometer. Track parameters in this case are provided 

exclusively by the inner detector. 

3. ComBined (CB) muons require a complete track in the muon spectrometer extrapolated 

to a full trace of the inner detector. Vertex and directional information are acquired 

from the tracker. Combined muons provide the most accurate information. 

4. Calo-Tagged (CT) muons, are reconstructed by matching an inner detector track with 

an energy deposit in the calorimeter corresponding to a minimum ionizing particle. 

Calo-Tagged muons are used in the region of |η| < 0.1 where the magnetic spectrometer 

is not instrumented. The identification algorithm is optimized for muon with  

PT > 15 GeV 

 

While CB reconstruction ensures highest purity of identified muons, the other three are often 

used to maximize the acceptance [40]. A high reconstruction efficiency of > 97 % is achieved for 

all muon types while, a slight decrease is observed in the central region |η| < 0.1, where only the 

CaloTag reconstruction is available, achieving a yield of ~ 95 % (Figure 2.26). 

 

 
Figure 2.26: Muon reconstruction efficiency as a function of η, measured using Z→μμ events for different 
muon reconstruction types. CaloTagged muons are only included in the region |η| < 0.1, where they are 

used in physics analyses. The error bars shown for the efficiencies represent the statistical uncertainty. The 
panel at the bottom shows the ratio between the measured and predicted efficiencies. The error bars show 

statistical and systematic uncertainties added in quadrature. 

 

2.3.4 Jet reconstruction and b-jet identification 

 

In ATLAS the AntiKT algorithm [41] is used to reconstruct jets within two different cone sizes, 

R = 0.4 and R = 0.6. The algorithm associates all objects around a proto-cluster, computing the 

distances dij (equation 2-9) between two particles or pseudo-jets i and j and the distance of the entry 

i from the beam (B), diB (equation 2-10): 
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𝒅𝒊𝒋 = 𝐦𝐢𝐧 (𝒑𝑻
𝟐
𝒊
, 𝒑𝑻
𝟐
𝒋
)
𝜟𝒊𝒋
𝟐

𝑹𝟐
             (2-9) 

 

𝒅𝒊𝑩 =
𝟏

𝒑𝑻
𝟐
𝒊

             (2-10) 

 
where ∆ij

2 = (yi−yj)2+ (φi−φj)2 while PTi, yi and φi are respectively the transverse momentum, rapidity 

and azimuth of particle i. For each i, j particle pair, a comparison between dij and diB is performed. 

If dij is smaller, then i and j are combined to a single object whereas in the opposite case, i will be 

considered as a new jet. The algorithm proceeds in building up the energy of the jet symmetrically 

around the proto-cluster.  In ATLAS, topo-clusters are used, measured in the calorimetric cells with 

energy beyond the noise level. The energy calibration of the jets is a heavy task because of the 

complex composition of the jet components. A first calibration is done taking into account each sub-

particle nature (electromagnetic or hadronic). The final Jet Energy Scale (JES) is determined looking 

at the energetic balance of Z + jet or γ + jet events. The typical resolution for jet reconstruction in 

ATLAS is of ~ 10 – 15 % for PΤ > 30 GeV. 

 

Bottom quark jets are interesting probes in several processes and in particular in Higgs and top 

physics. Identification of b-flavor jets can be accomplished by taking advantage of the long lifetime 

(1.5 ps) of b-hadrons, leading to a measurable flight length of a few mm before their decay. The 

latter will lead to a secondary vertex which can be identified by measuring the impact parameter (IP) 

of the originating tracks, which is their distance from the primary interaction vertex. Further identi-

fication can be achieved by taking into account the semileptonic decays of the original b-quarks 

which have a sizable transverse momentum. Tagging algorithms in ATLAS are divided into two 

main classes, the spatial tagger, exploiting position parameters like the IP, and soft-lepton taggers, 

using secondary vertices [42]. Most modern algorithms are based on a likelihood discriminant to 

separate jets by attributing a special weight, proportional to the probability of a jet being b-like, c-

like or light. The performance of a b-tagging algorithm is defined by the efficiency in b-jet identifi-

cation and the probability of mistakenly identifying a jet as a b quark originating from a charm quark 

or a light flavor (u, d, s) quark [43]. Latest studies with b-tagging working points used in 2012 

analyses, show an efficiency of 70 % for b-jets keeping 20 % (0.7 %) of charm (light) jets. 

 

 

2.4 Data Management and Efficiency 
 

2.4.1 Data Management and Distribution 

 

The operation of the detector produces a massive amount of data, impossible to centrally man-

age, store and analyze. Even after event selection and data reduction, corresponding physics infor-

mation registered by CERN in the Run 1 period is in the order of 16 PB (petabytes) [44] with primary 

unprocessed (RAW) data accounting for 25 % of the total stored volume (figure 2.27). In optimal 

conditions, about 40 million beam crossings per second occur in the center of the detector at full 

luminosity. If all the data were to be saved, ~100 petabytes per second of raw data would have to be 

stored. Each event in the detector consists of about 25-MB of raw data (compressible to 1.5-2 MB). 

Using the trigger system, only events of physics interest are recorded for further processing. The 

first level trigger reduces the event rate from 40 million to about 100 thousand events per second 

(events/s). Further reduction is achieved by the second level trigger, to the more manageable rate of 

2000 events/s. The final rate of 200 events/s is achieved through the Event Filter, constituting the 

third triggering level of the ATLAS experiment. Details on the various levels and the selection pro-

cess are presented in previous sections (section 2.3.1). 

 

The final less than 200 events/s selected by the Event Filter computing farms are stored for 

further processing and further off-line analysis. The sub-Farm output manager is responsible for 

collecting all files associated with an event and sending them as a single unit to the main storage 
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array. A set of five custom designed file servers with special file system collect data passed by the 

Event Filter and store them in form of data files while saving information to the handshake table 

(realized through Oracle data base management systems) notifying that data are ready to be pro-

cessed. Events are then passed on to the CERN Advanced STORrage Manager (CASTOR), consti-

tuting the main available storage element. CASTOR allows storing of huge amounts of data 

transparently by seamlessly managing disk cache(s) and tape storage. ATLAS has several PB of disc 

cache storage in various pools and “unlimited” amount of tape storage. Castor pools are used to store 

both final and intermediate products during the ATLAS data processing. 

 
 

 
 

Figure 2.27: Cumulative data volume registered in Tier-0 since 2010. 

 

Data processing and storage is organized in different layers within the ATLAS experiment. The 

first layer, called “Tier-0”, corresponds to the CERN site, the only place where information is being 

produced. The task of the ATLAS Tier-0 system is to perform the prompt first pass processing on 

the express/calibration physics stream, 24-48 hours processing of full physics data stream with rea-

sonable calibrations, and to register raw and reconstructed data to the Distributed Data Management 

System (DDM). From then on, data will be distributed to the second layer centers, “Tier-1”, and 

beyond. ATLAS Tier-0 is composed of roughly 100 interconnected powerful computers housed in 

the CERN Computing Center. Tier-1 centers are very large computing centers for a whole country 

or region, each is connected to CERN by 10 GBit/s line. Tier-2s are medium local computing centers 

at institutes, they serve end users and support additional small Tier-3 centers. 
 

Upon arrival of new RAW data to the Tier-0 storage pool, information is retrieved from the 

handshake table by the Tier-0 Management System (TOM). Based on the rate, amount and retrieved 

information of incoming data, TOM will define and monitor all tasks necessary to perform a prompt 

reconstruction and will make final datasets available to the ATLAS distributed data management 

system. Physics analysis can be carried out in the ATHENA framework [45], the main ATLAS user 

interface software, while jobs can be submitted to the computing grid, both developed at CERN. The 

LHC Computing Grid is a distribution network designed by CERN to handle the massive amounts 

of data produced by the LHC. It incorporates both private fiber optic cable links and existing high-

speed portions of the public Internet. It is hierarchically structured to Tier-0, Tier-1 and Tier-2 cen-

ters and allows users to send their analysis jobs to places where data reside seamlessly [46]. 

 

Several levels of data organization exist with respect to the amount of information contained 

in the physically stored file. Raw Data contain all the information from the detector in compressed 

form. Each run and each stream produce one dataset (logically connected files). The Event Summary 

Data (ESD) are processed RAW data which still contain sufficient information to re-run parts of the 

reconstruction and are used preferentially to RAW data when possible. Analysis Object Data (AOD) 
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consist of a reduced size output of physics quantities from the reconstruction that should suffice for 

most kinds of analysis work. Independent tailor-made streams of AODs are foreseen for the different 

physics analysis with respect to their specific requirements. Finally, derived Physics Data (DPD) are 

subsets of ESDs which can either be used to study detector performance (Performance DPDs) or 

“Physics DPDs”, useful for specific analysis. 

 

By implementing a data distribution policy, redundancy is assured for all file types and between 

all levels of processing. For RAW data, one copy is always kept at CERN in tape storage, while files 

are also distributed to Tier-1 centers. A further Tier-2 copy can be made available for extended 

processing if needed. ESDs are initially kept on disks at CERN for preliminary analysis and are latter 

moved to tapes. Copies are randomly distributed to Tier-1 centers where they are mainly placed on 

disk storage, while one copy is sent at the Brookhaven National Laboratory. Finally, for AODs and 

DPDs, one copy always remains at CERN on tape, while a secondary copy is distributed in every 

Tier-1 to be stored mainly on disks. Tier-2 distribution is also possible for further storage and pro-

cessing. 

 

2.4.2 Data efficiency 

 

During LHC operation, turn-on times of the high voltage power supplies for individual sub-

systems of the ATLAS detector (Pixels, SCT, Calorimeter and Muon Chambers) introduce delays 

in data taking. Furthermore, problems with a given sub-detector system or on-line data processing 

and storage also contribute to a detector down time. As a result, data taking efficiency in the ATLAS 

detector is affected since not all available data are recorded. 

 

 
 

Figure 2.28: Data recording efficiency for 2012 (left) and 2011 (right). Each bin represents a week. The 
empty bins are due to weeks in which no stable beams were delivered by the LHC.  

 

Data taking efficiency is defined as the ratio between ATLAS recorded luminosity with respect 

to that delivered by the LHC. The latter is measured as the luminosity delivered between the decla-

ration of stable beams and the LHC request to turn the sensitive detectors off to allow a beam dump 

or beam studies. During the 2011 and 2012 periods, the overall efficiency remained in extremely 

high values, achieving a 93.5 % for both year (Figure 2.28). Each bin in the corresponding figure 

represents a week while, empty bins are due to weeks in which no stable beams were delivered by 

the LHC. The inefficiency accounts for the turn-on of the high voltage of the Pixel, SCT and some 

of the muon detectors and any inefficiencies due to dead-time or due to individual problems with a 

given sub-detector that prevent the ATLAS data taking to proceed. 
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3 Run 1 H→ZZ(*)→4l studies  
 
 
3.1 Introduction 

 

In this chapter, the Run 1 analysis of the H→ZZ(*)→4l channel is presented, with a special 

emphasis on the electron background estimation. In the pre-Higgs discovery era, the increased abun-

dance of data at the initial phases of the LHC program led to an amplified demand for more intricate 

and robust analyses. While initial indications of the particles discovery were presented as early as 

2011, it was not until the summer of 2012 that sufficient data were available for an announcement 

to be made. In addition, exploring and excluding any other possibility for all analysis channels was 

one of the most demanding and at the same time exciting tasks in the history of physics. Identifying 

the few interesting events leading to the certainty of an observation was one of the hardest data-

mining endeavors undertaken by the scientific community. My personal contribution in the follow-

ing chapter is the development and application of the so-called “Reco - Truth Unfolding” method 

for the reducible electron background estimation, this method was used as the baseline in 2011 anal-

ysis and as a systematic cross-check in 2012 data. 
 

 

3.2 The H→ZZ(*)→4l channel 
 

The search for the Standard Model Higgs boson was one of the primary objectives of LHC Run 

1 with the discovery announcement by the ATLAS and CMS collaborations being a pivotal moment 

in this campaign. Among its decay channels, the so called "golden channel" of H→ZZ(*)→4l where 

“l” denotes an electron or muon, is the one offering the cleanest signature. It produces a very clear 

experimental signature of four isolated leptons in the final state with no missing transverse energy 

and low background. Good energy and momentum resolution allows an accurate measurement of 

the four lepton invariant mass in spite of the suppressed branching ratio (Table 3-1) [1]. In the four 

muon final state, experimental resolution on the mass measurement is in the order of 1.5 %, while 

in the four electron case, resolution is slightly degraded to 2 % for an mH = 120 GeV. 

 

√s 
σ(gg→H) σ(qq’→Hqq’) σ(𝒒�̅�→WH) σ(𝒒�̅�→ZH) σ(𝒒�̅�/gg→𝒕�̅�H/𝒃�̅�H) B(H→ZZ*→4l) 

[pb] [pb] [pb] [pb] [pb] [10-3] 

7 TeV 15.1±1.6 1.22±0.03 0.58±0.02 0.34±0.01 0.24±0.04 0.125±0.005 

8 Tev 19.3±2.0 1.58±0.04 0.70±0.02 0.42±0.02 0.33±0.05 0.125±0.005 

 
Table 3-1: Production cross-sections and branching ratios on the four lepton channel for the dominant pro-

duction modes [1]. 

 
Final states can be categorized with respect to their lepton flavor in four distinct categories: 

 

H→ZZ(*)→e+e−e+e− (4e) H→ZZ(*)→e+e−μ+μ− (2e2μ) 

H→ZZ(*)→μ+μ−μ+μ− (4μ) H→ZZ(*)→μ+μ−e+e− (2μ2e) 

 

For the Higgs boson discovered at a mass of 125 GeV, one or both of the intermediate Z bosons 

have to be virtual. As a convention, the first lepton pair is always considered to be the one whose 

combined mass is compatible, or is the closest to the invariant mass of a Z boson.  

 

The main backgrounds affecting the analysis final state can be divided in two categories: an 

irreducible contribution, producing the same final state as the signal, and a reducible component, 

mainly due to object misidentification. 
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A. The irreducible background constitutes the primary contribution. It originates from Elec-

troweak ZZ(*) production in proton-proton collisions, through the diagrams shown in Fig-

ure 3.1 [2]. Four distinct states are possible: 

 

      
 

 
 

Figure 3.1: Leading order Feynman diagrams for ZZ production through the qbar(q) and gg initial 
state at hadron colliders. The s-channel diagram, (last one on the top row), contains the ZZZ and 

ZZγ neutral TGC vertices which do not exist in the SM. 
 

Z(∗)Z(∗) γ(∗)Z(∗) 

Z(∗)γ(∗) γ(∗)γ(∗) 

 

Although this process is very similar to the expected signal generating four isolated leptons 

at the final state, the invariant mass distribution is continuous, presenting a peak at the di-

Z mass (180 GeV) where two “on-shell” Z bosons become possible. A slow decrease fol-

lows up to 500 GeV, where electroweak production fades out. This background is esti-

mated exclusively thought Monte Carlo production extrapolated to data luminosity.  

 

B. As reducible background one can consider any process accounting for a true or fake four 

lepton final state with or without the intermediation of a true Z boson. In that context, the 

following main categories can be identified:  
 

1. ZQQ→4l: A Z true boson, accompanied by a heavy quark-antiquark pair following 

semileptonic decays paths. The four lepton final state arises from the two true leptons 

of the Z decay and two non-isolated true leptons from each one of the quarks. Pro-

cesses like 𝑔𝑔 → 𝑍𝑏�̅� → 2𝑙𝑏�̅� are typical examples and their suppression heavily 

depends on lepton isolation criteria. 

 

2. 𝑔𝑔, 𝑞𝑞 → 𝑡𝑡̅: These processes may produce quark-antiquark pairs accompanied by 

W bosons. The four lepton final state is then produced by the two leptons originating 

from each one of the W decays and the other two from quark semileptonic processes. 

This can primarily be achieved through a b-quark via the following process (equation 

3.1): 

 

𝒕 →
𝒃 → 𝒍 + 𝒗𝒍
𝑾+ → 𝒍 + 𝒗𝒍

,      �̅� →
�̅� → 𝒍 + 𝒗𝒍
𝑾− → 𝒍 + 𝒗𝒍

             (3-1) 

 

In this final state we can find four leptons and missing transverse energy, a state very 

similar to the researched Higgs experimental signature. 

 

3. Z inclusive: A Z vector boson produced via quark-antiquark scattering in association 

with jets and/or hadrons in the final state. This can be manifested in the form of 𝑞�̅� →
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𝑍 + 𝑋 + 𝑌, where X and Y may be jets faking electrons. Suppression of this back-

ground depends on the identification efficiency and hadron rejection capability. 

 

Reducible backgrounds become important at the low mass region (less than 180 GeV), where 

QCD processes can produce misidentified jets faking electrons of preferably low transverse mo-

menta. The 𝑡𝑡̅ background can be considered small, with a quite flattened spectrum enhanced at 

small 4l invariant masses. 

 

 

3.3 Data & Monte Carlo samples 
 

3.3.1 Considered data 

 

Data registered by the ATLAS detector have to satisfy good working conditions for all subsys-

tems. Samples with identified issues in one or more detector stations are subsequently disregarded 

in any analysis. A total of 4.6 fb-1 and 20.7 fb-1 integrated luminosity, at 7 and 8 TeV respectively, 

were considered after quality filtering from 2011 and 2012 data runs.  

 

3.3.2 Monte Carlo production 

 

ATLAS material and detector simulations are performed via the GEANT package [3, 4]. Signal 

and background processes are simulated and subsequently interfaced to the reconstruction and dig-

itization algorithm (ATHENA). 

 

All available Higgs production processes are considered in this analysis. H →ZZ(∗)→ 4ℓ pro-

duction is simulated via POWHEG, which can separately treat gluon-gluon fusion and vector boson 

fusion production modes up to NLO [6 - 9]. Higgs transverse momentum in the gluon-gluon case is 

refined to include NNLO QCD corrections and soft gluon resummations up to NNLL order [10, 11]. 

POWHEG is interfaced to PYTHIA for hadronization [12, 13] and to PHOTOS for QED radiative 

corrections at the final state [14, 15], while τ-lepton decays are generated by TAULA [16, 17]. Higgs 

associated production with a W, Z or top quarks is simulated by PYTHIA.   

 

Higgs production cross-sections in the gluon-gluon fusion, the vector boson fusion, the W/Z 

associated production and the top associated contribution are calculated in next to leading order 

(LNLO) and next to next to leading order (NNLO) including NLO electroweak radiative corrections 

in all modes. Cross-sections for the gluon fusion process have been calculated to NLO and NNLO 

[18 - 20] while QCD soft-gluon resummations were calculated in the NNLL approximation [21]. 

Electroweak (EW) radiative corrections at NLO are also applied [22, 23]. For the VBF production 

process, full QCD and EW corrections up to NLO and approximate NNLO QCD corrections are 

used [24 - 26]. The cross-sections for associated WH-ZH production processes are computed at NLO 

and at NNLO in QCD, taking into account of NLO EW radiative corrections. Associated Higgs 

boson production cross-section with 𝑡𝑡̅ pairs is calculated at NLO [27]. The entire information and 

references are contained in [28]. The branching ratio to the four lepton channel has been estimated 

using PROFECY4F [29], including QCD and electroweak NLO corrections while taking into ac-

count identical final state fermion interferences and heavy Higgs boson corrections.  

 

The irreducible background is simulated using POWHEG-BOX [30] and gg2ZZ [31] for the 

quark-antiquark and gluon fusion parts respectively. Mzz spectrum cross-section is calculated in 

NLO with an estimated uncertainties of 5 % [32] from the QCD scale, corresponding to 4 % for the 

quark and 8 % gluon initiated processes respectively [33, 34]. Z + jets processes are simulated by 

ALPGEN, which is interfaced to PYTHIA for showering and hadronization. The process is divided 

in the Z + light jets, mainly taking into account c and b quarks in the massless approximation, and 

the Z + b part, where b mass is included in the computation [35]. To avoid double counting of 
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produced b-pairs, a separation of 𝛥𝑅 = √𝛥𝛷2 + 𝛥𝜂2 >  0.4  is applied on the final jets whereas, in 

the opposite case, parton shower 𝑏�̅� pairs are used.  

 

 

3.4 Event Selection 
 

3.4.1 Trigger Application 

 
Leptons from a ZZ* Higgs boson decay cover a wide range of transverse energies, from a few 

GeV in the case of virtual Zs, to tens of GeVs for “on-shell” Z production. Corresponding triggers 

for H→ 4ℓ events can either use single or double lepton criteria in order to increase the detection 

efficiency. Single lepton triggers apply a strict selection on the quality of the candidate and a high 

threshold on transverse energy. This threshold evolved during data taking to cope with the increase 

of the data rate from instantaneous luminosity evolution (Table 3-2). The trigger point for the elec-

trons and isolated muons is at 24 GeV while isolation cuts have been added. These cuts are applied 

at level 3 trigger (Event Filter) and require the sum of the PT of all tracks in a cone ΔR < 0.2 sur-

rounding the lepton to be less than 10 % of its corresponding PT. In addition, an asymmetric PT 

threshold is required for the double muon trigger at 18 GeV and 8 GeV for the first and the second 

muon respectively.  

 

Mode Single lepton Di-lepton 

4e e24vhi medium1 2e12Tvh medium1 

4μ mu24i tight 2mu13 mu18 mu8 EFFS 

2e2μ e24vhi medium1, mu24i tight 
2e12Tvh medium1, 2mu13, mu18 mu8 EFFS 

e12Tvh medium1 mu10, e24vhi loose1 mu8 

 
Table 3-2: Trigger threshold summary for 2012 data. 

 

In single Higgs production simulation, the trigger efficiency (by gluon-gluon fusion pro-

cesses at mH ≈ 130 GeV) is estimated at 97.6 % for the four-muon final state, at 97.3 % for the mixed 

flavor case and at 99.7 % for the electronic final state. Trigger efficiencies are measured using data 

driven techniques, while any observed inconsistences with Monte Carlo estimations are corrected 

via scale factor application. 

 

3.4.2 Lepton Selection 

 
After reconstruction (see section 2.3.2), a series of criteria are applied to identify electron can-

didates, improving the signal over background ratio. Two main changes were introduced in 2012 

with respect to 2011 conditions. To begin with, bremsstrahlung recovery was implemented during 

electron reconstruction, allowing for a 2 - 8 % gain, especially at low transverse momenta. Further-

more, a MultiVariant discriminant was constructed for electron identification, based on likelihood 

maximization. In this way, several different properties of the track and the cluster are simultaneously 

considered, combined and compared to probability density functions. In Figure 3.2, the improve-

ment on the background rejection using likelihood with respect to the previously used cut-based 

identification is presented versus pseudorapidity and ET. For the same signal efficiency, likelihood 

electron identification achieves a ~ 50 % increase in background rejection. 

 

CB and ST muons are used in the barrel region for |η| < 2.5 with additional imposed criteria on 

the inner detector tracks. These mainly include a minimum required number of hits in the pixel and 

SCT detectors, as well as for the ratio of TRT outliers versus all TRT hits not to exceed a certain 

fraction. Detector conditions are taken into consideration by removing any tracks traversing dead 

regions. To increase the muon acceptance, StandAlone muons are added in the region 2.5 < |η| < 2.7, 

not covered by the inner detector, while additional cuts are imposed to ensure track quality. CB 
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muons are used in the central barrel region |η| < 0.1 For both electrons and muons, the impact pa-

rameter with respect to the main vertex must satisfy the condition |d0| < 0.2 mm, whereas if an asso-

ciated track in the inner detector is found, the closest point of that track in the z coordinate with 

respect to the primary vertex vertical plane must satisfy |z0| < 1.0 mm. 

 

 
Figure 3.2: Ratio of background efficiencies for the likelihood/cut-based menus vs. η (left) and vs. ET (right). 

Represented data correspond to light jets. A 40-50 % background reduction is observed by using the 
LooseLH menu (multivariate criteria) instead of the 2011 used Multilepton selection (cut-based). The work-
ing point of the LooseLH menu is fixed to yield identical efficiency with respect to the Multilepton selection 

for true electrons. 

 

3.4.3 Quadruplet Selection 

 
Event selection criteria take into account lepton quality, kinematic cuts, as well as lepton iso-

lation and impact parameter criteria. Quadruplet formation is performed by selecting two same fla-

vor, opposite sign lepton pairs per event. For muons, a minimum PT threshold at 6 GeV is imposed 

while acceptance is limited to |η| < 2.7. In the electron case, a transverse energy threshold at 7 GeV 

is applied with a pseudorapidity acceptance limited at the barrel calorimetric volume  

(|η| < 2.47). Isolation requirement between same flavor type leptons is set at ΔR > 0.1 with the 

requirement increasing to ΔR > 0.2 for different flavor. The lepton pair with a combined mass closest 

to that of the Z is considered as the leading one (m12), whereas the other two leptons constitute the 

sub-leading pair (m34). While for the leading pair an invariant mass cut is applied at 50 GeV < m12 

< 106 GeV, for the sub-leading pair, a minimum threshold is imposed (mth) with respect to the quad-

ruplet invariant mass (Table 3-3) In particular, to increase acceptance, minimum sub-leading thresh-

old mass value is defined at 12.0 GeV while intermediate values are calculated with linear 

extrapolation. In any case, the maximum sub-leading invariant mass is retained at 115 GeV.  

 

Threshold mass 

m4ℓ (GeV) < 140 140 190 > 190 

mseuil(GeV) 12.0 12.0 50 50 
 

Table 3-3: Threshold mass with respect to quadruplet invariant mass. 

 

The imposed requirement for track isolation demands that the sum of all tracks (ΣPT) within a 

cone of ΔR < 0.2 for any selected lepton should not exceed 15 % of the particles PT. Although this 

requirement is applied to both electrons and muons, tracks considered in this operation vary with 

respect to lepton flavor: 

 

 For muons: Tracks with at least four hits in the pixel and SCT detectors and PT > 1GeV 

are considered in the sum. 

 For electrons: Tracks with at least nine hits at the pixel and SCT detectors including one 

hit on the b-layer, and minimum PT of 0.4 GeV are considered. 
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An equivalent calorimetric isolation is also defined for leptons. For muons, the sum of the 

energy deposited into all calorimeter cells within ΔR < 0.2 around the muon cluster should not ex-

ceed 30 % of the total muon transverse momentum. Central cells accounting for any muon energy 

deposition in the calorimeter are excluded from this sum. For electrons, calorimetric isolation re-

quires that the sum of the energy deposited in the TopoClusers surrounding the particle should not 

exceed 20 % on its transverse momentum, while the cluster of the electron is excluded from the sum. 

This reduced threshold in the electron case, allows for a better PileUp rejection in the calorimeter, 

while muons are less affected because of the reduced amount of energy that they deposit. In calori-

metric isolation calculations, contributions from other leptons within the quadruplet are not taken 

into account. Finally, an impact parameter significance cut is applied, defined as the ratio of d0/σd0, 

at 3.5 for the muons and 6.5 for the electrons. The more relaxed cut in the electron case is introduced 

to account for radiative energy losses though Bremsstrahlung. A detailed summary of all applied 

cuts is presented in Table 3-4. 

 

Object Pre-selection 

Electrons LooseLH electrons with  ΕΤ > 7 GeV and |η| < 2.47 

Muons 

 

No more than one CaloTagged or StandAlone muon per quadruplet 

Combined or Segmented Tag muons 
PT > 6 GeV 

|η| < 2.7 

CaloTagged Muons 
PT > 15 GeV 

|η| < 0.1 

StandAlone muons 

PT > 6 GeV 

2.5 < |η| < 2.7 

ΔR > 0.2 with respect to the 

closest SegmentedTagged muon 

Event Selection 

Kinematic 

Selection 

At least one quadruplet with two pairs of opposite sign same flavor leptons 

PT threshold of the three primary leptons : 20, 15 et 10 GeV 

50 GeV < m12 < 106 GeV 

mthreshold < m34 < 115 GeV 

Remove quadruplet if an alternative pair yields mℓℓ < 5 GeV 

ΔR(ℓ,ℓ′) > 0.10 (0.20) for same (different) flavor leptons 

Isolation 

Lepton track isolation (ΔR = 0.20) : ΣPT /PT < 0.15 

Electron calorimetric isolation (ΔR = 0.20) : ΣET /ET < 0.20 

Muon calorimetric isolation (ΔR = 0.20) : ΣET /ET < 0.30 

StandAlone muon calorimetric isolation (ΔR = 0.20) :ΣET /ET < 0.15 

Impact pa-

rameter sig-

nificance 

electrons : d0/σd0 < 6.5 

muons : d0/σd0 < 3.5 

 

 
Table 3-4: Summary of event selection. The masses of the two lepton pairs are referred to as m12 and m34 

respectively, while values of the mthreshold are presented in the previous table. 

 

A final correction to the four-lepton mass is applied, accounting for QED radiative Z decays, 

leading to energy loss via photon production at the final state (Final State Radiation - FSR). A ded-

icated method has been developed to identify FSR photons in the calorimeter and incorporate them 

to the four lepton measurement, in both collinear and non-collinear geometries [36]. While collinear 

photons (defined as photons with ∆Rcluster,µ ≤ 0.15) can only be associated with muons, since their 

effect on electron measurement has already been taken into account in the calorimetric shower, non-
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collinear photons (defined as photons with ∆Rcluster,μ > 0.15) can be associated either with muons or 

electrons. 

 

At most one FSR photon is used per event since the probability of a double FSR production 

with significant energy is negligible. Priority is given to collinear photons, required to have ET > 1.5 

GeV and a fraction of the total energy deposited in the front sampling layer of the calorimeter greater 

than 0.1. If more than one collinear photon are found, only the one with the highest ET is kept. 

Collinear FSR selection recovers 70 % of the FSR photons within the selected fiducial region with 

a purity of about 85 %, while misidentified FSR photons originate from PileUp and muon ionization. 

Non-collinear photons must have ET > 10 GeV, be isolated (ET below 4 GeV within a cone of size 

∆R = 0.4, excluding the photon itself), and satisfy strict (“tight”) identification criteria [37]. As in 

the collinear photon case, only the highest-ET non-collinear photon is retained, and only if no col-

linear photon is found. The non-collinear FSR selection has an efficiency of approximately 60 % 

and a purity greater than 95 % within the detector fiducial region. 

 

Photon FSR correction is only applied to the leading di-lepton if corresponding invariant mass 

is between 66 GeV < mll < 89 GeV and mllγ < 100 GeV. If the collinear-photon search fails then the 

non-collinear FSR photon is added, provided it satisfies mll < 81 GeV and mllγ< 100 GeV. The ex-

pected fraction of collinear (non-collinear) corrected events is 4 % (1 %). For the 7 TeV data, the 

combined signal reconstruction and selection efficiency at mH = 125 GeV is 39 % for the 4μ channel, 

25 % for the 2e2μ/2μ2e channels and 17 % for the 4e channel. The improvements in the electron 

reconstruction and identification for the 8 TeV data lead to increases in these efficiencies by 10 % - 

15 % for the electronic channels, bringing their efficiencies to 27 % for the 2e2μ/2μ2e and 20 % for 

the 4e cases respectively. In Figure 3.3 the invariant mass distributions of Z→µ+µ− candidate events, 

where a collinear FSR photon is found, are shown before and after addition of the FSR photon for 

both data and simulation. Good agreement between data and simulation is observed. 

 

 
 

Figure 3.3: Invariant mass distributions of Z → µ+µ−(γ) events in data before collinear FSR correction (filled 
triangles)  and after collinear FSR correction (filled circles), for events with a collinear FSR photon satisfying 
SFR  selection criteria. The prediction of the simulation is shown before correction (red histogram) and after 

correction (blue histogram). 

 

3.5 Reducible Background estimation 
 

The reducible background affecting the H →ZZ∗→4ℓ channel can be considered relatively 

weak. It mainly originates from processes involving a single true Z boson in the final state, associ-

ated with misidentified jets as leptons, usually at the low PT region. Background evaluation is based 
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on simulation samples, combined with data-driven methods, essentially for the low mass region 

between 120 - 180 GeV. Since, in this low mass range, at least one from the H decay bosons is off-

shell, it mainly decays to low transverse momentum leptons with important reducible background 

contribution. In the case where the sub-leading Z decays to a di-muon pair, principal background 

contributions are the pp→Z+𝑏�̅�→4ℓ and pp→𝑡𝑡̅→Wb→4ℓ processes since heavy quarks constitute 

the main muon background source. In the case of an electron pair decay, jets are the dominant con-

tribution via pp→Z + 2 jets→4ℓ mechanism. Given the diverse background nature for the Z→e+e− 

et Z→μ+μ− channels, processes Z(QQ→μ+μ−) and Z(XX→e+e−) are separately investigated. In spite 

of their differences, both backgrounds are estimated using the same primary logic: 

 

1. Control regions (CR) are formed, relaxing or inverting specific selection criteria such 

as to enrich each CR on one background while minimizing signal leakage. 

2. The background composition in these regions is studied and compared to simulations 

3. Probabilities are calculated for an event belonging to the control region to survive in 

the signal region (“transfer factors”) 

4. These probabilities are subsequently used to predict expected background events in 

the signal region 

 

In the following paragraphs, the background estimation methods for the Z→e+e− and Z→μ+μ− 

are presented. 

 

3.5.1 Z+μμ background estimation 

 
The number and treatment of the different control regions has historically evolved. In the next, 

the baseline method introduced in 2012 is described, which allows for a better constraint on statisti-

cal uncertainties.  In this implementation, four main orthogonal control regions are defined: 

 

i. A region where inverted isolation criteria are required for at least one of the muons of the 

sub-leading pair, while all standard analysis cuts are applied to leading di-leptonic (Z→μμ 

or Z→ee) pair. This region is enriched with light flavors (π/K decays). 

ii. A region where an inverted impact parameter significance criteria is required for at least one 

of the muons of the sub-leading pair, while all standard analysis cuts are applied to the lead-

ing di-leptonic (Z→μμ or Z→ee) pair. Because of the inversion of the primary vertex re-

quirement, contributions from b decays (Z𝑏�̅� and 𝑡𝑡̅) are enhanced. 

iii. The eμ+μμ control region, where no isolation or impact parameter significance requirements 

are applied for the sub-leading muon pair. Standard analysis criteria are implemented for the 

leading di-lepton pair, while different flavor leptons are required between leading and sub-

leading pairs. This region is mainly enriched in 𝑡𝑡̅ originating leptons. 

iv. The Same Sign control region, where no isolation or impact parameter cuts are applied for 

the sub-leading di-lepton pair, required to be composed of same sign muon candidates. 

Again, all standard analysis requirements are requested for leading di-lepton. This region is 

populated by all 3 main backgrounds (Z𝑏�̅�, 𝑡𝑡̅, K/π). 

 
The number of expected background events is extracted from a maximum likelihood fit applied 

simultaneously to all four control regions. The fit result also allows one to determine background 

composition of each control region and to evaluate the expected number of background events in 

the "Reference CR". The latter is defined by considering all events having the leading di-lepton 

satisfying all analysis criteria while isolation and d0 are not applied to the sub-leading muon pair. 

Extrapolation factors are computed to estimate the background yields anticipated at the signal re-

gion. 

 
The m12 distributions are presented in Figure 3.4 for the four CRs, together with the results of 

the combined likelihood fit. The corresponding value of m12 is adjusted by a Breit-Wigner, convo-

luted either with a Crystal Ball (for Z +jets sample) or by a second order Chebyshev polynomial 
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(ttbar). The combined fit result was tested to give the same final yield as when applied in each CR 

individually. Background composition of the four control regions is presented in Table 3-5  

 

Background inv-d0 CR inv-iso CR SS CR eµ + µµ CR 

Z 𝑏�̅� 32.8±0.5 % 26.5±1.2 % 30.6±0.7 % 0.3±1.2 % 

Z+light 9.2±1.3 % 39.3±2.6 % 16.9±1.6 % 0.0±0.8 % 

𝑡𝑡̅ 58.0±0.9 % 34.2±1.6 % 52.5±1.1 % 99.7±1.0 % 

 
Table 3-5: Expected contribution of the ll+μμ background sources in each of the control region 

 

 

 
 

Figure 3.4: The observed m12 distributions (filled circles) and the results of the maximum likelihood fit are 
presented for the four control regions: inverted requirement on impact parameter significance (top left), 

inverted requirement on isolation (top right), eµ leading di-lepton, where backgrounds, except from 𝒕�̅�, are 
small and not visible (bottom left), and (bottom right) same-sign sub-leading di-lepton. The fit results are 

shown for the total background (black line) as well as the individual components: Z + jets decomposed into 
Z+𝒃�̅� (blue line) and Z + light flavor jets (green line), 𝒕�̅� (dashed red line), and the combined WZ and ZZ 

(dashed gray line), where the WZ and ZZ contributions are estimated from simulation. 

 

To calculate the expected background in the signal region, transfer factors are determined using 

simulated datasets. These factors can be defined either by using the efficiencies of the control region 

events to be found in the signal region, or by calculating (through MC datasets) the ratio between 
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the number of events in the signal region versus the equivalent number of events in the background 

region. In the first case, the transfer factor is expressed as (equation 3-2): 

 

ftransfert = εiso
2 εd0

2 /(1- εd0
2)             ( 3-2 ) 

 

where εd0 and εiso are the efficiencies for the secondary muons satisfying the isolation and impact 

parameter requirements. In the second, more direct method, the ratio is computed by (equation 3-3): 

 

ftransfert =nsr/ncr             (3-3) 

 

where nsr and ncr are the number of  events in the signal and the control region respectively.  

 

Although in both methods the transfer factors are computed with simulated data, the second 

approach is limited by statistics. If only a very small number of events survives the final selection 

in the MC samples, the transfer factor will have a large corresponding statistical uncertainty. Con-

versely, the first method utilizes global muon efficiencies ignoring any dependence on the position 

and transverse momentum. For the 𝑡𝑡̅ component, with very low statistics, the first method is se-

lected, while for the 𝑍𝑏�̅� part, estimations are conducted using the second method. The resulting 

transfer factors are presented in Table 3-6, while any differences between the two methods are in-

cluded as systematic uncertainties.  

 
Transfer factor (%) 

Z 𝑏�̅� 3.10±0.19 

Z+light 3.0±1.8 

𝑡𝑡̅ 0.55±0.09 

 

Table 3-6: Corresponding transfer factors for the 𝒁𝒃�̅� and 𝒕�̅� samples on events passing the Z+μμ selection 
with a sub-leading di-muon pair. 

 

Final values are presented in Table 3-7 for the 2e2μ and 4μ channels separately in 7 TeV and  

8 TeV data. Main contribution originates from Zbb events. Systematic and statistic uncertainties are 

separately calculated.  

 

Run   Background 4μ 2μ2e 

7 TeV 

Z + jets 0.42 ± 0.21(stat) ± 0.08(syst) 0.29 ± 0.14(stat) ± 0.05(syst) 

𝑡𝑡̅ 0.081 ± 0.016(stat) ± 0.021(syst) 0.056 ± 0.011(stat) ± 0.015(syst) 

WZ expectation 0.08 ± 0.05 0.19 ± 0.10 

Z+jets Decomposition 

Z 𝑏�̅� 0.36 ± 0.19(stat) ± 0.07(syst) 0.25 ± 0.13(stat) ± 0.05(syst) 

Z + light flavor jets 0.06 ± 0.08(stat) ± 0.04(syst) 0.04 ± 0.06(stat) ± 0.02(syst) 

8 TeV 

Z + jets 3.11 ± 0.46(stat) ± 0.43(syst) 2.58 ± 0.39(stat) ± 0.43(syst) 

𝑡𝑡̅ 0.51 ± 0.03(stat) ± 0.09(syst) 0.48 ± 0.03(stat) ± 0.08(syst) 

WZ expectation 0.42 ± 0.07 0.44 ± 0.06 

Z+jets Decomposition 

Z 𝑏�̅� 2.30 ± 0.26(stat) ± 0.14(syst) 2.01 ± 0.23(stat) ± 0.13(syst) 

Z + light flavor jets 0.81 ± 0.38(stat) ± 0.41(syst) 0.57 ± 0.31(stat) ± 0.41(syst) 

 
Table 3-7: Number of 𝒕�̅� events estimated and expected at the signal region by the transfer factor method. 
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3.5.2 Z+ee background estimation 

 

The Z+ee final state background mainly originates from what is defined as non-prompt or fake 

electron candidates in the sub-leading di-lepton pair. Such objects may primarily originate from: 

 

 QCD jets misidentified as electrons during reconstruction 

 Non-isolated electrons from heavy quark semileptonic decays 

 Conversion electrons from photon interactions with detector material 

 

The study and evaluation of these backgrounds is performed using both data and simulated 

samples, by defining two discreet control regions: 

 

 The 3l + X control region, where selection criteria are relaxed for the lowest PT electron 

(X) 

 The Z+XX control region, where identification criteria are relaxed or inverted for both 

sub-leading pair leptons. 

 

In simulated samples, access to the truth origin of each electron candidate is available at gen-

erator level. By exploiting this information, referred to as truth classification, four categories can be 

defined, denoted by e, d, f and c, for background analysis: 

 

1. e – true electron: An isolated electron from a W or Z boson decay. 

2. q – non-isolated electron: An electron from a b-quark semileptonic decay, usually accom-

panied by jets or additional tracks.  

3. γ - conversion electron: A true reconstructed electron from a photon conversion. The pho-

ton may be generated by Bremsstrahlung radiation of one of the 

final electrons from a Z-decay, a pion decay or even due to FSR 

of the actual di-boson pair. 

4. f – fake electron: Any object not corresponding to a true electron, mainly a misidentified 

jet.  

 

In data samples, where no truth information is available for electron candidates, a different 

categorization is developed based on reconstructed variables. Electrons are subsequently quantified 

as E (electron) or F (fake) with respect to the following definition:  

 

 E – Electron: In order for a reconstructed electron candidate satisfying Loose Likeli-

Hood Particle Identification (LooseLHPID) to be considered as a true electron, the ra-

tio of deposited energy in the strip layer with respect to total energy has to be larger 

than 0.1 while if the corresponding track traverses an active region of the b-layer, hits 

in that layer are required. If the object is in the barrel region (|η| < 2.0) an additional 

requirement on the ratio of the number of high-threshold hits in the TRT to the total 

number of hits therein is imposed (RTRT). On the end-caps, a cut on the ratio of the 

energy distribution in the transverse plane is applied by the Rφ variable, representing 

the ratio of energy deposited in clusters of 3 × 3 over 3 × 7. This ratio is required to be 

at least 90 %. 

 F- Fake: Any other electron candidate failing the Electron (E) criteria. 

 

Similar to the muon background case, several control regions enriched in background events, 

are defined by inversing or relaxing normal selection criteria. Background events can subsequently 

be extrapolated to the signal region using the following three primary methods: 

 

I. The 3l+X method, where a control region is formed from three electrons satisfying all 

analysis criteria with relaxed cuts applied on the fourth lepton candidate. 
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II. The transfer factor method relying in the Z+XX control region in MC samples, from 

which background events are extrapolated to the signal region using transfer factors cal-

culated using efficiencies derived from a Z+X control region. 

III. The Reco-truth unfolding method, where the Z+XX control region composition is ob-

tained by using truth information from simulation and final number of events is extrapo-

lated to the signal region using rescaling factors.  

 

The above methods were historically developed in different periods. Since initially no data 

statistics was available, only MC samples were used for background estimation. During the evolu-

tion of Run 1, a particular effort was devoted in estimating irreducible background with additional 

methods, in order to constrain uncertainties. It has to be noted that systematic uncertainties differ 

between the various methods. Although the 3l+X method was used as the baseline for the final Run 

1 result, all alternative methods served as a systematic check and as an evaluation of the level of 

understanding on the estimation mechanism of the expected irreducible background. 

 

3.5.2.1 The 3l+X method 

 
In this control region, the three highest ET leptons of the final quadruplet are required to fully 

satisfy all analysis cuts. For the lowest ET electron identification criteria are relaxed and no isolation 

or impact parameter significance selection are applied. To suppress the ZZ contribution, same sign 

sub-leading di-lepton pairs are used in the final sample, while any remaining ZZ contamination is 

estimated at 6 %. If in an event multiple quadruplets can be formed, all combinations with the same 

leading di-lepton mass (m12) are independently considered as individual events. Since in the 3l+X 

method only the composition of one lepton is examined, a two dimensional fit is sufficient to accu-

rately investigate the background composition and distinguish between light jets faking electrons, 

conversion photons - FSR contribution and quark semileptonic decays. Variables used in this ap-

proach are the number of b-layer hits (nB-Layer), to separate electrons and light jets from conversion 

photons, and the TRT ratio (RTRT), to discriminate between electrons and light jets. 

 

Using MC samples, an increased statistics Z+X control region is defined, requiring an on-shell 

Z along with an additional electron candidate satisfying only silicon selection criteria (more than six 

hit in the silicon tracker with at least one pixel hit). The RTRT and nB-Layer distributions are extracted 

for each background component, while for the ZZ contribution, a Z+XX control region is defined. 

Extracted shapes are subsequently simultaneously fitted with data satisfying the 3l+X control region 

requirements in order to obtain the yield for each background component. For the heavy flavor con-

tribution, due to reduced data statistics, the yield is constrained to the MC obtained one, including a 

20 % statistical error and a correction factor of 1.39 and 1.33 for the 4e and 2μ2e channels respec-

tively. The latter is introduced to match the expected yield in data, where individual contributions 

are estimated using the sPlot [38] method which takes into account kinematic variables of the forth 

electron according to the 2D fit of the RTRT and nB-Layer variables. A probability is assigned to each 

event to belong to one of the four electron categories.. Corresponding fits in the 2e2μ and 4e channel 

separately are presented in Figures 3.5 and 3.6. 

 

In order to extrapolate the expected background from the 3l+X control religion to the signal 

region, efficiencies for the fourth electron to survive the full analysis selection are calculated. These 

efficiencies can be estimated through MC simulation of on-shell Z boson decays accompanied with 

an additional lepton candidate (Z+X) and are subsequently rescaled with respect to data. Additional 

control regions are also defined to extract the data/MC scale factors (SF) in order to correct possible 

difference in the efficiencies of the γ and f component. For isolated electrons, the scale factors are 

included in the energy calibration, while for the very small q component, a 40 % uncertainty is 

assumed. Final efficiencies are computed in bins of PT, using six different transverse momentum 

regions.  
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Figure 3.5: Simultaneous fit result on RTRT and nB-Layer variables on data and breakdown of the different back-
ground contributions for the 2μ2e channel. 

 

 
 

Figure 3.6: Simultaneous fit result on RTRT and nB-Layer variables on data and breakdown of the different 
background contributions for the 4e channel. 

 

Extrapolation of expected events from the control region to the signal region is performed using 

the transfer function (equation 3-5): 

 

𝑇𝐹 = ∑ 휀𝑖(𝑃𝑇) × 𝑤𝑠𝑃𝑙𝑜𝑡
𝑖

𝑖=𝛾,𝑓

             (3-4) 

 
where wi

sPlot is the individual probability of each background component for a single event as it is 

calculated by the sPlot [38] method and εi(PT) the PT dependent efficiencies for the electrons, cor-

rected with the appropriate scale factors. Because of the multiple quadruplets approach, a 10 % 

increase in the total yield is observed in the control region for both the 4e and 2μ2e modes. To deal 

with the small statistics of the heavy flavor component, a single inclusive transfer factor has been 

used. 

 

Final estimated results with their corresponding systematic uncertainties are presented in Table 

3-8. The latter, take into consideration uncertainties related to the fit quality and to the templates on 

the data, as well as those concerning the precision of the transfer factors. Transfer factor uncertainties 
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contain the statistical uncertainty of the MC samples and the scale factors uncertainty, estimated at 

4 %. It has to be noted that transfer factor uncertainty is the dominant systematic. After subtraction 

of the remaining ZZ contribution, 2.88 ± 0.28 (syst) ± 0.54 (stat) events are expected for the 4e 

channel and 2.91 ± 0.33 (syst) ± 0.60 (stat) for the 2μ2e channel, in the full mass range.  

 

 Type Data Fit efficiency SR yield 
4

e 

f 420 
+21.50 

 0.0034 ± 0.0004 1.43 
+0.07 

(stat) 
+0.47 

(syst) 
−21.20 −0.07 −0.47 

q 7.60 
+1.51 

 0.11 ± 0.02 0.84 
+0.18 

(stat) 
+0.14 

(syst) 
−1.52 −0.18 −0.14 

γ 29.36 
+8.28 

 0.024 ± 0.004 0.70 
+0.20 

(stat) 
+0.20 

(syst) 
−7.75 −0.20 −0.20 

2
μ

2
e 

f 473.7 
+22.8 

 0.0034 ± 0.0004 1.49 
+0.08 

(stat) 
+0.53 

(syst) 
−22.4 −0.08 −0.53 

q 10.66 
+2.13 

 0.09 ± 0.02 0.96 
+0.26 

(stat) 
+0.16 

(syst) 
−2.13 −0.26 −0.16 

γ 18.2 
+7.80 

 0.024 ± 0.004 0.44 
+0.19 

(stat) 
+0.21 

(syst) 
−7.19 −0.19 −0.21 

 
Table 3-8: Estimated yield of each component calculated from the fit on the data and average efficiencies 
and extrapolation of the yield for each component on the SR. Main systematic uncertainties are evaluated 
for the estimate of the f and γ contributions. Numbers correspond to 2012 data analysis (20 fb-1 at 8 TeV). 

 

3.5.2.2 Transfer factor method using the Z+X±X∓ control region with inverted cuts 

 

In this method, events are selected following the standard analysis criteria with relaxed identi-

fication requirements on the secondary di-lepton pair. Electrons used in quadruplet formation are 

required to pass the normal likelihood identification method. To form the Z+XX control region, sub-

leading electrons have to fail at least the impact parameter significance requirement, isolation cut or 

likelihood identification process. Candidates used for the subleading di-lepton pair are nevertheless 

expected to satisfy a softer electron identification selection, LooseLHID, where the likelihood max-

imization threshold has been substantially lowered. Because of this inversion on the isolation and 

impact parameter significance requirements, irreducible ZZ(*) background contribution is essentially 

suppressed.  

 

The electron background estimation with the transfer factor method is subdivided in four main 

steps: 

 

 Using simulated samples, efficiencies are calculated for the sub-leading electron can-

didate objects of the Z+XX region to pass proper isolation, impact parameter and like-

lihood electron identification.  To increase statistics, this calculation is performed in 

Z+X control regions, where the X additional object follows the same definition as the 

sub-leading leptons on the Z+XX region. 

 The Z+XX control region is studied and contributions of each component are analyzed 

 Transfer factors are calculated for an object in the Z+XX control region to be found in 

the signal region using calculated efficiencies. 

 The number of background events in the signal region is extrapolated from the control 

region using the transfer factors. 

 

Efficiency calculation from Z+X samples: Z+X samples are defined as events consisting of an 

on-shell Z boson with primary di-lepton pair satisfying all standard analysis criteria and only one 

additional electron candidate object passing a relaxed selection (relaxed Likelihood, no impact pa-
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rameter, nor isolation cuts). The third electron candidate, which should be well separated with re-

spect to leptons from the primary Z (ΔR > 0.2). Stricter constraints are imposed on the kinematic 

properties of the Z-boson, required to be within a mass window of 15 GeV from the Z-pole mass 

(91.1876 GeV), while leptonic decay products must have a transverse momentum greater than 20 

GeV. A single lepton trigger is used, assuring that at least one of the final objects is correctly iden-

tified, whereas the requirement for exactly three leptons in the final state (two generated by the Z-

boson decay and one additional electron candidate) assures the exclusion of the ZZ(*) contribution. 

Finally, rejection of WZ events is performed with a missing transverse momentum cut at ETmiss< 25 

GeV. 

 

For the Z+X efficiency calculation, a reconstructed categorization is applied to the third elec-

tron candidate. This categorization is restrained only to true electrons (E) and fakes (F), correspond-

ing to the definition detailed in section 3.4.2. In Table 3-9, a breakdown of Z+X events is presented 

in truth categories for the MC samples. 

 

Z+X control  sample 

[%] e q γ f 

E 0.7±0.0 17.6±0.1 19.9±0.2 61.8±0.3 

F 0.1±0.0 1.7±0.0 5.4±0.1 92.9±0.3 

 
Table 3-9: Composition breakdown of the Z+X sample in truth and reconstructed categories. Yields are pre-

sented in % values. Data analyzed from the 2012 Run (20fb-1 at 8TeV proton-proton collision energy). 

 

Efficiencies are computed in bins of PT and η to account for differences in the kinematic prop-

erties of the sub-leading electron candidates between the Z+X and Z+XX samples. Integrated effi-

ciencies are presented in the following table (Table 3-10) for data and MC samples. A breakdown 

for different truth categories is applied in the simulation as well, while a 35 % increase is observed 

in data with respect to simulated samples.  

 

Category MC Z+X Data Z+X 

Reco 

E 7.2 ± 0.1 9 ± 0.1 

F 1.9 ± 0 2.2 ± 0 

Truth (E) 

e 96.1 ± 0.8   

q 17.3 ± 0.4 

γ 8.9 ± 0.2 

f 2.8 ± 0.1 

Truth (F) 

e 85.9 ± 3.4   

q 18 ± 0.8 

γ 7.7 ± 0.3 

f 1.2 ± 0.0 
 

Table 3-10: Inclusive efficiencies (in %) for reconstructed (E, F) electron candidates depending on their truth 
origin (e, q, γ, f). Data corresponds to the 2012 Run (20 fb-1 at 8 TeV proton-proton collision energy). 

 

Definition of the Z+XX region: The Z+XX control region, referred as CR5a, is formed by 

events having one Z boson satisfying all analysis criteria and two additional electron candidates, 

both passing LooseLHID and failing at least one of the isolation, impact parameter or normal likeli-

hood selection. Truth vs reco composition of the CR5a control region is presented in the following 

table (Table 3-11):  
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Z+XX control region 

[%] e q γ f 

E 0.2±0.0 34.8±1.1 16.1±1.0 48.9±1.9 

F 0.0±0.0 4.1±0.3 5.3±0.4 90.5±2.6 

 

Table 3-11: Breakdown composition of the Z+XX sample in truth and reconstructed catego-
ries. Yields are presented in % values. 

 

A flavor analysis of the number of events in the CR5a region in data and Monte Carlo is 

presented in the following table (Table 3-12). An increase of 20 % is observed in the data with 

respect to the estimated MC events for the all-electron channel, while for the 2μ2e mode, the effect 

is less pronounced with only a 5 % difference. These differences are considered as corrections and 

also taken into account in the systematic uncertainties evaluation. Reconstruction categorization in 

the data samples is also presented in Table 3-13 for the electron and muon leading di-lepton pair 

separately.  
 

 4e 2μ2e 

Data 653±26 707±27 

Z+jets 448.1±15.9 552.0±19.8 

Zbb 49.7±1.3 56.9±1.4 

𝑡𝑡̅ 52.8±0.9 65.0±1.0 

WZ 2.3±0.9 2.3±0.2 

Total 552.9±19.0 676.2±22.4 

 
Table 3-12: Number of events in CR5A, in data and in simulation.. 

 

Category 4e 2μ2e 

EE 100±10 99±10 

EF 191±14 208±14 

FE 117±11 131±12 

FF 245±16 268±16 

 
Table 3-13: Composition of the CR5a events into the reconstruction categories in data. 

 
Transfer factor calculation: A difference is observed in the truth composition of Z+X and 

Z+XX Control Regions. Therefore, the efficiencies derived by the Z+X sample cannot be directly 

used. The overall efficiencies are calculated per truth category from the Z+X region and applied also 

per category in the ZZ+XX sample with respect to the following model (equation 3-6): 

 
εx(PT, η)=fχ

e(PT, η)×εx
e(PT, η)+ fχ

γ(PT, η)×εx
γ(PT, η)+ fχ

q(PT, η)×εx
q(PT, η)+ fχ

f(PT, η)×εx
f(PT, η)             (3-5) 

 

where X symbolizes reconstruction category (E, F), fx
T are the PT, η dependent fraction of each true 

category with respect to the reconstruction category and εx
T are the efficiencies for the different truth 

components of the Z+X region as presented in Table 3-11.  

 

Individual component efficiencies need to be corrected to account for inconsistences between 

data and MC, resulting in a 35 % decrease for the latter. Through dedicated control regions, scale 

factors are calculated for each component, resulting in a factor of 1.0 - 1.2 for γ and 1.2 - 2.0 for 

fake electron contribution respectively. Finally, transfer factors composed by the above mentioned 

PT, and reconstruction category-dependent efficiencies, are defined with respect to equation 3-7). 

These factors reflect the probability of an event in the Z+XX region to be found in the signal region, 
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𝑻𝑭 =
𝜺𝟑×𝜺𝟒

(𝟏−𝜺𝟑)×(𝟏−𝜺𝟒)
             (3-6) 

 

where ε3 and ε4 are the PT, η and reconstruction category dependent efficiencies of the two sub-

leading electron candidates to pass the isolation, impact parameter and electron ID selection of the 

standard analysis. 

 

Extrapolation in the signal region: Completed transfer factors are applied in an event by event 

basis to data events within the CR5a region in order to calculate the expected number of events to 

the signal region. Because of the applied cuts in the Z+X region, ZZ and WZ components are sup-

pressed. To account for any remaining ZZ contribution, the entire method is also applied to a sepa-

rate ZZ simulated sample and any events found are subsequently subtracted from the expected 

number of events in the signal region. The result is presented in Table 3-14 along with the ZZ events 

to be subtracted, along with the final estimate separately for the muon and electron leading pair 

cases. Finally, the WZ component is also included to provide a global estimation of the reducible 

electron background.  

 

Quoted systematic uncertainties take into consideration several contributions. Statistical un-

certainties in the transfer factor calculation, which are negligible are considered as well as the sta-

tistical uncertainty on the composition of the Z+XX region, estimated in the order of 18 % - 23 %. 

Finally, the systematic and statistical uncertainties of the Monte Carlo scale factors to fit with data, 

estimated at 31 % and 33 % respectively is accounted. An additional check was also performed by 

applying the efficiencies directly as derived by the Z +X composition instead of the Z +XX one. The 

effect of the composition difference between the two samples results to a corresponding difference 

of 40 - 60 % in the final estimate. 

 

 4e 2μ2e 

Extrapolation from CR5a 1.90±0.07(stat)±0.89(syst) 2.09±0.08(stat)±0.90(syst) 

ZZ extrapolation from CR5a 0.01±0.00 0.01±0.00 

Expected WZ 0.56±0.06 0.44±0.07 

Final estimation 2.45±0.10(stat)±0.89(syst) 2.52±0.10(stat)±0.90(syst) 

 
Table 3-14: Expected electron background events in the control region estimated using the transfer factor 

method. 

 

 

3.5.2.3 Reco-truth unfolding method – relaxed cuts approach 

 

Using a similar approach to the Transfer Factor method, a Z+XX background enriched region 

is defined and its composition is established using both truth and reconstructed information. Subse-

quently, a more abundant Z+X sample is defined in an equivalent manner and efficiencies are cal-

culated for each of the X candidates to be found in the single region. Finally, transfer factors are 

calculated and the final number of events is extrapolated for the data in the signal region. This 

method uses purely MC samples for computations and efficiency calculations. 

 

Definition of the Z+XX region: A Z+XX control region is defined (CR0), where leptons of the 

sub-leading di-leptonic pair satisfy all analysis criteria with the exception of isolation and impact 

parameter requirements, while electron candidates pass the LooseLHID selection. The XX candi-

dates of selected events are classified following reconstructed categories in EE, EF, FE, FF in de-

scending order of PT for the sub-leading X. Both data and MC samples are treated, with the latter 

being composed of the ZZ, ZW, Z inclusive, Z 𝑏�̅� and 𝑡𝑡̅ modes along with the Higgs signal at a 

mass of 125 GeV. A comparison between data and simulations, presented in the following table 

(Table 3-15) demonstrates a good agreement between the two datasets. 
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 EF EE FF FE Total 

Data 468±21.6 374±19.3 439±21 233±15.3 1514±39 

MC 456±15 365.6±10 475±17 229.7±10 1526.4±26.7 

 
Table 3-15: Data and MC composition of Z+XX events in reconstructed categorization. Data analyzed from 

the 2012 Run (20 fb-1 at 8 TeV proton-proton collision energy). 

 

Events can be further classified to 16 categories, following the truth origin (e, q, γ, f) of the two 

additional electrons. The Z+XX sample also includes irreducible ZZ background and Higgs signal 

contributions, which are subtracted by removing the truth electron component from the final sample. 

The decomposition of the Z+XX sample is presented in Table 3-16, where reconstructed categories 

are further analyzed with respect to their truth component (4 × 16 possibilities). This representation 

is only applied for the m4l >110 GeV region, not including the single Z resonant contribution while, 

the entire range is presented in Table 3-17. 

 

Z+XX 

Categories ee eq eγ ef qq qγ qf γγ γf ff qe γe fe γq fq fγ 

EE 121.2 4.3 1.6 4.2 40.5 11.3 42.1 8.3 18 49.4 1 0.4 0.7 9.7 16.9 17.2 

FE 15.4 0.4 0.2 0.5 5.3 1.9 4.2 1.7 9.2 100.8 0.1 0.1 1.8 5.1 36.8 31.5 

FF 3.3 0 0.1 2.3 1.1 0.4 20.6 1.5 28.4 347.2 0 0 0.3 0.9 17.5 19.1 

EF 23.6 1.1 0.6 15.3 9.1 4.5 125 1 68.3 155.8 0.4 0 1.5 0.8 4.1 6.9 

 
Table 3-16: Z+XX truth composition of reconstructed categories. Uppercase letters correspond to recon-

structed electron candidate classification while lowercase to truth origin information. Composition repre-
sents the mass range of m4l > 110 GeV. 

 

Z+XXCR0 

Categories ee eq eγ ef qq qγ qf γγ γf ff qe γe fe γq fq fγ 

EE 130.3 4.5 1.8 4.5 44.4 11.7 44.3 8.2 20.1 52.4 1 0.4 0.7 10.6 17.9 17.7 

FE 16.6 0.4 0.2 0.5 5.7 1.9 4.4 1.8 11.1 100.8 0.1 0.1 2.3 5.4 39.1 34.2 

FF 3.6 0.5 0.1 2.5 1.2 0.4 21.9 1.5 31.3 371.3 0 0 0.6 0.9 18.2 21.3 

EF 25.5 1.1 0.7 17.2 9.9 4.8 132.9 1.1 82.5 167 0.3 0 1.5 0.9 4.2 7.5 
 

Table 3-17: Same table as 3-18 but including the entire mass region. Truth category ee is later subtracted 
since it includes true electrons from the signal as well as ZZ irreducible and single Z resonance contributions. 
While most of the categories remain largely unaffected with respect to Table 3-17, an increase is observed 

for the ee category due to the single Z resonant decays. 

 

Efficiency calculation from Z+X samples: A Z+X sample is used in order to calculate effi-

ciencies for each of individual electrons to be found in the signal region (Table 3-18). For the third 

lepton candidate passing the relaxed identification criteria, no isolation or impact parameter is re-

quested, while, to suppress the WZ contribution, an additional requirement of ETmiss < 25 GeV is 

imposed. This study is performed in simulated samples using not only reconstructed categorization 

but also truth information. In the evaluation of the overall efficiencies for reconstructed categories, 

truth efficiencies are applied to the composition of the Z+XX table, after being corrected to match 

data. This difference between the Z+X and Z+XX samples originates from the different definition 

of X additional objects, as in the Z+XX sample one requires two e-like candidates and therefore 

selects more non-isolated electrons coming from b-decays (category “q”). 
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Composition in % e q g f 

Z+X Reco-E 0.013±0.003 0.181±0.001 0.225±0.15 0.582±0.170 

Z+XX Reco-E 0.031±0.001 0.335±0.006 0.178±0.008 0.457±0.010 

Z+X Reco-F 0.001±0.000 0.0179±0.020 0.061±0.010 0.92±0.007 

Z+XX Reco-F 0.001±0.000 0.047±0.002 0.055±0.002 0.893±0.005 
 

Table 3-18: Composition of Z+X and Z+XX control samples for the CR0. 

 

Use of the Z+X sample provides a more abundant secondary electron candidate pool for pre-

cise efficiency calculation, reducing statistical uncertainties. The agreement between data and Monte 

Carlo concerning reconstructed categorization is quite well with compatibility within statistical un-

certainties for the composition (Table 3-19). Variation of the Z mass interval and of the lepton PT 

allows to estimate systematic uncertainties. An alternative redefinition of the Z+X region includes a 

stricter selection on the first Z, required to be within a 15 GeV interval of the Z mass, and transverse 

energy of the leading di-leptonic pair electrons greater than 20 GeV. Although a slight modification 

of the composition is observed, mainly due to increased photon rejection, agreement between data 

and simulation stays in the same order as presented in Table 3-19. This stricter selection was also 

used to independently probe efficiencies and calculate the final number of expected events in the 

signal region. 

 

Z+X Events Z+E (%) Z+F (%) 

Data 226217±476 32.11±0.1 67.89±0.1 

MC 228550±451 32.36±0.1 67.64±0.1 

 

Table 3-19: Z+X events in data and simulated samples with composition percentage for the two recon-
structed categories. 

 
To cancel out any kinematical differences between the Z+X and Z+XX samples, efficiencies 

(and equivalent transfer factors later on) are calculated in bins of transverse momentum and pseu-

dorapidity of the X electron candidate for the Z+X sample. Five ET bins are used ([7-8], [8-9], [9-

12],[12-20] and > 20 GeV) and four distinct eta regions ([0, 1.37], [1.37, 1.52], [1.52, 2.01], [2.01, 

2.47]), defined in a manner to equally distribute statistics. For each (ET, η) bin and reconstructed 

versus truth category, an efficiency and equivalent transfer factor is computed. Figure 3.7 demon-

strates the truth-reco computed efficiencies in pseudorapidity bins for each ET region. Reconstructed 

truth (E) efficiencies are presented on the left side with the F category on the right side, while for 

the case of the true electrons (category Ee), the efficiency is the highest as expected across all eta 

regions, ranging from 85 - 95 %. 

 

Integrated numerical values of final efficiencies in data and MC are presented in Table 3-20 

for the reconstructed categorization. A 30 % difference is observed between the two, which has to 

be taken in to account when applying these efficiencies to data for final background extrapolation. 

Since the composition of data and MC in the Z+X region is similar (see Table 3-19), any incoherence 

is introduced by an efficiency difference in one or more of the individual categories.  

 

Category 
Standard Z selection Strict Z selection 

MC Z+e Data Z+e MC Z+e Data Z+e 

Global 4.4±0.1 % 5.3±0.1 % 3.6±0.1 % 4.3±0.1 % 

Reco-E 8.9±0.1 % 11.3±0.2 % 7.3±0.1 % 8.8±0.1 % 

Reco-F 2.2±0.1 % 2.1±0.1 % 1.8±0.1 % 1.9±0.1 % 

 
Table 3-20: Integrated efficiencies for the Z+e samples in data and MC taking into account two different 

leading Z selections. 
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Figure 3.7: Efficiencies of the Z+X electron candidate as a function of the |η| and ET bins for the truth and 
fake reconstructed categories and for all four truth classifications of the additional electron candidate. 

 

Transfer factor calculation: Final transfer factor is derived taking into account both the com-

position of the Z+XX sample and the efficiencies extracted from the Z+X sample, in a four dimen-

sional matrix. Two of the dimensions represent the (ET,η) parameterization while, the other two are 

referring to the reconstructed versus truth categorization. In this representation, the transfer factor is 

expressed in the following way (equation 3-8): 

 

𝑇𝐹𝑋𝑋′ = ∑ {𝑓𝑋𝑋′
𝑥𝑥′ ∙ 휀𝛸

𝑥(𝜂3, 𝐸𝑇3) ∙ 휀𝛸′
𝑥′(𝜂4, 𝐸𝑇4)}𝑥𝑥′𝑝𝑎𝑖𝑟𝑠         (3-7) 

 

where X,X′ = E,F the reconstruction and x, x′ = e, q, γ, f the truth categories for the pair of XX 

electrons. The fXX’
xx’ represents the fraction of each component in the Z+XX sample as presented in 

Table 3-18, while the εΧ
χ correspond to the efficiencies of the third and fourth electron candidate in 

bins of η and ΕT. The number of final events in the signal region is computed by multiplying the 

corresponding transfer factor to each event in the four dimensional matrix of the Z+XX events with 

respect to the formula (equation 3-9): 
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𝑁𝑆𝑅 =∑𝑇𝐹𝑖

𝑁𝐶𝑅

𝑖=1

            (3-8) 

 

Extrapolated yields in the signal region are presented in Table 3-21. The ZZ and Higgs signal 

contributions result in the large amount of events in the ee region. Results presented correspond to 

events with an opposite sign secondary di-electron pair and a strict primary Z selection.  

 

To subtract the ZZ and Higgs contribution accounting for true electrons, one can consider the 

full mass range and subtract the true electrons. Alternatively, it is also possible to investigate only 

the mass region of interest between 110 GeV and 170 GeV, where the irreducible di-Z background 

is minimal, but an eventual subtraction of the true electrons accounting for the Higgs signal has to 

be made. In both cases, the considered mass range is larger than 110 GeV in order to avoid single Z 

resonance contribution. In the first case, simulation predicts 1422.8 ± 25.9 events in the control 

region and 132.4 ± 0.6 (148.9 ± 0.7) events in the signal region for the standard (strict) primary Z 

selection, dropping to 1259.2 ± 25.1 and 5.2 ± 0.2 respectively when rejecting true electrons. For 

the second case, a total of 1272.01 ± 25.2 and 15.9 ± 0.3 events are found in the control and signal 

region respectively, reduced to 10.9 ± 0.2 and 5.0 ± 0.2 accordingly when rejecting true electron 

contribution. Both methods preserve all other irreducible background components, while any re-

maining ZZ and Higgs signal contributions are further extracted by the application of the method to 

the corresponding MC datasets. 

 

Z+e±e∓ signal region yiels (%) 

 ee eq eγ ef qq qγ qf γγ γf ff qe γe fe γq fq fγ 

EE 99.4 0.6 0.2 0.1 0.8 0.2 0.1 0.2 0.1 0 0.1 0.1 0 0.3 0.1 0 

FE 10.1 0 0 0 0.1 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 

FF 1.8 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 

EF 15.9 0.2 0.1 0.2 0.2 0 0.2 0 0.1 0 0 0 0 0.1 0 0 
  

Table 3-21: Extrapolated reconstructed category yields with respect to truth composition in the signal re-
gion, using efficiencies and transfer factors on the Z+XX control region for a strict primary Z selection. The 

single Z resonance and Higgs component are not subtracted, accounting for the large ee electron composi-
tion yield. 

 

Extrapolation in the signal region: The calculated transfer factors are applied in the Z+XX 

sample to extract the probability of an event to pass from the control to the signal region. Given the 

agreement of the Z+XX composition for the reconstructed categories between data and MC demon-

strated in Table 3-15, integrated transfer factors in the truth categories can be applied on data to 

extrapolate the final number of expected background events in the signal region. In data, the H(125) 

and ZZ contribution cannot be a priori excluded and one can either set the ee equivalent transfer 

factor to zero or estimate these contribution from MC simulation. Another option would be the ap-

plication of a Z-mass “veto” within a 30 GeV window, centered at the Z PDG mass value on the 

secondary di-electron pair. Nevertheless, the ZZ(*) contribution will still remain and will have to be 

still estimated by a dedicated simulation sample.  

 

Before calculating final results, efficiencies are corrected to match data computed values for 

the photon and jet component. The final estimation is presented in the following table (Table 3-22), 

yielding 6.9 ± 0.2(stat data) ± 0.2 (stat MC) ± 0.5(syst) events for the standard Z selection and  

5.4 ± 0.2(stat data) ± 0.2 (stat MC) ± 0.5(syst) for the strict one. Using the ZZ sample and after true 

electron subtraction, it is expected that 1.2±0.4 events will survive to the signal region for the stand-

ard Z selection while the H(125) contribution can be considered negligible. As a result, the total 

number of final quoted reducible electron background is 5.7±0.4±0.5 events. Systematic uncertain-

ties originate from the statistical uncertainty of the composition and efficiencies in the Monte Carlo 

samples as well as from the efficiency rescaling performed to match data. 
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m4l range 4e 2μ2e Total 

m4l >110 GeV including 

ZZ Residual 
2.9±0.2(stat)±0.3(syst) 3.3±0.2(stat)±0.3(syst) 6.2±0.2(stat)±0.5(systa) 

80 GeV < m4l < 600GeV 

including ZZ residual 
3.3±0.2(stat)±0.3(syst) 3.6±0.2(stat)±0.3(syst) 6.9±0.2(stat)±0.5(syst) 

Residual ZZ+H(125) for 

80 GeV < m4l < 600GeV 
0.5±0.2 0.7±0.3 1.2±0.3 

80 GeV < m4l < 600GeV 2.8±0.3(stat)±0.3(syst) 2.9±0.3(stat)±0.3(syst) 5.7±0.4(stat)±0.5(syst) 

 

Table 3-22: Final estimation of the reducible electron background in the signal region. Data analyzed from 
the 2012 Run (20fb-1 at 8TeV proton-proton collision energy). 

 

The same analysis was also performed with Same Sign sub-leading dilation pairs, naturally 

excluding any ZZ(*) and H signal contributions. Such an analysis allows a verification of the previ-

ously quoted results and especially of the ZZ(*) simulated estimation. Results are calculated sepa-

rately for the different decay modes of the leading Z: 

 

 Z(ee) + X±X± : 2.4 ± 0.4 ± 0.5 events 

 Z(μμ) + X±X± : 3.5 ± 0.6 ± 0.5 events 

 

 

3.5.3 Final results on the background 

 

In the previous sections, several reducible electron and muon background estimation methods 

were presented for the H→ZZ*→4l analysis. In the muon case, global and m12 fits are performed 

separately for the jets and top-antitop component while an additional 𝑡𝑡̅  and WZ evaluation is also 

carried out using eμ+μμ events and dedicated simulation samples respectively. In the electron case, 

the 3l+X method is presented, as well as the data-driven transfer-factor method with inversed cuts 

and finally the reco-truth unfolding method with relaxed selection criteria. As a reference, the global 

fit method was selected for the muon background estimation while for the electron, the 3l+X process 

is used. In the following table (Table 3-23) an inclusive summary of results is presented for all 

background estimation methods in 8 TeV, 2012 data.  

 

The total final expected reducible background in 2012 data, as calculated by the reference 

methods in the four lepton analysis is 13.33±0.74±1.02 events in all final states. In the following 

plots (Figure 3.8) invariant mass distributions of the four leptons are presented in the control region 

consisting of a Z boson passing full analysis selection and a sub-leading lepton pair of same flavor, 

where no isolation and impact parameter criteria are applied. Distributions are separately evaluated 

for the electron and muon case combining 2011 and 2012 data.  

 

 

3.6 Systematic Uncertainties 
 

For the estimation of systematic uncertainties, several components are considered. Electron and 

muon identification and reconstruction uncertainties, background estimation uncertainties but also 

uncertainties concerning delivered luminosity and Higgs production cross-section, used in Monte 

Carlo simulation weighting.  

 

Luminosity: Normalized integrated luminosity uncertainty is estimated at 1.8 % and 3.6 % for  

7 TeV and 8 TeV data respectively, determined using the method detailed in reference 

[39]. 
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Estimation Method Expected events 

4μ 

Global fit : Z+jets contribution 3.11±0.46±0.43 

Global fit : 𝒕�̅� contribution  0.51±0.03±0.09 

m12 fit : Z+jets contribution 2.88±0.83±0.22 

m12 fit : 𝑡𝑡̅ contribution 0.42±0.06±0.09 

𝑡𝑡̅ from eμ + μμ 0.47±0.05±0.08 

WZ expectation 0.42±0.07 

2e2μ 

Global fit : Z+jets contribution 2.58±0.39±0.43 

Global fit : 𝒕�̅� contribution  0.48±0.03±0.08 

m12 fit : Z+jets contribution 3.11±0.78±0.44 

m12 fit : 𝑡𝑡̅ contribution 0.39±0.07±0.07 

𝑡𝑡̅ from eμ + μμ 0.44±0.04±0.07 

WZ expectation 0.44±0.06 

2μ2e 

ℓℓℓ + X 2.91±0.33±0.60 

ℓℓ + XX Transfer Factor 2.52±0.10±0.90 

ℓℓ + XX Reco - Truth 2.9±0.3±0.3 

4e  

ℓℓℓ + X 2.88±0.28±0.54 

ℓℓ + XX Transfer Factor 2.45±0.10±0.89 

ℓℓ + XX Reco - Truth 2.8±0.3±0.3 
 

 
Table 3-23: Combined results of all background estimation methods on data for the 2012, 8 TeV dataset in 

the 80 Gev < m4l < 600 GeV range. The default method is represented by a bold description and a green 
background color.  

 

Leptons: Lepton reconstruction and identification efficiency uncertainties, as well as transverse mo-

mentum resolution and energy scale uncertainties, are determined through W, Z and 

J/Ψ decay samples. Momentum energy scale and lepton energy uncertainties are esti-

mated in the order of 0.2 %, 0.2 %, 0.3 % and 0.4 % for the 4μ, 2μ2e, 2e2μ and 4e 

channels respectively. Reconstruction and identification uncertainties are separately 

evaluated for each lepton flavor. 

 

Electrons: Reconstruction and identification uncertainties on electrons originating from a mH= 125 

GeV Higgs boson are estimated in the order of 9.4 %, 2.4 % and 8.7 % in the 4e, 2e2μ 

and 2μ2e channels respectively. For electrons with ET < 15 GeV, an additional 1 % un-

certainty is considered. 

 

Muons : For the muons, the corresponding uncertainties related to reconstruction and identification 

are estimated at 0.8 %, 0.4 % and 0.4 % in 4μ, 2μ2e and 2e2μ modes respectively for a 

Higgs mass of mH = 125 GeV. 

 

Additional analysis cuts: Impact parameter and isolation efficiencies are studied using data con-

taining isolated and non-isolated leptons. Isolated leptons are obtained 

through the Z→ℓℓ process while any additional reconstructed leptons in 

these events are used as the non-isolated sample. Additional verifications 

with non-isolated leptons originating from b and c quark semileptonic 
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decays have been performed using di-jet samples. A good data - simula-

tion agreement is observed and any corresponding systematic effect can 

be neglected. 

 

Background estimation: Limits on background estimation precision mainly originate from uncer-

tainties on transfer factor calculations of the control region towards the 

signal region and the number of events available in the control region. 

Corresponding uncertainties are estimated separately for each method in 

the previous section.  

 

Theory uncertainties: These are detailed in section 3.2.2 along with the description of the used MC 

samples for the analysis for the signal and the ZZ(∗) background. 

 

 
 

Figure 3.8: The m12 and m34 distributions of the Z+ll control region at 8 TeV and 7 TeV data separately pre-
sented for the μμ+ee/μμ and ee+ee/μμ channels. 

 

 

3.7 Final results 
 

Selection criteria presented at the beginning of the chapter are applied to 8TeV 2012 data rep-

resenting an integrated luminosity of 20.7 fb-1. A total of 459 candidate events are selected with an 

m4l > 100 GeV, with 151 events in the four muon channel, 225 events in the 2μ2e mode and finally 

83 events in the all-electron channel. At the same mass region, 397±14 events are expected through 
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background processes. A detailed presentation of the results is performed in Table 3-24 separating 

the low (m4ℓ < 160 GeV) and high (m4ℓ ≥ 160 GeV) mass region. The invariant mass distribution of 

selected events is also presented in Figure 3.9. 

 

Mode 
4μ 2e2μ/2μ2e 4e 

Low Mass High Mass Low Mass High Mass Low Mass High Mass 

ZZ(∗) 12.34±0.55 91.53±6.65 14.63±0.90 141.83±10.82 5.41±0.53 55.21±4.43 

Z, Z 𝑏�̅�,  𝑡𝑡̅ 1.92±0.63 0.47±0.15 6.14±1.50 1.49±0.36 2.52±0.63 0.61±0.15 

Total Background 14.26±0.84 92.00±6.65 20.77±1.75 143.32±10.83 7.93±0.82 55.82±4.43 

Data 27 93 28 169 13 55 

mH=125GeV 5.80±0.74 7.03±0.95 2.89±0.42 

 
Table 3-24: Number of observed events as well as expected background, separated in low and high  

(m4ℓ ≥ 160 GeV) mass regions for √s = 8TeV data. Expected signal events are also presented for the Higgs 
masse. Systematic uncertainties are included for the signal and background events estimations while all 

presented results are for m4l > 100 GeV. 

 

 
 

Figure 3.9: The m4ℓ distribution of the selected candidates on √s = 8 TeV data for the different sub-channels 
of the analysis, compared to the background expectation in the full range: (a) 4μ, (b) 2μ2e, (c) 2e2μ, (d) 4e. 
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During data analysis in high energy physics, statistical tools are utilized to confirm or exclude 

a discovery. This is mainly performed by determining if data are compatible with a given hypothesis 

or what is the level of incompatibility. Exclusion of a certain hypothesis demands a Confidence 

Level of at least 95 %, while requirements for discovery are stricter, with the convention for any 

discovery announcement driven by a signal excess of at least 5σ observed significance. In this case, 

statistical fluctuations accounting for the observed signal excess represent a probability of one-in-

three million. 

 

In statistical procedures the frequentist approach is used while the Bayesian method is used as 

a check to establish the exclusion limits. The frequentist approach starts by defining a statistical test, 

tμ, which aims to quantify the agreement between observed data and predictions. It is more interest-

ing to study the "signal strength" parameter. This parameter is expressed as μ = σ / σSM where σSM 

represents the production cross-section of the Standard Model. The signal strength is defined as μ = 

0 at the background noise model only while μ = 1 corresponds to the Standard Model signal. In our 

case, the statistical test is used to discriminate background noise events from signal. 

 

The statistical test is evaluated using a maximum likelihood fit of the signal and background 

models to data. For higher limits, the Confidence Levels prescription is used, with a frequentist 

approach [40, 41]. The following plot (Figure 3.10) demonstrates the maximum expected and ob-

served limits on the cross-section with respect to the Higgs mass (mH) for a combination of 2011 

and 2012 data. The probed region extends from 110 GeV to 600 GeV, with the major part being 

excluded apart the area with m4l < 129.5 GeV where a large excess is observed. 

 

 
 

Figure 3.10: Upper limit within 95 % Confidence level on the Standard Model Higgs production cross-section 
for 2011 and 2012 combined data. The dashed line represents expected values whereas the continuous pre-
sents measured data. The green and yellow regions are respectively the ±1σ and ±2σ limits. On the left plot, 

only the low mass region is presented while in the right, the entire probed mass interval is displayed. 

 

The significance of an excess is defined by the probability p0, where 1 corresponds to the  

μ = 0 value implying a purely background observed pattern. Thus, p0 represents the probability that 

any data observation may be attributed to a background fluctuation. Consequently, the lower p0 is, 

the more unlikely it is that any observed excess is due to local fluctuation generated by background 

noise and can be attributed to a signal. In Figure 3.11 local p0 is presented according to mH, for the 

combination of √s = 7 TeV and √s = 8 TeV data. Local p0 is obtained by using the asymptotic 

approximation detailed in reference [42]. 
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Figure 3.11: Plots of the local p0 value for 2011 (red curve), 2012 (blue curve) data and their combination 
(black curve) with respect to the Higgs mass. Dashed lines present the expected p0 in the background only 

hypothesis with dashed horizontal lines corresponding to local significance. On the left hand side the entire 
mass range is presented while in the right figure only the lower region is plotted. 

 

Figure 3.12 shows the profiled likelihood based mH estimation is determined for the combina-

tion of the 2011 and 2012 data. The value of the mass adjusted from the profiled likelihood is  

mH = 124.3 +0.6/-0.5(stat) + 0.5/-0.3(system) GeV, where the systematic uncertainty is dominated 

by the energy and momentum scale uncertainties.  

 

 
 

Figure 3.12: Profiled likelihood plot with respect of the mH values for the combination of 2011 and 2012 
data. The continuous line takes into account systematic uncertainties in the electron and muon energy scale 
while the dashed line is calculated without uncertainties. The 68 % confidence level is defined by the point 

where the curve intersects the horizontal line corresponding to 1. 

 

The overall signal strength, μ, acts as a global scale factor on the total number of events pre-

dicted by the Standard Model for each Higgs boson signal processes. Figure 3.13 a, presents the 

signal strength a function of mH for the combination of 2011 and 2012 data. In Figure 3.13 b, a 

simulated Standard Model Higgs boson signal is injected at the background. Blue strips represent 



Run 1 H→ZZ(*)→4l studies  Chapter 3 
 

 84 

the range of statistical test -2lnλ(μ) < 1, where λ is the likelihood profiled ratio representing an 

approximately ±1σ variation. 

 

 
 

Figure 3.13: On the right: signal strength μ = σ/σSM with respect to mH for the combined 2011 and 2012 da-
taset. On the left: signal strength with respect to mH when a Higgs signal hypothesis for a mH= 125 GeV is 

injected in the simulated background. 

 

Figure 3.13 presents the best signal strength fit with respect to mH using a profiled likelihood 

ratio approach, with 1 and 2 σ limits. The contours correspond to 68 % and 95 % confidence level 

at the asymptotic limit. Signal strength in the nominal mass value of mH = 124.3+0.6
−0.5 (stat) +0.5

-0.3 

(syst) GeV is of 1.7+0.5
-0.4. 

 

 
 

Figure 3.14: Best fit between signal strength and mH as well as profiled likelihood ration contours corre-
sponding to 68 % and 95 % confidence level at the asymptotic limit. Bold curve includes uncertainties on the 

electron and muon energy scale. 

 

3.8 Conclusions 
 

The advantage of the H→ZZ*→4l channel is the low background pollution, in particular around 

125 GeV. Nevertheless the reducible component, composed of misidentified or non-isolated objects 

(a) (b) 
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(muons or electrons), was the field of intensive studies during Run 1. The multiple methods devel-

oped during this period and aiming to constrain systematic uncertainties on background estimation 

have been extensively discussed. A special emphasis is attributed to the electron channel back-

ground. 

 

The analysis allowing the discovery of the Standard Model Higgs boson in the H→ZZ(*)→4l 

channel has been presented, based on 2011 LHC data of √s=7 TeV as well as 2012 data of √s=8 TeV 

with 4.8 fb-1 and 20.3 fb-1 integrated luminosity respectively. An excess of events with a significance 

of 8.1 standard deviations is observed, corresponding to a mass of mH ≈ 124.3 GeV. The profiled 

mass and signal strength (σ/σSM) for a Standard Model Higgs-like particle is mH=124.3+0.6
-

0.5(stat.)+0.5
-0.3(syst.) GeV and μ =1.7+0.5

-0.4 respectively. In the mass search region of 125±5 GeV, a 

total of 37 events are detected while 10.36 are expected from background sources. In sub-channels 

with a sub-leading electron-pair (4e and 2mu2e), 14 events are observed with 4.08 expected from 

background. The fraction of the reducible background is estimated at 27%. A very good agreement 

between all reducible electron background estimation methods is observed. In particular, the devel-

oped truth-reco unfolding method is within 1% of the nominal 3l+X method, predicting 2.8 ± 0.3 ± 

0.3 events over the full mass range (80 GeV – 600 GeV). Such an agreement allows to significantly 

lower systematic uncertainties on background estimation and demonstrates a good understanding of 

the physical processes. 
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4 Beyond Run 1: Phase II HL-LHC upgrades 
 
 
4.1 ATLAS Run 2 Upgrade 
 

During the LHC 2012 - 2014 two year shutdown, several improvements where implemented to 

the ATLAS detector and computing systems in preparation for Run 2 and the increased energy of 

13 TeV. Bunch spacing is 25 ns at 13 TeV, with estimated 1 - 1.7 × 1034 cm-2s-1 instantaneous lumi-

nosity. The energy increase to 13 TeV, the reduced bunch spacing and the 20 % increase in the 

proton-proton interaction cross-section (Figure 4.1) lead to a factor of 2 increase in expected instan-

taneous luminosity. Combined with doubling of the hard interaction cross-section, a significant in-

crease in the amount of single object triggers is also anticipated [1]. Upgrades where mainly 

implemented in the ATLAS trigger and inner tracker systems to cope with deteriorating experi-

mental conditions and ensure pile-up rejection.  

 

 
 

Figure 4.1: Proton interaction cross-section for Tevatron (green line) and LHC at 7 TeV (red line) and 13 TeV 
(blue line). A 20 % increase with respect to 7 TeV cross-section is expected with the increase of energy. 

 
4.1.1 ATLAS Run 2 Upgrades 

 
A major ATLAS upgrade was the installation of an additional pixel layer, the Insertable B-Layer 

(IBL), placed adjacent to the beam pipe at a radius of 30mm from the interaction point. [2]. Following 

the same principle as for the existing pixel detector, modules are arranged into 14 staves (Figure 4.2) 

combining planar sensors for central and 3D pixels for high eta regions. Pixel size was reduced to  

50 μm × 250 μm, arranged in double (for planar) and single (for 3D) chip slim edge matrices. A new 

read-out front-end integrated circuit was designed (FE-I4) with a corresponding size of 2 mm × 2 mm 

and radiation tolerance up to 5 × 1015 neq/cm2. Installation was completed at the end of 2014 while 

cosmic events have already been reconstructed with the use of the new layer.  Because of its proximity 

to the interaction point, the IBL is susceptible to high radiation damage and increased occupancies. 

Expected fluence to the surface of the silicon sensors is estimated at 3.3 × 1015 neq•cm2, assuming a 

550 fb-1 integrated luminosity with very small variations with respect to the z axis.   

 

During the LHC 2013-2015 shutdown, the muon Cathode Strip Chamber (CSC) readout system 

has also been upgraded [3]. The improved read-out design, based on the Reconfiguration Cluster 

Element (RCE) concept, allows for high bandwidth and is able to handle the higher Level-1 trigger 
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rate of 100 kHz and the higher occupancy at Run 2 luminosity. RCE design is centered on a new 

processor centric Xilinx Zynq series with an ARM processor embedded in FPGA fabric and high 

speed I/O resources. Coupled with auxiliary memories, the system forms a versatile DAQ bloc allow-

ing applications to access both software and core firmware resources. A carrier board allows for the 

formation of a DDAQ cluster, hosting several RCE mezzanines interconnected via an embedded net-

work [4]. System installation was completed in 2014. 

 

  
 

Figure 4.2: IBL layout in the longitudinal direction (left and middle) and in the r-φ plane (right) with the pixel 
staves visible. 

 
4.1.2 Physics motivation beyond Phase I 

 
The 2012 discovery of the Higgs boson at a mH ≈ 126 GeV marked the LHC era and presents 

opportunities for studying the electroweak symmetry breaking [5, 6]. The accumulated statistics 

allowed to verify to quite high level the compatibility of the discovered boson with the SM predic-

tions, as far as its production, couplings to bosons, spin and parity are concerned (see 1.7.1-1.7.2). 

Not all production modes, nor all couplings have been identified, because of the lack of statistics. In 

order to further probe the new particles compatibility with the Standard Model Higgs boson, a vast 

quantity of data is needed, concerning its spin and parity, couplings determination and self-coupling 

studies through interference effects. In addition, Higgs scattering data can be used as probes for 

beyond the standard model phenomena and electroweak precision measurements [7]. Concerning 

BSM searches, no evidence has been reported in 7 - 8 TeV collisions, allowing limits to be placed 

for strongly produced SUSY in the TeV scale and up to 203 GeV for other new particles.  

 

We are currently at the first part of the LHC Run at 13 TeV. The increase of collision energy 

opens wide the searches for new physics, combined with the higher expected luminosity (100 fb-1 

till end 2018). On the Higgs boson side, confirmation of Standard Models predictions with higher 

precision and observation of remaining production and decay channels is the imminent priority. 

Several extended Higgs sector models predict coupling deviations from Standard Model values of 

arbitrary nature. While measurements have already started in LHC, an increase in luminosity by a 

factor of 10 will achieve precision improvement for already established channels. For the H→γγ in 

the 0-jet and di-jet VBF modes, the H→ ZZ*→4l, the H→WW*→ℓνℓν in the 0-jet and 2-jet VBF 

categories [5] and H→ τ+τ- for the VBF mode [4] a 50 % improvement is anticipated [8]. Coupling 

ratio uncertainties (see section 1.7.2) are expected to improve by a factor of 2 in all cases, achieving 

a 5 % precision for the ZZ channel.  

 

Rare production and decay modes, notably the WH(→γγ) / ZH(→γγ), H→μμ and ttH→(γγ) 

which can provide valuable contributions to the general couplings fit, will become available at in-

creased statistics.  A 6 σ sensitivity for the inclusive H→μμ channel and 100 events for each of the 

other modes are expected at 3000 fb-1 integrated luminosity while around 18 (ttH case) events are 

estimated at Run 2 using Run 1 extrapolations for 300 fb-1 at 13 TeV. At the end of LHC Run 2 with 

300 fb-1 anticipated integrated luminosity, 3 % and 9 % uncertainties are estimated for the κv and κF 

factors included in the minimal couplings fit with no additional BSM contributions [9]. These ex-

perimental uncertainties are expected to evolve to 2 % and 3.5 % respectively, for a 10-times lumi-

nosity increase. Finally, a measurement of the Higgs self-coupling is needed to reconstruct the 
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corresponding potential and establish the mechanism as responsible for electroweak symmetry brak-

ing. Higgs pair production can be used as direct analysis probe for the trilinear self-coupling but, at 

hadron colliders and for a mass of mH ≈ 125 GeV, has a weak cross-section of  

34+6
-5(QCD Scale) ± 1(PDF) fb through gluon-gluon fusion. An increased luminosity is therefore 

required to probe this process at the clearest decay channel ratio of H(bb)H(γγ) which presents an 

increased branching. A significance of 3σ may be achieved in observation of this process, with es-

sential improvements on identification efficiencies. An accuracy of 30 % is estimated at the most 

optimal case for the measurement of the λHHH, combining both ATLAS and CMS expected events 

at 3000fb-1[10]. 

 

Rise of the weak boson scattering cross-section in the longitudinal mode at the TeV scale has 

always been an inspiration for new physics. While Higgs induced compensation is expected in the 

standard model, other processes are possible, like Technicolor, little Higgs or even models including 

the standard Higgs mechanism that may include an additional light scalar particle and TeV reso-

nances. Using ZZjj channels in the 300 fb-1 luminosity expected at the end of Run 2, a 30 % statistical 

precision is estimated in the electroweak cross-section measurement for mjj > 1 TeV, value that does 

not allow for definite conclusions on most of the alternative theories. 

 
SUSY remains at the heart of all LHC experimental searches and most up-to-date exclusion 

limits originate from 7 - 8 TeV LHC datasets. Assuming a light LSP (Lightest Supersymmetric 

Particle), exclusion boundaries for squarks and gluinos are currently at 1.4 TeV and 1.0 TeV respec-

tively [11]. Looser constraints have been placed on third generation squarks [8] gauginos and leptons 

[12, 13] where limits depend on the assumed SUSY mass spectrum. While limits will further im-

prove with the expected 14 TeV dataset, exclusion will remain weak at 2.8 TeV exclusion mass for 

the gluino and 2.4 TeV for the squark at the end of Run 1 [14]. 

 

 
 

Figure 4.3: CERN LHC long term operation schedule. Run 2 and 3 extend up to 2022 when the last pro-
grammed technical stop will take place to install HLL-LHC upgrades. 

 

Finally, a luminosity upgrade would substantially increase exotics discovery potential. Alt-

hough several models exist with different features, high PT leptons, photons, jets and missing ET are 

common ground and have to assure that any detector design maintains sensitivity to these signatures. 

High mass top resonances corresponding to a Kaluza-Klein gravitons in the Randall-Sundrum model 

as well as di-lepton resonances originating from a Z’ at the topcolour model are referred as charac-

teristic examples whose mass reach will significantly benefit from a luminosity increase. 
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Current LHC operations planning extends to end of 2022, including a prolonged technical 

stop between the third quarter of 2018 and the end of 2019 for injector and cryogenic systems re-

placement as well as cavern preparation work for ATLAS and CMS detector upgrades [15]. Con-

cluding Run 2 at the end of 2022 (Figure 4.3), a total integrated luminosity of 300 fb-1 is expected 

since the beginning of data taking in 2011 [16].  

 

With the strong physics incentive in various domains detailed above, an upgrade program 

has been decided to extend LHC operation for an additional 10-year period, with technical stops 

every 3 years, accounting for a cumulative 8 years data time. Phase II High Luminosity runs aim at 

a total integrated luminosity of 3000 fb-1 before LHC decommissioning. To achieve this figure, ini-

tial Phase II upgrade studies concentrated on a peak luminosity of 5×1034 cm-2s-1 corresponding to 

an average of 140 interactions per crossing and 25 ns spacing. However, pushing up to the technical 

limits of the machine, a scenario for 7.5×1034 cm-2s-1 peak value is suggested, corresponding to a 

value of μ=200 with a 300 fb-1 per year delivered luminosity.  

 

 

4.2 HL-LHC Upgrade Scenarios 
 

Design goals for ATLAS Phase II upgrades focus to an efficient detector operation under 

these conditions while dedicated studies are performed to investigate the physics potential of even-

tual detector extensions at high eta regions. Channels previously discussed impose different require-

ments on detector performances with respect to final state topology. Higgs studies in gluon-gluon 

production mode via the ZZ*and μμ channels strongly depend on lepton reconstruction and trigger-

ing efficiency while, good vertex definition and PileUp mitigation is imperative for the VBF pro-

duction studies, characterized by forward jets at |η| > 2.5. Studies on the exotics and SUSY, including 

Z’, are strongly affected by lepton trigger and reconstruction efficiencies, missing ET and flavor 

tagging as well as jet vertex association in conjunction with boosted objects identification. Finally, 

Kaluza-Klein searches are mostly affected by b-tagging performance since a b di-jet pair is expected 

at the final state [15].  

 

Three upgrade scenarios were defined, with an attempt to satisfy operational and physics 

requirements for Phase II, based on LS1 detector improvements and representing evolutions in de-

sign and technology of already introduced techniques. These model scenarios, studied under the 

demand of the LHC Scientific Committee, correspond to different upgrade levels of the current lay-

out and are presented in a decreasing order of estimated cost. While the physics case for the High 

Luminosity upgrade is solid, the extend of detector improvements depends on a combination of 

estimated cost and expected performances. In that context, the three following scenarios were indi-

vidually studies and relevant physics performance and discovery potential were evaluated:  

 

1. Reference scenario: A trigger update will be implemented for L0 and L1 triggers, 

working at 1Mz and 400 kHz rates respectively, while high level trigger is set at 100 

kHz. Though the pixel tracker system is extended to η = 4.0 with 12 end-cap discs, 

barrel layers remain to the current number of 3 with a foreseen reduction in pixel size 

(Figure 4.4). A complete replacement of the TRT system is foreseen, with a total of 

six double strip layers including a stub layer for the barrel region and 7 end cap disks, 

covering the same pseudorapidity region as the pixel detector. Despite the fact that 

upgrade of the Liquid Argon Calorimeter electronics is essential due to radiation 

damage limits, in the reference scenario, a new finely segmented Forward Calorim-

eter (sFCal) with 100μm liquid argon gaps will be installed as well as a finely seg-

mented precision timing detector, placed at the 2.4 < |η| < 4.3 region, where current 

electromagnetic calorimeter segmentation is quite coarse. On the muon spectrometer 

stations, an acceptance extension up to |η| < 4 is expected combined with trigger 

system upgrades. New resistive plate and small tube diameter Monitor Drift Tube 
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(sMDt) chambers will be installed in the inner barrel region, with the first ones re-

siding only in the central section while sMDTs will be placed on top of the preexist-

ing ones. Finally, forward trigger calorimeter will be replaced in all three scenarios, 

and front-end MDT readout system will follow the natural eta extension at |η| < 4.  

The total cost of the upgrades is estimated at 275 million Swiss Francs. 

 

 
 

Figure 4.4:  A comprehensive representation the inner tracker scoping scenario geometry. 
For the Pixel detector, red demonstrates the geometry proposed for the low scenario, with 

yellow are denoted the additions proposed for the middle scenario and with orange the 
final additions proposed for the reference scenario. For the strip detector, blue depicts the 
low scenario with the blue green disk also included and light blue-gray regions being sin-

gle-sided strip modules. Light blue symbolizes the middle scenario additions (three full 
barrel layers) while slightly darker blue denotes reference scenario additions, notable the 

two trip disks located next to the last in z direction. 
 

2. Middle Scenario: L0 and L1 trigger rates are reduced to 200 kHz while high level 

trigger will be operating at 50 kHz with a detector readout at 200 kHz for level 1 

stage. On the strip tracker, one disk will be removed from each side with respect to 

the reference scenario as well as the stub layer, while for the pixel detector, an eta 

extension up to |η| < 3.2 will be implemented (Figure 4.4). Though the FCal will not 

be upgraded, a MiniFCal will be placed in front of the existing detector and all calo-

rimetric electronics in the liquid argon and hadronic stations will be replaced. In spite 

of several performance improvements, mainly in the trigger system with finer gran-

ularity L0 MDTs and the addition of RPCs for redundancy and trigger acceptance 

coverage, no extension is foreseen for the muon tracker system. In the main barrel 

region, only easily accessible high eta MDTs and RPCs are replaced, since they are 

expected to receive higher radiation damage. The reduced pixel and strip layers con-

tribute to a slight reduction of the estimated upgrade cost, which for the middle sce-

nario is at the level of 235 million Swiss Francs. 

 

3. Low Scenario: Reduced trigger rates to same values as for the middle scenario are 

expected but, acceptance extensions follow the inner tracker system up to η < 2.4. In 
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the pixel detector, no forward extension to the current η coverage will be installed, 

with six end-cap disks. Strip detector will consist of two full layers and two single 

sided ones following pixel detector for forward region coverage with six full end-cap 

disks. Though no calorimetric or muon extension is foreseen, electronics on all of 

these detectors will be replaced to cope with higher rates and radiation damage. In 

spite of the omission of several pixel and strip layers with respect to the other two 

scenarios and the dramatic downsizing in trigger and electronics upgrades, cost re-

duction is not analogous with an estimated 28 % reduction with respect to the refer-

ence scenario. The scenarios’ total expected cost would therefore be at the level of 

200 million Swiss Francs. 

 

Given the tight timeline as well as the design, production and delivery delays for various 

detector components, production phase for silicon sensors needs to begin at early 2018. In that con-

text, technical documentation and design layouts need to be finalized by mid-2017 with a final de-

cision on the detector layout placed at the end of 2016-first half of 2017.  

 

In the next two chapters, studies relative to the Phase II HL-LHC Run are presented in both 

analysis and hardware level.  In particular: 

 

 Chapter 5 details the observability potential of the bbH(γγ) mode in HL-LHC simulated 

conditions and under for 3000 fb-1 integrated luminosity hypothesis for each of the three 

defined upgrade scenarios. These studies, conducted in the context of the Higgs Prospects 

working group, aim to set limits and to be used as guidelines for upgrades scenario defini-

tion. 

  

 In chapter 6, research and development activities towards a radiation hard, highly granular 

and efficient pixelated silicon tracker are detailed. My personal involvement is exposed in 

various development steps, from the simulation and design stage to testing, performance 

evaluation and radiation hardness studies. The scope of the this work is a contribution to the 

HL-LHC ATLAS pixel detector TDR, proof of concept and investigation of the potential of 

different innovative technologies within the ATLAS and RD50 collaborations.   
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5 Studies on the bbH(→γγ) channel at HL-LHC with 3000fb-1 
 

 

5.1 Introduction 
 

In the previous chapter, the upgrade program for the High Luminosity phase of LHC has been 

presented, together with its strong physics incentive and reach potential. In order to consolidate the 

different upgrade scenarios and validate the scientific motivation, dedicated physics studies were 

performed for the main channels to be studied in HL-LHC. In this context, an analysis aiming to 

identify the sensitivity of the ATLAS detector to the Higgs produced in association with b quarks 

has been conducted. This study concerned the Higgs decaying into two photons, taking profit from 

its clean and high resolution signal in the detector. The analysis was performed within the task force 

of the Higgs Prospects Working group. 

 

5.2 Physics Case 
 
The combined ATLAS and CMS results on the newly discovered boson at a mass of 125 GeV, 

strongly favor its compatibility with the particle predicted by the BEH mechanism. The already 

measured (H→γγ, H→ZZ*→4l, H→WW*, H→ττ) or constrained (H→μμ) decay channels, demon-

strate that the new boson couplings behave as expected from the Standard Model theory within 10-

20 % precision[1-2]. While this result is already an impressive outcome from Run 1, a lot remains 

to be achieved. A precise measurement of the couplings to all elementary particles could allow both 

a consistency check of the SM and testing the validity of various BSM models. 

 

During Run 1, no evidence of a Higgs boson interaction to b-quarks has been observed. Alt-

hough for a mass of 125 GeV, the H→bb mode dominates the total decay width (see Figure 1.8), its 

observation is rendered particularly challenging due to the huge QCD background. Alternative ways 

of probing Higgs coupling to b quark are also possible:  

 

 The Higgs production by gluon fusion takes place through top and b quark loops. Because of 

its small mass, b contribution to the loops is limited in the SM to 10 % of the rate [3 - 7]. The 

Higgs coupling to b quarks could be measured by comparing the corresponding Higgs cou-

pling in ttH production mode to the one measured for gluon fusion production mode. In prin-

ciple, the difference of the two measurements would lead to the b coupling and to top-b 

interferences. 

 

 The associated production of the Higgs with b-quarks (bbH) is of the same order as ttH  

(~ 0.5 pb at √s = 13 TeV). However, because of the low transverse momenta of the b quarks, 

the rate of bbH events surviving a typical analysis is significantly reduced with respect to ttH 

yields. It is well known that in some BSM models (SUSY), the Higgs coupling to bottom 

quarks can be enhanced. This brings a further interest for the measurement of the Higgs to b 

coupling. 

  
Figure 5.1 (a and b): Four flavor scheme production diagrams where final b quarks are not part of initial 

partons (right, 5 a) and five flavor scheme LO diagrams (left, 5 b) were final Higgs boson is irradiated off b 
initial quark. 

(a) (b) 
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Two computations schemes exist in the literature for the treatment of the large (wrt QCD scale) 

b-quark mass [8].In the so-called 4FS scheme, final bottom quarks are not considered as partons of 

the initial protons, while the bƃH final state is generated through the diagrams presented at Figure 

5.1 a in leading order computation.  In the alternative 5FS scheme, the final Higgs boson is created 

by b-quarks from the colliding protons (Figure 5.1 b). For computations performed at all meaningful 

perturbation orders, the two schemes give similar results on inclusive cross-section.  

 

At the expected center of mass energy of 14 TeV for Phase II LHC upgrade, the ratio of the 

expected Higgs associated production mode cross-section with respect to the current value at √s = 8 

TeV nearly doubles (≈ 2.51) (Figure 5.2) [9]. Although this refers to all decay channels, the case of 

bƃH(→γγ) is presented as a more viable alternative, since the di-photon channel provides a clean 

identification mode for the Higgs resonance, with a well-established analysis and efficient photon 

reconstruction and identification. 

 

 
 

Figure 5.2: Cross-section evolution for the different production modes with respect to center of mass energy 
for a mH ≈ 125 GeV. 

 
 

5.3 The bƃH(→γγ) mode 

  
Although strongly suppressed by the small Higgs to di-photon branching ratio, the bbH(→γγ) 

signature allows to profit from the excellent mass resolution of the electromagnetic calorimeter in 

order to improve the sensitivity of the measurement. Typical signal event signature consist of two 

photons originating from the Higgs decay, in conjunction with a b-jet pair, originating from b-meson 

decays within the detector fiducial volume. The narrow Higgs resonance is precisely reconstructed 

by the di-photon invariant mass at ≈ 125 GeV while no resonance in measured with the b-jet pair at 

the di-jet side. 

 

Irreducible background consists of processes allowing for two genuine photons and b di-jet pair 

at the final state, with most prominent the bƃγγ, H(→bƃ)H(→γγ), Z(→bƃ)H(→γγ) and 

t(→b)t(→ƃ)H(→γγ) modes. The resonant peaks of H->bb and Z->bb have large widths (~25GeV) 

and donot allow an efficient rejection without killing an important part of the bbH signal. The ttH 

mode results to a non-resonant di-jet mass spectrum with more energetic b jets. The bbγγ mode gives 

continuum mass spectra for both di-photon and di b-jet systems. 

  

In contrast with the irreducible background, the reducible background is mainly composed of 

one or more misidentified photon objects or wrong flavor attributed jets. Misidentified b-jets from 

charm or light jets, coupled with a di-photon pair, are major contributions from of ccγγ and jjγγ final 

states. In addition, misidentification of a jet or lepton to photon has to be considered. Since this 

contribution is represented by distinct misidentification probabilities (fake rates) separately for jets 

and electrons, main samples affected by this effect include ttlepton, bƃ and ccj inclusive. In the very 
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busy environment expected at high PileUp (μ=200), jet inclusive background may also be taken into 

account. Nevertheless, since flavor misattribution of the di-jet pair and double fake photon selection 

have to occur simultaneously, the effect can be considered as negligible.  

 

By extending Run 1 techniques in performance assessment and PileUp simulation, studies have 

been carried out for both μ = 200 and μ = 140 interactions per crossing, in all three scoping scenarios 

defined in the previous chapter (see section 4.2).  
 

 

5.4 MC Samples 

 
Official ATLAS 14 TeV MadGraph5 / Pythia8 NLO production at 14 TeV was used for all 

modes and detailed information are provided in the following table (Table 5-1).  
 

Sample Generator σ x BR (fb-1) Eq. Lumi (fb-1) Nb. Events Weight 

𝛧(𝑏�̅�)𝛨(𝛾𝛾) Pythia8+Photospp 0.29683 3368932 9.80E+05 0.00091 

𝑡𝑡̅𝛨(𝛾𝛾) MC@NLO 1.39 83863 1.17E+05 0.036 

𝑡𝑡̅𝛾 MadGraph+Pythia8 2717.5 3680 9.95E+06 0.82 

𝑡𝑡̅l 
MC@NLO+Herwig

+Photos+Tauola 

812260 18.45 1.50E+07 162 

𝑗𝑗𝛾𝛾 MadGraph+Pythia8 22256 2247 4.83E+07 1.38 

𝑏�̅�𝑗𝑗 MadGraph+Pythia8 93680000 0.006 5.75E+05 48900 

𝑏�̅�𝑗𝛾 MadGraph+Pythia8 264000 69.4 1.83E+07 43 

𝑐𝑐̅𝛾𝛾 MadGraph+Pythia8 1573.6 12710 2.00E+07 0.24 

𝑐𝑐̅𝛾𝑗 MadGraph+Pythia8 2471300 10 2.50E+07 296 

𝑏�̅�𝛾𝛾 MadGraph+Pythia8 338.12 13309 4.50E+06 0.22 

𝛨(𝑏�̅�)𝛨(𝛾𝛾) MadGraph+Pythia8 0.1073 2795899 3.00E+05 0.00107 
 

 
Table 5-1: Detailed list of MC samples with generator information and scaling factor to 3000 fb-1 used at 

the bbH analysis. 

 

Depending on the generated statistics and nominal cross-section anticipated at 14 TeV, a weight 

has been computed to scale the expected number of events from each process to the luminosity of 

interest according to the following formula (equation 5-1): 

 

𝒘 = 𝟑𝟎𝟎𝟎 ×
𝝈 × 𝑩𝑹 (𝒇𝒃−𝟏)

𝑵𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅
             ( 5-1 ) 

 

where w is the corresponding sample weight for 3000 fb-1 and NGenerated the number of generated 

events. For several samples, especially the bbjj, 𝑐𝑐̅𝛾𝑗 and 𝑡𝑡̅l, low available statistics resulted to a 

large normalization factor, inducing important fluctuations in several distributions. In most of the 

cases, the size of the needed additional samples was prohibitive with respect to the deadlines and 

the computing resources. 

 

 Lack of fully simulated samples at all streams imposed the use of truth level datasets with no 

reconstructed information available. Specific efficiency and smearing functions have been applied 

to the truth variables to model detector and reconstruction effects. 

 

5.5 Object pre-selection and treatment 

 
Key objects in this analysis include photons, jets, electrons and muons. Since the available 

simulation samples contain only truth information, energy (for all objects) and position (for photons) 

mailto:MC@NLO
mailto:MC@NLO+Herwig+Photos+Tauola
mailto:MC@NLO+Herwig+Photos+Tauola
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is smeared to represent Phase II anticipated performances. Smearing studies are based either on fully 

simulated samples at 14 TeV or on extrapolations from current detector resolution. Functions de-

rived from fully reconstructed MC samples are subsequently used to apply trigger, identification and 

fake efficiencies to leptons and jets. To emulate truth experimental conditions, any such functions 

are applied in a probabilistic way, with seeds generated in a per event manner, to ensure reproduci-

bility. Finally, in order to evaluate the fake rates of jet→γ, jet→e, PT/η dependent functions are being 

provided for photon and electron cases separately. Subsequent fake objects are uniformly treated 

with their real counterparts in the rest of the analysis.  

 

A comprehensive description of the most relevant objects and their applied corrections is pre-

sented below: 

 

 Photons are measured by the electromagnetic Liquid Argon calorimeter with an ac-

ceptance extending up to |η| = 2.47. Object energy and position are smeared in accord-

ance with extrapolated performances for photons with a generated PT > 10 GeV. Figure 

5.3 demonstrates the smearing effect for photons in the bbH sample before any pre-

selection. Overall energy resolution is in the order of 5.4 % (Figure 5.3 a) while for 

the position a 3 % resolution is observed (Figure 5.3 b). 

 

 
 

Figure 5.3 (a and b): Energy resolution (left) and resolution in pseudorapidity (right) intro-
duced by the smearing functions for photons. Distributions generated for the optimal sce-

nario using 105 bbH events. 

 

 Electrons can be identified and characterized by both the electromagnetic calorimeter 

(energy) and the tracking system (pixel and strip inner trackers). Similarly to the pho-

ton case, they undergo a truth energy and position smearing while, detection fiducial 

region remains unchanged (|η| < 2.47). Electrons and other leptons included in the used 

simulation samples, originate from heavy flavor semileptonic decays and are later used 

to veto such events. Electrons are also considered to estimate the fake photon misiden-

tification. 

 

 Muons are measured by both the muon spectrometer and the inner detector. A trans-

verse momentum smearing with an acceptance up to the region of |η| < 4, depending 

on the probed scenario. Muons within the analyzed datasets originate from heavy flavor 

semileptonic decays and serve to reject such events through an isolated lepton veto, at 

the last stages of the pre-selection. 

 

 Jets are defined by the AntiKT40 algorithm [10], evaluating energy deposits and distri-

butions in both the hadronic and electromagnetic calorimeter, contained within a cone 

of ΔR = 0.4 with respect to the selected jet barycenter. In the reconstruction process, it 

is quite common for a photon or electron to also be represented as a jet candidate, with 
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slight position and energy variations. Resulting overlapping objects are subsequently 

excluded by requiring maximum jet proximity to leptons and photons no less than ΔR 

= 0.1 within the calorimeter, defined as:  

 

𝛥𝑅 = √(𝑋𝛾 − 𝛸𝑗𝑒𝑡)
2 + (𝛶𝛾 − 𝛶𝑗𝑒𝑡)

2             ( 5-2 ) 

 

Whenever this requirement is not respected, the electromagnetic energy fraction of the 

photon/lepton is calculated. If this fraction is found to be within 15 % of the jet energy, 

the jet is considered as the primary object while the photon/electron is rejected. Smear-

ing is applied to surviving jets in a transverse momentum interval between 15 GeV and 

1.5 TeV, as a function of their truth energy and position, within a respective momentum 

resolution of ~ 25 %. An additional energy rescaling, referred as JES, is also performed, 

accounting for parton radiation outside the jet cone. This process is subsequently con-

trolled by requiring the position of the invariant 𝑏�̅� mass in Z-boson events to be in its 

nominal PDG value. Figure 5.4 demonstrates the effect of smearing while energy 

rescaling can be observed on Figure 5.5. Jets are measured along the acceptance of the 

tracking system as defined by the various upgrade scenarios. In the studies concerning 

the scoping document, three acceptance regions are considered, one for each of the 

three proposed detector upgrade scenarios, with |η| < 2.4, |η| < 3.2 and |η| < 3.8 respec-

tively. 

 

 
 

Figure 5.4: Jet transverse momentum sme- Figure 5.5: Jet energy before and after 
aring resolution with a width of  parton rescaling (Reference 
30 % computed for the reference   scenario, using complete ZH  
scenario with 105 bbH events.  sample). 

 

 Pileup response in HL-LHC conditions is emulated for instantaneous intensities corre-

sponding to a μ = 140 and μ = 200 interactions per crossing. A superposition of addi-

tional jets in the physics simulated samples is performed, on an event by event basis. 

PileUp jets are thereafter referred as “PU” to distinguish from true hard scatter pro-

cesses QCD produced jets, referred as “HS”. Dedicated PU libraries have been pro-

duced integrating expected Phase II conditions while, complete energy rescaling is 

already applied at generator level. Since no true level information is available for the 

PU part, special handling is required with respect to flavor tagging, identification per-

formances and fake object generation.PU jets have in general lower energy than the 

HS ones. Their pseudorapidity distributions exhibits distinct patterns, depending on the 

scoping scenario and the considered instantaneous luminosity (Figure 5.6 b). As ex-

pected, the number of PU jets per event increases when passing to higher μ values 

(Figure 5.6 a).  

 



Studies on the bbH(→γγ) channel at HL-LHC with 3000fb-1  Chapter 5 
 

 102 

 
 

Figure 5.6 (a and b): Number of per event PU jets (left, Figure 5.7 a) and their pseudorapidity 
distribution (right, Figure5.7 b) contained in the libraries corresponding to µ= 140 (blue) and to 
µ = 200 (red). Distributions are generated for the optimal scenario using 105 bbH events. 

 
 Fake jet→photon probability application is performed on all available jet objects after 

PU addition and jet-photon-electron overlap removal. Photon-like energy and position 

smearing is performed in the original truth jet quantities to all selected objects and are 

subsequently treated as true photons. In the case of PU jets, rescaling is applied in the 

already smeared jet energy itself, since no true information is available in the library. 

The effect of this additional smearing has been evaluated thought a truth jet study on 

the bbH sample. A 1 % difference is observed on the final photon quantities originating 

from already smeared jet energy with respect to those computed from purely truth in-

formation. 
 

 Fake jet→electron transformation is performed in an equivalent manner to the 

jet→fake photon case. The same limitations as previously mentioned apply for the PU 

component and electron-like rescaling is performed with respect to pre-smeared jet 

energy. The effect was also evaluated in an equivalent as in the fake photons case study, 

using true electrons from the bbH sample. A 0.7 % deviation was observed to final 

electron energy when the appropriate smearing was applied on jet-rescaled quantities. 
 
 Fake electron→photon misidentification probability, corresponding to truth electrons 

without reconstructed tracks, is in the order of 2 % in the barrel (|η| < 1.37) and 5 % in 

the end cap calorimeter (1.52 < |η| < 2.47). The effect is taken into consideration after 

jet overlap removal while, photon smearing is performed to truth electron quantities. 
 

5.6 Analysis Requirements 

 
After smearing application to object energy and position, a series of cuts is employed to in-

crease signal to background ratio. In detail: 

 

1) Spatial isolation: In order to guarantee optimal energy measurement, objects are required 

to be well separated in the calorimeter. An isolation of 𝛥𝑅 = √𝛥𝛷2 + 𝛥𝜂2 = 0.2 between 

electromagnetic objects (electrons and photons), corresponding to the electromagnetic clus-

ter cone used for the electron and photon reconstruction, is required. Since jet definition is 

performed using the AntiKT40 algorithm, an additional separation of ΔR = 0.4 is required 

between any pair of HS or PU jets. Nevertheless, since the PU library was produced sepa-

rately from any of the physics samples, the isolation requirement is not present between PU 

and HS jets and has to be applied as an additional cut at the final stage of the analysis.  
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2) B-Jet identification: Jet b-flavor tagging probability is estimated using PT/η dependent 

functions derived for expected Phase II run conditions. Extrapolations are performed using 

fully simulated 𝑡𝑡̅ events including complete PU implementation. Three different variants 

are utilized: one characterizing the probability of a truth b-jet to be tagged as such, with a 

70 % acceptance yield while rejecting 98 % of PU jets; a second corresponding to the prob-

ability of a truth charm jet to be tagged as b; and a third, evaluating the rate of light jets 

surviving the b-tagging process. A fourth function has also been implemented specifically 

for PU jets, because of the difference between the used frameworks for the production of 

physics samples and the PU libraries. These functions have different forms depending on jet 

transverse momentum and pseudorapidity.  

 

 
 

Figure 5.7: The light-flavor jet rejection versus the b-jet efficiency for the MV1 b-tagging algorithm in 
the Reference (black), Middle (blue) and Low (red) scenarios for a pile-up of 140 (left) and 200 (right) 

for jets with PT > 20 GeV and |η| < 2.7. The dashed curves are for jets in the Reference layout for  
|η| > 2.7. The equivalent Run 1 operating point is shown by a green star [11]. 

 

In Figure 5.7 light jet rejection with respect t b-tagging efficiency is presented for all 

three scenarios. Quoted results are extracted using the MV1 tagging algorithm [12], com-

bining track impact parameter and secondary vertex information in a neural network ap-

proach. Training is performed using Run 1 b-jet events as signal and light jets as 

background. Due to limitations on the number of events of the fully simulated samples 

(50.000), tagging efficiency is parameterized in order to construct a smooth continues map 

[13] using a two dimensional fit as a function of PT and |η|. Flavor tagging was optimized 

for all physics analysis channels, including compromises to accommodate an acceptable 

level of efficiency in all jet categories. 

 

Concerning the different scoping scenarios, structural differences on the pixel and 

strip trackers heavily effect flavor tagging performance. All relevant efficiencies as a func-

tion of pseudorapidity are presented in Figure 5.8 for each one of the three scenarios and jet 

flavor. Little performance difference between the middle and reference scenarios for |η|<2.7 

is observed, but a small degradation for the later is seen at higher eta, with respect to the for 

the truth b-jet component. For the central region, tacking performances for the reference and 

middle scenarios are similar, leading to comparable b-tagging efficiencies. Nevertheless, 

extensions in forward calorimeter and tracker for the reference scenario allow for a higher 

number of PU jets to be reconstructed in these regions, effect that degrades the true b-jet 

yield. For the low scenario, tracking efficiency drops by 5% with respect to the other two 

and fake rate increases by a factor of ten. The b-tagging performance is subsequently heavily 

affected, with an increase in mis-identification and PU tagging for the fixed working point 

of 70%. Although these results did not use any re -optimization for the number of hits pre 

track as a function of η per scenario due to lack of statistics in the simulated samples, pre-

liminary cross-checks demonstrate a potential for 30%improvement in mis-tagging for the 

central region. 
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Figure 5.8: B-tagging efficiency for truth b-flavor (top left), c-flavor (top right), light jets (bottom left) 
and PU jets (bottom right) for the optimal (gold), middle (blue) and low (red) scenarios. Efficiencies are 
derived using the bbH complete sample in the μ = 200 case after object preselection and isolation re-

quirements. 

 

3) Photon identification:  Photon identification criteria are defined with respect to their rejec-

tion power over jets. A tight selection is applied through corresponding transverse momen-

tum dependent functions, yielding a mean efficiency of 70 % (Figure 5.9 a). A significant 

efficiency reduction is observed for the low energy region. This decrease, starting at PT < 90 

GeV, reaches a value of 40 % at the lowest allowed limit of 25 GeV. In the eta region, 

(Figure 5.9 b) identification efficiency remains stable with the exclusion of the calorimeter 

crack positions, excluded from photon definition.  

 

 
 

Figure 5.9 (a and b): Tight identification efficiency for photons with respect to transvers momen-
tum (left, Figure 5.9 a) and pseudorapidity (right, Figure 5.9 b) distributions. 

 

4) Fiducial cuts: While for photons, electrons and muons no difference across scenarios is 

expected, extensions of the inner tracker at high eta regions, would increase jet acceptance 

when passing from the low to the reference scenario (Table 5-2). For the photon and fake-
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photon cases, the calorimeter crack region is excluded to recover decreasing efficiency. Fi-

nal acceptance is fixed for leptons and photons to the current |η| < 2.4 across all scenarios 

while, the minimum allowed jet PT is imposed from the jet energy calibration uncertainties, 

extrapolated for Run 2 conditions, at 30 GeV. 

 

Object Reference Middle Low 

Jets 
PT > 30GeV 

|η| < 3.8 |η| < 3.2 |η| < 2.4 

e- and jet→ e 
PT > 30GeV 

1.52 < |η| < 2.4  and 1.52 < |η| < 2.4 

μ 
|η| < 4 |η| < 3.2 |η| < 2.4 

PT > 25GeV 

γ, jet→ γ, and e-→γ 
|η| < 1.37  and 1.52 < |η| < 2.4 

PT > 30GeV 

 
Table 5-2: Final object kinematic cuts for all three scoping scenarios. 

 

5) Final Cut-flow Overview: The analysis is completed with a di-photon trigger requirement 

at the minimum expected Run 2 threshold of 25 GeV for both objects.. The linear order of 

sequential analysis steps is detailed in the following: 
 

1. Energy and angle smearing on photons, true electrons, jets and muons. 

2. PU jet overlay 

3. Jets overlap removal with respect to photons and electrons 

4. e→γ and jet→γ fake generation 

5. Photon, electron and muon candidates’ isolation with respect to jets 

6. Final kinematic cuts on isolated objects 

7. PT/η dependent efficiency functions application on all objects 

8. ≥ 2 b-tagged jet requirement 

9. Trigger requirement for the di-photon pair per combination (see below) 

10. Event rejection in presence of additional isolated muon or electron per combination 

(see below) 

 

 

5.7 Event treatment and multiple combinations. 
 

As previously described, PT/η dependent efficiencies concerning fake rates, photon reconstruc-

tion efficiency, flavor identification and electron-muon efficiencies are applied in a probabilistic 

manner. Surviving objects are used to form di-jet and di-photon combinations. It is quite usual that 

more than one quadruplet can be formed in a single event, satisfying all imposed analysis criteria.  

In an attempt to increase statistics, especially for the more problematic 𝑡𝑡̅l, 𝑏�̅�𝑗𝑗 and 𝑐𝑐̅𝛾𝑗 samples, 

a multiple combination approach is implemented, considering all surviving jet and photon objects 

as final quadruplet candidates. For each individual combination, an additional condition is applied 

to ensure that the two photon and b-jet candidates originate from different truth–level objects. Iso-

lated lepton veto and di-photon trigger are independently applied in a combination level, especially 

since a truth electron can also be considered as a photon. Finally, an individual combination weight 

is computed, equal to 1 over the total number of combinations passing the selection per event. In 

samples with relatively high PU or jet contamination, the number of individual combinations can 

have tails up to several hundred per event.  
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Sample Initial Nb. of Events 
Selected Combinations 

Low Middle Nominal 

𝛧(𝑏�̅�)𝛨(𝛾𝛾) 9.80E+05 40562 42887 42209 

𝑡𝑡̅𝛨(𝛾𝛾) 1.17E+05 14033 13751 13675 

𝑡𝑡̅𝛾 9.95E+06 13020 13236 13370 

𝑡𝑡̅l 1.50E+07 271 284 290 

𝑗𝑗𝛾𝛾 4.83E+07 84992 73805 77965 

𝑏�̅�𝑗𝑗 5.75E+05 3 4 4 

𝑏�̅�𝑗𝛾 1.83E+07 7907 8856 8907 

𝑐𝑐̅𝛾𝛾 2.00E+07 169113 142515 146921 

𝑐𝑐̅𝛾𝑗 2.50E+07 2318 1927 2080 

𝑏�̅�𝛾𝛾 4.50E+06 91515 99285 98750 

𝛨(𝑏�̅�)𝛨(𝛾𝛾) 3.00E+05 29457 30949 31137 

𝑏�̅�𝛨(𝛾𝛾) 9.50E+05 36211 40237 40745 
 

Table 5-3: Available statistics per sample and final number of selected combinations for each of the three 
scenarios. 

 

While the sum of jet identification probability, jet to photon fake probability and jet to electron 

fake probability can in several cases exceed unity, an intrinsic rescaling is imposed by the probabil-

istic nature of the applied selection. Highest priority is given to true identified b-jets, followed by 

fake jets→photons and jet→electrons. The same selection procedure also applies for electrons, with 

the highest priority given to true identified electrons followed by fake electron to photon. 

 

Table 5-3 presents available event statistics for each sample in terms of initial number of events 

and final selected quadruplet combinations. While one would expect combinations to increase while 

moving to a higher acceptance scenario, this is not always the case (for ex ZH. ttH, bbγγ samples). 

Actually, the PU rejection is improved due to better tracker implementations. Nevertheless, an in-

crease on weighted events is observed when extending detector acceptance. Although angular dis-

tributions are different for background modes, a truth-level study on the bbH sample demonstrated 

a 10 % increase when the outermost forward region is included [14]. 

 

 

5.8 TMVA Analysis 

 
A TMVA based analysis has been used to maximize signal to background separation, The 

Boosted Decision classification algorithm is implemented using 3000 trees and 3-level training 

depth. 

 

Available dataset was divided into two equal portions, with one half used for training and the 

other for testing. During the training procedure, negative interference weights, present at the ZH 

sample, were not taken into consideration. However, in order to avoid biasing, they corresponding 

events were consecutively considered during application on the testing sample. A series of kinemat-

ical variables were used to identify the most discriminant ones, like the position and energies of 

photons and jets, their spatial separation, the quadri-vectors of di-photon and di-jet systems, and the 

four-object quadri-vector. Analysis was run in two consecutive iterations with most of the available 

variables introduced in the first attempt, where the ten most discriminating were defined. These 

variables were subsequently used during the second iteration for the BDT training (appendix 5.1). 

Given the large rescaling factor of the 𝑏�̅�𝑗𝑗 sample, it was not considered in the TMVA analysis 

while, pre-training normalization is performed with respect to the signal for individual backgrounds, 

to minimize statistical fluctuations. For each Scoping scenario, a specific training was performed 

since the kinematic distributions differ. Reference scenario training was used to define the optimal 

BDT cut point, giving the best sensitivity. The same BDT-cut was also applied to extract the sensi-

tivities of the two other scenarios. 
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The full analysis was performed for both, the mu=140 and mu=200 cases. Results are shown 

below. 

 

5.8.1 Results with a μ = 200 value 

 

Jets and -especially- sub-leading photons exhibit a particularly structured distributions at high 

values of pseudorapidity. The effect originates from the distinctive PU jets pseudorapidity distribu-

tions, available in the μ = 200 library, convoluted with the dedicated b-tagging efficiency functions. 

The effect is more pronounced for the sub-leading b-jet, often originating from PU pollution. In 

Figure 5.10, pseudorapidity distributions of the final selected jets are presented for the reference 

scenario using the complete bbH sample. In addition, PU originating fake-photon pollution is intro-

duced in the di-photon object selection, affecting all three scenarios at different levels. Correspond-

ing pseudorapidity distribution for di-photon pair suffer, as a result, from the PU characteristic 

structures in the extended eta regions, with respect to the μ = 140 and the no- PileUp analysis case. 

 

 
 

Figure 5.10: Pseudorapidity distribution of the sub-leading jet (blue line) for the bbH full sample. The high η 
structures as well as the particular increase at η ≈ 2 are characteristic of the PileUp contamination. In red, 

the fraction of the PU jets is shown. 

 

In Figures 5.11, 5.12 and 5.13, the most relevant variables for the photons, jets, di-photon, di-

jet and quadruplet objects are presented. Except for the jet isolation applied at an annulus of 0.4 for 

the final di-jet pair, no additional pre-selection cuts are requested. While the signal is composed of 

a clearly distinguishable di-photon mass resonant distribution at the Higgs mass value, background 

is comprised both of a non-resonant part, corresponding to inclusive di-photon processes and a 2γ 

resonant one, composed of the 𝑡𝑡̅𝛨(𝛾𝛾), 𝛧(𝑏�̅�)𝛨(𝛾𝛾) and 𝛨(𝑏�̅�)𝛨(𝛾𝛾) samples. The di-photon 

mass of the H→γγ decay is clearly visible at the mγγ distribution on the Higgs mass value while, the 

non-resonant component of the background is extended over a large region. Signal and background 

contributions in the following figures have been normalized. 

 

Concerning the leading and sub-leading jets, no important discrimination power can be ob-

served for the transverse momentum and eta distributions (Figure 5.11). To evaluate PU contami-

nation of the final selected events, a negative indexing was used for all PileUp originating objects. 

Corresponding distributions for photons and jets are also presented. Though the sub-leading jet is 

slightly more affected, in general the percentage of PU jets at the final stage is less than 1 %. Such 

a behavior can be explained by the increased PU rejection of the flavor tagging algorithm and the 

lower transverse momentum threshold of the PU component. Finally, the only di-jet variable of dis-

criminating value is the separation of the selected jets (ΔRbb), with the signal and background distri-

butions differing substantially. Nevertheless, the strong peak at ΔR < 1, seen for the signal is a 

simulation effect, derived by the fact that non final-state b-hadrons are considered as individual jets. 

In that sense, along the cascade of b-hadronization, several jets can be constructed from the same b-
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quak with slightly different positions and energies, resulting in a very close final di-jet pair. Although 

this effect is at a generator level, an additional pre-selection cut ad ΔRbb > 1 was introduced to 

compensate. 

 

 
 

 
 

 
 

Figure 5.11: Transverse momentum, eta and index distributions for leading and sub-leading jets as well as 
mass, transverse momentum and separation distribution of the combined di-jet pair. Signal is presented in 

blue while in red is plotted the combined background.  

 

On the photon side (Figure 5.12), the separation power of the pseudorapidity for both leading 

and sub-leading photons is very weak, since differences between signal and background seem to be 

primary of statistical nature. Concerning the transverse momentum, on both the leading and sub-

leading photon, the signal seems to exhibit higher PT values than the background. One can therefore 

suggest a cut at 75 GeV for the leading photon and around 40 GeV for the sub-leading as an option 

to consider for a cut based approach. Evaluating the PU contamination from the index distributions, 

one can infer that the sub-leading photon is significantly affected for background samples. As a 

result, a large percent of the sub-leading photons on background events are actually misidentified 

PU jets, effect that reflects to the final background composition. On the di-photon pair side, the 

photon separation and the combined mass are the most discriminating variables, especially because 

of the resonant nature of the signal. 
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Figure 5.12: Transverse momentum, η and index distribution of leading and sub-leading photons as well as 
η, ΔR and invariant mass distribution of the di-photon pair. Signal is presented in blue while in red is distin-

guishable the combined background. Normalization is performed with respect to training weights. 

 

 

 
Figure 5.13: Invariant mass and transverse momentum distributions of the combined quadruplet, additional 
jets in the final event, di-photon pair transverse momentum and leading-photon jet separation distributions 

for signal and background. 
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Finally, several reconstructed quadruplet variables are presented in Figure 5.13, with only the 

leading photon-jet separation (ΔRγ1j1) demonstrating a potential use for signal to background dis-

crimination. This is mainly a result of the particular bbH system topology. Higgs photons are mainly 

expected in the central region while, for the bb system, forward geometries are favored. On the other 

side, the number of additional jets per event, the quadruplet invariant mass and its transverse mo-

mentum are not of any significant discrimination value, especially due to the large number of back-

ground process considered, which generate a continuum spectra.  

 

By evaluating the discrimination power of the variables presented on Figures 5.11 - 5.13 only 

ten were considered for the final TMVA training and optimization. These include separation of the 

di-photon pair (ΔRγγ), di-jet pair (ΔRbb) and leading photon-jet (ΔRγ1j1), pseudorapidity of all four 

objects separately, di-photon mass, transverse momentum of the final quadruplet and the of the sub-

leading photon. Index distributions are presented for evaluation purposes exclusively and to explain 

background compositions but, since they constitute truth level information on object origin, they 

cannot and are not considered in any stage of the analysis. 

 

Considering the significant separation power of the di-photon mass, an additional TMVA anal-

ysis was performed where a pre-selection cut was applied for the region of 120 GeV < mγγ < 130 

GeV. In spite of this pre-requirement, the di-photon mass was still included as a variable during 

BDT training. A significant background reduction is obtained for all non-resonnant 2gamma pro-

cesses. The price to pay is the introduction of important fluctuation of the template shapes of the 

discriminating variables, as shown in Figure 5.14.  

 

 
 

 
 

Figure 5.14: Input variable distribution of the ηγ2, ΔRbb, ΔRγγ, PT(γ2), ΔRγ1j1, mγγ for the nominal 
scenario in the case of a a 120 GeV < mγγ < 130 GeV cut. The blue area represent the single region 

while with red is represented the combined background. 
 

The effect of the di-photon mass cut on the final BDT distribution is clearly visible on the signal 

and background probability distribution functions, presented for the reference scenario in Figure 

5.15. On the left hand side, the non-resonant background component is located towards negative 

BDT values and dominates the background population. The signal, as well as the resonant back-

ground contribution, are situated on the positive end of the plot. On the right hand side of Figure 

5.15, where a mass range of 120 – 130 GeV has been required for the di-photon mass, the major part 
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of the non-resonant background is suppressed. Some tails still survive together with almost all events 

from the resonant contributions, mainly the HH, ZH and ttH processes. Strong statistical fluctuations 

are observed in this case for the background BDT distribution. In both figures, the signal and back-

ground distributions are normalized.  

 

 
 

Figure 5.15: BDT response and output PDFs for the signal in blue and the background in red at the reference 
scenario. All distributions are normalized with respect to signal while, training and testing samples are plot-
ted together, with testing data represented as points. Left hand plot corresponds to no di-photon mass pre-

selection cut BDT output while right hand to a 120 GeV < mγγ < 130 GeV cut. 

 

For each value of BDT response, the expected combined background and signal events are 

computed in all three scenarios while, the anticipated significance is calculated with corresponding 

uncertainty. In a simplistic Analysis of Variance approach, where a statistical test is applied, the null 

hypothesis for the observation of a specific signal corresponds to the background only observation 

[15]. On the other hand, the median hypothesis would correspond to a signal plus background ob-

servation. In this case, assuming considered data respect a Gaussian distribution, the p0-value can be 

expressed as: 

 

𝑝0,𝑏 = ∫ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑛|𝑏, 𝜎)𝑑𝑛
∞

𝑠+𝑏
  with   σ = √𝑏              (5-1) 

 

By performing a variable modification under the definition u=(n-b)/σ, the Gaussian can be re-

duced to an error function, allowing to identify the expected significance as: 

 

𝑝0,𝑏 = ∫ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢|0,1)𝑑𝑢
∞

𝑠/√𝑏
              (5-2) 

 

In this case, the number of events, defined always as a positive number, is consequently ex-

pressed as: 

 

𝑝0,𝑏 = 1 − ∫ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢|0,1)𝑑𝑢

𝑠

√𝑏

0
= 1 − 𝛷(𝑠/√𝑏)               (5-3) 

 

The final significance of the observation hypothesis is subsequently defined as the number of 

signal events divided by the square root of the expected background events (equations 5-4).  

 

𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒄𝒆 =
𝑵𝒔𝒊𝒈

√𝑵𝒃𝒌𝒈
              (5-4) 

 
While Monte Carlo statistical uncertainties were not introduced to the significance computa-

tion, they have been taken into account in the calculation of the corresponding uncertainty, thus 

contributing to the end result. The equivalent formula for the significance uncertainty is presented 

in equation 5-5. 
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𝝈𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒄𝒆 = √
𝝈𝒔𝒊𝒈
𝟐

𝑵𝒃𝒌𝒈
+∙

𝑵𝒔𝒊𝒈
𝟐

𝟒∙𝑵𝒃𝒌𝒈
𝟑 ∙ 𝝈𝒃𝒌𝒈

𝟐              (5-5) 

 
where Nsig represents the number of signal events with score greater than the selected BDT value 

Nbkg the number of background events with score greater than the selected BDT value 

σsig the uncertainty on the signal 

σbkg the uncertainty on the background  

 

To compute the statistical uncertainty of the signal and background events one needs to take 

into account not only the normalization weight of each sample as defined in Table5-1 but also the 

individual weight of each quadruplet combination, as described at the beginning of section 5.1 Cor-

responding uncertainties are described by equations 5-6 and 5-7: The index j on the first summing 

term of equation 5-7 runs through all of the different background samples. 

 

𝝈𝒔𝒊𝒈 = √𝑭𝒔
𝟐 ∙ ∑ 𝒘𝒊

𝟐𝑵𝒔𝒊𝒈
𝒊=𝟏                (5-6)             𝝈𝒃𝒌𝒈 = √∑ 𝑭𝒃𝒋

𝟐𝒃𝒌𝒈
𝒋=𝟏

∑ 𝒘𝒊
𝟐

𝑵𝒃𝒌𝒈, 𝒋
𝒊=𝟏              (5-7) 

 

where Fs is the signal normalization factor 

Fbj is the background sample normalization factor 

wi the individual weight of each combination 

Nsig the total number of signal events 

Nbkg the total number of background events for the specific sample (denoted as j) 

 

 

Significance distributions with respect to different BDT cut values for all three scenarios are 

presented in Figure 5.16. Signal and background un-normalized PDFs for each case are also in-

cluded. A stable BDT cut point is selected such as to achieve significance maximization for the 

reference scenario, while avoiding any instabilities on neighboring bins at the higher end of the 

distribution. Such fluctuations are to be expected due to lack of background statistics, especially for 

the increased normalization factor datasets.  

 

 

 
 

Figure 5.16: Significance distributions, signal and background PDFs for all three scenarios when no mass cut 
is applied for a μ = 200 value. From left to right: Low, Middle and Reference scenarios are presented Fluctu-

ation on the higher end of the significance distributions are due to lack of background statistics in the in-
creased weight samples. 
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At the higher end of the significance distribution, where background and signal events are 

reduced, slight variations of the BTD cut value may induce important variations, by exclusion or 

inclusion of a single high weight background event. Once the significance is recalculated and the 

excluded event weight is factored, large jumps can be observed, leading to discontinuities in the 

corresponding distributions. To avoid inconsistent regions, the optimal cut point is defined as the 

one presenting high significance but not situated to the proximity of fluctuating neighbor bins. This 

optimization is performed only for the reference scenario and the selected point is applied to all other 

cases, with the constraint of always remaining within a stable region of the significance distribution. 

Statistical fluctuations tend to increase towards the low scenario, partially because of background 

and signal events reduction due to acceptance limitations of the detector volume.  

 

 
 

Figure 5.17: Significance distributions, signal and background PDFs for all three scenarios when  
120 GeV < mγγ < 130 GeV is required for a μ = 200 value. From left to right: Reference, Middle and Low sce-
narios are presented Fluctuation on the higher end of the significance distributions are due to lack of back-

ground statistics in the increased weight samples. 

 

In the case of 120 GeV < mγγ < 130 GeV cut TMVA analysis, the optimal cut point can be 

found in lower classifier values, since a large portion of the previously background dominated region 

has been removed. However, the presence of fluctuations at the high end of the distribution is still 

apparent, following the same trend per scenario as in the no mass cut analysis case (Figure 5.17). 

Since the di-photon mass pre-selection is mostly removing non-resonant background situated tradi-

tionally at lower classifier values (Figure 5.15) it is expected that fluctuations induced due to re-

duced background statistics will become more prominent with respect to the no mγγ cut analysis. 

 

Final results for all three scenarios are presented in Table 5-4. For the no mass cut case, the 

analysis clearly favors the reference scenario with an increased significance and a marginal increase 

in the increase expected signal and background events with respect to other two scenarios. The as-

cending order of improvement coincides with the pseudorapidity extension foreseen in each case, 

while the three scenarios are incompatible within uncertainty limits. By applying a di-photon mass 

pre-selection, a large part of the non-resonant background is absent, allowing for a lower cut value, 

accounting for an observed increase in the expected signal and background. Nevertheless, relaxing 

the BDT cut introduces additional fake photon backgrounds, resulting in a degradation of the overall 

significance. Since fake background follows the jet pseudorapidity distribution, an increase is ob-

served when the acceptance is extended, resulting in an inverse order of scenario ranking, with re-

spect to the no mγγ cut case. In the di-photon mass cut case, all three scenarios remain compatible 

within the uncertainties, not allowing any definitive conclusions. IN spite of this initial interpreta-

tion, increased uncertainties due to lack of statistics make all three scenarios compatible and may 

account of the observed ordering effects. 

 

Significance -Reference Scenario Significance – Middle Scenario Significance – Low Scenario
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 Reference Middle Low 

M
a

ss
 

C
u

t 

Significance 0.182 ± 0.030 0.185 ± 0.032 0.188 ± 0.029 

signal 12.77 ± 0.13 12.53 ± 0.13 10.70 ± 0.12 

Background 4922 ± 1134 4561 ± 1100 3219 ± 702 

N
o

 

m
a

ss
 

cu
t 

Significance 0.225 ± 0.034 0.170 ± 0.040 0.131 ± 0.031 

Signal 8.78 ± 0.11 8.75 ± 0.11 7.38 ± 0.10 

Background 1516 ± 324 2659 ± 880 3153 ± 1060 
 

Table 5-4: Significance value and expected signal and background events for all three scenarios in the two 
TMVA cases, with and without the di-photon mass cut pre-selection at μ = 200. 

 

Although in significance calculation only a statistical error is included, a large systematic un-

certainty is also expected. Given the ~ 5 ‰ signal to noise ratio of the analysis, an evaluation of a 

systematic uncertainty on signal and background samples would induce an increased uncertainty on 

the final calculated significance. For the simplest case where the same value is assumed for all back-

ground and signal samples, a conservative 10% systematic would induce a 30% increase on the 

uncertainty of the final significance. This level drops to 8% uncertainty increase if a 5% systematic 

is evaluated for all samples.. With respect to the relevant distributions (Figure 5.17), such an issue 

can introduce systematics directly to the significance, up to the order of 30% depending on the sta-

bility of the classifier at the selected BDT cut value. 

 

Stream 
Reference Middle Low 

Events Yield %  Events Yield %  Events Yield %  

𝑏�̅�𝛾𝛾 120 ± 8 (7.9 ± 1.8) % 130 ± 8 (4.9 ± 1.7) % 103 ± 8 (3.3 ± 1.1) % 

𝑏�̅�𝑗𝛾 274 ± 159 (18 ± 4.0) % 374 ± 175 (14 ± 4.7) % 329 ± 167 (10 ± 3.6) % 

𝐻(𝑏�̅�)𝐻(𝛾𝛾) 9.8 ± 0.1 (0.6 ± 0.2) % 9.1 ± 0.1 (0.34 ± 0.2) % 8.5 ± 0.1 (0.27 ± 0.1) % 

𝑗𝑗𝛾𝛾 537 ± 39 (35 ± 7.7) % 558 ± 41 (21 ± 7.0) % 556 ± 41 (18 ± 6.0) % 

𝑡𝑡̅𝛾 4 ± 2 (0.3 ± 0.2) % 8 ± 4 (0.32 ± 0.2) % 4 ± 2 (0.13 ± 0.1) % 

𝑡𝑡̅𝐻(𝛾𝛾) 43.7 ± 1.6 (2.9 ± 0.8) % 42.7 ± 1.6 (1.6 ± 0.6) % 37.7 ± 1.5 (1.2 ± 0.4) % 

𝑡𝑡̅𝑙 0 ± 0 (0 ± 0.) % 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 

𝑍(𝑏�̅�)𝐻(𝛾𝛾) 11.20 ± 0.14 (0.7 ± 0.3) % 10.79 ± 0.14 (0.41 ± 0.2) % 9.00 ± 0.13 (0.29 ± 0.1) % 

𝑐𝑐̅𝛾𝛾 120 ± 8 (8 ± 1.8) % 141 ± 9 (5.3 ± 1.8) % 128 ± 8 (4.1 ± 1.4) % 

𝑐𝑐̅𝑗𝛾 395 ± 280 (26 ± 5.7) % 1384 ± 862 (52 ± 17.3) % 1977 ± 1046 (63 ± 21.1) % 

 

Table 5-5: Background composition for all three scenarios when no di-photon cut is applied. 

 

Stream 
Reference Middle Low 

Events Yield %  Events Yield %  Events Yield %  

𝑏�̅�𝛾𝛾 231 ± 11 (4.7 ± 1.1) % 224 ± 11 (4.9 ± 1.2) % 167 ± 9 (5.2 ± 1.2) % 

𝑏�̅�𝑗𝛾 1111 ± 330 (23 ± 5.2) % 760 ± 270 (17 ± 4.1) % 690 ± 244 (21 ± 4.7) % 

𝐻(𝑏�̅�)𝐻(𝛾𝛾) 12.55 ± 0.16 (0.25 ± 0.1) % 12.52 ± 0.16 (0.27 ± 0.1) % 11.80 ± 0.15 (0.37 ± 0.1) % 

𝑗𝑗𝛾𝛾 1173 ± 59 (24 ± 5.5) % 1057 ± 56 (23 ± 5.6) % 1031 ± 56 (32 ± 7.0) % 

𝑡𝑡̅𝛾 12 ± 4 (0.24 ± 0.1) % 18 ± 5 (0.39 ± 0.1) % 7 ± 3 (0.21 ± 0.1) % 

𝑡𝑡̅𝐻(𝛾𝛾) 62.2 ± 2.0 (1.26 ± 0.3) % 57.0 ± 1.9 (1.25 ± 0.3) % 61.6 ± 1.9 (1.91 ± 0.5) % 

𝑡𝑡̅𝑙 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 

𝑍(𝑏�̅�)𝐻(𝛾𝛾) 15.01 ± 0.16 (0.30 ± 0.1) % 15.22 ± 0.16 (0.33 ± 0.1) % 13.69 ± 0.15 (0.43 ± 0.1) % 

𝑐𝑐̅𝛾𝛾 265 ± 12 (5.4 ± 1.3) % 243 ± 11 (5.3 ± 1.3) % 249 ± 11 (7.7 ± 1.8) % 

𝑐𝑐̅𝑗𝛾 2040 ± 1083 (41 ± 9.6) % 2175 ± 1065 (48 ± 11.5) % 989 ± 656 (31 ± 6.7) % 

 
Table 5-6: Background composition for all three scenarios for the 120 GeV < mγγ< 130 GeV cut case. 

 
In a di-photon mass cut analysis, no ordering can be concluded between different scenarios 

since all three remain compatible within statistical uncertainties. However, this is not the case for 

the no diphoton mass preselection analysis. The reference scenario seems to be 30 % better in terms 
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of significance with respect to the low scenario, whereas ranking between scenarios follows detector 

extension in eta within statistical uncertainties (Table 5-4). More interesting conclusions can be de-

rived by studying the background compositions (Tables 5-5). For the no mass cut analysis, the dom-

inant contribution for the reference scenario is likely the jjγγ sample, in which two true photons are 

present and any b-jets are of incorrectly tagged nature. When switching to the middle and low sce-

narios, the dominant background contribution presents a tendency towards the ccjγ sample. The 

substitution of a true photon object by a jet faking a photon, may be partially attributed to poorer 

tracker implementations. If however this is regarded as the dominant issue, one would expect indi-

cations of the bbjγ being the most important background and not the ccjγ. A possible increase of the 

allowed PU jets at the final state may account for this behavior, effect that significantly amplifies 

the fake photon misidentification issue, to an extend that seems to be more important than any flavor 

tagging issue. 

 
Uncertainties on background composition yields presented on tables 5-5 and 5-6 are taking into 

account the correlations between the total number of background events and the number of events 

in each component [16]. An additional contribution is also considered corresponding to the statistical 

uncertainty of the initial number of events. The final estimation is derived using the following for-

mula (equation 5-8):  

 

𝝈𝒚𝒊𝒆𝒍𝒅 = √
𝒚𝒊𝒆𝒍𝒅∙(𝟏−𝒚𝒊𝒆𝒍𝒅)

∑ 𝑵𝑵
𝒊=𝟏 𝒃𝒌𝒈,𝒊

+∙ (
𝝈
∑ 𝑵𝑵
𝒊=𝟏 𝒃𝒌𝒈,𝒊

∑ 𝑵𝑵
𝒊=𝟏 𝒃𝒌𝒈,𝒊

∙ 𝒚𝒊𝒆𝒍𝒅)

𝟐

             (5-8) 

 

where yield corresponds to the per-cent contribution of each background sample 

σyiel the uncertainty of the per-cent background contribution  

 
On the other hand, in the case where a di-photon mass preselection is applied, the dominant 

non-resonant jjγγ component seems to be largely suppressed. In this case, the previously identified 

effects, poor jet-to-photon misidentification, increased PU contribution of the ccjγ sample and poor 

tagging implementation appear to be affect all three scenarios, promoting the ccjγ as the most im-

portant background within statistical uncertainties. In addition, the fact that bbjγ appears to consists 

the second most important contribution, denotes the potential issue of the jet-to-photon misidentifi-

cation. By combining the conclusion from both analysis, with and without di-photon mass cut, it is 

possible to order the three main issues in a decreasing order of severity. Jet flavor mis-identification 

is the most important issue, yielding primary contribution a sample with no true b-jets (either jjγγ or 

ccjγ). The fake jet identification follows, with samples containing one true photon and one jet being 

either primary or secondary backgrounds in all cases. Finally, the particularity of the ccjγ sample 

with the forward geometry adds to the previous effects, especially because it is increasingly effected 

by PU jet high pseudorapidity. 

 

 
Figure 5.18: Photon type in the cc ̅jγ and bbjγ background samples for the full statistics on the nominal sce-
nario. Type “one” denotes fake photons originating from a jet object while type “three” denotes truth gen-

erated photons. On the selected quadruplets, fake photons consist the majority of events. 
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A detailed study of the origin of photons in the two samples, the ccjγ and the bbjγ confirms the 

issue (Figure 5.18). It is evident that in both cases, fake photons originating from jets constitute the 

majority of the selected quadruplets. Furthermore, referring to the nominal scenario with the highest 

acceptance, it is can also be seen that the final size of the ccjg sample is higher than that of the bbjγ 

within relevant uncertainties. Taking into consideration the dropping b-jet tagging efficiency at high 

eta (50% after |η| = 2.0) and the increased c-efficiency at the same region (40%) according to Figure 

5.8, one can understand that the extension in eta further enhances the ccjγ background. Finally, the 

inequality between fake and true photons in both bbjγ and ccjγ samples actually suggest that a sig-

nificant portion of quadruplets are composed not of one but two fake photons. 

 

5.8.2 Results with a μ = 140 value 

 

Although a value of 140 interactions per crossing is not the first option for the HL-LHC maxi-

mum targeted peak luminosity, it provides a significantly cleaner PU environment to study in detail 

the behavior of the physical quantities and accounts for a more technically feasible LHC operation 

point. Furthermore, such a study serves as a crosscheck, especially on the linearity and validity of 

the PT/η dependent efficiencies, smearing functions and PU emulation tool. In that sense, the full 

analysis has been repeated at μ = 140 for all scoping scenarios and equivalent cases. Reduced PU 

component results into cleaner jet pseudorapidity distributions with absence of the characteristic PU 

structures at high eta and η ≈ 2 regions (Figure 5.19) in both leading and sub-leading jets. 

 

As for the μ = 200 case, input distributions of the six most discriminating variables are pre-

sented for jet isolation only pre-selection requirement and the di-photon mass cut case (appendix 

8.1) in the reference scenario. No significant variations are apparent on the single distributions. On 

the contrary, because of reduced PU pollution, background statistics significantly decreases, due to 

the large number of different processes included. Thus, background variable fluctuations are in-

creased with respect to μ = 200 case. 

 

 
 
Figure 5.19: Pseudo rapidity distribution of the leading (left) and sub-leading (right) jets on the bbH sample 

for the reference scenario at the two μ values. 

 

BDT classifier PDFs are represented for training and testing sample at the reference scenario 

(Figure 5.20). As previously, an analysis with no additional cuts is performed and one where the di-

photon mass is requested to be within the 120 GeV < mγγ < 130 GeV interval. While a cleaner 

background should account for a better separation, more pronounced fluctuations in the correspond-

ing PDFs than for the μ = 200 case do not allow to take advantage of the cleaner environment during 

classifier training. 

 

Selection of the optimal BDT cut point is performed with respect to the reference scenario and 

applied to all three cases. Since PU contamination, which affects significantly high eta regions, is 

lower, it can be observed that the optimal point for all three scenarios is in fact identical (Figures 
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5.21 and 5.22). In high PU conditions, an increase in pseudorapidity acceptance introduces larger 

background and forces BDT selection to become stricter when passing to more forward extended 

detector implementations. For a μ = 140 value, this effect is not yet sufficient to affect optimal clas-

sifier cut value. As a result, the optimal point is identical for all three scenarios. 

 

 

 
 

Figure 5.20: BDT response and output PDFs for the signal in blue and the background in red on the refer-
ence scenario at μ = 140. All graphs are normalized while training and testing samples are plotted together, 

with testing data represented as points. Left hand plot corresponds to no di-photon mass cut case while 
right hand to 120 GeV < mγγ < 130 GeV cut. 

 

In the Table 5-7, significance and expected signal and background events are presented for all 

scenarios. An overall improvement is observed towards the reference scenario independently of the 

mγγ pre-selection application in both TMVA cases, which is no longer compatible within statistical 

uncertainties. In addition, by studying the background composition tables (Tables 5-8 & 5-9) as well 

as the tendency on the efficiency, the effect of fake jets to photons becomes in this case also apparent. 

In the μ = 200 analysis, the most prominent background contribution is the ccγj, where two effects 

are combined: incorrect jet flavor tagging and jet-photon fake rates. For μ = 140 conditions with the 

reduced expected PU, wrongly attributed flavor becomes a secondary effect since the number of per 

event jets is dramatically reduced. In spite of the 2 % b-tagging efficiency corresponding to the PU 

component, this value is sufficient to introduce a large number of wrongly attributed objects for μ = 

200 case while in the μ = 140 conditions, the effect is significantly reduced. On the other hand, fake 

jet-photon misidentification becomes the most significant issue in lower PU conditions, promoting 

bbjγ channel that includes three true analysis objects, as the primary background component. 

 

 

  Reference Middle Low 

M
a

ss
 

C
u

t 

Significance 0.24 ± 0.03 0.18 ± 0.04 0.167 ± 0.034 

Signal 10.93 ± 0.12 11.38 ± 0.13 9.44 ± 0.12 

Background 2057 ± 341 3810 ± 1070 3192 ± 912 

N
o

 

m
a

ss
 

cu
t 

Significance 0.24 ± 0.02 0.20 ± 0.03 0.18 ± 0.04 

Signal 13.46 ± 0.14 13.07 ± 0.14 11.26 ± 0.13 

Background 3047 ± 406 4310 ± 946 3735 ± 1092 

 
Table 5-7: Significance value and expected signal and background events for all three scenarios in the two 

TMVA cases, with and without the di-photon mass cut pre-selection for μ = 140. 
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Figure 5.21: Significance distributions, signal and background PDFs for all three scenarios when no mass cut 
is applied for a μ = 140 value. From left to right: Reference, Middle and Low scenarios are presented Fluctu-

ation on the higher end of the significance distributions are due to lack of background statistics in the in-
creased weight samples 

 

 
 

 
 

Figure 5.22: Significance distributions, signal and background PDFs for all three scenarios when a  
120 GeV < mγγ < 130 GeV is required for a  μ = 140 value. From left to right: Reference, Middle and Low sce-
narios are presented Fluctuation on the higher end of the significance distributions are due to lack of back-

ground statistics in the increased weight samples. 

 

Overall a 30 % improvement is observed with respect to the μ = 200 value across all scenarios 

and TMVA configurations. A clear tendency is demonstrated towards the reference scenario while 

background compositions are still dominated by fake jet to photons. The reduced number of PU jets 

renders flavor tagging mis-identification a secondary issue, shifting the balance towards true b-jets 

and the bbγj sample which becomes the most dominant background contribution. 

Significance -Reference Scenario Significance – Middle Scenario Significance – Low Scenario

BackgroundSignal BackgroundSignal BackgroundSignal

Significance -Reference Scenario Significance – Middle Scenario Significance – Low Scenario

BackgroundSignal BackgroundSignal BackgroundSignal
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Stream 
Reference Middle Low 

Events Yield % Events Yield % Events Yield % 

𝑏�̅�𝛾𝛾 286 ± 12 (9.4 ± 1.4) % 269 ± 12 (6.2 ± 1.4) % 232 ± 11 (6.2 ± 1.9) % 

𝑏�̅�𝑗𝛾 1368 ± 350 (45 ± 6.0) % 1638 ± 386 (38 ± 8.4) % 961 ± 302 (26 ± 7.6) % 

𝐻(𝑏�̅�)𝐻(𝛾𝛾) 14.49 ± 0.17 (0.48 ± 0.1) % 13.53 ± 0.17 (0.31 ± 0.1) % 12.57 ± 0.16 (0.34 ± 0.1) % 

𝑗𝑗𝛾𝛾 834 ± 50 (27 ± 3.7) % 709 ± 46 (16 ± 3.7) % 619 ± 43 (17 ± 4.9) % 

𝑡𝑡̅𝛾 27 ± 7 (0.88 ± 0.2) % 18 ± 5 (0.42 ± 0.1) % 10 ± 4 (0.27 ± 0.1) % 

𝑡𝑡̅𝐻(𝛾𝛾) 78.6 ± 2.2 (2.6 ± 0.4) % 64.4 ± 2.0 (1.5 ± 0.4) % 65.9 ± 2.0 (1.8 ± 0.6) % 

𝑡𝑡̅𝑙 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 

𝑍(𝑏�̅�)𝐻(𝛾𝛾) 17.78 ± 0.18 (0.58 ± 0.2) % 16.82 ± 0.17 (0.39 ± 0.1) % 15.34 ± 0.17 (0.41 ± 0.2) % 

𝑐𝑐̅𝛾𝛾 224 ± 11 (7.3 ± 1.1) % 197 ± 10 (4.6 ± 1.1) % 187 ± 10 (5.0 ± 1.5) % 

𝑐𝑐̅𝑗𝛾 198 ± 198 (6 ± 1.0) % 1384 ± 862 (32 ± 7.1) % 1632 ± 1048 (44 ± 12.8) % 

 
Table 5-8: Background composition for all three scenarios when no di-photon cut is applied for μ = 140. 

 

 
Table 5-9: Background composition for all three scenarios when 120 GeV < mγγ < 130 GeV and μ = 140. 

 

 

5.9 Cut Based Analysis 
 

A cut based approach was also applied by imposing thresholds on the most discriminant vari-

ables, with respect to their discriminating power as defined by the TMVA analysis. The strength of 

such an analysis in terms of sensitivity is expected to be significantly lower while the addition of the 

PU jets for an environment with μ = 200 further deteriorates the result. Nevertheless, the aim of this 

analysis is to validate the general observations performed with the TMVA method by a more robust 

procedure. Used variables (Table 5-10) concern, in the kinematic aspec, sub-leading photon trans-

verse momentum and minimal photon-jet and photon-photon separation. The 2γ invariant mass is 

required to be compatible with a Higgs decay, to dramatically reduce dominant non-resonant di-

photon background candidates. Thresholds have been placed cording the observations on section 5.7 

and Figures 5.11 to 5.12. 

 
120 GeV < m

γγ
 < 130 GeV 

P
T
(γ

2
) > 40 GeV 

ΔR(j
1
-γ

1
) > 1.6 

ΔR(γ
1
-γ

2
) < 2.8 

 
Table 5-10: Order and applied cuts in the cut based analysis. 

 

Analysis was performed for both μ = 200 and μ = 140 cases (Tables 5-11 and 5-12). An equiv-

alent improvement with respect to the TMVA analysis was observed in the significance, in the order 

Stream 
Reference Middle Low 

Events Yield % Events Yield % Events Yield % 

𝑏�̅�𝛾𝛾 191 ± 10 (9.3 ± 1.7) % 210 ± 11 (5.5 ± 1.6) % 165 ± 9 (5.2 ± 1.5) % 

𝑏�̅�𝑗𝛾 849 ± 275 (41 ± 6.9) % 1002 ± 295 (26 ± 7.4) % 961 ± 297 (30 ± 8.6) % 

𝐻(𝑏�̅�)𝐻(𝛾𝛾) 10.59 ± 0.15 (0.51 ± 0.2) % 10.19 ± 0.15 (0.27 ± 0.1) % 9.76 ± 0.14 (0.31 ± 0.1) % 

𝑗𝑗𝛾𝛾 599 ± 43 (29 ± 4.9) % 587 ± 42 (15 ± 4.4) % 479 ± 38 (15 ± 4.3) % 

𝑡𝑡̅𝛾 12 ± 4 (0.58 ± 0.2) % 16 ± 5 (0.42 ± 0.2) % 8 ± 3 (0.24 ± 0.1) % 

𝑡𝑡̅𝐻(𝛾𝛾) 48.9 ± 1.8 (2.4 ± 0.5) % 48.8 ± 1.8 (1.3 ± 0.4) % 45.6 ± 1.7 (1.4 ± 0.5) % 

𝑡𝑡̅𝑙 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 0 ± 0 (0 ± 0) % 

𝑍(𝑏�̅�)𝐻(𝛾𝛾) 13.29 ± 0.15 (0.65 ± 0.2) % 13.29 ± 0.15 (0.35 ± 0.1) % 11.58 ± 0.14 (0.36 ± 0.1) % 

𝑐𝑐̅𝛾𝛾 135 ± 8 (6.6 ± 1.2) % 144 ± 9 (3.8 ± 1.1) % 128 ± 8 (4.0 ± 1.2) % 

𝑐𝑐̅𝑗𝛾 198 ± 198 (10 ± 1.7) % 1779 ± 1027 (47 ± 13.1) % 1384 ± 862 (43 ± 12.4) % 
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of 30 % when passing from the higher to lower μ value. Nevertheless, scenario ranking and prefer-

ence is unclear and within statistical uncertainties. An overall 50 % - 60 % reduction in significance 

can be deducted in all cases when compared with results obtained using the TMVA method.  

 

Scenario Significance Signal Background 

Reference 0.127 ± 0.010 13.07 ± 0.09 10521 ± 1238 

Middle 0.131 ± 0.011 12.97 ± 0.09 9805 ± 1187 

Low 0.121 ± 0.010 11.35 ± 0.09 8867 ± 1109 

 

Scenario Significance Signal Background 

Reference 0.144 ± 0.014 11.85 ± 0.09 6774 ± 902 

Middle 0.146 ± 0.015 11.88 ± 0.09 6650 ± 936 

Low 0.136 ± 0.013 10.41 ± 0.09 5820 ± 795 
 

Tables 5-11 & 5-12: Cut based significance and expected signal and background events for μ = 200 on the 
left hand side and μ = 140 on the right hand side. 

 

A detailed cut flow table is presented (Tables 5-13 and 5-14) for both μ cases and all three 

scoping scenarios.. The di-photon mass cut as well as the sub-leading photon PT demonstrate the 

strongest background rejection, while subsequent closet photon-jet separation performs poorly in 

signal region An important remark is that the photon-jet separation strength abruptly increases when 

PU contamination is moderate, suggesting that fake photons are effecting cut’s performance. 

 

Applied Cut 
Reference Middle Low 

Signal Background Signal Background Signal Background 

Initial events 24.32 ± 0.13 1.07E+06 ± 13509 24.22 ± 0.13 1.03E+06 ± 13163 21.75 ± 0.12 1.11E+06 ± 14261 

P
T
(γ

2
) > 38 GeV 21.15 ± 0.12 455666 ± 8163 21.04 ± 0.12 442493 ± 8022 18.88 ± 0.11 476635 ± 8647 

120 GeV < m
γγ

 < 130 GeV 19.71 ± 0.12 26838 ± 2045 19.58 ± 0.12 26146 ± 2009 17.65 ± 0.11 29155 ± 2222 

ΔR(j
1
-γ

1
) > 1.6 14.12 ± 0.10 12476 ± 1342 13.97 ± 0.10 11508 ± 1286 12.13 ± 0.09 10383 ± 1210 

ΔR(γ
1
-γ

2
) < 2.8 13.07 ± 0.09 10521 ± 1238 12.97 ± 0.09 9805 ± 1187 11.35 ± 0.09 8867 ± 1109 

 
Table 5-13: Cut flow for all three scenarios at a μ = 200 value. 

 

Applied Cut 
Reference Middle Low 

Signal Background Signal Background Signal Background 

Initial events 21.17 ± 0.12 637365 ± 9605 21.06 ± 0.12 609842 ± 9244 19.02 ± 0.11 597834 ± 9357 

P
T
(γ

2
) > 38 GeV 18.40 ± 0.12 332054 ± 6513 18.31 ± 0.11 315729 ± 6229 16.53 ± 0.11 311694 ± 6379 

120 GeV < m
γγ

 < 130 GeV 17.54 ± 0.11 18731 ± 1590 17.56 ± 0.11 17934 ± 1537 15.66 ± 0.10 18435 ± 1612 

ΔR(j
1
-γ

1
) > 1.6 12.61 ± 0.09 8128 ± 987 12.65 ± 0.09 7872 ± 1015 11.03 ± 0.09 7026 ± 887 

ΔR(γ
1
-γ

2
) < 2.8 11.85 ± 0.09 6774 ± 902 11.88 ± 0.09 6650 ± 936 10.41 ± 0.09 5820 ± 795 

 
Table 5-14: Cut flow for all three scenarios at a μ = 140 value. 

 

Although background compositions uncertainties for both μ values (Tables 5-15 and 5-16) do 

not allow for a definitive conclusion, they further point towards the fake jet to photon effect. The 

most prominent background component seems to remain the ccγj contribution, followed by the bbγj. 

The latter, corresponds to a true tri-object final state where the additional forth photon originates 

from a true or PU jet. In this case, PU jet component does not seem to play an important role, espe-

cially since the situation remains unaltered for the lower μ value with decreased contamination. 
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While in the TMVA case the BDT training partially compensates for wrongly attributed flavor PU 

jets, a cut based approach does not allow any selection combinations that could mitigate the effect.  

 

Stream 
Cut Based Analysis, μ=200 

Expected events % of total background 

𝑏�̅�𝛾𝛾 340 ± 9 (3.2 ± 0.4) % 

𝑏�̅�𝑗𝛾 3056 ± 380 (29 ± 3) % 

𝐻(→ 𝑏�̅�)𝐻(→ 𝛾𝛾) 16.16 ± 0.13 (0.15 ± 0.04) % 

𝑗𝑗𝛾𝛾 1749 ± 51 (16.6 ± 2.0) % 

𝑡𝑡̅𝛾 45 ± 6 (0.43 ± 0.08) % 

𝑡𝑡̅𝐻(→ 𝛾𝛾) 94.4 ± 1.7 (0.90 ± 0.14) % 

𝑡𝑡̅𝑙 0 ± 0 (0 ± 0) % 

𝑍(→ 𝑏�̅�)𝐻(→ 𝛾𝛾) 16.39 ± 0.12 (0.16 ± 0.04) % 

𝑐𝑐̅𝛾𝛾 401 ± 10 (3.8 ± 0.5) % 

𝑐𝑐̅𝑗𝛾 4804 ± 1177 (46 ± 5) % 

𝑏�̅�𝑗𝑗 Not Used Not Used 

 
Table 5-15: Background composition for the reference scenario at μ = 200 

 

Stream 
Cut Based Analysis, μ=140 

Expected events % of total background 

𝑏�̅�𝛾𝛾 320 ± 9 (4.7 ± 0.7) % 

𝑏�̅�𝑗𝛾 2398 ± 333 (35 ± 5) % 

𝐻(→ 𝑏�̅�)𝐻(→ 𝛾𝛾) 16.25 ± 0.13 (0.24 ± 0.07) % 

𝑗𝑗𝛾𝛾 1062 ± 40 (15.7 ± 2.1) % 

𝑡𝑡̅𝛾 37 ± 5 (0.55 ± 0.12) % 

𝑡𝑡̅𝐻(→ 𝛾𝛾) 90.5 ± 1.7 (1.34 ± 0.23) % 

𝑡𝑡̅𝑙 163 ± 162.56 (2.4 ± 0.4) % 

𝑍(→ 𝑏�̅�)𝐻(→ 𝛾𝛾) 16.35 ± 0.12 (0.24 ± 0.07) % 

𝑐𝑐̅𝛾𝛾 252 ± 8 (3.7 ± 0.5) % 

𝑐𝑐̅𝑗𝛾 2419 ± 821 (35 ± 5) % 

𝑏�̅�𝑗𝑗 Not Used Not Used 

 
Table 5-16: Background composition for the reference scenario at μ = 140. 

 

 

5.10 Conclusions 
 

A study on the observability of the bbH(→2γ) mode with ATLAS in HL-LHC conditions  

(μ = 200 and μ = 140) with an integrated luminosity of 3000 fb-1 has been performed. All three 

scoping scenarios were studied with a TMVA and cut base approach. 

 

With the current framework of performances and the available simulation samples, the sensi-

tivity to this mode remains week (significance 0.22 (0.11)) for μ = 200 and 0.24 (0.13) for μ = 140 

with TMVA (cut-based) selection translating to a μ limit of ~ 4 (9) for a no diphoton mass- cut 

analysis approach. Passing from Low to Reference scenario, the number of expected events increase 

in both signal and background samples. A sensitivity improvement of up to 25 % is observed for the 

no mass cut analysis in both μ values, although current uncertainties may account for half of this 

estimate (Table 5-4). 
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In the high PU conditions of μ = 200, incorrect jet flavor attribution for the PU part is driving 

main background contribution. At lower μ values where reduce PU is expected, the effect becomes 

of secondary nature. An improvement on the PU jet b-tagging efficiency would significantly benefit 

the μ = 200 analysis. Jet to photon misidentification accounts for main background contribution in 

all scenarios and μ values. An evaluation of the photon fake rate is would be necessary at this point 

with pointing vector consideration to increase non primary vertex photon rejection. 

 

A significant increase of available statistics in certain background sample would allow safer 

conclusions to be extracted and stringer limits to be imposed on expected significance and signal 

events. An attempt to further treat the Monte Carlo statistical poverty can be established through a 

fully weighted approach. For this method, efficiencies and tracking algorithms would no longer be 

applied in a cut based probabilistic manner. A global weight would be formed, extrapolating effi-

ciencies and combining all identification probabilities. Although the final weight of an individual 

combination would be the product of the weights of its constituents, a normalization is imposed by 

the fact that several objects are recused into multiple combinations. In such an approach, additional 

attention is needed to correctly account for correlations occurring form the use of the same object in 

several combinations.  
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6 Planar Pixel development  
 
 
6.1 Introduction 
 

In this chapter an integrated comprehensive approach of silicon pixel development will be pre-

sented. After the necessary theoretical introduction, a full pixel fabrication process 3D simulation is 

performed for the basic current pixel design of the ATLAS detector. Conclusions are subsequently 

applied to the next stage of sensor design. Four innovative active edge geometries with top electrode 

modifications are implemented. To test production result, both process evaluation through Second-

ary Ion Mass Spectroscopy Measurements and functional detector assessment with electrical char-

acterization are performed. A special library was developed for the purpose of in-depth post-process 

and in-situ evaluations along with the simulation and data analysis methodology. Progressing to-

wards a fully functional particle detector, issues of the completed sensor assembly bonded with read-

out electronics are treated. In particular, the effect that different interconnection technologies can 

introduce to the final signal is examined. Finally, radiation damage is treated, both in its elementary 

effects through irradiated dopant profile characterization, but also with respect to detector function-

ality, via the study of a diode test production, irradiated at various fluences (up to 1016neq/cm2).  

 

To cover the entire conception circle of the final detector, activities are also presented in two 

additional domains. In the data acquisition side, a new system was designed and developed, capable 

of use in a wide range of technological application. This personal investment, not only covers the 

needs for a suitable test platform for future developments, but is also conceived as a contribution to 

the pixel community. On the future and alternative technologies aspect, a detailed process evaluation 

and development on a new kind of detector known as the Low Gain Avalanche Diode (LGAD) is 

presented. Although their radiation resistance remains to be proven, LGADs are considered a prom-

ising technology for future application due their attractive timing characteristics, embedded signal 

amplification potential and relatively simple fabrication process.   

 

To summarize, the six main axis of sensor development are presented. From simulation to de-

sign and production quality testing, to interconnections and data acquisition system development, 

concluding with the problematic of radiation damage and relevant effects. This approach consists a 

continuous project, evolving trough all development steps with increased personal involvement.  

 

 

6.2 HL-LHC Requirements 
 

Planned LHC Phase II upgrades (HL-LHC) aim at extending the physics reach of ATLAS and 

CMS experiments by a factor 5 increase in instantaneous machine luminosity. Values of up to  

7×1034 cm-2sec-1 are expected with a final estimated integrated luminosity at 3000 fb-1 [1]. Fluences 

at the tracker system will reach or exceed ~2×1016 neq/cm2 for the innermost layers (Figure 6.1) 

while 1015 neq/cm2 is anticipated at the outer regions [2]. In those harsh conditions, an innovative 

radiation hard and geometrically efficient design is required for the planned complete replacement 

of the semiconductor tracker. 

 

A complete replacement of the ATLAS inner tracker is envisaged, in order to cope with the 

high multiplicity environment, passing from the current area of 1.6 m2 to 8 m2 surface of silicon 

detectors. Increased occupancy may be addressed by adjusting the silicon detector unit cell (pixel, 

strip or short strip) size in conjunction with the use of active edge technology. On the other hand, 

radiation hardness constraints impose the exclusive use of electron collecting technologies (n-in-n 

or n-in-p). The latter, is proven to be significantly less affected by charge trapping due to reduced 

drift time and increased electron velocities [3, 4].  
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In preparation for this future demanding environment, variable geometry and implantation con-

figurations are under consideration. Using simulations, targeted characteristics of the final device, 

response to radiation damage and efficiency can be probed with respect to fabrication process. An 

extensive evaluation of the simulation framework was performed. Subsequent instructive conclu-

sions were applied in modifying the fabrication process in order to achieve optimized results. In a 

first approximation, implantation, oxidation and annealing steps are being extensively simulated. 

Simulation results are compared with experimental data, obtained using the Secondary Ion Mass 

Spectroscopy (SIMS) method, to determine dopant profiles. 

 

 

Figure 6.1: Estimated equivalent fluences for the ATLAS inner tracker with respect to distance from the inter-
action point [5]. 

 

 

6.3 Introduction to Silicon Detector Fundamentals 
 

Electronics Grade Silicon (EGS) is of crystalloid type, organized in a faced-centered cubic 

crystal structure (Figure 6.2). Developed through the Czochralski (Cz) or Floating Zone (Fz) crys-

tallization process in perfect mono-crystalline structures of defined orientation, it is most commonly 

organized in flat circular structures, referred as wafers [6]. Wafers are characterized by their thick-

ness (in the order of several μm), their crystallographic orientation defined by the corresponding 

Miller indexes [7], their purity, assessed by electrical resistivity and the conduction type of substrate 

impurities (n for negative and p for positive types). EGS has a reference purity of a 100 ppb (parts 

per billion), which compared to metallurgical grade silicon commonly used is 106 times more re-

fined. 

 
 
Figure 6.2: Representation of the face-centered silicon crystal lattice with the band structure zones around 
the lattice positions. The first Brillouin zone is represented that demonstrates the strict influence of crystal-

lographic axis to carrier motion [8]. 
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Quantum energy state superposition of silicon atom outer electrons in a lattice cell forces reor-

ganization of energy levels (Figure 6.3). This hybridization effect, due to interactions between at-

oms, splits the original energy levels to additional states. In an infinite dimension approximation 

when considering a large number of interacting atoms, allowed energy states form a quasi-continu-

ous spectrum with permitted energy zones and prohibited band gaps. This structural reorganization 

introduces semi-conductivity in the lattice, where electrons can, under certain conditions, traverse 

band-gaps and find themselves in a higher momentum-energy state. The width of the prohibited 

zones is an intrinsic property of each semiconductor material. Valence electrons of silicon atoms are 

responsible for lattice coherence and their movement is restrained close to the crystal structure. On 

the other hand, electrons in the conduction band of the collective structure, can propagate freely 

thought the crystal volume. In a first order approximation, conduction electrons can be considered 

as a fermionic gas whose energy distribution may be approximated by the Fermi-Dirac equation. 

This leads to a temperature dependent energy distribution, in which at low temperatures, all states 

can be populated. On the other hand, as temperature increases, electrons acquire sufficient kinetic 

energy that may allow them to jump from the valence to the conduction band. Conduction electron 

concentration in pure silicon is described by the following equation (equation 6-1) [9]: 

 

ni=3.9×1016T3/2e-0.605(keV)/kT             (6-1) 
 
where ni is the electron concentration in cm-3, T the temperature and k Boltzmann’s thermodynamic 

constant. As it is evident, in zero temperature all states are occupied and no free electrons exist to 

populate the conductive region. The exponent on the last term of equation 6-1 is material specific 

and represents half of the energy gap between the conductive and valence zones while an additional 

multiplication factor is introduced to account for the band’s dependence on temperature. 

 

 
 

Figure 6.3: Reorganization of atomic electron energy levels in a crystal lattice structure. Once atoms reach 
their atomic equilibrium distance of 2.35Å two continuous energy bands form (CB and VB), separated by a 
forbidden band, which is not accessible for electrons. Band gap, Eg is a characteristic of the material. The 
lowest energy level of the conduction band is denoted EC while highest energy level of the valence band is 

called EV so that we have the relationship Eg=EC-EV. Conduction and valence bands CB and VB represent the 
energies accessible to electrons, or the energies of the states potentially occupied by electrons [10]. 

 

This fact inevitably leads to the introduction of a “hole” term, which in principle is the absence 

of an electron from the valence zone of the crystal. Since four electrons are available in the outer 

structure of the silicon atom, the introduction of foreign elements in the lattice with different number 

of valence electrons (Nva) will lead to either the absence of a lattice bond (a hole) if Nva < 4, or to 

the excess of an electron if Nva > 4. Such elements are called dopants and may be of two distinct 

types: 
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Acceptor: a dopant with less than four outer electrons that introduces an excess of holes in the 

structure. Most common p-type dopant is Boron but other alternatives may be used 

as Gallium. 

Donor: for elements with an excess of valence electrons therefore introducing possible nega-

tive contributions to the structure. In this category phosphorous is mainly used.  

 

Usually, both dopant types are found in a semiconductor crystal, but their contribution will 

cancel each other in such a way that only the net dopant is electrically active. A net p type doping 

(acceptor) will subsequently shift the Fermi quasi-energy level towards the valence band, while a 

net n-type doping (donor) will have the opposite effect. In each case, the barrier will be shifted since 

additional introduced carriers will fill energy levels not normally occupied. Given the band gap de-

pendence with temperature, in higher values, the narrower gap allows for more carriers to pass to 

the conductive band reducing substrate resistivity. On the other hand, the narrower band-gap at low 

temperatures increases resistivity. The effect becomes more complex in a strongly doped silicon 

(>1018 atoms/cm3), where the amount of carriers is so high that states in the valence (conductivity) 

bands have a unitary probability to be filled by holes (electrons), resulting in a high electrical con-

ductivity even at very low temperatures.  

 

To describe the behavior of any semiconductor material, the drift-diffusion model has been 

developed, relying on a set of three equations [6]. In principle it is a combination of classical elec-

trodynamics with diffusion and continuity additions expressed by the Maxwell and Poisson equa-

tions respectively. While model validly can be extended to degenerate semiconductors under the 

assumption that Fermi’s statistics is respected, for the following equations, we assume a non-degen-

erate electron density that can be approximated by the Boltzmann distribution.  In this case the Fermi 

level is assumed to have at least a 3kT distance from the closest band limit (conductive/valence). 

Dopants are also assumed to be ionized, which is the case for a shallow implantation while a stable 

temperature is supposed. The corresponding diffusion equations for electrons and holes are as fol-

lows (equation 6.2 and 6.3): 

  
𝒅𝒑

𝒅𝒕
= 𝛁𝑫𝒉𝛁𝒑 + 𝛁(𝒑𝝁𝒉�⃗⃗� ) + 𝑮𝒉 − 𝑹𝒉             (6-2) 

 
𝒅𝒏

𝒅𝒕
= 𝛁𝑫𝒆𝛁𝒏 + 𝛁(𝜼𝝁𝒆�⃗⃗� ) + 𝑮𝒆 −𝑹𝒆             (6-3) 

 
where Dh and De are the diffusion coefficients for electrons and holes in silicon, p and η represent 

the density of electrons and holes respectively in cm-3 and μ the mobility in cm2/V/sec. The coeffi-

cients G and R account for the generation and recombination rates in cm-3s-1. 

 
An additional equation is introduced to the system by the expression of the field-potential equa-

tion coupled with the Poisson continuity theorem and the total charge density ρ (equations 6.4 and 

6.5): 

−𝛁𝟐𝑽 = 𝛁𝑬⃗⃗⃗⃗  ⃗ =
𝝆

𝜺
             (6-4) 

 
𝝆 = 𝒒(𝒑 − 𝒏 +𝑵𝒅

+ −𝑵𝒂
−)             (6-5) 

 
where p and n are the number of intrinsic holes and electron concentration and Nd, Na the number 

of donors and acceptors introduced by the dopant into the semiconductor material.  

 
Generation effect is important for the description of leakage current in semiconductor detectors 

under bias. Recombination occurs between free charge carriers with a proportional rate to carrier 

concentration. Since in silicon semi-conductivity is achieved through doping indirectly creating the 

band gap region, recombination mainly occurs in defect centers present along the silicon band-gap.  



Chapter 6 Planar pixel Development 
 

 129 

6.3.1 Operating Principals  

 

The use of silicon detectors in high energy particle physics was historically introduced by the 

NA11 and NA32 collaborations at CERN [7]. The operating principle of such a structure is based 

on a segmented p-n junction matrix. 

 

When two regions of silicon of different doping type are in contact, an area is formed along the 

transition boundary, where opposite type carriers are combined. This, in the n-p case, would mean 

that under normal conditions, excess electrons from the n-side will recombine with holes in the p-

side. An electric field is generated at the surrounding area, in a way that no other synchronized 

charge movement is permitted. The number of incoming and outgoing charges to the region due to 

thermal diffusion becomes equal once thermal equilibrium is established (Figure 6.4). This region 

is referred to as being “depleted” since no free charge carriers can be found within. In a general 

manner it is possible to control the span of the depletion region by means of an external electric 

field, referred as “biasing”. There are two possible ways of biasing a p-n junction:  

 

 
Figure 6.4: Diagram of the diffusion across a p-n junction, with the resultant uncovered space charges, the 

electric field and the drift currents [11]. 

 

Forward Biasing: If a positive potential is applied in the p-side and a negative to the n-side 

(Figure 6.5), then the corresponding carriers are moving away from the electrodes and towards the 

interface, repopulating energy states and reducing the width of the depletion region. Effective mate-

rial resistance is dropping and it becomes conductive with an exponentially increased current with 

respect to the applied voltage. This act is referred as forward biasing.  

 

 
 

Figure 6.5: Representation of an n-p junction in forward bias [12]. 

 

Reverse Biasing: If a positive potential is applied to the n region and a negative potential to the 

p one (Figure 6.6), charge carriers are moving towards the electrodes, emptying larger portions at 

the central region of the material. The depletion zone expands and the conductivity subsequently 

drops. The current will increase in the initial stages of the polarization exponentially, because of free 

carrier movement. Once an equilibrium has been reached, it will remain stable with respect to the 

voltage since only thermal diffusion is allowed (Figure 6.7). This is referred to as reverse biasing.  
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Figure 6.6: Representation of an n-p junction 
in inverse bias [13]. 

Figure 6.7: Current vs voltage curve for a 
forward and inversed biased di-
ode [14]. 

 

In the case of a reversed biased p-n junction, the applied voltage will virtually appear in its full 

value across the depletion region, because of the much higher material resistivity with respect to n 

and p doped regions. As a result derived by the Poisson’s equation, the space charge will also in-

crease and extend further along both sides of the junction. The thickness of the depletion region 

therefore increases. Although the following calculation is performed with the assumption that the 

depletion region does not reach the wafer surface, the results are applicable in completely depleted 

structures as well, with the caveat that the eventual depletion region has to be geometrically limited 

by the wafer thickness. 

 

Charge distribution in a reverse biased junction can be represented as (equation 6-6): 

 

𝜌(𝜒) = {
|𝑒|𝛮𝐷          (−𝑎 ≤ 𝑥 ≤ 0)
−|𝑒|𝑁𝐴         (0 ≤ 𝑥 ≤ 𝑏)

             (6-6) 

 

where –a and b are the limits of the depletion region in each side of the junction (placed at the relative 

coordinate 0) and NA, ND the concentration of acceptors and donors respectively. The assumption is 

made that the electron diffusion results in a positive space charge in the n-region  

-a ≤ x ≤ 0 of the junction, while a corresponding negative space charge due to hole diffusion extends 

in the p-region over the area 0 ≤ x ≤ b [9]. The total charge is equal with sum of the number of holes 

and free electrons (p and n respectively), and the number of ionized donors and acceptors. With the 

assumption that all donor/acceptor atoms are fully ionized and their number is significantly higher 

than that of free electrons/holes, total neutrality can be respected under the condition NDa=NAb.  

 

By applying the Poisson equation in the above charge distribution, it can be derived that (equa-

tion 6-7):  

 

𝜕2𝜑

𝜕𝑥2
= −𝜌(𝜒) ⇒

𝜕2𝜑

𝜕𝑥2
= {

−
𝑒𝛮𝐷 

𝜀
        (−𝑎 ≤ 𝑥 ≤ 0)

𝑒𝛮𝛢 

𝜀
         (0 ≤ 𝑥 ≤ 𝑏)

             (6-7) 

 

To determine the electric potential an integration is sufficient by applying the boundary condi-

tion that the electric field must vanish at both ends of the distribution. This can be represented as 

(equation 6-8): 

 

𝜕𝜑

𝜕𝑥
= {

−
𝑒𝛮𝐷 

𝜀
(𝑥 + 𝑎)        (−𝑎 ≤ 𝑥 ≤ 0)

𝑒𝛮𝛢 

𝜀
(𝑥 − 𝑏)         (0 ≤ 𝑥 ≤ 𝑏)

             (6-8) 
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With a secondary integration we can determine the electric potential. The boundary conditions 

can be established since the difference of the potential between the n and the p region should be 

equal to the bias voltage, assuming a relatively small junction contact potential. As a result it can be 

derived that (equation 6-9): 

 

𝜑(𝑥) = {
−
𝑒𝛮𝐷 

2𝜀
(𝑥 + 𝑎)2 +

𝑒𝛮𝐷 

2𝜀
𝑎2       (−𝑎 ≤ 𝑥 ≤ 0)

   
𝑒𝛮𝛢 

2𝜀
(𝑥 − 𝑏)2 −

𝑒𝛮𝐷 

2𝜀
𝑏2         (0 ≤ 𝑥 ≤ 𝑏)

             (6-9) 

 

and by applying the potential difference V at any point within the depletion refion, is deducted that 

(equation 6-10): 

 

𝑉 −
𝑒𝛮𝐷𝑎

2

2𝜀
=
𝑒𝛮𝛢𝑏

2 

2𝜀
  ⇔   𝛮𝐷𝑎

2 + 𝛮𝛢𝑏
2 =

2𝜀𝑉

𝑒
  
𝛮𝛢=𝛮𝐷
⇔     (𝑎 + 𝑏)𝑏 =

2𝜀𝑉

𝑒𝛮𝛢
              (6-10) 

 

To calculate the total width of the depletion region, d = a + b, we can assume that the n-doping 

level is much higher that the p-one [15]. Consequently, since NA << ND while NAb = NDa we need 

to assume that b >> a and therefore the space charge extends much further on the p-side than on the 

n. In this case d ≈ b and we can deduct (equation 6-11): 

 

𝑑 ≅ (
2𝜀𝑉

𝑒𝑁
)
1 2⁄

             (6-11) 

 

The result would have been the same even if the initial assumption was the inverse, assuming 

a dominant p-region. The resistivity of a semiconductor material can be expressed as ρ=1/eμN and 

by substituting to equation 6-11 it can be inferred that:  

 

𝑑 ≅ (2휀𝑉𝜇𝜌𝐷)
1 2⁄              (6-12) 

 

Because of the semiconductor resistivity direct relation to active dopant concentration, when 

measuring the resistivity of the material in different depth once can deduce an accurate active dopant 

profile. Since one would like the largest depletion region with the lowest possible voltage, it is ad-

vantageous to use high resistivity substrate materials in semiconductor detector fabrication. Resis-

tivity is limited by the substrate purity [16], since the amount of original substrate doping (before 

any lithographic process) must be high enough to counteract any material residual non-uniform ef-

fects.  

 

An inversed biased junction presents a charge built-up in either side of the depletion region, 

resulting to properties similar to a charged capacitor. If the bias voltage increases, the depletion 

region is enlarged and the capacitance is reduced. The value of capacitance per unit area is defined 

as (equation 6-13):  

  

𝐶 =
𝜀

𝑑
≅ (

𝑒𝜀𝑁

2𝑉
)
1 2⁄

             (6-13) 

 

Good energy resolution in an environment where electronic noise is important depends on 

achieving a small capacitance and thus applying the highest possible operating voltage, up to the full 

depletion point. Maximum electric field occurs at the point of transition between the n and p type 

material and can easily reach 106-107 V/m. For partially depleted detectors, the width of the depletion 

region is proportional to V1/2 while the electric field value increases with the applied voltage also 

proportionally to V1/2. 

 

In a situation where complete depletion is reached, no free charge carriers are available within 

the detector junction. Nevertheless, an energy deposit by an external cause at a defined region of the 
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structure, can create free electron-hole pairs. Those would be directed towards the contact electrodes 

under the influence of the applied field, until all charge is evacuated from the silicon volume. As a 

result, a current will appear between the contacts electrodes, for the exact duration of the charges 

drift time. This energy deposit, in particle physics case, is a signature of a high energy charged 

particle traversing the sensor volume. 

 

6.3.2 Technologies and radiation damage 

 

Actual tracking sensors are finely segmented n-p junction matrices, allowing for an accurate 

position measurement. The sensor is inversely biased by applying a potential at one side while keep-

ing the other to the ground. Signal extraction is performed by measuring evacuated charges towards 

the grounded side and an energy measurement is possible by integrating the collected charge.  

 

P-n junctions can be formed in the following four ways (Figure 6.8): 

 

1. On an n-type silicon substrate we can create an n+-implanted region containing an excess 

of negative carriers. In that case, it is necessary to form a p-implanted region on the oppo-

site side of the substrate, in order to create a p-n junction. This is referred to as an n-in-n 

technology. 

 

2. On an n-type silicon substrate a p-implanted region is created. The junction is formed di-

rectly between the implanted region and the substrate itself. This is referred to as a p-in-n 

technology. 

 

3. On a p-type substrate, it is possible to create n-implanted regions, in a way that the junction 

will be formed between the implanted region and the substrate itself. Such a technique is 

defines as n-in-p. 

 

4. Finally, in a p-substrate, one can implant p+ regions to create the pixelated geometry. In 

this case an additional n-implants required on the back side of the wafer to form the junction 

and is characterized as the p-in-p technique.  

 

 
 

Figure 6.8: Different planar pixel production technologies [17]. 
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Currently, out of the four described technologies, only the n-in-n and n-in-p is considered as the 

present option for the Highly Luminosity tracker upgrades of the ATLAS and CMS experiments. 

The radiation tolerance of the n-in-n technology has established it as the main solution while the 

economic benefits of the single sided lithography in the n-in-p process make it an attractive alterna-

tive. P-in-p sensors are only a theoretical concept since the combine the disadvantages of hole col-

lection along with a double-sided lithography [18]. Additional structures at the outer region of the 

pixelated matrix are created to gradually lower the electric potential from the central region to the 

edges in order to avoid conductivity sparks when several matrices are placed in close proximity. 

These specialized structures, in form of implanted rings surrounding the matrix, are referred as 

Guard Rings (GR). 

 

When referring to dopants and to the functionality of a p-n junction on the previous section, NA 

and ND were always referring to the acceptor and donor concentration respectively. While this sim-

plistic approach is true for modern detectors where on each side only one spices is dominant, after 

irradiation or when several doping and electrically active defects are present, these quantities have 

to be replaced by the net doping or effective doping Neff. This refers to the difference in concentration 

of all the donor –like states with respect to all acceptor-like state 3s and can be defined by the de-

pletion voltage under the following condition (equation 6-14): 

 

|𝑵𝒆𝒇𝒇| =
𝟐𝜺𝟎𝜺𝒔𝒊𝑽𝒅𝒆𝒑.

𝒆𝒅𝟐
             (6-14) 

 

where apart from the normal dielectric constants ε0 and εsi, e is the electron charge and d the length 

of the depletion region. Since by definition effective doping is positive for n-type materials and 

negative for p-type, only its absolute value is used in calculations.  

 

In a non-irradiated silicon detector, effective doping (Neff) is mainly defined by the shallow pixel 

implant on the front side of the sensor. Radiation damage effects introduce additional energy levels 

in the forbidden band –gap close to the mid-region, referred as deep levels. Experimentally, it is 

proven that deep level defects are primarily acceptor level. In the case of n-type silicon, this will 

reduce the initial effective doping concentration. As Neff decreases, the so-called inversion fluence 

is reached, where the negative space charge of radiation induced donor impurities, compensates the 

initial positive space charge of the phosphorus implanted atoms. If the fluence increase further, the 

material behaves increasingly like a p-type silicon. This effect, not due to physical active dopant 

removal, is attributed to an increase of acceptors [19]. For an n type substrate, this would translate 

to a decrease in effective dopant concentration, up to the point of type inversion, where the material 

behaves as p-type silicon. On the contrary, for p-type substrates this effect is not manifested. The 

effective dopant concentration can be parameterized with respect to the fluence in the following way 

[20] (equation 6-15): 

 

𝑵𝒆𝒇𝒇(𝜱) = 𝜨𝒆𝒇𝒇,𝟎𝒆
−𝒄𝜱 −𝜷𝜱             (6-15) 

 

where Φ is the fluence, Neff,0 represents the initial effective dopant, while c and β correspond to 

donor compensation and acceptor generation respectively. The result of operating a heavy irradiated 

n-type silicon detector is that the junction moves from the front side to the back region. The device 

remains operational but if it is under-depleted, generated charges traverse through a non-depleted 

layer before reaching the read-out electrodes on the pixel side. 

 

After irradiation the effective dopant changes over time. Two different effects are distinguished: 

 

1. Immediately after irradiation Neff decreases as a result of the decay of active radiation in-

duced acceptor sites back to neutral level. The decrease continues until a minimum is 

reached and is referred to as “beneficial annealing”. 
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2. After the minimum of Neff has been reached, it again start to increase over time. This is 

believed to be due to diffusion of defects that create deep acceptor levels and reactions be-

tween them [21]. This process, referred to as reverse annealing, takes place in a larger time 

scale but introduces greater changes to the active dopant.  

 

Both processes are very temperature sensitive, with reverse annealing mostly halted below 00C. 

At high temperatures the process is accelerated leading to increased depletion voltages [22]. As a 

result of these effects, a time depend change on the effective dopant is observed, which can be de-

scribed in the following form (equation 6-16): 

 

𝜟𝑵𝒆𝒇𝒇(𝜱, 𝒕, 𝑻) = 𝜨𝒆𝒇𝒇,𝟎 −𝜨𝒆𝒇𝒇 = 𝜨𝒃(𝜱, 𝒕, 𝑻) + 𝜨𝒄(𝜱) + 𝜨𝒀(𝜱, 𝒕, 𝑻)            (6-16) 

 
where Neff,0 represents the initial dopant concentration, Nb is related to beneficial annealing, Nc is 

related to the time-independent changes induced by radiation and NY corresponds to the inverse 

annealing component [23, 24].  

 

A model describing the time and temperature dependence of the inverse annealing was devel-

oped by a group at Hamburg University (referred as the Hamburg model) [22, 23, 24]. It is based on 

the idea that the effect is produced by the transformation of originally electrically inactive defects 

into acceptor like states. Consequently, ΔNeff saturates at a certain value, when all inactive defects 

have been transformed [25]. Using as a baseline equation 6-15, the stable time-independent irradia-

tion component can be parameterized as (equation 6-17): 

 

𝑵𝒄(𝜱) = 𝜨𝒄,𝟎[𝟏 − 𝒆
−𝒄𝜱] − 𝒈𝒄𝜱             (6-17) 

 

where the right term represents the introduction of acceptor like states as a function of the fluence 

and the exponential function corresponds to the compensation of the original donor concentration 

(Nc,0). For high fluences, greater than 1013 neq/cm2, the exponential term can be neglected.  

 

The reverse annealing on the other hand is treated by a second order approach. We assume two 

originally inactive defects X1 and X2 of equivalent concentrations NX1 and NX2 which for simplicity 

are considered equal. They can interact with each other to form an electrically active defect Y, fol-

lowing a decay of NX1=NX2=NX0. The concentration of Y is described as (equation 6-18):  

 

𝑵𝒀(𝒕) = 𝜨𝑿,𝟎[𝟏 −
𝟏

𝟏+𝒌𝑵𝑿,𝟎𝒕
]             (6-18) 

 

were k is the NX0 decay constant defines as (equation 6-19):  

 

𝒌 = 𝒌𝟎𝒆
−𝑬𝒂 𝒌𝑩𝑻⁄              (6-19) 

 

In this latest equation, Ea indicates the activation energy, kB is the Boltzmann constant, and k0 is 

a constant related to the phonon frequency in the lattice. Via k, the active defect concentration NY is 

strongly temperature dependent. NY will saturate at the concentration level NX,0 if t→∞. NX,0  can 

therefore be represented as NY,∞=gY×φ, where gY is referred to as the reverse annealing introduction 

rate. 

 

6.3.3 Charge Collection and Signal extraction  

 

Electron-hole pairs, created by energetic particles traversing the silicon volume will propagate 

to the closest readout electrode. Following the Shockley–Ramo theorem [26, 27], the current induced 

to the electrode itself is instantaneous, due to change of electrostatic flux lines ending on the elec-

trodes surface. The amount of carriers arriving at the electrodes becomes a secondary effect. Using 

the method of Green functions, Shockley and Ramo independently derived a highly useful domain 
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integration formula for terminal currents induced by charge motion in an arbitrary multidimensional 

structure with multiple contacts (equation 6-20):  

 

𝑰(𝒌) = ∑ 𝒒𝒋 ∙ 𝑬𝒋
(𝒌)
∙ 𝒗𝒋𝒋              (6-20) 

 

where the summation j runs over all particles within the volume, qj and vj represent particle charge 

and velocity, respectively, and the index k indicates the contact number for which the current is to 

be evaluated. The variable Ej
(k) is defined as the weighting field, corresponding to the field evaluated 

at the position of particle j if all other charges were removed from the detector volume and all con-

tacts were grounded, except from contact k which would be set to 1 V [28]. Its application has been 

widespread, ranging from hot carrier noise in bulk semiconductors and submicron semiconductor 

structures to generators and detectors of electromagnetic radiation, to terminal currents in Monte 

Carlo device transport simulation [29]. The theorem allows one to easily calculate the instantaneous 

electric current induced by a charge moving in the vicinity of an electrode. 

 

 
 

Figure 6.9: Sensor-readout ASIC interconnection geometry. The sensor matrix is visible on the top part of 
the assembly while the small silver spheres correspond d to the solder bumps interconnecting the detector 

with the read-out ASIC (bottom orange plane). The consecutive metal gaps on the right side of the ASIC cor-
respond the digitized read-out electrodes [30]. 

 

In order to extract the signal, an electronic circuit is directly coupled to each pixel (Figure 6.9) 

through vertical interconnection points. A preamplifier, amplifier and shaper are typically included 

for analog treatment while a digital to analog converter and a certain level of logic are also imple-

mented. Since one requires to have as many channels as pixels in the sensor matrix, readout elec-

tronics are organized in integrated circuits sharing the digital logic and data encoding parts. To 

ensure proper operation, it is important to maintain a conductive connection with the two parts with 

no additional resistive elements introduced by the interconnecting layers. 

 

During charge propagation within the sensor itself, several effects may occur. It is commonly 

accepted that several generations and recombinations will occur while the charges propagate through 

the detector volume. While in normal silicon these effects will be in equilibrium, if a point defect is 

introduced in the crystal structure, charges may be absorbed and trapped. Furthermore, cross-talks 

between different pixels are possible, especially if the particle passes in the space covering several 

elements.  



Planar Pixel Development  Chapter 6 
 

 136 

6.4 Introduction to fundamentals of Pixel Sensor Simulation 
 

Producing a semiconductor device is a complicated, time consuming and costly procedure that 

cannot be realized in short time intervals. Prototyping in sensor optimization is therefore a signifi-

cant issue especially for non-commercial applications where small profit margin are expected for 

the producer. In a typical sensor development process only a few different designs and technologies 

can be tried given the cost and production timescale. Subsequently, extensive simulation has to be 

carried out before any design implementation, to ensure final functionality and desired characteris-

tics.  

 

6.4.1 Frameworks and available algorithms 

 

Simulation algorithms in semiconductor device development are commercial derivatives of in-

stitutionally developed packages of electrical field calculations, Monte Carlo implantation and ana-

lytical resolution algorithms. Current software is available in the form of Technology Computer 

Aided Design (TCAD) packages, grouping several elements and algorithms from different fields. 

Two main derivations are available, SYNOPSYS® Sentaurus™(a) [31] and SILVACO® TCAD™(b) 

[32] frameworks, both grouping the main elements for Monte Carlo simulation, finite element solu-

tion algorithms, electrical field calculations, geometry generation and active domain simulations. 

The SYNOPSYS® package, used in all simulation studies performed in this work, allows for a full 

3D electrical field and process simulation through both Monte Carlo or analytical models, making 

it possible to probe efficiency and charge propagation in complex structures that cannot be repre-

sented in a two dimensional transverse plane. Two main kinds of simulations are possible: 

 

Process simulation: Using a combination of diffusion equations, advanced Monte Carlo algo-

rithms and a variety of data libraries, it is possible to accurately simulate the production process of 

a final semiconductor structure. Since production involves several steps, mainly dopant introduction 

on the substrate, an extensive knowledge of the technological process is needed. Lithographic masks 

and layer deposition techniques along with thermal diffusion and chemical reaction process are used. 

Main steps within a process simulation are: 

 

1. Initial oxidation for the development of a mask layer to be used as pattern for subsequent 

doping operations 

2. Deposition of a photosensitive resin on top of the oxide layer, usually of 1.5μm thick-

ness through high velocity spinning. 

3. Exposure of the coated surface to Ultra Violet light through a mask, or to an electron/la-

ser beam to activate specific areas of the photosensitive layer 

4. Chemical etching of the oxide layer at specific regions. The previously activated regions 

of the photosensitive layer provide no longer protection to the chemical agent (hydro-

fluoric acid), leaving the subsequent underlying silicon dioxide layers unprotected. 

5. Ion beam, Plasma or chemical implantation affecting only the areas not protected by the 

oxide layer 

6. Thermal diffusion and implant activation either through standard high temperature ex-

posure or through an additional oxidation or other high temperature reaction strep. 

                                                           
a Synopsys® Inc. a Silicon to Software ™ Company for developing electronic products and software applications. 
Synopsys TCAD offers a comprehensive suite of products including process and device simulation tools, with Sen-
taurus being the main framework component. It offers a multidimensional simulation approach. 
b SILVACO® Inc. is a privately owned provider of TCAD process and device simulation software. With Athena™ and 
ATLAS™, a silicon process and electrical simulation framework is provided. 
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These processes can be repeated several times through an actual production while technological 

parameters are not disclosed by foundries. As a result, it is of extreme importance to create a refer-

ence library (see annex 8.3) and to confirm simulator validity for a precise development. 

 

Functional/electrical simulation: Charge propagation and diffusion is simulated inside the al-

ready defined sensor geometry though resolution of Maxwell’s equations. They are additionally 

coupled to diffusion models and boundary conditions, defined by applied potential at fixed points. 

Finite element solutions algorithms are utilized while, results depend on carrier concentration within 

the simulated volume. Additional radiation model are also available either by the introduction of 

acceptors in the substrate to simulate defects or by applying more complex radiation damage simu-

lation.   

 

These two types of simulation can be interfaced and sequenced, feeding the result of a process 

simulation to the subsequent electrical model. Nevertheless, it is also possible to complete each 

phase independently of the other. In this approach, sensor geometry for a functional simulation can 

be hard-coded while, dopant distributions are provided as an external input. The most accurate result 

however can be obtained by interfacing the two stages such as final electrical characteristics are 

intransigently defined by the followed process steps. This is the adopted approach in this work and 

detailed process simulations are performed.  

 

6.4.2 Meshing strategy 

 

All available simulation frameworks take advantage of the diffusion, continuity and Maxwell 

partial differential equations [33, 34], with respect to the applied model, to describe carrier mobility 

and interactions within the simulated volume. Calculations are coupled with a finite element ap-

proach in order to successfully simulate the physical parameters within the device. The algorithm 

approaches the problem by considering a linearized version of the transport equation to describe the 

global calculation as an algebraic combination of a system of linear equations (Figure 6.10). Solu-

tions for any given geometry can be obtained by subdividing the structure to finite regions, of a small 

enough size that allows for the local solution to be approximated by a polynomial function. Within 

a finite element, the partial differential equations are approximated with a polynomial solution Φ. 

Once individual solutions are calculated for each cell, a global representation is created by (equation 

6-21):  

 

𝑽𝒈𝒍𝒐𝒃 = ∑ 𝒂𝒊
𝒏
𝑰=𝟏 𝜱𝒊 (𝑽)             (6-21) 

 

where i corresponds to the indices of the intersections between two sub-elements, Φ(v) the polyno-

mial function of the simulated parameter and α the multiplication factor. Polynomial functions Φ(v) 

can be defined as having a unitary value in any interaction point i between two elements while, being 

having a zero value to all surrounding area. 

 

 
 

Figure 6.10: A zeroeth order Bessel function J0.interpolated in by a 16 dimension triangular function base 
[35]. 
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To produce accurate results, the cell size, called mesh element, needs to be sufficiently small 

to be able to apply the polynomial approximation. For regions where the probed physical parameter 

varies abruptly, finer meshing is required. If an extremely precise meshing strategy is used through-

out the entire simulated volume, then the number of generated cells will exceed computing capacity. 

On the other hand, not accurate enough meshing will result in divergence of the global solution.  

 

Although all TCAD frameworks do have an automated meshing algorithm supporting dynamic 

and adaptive meshing to take into account geometry variations along the simulation evolution, sev-

eral constraints have to be imposed for a successful result. This include the predefinition of smaller 

and larger cell sizes as well as evolution steps for regions of interest. 

 

6.4.3 Dopant Implantation Models 

 

Dopant implantation is one of the most crucial production steps. It is in this stage that the actual 

doping of the substrate, defining its final electrical properties, takes place. In process simulation, 

two approaches can be used for dopant implantation: 

 

1. A library-based implantation simulation where the outcome is calculated using extrapola-

tions from experimental datasets and available measurements libraries. It can provide an 

accurate approach for typical conditions with a very fast processing speed [36]. 

 

2. A Monte Carlo approach by binary interaction approximation between incoming particles 

and silicon lattice cells. The total dose is extrapolated from a limited number of generated 

pseudo-particles per mesh element, whose trajectories start from a plane parallel to the 

silicon region above the wafers’ surface with a defined incidence angle. Final number of 

trajectories can be further increased by allowing splits in mesh elements with low trajectory 

density. Splitted trajectories originating from the same particle have half the initial statis-

tical weight and start under identical conditions at the splitting point. Trajectory splitting 

decreases statistical fluctuation and provides better modeling for transitional regions. To 

improve performance and processing time trajectory replication is also possible in order to 

avoid physical calculation of all available tracks and particles. In this approach, equivalent 

trajectories are rather copied than recalculated. Trajectory replication provides quite accu-

rate results for 1D simulations, but is unsatisfactory in a 3D case where elementary mesh 

elements differ fundamentally. Final crystal damage accumulation is estimated using the 

binary collision approximation, where it is assumed that, if the transferred energy exceeds 

a certain threshold, the target atom is displaced and, at this lattice site, a vacancy is gener-

ated. When the displaced atom comes to rest, it is identified as an interstitial. Defect pro-

duction rate is evaluated by simulating the full collision cascade. The main Monte Carlo 

engine of both simulation frameworks is based on the CristalTrim algorithm, an evolution 

of the Transport of Ions in Matter (TRIM) simulator [37], developed to calculate interaction 

of ions with matter. Latest versions were specifically optimized to simulate ion implanta-

tion in single crystalline semi-conductive structures and perform dynamic crystal damage 

calculations. 

 

After implantation, a diffusion step is required to properly integrate the implanted dopant to the 

silicon crystal lattice and to force a recrystallization in order to repair possible lattice dislocations 

provoked by incoming ion impact. Four main physics models are available in a simulator level: 

 

1. Constant model: It is based on Fick’s diffusion law [38] assuming that the flux propagates 

from regions of high concentration to regions of low concentration proportionally to the 

concentration gradient (equation 6-22): 
 

𝐉 = −𝐃𝛁𝚽             (6-22) 
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where j is the flux, φ the concentration and D the diffusivity of the implanted spices. Dif-

fusivity is proportional to the square of the velocity of diffused particles, which in terms is 

proportional to the particle size and the viscosity of the medium. The evolution of the con-

centration with respect to time calculated by the second order derivative of the previous 

equation as (equation 6-23): 

 
𝛛𝚽

𝛛𝐭
= 𝐃∆𝚽             ( 6-23 ) 

 
2. Fermi diffusion model: The quasi-hydrodynamic carrier transport equations for semicon-

ductive materials, extended to Fermi–Dirac statistics are considered. In the high injection 

case, these equations reduce to a drift-diffusion model with non-linear diffusion terms.  

 

3. Pair diffusion model: The pair model does not only describe the influence of charged do-

pants on each other but also the reactions of dopants and the host lattice including its point 

defects.  

 

4. React model: This model considers the pair model case with the addition that it can account 

for chemical reactions in multi-dopant implantations or in matrices where the crystalline 

structure is chemically active [39, 40, 41]. 

 

Although the constant model is a good approximation for low doping concentrations, at higher 

values, collective effects are highly important, as well as reactions with crystal damage. For inter-

mediate and medium doses, the charged Fermi model is sufficient. The addition of pair interaction 

simulation for the pair model readjust the behavior to accurately describe experimental data up to 

implantation doses of 1015 atoms/cm2. In the studies that follow, all four models are used to simulate 

diffusion process while, their level of consistency with experimental data on doping profiles is ex-

amined.  

 

6.4.4 Application of 3D Simulation to the IBL sensor case 

 
As a first step of detector development, simulation was carried out to the implemented n-in-n 

IBL sensor architecture in order to have a common ground base for comparison and result interpre-

tation. Using the SYNOPSYS® 3D TCAD framework, I present the complete simulation of a single 

pixel structure included in the current detector. The process flow is simulated with extreme attention 

to adjust meshing and back-side process in an appropriate manner. Since not all technological pa-

rameters were available in detail, several steps are implemented using standard procedures in indus-

try.  

 

Initial simulation parameters were adjusted to known standards. A high resistivity, phospho-

rous doped, Czochralski silicon substrate was used as the base for further processing. Initial dopant 

concentration was set at 1014 atoms/cm3, corresponding to an equivalent resistivity value of 5kΩ×cm. 

Although any processing steps only affect the wafer surface, simulation was performed throughout 

the entire substrate region, extending to the full depth of 250 μm. On the surface level, the simulation 

domain covers the entire pixel region, extending to an area of 50μm × 250μm. Since this particular 

production process (n-in-n) includes double-sided lithography, both front and back-end processes 

were simulated simultaneously.  

  

In order to improve meshing and optimize computation speed, several fixed points were intro-

duced (Table 6-1). During the various steps, the simulated geometry changes and the meshing has 

to be adapted. This process is time consuming and may generate inconsistences. By defining fixed 

lines, the simulator can only adapt mesh elements between them while, always respecting the ratio 

of the cell size that has been predefined. Fixed lines are therefore placed in the transition from a 

region of interest to a region where simulated quantities do not vary significantly. For instance,  a 

fixed line is placed 200 nm form the surface, where all transition effects take place and meshing has 
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to be accurate and another at 3 μm depth, were a more coarse mesh is required. A final fixed line is 

placed at the total depth with an enlarged cell size (25 μm), since no interesting effects can be seen 

in this area. Additional meshing optimizations include a lateral cell accuracy at 0.5 μm and a vertical 

accuracy of 100 nm. 

 
Fixed Lines Placement 

Depth (250 μm) Horizontal direction (250 μm) Vertical Direction (50 μm) 

Region Cell Size Point Cell Size Point Cell Size 

0 nm - 200 nm 100 nm– 200 nm 0 μm – 89 μm 1 μm – 10 μm 0 μm - 10 μm 1 μm – 20 μm 

200 nm - 3 μm 200 nm – 1 μm 89 μm – 144 μm 10 μm 10 μm - 25 μm 20 μm – 40 μm 

3 μm  - 250 μm 1 μm - 25 μm 144 μm – 244 μm 10 μm 25 μm - 40 μm 40 μm – 20 μm 

  244 μm – 250 μm 10 μm – 1 μm 40 μm - 50 μm 20 μm - 1 μm 

 
Table 6-1: Fixed points and cell sizes for different regions of the simulated structure 

 

Implantation was performed using the CristalTRIM MC algorithm with a generation of a 1000 

pseudo-particles. This number was subsequently normalized to the defined dose both for the phos-

phorus and the boron implants. To achieve a reasonable accuracy in doping profile determination, 

adaptive meshing during implantation was used. Because of the significantly smaller boron dose, 

the minimum cell size during implantation simulation was readjusted to 100 nm for phosphorous 

and 10 nm for boron Target concentration uncertainties for both boron and phosphorus implants 

were set at 1018 atoms/cm3. To simulate implant diffusion, the default model, an implementation of 

the Fermi model taking into account spices charge, was used. 

 

 
 
Figure 6.11: Phosphorus and boron simulated doping profile cross-sections at the front bias-rail region (left 
figure) and on the sensor back side (right figure). Topological details of different non-silicon layers are rep-
resented with green color. On the front side doping profile (left plot) a lateral diffusion of the implant to a 

0.5 μm distance after the end of the top metal electrode is visible. 

 

Fabrication process involves five lithographic steps in each side of the wafer. Through an initial 

oxidation, 120 nm of silicon dioxide (SiO2) are deposited. Additional 0.5 μm photosensitive layer 

was added in conjunction with a mask to pattern the pixel regions. An etching step was used to 

remove the excess oxide and to expose the regions to be subsequently implanted. The pixel region 

is defined by the phosphorus implant, and a diffusion step through thermal exposure follows. Finally, 

the photosensitive layer is removed and the structure passes to the second production step.  

 

A Silicon Nitride layer of a 50 nm thickness is deposited and through the use of a photoresist 

layer followed by an etching step, is patterned to allow for the boron implantation. Boron in this 

production is introduced as a very low implant to stop charge sharing between neighboring pixels 

(p-spray). After implantation, a thermal exposure is used to integrate the implant to the silicon lattice 

and the photoresist layer is removed. The 2-dimentional doping profile distribution of both implants 

are extracted (Figure 6-11) after all implantation and thermal steps.  
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The three remaining steps include opening of contacts though etching of the previously depos-

ited oxide and nitride layers, deposition of a metal layer to serve as a contact electrode and introduc-

tion of a final silicon oxide layer as passivation. A passivation is frequently used in silicon 

production, to insulate and protect areas not required to contact any external circuitry. Thought-out 

the curse of the simulation procedure, all additional layers are treated as epitaxial depositions and 

no detailed oxidation simulation is performed. 

 

The completed 3-dimentional geometry as well as the meshing elements and the doping profiles 

for both implants are presented in Figure 6-12. The metal region, represented with blue color on the 

upper right part of Figure 6-12, is slightly retracted with respect to the pixel boarders. Concerning 

the meshing elements, on the lower part of the same figure, it can be observed that a large area above 

the silicon surface is finely segmented. This area, corresponding to several layers that were deposited 

and removed along the process simulation, is always treated by the algorithm as an integral part of 

the substrate. As a result, computational time and resources are consumed. It is therefore a good 

practice to try to minimize such effects by altering the simulation in such a way to avoid removal of 

thick layers. 

 

 
 

Figure 6.12: Complete 3D representation of the biasing region of an IBL-type pixel. On the top left figure 
only a geometrical representation is shown, with pink representing the silicon region, red Silicon Nitride, 
brown the Silicon dioxide and blue the final aluminum layer. On the top right plot, a boron three dimen-
sional doping profile is presented with meshing element details. Meshing extends over the surface of the 

simulation region to account for layers that were deposited and removed along the fabrication process. On 
the tow bottom figures, a 3D boron (left) and phosphorus doping profile is presented, while used colors cor-

respond to the dopant concentration scale. 

 

To conclude, initial oxidation and subsequent etching and deoxidizing steps result in alternating 

deposition and removal of several layers of material. Interface region is therefore displaced with 

respect to its initial wafer surface resulting in an unwanted meshing on top of the silicon region 

which reduces calculation efficiency (Figure 6.11). Using a complete 3D and 2D process flow im-

plementation, the lateral diffusion of the implants is extracted. A 0.4 μm lateral diffusion overshoot-

ing the metalized electrode is observed (Figure 6.12), resulting in field non-uniformities and 

distorted dynamic lines. The effect is taken into consideration for future production by implementing 

lateral metallization layer extension of the order of 1 μm. 

 

6.5 Sensor Designs for ATLAS Upgrade and Active Edge Technology 
 

In the previous section, I have studied design effects in the case of the IBL using a 3D simula-

tion approach. Implementation of these results is presented in several designs using the innovative 
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active edge technology. A common production run, with participation from several groups was de-

fined within the ATLAS planar pixel community. This Multi-Project wafer, commissioned in 2014, 

was assigned by ADVACAM(c), who has demonstrated a proven experience in active edge sensor 

development [42]. As a designer of the LAL contribution, I have introduced four key variations, 

centered on an in-house developed ASIC. 

 

6.5.1 The Active Edge Technology 

 

Large area hybrid silicon detectors are widely used in high energy physics experiments. To 

increase geometrical coverage and combine several layers of tracking information, large arrays of 

silicon sensors are stacked and tiled together to provide the needed sensitivity and coverage. How-

ever, the drawback is the formation of a dead region between individual modules. The inactive re-

gion usually consists of guard rings and as well as an additional gap between the active area and the 

cut region. Guard rings are structures that gradually decrease the electrical field towards the detector 

edge and protect the active area form high electrical currents. The additional gap is usually designed 

with a fairly large dimension, in order to minimize edge leakage effects, caused by conventional 

dicing methods. 

 

A large effort is devoted in decreasing sensor dead regions. While optimizing dicing quality 

through laser dicing or other methods is possible, additional process complications are introduced 

[43]. The introduction of the active edge technology treats both issues and enables the fabrication of 

large area detection systems with seamless images. A dry etching technique is used to open deep 

trenches around the detectors, thus eliminating the need for a dicing process. A subsequent doping 

of these trenches renders detector edges active [44].  

 

 
 

Figure 6.13: A brief representation of the active edge process flow applied on n-in-p detector fabrication 
[45]. 

                                                           
c Advacam Oy, Ratalaaksonkuja 9A, 02760 Espoo, FINLAND, http://www.advacam.com  

http://www.advacam.com/
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The sensor wafer is firstly implanted on its back side and subsequently attached to an oxidized 

support wafer. Additional thinning may occur at this stage, to further minimize the thickness of the 

final sensor. Silicon oxide is grown at the top side of the wafer assembly, and through lithography 

and implantation, the active area is defined. Deep trenches are then created at the edges of the sensor 

the using Ion Coupled Plasma technique. These trenches extend all the way down to the support 

wafer. A four quadrant implantation with appropriate tilt angles is then performed in order to dope 

the trench walls. A subsequent activation through oxidation follows. Final production steps include 

metal contact deposition and detachment from the support wafer [46]. A brief schematic of the pro-

cess is presented in Figure 6.13.  

 

6.5.2 Design variations for the Multi-Project Run 

 

Initial focus of the multi-project run was the evaluation of the edgeless technology on thin 

sensors. As a test production, several designs covering a wide range of research subjects, were as-

sembled to a single wafer. In the general production characteristics, three thicknesses were decided, 

50 μm, 100 μm and 150 μm, using 10 kΩ floating zone p-doped Cz wafers. The larger surface area 

provided by the six-inch diameter wafers allowed for flexibility in terms of included designs. The 

additional advantage of providing diced structures as a result of the active edge production process 

also allowed individual management of each design. 

 

From the LAL perspective, four different designs where included, all compatible with the in-

house developed ASIC Omegapix [47]. Representing a 3D implemented demonstrator chip, it cor-

responds to a relatively small detection area of 5 ×5 mm, comprising of 2304 channels. Pixels are 

organized in 23 columns and 96 rows, with a horizontal distance of 10 μm and a 12 μm vertical 

separation. The pixel dimension has been reduced to 25 × 200 μm, which is a factor of two smaller 

in comparison with current ATLAS IBL pixels in the vertical direction. 

 

During the design phase, several technology limitations where imposed. To allow for testing 

and also provide a virtual grounding to non-interconnected pixels, a standard bias rail was intro-

duced. It consists of a grid of metal rails in contact with every pixel at a specially implanted region. 

In addition, metallization regions on top-side pixel electrodes where extended to account for the 0.5 

μm implant lateral diffusion surrounding the pixel (Figure 6.14). Nevertheless, the width of all metal 

regions posed a particular problem due to the Omegapix reduced pixel size. Because of the chemical 

etching technique used to form the metal layer, all structures needed to allow for a 1 μm tolerance 

in each direction. On the other hand, the minimum recommended width of an aluminum metal con-

nection should not be less than 5 μm. For this limit downwards, the connection is no longer purely 

conductive and stars having a resistive behavior. As a result, taking into account the tolerances of 

the lithographic technology, a minimum of 7 μm width was implemented. This also represents the 

maximum width that can geometrically fit on the sensor matrix. 

 

 

 
 

Figure 6.14: Detail form a pixel mask where the metal layer is extended 2 μm with respect to the end of the 
implant in order to account for the lateral diffusion and the required tolerances of the chemical etching 

technology. 

0.5 μm 
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The four final variants designed are listed below (Figure 6.15): 

 

 No guard ring and no bias rail: Taking full advantage of the active edge technology, 

this design features no protective guard ring or biasing grid. The total distance from 

the edge of the last pixel to the sensor edge is 47 μm. Taking into account the interpixel 

distances, such a value corresponds to a 35 μm dead region, accounting for 3.6 % of 

the total area. 

 One guard ring with no bias rail: The width of the Guard ring was reduced to 16 μm 

while the distance from the last pixel is set at 6 μm. Finally, a 25 μm spacing is allowed 

between the end of the guard ring and the edge of the sensor, accounting for the 57 μm 

inactive region. 

  One bias rail and no guard ring: The bias rail width is set at 37 μm while the distance 

of the last pixel from the structure is fixed at 16 μm. The bias rail is kept 25 μm from 

the edge zone of the sensor, accounting for 65 μm inactive region (5.2 % inactive area) 

 One bias rail and one guard ring: being the most conservative design, a 16 μm width 

guard ring and a 37 μm width bias rail are include. Keeping the distances form the last 

pixel of the matrix at 16 μm, the 25 μm separation form the sensor edge and a 5 μm 

spacing between the guard ring and the bias rail, increases the dead region to 88 μm (8 

% of the total area) 

 

     
 

Figure 6.15: The four design variations of the active edge production. From left to right: no Guard Ring - no 
Bias Rail design, no Bias Rail - one Guard Ring design, no Guard Ring - one Bias Rail design and one Guard 

Ring – one Bias Rail design. 

 
 No BR – No GR BR – No GR No BR - GR BR - GR 

Guard Ring Width   16 μm 16 μm 

Bias Rail Width  37 μm  37 μm 

Bias Rail – Guard Ring distance    5 μm 

Last pixel distance 47 μm 16 μm 6 μm 16 μm 

Distance to sensor edge 47 μm 25 μm 25 μm 25 μm 

Total inactive region 

% of inactive region 

47 μm 78 μm 57 μm 100 μm 

3.8 % 6.2 % 4.6 % 8 % 

 
Table 6-2: Summary of the geometrical characteristics of the four Omegapix sensor designs 

 

A respective summary of all design characteristics is presented in Table 6-2. Four samples of 

each design were included per wafer, resulting to a total of sixteen Omegapix compatible sensors. 

Taking into account the three different thicknesses as well as the wafer multiplicity, 70 sensors were 

delivered. 

 

 

6.6 Doping profile Characterization 
 

6.6.1 Motivation 

 
Developing efficient design and fabrication techniques as well as building confidence level in 

simulation output, requires rigorous testing and evaluation of the final detector. While by electrical 

measurement one can evaluate functional characteristics of a device, no conclusion can be drawn 
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concerning neither the fabrication procedure, nor on its efficiency or the impact of dopant diffusion 

to the observed electrical behavior. As a result, knowledge of the dopant profile distribution within 

the detector is required to complete electrical characterization and explain operational behavior. De-

pletion voltage, leakage current, proportional or avalanche operation and to some extend breakdown 

boundaries are directly dependent on the shape and concentration of the dopant distribution within 

the substrate. While production testing is only half the intended outcome of doping profile measure-

ments, accurate simulation and benchmarking of any conception accounts for the other half. The 

final goal is to have a complete knowledge of the detector quality from fabrication to electrical 

characteristics and signal response through simulations. Before even a single wafer is produced, one 

needs to establish a library and calibrate the simulator framework before any viable design can be 

produced.  

 

The acknowledged dependence of functional characteristics of a silicon detector from the dop-

ing profile distribution as well as the close relationship of the later with charge generation process, 

mandates detailed modeling of the implantation process. Using simulation tools, it is possible to 

approximate with great detail the fabrication processes. Nevertheless, deviation in both doping pro-

file distributions and expected electrical characteristics from those generated by simulations, require 

further modeling and understanding. 

 

6.6.2 Secondary Ion Mass Spectroscopy as Tool for Simulation Validation 

 
The SIMS measurements described in the following section is a very powerful tool, allowing a 

detailed characterization of the dopant profile [48]. This information is of vital importance in detec-

tor design. Since the final purpose is to have a complete functional and process simulation of a device 

before undertaking a production, implantation parameters to produce the appropriate dopant profile 

distribution with the required properties are essential. Technological parameters are not communi-

cated by different manufacturers. To create a reference library, calibrate the simulation framework 

and consolidate its validity, three test productions involving different implantation parameters, spe-

cifically defined were made. The values were kept close to bibliographic reference value in sensor 

production while the three main implants and substrates used in the industry are probed: n-implant 

on an n–type wafer, n-implant on a p-type wafer and p-spray implant on a p-wafer. Measurements 

of wafer properties were conducted in the laboratory of the GEMAC group (Group d’Etude de la 

Matière Condensée) of the University of Versailles.  

 
6.6.2.1  Measuring Basics 

 
Secondary ion Mass Spectroscopy is an analytical technique allowing to characterize impurities 

in the surface and near surface (~10μm) region with a nominal sensitivity of 1013 atoms/cm3. The 

method consists of sputtering an energetic primary ion beam (0.5-20 keV) on the sample surface and 

on subsequent analysis of produced ionized secondary particles by mass spectrometry (Figure 6.16). 

This allows multi - element detection with a depth resolution of 1 to 5 nm depending on abrasion 

seed and beam characteristics. Surface information about the probing region can also be obtained, 

since the affected area extends up to 150 × 150 μm with respect to the sample surface. However, it 

is a destructive method, since removing material by sputtering leaves a crater in a sample, rendering 

impossible any further treatment on the affected region.  

 
Determining the total dopant profile with SIMS is subjected to a number of constraints, primar-

ily in relation with the stability, polarity and intrinsic characteristics of the primary ion beam. Boron, 

Phosphorus and Gallium are the most commonly used elements for doping in semiconductor indus-

try. Probing each one of these analytes requires beam reconfiguration and is subject to different 

constraints for each case.  

 
For the phosphorus case, bombardment with the usual negative oxygen ion beam would only 

allow a concentration resolution of about 1018 atoms/cm3 [49]. At the same time, using an oxygen 
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jet to deposit a secondary oxide on the sample surface in order to increase ionization yield would be 

problematic. The H2O contamination induced from ambient humidity, would dramatically increase 

the SiH signal in the silicon substrate, degrading resolution beyond any useable limit. In contrast, 

one can take advantage of the high negative ionization yield exhibited under electropositive Cs+ ion 

bombardment by replacing the oxygen ions in the primary beam with cesium. In such a setup, reso-

lution limits of 1013 atoms/cm3 can be achieved for a thick silicon target. 

 

 
 

Figure 6.16: Operating principal of the SIMS Spectrometer [50]. 

 

In the case of non-conductive sample, no effective path is available for the incoming charge to 

be evacuated. As a result, the probed area will become positively charged, suppressing negative ion 

production yield. Furthermore, beam instabilities will be induced and secondary ion resolution will 

be degraded by the increase of the evacuation field. To neutralize the charging effect and stabilize 

the surface potential at the necessary (close to the ground) value, introduction of an additional neg-

ative charge, in the form of low energy electron beam, is necessary at the sample vicinity [51]. A 

correct adjustment of the charge compensation mechanism is required at the early steps of the meas-

urement serving as guideline for subsequent corrections. In the case of negative secondary ions, 

partial charge compensation is achieved by the secondary beam itself, rendering the effect less sig-

nificant. 

 

While an electronegative element was used for Phosphorus analysis, in the Boron case, elec-

tropositive Oxygen ions are exploited to produce a B+ secondary beam. Since in any case the primary 

ion bean is positively charged while the electropositive nature of oxygen will create positively 

charged boron secondary ions, the charge compensation mechanism described in the previous para-

graph becomes significantly important in boron analysis. No self-stabilization mechanism by using 

secondary ions exists in this case and if no action is taken, produced ions are scattered and their 

energy altered. In this case, the introduction of the negative electron beam is important to re-stabilize 

the potential on the sample surface. 
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Figure 6.17: The CAMECA IMF 7F System where measurements were performed [52]. 

 

To achieve an initial reference potential needed to correctly calibrate the charge compensation 

mechanism, a non-insulating metal layer is deposited on all samples where a silicon dioxide layer 

precedes the substrate. Using palladium or gold Plasma Enhanced Chemical Vapor Deposition a 

reduced thickness (~50 nm) surface metal film is deposited on top of the SiO2 layer. To develop an 

accurate understanding of the compensation mechanism, in several samples with superficial oxide 

layers SIMS measurements were also conducted after chemically etching any process induced re-

gions. Results were subsequently compared with the ones obtained when no etching is performed 

and necessary adjustments were made. Individual series of measurements were performed to deter-

mine the interface of each layer (palladium/gold, oxide and silicon) and the relevant ion velocities 

in order to have an exact depth extrapolation.  

 

An additional limitation of the technique is the maximum probing depth achievable under nor-

mal conditions. Although a uniform beam exposure to the target surface is performed, beam non-

uniformities as well as non-crystalline surface structures can result in exposure to ion beam under 

various angles. Furthermore, as the measurement progresses and the induced crater deepens, ion 

reflection on the sidewalls degrade beam stability and introduce collisions at a wide variety of angles 

and energies. The effect is more prominent in polycrystalline materials since no uniform refraction 

plane exists. Combination of non-perpendicular surface collisions with crater side-wall reflections 

roughen the surface at the bottom of the crater preventing a continuously uniform sputtering. While 

at the initial stages the effect is not significant, the more the measurement progresses and the target 

surface becomes non-uniformed, the phenomenon is self –amplified due to the variation of primary 

ion incidence angle. At extreme cases the end of the crater becomes “dark” – non reflective for 

secondary ions – while, the resolution and the precision degrades with respect to depth. To treat this 

effect, all depth measurements were limited to a maximum depth of 4 μm, well below the expected 

10 μm limit value of maximum penetration depth [53]. 

 
6.6.2.2  Concentration Quantification 

 

During SIMS measurements, secondary ion intensity of elements of interest is recorded in using 

an electron multiplier, in the form of an electron induced current. In order for these values to be 

converted to actual element concentrations, a multiplication factor is needed, known as the Relative 

Sensitivity Factor (RSF). Since ionization yield depends on probed element, matrix composition, 

ion beam nature and measurement conditions, special reference samples of nominal consecrations 

have to be used in each series of measurements to calibrate the results and calculate the RSF. Those 

samples need to be of the same matrix and to contain the same element of interest as the ones been 

analyzed. Consequently, to quantify for example phosphorous concentration in silicon, an accurately 

phosphorous doped silicon calibration target is measured at the same conditions as the probed sam-

ple. Then corresponding multiplication factor is extracted. 

 

To avoid depth imprecision in the determination of the reference profile, measured ion intensity 

(SM for the matrix and Si for the element of interest) is integrated along the total elapsed measuring 
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time. The average intensity is calculated for the matrix (IM) and the element of interest Ii by dividing 

the signal integral with the total duration of the measurement (equations 6-24 and 6-25). The latter, 

is defined as being the time interval between the first and last recorded data point of the correspond-

ing element, thus accounting for any time differences due to magnetic field adjustments. The average 

implant concentration (Ci) is computed by dividing the known implanted dose with the crater depth, 

created by the ion beam during the measurement (equation 6-26). Finally, the RSF is calculated by 

multiplying the average implant concentration with the ratio the average secondary ion signal for 

the matrix over the secondary ion signal related to the element of interest (equation 6-27). Expected 

units of the final factor are atoms/cm3 since multiplied by detector counts should yield dopant con-

centration in the matrix. 

Average secondary ion signal for matrix: 𝑰𝑴 =
∫ 𝑺𝑴𝝏𝒕
𝑻𝑴
𝟎

𝑻𝑴
                 (6-24) 

 

Average secondary ion signal for implant: 𝑰𝒊 =
∫ 𝑺𝒊𝝏𝒕
𝑻𝒊
𝟎

𝑻𝒊
             (6-25) 

 

Average implant concentration:   𝐶𝑖 =
𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑑𝑜𝑠𝑒  (𝐶)

𝐶𝑟𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ (𝐷)
                  (6-26) 

 

Relative Scale Factor: 𝑹𝑺𝑭 = 𝑪𝒊
𝑰𝑴

𝑰𝒊
             (6-27) 

 
Given the non-continues nature of data points, secondary ion signal integral can be approxi-

mated by a sum of all recorder intensities multiplied by the time interval between two consecutive 

values. Corresponding uncertainty can be evaluated as the square root of the quadratic sum of indi-

vidual uncertainties in each bin, which, assuming stable beam conditions, should be identical. They 

are defined as the square root of the quadratic sum of time and signal uncertainties. Time uncertainty 

can be approximated as half the interval between two consecutive data points while for the total 

measuring time, the quadratic sum of the uncertainties at the start and end points is used. Implanta-

tion dose precision is typically one half of the last referred unit, while for the crater depth, it repre-

sents the convolution of the profilometer’s precision definition with the statistical deviation of three 

consecutive measurements. A cumulative description of all considered uncertainties as detailed in 

Table 6-3. 
 

Measurement time: 𝛿𝛵 = √2 ∙ (
𝑡𝑖+1 − 𝑡𝑖
2

)
2

 

Crater depth: 𝛿𝐷 = √𝛿𝑑𝑠𝑡𝑎𝑡
2 + 𝛿𝑑𝑠𝑦𝑠𝑡

2
 

implanted dose: Half of the last referred unit 

Secondary ion signal integral: 𝛿𝑆 = √∑𝛿𝑡2 + 𝛿𝑠2
𝑛

𝑘=0

 

 

Table 6-3: Uncertainties for the various quantities used in RSF determination 
 

By propagating all contributing factors, a total uncertainty can be estimated for the RSF deter-

mination with respect to the following formula (equation 6-28): 

 

𝜹𝑹𝑺𝑭 = √
(𝑰𝑴𝑻𝒊𝜹𝑪)

𝟐+(𝑪𝑻𝒊𝜹𝑰𝑴)
𝟐+(𝑪𝑰𝑴𝜹𝑻𝒊)

𝟐

(𝑰𝒊𝑻𝑴𝑫)
𝟐 + (

𝑪𝑰𝑴𝑻𝒊

𝑰𝒊𝑻𝑴𝑫
)
𝟐
((
𝜹𝑫

𝑫
)
𝟐
+ (

𝜹𝑰𝒊

𝑰𝒊
)
𝟐
+ (

𝜹𝑻𝑴

𝑻𝑴
)
𝟐
)             (6-28 ) 



Chapter 6 Planar pixel Development 
 

 149 

An unfortunate side-effect of the technique is that only elements with preexisting calibration 

targets can be quantified. Since the matrix has to be the same in both the measured and reference 

samples, there is a limited amount of possible applications. In that sense, although we can quantify 

phosphorous concentration in silicon, it is impossible to accurately determine its density in the pre-

ceding silicon oxide or other layers on top of the substrate. Although dopant concentrations are 

always presented quantified in the entire region, a conservative approach has to be taken concerning 

measurements in any silicon oxide, nitride or passivation layers where silicon substrate approxima-

tion is made. 

 

In the following table (Table 6-4) typical phosphorous and boron in silicon RSF values are 

represented with their respective evaluated uncertainties for measurements conducted at the GEMaC 

facility of the university of Versailles: 

 

Element RSF Value (atoms/cm3) 

Boron in Silicon (5.50×1022 ± 1.24×1021) atoms/cm3 

Phosphorous in Silicon (8.80×1022 ± 1.84×1021) atoms/cm3 
 

Table 6-4: Typical RSF values calculated in silicon sensors measurements 

 
Since for the estimation of the RSF the secondary ion intensity of the matrix element is taken 

into account, during measurement quantification we need to use not only the ions intensities of the 

analyzed element but also that of the matrix. The concentration of the analyte can then be derived in 

the following manner (equation 6-29): 

 

𝑪𝒊 = 𝑹𝑺𝑭
𝑺𝒊

𝑺𝑴
             (6-29 ) 

 
where Si and Sm are the ion intensities for the element and the matrix and Ci the final extracted con-

centration in atoms/cm3. Corresponding uncertainty is mostly dominated by limits on the precision 

of the RSF value which are mainly affected by the accuracy on the determination of the implantation 

dose on the reference sample. As a result, precision on the final concentration calculation is of the 

same order as initial dose uncertainty on the calibration target for regions where the secondary ion 

signal is significant. A 2 % precision can be obtained for phosphorus and boron implanted silicon, 

assuming a uniform matrix. 

 
6.6.2.3  Depth Quantification 

 
Secondary ion intensity of probed elements is recorded as a function of time, generating a time 

profile. By measuring the depth of the SIMS crater created by the primary ion beam on the sample, 

time intervals can be converted to depth values. Assuming stable experimental conditions, mainly 

concerning the primary ion beam, a fixed abrasion speed is considered throughout the entire meas-

urement. Once the crater depth is evaluated, it can be divided by the total exposure time to determine 

average abrasion speed. Depth can then be computed for each data point by multiplying the corre-

sponding time value with the average speed.  

 

Crater depths are measured using a mechanical fixed tip profilometer, calibrated to a precision 

of ± 5.3 nm. An average of three values is used per crater depth while total final uncertainty includes 

both statistical and systematic contributions. Concerning the thickness of the initial plasma deposited 

metal layer for ion beam stabilization, a sharp trench is created through surface scraping with a 

controlled load platinum tip. On silicon targets, surface layers are composed of silicon dioxide and/or 

silicon nitride with increased density that cannot be affected by the applied weight. It can be there-

fore safely be assumed that only the metal layer is removed and the trench corresponds to the thick-

ness of the layer. 
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Although this method gives accurate results for homogeneous substrates, in case of multiple 

superimposed layers, the fixed speed approximation cannot be applied. Material sputtering and pen-

etration depth depend on layer density and can vary substantially between different compounds. 

Abrasion speeds need to be determined for each layer separately through dedicated measurements. 

By starting on the top layer, the first measurement will stop exactly at the interface between the first 

and second matrix material. Subsequent measurement will again start on the surface but will stop at 

the interface between the second and third material and so on until the final layer is reached. At the 

end, there will be as many craters as layers, each one traversing all preceding deposits. Each layers’ 

thickness can then be estimated by measuring the corresponding crater’s depth and subtracting the 

depth of the previous layer’s crater. Using the consecutive obtained datasets, beam time on each 

layer is extrapolated by looking for point of abrupt change on secondary ion intensities (several 

orders of magnitude). Finally, using determined layer thickness and spent time in each one, a single 

penetration speed per compound is determined. 

 

During actual conditions, multiple elements are monitored. To determine transition point be-

tween consecutive layers, the first derivative of the secondary ion intensity is plotted for all elements. 

Because of the different extraction potential in each layer, Dirac-like peaks are expected to form in 

the derivative at the interface edge. For a perfectly separated interface layer and in measuring inter-

vals infinitesimally close to zero, a perfect Dirac form is expected (Figure 6-18). Nevertheless, be-

cause of the time resolution limits as well as atomic layer mixing at the transition region, a narrow 

width Gaussian approximation can be applied (Figure 6-19). By applying a statistical fit at the tran-

sition point, the time position is defined as the position of the Gaussian distribution maximum for 

every monitored element. Using all available maxima, an average transition point is estimated while, 

standard deviation of the values convoluted with half of the time interval between two data points is 

considered as uncertainty. 

 

   
 

Figure 6.18: First order derivative of secondary ion intensity for all monitored elements on a typical silicon 
sensor sample. Abrupt changes are observed in layer interface regions which are marked with different 

shading colors. Oxygen and silicon curves are scaled to a factor of 10-2 and 10-5 respectively for representa-
tion purposes. 

 

After the definition of transition time between consecutive layers and the measurement of as-

sociated thicknesses, an average abrasion speed is computed for each region along with the corre-

sponding uncertainty. In contrast with the RSF, which is globally fixed for a series of measurements 

concerning the same element, abrasion speeds are separately calculated for each profile, since they 

heavily depend on the primary ion beam configuration. Parameters like the primary ion current, 

beam acceleration potential and focusing configuration can impact the depth determination accuracy 
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for each sample. A typical set of values is presented in Table 6-5. Although precise values are not 

of particular interest since they can vary significantly, their scale as well as the ratio of speeds be-

tween different layers is interesting.  
 

 
 
Figure 6.19: Narrow width Gaussian fit for the oxygen secondary ion intensity derivative for the metal, ox-
ide and silicon interfaces on the same sample presented at Figure 6.18. Transition time is considered to be 

at point where the peak of the Gaussian observed. 

 

Layer nature Penetration speed (nm/sec) 

Au Layer 2.8±1.0 

Wet SiO2 2.6±0.3 

Dry SiO2 2.4±0.4 

Si3N4 3.1±0.6 

Si 2.5±0.1 
 

Table 6-5: Primary ion calculated abrasion speed for different layers on a standard sensor Silicon sample 

 

Penetration speeds never exceed a few nm per second. Since Silicon dioxide density is lower 

than that of the silicon itself, the expected abrasion speed is slightly increased. For samples having 

undergone both wet and thermal SiO2 growth, slightly different penetration speed values are deter-

mined. Because of the better quality of the dry oxidation process and the more regular structure of 

the produced layer, extraction potential is expected to be higher and beam penetration less efficient 

than in the wet SiO2 region. Finally, silicon nitride layers most commonly used as passivation have 

similar densities and penetration efficiencies as wet silicon dioxide layers.  

 

Final quantification is performed through multiplication of the penetration speed with each time 

point. When different layers are involved, the transition time is used to define layer change and the 

time in the new layer is calculated as the difference of the data point with respect to the average 

define transition time. Layer time is multiplied by the corresponding velocity and thicknesses of any 

previous layer as defined from crater measurements are added. In that way uncertainties can be kept 

under control, since preceding layer’s speed and time estimations do not propagate to the following 

layer. In a four layer sample, a cumulated relative uncertainty of 4 % can be established for depth 

calculation, when combining uncertainties for all four regions.  
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6.6.3 Test production characterization 

 
The above described technique is applied to three different test productions corresponding to 

the two main technologies currently used in sensor production, the n-in-n and n-in-p variety. 

Through a close collaboration with CiS(d) and VTT(e), producers of the ATLAS pixel sensors, test 

production were defined with well-known technological parameters tailored to our specifications. 

The main motivation is to compare the measured profiles with the simulated ones and to extract a 

process library for future simulations while calibrating the framework. 

 

Wafers were diced in quadrants using a diamond saw and each quadrant was subsequently 

divided in 5mm wide strips. In one of the quadrants, screen oxide was etched using a 14 % hydro-

fluoric acid (HF) solution in an ammonium fluoride (NH4F) solvent. Exposure time varies between 

3 to 6 minutes with respect to the oxide layer thickness. Finally, two 5×5 mm2 pieces where cut from 

the region closer to the wafer center where implantation is expected to be the most uniform, one 

with the oxide layer and one where the latest had been removed. Sample dimensions where selected 

taking into account the SIMS machine holder geometry, in order to ensure alignment and planarity 

with respect to the retaining mechanism. Although smaller dimension samples could have been used, 

a risk of introducing an incidence angle with the primary ion beam had to be considered. 

 

Although for a purely semiconductor target, no significant preparation is needed prior to sec-

ondary ion spectroscopy, when addition layers isolating layers are involved, a reference surface is 

needed for initial beam adjustments. For samples where surface silicon dioxide layers were not re-

moved, a ~50 nm PECVD palladium layer was introduced. Argon atoms, accelerated by a 5kV po-

tential, vaporized a palladium anode ring which was deposited on the oxide surface. Layer 

uniformity was controlled at a 10 % precision level, but its thickness was subsequently measured. 

 
6.6.3.1 n - in - n Test Wafer Samples 

 

As described in section 6.3.2, four pixel fabrication technologies are currently available with 

the n-in-n being the one selected for the ATLAS pixel detector implementation. Being of a proven 

radiation hardness and effectiveness in terms of functionality and performance, it constitutes the 

base benchmark for any future developments. To understand process and dopant profile effects on 

final sensors as well as to calibrate the simulation framework and validate results in the larger con-

text of passing to a purely simulation based pixel sensor development, the LAL pixel group decided 

to implement a basic n-in-n production to be used as a reference library. This implementation, with 

well-known technological and process parameters, not only is used to acquire experience in the basic 

process level, but also as a base for further irradiation studies in the most basic level, with no inter-

vention of any additional complex effects induced by geometrical or conceptual issues. Given the 

motivation of this study as a reference and calibration for doping profiles in simulator and measure-

ments and profile study with respect to irradiation, no lithographic masks were used. Selected doping 

concentrations and other process parameters vary around values commonly used in sensor produc-

tion, which are not communicated to the final user. 

 

6.6.3.1.1  Sample Production Process 

 

Two series of wafers where manufactured, implanted under different conditions. For the first 

series, a low resistivity substrate was used with a nominal dopant concentration of 3×1016 /cm3 cor-

responding to an equivalent resistivity of 0.25 Ω·cm and a thickness of 380 ± 5 μm. The second 

series of wafers was produced using a high resistivity substrate, equivalent to the silicon type on 

                                                           
d CiS Forschungsinstitut für Mikrosensorik GmbH, Konrad-Zuse-Straße 14, 99099 Erfurt, Allemagne, 
http://www.cismst.org  
e Teknologian tutkimuskeskus VTT,  Vuorimiehentie 3, Espoo, Finlande, http://www.vtt.fi  

http://www.cismst.org/
http://www.vtt.fi/
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which sensors are produced, with a resistivity greater than 4 kΩ·cm, corresponding to a dopant con-

centration of 1.1×1012 atoms/cm3 and of a thickness of 525 μm. Resistivity values are directly con-

nected to radiation hardness, since higher resistivity substrates have a proven better tolerance to 

radiation damage [54]. The reduced number of charge carriers in the bulk provides less points where 

complex crystal defects can form, due to impacts from energetic particles or radiation absorption. 

Although wafer thicknesses are substantially greater than current sensor thickness, for the purpose 

of a doping profile study this has no actual effect, since all phenomena of interest take place in the 

first 10-15μm of the wafer depth, while the additional high thinning cost was also a contributing 

factor. All wafers where of n-type, phosphorous doped, <100> orientation Czochralski grown sili-

con, polished in both sides.  

 

As no lithographic masks where involved, initial uniform thermal silicon dioxide layers of  

100 nm and 200 nm thickness were developed on the primary substrate. While the 100 nm SiO2 

layer was achieved using only a dry oxidation step, catalyzed by the presence of HCl, time and cost 

constraints of growing a 200 nm dry thermal oxide layer imposed the use of a wet-dry combination 

oxidation. It has to be noted that silicon dioxide does not grow on the surface of any preexisting 

layer but rather on the bottom, at the interface with the silicon substrate. Oxygen atoms need to 

diffuse through any material already on top of the wafer surface until they reach the silicon region. 

There, they react with Si atoms and form new layers of SiO2 that expand outwards, under any pre-

vious layer. The thicker the layer that O2 atoms have to traverse, the more time consuming the pro-

cess becomes, with an exponential increase in time as the oxide grows. Since it is preferable to have 

a very good layer quality close to the silicon interface, one would rather prefer to have a dry thermal 

oxide (which is in general of better uniformity and more organized structure than the more rapidly 

grown wet SiO2) developed at the last stages of oxidation. This is crucial to avoid non-uniformities 

during implantation as well as multiple scattering close to the interface and other transition effects.  

 

After oxidation, wafers where implanted with phosphorous, using different doses and energies 

(Table 6-6). The oxide was used for screening the silicon wafer to avoid sputtering and crystalline 

amorphisation due to impact ionization, but inevitably part of the implant remained in the oxide 

region. Nevertheless, using the Bethe-Bloch formula for the stopping power of phosphorous ions at 

keV energies range, less than 5 % of total implant is considered to remain in the oxide region. After 

implantation, a thermal annealing step is performed to activate the dopant by integrating the im-

planted species to crystalline centers and recrystallize damaged regions. Processes of that type usu-

ally can be initiated at temperatures greater than half the fusion point of the material, which for 

silicon is 1414°C, and intensify as we approach 80 % - 85 % of this temperature. Nevertheless, one 

should keep in mind that a total fusion of the lattice should be avoided, especially in semiconductor 

grade silicon where mono-crystalloid structures are used and any random recrystallization will de-

grade the wafer. Thermal treatment temperature was set at 975°C for a 4h period in an inert atmos-

phere to avoid any chemical reactions. 

 

 

N-IN-N, CIS WAFERS, <100> ORIENTATION 

Oxide thickness 100 nm 200 nm 

Implantation 
dose 

1013 cm-2 1014 cm-2 1015 cm-2 1016 cm-2 1013 cm-2 1014 cm-2 1015 cm-2 1016 cm-2 

Implantation 
energy (keV) 

130 240 130 240 130 240 130 130 240 130 240 130 430 130 

Annealing 4hours, 975 oC 

 
Table 6-6: CiS test wafer production for dopant profile calibration. A series of 28 total wafers where pro-

duced in both low and high resistivity substrates. 
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6.6.3.1.2 Process Simulation 

 

Using the SYNOPSYS® Sentarus™ package, a complete simulation of this simplified produc-

tion was performed. In the geometrical plane, since this is a uniform structure, an 1D approach is 

used by enforcing periodicity on the x and y direction with the z axis perpendicular to the wafer 

surface. Oxidation was both emulated by a simple oxide layer deposition and through a complete 

process simulation using the relevant thermal steps and active gas components composition infor-

mation. 

 

 Implantation was performed using the Crystal Trim Monte Carlo algorithm [37], where pene-

tration depth was estimated through a statistical approach. The total dose was extrapolated from a 

1000 generated pseudo-particles per mesh element, whose trajectories started from a plane parallel 

to the silicon region above the wafers’ surface. Real time clock randomization was used while the 

number of trajectories was further increased by allowing up to four splits in meshing elements with 

low trajectory density. Splitted trajectories originating from the same particle have half the initial 

statistical weight while they start under identical conditions at the splitting point. Up to four splits 

per particle where authorized but not more than 2 per mesh element and only within the silicon 

region. Trajectory splitting decreases statistical fluctuation and provides better modeling for transi-

tional regions. In addition, a replication was activated to avoid physical calculation of all available 

tracks and particles. In this approach, equivalent trajectories are rather copied than recalculated, 

method that is quite accurate for 1D simulations like in this case. Final crystal damage accumulation 

was performed using the binary collision approximation, where it is assumed that, if the transferred 

energy exceeds a certain threshold, the target atom is displaced and, at this lattice site, a vacancy is 

generated. When the displaced atom comes to rest, it is identified as an interstitial. Defect production 

rate was evaluated by simulation the full collision cascade. Incident ion beam angle was set to a tilt 

of 7 % in the horizontal plane and a 30 % rotation as these are values commonly used in semicon-

ductor fabrication to avoid implant channeling. The idea is to ensure that the incident ion beam is 

not oriented with respect to the crystal lattice and ions cannot use aligned empty spaces between 

elementary crystal cells to propagate deeply into the substrate. Although this is not really necessary 

due to the SiO2 layer presence, which has a mostly irregular structure, it is always used as a precau-

tionary measure for penetrating particles. No photosensitive resin was simulated at any step since 

there are no lithographic mask involved. Nevertheless, in actual circumstances, implantation takes 

place with the developed photosensitive layer still in place, as an additional sputtering protection 

mechanism. Final calculated concentration errors where set to 1018 atoms/cm3 for phosphorous 

within the implanted region. 

 

Concerning diffusion, four different readily available models where used (constant, Charged 

Fermi, Charged React, Charged Pair) as described in the simulator section 6.4.3,  to better investigate 

the description potential with respect to experimental data. Thermal treatment steps where simulated 

using the closest possible approximation to actual increase, decrease and stabilization intervals while 

inert atmosphere was simulated throughout the treatment.  

 
6.6.3.1.3 Simulation – SIMS comparison on etched silicon samples 

 

In a first attempt, only low resistivity samples on which the oxide layer has been removed 

where measured. Initial simulations, performed with deposition of a 100nm oxide layer and not 

complete oxidation simulation, demonstrated good agreement in the initial silicon region but devi-

ated from actual experimental results at higher substrate depths. In particular (Figure 6.20) a sys-

tematic deviation is observed in the simulated results towards shallower depths in all samples, 

independently of the implanted dose and energy. In a second approximation, the exact oxidation 

process was simulated (Figure 6.21) and the systematic tendencies were restored. Differences in 

oxide layer densities [55] between dry and wet grown layers have to be taken into account to repro-

duce accurately the implantation process. 
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Figure 6.20: Simulated vs SIMS measured doping profiles for the CiS n-in-n production. Simulation was run 
with deposition of a 100nm silicon di- oxide layer using the charge pair diffusion model. A systematic devia-

tion is observed on the simulated curve towards shallower distributions. 

 

 
 

Figure 6.21: Simulated vs SIMS measured profiles when complete oxidation process was simulated us-
ing the charge pair diffusion model. Statistic deviations are still present but no systematic behavior is ob-

served. Simulated results are represented with dotted lines while measurements are drawn with continues 
cures. 
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Even after accurate oxide simulation, deviation of non-statistical nature are still observed  for 

the 1013 atoms/cm2 sample at 240 keV implantation energy and the 1016 atoms/cm2 implanted sample 

at 130keV. For the 1013 atoms/cm2 sample, divergence is observed at the first stages of the profile 

curve. In theory, when passing from 130 keV implantation energy to 240 keV while maintaining the 

same dose, ions have a deeper penetration depth due to their increased kinetic energy. Resulting 

profile should extend deeper in the substrate, while, to maintain the same dose integral, surface 

concentration is expected to drop. With respect to the Bethe-Bloch approximation for the phospho-

rous case, the relative difference between the 130 keV implanted sample profile and the 240 keV 

one, does not suggest the two implantations where performed at the same dose. The implanted dose 

can be extrapolated by calculating the integral of the measured concentration along the probing depth 

for each SIMS profile. In the following table (Table 6-7) doses are estimated for all samples within 

the silicon region: 

 
Nominal Implantation 

Dose 

Nominal implantation  

energy 

SIMS Computed  

implantation dose 

1013 atoms/cm2 
130 keV 1.19×1013 atoms/cm2 

240 keV 2.597×1013 atoms/cm2 

1014 atoms/cm2 
130 keV 7.847×1013 atoms/cm2 

240 keV 1.128×1014 atoms/cm2 

1015 atoms/cm2 
130 keV 7.094×1014 atoms/cm2 

240 keV 8.866×1014 atoms/cm2 

1016 atoms/cm2 130 keV 7.27×1015 atoms/cm2 

 
Table 6-7: Calculated surface dose from the SIMS measured profile for all samples inside the silicon region. 
Lower dose value than the specifications is expected because of the implant retained within the oxide layer. 

 

Since the relative sensitivity factor was extrapolated for a pure silicon sample implanted with 

phosphorus, the implanted dose can only be estimated within the silicon region.  Any concentration 

quantifications for the oxide layer would be incorrect. Computed total implant concentrations for 

within the silicon region demonstrate a general 20 % deviation from nominal values. This deviation 

corresponds to dopant been trapped within the screen oxide layer. Taking into account that phos-

phorous diffusivity in silicon is in the order of ~8×10-15cm2/sec [56] while the corresponding value 

in silicon dioxide is several orders of magnitude higher (~5.73×10-5cm2/sec) [57] for 975oC, it is 

evident that phosphorus initially within the SiO2 layer will get more diffused and find its way across 

the interface within the silicon substrate. In parallel, the phenomenon is amplified by the segregation 

value, representing the ratio of phosphorous concentration within the silicon versus concentration in 

the oxide layer at a state of equilibrium, which is significantly higher than one. This can be translated 

to a tendency of phosphorus rejection outside the silicon dioxide layer and within the substrate itself. 

Combining these two mechanisms, it is safe to infer that the initial amount of phosphorous trapped 

within the 100nm screen oxide, before any thermal annealing step, is quite higher than the final 20 

% observed during SIMS.  

 

For the sample with implantation dose of 1013 atoms/cm2 at 1240keV, the total computed dose 

in the silicon exceeds the nominal value, pointing to an implantation mis-calibration. Since the pen-

etration depth seems to be accurate, several simulation attempts were performed, where the energy 

was kept close to the reference of 240keV, but the dose varied from 1 to 3.2 times 1013 atoms/cm2 

(Figure 6.22). A dose variation alone does not succeed in reproducing the effect, especially since 

the observed disagreement with simulations is situated at the initial part of the profile and does not 

extend in depth. To accurately replicate the curve form using a higher implantation dose, a lower 

energy would be needed. Hence, the energy was fixed at 180keV and different doses where simu-

lated (Figure 6.23). Although none of the simulated dose-energy combinations precisely matches 

the data points, the most accurate approximation, within 5 %, is obtained for a dose of 2.4×1013 

atoms/cm3 using an energy of 160keV (solid curve Figure 6.23). This behavior could be explained 

by a beam instability of the implanter. It was known that the machine was not sufficiently stable 
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under highly energetic conditions. Variations of beam parameters (magnetic field in the monochro-

matic separator, beam current e.c.t.) can account for the observed increase in the implanted dose and 

decrease in energy. 
 

 
 

Figure 6.22: Simulated profiles for the 1013 atoms/cm2 @240 keV sample using different implantation dose 
values and the charged pair diffusion model. None of the simulated curves can describe the observed be-

havior of the sample, in spite of the increase in the surface concentration. 
 

 
 

Figure 6.23: Simulated doping profiles for the 1013 atoms/cm2 @240keV sample, the dose was kept rela-
tively close to the experimental value of 2.5×1013atoms/cm2 while energy varied while the charged pair dif-

fusion model is used. Best agreement can be observed for a dose of 2.4×1013 atoms/cm2 at an energy of 
180keV (continues orange curve). 

 

To explain deviations in the behavior of the 1016 atoms/cm2 implanted sample, a different 

approach is necessary. The computed dose from the measurements seems to be in agreement with 

the nominal value. Concerning the implantation energy, an increase would lead to a deeper distribu-

tion and would reduce surface concentration closer to the actual value. Nevertheless, it could not 

account for the shape of the profile curve (Figure 6.24). In addition, such large differences from the 

defined value during implantation would have easily been noticeable and corrected. The deeper dis-

tribution in the SIMS profile seems to be a diffusion issue, the origin of which could either be due 
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to insufficient cooling during ion bombardment or to the improper description of crystal damage by 

the default Charged-Fermi diffusion model used in the Synopsys simulator. A model study was per-

formed using the four available models in the Sentaurus simulator as well as three additional, avail-

able in the SILVACO® Athena algorithm, keeping the same simulation parameters (Figure 6.25). 

None of the models seems to completely describe experimental results, however, the SILVACO® 

PLS(f) [58, 59] model, seems to approximate the deeper behavior of the profile. In the PLS approach, 

the dopant-vacancy pairs are not considered as an isolated system in high dopant concentration since, 

because of the increased amount of dopant atoms, each vacancy can interact with more than one of 

them A more complete approximation would include a more evolved implementation of the PLS 

model, were its core diffusion engine would be replaced by the standard Synopsys charged Fermi. 

The latest can sufficiently describe surface effects and initial diffusion, part on which the Fick’s 

approach implemented in the PLS algorithm is not as effective. Nevertheless, the model is particu-

larly successful in describing the deeper diffusion part. 
 

 
 

Figure 6.24: Simulated profiles for the 1016 implanted sample using different ion energies using the charged 
pair diffusion model. None of the curves can reproduce the deep diffusion while surface concentration de-

creases with energy increase. 

                                                           
f The SILVACO PLS model was developed with the aim to consist a unique model for simulation of dopant 
diffusion and activation. It is a physical model coupled with a single set of parameters that can provide accu-
rate simulation with an ease of use and flexibility. The high concentration of point defects, created by a high 
dose implantation, induces a fast acceleration of the diffusion. Although simple diffusion models can simu-
late defect-dopant coupling diffusion, Frenckel pair annihilation and recombination at the surface or bulk 
levels, they fail to correctly describe more complex effects. These include in particular, defect clusters for-
mation, dislocation loops and mixed dopant/defect clusters cluster. 
 
To effectively describe all phenomena, the PLS model is a combination of three main constituents: 
A core diffusion mode, a defect cluster model and a dopant-defect clusters model.  
 

 The core diffusion model is based on the Fick’s diffusion law taking into account any reactions during 
annealing. Dopant migration is realized through point defects while charged states are take into 
account. Recombination and surface exodiffusion are also considered. 

 The Defect Model is based on the Ostwald Ripening theory. Various type of extended defects are 
taken into account, such as small clusters, <311> defects, perfect and faulted dislocation loops It 
has the ability to accurately predict diffusion acceleration. 

 Mixed dopant-defect cluster model is based on ab-initio calculations. For Boron, various types of 
clusters are considered, including B2I, BI2, B3I and B4I2. Arsenic vacancy clusters are also imple-
mented while the ability is provided to easily add some new reactions i to improve simulations 
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Figure 6.25: Simulations performed for the 1016 sample using all the Available models in the two main simu-
lation frameworks. Synopsys Fermi model better describes the shallow part of the distribution while the 

SIVACO PLS model accounts for the deep diffusion in the substrate. 
 

6.6.3.1.4 Oxide Layer Evaluation 
 

While initial measurements where performed in samples where all additional oxide layers were 

removed, subsequent data were taken though the screening oxide region. Since the relative sensitiv-

ity factor in the SIMS measurements was calibrated using a Phosphorus implanted silicon matrix, 

no comparison can be performed prior to the silicon interface in terms of dopant concentration. 

Nevertheless, an excellent agreement is observed with respect to the interface position in the target 

depth, suggesting a correspondence of oxidation process with the simulator for a fully simulated 

oxidation. The slight systematic disagreement in Figure 6.26 towards the surface side of the profile 

distribution, is an effect of the additional deposited metal layer prior to any measurements. Upon 

subtraction of the mean layer thickness, one can confirm the exact results found with no oxide layer. 

 

6.6.3.1.5 High Resistivity Samples 

 

Additional set of measurements was performed on certain high resistivity substrate samples. 

With respect to implant distribution, no alteration is expected since the dopant concentration in the 

substrate itself, (1012 atoms/cm3) is several orders of magnitude below any implanted dose while the 

increase in resistivity does not affect any diffusion mechanisms. Since SIMS sensitivity does not 

allow probing doses lower than 1015 atoms/cm2 (Figure 6.27), the substrate distribution cannot be 

studied. Upon reaching these low values, uncertainties become dominant. As a result, the substrate 

concentration value cannot be probed. For economic and time management reasons, the complete 

set of high resistivity samples was not measured, especially since no variation was expected with 

respect to previously observed data. Selected samples included those with implantation characteris-

tics close to actual values used in sensor production (1015 atoms/cm2 @ 130keV, 1015 atoms/cm2 @ 

240keV), a reference sample for which simulation and data agreement was considered optimum 

(1014 atoms/cm2 @ 130keV) and finally the problematic 1016 atoms/cm2 @ 130keV sample, to con-

firm the behavior detailed in the previous section. All results are similar with respect to the low 

resistivity substrate data. 
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Figure 6.26: SIMS measurements in CiS low resistivity wafers through the screening oxide layer and simula-
tions using the charged pair diffusion model. A good agreement is observed between simulations and meas-

urements with respect to the oxide-silicon interface position. 
 

 
 

Figure 6.27: SIMS measurements and simulations using the charged pair diffusion model on selected high 
resistivity samples. No variation observer with respect to the low resistivity measurement while low sub-

strate concentration exceeds instrument accuracy. 
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6.6.3.1.6 Conclusions 

 

In general, a depth of up to 2.6 μm is observed for the profile distribution for the highest dose 

case. For the intermediate doses, closer to actual production values, no accountable concentration of 

the implant can be observed after 1.4μm. While an energy increase will reduce concentration on the 

surface regions and result in a deeper profile, an increase in dose will induce increase statistics in 

the tails of the penetration distance and stopping power distributions. As a result the amount of 

deposited particles becomes significant enough to be observed by the measurements. In any case, 

for a standard sensor production, all interesting phenomena develop at less than 5 μm from the wafer 

surface, demonstrating a huge margin in wafer thickness reduction (from 385 μm - 525 μm to  

50 μm – 150 μm).  

 
To conclude, a good comparison of simulation versus SIMS measurement is performed for low 

and intermediate doses, whereas at high doses (1016 atoms/cm2) implant diffusion model needs mod-

ifications to accidently describe binary interactions. For the 1013@240keV sample, a possible im-

plantation instability could account for the observed deviations. No difference in the final acquired 

doping profile is observed between high and low resistivity substrates, while an accurate oxidation 

simulation is needed for better precision, to account for the density and quality differences between 

wet and dry developed silicon dioxide.  

 
6.6.3.2 n - in - p Test Wafer Samples 

 

Sensor production can be performed either on n-type substrate, in which case a double sided 

process is needed to create an n-p junction, or on a p-substrate, where only one implantation step is 

needed to introduce the n-type dopant. The junction is formed in the interface between the implant 

and the substrate itself, which is now of opposite type with respect to the implanted species. N-in-p 

process is one sided, with less lithographic steps and substantially less expensive than n-in-n pro-

ductions. To have a complete understanding of the various methods, the same methodical work was 

performed as in the n-in-n case but in collaboration with a different foundry, currently competing 

for Phase II upgrade production. ADVACAM, a spin-off of the national technology center of Finland 

VTT, is also a pioneer in the new active edge technology and an understanding of their processes is 

increased interest for future productions.  

 

6.6.3.2.1 Wafer fabrication 

 

To investigate a p-substrate production, as in the n-in-n case, a series of <100> orientation 

boron-doped wafers were used for two different resistivity values. The lower resistivity substrate,  ̴ 

0,25 Ω·cm, corresponds to a boron substrate concentration of 7×1015 atoms/cm3 and a thickness of 

675±5 μm, and is a Czochralski grown silicon wafer, polished on its top side. For the high resistivity 

wafers, the thickness changed to the standard value of 525±5 μm with a dopant concentration on the 

substrate in the order of 1.3×1012 atoms/cm3. Since only dopant profile distributions are investigated, 

no lithographic masks where used in any production stage. An initial screen oxide layer was devel-

oped upon all wafers prior to implantation. Thickness of screen oxide varies between 100 and 

200nm, in accordance with the n-in-n test production specifications.  

 

To achieve a more complete and uniform understanding, implantation parameters for the n-in-

n and n-in-p productions where kept identical (Table 6-8). Dose varies between 1013 atoms/cm3 and 

1016 atoms/cm3 for the two distinct energies of 130 keV and 240 keV per oxide thickness. Initial 

oxidation and implantation steps are no different from the n-in-n production.   

 

A substantial difference was introduced in the activation of the implant species. Rather choos-

ing a standard thermal cycle in an inert atmosphere, a combined process was used. At the beginning, 

wafers where submitted to an one hour standard thermal cycle at 1000oC in N2 atmosphere. Then 
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two subsequent oxidation steps followed. A wet oxide was initially developed at the same tempera-

ture, followed by a dry silicon oxidation afterwards, for the same duration of 1h. This variable pro-

cess is of double interest. In most sensor production processes, several implantation steps are 

implemented and for each one of them, a different lithographic mask is needed. In a standard process, 

after thermal activation of the first implant, a new screen layer would have to be placed, either 

through normal or low temperature oxidation (LTO - low thermal oxidation) or Si3N4 deposition. 

The thermal dose would have to be carefully monitored to avoid any over-diffusion of the implant. 

In order to overcome such problems and to reduce costs, it is possible to develop subsequent screen 

layers and activate the implant at the same time using high temperature layer development processes. 

An oxidation is therefore performed at 1000oC, although in our case no additional step follows. 

Nevertheless, if the duration of the oxidation process is maintained for as long as the normal thermal 

exposure would have lasted, the thickness of the developed oxide layer would largely exceed any 

useful value. In addition, a side-effect of this oxidation process is that it actually consumes substrate 

layers, by transforming silicon molecules to SiO2 acting on the implanted surface of the wafer af-

fectively removing implant from the final region. This effect can be both beneficial and detrimental 

at the same time. Beneficial in the sense that first layers of implanted silicon, where most of impact 

damage, transition effects and mis-modeling occur, will be removed. Diffusion through oxide de-

velopment is also more efficient since oxidation has been proven to increase dopant diffusivity 

within silicon due to the exercised pressure on the crystal structure under the oxidized region and 

the disassociation of the lattice related to the oxygen-silicon reaction [55, 58]. The detrimental part 

consist of the implant extraction from the final substrate. One has to be certain that after oxidation, 

enough implant will remain for a functional device (see the Gallium LGAD case).  

 
n in  p, VTT production, <100> orientation, thickness of 675 μm or less, 

Oxide thickness 100 nm 200 nm 

p implantation 

doses 10
13

 cm
-2

 10
14

 cm
-2

 10
15

 cm
-2

 101
6

 cm
-2

 10
13

 cm
-2

 10
14

 cm
-2

 10
15

 cm
-2

 10
6

 cm
-2

 

Implantation en-

ergy (keV) 
130 240 130 240 130 240 130 240 130 240 130 240 130 240 130 240 

Annealing 3hours, 1000 
o

C (1h annealing + 1h wet oxidation +1h dry oxidation) 

 

Table 6-8: ADVACAM n-in-p test wafer production characteristics. A total of 32 wafers were produced in 
both low and high resistivity substrates. 

 

To account for these three issues, a normal thermal activation was implemented for 1h at 100C, 

a wet (fast) oxidation step for 1h at 1000C and finally a slower but better quality dry oxidation step 

for the same time and temperature. The interest of the dry oxide at the last step is to create the best 

possible transition between the silicon and preceding layers, since new oxide layers always develop 

from the silicon interface onwards, as preparation layers for any subsequent processing steps.  

 

6.6.3.2.2 Sample Process Simulation 

 

Samples where simulated using the same general flow parameters as for the n-in-n case with 

respect to implantation model, meshing strategy and optimizations. The entire substrate was simu-

lated using a much coarser meshing after the first 20μm of silicon, where the region of interest is. 

Differences are present at the final steps of dopant activation. An oxide is developed on the already 

implanted silicon wafer. Nevertheless, the oxidation speed and efficiency depends on the dopant 

concentration on the silicon surface. For silicon dioxide to form, oxygen atoms need to diffuse within 

Si lattice and encounter an atom in a crystal position that favors interactions. An increase in the 

dopant concentration results in more defects in the silicon lattice due to mismatch. In a defect region, 

atoms are more loosely connected to the crystalline structure and present higher reactivity with re-

spect to a conical crystal [59]. To account for the effect, a dopant dependent oxidation model was 

used, demonstrating higher oxidation rates in the most heavily implanted samples. 
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6.6.3.2.3 Simulation – SIMS Doping Profiles Comparison 

 

Initial measurements where performed in oxide-free samples. A good overall agreement in the 

order of 5 %, at the low and intermediate doses, is demonstrated between simulations and measure-

ments (Figure 6.28). The four available diffusion models in Synopsys were studied (Fermi, Charged 

Pair, Constant and Charge React) in their charged variations, attempting to further investigate devi-

ations observed at doses higher than 1016 cm-2. Although the charged react and charged pair models 

provide adequate results for intermediate range, they fail to provide a reasonable description for 

higher doses. The constant model, based in Fick’s diffusion law, gives very poor agreement for all 

samples while the charged Fermi model seems to be sufficiently adapted for intermediate doses but 

diverges for higher values providing significantly shallower profiles with respect to the measured 

ones.  Doses of 1015/cm2 present a uniform deviation of 0.3μm towards shallower depths in both 

implantation energies (130keV and 240keV) for all models, while for the most energetic implanta-

tion of 1016 at 240keV a deviation towards higher depth is observed, equivalent to that detailed in 

the n-in-n implanted sample of same dose. 

 

 
 

Figure 6.28: N-in-p doping profile measurements and simulations using different diffusion models. From left 
to right (clockwise): Charged Fermi diffusion model, default Charged Pair model, Constant Model and 

Charged React model. Simulations are plotted with dashed lines while SIMS measurements are represented 
with continuous curves. Although the Charged Pair model provides very good agreement, there is a discrep-
ancy on highest dose modelling. Results are slightly better that the Charged Fermi model, where disagree-

ments are more pronounced even for intermediate doses. Charged react essentially provides the same 
analytical description as charged pair model taking into account possible chemical reaction between spe-

cies. Finally, the constant model only provides an adequate description for weakly implanted wafers. 

 

A first order evaluation of the nominal dose values is derived by the calculation of integrated 

doses from SIMS data (Table 6-9). A general difference of 30 % with respect to the reference is 
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observed for all samples. This difference is slightly increased with respect to the 10 % - 15 % ob-

served in the n-in-n case, mainly because of the final oxidation steps which consume the surface 

layers of implanted silicon and transfer that implant within the silicon dioxide region.  In spite of 

any variations between samples, this tendency is rather uniform suggesting correct dose adjustment 

between different implantations. For the dopant concentration within the silicon dioxide, no accurate 

estimation can be made since the SIMS calibration was only performed using pure silicon implanted 

samples.  

 
Screen layer Nominal Dose Energy Computed Dose 

100nm 

1013atoms/cm2 
130keV 6.67E+12 

240keV 8.28E+12 

1014atoms/cm2 
130keV 7.35E+13 

240keV 7.35E+13 

1015atoms/cm2 
130keV 6.80E+14 

240keV 7.48E+14 

1016atoms/cm2 
130keV 6.93E+15 

240keV 7.76E+15 

200nm 
1014atoms/cm2 

130keV 7.37E+11 

240keV 4.91E+13 

1015atoms/cm2 130keV 6.23E+12 

 
Table 6-9: Surface dose calculation using the SIMS profile for all samples. The calculation is valid only within 

the silicon region. 

 

For the 1015 atoms/cm2 samples, a shallower profile than expected is measured. Both samples 

exhibit the same measured profile shape while, observed differences with respect to simulation are 

in both cases of the same order ( ̴ 0.3 μm). The depth where a concentration of 1016 atoms/cm3 is 

reached for the lowest energy sample (1015 @ 130 keV) is unexpectedly similar to the equivalent 

depth for the lower dose sample (1014 @ 240 keV). These three observations, the same curve form 

for all 1015 atoms/cm2 implanted samples, the shallower diffusion depth than expected and the same 

observed same systematic deviation from simulations, point to a possible implantation issue. To 

further investigate the effect, the 1015  @ 130 keV sample was chosen and simulations were per-

formed with one of the four main implantation parameters (energy, dose incident angle, diffusion 

time) modified in each trial.  

 

The shallower nature of the profile points to lower implantation energy. By keeping the dose 

fixed at the nominal value, a series of simulations were performed with energies varying from 10 to 

130 keV (Figure 6.29). Initial part of the distribution seems to be in accordance with expected results 

from a 100 keV implantation whereas in depth diffusion seems to follow the 80 keV distribution, 

but since none of the curves completely matches the data, an energy variation alone is not sufficient 

to describe the effect.  

 

The second investigated parameter was the post-implantation diffusion time. Assuming a 

shorter thermal exposure would explain the shallower profile. Implant activation in these samples is 

performed via a classical thermal annealing of 1h and two oxidation steps while there is no indication 

that the oxide thickness is less than foreseen (see later paragraph). As a result, any annealing time 

variations could only be in the first of the three steps that does not include oxide development. Sev-

eral annealing times were simulated (Figure 6.30) ranging from 20 to the original 60 minutes. Dif-

fusion effect seems to be minimal, as one should expect, since the subsequent steps are significantly 

longer in time and are mainly responsible for the implant diffusion.  

 

The third controlled parameter was the beam incidence angle with respect to the wafer surface. 

It has already been noted that a small angle of 7o is introduced to avoid channeling effect within the 

silicon crystal. Nevertheless, channeling should not occur in samples already covered with oxide 

layer because of the irregular nature of these regions. Indeed, several angles where simulated (Figure 
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6.31) and no significant variation is seen between an angle of 0 and 7 degrees. When the incidence 

angle becomes steeper, surface scattering and geometrical acceptance reduce the amount of implant 

within the wafer. Departing from the logical hypothesis that an angle that could cause this effect 

would be significantly large to be noticed and could not have occurred by accident, this is not an 

effect to be considered.  
 

 
 

Figure 6.29: Simulations using different implantation energies for the 1015atoms/cm2 at 130keV sample using 
the charged pair diffusion model. 

 

 
 

Figure 6.30: Simulations assuming different annealing duration of the first step of implant activation for the 
1015atoms/cm2 at 130keV sample using the charged pair diffusion model. 

 

Finally, several variations on implanted dose where simulated (Figure 6.32). Although none of 

simulated values seems to reproduce the observed profile form, a tendency is established towards 

lower implantation doses. As for the 1013 atoms/cm2 sample of the n-in-n CiS test run, the observed 

deviation is a combination between lower energy and a small dose variation resulting from a mis-

handling of a beam parameter. Since most foundries sub-contract implantation steps to external com-

panies, no control over the parameters is possible. While additional test protocol with well-

established implantation procedure is needed to allow for final conclusions, in normal CMOS and 

transistor production, a variation of this scale would have no observable effect on the final product. 
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Figure 6.31: Simulations performed assuming different primary ions beam incidence angles for the 1015 at 

130keV sample using the charged pair diffusion model. 
 

 
 

Figure 6.32: Different doses were simulated while the implantation energy was kept at 130keV for 
the1015at 130keV sample using the charged pair diffusion model. 

 

On the other hand, for the highest dose and energy (1016/cm2 at 240KeV) a tendency towards 

deeper profile is apparent. As in the precious case, integrating the available implant quantity deter-

mined by SIMS data is in agreement with production reference parameters. The nature of this devi-

ation is nevertheless different and is induced by the used diffusion model, proven to be inaccurate 

in high doses. The reason for which the model seems to work for the 1016 at 130keV sample in this 

production (while it is reminded that for the same sample at the n-in-n case results deviated signifi-

cantly from simulations) is the substrate type. The p substrate is of opposite nature with respect to 

the n-implant and donor-acceptor concentrations counterbalance to some extent. Nevertheless, im-

planted donor densities are not high enough for binary interaction modeling to no longer sufficiently 

describe the behavior within the substrate. Therefore, the default charged pair model still gives rea-

sonable results for the 1016 atoms/cm2 at 130keV implanted sample while it starts failing from there-

after.  
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6.6.3.2.4 Oxide Layer Evaluation 

 

To control the understanding of the oxidation process, SIMS where also performed in samples 

where the oxide layer was left intact. Because of the implant activation through oxidation, the oxide 

layer is expected to be thicker than the 100nm specifications. In Figure 6.33, SIMS measured doping 

profiles and simulations are presented including the oxide layers. Four main remarks can be made: 

 

 A very good agreement is observed between measurements and simulations for the 

oxide-silicon interface values. As expected two oxide regions are visible, with the first 

of 100nm being the screen oxide through which the implantation was performed, and 

the second of about 400nm been developed during implant activation. 

 

 The position of the first oxide interface is identical for all samples, whereas the second 

oxide interface is deeper for higher dose samples. Because of different doping, higher 

dose samples sustained increased crystalline damage which accelerates post-implanta-

tion oxidation. Since all samples where submitted to the same conditions, more doped 

samples will have a thicker secondary oxide layer.  

 

 Implant concentrations between SIMS and simulations in the oxide regions do not 

agree since data calibration is only valid for the silicon region.  

 

 The characteristic distribution of the implant in each oxide region gives an indication 

of the type of fabrication process utilized. In the first oxide region we can find a Bragg-

like peak corresponding to the implant trapped within this layer during ion bombard-

ment. Since phosphorous diffusivity in oxide is tree orders of magnitude less than its 

diffusivity in silicon (10-17cm2/sec in SiO2 versus 10-13cm2/sec) [6] at 1000 C and at the 

reference concentrations, the dopant profile within the oxide region remains unaltered 

during post-implantation thermal steps. 

 

However, in the second oxide region we observe a much lower phosphorous concentration 

presenting a slow descent. This corresponds to the phosphorus implant trapped at the first layers of 

silicon and during oxidation was pushed out. The implant concentration is subsequently lower be-

cause of the oxide to silicon volume ratio, having a value of 2/3. As a result, for every two volumes 

of silicon consumed three volumes of oxide are produced and the implant gets “diluted” within the 

oxide. Finally, the distribution seems to present a very mild descent because in this oxide region 

because the initial dopant concentration in the first layers of silicon is stable (see Figure 6.26). 

 

6.6.3.2.5 High Resistivity Samples 

 

While all results presented on the n-in-p test wafers where obtained using a low resistivity (2 

Ω·cm) implanted substrate, the same dose - energy characteristics where also implemented on high 

resistivity wafers (10 kΩ·cm). Because of the substantial experience gain on through-oxide meas-

urements and the proven ability to correctly quantify and manage SiO2 layers demonstrated on the 

previous study, SIMS measurements on high resistivity substrate where directly performed without 

any oxide etching. Nevertheless, only the four most commonly used energy-dose combinations in 

sensor production where investigated, given the fact that no actual deviation from any low resistivity 

results is expected. As it can be seen from the following figure (Figure 6.34), the comparison be-

tween measurements and simulation yields the same issues and discrepancies as for the low resis-

tivity production. Dopant concentration within the original silicon wafer is several orders of 

magnitude smaller than any of the implantations performed thus limiting any differences to electrical 

characteristics. 
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Figure 6.33: Simulations and SIMS measurements of phosphorous implanted ADVACM samples where the 
oxide region was not removed and the charged pair diffusion model. Distinctive dopant distributions sepa-

rate the two oxides, initial screen oxide in the beginning and thermal oxide developed during activation. 

 

 
 
Figure 6.34: Simulations and SIMS measurements of phosphorous implanted ADVACM samples on high re-
sistivity substrate wafers with the charged diffusion model. The oxide region has not been removed while 

only the four most commonly used dose-energy combinations where probeds. 
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6.6.3.2.6 Conclusions 

 

To conclude, a very good agreement between SIMS measurements and simulations was ob-

served for the n-in-p production, when using the charged pair diffusion model. The post implantation 

activation via oxide development improves the uniformity in the first silicon layers and the agree-

ment with the simulations. A systematic deviation for doses of 1015atoms/cm2 was observed and can 

be attributed to instabilities during implantation process. Model validity extends up to 1016at-

oms/cm2, where a deeper profile than predicted is observed for the highest energy. In the n-in-p 

production, this systematic model disagreement appears in slightly higher concentrations because of 

the nature of the substrate that compensates partially the effect. 

 

6.6.3.3 p-Spray Test Wafer Samples 

 
When designing a pixel, a series of implants are used to define the matrix and form the func-

tional element of the sensor itself. Essentially, a pixel sensor is a matrix of diodes, vertically aligned 

and sharing one of the implants. Modern trend, for radiation hardness reasons, is to use an n-type 

implant to form the pixelated part while the necessary p-type implant is either introduced on the 

back side of the substrate, as in the n-in-n case, or is the substrate itself, as in the n-in-p case. Because 

of the uniform nature of the p part and the physical proximity of individual pixels in the sensor 

matrix, it is possible for charges induced underneath one pixel to drift and induce a signal on neigh-

boring cells. This effect is more pronounced if the trajectory of the particle generating these charges 

traverses close to a pixel’s edge. To isolated pixels from one another, limit crosstalk and control 

charge sharing, and additional, opposite type implant, is introduced between the pixels. This p-type 

dopant of low concentration, is primarily boron and is most commonly known as p-spray. To have 

a complete reference for developing a sensor production, a p-spray test production was implemented 

on a p-type substrate using the ADVACAM process. 

 

6.6.3.3.1 Sample Production Processing 

 

A low resistivity (~0.25 Ω·cm, 7×1015 atoms/cm3) p-type substrate, of <100> orientation and 

675±5 μm thickness was used for the boron p-spray test production. A uniform initial silicon dioxide 

layer of 200nm-300nm was developed and the samples were implanted with boron in different en-

ergy and dose, resulting in a total 6 wafers (Table 6-10). As in the previous cases, no lithographic 

masks where implemented while post-implantation activation was performed in accordance with the 

procedure described at the n-in-p test production, involving thermal oxidation. 

 

P SPRAY, VTT PRODUCTION, <100> ORIENTATION 

Oxide thickness 200nm 300nm 

p implantation doses 1×10
12

 cm
-2

 3×10
12

 cm
-2

 6×10
12

 cm
-2

 1×10
12

 cm
-2

 3×10
12

 cm
-2

 6×10
12

 cm
-2

 

Implantation energy 60 KeV 90 KeV 

Annealing 3hours, 1000 
o
C 

 
Table 6-10: P-Spray test production parameters. A total of 6 low resistivity substrate wafers were produced. 

 

6.6.3.3.2 Process Simulation 

 

The exact same simulation procedure was used as in the n-in-p case. Given the low concentra-

tion expected in the substrate, the absolute dopant concentration error was set to 1015atoms/cm3. To 

increase statistics, the maximum authorized particle trajectory splits were set to 4 with two allowed 

per meshing element. Implantation was performed using the Monte Carlo Crystal Trim algorithm. 

In this case, the initial oxide layer was not completely simulated but emulated by a deposition of 200 

or 300nm of silicon dioxide. For the final oxidations steps used for implant activation, no dopant 
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specific oxidation was used because of the reduced implant expected to be found in the silicon re-

gion.  
 

6.6.3.3.3 SIMS – Simulation Doping Profile Studies 
 

Given the substantial experience obtained, measurements were performed directly through the 

oxide layer n all samples. The two distinct oxide regions are visible (Figure 6-35) referring to the 

primary oxide on the top and the secondary, developed during activation. Unfortunately, the use of 

high resistivity substrates strongly degrades the discriminating power of the measurement because 

of its high boron content, which is higher than the SIMS resolution limit. Given the lower concen-

trations of 1012 cm-2, an extreme accuracy was achieved for the silicon region were simulations and 

data are in perfect agreement. Discrepancies of the dopant concentration at the first 500 nm of the 

sample, within the oxide region, are due to the absence of silicon oxide calibration targets for the 

SIMS measurements. Nevertheless, alignment of the interface regions between simulation and meas-

urements is perfect, while the initial overshoot of the measured curves correspond to beam instabil-

ities as charge compensation effect is optimized. The initial palladium layer deposited in all samples 

with oxide for charge compensation purposes, has been subtracted from the available data since it is 

not simulated neither part of the original production. 
 

 

Figure 6.35: P-spray doping profile in low resistivity p-type substrate. The two oxidation steps are separated 
by the sharp pics at the left part of the plot, with the further left region corresponding to the screen oxide 
and the region that extends up to 500 nm, to post-implantation annealing. Simulations are run using the 

charged pair diffusion model. 
 

6.6.3.3.4 Conclusions 
 

P-spray implantation is of low energy and as a result, quite shallow. The major part of the 

dopant is situated at the first micrometer of the silicon layer. This is the result of an active choice, 

since most of the charge propagation to neighboring pixels takes place at surface layers. In addition, 

a quite low dose is selected in order not to disturb the effective pixel diode. As such, it has to be 

several orders of magnitude less than the pixel implant itself. From a production process side of 

view, it is observed that a very large portion of the implant is within the secondary oxide. Because 

of the low energy and the thick screening layers, most of the original implant stays at the first layers 

of the substrate. Subsequent oxidation transforms these layers to silicon dioxide and transfers the 

majority of the dopant outside the substrate. This technique constitutes an engineering choice, one 
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allowing only the smooth tail part of the profile distribution to remain within the final silicon region, 

in order to avoid abrupt changes of the electrical field within the sensor. 
 

6.6.4 Low Gain Avalanche Diodes Production evaluation 
 

After having successfully validated both the simulation tool and proven the application of SIMS 

analysis in production evaluation, the method was applied to an innovative detector technology, the 

Low Gain Avalanche Diode (LGAD). Using the acquired experience, an appropriate test structure 

to be introduced in all wafer production of LGAD type was designed, one that would allow evalua-

tion of the final result through SIMS measurements. In addition, in close collaboration with CNM(g), 

an additional simulation and measurement campaign was undertaken in an effort to replace boron 

traditional doping with gallium implantation.  
 

6.6.4.1 LGAD Principles 
 

The use of silicon detectors in particle detection applications provides good performance and 

accurate particle tracking information. Given the intrinsic properties of silicon, a reverse biased de-

tector operated in the proportional region, provides an amount of charge relative to the primary 

ionization in the semiconductor. In addition, due to the small energy gap of 1.11 eV between the 

valence and conduction bands, a large amount of carriers (80 e-/μm) are produced per ionizing par-

ticle. This provides a good efficiency and a large detection rate. Nevertheless, silicon sensors oper-

ating in the linear region remain extremely sensitive to thermal and electronic noise and the signal 

to noise ration degrades heavily with irradiation. 
 

A way of overcoming this issue is the introduction of some mechanism of charge amplification 

within the detector. This will allow to produce a signal much higher than primary ionization by 

increasing the yield of generated carriers. Subsequently, the use of a lower gain for the electronics 

amplifier would be possible. Such a behavior is achieved by a multiplication stage within the silicon 

bulk for avalanche diodes, used in photon detection (APD). However, in an avalanche operation 

mode, no information can be extracted for the initial particle energy.  
 

A new detector, similar to a reverse biased diode operating in avalanche mode, was proposed 

[60], operating with a lower gain. The Low Gain Avalanche Diode (LGAD) detectors, structurally 

resemble a normal p-n junction with the addition of a multiplication layer, providing typical gain of 

10 - 100. Internal structure can be compared to that of a planar n-in-p pixel technology with the 

addition of a p type pad diffused under the top n+ implant region (Figure 6-36). As a result an n+/p/p-

/p+ is created at the center of the geometry [61]. Once the detector is reverse biased, a higher electric 

field in the central region will enhance electrons reaching the n+ electrode. The gain of the structure 

crucially depends on the dopant distribution of the p multiplication layer, responsible for electric 

field amplification.  

 
Figure 6.36: Schematic representation of an LGAD cross-section. The p-multiplication layer is diffused below 
the n+ implant of the top electrode. Special structures (JTE) are included to reduce the field at the edges of 

the structure between the n+ and p regions [61].  

                                                           
g Institut de Microelectrònica de Barcelona, Campus UAB, Carrer dels Til·lers, 08193 Cerdanyola, Barcelona, 
Espagne, http://www.cnm.es  

http://www.cnm.es/
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An additional structure is needed to reduce electric field intensity at the n+/p-type junction re-

gion towards the edge of the structure. At this point, the high filed curvature and increased dopant 

concentration are susceptible to induce an early breakdown. The edge structure, referred as JTE, 

consists of an additional n-diffusion that overlaps the main n-type contact. Thanks to this implemen-

tation, the electric field is reduced to values that allow for the breakdown voltage to be higher than 

the depletion voltage of the main region [62]. 

 

6.6.4.2 Test Structure design 

 

Following the LGAD cross-section scheme defined in Figure 6.36, six different areas can be 

identified, each with a different doping profile. Four of these doping distributions correspond re-

spectively to the n+ surface electrode, the p+ multiplication region, the n implant defining the JTE 

structure and the backside p electrode [63]. Two further regions are defined at the superposition 

points of the n+ top implantation with the JTE n-type diffusion and with the p+ multiplication region 

[64]. Consequently, to correctly evaluate any LGAD production, a six region test structure needs to 

be defined, with each region reserved to one of the previous profiles.  

 

A 10 mm × 10 mm structure (Figure 6.37) was introduced to each production wafer, divided 

into six 2.75 mm × 3.65 mm equal regions. Each region was subsequently matched to the required 

process step in order to correspond to one of the six doping profiles. In particular, the following 

reference scheme was applied: 

 

Region L1: p-stop implantation, corresponding to backside and guard ring implants 

Region L2: p-well implantation, corresponding the p+ multiplication region, situated under the 

n+ central anode. 

Region L3: n-implant corresponding to the JTE region implantation 

Region L4: n+-implant of the central anode region. 

Region L4+L2: Combination of the n+ anode region implant and the p+-implantation of the 

multiplication layer. 

Region L4+L3: Combination of the n+ central anode region implant and the JTE n-implant 

 

 
 

Figure 6.37: Layout of the LGAD doping profile test structure with the various implanted regions .From left 
to right in the top row the L1, L2 and L3 regions are placed while the L4, L4 + L2 and L4+L3 are located on 

the bottom row. 

 

The structure was specifically conceived for SIMS measurements with the size of each region 

kept sufficiently large for at least five distinct iterations. Any additional material layers deposited 

through the fabrication process flow were not removed, since their respective thickness was also of 

interest in this study. Finally, no top metallization layer was introduced, in contrast with the full 

production process flow of an LGAD sensor.   

 



Chapter 6 Planar pixel Development 
 

 173 

6.6.4.3 Sample preparation and measurements 

 

Each region of the structure was individually diced and undergone an ultrasonic surface clean 

prior to measuring, Because of the additional silicon dioxide and passivation layers deposited, an 

additional gold layer was deposited to regulate potential at the surface layer during SIMS measure-

ments. Through PECVD (Plasma Enhanced Chemical Vapor Deposition) technique, 60nm of gold 

were introduced, with 10 % uniformity. Samples were subsequently measured in a five stage ap-

proach for each region. This was necessary to evaluate the different thicknesses of each layer as well 

as the corresponding ion velocities. For regions where a single dopant is present, only one concen-

tration calibration was performed. However, since in layer L4+L2 a combination of p and n type 

implantation is used, the measurement process is repeated twice, using different ions species. Crater 

thicknesses were evaluated for all regions, through mechanical profiling. Final depth is extracted 

combining values for three individual linear fits performed on the profile on the crater bottom. This 

also allowed to verify the uniformity of the beam and exclude any secondary effects.  

 

6.6.4.4 Results for Boron LGAD Run 

 

Structures included a phosphorus implantation for the n-type regions and a boron implant on 

the p-type. Since detailed process flow was not known for the run under investigation (CNM run 

7859, wafer 5), an initial exploratory measurement was performed to identify different layers and 

deposited materials. Given the high importance of the dopant distribution of the multiplication re-

gion, implantation parameters (boron doped with an energy of 100 KeV at a dose of 2.2×1013 

atm/cm2) were provided for validation. By monitoring secondary intensities of several elements (11B, 
12C, 16O and 28Si) it is possible to identify transition layers between different materials. Oxygen and 

Silicon intensities are useful for defining interfaces between SiO2 layers and the substrate. On the 

other hand, Carbon is monitored not only for its close mass proximity to boron which is the element 

of interest, but because it is used as a catalyst in several deposition processes. By inferring to Figure 

6.38 top plot, representing secondary ion intensities with respect to measuring time, it is possible to 

clearly distinguish the silicon, silicon oxide, metal and passivation layers. The metal layer is the one 

deposited as preparation for the measurement and is the first to be encountered by the primary beam. 

In the subsequent layer, silicon and oxygen intensities stay relatively low, while no implant can be 

identified. This is clearly a region deposited at the end of the process, containing a lower amount of 

silicon than the substrate matrix itself. It is a passivation layer consisting of Si3N4. Because of the 

increased signal of both silicon and oxygen in the three subsequent layers their composition can be 

attributed to silicon dioxide.  

 

A caveat concerning the growth process is the dopant distribution within this region. While by 

studying the form of the oxygen and silicon secondary intensities it is not possible to distinguish any 

structure, the boron distribution clearly points out three different regions. Silicon oxidation is per-

formed from the silicon interface upwards, displacing any preexisting layers outwards. Since the 

amount of boron in the first oxide region is minimal, it is certain that this was the initially deposited 

oxide, served as a mask for the subsequent implantation. On the second and third oxide regions, 

boron intensities are extremely high but present a discontinuity. These oxides were developed after 

the implantation while they also served as diffusion steps for the initial implant. The outermost layer 

corresponds to the first of these oxidation processes while, the inner region was the final oxidation 

– diffusion step. One can even evaluate corresponding thermal treatment exposure by measuring the 

thickness of each layer. The final region is attributed to the silicon substrate. 

 

Although reverse engineering is not the aim of this measurement, it is possible for an unknown 

sample to define with detail the process flow by carefully analyzing SIMS results. Layer thicknesses 

and corresponding ion penetration velocities are presented in Table 6-11 for the first region (L1). 

After the initial exploratory measurement and the identification of all regions, further data allowed 

precise determination of layer thicknesses. On the middle plot of Figure 6.38 a depth calibration is 

performed and measuring time is transformed to equivalent depth. Finally, using the definition of 
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the RSF through a suitable calibration sample and the integrals of the matrix and dopant intensities, 

a concentration calibration is performed. The bottom plot of Figure 6.38 presents the dopant con-

centration with respect to depth. As previously mentioned, this calibration is only valid for the silicon 

region. 

 

 
Figure 6.38: SIMS measurement of the first region of the combined test structure. Secondary ion intensities 
with respect to measuring time are presented in the top plot. A depth calibration has been performed for 

the middle part while a dopant profile is presented for boron at the bottom plot.  
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Layer 
Thickness 

(nm) 
Velocity 
(nm/sec) 

Uncertainties 

Au 55 ± 6 2.8 ± 1.0 Current: δΙ = 1 cts/sec 
(cts = counts per second) Si3N4 Passivation 223 ± 7 3.1 ± 0.6 

Primary Si02 382 ± 9 2.4 ± 0.4 Time : δt = 4.64 sec 

Post implantation SiO2 929 ± 7 2.6 ± 0.3 

Silicon 6014 ±13 2.5 ± 0.1 
 

Table 6-11: Different layers, thicknesses and corresponding ion velocities in each region for the first part of 
the test structure (L1) corresponding to the p+ backside and guard ring implant.  

 

The same procedure is repeated for all subsequent test regions and subsequent dopant profile 

distributions are extracted. Uncertainty evaluation is performed through the procedure described in 

sections 6.6.2.2 and 6.6.2.3. A relative 5 % uncertainty is established concerning depth definition 

for the first and third measured profiles (Figures 6.38 and 6.39). However, for the four remaining 

profiles (Figures 6.40 0 6.43), uncertainties where not directly derived but rather calculated using 

the assumption that the relative density of equivalent layers is similar. Although this is a valid ap-

proximation, since all structures were at the same wafer, a subsequent rescaling is required since 

beam intensities between different profiles vary. As a results uncertainties scale up to 20 % in depth 

determination. An additional depth measurement of the oxide layers would solve the issue, but due 

to insufficient machine allocation, this was not possible for the current series of measurements. Con-

centration uncertainties remain under control at all cases, with a relative uncertainty less than 1%.  

 
 

Figure 6.39: Dopant profile of the JTE n implant, implemented at the edge of the LGAD sensor.  

 

By evaluating the initial part of all dopant profile distributions it can be concluded that the 

number and thickness of surface layers differ for each test region (Table 6-12). Distributions corre-

sponding to deeply diffused regions are preceded by thicker oxide layers (Figures 6.38, 6.39 and 

6.40) while the n+ central region is only preceded by a screen oxide layer with no thermally grown 

oxidation (Figure 6.41). To compare the final dopant diffusion depth, one needs to infer all depth 

measurements with respect to the silicon interface. With respect to Figure 6.42, where the shallow 

n+ central implant is represented over the p-type multiplication region (a combination of measure-

ments presented in figures 6.40 and 6.41), it is apparent that the diffusion depth differs by a factor 

of 2 between the two species. In addition, the concentration of the phosphorus region is several order 

of magnitude higher of that of the multiplication implant below. The latter, presents a slowly de-

creasing profile, reaching 1 % of its peak value at 1.8 μm depth. For comparison, the shallow n 

implant can be seen found at the same value just after 0.4 μm. 
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Figure 6.40: Dopant profile of p+ multiplication region situated at the center of the sensor.  
 

 
 

Figure 6.41: Dopant profile of the shallow n implant of the center region.  
 

 
 

Figure 6.42: Combined dopant profile of the shallow n+ implant and the p multiplication region in a single 
structure. This plot represents the combination of the two previously measured profiles presented in figures 

6.40 and 6.41.  
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Layer L1 L2 L3 L4 L4+L2 L4+L3 

Pd / Au 55 ± 6 μm 58 ± 29 μm 55 ± 6 μm 54 ± 34 μm 55 ± 38 μm 48 ± 48 μm 

Si3N4 223 ± 7 μm 228 ± 55 μm 206 ± 11 μm 212 ± 56 μm 228 ± 57 μm 201 ± 51 μm 

1st SiO2 382 ± 9 μm 337 ± 117 μm 399 ± 10 μm 
431 ± 89 μm 628 ± 251 μm 433 ± 176 μm 

2nd SiO2 929 ± 7 μm 503 ± 157 μm 521 ± 10 μm 

 
Table 6-12: Layer thicknesses for the different test regions. The increased uncertainties visible for regions 

L2, L4, L4+L2 and L4+L3 are the result of the indirect measurement of the layer thickness through secondary 
ion velocity extrapolation 

 

 
 

Figure 6.43: Dopant profile of the JTE over the shallow n+ implant region.  

 

Finally, for the JTE over n+ shallow region, a particular distribution is observed. The profile 

remains fairly stable at the initial stages and steadily decreases towards 3 μm (Figure 6.43). Such a 

behavior is the result of the combination of a very high concentration shallow implantation for the 

n+ region and a highly diffused n implant of the JTE region. 

 

To conclude, measurements performed on the LGAD test structures prove a good understand-

ing of the technology with a high production yield. The diffusion depth of the shallow implant is 

larger than expected, while the multiplication region concentration in the section under the contact 

electrode can be adjusted to a slightly higher value for a better gain ratio.  

 

6.6.4.5 The Gallium Multiplication Region Test Run 

 

In several studies (see section 6.10) a dopant removal process has been recorded for boron 

implanted sensors. In an effort to increase radiation hardness and treat this effect, a special produc-

tion run was introduced where the boron implant of the multiplication region was replaced by gal-

lium. Being the third element of the boron group, it has an atomic number of 31 and presents 3 

electrons on its outer shell, making it an effective acceptor type dopant. In contrast, its high atomic 

mass in comparison to boron (69 vs 11), make gallium a much more difficult element for deep im-

plantation. Several uses have already been demonstrated in semi-conductive photon detectors, where 

it plays the role of the main dopant [65]. 

 

In the implemented production, an implantation energy of 60 KeV with a dose of  

1.4×1013 atm/cm2 was used in an effort to reproduce the multiplication region dopant profile distri-

bution, as established in Figure 6.40. This first trial run was delivered for testing and evaluation 

using the same method and test structures as defined for the previous production. Given the innova-

tive nature of the production, a simulation was also carried out to further evaluate obtained meas-

urements. 
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Figure 6.44: SIMS measurements and simulations for a gallium multiplication implant. On the top plot the 
initial secondary ion intensities with respect to measuring time are presented. A depth calibration has been 

applied to the middle plot while, at the bottom, the simulated and measured dopant profile distributions 
are presented. Transition regions between different layers are marked with vertical lines. .  
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The combined result is presented in Figure 6.44. Using the same approach as in the investiga-

tion of the boron production, at the upper part of the figure secondary ion intensities of monitored 

elements are presented with respect to measuring time. Oxygen and silicon serve as markers to de-

fine transition region from any silicon dioxide to the substrate while, as usual a metal layer was 

deposited at the surface of the sample before measurement. Both gallium isotopes are monitored in 

an effort to increase precision. However, it becomes clear that no sufficient amount of dopant can 

be found within the silicon substrate. Comparison with the simulated dopant profile (bottom plot of 

Figure 6.44) confirms that most of the implanted gallium is actually situated in the oxide layer on 

top of the silicon. In this region, because of the lack of calibration targets, SIMS cannot provide an 

accurate concentration estimation.  

 

To understand the effect one need to examine closely the fabrication process. At first, the in-

creased mass of the gallium atom with respect to boron, requires a higher implantation energy in 

order to achieve same penetration depth. Since gallium diffuses more in silicon than boron (9 ×10-

12 cm2/sec vs 2 × 10-13 at 1100 0C), a compensation effect is possible. Because of the nature of the 

diffusion process, such an effect cannot occur. As demonstrated in the previous section, in LGAD 

standard production, activation is performed through thermal oxidation. In such a case the first layers 

of the silicon substrate will be transformed to SiO2 and implant in this region will, to an certain level, 

be carried out to the final developed oxide. The positive elements of this process are an enhanced 

diffusion under the oxidizing region and a possible move of implant from the final oxidized region 

back to the substrate, depending on the segregationh value. For gallium, the positive segregation 

value ensures this last effect [55]. 

 

In spite of all these compensation mechanisms, in this case, the initial penetration depth is so 

shallow than none of the three effects (higher gallium diffusion speed, enhanced diffusion under 

oxidation, positive segregation) can transfer or diffuse fast enough the implant. As a result, all im-

planted gallium is found outside of the final active region and no multiplication can be observed. 

 

 

6.7 Sensor Electrical Characterization 
 

After production and process quality evaluation, electrical characterization is the final phase of 

sensor testing before interconnection with a readout electronics ASIC. In this section, the designs 

implemented in the common active edge pixel run presented in section 6.5 are being tested. Through 

the multitude of delivered sensors, a representative sample is selected to estimate design viability 

and define possible improvements or technology drawbacks.  

 

Electrical characterization can reduce to two essential measurements. A bias voltage vs current 

measurement allows to define the depletion voltage, the level of leakage current and the break down 

voltage. In a general manner, one would require the smallest depletion voltage, to have a large pos-

sible operation range and also limit the dissipation power from high voltage power lines. The leakage 

current is the amount of charges per second generated by a fully depleted detector when no external 

excitation is provided. Since for silicon detectors the interest is to increase sensitivity, leakage cur-

rent is always required to be the smallest possible. Since this corresponds to the number of electron-

hole pairs intrinsically produced by the detector, if it is significant it will introduces noise to readout 

electronics. As a result, distinguishing signal induced by low energetic particles from the background 

is rendered more difficult. Finally, the breakdown voltage corresponds to the potential value for 

which the electrical field within the detector becomes so high that the structure operates in avalanche 

mode. In such a regime no energy linearity can be achieved and if the filed increases, the sensor will 

adapt a resistive behavior.  

 

                                                           
h The segregation coefficient k is defined as the ratio of an impurity within a crystal in the solid phase to 
that in the liquid phase 
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As a general trend, breakdown voltage is also required to be as high as possible. In an irradiated 

sensors defects are introduced and the performance decreases. To recover efficiency, an increase is 

needed to operating voltage. Therefore, it has to be assured that even after heavy irradiation with an 

increased biasing voltage, the breakdown value is sufficiently higher to allow stable operation. 

 

Measurements are conducted in a clean room environment with the use of a probe station (Fig-

ure 6.45). Sensor biasing is performed using a low impendence probe while current is measured 

thought the copper conductive base chuck.   

 

 
 

Figure 6.45: Measuring probe station with an attached optical microscope and a conductive copper chuck. 
The needle probe and high precision mechanical base is also visible at the left side of the picture. 

 

To evaluate the influence of the design variations, all implemented variants were measured for 

thicknesses of 100 μm and 150 μm (Figures 6.46 and 6.47). All structures present leakage current 

in the order of 10-8A with very low biasing voltages (< 10V). For both thicknesses, the most stable 

implementation is the design including only a bias rail. The breakdown voltage in both cases exceeds 

100V, with the 100 μm thick structure being somehow more stable. The implementation with no 

edge structures behaves surprisingly stable, with breakdown voltages of 120 V and 70 V for the 100 

μm and 150 μm production respectively. Finally, the structure including a guard ring, either in the 

guard ring plus bias rail implementation or in the guard ring only design, are the least stable struc-

tures. In particular, the design with the more elaborate edge structures seems to behave the worst in 

both cases, with increased leakage current and very low breakdown voltage.  

 

A possible explanation for this erratic behavior can reached by considering the particularities 

of the corresponding production flow. The initial conclusion demonstrated is that completely active 

edge sensors with no edge structures are possible. Sidewall implantation implemented in this process 

can successfully contain the electrical field in the sensor interior and avoid breakdown. The more 

stable behavior of the bias rail structure is somehow expected since local inhomogeneities are evenly 

distributed through the bias grid while, its presence at the sensor edge further contributes to sustain 

lower field values at the edge region. On the same logic, one would also expect for structures with 

a floating guard ring as well as those with bias rail and guard ring, to present an equivalent behavior 

but this is not the case.  

 

The effect can be explained when considering the minimum distance between different edge 

structures in all cases. In the case of a bias rail only implementation, minimum distance between 

consecutive structures is at 16 μm. For the design with no edge structures, this distance becomes 
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45μm, corresponding to the distance of the last pixel from the detector edge. However, for the de-

signs with a bias rail and a guard ring or with the one with only a guard ring, minimum distance 

drops to 5 μm and 6 μm respectively. This distance corresponds to the region between the floating 

guard ring and the bias rail in the design with both edge structures whereas, for the guard ring only 

design it represents the distance between the last pixel and the guard ring. A 5 – 6 μm distance 

between successive implantation is small enough to allow for charge propagation between the struc-

tures when the field increases. If the p-spray implantation is not high enough in the interpixel region, 

there is no effective barrier to avoid charge propagation between different structures. An incon-

sistency at one point of the periphery will quickly create a high electric field that will propagate to 

the guard ring or bias rail and through them, to the entire sensor.  

 

 
 

Figure 6.46: Leakage current vs bias voltage for all implemented design variations at a 100 μm wafer thick-
ness  

 

 
 

Figure 6.47: Leakage current vs bias voltage for all implemented design variations at a 150 μm wafer thick-
ness 

 

Concerning the more stable behavior of the 100 μm thick wafers, this is attributed to the specific 

edge implantation technique. Since sidewall doping is performed through ion bombardment in quad-

rants, if the incidence angle is kept the same in the two thicknesses, the sidewall dopant distribution 

is not equal. At a 100 μm, the ions can penetrate until the end of the trench and implant the total 
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length of the sidewall. When passing to 150 μm thickness, either an incidence angle recalibration is 

necessary or the sidewall is not uniformly implanted. Even after this recalibration, it is still possible 

that portions of the edge region towards the end of the trench present inconsistences.  

 

 

6.8 Under Bump Metallization (UBM) Influence on the sensor behavior  
 

6.8.1 Introduction 

 

To interconnect the sensor to the read-out ASIC, an array of connections need to be made, one 

for each individual pixel. These vertical connections need to ensure electrical conductivity, to extract 

the signal as well as mechanical stability and oxidation resistance. The sensor and read-out ASIC 

are aligned and placed the one on top of the other with their front sides faced. Depending on the 

connection technology chosen, the chips are then fused together either by pressure or by a combina-

tion of pressure (0.5-1 Pa) and temperature (~250 oC) exposure. Most commonly, small solder balls 

are deposited in each pixel, at the interconnection point. Subsequently, the sensor and ASIC are 

brought together and through high temperature exposure, the solder fuses the two dices together.  

 

The interconnection point needs to have a good electrical conductivity, resistance to oxidation 

and provide an adhesion surface for the soldering pad to be placed upon. Unfortunately, aluminum 

which is the last layer of most current sensor production, does not provide these properties. It can 

immediately oxidize when exposed to normal atmosphere, forming an insulating oxide that need to 

be scrubbed. Furthermore, it does not provide the proper solder adhesion and it is not suitable for 

chemical processing. The problem is treated by developing a special pad at the interconnection point, 

called the UBM (Under Bump Metallization) through lithographic processes and sputtering (Figure 

6.48).  

 

The UBM must provide a low resistivity connection to the aluminum layer below as well as to 

the solder bump that will be placed on top. It needs to hermetically shield the aluminum layer from 

the environment to prevent any oxidation and to establish a good adhesion both to the metal layer 

and the surrounding passivation. Finally, it serves as a barrier, stopping diffusion of other metals or 

foreign elements to the substrate and as a chemical seed for the soldering process [66]. To achieve 

all these properties, several layers of different metals are used in the UBM formation. Earlier depo-

sition techniques used lead-copper [67] combinations. This is a proven technology, also used for all 

interconnections of the current ATLAS pixel detector. Since UBM deposition accounts for a large 

portion of the cost of a sensor wafer, efforts are under way to develop more cost effective solutions, 

while new environmental standards prohibit the use of lead in electronics manufacture. 

 

     
 

Figure 6.48: Structure and placement of the UBM 
on a silicon wafer [66]. 

Figure 6.49: STM photo of a NIAu UBM deposited 
on a pixel cell. The edge of the actuve 
region is visible while the metal layer 
protrudes from the wafer surface [68]. 
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A new technique is currently applied for UBM deposition, using a succession of Titanium, 

Nickel and Gold layers. Typical layer composition consists of 40 nm of Titanium, used as adhesion 

layer, 200 nm of nickel as the solder adhesive and finally 40 nm of gold to prevent oxidation. Typical 

structure height is approximately 300 nm, while it overshoots the open metal pad by 3-4μm extend-

ing over the passivation layer (Figure 6.49). Although a photolithographic process is generally re-

quired, a variation of this technique has also been developed in order to bypass this step. In this 

approach, nickel, deposited after the titanium layer, can be processed through an electroless tech-

nique, requiring neither vacuum nor photosensitive masks. Using an auto-catalytic chemical reac-

tion, nickel alloy bonds directly to the metal substrate without requiring and electrical current or 

mask like electroplating and sputtering techniques [69].  
 

6.8.2 The Discontinuity Effect 
 

Although the use of this technique is already in place for current sensor production, it has been 

observed that post-UBM- deposition I-V curves demonstrate discontinuities close to the sensor de-

pletion voltage value. This effect, presenting in the form of a step on the I-V curve, results to an 

instantaneous 40 % increase of the sensor leakage current (Figure 6.50). Nevertheless, such behavior 

was never demonstrated with the classic Pt deposition technology.  

 

Segment 
Initial Temp. Final Temp Rate Time 

(oC) (oC) (oC/min) (oC/hour) (min.) 

Gas out 20 20 0 0 60 

Ramp-Up 20 180 5 300 32 

Anneal 180 180 0 0 varies 

Ramp-down 180 20 -5 -300 32 

 
Table 6-13: Specifications of the thermal cycle involved in each annealing step. 

 

To treat the effect, a series of thermal treatment steps have been applied and electrical meas-

urements were conducted after each process. Using a closed tube furnace, consecutive temperature 

exposure steps were applied at 1800C for three different time intervals. The temperature point is 

chosen at a regime where it would could not pose any threat to the integrity of the final sensor 

aluminum metallization layer. Thermal treatment takes place in an Argon atmosphere to avoid any 

oxidation with ambient oxygen or humidity. Furnace interior is composed of silicon carbide in order 

to prevent gas releases from molecules trapped within any metal or ceramic lattice. Actual thermal 

cycle with corresponding ramping steps is presented in the following table and is kept close to actual 

production parameters (Table 6-13). Test structure is an IBL standard FE-I4 [70] compatible pixel 

matrix of n-in-n type, treated with NiAu UBMs at the final step. 

 

 
 

Figure 6.50: Voltage-current curve of the tested structure after different thermal annealing. An abrupt dis-
continuity is apparent at the edge of depletion, while the curve turns smoother with every treatment step.  

STEP 
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6.8.3 Measurements and Results 

 

I-V and C-V measurements are performed on the sensor after each thermal annealing steps and 

the basic quantities (depletion voltage, breakdown voltage and leakage current) are evaluated. To 

quantify the discontinuity effect in the I-V curve, the first derivative of the current with respect to 

bias voltage is computed (Figure 6.50). A clear peak is apparent at the exact voltage value were the 

discontinuity in the I-V curve is present. Given the delta-like form of the peak, a narrow width 

Gaussian approximation was applied and through a parametric fit the width, the maxima and the 

position are evaluated (Table 6-14). Depletion voltage is evaluated by capacitance measurements in 

the three basic measuring frequencies (Figure 6.51) of 10kHz, 50kHz and 100kHz and final deple-

tion voltage value is extracted as a combination of these there individual measurements. 

 

Treatment 
dV/dI Step Voltage Depletion Voltage Breakdown Voltage 

(V/A) (V) (V) (V) 

10min 180oC 29.32 ± 0.88 73.58 ± 0.88 87.61 ± 4.73 221 ± 1 

10min + 30min 180oC 25.23 ± 0.95 73.65 ± 0.09 84.45 ± 4.87 252 ± 1 

10min +30min + 60min 180oC 13.95 ± 0.49 74.09 ± 0.10 87.39 ± 4.71 364 ± 1 

 
Table 6-14: Evolution of the sensors characteristics with respect to the thermal cycle.  

 

Although thought the consecutive thermal steps, the maxima of the derivative is reduced, the 

width as well as the mean position are not affected. Furthermore, its presence exactly before the 

structure’s depletion point, suggest a charge accumulation under the UBM surface. The intrinsic 

characteristics of the structure (depletion voltage and leakage current) are unaffected while the 

breakdown voltage evolves towards higher values. In Figure 6.52, the evolution of these quantities 

is presented as a function of the total thermal exposure time. A clear decrease can be seen in the 

peak value of the first order current derivative with respect to annealing time increase, suggesting a 

beneficial effect. This work is subject to publication. 

 

 
 

Figure 6.51: dV/dI curve after various thermal treatment steps. The discontinuity effect is present at the 

same voltage value whereas the intensity decreases after each thermal step. A narrow width Gaussian ap-
proximation is followed to describe a delta-like potential corresponding to the chemical potential barrier 
hypothesis. The parameters extracted by the fit indicate the presence of the barrier at the point of deple-

tion, while the width, peak position and width remain uniform among all fits 
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Figure 6.52: Capacitance measurement for the three standard frequencies and voltages in the probed sen-
sor. The curves do not present any alteration with respect to different annealing times. The inverse square 
of capacitance is represented as a function of the bias voltage. Depletion corresponds to the point of slope 

change. In a completely depleted structure the capacitance becomes minimal and the slope becomes stable. 

 

6.8.4 Conclusions 

 

In general, thermal treatment annealing improves the behavior of the structure by diminishing 

the effect. After a 100 minutes cumulative exposure at 180 C, the leakage current increase rate 

evolves from 2.9 μΑ/V to 1.4 μΑ/V, representing 20 % increase with comparison to the normal 

ramping region. The nature of this abnormality, presenting itself at the same voltage value regardless 

of the number of thermal steps, at the boarder-line of depletion, suggests the presence of a potential 

barrier. Charges are accumulated until the critical value is reached to overcome the potential, most 

possibly due to chemical potential differences between the conductive layers comprising the UBM 

column. A thermal exposure in this sense rearranges the atomic layers introducing a smoother cross-

over. Further investigation and studies are needed for a comprehensive explanation.  

 

 
 

Figure 6.53: Evolution of the depletion voltage, peak value and step voltage with respect to thermal expo-
sure time. The depletion voltage and step voltage are unaffected but the peak values significantly de-

creases. 
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6.9 Irradiated doping profiles 
 

6.9.1 Introduction 

 

In order to understand evolution of the sensors characteristics in a radiation hard environment, 

irradiation experiments are conducted under various conditions. Selected samples are exposed to 

neutron and proton radiation in collaborating facilities and their behavior is studied with respect to 

received dose. Since protons and neutrons induce different damage effects on silicon, experiments 

with both kinds of radiations are conducted. Exposure to thermal neutrons can be performed at the 

research reactor of the Jozef Stefan Institute in Ljubljana (JIS), while for proton radiation, the Karls-

ruhe Institute of Technology (KIT) in Germany is used, where protons are provided at the exit of a 

synchrotron accelerator. 

 

Damage effects to any bulk material are proportional to the displacement Damage cross-section 

D. A more convenient equivalent quantity is the Non Ionizing Energy Loss factor (NIEL), which in 

its term, is also equivalent to material damage. Damage cross-section and NIEL factor values depend 

on particle composition and energy of incoming radiation. As a standard, one can consider the dis-

placement damage caused by 1MeV proton radiation and any NIEL factors for other radiation type 

and energy can be expressed with respect to it. The hardness factor, or k, is the ratio between damage 

induced by other particle radiation with respect to the 1MeV neutron equivalent. In order to calculate 

exposure and dose values, fluences can be expressed in unites of neutron equivalent per unit of 

surface or neq/cm2, while appropriate rescaling has to be applied in case of bombardment with other 

types and energies of particles [71]. 

 

In a first approximation, ionization radiation damage is not expected to change total dopant 

concentration within the detector nor its distribution, but rather affect the electrical characteristics 

of the device. Crystal lattice damage introduces interstitials and electron traps affecting charge prop-

agation through the substrate. Furthermore, radiation damage can affect the way the dopant is inte-

grated within the silicon matrix, rendering it electrically inactive. Complex defects can capture 

drifting electrons towards the anode, reducing charge collection efficiency. In an extreme condition, 

a high defect concentration in the substrate can result in a device that is no longer functional or 

cannot be depleted. Although defects may be of different nature (interstitials or vacancies), they can 

mostly be considered as p-type and in extreme conditions a type inversion for n-type substrates is 

observed. 

 

Production Imp. Energy Imp. Dose Resistivity  Thickness (μm) 

n-in-n 
130keV (100nm oxide)  

1015cm-2 0.25kΩ·cm - Cz 380μm 
240keV (100nm oxide)  

p-spray 
90keV (300nm oxide) 

3×1012cm-2 2Ω·cm - Cz 380μm 
90keV (300nm oxide) 

 
Table 6-15: Irradiated doping profile samples from the n-in-n and p-spray productions. 

 

To investigate active and total dopant concentration after irradiation, selected samples from the 

n-in-n, n-in-p and p-spray test productions where irradiated with 25.3MeV protons to expected HL-

LHC fluences. In particular, selected diced SIMS samples, implanted with parameters close to those 

used in actual pixel production (Table 6-15), were exposed to 25.3MeV protons at the Karlsruhe 

Irradiation Facility (KIT) to a total fluence of 1016neq/cm2. A stable flux of 2.5×1013 p/(s·cm²) was 

applied, while temperature was kept at a range between -28°C to -34°C through N2 gas foam flush-

ing. Given the fact that for 25MeV protons, the calculated NEIL is 2.5 times higher (Figure 6.54) 

than the 1MeV neutron standard, actual delivered fluence was 5×1015protons/cm2. A low tempera-

ture is essential not only for proper sample cooling to avoid any dopant diffusion, but also to control 

annealing processes of any formed defects. Since in HL-LHC conditions detectors will always re-

main at a stable temperature of -25 0C during their lifetime, it is imperative to simulate the same 
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conditions in order to assess correctly radiation damage effects. Dose evaluation was performed 

through nickel foil dosimetry. After irradiation all samples were stored to -25C until any radioactive 

activity was dissipated. 

 

 
Figure 6.54: Total Non-Ionizing Energy Loss for protons, neutrons electrons and pions. The ratio of 25MeV 

protons to the standard 1Mev neutrons is 1/2.5 [72]. 

 

Because of the low temperature during irradiation, humidity condensation can appear on the 

samples surface. Oxygen in the conduced water is exposed to the proton flux and receives the same 

dose as the sample itself and becomes activated. In particular, through proton capture, it can trans-

form to radioactive beryllium 7 through the following reaction (equation 6-30): 

 
6O + p → 7B             (6-30 ) 

 

Since half-life time for 7B is 53.22 days, samples were kept in a sub-zero storage for a period 

of eight weeks for radiation levels to drop. Recurrent radio-protection controls resulted in an accu-

mulation of room temperature exposure detailed in the following table (Table 6-16): 

 

Date Annealing time 

24/10/14 17 min 

29/10/14 1 h 

10/12/14 15 min 

17/12/14 1 h 

18/12/14 15 min 

 
Table 6-16: Annealing time accumulation at room temperature 

 

To validate the hypothesis that no alteration is to be seen in the dopant profile, SIMS measure-

ments where performed in the irradiated samples after complete deactivation of any radioactive res-

idue. Results are compared with the ones obtained before irradiation and notably the dose integrals 

and the curve forms are being examined. To minimize treatment time and avoid any contamination, 

no oxide removal was performed and all measurements were done through the oxide layer.  

 

6.9.2 n-in-n Irradiated Doping Profiles 

 

The two irradiated n-in-n samples were measured and acquired data are superimposed to the 

profiles obtained before irradiation (Figure 6.55). The two series of measurements were conducted 

under different primary beam and calibration conditions. As a results, since there is no calibration 
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available for the silicon oxide region of the samples, only the silicon regions of the profiles are 

plotted. In an initial evaluation, no significant difference can be observed to the form of the distri-

butions or to the total amount of phosphorous within the samples before and after irradiation. The 

systematic deviation of the non-irradiated profiles towards slightly higher concentration with respect 

to the irradiated ones is of systematic nature and uniform along the total distribution. This uniformity 

rather suggest a slight change of the calculated RSF than an actual profile modification and in any 

case is within the foreseen uncertainties in the concentration computation.  

 

 
 

Figure 6.55: Total dopant profile in the silicon substrate before and after irradiation. No visible alteration is 
observed. 

 

To better quantify any differences, dose integrals are calculated prior and after irradiation (Ta-

ble 6-17). Since measurements do not always stop at the same depth, appropriate rescaling is applied. 

Given the 1 % quoted uncertainty in the most optimal conditions, no alteration of the total implant 

is visible. To conclude, total n-implant distribution is not affected by radiation exposure and SIMS 

dopant profiles remain identical. 

 

Sample Before Irradiation After Irradiation 

1015cm-2 @ 130keV  8.39E+14 atoms/cm2 8.38E+14 atoms/cm2 

1015cm-2 @ 240keV 1.13E+15 atoms/cm2 1.08E+15 atoms/cm2 
 

Table 6-17: Calculated doses from SIMS measurements before and after irradiation. No difference within 1 
% uncertainties is visible. 

 
6.9.3 p-Spray Irradiated Doping Profiles 

 

Since no difference was observed with respect to phosphorous implanted wafers, the same hy-

pothesis was tested in the second implant spices used in pixel production, boron. For the selected set 

of p-spray wafers, SIMS measurements were performed after irradiation and results are compared 

with ones obtained before irradiation (Figure 6.56 and 6.57). Although in both profiles no alteration 

on the form can be observed, there is an apparent slight fall in the concentration of the dopant inside 

the silicon substrate. This decrease is more prominent at the higher implanted dose where the differ-

ence between the two curves is outside estimated uncertainties in several regions. Any differences 

between the two profiles at the initial part of the curves cannot be taken into consideration since this 

region corresponds to the silicon oxide layer where no calibration is available. Actual profile com-

parison is performed after the first 500nm, immediately after the final implant peak marking the 

interface between silicon and SiO2. 
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Figures 6.56 and 6.57: Total measured dopant profile before (red) and after irradiation (blue) for the two p-
sprat samples. A slight decrease is observed in the irradiated profile within the silicon region that for the 

highest dose is not compatible within uncertainties. Since SIMS calibration is not valid for the silicon oxide 
region, only the silicon region is compared between the two measurements. Measuring depth is normalized 

to the shallower measurement for dose integration 

 

By calculating the total implanted dose before and after irradiation, the profile difference be-

comes apparent (Table 6-18). Only silicon region is considered in this calculation while, appropriate 

rescaling is applied since measurements before and after irradiation did not extend to the same depth. 

An overall reduction of 15 % - 20 % in the total implant is observed in both samples. Nevertheless, 

uncertainties are quite high for the irradiated samples because of the coarse time step between con-

secutive measurements while resolution is degraded since the substrate is of the same type as the 

probed implant. 

 
Sample Before Irradiation After Irradiation % reduction 

3×1012 atoms/cm2 @ 90keV  (1.95±0.97)×1012 atoms/cm2 (1.66±0.65)×1012 atoms/cm2 15 % 

6×1012 atoms/cm2 @ 90keV (2.58±0.11)×1012 atoms/cm2 (2.05±0.85)×1012 atoms/cm2 21 % 

 
Table 6-18: Calculated doses from SIMS measurements before and after irradiation for the p-spray samples. 
A 15 % - 20 % difference is visible while dominant uncertainties are introduced because of the coarse meas-

uring time steps in post-irradiation measurements. 

 

An initial explanation of this decrease can be given by considering a boron nuclear reaction 

through proton capture. Available interaction channels are detailed in equation 6-31, with all passing 

through an exited 12C nucleus. This intermediate nucleus will either further decay directly or through 

Beryllium, to a final product of three alpha particles, or can fall back to Carbon stable state by gamma 

radiation emission [73]. Independently of the interaction channel, at the final state, a boron decrease 

is expected accompanied by an increase in the carbon content and an increased helium concentration.  

 
11B + p →12C*→α0+8Be →α0+α01+ α02   
11B + p →12C*→α1+8Be* →α1+α11+ α12         (6-31) 
11B + p →12C*→α2+α3+ α4 
11B + p →12C*→12C +γ 
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Reaction cross-section values diverge for each channel and heavily depend on the incoming 

proton energy. By approximating the sample as a uniform silicon target (the 500 nm oxide layer is 

sufficiently small with respect to the 360μm total thickness or the irradiated piece), for the incoming 

25,3MeV protons, a stopping power of 10.85keV/μm is calculated at the initial part of the Bragg 

curve [74]. This translates to practically no energy loss of colliding protons until they reach the 

600nm depth where the boron implant in the substrate is situated. Furthermore, their energy can be 

considered relatively constant within the first 5μm inside the target, which is the depth probed by 

SIMS measurements. Although no inclusive boron-proton fusion reaction cross-section information 

exist for projectile energies up to 25MeV, calculations are available up to the 10MeV scale (Figure 

6.58. By extrapolating the tenancy observed in the 1-10MeV region up to 25MeV, we can assume a 

total cross-section of 7×10-2 b ≈ 70 mb [75, 76]. Although a complete dataset for all channels is not 

available, this estimation seems to be consistent when considering the available cross-sections for 

individual channels measures to 25MeV (Table 6-19). 

 

Reaction 
Cross-section 

σ (mb) δσ (mb) 
11B → 7Be 20 3 
10B → 11C 45 5 
10B → 7Be 22 5 
10B → 10C 0.1 estimated 
11B → 11C 38  

 
Table 6-19: Cross-sections of different proton capture reactions by boron measured and extrapolated from 

experimental data of the Landolt - Börnstein I/13 database. 

 

 
 

Figure 6.58: Total cross-section of several fusion reaction as a function of the system kinetic energy at the 
center of mass. Considering the silicon target immobile and using the approximation that incident protons 
do not lose any significant amount of energy in the first few μm of silicon, the cross-section for 25MeV can 

be extrapolated at around 70 mb [77]. 

 

Considering a total integrated proton dose of 5×1015/cm2, the total cross-section of 70 mb and 

the initial surface concentration of boron in the silicon bulk of 2.53×1012 atoms/cm3, the surface 

concentration of reacted atoms can be calculated to 3.54×1013atoms/cm2. This is severely lower than 

the observed implant reduction and cannot account for the difference between the irradiated and 

non-irradiated profiles.  
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6.9.4 Conclusion 

 
To conclude, a reduction of the total implant has been observed for the p-spray case in the or-

der of 15 % within the silicon region. Although the possibility of a boron neutron capture nuclear 

reaction was considered, the corresponding cross-section cannot account for any significant dopant 

reduction. Uncertainties in the measured profiles can account for any differences while the poor 

resolution of the measurement because of the reduced initial concentration and the substrate type 

further degrades the result. A more accurate study with a higher implantation dose should be car-

ried out to reach a final conclusion.  

 

 

6.10 Development of a Data Acquisition System for Pixel Detectors 
 

6.10.1 Introduction 

 

In this section, work on the development of an innovative data acquisition system is presented, 

based on an open architecture. This project, initiated by the need for a new adaptable platform to 

test the in-house developed ASIC Omegapix, consist a contribution to the ATLAS pixel collabora-

tion. The system is conceived to be compatible with a wide variety of sensor technologies and 

ASICs, ranging from the ATLAS standard Front-End integrated planar pixel readout circuit (FE-i4) 

to CMOS applications and LGAD sensors.  

 

The difficulty of acquiring additional read-out systems for standard sensors (the current USB-

PIX 2.0 system [78] is no longer available with the 3.0 version in development stage) and the high 

cost of commercially available solutions, have forced the pixel group in the recent years to increase 

efforts for an innovative data acquisition system development. Implementations already taking ad-

vantage of commercially available components have been presented [79], focusing on the FEI4 de-

velopment. In that context, and using readily available components, a generic approach was selected 

to allow for easy and fast implementation with maximum compatibility. 

 

6.10.2 System Base Board – SPEC  

 

In every data acquisition system a direct communication bus in needed with the custom read-

out ASIC, issuing the necessary operation commands and ensuring a direct memory access for anal-

ysis algorithms and data storage. This function, widely implemented through the FPGA technology, 

allows fast and easy adaptability to any electronic environment [80]. As a system base, a CERN 

developed, PCI Xpress board was used, equipped with a Xilinx Spartan 6 FPGA and 2Gbit of DDR3 

random access memory. The card incorporates a 4 lane PCIe 2.0 interface to communicate with a 

standardized personal computer with no additional hardware requirements.  

 

The so-called SPEC card [81] (Figure 6.59) was developed as an open hardware project, cou-

pled with an internal FMC connector, controlled by the FPGA circuitry. Connectivity is assured by 

the 34 available differential pairs, allowing a wide range of application via additional daughter 

boards. The board also provides a 12V power output supporting up to 2A for development flexibility. 

FPGA input signals are fixed at 2.5 V with no alteration possible. A JTAG, USB and SATA interface 

is provided while the maximum communication bandwidth is at 4Gbit/sec.  

 

Communication with a specific read-out ASIC is nevertheless not possible out-of-the-box, be-

cause of the different signal levels and protocols used by each technology. In addition, although with 

a customized firmware one would be able to manage and record data, the FPGA would also have to 

accept external triggers or additional commands to imitate data tasking. Finally, several ASIC de-

signs couple power lines to the data bus. Such lines need to be isolated to avoid damage to the 

processing FPGA. 
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Figure 6.59: The Simple FMC carrier (SPEC) card with the PCI press interconnection and the Xilinx FPGA [81]. 

 

6.10.3 The Multi-Level Interconnection Board (MLIB)  

 

An interconnection board had to be designed, assuring the maximum compatibility. Taking 

advantage of the full communication potential, it was decide to design a board with the maximum 

amount of I/O lines available, with individual line interrupts and direction assignement. In terms of 

mechanical specifications, it should not exceed the predefined space on the card for a daughter board, 

facilitating mechanical connections. Electrical requirements were defined in a manner that no exter-

nal powering would be necessary while, the board would be adjustable and reprogrammable during 

operation, not requiring any kind of manual interventions. Finally, all connectors and other compo-

nents needed to be as generic and easy to find as possible. 

 

 
 

Figure 6.60: Logic diagram of the MLIB card. 

 

With this set of requirements, a card was designed using 58 of the available communication 

lines. Multi-level bi-directional programmable transceivers were placed in each line, assuring oper-

ations in a signal level varying from 0.2 to 5.5 V. They also provide isolation capability to treat the 

issue of power return present in several technologies. An autosense function is integrated to allow 

automatic determination of the communication direction. 

 

To adjust signal level in a continuous manner, an analog to digital converter was used, issuing 

relevant signals to the transceivers. Additional on-board powering for amplification and filtering 

was also added. Sacrificing the minimum number of available lines for internal programming, a 

serial interface was introduced though the use of consecutive D-type edge Flip-Flops. Six trigger 
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inputs were also foreseen, compatible with the NIM and TTL standard through software selection. 

Passive FPGA protection was added as well as adequate signal filtering. Flat-band HE10 standard-

ized connectors were installed for ASIC communication and standard coaxial inputs for the trigger 

channels. A logical diagram of the design is presented in Figure 6.60. 

 

Given the small available footprint, only surface mount components were used while, a thirteen 

level printed circuit board was necessary to accommodate all required routing. Production was com-

pleted at CERN with the first samples showing good performances (Figure 6.61) 

 

 
 

Figure 6.61: Front and back view of the completed MLIB daughter card. 

 

Although the use of the high –end silicon polymer capacitors was initially foreseen, due to 

spatial constraints, they were replaced with ceramic technology surface mount capacitors. However, 

due to their small size, the corresponding equivalent series resistance is increasingly high (>25 

Ohm), inducing oscillations to the amplifier circuitry. Replacement of the filtering capacitors treated 

the issue but a technology improvement is foreseen in a next iteration.  

 

6.10.4 Conclusion 

 

A new, adaptable system has been designed and produced, compatible with a wide range of 

readout technologies and implementations. Based on commercially available products, it includes 

the minimum amount of custom made parts. Initial results demonstrate good functionality while 

fabrication issues are addressed and a new revision is planned. 

 

 

6.11 Conclusions on Pixel Development 
 

In this chapter, a complete and comprehensive approach in silicon pixel sensor development 

has been presented. Treated issues cover the hole extend of the conception process, from simulation 

and design to quality and production testing, electrical characterization and interconnections, radia-

tion damage effects and data acquisition systems.   

 

On the simulation domain, a complete 3D process simulation of the IBL design was imple-

mented. A 0.4 μm lateral diffusion overshooting the metalized electrode was observed, resulting to 

possible field non-uniformities and distorted dynamic lines. This result was implemented to the four 

design variant introduced in the multi-project, active edge sensor production. Four edge geometries 

were introduced in the sensor production, with thinned dead regions varying from 100 μm to 47 μm, 

including a variant with no edge structures.  

 

An evaluation of the production was performed through Secondary Ion Spectroscopy Measure-

ments and simulations while, a reference library to be used in defining fabrication process parame-

ters was developed for the most common pixel implantation procedures:  
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For the n-in-n production, a good comparison of simulation versus SIMS measurement is per-

formed for low and intermediate doses, whereas at high doses (1016 atoms/cm2) implant diffusion 

model needs modifications to correctly describe binary interactions. For the 1013@240keV sample, 

a possible implantation instability could account for the observed deviations. No difference in the 

final acquired doping profile is observed between high and low resistivity substrates, while an accu-

rate oxidation simulation is needed for better precision, to account for the density and quality differ-

ences between wet and dry developed silicon dioxide.  

 

For the n-in p production,  a very good agreement between SIMS measurements and simula-

tions was observed for the n-in-p production. The post implantation activation via oxide develop-

ment improves the uniformity in the first silicon layers and the agreement with the simulations. A 

systematic deviation for doses of 1015atoms/cm2 was observed and can be attributed to instabilities 

during implantation process. Model validity extends up to 1016atoms/cm2, where a deeper profile 

than predicted is observed for the highest energy. In the n-in-p production, this systematic model 

disagreement appears in slightly higher concentrations because of the nature of the substrate that 

compensates partially the effect. 

 

The p-spray implantation is of low energy and as a result, quite shallow. The major part of the 

dopant is situated under few μm of the silicon layer. This is the result of an active choice, since most 

of the charge propagation to neighboring pixels takes place at surface layers. In addition, a quite low 

dose is selected in order not to disturb the effective pixel diode. As such, it has to be several orders 

of magnitude less than the pixel implant itself. From a production process side of view, it is observed 

that a very large portion of the implant is within the secondary oxide. Because of the low energy and 

the thick screening layers, most of the original implant stays at the first layers of the substrate. Sub-

sequent oxidation transforms these layers to silicon dioxide and transfers the majority of the dopant 

outside the substrate. This technique constitutes an engineering choice, one allowing only the smooth 

tail part of the profile distribution to remain within the final silicon region, in order to avoid abrupt 

changes of the electrical field within the sensor. 

 

A new innovative detector technology was studied, the Low Gain Avalanche Diodes and a 

production evaluation was performed using the acquired experience in doping profile analysis. 

Measurements performed in the test structures prove the technology to be particularly robust. Nev-

ertheless, the diffusion depth of the shallow implant is larger than expected, while the multiplication 

region concentration in the section under the contact electrode can be adjusted to a slightly higher 

value for a better gain ratio.  

 

Separate attention given to the possibility of replacing boron implant by gallium for increased 

radiation tolerance LGAD productions. In the initial test run, no gallium implant was introduced 

within the active silicone region. In spite of compensation mechanisms, the initial gallium penetra-

tion depth is so shallow than none of the three effects (higher gallium diffusion speed, enhanced 

diffusion under oxidation, positive segregation) can transfer or diffuse fast enough the implant. As 

a result, all implanted gallium is found outside of the final active region and no multiplication can 

be observed. 

 

Active edge sensors were characterized and designs with no edge structures or lower thick-

nesses were more stable. The depressed distance between edges structures present in certain designs 

is introducing instabilities due to crosstalk and charge sharing. In addition, the trench doping tech-

nique with the use of quadrant angles, behaves better at thinner substrates as it assures a more uni-

form doping of the trench wall.  

 

A study of the Under Bump Metallization effect on the leakage current was conducted.  Ther-

mal treatment was found to improve the behavior of the structure by diminishing the effect. After a 

100 minutes cumulative exposure at 180 C, the leakage current increase rate evolves from 2.9 μΑ/V 

to 1.4 μΑ/V, representing 20 % increase with comparison to the normal ramping region. The nature 
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of this abnormality, presenting itself at the same voltage value regardless of the number of thermal 

steps, at the boarder-line of depletion, suggests the presence of a potential barrier. Charges are ac-

cumulated until the critical value is reached to overcome the potential, most possibly due to chemical 

potential differences between the conductive layers comprising the UBM column. A thermal expo-

sure in this sense rearranges the atomic layers introducing a smoother cross-over. Further investiga-

tion and studies are needed for a comprehensive explanation.  

 

Irradiated n-in-n and p-spray dopant profiles were examined. A reduction of the total implant 

has been observed for the p-spray case in the order of 15 % within the silicon region. Although the 

possibility of a boron neutron capture nuclear reaction was considered, the corresponding cross-

section cannot account for any significant dopant reduction. Uncertainties in the measured profiles 

can account for any differences while the poor resolution of the measurement because of the reduced 

initial concentration and the substrate type further degrades the result. A more accurate study with a 

higher implantation dose should be carried out to reach a final conclusion.  

 

Finally, a new adaptable read-out system has been designed and produced, compatible with a 

wide range of technologies and read-out ASICs . Based on commercially available products, it in-

cludes the minimum amount of custom made parts. Initial results demonstrate good functionality 

while, fabrication issues are addressed and a new revision is planned. 
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7 Conclusions 
 
 

In this thesis, the work performed on two domains, analysis of ATLAS data and development 

of silicon sensors for high energy physics, is presented.  

 

The H→ZZ*→4l mode analysis of Run 1 data was detailed. Along Run 1, several methods 

aiming to the background estimation were developed, evolving with the accumulated statistics. 

These have been extensively discussed with a particular emphasis in the “Truth to Reco” unfolding 

method for electron background estimation. Although this was not the default method selected for 

the final result, derived background estimation was used in systematic uncertainty evaluation. Re-

sults are compatible with the nominal 3l+X method, with 10.36 expected background events in the 

125±5 GeV mass region. For sub-channels with a sub-leading electron-pair (4e and 2mu2e), 14 

events are observed with 4.08 expected from background. The fraction of the reducible background 

is estimated at 27%. Final analysis result, based on 4.8 fb-1 of √s=7 TeV (2011) and 20.3 fb-1 of √s=8 

TeV (2012) LHC data demonstrated an excess of events with a significance of 8.6 standard devia-

tions is observed, corresponding to a mass of mH = 124.3 GeV. 

 

An observability analysis the bbH(→2γ) mode with ATLAS detector  in HL-LHC conditions 

was presented. The analysis was performed for two distinct cases of instantaneous luminosity, cor-

responding to μ = 200 and μ = 140 values, assuming a total integrated luminosity of 3000 fb-1. Using 

extrapolated performances for Phase II conditions and available truth level simulated samples, the 

sensitivity to this mode was proven to be weak: a significance of 0.22 (0.11) for μ = 200 and 0.24 

(.13) for μ = 140 with TMVA (cut-based) selection was found, reflecting to a μ limit of ~ 4 (9) for 

a no diphoton mass- cut analysis approach. PU contamination, poor jet tagging implementation and 

fake jet→photon objects where primary sources of background contamination. Improvements in this 

area, combined with increased MC statistics and adapted event treatment would allow in the future 

to achieve a more precise and consolidated result. 

 

Finally, work is presented towards the development of a highly granular and radiation hard 

pixel detector, capable of coping with the harsh Phase II conditions. An integrated approach is 

adopted, with contributions to all design and evaluation steps towards a completed sensor. An initial 

3D simulation of the current ATLAS pixel sensor is performed and conclusions are applied to the 

design of active edge pixel sensors. Several different design variants are included, in an effort to 

further optimize geometrical efficiency, with inactive regions ranging for 100 μm to 47 μm form the 

sensor edge. To evaluate production quality, a reference library is subsequently created, combining 

test production wafers and simulations. Through comparison of SIMS results with simulated dopant 

profiles, the simulation tool is validates and production process characteristic features are identified. 

This experience is applied in the development of the innovative LGAD technology, including a Gal-

lium doped test production. Sensor evaluation is competed with electrical characterization of the 

active edge designs, with implementation featuring no protective edge structures performing very 

well up to 150 V and leakage current in the order of 10-8 A. Towards a complete sensor assembly, 

UBM induced surface effects are studies and a thermal treatment process is proposed to correct the 

issue. Finally, radiation studies are performed in n and p dopant distributions and a universal data 

acquisition system is developed.  
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8 Annexes 
 

8.1 bbH Analysis Variables Discriminating Power and Distributions 
 

 

Reference Middle Low 

Variable 
Discrimination 

Power 
Variable 

Discrimination 

Power 
Variable 

Discrimination 

Power 

mγγ 0.13 mγγ 0.13 mγγ 0.12 

ηγ2 0.11 ηγ2 0.12 ηγ2 0.11 

ηγ1 0.11 ηγ1 0.11 ηγ1 0.11 

ηj2 0.10 ηj2 0.10 ηj2 0.11 

ΔRγγ 0.10 ηj1 0.10 ΔRγ1j1 0.10 

ΔRγ1j1 0.10 ΔRγ1j1 0.10 ΔRγγ 0.10 

ηj1 0.10 ΔRγγ 0.10 ηj1 0.10 

ΔRbb 0.09 ΔRbb 0.10 ΔRbb 0.10 

PT
Quadrouplet 0.07 PT

Quadrouplet 0.08 PT
Quadrouplet 0.08 

PT(γ2) 0.06 PT(γ2) 0.05 PT(γ2) 0.05 

Nb.jets 0.02 Nb.jets 0.02 Nb.jets 0.02 

 
Table 8-1: Discriminating power across three scoping scenarios. Small variation can be noticed but the be-

havior remains stable across scenarios with noticeably very low discriminating power even for the most 
prominent mγγ variable 

 

 

 

 
Figure 8.1: Input variable distribution of the ηγ2, ΔRbb, mγγ , ΔRγγ, PT(γ2), ΔRγ1j1 fοr the reference scenario at 
μ=140. Blue area represent single region while red represents combined background. Plots are normalized 

to unity. 
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Figure 8.2: Input variable distribution for di-photon mass cut preselection TMVA case of the ηγ2, ΔRbb, ΔRγγ, 
PT(γ2), ΔRγ1j1, mγγ for the reference scenario at μ=140.. Blue area represents the single region while the red is 

represents combined background. Plots are normalized to unity. 
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8.2 The H(→bb)H(→γγ) mode 
 

Given the bbH(→γγ) and H(→bb)H(→γγ) channel similarities in the final object pre-selection 

as well as the common physical backgrounds involved, an analysis consistency and benchmark test 

was performed for the HH case. Pre-selection process and applied frameworks were kept unaltered 

between the two channels since no difference is expected in the nature of the final quadruplet. A 

shift between signal and background definitions for bbH and HH samples in the TMVA input, in 

order to adjust the training for the di-jet resonant signal expected from thee Higgs decay, and a by 

default application of the 120 GeV < mγγ < 130 GeV pre-selection cut where implemented. For the 

HH case, only the μ = 200 interactions per crossing was treated while input training variables were 

not specially optimized by probing all available quantities. Instead, same 11 most discriminant var-

iables used in the bbH channel where introduced with the addition of the di-jet mass to allow dis-

crimination in the resonance mass. 

 

 
 

 
 

Figure 8.3: Input variable distribution of the ΔRγγ, ΔRγ1j1,  ΔRbb, ηγ1, mbb, mγγ fοr the reference scenario at 
μ=200. Blue area represent the single while with red represents combined background for HH case. Plots 

are normalized to unity. 

 

In spite of the input variables been kept mostly identical as in the bbH case, discrimination 

power and ranking differs significantly with the ΔRs between photons, jets and leading photon-

leading jet having the highest separation power (Figure 8.3). Di-photon mass and di-jet masses are 

well below the first three prominent ranking positions with the mγγ pre-selection cut already rejecting 

the majority of the background. The effect here is much more dominant than in the bbH case, because 

of the higher signal statistics and the resonant nature of the di-jet pair allowing a more effective BDT 

training. Small ranking variations exist between scenarios with the six variables demonstrating the 

highest separation value changing ranking order.  

 

Signal and backgrounds PDFs (Figure 8.4) demonstrate stronger separation than in the bbH 

case. Signal remains in the positive end of the classifier values while most of the non-resonant back-

ground sitting at the lower negative end has been removed by the di-photon mass pre-selection. The 

additional di-jet resonance allows a better separation moving the signal further to the right with 

respect to the bbH case and allowing for a better signal discrimination. Reduced background statis-

tics result in significant uncertainties and fluctuating shape of the corresponding PDF, while for the 

signal the situation quite improved.  
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Figure 8.4: BDT response and output PDFs for the signal in blue and the background in red for the refer-

ence scenario at μ = 140. Training and testing samples are plotted together, with testing data represented 
as points. 

 

 
 

Figure 8.5: Significance distributions and signal and background PDFs for all three scenarios when for the 
HH channel at μ = 200. Fluctuations on the higher end of the significance curves are due to lack of back-

ground statistics in the increased weight samples. 

 

Significance is calculated in each possible BDT value, maintaining the same binning and un-

certainties definitions as in all previous cases. Instabilities at the higher end of the distributions (Fig-

ure 8.5) are still present but with a lower intensity than in the bbH mass cut analysis. One interesting 

observation is that the lack of statistical fluctuations for the distribution associated to the nominal 

scenario, being the one yielding most single events. This effect may be attributed to higher signal 

statistics at the top end of the distribution, compensating for the decrease of high weight events in 

the background samples towards large BDT values that induce abrupt significance variations. In 

contrast, instabilities are still present at the middle and low scenario. As usual, separate training was 

applied for each case whereas optimal BDT cut point is selected at a stable region for the nominal 

scenario and applied to the other two. 

 

While in the nominal scenario fluctuation at the highest significance point are important (Fig-

ure 8.5) and a more coarse binning would give a clearer picture, preference of the scenario with 

respect to the other two can be inferred in terms of expected significance (Table 8-2). No conclusion 

can be drawn for any separation between the middle and low scenario since results are compatible 

within limits imposed by uncertainties. An explanation can be extracted by studying background 
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composition table for each scenario and its variation with respect to the optimal point. For the nom-

inal scenario, main background contribution is the jjγγ presenting an identical final state as the signal 

with non-resonant distributions. The middle and low scenarios nevertheless are affected more by the 

fake photon identification efficiency, rendering the bbjγ the dominant background component. Fore-

seen acceptance extension for the nominal scenario results in an increase of jjγγ events, essentially 

because of the high eta contributions. This effect compensates the fake photon background that dom-

inates the other two scenarios whereas statistical uncertainties in the bbjγ sample do not allow for a 

definite conclusion. With an event weight of 43, the 86 expected events for the middle and low 

scenario correspond to only 2 real events in the bbjγ sample (Table 5-3), which can be included or 

excluded by slight variations of the cut value. 

 

 Reference Middle Low 

Significance 0.92 ± 0.10 0.60 ± 0.22 0.53 ± 0.21 

Signal 7.56 ± 0.12 7.61 ± 0.13 6.55 ± 0.12 

Background 67 ± 10 163 ± 87 155 ± 87 

 
Table 8-2: Significance value and expected signal and background events for all three scenarios for HH  

TMVA analysis assuming μ = 200. 

 

Stream 
Reference Middle Low 

Events Yield % Events Yield % Events Yield % 

𝑏�̅�𝐻(→ 𝛾𝛾) 0.92 ± 0.04 (1.38 ± 1.4) % 0.89 ± 0.03 (0.55 ± 0.6) % 0.87 ± 0.03 (0.56 ± 0.7) % 

𝑏�̅�𝛾𝛾 8.01 ± 2.00 (12.00 ± 4.4) % 9.83 ± 2.40 (6.04 ± 3.7) % 7.86 ± 1.97 (5.06 ± 3.3) % 

𝑏�̅�𝑗𝛾 0 ± 0 (0 ± 0.0) % 86.42 ± 86.42 (53.13 ± 28.8) % 86.42 ± 86.42 (55.67 ± 31.5) % 

𝑗𝑗𝛾𝛾 27.95 ± 9.56 (41.90 ± 8.9) % 45.97 ± 11.81 (28.26 ± 15.6) % 34.38 ± 10.13 (22.15 ± 12.9) % 

𝑡𝑡̅𝛾 2.19 ± 1.73 (3.28 ± 2.2) % 0 ± 0 % (0 ± 0.0) % 5.47 ± 2.89 (3.52 ± 2.5) % 

𝑡𝑡̅𝐻(→ 𝛾𝛾) 13.1 ± 0.89 (19.62 ± 5.7) % 12.64 ± 0.88 (7.77 ± 4.7) % 12.68 ± 0.89 (8.17 ± 5.1) % 

𝑡𝑡̅𝑙 0 ± 0 (0 ± 0.0) % 0 ± 0 (0 ± 0.0) % 0 ± 0 (0 ± 0.0) % 

𝑍(→ 𝑏�̅�)𝐻(→ 𝛾𝛾) 1.52 ± 0.05 (2.28 ± 1.9) % 1.58 ± 0.05 (0.97 ± 0.9) % 1.32 ± 0.05 (0.85 ± 0.9) % 

𝑐𝑐̅𝛾𝛾 13.03 ± 2.81 (19.53 ± 5.7) % 5.33 ± 1.48 (3.28 ± 2.2) % 6.24 ± 1.76 (4.02 ± 2.8) % 

𝑐𝑐̅𝑗𝛾 0 ± 0 (0 ± 0.0) % 0 ± 0 (0 ± 0.0) % 0 ± 0 (0 ± 0.0) % 

 
Table 8-3: Background composition for all three scenarios for the HH analysis case. 

 

Overall, the analysis performs well in the HH channel yielding compatible results with cut 

based estimations [1] at Phase II luminosity, but suffers from lack of background statistics which 

cannot dive to a safe conclusion. An improvement is observed for the nominal scenario in the order 

of 25 % with respect to the other two while two most dominant background contributions can be 

traced to the jjγγ final state emulating the single and the bbγj, due to the jet to photon misidentifica-

tion probabilities. With respect to bbH channel, more efficient BDT raining as well as the resonant 

nature of the di-jet pair significantly reduces background and doubles expected significance.  
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8.3 Doping Profile Reference Library 
 

8.3.1 CiS n-in-n Test Wafers Simulation Parameters 

 

Substrate properties 

 High Resistivity Low Resistivity 

Orientation 100 

Material Silicon 

Type n-type (phosphorus) 

Resistivity 4000 Ω×cm 0.25 Ω×cm 

Dopant Concentration 1.1×1012 atoms/cm3 3 ×1016 atoms/cm3 

Thickness 525 μm 380 μm 
 

Table 8-4: Wafer substrate properties implemented into the simulation. 

 

Simulators 

Process Simulation sprocess 

Differential equation solver parallel direct solver PARDISO 
 

Table 8-5: Process flow simulator and equation solving algorithm. 

 

Geometrical parameters 

Coordinates System Unified Coordinate System 

Region 1-Dimensional simulation 

Side Front 

Allow multiple annealing and diffu-

sion steps using  same grid 
Relaxed mechanical stress calculation 

Silicon Native Oxide thickness 1.9 nm 
 

Table 8-6: Parameters related to geometry definition and structure treatment.  

 

Implantation Parameters 

Implantation simulation Monte Carlo Simulation 

Monte Carlo Implantation Model CrystalTrim 

Implantation damage simulation Full Cascade model 

Parallel processes 4 

Number of simulated pseudo-particles 1000 

Monte Carlo Randomization Seed System Clock 

Increase number of trajectories in segments with low trajec-

tory density 
Trajectory Splitting 

Maximum phosphorus trajectory splits in silicon 4 

Maximum phosphorus trajectory splits per element in silicon 2 

Trajectory replication  Active 

Periodicity (Reflective boundaries) in X and Y directions 

Use Advanced Calibration Library Active 

Advanced Calibration library version 2013.12 

Dopant diffusion model 

Constant 

Charged Fermi 

Charged Pair 

Charged React 

Dopant activation model BIC 
 

Table 8-7: Implantation parameters and used models. Parameters not included in this table are used in 
their default value as defined within Sentaurus database. 
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Fixed Mesh element lines Placemat 

Region Cell Size 

0 μm – 3 μm 0.5 nm– 5 nm 

3 μm – 7 μm 5 nm – 100 nm 

7 μm – 10 μm 100 nm - 1 μm 

10 μm – 100 μm 1 μm – 50 μm 

100 μm – backside 50 μm 

 
Table 8-8: Fixed lines and spacing parameters for meshing element control 

 

Mesh refinements 

Meshing algorithm MGOALS 

Minimum grid element side size 0.6 nm 

Adaptive meshing off 

Phosphorus absolute error 1014 atoms/cm3 

Boron absolute error 1014 atoms/cm3 

 
Table 8-9: Meshing parameters and refinements. 

 

Simulated Process Flow: 

 

1. Oxidation (for the 100 nm screen oxide layer) 

a. 5 minutes thermal diffusion step simulation at 1000 0C with O2 presence 

b. 95 minutes thermal diffusion step simulation at 1000 0C with O2 and HCl presence 

c. 20 minutes thermal diffusion step simulation at 1000 oC with N2 presence 

 

- or - 

 

1. Oxidation (for the 200 nm screen oxide layer) 

a. 1 minute thermal diffusion step simulation at 1000 0C with O2 presence 

b. 10 minutes thermal diffusion step simulation at 1000 0C with O2 and HCl presence 

c. 10 minutes thermal diffusion step simulation at 1000 0C with O2 presence 

d. 22.75 minutes thermal diffusion step simulation at 1000 0C with O2 and H2 pres-

ence 

e. 5 minutes thermal diffusion step simulation at 1000 oC with N2 presence 

2. Implantation 

a. Tilt angle: 7 degrees 

b. Rotation angle: -30 degrees 

c. Side: front 

d. Quadrant implantation: 1 

e. Energy and dose: varies depending on specification 

3. Thermal annealing step 

a. 240 minutes exposure to 975 0C under N2 atmosphere 

4. Oxide etching step (optional) 

a. Type: Strip 

b. Material: Oxide 

c. Over etch: 1% 

d. Etch stop material: Silicon 

e. Side: Front 
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Figure 8.6: SIMS – Simulation comparison for the CiS n-in-n samples using the constant diffusion model for 
the low resistivity substrate. Additional silicon dioxide has been etched off the surface of the samples and 

an equivalent process is simulated. 

 

 
 

Figure 8.7: SIMS – Simulation comparison for the CiS n-in-n samples using the constant diffusion model for 
the low resistivity substrate. Measurements are performed through the silicon dioxide layer and the sharp 

peak marks the transition boundary between oxide and silicon. 
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Figure 8.8: SIMS – Simulation comparison for the CiS n-in-n samples using the charged Fermi diffusion 
model for the low resistivity substrate. Additional silicon dioxide has been etched off the surface of the 

samples and an equivalent process is simulated. 

 

 
 

Figure 8.9: SIMS – Simulation comparison for the CiS n-in-n samples using the charged Fermi diffusion 
model for the low resistivity substrate. Measurements are performed through the silicon dioxide layer and 

the sharp peak marks the transition boundary between oxide and silicon. 
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Figure 8.10: SIMS – Simulation comparison for the CiS n-in-n samples using the charged Pair diffusion 
model for the low resistivity substrate. Additional silicon dioxide has been etched off the surface of the 

samples and an equivalent process is simulated. 
 

 
 

Figure 8.11: SIMS – Simulation comparison for the CiS n-in-n samples using the charged Pair diffusion 
model for the low resistivity substrate. Measurements are performed through the silicon dioxide layer and 

the sharp peak marks the transition boundary between oxide and silicon. 
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Figure 8.12: SIMS – Simulation comparison for the CiS n-in-n samples using the charged React diffusion 
model for the low resistivity substrate. Additional silicon dioxide has been etched off the surface of the 

samples and an equivalent process is simulated. 
 

 
 

Figure 8.13: SIMS – Simulation comparison for the CiS n-in-n samples using the charged React diffusion 
model for the low resistivity substrate. Measurements are performed through the silicon dioxide layer and 

the sharp peak marks the transition boundary between oxide and silicon. 
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8.3.2 VTT n-in-p Test Wafers Simulation Parameters 

 

Substrate properties 

 High Resistivity Low Resistivity 

Orientation 100 

Material Silicon 

Type p-type (boron) 

Resistivity 10000 Ω×cm 2 Ω×cm 

Dopant Concentration 1.3×1012 atoms/cm3 7 ×1015 atoms/cm3 

Thickness 525 μm 675 μm 

 
Table 8-10: Wafer substrate properties implemented into the simulation.  

 
Simulators 

Process Simulation sprocess 

Differential equation solver parallel direct solver PARDISO 

 
Table 8-11: Process flow simulator and equation solving algorithm. 

 
Geometrical parameters 

Coordinates System Unified Coordinate System 

Region 1-Dimensional simulation 

Side Front 

Allow multiple annealing and diffu-

sion steps using  same grid 
Relaxed mechanical stress calculation 

Silicon Native Oxide thickness 1.9 nm 

 
Table 8-12: Parameters related to geometry definition and structure treatment.  

 

Implantation Parameters 

Implantation simulation Monte Carlo Simulation 

Monte Carlo Implantation Model CrystalTrim 

Implantation damage simulation Full Cascade model 

Parallel processes 4 

Number of simulated pseudo-particles 1000 

Monte Carlo Randomization Seed System Clock 

Increase number of trajectories in segments with low trajec-

tory density 
Trajectory Splitting 

Maximum phosphorus trajectory splits in silicon 4 

Maximum phosphorus trajectory splits per element in silicon 2 

Trajectory replication  Active 

Periodicity (Reflective boundaries) in X and Y directions 

Use Advanced Calibration Library Active 

Advanced Calibration library version 2013.12 

Dopant diffusion model 

Constant 

Charged Fermi 

Charged Pair 

Charged React 

Dopant activation model BIC 

 
Table 8-13: Implantation parameters and used models. Parameters not included in this table are used in 

their default value as defined within Sentaurus database. 

 



Annexes 
 

 215 

Fixed Mesh element lines Placemat 

Region Cell Size 

0 μm – 3 μm 0.5 nm– 5 nm 

3 μm – 7 μm 5 nm – 100 nm 

7 μm – 10 μm 100 nm - 1 μm 

10 μm – 100 μm 1 μm – 50 μm 

100 μm – backside 50 μm 

 
Table 8-14: Fixed lines and spacing parameters for meshing element control 

 

Mesh refinements 

Meshing algorithm MGOALS 

Minimum grid element side size 0.6 nm 

Adaptive meshing off 

Phosphorus absolute error 1014 atoms/cm3 

Boron absolute error 1014 atoms/cm3 

 
Table 8-15: Meshing parameters and refinements. 

 

Simulated Process Flow: 

 

1. Oxide Deposition (no full oxidation simulation at this stage) 

a. Material: Oxide 

b. Thickness: 100 nm or 200 nm 

c. Dopant: None 

d. Side: Front 

e. Deposition type: Isotropic 

2. Thermal Annealing (to simulate oxidation thermal stresses) 

a. Temperature: 1000 0C 

b. Time: 10 minutes (for 100 nm) or 24 minutes (for 200 nm) 

c. Correspondence to oxidation: wet oxidation assuming native oxide 

3. Implantation 

d. Tilt angle: 7 degrees 

e. Rotation angle: -30 degrees 

f. Side: front 

g. Quadrant implantation: 1 

4. Post-Implantation Oxidation 

a. Dopant dependent occupation: Active 

b. 60 minutes thermal diffusion step simulation at 1000 0C with N2 presence 

c. 60 minutes thermal diffusion step simulation at 1000 0C with O2 presence 

d. 60 minutes thermal diffusion step simulation at 1000 oC with H2O presence 

5. Oxide etching step (optional) 

a. Type: Strip 

b. Material: Oxide 

c. Over etch: 1% 

d. Etch stop material: Silicon 

e. Side: Front 
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Figure 8.14: SIMS – Simulation comparison for the VTT n-in-p samples using the constant diffusion model 
for the low resistivity substrate. Additional silicon dioxide has been etched off the surface of the samples 

and an equivalent process is simulated. 

 

 
 

Figure 8.15: SIMS – Simulation comparison for the VTT n-in-p samples using the constant diffusion model 
for the low resistivity substrate. Measurements are performed through the silicon dioxide layer and the 

sharp peak marks the transition boundary between oxide and silicon. 
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Figure 8.16: SIMS – Simulation comparison for the VTT n-in-p samples using the charged Fermi model for 
the low resistivity substrate. Additional silicon dioxide has been etched off the surface of the samples and 

an equivalent process is simulated. 

 

 
 

Figure 8.17: SIMS – Simulation comparison for the VTT n-in-p samples using the charged Fermi model for 
the low resistivity substrate. Measurements are performed through the silicon dioxide layer and the sharp 

peak marks the transition boundary between oxide and silicon. 
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Figure 8.18: SIMS – Simulation comparison for the VTT n-in-p samples using the charged Pair model for the 
low resistivity substrate. Additional silicon dioxide has been etched off the surface of the samples and an 

equivalent process is simulated. 

 

 
 
Figure 8.19: SIMS – Simulation comparison for the VTT n-in-p samples using the charged Pair model for the 

low resistivity substrate. Measurements are performed through the silicon dioxide layer and the sharp 
peak marks the transition boundary between oxide and silicon. 
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Figure 8.20: SIMS – Simulation comparison for the VTT n-in-p samples using the charged React model for 
the low resistivity substrate. Measurements are performed through the silicon dioxide layer and the sharp 

peak marks the transition boundary between oxide and silicon. 

 

 
 

Figure 8.21: SIMS – Simulation comparison for the VTT n-in-p samples using the charged React model for 
the low resistivity substrate. Measurements are performed through the silicon dioxide layer and the sharp 

peak marks the transition boundary between oxide and silicon.  
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